Ultrafast all-optical arithmetic logic based on hydrogenated amorphous silicon microring resonators
Gostimirovic, Dusan; Ye, Winnie N.
2016-03-01
For decades, the semiconductor industry has been steadily shrinking transistor sizes to fit more performance into a single silicon-based integrated chip. This technology has become the driving force for advances in education, transportation, and health, among others. However, transistor sizes are quickly approaching their physical limits (channel lengths are now only a few silicon atoms in length), and Moore's law will likely soon be brought to a stand-still despite many unique attempts to keep it going (FinFETs, high-k dielectrics, etc.). This technology must then be pushed further by exploring (almost) entirely new methodologies. Given the explosive growth of optical-based long-haul telecommunications, we look to apply the use of high-speed optics as a substitute to the digital model; where slow, lossy, and noisy metal interconnections act as a major bottleneck to performance. We combine the (nonlinear) optical Kerr effect with a single add-drop microring resonator to perform the fundamental AND-XOR logical operations of a half adder, by all-optical means. This process is also applied to subtraction, higher-order addition, and the realization of an all-optical arithmetic logic unit (ALU). The rings use hydrogenated amorphous silicon as a material with superior nonlinear properties to crystalline silicon, while still maintaining CMOS-compatibility and the many benefits that come with it (low cost, ease of fabrication, etc.). Our method allows for multi-gigabit-per-second data rates while maintaining simplicity and spatial minimalism in design for high-capacity manufacturing potential.
Hussain, Mahmood Irtiza; Petrasiunas, Matthew Joseph; Bentley, Christopher D B; Taylor, Richard L; Carvalho, André R R; Hope, Joseph J; Streed, Erik W; Lobino, Mirko; Kielpinski, David
2016-07-25
Trapped ions are one of the most promising approaches for the realization of a universal quantum computer. Faster quantum logic gates could dramatically improve the performance of trapped-ion quantum computers, and require the development of suitable high repetition rate pulsed lasers. Here we report on a robust frequency upconverted fiber laser based source, able to deliver 2.5 ps ultraviolet (UV) pulses at a stabilized repetition rate of 300.00000 MHz with an average power of 190 mW. The laser wavelength is resonant with the strong transition in Ytterbium (Yb+) at 369.53 nm and its repetition rate can be scaled up using high harmonic mode locking. We show that our source can produce arbitrary pulse patterns using a programmable pulse pattern generator and fast modulating components. Finally, simulations demonstrate that our laser is capable of performing resonant, temperature-insensitive, two-qubit quantum logic gates on trapped Yb+ ions faster than the trap period and with fidelity above 99%.
Wang, Xingfu; Zhang, Yong; Chen, Xinman; He, Miao; Liu, Chao; Yin, Yian; Zou, Xianshao; Li, Shuti
2014-09-01
Nonpolar a-axial GaN nanowire (NW) was first used to construct the MSM (metal-semiconductor-metal) symmetrical Schottky contact device for application as visible-blind ultraviolet (UV) detector. Without any surface or composition modifications, the fabricated device demonstrated a superior performance through a combination of its high sensitivity (up to 104 A W-1) and EQE value (up to 105), as well as ultrafast (memory storage.Nonpolar a-axial GaN nanowire (NW) was first used to construct the MSM (metal-semiconductor-metal) symmetrical Schottky contact device for application as visible-blind ultraviolet (UV) detector. Without any surface or composition modifications, the fabricated device demonstrated a superior performance through a combination of its high sensitivity (up to 104 A W-1) and EQE value (up to 105), as well as ultrafast (memory storage. Electronic supplementary information (ESI) available: Details of the EDS and SAED data, supplementary results of the UV detector, and the discussion of the transport properties of the MSM Schottky contact devices. See DOI: 10.1039/c4nr03581j
International Nuclear Information System (INIS)
Razaghi, M; Nosratpour, A; Das, N K
2013-01-01
We have proposed an all-optical AND logic gate based on four-wave mixing (FWM) in a semiconductor optical amplifier (SOA) integrated with an optical filter. In the scheme proposed, the preferred logical function can be performed without using a continuous-wave (cw) signal. The modified nonlinear Schroedinger equation (MNLSE) is used for the modelling wave propagation in a SOA. The MNLSE takes into account all nonlinear effects relevant to pico- and sub-picosecond pulse durations and is solved by the finite-difference beam-propagation method (FD-BPM). Based on the simulation results, the optimal output signal with a 40-fJ energy can be obtained at a bit rate of 50 Gb s -1 . In the simulations, besides the nonlinearities included in the model, the pattern effect of the signals propagating in the SOA medium and the effect of the input signal bit rate are extensively investigated to optimise the system performance. (optical logic elements)
Testing Superconductor Logic Integrated Circuits
Arun, A.J.; Kerkhoff, Hans G.
2005-01-01
Superconductor logic has the potential of extremely low-power consumption and ultra-fast digital signal processing. Unfortunately, the obtained yield of the present processes is low and specific faults occur. This paper deals with fault-modelling, Design-for-Test structures, and ATPG for these
Vasa, P
2016-01-01
This book presents emerging contemporary optical techniques of ultrafast science which have opened entirely new vistas for probing biological entities and processes. The spectrum reaches from time-resolved imaging and multiphoton microscopy to cancer therapy and studies of DNA damage. The book displays interdisciplinary research at the interface of physics and biology. Emerging topics on the horizon are also discussed, like the use of squeezed light, frequency combs and terahertz imaging as the possibility of mimicking biological systems. The book is written in a manner to make it readily accessible to researchers, postgraduate biologists, chemists, engineers, and physicists and students of optics, biomedical optics, photonics and biotechnology.
PREFACE: Ultrafast biophotonics Ultrafast biophotonics
Gu, Min; Reid, Derryck; Ben-Yakar, Adela
2010-08-01
The use of light to explore biology can be traced to the first observations of tissue made with early microscopes in the mid-seventeenth century, and has today evolved into the discipline which we now know as biophotonics. This field encompasses a diverse range of activities, each of which shares the common theme of exploiting the interaction of light with biological material. With the rapid advancement of ultrafast optical technologies over the last few decades, ultrafast lasers have increasingly found applications in biophotonics, to the extent that the distinctive new field of ultrafast biophotonics has now emerged, where robust turnkey ultrafast laser systems are facilitating cutting-edge studies in the life sciences to take place in everyday laboratories. The broad spectral bandwidths, precision timing resolution, low coherence and high peak powers of ultrafast optical pulses provide unique opportunities for imaging and manipulating biological systems. Time-resolved studies of bio-molecular dynamics exploit the short pulse durations from such lasers, while other applications such as optical coherence tomography benefit from the broad optical bandwidths possible by using super-continuum generation and additionally allowing for high speed imaging with speeds as high as 47 000 scans per second. Continuing progress in laser-system technology is accelerating the adoption of ultrafast techniques across the life sciences, both in research laboratories and in clinical applications, such as laser-assisted in situ keratomileusis (LASIK) eye surgery. Revolutionizing the field of optical microscopy, two-photon excitation fluorescence (TPEF) microscopy has enabled higher spatial resolution with improved depth penetration into biological specimens. Advantages of this nonlinear optical process include: reduced photo-interactions, allowing for extensive imaging time periods; simultaneously exciting multiple fluorescent molecules with only one excitation wavelength; and
DEFF Research Database (Denmark)
Nilsson, Jørgen Fischer
A Gentle introduction to logical languages, logical modeling, formal reasoning and computational logic for computer science and software engineering students......A Gentle introduction to logical languages, logical modeling, formal reasoning and computational logic for computer science and software engineering students...
Fuzzy Logic vs. Neutrosophic Logic: Operations Logic
Directory of Open Access Journals (Sweden)
Salah Bouzina
2016-12-01
Full Text Available The goal of this research is first to show how different, thorough, widespread and effective are the operations logic of the neutrosophic logic compared to the fuzzy logic’s operations logical. The second aim is to observe how a fully new logic, the neutrosophic logic, is established starting by changing the previous logical perspective fuzzy logic, and by changing that, we mean changing changing the truth values from the truth and falsity degrees membership in fuzzy logic, to the truth, falsity and indeterminacy degrees membership in neutrosophic logic; and thirdly, to observe that there is no limit to the logical discoveries - we only change the principle, then the system changes completely.
Embedding Logics into Product Logic
Czech Academy of Sciences Publication Activity Database
Baaz, M.; Hájek, Petr; Krajíček, Jan; Švejda, David
1998-01-01
Roč. 61, č. 1 (1998), s. 35-47 ISSN 0039-3215 R&D Projects: GA AV ČR IAA1030601 Grant - others:COST(XE) Action 15 Keywords : fuzzy logic * Lukasiewicz logic * Gödel logic * product logic * computational complexity * arithmetical hierarchy Subject RIV: BA - General Mathematics
Smullyan, Raymond
2008-01-01
This book features a unique approach to the teaching of mathematical logic by putting it in the context of the puzzles and paradoxes of common language and rational thought. It serves as a bridge from the author's puzzle books to his technical writing in the fascinating field of mathematical logic. Using the logic of lying and truth-telling, the author introduces the readers to informal reasoning preparing them for the formal study of symbolic logic, from propositional logic to first-order logic, a subject that has many important applications to philosophy, mathematics, and computer science. T
Kleene, Stephen Cole
1967-01-01
Undergraduate students with no prior instruction in mathematical logic will benefit from this multi-part text. Part I offers an elementary but thorough overview of mathematical logic of 1st order. Part II introduces some of the newer ideas and the more profound results of logical research in the 20th century. 1967 edition.
Meyer, J.J.Ch.; Broersen, J.M.; Herzig, A.
2015-01-01
This paper presents an overview of so-called BDI logics, logics where the notion of Beliefs, Desires and Intentions play a central role. Starting out from the basic ideas about BDI by Bratman, we consider various formalizations in logic, such as the approach of Cohen and Levesque, slightly
Le Balleur, J. C.
1988-01-01
The applicability of conventional mathematical analysis (based on the combination of two-valued logic and probability theory) to problems in which human judgment, perception, or emotions play significant roles is considered theoretically. It is shown that dispositional logic, a branch of fuzzy logic, has particular relevance to the common-sense reasoning typical of human decision-making. The concepts of dispositionality and usuality are defined analytically, and a dispositional conjunctive rule and dispositional modus ponens are derived.
Tugué, Tosiyuki; Slaman, Theodore
1989-01-01
These proceedings include the papers presented at the logic meeting held at the Research Institute for Mathematical Sciences, Kyoto University, in the summer of 1987. The meeting mainly covered the current research in various areas of mathematical logic and its applications in Japan. Several lectures were also presented by logicians from other countries, who visited Japan in the summer of 1987.
Propositional Logics of Dependence
Yang, F.; Väänänen, J.
2016-01-01
In this paper, we study logics of dependence on the propositional level. We prove that several interesting propositional logics of dependence, including propositional dependence logic, propositional intuitionistic dependence logic as well as propositional inquisitive logic, are expressively complete
DEFF Research Database (Denmark)
Braüner, Torben
2011-01-01
Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area.......Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area....
Leburn, Christopher; Reid, Derryck
2013-01-01
The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events – both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrasho...
Smets, P
1995-01-01
We start by describing the nature of imperfect data, and giving an overview of the various models that have been proposed. Fuzzy sets theory is shown to be an extension of classical set theory, and as such has a proeminent role or modelling imperfect data. The mathematic of fuzzy sets theory is detailled, in particular the role of the triangular norms. The use of fuzzy sets theory in fuzzy logic and possibility theory,the nature of the generalized modus ponens and of the implication operator for approximate reasoning are analysed. The use of fuzzy logic is detailled for application oriented towards process control and database problems.
DEFF Research Database (Denmark)
Reynolds, John C.
2002-01-01
In joint work with Peter O'Hearn and others, based on early ideas of Burstall, we have developed an extension of Hoare logic that permits reasoning about low-level imperative programs that use shared mutable data structure. The simple imperative programming language is extended with commands (not...... with the inductive definition of predicates on abstract data structures, this extension permits the concise and flexible description of structures with controlled sharing. In this paper, we will survey the current development of this program logic, including extensions that permit unrestricted address arithmetic...
Ultrafast gas switching experiments
International Nuclear Information System (INIS)
Frost, C.A.; Martin, T.H.; Patterson, P.E.; Rinehart, L.F.; Rohwein, G.J.; Roose, L.D.; Aurand, J.F.; Buttram, M.T.
1993-01-01
We describe recent experiments which studied the physics of ultrafast gas breakdown under the extreme overvoltages which occur when a high pressure gas switch is pulse charged to hundreds of kV in 1 ns or less. The highly overvolted peaking gaps produce powerful electromagnetic pulses with risetimes Khz at > 100 kV/m E field
Ultrafast magnetization dynamics
Woodford, Simon
2008-01-01
This thesis addresses ultrafast magnetization dynamics from a theoretical perspective. The manipulation of magnetization using the inverse Faraday effect has been studied, as well as magnetic relaxation processes in quantum dots. The inverse Faraday effect – the generation of a magnetic field by nonresonant, circularly polarized light – offers the possibility to control and reverse magnetization on a timescale of a few hundred femtoseconds. This is important both for the technological advant...
DEFF Research Database (Denmark)
Carbone, Marco; Montesi, Fabrizio; Schürmann, Carsten
2014-01-01
In Choreographic Programming, a distributed system is programmed by giving a choreography, a global description of its interactions, instead of separately specifying the behaviour of each of its processes. Process implementations in terms of a distributed language can then be automatically...... projected from a choreography. We present Linear Compositional Choreographies (LCC), a proof theory for reasoning about programs that modularly combine choreographies with processes. Using LCC, we logically reconstruct a semantics and a projection procedure for programs. For the first time, we also obtain...... a procedure for extracting choreographies from process terms....
International Nuclear Information System (INIS)
Mittelstaedt, P.
1979-01-01
The subspaces of Hilbert space constitute an orthocomplemented quasimodular lattice Lsub(q) for which neither a two-valued function nor generalized truth function exist. A generalisation of the dialogic method can be used as an interpretation of a lattice Lsub(qi), which may be considered as the intuitionistic part of Lsub(q). Some obvious modifications of the dialogic method are introduced which come from the possible incommensurability of propositions about quantum mechanical systems. With the aid of this generalized dialogic method a propositional calculus Qsub(eff) is derived which is similar to the calculus of effective (intuitionistic) logic, but contains a few restrictions which are based on the incommensurability of quantum mechanical propositions. It can be shown within the framework of the calculus Qsub(eff) that the value-definiteness of the elementary propositions which are proved by quantum mechanical propositions is inherited by all finite compund propositions. In this way one arrives at the calculus Q of full quantum logic which incorporates the principle of excluded middle for all propositions and which is a model for the lattice Lsub(q). (Auth.)
