WorldWideScience

Sample records for ultrafast intramolecular processes

  1. Femtosecond laser studies of ultrafast intramolecular processes

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, C. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this research is to better understand the detailed mechanisms of chemical reactions by observing, directly in time, the dynamics of fundamental chemical processes. In this work femtosecond laser pulses are used to initiate chemical processes and follow the progress of these processes in time. The authors are currently studying ultrafast internal conversion and subsequent intramolecular relaxation in unsaturated hydrocarbons. In addition, the authors are developing nonlinear optical techniques to prepare and monitor the time evolution of specific vibrational motions in ground electronic state molecules.

  2. Photoinduced Ultrafast Intramolecular Excited-State Energy Transfer in the Silylene-Bridged Biphenyl and Stilbene (SBS) System: A Nonadiabatic Dynamics Point of View.

    Science.gov (United States)

    Wang, Jun; Huang, Jing; Du, Likai; Lan, Zhenggang

    2015-07-09

    The photoinduced intramolecular excited-state energy-transfer (EET) process in conjugated polymers has received a great deal of research interest because of its important role in the light harvesting and energy transport of organic photovoltaic materials in photoelectric devices. In this work, the silylene-bridged biphenyl and stilbene (SBS) system was chosen as a simplified model system to obtain physical insight into the photoinduced intramolecular energy transfer between the different building units of the SBS copolymer. In the SBS system, the vinylbiphenyl and vinylstilbene moieties serve as the donor (D) unit and the acceptor (A) unit, respectively. The ultrafast excited-state dynamics of the SBS system was investigated from the point of view of nonadiabatic dynamics with the surface-hopping method at the TDDFT level. The first two excited states (S1 and S2) are characterized by local excitations at the acceptor (vinylstilbene) and donor (vinylbiphenyl) units, respectively. Ultrafast S2-S1 decay is responsible for the intramolecular D-A excitonic energy transfer. The geometric distortion of the D moiety play an essential role in this EET process, whereas the A moiety remains unchanged during the nonadiabatic dynamics simulation. The present work provides a direct dynamical approach to understand the ultrafast intramolecular energy-transfer dynamics in SBS copolymers and other similar organic photovoltaic copolymers.

  3. Excited-state intramolecular proton transfer of 2-acetylindan-1,3-dione studied by ultrafast absorption and fluorescence spectroscopy

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Verma

    2016-03-01

    Full Text Available We employ transient absorption from the deep-UV to the visible region and fluorescence upconversion to investigate the photoinduced excited-state intramolecular proton-transfer dynamics in a biologically relevant drug molecule, 2-acetylindan-1,3-dione. The molecule is a ß-diketone which in the electronic ground state exists as exocyclic enol with an intramolecular H-bond. Upon electronic excitation at 300 nm, the first excited state of the exocyclic enol is initially populated, followed by ultrafast proton transfer (≈160 fs to form the vibrationally hot endocyclic enol. Subsequently, solvent-induced vibrational relaxation takes place (≈10 ps followed by decay (≈390 ps to the corresponding ground state.

  4. Ultrafast Nonlinear Signal Processing in Silicon Waveguides

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Mulvad, Hans Christian Hansen; Hu, Hao

    2012-01-01

    We describe recent demonstrations of exploiting highly nonlinear silicon waveguides for ultrafast optical signal processing. We describe wavelength conversion and serial-to-parallel conversion of 640 Gbit/s data signals and 1.28 Tbit/s demultiplexing and all-optical sampling.......We describe recent demonstrations of exploiting highly nonlinear silicon waveguides for ultrafast optical signal processing. We describe wavelength conversion and serial-to-parallel conversion of 640 Gbit/s data signals and 1.28 Tbit/s demultiplexing and all-optical sampling....

  5. Ultrafast intramolecular relaxation dynamics of Mg- and Zn-bacteriochlorophyll a

    Energy Technology Data Exchange (ETDEWEB)

    Kosumi, Daisuke [Osaka City University Advanced Research Institute for Natural Science and Technology, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); CREST/JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Nakagawa, Katsunori; Sakai, Shunsuke [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Nagaoka, Yuya; Maruta, Satoshi; Sugisaki, Mitsuru [CREST/JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Dewa, Takehisa [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); PRESTO/JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Nango, Mamoru [The Osaka City University Advanced Research Institute for Natural Science and Technology, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); CREST/JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Hashimoto, Hideki [The Osaka City University Advanced Research Institute for Natural Science and Technology, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); CREST/JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan)

    2013-07-21

    Ultrafast excited-state dynamics of the photosynthetic pigment (Mg-)bacteriochlorophyll a and its Zn-substituted form were investigated by steady-state absorption/fluorescence and femtosecond pump-probe spectroscopic measurements. The obtained steady-state absorption and fluorescence spectra of bacteriochlorophyll a in solution showed that the central metal compound significantly affects the energy of the Q{sub x} state, but has almost no effect on the Q{sub y} state. Photo-induced absorption spectra were recorded upon excitation of Mg- and Zn-bacteriochlorophyll a into either their Q{sub x} or Q{sub y} state. By comparing the kinetic traces of transient absorption, ground-state beaching, and stimulated emission after excitation to the Q{sub x} or Q{sub y} state, we showed that the Q{sub x} state was substantially incorporated in the ultrafast excited-state dynamics of bacteriochlorophyll a. Based on these observations, the lifetime of the Q{sub x} state was determined to be 50 and 70 fs for Mg- and Zn-bacteriochlorophyll a, respectively, indicating that the lifetime was influenced by the central metal atom due to the change of the energy gap between the Q{sub x} and Q{sub y} states.

  6. Excited-state intramolecular hydrogen transfer (ESIHT) of 1,8-Dihydroxy-9,10-anthraquinone (DHAQ) characterized by ultrafast electronic and vibrational spectroscopy and computational modeling

    KAUST Repository

    Mohammed, Omar F.

    2014-05-01

    We combine ultrafast electronic and vibrational spectroscopy and computational modeling to investigate the photoinduced excited-state intramolecular hydrogen-transfer dynamics in 1,8-dihydroxy-9,10-anthraquinone (DHAQ) in tetrachloroethene, acetonitrile, dimethyl sulfoxide, and methanol. We analyze the electronic excited states of DHAQ with various possible hydrogen-bonding schemes and provide a general description of the electronic excited-state dynamics based on a systematic analysis of femtosecond UV/vis and UV/IR pump-probe spectroscopic data. Upon photoabsorption at 400 nm, the S 2 electronic excited state is initially populated, followed by a rapid equilibration within 150 fs through population transfer to the S 1 state where DHAQ exhibits ESIHT dynamics. In this equilibration process, the excited-state population is distributed between the 9,10-quinone (S2) and 1,10-quinone (S1) states while undergoing vibrational energy redistribution, vibrational cooling, and solvation dynamics on the 0.1-50 ps time scale. Transient UV/vis pump-probe data in methanol also suggest additional relaxation dynamics on the subnanosecond time scale, which we tentatively ascribe to hydrogen bond dynamics of DHAQ with the protic solvent, affecting the equilibrium population dynamics within the S2 and S1 electronic excited states. Ultimately, the two excited singlet states decay with a solvent-dependent time constant ranging from 139 to 210 ps. The concomitant electronic ground-state recovery is, however, only partial because a large fraction of the population relaxes to the first triplet state. From the similarity of the time scales involved, we conjecture that the solvent plays a crucial role in breaking the intramolecular hydrogen bond of DHAQ during the S2/S1 relaxation to either the ground or triplet state. © 2014 American Chemical Society.

  7. Ultrafast Optical Signal Processing with Bragg Structures

    Directory of Open Access Journals (Sweden)

    Yikun Liu

    2017-05-01

    Full Text Available The phase, amplitude, speed, and polarization, in addition to many other properties of light, can be modulated by photonic Bragg structures. In conjunction with nonlinearity and quantum effects, a variety of ensuing micro- or nano-photonic applications can be realized. This paper reviews various optical phenomena in several exemplary 1D Bragg gratings. Important examples are resonantly absorbing photonic structures, chirped Bragg grating, and cholesteric liquid crystals; their unique operation capabilities and key issues are considered in detail. These Bragg structures are expected to be used in wide-spread applications involving light field modulations, especially in the rapidly advancing field of ultrafast optical signal processing.

  8. An abnormally slow proton transfer reaction in a simple HBO derivative due to ultrafast intramolecular-charge transfer events.

    Science.gov (United States)

    Alarcos, Noemí; Gutierrez, Mario; Liras, Marta; Sánchez, Félix; Douhal, Abderrazzak

    2015-07-07

    We report on the steady-state, picosecond and femtosecond time-resolved studies of a charge and proton transfer dye 6-amino-2-(2'-hydroxyphenyl)benzoxazole (6A-HBO) and its methylated derivative 6-amino-2-(2'-methoxyphenyl)benzoxazole (6A-MBO), in different solvents. With femtosecond resolution and comparison with the photobehaviour of 6A-MBO, we demonstrate for 6A-HBO in solution, the photoproduction of an intramolecular charge-transfer (ICT) process at S1 taking place in ∼140 fs or shorter, followed by solvent relaxation in the charge transferred species. The generated structure (syn-enol charge transfer conformer) experiences an excited-state intramolecular proton-transfer (ESIPT) reaction to produce a keto-type tautomer. This subsequent proton motion occurs in 1.2 ps (n-heptane), 14 ps (DCM) and 35 ps (MeOH). In MeOH, it is assisted by the solvent molecules and occurs through tunneling for which we got a large kinetic isotope effect (KIE) of about 13. For the 6A-DBO (deuterated sample in CD3OD) the global proton-transfer reaction takes place in 200 ps, showing a remarkable slow KIE regime. The slow ESIPT reaction in DCM (14 ps), not through tunnelling as it is not sensitive to OH/OD exchange, has however to overcome an energy barrier using intramolecular as well as solvent coordinates. The rich ESIPT dynamics of 6A-HBO in the used solutions is governed by an ICT reaction, triggered by the amino group, and it is solvent dependent. Thus, the charge injection to a 6A-HBO molecular frame makes the ICT species more stable, and the phenol group less acidic, slowing down the subsequent ESIPT reaction. Our findings bring new insights into the coupling between ICT and ESIPT reactions on the potential-energy surfaces of several barriers.

  9. A Direct Mechanism of Ultrafast Intramolecular Singlet Fission in Pentacene Dimers

    Science.gov (United States)

    2016-08-24

    Queisser limit of solar power conversion efficiency. In conventional materials, the mechanism of SF is an intermolecular process (xSF), which is mediated by...property for materials used in third-generation solar cells and photodetectors, among other optoelectronic devices.1−3 Unfortunately, techno- logical...mixing. Previous work investigating the mechanism of xSF unfavorably compared the direct coupling mechanism against superexchange mediated by high

  10. Ultrafast optical signal processing using semiconductor quantum dot amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2002-01-01

    The linear and nonlinear properties of quantum dot amplifiers are discussed on the basis of an extensive theoretical model. These devices show great potential for linear amplification as well as ultrafast signal processing.......The linear and nonlinear properties of quantum dot amplifiers are discussed on the basis of an extensive theoretical model. These devices show great potential for linear amplification as well as ultrafast signal processing....

  11. Progress in ultrafast laser processing and future prospects

    Science.gov (United States)

    Sugioka, Koji

    2017-03-01

    The unique characteristics of ultrafast lasers have rapidly revolutionized materials processing after their first demonstration in 1987. The ultrashort pulse width of the laser suppresses heat diffusion to the surroundings of the processed region, which minimizes the formation of a heat-affected zone and thereby enables ultrahigh precision micro- and nanofabrication of various materials. In addition, the extremely high peak intensity can induce nonlinear multiphoton absorption, which extends the diversity of materials that can be processed to transparent materials such as glass. Nonlinear multiphoton absorption enables three-dimensional (3D) micro- and nanofabrication by irradiation with tightly focused femtosecond laser pulses inside transparent materials. Thus, ultrafast lasers are currently widely used for both fundamental research and practical applications. This review presents progress in ultrafast laser processing, including micromachining, surface micro- and nanostructuring, nanoablation, and 3D and volume processing. Advanced technologies that promise to enhance the performance of ultrafast laser processing, such as hybrid additive and subtractive processing, and shaped beam processing are discussed. Commercial and industrial applications of ultrafast laser processing are also introduced. Finally, future prospects of the technology are given with a summary.

  12. 9th International Symposium on Ultrafast Processes in Spectroscopy

    CERN Document Server

    Silvestri, S; Denardo, G

    1996-01-01

    This volume is a collection of papers presented at the Ninth International Symposium on "Ultrafast Processes in Spectroscopy" (UPS '95) held at the International Centre for Theo­ retical Physics (ICTP), Trieste (Italy), October 30 -November 3, 1995. These meetings have become recognized as the major forum in Europe for discussion of new work in this rapidly moving field. The UPS'95 Conference in Trieste brought together a multidisciplinary group of researchers sharing common interests in the generation of ultrashort optical pulses and their application to studies of ultrafast phenomena in physics, chemistry, material science, electronics, and biology. It was attended by approximately 250 participants from 20 countries and the five-day program comprises more than 200 papers. The progress of both technology and applications in the field of ultrafast processes during these last years is truly remarkable. The advent of all solid state femtosecond lasers and the extension of laser wavelengths by frequency convers...

  13. Rapid examination of the kinetic process of intramolecular lactamization of gabapentin using DSC-FTIR

    International Nuclear Information System (INIS)

    Hsu, C.-H.; Lin, S.-Y.

    2009-01-01

    The thermal stability and thermodynamics of gabapentin (GBP) in the solid state were investigated by DSC and TG techniques, and FTIR microspectroscopy. The detailed intramolecular lactamization process of GBP to form gabapentin-lactam (GBP-L) was also determined by thermal FTIR microspectroscopy. GBP exhibited a DSC endothermic peak at 169 deg. C. The weight loss in TG curve of GBP suggested that the evaporation process of water liberated via intramolecular lactamization was simultaneously combined with the evaporation process of GBP-L having a DSC endothermic peak at 91 deg. C. A thermal FTIR microspectroscopy clearly evidenced the IR spectra at 3350 cm -1 for water liberated and at 1701 cm -1 for lactam structure formed due to the lactam formation of GBP. This study indicates that the activation energy for combined processes of intramolecular lactamization of GBP and evaporation of GBP-L was about 114.3 ± 23.3 kJ/mol, but for the evaporation of GBP-L alone was 76.2 ± 1.5 kJ/mol. A powerful simultaneous DSC-FTIR combined technique was easily used to quickly examine the detailed kinetic processes of intramolecular cyclization of GPB and evaporation of GBP-L in the solid state

  14. Ultrafast intramolecular charge transfer with N-(4-cyanophenyl)carbazole. Evidence for a LE precursor and dual LE + ICT fluorescence.

    Science.gov (United States)

    Galievsky, Victor A; Druzhinin, Sergey I; Demeter, Attila; Mayer, Peter; Kovalenko, Sergey A; Senyushkina, Tamara A; Zachariasse, Klaas A

    2010-12-09

    The photophysics of N-(4-cyanophenyl)carbazole (NP4CN) was investigated by using absorption and fluorescence spectra, picosecond fluorescence decays, and femtosecond transient absorption. In the nonpolar n-hexane as well as in the polar solvent acetonitrile (MeCN), a locally excited (LE) state is detected, as a precursor for the intramolecular charge transfer (ICT) state. A LE → ICT reaction time τ(2) at 22 °C of 0.95 ps in ethyl cyanide (EtCN) and 0.32 ps in MeCN is determined from the decay of the LE excited state absorption (ESA) maximum around 620 nm. In the ESA spectrum of NP4CN in n-hexane at a pump-probe delay time of 100 ps, an important contribution of the LE band remains alongside the ICT band, in contrast to what is observed in EtCN and MeCN. This shows that a LE ⇄ ICT equilibrium is established in this solvent and the ICT reaction time of 0.5 ps is equal to the reciprocal of the sum of the forward and backward ICT rate constants 1/(k(a) + k(d)). In the photostationary S(0) → S(n) absorption spectrum of NP4CN in n-hexane and MeCN, an additional CT absorption band appears, absent in the sum of the spectra of its electron donor (D) and acceptor (A) subgroups carbazole and benzonitrile. This CT band is located at an energy of ∼4000 cm(-1) lower than for N-phenylcarbazole (NPC), due to the larger electron affinity of the benzonitrile moiety of NP4CN than the phenyl subunit of NPC. The fluorescence spectrum of NP4CN in n-hexane at 25 °C mainly consists of a structured LE emission, with a small ICT admixture, indicating that a LE → ICT reaction just starts to occur under these conditions. In di-n-pentyl ether (DPeE) and di-n-butyl ether (DBE), a LE emission is found upon cooling at the high-energy edge of the ICT fluorescence band, caused by the onset of dielectric solvent relaxation. This is not the case in more polar solvents, such as diethyl ether (DEE) and MeCN, in which a structureless ICT emission band fully overlaps the strongly quenched LE

  15. Some kinetic and spectroscopic evidence on intramolecular relaxation processes in polyatomic molecules

    International Nuclear Information System (INIS)

    Quack, M.

    1983-01-01

    The description and definition of intramolecular vibrational relaxation processes is discussed within the framework of the quantum mechanical and statistical mechanical equations of motion. The evidence from quite different experimental sources is summarized under the common aspect of vibrational relaxation. Although much of the evidence remains ambiguous, there is good indication that a localized vibrational excitation relaxes typically in 0.1 to 10 picoseconds, which is long compared to many optical and reactive processes

  16. THE ROLE OF INTRAMOLECULAR TIES ENERGY IN THE PYROLYSIS PROCESS OF PET

    Directory of Open Access Journals (Sweden)

    P. Iu. Salikov

    2014-01-01

    Full Text Available Summary. Recycling plastic waste to focus on. The main type of used products made of polyethylene terephthalate (PET is a container from the various types of beverages. There was considered a possibility of waste of PET (bottles, bottles, packaging containers by pyrolysis. Most of the proposed methods are not suitable for recycling (recycling of waste consumption contamination. Purpose - to develop technological foundations and optimum modes waste PET to obtain useful secondary products, taking into account the energy of chemical intramolecular bonds. Applied scientific basis of recycling PET into useful forms of secondary products, in particular the establishment of the collapse of the intramolecular bonds, depending on the temperature of the pyrolysis method of mathematical processing - differentiation of polynomial equations change in the degree of pyrolysis temperature-dependent. The optimum modes of processing. The block diagram of apparatus for processing contaminated waste PET pyrolysis methods of control processing in accordance with the specified composition of secondary products. The possibility of controlling the amount and types of fuel components of secondary products due to measurable parameters of the pyrolysis process. The effective temperature pyrolysis of waste PET with the CCA-tures energy intramolecular bonds.

  17. Benzothiazole-Based AIEgen with Tunable Excited-State Intramolecular Proton Transfer and Restricted Intramolecular Rotation Processes for Highly Sensitive Physiological pH Sensing.

    Science.gov (United States)

    Li, Kai; Feng, Qi; Niu, Guangle; Zhang, Weijie; Li, Yuanyuan; Kang, Miaomiao; Xu, Kui; He, Juan; Hou, Hongwei; Tang, Ben Zhong

    2018-04-23

    In this work, a benzothiazole-based aggregation-induced emission luminogen (AIEgen) of 2-(5-(4-carboxyphenyl)-2-hydroxyphenyl)benzothiazole (3) was designed and synthesized, which exhibited multifluorescence emissions in different dispersed or aggregated states based on tunable excited-state intramolecular proton transfer (ESIPT) and restricted intramolecular rotation (RIR) processes. 3 was successfully used as a ratiometric fluorescent chemosensor for the detection of pH, which exhibited reversible acid/base-switched yellow/cyan emission transition. More importantly, the pH jump of 3 was very precipitous from 7.0 to 8.0 with a midpoint of 7.5, which was well matched with the physiological pH. This feature makes 3 very suitable for the highly sensitive detection of pH fluctuation in biosamples and neutral water samples. 3 was also successfully used as a ratiometric fluorescence chemosensor for the detection of acidic and basic organic vapors in test papers.

  18. Ultrafast Bessel beams: advanced tools for laser materials processing

    Science.gov (United States)

    Stoian, Razvan; Bhuyan, Manoj K.; Zhang, Guodong; Cheng, Guanghua; Meyer, Remy; Courvoisier, Francois

    2018-05-01

    Ultrafast Bessel beams demonstrate a significant capacity of structuring transparent materials with a high degree of accuracy and exceptional aspect ratio. The ability to localize energy on the nanometer scale (bypassing the 100-nm milestone) makes them ideal tools for advanced laser nanoscale processing on surfaces and in the bulk. This allows to generate and combine micron and nano-sized features into hybrid structures that show novel functionalities. Their high aspect ratio and the accurate location can equally drive an efficient material modification and processing strategy on large dimensions. We review, here, the main concepts of generating and using Bessel non-diffractive beams and their remarkable features, discuss general characteristics of their interaction with matter in ablation and material modification regimes, and advocate their use for obtaining hybrid micro and nanoscale structures in two and three dimensions (2D and 3D) performing complex functions. High-throughput applications are indicated. The example list ranges from surface nanostructuring and laser cutting to ultrafast laser welding and the fabrication of 3D photonic systems embedded in the volume.

  19. Ultrafast signal processing in quantum dot amplifiers through effective spectral holeburning

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper; Uskov, A. V.

    2002-01-01

    suitable for ultrafast signal processing. The basis of this property is that the process of spectral hole burning (SHB) can become very effective. We consider a traveling wave optical amplifier consisting of the dot states, which interact with the optical signal (no inhomogeneous broadening included...

  20. Silicon nanowires for ultra-fast and ultrabroadband optical signal processing

    DEFF Research Database (Denmark)

    Ji, Hua; Hu, Hao; Pu, Minhao

    2015-01-01

    In this paper, we present recent research on silicon nanowires for ultra-fast and ultra-broadband optical signal processing at DTU Fotonik. The advantages and limitations of using silicon nanowires for optical signal processing are revealed through experimental demonstrations of various optical...

  1. Ultrafast excited state processes in Roseobacter denitrificans antennae: comparison of isolated complexes and native membranes

    NARCIS (Netherlands)

    Ferretti, M.; Duquesne, K.; Sturgis, J.N.; van Grondelle, R.

    2014-01-01

    Roseobacter (Rsb.) denitrificans is a marine aerobic anoxygenic photosynthetic purple bacterium with an unusually high-800 nm absorption band. Ultrafast excited state processes have been intensively studied in the past in order to understand why the energy transfer efficiency between photosynthetic

  2. Intramolecular photoinduced electron-transfer in azobenzene-perylene diimide

    International Nuclear Information System (INIS)

    Feng Wen-Ke; Wang Shu-Feng; Gong Qi-Huang; Feng Yi-Yu; Feng Wei; Yi Wen-Hui

    2010-01-01

    This paper studies the intramolecular photoinduced electron-transfer (PET) of covalent bonded azobenzene-perylene diimide (AZO-PDI) in solvents by using steady-state and time-resolved fluorescence spectroscopy together with ultrafast transient absorption spectroscopic techniques. Fast fluorescence quenching is observed when AZO-PDI is excited at characteristic wavelengths of AZO and perylene moieties. Reductive electron-transfer with transfer rate faster than 10 11 s −1 is found. This PET process is also consolidated by femtosecond transient absorption spectra

  3. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    Science.gov (United States)

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-10-01

    Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.

  4. The Intramolecular Diels–Alder Reaction of Tryptamine-Derived Zincke Aldehydes Is a Stepwise Process

    OpenAIRE

    Pham, Hung V.; Martin, David B. C.; Vanderwal, Christopher D.; Houk, K. N.

    2012-01-01

    Computational studies show that the base-mediated intramolecular Diels–Alder of tryptamine-derived Zincke aldehydes, used as a key step in the synthesis of the Strychnos alkaloids norfluorocurarine and strychnine, proceeds via a stepwise pathway. The experimentally determined importance of a potassium counterion in the base is explained by its ability to preorganize the Zincke aldehyde diene in an s-cis conformation suitable to bicyclization. Computation also supports the thermodynamic import...

  5. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes

    Science.gov (United States)

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  6. High Speed Pump-Probe Apparatus for Observation of Transitional Effects in Ultrafast Laser Micromachining Processes

    Directory of Open Access Journals (Sweden)

    Ilya Alexeev

    2015-12-01

    Full Text Available A pump-probe experimental approach has been shown to be a very efficient tool for the observation and analysis of various laser matter interaction effects. In those setups, synchronized laser pulses are used to create an event (pump and to simultaneously observe it (probe. In general, the physical effects that can be investigated with such an apparatus are restricted by the temporal resolution of the probe pulse and the observation window. The latter can be greatly extended by adjusting the pump-probe time delay under the assumption that the interaction process remains fairly reproducible. Unfortunately, this assumption becomes invalid in the case of high-repetition-rate ultrafast laser material processing, where the irradiation history strongly affects the ongoing interaction process. In this contribution, the authors present an extension of the pump-probe setup that allows to investigate transitional and dynamic effects present during ultrafast laser machining performed at high pulse repetition frequencies.

  7. Wavelet analysis of molecular dynamics: Efficient extraction of time-frequency information in ultrafast optical processes

    International Nuclear Information System (INIS)

    Prior, Javier; Castro, Enrique; Chin, Alex W.; Almeida, Javier; Huelga, Susana F.; Plenio, Martin B.

    2013-01-01

    New experimental techniques based on nonlinear ultrafast spectroscopies have been developed over the last few years, and have been demonstrated to provide powerful probes of quantum dynamics in different types of molecular aggregates, including both natural and artificial light harvesting complexes. Fourier transform-based spectroscopies have been particularly successful, yet “complete” spectral information normally necessitates the loss of all information on the temporal sequence of events in a signal. This information though is particularly important in transient or multi-stage processes, in which the spectral decomposition of the data evolves in time. By going through several examples of ultrafast quantum dynamics, we demonstrate that the use of wavelets provide an efficient and accurate way to simultaneously acquire both temporal and frequency information about a signal, and argue that this greatly aids the elucidation and interpretation of physical process responsible for non-stationary spectroscopic features, such as those encountered in coherent excitonic energy transport

  8. Novel Aspects of Materials Processing by Ultrafast Lasers: From Electronic to Biological and Cultural Heritage Applications

    International Nuclear Information System (INIS)

    Fotakis, C; Zorba, V; Stratakis, E; Athanassiou, A; Tzanetakis, P; Zergioti, I; Papagoglou, D G; Sambani, K; Filippidis, G; Farsari, M; Pouli, V; Bounos, G; Georgiou, S

    2007-01-01

    Materials processing by ultrafast lasers offers several distinct possibilities for micro/nano scale applications. This is due to the unique characteristics of the laser-matter interactions involved, when sub-picosecond pulses are employed. Prospects arising will be discussed in the context of surface and in bulk laser induced modifications. In particular, examples of diverse applications including the development and functionalization of laser engineered surfaces, the laser transfer of biomolecules and the functionalization of 3D structures constructed by three-photon stereolithography will be presented. Furthermore, the removal of molecular substrates by ultrafast laser ablation will be discussed with emphasis placed on assessing the photochemical changes induced in the remaining bulk material. The results indicate that in femtosecond laser processing of organic materials, besides the well acknowledged morphological advantages, a second fundamental factor responsible for its success pertains to the selective chemical effects. This is crucial for the laser cleaning of sensitive painted artworks

  9. Ultrafast THz saturable absorption in doped semiconductors at room temperature

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, M. V.

    2011-01-01

    Ultrafast Phenomena XVII presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultraf...

  10. Ultra-Fast Optical Signal Processing in Nonlinear Silicon Waveguides

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Galili, Michael; Pu, Minhao

    2011-01-01

    We describe recent demonstrations of exploiting highly nonlinear silicon nanowires for processing Tbit/s optical data signals. We perform demultiplexing and optical waveform sampling of 1.28 Tbit/s and wavelength conversion of 640 Gbit/s data signals.......We describe recent demonstrations of exploiting highly nonlinear silicon nanowires for processing Tbit/s optical data signals. We perform demultiplexing and optical waveform sampling of 1.28 Tbit/s and wavelength conversion of 640 Gbit/s data signals....

  11. Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond

    Indian Academy of Sciences (India)

    Ultrafast Dynamics of Chemical Reactions in Condensed Phase: Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond · PowerPoint Presentation · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19.

  12. Study of primary energy transfer process in ultrafast plastic scintillators

    International Nuclear Information System (INIS)

    Bengtson, B.; Moszynski, M.

    1978-01-01

    The study of the light-pulse shape, the initial delay of light pulses and the light yield of plastics prepared by a modification of the NE111 scintillator were performed. The NE111 scintillator doped with several quench agents, the plastics prepared as a solution of butyl PBD in PVT of different concentration and PVT alone were studied. The study confirmed that the light pulse shape from fast binary plastics is well described analytically by the convolution of the clipped Gaussian and exponential functions. The investigation of the PVT-butyl PBD plastics shows that even more than three times larger concentration of butyl PBD compared to that of PBD in the NE111 solution does not improve the rise of the light pulse. Thus the rise time seems to be not controlled by the intermolecular energy transfer process. Finally, the observed rise time of the light pulse from the PVT sample was also approximated well by the Gaussian function. Altogether it brought a strong support for the earlier hypothesis that the initial slow rise of light pulses from plastic scintillators may come from the deexcitation of several higher levels of the solvent molecules excited by nuclear particles. (Auth.)

  13. Imaging the Ultrafast Photoelectron Transfer Process in Alizarin-TiO2

    Directory of Open Access Journals (Sweden)

    Tatiana Gomez

    2015-07-01

    Full Text Available In this work, we adopt a quantum mechanical approach based on time-dependent density functional theory (TDDFT to study the optical and electronic properties of alizarin supported on TiO2 nano-crystallites, as a prototypical dye-sensitized solar cell. To ensure proper alignment of the donor (alizarin and acceptor (TiO2 nano-crystallite levels, static optical excitation spectra are simulated using time-dependent density functional theory in response. The ultrafast photoelectron transfer from the dye to the cluster is simulated using an explicitly time-dependent, one-electron TDDFT ansatz. The model considers the δ-pulse excitation of a single active electron localized in the dye to the complete set of energetically accessible, delocalized molecular orbitals of the dye/nano-crystallite complex. A set of quantum mechanical tools derived from the transition electronic flux density is introduced to visualize and analyze the process in real time. The evolution of the created wave packet subject to absorbing boundary conditions at the borders of the cluster reveal that, while the electrons of the aromatic rings of alizarin are heavily involved in an ultrafast charge redistribution between the carbonyl groups of the dye molecule, they do not contribute positively to the electron injection and, overall, they delay the process.

  14. Modeling and computations of the intramolecular electron transfer process in the two-heme protein cytochrome em>c>4

    DEFF Research Database (Denmark)

    Natzmutdinov, Renat R.; Bronshtein, Michael D.; Zinkicheva, Tamara T.

    2012-01-01

    force were determined using dielectric continuum models. We then calculated the electronic transmission coefficient of the intramolecular ET rate using perturbation theory combined with the electronic wave functions determined by the DFT calculations for different heme group orientations and Fe...

  15. An intramolecular charge transfer process based fluorescent probe for monitoring subtle pH fluctuation in living cells.

    Science.gov (United States)

    Sun, Mingtai; Du, Libo; Yu, Huan; Zhang, Kui; Liu, Yang; Wang, Suhua

    2017-01-01

    It is crucial to monitor intracellular pH values and their fluctuation since the organelles of cells have different pH distribution. Herein we construct a new small molecule fluorescent probe HBT-O for monitoring the subtle pH values within the scope of neutral to acid in living cells. The probe exhibited good water solubility, a marked turquoise to olivine emission color change in response to pH, and tremendous fluorescence hypochromatic shift of ∼50nm (1718cm -1 ) as well as the increased fluorescence intensity when the pH value changed from neutral to acid. Thus, the probe HBT-O can distinguish the subtle changes in the range of normal pH values from neutral to acid with significant fluorescence changes. These properties can be attributed to the intramolecular charge transfer (ICT) process of the probe upon protonation in buffer solutions at varied pH values. Moreover, the probe was reversible and nearly non-toxic for living cells. Then the probe was successfully used to detect pH fluctuation in living cells by exhibiting different fluorescence colors and intensity. These findings demonstrate that the probe will find useful applications in biology and biomedical research. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Ultrafast biophotonics

    CERN Document Server

    Vasa, P

    2016-01-01

    This book presents emerging contemporary optical techniques of ultrafast science which have opened entirely new vistas for probing biological entities and processes. The spectrum reaches from time-resolved imaging and multiphoton microscopy to cancer therapy and studies of DNA damage. The book displays interdisciplinary research at the interface of physics and biology. Emerging topics on the horizon are also discussed, like the use of squeezed light, frequency combs and terahertz imaging as the possibility of mimicking biological systems. The book is written in a manner to make it readily accessible to researchers, postgraduate biologists, chemists, engineers, and physicists and students of optics, biomedical optics, photonics and biotechnology.

  17. Direct observation of the ultrafast electron transfer process in a polymer/fullerene blend

    NARCIS (Netherlands)

    Cerullo, G.; Lanzani, G.; Silvestri, S. De; Brabec, Ch.J.; Zerza, G.; Sariciftci, N.S.; Hummelen, J.C.

    2000-01-01

    Photoinduced electron transfer in organic molecules is an extensively investigated topic both because of fundamental interest in the photophysics and for applications to artificial photosynthesis. Highly efficient ultrafast electron transfer from photoexcited conjugated polymers to C60 has been

  18. Nonlinear Optical Spectroscopy in the Time Domain: Studies of Ultrafast Molecular Processes in the Condensed Phase.

    Science.gov (United States)

    Joo, Taiha

    Ultrafast molecular processes in the condensed phase at room temperature are studied in the time domain by four wave mixing spectroscopy. The structure/dynamics of various quantum states can be studied by varying the time ordering of the incident fields, their polarization, their colors, etc. In one, time-resolved coherent Stokes Raman spectroscopy of benzene is investigated at room temperature. The reorientational correlation time of benzene as well as the T_2 time of the nu _1 ring-breathing mode have been measured by using two different polarization geometries. Bohr frequency difference beats have also been resolved between the nu_1 modes of ^ {12}C_6H_6 and ^{12}C_5^{13 }CH_6.. The dephasing dynamics of the nu _1 ring-breathing mode of neat benzene is studied by time-resolved coherent anti-Stokes Raman scattering. Ultrafast time resolution reveals deviation from the conventional exponential decay. The correlation time, tau _{rm c}, and the rms magnitude, Delta, of the Bohr frequency modulation are determined for the process responsible for the vibrational dephasing by Kubo dephasing function analysis. The electronic dephasing of two oxazine dyes in ethylene glycol at room temperature is investigated by photon echo experiments. It was found that at least two stochastic processes are responsible for the observed electronic dephasing. Both fast (homogeneous) and slow (inhomogeneous) dynamics are recovered using Kubo line shape analysis. Moreover, the slow dynamics is found to spectrally diffuse over the inhomogeneous distribution on the time scale around a picosecond. Time-resolved degenerate four wave mixing signal of dyes in a population measurement geometry is reported. The vibrational coherences both in the ground and excited electronic states produced strong oscillations in the signal together with the usual population decay from the excited electronic state. Absolute frequencies and their dephasing times of the vibrational modes at ~590 cm^{-1} are obtained

  19. PREFACE: Ultrafast biophotonics Ultrafast biophotonics

    Science.gov (United States)

    Gu, Min; Reid, Derryck; Ben-Yakar, Adela

    2010-08-01

    The use of light to explore biology can be traced to the first observations of tissue made with early microscopes in the mid-seventeenth century, and has today evolved into the discipline which we now know as biophotonics. This field encompasses a diverse range of activities, each of which shares the common theme of exploiting the interaction of light with biological material. With the rapid advancement of ultrafast optical technologies over the last few decades, ultrafast lasers have increasingly found applications in biophotonics, to the extent that the distinctive new field of ultrafast biophotonics has now emerged, where robust turnkey ultrafast laser systems are facilitating cutting-edge studies in the life sciences to take place in everyday laboratories. The broad spectral bandwidths, precision timing resolution, low coherence and high peak powers of ultrafast optical pulses provide unique opportunities for imaging and manipulating biological systems. Time-resolved studies of bio-molecular dynamics exploit the short pulse durations from such lasers, while other applications such as optical coherence tomography benefit from the broad optical bandwidths possible by using super-continuum generation and additionally allowing for high speed imaging with speeds as high as 47 000 scans per second. Continuing progress in laser-system technology is accelerating the adoption of ultrafast techniques across the life sciences, both in research laboratories and in clinical applications, such as laser-assisted in situ keratomileusis (LASIK) eye surgery. Revolutionizing the field of optical microscopy, two-photon excitation fluorescence (TPEF) microscopy has enabled higher spatial resolution with improved depth penetration into biological specimens. Advantages of this nonlinear optical process include: reduced photo-interactions, allowing for extensive imaging time periods; simultaneously exciting multiple fluorescent molecules with only one excitation wavelength; and

  20. Sixteenth International Conference on Ultrafast Phenomena

    CERN Document Server

    Corkum, Paul; Nelson, Keith A; Riedle, Eberhard; Schoenlein, Robert W; Ultrafast Phenomena XVI

    2009-01-01

    Ultrafast Phenomena XVI presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh speed communications. This book summarizes the results presented at the 16th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.

  1. Excited state Intramolecular Proton Transfer in Anthralin

    DEFF Research Database (Denmark)

    Møller, Søren; Andersen, Kristine B.; Spanget-Larsen, Jens

    1998-01-01

    Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results in an unus......Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results......, associated with an excited-state intramolecular proton transfer process....

  2. Ultrafast laser processing of copper: A comparative study of experimental and simulated transient optical properties

    Science.gov (United States)

    Winter, Jan; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2017-09-01

    In this paper, we present ultrafast measurements of the complex refractive index for copper up to a time delay of 20 ps with an accuracy threshold. The measured refractive index n and extinction coefficient k are supported by a simulation including the two-temperature model with an accurate description of thermal and optical properties and a thermomechanical model. Comparison of the measured time resolved optical properties with results of the simulation reveals underlying physical mechanisms in three distinct time delay regimes. It is found that in the early stage (-5 ps to 0 ps) the thermally excited d-band electrons make a major contribution to the laser pulse absorption and create a steep increase in transient optical properties n and k. In the second time regime (0-10 ps) the material expansion influences the plasma frequency, which is also reflected in the transient extinction coefficient. In contrast, the refractive index n follows the total collision frequency. Additionally, the electron-ion thermalization time can be attributed to a minimum of the extinction coefficient at ∼10 ps. In the third time regime (10-20 ps) the transient extinction coefficient k indicates the surface cooling-down process.

  3. Fourteenth International Conference on Ultrafast Phenomena

    CERN Document Server

    Kobayashi, Takayoshi; Kobayashi, Tetsuro; Nelson, Keith A; Silvestri, Sandro; Ultrafast Phenomena XIV

    2005-01-01

    Ultrafast Phenomena XIV presents the latest advances in ultrafast science, including ultrafast laser and measurement technology as well as studies of ultrafast phenomena. Pico-, femto-, and atosecond processes relevant in physics, chemistry, biology and engineering are presented. Ultrafast technology is now having a profound impact within a wide range of applications, among them imaging, material diagnostics, and transformation and high-speed optoelectronics. This book summarizes results presented at the 14th Ultrafast Phenomena Conference and reviews the state of the art in this important and rapidly advancing field.

  4. Ultrafast Processes in Atoms and Molecules: Integrated treatment of electronic and nuclear motion in ultrashort XUV pulses

    Energy Technology Data Exchange (ETDEWEB)

    McCurdy, C. William [Univ. of California, Davis, CA (United States). Dept. of

    2017-12-14

    This project made use of Multiconfiguration Time-Dependent Hartree-Fock method developed earlier in the McCurdy group in a series of novel applications of the method to ultrafast spectroscopic processes. MCTDHF treats the dynamics of a molecule or atom under the influence of an external field in manner that has all electrons active. That property distinguishes this method from the more popular (and much less computationally demanding) approaches for treating the electron dynamics of atoms and molecules in fields, such as the time-dependent “Configuration Interaction Singles” approximation or approaches that limit the treatment to either one or two-electron models.

  5. Characterization of photo-induced valence tautomerism in a cobalt-dioxolene complex by ultrafast spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beni, A [Dipartimento di Chimica, Universita di Firenze, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence (Italy); Bogani, L [Dipartimento di Chimica, Universita di Firenze, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence (Italy); Bussotti, L [LENS, Universita di Firenze, Via Nello Carrara 1, 50019 Sesto Fiorentino, Florence (Italy); Dei, A [Dipartimento di Chimica, Universita di Firenze, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence (Italy); Gentili, P L [LENS, Universita di Firenze, Via Nello Carrara 1, 50019 Sesto Fiorentino, Florence (Italy); Righini, R [Dipartimento di Chimica, Universita di Firenze, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence (Italy)

    2005-01-01

    The valence tautomerism of low-spin Co{sup III}(Cat-N-BQ)(Cat-N-SQ) was investigated by means of UV-vis pump-probe transient absorption spectroscopy in chloroform. By exciting the CT transition of the complex at 480 nm, an intramolecular electron transfer process is selectively triggered. The photo-induced charge transfer is pursued by a cascade of two main molecular events characterized by the ultrafast transient absorption spectroscopy: the first gives rise to the metastable high-spin Co{sup II}(Cat-N-BQ){sub 2} that, secondly, reaches the chemical equilibrium with the reactant species.

  6. Characterization of photo-induced valence tautomerism in a cobalt-dioxolene complex by ultrafast spectroscopy

    International Nuclear Information System (INIS)

    Beni, A; Bogani, L; Bussotti, L; Dei, A; Gentili, P L; Righini, R

    2005-01-01

    The valence tautomerism of low-spin Co III (Cat-N-BQ)(Cat-N-SQ) was investigated by means of UV-vis pump-probe transient absorption spectroscopy in chloroform. By exciting the CT transition of the complex at 480 nm, an intramolecular electron transfer process is selectively triggered. The photo-induced charge transfer is pursued by a cascade of two main molecular events characterized by the ultrafast transient absorption spectroscopy: the first gives rise to the metastable high-spin Co II (Cat-N-BQ) 2 that, secondly, reaches the chemical equilibrium with the reactant species

  7. Characterization of photo-induced valence tautomerism in a cobalt-dioxolene complex by ultrafast spectroscopy

    Science.gov (United States)

    Beni, A.; Bogani, L.; Bussotti, L.; Dei, A.; Gentili, P. L.; Righini, R.

    2005-01-01

    The valence tautomerism of low-spin CoIII(Cat-N-BQ)(Cat-N-SQ) was investigated by means of UV-vis pump-probe transient absorption spectroscopy in chloroform. By exciting the CT transition of the complex at 480 nm, an intramolecular electron transfer process is selectively triggered. The photo-induced charge transfer is pursued by a cascade of two main molecular events characterized by the ultrafast transient absorption spectroscopy: the first gives rise to the metastable high-spin CoII(Cat-N-BQ)2 that, secondly, reaches the chemical equilibrium with the reactant species.

  8. Fusion of Ultraviolet-Visible and Infrared Transient Absorption Spectroscopy Data to Model Ultrafast Photoisomerization.

    Science.gov (United States)

    Debus, Bruno; Orio, Maylis; Rehault, Julien; Burdzinski, Gotard; Ruckebusch, Cyril; Sliwa, Michel

    2017-08-03

    Ultrafast photoisomerization reactions generally start at a higher excited state with excess of internal vibrational energy and occur via conical intersections. This leads to ultrafast dynamics which are difficult to investigate with a single transient absorption spectroscopy technique, be it in the ultraviolet-visible (UV-vis) or infrared (IR) domain. On one hand, the information available in the UV-vis domain is limited as only slight spectral changes are observed for different isomers. On the other hand, the interpretation of vibrational spectra is strongly hindered by intramolecular relaxation and vibrational cooling. These limitations can be circumvented by fusing UV-vis and IR transient absorption spectroscopy data in a multiset multivariate curve resolution analysis. We apply this approach to describe the spectrodynamics of the ultrafast cis-trans photoisomerization around the C-N double bond observed for aromatic Schiff bases. Twisted intermediate states could be elucidated, and isomerization was shown to occur through a continuous complete rotation. More broadly, data fusion can be used to rationalize a vast range of ultrafast photoisomerization processes of interest in photochemistry.

  9. New photonic devices for ultrafast pulse processing operating on the basis of the diffraction-dispersion analogy

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Company, Victor; Minguez-Vega, Gladys; Climent, Vicent; Lands, Jesus [GROC-UJI, Departament de Fisica, Universitat Jaume I, 12080 Castello (Spain); Andres, Pedro [Departament d' Optica, Universitat de Valencia, 46100 Burjassot (Spain)], E-mail: lancis@fca.uji.es

    2008-11-01

    The space-time analogy is a well-known topic within wave optics that brings together some results from beam diffraction and pulse dispersion. On the above basis, and taking as starting point some classical concepts in Optics, several photonic devices have been proposed during the last few years with application in rapidly evolving fields such as ultrafast (femtosecond) optics or RF and microwave signal processing. In this contribution, we briefly review the above ideas with particular emphasis in the generation of trains of ultrafast pulses from periodic modulation of the phase of a CW laser source. This is the temporal analogue of Fresnel diffraction by a pure phase grating. Finally, we extend the analogy to the partially coherent case, what enables us to design an original technique for wavelength-to-time mapping of the spectrum of a temporally stationary source. Results of laboratory experiments concerning the generation of user-defined radio-frequency waveforms and filtering of microwave signals will be shown. The devices are operated with low-cost incoherent sources.

  10. Ultrafast Excited-State Dynamics of Diketopyrrolopyrrole (DPP)-Based Materials: Static versus Diffusion-Controlled Electron Transfer Process

    KAUST Repository

    Alsulami, Qana

    2015-06-25

    Singlet-to-triplet intersystem crossing (ISC) and photoinduced electron transfer (PET) of platinum(II) containing diketopyrrolopyrrole (DPP) oligomer in the absence and presence of strong electron-acceptor tetracyanoethylene (TCNE) were investigated using femtosecond and nanosecond transient absorption spectroscopy with broadband capabilities. The role of platinum(II) incorporation in those photophysical properties was evaluated by comparing the excited-state dynamics of DPP with and without the metal centers. The steady-state measurements reveal that platinum(II) incorporation facilitates dramatically the interactions between DPP-Pt(acac) and TCNE, resulting in charge transfer (CT) complex formation. The transient absorption spectra in the absence of TCNE reveal ultrafast ISC of DPP-Pt(acac) followed by their long-lived triplet state. In the presence of TCNE, PET from the excited DPP-Pt(acac) and DPP to TCNE, forming the radical ion pairs. The ultrafast PET which occurs statically from DPP-Pt(acac) to TCNE in picosecond regime, is much faster than that from DPP to TCNE (nanosecond time scale) which is diffusion-controlled process, providing clear evidence that PET rate is eventually controlled by the platinum(II) incorporation.

  11. Ultrafast Excited-State Dynamics of Diketopyrrolopyrrole (DPP)-Based Materials: Static versus Diffusion-Controlled Electron Transfer Process

    KAUST Repository

    Alsulami, Qana; Aly, Shawkat Mohammede; Goswami, Subhadip; Alarousu, Erkki; Usman, Anwar; Schanze, Kirk S.; Mohammed, Omar F.

    2015-01-01

    Singlet-to-triplet intersystem crossing (ISC) and photoinduced electron transfer (PET) of platinum(II) containing diketopyrrolopyrrole (DPP) oligomer in the absence and presence of strong electron-acceptor tetracyanoethylene (TCNE) were investigated using femtosecond and nanosecond transient absorption spectroscopy with broadband capabilities. The role of platinum(II) incorporation in those photophysical properties was evaluated by comparing the excited-state dynamics of DPP with and without the metal centers. The steady-state measurements reveal that platinum(II) incorporation facilitates dramatically the interactions between DPP-Pt(acac) and TCNE, resulting in charge transfer (CT) complex formation. The transient absorption spectra in the absence of TCNE reveal ultrafast ISC of DPP-Pt(acac) followed by their long-lived triplet state. In the presence of TCNE, PET from the excited DPP-Pt(acac) and DPP to TCNE, forming the radical ion pairs. The ultrafast PET which occurs statically from DPP-Pt(acac) to TCNE in picosecond regime, is much faster than that from DPP to TCNE (nanosecond time scale) which is diffusion-controlled process, providing clear evidence that PET rate is eventually controlled by the platinum(II) incorporation.

  12. Ultrafast nonlinear optics

    CERN Document Server

    Leburn, Christopher; Reid, Derryck

    2013-01-01

    The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events – both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrasho...

  13. Continuum model of non-equilibrium solvation and solvent effect on ultra-fast processes

    International Nuclear Information System (INIS)

    Li Xiangyuan; Fu Kexiang; Zhu Quan

    2006-01-01

    In the past 50 years, non-equilibrium solvation theory for ultra-fast processes such as electron transfer and light absorption/emission has attracted particular interest. A great deal of research efforts was made in this area and various models which give reasonable qualitative descriptions for such as solvent reorganization energy in electron transfer and spectral shift in solution, were developed within the framework of continuous medium theory. In a series of publications by the authors, we clarified that the expression of the non-equilibrium electrostatic free energy that is at the dominant position of non-equilibrium solvation and serves as the basis of various models, however, was incorrectly formulated. In this work, the authors argue that reversible charging work integration was inappropriately applied in the past to an irreversible path linking the equilibrium or the non-equilibrium state. Because the step from the equilibrium state to the nonequilibrium state is factually thermodynamically irreversible, the conventional expression for non-equilibrium free energy that was deduced in different ways is unreasonable. Here the authors derive the non-equilibrium free energy to a quite different form according to Jackson integral formula. Such a difference throws doubts to the models including the famous Marcus two-sphere model for solvent reorganization energy of electron transfer and the Lippert-Mataga equation for spectral shift. By introducing the concept of 'spring energy' arising from medium polarizations, the energy constitution of the non-equilibrium state is highlighted. For a solute-solvent system, the authors separate the total electrostatic energy into different components: the self-energies of solute charge and polarized charge, the interaction energy between them and the 'spring energy' of the solvent polarization. With detailed reasoning and derivation, our formula for non-equilibrium free energy can be reached through different ways. Based on the

  14. Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures

    Science.gov (United States)

    Moon, Kiwon; Lee, Eui Su; Lee, Il-Min; Park, Dong Woo; Park, Kyung Hyun

    2018-01-01

    Time-domain and frequency-domain terahertz (THz) spectroscopy systems often use materials fabricated with exotic and expensive methods that intentionally introduce defects to meet short carrier lifetime requirements. In this study, we demonstrate the development of a nano-photomixer that meets response speed requirements without using defect-incorporated, low-temperature-grown (LTG) semiconductors. Instead, we utilized a thin InGaAs layer grown on a semi-insulating InP substrate by metal-organic chemical vapor deposition (MOCVD) combined with nano-electrodes to manipulate local ultrafast photo-carrier dynamics via a carefully designed field-enhancement and plasmon effect. The developed nano-structured photomixer can detect continuous-wave THz radiation up to a frequency of 2 THz with a peak carrier collection efficiency of 5%, which is approximately 10 times better than the reference efficiency of 0.4%. The better efficiency results from the high carrier mobility of the MOCVD-grown InGaAs thin layer with the coincidence of near-field and plasmon-field distributions in the nano-structure. Our result not only provides a generally applicable methodology for manipulating ultrafast carrier dynamics by means of nano-photonic techniques to break the trade-off relation between the carrier lifetime and mobility in typical LTG semiconductors but also contributes to mass-producible photo-conductive THz detectors to facilitate the widespread application of THz technology.

  15. Intramolecular and nonlinear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.J. [Argonne National Laboratory, IL (United States)

    1993-12-01

    Research in this program focuses on three interconnected areas. The first involves the study of intramolecular dynamics, particularly of highly excited systems. The second area involves the use of nonlinear dynamics as a tool for the study of molecular dynamics and complex kinetics. The third area is the study of the classical/quantum correspondence for highly excited systems, particularly systems exhibiting classical chaos.

  16. Rapid data processing for ultrafast X-ray computed tomography using scalable and modular CUDA based pipelines

    Science.gov (United States)

    Frust, Tobias; Wagner, Michael; Stephan, Jan; Juckeland, Guido; Bieberle, André

    2017-10-01

    Ultrafast X-ray tomography is an advanced imaging technique for the study of dynamic processes basing on the principles of electron beam scanning. A typical application case for this technique is e.g. the study of multiphase flows, that is, flows of mixtures of substances such as gas-liquidflows in pipelines or chemical reactors. At Helmholtz-Zentrum Dresden-Rossendorf (HZDR) a number of such tomography scanners are operated. Currently, there are two main points limiting their application in some fields. First, after each CT scan sequence the data of the radiation detector must be downloaded from the scanner to a data processing machine. Second, the current data processing is comparably time-consuming compared to the CT scan sequence interval. To enable online observations or use this technique to control actuators in real-time, a modular and scalable data processing tool has been developed, consisting of user-definable stages working independently together in a so called data processing pipeline, that keeps up with the CT scanner's maximal frame rate of up to 8 kHz. The newly developed data processing stages are freely programmable and combinable. In order to achieve the highest processing performance all relevant data processing steps, which are required for a standard slice image reconstruction, were individually implemented in separate stages using Graphics Processing Units (GPUs) and NVIDIA's CUDA programming language. Data processing performance tests on different high-end GPUs (Tesla K20c, GeForce GTX 1080, Tesla P100) showed excellent performance. Program Files doi:http://dx.doi.org/10.17632/65sx747rvm.1 Licensing provisions: LGPLv3 Programming language: C++/CUDA Supplementary material: Test data set, used for the performance analysis. Nature of problem: Ultrafast computed tomography is performed with a scan rate of up to 8 kHz. To obtain cross-sectional images from projection data computer-based image reconstruction algorithms must be applied. The

  17. New stereoselective intramolecular

    Science.gov (United States)

    Alajarin; Vidal; Tovar; Ramirez De Arellano MC; Cossio; Arrieta; Lecea

    2000-11-03

    Efficient 1,4-asymmetric induction has been achieved in the highly stereocontrolled intramolecular [2 + 2] cycloadditions between ketenimines and imines, leading to 1,2-dihydroazeto[2, 1-b]quinazolines. The chiral methine carbon adjacent to the iminic nitrogen controls the exclusive formation of the cycloadducts with relative trans configuration at C2 and C8. The stepwise mechanistic model, based on theoretical calculations, fully supports the stereochemical outcome of these cycloadditions.

  18. Ultrafast atomic process in X-ray emission by using inner-shell ionization method for sodium and carbon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, Kengo; Sasaki, Akira; Tajima, Toshiki [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment

    1998-07-01

    An ultrafast inner-shell ionization process with X-ray emission stimulated by high-intensity short-pulse X-ray is studied. Carbon and sodium atoms are treated as target matter. It is shown that atomic processes of the target determine the necessary X-ray intensity for X-ray laser emission as well as the features of X-ray laser such as wavelength and duration time. The intensity also depends on the density of initial atoms. Furthermore, we show that as the intensity of X-ray source becomes high, the multi-inner-shell ionization predominates, leading to the formation of hollow atoms. As the density of hollow atoms is increased by the pumping X-ray power, the emission of X-rays is not only of significance for high brightness X-ray measurement but also is good for X-ray lasing. New classes of experiments of pump X-ray probe and X-ray laser are suggested. (author)

  19. Ultrafast magnetization dynamics

    OpenAIRE

    Woodford, Simon

    2008-01-01

    This thesis addresses ultrafast magnetization dynamics from a theoretical perspective. The manipulation of magnetization using the inverse Faraday effect has been studied, as well as magnetic relaxation processes in quantum dots. The inverse Faraday effect – the generation of a magnetic field by nonresonant, circularly polarized light – offers the possibility to control and reverse magnetization on a timescale of a few hundred femtoseconds. This is important both for the technological advant...

  20. Participation of oxidized sulfur center in intramolecular free radical processes in the model organic compounds of biological importance

    International Nuclear Information System (INIS)

    Pogocki, D.M.

    2004-01-01

    The pathogenesis of neurodegenerative diseases such as prion diseases (Creutzfeldt-Jacob disease) and Alzheimer's disease is strongly associated with the presence of β-amyloid peptide (βA) and prion protein (hPrP) in the brain tissue. Both macromolecules contain methionine (Met) residues. Their presence seems to be responsible for unique redox properties of βA and hPrP. These residues may undergo relatively easy autooxidation and/or metal-catalysed oxidation. The presented studies were focused on the potential function of Met residues as antioxidants or pro-oxidants and on their role in radical-mediated oxidation of peptides and proteins. The role of S-, O-, N- and C-centered radicals generated in various oligopeptides containing Met and relevant model compounds has been examined in detail with respect to formation of 2c-3e bonds, redox processes, fragmentation and their mutual interconversion. In order to achieve these goals several experimental radiation, photochemical, and molecular modelling methods were applied. The experimental and molecular modelling results show significant influence of functional neighbouring groups and conformational flexibility of a peptide backbone on the oxidative reduction pathway in oligopeptides containing single and multiple Met residues. The results presented here allow for better understanding of the known propensities of βA and hPrP to reduce transition metals and to form reactive oxygen species and free radicals. (author)

  1. One-pot synthesis of spiropyrroloquinoline-isoindolinone and their aza-analogs via the Ugi-4CR/metal-free intramolecular bis-annulation process.

    Science.gov (United States)

    Ghandi, Mehdi; Zarezadeh, Nahid; Abbasi, Alireza

    2015-08-14

    This presentation discloses a one-pot synthesis of a series of spiropyrroloquinoline isoindolinone and spiropyrroloquinoline aza-isoindolinone scaffolds. The reaction proceeds by the combination of a Ugi four-component reaction (4CR) and two intramolecular cyclizations under metal-free conditions. The proof of the structures relies on analytical investigation and X-ray crystallography.

  2. Intramolecular deactivation processes of electronically excited Lanthanide(III) complexes with organic acids of low molecular weight

    Science.gov (United States)

    Burek, Katja; Eidner, Sascha; Kuke, Stefanie; Kumke, Michael U.

    2018-02-01

    The luminescence of Lanthanide(III) complexes with different model ligands was studied under direct as well as sensitized excitation conditions. The research was performed in the context of studies dealing with deep-underground storages for high-level nuclear waste. Here, Lanthanide(III) ions served as natural analogues for Actinide(III) ions and the low-molecular weight organic ligands are present in clay minerals and furthermore, they were employed as proxies for building blocks of humic substances, which are important complexing molecules in the natural environment, e.g., in the far field of a repository site. Time-resolved luminescence spectroscopy was applied for a detailed characterization of Eu(III), Tb(III), Sm(III) and Dy(III) complexes in aqueous solutions. Based on the observed luminescence the ligands were tentatively divided into two groups (A, B). The luminescence of Lanthanide(III) complexes of group A was mainly influenced by an energy transfer to OH-vibrations. Lanthanide(III) complexes of group B showed ligand-related luminescence quenching, which was further investigated. To gain more information on the underlying quenching processes of group A and B ligands, measurements at different temperatures (77 K ≤ T ≤ 353 K) were performed and activation energies were determined based on an Arrhenius analysis. Moreover, the influence of the ionic strength between 0 M ≤ I ≤ 4 M on the Lanthanide(III) luminescence was monitored for different complexes, in order to evaluate the influence of specific conditions encountered in host rocks foreseen as potential repository sites.

  3. Avant-Garde Ultrafast Laser Writing

    Directory of Open Access Journals (Sweden)

    Kazansky P. G.

    2013-11-01

    Full Text Available Ultrafast laser processing of transparent materials reveals new phenomena. Reviewed, are recent demonstrations of 5D optical memory, vortex polarization and Airy beam converters employing self-assembled nanostructuring, ultrafast laser calligraphy and polarization writing control using pulses with tilted front.

  4. Activation of ion implanted Si for backside processing by Ultra-fast Laser Thermal Annealing: Energy homogeneity and micro-scale sheet resistance

    DEFF Research Database (Denmark)

    Huet, K.; Lin, Rong; Boniface, C

    2009-01-01

    In this paper ion activation of implanted silicon using ultra-fast laser thermal annealing (LTA) process was discussed. The results stated that there was high dopant activation using LTA process for over 70%, excellent within shot activation uniformity, and there was a possibility for overlap...... parameter optimization. It was observed that, for activation LTA process, shallow box-shaped profiles- high diffusivity of B in liquids and high-temperatures was observed only near the surface in a submicrosecond timescale. Possible solutions were suggested as to low-cost and high-end for overlap...

  5. Ultrafast dynamics in semiconductor optical amplifiers and all-optical processing: Bulk versus quantum dot devices

    DEFF Research Database (Denmark)

    Mørk, Jesper; Berg, Tommy Winther; Magnúsdóttir, Ingibjörg

    2003-01-01

    We discuss the dynamical properties of semiconductor optical amplifiers and the importance for all-optical signal processing. In particular, the dynamics of quantum dot amplifiers is considered and it is suggested that these may be operated at very high bit-rates without significant patterning...

  6. Ultrafast Formation of ZnO Nanorods via Seed-Mediated Microwave Assisted Hydrolysis Process

    International Nuclear Information System (INIS)

    Tan, S T; Yahaya, M; Yap, C C; Umar, A A; Salleh, M M

    2013-01-01

    One dimensional (1D) zinc oxide, ZnO nanostructures have shown promising results for usage in photodiode and optoelectronic device due to their high surface area. Faster and conventional method for synthesis ZnO nanorods has become an attention for researcher today. In this paper, ZnO nanorods have been successfully synthesized via two-step process, namely alcothermal seeding and seed-mediated microwave hydrolysis process. In typical process, the ZnO nanoseeds were grown in the growth solution that contained equimolar (0.04 M) of zinc nitrate hexahydrate, Zn (NO 3 ).6H 2 O and hexamethylenetetramine, HMT. The growth process was carried inside the inverted microwave within 5- 20 s. The effect of growth parameters (i.e. concentration, microwave power, time reaction) upon the modification of ZnO morphology was studied. ZnO nanostructures were characterized by Field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD). The densities of nanorods were evaluated by the Image J analysis. It was found that the morphology (e.g. shape and size) of nanostructures has changed drastically with the increment of growth solution concentration. The density of ZnO nanorods was proven to increase with the increasing of reaction time and microwave power. We hypothesize that the microwave power might enhance the rate of nucleation and promote the faster nanostructure growth as compared with the normal heating condition due to the superheating phenomenon. This method might promote a new and faster alternative way in nanostructure growth which can be applied in currently existing application.