Carlton, David Bryan
The exponential improvements in speed, energy efficiency, and cost that the computer industry has relied on for growth during the last 50 years are in danger of ending within the decade. These improvements all have relied on scaling the size of the silicon-based transistor that is at the heart of every modern CPU down to smaller and smaller length scales. However, as the size of the transistor reaches scales that are measured in the number of atoms that make it up, it is clear that this scaling cannot continue forever. As a result of this, there has been a great deal of research effort directed at the search for the next device that will continue to power the growth of the computer industry. However, due to the billions of dollars of investment that conventional silicon transistors have received over the years, it is unlikely that a technology will emerge that will be able to beat it outright in every performance category. More likely, different devices will possess advantages over conventional transistors for certain applications and uses. One of these emerging computing platforms is nanomagnetic logic (NML). NML-based circuits process information by manipulating the magnetization states of single-domain nanomagnets coupled to their nearest neighbors through magnetic dipole interactions. The state variable is magnetization direction and computations can take place without passing an electric current. This makes them extremely attractive as a replacement for conventional transistor-based computing architectures for certain ultra-low power applications. In most work to date, nanomagnetic logic circuits have used an external magnetic clocking field to reset the system between computations. The clocking field is then subsequently removed very slowly relative to the magnetization dynamics, guiding the nanomagnetic logic circuit adiabatically into its magnetic ground state. In this dissertation, I will discuss the dynamics behind this process and show that it is greatly
DEFF Research Database (Denmark)
Modal logic is a subject with ancient roots in the western logical tradition. Up until the last few generations, it was pursued mainly as a branch of philosophy. But in recent years, the subject has taken new directions with connections to topics in computer science and mathematics. This volume...... is the proceedings of the conference of record in its fi eld, Advances in Modal Logic. Its contributions are state-of-the-art papers. The topics include decidability and complexity results for specifi c modal logics, proof theory of modal logic, logics for reasoning about time and space, provability logic, dynamic...... epistemic logic, and the logic of evidence....
Ultrafast THz saturable absorption in doped semiconductors at room temperature
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hoffmann, M. V.
2011-01-01
Ultrafast Phenomena XVII presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultraf...
Paraconsistent Computational Logic
DEFF Research Database (Denmark)
Jensen, Andreas Schmidt; Villadsen, Jørgen
2012-01-01
In classical logic everything follows from inconsistency and this makes classical logic problematic in areas of computer science where contradictions seem unavoidable. We describe a many-valued paraconsistent logic, discuss the truth tables and include a small case study....
Microelectromechanical reprogrammable logic device
Hafiz, Md Abdullah Al; Kosuru, Lakshmoji; Younis, Mohammad I.
2016-01-01
on the electrothermal frequency modulation scheme of a single microelectromechanical resonator, capable of performing all the fundamental 2-bit logic functions as well as n-bit logic operations. Logic functions are performed by actively tuning the linear resonance
Doberkat, Ernst-Erich
2009-01-01
Combining coalgebraic reasoning, stochastic systems and logic, this volume presents the principles of coalgebraic logic from a categorical perspective. Modal logics are also discussed, including probabilistic interpretations and an analysis of Kripke models.
Ultrafast scanning tunneling microscopy
Energy Technology Data Exchange (ETDEWEB)
Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)
1995-09-01
I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.
Ultrafast Graphene Photonics and Optoelectronics
2017-04-14
AFRL-AFOSR-JP-TR-2017-0032 Ultrafast Graphene Photonics and Optoelectronics Kuang-Hsiung Wu National Chiao Tung University Final Report 04/14/2017...DATES COVERED (From - To) 18 Apr 2013 to 17 Apr 2016 4. TITLE AND SUBTITLE Ultrafast Graphene Photonics and Optoelectronics 5a. CONTRACT NUMBER 5b...Prescribed by ANSI Std. Z39.18 Final Report for AOARD Grant FA2386-13-1-4022 “Ultrafast Graphene Photonics and Optoelectronics” Date May 23th, 2016
Classical logic and logicism in human thought
Elqayam, Shira
2012-01-01
This chapter explores the role of classical logic as a theory of human reasoning. I distinguish between classical logic as a normative, computational and algorithmic system, and review its role is theories of human reasoning since the 1960s. The thesis I defend is that psychological theories have been moving further and further away from classical logic on all three levels. I examine some prominent example of logicist theories, which incorporate logic in their psychological account, includin...
Logic programming extensions of Horn clause logic
Directory of Open Access Journals (Sweden)
Ron Sigal
1988-11-01
Full Text Available Logic programming is now firmly established as an alternative programming paradigm, distinct and arguably superior to the still dominant imperative style of, for instance, the Algol family of languages. The concept of a logic programming language is not precisely defined, but it is generally understood to be characterized buy: a declarative nature; foundation in some well understood logical system, e.g., first order logic.
Three-valued logics in modal logic
Kooi, Barteld; Tamminga, Allard
2013-01-01
Every truth-functional three-valued propositional logic can be conservatively translated into the modal logic S5. We prove this claim constructively in two steps. First, we define a Translation Manual that converts any propositional formula of any three-valued logic into a modal formula. Second, we
Fourteenth International Conference on Ultrafast Phenomena
Kobayashi, Takayoshi; Kobayashi, Tetsuro; Nelson, Keith A; Silvestri, Sandro; Ultrafast Phenomena XIV
2005-01-01
Ultrafast Phenomena XIV presents the latest advances in ultrafast science, including ultrafast laser and measurement technology as well as studies of ultrafast phenomena. Pico-, femto-, and atosecond processes relevant in physics, chemistry, biology and engineering are presented. Ultrafast technology is now having a profound impact within a wide range of applications, among them imaging, material diagnostics, and transformation and high-speed optoelectronics. This book summarizes results presented at the 14th Ultrafast Phenomena Conference and reviews the state of the art in this important and rapidly advancing field.
Sixteenth International Conference on Ultrafast Phenomena
Corkum, Paul; Nelson, Keith A; Riedle, Eberhard; Schoenlein, Robert W; Ultrafast Phenomena XVI
2009-01-01
Ultrafast Phenomena XVI presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh speed communications. This book summarizes the results presented at the 16th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.
Heunen, Chris
2008-01-01
We consider categorical logic on the category of Hilbert spaces. More generally, in fact, any pre-Hilbert category suffices. We characterise closed subobjects, and prove that they form orthomodular lattices. This shows that quantum logic is just an incarnation of categorical logic, enabling us to establish an existential quantifier for quantum logic, and conclude that there cannot be a universal quantifier.
Metamathematics of fuzzy logic
Hájek, Petr
1998-01-01
This book presents a systematic treatment of deductive aspects and structures of fuzzy logic understood as many valued logic sui generis. Some important systems of real-valued propositional and predicate calculus are defined and investigated. The aim is to show that fuzzy logic as a logic of imprecise (vague) propositions does have well-developed formal foundations and that most things usually named `fuzzy inference' can be naturally understood as logical deduction.
Berg Johansen, Christina; Bock Waldorff, Susanne
2015-01-01
This study presents new insights into the explanatory power of the institutional logics perspective. With outset in a discussion of seminal theory texts, we identify two fundamental topics that frame institutional logics: overarching institutional orders guided by institutional logics, as well as change and agency generated by friction between logics. We use these topics as basis for an analysis of selected empirical papers, with the aim of understanding how institutional logics contribute to...
Connections among quantum logics
International Nuclear Information System (INIS)
Lock, P.F.; Hardegree, G.M.
1985-01-01
In this paper, a theory of quantum logics is proposed which is general enough to enable us to reexamine a previous work on quantum logics in the context of this theory. It is then easy to assess the differences between the different systems studied. The quantum logical systems which are incorporated are divided into two groups which we call ''quantum propositional logics'' and ''quantum event logics''. The work of Kochen and Specker (partial Boolean algebras) is included and so is that of Greechie and Gudder (orthomodular partially ordered sets), Domotar (quantum mechanical systems), and Foulis and Randall (operational logics) in quantum propositional logics; and Abbott (semi-Boolean algebras) and Foulis and Randall (manuals) in quantum event logics, In this part of the paper, an axiom system for quantum propositional logics is developed and the above structures in the context of this system examined. (author)
DEFF Research Database (Denmark)
Schürmann, Carsten; Sarnat, Jeffrey
2008-01-01
Tait's method (a.k.a. proof by logical relations) is a powerful proof technique frequently used for showing foundational properties of languages based on typed lambda-calculi. Historically, these proofs have been extremely difficult to formalize in proof assistants with weak meta-logics......, such as Twelf, and yet they are often straightforward in proof assistants with stronger meta-logics. In this paper, we propose structural logical relations as a technique for conducting these proofs in systems with limited meta-logical strength by explicitly representing and reasoning about an auxiliary logic...
DEFF Research Database (Denmark)
Berg Johansen, Christina; Waldorff, Susanne Boch
This study presents new insights into the explanatory power of the institutional logics perspective. With outset in a discussion of seminal theory texts, we identify two fundamental topics that frame institutional logics: overarching institutional orders guides by institutional logics, as well...... as change and agency generated by friction between logics. We use these topics as basis for an analysis of selected empirical papers, with the aim of understanding how institutional logics contribute to institutional theory at large, and which social matters institutional logics can and cannot explore...
Indeterministic Temporal Logic
Directory of Open Access Journals (Sweden)
Trzęsicki Kazimierz
2015-09-01
Full Text Available The questions od determinism, causality, and freedom have been the main philosophical problems debated since the beginning of temporal logic. The issue of the logical value of sentences about the future was stated by Aristotle in the famous tomorrow sea-battle passage. The question has inspired Łukasiewicz’s idea of many-valued logics and was a motive of A. N. Prior’s considerations about the logic of tenses. In the scheme of temporal logic there are different solutions to the problem. In the paper we consider indeterministic temporal logic based on the idea of temporal worlds and the relation of accessibility between them.
Quantum Logic as a Dynamic Logic
Baltag, A.; Smets, S.
We address the old question whether a logical understanding of Quantum Mechanics requires abandoning some of the principles of classical logic. Against Putnam and others (Among whom we may count or not E. W. Beth, depending on how we interpret some of his statements), our answer is a clear “no”.
Quantum logic as a dynamic logic
Baltag, Alexandru; Smets, Sonja
We address the old question whether a logical understanding of Quantum Mechanics requires abandoning some of the principles of classical logic. Against Putnam and others (Among whom we may count or not E. W. Beth, depending on how we interpret some of his statements), our answer is a clear "no".
Transforming equality logic to propositional logic
Zantema, H.; Groote, J.F.
2003-01-01
Abstract We investigate and compare various ways of transforming equality formulas to propositional formulas, in order to be able to solve satisfiability in equality logic by means of satisfiability in propositional logic. We propose equality substitution as a new approach combining desirable
Bolc, Leonard
1992-01-01
Many-valued logics were developed as an attempt to handle philosophical doubts about the "law of excluded middle" in classical logic. The first many-valued formal systems were developed by J. Lukasiewicz in Poland and E.Post in the U.S.A. in the 1920s, and since then the field has expanded dramatically as the applicability of the systems to other philosophical and semantic problems was recognized. Intuitionisticlogic, for example, arose from deep problems in the foundations of mathematics. Fuzzy logics, approximation logics, and probability logics all address questions that classical logic alone cannot answer. All these interpretations of many-valued calculi motivate specific formal systems thatallow detailed mathematical treatment. In this volume, the authors are concerned with finite-valued logics, and especially with three-valued logical calculi. Matrix constructions, axiomatizations of propositional and predicate calculi, syntax, semantic structures, and methodology are discussed. Separate chapters deal w...
Directory of Open Access Journals (Sweden)
P N Johnson-Laird
2010-10-01
Full Text Available An old view in logic going back to Aristotle is that an inference is valid in virtue of its logical form. Many psychologists have adopted the same point of view about human reasoning: the first step is to recover the logical form of an inference, and the second step is to apply rules of inference that match these forms in order to prove that the conclusion follows from the premises. The present paper argues against this idea. The logical form of an inference transcends the grammatical forms of the sentences used to express it, because logical form also depends on context. Context is not readily expressed in additional premises. And the recovery of logical form leads ineluctably to the need for infinitely many axioms to capture the logical properties of relations. An alternative theory is that reasoning depends on mental models, and this theory obviates the need to recover logical form.
Newton-Smith, WH
2003-01-01
A complete introduction to logic for first-year university students with no background in logic, philosophy or mathematics. In easily understood steps it shows the mechanics of the formal analysis of arguments.
Anticoincidence logic using PALs
International Nuclear Information System (INIS)
Bolanos, L.; Arista Romeu, E.
1997-01-01
This paper describes the functioning principle of an anticoincidence logic and a design of this based on programing logic. The circuit was included in a discriminator of an equipment for single-photon absorptiometry
Connections among quantum logics
International Nuclear Information System (INIS)
Lock, P.F.; Hardegree, G.M.
1985-01-01
This paper gives a brief introduction to the major areas of work in quantum event logics: manuals (Foulis and Randall) and semi-Boolean algebras (Abbott). The two theories are compared, and the connection between quantum event logics and quantum propositional logics is made explicit. In addition, the work on manuals provides us with many examples of results stated in Part I. (author)
Manca, V.; Salibra, A.; Scollo, Giuseppe
1990-01-01
Equational type logic is an extension of (conditional) equational logic, that enables one to deal in a single, unified framework with diverse phenomena such as partiality, type polymorphism and dependent types. In this logic, terms may denote types as well as elements, and atomic formulae are either
DEFF Research Database (Denmark)
Xue, Bingtian; Larsen, Kim Guldstrand; Mardare, Radu Iulian
2015-01-01
We introduce Concurrent Weighted Logic (CWL), a multimodal logic for concurrent labeled weighted transition systems (LWSs). The synchronization of LWSs is described using dedicated functions that, in various concurrency paradigms, allow us to encode the compositionality of LWSs. To reflect these......-completeness results for this logic. To complete these proofs we involve advanced topological techniques from Model Theory....
Bergstra, J.A.
2011-01-01
Four options for assigning a meaning to Islamic Logic are surveyed including a new proposal for an option named "Real Islamic Logic" (RIL). That approach to Islamic Logic should serve modern Islamic objectives in a way comparable to the functionality of Islamic Finance. The prospective role of RIL
Ultrafast vibrations of gold nanorings
DEFF Research Database (Denmark)
Kelf, T; Tanaka, Y; Matsuda, O
2011-01-01
We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We...
Ultrafast spectroscopy of biological photoreceptors
Kennis, J.T.M.; Groot, M.L.
2007-01-01
We review recent new insights on reaction dynamics of photoreceptors proteins gained from ultrafast spectroscopy. In Blue Light sensing Using FAD (BLUF) domains, a hydrogen-bond rearrangement around the flavin chromophore proceeds through a radical-pair mechanism, by which light-induced electron and
Ultrafast Spectroscopy of Semiconductor Devices
DEFF Research Database (Denmark)
Borri, Paola; Langbein, Wolfgang; Hvam, Jørn Marcher
1999-01-01
In this work we present an experimental technique for investigating ultrafast carrier dynamics in semiconductor optical amplifiers at room temperature. These dynamics, influenced by carrier heating, spectral hole-burning and two-photon absorption, are very important for device applications in inf...
Ultrafast vibrations of gold nanorings
DEFF Research Database (Denmark)
Kelf, T; Tanaka, Y; Matsuda, O
2011-01-01
We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We elucid...
DEFF Research Database (Denmark)
Christiansen, Henning; Dahl, Veronica
2009-01-01
By extending logic grammars with constraint logic, we give them the ability to create knowledge bases that represent the meaning of an input string. Semantic information is thus defined through extra-grammatical means, and a sentence's meaning logically follows as a by-product of string rewriting....... We formalize these ideas, and exemplify them both within and outside first-order logic, and for both fixed and dynamic knowledge bases. Within the latter variety, we consider the usual left-to-right derivations that are traditional in logic grammars, but also -- in a significant departure from...
DEFF Research Database (Denmark)
Bentzen, Martin Mose
2014-01-01
A new deontic logic, Action Type Deontic Logic, is presented. To motivate this logic, a number of benchmark cases are shown, representing inferences a deontic logic should validate. Some of the benchmark cases are singled out for further comments and some formal approaches to deontic reasoning...... are evaluated with respect to the benchmark cases. After that follows an informal introduction to the ideas behind the formal semantics, focussing on the distinction between action types and action tokens. Then the syntax and semantics of Action Type Deontic Logic is presented and it is shown to meet...
Czech Academy of Sciences Publication Activity Database
Horčík, Rostislav; Cintula, Petr
2004-01-01
Roč. 43, - (2004), s. 477-503 ISSN 1432-0665 R&D Projects: GA AV ČR IAA1030004; GA ČR GA201/02/1540 Grant - others:GA CTU(CZ) project 0208613; net CEEPUS(SK) SK-042 Institutional research plan: CEZ:AV0Z1030915 Keywords : fuzzy logic * many-valued logic * Lukasiewicz logic * Lpi logic * Takeuti-Titani logic * MV-algebras * product MV-algebras Subject RIV: BA - General Mathematics Impact factor: 0.295, year: 2004
DEFF Research Database (Denmark)
Blackburn, Patrick Rowan; Huertas, Antonia; Manzano, Maria
2014-01-01
Leon Henkin was not a modal logician, but there is a branch of modal logic that has been deeply influenced by his work. That branch is hybrid logic, a family of logics that extend orthodox modal logic with special proposition symbols (called nominals) that name worlds. This paper explains why...... Henkin’s techniques are so important in hybrid logic. We do so by proving a completeness result for a hybrid type theory called HTT, probably the strongest hybrid logic that has yet been explored. Our completeness result builds on earlier work with a system called BHTT, or basic hybrid type theory...... is due to the first-order perspective, which lies at the heart of Henin’s best known work and hybrid logic....
Directory of Open Access Journals (Sweden)
Newton C. A. da Costa
2002-12-01
Full Text Available In view of the present state of development of non classical logic, especially of paraconsistent logic, a new stand regarding the relations between logic and ontology is defended In a parody of a dictum of Quine, my stand May be summarized as follows. To be is to be the value of a variable a specific language with a given underlying logic Yet my stand differs from Quine’s, because, among other reasons, I accept some first order heterodox logics as genuine alternatives to classical logic I also discuss some questions of non classical logic to substantiate my argument, and suggest that may position complements and extends some ideas advanced by L Apostel.
Institutional Logics in Action
DEFF Research Database (Denmark)
Lounsbury, Michael; Boxenbaum, Eva
2013-01-01
This double volume presents state-of-the-art research and thinking on the dynamics of actors and institutional logics. In the introduction, we briefly sketch the roots and branches of institutional logics scholarship before turning to the new buds of research on the topic of how actors engage...... institutional logics in the course of their organizational practice. We introduce an exciting line of new works on the meta-theoretical foundations of logics, institutional logic processes, and institutional complexity and organizational responses. Collectively, the papers in this volume advance the very...... prolific stream of research on institutional logics by deepening our insight into the active use of institutional logics in organizational action and interaction, including the institutional effects of such (inter)actions....
Dalen, Dirk
1983-01-01
A book which efficiently presents the basics of propositional and predicate logic, van Dalen’s popular textbook contains a complete treatment of elementary classical logic, using Gentzen’s Natural Deduction. Propositional and predicate logic are treated in separate chapters in a leisured but precise way. Chapter Three presents the basic facts of model theory, e.g. compactness, Skolem-Löwenheim, elementary equivalence, non-standard models, quantifier elimination, and Skolem functions. The discussion of classical logic is rounded off with a concise exposition of second-order logic. In view of the growing recognition of constructive methods and principles, one chapter is devoted to intuitionistic logic. Completeness is established for Kripke semantics. A number of specific constructive features, such as apartness and equality, the Gödel translation, the disjunction and existence property have been incorporated. The power and elegance of natural deduction is demonstrated best in the part of proof theory cal...
Directory of Open Access Journals (Sweden)
Schang Fabien
2017-03-01
Full Text Available An analogy is made between two rather different domains, namely: logic, and football (or soccer. Starting from a comparative table between the two activities, an alternative explanation of logic is given in terms of players, ball, goal, and the like. Our main thesis is that, just as the task of logic is preserving truth from premises to the conclusion, footballers strive to keep the ball as far as possible until the opposite goal. Assuming this analogy may help think about logic in the same way as in dialogical logic, but it should also present truth-values in an alternative sense of speech-acts occurring in a dialogue. The relativity of truth-values is focused by this way, thereby leading to an additional way of logical pluralism.
Ultrafast MR Imaging in Pediatric Neuroradiology
International Nuclear Information System (INIS)
Singh, R.K.; Smith, J.T.; Wilkinson, I.D.; Griffiths, P.D.
2003-01-01
Purpose: To compare the diagnostic information obtained from ultrafast MR imaging with standard MR imaging techniques in pediatric neuroradiology. The goal was to judge whether ultrafast methods can be used to replace standard methods and reduce the need for sedation or general anesthesia as a result of the considerably shorter scan times. Material and Methods: Our prospective study involved 125 patients. Routine clinical imaging was performed along with two ultrafast methods. Single shot fast spin echo (SSFSE) was used to give T2-weighted images and an echo planar imaging (EPI) sequence to provide a T1-weighted images. The ultrafast images were presented to an experienced neuro radiologist who was also given the information present on the initial referral card. These reports based on the ultrafast images were then compared with the formal radiologic report made solely on the basis of the standard imaging. Results: The overall sensitivity and specificity for ultrafast imaging when compared to the reference standard were 78% and 98% with positive and negative predictive values of 98% and 76%. Pathologies characterized by small areas of subtle T2 prolongation were difficult or impossible to see on the ultrafast images but otherwise they provided reliable information. Conclusions: This paper demonstrates that ultrafast MR imaging can diagnose many pediatric intracranial abnormalities as well as standard methods. Anatomic resolution limits its capacity to define subtle developmental anomalies and contrast resolution limitations of the ultrafast methods reduce the detection of pathology characterized by subtle T2 prolongation
International Nuclear Information System (INIS)
Wall, M.J.W.
1992-01-01
The notion of open-quotes probabilityclose quotes is generalized to that of open-quotes likelihood,close quotes and a natural logical structure is shown to exist for any physical theory which predicts likelihoods. Two physically based axioms are given for this logical structure to form an orthomodular poset, with an order-determining set of states. The results strengthen the basis of the quantum logic approach to axiomatic quantum theory. 25 refs
Logical database design principles
Garmany, John; Clark, Terry
2005-01-01
INTRODUCTION TO LOGICAL DATABASE DESIGNUnderstanding a Database Database Architectures Relational Databases Creating the Database System Development Life Cycle (SDLC)Systems Planning: Assessment and Feasibility System Analysis: RequirementsSystem Analysis: Requirements Checklist Models Tracking and Schedules Design Modeling Functional Decomposition DiagramData Flow Diagrams Data Dictionary Logical Structures and Decision Trees System Design: LogicalSYSTEM DESIGN AND IMPLEMENTATION The ER ApproachEntities and Entity Types Attribute Domains AttributesSet-Valued AttributesWeak Entities Constraint
Czech Academy of Sciences Publication Activity Database
Peliš, Michal
2017-01-01
Roč. 26, č. 3 (2017), s. 357-381 ISSN 1425-3305 R&D Projects: GA ČR(CZ) GC16-07954J Institutional support: RVO:67985955 Keywords : epistemic logic * erotetic implication * erotetic logic * logic of questions Subject RIV: AA - Philosophy ; Religion OBOR OECD: Philosophy, History and Philosophy of science and technology http://apcz.umk.pl/czasopisma/index.php/LLP/article/view/LLP.2017.007
Pereyra, Nicolas A.
2018-06-01
This book gives a rigorous yet 'physics-focused' introduction to mathematical logic that is geared towards natural science majors. We present the science major with a robust introduction to logic, focusing on the specific knowledge and skills that will unavoidably be needed in calculus topics and natural science topics in general (rather than taking a philosophical-math-fundamental oriented approach that is commonly found in mathematical logic textbooks).
Crossley, J N; Brickhill, CJ; Stillwell, JC
2010-01-01
Although mathematical logic can be a formidably abstruse topic, even for mathematicians, this concise book presents the subject in a lively and approachable fashion. It deals with the very important ideas in modern mathematical logic without the detailed mathematical work required of those with a professional interest in logic.The book begins with a historical survey of the development of mathematical logic from two parallel streams: formal deduction, which originated with Aristotle, Euclid, and others; and mathematical analysis, which dates back to Archimedes in the same era. The streams beg
DEFF Research Database (Denmark)
Blackburn, Patrick Rowan; Jørgensen, Klaus Frovin
2012-01-01
In this paper we explore the logic of now, yesterday, today and tomorrow by combining the semantic approach to indexicality pioneered by Hans Kamp [9] and refined by David Kaplan [10] with hybrid tense logic. We first introduce a special now nominal (our @now corresponds to Kamp’s original now...... operator N) and prove completeness results for both logical and contextual validity. We then add propositional constants to handle yesterday, today and tomorrow; our system correctly treats sentences like “Niels will die yesterday” as contextually unsatisfiable. Building on our completeness results for now......, we prove completeness for the richer language, again for both logical and contextual validity....
DEFF Research Database (Denmark)
Lopez, Hugo Andres; Carbone, Marco; Hildebrandt, Thomas
2010-01-01
We explore logical reasoning for the global calculus, a coordination model based on the notion of choreography, with the aim to provide a methodology for speciﬁcation and veriﬁcation of structured communications. Starting with an extension of Hennessy-Milner logic, we present the global logic (GL...... ), a modal logic describing possible interactions among participants in a choreography. We illustrate its use by giving examples of properties on service speciﬁcations. Finally, we show that, despite GL is undecidable, there is a signiﬁcant decidable fragment which we provide with a sound and complete proof...
International Nuclear Information System (INIS)
Andronov, A.A.; Kurin, V.V.; Levichev, M.Yu.; Ryndyk, D.A.; Vostokov, V.I.
1993-01-01
In recent years there has been much interest in superconductor logical devices. Our paper is devoted to the analysis of some new possibilities in this field. The main problems here are: minimization of time of logical operations and reducing of device scale. Josephson systems are quite appropriate for this purpose because of small size, short characteristic time and also small energy losses. Two different types of Josephson logic have been investigated during last years. The first type is based on hysteretic V-A characteristic of a single Josephson junction. Superconducting and resistive (with nonzero voltage) states are considered as logical zero and logical unit. The second one - rapid single flux quantum logic, has been developed recently and is based on SQUID-like bistability. Different logical states are the states with different number of magnetic flux quanta inside closed superconducting contour. Information is represented by voltage pulses with fixed ''area'' (∫ V(t)/dt). This pulses are generated when logical state of SQUID-like elementary cell changes. The fundamental role of magnetic flux quantization in this type of logic leads to the necessity of large enough self-inductance of superconductor contour and thus to limitations on minimal device dimensions. (orig.)
Directory of Open Access Journals (Sweden)
Marco Carbone
2011-10-01
Full Text Available We explore logical reasoning for the global calculus, a coordination model based on the notion of choreography, with the aim to provide a methodology for specification and verification of structured communications. Starting with an extension of Hennessy-Milner logic, we present the global logic (GL, a modal logic describing possible interactions among participants in a choreography. We illustrate its use by giving examples of properties on service specifications. Finally, we show that, despite GL is undecidable, there is a significant decidable fragment which we provide with a sound and complete proof system for checking validity of formulae.
Introduction to mathematical logic
Mendelson, Elliott
2015-01-01
The new edition of this classic textbook, Introduction to Mathematical Logic, Sixth Edition explores the principal topics of mathematical logic. It covers propositional logic, first-order logic, first-order number theory, axiomatic set theory, and the theory of computability. The text also discusses the major results of Gödel, Church, Kleene, Rosser, and Turing.The sixth edition incorporates recent work on Gödel's second incompleteness theorem as well as restoring an appendix on consistency proofs for first-order arithmetic. This appendix last appeared in the first edition. It is offered in th
Ultrafast Thermal Transport at Interfaces
Energy Technology Data Exchange (ETDEWEB)
Cahill, David [Univ. of Illinois, Champaign, IL (United States); Murphy, Catherine [Univ. of Illinois, Champaign, IL (United States); Martin, Lane [Univ. of Illinois, Champaign, IL (United States)
2014-10-21
Our research program on Ultrafast Thermal Transport at Interfaces advanced understanding of the mesoscale science of heat conduction. At the length and time scales of atoms and atomic motions, energy is transported by interactions between single-particle and collective excitations. At macroscopic scales, entropy, temperature, and heat are the governing concepts. Key gaps in fundamental knowledge appear at the transitions between these two regimes. The transport of thermal energy at interfaces plays a pivotal role in these scientific issues. Measurements of heat transport with ultrafast time resolution are needed because picoseconds are the fundamental scales where the lack of equilibrium between various thermal excitations becomes a important factor in the transport physics. A critical aspect of our work has been the development of experimental methods and model systems that enabled more precise and sensitive investigations of nanoscale thermal transport.
Ultrafast comparison of personal genomes
Mauldin, Denise; Hood, Leroy; Robinson, Max; Glusman, Gustavo
2017-01-01
We present an ultra-fast method for comparing personal genomes. We transform the standard genome representation (lists of variants relative to a reference) into 'genome fingerprints' that can be readily compared across sequencing technologies and reference versions. Because of their reduced size, computation on the genome fingerprints is fast and requires little memory. This enables scaling up a variety of important genome analyses, including quantifying relatedness, recognizing duplicative s...
Understanding Social Media Logic
Directory of Open Access Journals (Sweden)
José van Dijck
2013-08-01
Full Text Available Over the past decade, social media platforms have penetrated deeply into the mechanics of everyday life, affecting people's informal interactions, as well as institutional structures and professional routines. Far from being neutral platforms for everyone, social media have changed the conditions and rules of social interaction. In this article, we examine the intricate dynamic between social media platforms, mass media, users, and social institutions by calling attention to social media logic—the norms, strategies, mechanisms, and economies—underpinning its dynamics. This logic will be considered in light of what has been identified as mass media logic, which has helped spread the media's powerful discourse outside its institutional boundaries. Theorizing social media logic, we identify four grounding principles—programmability, popularity, connectivity, and datafication—and argue that these principles become increasingly entangled with mass media logic. The logic of social media, rooted in these grounding principles and strategies, is gradually invading all areas of public life. Besides print news and broadcasting, it also affects law and order, social activism, politics, and so forth. Therefore, its sustaining logic and widespread dissemination deserve to be scrutinized in detail in order to better understand its impact in various domains. Concentrating on the tactics and strategies at work in social media logic, we reassess the constellation of power relationships in which social practices unfold, raising questions such as: How does social media logic modify or enhance existing mass media logic? And how is this new media logic exported beyond the boundaries of (social or mass media proper? The underlying principles, tactics, and strategies may be relatively simple to identify, but it is much harder to map the complex connections between platforms that distribute this logic: users that employ them, technologies that
Weakly Intuitionistic Quantum Logic
Hermens, Ronnie
2013-01-01
In this article von Neumann's proposal that in quantum mechanics projections can be seen as propositions is followed. However, the quantum logic derived by Birkhoff and von Neumann is rejected due to the failure of the law of distributivity. The options for constructing a distributive logic while
Kuusisto, Antti
2013-01-01
In recent years, research into the mathematical foundations of modal logic has become increasingly popular. One of the main reasons for this is the fact that modal logic seems to adapt well to the requirements of a wide range of different fields of application. This paper is a summary of some of the author’s contributions to the understanding of modal definability theory.