  7. Ultrafast Formation of ZnO Nanorods via Seed-Mediated Microwave Assisted Hydrolysis Process

    Science.gov (United States)

    Tan, S. T.; Umar, A. A.; Yahaya, M.; Yap, C. C.; Salleh, M. M.

    2013-04-01

    One dimensional (1D) zinc oxide, ZnO nanostructures have shown promising results for usage in photodiode and optoelectronic device due to their high surface area. Faster and conventional method for synthesis ZnO nanorods has become an attention for researcher today. In this paper, ZnO nanorods have been successfully synthesized via two-step process, namely alcothermal seeding and seed-mediated microwave hydrolysis process. In typical process, the ZnO nanoseeds were grown in the growth solution that contained equimolar (0.04 M) of zinc nitrate hexahydrate, Zn (NO3).6H2O and hexamethylenetetramine, HMT. The growth process was carried inside the inverted microwave within 5- 20 s. The effect of growth parameters (i.e. concentration, microwave power, time reaction) upon the modification of ZnO morphology was studied. ZnO nanostructures were characterized by Field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD). The densities of nanorods were evaluated by the Image J analysis. It was found that the morphology (e.g. shape and size) of nanostructures has changed drastically with the increment of growth solution concentration. The density of ZnO nanorods was proven to increase with the increasing of reaction time and microwave power. We hypothesize that the microwave power might enhance the rate of nucleation and promote the faster nanostructure growth as compared with the normal heating condition due to the superheating phenomenon. This method might promote a new and faster alternative way in nanostructure growth which can be applied in currently existing application.

  8. Spectrally selective molecular doped solids: spectroscopy, photophysics and their application to ultrafast optical pulse processing

    International Nuclear Information System (INIS)

    Galaup, Jean-Pierre

    2005-01-01

    The persistent spectral hole-burning (PSHB) phenomenon observed in molecular doped polymers cooled down to liquid helium temperatures allows the engraving of spectral structures in the inhomogeneous absorption profile of the material. This phenomenon known since 1974 has became a fruitful field for the study of the intimacy of complex molecular systems in the solid state, revealing high-resolution spectroscopy, photophysics, photochemistry and dynamics of molecular doped amorphous media, organic as well as inorganic. A PSHB molecular doped solid can be programmed in spectral domain and therefore, it can be converted in an optical processor capable to achieve user-defined optical functions. Some aspects of this field are illustrated in the present paper. An application is presented where a naphthalocyanine doped polymer film is used in a demonstrative experiment to prove that temporal aberration free re-compression of ultra-short light pulses is feasible. Perspectives for the coherent control of light fields or photochemical processes are also evoked

  9. Relaxation and excitation electronic processes in dielectrics irradiated by ultrafast IR and VUV pulses

    International Nuclear Information System (INIS)

    Gaudin, J.

    2005-11-01

    We studied excitation and relaxation of electrons involved during interaction of visible and VUV femtosecond pulses with dielectrics. The generated population of hot electrons, having energy of few eV to few tens of eV above the bottom of the conduction band, is responsible of phenomena ranging to defect creation to optical breakdown. Owing to two techniques: photoemission and transient photoconductivity we improve the understanding of the The first photoemission experiments deal with dielectrics irradiated by 30 fs IR pulses. The photoemission spectra measured show a large population of electrons which energy rise up to 40 eV. We interpret this result in terms of a new absorption process: direct multi-photons inter-branch transitions. The 2. type of photoemission experiments are time resolved 'pump/probe' investigation. We study the relaxation of electrons excited by a VUV pulses. We used the high order harmonics (HOH) as light sources. We found surprisingly long decay time in the range of ps timescale. Last type of experiments is photoconductivity studies of diamond samples. Using HOH as light source we measure the displacement current induced by excited electrons in the conduction band. Those electrons relax mainly by impact ionisation creating secondary electrons. Hence by probing the number of electrons we were able to measure the efficiency of these relaxation processes. We observe a diminution of this efficiency when the energy of exciting photons is above 20 eV. Owing to Monte-Carlo simulation we interpret this result in terms of band structure effect. (author)

  10. Impact of ultrafast demagnetization process on magnetization reversal in L10 FePt revealed using double laser pulse excitation

    Science.gov (United States)

    Shi, J. Y.; Tang, M.; Zhang, Z.; Ma, L.; Sun, L.; Zhou, C.; Hu, X. F.; Zheng, Z.; Shen, L. Q.; Zhou, S. M.; Wu, Y. Z.; Chen, L. Y.; Zhao, H. B.

    2018-02-01

    Ultrafast laser induced magnetization reversal in L10 FePt films with high perpendicular magnetic anisotropy was investigated using single- and double-pulse excitations. Single-pulse excitation beyond 10 mJ cm-2 caused magnetization (M) reversal at the applied fields much smaller than the static coercivity of the films. For double-pulse excitation, both coercivity reduction and reversal percentage showed a rapid and large decrease with the increasing time interval (Δt) of the two pulses in the range of 0-2 ps. In this Δt range, the maximum demagnetization (ΔMp) was also strongly attenuated, whereas the integrated demagnetization signals over more than 10 ps, corresponding to the average lattice heat effect, showed little change. These results indicate that laser induced M reversal in FePt films critically relies on ΔMp. Because ΔMp is determined by spin temperature, which is higher than lattice temperature, utilizing an ultrafast laser instead of a continuous-wave laser in laser-assisted M reversal may reduce the overall deposited energy and increase the speed of recording. The effective control of M reversal by slightly tuning the time delay of two laser pulses may also be useful for ultrafast spin manipulation.

  11. GPUmotif: an ultra-fast and energy-efficient motif analysis program using graphics processing units.

    Science.gov (United States)

    Zandevakili, Pooya; Hu, Ming; Qin, Zhaohui

    2012-01-01

    Computational detection of TF binding patterns has become an indispensable tool in functional genomics research. With the rapid advance of new sequencing technologies, large amounts of protein-DNA interaction data have been produced. Analyzing this data can provide substantial insight into the mechanisms of transcriptional regulation. However, the massive amount of sequence data presents daunting challenges. In our previous work, we have developed a novel algorithm called Hybrid Motif Sampler (HMS) that enables more scalable and accurate motif analysis. Despite much improvement, HMS is still time-consuming due to the requirement to calculate matching probabilities position-by-position. Using the NVIDIA CUDA toolkit, we developed a graphics processing unit (GPU)-accelerated motif analysis program named GPUmotif. We proposed a "fragmentation" technique to hide data transfer time between memories. Performance comparison studies showed that commonly-used model-based motif scan and de novo motif finding procedures such as HMS can be dramatically accelerated when running GPUmotif on NVIDIA graphics cards. As a result, energy consumption can also be greatly reduced when running motif analysis using GPUmotif. The GPUmotif program is freely available at http://sourceforge.net/projects/gpumotif/

  12. GPUmotif: an ultra-fast and energy-efficient motif analysis program using graphics processing units.

    Directory of Open Access Journals (Sweden)

    Pooya Zandevakili

    Full Text Available Computational detection of TF binding patterns has become an indispensable tool in functional genomics research. With the rapid advance of new sequencing technologies, large amounts of protein-DNA interaction data have been produced. Analyzing this data can provide substantial insight into the mechanisms of transcriptional regulation. However, the massive amount of sequence data presents daunting challenges. In our previous work, we have developed a novel algorithm called Hybrid Motif Sampler (HMS that enables more scalable and accurate motif analysis. Despite much improvement, HMS is still time-consuming due to the requirement to calculate matching probabilities position-by-position. Using the NVIDIA CUDA toolkit, we developed a graphics processing unit (GPU-accelerated motif analysis program named GPUmotif. We proposed a "fragmentation" technique to hide data transfer time between memories. Performance comparison studies showed that commonly-used model-based motif scan and de novo motif finding procedures such as HMS can be dramatically accelerated when running GPUmotif on NVIDIA graphics cards. As a result, energy consumption can also be greatly reduced when running motif analysis using GPUmotif. The GPUmotif program is freely available at http://sourceforge.net/projects/gpumotif/

  13. Ultrafast nonlinear optical processes in metal-dielectric nanocomposites and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang-Hyon

    2012-04-13

    This work reports results of a theoretical study of nonlinear optical processes in metal-dielectric nanocomposites used for the increase of the nonlinear coefficients and for plasmonic field enhancement. The main results include the study of the transient saturable nonlinearity in dielectric composites doped with metal nanoparticles, its physical mechanism as well its applications in nonlinear optics. For the study of the transient response, a time-depending equation for the dielectric function of the nanocomposite using the semi-classical two-temperature model is derived. By using this approach, we study the transient nonlinear characteristics of these materials in comparison with preceding experimental measurements. The results show that these materials behave as efficient saturable absorbers for passive mode-locking of lasers in the spectral range from the visible to near IR. We present results for the modelocked dynamics in short-wavelength solid-state and semiconductor disk lasers; in this spectral range other efficient saturable absorbers do not exist. We suggest a new mechanism for the realization of slow light phenomenon by using glasses doped with metal nanoparticles in a pump-probe regime near the plasmonic resonance. Furthermore, we study femtosecond plasmon generation by mode-locked surface plasmon polariton lasers with Bragg reflectors and metal-gain-absorber layered structures. In the final part of the thesis, we present results for high-order harmonic generation near a metallic fractal rough surface. The results show a possible reduction of the pump intensities by three orders of magnitudes and two orders of magnitudes higher efficiency compared with preceding experimental results by using bow-tie nanostructures.

  14. Ultrafast scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1995-09-01

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  15. On combinatorial properties of elementary intramolecular operations

    Directory of Open Access Journals (Sweden)

    Vladimir Rogojin

    2014-11-01

    Full Text Available Here we tackle a problem from biology in terms of discrete mathematics. We are interested in a complex DNA manipulation process happening in eukaryotic organisms of a subclass of ciliate species called {\\it Stichotrichia} during so-called gene assembly. This process is in particular interesting since one can interpret gene assembly in ciliates as sorting of permutations. We survey here results related to studies on sorting permutations with some specific rewriting rules that formalize elementary intramolecular gene assembly operations. The research question is ``what permutation may be sorted with our operations?"

  16. Intramolecular, Exciplex-Mediated, Proton-Coupled, Charge-Transfer Processes in N,N-Dimethyl-3-(1-pyrenyl)propan-1-ammonium Cations: Influence of Anion, Solvent Polarity, and Temperature.

    Science.gov (United States)

    Safko, Trevor M; Faleiros, Marcelo M; Atvars, Teresa D Z; Weiss, Richard G

    2016-06-16

    An intramolecular exciplex-mediated, proton-coupled, charge-transfer (PCCT) process has been investigated for a series of N,N-dimethyl-3-(1-pyrenyl)propan-1-ammonium cations with different anions (PyS) in solvents of low to intermediate polarity over a wide temperature range. Solvent mediates both the equilibrium between conformations of the cation that place the pyrenyl and ammonium groups in proximity (conformation C) or far from each other (conformation O) and the ability of the ammonium group to transfer a proton adiabatically in the PyS excited singlet state. Thus, exciplex emission, concurrent with the PCCT process, was observed only in hydrogen-bond accepting solvents of relatively low polarity (tetrahydrofuran, ethyl acetate, and 1,4-dioxane) and not in dichloromethane. From the exciplex emission and other spectroscopic and thermodynamic data, the acidity of the ammonium group in conformation C of the excited singlet state of PyS (pKa*) has been estimated to be ca. -3.4 in tetrahydrofuran. The ratios between the intensities of emission from the exciplex and the locally excited state (IEx/ILE) appear to be much more dependent on the nature of the anion than are the rates of exciplex formation and decay, although the excited state data do not provide a quantitative measure of the anion effect on the C-O equilibrium. The activation energies associated with exciplex formation in THF are calculated to be 0.08 to 0.15 eV lower than for the neutral amine, N,N-dimethyl-3-(1-pyrenyl)propan-1-amine. Decay of the exciplexes formed from the deprotonation of PyS is hypothesized to occur through charge-recombination processes. To our knowledge, this is the first example in which photoacidity and intramolecular exciplex formation (i.e., a PCCT reaction) are coupled.

  17. Ultrafast molecular dynamics illuminated with synchrotron radiation

    International Nuclear Information System (INIS)

    Bozek, John D.; Miron, Catalin

    2015-01-01

    Highlights: • Ultrafast molecular dynamics probed with synchrotron radiation. • Core-excitation as probe of ultrafast dynamics through core-hole lifetime. • Review of experimental and theoretical methods in ultrafast dynamics using core-level excitation. - Abstract: Synchrotron radiation is a powerful tool for studying molecular dynamics in small molecules in spite of the absence of natural matching between the X-ray pulse duration and the time scale of nuclear motion. Promoting core level electrons to unoccupied molecular orbitals simultaneously initiates two ultrafast processes, nuclear dynamics on the potential energy surfaces of the highly excited neutral intermediate state of the molecule on the one hand and an ultrafast electronic decay of the intermediate excited state to a cationic final state, characterized by a core hole lifetime. The similar time scales of these processes enable core excited pump-probe-type experiments to be performed with long duration X-ray pulses from a synchrotron source. Recent results obtained at the PLIEADES beamline concerning ultrafast dissociation of core excited states and molecular potential energy curve mapping facilitated by changes in the geometry of the short-lived intermediate core excited state are reviewed. High brightness X-ray beams combined with state-of-the art electron and ion-electron coincidence spectrometers and highly sophisticated theoretical methods are required to conduct these experiments and to achieve a full understanding of the experimental results.

  18. Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Kabius, Bernd C.; Browning, Nigel D.; Thevuthasan, Suntharampillai; Diehl, Barbara L.; Stach, Eric A.

    2012-07-25

    This report summarizes a 2011 workshop that addressed the potential role of rapid, time-resolved electron microscopy measurements in accelerating the solution of important scientific and technical problems. A series of U.S. Department of Energy (DOE) and National Academy of Science workshops have highlighted the critical role advanced research tools play in addressing scientific challenges relevant to biology, sustainable energy, and technologies that will fuel economic development without degrading our environment. Among the specific capability needs for advancing science and technology are tools that extract more detailed information in realistic environments (in situ or operando) at extreme conditions (pressure and temperature) and as a function of time (dynamic and time-dependent). One of the DOE workshops, Future Science Needs and Opportunities for Electron Scattering: Next Generation Instrumentation and Beyond, specifically addressed the importance of electron-based characterization methods for a wide range of energy-relevant Grand Scientific Challenges. Boosted by the electron optical advancement in the last decade, a diversity of in situ capabilities already is available in many laboratories. The obvious remaining major capability gap in electron microscopy is in the ability to make these direct in situ observations over a broad spectrum of fast (µs) to ultrafast (picosecond [ps] and faster) temporal regimes. In an effort to address current capability gaps, EMSL, the Environmental Molecular Sciences Laboratory, organized an Ultrafast Electron Microscopy Workshop, held June 14-15, 2011, with the primary goal to identify the scientific needs that could be met by creating a facility capable of a strongly improved time resolution with integrated in situ capabilities. The workshop brought together more than 40 leading scientists involved in applying and/or advancing electron microscopy to address important scientific problems of relevance to DOE’s research

  19. Intramolecular Association within the SAFT Framework

    DEFF Research Database (Denmark)

    Avlund, Ane Søgaard; Kontogeorgis, Georgios; Chapman, Walter G.

    2011-01-01

    A general theory for modelling intramolecular association within the SAFT framework is proposed. Sear and Jackson [Phys. Rev. E. 50 (1), 386 (1994)] and Ghonasgi and Chapman [J. Chem. Phys. 102 (6), 2585 (1995)] have previously extended SAFT to include intramolecular association for chains with two...... the contribution to the Helmholtz free energy from association (inter- as well as intramolecularly) at equilibrium. Sear and Jackson rederived the contribution to the Helmholtz free energy from association from the theory by Wertheim [J. Stat. Phys. 42 (3–4), 459 (1986)] with inclusion of intramolecular...

  20. Symmetry of quantum intramolecular dynamics

    International Nuclear Information System (INIS)

    Burenin, Alexander V

    2002-01-01

    The paper reviews the current progress in describing quantum intramolecular dynamics using merely symmetry principles as a basis. This closed qualitative approach is of particular interest because it is the only method currently available for a broad class of topical problems in the internal dynamics of molecules. Moreover, a molecule makes a physical system whose collective internal motions are geometrically structured, so that its description by perturbation methods requires a symmetry analysis of this structure. The nature of the geometrical symmetry groups crucial for the closed formulation of the qualitative approach is discussed. In particular, the point group of a molecule is of this type. (methodological notes)

  1. Symmetry of intramolecular quantum dynamics

    CERN Document Server

    Burenin, Alexander V

    2012-01-01

    The main goal of this book is to give a systematic description of intramolecular quantum dynamics on the basis of only the symmetry principles. In this respect, the book has no analogs in the world literature. The obtained models lead to a simple, purely algebraic, scheme of calculation and are rigorous in the sense that their correctness is limited only to the correct choice of symmetry of the internal dynamics. The book is basically intended for scientists working in the field of molecular spectroscopy, quantum and structural chemistry.

  2. Ultrafast coherence transfer in DNA-templated silver nanoclusters

    DEFF Research Database (Denmark)

    Thyrhaug, Erling; Bogh, Sidsel Ammitzbøll; Carro, Miguel

    2017-01-01

    DNA-templated silver nanoclusters of a few tens of atoms or less have come into prominence over the last several years due to very strong absorption and efficient emission. Applications in microscopy and sensing have already been realized, however little is known about the excited-state structure...... and dynamics in these clusters. Here we report on a multidimensional spectroscopy investigation of the energy-level structure and the early-time relaxation cascade, which eventually results in the population of an emitting state. We find that the ultrafast intramolecular relaxation is strongly coupled...

  3. Real-Time Control System for Improved Precision and Throughput in an Ultrafast Carbon Fiber Placement Robot Using a SoC FPGA Extended Processing Platform

    Directory of Open Access Journals (Sweden)

    Gilberto Ochoa-Ruiz

    2017-01-01

    Full Text Available We present an architecture for accelerating the processing and execution of control commands in an ultrafast fiber placement robot. The system consists of a robotic arm designed by Coriolis Composites whose purpose is to move along a surface, on which composite fibers are deposed, via an independently controlled head. In first system implementation, the control commands were sent via Profibus by a PLC, limiting the reaction time and thus the precision of the fiber placement and the maximum throughput. Therefore, a custom real-time solution was imperative in order to ameliorate the performance and to meet the stringent requirements of the target industry (avionics, aeronautical systems. The solution presented in this paper is based on the use of a SoC FPGA processing platform running a real-time operating system (FreeRTOS, which has enabled an improved comamnd retrieval mechanism. The system’s placement precision was improved by a factor of 20 (from 1 mm to 0.05 mm, while the maximum achievable throughput was 1 m/s, compared to the average 30 cm/s provided by the original solution, enabling fabricating more complex and larger pieces in a significant fraction of the time.

  4. Intensified CCD for ultrafast diagnostics

    International Nuclear Information System (INIS)

    Cheng, J.; Tripp, G.; Coleman, L.

    1978-01-01

    Many of the present laser fusion diagnostics are recorded on either ultrafast streak cameras or on oscilloscopes. For those experiments in which a large volume of data is accumulated, direct computer processing of the information becomes important. We describe an approach which uses a RCA 52501 back-thinned CCD sensor to obtain direct electron readouts for both the streak camera and the CRT. Performance of the 100 GHz streak camera and the 4 GHz CRT are presented. Design parameters and computer interfacing for both systems are described in detail

  5. Structure and Intramolecular Proton Transfer of Alanine Radical Cations

    International Nuclear Information System (INIS)

    Lee, Gab Yong

    2012-01-01

    The structures of the four lowest alanine conformers, along with their radical cations and the effect of ionization on the intramolecular proton transfer process, are studied using the density functional theory and MP2 method. The energy order of the radical cations of alanine differs from that of the corresponding neutral conformers due to changes in the basicity of the NH 2 group upon ionization. Ionization favors the intramolecular proton transfer process, leading to a proton-transferred radical-cation structure, [NH 3 + -CHCH 3 -COO·], which contrasts with the fact that a proton-transferred zwitterionic conformer is not stable for a neutral alanine in the gas phase. The energy barrier during the proton transfer process is calculated to be about 6 kcal/mol

  6. Steady-state and time-resolved spectroscopic investigations on intramolecular electron transfer processes within a synthesized methoxynaphthalene dyad by using a nematic liquid crystal medium

    International Nuclear Information System (INIS)

    Bardhan, Munmun; Mandal, Paulami; De, Asish; Kumar De, Avijit; Chowdhury, Joydeep; Ganguly, Tapan

    2010-01-01

    UV-vis, steady state and time-resolved spectroscopic investigations were made on photoinduced charge separation and thermal charge recombination processes involved within a novel synthesized dyad, 1-(4-chloro-phenyl)-3-(4-methoxy-naphthalen-1-yl)-propenone (MNCA) where the donor 1-methoxynaphthalene (MNT) and the acceptor p-choloroacetophenone (PCA) moieties are connected by a short unsaturated olefinic bond. The measurements were made within the pseudo-ordered domain (just above nematic-isotropic (N-I) phase transition temperature, >308 K) of a nematic liquid crystal, 4-(n-pentyl)-4'-cyanobiphenyl (5CB). Results observed are compared with those obtained from the similar measurements in isotropic media. The charge separation and recombination rates remain more-or-less unchanged within the experimental error irrespective of the polarity of the environment, whether in pseudo-ordered domain (ε S ∼10.5) of a nematic liquid crystal 5CB or in highly polar isotropic medium ACN (ε S ∼37.5). The structural rigidity of the dyad MNCA having stable elongated form both in the ground as well as in the photoexcited states seems to be the reason for this unique behavior of solvent insensitivity. The theoretical predictions done by ab initio method density functional theory (DFT) with B3LYP/6-311 G (d, p) basis function correlate well with experimental observations of formations of only one stable elongated (E-type) conformer both in the ground and electronic excited state.

  7. Steady-state and time-resolved spectroscopic investigations on intramolecular electron transfer processes within a synthesized methoxynaphthalene dyad by using a nematic liquid crystal medium

    Energy Technology Data Exchange (ETDEWEB)

    Bardhan, Munmun; Mandal, Paulami; De, Asish; Kumar De, Avijit [Department of Spectroscopy, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal (India); Chowdhury, Joydeep [Sammilani Mahavidyalaya Baghajatin Station, West Bengal (India); Ganguly, Tapan, E-mail: sptg@mahendra.iacs.res.i [Department of Spectroscopy, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal (India)

    2010-06-15

    UV-vis, steady state and time-resolved spectroscopic investigations were made on photoinduced charge separation and thermal charge recombination processes involved within a novel synthesized dyad, 1-(4-chloro-phenyl)-3-(4-methoxy-naphthalen-1-yl)-propenone (MNCA) where the donor 1-methoxynaphthalene (MNT) and the acceptor p-choloroacetophenone (PCA) moieties are connected by a short unsaturated olefinic bond. The measurements were made within the pseudo-ordered domain (just above nematic-isotropic (N-I) phase transition temperature, >308 K) of a nematic liquid crystal, 4-(n-pentyl)-4'-cyanobiphenyl (5CB). Results observed are compared with those obtained from the similar measurements in isotropic media. The charge separation and recombination rates remain more-or-less unchanged within the experimental error irrespective of the polarity of the environment, whether in pseudo-ordered domain (epsilon{sub S}approx10.5) of a nematic liquid crystal 5CB or in highly polar isotropic medium ACN (epsilon{sub S}approx37.5). The structural rigidity of the dyad MNCA having stable elongated form both in the ground as well as in the photoexcited states seems to be the reason for this unique behavior of solvent insensitivity. The theoretical predictions done by ab initio method density functional theory (DFT) with B3LYP/6-311 G (d, p) basis function correlate well with experimental observations of formations of only one stable elongated (E-type) conformer both in the ground and electronic excited state.

  8. Ultrafast gas switching experiments

    International Nuclear Information System (INIS)

    Frost, C.A.; Martin, T.H.; Patterson, P.E.; Rinehart, L.F.; Rohwein, G.J.; Roose, L.D.; Aurand, J.F.; Buttram, M.T.

    1993-01-01

    We describe recent experiments which studied the physics of ultrafast gas breakdown under the extreme overvoltages which occur when a high pressure gas switch is pulse charged to hundreds of kV in 1 ns or less. The highly overvolted peaking gaps produce powerful electromagnetic pulses with risetimes Khz at > 100 kV/m E field

  9. Intramolecular electron transfer in single-site-mutated azurins

    DEFF Research Database (Denmark)

    Farver, O; Skov, L K; Pascher, T

    1993-01-01

    . Natl. Acad. Sci. U.S.A. 86, 6968-6972]. The RSSR- radical produced in the above reaction was reoxidized in a slower intramolecular electron-transfer process (30-70 s-1 at 298 K) concomitant with a further reduction of the Cu(II) ion. The temperature dependence of the latter rates was determined......, lambda = 135 kJ mol-1 for the reorganization energy was derived. When Trp48, situated midway between the donor and the acceptor, was replaced by Leu or Met, only a small change in the rate of intramolecular electron transfer was observed, indicating that the aromatic residue in this position...... is apparently only marginally involved in electron transfer in wild-type azurin. Pathway calculations also suggest that a longer, through-backbone path is more efficient than the shorter one involving Trp48. The former pathway yields an exponential decay factor, beta, of 6.6 nm-1. Another mutation, raising...

  10. Perspective: Ultrafast magnetism and THz spintronics

    Energy Technology Data Exchange (ETDEWEB)

    Walowski, Jakob; Münzenberg, Markus [Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany)

    2016-10-14

    This year the discovery of femtosecond demagnetization by laser pulses is 20 years old. For the first time, this milestone work by Bigot and coworkers gave insight directly into the time scales of microscopic interactions that connect the spin and electron system. While intense discussions in the field were fueled by the complexity of the processes in the past, it now became evident that it is a puzzle of many different parts. Rather than providing an overview that has been presented in previous reviews on ultrafast processes in ferromagnets, this perspective will show that with our current depth of knowledge the first applications are developed: THz spintronics and all-optical spin manipulation are becoming more and more feasible. The aim of this perspective is to point out where we can connect the different puzzle pieces of understanding gathered over 20 years to develop novel applications. Based on many observations in a large number of experiments. Differences in the theoretical models arise from the localized and delocalized nature of ferromagnetism. Transport effects are intrinsically non-local in spintronic devices and at interfaces. We review the need for multiscale modeling to address the processes starting from electronic excitation of the spin system on the picometer length scale and sub-femtosecond time scale, to spin wave generation, and towards the modeling of ultrafast phase transitions that altogether determine the response time of the ferromagnetic system. Today, our current understanding gives rise to the first usage of ultrafast spin physics for ultrafast magnetism control: THz spintronic devices. This makes the field of ultrafast spin-dynamics an emerging topic open for many researchers right now.

  11. Perspective: Ultrafast magnetism and THz spintronics

    International Nuclear Information System (INIS)

    Walowski, Jakob; Münzenberg, Markus

    2016-01-01

    This year the discovery of femtosecond demagnetization by laser pulses is 20 years old. For the first time, this milestone work by Bigot and coworkers gave insight directly into the time scales of microscopic interactions that connect the spin and electron system. While intense discussions in the field were fueled by the complexity of the processes in the past, it now became evident that it is a puzzle of many different parts. Rather than providing an overview that has been presented in previous reviews on ultrafast processes in ferromagnets, this perspective will show that with our current depth of knowledge the first applications are developed: THz spintronics and all-optical spin manipulation are becoming more and more feasible. The aim of this perspective is to point out where we can connect the different puzzle pieces of understanding gathered over 20 years to develop novel applications. Based on many observations in a large number of experiments. Differences in the theoretical models arise from the localized and delocalized nature of ferromagnetism. Transport effects are intrinsically non-local in spintronic devices and at interfaces. We review the need for multiscale modeling to address the processes starting from electronic excitation of the spin system on the picometer length scale and sub-femtosecond time scale, to spin wave generation, and towards the modeling of ultrafast phase transitions that altogether determine the response time of the ferromagnetic system. Today, our current understanding gives rise to the first usage of ultrafast spin physics for ultrafast magnetism control: THz spintronic devices. This makes the field of ultrafast spin-dynamics an emerging topic open for many researchers right now.

  12. Industrial compatible re-growth of vertically aligned multiwall carbon nanotubes by ultrafast pure oxygen purification process

    DEFF Research Database (Denmark)

    Bu, Ian Y.Y.; Hou, Kai; Engstrøm, Daniel Southcott

    2011-01-01

    amorphous carbon and reactivate nickel catalyst. Controlling of the purification temperature is important for high yield CNTs, as excessive high annealing temperature results in deformation of the CNTs. Unlike hazardous wet purification treatments, purified CNTs remained vertically aligned and offer......Reproducible high-yield purification process of multiwalled carbon nanotubes (CNTs) was developed by thermal annealing in ultrapure oxygen. The optimized condition involves thermal annealing via a PID controlled heater in high purity oxygen at temperature of 450°C for 180s, which burns out...

  13. Ultrafast growth of wadsleyite in shock-produced melts and its implications for early solar system impact processes

    Energy Technology Data Exchange (ETDEWEB)

    Tschauner, Oliver; Asimow, Paul; Kostandova, Natalia; Ahrens, Thomas; Ma, Chi; Sinogeikin, Stanislav; Liu, Zhenxian; Fakra, Sirine; Tamura, Nobumichi

    2009-12-01

    We observed micrometer-sized grains of wadsleyite, a high-pressure phase of (Mg,Fe)2SiO4, in the recovery products of a shock experiment. We infer these grains crystallized from shock-generated melt over a time interval of <1 fs, the maximum time over which our experiment reached and sustained pressure sufficient to stabilize this phase. This rapid crystal growth rate (=1 m/s) suggests that, contrary to the conclusions of previous studies of the occurrence of high-pressure phases in shock-melt veins in strongly shocked meteorites, the growth of high-pressure phases from the melt during shock events is not diffusion-controlled. Another process, such as microturbulent transport, must be active in the crystal growth process. This result implies that the times necessary to crystallize the high-pressure phases in shocked meteorites may correspond to shock pressure durations achieved on impacts between objects 1-5 m in diameter and not, as previously inferred, =1-5 km in diameter. These results may also provide another pathway for syntheses, via shock recovery, of some high-value, high-pressure phases.

  14. Ultrafast Transient Absorption Spectroscopy of Polymer-Based Organophotoredox Catalysts Mimicking Transition-Metal Complexes

    Science.gov (United States)

    Jamhawi, Abdelqader; Paul, Anam C.; Smith, Justin D.; Handa, Sachin; Liu, Jinjun

    2017-06-01

    Transition-metal complexes of rare earth metals including ruthenium and iridium are most commonly employed as visible-light photocatalysts. Despite their highly important and broad applications, they have many disadvantages including high cost associated with low abundance in earth crust, potential toxicity, requirement of specialized ligands for desired activity, and difficulty in recycling of metal contents as well as associated ligands. Polymer-based organophotoredox catalysts are promising alternatives and possess unique advantages such as easier synthesis from inexpensive starting material, longer excited state life time, broad range of activity, sustainability, and recyclability. In this research talk, time-resolved photoluminescence and femtosecond transient absorption (TA) spectroscopy measurements of three novel polymer-based organophotoredox catalysts will be presented. By our synthetic team, their catalytic activity has been proven in some highly valuable chemical transformations, that otherwise require transition metal complexes. Time-resolved spectroscopic investigations have demonstrated that photoinduced processes in these catalysts are similar to the transition metal complexes. Especially, intramolecular vibrational relaxation, internal conversion, and intersystem crossing from the S1 state to the T1 state all occur on a sub-picosecond timescale. The long lifetime of the T1 state ( 2-3 microsecond) renders these polymers potent oxidizing and reducing agents. A spectroscopic and kinetic model has been developed for global fitting of TA spectra in both the frequency and time domains. Implication of the current ultrafast spectroscopy studies of these novel molecules to their roles in photocatalysis will be discussed.

  15. Solvent control of intramolecular proton transfer

    DEFF Research Database (Denmark)

    Manolova, Y.; Marciniak, Heinz; Tschierlei, S.

    2017-01-01

    of molecules in the enol and zwitterionic proton transfer (PT) form exists in the ground state. However, the zwitterion is the energetically favored one in the electronically excited state. Optical excitation of the enol form results in intramolecular proton transfer and formation of the PT form within 1.4 ps...

  16. INTRAMOLECULAR ISOTOPE EFFECTS IN HYDROCARBON MASS SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, D. P.; Schachtschneider, J. H.

    1963-07-15

    Approximate calculations based on the quasi-equilibrium rate theory of the origin of mass spectra are shown to lead to an approximately correct magnitude for the intramolecular ( pi /sup -/) isotope effect on C--H bond dissociation probabilities of various deuterohydrocarbons. (auth)

  17. Photoswitchable Intramolecular H-Stacking of Perylenebisimide

    NARCIS (Netherlands)

    Wang, Jiaobing; Kulago, Artem; Browne, Wesley R.; Feringa, Ben L.

    2010-01-01

    Dynamic control over the formation of H- or J-type aggregates of chromophores is of fundamental importance for developing responsive organic optoelectronic materials. In this study, the first example of photoswitching between a nonstacked and an intramolecularly H-stacked arrangement of

  18. Ultrafast surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Keller, Emily L; Brandt, Nathaniel C; Cassabaum, Alyssa A; Frontiera, Renee R

    2015-08-07

    Ultrafast surface-enhanced Raman spectroscopy (SERS) with pico- and femtosecond time resolution has the ability to elucidate the mechanisms by which plasmons mediate chemical reactions. Here we review three important technological advances in these new methodologies, and discuss their prospects for applications in areas including plasmon-induced chemistry and sensing at very low limits of detection. Surface enhancement, arising from plasmonic materials, has been successfully incorporated with stimulated Raman techniques such as femtosecond stimulated Raman spectroscopy (FSRS) and coherent anti-Stokes Raman spectroscopy (CARS). These techniques are capable of time-resolved measurement on the femtosecond and picosecond time scale and can be used to follow the dynamics of molecules reacting near plasmonic surfaces. We discuss the potential application of ultrafast SERS techniques to probe plasmon-mediated processes, such as H2 dissociation and solar steam production. Additionally, we discuss the possibilities for high sensitivity SERS sensing using these stimulated Raman spectroscopies.

  19. OSA Trends in Optics and Photonics Series. Volume 13: Ultrafast Electronics and Optoelectronics

    Science.gov (United States)

    1997-01-01

    tomography. Many materials such as plastics, cardboard, wood and rubber have good transparency in the terahertz frequency range. Hence, this new...Ultrafast processes in semiconductors. Introduction Nonlinear Bragg reflector ( NBR ) consists of periodically distributed optical nonlinearity coexisting...with multiple reflection and group-delay dispersion. Recent theoretical analyses showed the potential of NBR in ultrafast optoelectronics such as all

  20. Ultrafast Graphene Photonics and Optoelectronics

    Science.gov (United States)

    2017-04-14

    AFRL-AFOSR-JP-TR-2017-0032 Ultrafast Graphene Photonics and Optoelectronics Kuang-Hsiung Wu National Chiao Tung University Final Report 04/14/2017...DATES COVERED (From - To) 18 Apr 2013 to 17 Apr 2016 4. TITLE AND SUBTITLE Ultrafast Graphene Photonics and Optoelectronics 5a.  CONTRACT NUMBER 5b...Prescribed by ANSI Std. Z39.18 Final Report for AOARD Grant FA2386-13-1-4022 “Ultrafast Graphene Photonics and Optoelectronics” Date May 23th, 2016

  1. Quantum modeling of ultrafast photoinduced charge separation

    Science.gov (United States)

    Rozzi, Carlo Andrea; Troiani, Filippo; Tavernelli, Ivano

    2018-01-01

    Phenomena involving electron transfer are ubiquitous in nature, photosynthesis and enzymes or protein activity being prominent examples. Their deep understanding thus represents a mandatory scientific goal. Moreover, controlling the separation of photogenerated charges is a crucial prerequisite in many applicative contexts, including quantum electronics, photo-electrochemical water splitting, photocatalytic dye degradation, and energy conversion. In particular, photoinduced charge separation is the pivotal step driving the storage of sun light into electrical or chemical energy. If properly mastered, these processes may also allow us to achieve a better command of information storage at the nanoscale, as required for the development of molecular electronics, optical switching, or quantum technologies, amongst others. In this Topical Review we survey recent progress in the understanding of ultrafast charge separation from photoexcited states. We report the state-of-the-art of the observation and theoretical description of charge separation phenomena in the ultrafast regime mainly focusing on molecular- and nano-sized solar energy conversion systems. In particular, we examine different proposed mechanisms driving ultrafast charge dynamics, with particular regard to the role of quantum coherence and electron-nuclear coupling, and link experimental observations to theoretical approaches based either on model Hamiltonians or on first principles simulations.

  2. Highly efficient induction of chirality in intramolecular

    Science.gov (United States)

    Cossio; Arrieta; Lecea; Alajarin; Vidal; Tovar

    2000-06-16

    Highly stereocontrolled, intramolecular [2 + 2] cycloadditions between ketenimines and imines leading to 1,2-dihydroazeto[2, 1-b]quinazolines have been achieved. The source of stereocontrol is a chiral carbon atom adjacent either to the iminic carbon or nitrogen atom. In the first case, the stereocontrol stems from the preference for the axial conformer in the first transition structure. In the second case, the origin of the stereocontrol lies on the two-electron stabilizing interaction between the C-C bond being formed and the sigma orbital corresponding to the polar C-X bond, X being an electronegative atom. These models can be extended to other related systems for predicting the stereochemical outcome in this intramolecular reaction.

  3. Intramolecular and Transannular Diels-Alder Reactions

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Ascic, Erhad

    2014-01-01

    Few reactions can compete with the Diels-Alder (DA) [4+2] cycloaddition for the rapid and efficient generation of molecular complexity. The DA reaction is atom-economic and stereospecific, as well as diastereo- and regioselective. The intramolecular version (IMDA) of the DA cycloaddition and its...... and dienophile, methods for acceleration of IMDA reactions (such as use of high pressure) and catalysis (using oxophilic or carbophilic metal complexes, Brønsted acids, and enzymes). The use of furans as diene components (IMDAF), intramolecular hetero-DA (IMHDA) and IMDA reactions with inverse electron demand...... are also covered. Applications of IMDA to asymmetric synthesis (from substrate control through to enantioselective catalysis, including organocatalysis) are presented, along with tandem sequences involving IMDA cycloaddition. A theme pervading the whole chapter is the use of IMDA reactions for the total...

  4. Ultrafast intramolecular charge transfer in tetrapyrazinoporphyrazines controls the quantum yields of fluorescence and singlet oxygen

    Czech Academy of Sciences Publication Activity Database

    Nováková, V.; Zimčík, P.; Miletín, M.; Váchová, L.; Kopecký, K.; Lang, Kamil; Chábera, P.; Polívka, T.

    2010-01-01

    Roč. 12, č. 11 (2010), s. 2555-2563 ISSN 1463-9076 R&D Projects: GA ČR GA203/07/1424 Institutional research plan: CEZ:AV0Z40320502 Keywords : photoinduced electron-transfer * phthalocyanine -fullerene ensembles * nonlinear-optical properties Subject RIV: CA - Inorganic Chemistry Impact factor: 3.454, year: 2010

  5. Ultrafast Ultrasound Imaging With Cascaded Dual-Polarity Waves.

    Science.gov (United States)

    Zhang, Yang; Guo, Yuexin; Lee, Wei-Ning

    2018-04-01

    Ultrafast ultrasound imaging using plane or diverging waves, instead of focused beams, has advanced greatly the development of novel ultrasound imaging methods for evaluating tissue functions beyond anatomical information. However, the sonographic signal-to-noise ratio (SNR) of ultrafast imaging remains limited due to the lack of transmission focusing, and thus insufficient acoustic energy delivery. We hereby propose a new ultrafast ultrasound imaging methodology with cascaded dual-polarity waves (CDWs), which consists of a pulse train with positive and negative polarities. A new coding scheme and a corresponding linear decoding process were thereby designed to obtain the recovered signals with increased amplitude, thus increasing the SNR without sacrificing the frame rate. The newly designed CDW ultrafast ultrasound imaging technique achieved higher quality B-mode images than coherent plane-wave compounding (CPWC) and multiplane wave (MW) imaging in a calibration phantom, ex vivo pork belly, and in vivo human back muscle. CDW imaging shows a significant improvement in the SNR (10.71 dB versus CPWC and 7.62 dB versus MW), penetration depth (36.94% versus CPWC and 35.14% versus MW), and contrast ratio in deep regions (5.97 dB versus CPWC and 5.05 dB versus MW) without compromising other image quality metrics, such as spatial resolution and frame rate. The enhanced image qualities and ultrafast frame rates offered by CDW imaging beget great potential for various novel imaging applications.

  6. Ultrafast dynamics of correlated electrons

    International Nuclear Information System (INIS)

    Rettig, Laurenz

    2012-01-01

    This work investigates the ultrafast electron dynamics in correlated, low-dimensional model systems using femtosecond time- and angle-resolved photoemission spectroscopy (trARPES) directly in the time domain. In such materials, the strong electron-electron (e-e) correlations or coupling to other degrees of freedom such as phonons within the complex many-body quantum system lead to new, emergent properties that are characterized by phase transitions into broken-symmetry ground states such as magnetic, superconducting or charge density wave (CDW) phases. The dynamical processes related to order like transient phase changes, collective excitations or the energy relaxation within the system allow deeper insight into the complex physics governing the emergence of the broken-symmetry state. In this work, several model systems for broken-symmetry ground states and for the dynamical charge balance at interfaces have been studied. In the quantum well state (QWS) model system Pb/Si(111), the charge transfer across the Pb/Si interface leads to an ultrafast energetic stabilization of occupied QWSs, which is the result of an increase of the electronic confinement to the metal film. In addition, a coherently excited surface phonon mode is observed. In antiferromagnetic (AFM) Fe pnictide compounds, a strong momentum-dependent asymmetry of electron and hole relaxation rates allows to separate the recovery dynamics of the AFM phase from electron-phonon (e-ph) relaxation. The strong modulation of the chemical potential by coherent phonon modes demonstrates the importance of e-ph coupling in these materials. However, the average e-ph coupling constant is found to be small. The investigation of the excited quasiparticle (QP) relaxation dynamics in the high-T c 4 superconductor Bi 2 Sr 2 CaCu 2 O 8+δ reveals a striking momentum and fluence independence of the QP life times. In combination with the momentum-dependent density of excited QPs, this demonstrates the suppression of momentum

  7. Ultrafast dynamics of correlated electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rettig, Laurenz

    2012-07-09

    This work investigates the ultrafast electron dynamics in correlated, low-dimensional model systems using femtosecond time- and angle-resolved photoemission spectroscopy (trARPES) directly in the time domain. In such materials, the strong electron-electron (e-e) correlations or coupling to other degrees of freedom such as phonons within the complex many-body quantum system lead to new, emergent properties that are characterized by phase transitions into broken-symmetry ground states such as magnetic, superconducting or charge density wave (CDW) phases. The dynamical processes related to order like transient phase changes, collective excitations or the energy relaxation within the system allow deeper insight into the complex physics governing the emergence of the broken-symmetry state. In this work, several model systems for broken-symmetry ground states and for the dynamical charge balance at interfaces have been studied. In the quantum well state (QWS) model system Pb/Si(111), the charge transfer across the Pb/Si interface leads to an ultrafast energetic stabilization of occupied QWSs, which is the result of an increase of the electronic confinement to the metal film. In addition, a coherently excited surface phonon mode is observed. In antiferromagnetic (AFM) Fe pnictide compounds, a strong momentum-dependent asymmetry of electron and hole relaxation rates allows to separate the recovery dynamics of the AFM phase from electron-phonon (e-ph) relaxation. The strong modulation of the chemical potential by coherent phonon modes demonstrates the importance of e-ph coupling in these materials. However, the average e-ph coupling constant is found to be small. The investigation of the excited quasiparticle (QP) relaxation dynamics in the high-T{sub c}4 superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} reveals a striking momentum and fluence independence of the QP life times. In combination with the momentum-dependent density of excited QPs, this demonstrates the

  8. Intramolecular excimer and exciplex emission of 1,4-dipyrenyl substituted cyclohexasilane

    NARCIS (Netherlands)

    van Walree, C.A.; Kaats-Richters, V.E.M.; Jenneskens, L.W.; Williams, R.M.; van Stokkum, I.H.M.

    2002-01-01

    Intramolecular excimer emission is observed for cis-1,4-di(1-pyrenyl)decamethylcyclohexasilane in nonpolar solvents. Time-resolved fluorescence spectroscopy and kinetic modelling indicate that the driving force of excimer formation is very small, and that the process is governed by the flexibility

  9. Ultrafast Transient Absorption Spectroscopy Investigation of Photoinduced Dynamics in Novel Donor-Acceptor Core-Shell Nanostructures for Organic Photovoltaics

    Science.gov (United States)

    Strain, Jacob; Jamhawi, Abdelqader; Abeywickrama, Thulitha M.; Loomis, Wendy; Rathnayake, Hemali; Liu, Jinjun

    2016-06-01

    Novel donor-acceptor nanostructures were synthesized via covalent synthesis and/or UV cross-linking method. Their photoinduced dynamics were investigated with ultrafast transient absorption (TA) spectroscopy. These new nanostructures are made with the strategy in mind to reduce manufacturing steps in the process of fabricating an organic photovoltaic cell. By imitating the heterojunction interface within a fixed particle domain, several fabrication steps can be bypassed reducing cost and giving more applicability to other film deposition methods. Such applications include aerosol deposition and ink-jet printing. The systems that were studied by TA spectroscopy include PDIB core, PDIB-P3HT core-shell, and PDIB-PANT core-shell which range in size from 60 to 130 nm. Within the experimentally accessible spectra range there resides a region of ground state bleaching, stimulated emission, and excited-state absorption of both neutrals and anions. Control experiments have been carried out to assign these features. At high pump fluences the TA spectra of PDIB core alone also indicate an intramolecular charge separation. The TA spectroscopy results thus far suggest that the core-shells resemble the photoinduced dynamics of a standard film although the particles are dispersed in solution, which indicates the desired outcome of the work.

  10. Carrier dynamics in graphene. Ultrafast many-particle phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Malic, E.; Brem, S.; Jago, R. [Department of Physics, Chalmers University of Technology, Goeteborg (Sweden); Winzer, T.; Wendler, F.; Knorr, A. [Institut fuer Theoretische Physik, Technische Universitaet Berlin (Germany); Mittendorff, M.; Koenig-Otto, J.C.; Schneider, H.; Helm, M.; Winnerl, S. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Ploetzing, T.; Neumaier, D. [Advanced Microelectronic Center Aachen, AMO GmbH, Aachen (Germany)

    2017-11-15

    Graphene is an ideal material to study fundamental Coulomb- and phonon-induced carrier scattering processes. Its remarkable gapless and linear band structure opens up new carrier relaxation channels. In particular, Auger scattering bridging the valence and the conduction band changes the number of charge carriers and gives rise to a significant carrier multiplication - an ultrafast many-particle phenomenon that is promising for the design of highly efficient photodetectors. Furthermore, the vanishing density of states at the Dirac point combined with ultrafast phonon-induced intraband scattering results in an accumulation of carriers and a population inversion suggesting the design of graphene-based terahertz lasers. Here, we review our work on the ultrafast carrier dynamics in graphene and Landau-quantized graphene is presented providing a microscopic view on the appearance of carrier multiplication and population inversion. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. All-optical temporal integration of ultrafast pulse waveforms.

    Science.gov (United States)

    Park, Yongwoo; Ahn, Tae-Jung; Dai, Yitang; Yao, Jianping; Azaña, José

    2008-10-27

    An ultrafast all-optical temporal integrator is experimentally demonstrated. The demonstrated integrator is based on a very simple and practical solution only requiring the use of a widely available all-fiber passive component, namely a reflection uniform fiber Bragg grating (FBG). This design allows overcoming the severe speed (bandwidth) limitations of the previously demonstrated photonic integrator designs. We demonstrate temporal integration of a variety of ultrafast optical waveforms, including Gaussian, odd-symmetry Hermite Gaussian, and (odd-)symmetry double pulses, with temporal features as fast as ~6-ps, which is about one order of magnitude faster than in previous photonic integration demonstrations. The developed device is potentially interesting for a multitude of applications in all-optical computing and information processing, ultrahigh-speed optical communications, ultrafast pulse (de-)coding, shaping and metrology.

  12. Femtochemistry and femtobiology ultrafast dynamics in molecular science

    CERN Document Server

    Douhal, Abderrazzak

    2002-01-01

    This book contains important contributions from top international scientists on the-state-of-the-art of femtochemistry and femtobiology at the beginning of the new millennium. It consists of reviews and papers on ultrafast dynamics in molecular science.The coverage of topics highlights several important features of molecular science from the viewpoint of structure (space domain) and dynamics (time domain). First of all, the book presents the latest developments, such as experimental techniques for understanding ultrafast processes in gas, condensed and complex systems, including biological mol

  13. Ultra-fast relaxation kinetics in semiconductors

    International Nuclear Information System (INIS)

    Luzzi, R.

    1983-01-01

    It is presented a brief description of relaxation processes in highly excited semiconductor plasmas (HESP). Comparison with experimental data obtained by means of ultra-fast laser light spectroscopy (UFLS) is made. Some aspects of response funtion theory in systems far-from-equilibrium are reviewed in Section II. In Section III we present some comments on the question of nonequilibrium thermodynamics relevant to the problem to be considered. In last section we present a brief summary of the different aspects of the subject. (author) [pt

  14. Ultra-fast relaxation kinetics in semiconductors

    International Nuclear Information System (INIS)

    Luzzi, R.

    1983-01-01

    It is presented a brief description of relaxation processes in highly excited semiconductor plasmas (HESP). Comparison with experimental data obtained by means of ultra-fast laser light spectroscopy (UFLS) is made. Some aspects of response function theory in systems far-from-equilibrium are reviewed in Section II. In Section III some comments on the question of nonequilibrium thermodynamics relevant to the problem to be considered are presented. In last Section a brief summary of the different aspects of the subject is also presented. (Author) [pt

  15. Ultrafast Digital Printing toward 4D Shape Changing Materials.

    Science.gov (United States)

    Huang, Limei; Jiang, Ruiqi; Wu, Jingjun; Song, Jizhou; Bai, Hao; Li, Bogeng; Zhao, Qian; Xie, Tao

    2017-02-01

    Ultrafast 4D printing (printing converts the structure into 3D. An additional dimension can be incorporated by choosing the printing precursors. The process overcomes the speed limiting steps of typical 3D (4D) printing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ultrafast laser-semiconductor interactions

    International Nuclear Information System (INIS)

    Schile, L.A.

    1996-01-01

    Studies of the ultrafast (< 100 fs) interactions of infrared, sub-100 fs laser pulses with IR, photosensitive semiconductor materials InGaAs, InSb, and HgCdTe are reported. Both the carrier dynamics and the associated Terahertz radiation from these materials are discussed. The most recent developments of femtosecond (< 100 fs) Optical Parametric Oscillators (OPO) has extended the wavelength range from the visible to 5.2 μm. The photogenerated semiconductor free carrier dynamics are determined in the 77 to 300 degrees K temperature range using the Transmission Correlation Peak (TCP) method. The electron-phonon scattering times are typically 200 - 600 fs. Depending upon the material composition and substrate on which the IR crystalline materials are deposited, the nonlinear TCP absorption gives recombination rates as fast as 10's of picoseconds. For the HgCdTe, there exists a 400 fs electron-phonon scattering process along with a much longer 3600 fs loss process. Studies of the interactions of these ultrashort laser pulses with semiconductors produce Terahertz (Thz) radiative pulses. With undoped InSb, there is a substantial change in the spectral content of this THz radiation between 80 - 260 degrees K while the spectrum of Te-doped InSb remains nearly unchanged, an effect attributed to its mobility being dominated by impurity scattering. At 80 degrees K, the terahertz radiation from undoped InSb is dependent on wavelength, with both a higher frequency spectrum and much larger amplitudes generated at longer wavelengths. No such effect is observed at 260 degrees K. Finally, new results on the dependence of the emitted THz radiation on the InSb crystal's orientation is presented

  17. Ultrafast Microscopy of Energy and Charge Transport

    Science.gov (United States)

    Huang, Libai

    The frontier in solar energy research now lies in learning how to integrate functional entities across multiple length scales to create optimal devices. Advancing the field requires transformative experimental tools that probe energy transfer processes from the nano to the meso lengthscales. To address this challenge, we aim to understand multi-scale energy transport across both multiple length and time scales, coupling simultaneous high spatial, structural, and temporal resolution. In my talk, I will focus on our recent progress on visualization of exciton and charge transport in solar energy harvesting materials from the nano to mesoscale employing ultrafast optical nanoscopy. With approaches that combine spatial and temporal resolutions, we have recently revealed a new singlet-mediated triplet transport mechanism in certain singlet fission materials. This work demonstrates a new triplet exciton transport mechanism leading to favorable long-range triplet exciton diffusion on the picosecond and nanosecond timescales for solar cell applications. We have also performed a direct measurement of carrier transport in space and in time by mapping carrier density with simultaneous ultrafast time resolution and 50 nm spatial precision in perovskite thin films using transient absorption microscopy. These results directly visualize long-range carrier transport of 220nm in 2 ns for solution-processed polycrystalline CH3NH3PbI3 thin films. The spatially and temporally resolved measurements reported here underscore the importance of the local morphology and establish an important first step towards discerning the underlying transport properties of perovskite materials.

  18. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We...

  19. Ultrafast spectroscopy of biological photoreceptors

    NARCIS (Netherlands)

    Kennis, J.T.M.; Groot, M.L.

    2007-01-01

    We review recent new insights on reaction dynamics of photoreceptors proteins gained from ultrafast spectroscopy. In Blue Light sensing Using FAD (BLUF) domains, a hydrogen-bond rearrangement around the flavin chromophore proceeds through a radical-pair mechanism, by which light-induced electron and

  20. Ultrafast Spectroscopy of Semiconductor Devices

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Hvam, Jørn Marcher

    1999-01-01

    In this work we present an experimental technique for investigating ultrafast carrier dynamics in semiconductor optical amplifiers at room temperature. These dynamics, influenced by carrier heating, spectral hole-burning and two-photon absorption, are very important for device applications in inf...

  1. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We elucid...

  2. Ultrafast pulse lasers jump to macro applications

    Science.gov (United States)

    Griebel, Martin; Lutze, Walter; Scheller, Torsten

    2016-03-01

    Ultrafast Lasers have been proven for several micro applications, e.g. stent cutting, for many years. Within its development of applications Jenoptik has started to use ultrafast lasers in macro applications in the automotive industry. The JenLas D2.fs-lasers with power output control via AOM is an ideal tool for closed loop controlled material processing. Jenoptik enhanced his well established sensor controlled laser weakening process for airbag covers to a new level. The patented process enables new materials using this kind of technology. One of the most sensitive cover materials is genuine leather. As a natural product it is extremely inhomogeneous and sensitive for any type of thermal load. The combination of femtosecond pulse ablation and closed loop control by multiple sensor array opens the door to a new quality level of defined weakening. Due to the fact, that the beam is directed by scanning equipment the process can be split in multiple cycles additionally reducing the local energy input. The development used the 5W model as well as the latest 10W release of JenLas D2.fs and achieved amazing processing speeds which directly fulfilled the requirements of the automotive industry. Having in mind that the average cycle time of automotive processes is about 60s, trials had been done of processing weakening lines in genuine leather of 1.2mm thickness. Parameters had been about 15 cycles with 300mm/s respectively resulting in an average speed of 20mm/s and a cycle time even below 60s. First samples had already given into functional and aging tests and passed successfully.

  3. Tracking ultrafast relaxation dynamics of furan by femtosecond photoelectron imaging

    International Nuclear Information System (INIS)

    Liu, Yuzhu; Knopp, Gregor; Qin, Chaochao; Gerber, Thomas

    2015-01-01

    Graphical abstract: - Highlights: • Relaxation dynamics of furan are tracked by femtosecond photoelectron imaging. • The mechanism for ultrafast formation of α-carbene and β-carbene is proposed. • Ultrafast internal conversion from S 2 to S 1 is observed. • The transient characteristics of the fragment ions are obtained. • Single-color multi-photon ionization dynamics at 800 nm are also studied. - Abstract: Ultrafast internal conversion dynamics of furan has been studied by femtosecond photoelectron imaging (PEI) coupled with photofragmentation (PF) spectroscopy. Photoelectron imaging of single-color multi-photon ionization and two-color pump–probe ionization are obtained and analyzed. Photoelectron bands are assigned to the related states. The time evolution of the photoelectron signal by pump–probe ionization can be well described by a biexponential decay: two rapid relaxation pathways with time constants of ∼15 fs and 85 (±11) fs. The rapid relaxation is ascribed to the ultrafast internal conversion (IC) from the S 2 state to the vibrationally hot S 1 state. The second relaxation process is attributed to the redistributions and depopulation of secondarily populated high vibronic S 1 state and the formation of α-carbene and β-carbene by H immigration. Additionally, the transient characteristics of the fragment ions are also measured and discussed as a complementary understanding

  4. Tracking ultrafast relaxation dynamics of furan by femtosecond photoelectron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuzhu, E-mail: yuzhu.liu@gmail.com [School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Knopp, Gregor [Paul Scherrer Institute, Villigen 5232 (Switzerland); Qin, Chaochao [Department of Physics, Henan Normal University, Xinxiang 453007 (China); Gerber, Thomas [Paul Scherrer Institute, Villigen 5232 (Switzerland)

    2015-01-13

    Graphical abstract: - Highlights: • Relaxation dynamics of furan are tracked by femtosecond photoelectron imaging. • The mechanism for ultrafast formation of α-carbene and β-carbene is proposed. • Ultrafast internal conversion from S{sub 2} to S{sub 1} is observed. • The transient characteristics of the fragment ions are obtained. • Single-color multi-photon ionization dynamics at 800 nm are also studied. - Abstract: Ultrafast internal conversion dynamics of furan has been studied by femtosecond photoelectron imaging (PEI) coupled with photofragmentation (PF) spectroscopy. Photoelectron imaging of single-color multi-photon ionization and two-color pump–probe ionization are obtained and analyzed. Photoelectron bands are assigned to the related states. The time evolution of the photoelectron signal by pump–probe ionization can be well described by a biexponential decay: two rapid relaxation pathways with time constants of ∼15 fs and 85 (±11) fs. The rapid relaxation is ascribed to the ultrafast internal conversion (IC) from the S{sub 2} state to the vibrationally hot S{sub 1} state. The second relaxation process is attributed to the redistributions and depopulation of secondarily populated high vibronic S{sub 1} state and the formation of α-carbene and β-carbene by H immigration. Additionally, the transient characteristics of the fragment ions are also measured and discussed as a complementary understanding.

  5. Ultrafast Structural Dynamics in InSb Probed by Time-Resolved X-Ray Diffraction

    International Nuclear Information System (INIS)

    Chin, A.H.; Shank, C.V.; Chin, A.H.; Schoenlein, R.W.; Shank, C.V.; Glover, T.E.; Leemans, W.P.; Balling, P.

    1999-01-01

    Ultrafast structural dynamics in laser-perturbed InSb are studied using time-resolved x-ray diffraction with a novel femtosecond x-ray source. We report the first observation of a delay in the onset of lattice expansion, which we attribute to energy relaxation processes and lattice strain propagation. In addition, we observe direct indications of ultrafast disordering on a subpicosecond time scale. copyright 1999 The American Physical Society

  6. Ultrafast MR Imaging in Pediatric Neuroradiology

    International Nuclear Information System (INIS)

    Singh, R.K.; Smith, J.T.; Wilkinson, I.D.; Griffiths, P.D.

    2003-01-01

    Purpose: To compare the diagnostic information obtained from ultrafast MR imaging with standard MR imaging techniques in pediatric neuroradiology. The goal was to judge whether ultrafast methods can be used to replace standard methods and reduce the need for sedation or general anesthesia as a result of the considerably shorter scan times. Material and Methods: Our prospective study involved 125 patients. Routine clinical imaging was performed along with two ultrafast methods. Single shot fast spin echo (SSFSE) was used to give T2-weighted images and an echo planar imaging (EPI) sequence to provide a T1-weighted images. The ultrafast images were presented to an experienced neuro radiologist who was also given the information present on the initial referral card. These reports based on the ultrafast images were then compared with the formal radiologic report made solely on the basis of the standard imaging. Results: The overall sensitivity and specificity for ultrafast imaging when compared to the reference standard were 78% and 98% with positive and negative predictive values of 98% and 76%. Pathologies characterized by small areas of subtle T2 prolongation were difficult or impossible to see on the ultrafast images but otherwise they provided reliable information. Conclusions: This paper demonstrates that ultrafast MR imaging can diagnose many pediatric intracranial abnormalities as well as standard methods. Anatomic resolution limits its capacity to define subtle developmental anomalies and contrast resolution limitations of the ultrafast methods reduce the detection of pathology characterized by subtle T2 prolongation

  7. Real-time control of ultrafast laser micromachining by laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Tong Tao; Li Jinggao; Longtin, Jon P.

    2004-01-01

    Ultrafast laser micromachining provides many advantages for precision micromachining. One challenging problem, however, particularly for multilayer and heterogeneous materials, is how to prevent a given material from being ablated, as ultrafast laser micromachining is generally material insensitive. We present a real-time feedback control system for an ultrafast laser micromachining system based on laser-induced breakdown spectroscopy (LIBS). The characteristics of ultrafast LIBS are reviewed and discussed so as to demonstrate the feasibility of the technique. Comparison methods to identify the material emission patterns are developed, and several of the resulting algorithms were implemented into a real-time computer control system. LIBS-controlled micromachining is demonstrated for the fabrication of microheater structures on thermal sprayed materials. Compared with a strictly passive machining process without any such feedback control, the LIBS-based system provides several advantages including less damage to the substrate layer, reduced machining time, and more-uniform machining features

  8. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Weathersby, S. P.; Brown, G.; Chase, T. F.; Coffee, R.; Corbett, J.; Eichner, J. P.; Frisch, J. C.; Fry, A. R.; Gühr, M.; Hartmann, N.; Hast, C.; Hettel, R.; Jobe, R. K.; Jongewaard, E. N.; Lewandowski, J. R.; Li, R. K., E-mail: lrk@slac.stanford.edu; Lindenberg, A. M.; Makasyuk, I.; May, J. E.; McCormick, D. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); and others

    2015-07-15

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.