Cirstea, C.; Kurz, A.; Pattinson, D.; Schröder, L.; Venema, Y.
2011-01-01
Applications of modal logics are abundant in computer science, and a large number of structurally different modal logics have been successfully employed in a diverse spectrum of application contexts. Coalgebraic semantics, on the other hand, provides a uniform and encompassing view on the large
CSIR Research Space (South Africa)
Klarman, S
2013-05-01
Full Text Available We introduce Description Logics of Context (DLCs) - an extension of Description Logics (DLs) for context-based reasoning. Our approach descends from J. McCarthy's tradition of treating contexts as formal objects over which one can quantify...
Criteria for logical formalization
Czech Academy of Sciences Publication Activity Database
Peregrin, Jaroslav; Svoboda, Vladimír
2013-01-01
Roč. 190, č. 14 (2013), s. 2897-2924 ISSN 0039-7857 R&D Projects: GA ČR(CZ) GAP401/10/1279 Institutional support: RVO:67985955 Keywords : logic * logical form * formalization * reflective equilibrium Subject RIV: AA - Philosophy ; Religion Impact factor: 0.637, year: 2013
NEVEN, Frank
2002-01-01
We survey some recent developments in the broad area of automata and logic which are motivated by the advent of XML. In particular, we consider unranked tree automata, tree-walking automata, and automata over infinite alphabets. We focus on their connection with logic and on questions imposed by XML.
Directory of Open Access Journals (Sweden)
Evandro Agazzi
2011-06-01
Full Text Available Humans have used arguments for defending or refuting statements long before the creation of logic as a specialized discipline. This can be interpreted as the fact that an intuitive notion of "logical consequence" or a psychic disposition to articulate reasoning according to this pattern is present in common sense, and logic simply aims at describing and codifying the features of this spontaneous capacity of human reason. It is well known, however, that several arguments easily accepted by common sense are actually "logical fallacies", and this indicates that logic is not just a descriptive, but also a prescriptive or normative enterprise, in which the notion of logical consequence is defined in a precise way and then certain rules are established in order to maintain the discourse in keeping with this notion. Yet in the justification of the correctness and adequacy of these rules commonsense reasoning must necessarily be used, and in such a way its foundational role is recognized. Moreover, it remains also true that several branches and forms of logic have been elaborated precisely in order to reflect the structural features of correct argument used in different fields of human reasoning and yet insufficiently mirrored by the most familiar logical formalisms.
A. Ponse (Alban); M.B. van der Zwaag
2002-01-01
textabstractWe distinguish two interpretations for the truth value `undefined' in Kleene's three-valued logic. Combining these two interpretations leads to a four-valued propositional logic that characterizes two particular ingredients of process algebra: ``choice' and ``inaction'. We study two
Uckelman, S.L.
2009-01-01
The origins of treating agency as a modal concept go back at least to the 11th century when Anselm, Archbishop of Canterbury, provided a modal explication of the Latin facere ‘to do’, which can be formalized within the context of modern modal logic and neighborhood semantics. The agentive logic
Temporalized Epistemic Default Logic
van der Hoek, W.; Meyer, J.J.; Treur, J.; Gabbay, D.
2001-01-01
The nonmonotonic logic Epistemic Default Logic (EDL) [Meyer and van der Hoek, 1993] is based on the metaphore of a meta-level architecture. It has already been established [Meyer and van der Hoek, 1993] how upward reflection can be formalized by a nonmonotonic entailment based on epistemic states,
Lopez, Antonio M., Jr.
1989-01-01
Provides background material on logic programing and presents PROLOG as a high-level artificial intelligence programing language that borrows its basic constructs from logic. Suggests the language is one which will help the educator to achieve various goals, particularly the promotion of problem solving ability. (MVL)
W. van der Hoek (Wiebe); J.O.M. Jaspars; E. Thijsse
1995-01-01
textabstractWe propose an epistemic logic in which knowledge is fully introspective and implies truth, although truth need not imply epistemic possibility. The logic is presented in sequential format and is interpreted in a natural class of partial models, called balloon models. We examine the
Microelectromechanical reprogrammable logic device
Hafiz, M. A. A.; Kosuru, L.; Younis, M. I.
2016-01-01
In modern computing, the Boolean logic operations are set by interconnect schemes between the transistors. As the miniaturization in the component level to enhance the computational power is rapidly approaching physical limits, alternative computing methods are vigorously pursued. One of the desired aspects in the future computing approaches is the provision for hardware reconfigurability at run time to allow enhanced functionality. Here we demonstrate a reprogrammable logic device based on the electrothermal frequency modulation scheme of a single microelectromechanical resonator, capable of performing all the fundamental 2-bit logic functions as well as n-bit logic operations. Logic functions are performed by actively tuning the linear resonance frequency of the resonator operated at room temperature and under modest vacuum conditions, reprogrammable by the a.c.-driving frequency. The device is fabricated using complementary metal oxide semiconductor compatible mass fabrication process, suitable for on-chip integration, and promises an alternative electromechanical computing scheme. PMID:27021295
Amplifying genetic logic gates.
Bonnet, Jerome; Yin, Peter; Ortiz, Monica E; Subsoontorn, Pakpoom; Endy, Drew
2013-05-03
Organisms must process information encoded via developmental and environmental signals to survive and reproduce. Researchers have also engineered synthetic genetic logic to realize simpler, independent control of biological processes. We developed a three-terminal device architecture, termed the transcriptor, that uses bacteriophage serine integrases to control the flow of RNA polymerase along DNA. Integrase-mediated inversion or deletion of DNA encoding transcription terminators or a promoter modulates transcription rates. We realized permanent amplifying AND, NAND, OR, XOR, NOR, and XNOR gates actuated across common control signal ranges and sequential logic supporting autonomous cell-cell communication of DNA encoding distinct logic-gate states. The single-layer digital logic architecture developed here enables engineering of amplifying logic gates to control transcription rates within and across diverse organisms.
Heterogeneous logics of competition
DEFF Research Database (Denmark)
Mossin, Christiane
2015-01-01
of competition are only realized as particular forms of social organization by virtue of interplaying with other kinds of logics, like legal logics. (2) Competition logics enjoy a peculiar status in-between constructedness and givenness; although competition depends on laws and mechanisms of socialization, we...... still experience competition as an expression of spontaneous human activities. On the basis of these perspectives, a study of fundamental rights of EU law, springing from the principle of ‘free movement of people’, is conducted. The first part of the empirical analysis seeks to detect the presence...... of a presumed logic of competition within EU law, whereas the second part focuses on particular legal logics. In this respect, the so-called ‘real link criterion’ (determining the access to transnational social rights for certain groups of unemployed people) is given special attention. What is particularly...
Microelectromechanical reprogrammable logic device
Hafiz, Md Abdullah Al
2016-03-29
In modern computing, the Boolean logic operations are set by interconnect schemes between the transistors. As the miniaturization in the component level to enhance the computational power is rapidly approaching physical limits, alternative computing methods are vigorously pursued. One of the desired aspects in the future computing approaches is the provision for hardware reconfigurability at run time to allow enhanced functionality. Here we demonstrate a reprogrammable logic device based on the electrothermal frequency modulation scheme of a single microelectromechanical resonator, capable of performing all the fundamental 2-bit logic functions as well as n-bit logic operations. Logic functions are performed by actively tuning the linear resonance frequency of the resonator operated at room temperature and under modest vacuum conditions, reprogrammable by the a.c.-driving frequency. The device is fabricated using complementary metal oxide semiconductor compatible mass fabrication process, suitable for on-chip integration, and promises an alternative electromechanical computing scheme.
Ultrafast Hierarchical OTDM/WDM Network
Directory of Open Access Journals (Sweden)
Hideyuki Sotobayashi
2003-12-01
Full Text Available Ultrafast hierarchical OTDM/WDM network is proposed for the future core-network. We review its enabling technologies: C- and L-wavelength-band generation, OTDM-WDM mutual multiplexing format conversions, and ultrafast OTDM wavelengthband conversions.
Avant-Garde Ultrafast Laser Writing
Directory of Open Access Journals (Sweden)
Kazansky P. G.
2013-11-01
Full Text Available Ultrafast laser processing of transparent materials reveals new phenomena. Reviewed, are recent demonstrations of 5D optical memory, vortex polarization and Airy beam converters employing self-assembled nanostructuring, ultrafast laser calligraphy and polarization writing control using pulses with tilted front.
Ultrafast Science Opportunities with Electron Microscopy
Energy Technology Data Exchange (ETDEWEB)
DURR, HERMANN; Wang, X.J., ed.
2016-04-28
X-rays and electrons are two of the most fundamental probes of matter. When the Linac Coherent Light Source (LCLS), the world’s first x-ray free electron laser, began operation in 2009, it transformed ultrafast science with the ability to generate laser-like x-ray pulses from the manipulation of relativistic electron beams. This document describes a similar future transformation. In Transmission Electron Microscopy, ultrafast relativistic (MeV energy) electron pulses can achieve unsurpassed spatial and temporal resolution. Ultrafast temporal resolution will be the next frontier in electron microscopy and can ideally complement ultrafast x-ray science done with free electron lasers. This document describes the Grand Challenge science opportunities in chemistry, material science, physics and biology that arise from an MeV ultrafast electron diffraction & microscopy facility, especially when coupled with linac-based intense THz and X-ray pump capabilities.
Experiments with trapped ions and ultrafast laser pulses
Johnson, Kale Gifford
Since the dawn of quantum information science, laser-cooled trapped atomic ions have been one of the most compelling systems for the physical realization of a quantum computer. By applying qubit state dependent forces to the ions, their collective motional modes can be used as a bus to realize entangling quantum gates. Ultrafast state-dependent kicks [1] can provide a universal set of quantum logic operations, in conjunction with ultrafast single qubit rotations [2], which uses only ultrafast laser pulses. This may present a clearer route to scaling a trapped ion processor [3]. In addition to the role that spin-dependent kicks (SDKs) play in quantum computation, their utility in fundamental quantum mechanics research is also apparent. In this thesis, we present a set of experiments which demonstrate some of the principle properties of SDKs including ion motion independence (we demonstrate single ion thermometry from the ground state to near room temperature and the largest Schrodinger cat state ever created in an oscillator), high speed operations (compared with conventional atom-laser interactions), and multi-qubit entanglement operations with speed that is not fundamentally limited by the trap oscillation frequency. We also present a method to provide higher stability in the radial mode ion oscillation frequencies of a linear radiofrequency (rf) Paul trap-a crucial factor when performing operations on the rf-sensitive modes. Finally, we present the highest atomic position sensitivity measurement of an isolated atom to date of 0.5 nm Hz. (-1/2) with a minimum uncertaintyof 1.7 nm using a 0.6 numerical aperature (NA) lens system, along with a method to correct aberrations and a direct position measurement of ion micromotion (the inherent oscillations of an ion trapped in an oscillating rf field). This development could be used to directly image atom motion in the quantum regime, along with sensing forces at the yoctonewton [10. (-24) N)] scale forgravity sensing
THRESHOLD LOGIC IN ARTIFICIAL INTELLIGENCE
COMPUTER LOGIC, ARTIFICIAL INTELLIGENCE , BIONICS, GEOMETRY, INPUT OUTPUT DEVICES, LINEAR PROGRAMMING, MATHEMATICAL LOGIC, MATHEMATICAL PREDICTION, NETWORKS, PATTERN RECOGNITION, PROBABILITY, SWITCHING CIRCUITS, SYNTHESIS
International Nuclear Information System (INIS)
Mittelstaedt, P.
1983-01-01
on the basis of the well-known quantum logic and quantum probability a formal language of relativistic quantum physics is developed. This language incorporates quantum logical as well as relativistic restrictions. It is shown that relativity imposes serious restrictions on the validity regions of propositions in space-time. By an additional postulate this relativistic quantum logic can be made consistent. The results of this paper are derived exclusively within the formal quantum language; they are, however, in accordance with well-known facts of relativistic quantum physics in Hilbert space. (author)
International Nuclear Information System (INIS)
Finkelstein, D.
1987-01-01
The von Neumann quantum logic lacks two basic symmetries of classical logic, that between sets and classes, and that between lower and higher order predicates. Similarly, the structural parallel between the set algebra and linear algebra of Grassmann and Peano was left incomplete by them in two respects. In this work a linear algebra is constructed that completes this correspondence and is interpreted as a new quantum logic that restores these invariances, and as a quantum set theory. It applies to experiments with coherent quantum phase relations between the quantum and the apparatus. The quantum set theory is applied to model a Lorentz-invariant quantum time-space complex
Logical inference and evaluation
International Nuclear Information System (INIS)
Perey, F.G.
1981-01-01
Most methodologies of evaluation currently used are based upon the theory of statistical inference. It is generally perceived that this theory is not capable of dealing satisfactorily with what are called systematic errors. Theories of logical inference should be capable of treating all of the information available, including that not involving frequency data. A theory of logical inference is presented as an extension of deductive logic via the concept of plausibility and the application of group theory. Some conclusions, based upon the application of this theory to evaluation of data, are also given
DEFF Research Database (Denmark)
Filipiuk, Piotr; Nielson, Flemming; Nielson, Hanne Riis
2012-01-01
We present a logic for the specification of static analysis problems that goes beyond the logics traditionally used. Its most prominent feature is the direct support for both inductive computations of behaviors as well as co-inductive specifications of properties. Two main theoretical contributions...... are a Moore Family result and a parametrized worst case time complexity result. We show that the logic and the associated solver can be used for rapid prototyping of analyses and illustrate a wide variety of applications within Static Analysis, Constraint Satisfaction Problems and Model Checking. In all cases...
International Nuclear Information System (INIS)
Bialkowski, J.; Moszynski, M.; Zagorski, A.
1981-01-01
The logic diagram principle of operation and some details of the design of the multiplicity logic unit are presented. This unit was specially designed to fulfil the requirements of a multidetector arrangement for gamma-ray multiplicity measurements. The unit is equipped with 16 inputs controlled by a common coincidence gate. It delivers a linear output pulse with the height proportional to the multiplicity of coincidences and logic pulses corresponding to 0, 1, ... up to >= 5-fold coincidences. These last outputs are used to steer the routing unit working with the multichannel analyser. (orig.)
Intensified CCD for ultrafast diagnostics
International Nuclear Information System (INIS)
Cheng, J.; Tripp, G.; Coleman, L.