  9. Intramolecular interactions in a new tris-dithizonatocobalt(III) complex

    International Nuclear Information System (INIS)

    Eschwege, Karel G. von; As, Lydia van; Joubert, Chris C.; Swarts, Jannie C.; Aquino, Manuel A.S.; Cameron, T. Stanley

    2013-01-01

    Graphical abstract: Electrochemically Co(HDz) 3 (5), show three main ligand-based redox processes, two reductions and one oxidation. Ligand oxidations can be resolved into three components highlighting effective intramolecular interactions between molecular fragments; a spectroelectrochemical study of (5) highlighted spectroscopic changes during the six observed redox steps. - Highlights: • Comparative CV's of dithizone (1), PhHg(HDz) and new Co(HDz) 3 (5), is discussed. • One oxidation and two reductions per ligand and a Co III/II couple for (5) are observed. • Mono- and tris-coordinated PhHg(HDz) and (5) have stable metal thioether bonds. • Crystal structure details explain good resolution between ligand redox processes. • Spectro-electrochemistry of (5) highlights spectroscopic properties of redox products. - Abstract: The reactions between dithizone (H 2 Dz (1)) or potassium dithizonate (KHDz (3)), and [Co(H 2 O) 6 ] 2+ (6), in acetone or methanol to liberate tris-dithizonatocobalt(III), Co(HDz) 3 (5), are described. The structure of (5) was confirmed by single crystal X-ray analyses and shows bidentate coordination to Co III via S and N donor atoms for all three HDz − ligands. A comparative voltammetric and spectro-electrochemical study revealed that (1) can be oxidised in two one-electron transfer steps, to generate a disulphide first and then HDz + . In contrast, upon complexation with cobalt, the free mercaptan group of (1) becomes a stable “metal thioether”, Co-S-C, which effectively prevents disulphide formation in all three ligands of (5) upon electrochemical oxidation. As a result, each ligand of Co(HDz) 3 shows just one oxidation process. Intramolecular communication between ligands is evident because the three separate ligand-based oxidations are well resolved. Two irreversible ligand reduction steps, each consisting of three unresolved components related to each of the three ligands, were also observed. The Co II /Co III couple

  10. Ultrafast Thermal Transport at Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cahill, David [Univ. of Illinois, Champaign, IL (United States); Murphy, Catherine [Univ. of Illinois, Champaign, IL (United States); Martin, Lane [Univ. of Illinois, Champaign, IL (United States)

    2014-10-21

    Our research program on Ultrafast Thermal Transport at Interfaces advanced understanding of the mesoscale science of heat conduction. At the length and time scales of atoms and atomic motions, energy is transported by interactions between single-particle and collective excitations. At macroscopic scales, entropy, temperature, and heat are the governing concepts. Key gaps in fundamental knowledge appear at the transitions between these two regimes. The transport of thermal energy at interfaces plays a pivotal role in these scientific issues. Measurements of heat transport with ultrafast time resolution are needed because picoseconds are the fundamental scales where the lack of equilibrium between various thermal excitations becomes a important factor in the transport physics. A critical aspect of our work has been the development of experimental methods and model systems that enabled more precise and sensitive investigations of nanoscale thermal transport.

  11. Ultrafast comparison of personal genomes

    OpenAIRE

    Mauldin, Denise; Hood, Leroy; Robinson, Max; Glusman, Gustavo

    2017-01-01

    We present an ultra-fast method for comparing personal genomes. We transform the standard genome representation (lists of variants relative to a reference) into 'genome fingerprints' that can be readily compared across sequencing technologies and reference versions. Because of their reduced size, computation on the genome fingerprints is fast and requires little memory. This enables scaling up a variety of important genome analyses, including quantifying relatedness, recognizing duplicative s...

  12. Ultrafast excited-state relaxation of a binuclear Ag(i) phosphine complex in gas phase and solution.

    Science.gov (United States)

    Kruppa, S V; Bäppler, F; Klopper, W; Walg, S P; Thiel, W R; Diller, R; Riehn, C

    2017-08-30

    The binuclear complex [Ag 2 (dcpm) 2 ](PF 6 ) 2 (dcpm = bis(dicyclohexylphosphino)methane) exhibits a structure with a close silver-silver contact mediated by the bridging ligand and thus a weak argentophilic interaction. Upon electronic excitation this cooperative effect is strongly increased and determines the optical and luminescence properties of the compound. We have studied here the ultrafast electronic dynamics in parallel in gas phase by transient photodissociation and in solution by transient absorption. In particular, we report the diverse photofragmentation pathways of isolated [Ag 2 (dcpm) 2 ] 2+ in an ion trap and its gas phase UV photodissociation spectrum. By pump-probe fragmentation action spectroscopy (λ ex = 260 nm) in the gas phase, we have obtained fragment-specific transients which exhibit a common ultrafast multiexponential decay. This is fitted to four time constants (0.6/5.8/100/>1000 ps), highlighting complex intrinsic photophysical processes. Remarkably, multiexponential dynamics (0.9/8.5/73/604 ps) are as well found for the relaxation dynamics in acetonitrile solution. Ab initio calculations at the level of approximate coupled-cluster singles-doubles (CC2) theory of ground and electronically excited states of the reduced model system [Ag 2 (dmpm) 2 ] 2+ (dmpm = bis(dimethylphosphino)methane) indicate a shortening of the Ag-Ag distance upon excitation by 0.3-0.4 Å. In C 2 geometry two close-lying singlet states S 1 ( 1 MC(dσ*-pπ), 1 B, 4.13 eV) and S 2 ( 1 MC(dσ*-pσ), 1 A, 4.45 eV) are found. The nearly dark S 1 state has not been reported so far. The excitation of the S 2 state carries a large oscillator strength for the calculated vertical transition (266 nm). Two related triplets are calculated at T 1 (3.87 eV) and T 2 (3.90 eV). From these findings we suggest possible relaxation pathways with the two short time constants ascribed to ISC/IVR and propose from the obtained similar values in gas phase that the fast solution dynamics

  13. Effects of acid concentration on intramolecular charge transfer ...

    Indian Academy of Sciences (India)

    rate. Time-dependent density functional theory calculations have been performed to understand the observed spectroscopic results. Keywords. Intramolecular charge transfer; absorption and fluorescence; time resolved fluorescence measurements; acid concentration dependence; time-dependent density functional theory.

  14. Intramolecularly Hydrogen-Bonded Polypyrroles as Electro-Optical Sensors

    National Research Council Canada - National Science Library

    Nicholson, Jesse

    2001-01-01

    We have developed a new class of polypyrroles bearing both hydrogen-bond acceptor and hydrogen-donor groups such that the intramolecular hydrogen bonding holds the system planar enhancing conjugation...

  15. Iron(II)-catalyzed intramolecular aminohydroxylation of olefins with functionalized hydroxylamines.

    Science.gov (United States)

    Liu, Guan-Sai; Zhang, Yong-Qiang; Yuan, Yong-An; Xu, Hao

    2013-03-06

    A diastereoselective aminohydroxylation of olefins with a functionalized hydroxylamine is catalyzed by new iron(II) complexes. This efficient intramolecular process readily affords synthetically useful amino alcohols with excellent selectivity (dr up to > 20:1). Asymmetric catalysis with chiral iron(II) complexes and preliminary mechanistic studies reveal an iron nitrenoid is a possible intermediate that can undergo either aminohydroxylation or aziridination, and the selectivity can be controlled by careful selection of counteranion/ligand combinations.

  16. Molecular structures and intramolecular dynamics of pentahalides

    Science.gov (United States)

    Ischenko, A. A.

    2017-03-01

    This paper reviews advances of modern gas electron diffraction (GED) method combined with high-resolution spectroscopy and quantum chemical calculations in studies of the impact of intramolecular dynamics in free molecules of pentahalides. Some recently developed approaches to the electron diffraction data interpretation, based on direct incorporation of the adiabatic potential energy surface parameters to the diffraction intensity are described. In this way, complementary data of different experimental and computational methods can be directly combined for solving problems of the molecular structure and its dynamics. The possibility to evaluate some important parameters of the adiabatic potential energy surface - barriers to pseudorotation and saddle point of intermediate configuration from diffraction intensities in solving the inverse GED problem is demonstrated on several examples. With increasing accuracy of the electron diffraction intensities and the development of the theoretical background of electron scattering and data interpretation, it has become possible to investigate complex nuclear dynamics in fluxional systems by the GED method. Results of other research groups are also included in the discussion.

  17. Ultrafast characterization of optoelectronic devices and systems

    Science.gov (United States)

    Zheng, Xuemei

    The recent fast growth in high-speed electronics and optoelectronics has placed demanding requirements on testing tools. Electro-optic (EO) sampling is a well-established technique for characterization of high-speed electronic and optoelectronic devices and circuits. However, with the progress in device miniaturization, lower power consumption (smaller signal), and higher throughput (higher clock rate), EO sampling also needs to be updated, accordingly, towards better signal-to-noise ratio (SNR) and sensitivity, without speed sacrifice. In this thesis, a novel EO sampler with a single-crystal organic 4-dimethylamino-N-methy-4-stilbazolium tosylate (DAST) as the EO sensor is developed. The system exhibits sub-picosecond temporal resolution, sub-millivolt sensitivity, and a 10-fold improvement on SNR, compared with its LiTaO3 counterpart. The success is attributed to the very high EO coefficient, the very low dielectric constant, and the fast response, coming from the major contribution of the pi-electrons in DAST. With the advance of ultrafast laser technology, low-noise and compact femtosecond fiber lasers have come to maturation and become light-source options for ultrafast metrology systems. We have successfully integrated a femtosecond erbium-doped-fiber laser into an EO sampler, making the system compact and very reliable. The fact that EO sampling is essentially an impulse-response measurement process, requires integration of ultrashort (sub-picosecond) impulse generation network with the device under test. We have implemented a reliable lift-off and transfer technique in order to obtain epitaxial-quality freestanding low-temperature-grown GaAs (LT-GaAs) thin-film photo-switches, which can be integrated with many substrates. The photoresponse of our freestanding LT-GaAs devices was thoroughly characterized with the help of our EO sampler. As fast as 360 fs full-width-at-half-maximum (FWHM) and >1 V electrical pulses were obtained, with quantum efficiency

  18. Ultrafast quantum control of ionization dynamics in krypton.

    Science.gov (United States)

    Hütten, Konrad; Mittermair, Michael; Stock, Sebastian O; Beerwerth, Randolf; Shirvanyan, Vahe; Riemensberger, Johann; Duensing, Andreas; Heider, Rupert; Wagner, Martin S; Guggenmos, Alexander; Fritzsche, Stephan; Kabachnik, Nikolay M; Kienberger, Reinhard; Bernhardt, Birgitta

    2018-02-19

    Ultrafast spectroscopy with attosecond resolution has enabled the real time observation of ultrafast electron dynamics in atoms, molecules and solids. These experiments employ attosecond pulses or pulse trains and explore dynamical processes in a pump-probe scheme that is selectively sensitive to electronic state of matter via photoelectron or XUV absorption spectroscopy or that includes changes of the ionic state detected via photo-ion mass spectrometry. Here, we demonstrate how the implementation of combined photo-ion and absorption spectroscopy with attosecond resolution enables tracking the complex multidimensional excitation and decay cascade of an Auger auto-ionization process of a few femtoseconds in highly excited krypton. In tandem with theory, our study reveals the role of intermediate electronic states in the formation of multiply charged ions. Amplitude tuning of a dressing laser field addresses different groups of decay channels and allows exerting temporal and quantitative control over the ionization dynamics in rare gas atoms.

  19. Ultrafast phenomena in molecular sciences femtosecond physics and chemistry

    CERN Document Server

    Bañares, Luis

    2014-01-01

    This book presents the latest developments in Femtosecond Chemistry and Physics for the study of ultrafast photo-induced molecular processes. Molecular systems, from the simplest H2 molecule to polymers or biological macromolecules, constitute central objects of interest for Physics, Chemistry and Biology, and despite the broad range of phenomena that they exhibit, they share some common behaviors. One of the most significant of those is that many of the processes involving chemical transformation (nuclear reorganization, bond breaking, bond making) take place in an extraordinarily short time, in or around the femtosecond temporal scale (1 fs = 10-15 s). A number of experimental approaches - very particularly the developments in the generation and manipulation of ultrashort laser pulses - coupled with theoretical progress, provide the ultrafast scientist with powerful tools to understand matter and its interaction with light, at this spatial and temporal scale. This book is an attempt to reunite some of the ...

  20. Numerical simulation of dynamic quenching of dual-split fluorescence of molecules with intramolecular hydrogen bonds

    International Nuclear Information System (INIS)

    Morozov, V.A.; Chuvulkin, N.D.; Smolenskij, E.A.; Dubina, Yu.M.

    2014-01-01

    The dynamic quenching of intensity pulses of the dual-split fluorescence (DSF) has been simulated using numerical solutions of the equations for the population matrix of five states of the model fluorescent molecule (FM). The state with the highest energy is considered as resonantly excited by irradiation, and two other excited states populated by subsequent relaxation processes are taken as initial states for the FM transitions with emission of the DSF photons. The FM model parameters are selected to fit typical parameters of the molecules with intramolecular proton photo transfer. Quenching is considered as a consequence of non-radiative decay of the FM excited states due to collisions with the quencher molecules. Examples of two types of the DSF quenching of the FM are given. The first type leads to an intramolecular radiationless decay of particular excited states of the FM, and the second one results in radiationless transitions from the same states to the quencher molecule states. (authors)

  1. Ultrafast Hierarchical OTDM/WDM Network

    Directory of Open Access Journals (Sweden)

    Hideyuki Sotobayashi

    2003-12-01

    Full Text Available Ultrafast hierarchical OTDM/WDM network is proposed for the future core-network. We review its enabling technologies: C- and L-wavelength-band generation, OTDM-WDM mutual multiplexing format conversions, and ultrafast OTDM wavelengthband conversions.

  2. Intramolecular electron transfer through a bridging carboxylate group coordinated to two cobalt(III)-ions

    International Nuclear Information System (INIS)

    Wieghardt, K.

    1978-01-01

    Reduction of the binuclear μ-p-nitrobenzoato -di-μ-hydroxo -bis[triammine cobalt(III)] cation with (CH 3 ) 2 COH radicals yields a radical cation with the p-nitrobenzoato radical being coordinated to two cobalt(III) ions at the carboxylic group. The unprotonated form of this species undergoes intramolecular electron transfer producing Co(II) (k = (3.3 +- 0.3). x 10 3 s -1 ). The role of the carboxylate group in the intramolecular electron transfer process is tentatively assessed in terms of an intramolecular outer-sphere reaction because of lack of overlap of the donor orbitals (π) and the acceptor orbital (sigma). The protonated form of the radical cation (pKsub(a) = 2.5) disproportionates via a bimolecular process without production of Co(II). The effect of two coordinated Co(III) ions as compared to only one on the properties of the nitrobenzoate radical anion are discussed. (orig.) 891 HK 892 GM [de

  3. Impact of undamped and damped intramolecular vibrations on the efficiency of photosynthetic exciton energy transfer

    Science.gov (United States)

    Juhász, Imre Benedek; Csurgay, Árpád I.

    2018-04-01

    In recent years, the role of molecular vibrations in exciton energy transfer taking place during the first stage of photosynthesis attracted increasing interest. Here, we present a model formulated as a Lindblad-type master equation that enables us to investigate the impact of undamped and especially damped intramolecular vibrational modes on the exciton energy transfer, particularly its efficiency. Our simulations confirm the already reported effects that the presence of an intramolecular vibrational mode can compensate the energy detuning of electronic states, thus promoting the energy transfer; and, moreover, that the damping of such a vibrational mode (in other words, vibrational relaxation) can further enhance the efficiency of the process by generating directionality in the energy flow. As a novel result, we show that this enhancement surpasses the one caused by pure dephasing, and we present its dependence on various system parameters (time constants of the environment-induced relaxation and excitation processes, detuning of the electronic energy levels, frequency of the intramolecular vibrational modes, Huang-Rhys factors, temperature) in dimer model systems. We demonstrate that vibrational-relaxation-enhanced exciton energy transfer (VREEET) is robust against the change of these characteristics of the system and occurs in wide ranges of the investigated parameters. With simulations performed on a heptamer model inspired by the Fenna-Matthews-Olson (FMO) complex, we show that this mechanism can be even more significant in larger systems at T = 300 K. Our results suggests that VREEET might be prevalent in light-harvesting complexes.

  4. Ultrafast Science Opportunities with Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    DURR, HERMANN; Wang, X.J., ed.

    2016-04-28

    X-rays and electrons are two of the most fundamental probes of matter. When the Linac Coherent Light Source (LCLS), the world’s first x-ray free electron laser, began operation in 2009, it transformed ultrafast science with the ability to generate laser-like x-ray pulses from the manipulation of relativistic electron beams. This document describes a similar future transformation. In Transmission Electron Microscopy, ultrafast relativistic (MeV energy) electron pulses can achieve unsurpassed spatial and temporal resolution. Ultrafast temporal resolution will be the next frontier in electron microscopy and can ideally complement ultrafast x-ray science done with free electron lasers. This document describes the Grand Challenge science opportunities in chemistry, material science, physics and biology that arise from an MeV ultrafast electron diffraction & microscopy facility, especially when coupled with linac-based intense THz and X-ray pump capabilities.

  5. Approach to Interfacial and Intramolecular Electron Transfer of the Diheme Protein Cytochrome c(4) Assembled on Au(111) Surfaces

    DEFF Research Database (Denmark)

    Chi, Qijin; Zhang, Jingdong; Taner, Arslan

    2010-01-01

    in homogeneous solution for which kinetic analysis clearly testifies to electrostatic cooperative effects but no intramolecular, interheme ET higher than 0.1-10 s(-1). This difference suggests a strong gating feature of the process. On the basis of the three-dimensional structure of P. stutzeri cyt c(4), gating...

  6. Intramolecular Crosstalk between Catalytic Activities of Receptor Kinases

    KAUST Repository

    Kwezi, Lusisizwe

    2018-01-22

    Signal modulation is important for the growth and development of plants and this process is mediated by a number of factors including physiological growth regulators and their associated signal transduction pathways. Protein kinases play a central role in signaling, including those involving pathogen response mechanisms. We previously demonstrated an active guanylate cyclase (GC) catalytic center in the brassinosteroid insensitive receptor (AtBRI1) within an active intracellular kinase domain resulting in dual enzymatic activity. Here we propose a novel type of receptor architecture that is characterized by a functional GC catalytic center nested in the cytosolic kinase domain enabling intramolecular crosstalk. This may be through a cGMP-AtBRI1 complex forming that may induce a negative feedback mechanism leading to desensitisation of the receptor, regulated through the cGMP production pathway. We further argue that the comparatively low but highly localized cGMP generated by the GC in response to a ligand is sufficient to modulate the kinase activity. This type of receptor therefore provides a molecular switch that directly and/or indirectly affects ligand dependent phosphorylation of downstream signaling cascades and suggests that subsequent signal transduction and modulation works in conjunction with the kinase in downstream signaling.

  7. Intramolecular Crosstalk between Catalytic Activities of Receptor Kinases

    KAUST Repository

    Kwezi, Lusisizwe; Wheeler, Janet I; Marondedze, Claudius; Gehring, Christoph A; Irving, Helen R

    2018-01-01

    Signal modulation is important for the growth and development of plants and this process is mediated by a number of factors including physiological growth regulators and their associated signal transduction pathways. Protein kinases play a central role in signaling, including those involving pathogen response mechanisms. We previously demonstrated an active guanylate cyclase (GC) catalytic center in the brassinosteroid insensitive receptor (AtBRI1) within an active intracellular kinase domain resulting in dual enzymatic activity. Here we propose a novel type of receptor architecture that is characterized by a functional GC catalytic center nested in the cytosolic kinase domain enabling intramolecular crosstalk. This may be through a cGMP-AtBRI1 complex forming that may induce a negative feedback mechanism leading to desensitisation of the receptor, regulated through the cGMP production pathway. We further argue that the comparatively low but highly localized cGMP generated by the GC in response to a ligand is sufficient to modulate the kinase activity. This type of receptor therefore provides a molecular switch that directly and/or indirectly affects ligand dependent phosphorylation of downstream signaling cascades and suggests that subsequent signal transduction and modulation works in conjunction with the kinase in downstream signaling.

  8. Compression of Ultrafast Laser Beams

    Science.gov (United States)

    2016-03-01

    Copyright 2003, AIP Publishing LLC. DOI: http://dx.doi.org/10.1063/1.1611998.) When designing the pulse shaper, the laser beam must completely fill the...for the design of future versions of this device. The easiest way to align the pulse shaper is to use the laser beam that will be shaped, without...Afterward, an ultrafast thin beam splitter is placed into the system after the diameter of the laser beam is reduced; this is done to monitor the beam

  9. Ultrafast collinear scattering and carrier multiplication in graphene.

    Science.gov (United States)

    Brida, D; Tomadin, A; Manzoni, C; Kim, Y J; Lombardo, A; Milana, S; Nair, R R; Novoselov, K S; Ferrari, A C; Cerullo, G; Polini, M

    2013-01-01

    Graphene is emerging as a viable alternative to conventional optoelectronic, plasmonic and nanophotonic materials. The interaction of light with charge carriers creates an out-of-equilibrium distribution, which relaxes on an ultrafast timescale to a hot Fermi-Dirac distribution, that subsequently cools emitting phonons. Although the slower relaxation mechanisms have been extensively investigated, the initial stages still pose a challenge. Experimentally, they defy the resolution of most pump-probe setups, due to the extremely fast sub-100 fs carrier dynamics. Theoretically, massless Dirac fermions represent a novel many-body problem, fundamentally different from Schrödinger fermions. Here we combine pump-probe spectroscopy with a microscopic theory to investigate electron-electron interactions during the early stages of relaxation. We identify the mechanisms controlling the ultrafast dynamics, in particular the role of collinear scattering. This gives rise to Auger processes, including charge multiplication, which is key in photovoltage generation and photodetectors.

  10. Precision machining of pig intestine using ultrafast laser pulses

    Science.gov (United States)

    Beck, Rainer J.; Góra, Wojciech S.; Carter, Richard M.; Gunadi, Sonny; Jayne, David; Hand, Duncan P.; Shephard, Jonathan D.

    2015-07-01

    Endoluminal surgery for the treatment of early stage colorectal cancer is typically based on electrocautery tools which imply restrictions on precision and the risk of harm through collateral thermal damage to the healthy tissue. As a potential alternative to mitigate these drawbacks we present laser machining of pig intestine by means of picosecond laser pulses. The high intensities of an ultrafast laser enable nonlinear absorption processes and a predominantly nonthermal ablation regime. Laser ablation results of square cavities with comparable thickness to early stage colorectal cancers are presented for a wavelength of 1030 nm using an industrial picosecond laser. The corresponding histology sections exhibit only minimal collateral damage to the surrounding tissue. The depth of the ablation can be controlled precisely by means of the pulse energy. Overall, the application of ultrafast lasers to ablate pig intestine enables significantly improved precision and reduced thermal damage to the surrounding tissue compared to conventional techniques.

  11. rf streak camera based ultrafast relativistic electron diffraction.

    Science.gov (United States)

    Musumeci, P; Moody, J T; Scoby, C M; Gutierrez, M S; Tran, T

    2009-01-01

    We theoretically and experimentally investigate the possibility of using a rf streak camera to time resolve in a single shot structural changes at the sub-100 fs time scale via relativistic electron diffraction. We experimentally tested this novel concept at the UCLA Pegasus rf photoinjector. Time-resolved diffraction patterns from thin Al foil are recorded. Averaging over 50 shots is required in order to get statistics sufficient to uncover a variation in time of the diffraction patterns. In the absence of an external pump laser, this is explained as due to the energy chirp on the beam out of the electron gun. With further improvements to the electron source, rf streak camera based ultrafast electron diffraction has the potential to yield truly single shot measurements of ultrafast processes.

  12. Chapter IV: ultrafast biochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Chergui, M. [Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland); Kjelstrup, S. [Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Meuwly, M. [Universitaet Basel, Basel (Switzerland); Schuler, B. [University of Zuerich (ETH), Zurich (Switzerland); Thor, J. van [Imperial College London (IC), London (United Kingdom)

    2009-09-15

    The whole report issued by the Paul Scherrer Institute (PSI) in Switzerland takes a look at the scientific opportunities offered by the institute's SwissFEL X-ray Laser facility. In this sixth part, initial events and fluctuations in biochemical processes at the atomic scale are discussed. Sub-nanosecond processes are fundamental to biochemistry and will be accessible to the ultra-short pulses of the SwissFEL. Time and length scales of biochemical reactions are discussed, as is the photo-initiation of biochemical processes. Time-resolved measurement techniques are looked at. Fluorescence resonant energy transfer is discussed. As an example, the photo cycle of bacteriorhodopsin is examined. The dynamics of protein folding and catalytic action are also looked at. Mesoscopic non-equilibrium thermodynamics is discussed

  13. Dynamics of the excited state intramolecular charge transfer

    International Nuclear Information System (INIS)

    Joo, T.; Kim, C.H.

    2006-01-01

    The 6-dodecanoyl-2-dimethylaminonaphtalene (laurdan), a derivative of 6-propanoyl- 2-dimethylaminonaphthalene (prodan), has been used as a fluorescent probe in cell imaging, especially in visualizing the lipid rafts by the generalized polarization (GP) images, where GP=(I 440 -I 490 )/(I 440 +I 490 ) with I being the fluorescence intensity. The fluorescence spectrum of laurdan is sensitive to its dipolar environment due to the intramolecular charge transfer (ICT) process in S 1 state, which results in a dual emission from the locally excited (LE) and the ICT states. The ICT process and the solvation of the ICT state are very sensitive to the dipolar nature of the environment. In this work, the ICT of laurdan in ethanol has been studied by femtosecond time resolved fluorescence (TRF), especially TRF spectra measurement without the conventional spectral reconstruction method. TRF probes the excited states exclusively, a unique advantage over the pump/probe transient absorption technique, although time resolution of the TRF is generally lower than transient absorption and the TRF spectra measurement was possible only though the spectral reconstruction. Over the years, critical advances in TRF technique have been made in our group to achieve <50 fs time resolution with direct full spectra measurement capability. Detailed ICT and the subsequent solvation processes can be visualized unambiguously from the TRF spectra. Fig. 1 shows the TRF spectra of laurdan in ethanol at several time delays. Surprisingly, two bands at 433 and 476 nm are clearly visible in the TRF spectra of laurdan even at T = 0 fs. As time increases, the band at 476 nm shifts to the red while its intensity increases. The band at 433 nm also shifts slightly to the red, but loses intensity as time increases. The intensity of the 476 nm band reaches maximum at around 5 ps, where it is roughly twice as intense as that at 0 fs, and stays constant until lifetime decay is noticeable. The spectra were fit by

  14. Static and Ultrafast Transient Photophysics of Mono- and Dual-Branched Triarylamines

    International Nuclear Information System (INIS)

    Feng-Ming, Li; Wen-Ke, Feng; Shu-Feng, Wang; Qi-Huang, Gong; Fan-Shun, Meng; He, Tian

    2010-01-01

    Mono- and dual-branched molecules, {4-[2-(4-benzothiazol-2-yl-phenyl)-vinyl]-phenyl}-(4-methoxy-phenyl) -phenyl-amine (BS1) and bis-{4-[2-(4-benzothiazol-2-yl-phenyl)-vinyl]-phenyl}-(4-methoxy-phenyl) -phenyl-amine (BS2), are investigated with one- and two-photon static spectroscopy, and the femtosecond fluorescence up-conversion technique. The molecules show branch-based fluorescence emission at low quantum yield. Ultrafast non-radiative decay on a picosecond time scale is found and is attributed to intramolecular charge-transfer bridged by the central triphenylamine. The two-photon absorption cross-sections of BS1 and BS2 are 19.1 and 19.4 GM, respectively. (cross-disciplinary physics and related areas of science and technology)

  15. Photochemical Dynamics of Intramolecular Singlet Fission

    Science.gov (United States)

    Lin, Zhou; Iwasaki, Hikari; Van Voorhis, Troy

    2017-06-01

    Singlet fission (SF) converts a singlet exciton (S_1) into a pair of triplet ones (T_1) via a ``multi-exciton'' (ME) intermediate: S_1 \\longleftrightarrow ^1ME \\longleftrightarrow ^1(T_1T_1) \\longrightarrow 2T_1. In exothermic cases, e.g., crystalline pentacene or its derivatives, the quantum yield of SF can reach 200%. With SF doubling the electric current generated by an incident high-energy photon, the solar conversion efficiency in pentacene-based organic photovoltaics (OPVs) can exceed the Shockley-Queisser limit of 33.7%. The ME state is popularly considered to be a dimeric state with significant charge transfer (CT) character that is strongly coupled to both S_1 and ^1(T_1T_1), while this local model lacks strong support from full quantum dynamics studies. Intramolecular SF (ISF) occurring to covalently-bound dimers in the solution phase is an excellent model for a straightforward dynamics simulation of local excitons. In the present study, we investigate the ISF mechanisms for three covalently-bound dimers of pentacene derivatives, including ortho-, meta-, and para-bis(6,13-bis(triisopropylsilylethynyl)pentacene)benzene, in non-protic solvents. Specifically, we propagate the real-time, non-adiabatic quantum mechanical/molecular mechanical (QM/MM) dynamics on the potential energy surfaces associated with the states of S_1, ^1(T_1T_1) and CT. We explore how the energies of these ISF-relevant states and the non-adiabatic couplings between each other fluctuate with time and the instantaneous molecular configuration (e.g., intermonomer distance and orientation). We also quantitatively compare Condon and non-Condon ISF dynamics with solution-phase spectroscopic data. Our results allow us to understand the roles of CT energy levels in the ISF mechanism and propose a design strategy to maximize ISF efficiency. M. B. Smith and J. Michl, Chem. Rev. 110, 6891 (2010). W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961). T. C. Berkelbach, M. S. Hybertsen

  16. Ultrafast Nonradiative Decay and Excitation Energy Transfer by Carotenoids in Photosynthetic Light-Harvesting Proteins

    Science.gov (United States)

    Ghosh, Soumen

    This dissertation investigates the photophysical and structural dynamics that allow carotenoids to serve as efficient excitation energy transfer donor to chlorophyll acceptors in photosynthetic light harvesting proteins. Femtosecond transient grating spectroscopy with optical heterodyne detection has been employed to follow the nonradiative decay pathways of carotenoids and excitation energy transfer to chlorophylls. It was found that the optically prepared S2 (11Bu+) state of beta-carotene decays in 12 fs fs to populate an intermediate electronic state, Sx, which then decays nonradiatively to the S 1 state. The ultrafast rise of the dispersion component of the heterodyne transient grating signal reports the formation of Sx intermediate since the rise of the dispersion signal is controlled by the loss of stimulated emission from the S2 state. These findings were extended to studies of peridinin, a carbonyl substituted carotenoid that serves as a photosynthetic light-harvesting chromophore in dinoflagellates. Numerical simulations using nonlinear response formalism and the multimode Brownian oscillator model assigned the Sx intermediate to a torsionally distorted structure evolving on the S2 potential surface. The decay of the Sx state is promoted by large amplitude out-of-plane torsional motions and is significantly retarded by solvent friction owing to the development of an intramolecular charge transfer character in peridinin. The slowing of the nonradiative decay allows the Sx state to transfer significant portion of the excitation energy to chlorophyll a acceptors in the peridinin-chlorophyll a protein. The results of heterodyne transient grating study on peridinin-chlorophyll a protein suggests two distinct energy transfer channels from peridinin to chlorophyll a: a 30 fs process involving quantum coherence and delocalized peridinin-Chl states and an incoherent, 2.5 ps process involving the distorted S2 state of peridinin. The torsional evolution on the S2

  17. A new data-processing approach to study particle motion using ultrafast X-ray tomography scanner: case study of gravitational mass flow

    Science.gov (United States)

    Waktola, Selam; Bieberle, Andre; Barthel, Frank; Bieberle, Martina; Hampel, Uwe; Grudzień, Krzysztof; Babout, Laurent

    2018-04-01

    In most industrial products, granular materials are often required to flow under gravity in various kinds of silo shapes and usually through an outlet in the bottom. There are several interrelated parameters which affect the flow, such as internal friction, bulk and packing density, hopper geometry, and material type. Due to the low-spatial resolution of electrical capacitance tomography or scanning speed limitation of standard X-ray CT systems, it is extremely challenging to measure the flow velocity and possible centrifugal effects of granular materials flow effectively. However, ROFEX (ROssendorf Fast Electron beam X-ray tomography) opens new avenues of granular flow investigation due to its very high temporal resolution. This paper aims to track particle movements and evaluate the local grain velocity during silo discharging process in the case of mass flow. The study has considered the use of the Seramis material, which can also serve as a type of tracer particles after impregnation, due to its porous nature. The presented novel image processing and analysis approach allows satisfyingly measuring individual particle velocities but also tracking their lateral movement and three-dimensional rotations.

  18. Intramolecular hydrogen bonding in malonaldehyde and its radical analogues.

    Science.gov (United States)

    Lin, Chen; Kumar, Manoj; Finney, Brian A; Francisco, Joseph S

    2017-09-28

    High level Brueckner doubles with triples correction method-based ab initio calculations have been used to investigate the nature of intramolecular hydrogen bonding and intramolecular hydrogen atom transfer in cis-malonaldehyde (MA) and its radical analogues. The radicals considered here are the ones that correspond to the homolytic cleavage of C-H bonds in cis-MA. The results suggest that cis-MA and its radical analogues, cis-MA RS , and cis-MA RA , both exist in planar geometry. The calculated intramolecular O-H⋯O=C bond in cis-MA is shorter than that in the radical analogues. The intramolecular hydrogen bond in cis-MA is stronger than in its radicals by at least 3.0 kcal/mol. The stability of a cis-malonaldehyde radical correlates with the extent of electron spin delocalization; cis-MA RA , in which the radical spin is more delocalized, is the most stable MA radical, whereas cis-MA RS , in which the radical spin is strongly localized, is the least stable radical. The natural bond orbital analysis indicates that the intramolecular hydrogen bonding (O⋯H⋯O) in cis-malonaldehyde radicals is stabilized by the interaction between the lone pair orbitals of donor oxygen and the σ * orbital of acceptor O-H bond (n → σ * OH ). The calculated barriers indicate that the intramolecular proton transfer in cis-MA involves 2.2 kcal/mol lower barrier than that in cis-MA RS .

  19. Ultrafast Electron Dynamics in Solar Energy Conversion.

    Science.gov (United States)

    Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy

    2017-08-23

    Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.

  20. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    Science.gov (United States)

    Leahy-Hoppa, Megan R.; Miragliotta, Joseph; Osiander, Robert; Burnett, Jennifer; Dikmelik, Yamac; McEnnis, Caroline; Spicer, James B.

    2010-01-01

    Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS), coherent Raman spectroscopy, and terahertz (THz) spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications. PMID:22399883

  1. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    Directory of Open Access Journals (Sweden)

    Megan R. Leahy-Hoppa

    2010-04-01

    Full Text Available Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS, coherent Raman spectroscopy, and terahertz (THz spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications.

  2. Fluorescence kinetics of Trp-Trp dipeptide and its derivatives in water via ultrafast fluorescence spectroscopy.

    Science.gov (United States)

    Jia, Menghui; Yi, Hua; Chang, Mengfang; Cao, Xiaodan; Li, Lei; Zhou, Zhongneng; Pan, Haifeng; Chen, Yan; Zhang, Sanjun; Xu, Jianhua

    2015-08-01

    Ultrafast fluorescence dynamics of Tryptophan-Tryptophan (Trp-Trp/Trp2) dipeptide and its derivatives in water have been investigated using a picosecond resolved time correlated single photon counting (TCSPC) apparatus together with a femtosecond resolved upconversion spectrophotofluorometer. The fluorescence decay profiles at multiple wavelengths were fitted by a global analysis technique. Nanosecond fluorescence kinetics of Trp2, N-tert-butyl carbonyl oxygen-N'-aldehyde group-l-tryptophan-l-tryptophan (NBTrp2), l-tryptophan-l-tryptophan methyl ester (Trp2Me), and N-acetyl-l-tryptophan-l-tryptophan methyl ester (NATrp2Me) exhibit multi-exponential decays with the average lifetimes of 1.99, 3.04, 0.72 and 1.22ns, respectively. Due to the intramolecular interaction between two Trp residues, the "water relaxation" lifetime was observed around 4ps, and it is noticed that Trp2 and its derivatives also exhibit a new decay with a lifetime of ∼100ps, while single-Trp fluorescence decay in dipeptides/proteins shows 20-30ps. The intramolecular interaction lifetime constants of Trp2, NBTrp2, Trp2Me and NATrp2Me were then calculated to be 3.64, 0.93, 11.52 and 2.40ns, respectively. Candidate mechanisms (including heterogeneity, solvent relaxation, quasi static self-quenching or ET/PT quenching) have been discussed. Copyright © 2015. Published by Elsevier B.V.

  3. Ultrafast S1 and ICT state dynamics of a marine carotenoid probed by femtosecond one- and two-photon pump-probe spectroscopy

    International Nuclear Information System (INIS)

    Kosumi, Daisuke; Kusumoto, Toshiyuki; Fujii, Ritsuko; Sugisaki, Mitsuru; Iinuma, Yoshiro; Oka, Naohiro; Takaesu, Yuki; Taira, Tomonori; Iha, Masahiko; Frank, Harry A.; Hashimoto, Hideki

    2011-01-01

    Ultrafast relaxation kinetics of fucoxanthin in polar and non-polar solvents have been studied by femtosecond pump-probe spectroscopy. Transient absorption associated with S 1 or intramolecular charge transfer (ICT) excited state has been observed following either one-photon excitation to the optically allowed S 2 state or two-photon excitation to the symmetry-forbidden S 1 state. The results suggest that the ICT state formed after excitation of fucoxanthin in a polar solvent is a distinct excited state from S 1 .

  4. Ultrafast S{sub 1} and ICT state dynamics of a marine carotenoid probed by femtosecond one- and two-photon pump-probe spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kosumi, Daisuke, E-mail: kosumi@sci.osaka-cu.ac.j [CREST/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Kusumoto, Toshiyuki [CREST/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Fujii, Ritsuko; Sugisaki, Mitsuru [CREST/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka (Japan); Iinuma, Yoshiro; Oka, Naohiro; Takaesu, Yuki; Taira, Tomonori; Iha, Masahiko [South Product Co. Ltd., 12-75 Suzaki, Uruma-shi, Okinawa 904-2234 (Japan); Frank, Harry A. [Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060 (United States); Hashimoto, Hideki, E-mail: hassy@sci.osaka-cu.ac.j [CREST/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka (Japan)

    2011-03-15

    Ultrafast relaxation kinetics of fucoxanthin in polar and non-polar solvents have been studied by femtosecond pump-probe spectroscopy. Transient absorption associated with S{sub 1} or intramolecular charge transfer (ICT) excited state has been observed following either one-photon excitation to the optically allowed S{sub 2} state or two-photon excitation to the symmetry-forbidden S{sub 1} state. The results suggest that the ICT state formed after excitation of fucoxanthin in a polar solvent is a distinct excited state from S{sub 1}.

  5. Ultrafast THz Saturable Absorption in Doped Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2011-01-01

    We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields.......We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields....

  6. Microwave-controlled ultrafast synthesis of uniform silver nanocubes and nanowires

    Science.gov (United States)

    Zhao, Tian; Fan, Jun-Bing; Cui, Jing; Liu, Jin-Hua; Xu, Xiao-Bo; Zhu, Ming-Qiang

    2011-01-01

    Synthesis of well-defined silver nanostructure in terms of size and shape has been strongly motivated by the requirements to their size- and shape-dependent optical properties which achieve their practical applications ranging from biosensing to catalysis and optics. In this Letter, an ultrafast synthetic process for the well-defined Ag nanocubes and nanowires have been developed, which simply involve the microwave-mediated polyol reduction of silver nitrate in ethylene glycol by adding different amount sodium sulfide (Na2S) into the solution. The possible growth and evolution process of the Ag nanocubes and nanowires involves the microwave ultrafast nucleation and growth followed by oxidative etching of Ag nanocrystals.

  7. Evaluation of intramolecular charge transfer state of 4-N, N ...

    Indian Academy of Sciences (India)

    Abstract. Intramolecular charge transfer of 4-N,N-dimethylamino cinnamaldehyde (DMACA) in vacuum and in five different aprotic solvents has been studied by using time-dependent density functional theory. (TDDFT). Polarizable continuum model (PCM) was employed to consider solvent–solute interactions. The potential ...

  8. Intramolecular inverse electron demand Diels-Alder reactions of pyrimidines

    NARCIS (Netherlands)

    Frissen, A.E.

    1990-01-01

    This thesis deals with the intramolecular inverse electron demand Diels-Alder reaction of pyrimidines. The main objective of the study was to investigate the synthetic applicability of this reaction and to get more insight in the electronic and steric effects which determine the reactivity

  9. OH stretching frequencies in systems with intramolecular hydrogen bonds

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens; Hansen, Bjarke Knud Vilster; Hansen, Poul Erik

    2011-01-01

    OH stretching wavenumbers were investigated for 30 species with intramolecularly hydrogen bonded hydroxyl groups, covering the range from 3600 to ca. 1900 cm-1. Theoretical wavenumbers were predicted with B3LYP/6-31G(d) density functional theory using the standard harmonic approximation, as well...

  10. Preparation of CN /Carbon Nanotube Intramolecular Junctions by ...

    African Journals Online (AJOL)

    NICO

    intramolecular junctions composed of CNx with a bamboo-like structure and empty hollow carbon nanotubes were observed, ... and excellent thermal and mechanical properties.1,2 In recent .... tion of hexane, and the other segment with a curved compart- ... by an arrow lies at the interface of the junction between 'b' and.

  11. Simple and robust generation of ultrafast laser pulse trains using polarization-independent parallel-aligned thin films

    Science.gov (United States)

    Wang, Andong; Jiang, Lan; Li, Xiaowei; Wang, Zhi; Du, Kun; Lu, Yongfeng

    2018-05-01

    Ultrafast laser pulse temporal shaping has been widely applied in various important applications such as laser materials processing, coherent control of chemical reactions, and ultrafast imaging. However, temporal pulse shaping has been limited to only-in-lab technique due to the high cost, low damage threshold, and polarization dependence. Herein we propose a novel design of ultrafast laser pulse train generation device, which consists of multiple polarization-independent parallel-aligned thin films. Various pulse trains with controllable temporal profile can be generated flexibly by multi-reflections within the splitting films. Compared with other pulse train generation techniques, this method has advantages of compact structure, low cost, high damage threshold and polarization independence. These advantages endow it with high potential for broad utilization in ultrafast applications.

  12. Deuterium isotope effect on the intramolecular electron transfer in Pseudomonas aeruginosa azurin

    DEFF Research Database (Denmark)

    Farver, O.; Zhang, Jingdong; Chi, Qijin

    2001-01-01

    rather than negative. Isotope effects are, however, also inherent in the nuclear reorganization Gibbs free energy and in the tunneling factor for the electron transfer process. A slightly larger thermal protein expansion in H2O than in D2O (0.001 nm K-1) is sufficient both to account for the activation......Intramolecular electron transfer in azurin in water and deuterium oxide has been studied over a broad temperature range. The kinetic deuterium isotope effect, k(H)/k(D), is smaller than unity (0.7 at 298 K), primarily caused by the different activation entropies in water (-56.5 J K-1 mol(-1...

  13. Real-time observation of ultrafast electron injection at graphene–Zn porphyrin interfaces

    KAUST Repository

    Masih, Dilshad

    2015-02-25

    We report on the ultrafast interfacial electron transfer ( ET) between zinc( II) porphyrin ( ZnTMPyP) and negatively charged graphene carboxylate ( GC) using state- of- the- art femtosecond laser spectroscopy with broadband capabilities. The steady- state interaction between GC and ZnTMPyP results in a red- shifted absorption spectrum, providing a clear indication for the binding affinity between ZnTMPyP and GC via electrostatic and p- p stacking interactions. Ultrafast transient absorption ( TA) spectra in the absence and presence of three different GC concentrations reveal ( i) the ultrafast formation of singlet excited ZnTMPyP*, which partially relaxes into a long- lived triplet state, and ( ii) ET from the singlet excited ZnTMPyP* to GC, forming ZnTMPyP + and GC , as indicated by a spectral feature at 650- 750 nm, which is attributed to a ZnTMPyP radical cation resulting from the ET process.

  14. Ultrafast spontaneous emission modulation of graphene quantum dots interacting with Ag nanoparticles in solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jianwei [Department of Physics, Shanghai University, Shanghai 200444 (China); Research Center of Quantum Macro-Phenomenon and Application, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 (China); Lu, Jian, E-mail: luj@sari.ac.cn; Wang, Zhongyang, E-mail: wangzy@sari.ac.cn [Research Center of Quantum Macro-Phenomenon and Application, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 (China); Wang, Liang [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444 (China); Tian, Linfan [Research Center of Quantum Macro-Phenomenon and Application, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 (China); School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210 (China); Deng, Xingxia [Research Center of Quantum Macro-Phenomenon and Application, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 (China); School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Tian, Lijun [Department of Physics, Shanghai University, Shanghai 200444 (China); Pan, Dengyu [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China)

    2016-07-11

    We investigated the strong interaction between graphene quantum dots and silver nanoparticles in solution using time-resolved photoluminescence techniques. In solution, the silver nanoparticles are surrounded by graphene quantum dots and interacted with graphene quantum dots through exciton-plasmon coupling. An ultrafast spontaneous emission process (lifetime 27 ps) was observed in such a mixed solution. This ultrafast lifetime corresponds to the emission rate exceeding 35 GHz, with the purcell enhancement by a factor of ∼12. These experiment results pave the way for the realization of future high speed light sources applications.

  15. Theory and Modelling of Ultrafast X-ray Imaging of Dynamical Non-equilibrium Systems

    DEFF Research Database (Denmark)

    Lorenz, Ulf

    Over the next few years, a new generation of x-ray sources is going online. These freeelectron lasers will provide extremely bright subpicosecond x-ray pulses. Traditionally, x-ray diraction has the advantage of directly determining the atomic positions within a sample. With these new machines......, it becomes feasible to exploit this concept for ultrafast processes; in eect, we can study chemical reactions as they occur. This thesis deals with theoretical aspect of ultrafast time-resolved x-ray diraction (TRXD).We derive general formulas for calculating the diraction signal that are closely related...

  16. Ultrafast laser spectroscopy in complex solid state materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianqi [Iowa State Univ., Ames, IA (United States)

    2014-12-01

    This thesis summarizes my work on applying the ultrafast laser spectroscopy to the complex solid state materials. It shows that the ultrafast laser pulse can coherently control the material properties in the femtosecond time scale. And the ultrafast laser spectroscopy can be employed as a dynamical method for revealing the fundamental physical problems in the complex material systems.

  17. Quantum Hooke's Law to Classify Pulse Laser Induced Ultrafast Melting

    Science.gov (United States)

    Hu, Hao; Ding, Hepeng; Liu, Feng

    2015-02-01

    Ultrafast crystal-to-liquid phase transition induced by femtosecond pulse laser excitation is an interesting material's behavior manifesting the complexity of light-matter interaction. There exist two types of such phase transitions: one occurs at a time scale shorter than a picosecond via a nonthermal process mediated by electron-hole plasma formation; the other at a longer time scale via a thermal melting process mediated by electron-phonon interaction. However, it remains unclear what material would undergo which process and why? Here, by exploiting the property of quantum electronic stress (QES) governed by quantum Hooke's law, we classify the transitions by two distinct classes of materials: the faster nonthermal process can only occur in materials like ice having an anomalous phase diagram characterized with dTm/dP < 0, where Tm is the melting temperature and P is pressure, above a high threshold laser fluence; while the slower thermal process may occur in all materials. Especially, the nonthermal transition is shown to be induced by the QES, acting like a negative internal pressure, which drives the crystal into a ``super pressing'' state to spontaneously transform into a higher-density liquid phase. Our findings significantly advance fundamental understanding of ultrafast crystal-to-liquid phase transitions, enabling quantitative a priori predictions.

  18. Discovery of intramolecular signal transduction network based on a new protein dynamics model of energy dissipation.

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Ma

    Full Text Available A novel approach to reveal intramolecular signal transduction network is proposed in this work. To this end, a new algorithm of network construction is developed, which is based on a new protein dynamics model of energy dissipation. A key feature of this approach is that direction information is specified after inferring protein residue-residue interaction network involved in the process of signal transduction. This enables fundamental analysis of the regulation hierarchy and identification of regulation hubs of the signaling network. A well-studied allosteric enzyme, E. coli aspartokinase III, is used as a model system to demonstrate the new method. Comparison with experimental results shows that the new approach is able to predict all the sites that have been experimentally proved to desensitize allosteric regulation of the enzyme. In addition, the signal transduction network shows a clear preference for specific structural regions, secondary structural types and residue conservation. Occurrence of super-hubs in the network indicates that allosteric regulation tends to gather residues with high connection ability to collectively facilitate the signaling process. Furthermore, a new parameter of propagation coefficient is defined to determine the propagation capability of residues within a signal transduction network. In conclusion, the new approach is useful for fundamental understanding of the process of intramolecular signal transduction and thus has significant impact on rational design of novel allosteric proteins.

  19. Reversible ultrafast melting in bulk CdSe

    International Nuclear Information System (INIS)

    Wu, Wenzhi; He, Feng; Wang, Yaguo

    2016-01-01

    In this work, transient reflectivity changes in bulk CdSe have been measured with two-color femtosecond pump-probe spectroscopy under a wide range of pump fluences. Three regions of reflectivity change with pump fluences have been consistently revealed for excited carrier density, coherent phonon amplitude, and lattice temperature. For laser fluences from 13 to 19.3 mJ/cm 2 , ultrafast melting happens in first several picoseconds. This melting process is purely thermal and reversible. A complete phase transformation in bulk CdSe may be reached when the absorbed laser energy is localized long enough, as observed in nanocrystalline CdSe

  20. Testing ultrafast mode-locking at microhertz relative optical linewidth.

    Science.gov (United States)

    Martin, Michael J; Foreman, Seth M; Schibli, T R; Ye, Jun

    2009-01-19

    We report new limits on the phase coherence of the ultrafast mode-locking process in an octave-spanning Ti:sapphire comb.We find that the mode-locking mechanism correlates optical phase across a full optical octave with less than 2.5 microHZ relative linewidth. This result is at least two orders of magnitude below recent predictions for quantum-limited individual comb-mode linewidths, verifying that the mode-locking mechanism strongly correlates quantum noise across the comb spectrum.

  1. Testing ultrafast mode-locking at microhertz relative optical linewidth

    OpenAIRE

    Martin, Michael J.; Foreman, Seth M.; Schibli, T. R.; Ye, Jun

    2008-01-01

    We report new limits on the phase coherence of the ultrafast mode-locking process in an octave-spanning Ti:sapphire comb. We find that the mode-locking mechanism correlates optical phase across a full optical octave with less than 2.5 micro Hz relative linewidth. This result is at least two orders of magnitude below recent predictions for quantum-limited individual comb-mode linewidths, verifying that the mode-locking mechanism strongly correlates quantum noise across the comb spectrum.

  2. Intramolecular anionic diels-alder reactions of 1-aryl-4-oxahepta-1,6-diyne systems in DMSO.

    Science.gov (United States)

    Kudoh, Takayuki; Mori, Tomoko; Shirahama, Mitsuhito; Yamada, Masashi; Ishikawa, Teruhiko; Saito, Seiki; Kobayashi, Hisayoshi

    2007-04-25

    Base-promoted cycloaddition reactions of 1-aryl- or 1-aryl-7-substituted-4-oxahepta-1,6-diyne systems in DMSO have proven to involve an anionic intramolecular Diels-Alder process taking place even at room temperature in spite of the reaction suffering from temporary disruption of aromaticity. Although initially formed alpha-arylallenide anion can be protonated by DMSO, it can be back to the allenide anion probably because of a small acidity difference between alpha-arylallene and DMSO. The alpha-arylallenide anion in combination with the alpha-aryl substituent can constitute an anionic diene structure that undergoes the intramolecular Diels-Alder reaction involving the C(6)-yne part, a very fast process probably because of the increased HOMO-1 level of the anionic diene, as shown by DFT calculations. Diversified substituted naphthalenes, benzofurans, phenanthrenes, and quinolines, including biaryl architectures, are available from 4-oxahepta-1,6-diynes in a highly expeditious way.

  3. Ultrafast disk lasers and amplifiers

    Science.gov (United States)

    Sutter, Dirk H.; Kleinbauer, Jochen; Bauer, Dominik; Wolf, Martin; Tan, Chuong; Gebs, Raphael; Budnicki, Aleksander; Wagenblast, Philipp; Weiler, Sascha

    2012-03-01

    Disk lasers with multi-kW continuous wave (CW) output power are widely used in manufacturing, primarily for cutting and welding applications, notably in the automotive industry. The ytterbium disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency, and high reliability with low investment and operating costs. Fundamental mode picosecond disk lasers are well established in micro machining at high throughput and perfect precision. Following the world's first market introduction of industrial grade 50 W picosecond lasers (TruMicro 5050) at the Photonics West 2008, the second generation of the TruMicro series 5000 now provides twice the average power (100 W at 1030 nm, or 60 W frequency doubled, green output) at a significantly reduced footprint. Mode-locked disk oscillators achieve by far the highest average power of any unamplified lasers, significantly exceeding the 100 W level in laboratory set-ups. With robust long resonators their multi-microjoule pulse energies begin to compete with typical ultrafast amplifiers. In addition, significant interest in disk technology has recently come from the extreme light laser community, aiming for ultra-high peak powers of petawatts and beyond.

  4. Ultra-Fast Hadronic Calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Dmitri [Fermilab; Lukić, Strahinja [VINCA Inst. Nucl. Sci., Belgrade; Mokhov, Nikolai [Fermilab; Striganov, Sergei [Fermilab; Ujić, Predrag [VINCA Inst. Nucl. Sci., Belgrade

    2017-12-18

    Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locations w.r.t. the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 3 ns providing opportunity for ultra-fast calorimetry. Simulation results for an "ideal" calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.

  5. Ultrafast palladium diffusion in germanium

    KAUST Repository

    Tahini, Hassan Ali

    2015-01-01

    The slow transport of dopants through crystal lattices has hindered the development of novel devices. Typically atoms are contained within deep potential energy wells which necessitates multiple attempts to hop between minimum energy positions. This is because the bonds that constrain atoms are strongest at the minimum positions. As they hop between sites the bonds must be broken, only to re-form as the atoms slide into adjacent minima. Here we demonstrate that the Pd atoms introduced into the Ge lattice behave differently. They retain bonds as the atoms shift across so that at the energy maximum between sites Pd still exhibits strong bonding characteristics. This reduces the energy maximum to almost nothing (a migration energy of only 0.03 eV) and means that the transport of Pd through the Ge lattice is ultrafast. We scrutinize the bonding characteristics at the atomic level using quantum mechanical simulation tools and demonstrate why Pd behaves so differently to other metals we investigated (i.e. Li, Cu, Ag, Pt and Au). Consequently, this fundamental understanding can be extended to systems where extremely rapid diffusion is desired, such as radiation sensors, batteries and solid oxide fuel cells.

  6. Mechanism of Intramolecular Rhodium- and Palladium-Catalyzed Alkene Alkoxyfunctionalizations

    KAUST Repository

    Vummaleti, Sai V. C.; Alghamdi, Miasser; Poater, Albert; Falivene, Laura; Scaranto, Jessica; Beetstra, Dirk J.; Morton, Jason G.; Cavallo, Luigi

    2015-01-01

    Density functional theory calculations have been used to investigate the reaction mechanism for the [Rh]-catalyzed intramolecular alkoxyacylation ([Rh] = [RhI(dppp)+] (dppp, 1,3-bis(diphenylphosphino)propane) and [Pd]/BPh3 dual catalytic system assisted intramolecular alkoxycyanation ([Pd] = Pd-Xantphos) using acylated and cyanated 2-allylphenol derivatives as substrates, respectively. Our results substantially confirm the proposed mechanism for both [Rh]- and [Pd]/ BPh3-mediated alkoxyfunctionalizations, offering a detailed geometrical and energetical understanding of all the elementary steps. Furthermore, for the [Rh]-mediated alkoxyacylation, our observations support the hypothesis that the quinoline group of the substrate is crucial to stabilize the acyl metal complex and prevent further decarbonylation. For [Pd]/BPh3-catalyzed alkoxycyanation, our findings clarify how the Lewis acid BPh3 cocatalyst accelerates the only slow step of the reaction, corresponding to the oxidative addition of the cyanate O-CN bond to the Pd center. © 2015 American Chemical Society.

  7. Mechanism of Intramolecular Rhodium- and Palladium-Catalyzed Alkene Alkoxyfunctionalizations

    KAUST Repository

    Vummaleti, Sai V. C.

    2015-11-13

    Density functional theory calculations have been used to investigate the reaction mechanism for the [Rh]-catalyzed intramolecular alkoxyacylation ([Rh] = [RhI(dppp)+] (dppp, 1,3-bis(diphenylphosphino)propane) and [Pd]/BPh3 dual catalytic system assisted intramolecular alkoxycyanation ([Pd] = Pd-Xantphos) using acylated and cyanated 2-allylphenol derivatives as substrates, respectively. Our results substantially confirm the proposed mechanism for both [Rh]- and [Pd]/ BPh3-mediated alkoxyfunctionalizations, offering a detailed geometrical and energetical understanding of all the elementary steps. Furthermore, for the [Rh]-mediated alkoxyacylation, our observations support the hypothesis that the quinoline group of the substrate is crucial to stabilize the acyl metal complex and prevent further decarbonylation. For [Pd]/BPh3-catalyzed alkoxycyanation, our findings clarify how the Lewis acid BPh3 cocatalyst accelerates the only slow step of the reaction, corresponding to the oxidative addition of the cyanate O-CN bond to the Pd center. © 2015 American Chemical Society.

  8. Tandem cross enyne metathesis (CEYM)-intramolecular Diels-Alder reaction (IMDAR). An easy entry to linear bicyclic scaffolds.

    Science.gov (United States)

    Miró, Javier; Sánchez-Roselló, María; Sanz, Álvaro; Rabasa, Fernando; Del Pozo, Carlos; Fustero, Santos

    2015-01-01

    A new tandem cross enyne metathesis (CEYM)-intramolecular Diels-Alder reaction (IMDAR) has been carried out. It involves conjugated ketones, esters or amides bearing a remote olefin and aromatic alkynes as the starting materials. The overall process enables the preparation of a small family of linear bicyclic scaffolds in a very simple manner with moderate to good levels of diastereoselectivity. This methodology constitutes one of the few examples that employ olefins differently than ethylene in tandem CEYM-IMDAR protocols.

  9. Ultrafast optical switching of three-dimensional Si inverse opal photonic band gap crystals

    NARCIS (Netherlands)

    Euser, T.G.; Wei, Hong; Kalkman, Jeroen; Jun, Yoonho; Polman, Albert; Norris, David J.; Vos, Willem L.

    2007-01-01

    We present ultrafast optical switching experiments on three-dimensional photonic band gap crystals. Switching the Si inverse opal is achieved by optically exciting free carriers by a two-photon process. We probe reflectivity in the frequency range of second order Bragg diffraction where the photonic

  10. Low damage electrical modification of 4H-SiC via ultrafast laser irradiation

    Science.gov (United States)

    Ahn, Minhyung; Cahyadi, Rico; Wendorf, Joseph; Bowen, Willie; Torralva, Ben; Yalisove, Steven; Phillips, Jamie

    2018-04-01

    The electrical properties of 4H-SiC under ultrafast laser irradiation in the low fluence regime (engineering spatially localized structural and electronic modification of wide bandgap materials such as 4H-SiC with relatively low surface damage via low temperature processing.

  11. Ultrafast electron injection at the cationic porphyrin-graphene interface assisted by molecular flattening

    KAUST Repository

    Aly, Shawkat Mohammede; Parida, Manas R.; Alarousu, Erkki; Mohammed, Omar F.

    2014-01-01

    The steady-state and femtosecond (fs) time-resolved data clearly demonstrate that the charge transfer (CT) process at the porphyrin-graphene carboxylate (GC) interfaces can be tuned from zero to very sufficient and ultrafast by changing the electronic structure of the meso unit and the redox properties of the porphyrin cavity. This journal is © the Partner Organisations 2014.

  12. Intramolecular Diels-Alder Reactions in Organic Synthesis

    OpenAIRE

    Sizemore, Nicholas Blandford Luke

    2014-01-01

    Intramolecular Diels-Alder (IMDA) reactions are an important class of reactions in synthetic organic chemistry for the rapid construction of polycyclic frameworks. Three classes of IMDA reactions were investigated synthetically and computationally: 1) all-carbon type 1 IMDA reactions, 2) N-acylnitroso type 2 IMDA reactions, and 3) cyano-azadiene IMDA reactions. The first class was implemented in research toward the total synthesis of maoecrystal Z and isopalhinine A. The second class was stud...

  13. Competing Intramolecular vs. Intermolecular Hydrogen Bonds in Solution

    Directory of Open Access Journals (Sweden)

    Peter I. Nagy

    2014-10-01

    Full Text Available A hydrogen bond for a local-minimum-energy structure can be identified according to the definition of the International Union of Pure and Applied Chemistry (IUPAC recommendation 2011 or by finding a special bond critical point on the density map of the structure in the framework of the atoms-in-molecules theory. Nonetheless, a given structural conformation may be simply favored by electrostatic interactions. The present review surveys the in-solution competition of the conformations with intramolecular vs. intermolecular hydrogen bonds for different types of small organic molecules. In their most stable gas-phase structure, an intramolecular hydrogen bond is possible. In a protic solution, the intramolecular hydrogen bond may disrupt in favor of two solute-solvent intermolecular hydrogen bonds. The balance of the increased internal energy and the stabilizing effect of the solute-solvent interactions regulates the new conformer composition in the liquid phase. The review additionally considers the solvent effects on the stability of simple dimeric systems as revealed from molecular dynamics simulations or on the basis of the calculated potential of mean force curves. Finally, studies of the solvent effects on the type of the intermolecular hydrogen bond (neutral or ionic in acid-base complexes have been surveyed.

  14. Progress in Ultrafast Intense Laser Science II

    CERN Document Server

    Yamanouchi, Kaoru; Agostini, Pierre; Ferrante, Gaetano

    2007-01-01

    This book series addresses a newly emerging interdisciplinary research field, Ultrafast Intense Laser Science, spanning atomic and molecular physics, molecular science, and optical science. Its progress is being stimulated by the recent development of ultrafast laser technologies. Highlights of this second volume include Coulomb explosion and fragmentation of molecules, control of chemical dynamics, high-order harmonic generation, propagation and filamentation, and laser-plasma interaction. All chapters are authored by foremost experts in their fields and the texts are written at a level accessible to newcomers and graduate students, each chapter beginning with an introductory overview.

  15. Progress in ultrafast intense laser science XI

    CERN Document Server

    Yamanouchi, Kaoru; Martin, Philippe

    2014-01-01

    The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance

  16. Progress in ultrafast intense laser science

    CERN Document Server

    Yamanouchi, Kaoru; Mathur, Deepak

    2014-01-01

    The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance

  17. Linear and ultrafast nonlinear plasmonics of single nano-objects

    Science.gov (United States)

    Crut, Aurélien; Maioli, Paolo; Vallée, Fabrice; Del Fatti, Natalia

    2017-03-01

    Single-particle optical investigations have greatly improved our understanding of the fundamental properties of nano-objects, avoiding the spurious inhomogeneous effects that affect ensemble experiments. Correlation with high-resolution imaging techniques providing morphological information (e.g. electron microscopy) allows a quantitative interpretation of the optical measurements by means of analytical models and numerical simulations. In this topical review, we first briefly recall the principles underlying some of the most commonly used single-particle optical techniques: near-field, dark-field, spatial modulation and photothermal microscopies/spectroscopies. We then focus on the quantitative investigation of the surface plasmon resonance (SPR) of metallic nano-objects using linear and ultrafast optical techniques. While measured SPR positions and spectral areas are found in good agreement with predictions based on Maxwell’s equations, SPR widths are strongly influenced by quantum confinement (or, from a classical standpoint, surface-induced electron scattering) and, for small nano-objects, cannot be reproduced using the dielectric functions of bulk materials. Linear measurements on single nano-objects (silver nanospheres and gold nanorods) allow a quantification of the size and geometry dependences of these effects in confined metals. Addressing the ultrafast response of an individual nano-object is also a powerful tool to elucidate the physical mechanisms at the origin of their optical nonlinearities, and their electronic, vibrational and thermal relaxation processes. Experimental investigations of the dynamical response of gold nanorods are shown to be quantitatively modeled in terms of modifications of the metal dielectric function enhanced by plasmonic effects. Ultrafast spectroscopy can also be exploited to unveil hidden physical properties of more complex nanosystems. In this context, two-color femtosecond pump-probe experiments performed on individual

  18. Unlocking the Constraints of Cyanobacterial Productivity: Acclimations Enabling Ultrafast Growth

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Hans C.; McClure, Ryan S.; Hill, Eric A.; Markillie, Lye Meng; Chrisler, William B.; Romine, Margie F.; McDermott, Jason E.; Posewitz, Matthew C.; Bryant, Donald A.; Konopka, Allan E.; Fredrickson, James K.; Beliaev, Alexander S.

    2016-07-26

    ABSTRACT

    Harnessing the metabolic potential of photosynthetic microbes for next-generation biotechnology objectives requires detailed scientific understanding of the physiological constraints and regulatory controls affecting carbon partitioning between biomass, metabolite storage pools, and bioproduct synthesis. We dissected the cellular mechanisms underlying the remarkable physiological robustness of the euryhaline unicellular cyanobacteriumSynechococcussp. strain PCC 7002 (Synechococcus7002) and identify key mechanisms that allow cyanobacteria to achieve unprecedented photoautotrophic productivities (~2.5-h doubling time). Ultrafast growth ofSynechococcus7002 was supported by high rates of photosynthetic electron transfer and linked to significantly elevated transcription of precursor biosynthesis and protein translation machinery. Notably, no growth or photosynthesis inhibition signatures were observed under any of the tested experimental conditions. Finally, the ultrafast growth inSynechococcus7002 was also linked to a 300% expansion of average cell volume. We hypothesize that this cellular adaptation is required at high irradiances to support higher cell division rates and reduce deleterious effects, corresponding to high light, through increased carbon and reductant sequestration.

    IMPORTANCEEfficient coupling between photosynthesis and productivity is central to the development of biotechnology based on solar energy. Therefore, understanding the factors constraining maximum rates of carbon processing is necessary to identify regulatory mechanisms and devise strategies to overcome productivity constraints. Here, we interrogate the molecular mechanisms that operate at a systems level to allow cyanobacteria to achieve ultrafast growth. This was done by considering growth and photosynthetic kinetics with global transcription patterns. We have delineated

  19. Ultrafast dynamics during the photoinduced phase transition in VO2

    Science.gov (United States)

    Wegkamp, Daniel; Stähler, Julia

    2015-12-01

    The phase transition of VO2 from a monoclinic insulator to a rutile metal, which occurs thermally at TC = 340 K, can also be driven by strong photoexcitation. The ultrafast dynamics during this photoinduced phase transition (PIPT) have attracted great scientific attention for decades, as this approach promises to answer the question of whether the insulator-to-metal (IMT) transition is caused by electronic or crystallographic processes through disentanglement of the different contributions in the time domain. We review our recent results achieved by femtosecond time-resolved photoelectron, optical, and coherent phonon spectroscopy and discuss them within the framework of a selection of latest, complementary studies of the ultrafast PIPT in VO2. We show that the population change of electrons and holes caused by photoexcitation launches a highly non-equilibrium plasma phase characterized by enhanced screening due to quasi-free carriers and followed by two branches of non-equilibrium dynamics: (i) an instantaneous (within the time resolution) collapse of the insulating gap that precedes charge carrier relaxation and significant ionic motion and (ii) an instantaneous lattice potential symmetry change that represents the onset of the crystallographic phase transition through ionic motion on longer timescales. We discuss the interconnection between these two non-thermal pathways with particular focus on the meaning of the critical fluence of the PIPT in different types of experiments. Based on this, we conclude that the PIPT threshold identified in optical experiments is most probably determined by the excitation density required to drive the lattice potential change rather than the IMT. These considerations suggest that the IMT can be driven by weaker excitation, predicting a transiently metallic, monoclinic state of VO2 that is not stabilized by the non-thermal structural transition and, thus, decays on ultrafast timescales.

  20. Investigation on repetition rate and pulse duration influences on ablation efficiency of metals using a high average power Yb-doped ultrafast laser

    Directory of Open Access Journals (Sweden)

    Lopez J.

    2013-11-01

    Full Text Available Ultrafast lasers provide an outstanding processing quality but their main drawback is the low removal rate per pulse compared to longer pulses. This limitation could be overcome by increasing both average power and repetition rate. In this paper, we report on the influence of high repetition rate and pulse duration on both ablation efficiency and processing quality on metals. All trials have been performed with a single tunable ultrafast laser (350 fs to 10ps.

  1. Emission Spectroscopy as a Probe into Photoinduced Intramolecular Electron Transfer in Polyazine Bridged Ru(II,Rh(III Supramolecular Complexes

    Directory of Open Access Journals (Sweden)

    Karen J. Brewer

    2010-08-01

    Full Text Available Steady-state and time-resolved emission spectroscopy are valuable tools to probe photochemical processes of metal-ligand, coordination complexes. Ru(II polyazine light absorbers are efficient light harvesters absorbing in the UV and visible with emissive 3MLCT excited states known to undergo excited state energy and electron transfer. Changes in emission intensity, energy or band-shape, as well as excited state lifetime, provide insight into excited state dynamics. Photophysical processes such as intramolecular electron transfer between electron donor and electron acceptor sub-units may be investigated using these methods. This review investigates the use of steady-state and time-resolved emission spectroscopy to measure excited state intramolecular electron transfer in polyazine bridged Ru(II,Rh(III supramolecular complexes. Intramolecular electron transfer in these systems provides for conversion of the emissive 3MLCT (metal-to-ligand charge transfer excited state to a non-emissive, but potentially photoreactive, 3MMCT (metal-to-metal charge transfer excited state. The details of the photophysics of Ru(II,Rh(III and Ru(II,Rh(III,Ru(II systems as probed by steady-state and time-resolved emission spectroscopy will be highlighted.

  2. PREFACE: Ultrafast and nonlinear optics in carbon nanomaterials

    Science.gov (United States)

    Kono, Junichiro

    2013-02-01

    Carbon-based nanomaterials—single-wall carbon nanotubes (SWCNTs) and graphene, in particular—have emerged in the last decade as novel low-dimensional systems with extraordinary properties. Because they are direct-bandgap systems, SWCNTs are one of the leading candidates to unify electronic and optical functions in nanoscale circuitry; their diameter-dependent bandgaps can be utilized for multi-wavelength devices. Graphene's ultrahigh carrier mobilities are promising for high-frequency electronic devices, while, at the same time, it is predicted to have ideal properties for terahertz generation and detection due to its unique zero-gap, zero-mass band structure. There have been a large number of basic optical studies on these materials, but most of them were performed in the weak-excitation, quasi-equilibrium regime. In order to probe and assess their performance characteristics as optoelectronic materials under device-operating conditions, it is crucial to strongly drive them and examine their optical properties in highly non-equilibrium situations and with ultrashot time resolution. In this section, the reader will find the latest results in this rapidly growing field of research. We have assembled contributions from some of the leading experts in ultrafast and nonlinear optical spectroscopy of carbon-based nanomaterials. Specific topics featured include: thermalization, cooling, and recombination dynamics of photo-generated carriers; stimulated emission, gain, and amplification; ultrafast photoluminescence; coherent phonon dynamics; exciton-phonon and exciton-plasmon interactions; exciton-exciton annihilation and Auger processes; spontaneous and stimulated emission of terahertz radiation; four-wave mixing and harmonic generation; ultrafast photocurrents; the AC Stark and Franz-Keldysh effects; and non-perturbative light-mater coupling. We would like to express our sincere thanks to those who contributed their latest results to this special section, and the

  3. An excited-state intramolecular photon transfer fluorescence probe for localizable live cell imaging of cysteine

    Science.gov (United States)

    Liu, Wei; Chen, Wen; Liu, Si-Jia; Jiang, Jian-Hui

    2017-03-01

    Small molecule probes suitable for selective and specific fluorescence imaging of some important but low-concentration intracellular reactive sulfur species such as cysteine (Cys) pose a challenge in chemical biology. We present a readily available, fast-response fluorescence probe CHCQ-Ac, with 2-(5‧-chloro-2-hydroxyl-phenyl)-6-chloro-4(3 H)-quinazolinone (CHCQ) as the fluorophore and acrylate group as the functional moiety, that enables high-selectivity and high-sensitivity for detecting Cys in both solution and biological system. After specifically reacted with Cys, the probe undergoes a seven-membered intramolecular cyclization and released the fluorophore CHCQ with excited-state intramolecular photon transfer effect. A highly fluorescent, insoluble aggregate was then formed to facilitate high-sensitivity and high-resolution imaging. The results showed that probe CHCQ-Ac affords a remarkably large Stokes shift and can detect Cys under physiological pH condition with no interference from other analytes. Moreover, this probe was proved to have excellent chemical stability, low cytotoxicity and good cell permeability. Our design of this probe provides a novel potential tool to visualize and localize cysteine in bioimaging of live cells that would greatly help to explore various Cys-related physiological and pathological cellular processes in cell biology and diagnostics.

  4. Quantum Computation with Ultrafast Laser Pulse Shaping

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 6. Quantum Computation with Ultrafast Laser Pulse Shaping. Debabrata Goswami. General Article Volume 10 Issue 6 June 2005 pp 8-14. Fulltext. Click here to view fulltext PDF. Permanent link:

  5. Ultrafast spectroscopy of model biological membranes

    NARCIS (Netherlands)

    Ghosh, Avishek

    2009-01-01

    In this PhD thesis, I have described the novel time-resolved sum-frequency generation (TR-SFG) spectroscopic technique that I developed during the course of my PhD research and used it study the ultrafast vibrational, structural and orientational dynamics of water molecules at model biological

  6. Photonic-assisted ultrafast THz wireless access

    DEFF Research Database (Denmark)

    Yu, Xianbin; Chen, Ying; Galili, Michael

    THz technology has been considered feasible for ultrafast wireless data communi- cation, to meet the increasing demand on next-generation fast wireless access, e.g., huge data file transferring and fast mobile data stream access. This talk reviews recent progress in high-speed THz wireless...

  7. Ultrafast photon counting applied to resonant scanning STED microscopy.

    Science.gov (United States)

    Wu, Xundong; Toro, Ligia; Stefani, Enrico; Wu, Yong

    2015-01-01

    To take full advantage of fast resonant scanning in super-resolution stimulated emission depletion (STED) microscopy, we have developed an ultrafast photon counting system based on a multigiga sample per second analogue-to-digital conversion chip that delivers an unprecedented 450 MHz pixel clock (2.2 ns pixel dwell time in each scan). The system achieves a large field of view (∼50 × 50 μm) with fast scanning that reduces photobleaching, and advances the time-gated continuous wave STED technology to the usage of resonant scanning with hardware-based time-gating. The assembled system provides superb signal-to-noise ratio and highly linear quantification of light that result in superior image quality. Also, the system design allows great flexibility in processing photon signals to further improve the dynamic range. In conclusion, we have constructed a frontier photon counting image acquisition system with ultrafast readout rate, excellent counting linearity, and with the capacity of realizing resonant-scanning continuous wave STED microscopy with online time-gated detection. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  8. Intramolecular ketenimine-ketenimine [2 + 2] and [4 + 2] cycloadditions.

    Science.gov (United States)

    Alajarín, Mateo; Bonillo, Baltasar; Sanchez-Andrada, Pilar; Vidal, Angel; Bautista, Delia

    2007-07-20

    Bis(ketenimines), in which the two heterocumulenic functions are placed in close proximity on a carbon skeleton to allow their mutual interaction, show a rich and not easily predictable chemistry. Intramolecular [2 + 2] or [4 + 2] cycloadditions are, respectively, observed when both ketenimine functions are supported on either ortho-benzylic or 2,2'-biphenylenic scaffolds. In addition, nitrogen-to-carbon [1,3] and [1,5] shifts of arylmethyl groups in N-arylmethyl-C,C-diphenyl ketenimines are also disclosed.

  9. Synthesis of anatoxin a via intramolecular cyclization of iminium salts

    International Nuclear Information System (INIS)

    Bates, H.A.; Rapoport, H.

    1979-01-01

    Anatoxin a (1) has been synthesized by exploiting intramolecular cyclization between an iminium salt and a nucleophilic carbon to construct the 9-azabicyclo[4.2.1]nonane ring system. Cyclization of malonate iminiumsalt 16 at alkaline pH afforded a low yield of bicyclic malonate 18 owing to an unfavorable equilibrium constant and lability of the iminium salt in base. In contrast, cyclization of ketoiminium salt 31 afforded a good yield of bicyclic ketone 34 in acidic methanol. Dihydropyrrolium salts 16 and 31 were generated quantitatively by decarbonylation of substituted N-methylprolines 15 and 30b, obtained by reduction of the corresponding pyrroles

  10. Intramolecular Hydrogen Bonding in (2-Hydroxybenzoyl)benzoylmethane Enol

    DEFF Research Database (Denmark)

    Hansen, Bjarke Knud Vilster; Winther, Morten; Spanget-Larsen, Jens

    2014-01-01

    , and the dienol form of 1,3-dibenzoylacetone. But in these examples the two H-bonds are equivalent, while in the case of OHDBM they are chemically different, involving one enolic and one phenolic hydroxy group. OHDBM is thus an interesting model compound with two competing H-bonds to the same carbonyl group......In the stable enol tautomer of the title compound (OHDBM), one carbonyl group is flanked by two β-hydroxy groups, giving rise to bifold intramolecular H-bonding. A similar situation is found in other β,β'-dihydroxy carbonyl compounds like chrysazin, anthralin, 2,2'-dihydroxybenzophenone...

  11. Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU.

    Science.gov (United States)

    Arefan, D; Talebpour, A; Ahmadinejhad, N; Kamali Asl, A

    2015-06-01

    Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study ultra-fast image reconstruction technique for Tomosynthesis Mammography systems using Graphics Processing Unit (GPU). At first, projections of Tomosynthesis mammography have been simulated. In order to produce Tomosynthesis projections, it has been designed a 3D breast phantom from empirical data. It is based on MRI data in its natural form. Then, projections have been created from 3D breast phantom. The image reconstruction algorithm based on FBP was programmed with C++ language in two methods using central processing unit (CPU) card and the Graphics Processing Unit (GPU). It calculated the time of image reconstruction in two kinds of programming (using CPU and GPU).

  12. Ultrafast protein structure-based virtual screening with Panther

    Science.gov (United States)

    Niinivehmas, Sanna P.; Salokas, Kari; Lätti, Sakari; Raunio, Hannu; Pentikäinen, Olli T.

    2015-10-01

    Molecular docking is by far the most common method used in protein structure-based virtual screening. This paper presents Panther, a novel ultrafast multipurpose docking tool. In Panther, a simple shape-electrostatic model of the ligand-binding area of the protein is created by utilizing the protein crystal structure. The features of the possible ligands are then compared to the model by using a similarity search algorithm. On average, one ligand can be processed in a few minutes by using classical docking methods, whereas using Panther processing takes Panther protocol can be used in several applications, such as speeding up the early phases of drug discovery projects, reducing the number of failures in the clinical phase of the drug development process, and estimating the environmental toxicity of chemicals. Panther-code is available in our web pages (http://www.jyu.fi/panther) free of charge after registration.

  13. Ultrafast magnon generation in an Fe film on Cu(100).

    Science.gov (United States)

    Schmidt, A B; Pickel, M; Donath, M; Buczek, P; Ernst, A; Zhukov, V P; Echenique, P M; Sandratskii, L M; Chulkov, E V; Weinelt, M

    2010-11-05

    We report on a combined experimental and theoretical study of the spin-dependent relaxation processes in the electron system of an iron film on Cu(100). Spin-, time-, energy- and angle-resolved two-photon photoemission shows a strong characteristic dependence of the lifetime of photoexcited electrons on their spin and energy. Ab initio calculations as well as a many-body treatment corroborate that the observed properties are determined by relaxation processes involving magnon emission. Thereby we demonstrate that magnon emission by hot electrons occurs on the femtosecond time scale and thus provides a significant source of ultrafast spin-flip processes. Furthermore, engineering of the magnon spectrum paves the way for tuning the dynamic properties of magnetic materials.

  14. Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers.

    Science.gov (United States)

    Ji, Ziheng; Hong, Hao; Zhang, Jin; Zhang, Qi; Huang, Wei; Cao, Ting; Qiao, Ruixi; Liu, Can; Liang, Jing; Jin, Chuanhong; Jiao, Liying; Shi, Kebin; Meng, Sheng; Liu, Kaihui

    2017-12-26

    Van der Waals-coupled two-dimensional (2D) heterostructures have attracted great attention recently due to their high potential in the next-generation photodetectors and solar cells. The understanding of charge-transfer process between adjacent atomic layers is the key to design optimal devices as it directly determines the fundamental response speed and photon-electron conversion efficiency. However, general belief and theoretical studies have shown that the charge transfer behavior depends sensitively on interlayer configurations, which is difficult to control accurately, bringing great uncertainties in device designing. Here we investigate the ultrafast dynamics of interlayer charge transfer in a prototype heterostructure, the MoS 2 /WS 2 bilayer with various stacking configurations, by optical two-color ultrafast pump-probe spectroscopy. Surprisingly, we found that the charge transfer is robust against varying interlayer twist angles and interlayer coupling strength, in time scale of ∼90 fs. Our observation, together with atomic-resolved transmission electron characterization and time-dependent density functional theory simulations, reveals that the robust ultrafast charge transfer is attributed to the heterogeneous interlayer stretching/sliding, which provides additional channels for efficient charge transfer previously unknown. Our results elucidate the origin of transfer rate robustness against interlayer stacking configurations in optical devices based on 2D heterostructures, facilitating their applications in ultrafast and high-efficient optoelectronic and photovoltaic devices in the near future.

  15. Ultrafast Photoinduced Electron Transfer in a π-Conjugated Oligomer/Porphyrin Complex

    KAUST Repository

    Aly, Shawkat Mohammede

    2014-10-02

    Controlling charge transfer (CT), charge separation (CS), and charge recombination (CR) at the donor-acceptor interface is extremely important to optimize the conversion efficiency in solar cell devices. In general, ultrafast CT and slow CR are desirable for optimal device performance. In this Letter, the ultrafast excited-state CT between platinum oligomer (DPP-Pt(acac)) as a new electron donor and porphyrin as an electron acceptor is monitored for the first time using femtosecond (fs) transient absorption (TA) spectroscopy with broad-band capability and 120 fs temporal resolution. Turning the CT on/off has been shown to be possible either by switching from an organometallic oligomer to a metal-free oligomer or by controlling the charge density on the nitrogen atom of the porphyrin meso unit. Our time-resolved data show that the CT and CS between DPP-Pt(acac) and cationic porphyrin are ultrafast (approximately 1.5 ps), and the CR is slow (ns time scale), as inferred from the formation and the decay of the cationic and anionic species. We also found that the metallic center in the DPP-Pt(acac) oligomer and the positive charge on the porphyrin are the keys to switching on/off the ultrafast CT process.

  16. High-speed ultrafast laser machining with tertiary beam positioning (Conference Presentation)

    Science.gov (United States)

    Yang, Chuan; Zhang, Haibin

    2017-03-01

    For an industrial laser application, high process throughput and low average cost of ownership are critical to commercial success. Benefiting from high peak power, nonlinear absorption and small-achievable spot size, ultrafast lasers offer advantages of minimal heat affected zone, great taper and sidewall quality, and small via capability that exceeds the limits of their predecessors in via drilling for electronic packaging. In the past decade, ultrafast lasers have both grown in power and reduced in cost. For example, recently, disk and fiber technology have both shown stable operation in the 50W to 200W range, mostly at high repetition rate (beyond 500 kHz) that helps avoid detrimental nonlinear effects. However, to effectively and efficiently scale the throughput with the fast-growing power capability of the ultrafast lasers while keeping the beneficial laser-material interactions is very challenging, mainly because of the bottleneck imposed by the inertia-related acceleration limit and servo gain bandwidth when only stages and galvanometers are being used. On the other side, inertia-free scanning solutions like acoustic optics and electronic optical deflectors have small scan field, and therefore not suitable for large-panel processing. Our recent system developments combine stages, galvanometers, and AODs into a coordinated tertiary architecture for high bandwidth and meanwhile large field beam positioning. Synchronized three-level movements allow extremely fast local speed and continuous motion over the whole stage travel range. We present the via drilling results from such ultrafast system with up to 3MHz pulse to pulse random access, enabling high quality low cost ultrafast machining with emerging high average power laser sources.

  17. Heterocycles by Transition Metals Catalyzed Intramolecular Cyclization of Acetylene Compounds

    International Nuclear Information System (INIS)

    Vizer, S.A.; Yerzhanov, K.B.; Dedeshko, E.C.

    2003-01-01

    Review shows the new strategies in the synthesis of heterocycles, having nitrogen, oxygen and sulfur atoms, via transition metals catalyzed intramolecular cyclization of acetylenic compounds on the data published at the last 30 years, Unsaturated heterocyclic compounds (pyrroles and pyrroline, furans, dihydro furans and benzofurans, indoles and iso-indoles, isoquinolines and isoquinolinones, aurones, iso coumarins and oxazolinone, lactams and lactones with various substitutes in heterocycles) are formed by transition metals, those salts [PdCl 2 , Pd(OAc) 2 , HgCl 2 , Hg(OAc) 2 , Hg(OCOCF 3 ) 2 , AuCl 3 ·2H 2 O, NaAuCl 4 ·2H 2 O, CuI, CuCl], oxides (HgO) and complexes [Pd(OAc) 2 (PPh 3 )2, Pd(PPh 3 ) 4 , PdCl 2 (MeCN) 2 , Pd(OAc ) 2 /TPPTS] catalyzed intramolecular cyclization of acetylenic amines, amides, ethers, alcohols, acids, ketones and βdiketones. More complex hetero polycyclic systems typical for natural alkaloids can to obtain similar. Proposed mechanisms of pyrroles, isoquinolines, iso indoles and indoles, benzofurans and iso coumarins, thiazolopyrimidinones formation are considered. (author)

  18. Progress in ultrafast intense laser science XIII

    CERN Document Server

    III, Wendell; Paulus, Gerhard

    2017-01-01

    This thirteenth volume covers a broad range of topics from this interdisciplinary research field, focusing on atoms, molecules, and clusters interacting in intense laser field and high-order harmonics generation and their applications. The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, the interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries.   .

  19. Progress in Ultrafast Intense Laser Science

    CERN Document Server

    Yamanouchi, Kaoru; Li, Ruxin; Chin, See Leang

    2009-01-01

    The PUILS series presents Progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science. PUILS has been stimulated by the recent development of ultrafast laser technologies. Each volume contains approximately 15 chapters, authored by researchers at the forefront. Each chapter opens with an overview of the topics to be discussed, so that researchers, who are not experts in the specific topics, as well as graduate students can grasp the importance and attractions of this sub-field of research, and these are followed by reports of cutting-edge discoveries. This fourth volume covers a broad range of topics from this interdisciplinary research field, focusing on strong field ionization of atoms; excitation, ionization and fragmentation of molecules; nonlinear intense optical phenomena and attosecond pulses; and laser - solid interactions and photoemission.

  20. Ultrafast magnetodynamics with free-electron lasers

    Science.gov (United States)

    Malvestuto, Marco; Ciprian, Roberta; Caretta, Antonio; Casarin, Barbara; Parmigiani, Fulvio

    2018-02-01

    The study of ultrafast magnetodynamics has entered a new era thanks to the groundbreaking technological advances in free-electron laser (FEL) light sources. The advent of these light sources has made possible unprecedented experimental schemes for time-resolved x-ray magneto-optic spectroscopies, which are now paving the road for exploring the ultimate limits of out-of-equilibrium magnetic phenomena. In particular, these studies will provide insights into elementary mechanisms governing spin and orbital dynamics, therefore contributing to the development of ultrafast devices for relevant magnetic technologies. This topical review focuses on recent advancement in the study of non-equilibrium magnetic phenomena from the perspective of time-resolved extreme ultra violet (EUV) and soft x-ray spectroscopies at FELs with highlights of some important experimental results.

  1. Progress in Ultrafast Intense Laser Science III

    CERN Document Server

    Yamanouchi, Kaoru; Agostini, Pierre; Ferrante, Gaetano

    2008-01-01

    The PUILS series presents Progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science. PUILS has been stimulated by the recent development of ultrafast laser technologies. Each volume contains approximately 15 chapters, authored by researchers at the forefront. Each chapter opens with an overview of the topics to be discussed, so that researchers, who are not experts in the specific topics, as well as graduate students can grasp the importance and attractions of this sub-field of research, and these are followed by reports of cutting-edge discoveries. This third volume covers a diverse range of disciplines, focusing on such topics as strong field ionization of atoms, ionization and fragmentation of molecules and clusters, generation of high-order harmonics and attosecond pulses, filamentation and laser plasma interaction, and the development of ultrashort and ultrahigh-intensity light sources.

  2. Ultra-fast framing camera tube

    Science.gov (United States)

    Kalibjian, Ralph

    1981-01-01

    An electronic framing camera tube features focal plane image dissection and synchronized restoration of the dissected electron line images to form two-dimensional framed images. Ultra-fast framing is performed by first streaking a two-dimensional electron image across a narrow slit, thereby dissecting the two-dimensional electron image into sequential electron line images. The dissected electron line images are then restored into a framed image by a restorer deflector operated synchronously with the dissector deflector. The number of framed images on the tube's viewing screen is equal to the number of dissecting slits in the tube. The distinguishing features of this ultra-fast framing camera tube are the focal plane dissecting slits, and the synchronously-operated restorer deflector which restores the dissected electron line images into a two-dimensional framed image. The framing camera tube can produce image frames having high spatial resolution of optical events in the sub-100 picosecond range.

  3. Progress in Ultrafast Intense Laser Science VIII

    CERN Document Server

    Nisoli, Mauro; Hill, Wendell; III, III

    2012-01-01

    The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science and optical science which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield as well as graduate students can grasp the importance and attractions of the research topic at hand. These are followed by reports of cutting-edge discoveries. This eighth volume covers a broad range of topics from this interdisciplinary research field, focusing on molecules interacting with ultrashort and intense laser fields, advanced technologies for the characterization of ultrashort laser pulses and their applications, laser plasma formation and laser acceleration.

  4. Ultrafast Terahertz Conductivity of Photoexcited Nanocrystalline Silicon

    DEFF Research Database (Denmark)

    Cooke, David; MacDonald, A. Nicole; Hryciw, Aaron

    2007-01-01

    The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described by a class...... in the silicon nanocrystal films is dominated by trapping at the Si/SiO2 interface states, occurring on a 1–100 ps time scale depending on particle size and hydrogen passivation......The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described...

  5. Development of Scanning Ultrafast Electron Microscope Capability.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Kimberlee Chiyoko [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Talin, Albert Alec [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Chandler, David W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Michael, Joseph R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Modern semiconductor devices rely on the transport of minority charge carriers. Direct examination of minority carrier lifetimes in real devices with nanometer-scale features requires a measurement method with simultaneously high spatial and temporal resolutions. Achieving nanometer spatial resolutions at sub-nanosecond temporal resolution is possible with pump-probe methods that utilize electrons as probes. Recently, a stroboscopic scanning electron microscope was developed at Caltech, and used to study carrier transport across a Si p-n junction [ 1 , 2 , 3 ] . In this report, we detail our development of a prototype scanning ultrafast electron microscope system at Sandia National Laboratories based on the original Caltech design. This effort represents Sandia's first exploration into ultrafast electron microscopy.

  6. Coherent combination of ultrafast fiber amplifiers

    International Nuclear Information System (INIS)

    Hanna, Marc; Guichard, Florent; Druon, Frédéric; Georges, Patrick; Zaouter, Yoann; Papadopoulos, Dimitris N

    2016-01-01

    We review recent progress in coherent combining of femtosecond pulses amplified in optical fibers as a way to scale the peak and average power of ultrafast sources. Different methods of achieving coherent pulse addition in space (beam combining) and time (divided pulse amplification) domains are described. These architectures can be widely classified into active methods, where the relative phases between pulses are subject to a servomechanism, and passive methods, where phase matching is inherent to the geometry. Other experiments that combine pulses with different spectral contents, pulses that have been nonlinearly broadened or successive pulses from a mode-locked laser oscillator, are then presented. All these techniques allow access to unprecedented parameter range for fiber ultrafast sources. (topical review)

  7. Silicon based ultrafast optical waveform sampling

    DEFF Research Database (Denmark)

    Ji, Hua; Galili, Michael; Pu, Minhao

    2010-01-01

    A 300 nmx450 nmx5 mm silicon nanowire is designed and fabricated for a four wave mixing based non-linear optical gate. Based on this silicon nanowire, an ultra-fast optical sampling system is successfully demonstrated using a free-running fiber laser with a carbon nanotube-based mode-locker as th......A 300 nmx450 nmx5 mm silicon nanowire is designed and fabricated for a four wave mixing based non-linear optical gate. Based on this silicon nanowire, an ultra-fast optical sampling system is successfully demonstrated using a free-running fiber laser with a carbon nanotube-based mode......-locker as the sampling source. A clear eye-diagram of a 320 Gbit/s data signal is obtained. The temporal resolution of the sampling system is estimated to 360 fs....

  8. Progress in Ultrafast Intense Laser Science VI

    CERN Document Server

    Yamanouchi, Kaoru; Bandrauk, André D

    2010-01-01

    The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries. This sixth volume covers a broad range of topics from this interdisciplinary research field, focusing on responses of molecules to ultrashort intense laser pulses, generation and characterization of attosecond pulses and high-order harmonics, and filamentation and laser-plasma interaction.

  9. Progress in ultrafast intense laser science XII

    CERN Document Server

    Roso, Luis; Li, Ruxin; Mathur, Deepak; Normand, Didier

    2015-01-01

    This  volume covers a broad range of topics focusing on atoms, molecules, and clusters interacting in intense laser field, laser induced filamentation, and laser plasma interaction and application. The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries. .

  10. Ultrafast Photovoltaic Response in Ferroelectric Nanolayers

    Science.gov (United States)

    2016-04-19

    the free energy of the system [3,4,8]. Intensive research has been aimed at bypassing the intrinsic size limits imposed by the depolarization field...Page 1 of 21   Ultrafast photovoltaic response in ferroelectric nanolayers Dan Daranciang1,2, Matthew J. Highland3, Haidan Wen4, Steve M. Young5...ferroelectric PbTiO3 via direct coupling to its intrinsic photovoltaic response. Using time-resolved x-ray scattering to visualize atomic displacements on

  11. Optical Detection in Ultrafast Short Wavelength Science

    International Nuclear Information System (INIS)

    Fullagar, Wilfred K.; Hall, Chris J.

    2010-01-01

    A new approach to coherent detection of ionising radiation is briefly motivated and recounted. The approach involves optical scattering of coherent light fields by colour centres in transparent solids. It has significant potential for diffractive imaging applications that require high detection dynamic range from pulsed high brilliance short wavelength sources. It also motivates new incarnations of Bragg's X-ray microscope for pump-probe studies of ultrafast molecular structure-dynamics.

  12. Ultrafast spectroscopic investigation of a fullerene poly(3-hexylthiophene) dyad

    Science.gov (United States)

    Banerji, Natalie; Seifter, Jason; Wang, Mingfeng; Vauthey, Eric; Wudl, Fred; Heeger, Alan J.

    2011-08-01

    We present the femtosecond spectroscopic investigation of a covalently linked dyad, PCB-P3HT, formed by a segment of the conjugated polymer P3HT (regioregular poly(3-hexylthiophene)) that is end capped with the fullerene derivative PCB ([6,6]-phenyl-C61-butyric acid ester), adapted from PCBM. The fluorescence of the P3HT segment in tetrahydrofuran (THF) solution is reduced by 64% in the dyad compared to a control compound without attached fullerene (P3HT-OH). Fluorescence upconversion measurements reveal that the partial fluorescence quenching of PCB-P3HT in THF is multiphasic and occurs on an average time scale of 100 ps, in parallel to excited-state relaxation processes. Judging from ultrafast transient absorption experiments, the origin of the quenching is excitation energy transfer from the P3HT donor to the PCB acceptor. Due to the much higher solubility of P3HT compared to PCB in THF, the PCB-P3HT dyad molecules self-assemble into micelles. When pure C60 is added to the solution, it is incorporated into the fullerene-rich center of the micelles. This dramatically increases the solubility of C60 but does not lead to significant additional quenching of the P3HT fluorescence by the C60 contained in the micelles. In PCB-P3HT thin films drop-cast from THF, the micelle structure is conserved. In contrast to solution, quantitative and ultrafast (microscopy images. Ultrafast charge separation occurs also for the fibrous morphology, but the transient absorption experiments show fast loss of part of the charge carriers due to intensity-induced recombination and annihilation processes and monomolecular interfacial trap-mediated or geminate recombination. The yield of the long-lived charge carriers in the highly organized fibers is however comparable to that obtained with annealed P3HT:PCBM blends. PCB-P3HT can therefore be considered as an active material in organic photovoltaic devices.

  13. Intra-molecular selectivity of muonium towards chlorinated aromatic compounds

    International Nuclear Information System (INIS)

    Venkateswaran, K.; Stadlbauer, J.M.; Laing, M.E.; Klugkist, J.; Chong, D.P.; Porter, G.B.; Walker, D.C.

    1994-01-01

    Muon resonance studies show that muonium atoms (Mu) in ethanol add selectively to certain C-sites of aromatic compounds containing -Cl and -OH substituents. The sites chosen seem to be those carrying the lowest electron density. This helps to characterize Mu as a nucleophile in addition reactions and, in this respect, Mu differs from ordinary H-atoms. The study shows no apparent inter-molecular selectivity between a pair of aromatic solutes in an equimolar mixture, but strong intra-molecular selectivity in an ether composed of those two aromatic rings. This difference between intra- and inter-molecular selectivity is interpreted as kinetic in origin - arising from the 'caging effect' of the solvent and peculiar to reactions close to the diffusion-controlled limit. (orig.)

  14. Probing ultrafast carrier tunneling dynamics in individual quantum dots and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Kai; Bechtold, Alexander; Kaldewey, Timo; Zecherle, Markus; Wildmann, Johannes S.; Bichler, Max; Abstreiter, Gerhard; Finley, Jonathan J. [Walter Schottky Institut and Physik-Department, Technische Universitaet Muenchen, Am Coulombwall 4, 85748, Garching (Germany); Ruppert, Claudia; Betz, Markus [Experimentelle Physik 2, TU Dortmund, 44221, Dortmund (Germany); Krenner, Hubert J. [Lehrstuhl fuer Experimentalphysik 1 and Augsburg Centre for Innovative Technologies (ACIT), Universitaet Augsburg, Universitaetsstr 1, 86159, Augsburg (Germany); Villas-Boas, Jose M. [Instituto de Fisica, Universidade Federal de Uberlandia, 38400-902, Uberlandia, MG (Brazil)

    2013-02-15

    Ultrafast pump-probe spectroscopy is employed to directly monitor the tunneling of charge carriers from single and vertically coupled quantum dots and probe intra-molecular dynamics. Immediately after resonant optical excitation, several peaks are observed in the pump-probe spectrum arising from Coulomb interactions between the photogenerated charge carriers. The influence of few-Fermion interactions in the photoexcited system and the temporal evolution of the optical response is directly probed in the time domain. In addition, the tunneling times for electrons and holes from the QD nanostructure are independently determined. In polarization resolved measurements, near perfect Pauli-spin blockade is observed in the spin-selective absorption spectrum as well as stimulated emission. While electron and hole tunneling from single quantum dots is shown to be well explained by the WKB formalism, for coupled quantum dots pronounced resonances in the electron tunneling rate are observed arising from elastic and inelastic electron tunneling between the different dots. (copyright 2012 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. TD-DFT investigation of the potential energy surface for Excited-State Intramolecular Proton Transfer (ESIPT) reaction of 10-hydroxybenzo[h]quinoline: Topological (AIM) and population (NBO) analysis of the intramolecular hydrogen bonding interaction

    International Nuclear Information System (INIS)

    Paul, Bijan Kumar; Guchhait, Nikhil

    2011-01-01

    Here, we report a Density Functional Theoretical (DFT) study on the photophysics of a potent Excited-State Intramolecular Proton Transfer (ESIPT) molecular system, viz., 10-hydroxybenzo[h]quinoline (HBQ). Particular emphasis has been rendered on the assessment of the proton transfer reaction in HBQ in the ground and excited-states through elucidation and a careful perusal of the potential energy surfaces (PES). The non-viability of Ground-State Intramolecular Proton Transfer (GSIPT) process is dictated by a high-energy barrier coupled with no energy minimum for the proton transferred (K-form) form at the ground-state (S 0 ) PES. Remarkable reduction of the barrier along with thermodynamic stability inversion between the enol (E-form) and the keto forms (K-form) of HBQ upon photoexcitation from S 0 to the S 1 -state advocate for the operation of ESIPT process. These findings have been cross-validated on the lexicon of analysis of optimized geometry parameters, Mulliken's charge distribution on the heavy atoms, and molecular orbitals (MO) of the E- and the K-forms of HBQ. Our computational results also corroborate to experimental observations. From the modulations in optimized geometry parameters in course of the PT process a critical assessment has been endeavoured to delve into the movement of the proton during the process. Additional stress has been placed on the analysis of the intramolecular hydrogen bonding (IMHB) interaction in HBQ. The IMHB interaction has been explored by calculation of electron density ρ(r) and the Laplacian ∇ 2 ρ(r) at the bond critical point (BCP) using Atoms-In-Molecule (AIM) method and by calculation of interaction between σ* of OH with the lone pair of the nitrogen atom using Natural Bond Orbital (NBO) analysis. - Highlights: → Theoretical modelling of the photophysics of an ESIPT probe 10-hydroxybenzo[h]quinoline (HBQ). → Calculation of intramolecular hydrogen bond (IMHB) energy. → Role of hyperconjugative charge transfer

  16. Vibrational spectroscopy and intramolecular energy transfer in isocyanic acid (HNCO)

    International Nuclear Information System (INIS)

    Coffey, M.J.; Berghout, H.L.; Woods, E. III; Crim, F.F.

    1999-01-01

    Room temperature photoacoustic spectra in the region of the first through the fourth overtones (2ν 1 to 5ν 1 ) and free-jet action spectra of the second through the fourth overtones (3ν 1 to 5ν 1 ) of the N - H stretching vibration permit analysis of the vibrational and rotational structure of HNCO. The analysis identifies the strong intramolecular couplings that control the early stages of intramolecular vibrational energy redistribution (IVR) and gives the interaction matrix elements between the zero-order N - H stretching states and the other zero-order states with which they interact. The experimentally determined couplings and zero-order state separations are consistent with ab initio calculations of East, Johnson, and Allen [J. Chem. Phys. 98, 1299 (1993)], and comparison with the calculation identifies the coupled states and likely interactions. The states most strongly coupled to the pure N - H stretching zero-order states are ones with a quantum of N - H stretching excitation (ν 1 ) replaced by different combinations of N - C - O asymmetric or symmetric stretching excitation (ν 2 or ν 3 ) and trans-bending excitation (ν 4 ). The two strongest couplings of the nν 1 state are to the states (n-1)ν 1 +ν 2 +ν 4 and (n-1)ν 1 +ν 3 +2ν 4 , and sequential couplings through a series of low order resonances potentially play a role. The analysis shows that if the pure N - H stretch zero-order state were excited, energy would initially flow out of that mode into the strongly coupled mode in 100 fs to 700 fs, depending on the level of initial excitation. copyright 1999 American Institute of Physics

  17. Tether-directed synthesis of highly substituted oxasilacycles via an intramolecular allylation employing allylsilanes

    Directory of Open Access Journals (Sweden)

    Cox Liam R

    2007-02-01

    Full Text Available Abstract Background Using a silyl tether to unite an aldehyde electrophile and allylsilane nucleophile into a single molecule allows a subsequent Lewis-acid-mediated allylation to proceed in an intramolecular sense and therefore receive all the benefits associated with such processes. However, with the ability to cleave the tether post allylation, a product that is the result of a net intermolecular reaction can be obtained. In the present study, four diastereoisomeric β-silyloxy-α-methyl aldehydes, which contain an allylsilane tethered through the β-carbinol centre, have been prepared, in order to probe how the relative configuration of the two stereogenic centres affects the efficiency and selectivity of the intramolecular allylation. Results Syn-aldehydes, syn-4a and syn-4b, both react poorly, affording all four possible diastereoisomeric oxasilacycle products. In contrast, the anti aldehydes anti-4a and anti-4b react analogously to substrates that lack substitution at the α-site, affording only two of the four possible allylation products. Conclusion The outcome of the reaction with anti-aldehydes is in accord with reaction proceeding through a chair-like transition state (T.S.. In these systems, the sense of 1,3-stereoinduction can be rationalised by the aldehyde electrophile adopting a pseudoaxial orientation, which will minimise dipole-dipole interactions in the T.S. The 1,4-stereoinduction in these substrates is modest and seems to be modulated by the R substituent in the starting material. In the case of the syn-substrates, cyclisation through a chair T.S. is unlikely as this would require the methyl substituent α to the reacting carbonyl group to adopt an unfavourable pseudoaxial position. It is therefore proposed that these substrates react through poorly-defined T.S.s and consequently exhibit essentially no stereoselectivity.

  18. Reaction Coordinate, Free Energy, and Rate of Intramolecular Proton Transfer in Human Carbonic Anhydrase II.

    Science.gov (United States)

    Paul, Sanjib; Paul, Tanmoy Kumar; Taraphder, Srabani

    2018-03-22

    The role of structure and dynamics of an enzyme has been investigated at three different stages of its function including the chemical event it catalyzes. A one-pot computational method has been designed for each of these stages on the basis of classical and/or quantum mechanical-molecular mechanical molecular dynamics and transition path sampling simulations. For a pair of initial and final states A and B separated by a high free-energy barrier, using a two-stage selection process, several collective variables (CVs) are identified that can delineate A and B. However, these CVs are found to exhibit strong cross-coupling over the transition paths. A set of mutually orthogonal order parameters is then derived from these CVs and an optimal reaction coordinate, r, determined applying half-trajectory likelihood maximization along with a Bayesian information criterion. The transition paths are also used to project the multidimensional free energy surface and barrier crossing dynamics along r. The proposed scheme has been applied to the rate-determining intramolecular proton transfer reaction of the well-known enzyme human carbonic anhydrase II. The potential of mean force, F( r), in the absence of the chemical step is found to reproduce earlier results on the equilibrium population of two side-chain orientations of key residue His-64. Estimation of rate constants, k, from mean first passage times for the three different stages of catalysis shows that the rate-determining step of intramolecular proton transfer occurs with k ≃ 1.0 × 10 6 s -1 , in close agreement with known experimental results.

  19. Ultrafast photoinduced structure phase transition in antimony single crystals

    NARCIS (Netherlands)

    Fausti, Daniele; Misochko, Oleg V.; van Loosdrecht, Paul H. M.

    2009-01-01

    Picosecond Raman scattering is used to study the photoinduced ultrafast dynamics in Peierls distorted antimony. We find evidence for an ultrafast nonthermal reversible structural phase transition. Most surprisingly, we find evidence that this transition evolves toward a lower symmetry in contrast to

  20. Ultrafast electron diffraction studies of optically excited thin bismuth films

    International Nuclear Information System (INIS)

    Rajkovic, Ivan

    2008-01-01

    This thesis contains work on the design and the realization of an experimental setup capable of providing sub-picosecond electron pulses for ultrafast electron diffraction experiments, and performing the study of ultrafast dynamics in bismuth after optical excitation using this setup. (orig.)

  1. Generation of ultrafast pulse via combined effects of stimulated

    Indian Academy of Sciences (India)

    A project of ultrafast pulse generation has been presented and demonstrated by utilizing the combined nonlinear effects of stimulated Raman scattering (SRS) and non-degenerate two-photon absorption (TPA) based on silicon nanophotonic chip, in which a continuous wave (CW) and an ultrafast dark pulse are ...

  2. Ultrafast electron diffraction studies of optically excited thin bismuth films

    Energy Technology Data Exchange (ETDEWEB)

    Rajkovic, Ivan

    2008-10-21

    This thesis contains work on the design and the realization of an experimental setup capable of providing sub-picosecond electron pulses for ultrafast electron diffraction experiments, and performing the study of ultrafast dynamics in bismuth after optical excitation using this setup. (orig.)

  3. Ultra-fast movies of thin-film laser ablation

    Science.gov (United States)

    Domke, Matthias; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2012-11-01

    Ultra-short-pulse laser irradiation of thin molybdenum films from the glass substrate side initiates an intact Mo disk lift off free from thermal effects. For the investigation of the underlying physical effects, ultra-fast pump-probe microscopy is used to produce stop-motion movies of the single-pulse ablation process, initiated by a 660-fs laser pulse. The ultra-fast dynamics in the femtosecond and picosecond ranges are captured by stroboscopic illumination of the sample with an optically delayed probe pulse of 510-fs duration. The nanosecond and microsecond delay ranges of the probe pulse are covered by an electronically triggered 600-ps laser. Thus, the setup enables an observation of general laser ablation processes from the femtosecond delay range up to the final state. A comparison of time- and space-resolved observations of film and glass substrate side irradiation of a 470-nm molybdenum layer reveals the driving mechanisms of the Mo disk lift off initiated by glass-side irradiation. Observations suggest that a phase explosion generates a liquid-gas mixture in the molybdenum/glass interface about 10 ps after the impact of the pump laser pulse. Then, a shock wave and gas expansion cause the molybdenum layer to bulge, while the enclosed liquid-gas mixture cools and condenses at delay times in the 100-ps range. The bulging continues for approximately 20 ns, when an intact Mo disk shears and lifts off at a velocity of above 70 m/s. As a result, the remaining hole is free from thermal effects.

  4. Ultrafast time-resolved spectroscopy of xanthophylls at low temperature.

    Science.gov (United States)

    Cong, Hong; Niedzwiedzki, Dariusz M; Gibson, George N; Frank, Harry A

    2008-03-20

    Many of the spectroscopic features and photophysical properties of xanthophylls and their role in energy transfer to chlorophyll can be accounted for on the basis of a three-state model. The characteristically strong visible absorption of xanthophylls is associated with a transition from the ground state S0 (1(1)Ag-) to the S2 (1(1)Bu+) excited state. The lowest lying singlet state denoted S1 (2(1)Ag-), is a state into which absorption from the ground state is symmetry forbidden. Ultrafast optical spectroscopic studies and quantum computations have suggested the presence of additional excited singlet states in the vicinity of S1 (2(1)Ag-) and S2 (1(1)Bu+). One of these is denoted S* and has been suggested in previous work to be associated with a twisted molecular conformation of the molecule in the S1 (2(1)Ag-) state. In this work, we present the results of a spectroscopic investigation of three major xanthophylls from higher plants: violaxanthin, lutein, and zeaxanthin. These molecules have systematically increasing extents of pi-electron conjugation from nine to eleven conjugated carbon-carbon double bonds. All-trans isomers of the molecules were purified by high-performance liquid chromatography (HPLC) and studied by steady-state and ultrafast time-resolved optical spectroscopy at 77 K. Analysis of the data using global fitting techniques has revealed the inherent spectral properties and ultrafast dynamics of the excited singlet states of each of the molecules. Five different global fitting models were tested, and it was found that the data are best explained using a kinetic model whereby photoexcitation results in the promotion of the molecule into the S2 (1(1)Bu+) state that subsequently undergoes decay to a vibrationally hot S1 (1(1)Ag-) state and with the exception of violaxanthin also to the S* state. The vibrationally hot S1 (1(1)Ag-) state then cools to a vibrationally relaxed S1 (2(1)Ag-) state in less than a picosecond. It was also found that a portion

  5. Ultrafast spectral interferometry of resonant secondary emmission from semiconductor quantum wells

    DEFF Research Database (Denmark)

    Birkedal, Dan; Shah, Jagdeep

    1999-01-01

    Recent investigations of secondary emission from quantum well excitons follwing resonant excitation have demonstrated an intricate interplay of coherent Rayleigh scattering and incoherent luminescence. We have very recently demonstrated that it is possible to isolate and time resolve the coherent...... field associated with the Rayleigh component using ultrafast spectral interferometry, thus, obtaining substantial and new information of the nature of resonant secondary emission. Our findings demonstrate that Rayleigh scattering from static disorder is inherently a non-ergodic process invalidating...

  6. Ultrafast Gain Dynamics in Quantum Dot Amplifiers: Theoretical Analysis and Experimental Investigations

    DEFF Research Database (Denmark)

    Poel, Mike van der; Gehrig, Edeltraud; Hess, Ortwin

    2005-01-01

    Ultrafast gain dynamics in an optical amplifier with an active layer of self-organized quantum dots (QDs) emitting near 1.3$muhbox m$is characterized experimentally in a pump-probe experiment and modeled theoretically on the basis of QD Maxwell–Bloch equations. Experiment and theory are in good......$factor) is theoretically predicted and demonstrated in the experiments. The fundamental analysis reveals the underlying physical processes and indicates limitations to QD-based devices....

  7. Tandem cross enyne metathesis (CEYM–intramolecular Diels–Alder reaction (IMDAR. An easy entry to linear bicyclic scaffolds

    Directory of Open Access Journals (Sweden)

    Javier Miró

    2015-08-01

    Full Text Available A new tandem cross enyne metathesis (CEYM–intramolecular Diels–Alder reaction (IMDAR has been carried out. It involves conjugated ketones, esters or amides bearing a remote olefin and aromatic alkynes as the starting materials. The overall process enables the preparation of a small family of linear bicyclic scaffolds in a very simple manner with moderate to good levels of diastereoselectivity. This methodology constitutes one of the few examples that employ olefins differently than ethylene in tandem CEYM–IMDAR protocols.

  8. Intramolecular addition of benzylic radicals onto ketenimines. Synthesis of 2-alkylindoles.

    Science.gov (United States)

    Alajarín, Mateo; Vidal, Angel; Ortín, María-Mar

    2003-12-07

    The inter- and intramolecular addition of free radicals onto ketenimines is studied. All the attempts to add intermolecularly several silicon, oxygen or carbon centered radicals to N-(4-methylphenyl)-C,C-diphenyl ketenimine were unsuccessful. In contrast, the intramolecular addition of benzylic radicals, generated from xanthates, onto the central carbon of a ketenimine function with its N atom linked to the ortho position of the aromatic ring occurred under a variety of reaction conditions. These intramolecular cyclizations provide a novel radical-mediated synthesis of 2-alkylindoles.

  9. Sensors for ultra-fast silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sadrozinski, H.F.-W., E-mail: hartmut@scipp.ucsc.edu [Santa Cruz Institute for Particle Physics, UC Santa Cruz, Santa Cruz, CA 95064 (United States); Baselga, M.; Ely, S.; Fadeyev, V.; Galloway, Z.; Ngo, J.; Parker, C.; Schumacher, D.; Seiden, A.; Zatserklyaniy, A. [Santa Cruz Institute for Particle Physics, UC Santa Cruz, Santa Cruz, CA 95064 (United States); Cartiglia, N. [INFN Torino, Torino (Italy); Pellegrini, G.; Fernández-Martínez, P.; Greco, V.; Hidalgo, S.; Quirion, D. [Centro Nacional de Microelectrónica, IMB-CNM-CSIC, Barcelona (Spain)

    2014-11-21

    We report on electrical and charge collection tests of silicon sensors with internal gain as part of our development of ultra-fast silicon detectors. Using C–V and α TCT measurements, we investigate the non-uniform doping profile of so-called low-gain avalanche detectors (LGAD). These are n-on-p pad sensors with charge multiplication due to the presence of a thin, low-resistivity diffusion layer below the junction, obtained with a highly doped implant. We compare the bias dependence of the pulse shapes of traditional sensors and of LGAD sensors with different dopant density of the diffusion layer, and extract the internal gain.

  10. Sensors for ultra-fast silicon detectors

    International Nuclear Information System (INIS)

    Sadrozinski, H.F.-W.; Baselga, M.; Ely, S.; Fadeyev, V.; Galloway, Z.; Ngo, J.; Parker, C.; Schumacher, D.; Seiden, A.; Zatserklyaniy, A.; Cartiglia, N.; Pellegrini, G.; Fernández-Martínez, P.; Greco, V.; Hidalgo, S.; Quirion, D.

    2014-01-01

    We report on electrical and charge collection tests of silicon sensors with internal gain as part of our development of ultra-fast silicon detectors. Using C–V and α TCT measurements, we investigate the non-uniform doping profile of so-called low-gain avalanche detectors (LGAD). These are n-on-p pad sensors with charge multiplication due to the presence of a thin, low-resistivity diffusion layer below the junction, obtained with a highly doped implant. We compare the bias dependence of the pulse shapes of traditional sensors and of LGAD sensors with different dopant density of the diffusion layer, and extract the internal gain

  11. Imacon 600 ultrafast streak camera evaluation

    International Nuclear Information System (INIS)

    Owen, T.C.; Coleman, L.W.

    1975-01-01

    The Imacon 600 has a number of designed in disadvantages for use as an ultrafast diagnostic instrument. The unit is physically large (approximately 5' long) and uses an external power supply rack for the image intensifier. Water cooling is required for the intensifier; it is quiet but not conducive to portability. There is no interlock on the cooling water. The camera does have several switch selectable sweep speeds. This is desirable if one is working with both slow and fast events. The camera can be run in a framing mode. (MOW)

  12. Impact of local order and stoichiometry on the ultrafast magnetization dynamics of Heusler compounds

    International Nuclear Information System (INIS)

    Steil, Daniel; Schmitt, Oliver; Fetzer, Roman; Aeschlimann, Martin; Cinchetti, Mirko; Kubota, Takahide; Naganuma, Hiroshi; Oogane, Mikihiko; Ando, Yasuo; Rodan, Steven; Blum, Christian G F; Wurmehl, Sabine; Balke, Benjamin

    2015-01-01

    Nowadays, a wealth of information on ultrafast magnetization dynamics of thin ferromagnetic films exists in the literature. Information is, however, scarce on bulk single crystals, which may be especially important for the case of multi-sublattice systems. In Heusler compounds, representing prominent examples for such multi-sublattice systems, off-stoichiometry and degree of order can significantly change the magnetic properties of thin films, while bulk single crystals may be generally produced with a much more well-defined stoichiometry and a higher degree of ordering. A careful characterization of the local structure of thin films versus bulk single crystals combined with ultrafast demagnetization studies can, thus, help to understand the impact of stoichiometry and order on ultrafast spin dynamics.Here, we present a comparative study of the structural ordering and magnetization dynamics for thin films and bulk single crystals of the family of Heusler alloys with composition Co 2 Fe 1 − x Mn x Si. The local ordering is studied by 59 Co nuclear magnetic resonance (NMR) spectroscopy, while the time-resolved magneto-optical Kerr effect gives access to the ultrafast magnetization dynamics. In the NMR studies we find significant differences between bulk single crystals and thin films, both regarding local ordering and stoichiometry. The ultrafast magnetization dynamics, on the other hand, turns out to be mostly unaffected by the observed structural differences, especially on the time scale of some hundreds of femtoseconds. These results confirm hole-mediated spin-flip processes as the main mechanism for ultrafast demagnetization and the robustness of this demagnetization channel against defect states in the minority band gap as well as against the energetic position of the band gap with respect to the Fermi energy. The very small differences observed in the magnetization dynamics on the picosecond time-scale, on the other hand, can be explained by considering the

  13. Ultrafast carrier dynamics in tetrahedral amorphous carbon: carrier trapping versus electron-hole recombination

    International Nuclear Information System (INIS)

    Carpene, E; Mancini, E; Dallera, C; Schwen, D; Ronning, C; Silvestri, S De

    2007-01-01

    We report the investigation of the ultrafast carrier dynamics in thin tetrahedral amorphous carbon films by means of femtosecond time-resolved reflectivity. We estimated the electron-phonon relaxation time of a few hundred femtoseconds and we observed that under low optical excitation photo-generated carriers decay according to two distinct mechanisms attributed to trapping by defect states and direct electron-hole recombination. With high excitation, when photo-carrier and trap densities are comparable, a unique temporal evolution develops, as the time dependence of the trapping process becomes degenerate with the electron-hole recombination. This experimental evidence highlights the role of defects in the ultrafast electronic dynamics and is not specific to this particular form of carbon, but has general validity for amorphous and disordered semiconductors

  14. Determination of hot carrier energy distributions from inversion of ultrafast pump-probe reflectivity measurements.

    Science.gov (United States)

    Heilpern, Tal; Manjare, Manoj; Govorov, Alexander O; Wiederrecht, Gary P; Gray, Stephen K; Harutyunyan, Hayk

    2018-05-10

    Developing a fundamental understanding of ultrafast non-thermal processes in metallic nanosystems will lead to applications in photodetection, photochemistry and photonic circuitry. Typically, non-thermal and thermal carrier populations in plasmonic systems are inferred either by making assumptions about the functional form of the initial energy distribution or using indirect sensors like localized plasmon frequency shifts. Here we directly determine non-thermal and thermal distributions and dynamics in thin films by applying a double inversion procedure to optical pump-probe data that relates the reflectivity changes around Fermi energy to the changes in the dielectric function and in the single-electron energy band occupancies. When applied to normal incidence measurements our method uncovers the ultrafast excitation of a non-Fermi-Dirac distribution and its subsequent thermalization dynamics. Furthermore, when applied to the Kretschmann configuration, we show that the excitation of propagating plasmons leads to a broader energy distribution of electrons due to the enhanced Landau damping.

  15. Ultrafast electron and energy transfer in dye-sensitized iron oxide and oxyhydroxide nanoparticles

    DEFF Research Database (Denmark)

    Gilbert, Benjamin; Katz, Jordan E.; Huse, Nils

    2013-01-01

    photo-initiated interfacial electron transfer. This approach enables time-resolved study of the fate and mobility of electrons within the solid phase. However, complete analysis of the ultrafast processes following dye photoexcitation of the sensitized iron(iii) oxide nanoparticles has not been reported....... We addressed this topic by performing femtosecond transient absorption (TA) measurements of aqueous suspensions of uncoated and DCF-sensitized iron oxide and oxyhydroxide nanoparticles, and an aqueous iron(iii)–dye complex. Following light absorption, excited state relaxation times of the dye of 115...... a four-state model of the dye-sensitized system, finding electron and energy transfer to occur on the same ultrafast timescale. The interfacial electron transfer rates for iron oxides are very close to those previously reported for DCF-sensitized titanium dioxide (for which dye–oxide energy transfer...

  16. Bunch evolution study in optimization of MeV ultrafast electron diffraction

    Science.gov (United States)

    Lu, Xian-Hai; Du, Ying-Chao; Huang, Wen-Hui; Tang, Chuan-Xiang

    2014-12-01

    Megaelectronvolt ultrafast electron diffraction (UED) is a promising detection tool for ultrafast processes. The quality of diffraction image is determined by the transverse evolution of the probe bunch. In this paper, we study the contributing terms of the emittance and space charge effects to the bunch evolution in the MeV UED scheme, employing a mean-field model with an ellipsoidal distribution as well as particle tracking simulation. The small transverse dimension of the drive laser is found to be critical to improve the reciprocal resolution, exploiting both smaller emittance and larger transverse bunch size before the solenoid. The degradation of the reciprocal spatial resolution caused by the space charge effects should be carefully controlled.