1978-01-01
Many of the present laser fusion diagnostics are recorded on either ultrafast streak cameras or on oscilloscopes. For those experiments in which a large volume of data is accumulated, direct computer processing of the information becomes important. We describe an approach which uses a RCA 52501 back-thinned CCD sensor to obtain direct electron readouts for both the streak camera and the CRT. Performance of the 100 GHz streak camera and the 4 GHz CRT are presented. Design parameters and computer interfacing for both systems are described in detail
Compression of Ultrafast Laser Beams
2016-03-01
Copyright 2003, AIP Publishing LLC. DOI: http://dx.doi.org/10.1063/1.1611998.) When designing the pulse shaper, the laser beam must completely fill the...for the design of future versions of this device. The easiest way to align the pulse shaper is to use the laser beam that will be shaped, without...Afterward, an ultrafast thin beam splitter is placed into the system after the diameter of the laser beam is reduced; this is done to monitor the beam
Fisher, Michael; Gabbay, Dov; Gough, Graham
2000-01-01
Time is a fascinating subject that has captured mankind's imagination from ancient times to the present. It has been, and continues to be studied across a wide range of disciplines, from the natural sciences to philosophy and logic. More than two decades ago, Pnueli in a seminal work showed the value of temporal logic in the specification and verification of computer programs. Today, a strong, vibrant international research community exists in the broad community of computer science and AI. This volume presents a number of articles from leading researchers containing state-of-the-art results in such areas as pure temporal/modal logic, specification and verification, temporal databases, temporal aspects in AI, tense and aspect in natural language, and temporal theorem proving. Earlier versions of some of the articles were given at the most recent International Conference on Temporal Logic, University of Manchester, UK. Readership: Any student of the area - postgraduate, postdoctoral or even research professor ...
DEFF Research Database (Denmark)
Hendricks, Vincent Fella; Gierasimczuk, Nina; de Jong, Dick
2014-01-01
Learning and learnability have been long standing topics of interests within the linguistic, computational, and epistemological accounts of inductive in- ference. Johan van Benthem’s vision of the “dynamic turn” has not only brought renewed life to research agendas in logic as the study of inform......Learning and learnability have been long standing topics of interests within the linguistic, computational, and epistemological accounts of inductive in- ference. Johan van Benthem’s vision of the “dynamic turn” has not only brought renewed life to research agendas in logic as the study...... of information processing, but likewise helped bring logic and learning in close proximity. This proximity relation is examined with respect to learning and belief revision, updating and efficiency, and with respect to how learnability fits in the greater scheme of dynamic epistemic logic and scientific method....
International Nuclear Information System (INIS)
Khitun, Alexander; Bao Mingqiang; Wang, Kang L
2010-01-01
We describe and analyse possible approaches to magnonic logic circuits and basic elements required for circuit construction. A distinctive feature of the magnonic circuitry is that information is transmitted by spin waves propagating in the magnetic waveguides without the use of electric current. The latter makes it possible to exploit spin wave phenomena for more efficient data transfer and enhanced logic functionality. We describe possible schemes for general computing and special task data processing. The functional throughput of the magnonic logic gates is estimated and compared with the conventional transistor-based approach. Magnonic logic circuits allow scaling down to the deep submicrometre range and THz frequency operation. The scaling is in favour of the magnonic circuits offering a significant functional advantage over the traditional approach. The disadvantages and problems of the spin wave devices are also discussed.
Characterization of quantum logics
International Nuclear Information System (INIS)
Lahti, P.J.
1980-01-01
The quantum logic approach to axiomatic quantum mechanics is used to analyze the conceptual foundations of the traditional quantum theory. The universal quantum of action h>0 is incorporated into the theory by introducing the uncertainty principle, the complementarity principle, and the superposition principle into the framework. A characterization of those quantum logics (L,S) which may provide quantum descriptions is then given. (author)
DEFF Research Database (Denmark)
Nilsson, Jørgen Fischer
1999-01-01
Conceptual spaces have been proposed as topological or geometric means for establishing conceptual structures and models. This paper, after briey reviewing conceptual spaces, focusses on the relationship between conceptual spaces and logical concept languages with operations for combining concepts...... to form concepts. Speci cally is introduced an algebraic concept logic, for which conceptual spaces are installed as semantic domain as replacement for, or enrichment of, the traditional....
Extending Value Logic Thinking to Value Logic Portfolios
DEFF Research Database (Denmark)
Andersen, Poul Houman; Ritter, Thomas
2014-01-01
Based on value creation logic theory (Stabell & Fjeldstad, 1998), this paper suggests an extension of the original Stabell & Fjeldstad model by an additional fourth value logic, the value system logic. Furthermore, instead of only allowing one dominant value creation logic for a given firm...... or transaction, an understanding of firms and transactions as a portfolio of value logics (i.e. an interconnected coexistence of different value creation logics) is proposed. These additions to the original value creation logic theory imply interesting avenues for both, strategic decision making in firms...
Towards a Formal Occurrence Logic based on Predicate Logic
DEFF Research Database (Denmark)
Badie, Farshad; Götzsche, Hans
2015-01-01
In this discussion we will concentrate on the main characteristics of an alternative kind of logic invented by Hans Götzsche: Occurrence Logic, which is not based on truth functionality. Our approach is based on temporal logic developed and elaborated by A. N. Prior. We will focus on characterising...... argumentation based on formal Occurrence Logic concerning events and occurrences, and illustrate the relations between Predicate Logic and Occurrence Logic. The relationships (and dependencies) is conducive to an approach that can analyse the occurrences of ”logical statements based on different logical...... principles” in different moments. We will also conclude that the elaborated Götzsche’s Occurrence Logic could be able to direct us to a truth-functional independent computer-based logic for analysing argumentation based on events and occurrences....
Modern logic and quantum mechanics
International Nuclear Information System (INIS)
Garden, R.W.
1984-01-01
The book applies the methods of modern logic and probabilities to ''interpreting'' quantum mechanics. The subject is described and discussed under the chapter headings: classical and quantum mechanics, modern logic, the propositional logic of mechanics, states and measurement in mechanics, the traditional analysis of probabilities, the probabilities of mechanics and the model logic of predictions. (U.K.)
Semantic theory for logic programming
Energy Technology Data Exchange (ETDEWEB)
Brown, F M
1981-01-01
The author axiomatizes a number of meta theoretic concepts which have been used in logic programming, including: meaning, logical truth, nonentailment, assertion and erasure, thus showing that these concepts are logical in nature and need not be defined as they have previously been defined in terms of the operations of any particular interpreter for logic programs. 10 references.
Relational Parametricity and Separation Logic
DEFF Research Database (Denmark)
Birkedal, Lars; Yang, Hongseok
2008-01-01
Separation logic is a recent extension of Hoare logic for reasoning about programs with references to shared mutable data structures. In this paper, we provide a new interpretation of the logic for a programming language with higher types. Our interpretation is based on Reynolds's relational...... parametricity, and it provides a formal connection between separation logic and data abstraction. Udgivelsesdato: 2008...
Non-logic devices in logic processes
Ma, Yanjun
2017-01-01
This book shows readers how to design semiconductor devices using the most common and lowest cost logic CMOS processes. Readers will benefit from the author’s extensive, industrial experience and the practical approach he describes for designing efficiently semiconductor devices that typically have to be implemented using specialized processes that are expensive, time-consuming, and low-yield. The author presents an integrated picture of semiconductor device physics and manufacturing techniques, as well as numerous practical examples of device designs that are tried and true.
Ultrafast THz Saturable Absorption in Doped Semiconductors
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hoffmann, Matthias C.
2011-01-01
We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields.......We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields....
Ultrafast molecular dynamics illuminated with synchrotron radiation
International Nuclear Information System (INIS)
Bozek, John D.; Miron, Catalin
2015-01-01
Highlights: • Ultrafast molecular dynamics probed with synchrotron radiation. • Core-excitation as probe of ultrafast dynamics through core-hole lifetime. • Review of experimental and theoretical methods in ultrafast dynamics using core-level excitation. - Abstract: Synchrotron radiation is a powerful tool for studying molecular dynamics in small molecules in spite of the absence of natural matching between the X-ray pulse duration and the time scale of nuclear motion. Promoting core level electrons to unoccupied molecular orbitals simultaneously initiates two ultrafast processes, nuclear dynamics on the potential energy surfaces of the highly excited neutral intermediate state of the molecule on the one hand and an ultrafast electronic decay of the intermediate excited state to a cationic final state, characterized by a core hole lifetime. The similar time scales of these processes enable core excited pump-probe-type experiments to be performed with long duration X-ray pulses from a synchrotron source. Recent results obtained at the PLIEADES beamline concerning ultrafast dissociation of core excited states and molecular potential energy curve mapping facilitated by changes in the geometry of the short-lived intermediate core excited state are reviewed. High brightness X-ray beams combined with state-of-the art electron and ion-electron coincidence spectrometers and highly sophisticated theoretical methods are required to conduct these experiments and to achieve a full understanding of the experimental results.
Areces, Carlos; Hoffmann, Guillaume; Denis, Alexandre
We present a modal language that includes explicit operators to count the number of elements that a model might include in the extension of a formula, and we discuss how this logic has been previously investigated under different guises. We show that the language is related to graded modalities and to hybrid logics. We illustrate a possible application of the language to the treatment of plural objects and queries in natural language. We investigate the expressive power of this logic via bisimulations, discuss the complexity of its satisfiability problem, define a new reasoning task that retrieves the cardinality bound of the extension of a given input formula, and provide an algorithm to solve it.
Diagnosable structured logic array
Whitaker, Sterling (Inventor); Miles, Lowell (Inventor); Gambles, Jody (Inventor); Maki, Gary K. (Inventor)
2009-01-01
A diagnosable structured logic array and associated process is provided. A base cell structure is provided comprising a logic unit comprising a plurality of input nodes, a plurality of selection nodes, and an output node, a plurality of switches coupled to the selection nodes, where the switches comprises a plurality of input lines, a selection line and an output line, a memory cell coupled to the output node, and a test address bus and a program control bus coupled to the plurality of input lines and the selection line of the plurality of switches. A state on each of the plurality of input nodes is verifiably loaded and read from the memory cell. A trusted memory block is provided. The associated process is provided for testing and verifying a plurality of truth table inputs of the logic unit.
Rushton, Andrew
2011-01-01
Many engineers encountering VHDL (very high speed integrated circuits hardware description language) for the first time can feel overwhelmed by it. This book bridges the gap between the VHDL language and the hardware that results from logic synthesis with clear organisation, progressing from the basics of combinational logic, types, and operators; through special structures such as tristate buses, register banks and memories, to advanced themes such as developing your own packages, writing test benches and using the full range of synthesis types. This third edition has been substantially rewritten to include the new VHDL-2008 features that enable synthesis of fixed-point and floating-point hardware. Extensively updated throughout to reflect modern logic synthesis usage, it also contains a complete case study to demonstrate the updated features. Features to this edition include: * a common VHDL subset which will work across a range of different synthesis systems, targeting a very wide range of technologies...
Carlsson, Christer; Fullér, Robert
2004-01-01
Fuzzy Logic in Management demonstrates that difficult problems and changes in the management environment can be more easily handled by bringing fuzzy logic into the practice of management. This explicit theme is developed through the book as follows: Chapter 1, "Management and Intelligent Support Technologies", is a short survey of management leadership and what can be gained from support technologies. Chapter 2, "Fuzzy Sets and Fuzzy Logic", provides a short introduction to fuzzy sets, fuzzy relations, the extension principle, fuzzy implications and linguistic variables. Chapter 3, "Group Decision Support Systems", deals with group decision making, and discusses methods for supporting the consensus reaching processes. Chapter 4, "Fuzzy Real Options for Strategic Planning", summarizes research where the fuzzy real options theory was implemented as a series of models. These models were thoroughly tested on a number of real life investments, and validated in 2001. Chapter 5, "Soft Computing Methods for Reducing...
DEFF Research Database (Denmark)
Mardare, Radu Iulian; Cardelli, Luca; Larsen, Kim Guldstrand
2012-01-01
Continuous Markovian Logic (CML) is a multimodal logic that expresses quantitative and qualitative properties of continuous-time labelled Markov processes with arbitrary (analytic) state-spaces, henceforth called continuous Markov processes (CMPs). The modalities of CML evaluate the rates...... of the exponentially distributed random variables that characterize the duration of the labeled transitions of a CMP. In this paper we present weak and strong complete axiomatizations for CML and prove a series of metaproperties, including the finite model property and the construction of canonical models. CML...... characterizes stochastic bisimilarity and it supports the definition of a quantified extension of the satisfiability relation that measures the "compatibility" between a model and a property. In this context, the metaproperties allows us to prove two robustness theorems for the logic stating that one can...
Claude Ziad Bayeh
2015-01-01
The “Manual Logic Controller” also called MLC, is an electronic circuit invented and designed by the author in 2008, in order to replace the well known PLC (Programmable Logic Controller) in many applications for its advantages and its low cost of fabrication. The function of the MLC is somewhat similar to the well known PLC, but instead of doing it by inserting a written program into the PLC using a computer or specific software inside the PLC, it will be manually programmed in a manner to h...
Stoll, Robert R
1979-01-01
Set Theory and Logic is the result of a course of lectures for advanced undergraduates, developed at Oberlin College for the purpose of introducing students to the conceptual foundations of mathematics. Mathematics, specifically the real number system, is approached as a unity whose operations can be logically ordered through axioms. One of the most complex and essential of modern mathematical innovations, the theory of sets (crucial to quantum mechanics and other sciences), is introduced in a most careful concept manner, aiming for the maximum in clarity and stimulation for further study in
Introduction to mathematical logic
Mendelson, Elliott
2009-01-01
The Propositional CalculusPropositional Connectives. Truth TablesTautologies Adequate Sets of Connectives An Axiom System for the Propositional Calculus Independence. Many-Valued LogicsOther AxiomatizationsFirst-Order Logic and Model TheoryQuantifiersFirst-Order Languages and Their Interpretations. Satisfiability and Truth. ModelsFirst-Order TheoriesProperties of First-Order Theories Additional Metatheorems and Derived Rules Rule C Completeness Theorems First-Order Theories with EqualityDefinitions of New Function Letters and Individual Constants Prenex Normal Forms Isomorphism of Interpretati
DEFF Research Database (Denmark)
Ramli, Carroline Dewi Puspa Kencana; Nielson, Hanne Riis; Nielson, Flemming
2011-01-01
We study the international standard XACML 3.0 for describing security access control policy in a compositional way. Our main contribution is to derive a logic that precisely captures the idea behind the standard and to formally define the semantics of the policy combining algorithms of XACML....... To guard against modelling artefacts we provide an alternative way of characterizing the policy combining algorithms and we formally prove the equivalence of these approaches. This allows us to pinpoint the shortcoming of previous approaches to formalization based either on Belnap logic or on D -algebra....
Energy Technology Data Exchange (ETDEWEB)
Yun, Gil Jung; Yang, Hong Young
2011-03-15
This book is about digital logic circuit test, which lists the digital basic theory, basic gate like and, or And Not gate, NAND/NOR gate such as NAND gate, NOR gate, AND and OR, logic function, EX-OR gate, adder and subtractor, decoder and encoder, multiplexer, demultiplexer, flip-flop, counter such as up/down counter modulus N counter and Reset type counter, shift register, D/A and A/D converter and two supplements list of using components and TTL manual and CMOS manual.
Gibson, J
2013-01-01
Most branches of organizing utilize digital electronic systems. This book introduces the design of such systems using basic logic elements as the components. The material is presented in a straightforward manner suitable for students of electronic engineering and computer science. The book is also of use to engineers in related disciplines who require a clear introduction to logic circuits. This third edition has been revised to encompass the most recent advances in technology as well as the latest trends in components and notation. It includes a wide coverage of application specific integrate
Evens, Aden
2015-01-01
Building a foundational understanding of the digital, Logic of the Digital reveals a unique digital ontology. Beginning from formal and technical characteristics, especially the binary code at the core of all digital technologies, Aden Evens traces the pathways along which the digital domain of abstract logic encounters the material, human world. How does a code using only 0s and 1s give rise to the vast range of applications and information that constitutes a great and growing portion of our world? Evens' analysis shows how any encounter between the actual and the digital must cross an ontolo
Programmable Array Logic Design
International Nuclear Information System (INIS)
Demon Handoyo; Djen Djen Djainal
2007-01-01
Good digital circuit design that part of a complex system, often becoming a separate problem. To produce finishing design according to wanted performance is often given on to considerations which each other confuse, hence thereby analyse optimization become important in this case. To realization is made design logic program, the first are determined global diagram block, then are decided contents of these block diagram, and then determined its interconnection in the form of logic expression, continued with election of component. These steps are done to be obtained the design with low price, easy in its interconnection, minimal volume, low power and certainty god work. (author)
Quantum logics with existence property
International Nuclear Information System (INIS)
Schindler, C.