  17. Bunch evolution study in optimization of MeV ultrafast electron diffraction

    International Nuclear Information System (INIS)

    Lu Xianhai; Du Yingchao; Huang Wenhui; Tang Chuanxiang

    2014-01-01

    transverse ultrafast electron diffraction (UED) is a promising detection tool for ultrafast processes. The quality of diffraction image is determined by the transverse evolution of the probe bunch. In this paper, we study the contributing terms of the emittance and space charge effects to the bunch evolution in the MeV UED scheme, employing a mean-field model with an ellipsoidal distribution as well as particle tracking simulation. The small transverse dimension of the drive laser is found to be critical to improve the reciprocal resolution, exploiting both smaller emittance and larger transverse bunch size before the solenoid. The degradation of the reciprocal spatial resolution caused by the space charge effects should be carefully controlled. (authors)

  18. Ultrafast Ge-Te bond dynamics in a phase-change superlattice

    Science.gov (United States)

    Malvestuto, Marco; Caretta, Antonio; Casarin, Barbara; Cilento, Federico; Dell'Angela, Martina; Fausti, Daniele; Calarco, Raffaella; Kooi, Bart J.; Varesi, Enrico; Robertson, John; Parmigiani, Fulvio

    2016-09-01

    A long-standing question for avant-garde data storage technology concerns the nature of the ultrafast photoinduced phase transformations in the wide class of chalcogenide phase-change materials (PCMs). Overall, a comprehensive understanding of the microstructural evolution and the relevant kinetics mechanisms accompanying the out-of-equilibrium phases is still missing. Here, after overheating a phase-change chalcogenide superlattice by an ultrafast laser pulse, we indirectly track the lattice relaxation by time resolved x-ray absorption spectroscopy (tr-XAS) with a sub-ns time resolution. The approach to the tr-XAS experimental results reported in this work provides an atomistic insight of the mechanism that takes place during the cooling process; meanwhile a first-principles model mimicking the microscopic distortions accounts for a straightforward representation of the observed dynamics. Finally, we envisage that our approach can be applied in future studies addressing the role of dynamical structural strain in PCMs.

  19. New Applications of Ultrafast Spectroscopy

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher

    1999-01-01

    Dephasing processes in the optical transitions in low-dimensional semiconductor nanostructures are studied by a novel technique involving a speckle analysis of the secondary emission after a short-pulse resonant excitation. The results are compared with more conventional transient four-wave mixin...

  20. Enantioselective synthesis of almorexant via iridium-catalysed intramolecular allylic amidation

    NARCIS (Netherlands)

    Fananas Mastral, Martin; Teichert, Johannes F.; Fernandez-Salas, Jose Antonio; Heijnen, Dorus; Feringa, Ben L.

    2013-01-01

    An enantioselective synthesis of almorexant, a potent antagonist of human orexin receptors, is presented. The chiral tetrahydroisoquinoline core structure was prepared via iridium-catalysed asymmetric intramolecular allylic amidation. Further key catalytic steps of the synthesis include an oxidative

  1. Nickel-Catalyzed C-S Bond Formation via Decarbonylative Thioetherification of Esters, Amides and Intramolecular Recombination Fragment Coupling of Thioesters

    KAUST Repository

    Lee, Shao-Chi

    2018-01-15

    A nickel catalyzed cross-coupling protocol for the straightforward C-S bond formation has been developed. Various mercaptans and a wide range of ester and amide substrates bearing various substituents were tolerated in this process which afforded products in good to excellent yields. Furthermore, an intramolecular protocol for the synthesis of thioethers starting from thioesters has been developed. The utility of this protocol has been demonstrated in the synthesis of benzothiophene on the bench top.

  2. Nickel-Catalyzed C-S Bond Formation via Decarbonylative Thioetherification of Esters, Amides and Intramolecular Recombination Fragment Coupling of Thioesters

    KAUST Repository

    Lee, Shao-Chi; Liao, Hsuan-Hung; Chatupheeraphat, Adisak; Rueping, Magnus

    2018-01-01

    A nickel catalyzed cross-coupling protocol for the straightforward C-S bond formation has been developed. Various mercaptans and a wide range of ester and amide substrates bearing various substituents were tolerated in this process which afforded products in good to excellent yields. Furthermore, an intramolecular protocol for the synthesis of thioethers starting from thioesters has been developed. The utility of this protocol has been demonstrated in the synthesis of benzothiophene on the bench top.

  3. A US Based Ultrafast Interdisciplinary Research Facility

    Science.gov (United States)

    Gueye, Paul; Hill, Wendell; Johnson, Anthony

    2006-10-01

    The US scientific competitiveness on the world arena has substantially decreased due to the lack of funding and training of qualified personnel. Most of the potential workforce found in higher education is composed of foreign students and post-docs. In the specific field of low- and high-field science, the European and Asian communities are rapidly catching-up with the US, even leading in some areas. To remain the leader in ultrafast science and technology, new visions and commitment must be embraced. For that reason, an international effort of more than 70 countries for a US-based interdisciplinary research facility using ultrafast laser technology is under development. It will provide research and educational training, as well as new venues for a strong collaboration between the fields of astrophysics, nuclear/high energy physics, plasma physics, optical sciences, biological and medical physics. This facility will consist of a uniquely designed high contrast multi-lines concept housing twenty experimental rooms shared between four beams:[0.1 TW, 1 kHz], [10 TW, 9 kHz], [100-200 TW, 10 Hz] and [500 TW, 10 Hz]. The detail schematic of this multi-laser system, foreseen research and educational programs, and organizational structure of this facility will be presented.

  4. Optimization and practical implementation of ultrafast 2D NMR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz Junior, Luiz H. K., E-mail: professorkeng@gmail.com [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Universidade Federal de Goias (UFGO), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Giraudeau, Patrick [Universite de Nantes (France). CNRS, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation

    2013-09-01

    Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively. (author)

  5. TDDFT study on intramolecular hydrogen bond of photoexcited methyl salicylate.

    Science.gov (United States)

    Qu, Peng; Tian, Dongxu

    2014-01-01

    The equilibrium geometries, IR-spectra and transition mechanism of intramolecular hydrogen-bonded methyl salicylate in excited state were studied using DFT and TDDFT with 6-31++G (d, p) basis set. The length of hydrogen bond OH⋯OC is decreased from 1.73 Å in the ground state to 1.41 and 1.69 Å in the excited S1 and S3 states. The increase of bond length for HO and CO group also indicates that in excited state the hydrogen bond OH⋯OC is strengthened. IR spectra show HO and CO stretching bands are strongly redshifted by 1387 and 67 cm(-1) in the excited S1 and S3 states comparing to the ground state. The excitation energy and the absorption spectrum show the S3 state is the main excited state of the low-lying excited states. By analyzing the frontier molecular orbitals, the transition from the ground state to the excited S1 and S3 states was predicted to be the π→π∗ mode. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Intramolecular oxidative deselenization of acylselenoureas: a facile synthesis of benzoxazole amides and carbonic anhydrase inhibitors.

    Science.gov (United States)

    Angeli, A; Peat, T S; Bartolucci, G; Nocentini, A; Supuran, C T; Carta, F

    2016-12-28

    A mild, efficient and one pot procedure to access benzoxazoles using easily accessible acylselenoureas as starting materials has been discovered. Mechanistic studies revealed a pH dependent intramolecular oxidative deselenization, with ring closure due to an intramolecular nucleophilic attack of a phenoxide ion. All the benzoxazoles herein reported possessed a primary sulfonamide zinc binding group and showed effective inhibitory action on the enzymes, carbonic anhydrases.

  7. A novel and facile decay path of Criegee intermediates by intramolecular insertion reactions via roaming transition states

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Trong-Nghia [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Department of Physical Chemistry, Hanoi University of Science and Technology, Hanoi (Viet Nam); Putikam, Raghunath; Lin, M. C., E-mail: chemmcl@emory.edu [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan (China)

    2015-03-28

    We have discovered a new and highly competitive product channel in the unimolecular decay process for small Criegee intermediates, CH{sub 2}OO and anti/syn-CH{sub 3}C(H)OO, occurring by intramolecular insertion reactions via a roaming-like transition state (TS) based on quantum-chemical calculations. Our results show that in the decomposition of CH{sub 2}OO and anti-CH{sub 3}C(H)OO, the predominant paths directly produce cis-HC(O)OH and syn-CH{sub 3}C(O)OH acids with >110 kcal/mol exothermicities via loose roaming-like insertion TSs involving the terminal O atom and the neighboring C–H bonds. For syn-CH{sub 3}C(H)OO, the major decomposition channel occurs by abstraction of a H atom from the CH{sub 3} group by the terminal O atom producing CH{sub 2}C(H)O–OH. At 298 K, the intramolecular insertion process in CH{sub 2}OO was found to be 600 times faster than the commonly assumed ring-closing reaction.

  8. A novel and facile decay path of Criegee intermediates by intramolecular insertion reactions via roaming transition states

    International Nuclear Information System (INIS)

    Nguyen, Trong-Nghia; Putikam, Raghunath; Lin, M. C.

    2015-01-01

    We have discovered a new and highly competitive product channel in the unimolecular decay process for small Criegee intermediates, CH 2 OO and anti/syn-CH 3 C(H)OO, occurring by intramolecular insertion reactions via a roaming-like transition state (TS) based on quantum-chemical calculations. Our results show that in the decomposition of CH 2 OO and anti-CH 3 C(H)OO, the predominant paths directly produce cis-HC(O)OH and syn-CH 3 C(O)OH acids with >110 kcal/mol exothermicities via loose roaming-like insertion TSs involving the terminal O atom and the neighboring C–H bonds. For syn-CH 3 C(H)OO, the major decomposition channel occurs by abstraction of a H atom from the CH 3 group by the terminal O atom producing CH 2 C(H)O–OH. At 298 K, the intramolecular insertion process in CH 2 OO was found to be 600 times faster than the commonly assumed ring-closing reaction

  9. On the Catalytic Effect of Water in the Intramolecular Diels–Alder Reaction of Quinone Systems: A Theoretical Study

    Directory of Open Access Journals (Sweden)

    Renato Contreras

    2012-11-01

    Full Text Available The mechanism of the intramolecular Diels–Alder (IMDA reaction of benzoquinone 1, in the absence and in the presence of three water molecules, 1w, has been studied by means of density functional theory (DFT methods, using the M05-2X and B3LYP functionals for exploration of the potential energy surface (PES. The energy and geometrical results obtained are complemented with a population analysis using the NBO method, and an analysis based on the global, local and group electrophilicity and nucleophilicity indices. Both implicit and explicit solvation emphasize the increase of the polarity of the reaction and the reduction of activation free energies associated with the transition states (TSs of this IMDA process. These results are reinforced by the analysis of the reactivity indices derived from the conceptual DFT, which show that the increase of the electrophilicity of the quinone framework by the hydrogen-bond formation correctly explains the high polar character of this intramolecular process. Large polarization at the TSs promoted by hydrogen-bonds and implicit solvation by water together with a high electrophilicity-nucleophilicity difference consistently explains the catalytic effects of water molecules.

  10. Pentacene Dimers as a Critical Tool for the Investigation of Intramolecular Singlet Fission.

    Science.gov (United States)

    Hetzer, Constantin; Guldi, Dirk M; Tykwinski, Rik R

    2018-01-11

    Singlet fission (SF) involves the spontaneous splitting of a photoexcited singlet state into a pair of triplets, and it holds great promise toward the realization of more efficient solar cells. Although the process of SF has been known since the 1960s, debate regarding the underlying mechanism continues to this day, especially for molecular materials. A number of different chromophores have been synthesized and studied in order to better understand the process of SF. These previous reports have established that pentacene and its derivatives are especially well-suited for the study of SF, since the energetic requirement E(S 1 )≥2E(T 1 ) is fulfilled rendering the process exothermic and unidirectional. Dimeric pentacene derivatives, in which individual pentacene chromophores are tethered by a "spacer", have emerged as the system of choice toward exploring the mechanism of intramolecular singlet fission (iSF). The dimeric structure, and in particular the spacer, allows for controlling and tuning the distance, geometric relationship, and electronic coupling between the two pentacene moieties. This Minireview describes recent advances using pentacene dimers for the investigation of iSF. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Theory of pump–probe ultrafast photoemission and X-ray absorption spectra

    Energy Technology Data Exchange (ETDEWEB)

    Fujikawa, Takashi, E-mail: tfujikawa@faculty.chiba-u.jp; Niki, Kaori

    2016-01-15

    Highlights: • Pump–probe ultrafast XAFS and XPS spectra are theoretically studied. • Keldysh Green's function theory is applied. • Important many-body effects are explicitly included. - Abstract: Keldysh Green's function approach is extensively used in order to derive practical formulas to analyze pump–probe ultrafast photoemission and X-ray absorption spectra. Here the pump pulse is strong enough whereas the probe X-ray pulse can be treated by use of a perturbation theory. We expand full Green's function in terms of renormalized Green's function without the interaction between electrons and probe pulse. The present theoretical formulas allow us to handle the intrinsic and extrinsic losses, and furthermore resonant effects in X-ray Absorption Fine Structures (XAFS). To understand the radiation field screening in XPS spectra, we have to use more sophisticated theoretical approach. In the ultrafast XPS and XAFS analyses the intrinsic and extrinsic loss effects can interfere as well. In the XAFS studies careful analyses are necessary to handle extrinsic losses in terms of damped photoelectron propagation. The nonequilibrium dynamics after the pump pulse irradiation is well described by use of the time-dependent Dyson orbitals. Well above the edge threshold, ultrafast photoelectron diffraction and extended X-ray absorption fine structure (EXAFS) provide us with transient structural change after the laser pump excitations. In addition to these slow processes, the rapid oscillation in time plays an important role related to pump electronic excitations. Near threshold detailed information could be obtained for the combined electronic and structural dynamics. In particular high-energy photoemission and EXAFS are not so influenced by the details of excited states by pump pulse. Random-Phase Approximation (RPA)-boson approach is introduced to derive some practical formulas for time-dependent intrinsic amplitudes.

  12. Parametric spectro-temporal analyzer (PASTA) for ultrafast optical performance monitoring

    Science.gov (United States)

    Zhang, Chi; Wong, Kenneth K. Y.

    2013-12-01

    Ultrafast optical spectrum monitoring is one of the most challenging tasks in observing ultrafast phenomena, such as the spectroscopy, dynamic observation of the laser cavity, and spectral encoded imaging systems. However, conventional method such as optical spectrum analyzer (OSA) spatially disperses the spectrum, but the space-to-time mapping is realized by mechanical rotation of a grating, so are incapable of operating at high speed. Besides the spatial dispersion, temporal dispersion provided by dispersive fiber can also stretches the spectrum in time domain in an ultrafast manner, but is primarily confined in measuring short pulses. In view of these constraints, here we present a real-time spectrum analyzer called parametric spectro-temporal analyzer (PASTA), which is based on the time-lens focusing mechanism. It achieves a 100-MHz frame rate and can measure arbitrary waveforms. For the first time, we observe the dynamic spectrum of an ultrafast swept-source: Fourier domain mode-locked (FDML) laser, and the spectrum evolution of a laser cavity during its stabilizing process. In addition to the basic single-lens structure, the multi-lens configurations (e.g. telescope or wide-angle scope) will provide a versatile operating condition, which can zoom in to achieve 0.05-nm resolution and zoom out to achieve 10-nm observation range, namely 17 times zoom in/out ratio. In view of the goal of achieving spectrum analysis with fine accuracy, PASTA provides a promising path to study the real-time spectrum of some dynamic phenomena and non-repetitive events, with orders of magnitude enhancement in the frame rate over conventional OSAs.

  13. Tracking of the nuclear wavepacket motion in cyanine photoisomerization by ultrafast pump-dump-probe spectroscopy.

    Science.gov (United States)

    Wei, Zhengrong; Nakamura, Takumi; Takeuchi, Satoshi; Tahara, Tahei

    2011-06-01

    Understanding ultrafast reactions, which proceed on a time scale of nuclear motions, requires a quantitative characterization of the structural dynamics. To track such structural changes with time, we studied a nuclear wavepacket motion in photoisomerization of a prototype cyanine dye, 1,1'-diethyl-4,4'-cyanine, by ultrafast pump-dump-probe measurements in solution. The temporal evolution of wavepacket motion was examined by monitoring the efficiency of stimulated emission dumping, which was obtained from the recovery of a ground-state bleaching signal. The dump efficiency versus pump-dump delay exhibited a finite rise time, and it became longer (97 fs → 330 fs → 390 fs) as the dump pulse was tuned to longer wavelengths (690 nm → 950 nm → 1200 nm). This result demonstrates a continuous migration of the leading edge of the wavepacket on the excited-state potential from the Franck-Condon region toward the potential minimum. A slowly decaying feature of the dump efficiency indicated a considerable broadening of the wavepacket over a wide range of the potential, which results in the spread of a population distribution on the flat S(1) potential energy surface. The rapid migration as well as broadening of the wavepacket manifests a continuous nature of the structural dynamics and provides an intuitive visualization of this ultrafast reaction. We also discussed experimental strategies to evaluate reliable dump efficiencies separately from other ultrafast processes and showed a high capability and possibility of the pump-dump-probe method for spectroscopic investigation of unexplored potential regions such as conical intersections. © 2011 American Chemical Society

  14. Probing Ultrafast Electron Dynamics at Surfaces Using Soft X-Ray Transient Reflectivity Spectroscopy

    Science.gov (United States)

    Baker, L. Robert; Husek, Jakub; Biswas, Somnath; Cirri, Anthony

    The ability to probe electron dynamics with surface sensitivity on the ultrafast time scale is critical for understanding processes such as charge separation, injection, and surface trapping that mediate efficiency in catalytic and energy conversion materials. Toward this goal, we have developed a high harmonic generation (HHG) light source for femtosecond soft x-ray reflectivity. Using this light source we investigated the ultrafast carrier dynamics at the surface of single crystalline α-Fe2O3, polycrystalline α-Fe2O3, and the mixed metal oxide, CuFeO2. We have recently demonstrated that CuFeO2 in particular is a selective catalyst for photo-electrochemical CO2 reduction to acetate; however, the role of electronic structure and charge carrier dynamics in mediating catalytic selectivity has not been well understood. Soft x-ray reflectivity measurements probe the M2,3, edges of the 3d transition metals, which provide oxidation and spin state resolution with element specificity. In addition to chemical state specificity, these measurements are also surface sensitive, and by independently simulating the contributions of the real and imaginary components of the complex refractive index, we can differentiate between surface and sub-surface contributions to the excited state spectrum. Accordingly, this work demonstrates the ability to probe ultrafast carrier dynamics in catalytic materials with element and chemical state specificity and with surface sensitivity.

  15. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy

    Science.gov (United States)

    Priebe, Katharina E.; Rathje, Christopher; Yalunin, Sergey V.; Hohage, Thorsten; Feist, Armin; Schäfer, Sascha; Ropers, Claus

    2017-12-01

    Ultrafast electron and X-ray imaging and spectroscopy are the basis for an ongoing revolution in the understanding of dynamical atomic-scale processes in matter. The underlying technology relies heavily on laser science for the generation and characterization of ever shorter pulses. Recent findings suggest that ultrafast electron microscopy with attosecond-structured wavefunctions may be feasible. However, such future technologies call for means to both prepare and fully analyse the corresponding free-electron quantum states. Here, we introduce a framework for the preparation, coherent manipulation and characterization of free-electron quantum states, experimentally demonstrating attosecond electron pulse trains. Phase-locked optical fields coherently control the electron wavefunction along the beam direction. We establish a new variant of quantum state tomography—`SQUIRRELS'—for free-electron ensembles. The ability to tailor and quantitatively map electron quantum states will promote the nanoscale study of electron-matter entanglement and new forms of ultrafast electron microscopy down to the attosecond regime.

  16. The Ultrafast Wolff Rearrangement in the Gas Phase

    Science.gov (United States)

    Steinbacher, Andreas; Roeding, Sebastian; Brixner, Tobias; Nuernberger, Patrick

    The Wolff rearrangement of gas-phase 5-diazo Meldrum's acid is disclosed with femtosecond ion spectroscopy. Distinct differences are found for 267 nm and 200 nm excitation, the latter leading to even two ultrafast rearrangement reactions.

  17. Ultrafast Plasmonic Electron Emission from Ag Nanolayers with Different Roughness

    Czech Academy of Sciences Publication Activity Database

    Márton, I.; Ayadi, V.; Rácz, P.; Stefaniuk, T.; Wróbel, Piotr; Földi, P.; Dombi, P.

    2016-01-01

    Roč. 11, č. 3 (2016), s. 811-816 ISSN 1557-1955 Institutional support: RVO:67985882 Keywords : Nanoparticles * Ultrafast phenomena * Electron emission Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.139, year: 2016

  18. Ultrafast dynamic ellipsometry and spectroscopies of laser shocked materials

    Energy Technology Data Exchange (ETDEWEB)

    Mcgrane, Shawn David [Los Alamos National Laboratory; Bolme, Cindy B [Los Alamos National Laboratory; Whitley, Von H [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory

    2010-01-01

    Ultrafast ellipsometry and transient absorption spectroscopies are used to measure material dynamics under extreme conditions of temperature, pressure, and volumetric compression induced by shock wave loading with a chirped, spectrally clipped shock drive pulse.

  19. Direct Characterization of Ultrafast Energy-Time Entangled Photon Pairs.

    Science.gov (United States)

    MacLean, Jean-Philippe W; Donohue, John M; Resch, Kevin J

    2018-02-02

    Energy-time entangled photons are critical in many quantum optical phenomena and have emerged as important elements in quantum information protocols. Entanglement in this degree of freedom often manifests itself on ultrafast time scales, making it very difficult to detect, whether one employs direct or interferometric techniques, as photon-counting detectors have insufficient time resolution. Here, we implement ultrafast photon counters based on nonlinear interactions and strong femtosecond laser pulses to probe energy-time entanglement in this important regime. Using this technique and single-photon spectrometers, we characterize all the spectral and temporal correlations of two entangled photons with femtosecond resolution. This enables the witnessing of energy-time entanglement using uncertainty relations and the direct observation of nonlocal dispersion cancellation on ultrafast time scales. These techniques are essential to understand and control the energy-time degree of freedom of light for ultrafast quantum optics.

  20. Spectroscopic and theoretical investigations on intramolecular charge transfer phenomenon in 1-3-dioxolane derivative

    Science.gov (United States)

    Zhang, Zhiyong; Zhang, Zhongzhi; Luo, Yijing; Sun, Shanshan; Zhang, Guangqing

    2018-02-01

    High fluorescence quantum yield (FQY) and large Stokes shift (SS) cannot be easily achieved simultaneously by traditional PICT or TICT fluorescent probe. However, an 1-3-dioxolane derivative named 5-methyl-8,9-dihydro-5H-[1,3]dioxolo[4,5-b]carbazol-6(7H)-one (MDDCO) features both high FQY and large SS. The purpose of this study is to search the mechanism behind this phenomenon by theoretical method. Simulated structure changes and charge transfer suggest ICT process in MDDCO is similar to PLICT (Planarized Intramolecular Charge Transfer) process. Calculated UV-Vis spectra and fluorescence spectra show that PLICT-like state (S1 state) of MDDCO leads to large SS. Computed transient-absorption spectra and radiative decay rates indicate that PLICT-like state is key factor for high FQY of MDDCO. These findings suggest that PLICT-like state in 1,3-dioxolane derivatives can achieve both large SS and high FQY, which presents a new method for high-performance fluorescent probe design.

  1. Lipid Regulated Intramolecular Conformational Dynamics of SNARE-Protein Ykt6

    Science.gov (United States)

    Dai, Yawei; Seeger, Markus; Weng, Jingwei; Song, Song; Wang, Wenning; Tan, Yan-Wen

    2016-08-01

    Cellular informational and metabolic processes are propagated with specific membrane fusions governed by soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNARE). SNARE protein Ykt6 is highly expressed in brain neurons and plays a critical role in the membrane-trafficking process. Studies suggested that Ykt6 undergoes a conformational change at the interface between its longin domain and the SNARE core. In this work, we study the conformational state distributions and dynamics of rat Ykt6 by means of single-molecule Förster Resonance Energy Transfer (smFRET) and Fluorescence Cross-Correlation Spectroscopy (FCCS). We observed that intramolecular conformational dynamics between longin domain and SNARE core occurred at the timescale ~200 μs. Furthermore, this dynamics can be regulated and even eliminated by the presence of lipid dodecylphoshpocholine (DPC). Our molecular dynamic (MD) simulations have shown that, the SNARE core exhibits a flexible structure while the longin domain retains relatively stable in apo state. Combining single molecule experiments and theoretical MD simulations, we are the first to provide a quantitative dynamics of Ykt6 and explain the functional conformational change from a qualitative point of view.

  2. An ultrafast spectroscopic and quantum mechanical investigation of multiple emissions in push-pull pyridinium derivatives bearing different electron donors.

    Science.gov (United States)

    Carlotti, B; Benassi, E; Cesaretti, A; Fortuna, C G; Spalletti, A; Barone, V; Elisei, F

    2015-08-28

    A joint experimental and theoretical approach, involving state-of-the-art femtosecond fluorescence up-conversion measurements and quantum mechanical computations including vibronic effects, was employed to get a deep insight into the excited state dynamics of two cationic dipolar chromophores (Donor-π-Acceptor(+)) where the electron deficient portion is a N-methyl pyridinium and the electron donor a trimethoxyphenyl or a pyrene, respectively. The ultrafast spectroscopic investigation, and the time resolved area normalised emission spectra in particular, revealed a peculiar multiple emissive behaviour and allowed the distinct emitting states to be remarkably distinguished from solvation dynamics, occurring in water in a similar timescale. The two and three emissions experimentally detected for the trimethoxyphenyl and pyrene derivatives, respectively, were associated with specific local emissive minima in the potential energy surface of S1 on the ground of quantum-mechanical calculations. A low polar and planar Locally Excited (LE) state together with a highly polar and Twisted Intramolecular Charge Transfer (TICT) state is identified to be responsible for the dual emission of the trimethoxyphenyl compound. Interestingly, the more complex photobehaviour of the pyrenyl derivative was explained considering the contribution to the fluorescence coming not only from the LE and TICT states but also from a nearly Planar Intramolecular Charge Transfer (PICT) state, with both the TICT and the PICT generated from LE by progressive torsion around the quasi-single bond between the methylpyridinium and the ethene bridge. These findings point to an interconversion between rotamers for the pyrene compound taking place in its excited state against the Non-equilibrated Excited Rotamers (NEER) principle.

  3. Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU

    Directory of Open Access Journals (Sweden)

    Arefan D

    2015-06-01

    Full Text Available Digital Breast Tomosynthesis (DBT is a technology that creates three dimensional (3D images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study ultra-fast image reconstruction technique for Tomosynthesis Mammography systems using Graphics Processing Unit (GPU. At first, projections of Tomosynthesis mammography have been simulated. In order to produce Tomosynthesis projections, it has been designed a 3D breast phantom from empirical data. It is based on MRI data in its natural form. Then, projections have been created from 3D breast phantom. The image reconstruction algorithm based on FBP was programmed with C++ language in two methods using central processing unit (CPU card and the Graphics Processing Unit (GPU. It calculated the time of image reconstruction in two kinds of programming (using CPU and GPU.

  4. Study of intramolecular isotope heterogeneity of organic oxy acids in order to detect sophisticated wines and juice drinks

    Directory of Open Access Journals (Sweden)

    Kuzmina Helen

    2014-01-01

    Full Text Available According to International Code of Oenological Practices it is allowed to use acide L(+tartrique for wine acidification, while use of synthetic dihydroxysuccinic acid is forbidden. Today it is impossible to differentiate natural dihydroxysuccinic acid from synthetic one by standard techniques. Even by using very sensitive method of isotope mass spectrometry certain difficulties emerge because total isotope characteristics of carbon of dihydroxysuccinic acid of different nature have the same values. However, isotope characteristics of carbon of intramolecular structural groups of dihydroxysuccinic acid made of different raw materials differ significantly. This allows specifying the nature of dihydroxysuccinic acid that is used for making of wines and juice drinks. In Russia, scientific and research institute of beer brewing and wine-making industry carried out a work for studying isotope characteristics of intramolecular isotope heterogeneity of dihydroxysuccinic acid from different origins in order to identify wines and juice drinks. Isotope characteristics of organic oxy acids from different origins were studied including them obtained by synthetic way and numeric range of value δ13 C,‰ were specified. The obtained results allow performing identification tests of wines and juice drinks to find out the products that contain not specified additives as that allowed for its use in production process.

  5. TDDFT study on excited state intramolecular proton transfer mechanism in 2-amino-3-(2‧-benzazolyl)-quinolines

    Science.gov (United States)

    Jia, Xueli; Li, Chaozheng; Li, Donglin; Liu, Yufang

    2018-03-01

    The intramolecular proton transfer reaction of the 2-amino-3-(2‧-benzoxazolyl)-quinoline (ABO) and 2-amino-3-(2‧-benzothiazolyl)-quinoline (ABT) molecules in both S0 and S1 states at B3LYP/6-311 ++G(d,p) level in ethanol solvent have been studied to reveal the deactivation mechanism of the tautomers of the two molecules from the S1 state to the S0 state. The results show that the tautomers of ABO and ABT molecules may return to the S0 state by emitting fluorescence. In addition, the bond lengths, angles and infrared spectra are analyzed to confirm the hydrogen bonds strengthened upon photoexcitation, which can facilitate the proton transfer process. The frontier molecular orbitals (MOs) and natural bond orbital (NBO) are also calculated to indicate the intramolecular charge transfer which can be used to explore the tendency of ESIPT reaction. The potential energy surfaces of the ABO and ABT molecules in the S0 and S1 states have been constructed. According to the energy potential barrier of 9.12 kcal/mol for ABO molecule and 5.96 kcal/mol for ABT molecule, it can be indicated that the proton transfer may occur in the S1 state.

  6. Ultrafast demagnetisation dependence on film thickness: A TDDFT calculation

    Science.gov (United States)

    Singh, N.; Sharma, S.

    2018-04-01

    Ferromagnetic materials when subjected to intense laser pulses leads to reduction of their magnetisation on an ultrafast scale. Here, we perform an ab-initio calculation to study the behavior of ultrafast demagnetisation as a function of film thickness for Nickel as compared to the bulk of the material. In thin films surface formation results in amplification of demagnetisation with the percentage of demagnetisation depending upon the film thickness.

  7. Tissue strain rate estimator using ultrafast IQ complex data

    OpenAIRE

    TERNIFI , Redouane; Elkateb Hachemi , Melouka; Remenieras , Jean-Pierre

    2012-01-01

    International audience; Pulsatile motion of brain parenchyma results from cardiac and breathing cycles. In this study, transient motion of brain tissue was estimated using an Aixplorer® imaging system allowing an ultrafast 2D acquisition mode. The strain was computed directly from the ultrafast IQ complex data using the extended autocorrelation strain estimator (EASE), which provides great SNRs regardless of depth. The EASE first evaluates the autocorrelation function at each depth over a set...

  8. Ultrafast internal rotational dynamics of the azido group in (4S)-azidoproline: Chemical exchange 2DIR spectroscopic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung-Koo; Park, Kwang-Hee; Joo, Cheonik; Kwon, Hyeok-Jun; Han, Hogyu [Department of Chemistry, Korea University, Seoul 136-701 (Korea, Republic of); Ha, Jeong-Hyon [Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of); Park, Sungnam, E-mail: spark8@korea.ac.kr [Department of Chemistry, Korea University, Seoul 136-701 (Korea, Republic of); Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of); Cho, Minhaeng, E-mail: mcho@korea.ac.kr [Department of Chemistry, Korea University, Seoul 136-701 (Korea, Republic of); Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of); Research Institute for Natural Sciences, Korea University, Seoul 136-713 (Korea, Republic of)

    2012-03-02

    Graphical abstract: Internal rotational dynamics of the azido group in SA (Ac-(4S)-Azp-NHMe) was studied in real time by using ultrafast 2DIR spectroscopic method. The time constant of the internal rotation around the C{sup {gamma}}-N{sup {delta}} bond in SA was determined to be {tau}{sub ir} = 5.1 ps, which is found to be much faster than that around the C-C bond in ethane. Highlights: Black-Right-Pointing-Pointer Femtosecond two-dimensional IR spectroscopy of internal rotational dynamics. Black-Right-Pointing-Pointer Stereo-electronic effects of azido group in azido-derivatized proline peptide. Black-Right-Pointing-Pointer The timescale of the azido group internal rotation is about 5.1 ps. - Abstract: The azido group in 4-azidoproline (Azp) derivative, SA (Ac-(4S)-Azp-NHMe), can form an intramolecular electrostatic interaction with the backbone peptide in the s-trans and C{sup {gamma}}-endo conformations of SA. As a result, the azido group exists as two forms, bound and free, which are defined by the presence and absence of such interaction, respectively. The bound and free azido forms are spectrally resolved in the azido IR spectrum of SA in CHCl{sub 3}. Using the two-dimensional infrared (2DIR) and polarization-controlled IR pump-probe methods, we investigated the internal rotational and orientational relaxation dynamics of the azido group and determined the internal rotational time constant of the azido group to be 5.1 ps. The internal rotational motion is found to be responsible for the early part of the orientational relaxation of the azido group in SA. Thus, the femtosecond 2DIR spectroscopy is shown to be an ideal tool for studying ultrafast conformational dynamics of SA.

  9. New fast organic scintillators using intramolecular bromine quenching

    International Nuclear Information System (INIS)

    Berlman, I.B.; Lutz, S.S.; Flournoy, J.M.; Ashford, C.B.; Franks, L.A.

    1984-01-01

    Organic scintillator solutions with decay times as fast as 500 ps and with relatively high conversion efficiencies have been developed. The intramolecular quenching was achieved through the novel approach of adding a bromine atom to the 3- or 4-position of para-oligophenylenes, the fluorescent solutes in these binary solutions. The bromine serves to enhance singlet-to-triplet intersystem crossing in the chromophore, causing a reduction in the scintillation yield and a concomitant reduction in the decay time. The very fast value given above probably also involves some intermolecular self-quenching at high concentration. In addition, the bromine reduces the symmetry of the molecules, thereby increasing their solubility. Finally, an alkyl chain on the opposite para position further increases the solubility and also increases the immunity of the chromophore to quenching. The decay times for binary liquid solutions in toluene (at the indicated concentrations) were 0.51 ns for 4-BHTP (0.14 M), 0.75 ns for 3-BHTP (0.14 M), 0.57 ns for 3-BTP (0.14 M), and 1.3 ns for 4-BHQP (0.06 M). Binary plastics with 4-BHTP as the solute in concentrations up to 0.14 M were cast in polystyrene. The shortest decay time, 0.40 ns, was measured for the 0.14 M concentration. A plastic scintillator containing 3-BTP (0.11 M in polystyrene) had a decay time of 0.85 ns. These results compare favorably with the plastic scintillator BC-422 whose decay time is about 1.4 ns. (orig./HSI)

  10. Two-dimensional materials for ultrafast lasers

    International Nuclear Information System (INIS)

    Wang Fengqiu

    2017-01-01

    As the fundamental optical properties and novel photophysics of graphene and related two-dimensional (2D) crystals are being extensively investigated and revealed, a range of potential applications in optical and optoelectronic devices have been proposed and demonstrated. Of the many possibilities, the use of 2D materials as broadband, cost-effective and versatile ultrafast optical switches (or saturable absorbers) for short-pulsed lasers constitutes a rapidly developing field with not only a good number of publications, but also a promising prospect for commercial exploitation. This review primarily focuses on the recent development of pulsed lasers based on several representative 2D materials. The comparative advantages of these materials are discussed, and challenges to practical exploitation, which represent good future directions of research, are laid out. (paper)

  11. Ultrafast Synaptic Events in a Chalcogenide Memristor

    Science.gov (United States)

    Li, Yi; Zhong, Yingpeng; Xu, Lei; Zhang, Jinjian; Xu, Xiaohua; Sun, Huajun; Miao, Xiangshui

    2013-04-01

    Compact and power-efficient plastic electronic synapses are of fundamental importance to overcoming the bottlenecks of developing a neuromorphic chip. Memristor is a strong contender among the various electronic synapses in existence today. However, the speeds of synaptic events are relatively slow in most attempts at emulating synapses due to the material-related mechanism. Here we revealed the intrinsic memristance of stoichiometric crystalline Ge2Sb2Te5 that originates from the charge trapping and releasing by the defects. The device resistance states, representing synaptic weights, were precisely modulated by 30 ns potentiating/depressing electrical pulses. We demonstrated four spike-timing-dependent plasticity (STDP) forms by applying programmed pre- and postsynaptic spiking pulse pairs in different time windows ranging from 50 ms down to 500 ns, the latter of which is 105 times faster than the speed of STDP in human brain. This study provides new opportunities for building ultrafast neuromorphic computing systems and surpassing Von Neumann architecture.

  12. Laser-driven ultrafast antiproton beam

    Science.gov (United States)

    Li, Shun; Pei, Zhikun; Shen, Baifei; Xu, Jiancai; Zhang, Lingang; Zhang, Xiaomei; Xu, Tongjun; Yu, Yong; Bu, Zhigang

    2018-02-01

    Antiproton beam generation is investigated based on the ultra-intense femtosecond laser pulse by using two-dimensional particle-in-cell and Geant4 simulations. A high-flux proton beam with an energy of tens of GeV is generated in sequential radiation pressure and bubble regime and then shoots into a high-Z target for producing antiprotons. Both yield and energy of the antiproton beam increase almost linearly with the laser intensity. The generated antiproton beam has a short pulse duration of about 5 ps and its flux reaches 2 × 10 20 s - 1 at the laser intensity of 2.14 × 10 23 W / cm 2 . Compared to conventional methods, this new method based on the ultra-intense laser pulse is able to provide a compact, tunable, and ultrafast antiproton source, which is potentially useful for quark-gluon plasma study, all-optical antihydrogen generation, and so on.

  13. Ultrafast strain engineering in complex oxide heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, Paul; Caviglia, Andrea; Hu, Wanzheng; Bromberger, Hubertus; Singla, Rashmi; Mitrano, Matteo; Hoffmann, Matthias C.; Kaiser, Stefan; Foerst, Michael [Max-Planck Research Group for Structural Dynamics - Center for Free Electron Laser Science, University of Hamburg (Germany); Scherwitzl, Raoul; Zubko, Pavlo; Gariglio, Sergio; Triscone, Jean-Marc [Departement de Physique de la Matiere Condensee, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneve 4, Geneva (Switzerland); Cavalleri, Andrea [Max-Planck Research Group for Structural Dynamics - Center for Free Electron Laser Science, University of Hamburg (Germany); Department of Physics, Clarendon Laboratory, University of Oxford (United Kingdom)

    2012-07-01

    The mechanical coupling between the substrate and the thin film is expected to be effective on the ultrafast timescale, and could be exploited for the dynamic control of materials properties. Here, we demonstrate that a large-amplitude mid-infrared field, made resonant with a stretching mode of the substrate, can switch the electronic properties of a thin film across an interface. Exploiting dynamic strain propagation between different components of a heterostructure, insulating antiferromagnetic NdNiO{sub 3} is driven through a prompt, five-order-of-magnitude increase of the electrical conductivity, with resonant frequency and susceptibility that is controlled by choice of the substrate material. Vibrational phase control, extended here to a wide class of heterostructures and interfaces, may be conductive to new strategies for electronic phase control at THz repetition rates.

  14. Ultrafast photoconductor detector-laser-diode transmitter

    International Nuclear Information System (INIS)

    Wang, C.L.; Davis, B.A.; Davies, T.J.; Nelson, M.A.; Thomas, M.C.; Zagarino, P.A.

    1987-01-01

    We report the results of an experiment in which we used an ultrafast, photoconductive, radiation detector to drive a fast laser-diode transmitter. When we irradiated the neutron-damaged Cr-doped GaAs detector with 17-MeV electron beams, the temporal response was measured to be less than 30 ps. The pulses from this detector modulated a fast GaAlAs laser diode to transmit the laser output through 30- and 1100-m optical fibers. Preliminary results indicate that 50- and 80-ps time resolutions, respectively, are obtainable with these fibers. We are now working to integrate the photoconductive detector and the laser diode transmitter into a single chip

  15. Ultrafast photoconductive detector-laser-diode transmitter

    International Nuclear Information System (INIS)

    Wang, C.L.; Davies, T.J.; Nelson, M.A.; Thomas, M.C.; Zagarino, P.A.; Davis, B.A.

    1987-01-01

    The authors report the results of an experiment in which they used an ultrafast, photoconductive, radiation detector to drive a fast laser-diode transmitter. When they irradiated the neutron-damaged Cr-doped Ga/As detector with 17-MeV electron beams, the temporal response of was measured to be less than 30 ps. The pulses from this detector modulated a fast GaAlAs laser diode to transmit the laser output through 30- and 1100-m optical fibers. Preliminary results indicate that 50- and 80-ps time resolutions, respectively, are obtainable with these fibers. They are now working to integrate the photoconductive detector and the laser diode transmitter into a single chip

  16. Ultrafast proton shuttling in Psammocora cyan fluorescent protein.

    Science.gov (United States)

    Kennis, John T M; van Stokkum, Ivo H M; Peterson, Dayna S; Pandit, Anjali; Wachter, Rebekka M

    2013-09-26

    Cyan, green, yellow, and red fluorescent proteins (FPs) homologous to green fluorescent protein (GFP) are used extensively as model systems to study fundamental processes in photobiology, such as the capture of light energy by protein-embedded chromophores, color tuning by the protein matrix, energy conversion by Förster resonance energy transfer (FRET), and excited-state proton transfer (ESPT) reactions. Recently, a novel cyan fluorescent protein (CFP) termed psamFP488 was isolated from the genus Psammocora of reef building corals. Within the cyan color class, psamFP488 is unusual because it exhibits a significantly extended Stokes shift. Here, we applied ultrafast transient absorption and pump-dump-probe spectroscopy to investigate the mechanistic basis of psamFP488 fluorescence, complemented with fluorescence quantum yield and dynamic light scattering measurements. Transient absorption spectroscopy indicated that, upon excitation at 410 nm, the stimulated cyan emission rises in 170 fs. With pump-dump-probe spectroscopy, we observe a very short-lived (110 fs) ground-state intermediate that we assign to the deprotonated, anionic chromophore. In addition, a minor fraction (14%) decays with 3.5 ps to the ground state. Structural analysis of homologous proteins indicates that Glu-167 is likely positioned in sufficiently close vicinity to the chromophore to act as a proton acceptor. Our findings support a model where unusually fast ESPT from the neutral chromophore to Glu-167 with a time constant of 170 fs and resulting emission from the anionic chromophore forms the basis of the large psamFP488 Stokes shift. When dumped to the ground state, the proton on neutral Glu is very rapidly shuttled back to the anionic chromophore in 110 fs. Proton shuttling in excited and ground states is a factor of 20-4000 faster than in GFP, which probably results from a favorable hydrogen-bonding geometry between the chromophore phenolic oxygen and the glutamate acceptor, possibly

  17. Data and videos for ultrafast synchrotron X-ray imaging studies of metal solidification under ultrasound

    Directory of Open Access Journals (Sweden)

    Bing Wang

    2018-04-01

    Full Text Available The data presented in this article are related to the paper entitled ‘Ultrafast synchrotron X-ray imaging studies of microstructure fragmentation in solidification under ultrasound’ [Wang et al., Acta Mater. 144 (2018 505-515]. This data article provides further supporting information and analytical methods, including the data from both experimental and numerical simulation, as well as the Matlab code for processing the X-ray images. Six videos constructed from the processed synchrotron X-ray images are also provided.

  18. Extension - Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Anna Lee Tonkovich

    2008-08-11

    The need for cost effective technologies for upgrading coal mine methane to pipeline quality natural gas is becoming ever greater. The current work presents and investigates a new approach to reduce the impact of the most costly step in the conventional technology, nitrogen rejection. The proposed approach is based on the Velocys microchannel platform, which is being developed to commercialize compact and cost efficient chemical processing technology. For this separation, ultra fast thermal swing sorption is enabled by the very high rates of heat and mass transfer inherent in microchannel processing. In a first phase of the project solid adsorbents were explored. Feasibility of ultrafast thermal swing was demonstrated but the available adsorbents had insufficient differential methane capacity to achieve the required commercial economics. In a second phase, ionic liquids were adopted as absorbents of choice, and experimental work and economic analyses, performed to gauge their potential, showed promise for this novel alternative. Final conclusions suggest that a combination of a required cost target for ionic liquids or a methane capacity increase or a combination of both is required for commercialization.

  19. Physical Conditions in Ultra-fast Outflows in AGN

    Science.gov (United States)

    Kraemer, S. B.; Tombesi, F.; Bottorff, M. C.

    2018-01-01

    XMM-Newton and Suzaku spectra of Active Galactic Nuclei (AGN) have revealed highly ionized gas, in the form of absorption lines from H-like and He-like Fe. Some of these absorbers, ultra-fast outflows (UFOs), have radial velocities of up to 0.25c. We have undertaken a detailed photoionization study of high-ionization Fe absorbers, both UFOs and non-UFOs, in a sample of AGN observed by XMM-Newton. We find that the heating and cooling processes in UFOs are Compton-dominated, unlike the non-UFOs. Both types are characterized by force multipliers on the order of unity, which suggest that they cannot be radiatively accelerated in sub-Eddington AGN, unless they were much less ionized at their point of origin. However, such highly ionized gas can be accelerated via a magneto-hydrodynamic (MHD) wind. We explore this possibility by applying a cold MHD flow model to the UFO in the well-studied Seyfert galaxy, NGC 4151. We find that the UFO can be accelerated along magnetic streamlines anchored in the accretion disk. In the process, we have been able to constrain the magnetic field strength and the magnetic pressure in the UFO and have determined that the system is not in magnetic/gravitational equipartition. Open questions include the variability of the UFOs and the apparent lack of non-UFOs in UFO sources.

  20. Rapid long range intramolecular electron transfer within a steroid molecule with two electron binding groups

    International Nuclear Information System (INIS)

    Huddleston, R.K.; Miller, J.R.

    1983-01-01

    Intramolecular electron transfer has been observed to have occurred in less than 100 ns in a steroid molecule having two distinct electron binding groups separated by distances distributed from 7--11 A. Experiments were carried out in organic glasses at 77 K with pulse radiolysis techniques to create trapped electrons which were captured by a group on one end of the steroid molecule. Although one of the groups, benzoate, is held to the steroid spacer by a flexible linkage, the rigidity of the glassy matrices prevented movement to alter the initial distance. Interestingly, no effects of distance were seen: all ET processes appeared to have occurred much faster than our 100 ns time resolution, consistent with measurements of the rate of intermolecular electron transfer between the same functional groups in random solutions. Solvation energetics, on the other hand, had a remarkable influence on the extent and direction of electron transfer. A change in solvent polarity was observed to reverse the direction of electron transfer. Evidence was obtained for a distribution of solvation environments for ions in glasses which may be as broad as 0.15 eV

  1. Absence of Intramolecular Singlet Fission in Pentacene-Perylenediimide Heterodimers: The Role of Charge Transfer State.

    Science.gov (United States)

    Wang, Long; Wu, Yishi; Chen, Jianwei; Wang, Lanfen; Liu, Yanping; Yu, Zhenyi; Yao, Jiannian; Fu, Hongbing

    2017-11-16

    A new class of donor-acceptor heterodimers based on two singlet fission (SF)-active chromophores, i.e., pentacene (Pc) and perylenediimide (PDI), was developed to investigate the role of charge transfer (CT) state on the excitonic dynamics. The CT state is efficiently generated upon photoexcitation. However, the resulting CT state decays to different energy states depending on the energy levels of the CT state. It undergoes extremely rapid deactivation to the ground state in polar CH 2 Cl 2 , whereas it undergoes transformation to a Pc triplet in nonpolar toluene. The efficient triplet generation in toluene is not due to SF but CT-mediated intersystem crossing. In light of the energy landscape, it is suggested that the deep energy level of the CT state relative to that of the triplet pair state makes the CT state actually serve as a trap state that cannot undergoes an intramolecular singlet fission process. These results provide guidance for the design of SF materials and highlight the requisite for more widely applicable design principles.

  2. Intramolecular singlet-singlet energy transfer in antenna-substituted azoalkanes.

    Science.gov (United States)

    Pischel, Uwe; Huang, Fang; Nau, Werner M

    2004-03-01

    Two novel azoalkane bichromophores and related model compounds have been synthesised and photophysically characterised. Dimethylphenylsiloxy (DPSO) or dimethylnaphthylsiloxy (DNSO) serve as aromatic donor groups (antenna) and the azoalkane 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) as the acceptor. The UV spectral window of DBO (250-300 nm) allows selective excitation of the donor. Intramolecular singlet-singlet energy transfer to DBO is highly efficient and proceeds with quantum yields of 0.76 with DPSO and 0.99 with DNSO. The photophysical and spectral properties of the bichromophoric systems suggest that energy transfer occurs through diffusional approach of the donor and acceptor within a van der Waals contact at which the exchange mechanism is presumed to dominate. Furthermore, akin to the behaviour of electron-transfer systems in the Marcus inverted region, a rate of energy transfer 2.5 times slower was observed for the system with the more favourable energetics, i.e. singlet-singlet energy transfer from DPSO proceeded slower than from DNSO, although the process is more exergonic for DPSO (-142 kJ mol(-1) for DPSO versus-67 kJ mol(-1) for DNSO).

  3. A theoretical investigation on the regioselectivity of the intramolecular hetero Diels-Alder and 1,3-dipolar cycloaddition of 2-vinyloxybenzaldehyde derivatives

    Directory of Open Access Journals (Sweden)

    Hamzehloueian Mahshid

    2014-01-01

    Full Text Available The present study reports a systematic computational analysis of the two possible pathways, fused and bridged, for an intramolecular hetero Diels-Alder (IMHDA and an intramolecular 1,3-dipolar cycloaddition (IMDCA of 2-vinyloxybenzaldehyde derivatives. The potential energy surface analysis for both reactions is in agreement with experimental observations. The activation energies associated with the two regioisomeric channels in IMHDA reaction show that the bridged product is favored, although in IMDCA, the most stable TS results the fused product. The global electronic properties of fragments within each molecule were studied to discuss the reactivity patterns and charge transfer direction in the intramolecular processes. The asynchronicity of the bond formation and aromaticity of the optimized TSs in the Diels-Alder reaction as well as cycloaddition reaction were evaluated. Finally, 1H NMR chemical shifts of the possible regioisomers have been calculated using the GIAO method which of the most stable products are in agreement with the experimental data in the both reaction.

  4. Measurements of ultrafast spin-profiles and spin-diffusion properties in the domain wall area at a metal/ferromagnetic film interface.

    Science.gov (United States)

    Sant, T; Ksenzov, D; Capotondi, F; Pedersoli, E; Manfredda, M; Kiskinova, M; Zabel, H; Kläui, M; Lüning, J; Pietsch, U; Gutt, C

    2017-11-08

    Exciting a ferromagnetic material with an ultrashort IR laser pulse is known to induce spin dynamics by heating the spin system and by ultrafast spin diffusion processes. Here, we report on measurements of spin-profiles and spin diffusion properties in the vicinity of domain walls in the interface region between a metallic Al layer and a ferromagnetic Co/Pd thin film upon IR excitation. We followed the ultrafast temporal evolution by means of an ultrafast resonant magnetic scattering experiment in surface scattering geometry, which enables us to exploit the evolution of the domain network within a 1/e distance of 3 nm to 5 nm from the Al/FM film interface. We observe a magnetization-reversal close to the domain wall boundaries that becomes more pronounced closer to the Al/FM film interface. This magnetization-reversal is driven by the different transport properties of majority and minority carriers through a magnetically disordered domain network. Its finite lateral extension has allowed us to measure the ultrafast spin-diffusion coefficients and ultrafast spin velocities for majority and minority carriers upon IR excitation.

  5. Ruthenium-catalyzed intramolecular metathesis of dienes and its application in the synthesis of bridged and spiro azabicycles

    Science.gov (United States)

    Kuznetsov, N. Yu; Bubnov, Yu N.

    2015-07-01

    The review presents a historical excursion into catalytic alkene metathesis, covering the problems of history of the discovery of this process, as well as investigations on the properties, structure and reactivity of the most popular ruthenium catalysts for metathesis, mechanism of their action and decomposition. The main part covers studies devoted to the syntheses of bridged azabicyclic and 1-azaspirocyclic compounds comprising the intramolecular metathesis of dienes as the key step. The formation of a bicyclic skeleton of a series of natural bridged (cocaine, ferruginine, calystegines, and anatoxin-a) and spiro (pinnaic acids, halichlorine, hystrionicotoxin, and cephalotaxine) azabicycles, as well as their analogues and compounds with larger rings is demonstrated. The methods for the synthesis of diene precursors and the conditions for final assembling of the bicyclic compounds are considered in detail. The generalization of the literature data allows one to efficiently carry out the mentioned process taking into account the most important features. The bibliography includes 129 references.

  6. Ruthenium-catalyzed intramolecular metathesis of dienes and its application in the synthesis of bridged and spiro azabicycles

    International Nuclear Information System (INIS)

    Kuznetsov, N Yu; Bubnov, Yu N

    2015-01-01

    The review presents a historical excursion into catalytic alkene metathesis, covering the problems of history of the discovery of this process, as well as investigations on the properties, structure and reactivity of the most popular ruthenium catalysts for metathesis, mechanism of their action and decomposition. The main part covers studies devoted to the syntheses of bridged azabicyclic and 1-azaspirocyclic compounds comprising the intramolecular metathesis of dienes as the key step. The formation of a bicyclic skeleton of a series of natural bridged (cocaine, ferruginine, calystegines, and anatoxin-a) and spiro (pinnaic acids, halichlorine, hystrionicotoxin, and cephalotaxine) azabicycles, as well as their analogues and compounds with larger rings is demonstrated. The methods for the synthesis of diene precursors and the conditions for final assembling of the bicyclic compounds are considered in detail. The generalization of the literature data allows one to efficiently carry out the mentioned process taking into account the most important features. The bibliography includes 129 references

  7. Conductance and activation energy for electron transport in series and parallel intramolecular circuits.

    Science.gov (United States)

    Hsu, Liang-Yan; Wu, Ning; Rabitz, Herschel

    2016-11-30

    We investigate electron transport through series and parallel intramolecular circuits in the framework of the multi-level Redfield theory. Based on the assumption of weak monomer-bath couplings, the simulations depict the length and temperature dependence in six types of intramolecular circuits. In the tunneling regime, we find that the intramolecular circuit rule is only valid in the weak monomer coupling limit. In the thermally activated hopping regime, for circuits based on two different molecular units M a and M b with distinct activation energies E act,a > E act,b , the activation energies of M a and M b in series are nearly the same as E act,a while those in parallel are nearly the same as E act,b . This study gives a comprehensive description of electron transport through intramolecular circuits from tunneling to thermally activated hopping. We hope that this work can motivate additional studies to design intramolecular circuits based on different types of building blocks, and to explore the corresponding circuit laws and the length and temperature dependence of conductance.

  8. Ultrafast Photoinduced Electron Transfer in Bimolecular Donor-Acceptor Systems

    KAUST Repository

    Alsulami, Qana A.

    2016-11-30

    The efficiency of photoconversion systems, such as organic photovoltaic (OPV) cells, is largely controlled by a series of fundamental photophysical processes occurring at the interface before carrier collection. A profound understanding of ultrafast interfacial charge transfer (CT), charge separation (CS), and charge recombination (CR) is the key determinant to improving the overall performances of photovoltaic devices. The discussion in this dissertation primarily focuses on the relevant parameters that are involved in photon absorption, exciton separation, carrier transport, carrier recombination and carrier collection in organic photovoltaic devices. A combination of steady-state and femtosecond broadband transient spectroscopies was used to investigate the photoinduced charge carrier dynamics in various donor-acceptor systems. Furthermore, this study was extended to investigate some important factors that influence charge transfer in donor-acceptor systems, such as the morphology, energy band alignment, electronic properties and chemical structure. Interestingly, clear correlations among the steady-state measurements, time-resolved spectroscopy results, grain alignment of the electron transporting layer (ETL), carrier mobility, and device performance are found. In this thesis, we explored the significant impacts of ultrafast charge separation and charge recombination at donor/acceptor (D/A) interfaces on the performance of a conjugated polymer PTB7-Th device with three fullerene acceptors: PC71BM, PC61BM and IC60BA. Time-resolved laser spectroscopy and high-resolution electron microscopy can illustrate the basis for fabricating solar cell devices with improved performances. In addition, we studied the effects of the incorporation of heavy metals into π-conjugated chromophores on electron transfer by monitoring the triplet state lifetime of the oligomer using transient absorption spectroscopy, as understanding the mechanisms controlling intersystem crossing and

  9. Ultrafast Laser Engraving Method to Fabricate Gravure Plate for Printed Metal-Mesh Touch Panel

    Directory of Open Access Journals (Sweden)

    Weiyuan Chen

    2015-10-01

    Full Text Available In order to engrave gravure plate with fine lines structures, conventional art used lithography with dry/wet etching. Lithography with dry/wet etching method allows to engrave lines with smooth concave shape, but its disadvantages include difficulty in controlling aspect ratio, high and uniform in large size process, substrate material limitation due to etching solution availability, and process complexity. We developed ultra-fast laser technology to directly engrave a stainless plate, a gravure plate, to be used for fabricating 23 in. metal-mesh touch panel by gravure offset printing process. The technology employs high energy pulse to ablate materials from a substrate. Because the ultra-fast laser pulse duration is shorter than the energy dissipation time between material lattices, there is no heating issue during the ablation process. Therefore, no volcano-type protrusion on the engraved line edges occurs, leading to good printing quality. After laser engraving, we then reduce surface roughness of the gravure plate using electro-polishing process. Diamond like carbon (DLC coating layer is then added onto the surface to increase scratch resistance. We show that this procedure can fabricate gravure plate for gravure offset printing process with minimum printing linewidth 10.7 μm. A 23 in. metal-mesh pattern was printed using such gravure plate and fully functional touch panel was demonstrated in this work.

  10. Synchronization control for ultrafast laser parallel microdrilling system

    Science.gov (United States)

    Zhai, Zhongsheng; Kuang, Zheng; Ouyang, Jinlei; Liu, Dun; Perrie, Walter; Edwardson, Stuart P.; Dearden, Geoff

    2014-11-01

    Ultrafast lasers, emitting ultra-short pulses of light, generally of the order of femtoseconds to ten picoseconds, are widely used in micro-processing with the advantage of very little thermal damage. Parallel micro-processing is seen significant developments in laser fabrication, thanking to the spatial light modulator (SLM) which can concert single beam to multiple beams through computer generate holograms (CGHs). However, without synchronization control, on the conditions of changing different holograms or processing on large area beyond scanning galvo's ability, the fabrication will be interrupted constantly for changing holograms and moving the stages. Therefore, synchronization control is very important to improve the convenience and application of parallel micro-processing. A synchronization control method, carried out through two application software: SAMLight (or WaveRunner) and Labview, is presented in this paper. SAMLight is used to control the laser and the scanning galvo to implement microprocessing, and the developed program with Labview is used to control the SLM and motion stages. The synchronization signals, transmitted between the two software, are utilized by a National Instruments (NI) device USB-6008. Using optimal control methods, the synchronized system can easily and automatically accomplish complicated fabrications with minimum time. A multi-drilling application is provided to verify the affectivity of the synchronized control method. It uses multiple annular beams, generated by superimposing multi-beam CGH onto a diffractive axicon CGH, to drill multiple holes at one time, and it can automatically finish different patterns based on synchronization control. This drilling way is an optical trepanning and it avoids huge laser energy waste with attenuation. The multi-beam CGHs, generated by the Grating and Lens algorithm, are different for different patterns. The processing is over 200 times faster than traditional mechanical trepanning

  11. Sky-blue emitting bridged diiridium complexes: beneficial effects of intramolecular π-π stacking.

    Science.gov (United States)

    Congrave, Daniel G; Hsu, Yu-Ting; Batsanov, Andrei S; Beeby, Andrew; Bryce, Martin R

    2018-02-06

    The potential of intramolecular π-π interactions to influence the photophysical properties of diiridium complexes is an unexplored topic, and provides the motivation for the present study. A series of diarylhydrazide-bridged diiridium complexes functionalised with phenylpyridine (ppy)-based cyclometalating ligands is reported. It is shown by NMR studies in solution and single crystal X-ray analysis that intramolecular π-π interactions between the bridging and cyclometalating ligands rigidify the complexes leading to high luminescence quantum efficiencies in solution and in doped films. Fluorine substituents on the phenyl rings of the bridge promote the intramolecular π-π interactions. Notably, these non-covalent interactions are harnessed in the rational design and synthesis of the first examples of highly emissive sky-blue diiridium complexes featuring conjugated bridging ligands, for which they play a vital role in the structural and photophysical properties. Experimental results are supported by computational studies.

  12. Chemical origin of blue- and redshifted hydrogen bonds: intramolecular hyperconjugation and its coupling with intermolecular hyperconjugation.

    Science.gov (United States)

    Li, An Yong

    2007-04-21

    Upon formation of a H bond Y...H-XZ, intramolecular hyperconjugation n(Z)-->sigma*(X-H) of the proton donor plays a key role in red- and blueshift characters of H bonds and must be introduced in the concepts of hyperconjugation and rehybridization. Intermolecular hyperconjugation transfers electron density from Y to sigma*(X-H) and causes elongation and stretch frequency redshift of the X-H bond; intramolecular hyperconjugation couples with intermolecular hyperconjugation and can adjust electron density in sigma*(X-H); rehybridization causes contraction and stretch frequency blueshift of the X-H bond on complexation. The three factors--intra- and intermolecular hyperconjugations and rehybridization--determine commonly red- or blueshift of the formed H bond. A proton donor that has strong intramolecular hyperconjugation often forms blueshifted H bonds.

  13. Vinylcyclopropylacyl and polyeneacyl radicals. Intramolecular ketene alkyl radical additions in ring synthesis.

    Science.gov (United States)

    De Boeck, Benoit; Herbert, Nicola M A; Harrington-Frost, Nicole M; Pattenden, Gerald

    2005-01-21

    Treatment of a variety of substituted vinylcyclopropyl selenyl esters, e.g. 11, with Bu(3)SnH-AIBN in refluxing benzene leads to the corresponding acyl radical intermediates, which undergo rearrangement and intramolecular cyclisations via their ketene alkyl radical equivalents producing cyclohexenones in 50-60% yield. By contrast, treatment of conjugated triene selenyl esters, e.g. 32, with Bu(3)SnH-AIBN produces substituted 2-cyclopentenones via intramolecular cyclisations of their ketene alkyl radical intermediates. Under the same radical-initiating conditions the selenyl esters derived from o-vinylbenzoic acid and o-vinylcinnamic acid undergo intramolecular cyclisations producing 1-indanone and 5,6-dihydrobenzocyclohepten-7-one respectively in 60-70% yields. A tandem radical cyclisation from the alpha,beta,gamma,delta-diene selenyl ester 31 provides an expeditious synthesis of the diquinane 35 in 69% yield.

  14. Hotspot-mediated non-dissipative and ultrafast plasmon passage

    Science.gov (United States)

    Roller, Eva-Maria; Besteiro, Lucas V.; Pupp, Claudia; Khorashad, Larousse Khosravi; Govorov, Alexander O.; Liedl, Tim

    2017-08-01

    Plasmonic nanoparticles hold great promise as photon handling elements and as channels for coherent transfer of energy and information in future all-optical computing devices. Coherent energy oscillations between two spatially separated plasmonic entities via a virtual middle state exemplify electron-based population transfer, but their realization requires precise nanoscale positioning of heterogeneous particles. Here, we show the assembly and optical analysis of a triple-particle system consisting of two gold nanoparticles with an inter-spaced silver island. We observe strong plasmonic coupling between the spatially separated gold particles, mediated by the connecting silver particle, with almost no dissipation of energy. As the excitation energy of the silver island exceeds that of the gold particles, only quasi-occupation of the silver transfer channel is possible. We describe this effect both with exact classical electrodynamic modelling and qualitative quantum-mechanical calculations. We identify the formation of strong hotspots between all particles as the main mechanism for the lossless coupling and thus coherent ultrafast energy transfer between the remote partners. Our findings could prove useful for quantum gate operations, as well as for classical charge and information transfer processes.

  15. Quantitative ultra-fast MRI of HPMC swelling and dissolution.

    Science.gov (United States)

    Chen, Ya Ying; Hughes, L P; Gladden, L F; Mantle, M D

    2010-08-01

    For the first time quantitative Rapid Acquisition with Relaxation Enhancement (RARE) based ultra-fast two-dimensional magnetic resonance imaging has been used to follow the dissolution of hydroxypropylmethyl cellulose (HPMC) in water. Quantitative maps of absolute water concentration, spin-spin relaxation times and water self-diffusion coefficient are obtained at a spatial resolution of 469 microm in less than 3 min each. These maps allow the dynamic development of the medium release rate HPMC/water system to be followed. It is demonstrated that the evolution of the gel layer and, in particular, the gradient in water concentration across it, is significantly different when comparing the quantitative RARE sequence with a standard (nonquantitative) implementation of RARE. The total gel thickness in the axial direction grows faster than that in the radial direction and that the dry core initially expands anisotropically. Additionally, while HPMC absorbs a large amount of water during the dissolution process, the concentration gradient of water within the gel layer is relatively small. For the first time MRI evidence is presented for a transition swollen glassy layer which resides between the outer edge of the dry tablet core and the inner edge of the gel layer. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  16. Ultrafast spectral interferometry of resonant secondary emission from quantum wells: From Rayleigh scattering to coherent emission from biexcitons

    DEFF Research Database (Denmark)

    Birkedal, Dan; Shah, Jagdeep; Pfeiffer, L. N.

    1999-01-01

    Recent investigations of secondary emission from quantum well excitons following ultrafast resonant excitation have demonstrated an intricate interplay of coherent Rayleigh scattering and incoherent luminescence. We have very recently demonstrated that it is possible to isolate and time resolve...... the coherent field associated with Rayleigh component using ultrafast spectral interferometry or Tadpole, thus, obtaining substantial and new information of the nature of resonant secondary emission. Our observation demonstrates that Rayleigh scattering from static disorder is inherently a non-ergodic process...... invalidating the use of current theories using ensemble averages to describe our observations. Furthermore, we report here a new and hitherto unknown coherent scattering mechanism involving the two-photon coherence associated with the biexciton transition. The process leaves an exciton behind taking up...

  17. Intramolecular electron transfer in ascorbate oxidase is enhanced in the presence of oxygen

    DEFF Research Database (Denmark)

    Farver, O; Wherland, S; Pecht, I

    1994-01-01

    Intramolecular electron transfer from the type 1 copper center to the type 3 copper(II) pair is induced in the multi-copper enzyme, ascorbate oxidase, following pulse radiolytic reduction of the type 1 Cu(II) ion. In the presence of a slight excess of dioxygen over ascorbate oxidase, interaction...... between the trinuclear copper center and O2 is observed even with singly reduced ascorbate oxidase molecules. Under these conditions, the rate constant for intramolecular electron transfer from type 1 Cu(I) to type 3 Cu(II) increases 5-fold to 1100 +/- 300 s-1 (20 degrees C, pH 5.8) as compared...

  18. Synthesis of novel steroid-tetrahydroquinoline hybrid molecules and D-homosteroids by intramolecular cyclization reactions.

    Science.gov (United States)

    Magyar, Angéla; Wölfling, János; Kubas, Melanie; Cuesta Seijo, Jose Antonio; Sevvana, Madhumati; Herbst-Irmer, Regine; Forgó, Péter; Schneider, Gyula

    2004-05-01

    Steroidal aryliminium salts were prepared from D-seco-pregnene aldehyde 2b, and their BF3.OEt2-catalyzed reactions were studied. The nature of the substituent R1 in the anilines 3-6 essentially influenced the chemoselectivity. Using unsubstituted 3, 4-methoxy- (4) or 4-bromoaniline (5), different tetrahydroquinoline derivatives 7a-13a via intramolecular hetero Diels-Alder reaction were formed. In the case of 4-nitroaniline (6) the N-arylamino-D-homopregnane (14a) were also obtained. We assume, that an intramolecular Prins reaction led to this type of fluoro-D-homosteroid. The main products represent a new class of tetrahydroquinolino-androstenes.

  19. Current-limiting and ultrafast system for the characterization of resistive random access memories.

    Science.gov (United States)

    Diaz-Fortuny, J; Maestro, M; Martin-Martinez, J; Crespo-Yepes, A; Rodriguez, R; Nafria, M; Aymerich, X

    2016-06-01

    A new system for the ultrafast characterization of resistive switching phenomenon is developed to acquire the current during the Set and Reset process in a microsecond time scale. A new electronic circuit has been developed as a part of the main setup system, which is capable of (i) applying a hardware current limit ranging from nanoampers up to miliampers and (ii) converting the Set and Reset exponential gate current range into an equivalent linear voltage. The complete system setup allows measuring with a microsecond resolution. Some examples demonstrate that, with the developed setup, an in-depth analysis of resistive switching phenomenon and random telegraph noise can be made.

  20. Nonlinear wave equation in frequency domain: accurate modeling of ultrafast interaction in anisotropic nonlinear media

    DEFF Research Database (Denmark)

    Guo, Hairun; Zeng, Xianglong; Zhou, Binbin

    2013-01-01

    We interpret the purely spectral forward Maxwell equation with up to third-order induced polarizations for pulse propagation and interactions in quadratic nonlinear crystals. The interpreted equation, also named the nonlinear wave equation in the frequency domain, includes quadratic and cubic...... nonlinearities, delayed Raman effects, and anisotropic nonlinearities. The full potential of this wave equation is demonstrated by investigating simulations of solitons generated in the process of ultrafast cascaded second-harmonic generation. We show that a balance in the soliton delay can be achieved due...

  1. Rapid and economical data acquisition in ultrafast frequency-resolved spectroscopy using choppers and a microcontroller.

    Science.gov (United States)

    Guo, Liang; Monahan, Daniele M; Fleming, Graham

    2016-08-08

    Spectrometers and cameras are used in ultrafast spectroscopy to achieve high resolution in both time and frequency domains. Frequency-resolved signals from the camera pixels cannot be processed by common lock-in amplifiers, which have only a limited number of input channels. Here we demonstrate a rapid and economical method that achieves the function of a lock-in amplifier using mechanical choppers and a programmable microcontroller. We demonstrate the method's effectiveness by performing a frequency-resolved pump-probe measurement on the dye Nile Blue in solution.

  2. Intramolecular excimer formation of diastereoisomeric model compounds of polystyrene in fluid solution: their local molecular motion and photophysical properties

    International Nuclear Information System (INIS)

    Itagaki, Hideyuki; Horie, Kazuyuki; Mita, Itaru; Washio, Masakazu; Tagawa, Seiichi; Tabata, Yoneho

    1989-01-01

    The dynamic process of intramolecular excimer formation in diasteroisomeric oligomers model compounds of polystyrene, was investigated by using a picosecond pulse radiolysis technique. Monomer fluorescence of all-racemic isomers decays single-exponentially, while that of other isomers decays dual-exponentially. Multicomponent fluorescence decay curves are supposed to be mainly induced by conformational changes. The results suggest that the excimer in oligostyrenes (or polystyrene) is formed mainly in meso diad. It is definitely proved that there exists singlet energy migration in styrene trimer and tetramer systems. The conformational change in PS3 and PS4 is concluded to occur by way of cooperative motions in backbone chains bond such as a crankshaft transition, not by way of independent rotation around each carbon-carbon bond of the backbone chain. (author)

  3. Case study on the dynamics of ultrafast laser heating and ablation of gold thin films by ultrafast pump-probe reflectometry and ellipsometry

    Science.gov (United States)

    Pflug, T.; Wang, J.; Olbrich, M.; Frank, M.; Horn, A.

    2018-02-01

    To increase the comprehension of ultrafast laser ablation, the ablation process has to be portrayed with sufficient temporal resolution. For example, the temporal modification of the complex refractive index {\\tilde{n}} and the relative reflectance of a sample material after irradiation with ultrafast single-pulsed laser radiation can be measured with a pump-probe setup. This work describes the construction and validation of a pump-probe setup enabling spatially, temporally, and spectroscopically resolved Brewster angle microscopy, reflectometry, ellipsometry, and shadow photography. First pump-probe reflectometry and ellipsometry measurements are performed on gold at λ _{probe}= 440 nm and three fluences of the single-pulsed pump radiation at λ _{pump}= 800 nm generating no, gentle, and strong ablation. The relative reflectance overall increases at no and gentle ablation. At strong ablation, the relative reflectance locally decreases, presumable caused by emitted thermal electrons, ballistic electrons, and ablating material. The refractive index n is slightly decreasing after excitation, while the extinction coefficient k is increasing.

  4. Impact system for ultrafast synchrotron experiments

    International Nuclear Information System (INIS)

    Jensen, B. J.; Owens, C. T.; Ramos, K. J.; Yeager, J. D.; Saavedra, R. A.; Luo, S. N.; Hooks, D. E.; Iverson, A. J.; Fezzaa, K.

    2013-01-01

    The impact system for ultrafast synchrotron experiments, or IMPULSE, is a 12.6-mm bore light-gas gun (<1 km/s projectile velocity) designed specifically for performing dynamic compression experiments using the advanced imaging and X-ray diffraction methods available at synchrotron sources. The gun system, capable of reaching projectile velocities up to 1 km/s, was designed to be portable for quick insertion/removal in the experimental hutch at Sector 32 ID-B of the Advanced Photon Source (Argonne, IL) while allowing the target chamber to rotate for sample alignment with the beam. A key challenge in using the gun system to acquire dynamic data on the nanosecond time scale was synchronization (or bracketing) of the impact event with the incident X-ray pulses (80 ps width). A description of the basic gun system used in previous work is provided along with details of an improved launch initiation system designed to significantly reduce the total system time from launch initiation to impact. Experiments were performed to directly measure the gun system time and to determine the gun performance curve for projectile velocities ranging from 0.3 to 0.9 km/s. All results show an average system time of 21.6 ± 4.5 ms, making it possible to better synchronize the gun system and detectors to the X-ray beam.

  5. Relaxation and excitation electronic processes in dielectrics irradiated by ultrafast IR and VUV pulses; Processus electroniques d'excitation et de relaxation dans les solides dielectriques excites par des impulsions IR et XUV ultracourtes

    Energy Technology Data Exchange (ETDEWEB)

    Gaudin, J

    2005-11-15

    We studied excitation and relaxation of electrons involved during interaction of visible and VUV femtosecond pulses with dielectrics. The generated population of hot electrons, having energy of few eV to few tens of eV above the bottom of the conduction band, is responsible of phenomena ranging to defect creation to optical breakdown. Owing to two techniques: photoemission and transient photoconductivity we improve the understanding of the The first photoemission experiments deal with dielectrics irradiated by 30 fs IR pulses. The photoemission spectra measured show a large population of electrons which energy rise up to 40 eV. We interpret this result in terms of a new absorption process: direct multi-photons inter-branch transitions. The 2. type of photoemission experiments are time resolved 'pump/probe' investigation. We study the relaxation of electrons excited by a VUV pulses. We used the high order harmonics (HOH) as light sources. We found surprisingly long decay time in the range of ps timescale. Last type of experiments is photoconductivity studies of diamond samples. Using HOH as light source we measure the displacement current induced by excited electrons in the conduction band. Those electrons relax mainly by impact ionisation creating secondary electrons. Hence by probing the number of electrons we were able to measure the efficiency of these relaxation processes. We observe a diminution of this efficiency when the energy of exciting photons is above 20 eV. Owing to Monte-Carlo simulation we interpret this result in terms of band structure effect. (author)

  6. Excited-state intramolecular hydrogen transfer (ESIHT) of 1,8-Dihydroxy-9,10-anthraquinone (DHAQ) characterized by ultrafast electronic and vibrational spectroscopy and computational modeling

    KAUST Repository

    Mohammed, Omar F.; Xiao, Dequan; Batista, Victor S.; Nibbering, Erik Theodorus Johannes

    2014-01-01

    of femtosecond UV/vis and UV/IR pump-probe spectroscopic data. Upon photoabsorption at 400 nm, the S 2 electronic excited state is initially populated, followed by a rapid equilibration within 150 fs through population transfer to the S 1 state where DHAQ

  7. Patellofemoral joint motion: Evaluation by ultrafast computed tomography

    International Nuclear Information System (INIS)

    Stanford, W.; Phelan, J.; Kathol, M.H.; Rooholamini, S.A.; El-Khoury, G.Y.; Palutsis, G.R.; Albright, J.P.

    1988-01-01

    Patellofemoral maltracking is a recognized cause of peripatellar pain. Clinicians currently rely on observation, palpation, and static radiographic images to evaluate the symptomatic patient. Ultrafast computed tomography (ultrafast CT) offers objective observations of the dynamic influences of muscle contraction on the patellofemoral joint as the knee is actively moved through a range of motion from 90 0 C flexion of full extension. This study reports our initial observations and establishes a range of normal values so that patients with a clinical suspicion of patellar maltracking may be evaluated. (orig./GDG)

  8. Patellofemoral joint motion: Evaluation by ultrafast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Stanford, W.; Phelan, J.; Kathol, M.H.; Rooholamini, S.A.; El-Khoury, G.Y.; Palutsis, G.R.; Albright, J.P.

    1988-10-01

    Patellofemoral maltracking is a recognized cause of peripatellar pain. Clinicians currently rely on observation, palpation, and static radiographic images to evaluate the symptomatic patient. Ultrafast computed tomography (ultrafast CT) offers objective observations of the dynamic influences of muscle contraction on the patellofemoral joint as the knee is actively moved through a range of motion from 90/sup 0/C flexion of full extension. This study reports our initial observations and establishes a range of normal values so that patients with a clinical suspicion of patellar maltracking may be evaluated. (orig./GDG).

  9. A simple and versatile design concept for fluorophore derivatives with intramolecular photostabilization

    NARCIS (Netherlands)

    van der Velde, Jasper H M; Oelerich, Jens; Huang, Jingyi; Smit, Jochem H; Aminian Jazi, Atieh; Galiani, Silvia; Kolmakov, Kirill; Guoridis, Giorgos; Eggeling, Christian; Herrmann, Andreas; Roelfes, Gerard; Cordes, Thorben

    2016-01-01

    Intramolecular photostabilization via triple-state quenching was recently revived as a tool to impart synthetic organic fluorophores with 'self-healing' properties. To date, utilization of such fluorophore derivatives is rare due to their elaborate multi-step synthesis. Here we present a general

  10. Epr, structural characteristics and intramolecular movements of some phenoxyl radicals in toluene

    OpenAIRE

    Nizameev, I.; Pudovkin, M.; Kadirov, M.

    2010-01-01

    The method of electron paramagnetic resonance (EPR) spectroscopy was used for studying magnetic and dynamic properties of phenoxyl radicals in toluene at 170-370 K. Characteristics of intramolecular motion and structure of phenoxyl radicals were determined from the temperature dependence of EPR spectra. For all the given compounds the activation energies of transitions between the conformers were calculated.

  11. Long-range intramolecular electron transfer in aromatic radical anions and binuclear transition metal complexes

    DEFF Research Database (Denmark)

    Kuznetsov, A. M.; Ulstrup, Jens

    1981-01-01

    Intramolecular electron transfer (ET) over distances up to about 10 Å between states in which the electron is localized on donor and acceptor groups by interaction with molecular or external solvent nuclear motion occurs, in particular, in two classes of systems. The excess electron in anionic ra...

  12. Recent applications of intramolecular Diels-Alder reactions to natural product synthesis

    DEFF Research Database (Denmark)

    Juhl, M.; Tanner, David Ackland

    2009-01-01

    This tutorial review presents some recent examples of intramolecular Diels-Alder (IMDA) reactions as key complexity-generating steps in the total synthesis of structurally intricate natural products. The opportunities afforded by transannular (TADA) versions of the IMDA reaction in complex molecu...... comprehensive, reviews....

  13. Intramolecular Diels-Alder reactions of pyrimidines, a synthetic and computational study

    NARCIS (Netherlands)

    Stolle, W.A.W.

    1992-01-01

    This thesis deals with an investigation on the ringtransformation reactions of 2and 5-(ω-alkynyl)pyrimidine derivatives, which undergo upon heating an intramolecular Diels-Alder reaction and subsequently a spontaneous retro Diels- Alder reaction. To get a better insight into the

  14. Optimized measurements of separations and angles between intra-molecular fluorescent markers

    DEFF Research Database (Denmark)

    Mortensen, Kim; Sung, Jongmin; Flyvbjerg, Henrik

    2015-01-01

    We demonstrate a novel, yet simple tool for the study of structure and function of biomolecules by extending two-colour co-localization microscopy to fluorescent molecules with fixed orientations and in intra-molecular proximity. From each colour-separated microscope image in a time-lapse movie...

  15. Potassium hydroxide/dimethyl sulfoxide promoted intramolecular cyclization for the synthesis of benzimidazol-2-ones.

    Science.gov (United States)

    Beyer, Astrid; Reucher, Christine M M; Bolm, Carsten

    2011-06-03

    A new protocol for intramolecular N-arylations of ureas to form benzimidazol-2-ones has been developed. The cyclization reaction occurs in the presence of KOH and DMSO at close to ambient temperature. Under these conditions the yields are high and a wide range of functional groups are tolerated.

  16. On prediction of OH stretching frequencies in intramolecularly hydrogen bonded systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Spanget-Larsen, Jens

    2012-01-01

    OH stretching frequencies are investigated for a series of non-tautomerizing systems with intramolecular hydrogen bonds. Effective OH stretching wavenumbers are predicted by the application of empirical correlation procedures based on the results of B3LYP/6-31G(d) theoretical calculations...

  17. Chemical synthesis of dual labeled proteins via differently protected alkynes enables intramolecular FRET analysis.

    Science.gov (United States)

    Hayashi, Gosuke; Kamo, Naoki; Okamoto, Akimitsu

    2017-05-30

    We report a novel method for multisite protein conjugation by setting differently silyl-protected alkynes as conjugation handles, which can remain intact through the whole synthetic procedure and provide sequential and orthogonal conjugation. This strategy enables efficient preparation of a dual dye-labeled protein and structural analysis via an intramolecular FRET mechanism.

  18. Thermal and catalytic intramolecular [4+2]-cycloaddition in 2-alkenylfurans

    International Nuclear Information System (INIS)

    Zubkov, Fedor I; Nikitina, Evgenia V; Varlamov, Alexey V

    2005-01-01

    The published data on the intramolecular Diels-Alder reaction in compounds of the 2-alkenylfuran series are generalised. The methods and conditions for the preparation of tricyclic systems are considered. The effects of the substituents in the furan and the unsaturated fragments on the cycloaddition are discussed. The application of this reaction to the synthesis of alkaloids and terpenoids is exemplified.

  19. Synthesis of benzannelated sultams by intramolecular Pd-catalyzed arylation of tertiary sulfonamides

    Directory of Open Access Journals (Sweden)

    Valentin A. Rassadin

    2017-09-01

    Full Text Available A new and efficient approach to five- and six-membered benzannelated sultams by intramolecular C-arylation of tertiary 1-(methoxycarbonylmethanesulfonamides under palladium catalysis is described. In case of the α-toluenesulfonamide derivative, an unexpected formation of a 2,3-diarylindole was observed under the same conditions.

  20. A novel stereoselective synthesis of N-heterocycles by intramolecular hydrovinylation

    DEFF Research Database (Denmark)

    Bothe, Ulrich; Rudbeck, H. C.; Tanner, David Ackland

    2001-01-01

    A novel method for the synthesis of bicyclic amines has been developed. Cyclisation of 1,6-dienes by intramolecular hydrovinylation in the presence of catalytic amounts of allylpalladium chloride dimer afforded bicyclic amines in one step. Added phosphines, silver salts, as well as the nature of ...

  1. Intramolecular 13C analysis of tree rings provides multiple plant ecophysiology signals covering decades.

    Science.gov (United States)

    Wieloch, Thomas; Ehlers, Ina; Yu, Jun; Frank, David; Grabner, Michael; Gessler, Arthur; Schleucher, Jürgen

    2018-03-22

    Measurements of carbon isotope contents of plant organic matter provide important information in diverse fields such as plant breeding, ecophysiology, biogeochemistry and paleoclimatology. They are currently based on 13 C/ 12 C ratios of specific, whole metabolites, but we show here that intramolecular ratios provide higher resolution information. In the glucose units of tree-ring cellulose of 12 tree species, we detected large differences in 13 C/ 12 C ratios (>10‰) among carbon atoms, which provide isotopically distinct inputs to major global C pools, including wood and soil organic matter. Thus, considering position-specific differences can improve characterisation of soil-to-atmosphere carbon fluxes and soil metabolism. In a Pinus nigra tree-ring archive formed from 1961 to 1995, we found novel 13 C signals, and show that intramolecular analysis enables more comprehensive and precise signal extraction from tree rings, and thus higher resolution reconstruction of plants' responses to climate change. Moreover, we propose an ecophysiological mechanism for the introduction of a 13 C signal, which links an environmental shift to the triggered metabolic shift and its intramolecular 13 C signature. In conclusion, intramolecular 13 C analyses can provide valuable new information about long-term metabolic dynamics for numerous applications.

  2. Thermal and catalytic intramolecular [4+2]-cycloaddition in 2-alkenylfurans

    Energy Technology Data Exchange (ETDEWEB)

    Zubkov, Fedor I; Nikitina, Evgenia V; Varlamov, Alexey V [Department of Physical, Mathematical and Natural Sciences, Peoples' Friendship University of Russia (Russian Federation)

    2005-07-31

    The published data on the intramolecular Diels-Alder reaction in compounds of the 2-alkenylfuran series are generalised. The methods and conditions for the preparation of tricyclic systems are considered. The effects of the substituents in the furan and the unsaturated fragments on the cycloaddition are discussed. The application of this reaction to the synthesis of alkaloids and terpenoids is exemplified.

  3. Symmetry-breaking intramolecular charge transfer in the excited state of meso-linked BODIPY dyads

    KAUST Repository

    Whited, Matthew T.; Patel, Niral M.; Roberts, Sean T.; Allen, Kathryn; Djurovich, Peter I.; Bradforth, Stephen E.; Thompson, Mark E.

    2012-01-01

    We report the synthesis and characterization of symmetric BODIPY dyads where the chromophores are attached at the meso position, using either a phenylene bridge or direct linkage. Both molecules undergo symmetry-breaking intramolecular charge transfer in the excited state, and the directly linked dyad serves as a visible-light-absorbing analogue of 9,9′-bianthryl.

  4. Effect of intramolecular hydrogen bonding and electron donation on substituted anthrasemiquinone characteristics

    International Nuclear Information System (INIS)

    Pal, H.; Mukherjee, T.

    1994-01-01

    The acid-base and redox characteristics of the semiquinones of a number of hydroxy and amino-substituted anthraquinones have been investigated. Results are explained on the basis of electron-donating properties and intramolecular hydrogen bond forming capabilities of the substituents. (author). 4 refs., 1 tab., 1 fig

  5. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging

    Science.gov (United States)

    Errico, Claudia; Pierre, Juliette; Pezet, Sophie; Desailly, Yann; Lenkei, Zsolt; Couture, Olivier; Tanter, Mickael

    2015-11-01

    Non-invasive imaging deep into organs at microscopic scales remains an open quest in biomedical imaging. Although optical microscopy is still limited to surface imaging owing to optical wave diffusion and fast decorrelation in tissue, revolutionary approaches such as fluorescence photo-activated localization microscopy led to a striking increase in resolution by more than an order of magnitude in the last decade. In contrast with optics, ultrasonic waves propagate deep into organs without losing their coherence and are much less affected by in vivo decorrelation processes. However, their resolution is impeded by the fundamental limits of diffraction, which impose a long-standing trade-off between resolution and penetration. This limits clinical and preclinical ultrasound imaging to a sub-millimetre scale. Here we demonstrate in vivo that ultrasound imaging at ultrafast frame rates (more than 500 frames per second) provides an analogue to optical localization microscopy by capturing the transient signal decorrelation of contrast agents—inert gas microbubbles. Ultrafast ultrasound localization microscopy allowed both non-invasive sub-wavelength structural imaging and haemodynamic quantification of rodent cerebral microvessels (less than ten micrometres in diameter) more than ten millimetres below the tissue surface, leading to transcranial whole-brain imaging within short acquisition times (tens of seconds). After intravenous injection, single echoes from individual microbubbles were detected through ultrafast imaging. Their localization, not limited by diffraction, was accumulated over 75,000 images, yielding 1,000,000 events per coronal plane and statistically independent pixels of ten micrometres in size. Precise temporal tracking of microbubble positions allowed us to extract accurately in-plane velocities of the blood flow with a large dynamic range (from one millimetre per second to several centimetres per second). These results pave the way for deep non

  6. Tyrosine-lipid peroxide adducts from radical termination: para coupling and intramolecular Diels-Alder cyclization.

    Science.gov (United States)

    Shchepin, Roman; Möller, Matias N; Kim, Hye-young H; Hatch, Duane M; Bartesaghi, Silvina; Kalyanaraman, Balaraman; Radi, Rafael; Porter, Ned A

    2010-12-15

    Free radical co-oxidation of polyunsaturated lipids with tyrosine or phenolic analogues of tyrosine gave rise to lipid peroxide-tyrosine (phenol) adducts in both aqueous micellar and organic solutions. The novel adducts were isolated and characterized by 1D and 2D NMR spectroscopy as well as by mass spectrometry (MS). The spectral data suggest that the polyunsaturated lipid peroxyl radicals give stable peroxide coupling products exclusively at the para position of the tyrosyl (phenoxy) radicals. These adducts have characteristic (13)C chemical shifts at 185 ppm due to the cross-conjugated carbonyl of the phenol-derived cyclohexadienone. The primary peroxide adducts subsequently undergo intramolecular Diels-Alder (IMDA) cyclization, affording a number of diastereomeric tricyclic adducts that have characteristic carbonyl (13)C chemical shifts at ~198 ppm. All of the NMR HMBC and HSQC correlations support the structure assignments of the primary and Diels-Alder adducts, as does MS collision-induced dissociation data. Kinetic rate constants and activation parameters for the IMDA reaction were determined, and the primary adducts were reduced with cuprous ion to give a phenol-derived 4-hydroxycyclohexa-2,5-dienone. No products from adduction of peroxyls at the phenolic ortho position were found in either the primary or cuprous reduction product mixtures. These studies provide a framework for understanding the nature of lipid-protein adducts formed by peroxyl-tyrosyl radical-radical termination processes. Coupling of lipid peroxyl radicals with tyrosyl radicals leads to cyclohexenone and cyclohexadienone adducts, which are of interest in and of themselves since, as electrophiles, they are likely targets for protein nucleophiles. One consequence of lipid peroxyl reactions with tyrosyls may therefore be protein-protein cross-links via interprotein Michael adducts.

  7. Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode.

    Science.gov (United States)

    Bücker, K; Picher, M; Crégut, O; LaGrange, T; Reed, B W; Park, S T; Masiel, D J; Banhart, F

    2016-12-01

    High temporal resolution transmission electron microscopy techniques have shown significant progress in recent years. Using photoelectron pulses induced by ultrashort laser pulses on the cathode, these methods can probe ultrafast materials processes and have revealed numerous dynamic phenomena at the nanoscale. Most recently, the technique has been implemented in standard thermionic electron microscopes that provide a flexible platform for studying material's dynamics over a wide range of spatial and temporal scales. In this study, the electron pulses in such an ultrafast transmission electron microscope are characterized in detail. The microscope is based on a thermionic gun with a Wehnelt electrode and is operated in a stroboscopic photoelectron mode. It is shown that the Wehnelt bias has a decisive influence on the temporal and energy spread of the picosecond electron pulses. Depending on the shape of the cathode and the cathode-Wehnelt distance, different emission patterns with different pulse parameters are obtained. The energy spread of the pulses is determined by space charge and Boersch effects, given by the number of electrons in a pulse. However, filtering effects due to the chromatic aberrations of the Wehnelt electrode allow the extraction of pulses with narrow energy spreads. The temporal spread is governed by electron trajectories of different length and in different electrostatic potentials. High temporal resolution is obtained by excluding shank emission from the cathode and aberration-induced halos in the emission pattern. By varying the cathode-Wehnelt gap, the Wehnelt bias, and the number of photoelectrons in a pulse, tradeoffs between energy and temporal resolution as well as beam intensity can be made as needed for experiments. Based on the characterization of the electron pulses, the optimal conditions for the operation of ultrafast TEMs with thermionic gun assembly are elaborated. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Spherical transceivers for ultrafast optical wireless communications

    Science.gov (United States)

    Jin, Xian; Hristovski, Blago A.; Collier, Christopher M.; Geoffroy-Gagnon, Simon; Born, Brandon; Holzman, Jonathan F.

    2016-02-01

    Optical wireless communications (OWC) offers the potential for high-speed and mobile operation in indoor networks. Such OWC systems often employ a fixed transmitter grid and mobile transceivers, with the mobile transceivers carrying out bi-directional communication via active downlinks (ideally with high-speed signal detection) and passive uplinks (ideally with broad angular retroreflection and high-speed modulation). It can be challenging to integrate all of these bidirectional communication capabilities within the mobile transceivers, however, as there is a simultaneous desire for compact packaging. With this in mind, the work presented here introduces a new form of transceiver for bi-directional OWC systems. The transceiver incorporates radial photoconductive switches (for high-speed signal detection) and a spherical retro-modulator (for broad angular retroreflection and high-speed all-optical modulation). All-optical retromodulation are investigated by way of theoretical models and experimental testing, for spherical retro-modulators comprised of three glasses, N-BK7, N-LASF9, and S-LAH79, having differing levels of refraction and nonlinearity. It is found that the spherical retro-modulator comprised of S-LAH79, with a refractive index of n ≍ 2 and a Kerr nonlinear index of n2 ≍ (1.8 ± 0.1) × 10-15 cm2/W, yields both broad angular retroreflection (over a solid angle of 2π steradians) and ultrafast modulation (over a duration of 120 fs). Such transceivers can become important elements for all-optical implementations in future bi-directional OWC systems.

  9. Ultra-fast repair of single-strand breaks in DNA of. gamma. -irradiated Chinese hamster cells

    Energy Technology Data Exchange (ETDEWEB)

    Leontjeva, G A; Mantzighin, Yu A; Gaziev, A I [AN SSSR, Pushchino-na-Oke. Inst. Biologicheskoj Fiziki

    1976-12-01

    Studies of the effect of thermal treatment of Chinese hamster cells on sedimentation of DNA in the alkaline sucrose gradient showed that heating the cells to 68/sup 0/C for 15 min caused the same degradation as ..gamma..-irradiation with 5 to 7 krad at 37/sup 0/C. The inhibition of cellular repair enzymes by heating was therefore unacceptable. The process of ultra-fast repair is essentially determined by the DNA-ligase reaction, which is activated in the presence of Mg ions, and inhibited in mammalian cells in the presence of EDTA and pyrophosphate. Sedimentation profiles were therefore measured for the DNA of Chinese hamster cells ..gamma..-irradiated (5 krad) at 0/sup 0/C or 22/sup 0/C in the presence of Mg/sup + +/, or EDTA and pyrophosphate, and the results demonstrated ultra-fast repair only at 20 to 37/sup 0/C, in contrast to bacteria. A study was made of the temperature dependence of the activity of the DNA ligases isolated from E.coli and rabbit bone marrow. The NAD-dependent bacterial DNA ligase was active at temperatures from 0 to 40/sup 0/C, whereas ATP-dependent DNA ligase of mammals only showed activity in the range 15 to 40/sup 0/C. The differing temperature dependences of ultra-fast repair in bacterial and mammalian cells are in agreement with the temperature dependences of the activities of isolated enzymes, and the results suggest that the process of ultra-fast repair of single-strand breaks of DNA takes place in both bacterial and mammalian cells.

  10. The Investigation of New Magnetic Materials and Their Phenomena Using Ultrafast Fresnel Transmission Electron Microscopy

    Science.gov (United States)

    Schliep, Karl B.

    State-of-the-art technology drives scientific progress, pushing the boundaries of our current understanding of fundamental processes and mechanisms. Our continual scientific advancement is hindered only by what we can observe and experimentally verify; thus, it is reasonable to assert that instrument development and improvement is the cornerstone for technological and intellectual growth. For example, the invention of transmission electron microscopy (TEM) allowed us to observe nanoscale phenomena for the first time in the 1930s and even now it is invaluable in the development of smaller, faster electronics. As we uncover more about the fundamentals of nanoscale phenomena, we have realized that images alone reveal only a snapshot of the story; to continue progressing we need a way to observe the entire scene unfold (e.g. how defects affect the flow of current across a transistor or how thermal energy propagates in nanoscale systems like graphene). Recently, by combining the spatial resolution of a TEM with the temporal resolution of ultrafast lasers, ultrafast electron microscopy ? or microscope ? (UEM) has allowed us to simultaneously observe transient nanoscale phenomena at ultrafast timescales. Ultrafast characterization techniques allow for the investigation of a new realm of previously unseen phenomenon inherent to the transient electronic, magnetic, and structural properties of materials. However, despite the progress made in ultrafast techniques, capturing the nanoscale spatial sub-ns temporal mechanisms and phenomenon at play in magnetic materials (especially during the operation of magnetic devices) has only recently become possible using UEM. With only a handful of instruments available, magnetic characterization using UEM is far from commonplace and any advances made are sparsely reported, and further, specific to the individual instrument. In this dissertation, I outline the development of novel magnetic materials and the establishment of a UEM lab at

  11. High Harmonic Generation XUV Spectroscopy for Studying Ultrafast Photophysics of Coordination Complexes

    Science.gov (United States)

    Ryland, Elizabeth S.; Lin, Ming-Fu; Benke, Kristin; Verkamp, Max A.; Zhang, Kaili; Vura-Weis, Josh

    2017-06-01

    Extreme ultraviolet (XUV) spectroscopy is an inner shell technique that probes the M_{2,3}-edge excitation of atoms. Absorption of the XUV photon causes a 3p→3d transition, the energy and shape of which is directly related to the element and ligand environment. This technique is thus element-, oxidation state-, spin state-, and ligand field specific. A process called high-harmonic generation (HHG) enables the production of ultrashort (˜20fs) pulses of collimated XUV photons in a tabletop instrument. This allows transient XUV spectroscopy to be conducted as an in-lab experiment, where it was previously only possible at accelerator-based light sources. Additionally, ultrashort pulses provide the capability for unprecedented time resolution (˜50fs IRF). This technique has the capacity to serve a pivotal role in the study of electron and energy transfer processes in materials and chemical biology. I will present the XUV transient absorption instrument we have built, along with ultrafast transient M_{2,3}-edge absorption data of a series of small inorganic molecules in order to demonstrate the high specificity and time resolution of this tabletop technique as well as how our group is applying it to the study of ultrafast electronic dynamics of coordination complexes.

  12. Effect of heat sink layer on ultrafast magnetization recovery of FeCo films

    International Nuclear Information System (INIS)

    Ren, Y; Zhao, J Q; Zhang, Z Z; Jin, Q Y; Hu, H N; Zhou, S M

    2008-01-01

    For FeCo alloy thin films with Ag, Cu, Pt, Ta and Cr as heat sink layers, ultrafast demagnetization and recovery processes of transient magnetization have been studied by the time-resolved magneto-optical Kerr effect. For all samples, the ultrafast demagnetization process is accomplished within almost the same time interval of 500 fs, which is independent of the heat sink layer material and the pump fluence. The recovery rate of the FeCo film grown on the Si(1 0 0) substrate is enhanced with a heat sink layer. In addition, the recovery rate is found to be independent of the heat sink layer thickness; it decreases with increasing pump fluence. Among all heat sink layers, the sample with the Cr layer achieves the highest recovery rate because it has the same bcc structure as that of the FeCo layer and the small lattice mismatch. The sample with the Ta layer, has the largest damage threshold of pump fluence because of the highest melting point

  13. Mapping Carrier Dynamics on Material Surfaces in Space and Time using Scanning Ultrafast Electron Microscopy

    KAUST Repository

    Sun, Jingya

    2016-02-25

    Selectively capturing the ultrafast dynamics of charge carriers on materials surfaces and at interfaces is crucial to the design of solar cells and optoelectronic devices. Despite extensive research efforts over the past few decades, information and understanding about surface-dynamical processes, including carrier trapping and recombination remains extremely limited. A key challenge is to selectively map such dynamic processes, a capability that is hitherto impractical by time-resolved laser techniques, which are limited by the laser’s relatively large penetration depth and consequently they record mainly bulk information. Such surface dynamics can only be mapped in real space and time by applying four-dimensional (4D) scanning ultrafast electron microscopy (S-UEM), which records snapshots of materials surfaces with nanometer spatial and sub-picosecond temporal resolutions. In this method, the secondary electron (SE) signal emitted from the sample’s surface is extremely sensitive to the surface dynamics and is detected in real time. In several unique applications, we spatially and temporally visualize the SE energy gain and loss, the charge carrier dynamics on the surface of InGaN nanowires and CdSe single crystals and its powder film. We also provide the mechanisms for the observed dynamics, which will be the foundation for future potential applications of S-UEM to a wide range of studies on material surfaces and device interfaces.

  14. Mapping Carrier Dynamics on Material Surfaces in Space and Time using Scanning Ultrafast Electron Microscopy

    KAUST Repository

    Sun, Jingya; Adhikari, Aniruddha; Shaheen, Basamat; Yang, Haoze; Mohammed, Omar F.

    2016-01-01

    Selectively capturing the ultrafast dynamics of charge carriers on materials surfaces and at interfaces is crucial to the design of solar cells and optoelectronic devices. Despite extensive research efforts over the past few decades, information and understanding about surface-dynamical processes, including carrier trapping and recombination remains extremely limited. A key challenge is to selectively map such dynamic processes, a capability that is hitherto impractical by time-resolved laser techniques, which are limited by the laser’s relatively large penetration depth and consequently they record mainly bulk information. Such surface dynamics can only be mapped in real space and time by applying four-dimensional (4D) scanning ultrafast electron microscopy (S-UEM), which records snapshots of materials surfaces with nanometer spatial and sub-picosecond temporal resolutions. In this method, the secondary electron (SE) signal emitted from the sample’s surface is extremely sensitive to the surface dynamics and is detected in real time. In several unique applications, we spatially and temporally visualize the SE energy gain and loss, the charge carrier dynamics on the surface of InGaN nanowires and CdSe single crystals and its powder film. We also provide the mechanisms for the observed dynamics, which will be the foundation for future potential applications of S-UEM to a wide range of studies on material surfaces and device interfaces.

  15. Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode

    Energy Technology Data Exchange (ETDEWEB)

    Bücker, K.; Picher, M.; Crégut, O. [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, 67034 Strasbourg (France); LaGrange, T. [Interdisciplinary Centre for Electron Microscopy, École Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland); Reed, B.W.; Park, S.T.; Masiel, D.J. [Integrated Dynamic Electron Solutions, Inc., 5653 Stoneridge Drive 117, Pleasanton, CA 94588 (United States); Banhart, F., E-mail: florian.banhart@ipcms.unistra.fr [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, 67034 Strasbourg (France)

    2016-12-15

    High temporal resolution transmission electron microscopy techniques have shown significant progress in recent years. Using photoelectron pulses induced by ultrashort laser pulses on the cathode, these methods can probe ultrafast materials processes and have revealed numerous dynamic phenomena at the nanoscale. Most recently, the technique has been implemented in standard thermionic electron microscopes that provide a flexible platform for studying material's dynamics over a wide range of spatial and temporal scales. In this study, the electron pulses in such an ultrafast transmission electron microscope are characterized in detail. The microscope is based on a thermionic gun with a Wehnelt electrode and is operated in a stroboscopic photoelectron mode. It is shown that the Wehnelt bias has a decisive influence on the temporal and energy spread of the picosecond electron pulses. Depending on the shape of the cathode and the cathode-Wehnelt distance, different emission patterns with different pulse parameters are obtained. The energy spread of the pulses is determined by space charge and Boersch effects, given by the number of electrons in a pulse. However, filtering effects due to the chromatic aberrations of the Wehnelt electrode allow the extraction of pulses with narrow energy spreads. The temporal spread is governed by electron trajectories of different length and in different electrostatic potentials. High temporal resolution is obtained by excluding shank emission from the cathode and aberration-induced halos in the emission pattern. By varying the cathode-Wehnelt gap, the Wehnelt bias, and the number of photoelectrons in a pulse, tradeoffs between energy and temporal resolution as well as beam intensity can be made as needed for experiments. Based on the characterization of the electron pulses, the optimal conditions for the operation of ultrafast TEMs with thermionic gun assembly are elaborated. - Highlights: • A detailed characterization of electron

  16. Ultra-fast ipsilateral DPOAE adaptation not modulated by attention?

    Science.gov (United States)

    Dalhoff, Ernst; Zelle, Dennis; Gummer, Anthony W.

    2018-05-01

    Efferent stimulation of outer hair cells is supposed to attenuate cochlear amplification of sound waves and is accompanied by reduced DPOAE amplitudes. Recently, a method using two subsequent f2 pulses during presentation of a longer f1 pulse was introduced to measure fast ipsilateral adaptation effects on separated DPOAE components. Compensating primary-tone onsets for their latencies at the f2-tonotopic place, the average adaptation measured in four normal-hearing subjects was 5.0 dB with a time constant below 5 ms. In the present study, two experiments were performed to determine the origin of this ultra-fast ipsilateral adaptation effect. The first experiment measured ultra-fast ipsilateral adaptation using a two-pulse paradigm at three frequencies in the four subjects, while controlling for visual attention of the subjects. The other experiment also controlled for visual attention, but utilized a sequence of f2 short pulses in the presence of a continuous f1 tone to sample ipsilateral adaptation effects with longer time constants in eight subjects. In the first experiment, no significant change in the ultra-fast adaptation between non-directed attention and visual attention could be detected. In contrast, the second experiment revealed significant changes in the magnitude of the slower ipsilateral adaptation in the visual-attention condition. In conclusion, the lack of an attentional influence indicates that the ultra-fast ipsilateral DPOAE adaptation is not solely mediated by the medial olivocochlear reflex.

  17. Ultrafast geometric control of a single qubit using chirped pulses

    International Nuclear Information System (INIS)

    Hawkins, Patrick E; Malinovskaya, Svetlana A; Malinovsky, Vladimir S

    2012-01-01

    We propose a control strategy to perform arbitrary unitary operations on a single qubit based solely on the geometrical phase that the qubit state acquires after cyclic evolution in the parameter space. The scheme uses ultrafast linearly chirped pulses and provides the possibility of reducing the duration of a single-qubit operation to a few picoseconds.

  18. Measuring and understanding ultrafast phenomena using X-rays

    DEFF Research Database (Denmark)

    Haldrup, Kristoffer; Nielsen, Martin Meedom

    2014-01-01

    Within the last decade, significant advances in X-ray sources and instrumentation as well as simultaneous developments in analysis methodology has allowed the field of fast- and ultrafast time-resolved X-ray studies of solution-state systems to truly come of age. We here describe some aspects of ...

  19. Ultrafast terahertz scanning tunneling microscopy with atomic resolution

    DEFF Research Database (Denmark)

    Jelic, Vedran; Iwaszczuk, Krzysztof; Nguyen, Peter H.

    2016-01-01

    We demonstrate that ultrafast terahertz scanning tunneling microscopy (THz-STM) can probe single atoms on a silicon surface with simultaneous sub-nanometer and sub-picosecond spatio-temporal resolution. THz-STM is established as a new technique for exploring high-field non-equilibrium tunneling...

  20. Ultrafast Dynamics of Quantum-Dot Semiconductor Optical Amplifiers

    DEFF Research Database (Denmark)

    Poel, Mike van der; Hvam, Jørn Märcher

    2007-01-01

    We report on a series of experiments on the dynamical properties of quantum-dot semiconductor optical amplifiers. We show how the amplifier responds to one or several ultrafast (170 fs) pulses in rapid succession and our results demonstrate applicability and ultimate limitations to application...

  1. Ultrafast control and monitoring of material properties using terahertz pulses

    Energy Technology Data Exchange (ETDEWEB)

    Bowlan, Pamela Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Lab. for Ultrafast Materials Optical Science (LUMOS)

    2016-05-02

    These are a set of slides on ultrafast control and monitoring of material properties using terahertz pulses. A few of the topics covered in these slides are: How fast is a femtosecond (fs), Different frequencies probe different properties of molecules or solids, What can a THz pulse do to a material, Ultrafast spectroscopy, Generating and measuring ultrashort THz pulses, Tracking ultrafast spin dynamics in antiferromagnets through spin wave resonances, Coherent two-dimensional THz spectroscopy, and Probing vibrational dynamics at a surface. Conclusions are: Coherent two-dimensional THz spectroscopy: a powerful approach for studying coherence and dynamics of low energy resonances. Applying this to graphene we investigated the very strong THz light mater interaction which dominates over scattering. Useful for studying coupled excitations in multiferroics and monitoring chemical reactions. Also, THz-pump, SHG-probe spectoscopy: an ultrafast, surface sensitive probe of atomic-scale symmetry changes and nonlinear phonon dymanics. We are using this in Bi2Se3 to investigate the nonlinear surface phonon dynamics. This is potentially very useful for studying catalysis.

  2. Update on The Ultra-Fast Flash Observatory (UFFO) Pathfinder

    DEFF Research Database (Denmark)

    Grossan, B.; Brandt, Søren; Budtz-Jørgensen, Carl

    2011-01-01

    The Ultra-Fast Flash Observatory (UFFO) uses an X/gamma and an optical/UV instrument to observe gamma-ray bursts (GRB) starting milliseconds after burst trigger and location. The X/gamma instrument, a standard coded-mask camera, locates the GRB and triggers the system. The optical/UV instrument, ...

  3. Ultrafast nonlinear response of silicon carbide to intense THz fields

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun; Iwaszczuk, Krzysztof; Kaltenecker, Korbinian J.

    2017-01-01

    We demonstrate ultrafast nonlinear absorption induced by strong, single-cycle THz fields in bulk, lightly doped 4H silicon carbide. A combination of Zener tunneling and intraband transitions makes the effect as at least as fast as the excitation pulse. The sub-picosecond recovery time makes...

  4. Ultrafast Non-Thermal Electron Dynamics in Single Layer Graphene

    Directory of Open Access Journals (Sweden)

    Novoselov K.S.

    2013-03-01

    Full Text Available We study the ultrafast dynamics of non-thermal electron relaxation in graphene upon impulsive excitation. The 10-fs resolution two color pump-probe allows us to unveil the non-equilibrium electron gas decay at early times.

  5. Ultrafast Laser Fabrication of Bragg Waveguides in GLS Chalcogenide Glass

    Directory of Open Access Journals (Sweden)

    McMillen Ben

    2013-11-01

    Full Text Available We present work on the fabrication of Bragg waveguides in gallium-lanthanum-sulfide chalcogenide glass using an ultrafast laser. Waveguides were written with a single pass while modulating the writing beam. The spatial and temporal profile of the writing beam was ontrolled during waveguide fabrication in order to control the shape and size of the waveguide cross-section.

  6. Development of Ultrafast Indirect Flash Heating Methods for RDX

    Science.gov (United States)

    2014-02-01

    8 1 1. Introduction The mission of the Multiscale Response of Energetic Materials program is to establish...vinyl nitrate ) Films. J. Phys. Chem. A 2004, 108 (43), 9342–9347. 11 12. Gottfried, J. L.; de Lucia, F. C., Jr.; Piraino, S. M. Ultrafast Laser

  7. An ultrafast study of Zinc Phthalocyanine in DMSO

    CSIR Research Space (South Africa)

    Ombinda-Lemboumba, Saturnin

    2010-10-01

    Full Text Available The ultrafast dynamics of Zinc Phthalocyanine was studied using trasient absorption pump probe spectroscopy. Zinc Phthalocyanine was excited (pumped) at 672nm and probed by a white light continuum. The pump-probe technique used in this study...

  8. All-optical devices for ultrafast packet switching

    DEFF Research Database (Denmark)

    Dorren, H.J.S.; HerreraDorren, J.; Raz, O.

    2007-01-01

    We discuss integrated devices for all-optical packet switching. We focus on monolithically integrated all-optical flip-flops, ultra-fast semiconductor based wavelength converters and explain the operation principles. Finally, a 160 Gb/s all-optical packet switching experiment over 110 km of field...

  9. Acceptor number-dependent ultrafast photo-physical properties of push-pull chromophores using time-resolved methods

    Science.gov (United States)

    Chi, Xiao-Chun; Wang, Ying-Hui; Gao, Yu; Sui, Ning; Zhang, Li-Quan; Wang, Wen-Yan; Lu, Ran; Ji, Wen-Yu; Yang, Yan-Qiang; Zhang, Han-Zhuang

    2018-04-01

    Three push-pull chromophores comprising a triphenylamine (TPA) as electron-donating moiety and functionalized β-diketones as electron acceptor units are studied by various spectroscopic techniques. The time-correlated single-photon counting data shows that increasing the number of electron acceptor units accelerates photoluminescence relaxation rate of compounds. Transient spectra data shows that intramolecular charge transfer (ICT) takes place from TPA units to β-diketones units after photo-excitation. Increasing the number of electron acceptor units would prolong the generation process of ICT state, and accelerate the excited molecule reorganization process and the relaxation process of ICT state.

  10. Ultrafast Hydrogen-Bonding Dynamics in Amyloid Fibrils.

    Science.gov (United States)

    Pazos, Ileana M; Ma, Jianqiang; Mukherjee, Debopreeti; Gai, Feng

    2018-06-08

    While there are many studies on the subject of hydrogen bonding dynamics in biological systems, few, if any, have investigated this fundamental process in amyloid fibrils. Herein, we seek to add insight into this topic by assessing the dynamics of a hydrogen bond buried in the dry interface of amyloid fibrils. To prepare a suitable model peptide system for this purpose, we introduce two mutations into the amyloid-forming Aβ(16-22) peptide. The first one is a lysine analog at position 19, which is used to help form structurally homogeneous fibrils, and the second one is an aspartic acid derivative (DM) at position 17, which is intended (1) to be used as a site-specific infrared probe and (2) to serve as a hydrogen-bond acceptor to lysine so that an inter-β-sheet hydrogen bond can be formed in the fibrils. Using both infrared spectroscopy and atomic force microscopy, we show that (1) this mutant peptide indeed forms well defined fibrils, (2) when bulk solvent is removed, there is no detectable water present in the fibrils, (3) infrared results obtained with the DM probe are consistent with a protofibril structure that is composed of two antiparallel β-sheets stacked in a parallel fashion, leading to formation of the expected hydrogen bond. Using two-dimensional infrared spectroscopy, we further show that the dynamics of this hydrogen bond occur on a timescale of ~2.3 ps, which is attributed to the rapid rotation of the -NH3+ group of lysine around its Cε-Nζ bond. Taken together, these results suggest that (1) DM is a useful infrared marker in facilitating structure determination of amyloid fibrils and (2) even in the tightly packed core of amyloid fibrils certain amino acid sidechains can undergo ultrafast motions, hence contributing to the thermodynamic stability of the system.

  11. Revealing the ultrafast process behind the photoreduction of graphene oxide

    NARCIS (Netherlands)

    Gengler, Regis Y. N.; Badali, Daniel S.; Zhang, Dongfang; Dimos, Konstantinos; Spyrou, Konstantinos; Gournis, Dimitrios; Miller, R. J. Dwayne

    2013-01-01

    Effective techniques to reduce graphene oxide are in demand owing to the multitude of potential applications of this two-dimensional material. A very promising green method to do so is by exposure to ultraviolet irradiation. Unfortunately, the dynamics behind this reduction remain unclear. Here we

  12. Ultrafast all-optical signal processing using semiconductor optical amplifiers

    NARCIS (Netherlands)

    Li, Z.

    2007-01-01

    As the bit rate of one wavelength channel and the number of channels keep increasing in the telecommunication networks thanks to the advancement of optical transmission technologies, switching is experiencing the transition from the electrical domain to the optical domain. All-optical signal

  13. Ultrafast Laser Interaction Processes for LIBS and Other Sensing Technologies

    Science.gov (United States)

    2013-04-05

    physics.nist.gov/asd3 [2008, December 2]. National Institute of Standards and Technology, Gaithersburg, MD 61 E.N. Sobol , Phase transformations and ablation...their position to within hundreds of microns of the sample, as seen in Fig. 49b. 67 E.N. Sobol , Phase

  14. Interpretation of the ultrafast photoinduced processes in pentacene thin films

    DEFF Research Database (Denmark)

    Kuhlman, Thomas Scheby; Kongsted, Jacob; Mikkelsen, Kurt V.

    2010-01-01

    Ambiguity remains in the models explaining the photoinduced dynamics in pentacene thin films as observed in pump-probe experiments. One model advocates exciton fission as governing the evolution of the initially excited species, whereas the other advocates the formation of an excimeric species...... subsequent to excitation. On the basis of calculations by a combined quantum mechanics and molecular mechanics (QM/MM) method and general considerations regarding the excited states of pentacene we propose an alternative, where the initially excited species instead undergoes internal conversion to a doubly...... excited exciton. The conjecture is supported by the observed photophysical properties of pentacene from both static as well as time-resolved experiments....

  15. Enantio- and Stereoselective Construction of Atisane Scaffold via Organocatalytic Intramolecular Michael Reaction and Diels-Alder Reaction.

    Science.gov (United States)

    Sekita, Hiroko; Adachi, Kyohei; Kobayashi, Ippei; Sato, Yusuke; Nakada, Masahisa

    2017-05-05

    An enantio- and stereoselective construction of the atisane scaffold via organocatalytic intramolecular Michael reaction and Diels-Alder reaction is described. The organocatalytic intramolecular Michael reaction has been found to stereoselectively generate a trans-stereodiad comprising an all-carbon quaternary and a tertiary stereogenic centers. Use of the chiral secondary amine bearing thiourea with benzoic acid as additive is the key to obtaining the desired product with excellent ee in synthetically acceptable yield. The prepared chiral building block has been successfully converted to the compound including the atisane scaffold via the highly stereoselective intramolecular Diels-Alder reaction.

  16. Feed-forward motor control of ultrafast, ballistic movements.

    Science.gov (United States)

    Kagaya, K; Patek, S N

    2016-02-01

    To circumvent the limits of muscle, ultrafast movements achieve high power through the use of springs and latches. The time scale of these movements is too short for control through typical neuromuscular mechanisms, thus ultrafast movements are either invariant or controlled prior to movement. We tested whether mantis shrimp (Stomatopoda: Neogonodactylus bredini) vary their ultrafast smashing strikes and, if so, how this control is achieved prior to movement. We collected high-speed images of strike mechanics and electromyograms of the extensor and flexor muscles that control spring compression and latch release. During spring compression, lateral extensor and flexor units were co-activated. The strike initiated several milliseconds after the flexor units ceased, suggesting that flexor activity prevents spring release and determines the timing of strike initiation. We used linear mixed models and Akaike's information criterion to serially evaluate multiple hypotheses for control mechanisms. We found that variation in spring compression and strike angular velocity were statistically explained by spike activity of the extensor muscle. The results show that mantis shrimp can generate kinematically variable strikes and that their kinematics can be changed through adjustments to motor activity prior to the movement, thus supporting an upstream, central-nervous-system-based control of ultrafast movement. Based on these and other findings, we present a shishiodoshi model that illustrates alternative models of control in biological ballistic systems. The discovery of feed-forward control in mantis shrimp sets the stage for the assessment of targets, strategic variation in kinematics and the role of learning in ultrafast animals. © 2016. Published by The Company of Biologists Ltd.

  17. Study of the ultrafast polarization dynamics in lithium borohydride by means of femtosecond X-ray diffraction

    International Nuclear Information System (INIS)

    Stingl, Johannes

    2013-01-01

    In this thesis the ultrafast electronic polarisation in the crystalline material lithium borohydride (LiBH 4 ) is examined. The material is excited by a femtosecond long optical pulse and scanned by a likewise short X-ray pulse. Using X-ray scattering the optically induced spatial rearrangement of electronic charge can be directly mapped with atomic spatial resolution. Copper K-alpha X-rays for the experiment are produced in a laboratory table-top laserplasma source with 1 kHz repetition rate. This radiation is then focused on a powdered sample. Debye-Scherrer rings produced from powder diffraction are collected on a large area detector and processed to yield intensity profiles. Using pump-probe technique the change in diffracted intensity, triggered by excitation with a femtosecond optical pulse is examined. The temporal resolution is given by the delay between pump and probe pulse. This way insight is gained into the dynamic electronic evolution of the system. Intensity changes can be correlated to changes in charge density in the relevant material to elucidate structural dynamics on the femtosecond time scale. Lithium borohydride was chosen since it displays necessary characteristics for the exploration of ultrafast electronic polarisation. Up to date there has been no spatially resolved research in the femtosecond regime elucidating this electronic phenomenon. This work presents the ultrafast resonse in Lithiumborhydrid (LiBH 4 ) to strong electronic fields with optical frequencies, which leads to charge relocation accompanied by electronic polarisation.

  18. Ultrafast measurements of chlorine dioxide photochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ludowise, P.D.

    1997-08-01

    Time-resolved mass spectrometry and time-resolved photoelectron spectroscopy are used to study the ultrafast photodissociation dynamics of chlorine dioxide, an important constituent in stratospheric ozone depletion. Chapter 1 introduces these pump/probe techniques, in which a femtosecond pump pulse excites a molecule to a dissociative state. At a later time, a second femtosecond probe pulse ionizes the molecule. The resulting mass and photoelectron spectra are acquired as a function of the delay between the pump and probe pulses, which follows the evolution of the molecule on the excited state. A comparison to other techniques used to study reaction dynamics is discussed. Chapter 2 includes a detailed description of the design and construction of the experimental apparatus, which consists of a femtosecond laser system, a molecular beam time-of-flight spectrometer, and a data acquisition system. The time-of-flight spectrometer is specifically designed to have a short flight distance to maximize the photoelectron collection efficiency without degrading the resolution, which is limited by the bandwidth of the femtosecond laser system. Typical performance of the apparatus is demonstrated in a study of the time-resolved photoelectron spectroscopy of nitric oxide. The results of the time-resolved mass spectrometry experiments of chlorine dioxide are presented in Chapter 3. Upon excitation to the A {sup 2}A{sub 2} state near 3.2 eV, the molecule dissociates through an indirect two-step mechanism. The direct dissociation channel has been predicted to be open, but is not observed. A quantum beat is observed in the OClO{sup +} species, which is described as a vibrational coherence of the optically prepared A {sup 2}A{sub 2} state. Chapter 4 presents the results of the time-resolved photoelectron experiments of chlorine dioxide. At short delay time, the quantum beat of the OClO{sup +} species is observed in the X {sup 1}A{sub 1} state of the ion. At infinite delay, the signal

  19. Investigation of an Ultrafast Harmonic Resonant RF Kicker

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yulu [Univ. of Chinese Academy of Sciences (CAS), Beijing (China)

    2016-10-01

    -scale copper prototype cavity (resonant frequencies from 95.26 MHz to 857.34 MHz) was fabricated to validate the electromagnetic characteristics. With this half scale prototype, the tuning processes of multiple harmonic frequencies, unloaded quality factor measurements of each mode, and bead-pull measurements are performed. The bench measurement results matched well with the simulation results, which have validated our cavity design and construction methods. Finally, a simple mode combining experiment with five separate signal generators was performed on this prototype cavity and the desired fast rise/fall time (1.2 ns), high repetition rate (95.26 MHz) waveform was captured, which finally proved our design of this ultrafast harmonic kicker.