1991-01-01
A quantum logic (σ-orthocomplete orthomodular poset L with a convex, unital, and separating set Δ of states) is said to have the existence property if the expectation functionals on lin(Δ) associated with the bounded observables of L form a vector space. Classical quantum logics as well as the Hilbert space logics of traditional quantum mechanics have this property. The author shows that, if a quantum logic satisfies certain conditions in addition to having property E, then the number of its blocks (maximal classical subsystems) must either be one (classical logics) or uncountable (as in Hilbert space logics)
GOAL Agents Instantiate Intention Logic
Hindriks, Koen; van der Hoek, Wiebe
2008-01-01
It is commonly believed there is a big gap between agent logics and computational agent frameworks. In this paper, we show that this gap is not as big as believed by showing that GOAL agents instantiate Intention Logic of Cohen and Levesque. That is, we show that GOAL agent programs can be formally related to Intention Logic.We do so by proving that the GOAL Verification Logic can be embedded into Intention Logic. It follows that (a fragment of) Intention Logic can be used t...
Querying Natural Logic Knowledge Bases
DEFF Research Database (Denmark)
Andreasen, Troels; Bulskov, Henrik; Jensen, Per Anker
2017-01-01
This paper describes the principles of a system applying natural logic as a knowledge base language. Natural logics are regimented fragments of natural language employing high level inference rules. We advocate the use of natural logic for knowledge bases dealing with querying of classes...... in ontologies and class-relationships such as are common in life-science descriptions. The paper adopts a version of natural logic with recursive restrictive clauses such as relative clauses and adnominal prepositional phrases. It includes passive as well as active voice sentences. We outline a prototype...... for partial translation of natural language into natural logic, featuring further querying and conceptual path finding in natural logic knowledge bases....
Some relationships between logic programming and multiple-valued logic
International Nuclear Information System (INIS)
Rine, D.C.
1986-01-01
There have been suggestions in the artificial intelligence literature that investigations into relationships between logic programming and multiple-valued logic may be helpful. This paper presents some of these relationships through equivalent algebraic evaluations
DEFF Research Database (Denmark)
Ramli, Carroline Dewi Puspa Kencana; Nielson, Hanne Riis; Nielson, Flemming
2014-01-01
We study the international standard XACML 3.0 for describing security access control policies in a compositional way. Our main contributions are (i) to derive a logic that precisely captures the intentions of the standard, (ii) to formally define a semantics for the XACML 3.0 component evaluation...
DEFF Research Database (Denmark)
Ramli, Carroline Dewi Puspa Kencana; Nielson, Hanne Riis; Nielson, Flemming
2011-01-01
We study the international standard XACML 3.0 for describing security access control policy in a compositional way. Our main contribution is to derive a logic that precisely captures the idea behind the standard and to formally define the semantics of the policy combining algorithms of XACML...
Klev, Ansten Morch
2014-01-01
The notions of category and type are here studied through the lens of logical syntax: Aristotle's as well as Kant's categories through the traditional form of proposition `S is P', and modern doctrines of type through the Fregean form of proposition `F(a)', function applied to argument. Topics
Structures for Epistemic Logic
Bezhanishvili, N.; Hoek, W. van der
2013-01-01
Epistemic modal logic in a narrow sense studies and formalises reasoning about knowledge. In a wider sense, it gives a formal account of the informational attitude that agents may have, and covers notions like knowledge, belief, uncertainty, and hence incomplete or partial information. As is so
DEFF Research Database (Denmark)
Øhrstrøm, Peter
2009-01-01
's notion of branching time is analysed. It is argued that Prior can be criticized for identifying 'plain future'. Finally, Prior's four grades of tense-logical involvement are introduced and discussed. It is argued that the third grade is the most attractive form a philosophical point of view....
Expressivist Perspective on Logicality
Czech Academy of Sciences Publication Activity Database
Arazim, Pavel
2017-01-01
Roč. 11, č. 4 (2017), s. 409-419 ISSN 1661-8297 R&D Projects: GA ČR(CZ) GA17-15645S Institutional support: RVO:67985955 Keywords : logical constant * expressivism * topic-neutrality * proof- theory * conservativity Subject RIV: AA - Philosophy ; Religion OBOR OECD: Philosophy, History and Philosophy of science and technology
DEFF Research Database (Denmark)
Jensen, Jonas Buhrkal; Birkedal, Lars
2012-01-01
, separation means physical separation. In this paper, we introduce \\emph{fictional separation logic}, which includes more general forms of fictional separating conjunctions P * Q, where "*" does not require physical separation, but may also be used in situations where the memory resources described by P and Q...
Czech Academy of Sciences Publication Activity Database
Klev, Ansten
2017-01-01
Roč. 25, č. 3 (2017), s. 341-368 ISSN 0031-8019 Institutional support: RVO:67985955 Keywords : Philosophy of mathematics * logicism * Richard Dedekind Subject RIV: AA - Philosophy ; Religion OBOR OECD: Philosophy, History and Philosophy of science and technology Impact factor: 0.419, year: 2016
DEFF Research Database (Denmark)
Klose, Karl; Ostermann, Klaus
2010-01-01
In logic metaprogramming, programs are not stored as plain textfiles but rather derived from a deductive database. While the benefits of this approach for metaprogramming are obvious, its incompatibility with separate checking limits its applicability to large-scale projects. We analyze the probl...
LOGICAL SEMANTICS OF MODULARIZATION
DELAVALETTE, GRR
1992-01-01
An algebra of theories, signatures, renamings and the operations import and export is investigated. A normal form theorem for terms of this algebra is proved. Another algebraic approach and the relation with a fragment of second order logic are also considered.
Duration Calculus: Logical Foundations
DEFF Research Database (Denmark)
Hansen, Michael Reichhardt; Chaochen, Zhou
1997-01-01
The Duration Calculus (abbreviated DC) represents a logical approach to formal design of real-time systems, where real numbers are used to model time and Boolean valued functions over time are used to model states and events of real-time systems. Since it introduction, DC has been applied to many...
Logicism, intuitionism, and formalism
Symons, John
2008-01-01
Aims to review the programmes in the foundations of mathematics from the classical period and to assess their possible relevance for contemporary philosophy of mathematics. This work is suitable for researchers and graduate students of philosophy, logic, mathematics and theoretical computer science.
Foundations of mathematical logic
Curry, Haskell B
2010-01-01
Written by a pioneer of mathematical logic, this comprehensive graduate-level text explores the constructive theory of first-order predicate calculus. It covers formal methods, including algorithms and epitheory, and offers a brief treatment of Markov's approach to algorithms, explains elementary facts about lattices and similar algebraic systems, and more. 1963 edition.
Czech Academy of Sciences Publication Activity Database
Svoboda, Vladimír; Peregrin, Jaroslav
2016-01-01
Roč. 30, č. 3 (2016), s. 263-287 ISSN 0920-427X R&D Projects: GA ČR(CZ) GA13-21076S Institutional support: RVO:67985955 Keywords : argumentation * logical form * incorrect argument * correct arguments Subject RIV: AA - Philosophy ; Religion Impact factor: 0.689, year: 2016
Bergstra, J.A.; Ponse, A.
2010-01-01
Short-circuit evaluation denotes the semantics of propositional connectives in which the second argument is only evaluated if the first argument does not suffice to determine the value of the expression. In programming, short-circuit evaluation is widely used. A short-circuit logic is a variant of
Parametric Linear Dynamic Logic
Directory of Open Access Journals (Sweden)
Peter Faymonville
2014-08-01
Full Text Available We introduce Parametric Linear Dynamic Logic (PLDL, which extends Linear Dynamic Logic (LDL by temporal operators equipped with parameters that bound their scope. LDL was proposed as an extension of Linear Temporal Logic (LTL that is able to express all ω-regular specifications while still maintaining many of LTL's desirable properties like an intuitive syntax and a translation into non-deterministic Büchi automata of exponential size. But LDL lacks capabilities to express timing constraints. By adding parameterized operators to LDL, we obtain a logic that is able to express all ω-regular properties and that subsumes parameterized extensions of LTL like Parametric LTL and PROMPT-LTL. Our main technical contribution is a translation of PLDL formulas into non-deterministic Büchi word automata of exponential size via alternating automata. This yields a PSPACE model checking algorithm and a realizability algorithm with doubly-exponential running time. Furthermore, we give tight upper and lower bounds on optimal parameter values for both problems. These results show that PLDL model checking and realizability are not harder than LTL model checking and realizability.
Temporal logic motion planning
CSIR Research Space (South Africa)
Seotsanyana, M
2010-01-01
Full Text Available In this paper, a critical review on temporal logic motion planning is presented. The review paper aims to address the following problems: (a) In a realistic situation, the motion planning problem is carried out in real-time, in a dynamic, uncertain...
Logic Programming for Linguistics
DEFF Research Database (Denmark)
Christiansen, Henning
2010-01-01
This article gives a short introduction on how to get started with logic pro- gramming in Prolog that does not require any previous programming expe- rience. The presentation is aimed at students of linguistics, but it does not go deeper into linguistics than any student who has some ideas of what...
Czech Academy of Sciences Publication Activity Database
Peregrin, Jaroslav
2010-01-01
Roč. 4, č. 2 (2010), s. 207-223 ISSN 1661-8297 R&D Projects: GA ČR(CZ) GAP401/10/1279 Institutional research plan: CEZ:AV0Z9009908 Keywords : logic * natural selection * modus potens * inferentialism Subject RIV: AA - Philosophy ; Religion
Quantum probabilistic logic programming
Balu, Radhakrishnan
2015-05-01
We describe a quantum mechanics based logic programming language that supports Horn clauses, random variables, and covariance matrices to express and solve problems in probabilistic logic. The Horn clauses of the language wrap random variables, including infinite valued, to express probability distributions and statistical correlations, a powerful feature to capture relationship between distributions that are not independent. The expressive power of the language is based on a mechanism to implement statistical ensembles and to solve the underlying SAT instances using quantum mechanical machinery. We exploit the fact that classical random variables have quantum decompositions to build the Horn clauses. We establish the semantics of the language in a rigorous fashion by considering an existing probabilistic logic language called PRISM with classical probability measures defined on the Herbrand base and extending it to the quantum context. In the classical case H-interpretations form the sample space and probability measures defined on them lead to consistent definition of probabilities for well formed formulae. In the quantum counterpart, we define probability amplitudes on Hinterpretations facilitating the model generations and verifications via quantum mechanical superpositions and entanglements. We cast the well formed formulae of the language as quantum mechanical observables thus providing an elegant interpretation for their probabilities. We discuss several examples to combine statistical ensembles and predicates of first order logic to reason with situations involving uncertainty.
Temporalizing Epistemic Default Logic
van der Hoek, Wiebe; Meyer, John Jules; Treur, Jan
1998-01-01
We present an epistemic default logic, based on the metaphore of a meta-level architecture. Upward reflection is formalized by a nonmonotonic entailment relation, based on the objective facts that are either known or unknown at the object level. Then, the meta (monotonic) reasoning process generates
Logic Programming with Requests
De Schreye, Danny; Etalle, Sandro; van Raamsdonk, Femke
1999-01-01
We propose an extension of logic programming where the user can specify, together with the initial query, the information he is interested in by means of a request. This allows one to extract a result from an incomplete computation, such as the prefix of an infinite derivation. The classical
Logical Characterisation of Ontology Construction using Fuzzy Description Logics
DEFF Research Database (Denmark)
Badie, Farshad; Götzsche, Hans
had the extension of ontologies with Fuzzy Logic capabilities which plan to make proper backgrounds for ontology driven reasoning and argumentation on vague and imprecise domains. This presentation conceptualises learning from fuzzy classes using the Inductive Logic Programming framework. Then......, employs Description Logics in characterising and analysing fuzzy statements. And finally, provides a conceptual framework describing fuzzy concept learning in ontologies using the Inductive Logic Programming....
Greek, Indian and Arabic logic
Gabbay, Dov M
2004-01-01
Greek, Indian and Arabic Logic marks the initial appearance of the multi-volume Handbook of the History of Logic. Additional volumes will be published when ready, rather than in strict chronological order. Soon to appear are The Rise of Modern Logic: From Leibniz to Frege. Also in preparation are Logic From Russell to Gödel, Logic and the Modalities in the Twentieth Century, and The Many-Valued and Non-Monotonic Turn in Logic. Further volumes will follow, including Mediaeval and Renaissance Logic and Logic: A History of its Central. In designing the Handbook of the History of Logic, the Editors have taken the view that the history of logic holds more than an antiquarian interest, and that a knowledge of logic's rich and sophisticated development is, in various respects, relevant to the research programmes of the present day. Ancient logic is no exception. The present volume attests to the distant origins of some of modern logic's most important features, such as can be found in the claim by the authors of t...
Radiation tolerant combinational logic cell
Maki, Gary R. (Inventor); Gambles, Jody W. (Inventor); Whitaker, Sterling (Inventor)
2009-01-01
A system has a reduced sensitivity to Single Event Upset and/or Single Event Transient(s) compared to traditional logic devices. In a particular embodiment, the system includes an input, a logic block, a bias stage, a state machine, and an output. The logic block is coupled to the input. The logic block is for implementing a logic function, receiving a data set via the input, and generating a result f by applying the data set to the logic function. The bias stage is coupled to the logic block. The bias stage is for receiving the result from the logic block and presenting it to the state machine. The state machine is coupled to the bias stage. The state machine is for receiving, via the bias stage, the result generated by the logic block. The state machine is configured to retain a state value for the system. The state value is typically based on the result generated by the logic block. The output is coupled to the state machine. The output is for providing the value stored by the state machine. Some embodiments of the invention produce dual rail outputs Q and Q'. The logic block typically contains combinational logic and is similar, in size and transistor configuration, to a conventional CMOS combinational logic design. However, only a very small portion of the circuits of these embodiments, is sensitive to Single Event Upset and/or Single Event Transients.
Quantum Logic and Quantum Reconstruction
Stairs, Allen
2015-01-01
Quantum logic understood as a reconstruction program had real successes and genuine limitations. This paper offers a synopsis of both and suggests a way of seeing quantum logic in a larger, still thriving context.
DEFF Research Database (Denmark)
Braüner, Torben
2011-01-01
Hybrid logic is an extension of modal logic which allows us to refer explicitly to points of the model in the syntax of formulas. It is easy to justify interest in hybrid logic on applied grounds, with the usefulness of the additional expressive power. For example, when reasoning about time one...... often wants to build up a series of assertions about what happens at a particular instant, and standard modal formalisms do not allow this. What is less obvious is that the route hybrid logic takes to overcome this problem often actually improves the behaviour of the underlying modal formalism....... For example, it becomes far simpler to formulate proof-systems for hybrid logic, and completeness results can be proved of a generality that is simply not available in modal logic. That is, hybridization is a systematic way of remedying a number of known deficiencies of modal logic. First-order hybrid logic...
Logical analysis of biological systems
DEFF Research Database (Denmark)
Mardare, Radu Iulian
2005-01-01
R. Mardare, Logical analysis of biological systems. Fundamenta Informaticae, N 64:271-285, 2005.......R. Mardare, Logical analysis of biological systems. Fundamenta Informaticae, N 64:271-285, 2005....
Probabilistic logics and probabilistic networks
Haenni, Rolf; Wheeler, Gregory; Williamson, Jon; Andrews, Jill
2014-01-01
Probabilistic Logic and Probabilistic Networks presents a groundbreaking framework within which various approaches to probabilistic logic naturally fit. Additionally, the text shows how to develop computationally feasible methods to mesh with this framework.
Wansing, Heinrich; Willkommen, Caroline; Recent Trends in Philosophical Logic
2014-01-01
This volume presents recent advances in philosophical logic with chapters focusing on non-classical logics, including paraconsistent logics, substructural logics, modal logics of agency and other modal logics. The authors cover themes such as the knowability paradox, tableaux and sequent calculi, natural deduction, definite descriptions, identity, truth, dialetheism, and possible worlds semantics. The developments presented here focus on challenging problems in the specification of fundamental philosophical notions, as well as presenting new techniques and tools, thereby contributing to the development of the field. Each chapter contains a bibliography, to assist the reader in making connections in the specific areas covered. Thus this work provides both a starting point for further investigations into philosophical logic and an update on advances, techniques and applications in a dynamic field. The chapters originate from papers presented during the Trends in Logic XI conference at the Ruhr University ...
Preferential reasoning for modal logics
CSIR Research Space (South Africa)
Britz, K
2011-11-01
Full Text Available Modal logic is the foundation for a versatile and well-established class of knowledge representation formalisms in artificial intelligence. Enriching modal logics with non-monotonic reasoning capabilities such as preferential reasoning as developed...
Ultrafast dynamics of correlated electrons
International Nuclear Information System (INIS)
Rettig, Laurenz
2012-01-01
This work investigates the ultrafast electron dynamics in correlated, low-dimensional model systems using femtosecond time- and angle-resolved photoemission spectroscopy (trARPES) directly in the time domain. In such materials, the strong electron-electron (e-e) correlations or coupling to other degrees of freedom such as phonons within the complex many-body quantum system lead to new, emergent properties that are characterized by phase transitions into broken-symmetry ground states such as magnetic, superconducting or charge density wave (CDW) phases. The dynamical processes related to order like transient phase changes, collective excitations or the energy relaxation within the system allow deeper insight into the complex physics governing the emergence of the broken-symmetry state. In this work, several model systems for broken-symmetry ground states and for the dynamical charge balance at interfaces have been studied. In the quantum well state (QWS) model system Pb/Si(111), the charge transfer across the Pb/Si interface leads to an ultrafast energetic stabilization of occupied QWSs, which is the result of an increase of the electronic confinement to the metal film. In addition, a coherently excited surface phonon mode is observed. In antiferromagnetic (AFM) Fe pnictide compounds, a strong momentum-dependent asymmetry of electron and hole relaxation rates allows to separate the recovery dynamics of the AFM phase from electron-phonon (e-ph) relaxation. The strong modulation of the chemical potential by coherent phonon modes demonstrates the importance of e-ph coupling in these materials. However, the average e-ph coupling constant is found to be small. The investigation of the excited quasiparticle (QP) relaxation dynamics in the high-T c 4 superconductor Bi 2 Sr 2 CaCu 2 O 8+δ reveals a striking momentum and fluence independence of the QP life times. In combination with the momentum-dependent density of excited QPs, this demonstrates the suppression of momentum
Ultrafast dynamics of correlated electrons
Energy Technology Data Exchange (ETDEWEB)
Rettig, Laurenz
2012-07-09
This work investigates the ultrafast electron dynamics in correlated, low-dimensional model systems using femtosecond time- and angle-resolved photoemission spectroscopy (trARPES) directly in the time domain. In such materials, the strong electron-electron (e-e) correlations or coupling to other degrees of freedom such as phonons within the complex many-body quantum system lead to new, emergent properties that are characterized by phase transitions into broken-symmetry ground states such as magnetic, superconducting or charge density wave (CDW) phases. The dynamical processes related to order like transient phase changes, collective excitations or the energy relaxation within the system allow deeper insight into the complex physics governing the emergence of the broken-symmetry state. In this work, several model systems for broken-symmetry ground states and for the dynamical charge balance at interfaces have been studied. In the quantum well state (QWS) model system Pb/Si(111), the charge transfer across the Pb/Si interface leads to an ultrafast energetic stabilization of occupied QWSs, which is the result of an increase of the electronic confinement to the metal film. In addition, a coherently excited surface phonon mode is observed. In antiferromagnetic (AFM) Fe pnictide compounds, a strong momentum-dependent asymmetry of electron and hole relaxation rates allows to separate the recovery dynamics of the AFM phase from electron-phonon (e-ph) relaxation. The strong modulation of the chemical potential by coherent phonon modes demonstrates the importance of e-ph coupling in these materials. However, the average e-ph coupling constant is found to be small. The investigation of the excited quasiparticle (QP) relaxation dynamics in the high-T{sub c}4 superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} reveals a striking momentum and fluence independence of the QP life times. In combination with the momentum-dependent density of excited QPs, this demonstrates the
Ultrafast laser spectroscopy in complex solid state materials
Energy Technology Data Exchange (ETDEWEB)
Li, Tianqi [Iowa State Univ., Ames, IA (United States)
2014-12-01
This thesis summarizes my work on applying the ultrafast laser spectroscopy to the complex solid state materials. It shows that the ultrafast laser pulse can coherently control the material properties in the femtosecond time scale. And the ultrafast laser spectroscopy can be employed as a dynamical method for revealing the fundamental physical problems in the complex material systems.
From Logical to Distributional Models
Directory of Open Access Journals (Sweden)
Anne Preller
2014-12-01
Full Text Available The paper relates two variants of semantic models for natural language, logical functional models and compositional distributional vector space models, by transferring the logic and reasoning from the logical to the distributional models. The geometrical operations of quantum logic are reformulated as algebraic operations on vectors. A map from functional models to vector space models makes it possible to compare the meaning of sentences word by word.
Modal Logics for Cryptographic Processes
DEFF Research Database (Denmark)
Frendrup, U.; Huttel, Hans; Jensen, N. J.
2002-01-01
We present three modal logics for the spi-calculus and show that they capture strong versions of the environment sensitive bisimulation introduced by Boreale et al. Our logics differ from conventional modal logics for process calculi in that they allow us to describe the knowledge of an attacker ...
Combining Paraconsistent Logic with Argumentation
Grooters, Diana; Prakken, Hendrik
2014-01-01
One tradition in the logical study of argumentation is to allow for arguments that combine strict and defeasible inference rules, and to derive the strict inference rules from a logic at least as strong as classical logic. An unsolved problem in this tradition is how the trivialising effect of the
Lectures on Logic and Computation
DEFF Research Database (Denmark)
The European Summer School in Logic, Language and Information (ESSLLI) is organized every year by the Association for Logic, Language and Information (FoLLI) in different sites around Europe. The main focus of ESSLLI is on the interface between linguistics, logic and computation. ESSLLI offers fo...
DEFF Research Database (Denmark)
Engberg, Uffe Henrik; Winskel, Glynn
This article shows how individual Petri nets form models of Girard's intuitionistic linear logic. It explores questions of expressiveness and completeness of linear logic with respect to this interpretation. An aim is to use Petri nets to give an understanding of linear logic and give some apprai...
Strong Completeness for Markovian Logics
DEFF Research Database (Denmark)
Kozen, Dexter; Mardare, Radu Iulian; Panangaden, Prakash
2013-01-01
In this paper we present Hilbert-style axiomatizations for three logics for reasoning about continuous-space Markov processes (MPs): (i) a logic for MPs defined for probability distributions on measurable state spaces, (ii) a logic for MPs defined for sub-probability distributions and (iii) a log...
Ultrafast disk lasers and amplifiers
Sutter, Dirk H.; Kleinbauer, Jochen; Bauer, Dominik; Wolf, Martin; Tan, Chuong; Gebs, Raphael; Budnicki, Aleksander; Wagenblast, Philipp; Weiler, Sascha
2012-03-01
Disk lasers with multi-kW continuous wave (CW) output power are widely used in manufacturing, primarily for cutting and welding applications, notably in the automotive industry. The ytterbium disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency, and high reliability with low investment and operating costs. Fundamental mode picosecond disk lasers are well established in micro machining at high throughput and perfect precision. Following the world's first market introduction of industrial grade 50 W picosecond lasers (TruMicro 5050) at the Photonics West 2008, the second generation of the TruMicro series 5000 now provides twice the average power (100 W at 1030 nm, or 60 W frequency doubled, green output) at a significantly reduced footprint. Mode-locked disk oscillators achieve by far the highest average power of any unamplified lasers, significantly exceeding the 100 W level in laboratory set-ups. With robust long resonators their multi-microjoule pulse energies begin to compete with typical ultrafast amplifiers. In addition, significant interest in disk technology has recently come from the extreme light laser community, aiming for ultra-high peak powers of petawatts and beyond.
Ultra-Fast Hadronic Calorimetry
Energy Technology Data Exchange (ETDEWEB)
Denisov, Dmitri [Fermilab; Lukić, Strahinja [VINCA Inst. Nucl. Sci., Belgrade; Mokhov, Nikolai [Fermilab; Striganov, Sergei [Fermilab; Ujić, Predrag [VINCA Inst. Nucl. Sci., Belgrade
2017-12-18
Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locations w.r.t. the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 3 ns providing opportunity for ultra-fast calorimetry. Simulation results for an "ideal" calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.
Ultrafast palladium diffusion in germanium
Tahini, Hassan Ali
2015-01-01
The slow transport of dopants through crystal lattices has hindered the development of novel devices. Typically atoms are contained within deep potential energy wells which necessitates multiple attempts to hop between minimum energy positions. This is because the bonds that constrain atoms are strongest at the minimum positions. As they hop between sites the bonds must be broken, only to re-form as the atoms slide into adjacent minima. Here we demonstrate that the Pd atoms introduced into the Ge lattice behave differently. They retain bonds as the atoms shift across so that at the energy maximum between sites Pd still exhibits strong bonding characteristics. This reduces the energy maximum to almost nothing (a migration energy of only 0.03 eV) and means that the transport of Pd through the Ge lattice is ultrafast. We scrutinize the bonding characteristics at the atomic level using quantum mechanical simulation tools and demonstrate why Pd behaves so differently to other metals we investigated (i.e. Li, Cu, Ag, Pt and Au). Consequently, this fundamental understanding can be extended to systems where extremely rapid diffusion is desired, such as radiation sensors, batteries and solid oxide fuel cells.
Interferometric architectures based All-Optical logic design methods and their implementations
Singh, Karamdeep; Kaur, Gurmeet
2015-06-01
All-Optical Signal Processing is an emerging technology which can avoid costly Optical-electronic-optical (O-E-O) conversions which are usually compulsory in traditional Electronic Signal Processing systems, thus greatly enhancing operating bit rate with some added advantages such as electro-magnetic interference immunity and low power consumption etc. In order to implement complex signal processing tasks All-Optical logic gates are required as backbone elements. This review describes the advances in the field of All-Optical logic design methods based on interferometric architectures such as Mach-Zehnder Interferometer (MZI), Sagnac Interferometers and Ultrafast Non-Linear Interferometer (UNI). All-Optical logic implementations for realization of arithmetic and signal processing applications based on each interferometric arrangement are also presented in a categorized manner.
DEFF Research Database (Denmark)
Friche, Nanna; Normann Andersen, Vibeke
unintended consequences. Theoretically, we draw on different management and governance theories, e.g. performance management. Empirically, the study is based on surveys to teachers and students at all Danish vocational colleges and interviews with school leaders, teachers and students at six colleges (cases...... and well-being of students enrolled in the VETs must be strengthened. We focus on target 1, 2 and 4. The reform is being implemented in a field of VET that can be characterized by four logics of governance. Firstly, a governance logic characterized by institutional independence of vocational colleges......For the last fifteen years completion rates in Danish vocational education and training (VET) has stayed on a rather low level. In 2014, only half of the students enrolled in a vocational program on upper secondary level, graduated from the program (Flarup et al 2016). In Denmark, like in other...
Modern Logical Frameworks Design
DEFF Research Database (Denmark)
Murawska, Agata Anna
2017-01-01
lack support for reasoning about, or programming with, the mechanised systems. Our main motivation is to eventually make it possible to model and reason about complex concurrent systems and protocols. No matter the application, be it the development of a logic for multiparty session types...... or a cryptographic protocol used in a voting system, we need the ability to model and reason about both the building blocks of these systems and the intricate connections between them. To this end, this dissertation is an investigation into LF-based formalisms that might help address the aforementioned issues. We...... design and provide the meta-theory of two new frameworks, HyLF and Lincx. The former aims to extend the expressiveness of LF to include proof irrelevance and some user-defined behaviours, using ideas from hybrid logics. The latter is a showcase for an easier to implement framework, while also allowing...
Competing Logics and Healthcare
Saks, Mike
2018-01-01
This paper offers a short commentary on the editorial by Mannion and Exworthy. The paper highlights the positive insights offered by their analysis into the tensions between the competing institutional logics of standardization and customization in healthcare, in part manifested in the conflict between managers and professionals, and endorses the plea of the authors for further research in this field. However, the editorial is criticized for its lack of a strong societal reference point, the comparative absence of focus on hybridization, and its failure to highlight structural factors impinging on the opposing logics in a broader neo-institutional framework. With reference to the Procrustean metaphor, it is argued that greater stress should be placed on the healthcare user in future health policy. Finally, the case of complementary and alternative medicine is set out which – while not explicitly mentioned in the editorial – most effectively concretizes the tensions at the heart of this analysis of healthcare. PMID:29626406
Conventions and Institutional Logics
DEFF Research Database (Denmark)
Westenholz, Ann
Two theoretical approaches – Conventions and Institutional Logics – are brought together and the similarities and differences between the two are explored. It is not the intention to combine the approaches, but I would like to open both ‘boxes’ and make them available to each other with the purpose...... of creating a space for dialog. Both approaches were developed in the mid-1980s as a reaction to rational-choice economic theory and collectivistic sociological theory. These two theories were oversimplifying social life as being founded either in actor-micro level analyses or in structure-macro level...... analyses. The theoretical quest of both Conventions and Institutional Logics has been to understand the increasing indeterminacy, uncertainty and ambiguity in people’s lives where a sense of reality, of value, of moral, of feelings is not fixed. Both approaches have created new theoretical insights...
Directory of Open Access Journals (Sweden)
Douglas Walton
2015-12-01
Full Text Available This paper presents a formalization of informal logic using the Carneades Argumentation System (CAS, a formal, computational model of argument that consists of a formal model of argument graphs and audiences. Conflicts between pro and con arguments are resolved using proof standards, such as preponderance of the evidence. CAS also formalizes argumentation schemes. Schemes can be used to check whether a given argument instantiates the types of argument deemed normatively appropriate for the type of dialogue.