  20. Emerging Low-Dimensional Materials for Nonlinear Optics and Ultrafast Photonics.

    Science.gov (United States)

    Liu, Xiaofeng; Guo, Qiangbing; Qiu, Jianrong

    2017-04-01

    Low-dimensional (LD) materials demonstrate intriguing optical properties, which lead to applications in diverse fields, such as photonics, biomedicine and energy. Due to modulation of electronic structure by the reduced structural dimensionality, LD versions of metal, semiconductor and topological insulators (TIs) at the same time bear distinct nonlinear optical (NLO) properties as compared with their bulk counterparts. Their interaction with short pulse laser excitation exhibits a strong nonlinear character manifested by NLO absorption, giving rise to optical limiting or saturated absorption associated with excited state absorption and Pauli blocking in different materials. In particular, the saturable absorption of these emerging LD materials including two-dimensional semiconductors as well as colloidal TI nanoparticles has recently been utilized for Q-switching and mode-locking ultra-short pulse generation across the visible, near infrared and middle infrared wavelength regions. Beside the large operation bandwidth, these ultrafast photonics applications are especially benefit from the high recovery rate as well as the facile processibility of these LD materials. The prominent NLO response of these LD materials have also provided new avenues for the development of novel NLO and photonics devices for all-optical control as well as optical circuits beyond ultrafast lasers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Ultrafast atomic-scale visualization of acoustic phonons generated by optically excited quantum dots

    Directory of Open Access Journals (Sweden)

    Giovanni M. Vanacore

    2017-07-01

    Full Text Available Understanding the dynamics of atomic vibrations confined in quasi-zero dimensional systems is crucial from both a fundamental point-of-view and a technological perspective. Using ultrafast electron diffraction, we monitored the lattice dynamics of GaAs quantum dots—grown by Droplet Epitaxy on AlGaAs—with sub-picosecond and sub-picometer resolutions. An ultrafast laser pulse nearly resonantly excites a confined exciton, which efficiently couples to high-energy acoustic phonons through the deformation potential mechanism. The transient behavior of the measured diffraction pattern reveals the nonequilibrium phonon dynamics both within the dots and in the region surrounding them. The experimental results are interpreted within the theoretical framework of a non-Markovian decoherence, according to which the optical excitation creates a localized polaron within the dot and a travelling phonon wavepacket that leaves the dot at the speed of sound. These findings indicate that integration of a phononic emitter in opto-electronic devices based on quantum dots for controlled communication processes can be fundamentally feasible.

  2. Ultrafast surface carrier dynamics in the topological insulator Bi₂Te₃.

    Science.gov (United States)

    Hajlaoui, M; Papalazarou, E; Mauchain, J; Lantz, G; Moisan, N; Boschetto, D; Jiang, Z; Miotkowski, I; Chen, Y P; Taleb-Ibrahimi, A; Perfetti, L; Marsi, M

    2012-07-11

    We discuss the ultrafast evolution of the surface electronic structure of the topological insulator Bi(2)Te(3) following a femtosecond laser excitation. Using time and angle-resolved photoelectron spectroscopy, we provide a direct real-time visualization of the transient carrier population of both the surface states and the bulk conduction band. We find that the thermalization of the surface states is initially determined by interband scattering from the bulk conduction band, lasting for about 0.5 ps; subsequently, few picoseconds are necessary for the Dirac cone nonequilibrium electrons to recover a Fermi-Dirac distribution, while their relaxation extends over more than 10 ps. The surface sensitivity of our measurements makes it possible to estimate the range of the bulk-surface interband scattering channel, indicating that the process is effective over a distance of 5 nm or less. This establishes a correlation between the nanoscale thickness of the bulk charge reservoir and the evolution of the ultrafast carrier dynamics in the surface Dirac cone.

  3. Ultrafast Adiabatic Photodehydration of 2-Hydroxymethylphenol and the Formation of Quinone Methide.

    Science.gov (United States)

    Škalamera, Đani; Antol, Ivana; Mlinarić-Majerski, Kata; Vančik, Hrvoj; Phillips, David Lee; Ma, Jiani; Basarić, Nikola

    2018-04-20

    The photochemical reactivity of 2-hydroxymethylphenol (1) was investigated experimentally by photochemistry under cryogenic conditions, by detecting reactive intermediates by IR spectroscopy, and by using nanosecond and femtosecond transient absorption spectroscopic methods in solution at room temperature. In addition, theoretical studies were performed to facilitate the interpretation of the experimental results and also to simulate the reaction pathway to obtain a better understanding of the reaction mechanism. The main finding of this work is that photodehydration of 1 takes place in an ultrafast adiabatic photochemical reaction without any clear intermediate, delivering quinone methide (QM) in the excited state. Upon photoexcitation to a higher vibrational level of the singlet excited state, 1 undergoes vibrational relaxation leading to two photochemical pathways, one by which synchronous elimination of H 2 O gives QM 2 in its S 1 state and the other by which homolytic cleavage of the phenolic O-H bond produces a phenoxyl radical (S 0 ). Both are ultrafast processes that occur within a picosecond. The excited state of QM 2 (S 1 ) probably deactivates to S 0 through a conical intersection to give QM 2 (S 0 ), which subsequently delivers benzoxete 4. Elucidation of the reaction mechanisms for the photodehydration of phenols by which QMs are formed is important to tune the reactivity of QMs with DNA and proteins for the potential application of QMs in medicine as therapeutic agents. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ultrafast high-repetition imaging of fuel sprays using picosecond fiber laser.

    Science.gov (United States)

    Purwar, Harsh; Wang, Hongjie; Tang, Mincheng; Idlahcen, Saïd; Rozé, Claude; Blaisot, Jean-Bernard; Godin, Thomas; Hideur, Ammar

    2015-12-28

    Modern diesel injectors operate at very high injection pressures of about 2000 bar resulting in injection velocities as high as 700 m/s near the nozzle outlet. In order to better predict the behavior of the atomization process at such high pressures, high-resolution spray images at high repetition rates must be recorded. However, due to extremely high velocity in the near-nozzle region, high-speed cameras fail to avoid blurring of the structures in the spray images due to their exposure time. Ultrafast imaging featuring ultra-short laser pulses to freeze the motion of the spray appears as an well suited solution to overcome this limitation. However, most commercial high-energy ultrafast sources are limited to a few kHz repetition rates. In the present work, we report the development of a custom-designed picosecond fiber laser generating ∼ 20 ps pulses with an average power of 2.5 W at a repetition rate of 8.2 MHz, suitable for high-speed imaging of high-pressure fuel jets. This fiber source has been proof tested by obtaining backlight images of diesel sprays issued from a single-orifice injector at an injection pressure of 300 bar. We observed a consequent improvement in terms of image resolution compared to standard white-light illumination. In addition, the compactness and stability against perturbations of our fiber laser system makes it particularly suitable for harsh experimental conditions.

  5. Short-Range Electron Transfer in Reduced Flavodoxin: Ultrafast Nonequilibrium Dynamics Coupled with Protein Fluctuations.

    Science.gov (United States)

    Kundu, Mainak; He, Ting-Fang; Lu, Yangyi; Wang, Lijuan; Zhong, Dongping

    2018-05-03

    Short-range electron transfer (ET) in proteins is an ultrafast process on the similar timescales as local protein-solvent fluctuations thus the two dynamics are coupled. Here, we use semiquinone flavodoxin and systematically characterized the photoinduced redox cycle with eleven mutations of different aromatic electron donors (tryptophan and tyrosine) and local residues to change redox properties. We observed the forward and backward ET dynamics in a few picoseconds, strongly following a stretched behavior resulting from a coupling between local environment relaxations and these ET processes. We further observed the hot vibrational-state formation through charge recombination and the subsequent cooling dynamics also in a few picoseconds. Combined with the ET studies in oxidized flavodoxin, these results coherently reveal the evolution of the ET dynamics from single to stretched exponential behaviors and thus elucidate critical timescales for the coupling. The observed hot vibration-state formation is robust and should be considered in all photoinduced back ET processes in flavoproteins.

  6. Ultrafast laser and swift heavy ion irradiation: Response of Gd 2 O 3 and ZrO 2 to intense electronic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Rittman, Dylan R.; Tracy, Cameron L.; Cusick, Alex B.; Abere, Michael J.; Torralva, Ben; Ewing, Rodney C.; Yalisove, Steven M.

    2015-04-27

    In order to investigate the response of materials to extreme conditions, there are several approaches to depositing extremely high concentrations of energy into very small volumes of material, including ultrafast laser and swift heavy ion (SHI) irradiation. In this study, crystalline-to-crystalline phase transformations in cubic Gd2O3 and monoclinic ZrO2 have been investigated using ultrafast laser irradiation. The phases produced by the extreme conditions of irradiation were characterized by grazing incidence x-ray diffraction (GIXRD) and Raman spectroscopy. Gd2O3 exhibited a cubic-to-monoclinic phase transformation, as evidenced by the appearance of the monoclinic (40$\\bar{2}$), (003), (310), and (112$\\bar{2}$) peaks in the GIXRD pattern and of four Ag and three Bg Raman modes. ZrO2 underwent a monoclinic-to-tetragonal phase transformation, as evidenced by the emergence of the tetragonal (101) peak in the GIXRD pattern and of Eg and A1g Raman modes. The new phases formed by ultrafast laser irradiation are high temperature polymorphs of the two materials. No evidence of amorphization was seen in the GIXRD data, though Raman spectroscopy indicated point defect accumulation. These results are identical to those produced by irradiation with SHIs, which also deposit energy in materials primarily through electronic excitation. The similarity in damage process and material response between ultrafast laser and SHI irradiation suggests a fundamental relationship between these two techniques.

  7. Long-Lived Triplet Excited States of Bent-Shaped Pentacene Dimers by Intramolecular Singlet Fission.

    Science.gov (United States)

    Sakuma, Takao; Sakai, Hayato; Araki, Yasuyuki; Mori, Tadashi; Wada, Takehiko; Tkachenko, Nikolai V; Hasobe, Taku

    2016-03-24

    Intramolecular singlet fission (ISF) is a promising photophysical process to construct more efficient light energy conversion systems as one excited singlet state converts into two excited triplet states. Herein we synthesized and evaluated bent-shaped pentacene dimers as a prototype of ISF to reveal intrinsic characters of triplet states (e.g., lifetimes of triplet excited states). In this study, meta-phenylene-bridged TIPS-pentacene dimer (PcD-3Ph) and 2,2'-bipheynyl bridged TIPS-pentacene dimer (PcD-Biph) were newly synthesized as bent-shaped dimers. In the steady-state spectroscopy, absorption and emission bands of these dimers were fully characterized, suggesting the appropriate degree of electronic coupling between pentacene moieties in these dimers. In addition, the electrochemical measurements were also performed to check the electronic interaction between two pentacene moieties. Whereas the successive two oxidation peaks owing to the delocalization were observed in a directly linked-pentacene dimer (PcD) by a single bond, the cyclic voltammograms in PcD-Biph and PcD-3Ph implied the weaker interaction compared to that of p-phenylene-bridged TIPS-pentacene dimer (PcD-4Ph) and PcD. The femtosecond and nanosecond transient absorption spectra clearly revealed the slower ISF process in bent-shaped pentacene dimers (PcD-Biph and PcD-3Ph), more notably, the slower relaxation of the excited triplet states in PcD-Biph and PcD-3Ph. Namely, the quantum yields of triplet states (ΦT) by ISF approximately remain constant (ca. 180-200%) in all dimer systems, whereas the lifetimes of the triplet excited states became much longer (up to 360 ns) in PcD-Biph as compared to PcD-4Ph (15 ns). Additionally, the lifetimes of the corresponding triplet states in PcD-Biph and PcD-3Ph were sufficiently affected by solvent viscosity. In particular, the lifetimes of PcD-Biph triplet state in THF/paraffin (1.0 μs) increased up to approximately three times as compared to that in THF

  8. Evidence for excited-state intramolecular proton transfer in 4-chlorosalicylic acid from combined experimental and computational studies: Quantum chemical treatment of the intramolecular hydrogen bonding interaction

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bijan Kumar [Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Calcutta 700009 (India); Guchhait, Nikhil, E-mail: nikhil.guchhait@rediffmail.com [Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Calcutta 700009 (India)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Experimental and computational studies on the photophysics of 4-chlorosalicylic acid. Black-Right-Pointing-Pointer Spectroscopically established ESIPT reaction substantiated by theoretical calculation. Black-Right-Pointing-Pointer Quantum chemical treatment of IMHB unveils strength, nature and directional nature. Black-Right-Pointing-Pointer Superiority of quantum chemical treatment of H-bond over geometric criteria. Black-Right-Pointing-Pointer Role of H-bond as a modulator of aromaticity. -- Abstract: The photophysical study of a pharmaceutically important chlorine substituted derivative of salicylic acid viz., 4-chlorosalicylic acid (4ClSA) has been carried out by steady-state absorption, emission and time-resolved emission spectroscopy. A large Stokes shifted emission band with negligible solvent polarity dependence marks the spectroscopic signature of excited-state intramolecular proton transfer (ESIPT) reaction in 4ClSA. Theoretical calculation by ab initio and Density Functional Theory methods yields results consistent with experimental findings. Theoretical potential energy surfaces predict the occurrence of proton transfer in S{sub 1}-state. Geometrical and energetic criteria, Atoms-In-Molecule topological parameters, Natural Bond Orbital population analysis have been exploited to evaluate the intramolecular hydrogen bond (IMHB) interaction and to explore its directional nature. The inter-correlation between aromaticity and resonance assisted H-bond is also discussed in this context. Our results unveil that the quantum chemical treatment is a more accurate tool to assess hydrogen bonding interaction in comparison to geometrical criteria.

  9. Intramolecular symmetry-adapted perturbation theory with a single-determinant wavefunction

    Energy Technology Data Exchange (ETDEWEB)

    Pastorczak, Ewa; Prlj, Antonio; Corminboeuf, Clémence, E-mail: clemence.corminboeuf@epfl.ch [Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Gonthier, Jérôme F. [Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400 (United States)

    2015-12-14

    We introduce an intramolecular energy decomposition scheme for analyzing non-covalent interactions within molecules in the spirit of symmetry-adapted perturbation theory (SAPT). The proposed intra-SAPT approach is based upon the Chemical Hamiltonian of Mayer [Int. J. Quantum Chem. 23(2), 341–363 (1983)] and the recently introduced zeroth-order wavefunction [J. F. Gonthier and C. Corminboeuf, J. Chem. Phys. 140(15), 154107 (2014)]. The scheme decomposes the interaction energy between weakly bound fragments located within the same molecule into physically meaningful components, i.e., electrostatic-exchange, induction, and dispersion. Here, we discuss the key steps of the approach and demonstrate that a single-determinant wavefunction can already deliver a detailed and insightful description of a wide range of intramolecular non-covalent phenomena such as hydrogen bonds, dihydrogen contacts, and π − π stacking interactions. Intra-SAPT is also used to shed the light on competing intra- and intermolecular interactions.

  10. Does the Intramolecular Hydrogen Bond Affect the Spectroscopic Properties of Bicyclic Diazole Heterocycles?

    Directory of Open Access Journals (Sweden)

    Paweł Misiak

    2018-01-01

    Full Text Available The formation of an intramolecular hydrogen bond in pyrrolo[1,2-a]pyrazin-1(2H-one bicyclic diazoles was analyzed, and the influence of N-substitution on HB formation is discussed in this study. B3LYP/aug-cc-pVDZ calculations were performed for the diazole, and the quantum theory of atoms in molecules (QTAIM approach as well as the natural bond orbital (NBO method was applied to analyze the strength of this interaction. It was found that the intramolecular hydrogen bond that closes an extra ring between the C=O proton acceptor group and the CH proton donor, that is, C=O⋯H–C, influences the spectroscopic properties of pyrrolopyrazine bicyclic diazoles, particularly the carbonyl frequencies. The influence of N-substitution on the aromaticity of heterocyclic rings is also discussed in this report.

  11. Intramolecular Charge-Transfer Interaction of Donor-Acceptor-Donor Arrays Based on Anthracene Bisimide.

    Science.gov (United States)

    Iwanaga, Tetsuo; Ogawa, Marina; Yamauchi, Tomokazu; Toyota, Shinji

    2016-05-20

    We designed anthracene bisimide (ABI) derivatives having two triphenylamine (TPA) groups as donor units at the 9,10-positions to form a novel π-conjugated donor-acceptor system. These compounds and their analogues with ethynylene linkers were synthesized by Suzuki-Miyaura and Sonogashira coupling reactions, respectively. In UV-vis spectra, the linker-free derivatives showed broad absorption bands arising from intramolecular charge-transfer interactions. Introducing ethynylene linkers resulted in a considerable red shift of the absorption bands. In fluorescence spectra, the ethynylene derivatives showed intense emission bands at 600-650 nm. Their photophysical and electrochemical properties were compared with those of the corresponding mono TPA derivatives on the basis of theoretical calculations and cyclic voltammetry to evaluate the intramolecular electronic interactions between the donor and acceptor units.

  12. Fast and versatile microwave-assisted intramolecular Heck reaction in peptide macrocyclization using microwave energy.

    Science.gov (United States)

    Byk, Gerardo; Cohen-Ohana, Mirit; Raichman, Daniel

    2006-01-01

    We have revisited the intramolecular Heck reaction and investigated the microwave-assisted macrocyclization on preformed peptides using a model series of ring-varying peptides acryloyl-Gly-[Gly](n)-Phe(4-I)NHR; n = 0-4. The method was applied to both solution and solid supported cyclizations. We demonstrate that the intramolecular Heck reaction can be performed in peptides both in solution and solid support using a modified domestic microwave within 1 to 30 minutes in DMF under reflux with moderate yields ranging from 15 to 25% for a scale between 2-45 mg of linear precursors. The approach was applied to the synthesis of a constrained biologically relevant peptidomimetic bearing an Arg-Gly-Asp (RGD) sequence. These results make the microwave-assisted Heck reaction an attractive renovated approach for peptidomimetics. Copyright 2006 Wiley Periodicals, Inc.

  13. Ultrafast disk technology enables next generation micromachining laser sources

    Science.gov (United States)

    Heckl, Oliver H.; Weiler, Sascha; Luzius, Severin; Zawischa, Ivo; Sutter, Dirk

    2013-02-01

    Ultrashort pulsed lasers based on thin disk technology have entered the 100 W regime and deliver several tens of MW peak power without chirped pulse amplification. Highest uptime and insensitivity to back reflections make them ideal tools for efficient and cost effective industrial micromachining. Frequency converted versions allow the processing of a large variety of materials. On one hand, thin disk oscillators deliver more than 30 MW peak power directly out of the resonator in laboratory setups. These peak power levels are made possible by recent progress in the scaling of the pulse energy in excess of 40 μJ. At the corresponding high peak intensity, thin disk technology profits from the limited amount of material and hence the manageable nonlinearity within the resonator. Using new broadband host materials like for example the sesquioxides will eventually reduce the pulse duration during high power operation and further increase the peak power. On the other hand industry grade amplifier systems deliver even higher peak power levels. At closed-loop controlled 100W, the TruMicro Series 5000 currently offers the highest average ultrafast power in an industry proven product, and enables efficient micromachining of almost any material, in particular of glasses, ceramics or sapphire. Conventional laser cutting of these materials often requires UV laser sources with pulse durations of several nanoseconds and an average power in the 10 W range. Material processing based on high peak power laser sources makes use of multi-photon absorption processes. This highly nonlinear absorption enables micromachining driven by the fundamental (1030 nm) or frequency doubled (515 nm) wavelength of Yb:YAG. Operation in the IR or green spectral range reduces the complexity and running costs of industrial systems initially based on UV light sources. Where UV wavelength is required, the TruMicro 5360 with a specified UV crystal life-time of more than 10 thousand hours of continues

  14. Towards single-molecule detection of intramolecular exciplexes: Photophysics of a benzanthrone derivative

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Akifumi [Graduate School of Bio-Applications and Systems Engineering (BASE), Tokyo University of Agriculture and Technology, 2-24-16 Naka-machi, Koganei, Tokyo, 184-8588 (Japan); Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Ookayama 2-12-1-S8, Meguro-ku, Tokyo, 152-8552 (Japan); Sato, Hisaya [Graduate School of Bio-Applications and Systems Engineering (BASE), Tokyo University of Agriculture and Technology, 2-24-16 Naka-machi, Koganei, Tokyo, 184-8588 (Japan); Vacha, Martin [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Ookayama 2-12-1-S8, Meguro-ku, Tokyo, 152-8552 (Japan)]. E-mail: vacha@op.titech.ac.jp

    2007-01-15

    We report luminescence study of intramolecular exciplexes based on an aminobenzanthrone derivative, dimethyl-amino-N-acetyl-3-aminobenzanthrone (BDA). The BDA compound shows strong dependence of the exciplex emission band intensity on the solvent dielectric function and moderate dependence on its viscosity. The exciplex emission mechanism is discussed in view of the unusual solvent polarity dependence and solvent-dependent excited state lifetimes. Preliminary results on single-molecule detection in polymer films are also presented.

  15. Towards single-molecule detection of intramolecular exciplexes: Photophysics of a benzanthrone derivative

    International Nuclear Information System (INIS)

    Hattori, Akifumi; Sato, Hisaya; Vacha, Martin

    2007-01-01

    We report luminescence study of intramolecular exciplexes based on an aminobenzanthrone derivative, dimethyl-amino-N-acetyl-3-aminobenzanthrone (BDA). The BDA compound shows strong dependence of the exciplex emission band intensity on the solvent dielectric function and moderate dependence on its viscosity. The exciplex emission mechanism is discussed in view of the unusual solvent polarity dependence and solvent-dependent excited state lifetimes. Preliminary results on single-molecule detection in polymer films are also presented

  16. Origin of Exo/Endo Selectivity in the Intramolecular Diels-Alder Reaction

    International Nuclear Information System (INIS)

    Yan, Shihai; Ryu, Do Hyun; Lee, Jin Yong

    2010-01-01

    The stereoselectivity of the intramolecular Diels-Alder reactions of 1 and its derivatives were investigated by ab initio calculations. The stereoselectivity mainly originates from the steric repulsion and the orbital interactions. The additional s-cis and s-trans conformations by introducing the carbonyl group at the neighbor of diene or dienophile may change the stereoselectivity, hence this kind of substitution can be utilized for stereoselective asymmetric synthesis

  17. Fe(II)/Fe(III)-Catalyzed Intramolecular Didehydro-Diels-Alder Reaction of Styrene-ynes.

    Science.gov (United States)

    Mun, Hyeon Jin; Seong, Eun Young; Ahn, Kwang-Hyun; Kang, Eun Joo

    2018-02-02

    The intramolecular didehydro-Diels-Alder reaction of styrene-ynes was catalyzed by Fe(II) and Fe(III) to produce various naphthalene derivatives under microwave heating conditions. Mechanistic calculations found that the Fe(II) catalyst activates the styrenyl diene in an inverse-electron-demand Diels-Alder reaction, and the consecutive dehydrogenation reaction can be promoted by either Fe(II)-catalyzed direct dehydrogenation or an Fe(III)-catalyzed rearomatization/dehydrogenation pathway.

  18. Photoinduced intramolecular substitution reaction of aryl halide with carbonyl oxygen of amide group

    CERN Document Server

    Park, Y T; Kim, M S; Kwon, J H

    2002-01-01

    Photoreaction of N-(o-halophenyl)acetamide in basic acetonitrile produces an intramolecular substituted product, 2-methylbenzoxazole in addition to reduced product, acetanilide, whereas photoreaction of N-(o-halobenzyl)acetamide affords a reduced product, N-benzylacetamide only. On the basis of preparative reaction, kinetics, and UV/vis absorption behavior, an electrophilic aromatic substitution of aryl halide with oxygen of its amide bond are proposed.

  19. Surprisingly Mild Enolate-Counterion-Free Pd(0)-Catalyzed Intramolecular Allylic Alkylations

    DEFF Research Database (Denmark)

    Madec, David; Prestat, Guillaume; Martini, Elisabetta

    2005-01-01

    Palladium-catalyzed intramolecular allylic alkylations of unsaturated EWG-activated amides can take place under phase-transfer conditions or in the presence of a crown ether. These new reaction conditions are milder and higher yielding than those previously reported. A rationalization for such an...... for such an unexpected result is put forth and validated by DFT-B3LYP calculations. The results suggest cyclization via a counterion-free (E)-enolate TS....

  20. Electron capture dissociation proceeds with a low degree of intramolecular migration of peptide amide hydrogens

    DEFF Research Database (Denmark)

    Rand, Kasper D; Adams, Christopher M; Zubarev, Roman A

    2008-01-01

    scrambling) that occurs during vibrational excitation of gas-phase ions. Unlike traditional collisional ion activation, electron capture dissociation (ECD) is not associated with substantial vibrational excitation. We investigated the extent of intramolecular backbone amide hydrogen (1H/2H) migration upon...... ECD using peptides with a unique selective deuterium incorporation. Our results show that only limited amide hydrogen migration occurs upon ECD, provided that vibrational excitation prior to the electron capture event is minimized. Peptide ions that are excessively vibrationally excited...

  1. Antimalarial peroxides: the first intramolecular 1,2,4,5-tetraoxane

    Directory of Open Access Journals (Sweden)

    BOGDAN A. SOLAJA

    2002-07-01

    Full Text Available An intramolecular steroidal 1,2,4,5-tetraoxane has been synthesised in six steps starting from methyl 3-oxo-7a,12a-diacetoxy-5b-cholan-24-oate. The synthesised 1,2,4,5-tetraoxane has moderate in vitro antimalarial activity against P. falciparum strains (IC50 (D6 = 0.35 mg/mL; IC50 (W2 = 0.29 mg/mL.

  2. Ductile Glass of Polyrotaxane Toughened by Stretch-Induced Intramolecular Phase Separation.

    Science.gov (United States)

    Kato, Kazuaki; Nemoto, Kaito; Mayumi, Koichi; Yokoyama, Hideaki; Ito, Kohzo

    2017-09-27

    A new class of ductile glasses is created from a thermoplastic polyrotaxane. The hard glass, which has a Young's modulus of 1 GPa, shows crazing, necking, and strain hardening with a total elongation of 330%. Stress concentration is prevented through a unique stretch-induced intramolecular phase separation of the cyclic components and the exposed backbone. In situ synchrotron X-ray scattering studies indicate that the backbone polymer chains slip through the cyclic components in the regions where the stress is concentrated.

  3. Intramolecular Azide to Alkene Cycloadditions for the Construction of Pyrrolobenzodiazepines and Azetidino-Benzodiazepines

    Directory of Open Access Journals (Sweden)

    Karl Hemming

    2014-10-01

    Full Text Available The coupling of proline- and azetidinone-substituted alkenes to 2-azidobenzoic and 2-azidobenzenesulfonic acid gives precursors that undergo intramolecular azide to alkene 1,3-dipolar cycloadditions to give imine-, triazoline- or aziridine-containing pyrrolo[1,4]benzodiazepines (PBDs, pyrrolo[1,2,5]benzothiadiazepines (PBTDs, and azetidino[1,4]benzodiazepines. The imines and aziridines are formed after loss of nitrogen from a triazoline cycloadduct. The PBDs are a potent class of antitumour antibiotics.

  4. Photoinduced intramolecular substitution reaction of aryl halide with carbonyl oxygen of amide group

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Tae; Song, Myong Geun; Kim, Moon Sub; Kwon, Jeong Hee [Kyungpook National Univ., Daegu (Korea, Republic of)

    2002-09-01

    Photoreaction of N-(o-halophenyl)acetamide in basic acetonitrile produces an intramolecular substituted product, 2-methylbenzoxazole in addition to reduced product, acetanilide, whereas photoreaction of N-(o-halobenzyl)acetamide affords a reduced product, N-benzylacetamide only. On the basis of preparative reaction, kinetics, and UV/vis absorption behavior, an electrophilic aromatic substitution of aryl halide with oxygen of its amide bond are proposed.

  5. Photoinduced intramolecular substitution reaction of aryl halide with carbonyl oxygen of amide group

    International Nuclear Information System (INIS)

    Park, Yong Tae; Song, Myong Geun; Kim, Moon Sub; Kwon, Jeong Hee

    2002-01-01

    Photoreaction of N-(o-halophenyl)acetamide in basic acetonitrile produces an intramolecular substituted product, 2-methylbenzoxazole in addition to reduced product, acetanilide, whereas photoreaction of N-(o-halobenzyl)acetamide affords a reduced product, N-benzylacetamide only. On the basis of preparative reaction, kinetics, and UV/vis absorption behavior, an electrophilic aromatic substitution of aryl halide with oxygen of its amide bond are proposed

  6. An intramolecular inverse electron demand Diels–Alder approach to annulated α-carbolines

    Directory of Open Access Journals (Sweden)

    Zhiyuan Ma

    2012-06-01

    Full Text Available Intramolecular inverse electron demand cycloadditions of isatin-derived 1,2,4-triazines with acetylenic dienophiles tethered by amidations or transesterifications proceed in excellent yields to produce lactam- or lactone-fused α-carbolines. Beginning with various isatins and alkynyl dienophiles, a pilot-scale library of eighty-eight α-carbolines was prepared by using this robust methodology for biological evaluation.

  7. Intramolecular electron transfer in Pseudomonas aeruginosa cd(1) nitrite reductase

    DEFF Research Database (Denmark)

    Farver, Ole; Brunori, Maurizio; Cutruzzolà, Francesca

    2009-01-01

    ) as the level of reduction increased in both the WT and the His mutant. Equilibrium standard enthalpy and entropy changes and activation parameters of this ET process were determined. We concluded that negative cooperativity is a common feature among the cd(1) nitrite reductases, and we discuss this control...

  8. Thiol peroxidase-like activity of some intramolecularly coordinated ...

    Indian Academy of Sciences (India)

    Unknown

    the cell from oxidative stress.1 The enzyme (Enz-. SeH) reduces the peroxides to the corresponding al- cohol or water and in the process gets converted to .... Gas evolution was ..... Bromine/lithium exchange with n-BuLi in Et2O pro-.

  9. Excited state kinetics of anthracene-bridge-aniline intramolecular exciplexes

    DEFF Research Database (Denmark)

    Thyrhaug, Erling; Hammershøj, Peter; Kjær, Kasper Skov

    2014-01-01

    excited anthracene state (LE) and an excited state complex (exciplex, EP) in non-polar solvents. The kinetics of the excited state processes were established in decalin from the time-resolved emission, and was shown to be strongly influenced by an electron-transfer state (ET). For quantitative studies...

  10. Formation of benzo[f]-1-indanone frameworks by regulable intramolecular annulations of gem-dialkylthio trienynes.

    Science.gov (United States)

    Fang, Zhongxue; Liu, Ying; Barry, Badru-Deen; Liao, Peiqiu; Bi, Xihe

    2015-02-20

    An atom-economic route to benzo[f]-1-indanone frameworks has been developed starting from the readily available gem-dialkylthio trienynes by intramolecular annulations. The chemoselectivity of the intramolecular cyclizations can be regulated by both the base and the type of gas atmosphere used in the reaction, thus allowing the divergent synthesis of the corresponding functionalized benzo[f]-1-indanones in good to excellent yields.

  11. Unique Intramolecular Electronic Communications in Mono-ferrocenylpyrimidine Derivatives: Correlation between Redox Properties and Structural Nature

    International Nuclear Information System (INIS)

    Xiang, Debo; Noel, Jerome; Shao, Huibo; Dupas, Georges; Merbouh, Nabyl; Yu, Hua-Zhong

    2015-01-01

    Highlights: • Unique intramolecular electronic communications (electron withdrawing and π-bond delocalization effects) exist in the mono-ferrocenylpyrimidine derivatives. • The redox potential shift correlates the pyrimidine ring torsion angle with the extent of electron delocalization. • The correlation between redox properties and structural nature in mono-ferrocenylpyrimidine derivatives is evident. - Abstract: The correlation between redox properties and structural nature in a complete set of mono-ferrocenylpyrimidine derivatives (2-ferrocenylpyrimidine, 2-FcPy; 4-ferrocenylpyrimidine, 4-FcPy; 5-ferrocenylpyrimidine, 5-FcPy) was evaluated by investigating the intramolecular electronic communications. Both conventional electrochemical measurements in organic solvents and thin-film voltammetric studies of these compounds were carried out. It was discovered that their formal potentials are significantly different from each other, and shift negatively in the order of 4-FcPy > 5-FcPy > 2-FcPy. This result suggests that the intramolecular electronic communication is dictated by the delocalization effect of the π-bonding systems in 2-FcPy, and that the electron-withdrawing effect of the nitrogen atoms in the pyrimidine ring plays the key role in 4-FcPy and 5-FcPy. The single crystal X-ray structure analyis and Density Functional Theory (DFT) calculation provided additional evidence (e.g., different torsion angles between the cyclopentadienyl and pyrimidine rings) to support the observed correlation between the redox properties and structural nature

  12. Light induced intramolecular electron and energy transfer events in rigidly linked borondipyrromethene: Corrole Dyad

    Energy Technology Data Exchange (ETDEWEB)

    Giribabu, Lingamallu, E-mail: giribabu@iict.res.in [Inorganic & Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, Telangana (India); Jain, Kanika [Department of Chemistry, School of Chemical Sciences & Pharmacy, Central University of Rajasthan, Kishangarh, Dist. Ajmer, Rajasthan 305817 (India); Sudhakar, Kolanu; Duvva, Naresh [Inorganic & Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, Telangana (India); Chitta, Raghu, E-mail: raghuchitta@curaj.ac.in [Department of Chemistry, School of Chemical Sciences & Pharmacy, Central University of Rajasthan, Kishangarh, Dist. Ajmer, Rajasthan 305817 (India)

    2016-09-15

    We have designed and synthesized a photo-induced energy/electron donor–acceptor conjugate comprising of corrole linked to BODIPY at the 5-position via ester linkage. The dyad was characterized by elemental analysis, MALDI-MS, UV-Visible, {sup 1}H NMR fluorescence spectroscopy (steady-state and time-resolved) as well as electrochemical methods. A comparison of the UV–visible and {sup 1}H NMR spectra of the dyad with those of the corresponding individual model compounds (i.e., BODIPY-CO{sub 2}H and BPFC-OH) reveal that there exist minimum π–π interactions between BODIPY and corrole π-planes. Quenched emission of BODIPY and corrole part of the dyad has been observed in five different solvents. Excitation spectral data provided evidence for an intramolecular excitation energy transfer (EET) from the singlet BODIPY to the corrole and an intramolecular photoinduced electron transfer (PET) from singlet state of corrole to ground state of BODIPY. Detailed analysis of the data suggests that Forster's dipole–dipole mechanism does not adequately explain this energy transfer but, an electron exchange mediated mechanism can, in principle, contribute to the intramolecular EET.

  13. Regulation of interleukin-4 signaling by extracellular reduction of intramolecular disulfides

    International Nuclear Information System (INIS)

    Curbo, Sophie; Gaudin, Raphael; Carlsten, Mattias; Malmberg, Karl-Johan; Troye-Blomberg, Marita; Ahlborg, Niklas; Karlsson, Anna; Johansson, Magnus; Lundberg, Mathias

    2009-01-01

    Interleukin-4 (IL-4) contains three structurally important intramolecular disulfides that are required for the bioactivity of the cytokine. We show that the cell surface of HeLa cells and endotoxin-activated monocytes can reduce IL-4 intramolecular disulfides in the extracellular space and inhibit binding of IL-4 to the IL-4Rα receptor. IL-4 disulfides were in vitro reduced by thioredoxin 1 (Trx1) and protein disulfide isomerase (PDI). Reduction of IL-4 disulfides by the cell surface of HeLa cells was inhibited by auranofin, an inhibitor of thioredoxin reductase that is an electron donor to both Trx1 and PDI. Both Trx1 and PDI have been shown to be located at the cell surface and our data suggests that these enzymes are involved in catalyzing reduction of IL-4 disulfides. The pro-drug N-acetylcysteine (NAC) that promotes T-helper type 1 responses was also shown to mediate the reduction of IL-4 disulfides. Our data provides evidence for a novel redox dependent pathway for regulation of cytokine activity by extracellular reduction of intramolecular disulfides at the cell surface by members of the thioredoxin enzyme family.

  14. Intramolecular Hydrogen Bonding and Conformational Preferences of Arzanol—An Antioxidant Acylphloroglucinol

    Directory of Open Access Journals (Sweden)

    Liliana Mammino

    2017-08-01

    Full Text Available Arzanol is a naturally-occurring prenylated acylphloroglucinol isolated from Helichrysum italicum and exhibiting anti-oxidant, antibiotic and antiviral activities. The molecule contains an α-pyrone moiety attached to the phloroglucinol moiety through a methylene bridge. The presence of several hydrogen bond donor or acceptor sites makes intramolecular hydrogen bonding patterns the dominant stabilising factor. Conformers with all the possible different hydrogen bonding patterns were calculated at the HF/6-31G(d,p and DFT/B3LYP/6-31+G(d,p levels with fully relaxed geometry in vacuo and in three solvents—chloroform, acetonitrile and water (these levels being chosen to enable comparisons with previous studies on acylphloroglucinols. Calculations in solution were performed with the Polarisable Continuum Model. The results show that the lowest energy conformers have the highest number of stronger intramolecular hydrogen bonds. The influence of intramolecular hydrogen bonding patterns on the other molecular properties is also analysed.

  15. Intramolecular BSSE and dispersion affect the structure of a dipeptide conformer

    Science.gov (United States)

    Hameed, Rabia; Khan, Afsar; van Mourik, Tanja

    2018-05-01

    B3LYP and MP2 calculations with the commonly-used 6-31+G(d) basis set predict qualitatively different structures for the Tyr-Gly conformer book1, which is the most stable conformer identified in a previous study. The structures differ mainly in the ψtyr Ramachandran angle (138° in the B3LYP structure and 120° in the MP2 structure). The causes for the discrepant structures are attributed to missing dispersion in the B3LYP calculations and large intramolecular BSSE in the MP2 calculations. The correct ψtyr value is estimated to be 130°. The MP2/6-31+G(d) profile identified an additional conformer, not present on the B3LYP surface, with a ψtyr value of 96° and a more folded structure. This minimum is, however, likely an artefact of large intramolecular BSSE values. We recommend the use of basis sets of at least quadruple-zeta quality in density functional theory (DFT), DFTaugmented with an empirical dispersion term (DFT-D) and second-order Møller-Plesset perturbation theory (MP2 ) calculations in cases where intramolecular BSSE is expected to be large.

  16. Synthesis, properties and reactivity of intramolecular hypercoordinate silicon complexes

    International Nuclear Information System (INIS)

    Nikolin, A A; Negrebetsky, V V

    2014-01-01

    The state of the art of the chemistry of hypercoordinate silicon compounds is analyzed. Published data on the current top-priority approaches to the preparative synthesis of these compounds and on their properties, structures and reactivity are summarized and generalized. Relying on the results obtained by modern physicochemical methods, the possible mechanisms of stereodynamic processes occurring in the coordination units of hypercoordinate silicon complexes are discussed. The bibliography includes 157 references

  17. Application of the generator coordinates method to the intra-molecular proton tunneling in the malonaldehyde molecule; Aplicacao do metodo das coordenadas geradoras ao processo de tunelamento do proton intramolecular na molecula de malonaldeido

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Andre Campos Kersten

    1995-12-31

    The effects of different vibrational modes on the isomerization process of polyatomic molecules, or solvent`s effects on reaction rates are object of up-to-date interest. In general, such many body phenomena are, in principle, multidimensional, and they first require a reduction of relevant degrees of freedom. In order to investigated, some aspects of the intra-molecular proton tunneling on a malonaldehyde molecule, we use the Generator Coordinate Method. The model used to describe such a process is the so-called System-Bath model, where the system is the reaction coordinate and the bath are the intrinsic degrees of freedom (vibrational modes of the molecule), which are described by a harmonic oscillator set linearly coupled to the system. The reduction of the multidimensional problem to the effective unidimensional one is done using a energy related variational principle on the intrinsic degrees of freedom. we obtained analytically a effective Hamiltonian where the effects of the various degrees of freedom reveal themselves in the appearance of a effective mass and in changes of the shape of the potential barrier. The analyticity of the method was crucial on identifying clearly the roles played by the different physical parameters involved. (author) 17 refs., 29 figs.

  18. Ultrafast carrier dynamics in a GaN/Al 0.18Ga0.82N superlattice

    Science.gov (United States)

    Mahler, Felix; Tomm, Jens W.; Reimann, Klaus; Woerner, Michael; Elsaesser, Thomas; Flytzanis, Christos; Hoffmann, Veit; Weyers, Markus

    2018-04-01

    Relaxation processes of photoexcited carriers in a GaN /Al0.18Ga0.82N superlattice are studied in femtosecond spectrally resolved reflectivity measurements at ambient temperature. The transient reflectivity reveals electron trapping into defect states close to the conduction-band minimum with a 150-200 fs time constant, followed by few-picosecond carrier cooling. A second slower trapping process into a different manifold of defect states is observed on a time scale of approximately 10 ps. Our results establish the prominent role of structural defects and disorder for ultrafast carrier dynamics in nitride semiconductor structures.

  19. Ultrafast dynamics of type-II GaSb/GaAs quantum dots

    International Nuclear Information System (INIS)

    Komolibus, K.; Piwonski, T.; Gradkowski, K.; Reyner, C. J.; Liang, B.; Huffaker, D. L.; Huyet, G.; Houlihan, J.

    2015-01-01

    In this paper, room temperature two-colour pump-probe spectroscopy is employed to study ultrafast carrier dynamics in type-II GaSb/GaAs quantum dots. Our results demonstrate a strong dependency of carrier capture/escape processes on applied reverse bias voltage, probing wavelength and number of injected carriers. The extracted timescales as a function of both forward and reverse bias may provide important information for the design of efficient solar cells and quantum dot memories based on this material. The first few picoseconds of the dynamics reveal a complex behaviour with an interesting feature, which does not appear in devices based on type-I materials, and hence is linked to the unique carrier capture/escape processes possible in type-II structures

  20. Understanding the features in the ultrafast transient absorption spectra of CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Cheng; Do, Thanh Nhut [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore); Ong, Xuanwei [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Chan, Yinthai [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Institute of Materials Research & Engineering, A*STAR, 2 Fusionopolis Way, Innovis, Singapore 138634 (Singapore); Tan, Howe-Siang, E-mail: howesiang@ntu.edu.sg [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore)

    2016-12-20

    We describe a model to explain the features of the ultrafast transient absorption (TA) spectra of CdSe core type quantum dots (QDs). The measured TA spectrum consists of contributions by the ground state bleach (GSB), stimulated emission (SE) and excited state absorption (ESA) processes associated with the three lowest energy transition of the QDs. We model the shapes of the GSB, SE and ESA spectral components after fits to the linear absorption. The spectral positions of the ESA components take into account the biexcitonic binding energy. In order to obtain the correct weightage of the GSB, SE and ESA components to the TA spectrum, we enumerate the set of coherence transfer pathways associated with these processes. From our fits of the experimental TA spectra of 65 Å diameter QDs, biexcitonic binding energies for the three lowest energy transitions are obtained.

  1. Progress in Ultrafast Intense Laser Science Volume V

    CERN Document Server

    Yamanouchi, Kaoru; Ledingham, Kenneth

    2010-01-01

    The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries. This fifth volume covers a broad range of topics from this interdisciplinary research field, focusing on coherent responses of gaseous and condensed matter to ultrashort intense laser pulses, propagation of intense laser pulses, and laser-plasma interaction and its applications.

  2. Various manifestations of hypertrophic cardiomyopathy on ultrafast computed tomography

    International Nuclear Information System (INIS)

    Sekiya, Tohru; Karikomi, Masahito; Ohshiro, Masaya; Iwakami, Masayoshi; Takamoto, Toshihiko; Sakamoto, Tsuguya

    1992-01-01

    Ultrafast computed tomography was performed in 30 patients with hypertrophic cardiomyopathy and images were assessed on variability of left ventricular hypertrophy, the pattern of left ventricular contraction, right ventricular hypertrophy, dilatation of the left atrium, and thickening of the mitral valve. Fifteen (50.0%) of 30 patients had asymmetric septal hypertrophy, six (20.0%) had diffuse hypertrophy, and nine (30.0%) had apical hypertrophy. In eleven patients with asymmetric septal hypertrophy and two with apical hypertrophy, non-hypertrophied segments in end-diastole showed vigorous contraction. Sixteen patients showed homogeneous left ventricular contraction and one showed partial apical contraction. Right ventricular hypertrophy was noted in 12 patients (40.0%), dilatation of the left atrium in 13 patients (43.3%), and mitral valve thickening in three (10.0%). Ultrafast computed tomography was useful in the evaluation of apical hypertrophy and right ventricular hypertrophy, which could be difficult to obtain by echocardiography. (author)

  3. Fast and ultrafast MR-imaging of the heart

    International Nuclear Information System (INIS)

    Schulthess, G.K. von; Davis, C.P.; Debatin, J.F.; McKinnon, G.C.

    1995-01-01

    MRI has been hampered by long image acquisition times. This combined with its non-realtime nature and the limited spatial resolution has made it difficult to extend MRT to the study of small cardiac structures. Recent technical improvements have made breath-held or realtime MRI feasible and thus laid the foundations for further applications in the field of cardiovascular imaging, notably MR coronary angiography, imaging of cardiac valve leaflets, as well as firstpass perfusion studies. Moreover ultrafast MR techniques may eventually replace conventional data acquisition strategies and thus drastically increase patient throughput by shortening acquisition time. This article provides an overview of the technical advances in MRI and their application to the cardiovascular system and discusses possibilities of combined ultrafast and interventional strategies. (orig.) [de

  4. Ultrafast photocurrents in monolayer MoS2

    Science.gov (United States)

    Parzinger, Eric; Wurstbauer, Ursula; Holleitner, Alexander W.

    Two-dimensional transition metal dichalcogenides such as MoS2 have emerged as interesting materials for optoelectronic devices. In particular, the ultrafast dynamics and lifetimes of photoexcited charge carriers have attracted great interest during the last years. We investigate the photocurrent response of monolayer MoS2 on a picosecond time scale utilizing a recently developed pump-probe spectroscopy technique based on coplanar striplines. We discuss the ultrafast dynamics within MoS2 including photo-thermoelectric currents and the impact of built-in fields due to Schottky barriers as well as the Fermi level pinning at the contact region. We acknowledge support by the ERC via Project 'NanoREAL', the DFG via excellence cluster 'Nanosystems Initiative Munich' (NIM), and through the TUM International Graduate School of Science and Engineering (IGSSE) and BaCaTeC.

  5. A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens, E-mail: bredenbeck@biophysik.uni-frankfurt.org, E-mail: bredenbeck@biophysik.uni-frankfurt.de [Institut für Biophysik, Johann Wolfgang Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt (Germany)

    2015-08-15

    A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported.

  6. Ultrafast optical ranging using microresonator soliton frequency combs

    Science.gov (United States)

    Trocha, P.; Karpov, M.; Ganin, D.; Pfeiffer, M. H. P.; Kordts, A.; Wolf, S.; Krockenberger, J.; Marin-Palomo, P.; Weimann, C.; Randel, S.; Freude, W.; Kippenberg, T. J.; Koos, C.

    2018-02-01

    Light detection and ranging is widely used in science and industry. Over the past decade, optical frequency combs were shown to offer advantages in optical ranging, enabling fast distance acquisition with high accuracy. Driven by emerging high-volume applications such as industrial sensing, drone navigation, or autonomous driving, there is now a growing demand for compact ranging systems. Here, we show that soliton Kerr comb generation in integrated silicon nitride microresonators provides a route to high-performance chip-scale ranging systems. We demonstrate dual-comb distance measurements with Allan deviations down to 12 nanometers at averaging times of 13 microseconds along with ultrafast ranging at acquisition rates of 100 megahertz, allowing for in-flight sampling of gun projectiles moving at 150 meters per second. Combining integrated soliton-comb ranging systems with chip-scale nanophotonic phased arrays could enable compact ultrafast ranging systems for emerging mass applications.

  7. Ultrafast dynamics and laser action of organic semiconductors

    CERN Document Server

    Vardeny, Zeev Valy

    2009-01-01

    Spurred on by extensive research in recent years, organic semiconductors are now used in an array of areas, such as organic light emitting diodes (OLEDs), photovoltaics, and other optoelectronics. In all of these novel applications, the photoexcitations in organic semiconductors play a vital role. Exploring the early stages of photoexcitations that follow photon absorption, Ultrafast Dynamics and Laser Action of Organic Semiconductors presents the latest research investigations on photoexcitation ultrafast dynamics and laser action in pi-conjugated polymer films, solutions, and microcavities.In the first few chapters, the book examines the interplay of charge (polarons) and neutral (excitons) photoexcitations in pi-conjugated polymers, oligomers, and molecular crystals in the time domain of 100 fs-2 ns. Summarizing the state of the art in lasing, the final chapters introduce the phenomenon of laser action in organics and cover the latest optoelectronic applications that use lasing based on a variety of caviti...

  8. Ultrafast dissociation: An unexpected tool for probing molecular dynamics

    International Nuclear Information System (INIS)

    Morin, Paul; Miron, Catalin

    2012-01-01

    Highlights: ► Ultrafast dissociation has been investigated by means of XPS and mass spectrometry. ► The interplay between electron relaxation and molecular dynamics is evidenced. ► Extension toward polyatomics, clusters, adsorbed molecules is considered. ► Quantum effects (spectral hole, angular effects) evidence the molecular field anisotropy. -- Abstract: Ultrafast dissociation following core–shell excitation into an antibonding orbital led to the early observation in HBr of atomic Auger lines associated to the decay of dissociated excited atoms. The purpose of this article is to review the very large variety of systems where such a situation has been encountered, extending from simple diatomic molecules toward more complex systems like polyatomics, clusters, or adsorbed molecules. Interestingly, this phenomenon has revealed an extremely rich and powerful tool for probing nuclear dynamics and its subtle interplay with electron relaxation occurring on a comparable time scale. Consequently this review covers a surprisingly large period, starting in 1986 and still ongoing.

  9. A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy

    International Nuclear Information System (INIS)

    El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens

    2015-01-01

    A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported

  10. Ultrafast Melting of Carbon Induced by Intense Proton Beams

    International Nuclear Information System (INIS)

    Pelka, A.; Guenther, M. M.; Harres, K.; Otten, A.; Roth, M.; Gregori, G.; Gericke, D. O.; Vorberger, J.; Glenzer, S. H.; Kritcher, A. L.; Heathcote, R.; Li, B.; Neely, D.; Kugland, N. L.; Niemann, C.; Makita, M.; Riley, D.; Mithen, J.; Schaumann, G.; Schollmeier, M.

    2010-01-01

    Laser-produced proton beams have been used to achieve ultrafast volumetric heating of carbon samples at solid density. The isochoric melting of carbon was probed by a scattering of x rays from a secondary laser-produced plasma. From the scattering signal, we have deduced the fraction of the material that was melted by the inhomogeneous heating. The results are compared to different theoretical approaches for the equation of state which suggests modifications from standard models.

  11. Ultra-fast boriding of metal surfaces for improved properties

    Science.gov (United States)

    Timur, Servet; Kartal, Guldem; Eryilmaz, Osman L.; Erdemir, Ali

    2015-02-10

    A method of ultra-fast boriding of a metal surface. The method includes the step of providing a metal component, providing a molten electrolyte having boron components therein, providing an electrochemical boriding system including an induction furnace, operating the induction furnace to establish a high temperature for the molten electrolyte, and boriding the metal surface to achieve a boride layer on the metal surface.

  12. Ultrafast chiroptical spectroscopy: Monitoring optical activity in quick time

    Directory of Open Access Journals (Sweden)

    Hanju Rhee

    2011-12-01

    Full Text Available Optical activity spectroscopy provides rich structural information of biologically important molecules in condensed phases. However, a few intrinsic problems of conventional method based on electric field intensity measurement scheme prohibited its extension to time domain technique. We have recently developed new types of optical activity spectroscopic methods capable of measuring chiroptical signals with femtosecond pulses. It is believed that these novel approaches will be applied to a variety of ultrafast chiroptical studies.

  13. Ultrafast transient-absorption of the solvated electron in water

    International Nuclear Information System (INIS)

    Kimura, Y.; Alfano, J.C.; Walhout, P.K.; Barbara, P.F.

    1994-01-01

    Ultrafast near infrared (NIR)-pump/variable wavelength probe transient-absorption spectroscopy has been performed on the aqueous solvated electron. The photodynamics of the solvated electron excited to its p-state are qualitatively similar to previous measurements of the dynamics of photoinjected electrons at high energy. This result confirms the previous interpretation of photoinjected electron dynamics as having a rate-limiting bottleneck at low energies presumably involving the p-state

  14. On nonequilibrium many-body systems V: ultrafast transport phenomena

    International Nuclear Information System (INIS)

    Freire, V.N.; Vasconcellos, A.R.; Luzzi, R.

    1989-01-01

    The monequilibrium statistical operator method and its accompanying nonlinear quantum transport theory, are used to perform an analytical study of the ultrafast mobility transient of central-valley photoinjected carriers in direct-gap polar semiconductors. Expressions for the time-resolved mobility of the hot carriers are derived. A brief discussion of the carriers' diffusion coefficient is done. (A.C.A.S.) [pt

  15. Ultrafast optical switching in three-dimensional photonic crystals

    OpenAIRE

    Mazurenko, D.A.

    2004-01-01

    The rapidly expanding research on photonic crystals is driven by potential applications in all-optical switches, optical computers, low-threshold lasers, and holographic data storage. The performance of such devices might surpass the speed of traditional electronics by several orders of magnitude and may result in a true revolution in nanotechnology. The heart of such devices would likely be an optical switching element. This thesis analyzes different regimes of ultrafast all-optical switchin...

  16. Exploring Ultrafast Structural Dynamics for Energetic Enhancement or Disruption

    Science.gov (United States)

    2016-03-01

    it. In a pump -push/ dump probe experiment, a secondary laser pulse (push/ dump ) is used after the initial perturbation due to the pump pulse. The...increased. The pump -push/ dump probe technique is a difficult experiment that requires a highly stable laser source. Ultrafast pump -probe experiments...decomposition of solids. Journal of Applied Physics. 2001;89:4156–4166. 17. Kee TW. Femtosecond pump -push-probe and pump - dump -probe spectroscopy of

  17. Thin-layer electrochemistry of ferrocenylbenzene derivatives: Intramolecular electronic communication

    International Nuclear Information System (INIS)

    Wang, Michael C.P.; Li Yunchao; Merbouh, Nabyl; Yu, Hua-Zhong

    2008-01-01

    Three arylferrocene derivatives, ferrocenylbenzene (MFcB), 1,3-diferrocenylbenzene (DFcB), and 1,3,5-triferrocenylbenzene (TFcB), were prepared and their redox properties systematically explored by thin-layer cyclic voltammetry (CV) and differential-pulse voltammetry (DPV). In contrast to conventional CV measurements that produced only a single pair of redox waves for all three compounds, the thin-layer technique discriminated between the multistep electron-transfer processes of DFcB and TFcB. In particular, two and three pairs of symmetric peaks were observed, respectively, when CV curves were recorded at a graphite electrode coated with a DFcB-containing and a TFcB-containing thin film of nitrobenzene and immersed in aqueous sodium perchlorate solution. These results demonstrate that the ferrocenyl moieties attached to the meta-positions of a benzene ring communicate electronically with each other, as a result of their distinct face-to-face orientations

  18. Intramolecular epistasis and the evolution of a new enzymatic function.

    Directory of Open Access Journals (Sweden)

    Sajid Noor

    Full Text Available Atrazine chlorohydrolase (AtzA and its close relative melamine deaminase (TriA differ by just nine amino acid substitutions but have distinct catalytic activities. Together, they offer an informative model system to study the molecular processes that underpin the emergence of new enzymatic function. Here we have constructed the potential evolutionary trajectories between AtzA and TriA, and characterized the catalytic activities and biophysical properties of the intermediates along those trajectories. The order in which the nine amino acid substitutions that separate the enzymes could be introduced to either enzyme, while maintaining significant catalytic activity, was dictated by epistatic interactions, principally between three amino acids within the active site: namely, S331C, N328D and F84L. The mechanistic basis for the epistatic relationships is consistent with a model for the catalytic mechanisms in which protonation is required for hydrolysis of melamine, but not atrazine.

  19. Application of the generator coordinates method to the intra-molecular proton tunneling in the malonaldehyde molecule

    International Nuclear Information System (INIS)

    Schmidt, Andre Campos Kersten

    1995-01-01

    The effects of different vibrational modes on the isomerization process of polyatomic molecules, or solvent's effects on reaction rates are object of up-to-date interest. In general, such many body phenomena are, in principle, multidimensional, and they first require a reduction of relevant degrees of freedom. In order to investigated, some aspects of the intra-molecular proton tunneling on a malonaldehyde molecule, we use the Generator Coordinate Method. The model used to describe such a process is the so-called System-Bath model, where the system is the reaction coordinate and the bath are the intrinsic degrees of freedom (vibrational modes of the molecule), which are described by a harmonic oscillator set linearly coupled to the system. The reduction of the multidimensional problem to the effective unidimensional one is done using a energy related variational principle on the intrinsic degrees of freedom. we obtained analytically a effective Hamiltonian where the effects of the various degrees of freedom reveal themselves in the appearance of a effective mass and in changes of the shape of the potential barrier. The analyticity of the method was crucial on identifying clearly the roles played by the different physical parameters involved. (author)

  20. Discrete decoding based ultrafast multidimensional nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Wei, Zhiliang; Lin, Liangjie; Ye, Qimiao; Li, Jing; Cai, Shuhui; Chen, Zhong

    2015-01-01

    The three-dimensional (3D) nuclear magnetic resonance (NMR) spectroscopy constitutes an important and powerful tool in analyzing chemical and biological systems. However, the abundant 3D information arrives at the expense of long acquisition times lasting hours or even days. Therefore, there has been a continuous interest in developing techniques to accelerate recordings of 3D NMR spectra, among which the ultrafast spatiotemporal encoding technique supplies impressive acquisition speed by compressing a multidimensional spectrum in a single scan. However, it tends to suffer from tradeoffs among spectral widths in different dimensions, which deteriorates in cases of NMR spectroscopy with more dimensions. In this study, the discrete decoding is proposed to liberate the ultrafast technique from tradeoffs among spectral widths in different dimensions by focusing decoding on signal-bearing sites. For verifying its feasibility and effectiveness, we utilized the method to generate two different types of 3D spectra. The proposed method is also applicable to cases with more than three dimensions, which, based on the experimental results, may widen applications of the ultrafast technique

  1. Discrete decoding based ultrafast multidimensional nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Wei, Zhiliang; Lin, Liangjie; Ye, Qimiao; Li, Jing; Cai, Shuhui; Chen, Zhong

    2015-07-01

    The three-dimensional (3D) nuclear magnetic resonance (NMR) spectroscopy constitutes an important and powerful tool in analyzing chemical and biological systems. However, the abundant 3D information arrives at the expense of long acquisition times lasting hours or even days. Therefore, there has been a continuous interest in developing techniques to accelerate recordings of 3D NMR spectra, among which the ultrafast spatiotemporal encoding technique supplies impressive acquisition speed by compressing a multidimensional spectrum in a single scan. However, it tends to suffer from tradeoffs among spectral widths in different dimensions, which deteriorates in cases of NMR spectroscopy with more dimensions. In this study, the discrete decoding is proposed to liberate the ultrafast technique from tradeoffs among spectral widths in different dimensions by focusing decoding on signal-bearing sites. For verifying its feasibility and effectiveness, we utilized the method to generate two different types of 3D spectra. The proposed method is also applicable to cases with more than three dimensions, which, based on the experimental results, may widen applications of the ultrafast technique.

  2. Ultrafast photoinduced charge separation in metal-semiconductor nanohybrids.

    Science.gov (United States)

    Mongin, Denis; Shaviv, Ehud; Maioli, Paolo; Crut, Aurélien; Banin, Uri; Del Fatti, Natalia; Vallée, Fabrice

    2012-08-28

    Hybrid nano-objects formed by two or more disparate materials are among the most promising and versatile nanosystems. A key parameter in their properties is interaction between their components. In this context we have investigated ultrafast charge separation in semiconductor-metal nanohybrids using a model system of gold-tipped CdS nanorods in a matchstick architecture. Experiments are performed using an optical time-resolved pump-probe technique, exciting either the semiconductor or the metal component of the particles, and probing the light-induced change of their optical response. Electron-hole pairs photoexcited in the semiconductor part of the nanohybrids are shown to undergo rapid charge separation with the electron transferred to the metal part on a sub-20 fs time scale. This ultrafast gold charging leads to a transient red-shift and broadening of the metal surface plasmon resonance, in agreement with results for free clusters but in contrast to observation for static charging of gold nanoparticles in liquid environments. Quantitative comparison with a theoretical model is in excellent agreement with the experimental results, confirming photoexcitation of one electron-hole pair per nanohybrid followed by ultrafast charge separation. The results also point to the utilization of such metal-semiconductor nanohybrids in light-harvesting applications and in photocatalysis.

  3. Cutting-Edge High-Power Ultrafast Thin Disk Oscillators

    Directory of Open Access Journals (Sweden)

    Thomas Südmeyer

    2013-04-01

    Full Text Available A growing number of applications in science and industry are currently pushing the development of ultrafast laser technologies that enable high average powers. SESAM modelocked thin disk lasers (TDLs currently achieve higher pulse energies and average powers than any other ultrafast oscillator technology, making them excellent candidates in this goal. Recently, 275 W of average power with a pulse duration of 583 fs were demonstrated, which represents the highest average power so far demonstrated from an ultrafast oscillator. In terms of pulse energy, TDLs reach more than 40 μJ pulses directly from the oscillator. In addition, another major milestone was recently achieved, with the demonstration of a TDL with nearly bandwidth-limited 96-fs long pulses. The progress achieved in terms of pulse duration of such sources enabled the first measurement of the carrier-envelope offset frequency of a modelocked TDL, which is the first key step towards full stabilization of such a source. We will present the key elements that enabled these latest results, as well as an outlook towards the next scaling steps in average power, pulse energy and pulse duration of such sources. These cutting-edge sources will enable exciting new applications, and open the door to further extending the current performance milestones.

  4. High speed fluorescence imaging with compressed ultrafast photography

    Science.gov (United States)

    Thompson, J. V.; Mason, J. D.; Beier, H. T.; Bixler, J. N.

    2017-02-01

    Fluorescent lifetime imaging is an optical technique that facilitates imaging molecular interactions and cellular functions. Because the excited lifetime of a fluorophore is sensitive to its local microenvironment,1, 2 measurement of fluorescent lifetimes can be used to accurately detect regional changes in temperature, pH, and ion concentration. However, typical state of the art fluorescent lifetime methods are severely limited when it comes to acquisition time (on the order of seconds to minutes) and video rate imaging. Here we show that compressed ultrafast photography (CUP) can be used in conjunction with fluorescent lifetime imaging to overcome these acquisition rate limitations. Frame rates up to one hundred billion frames per second have been demonstrated with compressed ultrafast photography using a streak camera.3 These rates are achieved by encoding time in the spatial direction with a pseudo-random binary pattern. The time domain information is then reconstructed using a compressed sensing algorithm, resulting in a cube of data (x,y,t) for each readout image. Thus, application of compressed ultrafast photography will allow us to acquire an entire fluorescent lifetime image with a single laser pulse. Using a streak camera with a high-speed CMOS camera, acquisition rates of 100 frames per second can be achieved, which will significantly enhance our ability to quantitatively measure complex biological events with high spatial and temporal resolution. In particular, we will demonstrate the ability of this technique to do single-shot fluorescent lifetime imaging of cells and microspheres.

  5. Ultrafast terahertz electrodynamics of photonic and electronic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Liang [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    This thesis summarizes my work on using ultrafast laser pulses to study Terahertz (THz) electrodynamics of photonic and electronic nanostructures and microstructures. Ultrafast timeresolved (optical, NIR, MIR, THz) pump-probe spectroscopy setup has been successfully built, which enables me to perform a series of relevant experiments. Firstly, a novel high e ciency and compact THz wave emitter based on split-ring-resonators has been developed and characterized. The emitter can be pumped at any wavelength by tailoring the magnetic resonance and could generate gapless THz waves covering the entire THz band. Secondly, two kinds of new photonic structures for THz wave manipulation have been successfully designed and characterized. One is based on the 1D and 2D photo-imprinted di ractive elements. The other is based on the photoexcited double-split-ring-resonator metamaterials. Both structures are exible and can modulate THz waves with large tunability. Thirdly, the dark excitons in semiconducting singlewalled carbon nanotubes are studied by optical pump and THz probe spectroscopy, which provides the rst insights into the THz responses of nonequilibrium excitonic correlations and dynamics from the dark ground states in carbon nanotubes. Next, several on-going projects are brie y presented such as the study of ultrafast THz dynamics of Dirac fermions in topological insulator Bi2Se3 with Mid-infrared excitation. Finally, the thesis ends with a summary of the completed experiments and an outlook of the future plan.

  6. Advanced Instrumentation for Ultrafast Science at the LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Berrah, Nora [Univ. of Connecticut, Storrs, CT (United States)

    2015-10-13

    This grant supported a Single Investigator and Small Group Research (SISGR) application to enable multi-user research in Ultrafast Science using the Linac Coherent Light Source (LCLS), the world’s first hard x-ray free electron laser (FEL) which lased for the first time at 1.5 Å on April 20, 2009. The goal of our proposal was to enable a New Era of Science by requesting funds to purchase and build Advanced Instrumentation for Ultrafast Science (AIUS), to utilize the intense, short x-ray pulses produced by the LCLS. The proposed instrumentation will allow peer review selected users to probe the ultrasmall and capture the ultrafast. These tools will expand on the investment already made in the construction of the light source and its instrumentation in both the LCLS and LUSI projects. The AIUS will provide researchers in the AMO, Chemical, Biological and Condensed Matter communities with greater flexibility in defining their scientific agenda at the LCLS. The proposed instrumentation will complement and significantly augment the present AMO instrument (funded through the LCLS project) through detectors and capabilities not included in the initial suite of instrumentation at the facility. We have built all of the instrumentations and they have been utilized by scientists. Please see report attached.

  7. Tracking Ultrafast Carrier Dynamics in Single Semiconductor Nanowire Heterostructures

    Directory of Open Access Journals (Sweden)

    Taylor A.J.

    2013-03-01

    Full Text Available An understanding of non-equilibrium carrier dynamics in silicon (Si nanowires (NWs and NW heterostructures is very important due to their many nanophotonic and nanoelectronics applications. Here, we describe the first measurements of ultrafast carrier dynamics and diffusion in single heterostructured Si nanowires, obtained using ultrafast optical microscopy. By isolating individual nanowires, we avoid complications resulting from the broad size and alignment distribution in nanowire ensembles, allowing us to directly probe ultrafast carrier dynamics in these quasi-one-dimensional systems. Spatially-resolved pump-probe spectroscopy demonstrates the influence of surface-mediated mechanisms on carrier dynamics in a single NW, while polarization-resolved femtosecond pump-probe spectroscopy reveals a clear anisotropy in carrier lifetimes measured parallel and perpendicular to the NW axis, due to density-dependent Auger recombination. Furthermore, separating the pump and probe spots along the NW axis enabled us to track space and time dependent carrier diffusion in radial and axial NW heterostructures. These results enable us to reveal the influence of radial and axial interfaces on carrier dynamics and charge transport in these quasi-one-dimensional nanosystems, which can then be used to tailor carrier relaxation in a single nanowire heterostructure for a given application.

  8. Ultrafast dynamics of electronically excited molecules and clusters

    International Nuclear Information System (INIS)

    Lietard, Aude

    2014-01-01

    This PhD thesis investigated the ultrafast dynamics of photo-chromic molecules and argon clusters in the gas phase at the femtosecond timescale. Pump-probe experiments are performed in a set-up which associates a versatile pulsed molecular beam coupled to a photoelectron/photoion velocity map imager (VMI) and a time-of-flight mass spectrometer (TOF-MS). Theses pump-probe experiments provides the temporal evolution of the electronic distribution for each system of interest. Besides, a modelization has been performed in order to characterize the density and the velocity distribution in the pulsed beam. Regarding the photo-chromic di-thienyl-ethene molecules, parallel electronic relaxation pathways were observed. This contrasts with the observation of sequential relaxation processes in most molecules studied so far. In the present case, the initial wave packet splits in two parts. One part is driven to the ground state at the femtosecond time scale through a conical intersection, and the second part remains for ps in the excited state and experiences oscillations in a suspended well. This study has shed light into the intrinsic dynamics of the molecules under study and a general relaxation mechanism has been proposed, which applies to the whole family of di-thienyl-ethene molecules whatever the state of matter (gas phase or solution) in which they have been investigated. Concerning argon clusters excited at about 14 eV, two behaviors of different time scale have been observed at different time scales. The first one occurs in the first picoseconds of the dynamics. It corresponds to the electronic relaxation of an excitonic state at a rate of 1 eV.ps -1 . The second phenomenon corresponds to the localization of the exciton on the excimer Ar 2 *. This phenomenon is observed 4-5 ps after the excitation. In this study, we also observed the ejection of excited argon atoms, addressing the lifetime of the delocalized excitonic state. This work provide additional informations

  9. Ultrafast dynamics of hydrogen bond exchange in aqueous ionic solutions.

    Science.gov (United States)

    Park, Sungnam; Odelius, Michael; Gaffney, Kelly J

    2009-06-04

    The structural and dynamical properties of aqueous ionic solutions influence a wide range of natural and biological processes. In these solutions, water has the opportunity to form hydrogen bonds with other water molecules and anions. Knowing the time scale with which these configurations interconvert represents a key factor to understanding the influence of molecular scale heterogeneity on chemical events in aqueous ionic solutions. We have used ultrafast IR spectroscopy and Car-Parrinello molecular dynamics (CPMD) simulations to investigate the hydrogen bond (H-bond) structural dynamics in aqueous 6 M sodium perchlorate (NaClO4) solution. We have measured the H-bond exchange dynamics between spectrally distinct water-water and water-anion H-bond configurations with 2DIR spectroscopy and the orientational relaxation dynamics of water molecules in different H-bond configurations with polarization-selective IR pump-probe experiments. The experimental H-bond exchange time correlates strongly with the experimental orientational relaxation time of water molecules. This agrees with prior observations in water and aqueous halide solutions, and has been interpreted within the context of an orientational jump model for the H-bond exchange. The CPMD simulations performed on aqueous 6 M NaClO4 solution clearly demonstrate that water molecules organize into two radially and angularly distinct structural subshells within the first solvation shell of the perchlorate anion, with one subshell possessing the majority of the water molecules that donate H-bonds to perchlorate anions and the other subshell possessing predominantly water molecules that donate two H-bonds to other water molecules. Due to the high ionic concentration used in the simulations, essentially all water molecules reside in the first ionic solvation shells. The CPMD simulations also demonstrate that the molecular exchange between these two structurally distinct subshells proceeds more slowly than the H

  10. Ultrafast and Highly Reversible Sodium Storage in Zinc-Antimony Intermetallic Nanomaterials

    KAUST Repository

    Nie, Anmin

    2015-12-17

    The progress on sodium-ion battery technology faces many grand challenges, one of which is the considerably lower rate of sodium insertion/deinsertion in electrode materials due to the larger size of sodium (Na) ions and complicated redox reactions compared to the lithium-ion systems. Here, it is demonstrated that sodium ions can be reversibly stored in Zn-Sb intermetallic nanowires at speeds that can exceed 295 nm s-1. Remarkably, these values are one to three orders of magnitude higher than the sodiation rate of other nanowires electrochemically tested with in situ transmission electron microscopy. It is found that the nanowires display about 161% volume expansion after the first sodiation and then cycle with an 83% reversible volume expansion. Despite their massive expansion, the nanowires can be cycled without any cracking or facture during the ultrafast sodiation/desodiation process. In addition, most of the phases involved in the sodiation/desodiation process possess high electrical conductivity. More specifically, the NaZnSb exhibits a layered structure, which provides channels for fast Na+ diffusion. This observation indicates that Zn-Sb intermetallic nanomaterials offer great promise as high rate and good cycling stability anodic materials for the next generation of sodium-ion batteries. Sodium ions can be stored in Zn4 Sb3 nanowires with a speed of 295.5 nm/s, which is one to three orders of magnitude higher than that of other nanowires electrochemically tested by the same method. Despite their massive expansion, the nanowires can be cycled dozens of times without any internal fracture during the ultrafast sodiation/desodiation process. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Earle K. Plyler Prize Lecture: The Three Pillars of Ultrafast Molecular Science - Time, Phase, Intensity

    Science.gov (United States)

    Stolow, Albert

    We discuss the probing and control of molecular wavepacket dynamics in the context of three main `pillars' of light-matter interaction: time, phase, intensity. Time: Using short, coherent laser pulses and perturbative matter-field interactions, we study molecular wavepackets with a focus on the ultrafast non-Born-Oppenheimer dynamics, that is, the coupling of electronic and nuclear motions. Time-Resolved Photoelectron Spectroscopy (TRPES) is a powerful ultrafast probe of these processes in polyatomic molecules because it is sensitive both electronic and vibrational dynamics. Ideally, one would like to observe these ultrafast processes from the molecule's point of view - the Molecular Frame - thereby avoiding loss of information due to orientational averaging. This can be achieved by Time-Resolved Coincidence Imaging Spectroscopy (TRCIS) which images 3D recoil vectors of both photofragments and photoelectrons, in coincidence and as a function of time, permitting direct Molecular Frame imaging of valence electronic dynamics during a molecular dynamics. Phase: Using intermediate strength non-perturbative interactions, we apply the second order (polarizability) Non-Resonant Dynamic Stark Effect (NRDSE) to control molecular dynamics without any net absorption of light. NRDSE is also the interaction underlying molecular alignment and applies to field-free 1D of linear molecules and field-free 3D alignment of general (asymmetric) molecules. Using laser alignment, we can transiently fix a molecule in space, yielding a more general approach to direct Molecular Frame imaging of valence electronic dynamics during a chemical reaction. Intensity: In strong (ionizing) laser fields, a new laser-matter physics emerges for polyatomic systems wherein both the single active electron picture and the adiabatic electron response, both implicit in the standard 3-step models, can fail dramatically. This has important consequences for all attosecond strong field spectroscopies of

  12. Advanced ultrafast fiber laser sources enabled by fiber nonlinearities

    International Nuclear Information System (INIS)

    Liu, Wei

    2017-05-01

    Development of high power/energy ultrafast fiber lasers for scientific research and industrial applications is one of the most exciting fields in ultrafast optics. This thesis demonstrated new means to improve two essential properties - which are indispensable for novel applications such as high-harmonic generation (HHG) and multiphoton microscopy (MPM) - of an ultrafast fiber laser system: energy scaling capability and wavelength tunability. High photon-flux extreme ultraviolet sources enabled by HHG desire high power (>100 W), high repetition-rate (>1 MHz) ultrafast driving laser sources. We have constructed from scratch a high-power Yb-fiber laser system using the well-known chirped-pulse amplification (CPA) technique. Such a CPA system capable of producing ∝200-W average power consists of a monolithic Yb-fiber oscillator, an all-fiber stretcher, a pre-amplifier chain, a main amplifier constructed from rode-type large pitch fiber, and a diffraction-grating based compressor. To increase the HHG efficiency, ultrafast pulses with duration 130-W average power. The amplified pulses are compressed to 60-fs pulses with 100-W average power, constituting a suitable HHG driving source. MPM is a powerful biomedical imaging tool, featuring larger penetration depth while providing the capability of optical sectioning. Although femtosecond solid-state lasers have been widely accepted as the standard option as MPM driving sources, fiber-based sources have received growing research efforts due to their superior performance. In the second part of this thesis, we both theoretically and experimentally demonstrated a new method of producing wavelength widely tunable femtosecond pulses for driving MPM. We employed self-phase modulation to broaden a narrowband spectrum followed by bandpass filters to select the rightmost/leftmost spectral lobes. Widely tunable in 820-1225 nm, the resulting sources generated nearly transform-limited, ∝100 fs pulses. Using short fibers with large

  13. Ultrafast photoelectron spectroscopy of small molecule organic films

    Science.gov (United States)

    Read, Kendall Laine

    As research in the field of ultrafast optics has produced shorter and shorter pulses, at an ever-widening range of frequencies, ultrafast spectroscopy has grown correspondingly. In particular, ultrafast photoelectron spectroscopy allows direct observation of electrons in transient or excited states, regardless of the eventual relaxation mechanisms. High-harmonic conversion of 800nm, femtosecond, Ti:sapphire laser pulses allows excite/probe spectroscopy down into atomic core level states. To this end, an ultrafast, X-UV photoelectron spectroscopic system is described, including design considerations for the high-harmonic generation line, the time of flight detector, and the subsequent data collection electronics. Using a similar experimental setup, I have performed several ultrafast, photoelectron excited state decay studies at the IBM, T. J. Watson Research Center. All of the observed materials were electroluminescent thin film organics, which have applications as the emitter layer in organic light emitting devices. The specific materials discussed are: Alq, BAlq, DPVBi, and Alq doped with DCM or DMQA. Alq:DCM is also known to lase at low photoexcitation thresholds. A detailed understanding of the involved relaxation mechanisms is beneficial to both applications. Using 3.14 eV excite, and 26.7 eV probe, 90 fs laser pulses, we have observed the lowest unoccupied molecular orbital (LUMO) decay rate over the first 200 picoseconds. During this time, diffusion is insignificant, and all dynamics occur in the absence of electron transport. With excitation intensities in the range of 100μJ/cm2, we have modeled the Alq, BAlq, and DPVBi decays via bimolecular singlet-singlet annihilation. At similar excitations, we have modeled the Alq:DCM decay via Förster transfer, stimulated emission, and excimeric formation. Furthermore, the Alq:DCM occupied to unoccupied molecular orbital energy gap was seen to shrink as a function of excite-to-probe delay, in accordance with the

  14. Advanced ultrafast fiber laser sources enabled by fiber nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei

    2017-05-15

    Development of high power/energy ultrafast fiber lasers for scientific research and industrial applications is one of the most exciting fields in ultrafast optics. This thesis demonstrated new means to improve two essential properties - which are indispensable for novel applications such as high-harmonic generation (HHG) and multiphoton microscopy (MPM) - of an ultrafast fiber laser system: energy scaling capability and wavelength tunability. High photon-flux extreme ultraviolet sources enabled by HHG desire high power (>100 W), high repetition-rate (>1 MHz) ultrafast driving laser sources. We have constructed from scratch a high-power Yb-fiber laser system using the well-known chirped-pulse amplification (CPA) technique. Such a CPA system capable of producing ∝200-W average power consists of a monolithic Yb-fiber oscillator, an all-fiber stretcher, a pre-amplifier chain, a main amplifier constructed from rode-type large pitch fiber, and a diffraction-grating based compressor. To increase the HHG efficiency, ultrafast pulses with duration <60 fs are highly desired. We proposed and demonstrated a novel amplification technique, named as pre-chirp managed amplification (PCMA). We successfully constructed an Yb-fiber based PCMA system that outputs 75-MHz spectrally broadened pulses with >130-W average power. The amplified pulses are compressed to 60-fs pulses with 100-W average power, constituting a suitable HHG driving source. MPM is a powerful biomedical imaging tool, featuring larger penetration depth while providing the capability of optical sectioning. Although femtosecond solid-state lasers have been widely accepted as the standard option as MPM driving sources, fiber-based sources have received growing research efforts due to their superior performance. In the second part of this thesis, we both theoretically and experimentally demonstrated a new method of producing wavelength widely tunable femtosecond pulses for driving MPM. We employed self-phase modulation

  15. Fluorescence correlation spectroscopy on electron transfer reactions : probing inter- and intramolecular redox processes

    NARCIS (Netherlands)

    Sen, S.

    2016-01-01

    We developed a new FRET-based technique, “Fluredox”, which allows fluorescence readout of the redox state of oxido-reductases at single molecule level. Commercially available red-absorbing fluorophore ATTO655 was selected for labeling Azurin, a small blue mononuclear copper protein. Single molecule

  16. An injector for the proposed Berkeley Ultrafast X-Ray Light Source

    International Nuclear Information System (INIS)

    Lidia, Steven; Corlett, John; Pusina, Jan; Staples, John; Zholents, Alexander

    2003-01-01

    Berkeley Lab has proposed to build a recirculating linac based X-ray source for ultra-fast dynamic studies [1]. This machine requires a flat electron beam with a small vertical emittance and large x/y emittance ratio to allow for compression of spontaneous undulator emission of soft and hard x-ray pulses, and a low-emittance, round electron beam for coherent emission of soft x-rays via the FEL process based on cascaded harmonic generation [2]. We propose an injector system consisting of two high gradient high repetition rate photo cathode guns [3] (one for each application), an ∼120 MeV super conducting linear accelerator, a 3rd harmonic cavity for linearization of the longitudinal phase space, and a bunch compressor. We present details of the design and the results of particle tracking studies using several computer codes

  17. Mode-dependent dispersion in Raman line shapes: Observation and implications from ultrafast Raman loss spectroscopy

    International Nuclear Information System (INIS)

    Umapathy, S.; Mallick, B.; Lakshmanna, A.

    2010-01-01

    Ultrafast Raman loss spectroscopy (URLS) enables one to obtain the vibrational structural information of molecular systems including fluorescent materials. URLS, a nonlinear process analog to stimulated Raman gain, involves a narrow bandwidth picosecond Raman pump pulse and a femtosecond broadband white light continuum. Under nonresonant condition, the Raman response appears as a negative (loss) signal, whereas, on resonance with the electronic transition the line shape changes from a negative to a positive through a dispersive form. The intensities observed and thus, the Franck-Condon activity (coordinate dependent), are sensitive to the wavelength of the white light corresponding to a particular Raman frequency with respect to the Raman pump pulse wavelength, i.e., there is a mode-dependent response in URLS.

  18. Ultrafast dynamics of colloidal semiconductor nanocrystals relevant to solar fuels production

    Science.gov (United States)

    Cogan, Nicole M. B.; Liu, Cunming; Qiu, Fen; Burke, Rebeckah; Krauss, Todd D.

    2017-05-01

    Artificial conversion of sunlight to chemical fuels has attracted attention for several decades as a potential source of clean, renewable energy. We recently found that CdSe quantum dots (QDs) and simple aqueous Ni2+ salts in the presence of a sacrificial electron donor form a highly efficient, active, and robust system for photochemical reduction of protons to molecular hydrogen. Ultrafast transient absorption spectroscopy studies of electron transfer (ET) processes from the QDs to the Ni catalysts reveal extremely fast ET, and provide a fundamental explanation for the exceptional photocatalytic H2 activity. Additionally, by studying H2 production of the Ni catalyst with CdSe/CdS nanoparticles of various structures, it was determined that surface charge density plays an important role in charge transfer and ultimately H2 production activity.

  19. Ultrafast terahertz-induced response of GeSbTe phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Michael J. [Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Zalden, Peter [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Chen, Frank [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Weems, Ben [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States); Chatzakis, Ioannis [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Xiong, Feng; Jeyasingh, Rakesh; Pop, Eric; Philip Wong, H.-S. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Hoffmann, Matthias C. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Wuttig, Matthias [I. Physikalisches Institut, RWTH Aachen University, 52056 Aachen (Germany); JARA–Fundamentals of Information Technology, RWTH Aachen University, 52056 Aachen (Germany); Lindenberg, Aaron M., E-mail: aaronl@stanford.edu [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2014-06-23

    The time-resolved ultrafast electric field-driven response of crystalline and amorphous GeSbTe films has been measured all-optically, pumping with single-cycle terahertz pulses as a means of biasing phase-change materials on a sub-picosecond time-scale. Utilizing the near-band-gap transmission as a probe of the electronic and structural response below the switching threshold, we observe a field-induced heating of the carrier system and resolve the picosecond-time-scale energy relaxation processes and their dependence on the sample annealing condition in the crystalline phase. In the amorphous phase, an instantaneous electroabsorption response is observed, quadratic in the terahertz field, followed by field-driven lattice heating, with Ohmic behavior up to 200 kV/cm.

  20. Photophysical and photochemical effects in ultrafast laser patterning of CVD graphene

    International Nuclear Information System (INIS)

    Bobrinetskiy, Ivan; Otero, Nerea; Romero, Pablo M; Emelianov, Aleksei; Komarov, Ivan; Nasibulin, Albert

    2016-01-01

    The micro-scale patterns in graphene on Si/SiO 2 substrate were fabricated using ultrashort 515 nm laser pulses. For both picosecond and femtosecond laser pulses two competitive processes, based on photo-thermal (ablation) and photochemical (oxidation/etching) effects, were observed. The laser-induced etching of graphene starts just below the threshold energy of graphene ablation: 1.7 nJ per 280 fs pulse and 2.7 µ J per 30 ps pulse. Whilst etching is not sensitive to thermal properties of graphene and provides uniform patterns, the ablation, in contrast, is highly affected by defects in the graphene structure like wrinkles and bilayer islands. The mechanisms of ultrafast laser interaction with graphene are discussed. (letter)

  1. Photochemical Acceleration of DNA Strand Displacement by Using Ultrafast DNA Photo-crosslinking.

    Science.gov (United States)

    Nakamura, Shigetaka; Hashimoto, Hirokazu; Kobayashi, Satoshi; Fujimoto, Kenzo

    2017-10-18

    DNA strand displacement is an essential reaction in genetic recombination, biological processes, and DNA nanotechnology. In particular, various DNA nanodevices enable complicated calculations. However, it takes time before the output is obtained, so acceleration of DNA strand displacement is required for a rapid-response DNA nanodevice. Herein, DNA strand displacement by using DNA photo-crosslinking to accelerate this displacement is evaluated. The DNA photo-crosslinking of 3-cyanovinylcarbazole ( CNV K) was accelerated at least 20 times, showing a faster DNA strand displacement. The rate of photo-crosslinking is a key factor and the rate of DNA strand displacement is accelerated through ultrafast photo-crosslinking. The rate of DNA strand displacement was regulated by photoirradiation energy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ultra-fast HPM detectors improve NAD(P)H FLIM

    Science.gov (United States)

    Becker, Wolfgang; Wetzker, Cornelia; Benda, Aleš

    2018-02-01

    Metabolic imaging by NAD(P)H FLIM requires the decay functions in the individual pixels to be resolved into the decay components of bound and unbound NAD(P)H. Metabolic information is contained in the lifetime and relative amplitudes of the components. The separation of the decay components and the accuracy of the amplitudes and lifetimes improves substantially by using ultra-fast HPM-100-06 and HPM-100-07 hybrid detectors. The IRF width in combination with the Becker & Hickl SPC-150N and SPC-150NX TCSPC modules is less than 20 ps. An IRF this fast does not interfere with the fluorescence decay. The usual deconvolution process in the data analysis then virtually becomes a simple curve fitting, and the parameters of the NAD(P)H decay components are obtained at unprecedented accuracy.

  3. High-throughput authentication of edible oils with benchtop Ultrafast 2D NMR.

    Science.gov (United States)

    Gouilleux, B; Marchand, J; Charrier, B; Remaud, G S; Giraudeau, P

    2018-04-01

    We report the use of an Ultrafast 2D NMR approach applied on a benchtop NMR system (43 MHz) for the authentication of edible oils. Our results demonstrate that a profiling strategy based on fast 2D NMR spectra recorded in 2.4 min is more efficient than the standard 1D experiments to classify oils from different botanical origins, since 1D spectra on the same samples suffer from strong peak overlaps. Six edible oils with different botanical origins (olive, hazelnut, sesame, rapeseed, corn and sunflower) have been clearly discriminated by PCA analysis. Furthermore, we show how this approach combined with a PLS model can detect adulteration processes such as the addition of hazelnut oil into olive oil, a common fraud in food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. On the relation between Marcus theory and ultrafast spectroscopy of solvation kinetics

    Science.gov (United States)

    Roy, Santanu; Galib, Mirza; Schenter, Gregory K.; Mundy, Christopher J.

    2018-01-01

    The phenomena of solvent exchange control the process of solvating ions, protons, and charged molecules. Building upon our extension of Marcus' philosophy of electron transfer, we provide a new perspective of ultrafast solvent exchange mechanism around ions measurable by two-dimensional infrared (2DIR) spectroscopy. In this theory, solvent rearrangement drives an ion-bound water to an activated state of higher coordination number, triggering ion-water separation that leads to the solvent-bound state of the water molecule. This ion-bound to solvent-bound transition rate for a BF4--water system is computed using ab initio molecular dynamics and Marcus theory, and is found to be in excellent agreement with the 2DIR measurement.

  5. Ultrafast Spectroscopic Noninvasive Probe of Vertical Carrier Transport in Heterostructure Devices

    Science.gov (United States)

    2016-03-01

    ARL-TR-7618 ● MAR 2016 US Army Research Laboratory Ultrafast Spectroscopic Noninvasive Probe of Vertical Carrier Transport in...US Army Research Laboratory Ultrafast Spectroscopic Noninvasive Probe of Vertical Carrier Transport in Heterostructure Devices by Blair C...Spectroscopic Noninvasive Probe of Vertical Carrier Transport in Heterostructure Devices 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  6. Ultrafast Holographic Image Recording by Single Shot Femtosecond Spectral Hole Burning

    National Research Council Canada - National Science Library

    Rebane, Aleksander

    2001-01-01

    .... This allowed us to record image holograms with 150-fs duration pulses without need to accumulate the SHB effect from many exposures. Results of this research show that it is possible to perform optical recording of data in frequency-domain on ultrafast time scale. These results can be used also as a new diagnostic tool for femtosecond dynamics in various ultrafast optical interactions.

  7. A PSF-shape-based beamforming strategy for robust 2D motion estimation in ultrafast data

    NARCIS (Netherlands)

    Saris, Anne E.C.M.; Fekkes, Stein; Nillesen, Maartje; Hansen, Hendrik H.G.; de Korte, Chris L.

    2018-01-01

    This paper presents a framework for motion estimation in ultrafast ultrasound data. It describes a novel approach for determining the sampling grid for ultrafast data based on the system's point-spread-function (PSF). As a consequence, the cross-correlation functions (CCF) used in the speckle

  8. Quantitative analysis of intramolecular exciplex and electron transfer in a double-linked zinc porphyrin-fullerene dyad.

    Science.gov (United States)

    Al-Subi, Ali Hanoon; Niemi, Marja; Tkachenko, Nikolai V; Lemmetyinen, Helge

    2012-10-04

    Photoinduced charge transfer in a double-linked zinc porphyrin-fullerene dyad is studied. When the dyad is excited at the absorption band of the charge-transfer complex (780 nm), an intramolecular exciplex is formed, followed by the complete charge separated (CCS) state. By analyzing the results obtained from time-resolved transient absorption and emission decay measurements in a range of solvents with different polarities, we derived a dependence between the observable lifetimes and internal parameters controlling the reaction rate constants based on the semiquantum Marcus electron-transfer theory. The critical value of the solvent polarity was found to be ε(r) ≈ 6.5: in solvents with higher dielectric constants, the energy of the CCS state is lower than that of the exciplex and the relaxation takes place via the CCS state predominantly, whereas in solvents with lower polarities the energy of the CCS state is higher and the exciplex relaxes directly to the ground state. In solvents with moderate polarities the exciplex and the CCS state are in equilibrium and cannot be separated spectroscopically. The degree of the charge shift in the exciplex relative to that in the CCS state was estimated to be 0.55 ± 0.02. The electronic coupling matrix elements for the charge recombination process and for the direct relaxation of the exciplex to the ground state were found to be 0.012 ± 0.001 and 0.245 ± 0.022 eV, respectively.

  9. Dual fluorescence of excited state intra-molecular proton transfer of HBFO: mechanistic understanding, substituent and solvent effects.

    Science.gov (United States)

    Yang, Wenjing; Chen, Xuebo

    2014-03-07

    A combined approach of the multiconfigurational perturbation theory with the Rice-Ramsperger-Kassel-Marcus methodology has been employed to calculate the minimum potential energy profiles and the rates of excited state intra-molecular proton transfer (ESIPT) for the WOLED material molecule of HBFO and its four meta- or para-substituted compounds in gas phase, acetonitrile and cyclohexane solvents. The kinetic control for these reactions is quantitatively determined and extensively studied on the basis of the accurate potential energy surfaces when the thermodynamic factor associated with the free energy change becomes negligible in the case of the existence of a significant barrier in the ESIPT process. These computational efforts contribute to a deep understanding of the ESIPT mechanism, dual emission characteristics, kinetic controlling factor, substituent and solvent effects for these material molecules. The white light emission is generated by the establishment of dynamic equilibrium between enol and keto forms in the charge transfer excited SCT((1)ππ*) state. The performance of white light emission is quantitatively demonstrated to be mainly sensitive to the molecular tailoring approach of the electronic properties of meta- or para- substituents by the modulation of the forward/backward ESIPT rate ratio. The quality of white light emission is slightly tunable through its surrounding solvent environment. These computational results will provide a useful strategy for the molecular design of OLED and WOLED materials.

  10. Techniques for synchronization of X-Ray pulses to the pump laser in an ultrafast X-Ray facility

    International Nuclear Information System (INIS)

    Corlett, J.N.; Doolittle, L.; Schoenlein, R.; Staples, J.; Wilcox, R.; Zholents, A.

    2003-01-01

    Accurate timing of ultrafast x-ray probe pulses emitted from a synchrotron radiation source with respect to the signal initiating a process in the sample under study is critical for the investigation of structural dynamics in the femtosecond regime. We describe schemes for achieving accurate timing of femtosecond x-ray synchrotron radiation pulses relative to a pump laser, where x-rays pulses of <100 fs duration are generated from the proposed LUX source based on a recirculating superconducting linac. We present a description of the timing signal generation and distribution systems to minimize timing jitter of the x-rays relative to the experimental lasers

  11. Ultra-fast relaxation, decoherence, and localization of photoexcited states in π-conjugated polymers

    Science.gov (United States)

    Mannouch, Jonathan R.; Barford, William; Al-Assam, Sarah

    2018-01-01

    The exciton relaxation dynamics of photoexcited electronic states in poly(p-phenylenevinylene) are theoretically investigated within a coarse-grained model, in which both the exciton and nuclear degrees of freedom are treated quantum mechanically. The Frenkel-Holstein Hamiltonian is used to describe the strong exciton-phonon coupling present in the system, while external damping of the internal nuclear degrees of freedom is accounted for by a Lindblad master equation. Numerically, the dynamics are computed using the time evolving block decimation and quantum jump trajectory techniques. The values of the model parameters physically relevant to polymer systems naturally lead to a separation of time scales, with the ultra-fast dynamics corresponding to energy transfer from the exciton to the internal phonon modes (i.e., the C-C bond oscillations), while the longer time dynamics correspond to damping of these phonon modes by the external dissipation. Associated with these time scales, we investigate the following processes that are indicative of the system relaxing onto the emissive chromophores of the polymer: (1) Exciton-polaron formation occurs on an ultra-fast time scale, with the associated exciton-phonon correlations present within half a vibrational time period of the C-C bond oscillations. (2) Exciton decoherence is driven by the decay in the vibrational overlaps associated with exciton-polaron formation, occurring on the same time scale. (3) Exciton density localization is driven by the external dissipation, arising from "wavefunction collapse" occurring as a result of the system-environment interactions. Finally, we show how fluorescence anisotropy measurements can be used to investigate the exciton decoherence process during the relaxation dynamics.

  12. Ultrafast cone-beam CT scatter correction with GPU-based Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2014-03-01

    Full Text Available Purpose: Scatter artifacts severely degrade image quality of cone-beam CT (CBCT. We present an ultrafast scatter correction framework by using GPU-based Monte Carlo (MC simulation and prior patient CT image, aiming at automatically finish the whole process including both scatter correction and reconstruction within 30 seconds.Methods: The method consists of six steps: 1 FDK reconstruction using raw projection data; 2 Rigid Registration of planning CT to the FDK results; 3 MC scatter calculation at sparse view angles using the planning CT; 4 Interpolation of the calculated scatter signals to other angles; 5 Removal of scatter from the raw projections; 6 FDK reconstruction using the scatter-corrected projections. In addition to using GPU to accelerate MC photon simulations, we also use a small number of photons and a down-sampled CT image in simulation to further reduce computation time. A novel denoising algorithm is used to eliminate MC noise from the simulated scatter images caused by low photon numbers. The method is validated on one simulated head-and-neck case with 364 projection angles.Results: We have examined variation of the scatter signal among projection angles using Fourier analysis. It is found that scatter images at 31 angles are sufficient to restore those at all angles with < 0.1% error. For the simulated patient case with a resolution of 512 × 512 × 100, we simulated 5 × 106 photons per angle. The total computation time is 20.52 seconds on a Nvidia GTX Titan GPU, and the time at each step is 2.53, 0.64, 14.78, 0.13, 0.19, and 2.25 seconds, respectively. The scatter-induced shading/cupping artifacts are substantially reduced, and the average HU error of a region-of-interest is reduced from 75.9 to 19.0 HU.Conclusion: A practical ultrafast MC-based CBCT scatter correction scheme is developed. It accomplished the whole procedure of scatter correction and reconstruction within 30 seconds.----------------------------Cite this

  13. Ultrafast vortex core dynamics investigated by finite-element micromagnetic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gliga, Sebastian

    2010-07-01

    The investigations carried out in this thesis concern the ultrafast dynamics of a fundamental micromagnetic configuration: the vortex. Over the past decade, a detailed understanding of the dynamic and static properties of such magnetic nanostructures has been achieved as a result of close interplay between experiments, theory and numeric simulations. Here, micromagnetic simulations were performed based on the finite-element method. The vortex structure arises in laterally-confined ferromagnets, in particular in thin-film elements, and is characterized by an in-plane curling of the magnetic moments around a very stable and narrow core. In the present study, a novel process in micromagnetism was found: the ultrafast reversal of the vortex core. The possibility of easily switching the core orientation by means of short in-plane field pulses is surprising in view of the very high stability of the core. Moreover, the simulations presented here showed that this reversal process unfolds on a time scale of only a few tens of picoseconds, which leads to the prediction of the fastest and most complex micromagnetic reversal process known to date. Indeed, the vortex core is not merely switched: it is destroyed and recreated in the immediate vicinity with an opposite direction. This is mediated by a rapid sequence of vortex-antivortex pair creation and annihilation subprocesses and results in a sudden burst-like emission of spin waves. Equally fascinating is the ultrafast dynamics of an isolated magnetic antivortex, the topological counterpart of the vortex. The simulations performed here showed that the static complementarity between vortices and antivortices is equally reflected in their ultrafast dynamics, which leads to the reversal of the antivortex core. A promising means for the control of the magnetization on the nanoscale consists in exploiting the spin-transfer torque effect. The study of the current-induced dynamics of vortices showed that the core reversal can be

  14. Diazo Esters as Dienophiles in Intramolecular (4 + 2) Cycloadditions: Computational Explorations of Mechanism.

    Science.gov (United States)

    Duan, Abing; Yu, Peiyuan; Liu, Fang; Qiu, Huang; Gu, Feng Long; Doyle, Michael P; Houk, K N

    2017-02-22

    The first experimental examples of Diels-Alder (DA) reactions of diazo compounds as heterodienophiles with dienes have been studied with density functional theory (DFT) using the M06-2X functional. For comparison, the reactivities of diazo esters as dienophiles or 1,3-dipoles with 1,3-dienes in intermolecular model systems have been analyzed by the distortion/interaction model. The 1,3-dipolar cycloaddition is strongly favored for the intermolecular system. The intramolecular example is unique because the tether strongly favors the (4 + 2) cycloaddition.

  15. Enantioselective Intramolecular CH-Insertions upon Cu-Catalyzed Decomposition of Phenyliodonium Ylides

    Directory of Open Access Journals (Sweden)

    Christelle Boléa

    2001-02-01

    Full Text Available The Cu-catalyzed intramolecular CH insertion of phenyliodonium ylide 5b has been investigated at 0° C in the presence of several chiral ligands. Enantioselectivities vary in the range of 38–72 %, and are higher than those resulting from reaction of the diazo compound 5c at 65° C. The results are consistent with a carbenoid mechanism for Cu-catalyzed decomposition of phenyliodonium ylides.

  16. Fused-Ring Formation by an Intramolecular "Cut-and-Sew" Reaction between Cyclobutanones and Alkynes.

    Science.gov (United States)

    Deng, Lin; Jin, Likun; Dong, Guangbin

    2018-03-01

    The development of a catalytic intramolecular "cut-and-sew" transformation between cyclobutanones and alkynes to construct cyclohexenone-fused rings is described herein. The challenge arises from the need for selective coupling at the more sterically hindered proximal position, and can be addressed by using an electron-rich, but less bulky, phosphine ligand. The control experiment and 13 C-labelling study suggest that the reaction may start with cleavage of the less hindered distal C-C bond of cyclobutanones, followed by decarbonylation and CO reinsertion to enable Rh insertion at the more hindered proximal position. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Intramolecular transformation of thiyl radicals to α-aminoalkyl radicals: 'ab initio' calculations on homocystein

    International Nuclear Information System (INIS)

    Chhun, S.; Berges, J.; Bleton, V.; Abedinzadeh, Z.

    2000-01-01

    One-electron oxidation of thiols by oxidizing radicals leads to the formation of thiyl radical and carbon-centered radicals. It has been shown experimentally that in the absence of oxygen, the thiyl radicals derived from certain thiols of biological interest such as glutathion, cysteine and homocysteine decay rapidly by intramolecular rearrangement reactions into the carbon-centered radical. In the present work we have investigated theoretically the structure and the stability of thiyl and carbon-centered radicals of homocysteine in order to check the possibility of this rearrangement. (author)

  18. Specific optical signalling of anions via intramolecular charge transfer pathway based on acridinedione fluorophore

    International Nuclear Information System (INIS)

    Thiagarajan, Viruthachalam; Ramamurthy, Perumal

    2007-01-01

    We present a simple but highly specific acridinedione fluorophore (ADD-1) that acts both as a fluorescent and colorimetric sensor for anions in acetonitrile. The specific optical signalling of ADD-1 is due to the formation of new distinct intramolecular charge transfer (ICT) emitting states in the presence of AcO - (490 nm), H 2 PO 4 - (440 nm), and F - (510 nm) over other anions. Presence of F - shows a colour change that is perceptible to the naked eye, from colourless to an intense fluorescent green due to the deprotonation of acridinedione ring amino hydrogen

  19. The preparation and intramolecular radical cyclisation reactions of chiral oxyme ethers

    International Nuclear Information System (INIS)

    Booth, Susan E.; Jenkins, Paul R.

    1998-01-01

    Chiral oxime ether 2 and Oxime ester 4 have been prepared by alkylation and esterification of the oxime 1. Racemic hydroxylamine 6 and chiral hydroxylamine 10 have been synthesised from N-hydroxysuccinimide and the corresponding alcohol in the presence of diethyl azo dicarboxylate, the two product were converted into the oxime ethers 7 and 11 respectively. The intramolecular radical cyclisation reactions of these oxime ethers and esters has been studied, successful reaction was observed to produce alkyl hydroxylamines 3,8 and 12. (author)

  20. The Preparation and Intramolecular Radical Cyclisation Reactions of Chiral Oxime Ethers

    Directory of Open Access Journals (Sweden)

    Booth Susan E.

    1998-01-01

    Full Text Available Chiral oxime ether 2 and Oxime ester 4 have been prepared by alkylation and esterification of the oxime 1. Racemic hydroxylamine 6 and chiral hydroxylamine 10 have been synthesised from N-hydroxysuccinimide and the corresponding alcohol in the presence of diethylazodicarboxylate, the two products were converted into the oxime ethers 7 and 11 respectively. The intramolecular radical cyclisation reactions of these oxime ethers and esters has been studied, successful reaction was observed to produce alkyl hydroxylamines 3, 8 and 12.

  1. Size measuring techniques as tool to monitor pea proteins intramolecular crosslinking by transglutaminase treatment.

    Science.gov (United States)

    Djoullah, Attaf; Krechiche, Ghali; Husson, Florence; Saurel, Rémi

    2016-01-01

    In this work, techniques for monitoring the intramolecular transglutaminase cross-links of pea proteins, based on protein size determination, were developed. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles of transglutaminase-treated low concentration (0.01% w/w) pea albumin samples, compared to the untreated one (control), showed a higher electrophoretic migration of the major albumin fraction band (26 kDa), reflecting a decrease in protein size. This protein size decrease was confirmed, after DEAE column purification, by dynamic light scattering (DLS) where the hydrodynamic radius of treated samples appears to be reduced compared to the control one. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Synthesis and Intramolecular [4+2] Cycloaddition Reactions of 4-Pyridazinecarbonitriles with Alkyne Side Chains

    Directory of Open Access Journals (Sweden)

    Norbert Haider

    1998-01-01

    Full Text Available The preparation of a series of new 3-(alkynyl-X-substituted 4-pyridazinecarbonitriles 2-5 (X = O, NH is described. The compounds are shown to undergo thermally induced intramolecular Diels-Alder reactions with inverse electron demand, affording the fused benzonitriles 6-8. Incorporation of a 1,2-phenylene unit into the side chain, as in the case of compounds 10 and 13, results in a more favorable conformation of the dienophilic substructure and thus to a pronounced acceleration of the [4+2] cycloaddition reaction.

  3. Influence of intramolecular hydrogen bonds on the binding potential of methylated β-cyclodextrin derivatives

    Directory of Open Access Journals (Sweden)

    Gerhard Wenz

    2012-11-01

    Full Text Available Various heptasubstituted derivatives of β-cyclodextrin (β-CD bearing 1, 2 and 3 methyl substituents per glucose unit were synthesized by regioselective methods. Binding free energies and binding enthalpies of these hosts towards 4-tert-butylbenzoate and adamantane-1-carboxylate were determined by isothermal titration microcalorimetry (ITC. It was found that methyl substituents at the secondary positions of β-CD lead to a tremendous reduction of the binding potential, while methylation at the primary positions significantly improved binding. Stabilizing intramolecular hydrogen bonds between the glucose units were made responsible for the high binding potentials of those β-CD derivatives that possess secondary hydroxy groups.

  4. Dynamics of excited-state intramolecular proton transfer reactions in piroxicam. Role of triplet states

    Science.gov (United States)

    Cho, Dae Won; Kim, Yong Hee; Yoon, Minjoong; Jeoung, Sae Chae; Kim, Dongho

    1994-08-01

    The picosecond time-resolved fluorescence and transient absorption behavior of piroxicam at room temperature are reported. The keto tautomer in the excited singlet state ( 1K*) formed via the fast intramolecular proton transfer (≈ 20 ps) is observed. The short-lived (7.5 ns) triplet state of keto tauomer ( 3K*) is generated from 1K * in toluene whereas it is hardly observed in ethanol. Consequently, rapid reverse proton transfer takes place from 3K * to the enol triplet state ( 3E *.

  5. Use of ionic model for analysis of intramolecular movement in alkali metal metaborate molecules

    International Nuclear Information System (INIS)

    Ezhov, Yu.S.; Vinogradov, V.S.

    1978-01-01

    To clear out the peculiarities of intramolecular movement in MBO 2 (where M=Li, Na, K, Rb, Cs) molecules the energy dependence of cation electrostatic interaction with BO 2 anion on the charge value of oxygen, values of the MOB valence angle and internuclear distance r(M-O) is calculated. The calculation results on the base of ionic model show that the minimum of potential energy function corresponds to angular configuration of the MBO 2 molecules. Parameters of potential function of deformation oscillation connected with the change of MOB angle, are evaluated

  6. Cooperative Metal–Ligand Catalyzed Intramolecular Hydroamination and Hydroalkoxylation of Allenes Using a Stable Iron Catalyst

    KAUST Repository

    El-Sepelgy, Osama

    2018-01-18

    A new iron-catalyzed chemoselective intramolecular hydroamination and hydroalkoxylation of the readily available α-allenic amines and alcohols to valuable unsaturated 5-membered heterocycles, 2,3-dihydropyrrole and 2,3-dihydrofuran, is reported. Effective selectivity control is achieved by a metal–ligand cooperative activation of the substrates. The mild reaction conditions and the use of low amounts of an air and moisture stable iron catalyst allow for the hydrofunctionalization of a wide range of allenes bearing different functional groups in good yields in the absence of base or any sensitive additives.

  7. A concise, efficient synthesis of sugar-based benzothiazoles through chemoselective intramolecular C-S coupling

    KAUST Repository

    Shen, Chao

    2012-01-01

    Sugar-based benzothiazoles are a new class of molecules promising for many biological applications. Here, we have synthesized a wide range of sugar-based benzothiazoles from readily accessible glycosyl thioureas by chemoselective, palladium-catalyzed C-S coupling reactions. Corroborated by theoretical calculations, a mechanistic investigation indicates that the coordination to the palladium by a pivaloyl carbonyl group and the presence of intramolecular hydrogen bonding play important roles in the efficiency and chemoselectivity of reaction. These fluorescent glycoconjugates can be observed to readily enter mammalian tumor cells and exhibit potential in vitro antitumor activity. This journal is © The Royal Society of Chemistry 2012.

  8. Cooperative Metal–Ligand Catalyzed Intramolecular Hydroamination and Hydroalkoxylation of Allenes Using a Stable Iron Catalyst

    KAUST Repository

    El-Sepelgy, Osama; Brzozowska, Aleksandra; Sklyaruk, Jan; Jang, Yoon Kyung; Zubar, Viktoriia; Rueping, Magnus

    2018-01-01

    A new iron-catalyzed chemoselective intramolecular hydroamination and hydroalkoxylation of the readily available α-allenic amines and alcohols to valuable unsaturated 5-membered heterocycles, 2,3-dihydropyrrole and 2,3-dihydrofuran, is reported. Effective selectivity control is achieved by a metal–ligand cooperative activation of the substrates. The mild reaction conditions and the use of low amounts of an air and moisture stable iron catalyst allow for the hydrofunctionalization of a wide range of allenes bearing different functional groups in good yields in the absence of base or any sensitive additives.

  9. Pulse radiolytic and electrochemical investigations of intramolecular electron transfer in carotenoporphyrins and carotenoporphyrin-quinone triads

    International Nuclear Information System (INIS)

    Land, E.J.; Lexa, D.; Bensasson, R.V.; Gust, D.; Moore, T.A.; Moore, A.L.; Liddell, P.A.; Nemeth, G.A.

    1987-01-01

    Thermodynamic and kinetic aspects of intramolecular electron-transfer reactions in carotenoporphyrin dyads and carotenoid-porphyrin-quinone triads have been studied by using pulse radiolysis and cyclic voltammetry. Rapid (<1 μs) electron transfer from carotenoid radical anions to attached porphyrins has been inferred. Carotenoid cations, on the other hand, do not readily accept electrons from attached porphyrins or pyropheophorbides. Electrochemical studies provide the thermodynamic basis for these observations and also allow estimation of the energetics of photoinitiated two-step electron transfer and two-step charge recombination in triad models for photosynthetic charge separation

  10. Delayed electron relaxation in CdTe nanorods studied by spectral analysis of the ultrafast transient absorption

    Energy Technology Data Exchange (ETDEWEB)

    Kriegel, I., E-mail: ilka.kriegel@iit.it [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Scotognella, F. [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); CNST of IIT@POLIMI, Via Pascoli 70/3, 20133 Milano (Italy); Soavi, G. [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Brescia, R. [Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genova (Italy); Rodríguez-Fernández, J.; Feldmann, J. [Photonics and Optoelectronics Group, Department of Physics and CeNS, Ludwig-Maximilians-Universität München, Amalienstr. 54, 80799 Munich (Germany); Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 Munich (Germany); Lanzani, G., E-mail: guglielmo.lanzani@iit.it [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); CNST of IIT@POLIMI, Via Pascoli 70/3, 20133 Milano (Italy); Tassone, F. [CNST of IIT@POLIMI, Via Pascoli 70/3, 20133 Milano (Italy)

    2016-06-01

    Highlights: • We study the photophysics of CdTe nanorods by ultrafast absorption spectroscopy. • We fit photobleaching and photoinduced absorption features at all time delays. • Dynamics are extracted from superpositions of bleaches (Gaussians) and derivatives. • Fast non-radiative recombination and slower hole trapping processes are extracted. • A potential approach to unveil ultrafast non-radiative recombination processes. - Abstract: In transient absorption (TA) spectra, the bleach features originating from state filling are overlapped by their energy-shifted derivatives, arising from excited state energy level shifts. This makes the direct extraction of carrier dynamics from a single-wavelength time-trace misleading. Fitting TA spectra in time, as Gaussian functions and their derivative-like shifted Gaussians, allows to individually extract the real dynamics of both photobleached transitions, and their energy shifts. In CdTe nanorods (NRs) we found a delayed heating of holes due to the release of the large excess energy in the electron relaxation process. The slow hole-trapping process is consistent with a high number of surface trap states in these model NRs. Our results show that only a correct disentanglement of bleaching and energy shift contributions provides a reliable framework to extract the underlying carrier relaxation dynamics, including trapping, non-radiative recombination, and eventually carrier multiplication.

  11. Delayed electron relaxation in CdTe nanorods studied by spectral analysis of the ultrafast transient absorption

    International Nuclear Information System (INIS)

    Kriegel, I.; Scotognella, F.; Soavi, G.; Brescia, R.; Rodríguez-Fernández, J.; Feldmann, J.; Lanzani, G.; Tassone, F.

    2016-01-01

    Highlights: • We study the photophysics of CdTe nanorods by ultrafast absorption spectroscopy. • We fit photobleaching and photoinduced absorption features at all time delays. • Dynamics are extracted from superpositions of bleaches (Gaussians) and derivatives. • Fast non-radiative recombination and slower hole trapping processes are extracted. • A potential approach to unveil ultrafast non-radiative recombination processes. - Abstract: In transient absorption (TA) spectra, the bleach features originating from state filling are overlapped by their energy-shifted derivatives, arising from excited state energy level shifts. This makes the direct extraction of carrier dynamics from a single-wavelength time-trace misleading. Fitting TA spectra in time, as Gaussian functions and their derivative-like shifted Gaussians, allows to individually extract the real dynamics of both photobleached transitions, and their energy shifts. In CdTe nanorods (NRs) we found a delayed heating of holes due to the release of the large excess energy in the electron relaxation process. The slow hole-trapping process is consistent with a high number of surface trap states in these model NRs. Our results show that only a correct disentanglement of bleaching and energy shift contributions provides a reliable framework to extract the underlying carrier relaxation dynamics, including trapping, non-radiative recombination, and eventually carrier multiplication.

  12. Supercomputations and big-data analysis in strong-field ultrafast optical physics: filamentation of high-peak-power ultrashort laser pulses

    Science.gov (United States)

    Voronin, A. A.; Panchenko, V. Ya; Zheltikov, A. M.

    2016-06-01

    High-intensity ultrashort laser pulses propagating in gas media or in condensed matter undergo complex nonlinear spatiotemporal evolution where temporal transformations of optical field waveforms are strongly coupled to an intricate beam dynamics and ultrafast field-induced ionization processes. At the level of laser peak powers orders of magnitude above the critical power of self-focusing, the beam exhibits modulation instabilities, producing random field hot spots and breaking up into multiple noise-seeded filaments. This problem is described by a (3  +  1)-dimensional nonlinear field evolution equation, which needs to be solved jointly with the equation for ultrafast ionization of a medium. Analysis of this problem, which is equivalent to solving a billion-dimensional evolution problem, is only possible by means of supercomputer simulations augmented with coordinated big-data processing of large volumes of information acquired through theory-guiding experiments and supercomputations. Here, we review the main challenges of supercomputations and big-data processing encountered in strong-field ultrafast optical physics and discuss strategies to confront these challenges.

  13. Ultrafast magnetization dynamics of lanthanide metals and alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sultan, Muhammad

    2012-05-14

    -equilibrium demagnetization. Analyzing the dynamics further in the non-equilibrium regime (t < 300 fs) directly after laser excitation, the observation of magnetic as well as non-magnetic contributions is reported. The comparison of the surface sensitive MSHG and the bulk sensitive MOKE signal gave us the opportunity to investigate the spin-dependent transport processes, which occur from the surface to the bulk of Gd. Finally, owing to the tunability of spin-orbit coupling in GdTb alloys, ultrafast magnetization dynamics of these alloys is investigated as a function of Tb concentration. The characteristic quasi-equilibrium demagnetization time increases six times by decreasing the Tb content from 70% to Gd metal, due to the known spin-orbit coupling of the system. The non-equilibrium demagnetization time, on the other hand, changes only weakly with concentration due to the fact that this time scale is faster than the spin-orbit coupling.

  14. Training of ultra-fast speech comprehension induces functional reorganization of the central-visual system in late-blind humans

    Directory of Open Access Journals (Sweden)

    Susanne eDietrich

    2013-10-01

    Full Text Available Individuals suffering from vision loss of a peripheral origin may learn to understand spoken language at a rate of up to about 22 syllables (syl per seconds (s – exceeding by far the maximum performance level of untrained listeners (ca. 8 syl/s. Previous findings indicate the central-visual system to contribute to the processing of accelerated speech in blind subjects. As an extension, the present training study addresses the issue whether acquisition of ultra-fast (18 syl/s speech perception skills induces de novo central-visual hemodynamic activation in late-blind participants. Furthermore, we asked to what extent subjects with normal or residual vision can improve understanding of accelerated verbal utterances by means of specific training measures. To these ends, functional magnetic resonance imaging (fMRI was performed while subjects were listening to forward and reversed sentence utterances of moderately fast and ultra-fast syllable rates (8 or 18 syl/s prior to and after a training period of ca. six months. Four of six participants showed – independently from residual visual functions – considerable enhancement of ultra-fast speech perception (about 70 percentage points correctly repeated words whereas behavioral performance did not change in the two remaining participants. Only subjects with very low visual acuity displayed training-induced hemodynamic activation of the central-visual system. By contrast, participants with moderately impaired or even normal visual acuity showed, instead, increased right-hemispheric frontal or bilateral anterior temporal lobe responses after training. All subjects with significant training effects displayed a concomitant increase of hemodynamic activation of left-hemispheric SMA. In spite of similar behavioral performance, trained experts appear to use distinct strategies of ultra-fast speech processing depending on whether the occipital cortex is still deployed for visual processing.

  15. Soliton-based ultrafast multi-wavelength nonlinear switching in dual-core photonic crystal fibre

    International Nuclear Information System (INIS)

    Stajanca, P; Pysz, D; Michalka, M; Bugar, I; Andriukaitis, G; Balciunas, T; Fan, G; Baltuska, A

    2014-01-01

    Systematic experimental study of ultrafast multi-wavelength all-optical switching performance in a dual-core photonic crystal fibre is presented. The focus is on nonlinearly induced switching between the two output ports at non-excitation wavelengths, which are generated during nonlinear propagation of femtosecond pulses in the anomalous dispersion region of a dual-core photonic crystal fibre made of multicomponent glass. Spatial and spectral characteristics of the fibre output radiation were measured separately for both fibre cores under various polarization and intensity conditions upon selective, individual excitation of each fibre core. Polarization-controlled nonlinear switching performance at multiple non-excitation wavelengths was demonstrated in the long-wavelength optical communication bands and beyond. Depending on the input pulse polarization, narrowband switching operation at 1560 nm and 1730 nm takes place with double core extinction ratio contrasts of 9 dB and 14.5 dB, respectively. Moreover, our approach allows switching with simultaneous wavelength shift from 1650 to 1775 nm with extinction ratio contrast larger than 18 dB. In addition, non-reciprocal behaviour of the soliton fission process under different fibre core excitations was observed and its effect on the multi-wavelength nonlinear switching performance was explained, taking into account the slight dual-core structure asymmetry. The obtained results represent ultrafast all-optical switching with an extended dimension of wavelength shift, controllable with both the input radiation intensity and the polarization by simple propagation along a 14 mm long fibre. (paper)

  16. High-Average-Power Diffraction Pulse-Compression Gratings Enabling Next-Generation Ultrafast Laser Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-01

    Pulse compressors for ultrafast lasers have been identified as a technology gap in the push towards high peak power systems with high average powers for industrial and scientific applications. Gratings for ultrashort (sub-150fs) pulse compressors are metallic and can absorb a significant percentage of laser energy resulting in up to 40% loss as well as thermal issues which degrade on-target performance. We have developed a next generation gold grating technology which we have scaled to the petawatt-size. This resulted in improvements in efficiency, uniformity and processing as compared to previous substrate etched gratings for high average power. This new design has a deposited dielectric material for the grating ridge rather than etching directly into the glass substrate. It has been observed that average powers as low as 1W in a compressor can cause distortions in the on-target beam. We have developed and tested a method of actively cooling diffraction gratings which, in the case of gold gratings, can support a petawatt peak power laser with up to 600W average power. We demonstrated thermo-mechanical modeling of a grating in its use environment and benchmarked with experimental measurement. Multilayer dielectric (MLD) gratings are not yet used for these high peak power, ultrashort pulse durations due to their design challenges. We have designed and fabricated broad bandwidth, low dispersion MLD gratings suitable for delivering 30 fs pulses at high average power. This new grating design requires the use of a novel Out Of Plane (OOP) compressor, which we have modeled, designed, built and tested. This prototype compressor yielded a transmission of 90% for a pulse with 45 nm bandwidth, and free of spatial and angular chirp. In order to evaluate gratings and compressors built in this project we have commissioned a joule-class ultrafast Ti:Sapphire laser system. Combining the grating cooling and MLD technologies developed here could enable petawatt laser systems to

  17. Ultrafast electron microscopy in materials science, biology, and chemistry

    International Nuclear Information System (INIS)

    King, Wayne E.; Campbell, Geoffrey H.; Frank, Alan; Reed, Bryan; Schmerge, John F.; Siwick, Bradley J.; Stuart, Brent C.; Weber, Peter M.

    2005-01-01

    The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental

  18. The role of intramolecular crosslinking in the radiolysis of bulk crystallized high density polyethylene

    International Nuclear Information System (INIS)

    Lyons, B.J.

    1986-01-01

    Intramolecular crosslinks have been suggested to occur in bulk crystallized, irradiated, high density polyethylene (HDPE) and to account for the low rates of gel formation, especially those of previously annealed samples when compared with that manifested by the same resin when previously quenched from the melt. Such crosslinks do not contribute to the development of gel and contribute to only a limited extent to the elastic properties above the crystalline melting point when compared with intermolecular crosslinks, but, if the mesh size of the intra- and inter-molecular networks are comparable, are fully reflected in the rupture elongation. The rupture elongations of a wide range of HDPE resins, for a given sol fraction or elastic modulus, are found to be at least as high as and often higher than those of low (LDPE) or linear low (LLDPE) polyethylene resins, indicating that intramolecular crosslinking of this type does not occur to a significantly greater extent in these higher crystallinity resins. Other factors more likely to account for the reduced rates of inter alia gel formation in some HDPE resins are discussed. (author)

  19. EVAPORATION: a new vapour pressure estimation methodfor organic molecules including non-additivity and intramolecular interactions

    Directory of Open Access Journals (Sweden)

    S. Compernolle

    2011-09-01

    Full Text Available We present EVAPORATION (Estimation of VApour Pressure of ORganics, Accounting for Temperature, Intramolecular, and Non-additivity effects, a method to predict (subcooled liquid pure compound vapour pressure p0 of organic molecules that requires only molecular structure as input. The method is applicable to zero-, mono- and polyfunctional molecules. A simple formula to describe log10p0(T is employed, that takes into account both a wide temperature dependence and the non-additivity of functional groups. In order to match the recent data on functionalised diacids an empirical modification to the method was introduced. Contributions due to carbon skeleton, functional groups, and intramolecular interaction between groups are included. Molecules typically originating from oxidation of biogenic molecules are within the scope of this method: aldehydes, ketones, alcohols, ethers, esters, nitrates, acids, peroxides, hydroperoxides, peroxy acyl nitrates and peracids. Therefore the method is especially suited to describe compounds forming secondary organic aerosol (SOA.

  20. [Development of boomerang-type intramolecular cascade reactions and application to natural product synthesis].

    Science.gov (United States)

    Takasu, K

    2001-12-01

    Intramolecular cascade reaction has received much attention as a powerful methodology to construct a polycyclic framework in organic synthesis. We have been developing "boomerang-type cascade reaction" to construct a variety of polycyclic skeletons efficiently. In the above reactions, a nucleophilic function of substrates changes the character into an electrophile after the initial reaction, and the electrophilic group acts as a nucleophile in the second reaction. That is, the reaction center stepwise moves from one functional group back to the same one via other functional groups. The stream of the electron concerning the cascade reaction is like a locus of boomerang. We show here three different boomerang-type reactions via ionic species or free radicals. 1) Diastereoselective Michael-aldol reaction based on the chiral auxiliary method and enantioselective Michael-aldol reaction by the use of external chiral sources. 2) Short and efficient total syntheses of longifolane sesquiterpenes utilizing intramolecular double Michael addition as a key step. 3) Development of boomerang-type radical cascade reaction of halopolyenes to construct terpenoid skeletons and its regioselectivity.