Probabilistic Logical Characterization
DEFF Research Database (Denmark)
Hermanns, Holger; Parma, Augusto; Segala, Roberto
2011-01-01
Probabilistic automata exhibit both probabilistic and non-deterministic choice. They are therefore a powerful semantic foundation for modeling concurrent systems with random phenomena arising in many applications ranging from artificial intelligence, security, systems biology to performance...... modeling. Several variations of bisimulation and simulation relations have proved to be useful as means to abstract and compare different automata. This paper develops a taxonomy of logical characterizations of these relations on image-finite and image-infinite probabilistic automata....
Bisimulations, games, and logic
DEFF Research Database (Denmark)
Nielsen, Mogens; Clausen, Christian
1994-01-01
In a recent paper by Joyal, Nielsen, and Winskel, bisimulation is defined in an abstract and uniform way across a wide range of different models for concurrency. In this paper, following a recent trend in theoretical computer science, we characterize their abstract definition game-theoretically a......-theoretically and logically in a non-interleaving model. Our characterizations appear as surprisingly simple extensions of corresponding characterizations of interleaving bisimulation....
Stereotypical Reasoning: Logical Properties
Lehmann, Daniel
2002-01-01
Stereotypical reasoning assumes that the situation at hand is one of a kind and that it enjoys the properties generally associated with that kind of situation. It is one of the most basic forms of nonmonotonic reasoning. A formal model for stereotypical reasoning is proposed and the logical properties of this form of reasoning are studied. Stereotypical reasoning is shown to be cumulative under weak assumptions.
International Nuclear Information System (INIS)
Mukhanov, O.A.; Rylov, S.V.; Semenov, V.K.; Vyshenskii, S.V.
1989-01-01
Several ways of local timing of the Josephson-junction RSFQ (Rapid Single Flux Quantum) logic elements are proposed, and their peculiarities are discussed. Several examples of serial and parallel pipelined arithmetic blocks using various types of timing are suggested and their possible performance is discussed. Serial devices enable one to perform n-bit functions relatively slowly but using integrated circuits of a moderate integration scale, while parallel pipelined devices are more hardware-wasteful but promise extremely high productivity
1981-01-01
Rapport, Groupe Intelligence Pasero, R., Artificielle , Universite d’Aix-Marseille, Roussel, P. Luminy, France, 1973. [Kowalski 1974] Kowalski, R. A...THIS PAGZ(Whan Doee Es tMord) Item 20 (Cont’d) ------ work in the area of artificial intelligence and those used in general program development into a...logic programming with LISP for implementing intelligent data base query systems. Continued developments will allow for enhancements to be made to the
Magnetoresistive logic and biochip
International Nuclear Information System (INIS)
Brueckl, Hubert; Brzeska, Monika; Brinkmann, Dirk; Schotter, J.Joerg; Reiss, Guenter; Schepper, Willi; Kamp, P.-B.; Becker, Anke
2004-01-01
While some magnetoresistive devices based on giant magnetoresistance or spin-dependent tunneling are already commercialized, a new branch of development is evolving towards magnetoresistive logic with magnetic tunnel junctions. Furthermore, the new magnetoelectronic effects show promising properties in magnetoresistive biochips, which are capable of detecting even single molecules (e.g. DNA) by functionalized magnetic markers. The unclear limits of this approach are discussed with two model systems
A Paraconsistent Higher Order Logic
DEFF Research Database (Denmark)
Villadsen, Jørgen
2004-01-01
of paraconsistent logics in knowledge-based systems, logical semantics of natural language, etc. Higher order logics have the advantages of being expressive and with several automated theorem provers available. Also the type system can be helpful. We present a concise description of a paraconsistent higher order...... of the logic is examined by a case study in the domain of medicine. Thus we try to build a bridge between the HOL and MVL communities. A sequent calculus is proposed based on recent work by Muskens. Many non-classical logics are, at the propositional level, funny toys which work quite good, but when one wants...
Progress in Ultrafast Intense Laser Science II
Yamanouchi, Kaoru; Agostini, Pierre; Ferrante, Gaetano
2007-01-01
This book series addresses a newly emerging interdisciplinary research field, Ultrafast Intense Laser Science, spanning atomic and molecular physics, molecular science, and optical science. Its progress is being stimulated by the recent development of ultrafast laser technologies. Highlights of this second volume include Coulomb explosion and fragmentation of molecules, control of chemical dynamics, high-order harmonic generation, propagation and filamentation, and laser-plasma interaction. All chapters are authored by foremost experts in their fields and the texts are written at a level accessible to newcomers and graduate students, each chapter beginning with an introductory overview.
Progress in ultrafast intense laser science XI
Yamanouchi, Kaoru; Martin, Philippe
2014-01-01
The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance
Progress in ultrafast intense laser science
Yamanouchi, Kaoru; Mathur, Deepak
2014-01-01
The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance
Ultrafast Nonlinear Signal Processing in Silicon Waveguides
DEFF Research Database (Denmark)
Oxenløwe, Leif Katsuo; Mulvad, Hans Christian Hansen; Hu, Hao
2012-01-01
We describe recent demonstrations of exploiting highly nonlinear silicon waveguides for ultrafast optical signal processing. We describe wavelength conversion and serial-to-parallel conversion of 640 Gbit/s data signals and 1.28 Tbit/s demultiplexing and all-optical sampling.......We describe recent demonstrations of exploiting highly nonlinear silicon waveguides for ultrafast optical signal processing. We describe wavelength conversion and serial-to-parallel conversion of 640 Gbit/s data signals and 1.28 Tbit/s demultiplexing and all-optical sampling....
Ultrafast laser-semiconductor interactions
International Nuclear Information System (INIS)
Schile, L.A.
1996-01-01
Studies of the ultrafast (< 100 fs) interactions of infrared, sub-100 fs laser pulses with IR, photosensitive semiconductor materials InGaAs, InSb, and HgCdTe are reported. Both the carrier dynamics and the associated Terahertz radiation from these materials are discussed. The most recent developments of femtosecond (< 100 fs) Optical Parametric Oscillators (OPO) has extended the wavelength range from the visible to 5.2 μm. The photogenerated semiconductor free carrier dynamics are determined in the 77 to 300 degrees K temperature range using the Transmission Correlation Peak (TCP) method. The electron-phonon scattering times are typically 200 - 600 fs. Depending upon the material composition and substrate on which the IR crystalline materials are deposited, the nonlinear TCP absorption gives recombination rates as fast as 10's of picoseconds. For the HgCdTe, there exists a 400 fs electron-phonon scattering process along with a much longer 3600 fs loss process. Studies of the interactions of these ultrashort laser pulses with semiconductors produce Terahertz (Thz) radiative pulses. With undoped InSb, there is a substantial change in the spectral content of this THz radiation between 80 - 260 degrees K while the spectrum of Te-doped InSb remains nearly unchanged, an effect attributed to its mobility being dominated by impurity scattering. At 80 degrees K, the terahertz radiation from undoped InSb is dependent on wavelength, with both a higher frequency spectrum and much larger amplitudes generated at longer wavelengths. No such effect is observed at 260 degrees K. Finally, new results on the dependence of the emitted THz radiation on the InSb crystal's orientation is presented
Computability, complexity, logic
Börger, Egon
1989-01-01
The theme of this book is formed by a pair of concepts: the concept of formal language as carrier of the precise expression of meaning, facts and problems, and the concept of algorithm or calculus, i.e. a formally operating procedure for the solution of precisely described questions and problems. The book is a unified introduction to the modern theory of these concepts, to the way in which they developed first in mathematical logic and computability theory and later in automata theory, and to the theory of formal languages and complexity theory. Apart from considering the fundamental themes an
T Atanassov, Krassimir
2017-01-01
The book offers a comprehensive survey of intuitionistic fuzzy logics. By reporting on both the author’s research and others’ findings, it provides readers with a complete overview of the field and highlights key issues and open problems, thus suggesting new research directions. Starting with an introduction to the basic elements of intuitionistic fuzzy propositional calculus, it then provides a guide to the use of intuitionistic fuzzy operators and quantifiers, and lastly presents state-of-the-art applications of intuitionistic fuzzy sets. The book is a valuable reference resource for graduate students and researchers alike.
Basavanagowda Nagabhushana, Nandeesh
2014-01-01
Brown plant hopper showed me the way into organic farming. In 2001, I started my practice with logic of legumes just to cut down the 45 percent expenses of my paddy on fertilizers, pesticides and herbicides. Later as I realized each and every plant carries it’s own nutrients, medicinal values and characters. Plants like millets, oil seeds, spices, di-cots, monocots and weeds all being used as a green manure. For all my agriculture problems and crop demands, I look for the answers only thro...
DEFF Research Database (Denmark)
Birkedal, Lars; Sieczkowski, Filip; Thamsborg, Jacob Junker
2012-01-01
We present a logical relation for showing the correctness of program transformations based on a new type-and-eﬀect system for a concurrent extension of an ML-like language with higher-order functions, higher-order store and dynamic memory allocation. We show how to use our model to verify a number....... To the best of our knowledge, this is the ﬁrst such result for a concurrent higher-order language with higher-order store and dynamic memory allocation....
Krötzsch, M
2010-01-01
Ontological modelling today is applied in many areas of science and technology,including the Semantic Web. The W3C standard OWL defines one of the most important ontology languages based on the semantics of description logics. An alternative is to use rule languages in knowledge modelling, as proposed in the W3C's RIF standard. So far, it has often been unclear how to combine both technologies without sacrificing essential computational properties. This book explains this problem and presents new solutions that have recently been proposed. Extensive introductory chapters provide the necessary
Bright, Liam Kofi
2017-10-01
The logical empiricists expressed a consistent attitude to racial categorisation in both the ethical and scientific spheres. Their attitude may be captured in the following slogan: human racial taxonomy is an empirically meaningful mode of classifying persons that we should refrain from deploying. I offer an interpretation of their position that would render coherent their remarks on race with positions they adopted on the scientific status of taxonomy in general, together with their potential moral or political motivations for adopting that position. Copyright © 2017 Elsevier Ltd. All rights reserved.
Flexible programmable logic module
Robertson, Perry J.; Hutchinson, Robert L.; Pierson, Lyndon G.
2001-01-01
The circuit module of this invention is a VME board containing a plurality of programmable logic devices (PLDs), a controlled impedance clock tree, and interconnecting buses. The PLDs are arranged to permit systolic processing of a problem by offering wide data buses and a plurality of processing nodes. The board contains a clock reference and clock distribution tree that can drive each of the PLDs with two critically timed clock references. External clock references can be used to drive additional circuit modules all operating from the same synchronous clock reference.
Classical Mathematical Logic The Semantic Foundations of Logic
Epstein, Richard L
2011-01-01
In Classical Mathematical Logic, Richard L. Epstein relates the systems of mathematical logic to their original motivations to formalize reasoning in mathematics. The book also shows how mathematical logic can be used to formalize particular systems of mathematics. It sets out the formalization not only of arithmetic, but also of group theory, field theory, and linear orderings. These lead to the formalization of the real numbers and Euclidean plane geometry. The scope and limitations of modern logic are made clear in these formalizations. The book provides detailed explanations of all proo
Quantum Computation with Ultrafast Laser Pulse Shaping
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 6. Quantum Computation with Ultrafast Laser Pulse Shaping. Debabrata Goswami. General Article Volume 10 Issue 6 June 2005 pp 8-14. Fulltext. Click here to view fulltext PDF. Permanent link:
Ultrafast spectroscopy of model biological membranes
Ghosh, Avishek
2009-01-01
In this PhD thesis, I have described the novel time-resolved sum-frequency generation (TR-SFG) spectroscopic technique that I developed during the course of my PhD research and used it study the ultrafast vibrational, structural and orientational dynamics of water molecules at model biological
Photonic-assisted ultrafast THz wireless access
DEFF Research Database (Denmark)
Yu, Xianbin; Chen, Ying; Galili, Michael
THz technology has been considered feasible for ultrafast wireless data communi- cation, to meet the increasing demand on next-generation fast wireless access, e.g., huge data file transferring and fast mobile data stream access. This talk reviews recent progress in high-speed THz wireless...
Superconducting digital logic amplifier
International Nuclear Information System (INIS)
Przybysz, J.X.
1989-01-01
This paper describes a superconducting digital logic amplifier for interfacing between a Josephson junction logic circuit having output current and a higher voltage semiconductor circuit input. The amplifier comprising: an input terminal for connection to a; an output terminal for connection to a semiconductor circuit input; an input, lower critical current, Josephson junction having first and second terminals; a first series string of at least three lower critical current Josephson junctions. The first series string being connected to the first terminal of the input Josephson junction such that the first series string is in series with the input Josephson junction to provide a series combination. The input terminal being connected to the first terminal of the input Josephson junction, and with the critical current of the lower critical current Josephson junctions of the input Josephson junction and the first series Josephson junctions being less than the output current of the low voltage Josephson junction circuit; a second series string of at least four higher critical current Josephson junctions. The second string being connected in parallel with the series combination to provide parallel strings having an upper common connection and a lower common connection. The lower common connection being connected to the second terminal of the input Josephson junction and the upper common connection being connected to the output terminal; and a pulsed DC current source connected the parallel strings at the upper common connection. The DC current source having a current at least equal to the critical current of the higher critical current Josephson junctions
Quantum logics and convex geometry
International Nuclear Information System (INIS)
Bunce, L.J.; Wright, J.D.M.
1985-01-01
The main result is a representation theorem which shows that, for a large class of quantum logics, a quantum logic, Q, is isomorphic to the lattice of projective faces in a suitable convex set K. As an application we extend our earlier results, which, subject to countability conditions, gave a geometric characterization of those quantum logics which are isomorphic to the projection lattice of a von Neumann algebra or a JBW-algebra. (orig.)
International Nuclear Information System (INIS)
Sambasivan, S. Ilango
2004-01-01
Full text : PFBR is provided with two independent, fast acting and diverse shutdown systems to detect any abnormalities and to initiate safety action. Each system consists of sensors, signal processing systems, logics, drive mechanisms and absorber rods. The absorber rods of the first system are Control and Safety Rods (CSR) and that of the second are called as Diverse Safety Rods (DSR). There are nine CSR and three DSR. While CSR are used for startup, control of reactor power, controlled shutdown and SCRAM, the DSR are used only for SCRAM. The respective drive mechanisms are called as CSRDM and DSRDM. Each of these two systems is capable of executing the shutdown satisfactorily with single failure criteria. Two independent safety logic systems based on diverse principles have been designed for the two shut down systems. The analog outputs of the sensors of Core Monitoring Systems comprising of reactor flux monitoring, core temperature monitoring, failed fuel detection and core flow monitoring systems are processed and converted into binary signals depending on their instantaneous values. Safety logic systems receive the binary signals from these core-monitoring systems and process them logically to protect the reactor against postulated initiating events. Neutronic and power to flow (P/Q) signals form the inputs to safety logic system-I and temperature signals are inputs to the safety logic system II. Failed fuel detection signals are processed by both the shut down systems. The two logic systems to actuate the safety rods are also based on two diverse designs and implemented with solid-state devices to meet all the requirements of safety systems. Safety logic system I that caters to neutronic and P/Q signals is designed around combinational logic and has an on-line test facility to detect struck at faults. The second logic system is based on dynamic logic and hence is inherently safe. This paper gives an overview of the two logic systems that have been
PM 3655 PHILIPS Logic analyzer
A logic analyzer is an electronic instrument that captures and displays multiple signals from a digital system or digital circuit. A logic analyzer may convert the captured data into timing diagrams, protocol decodes, state machine traces, assembly language, or may correlate assembly with source-level software. Logic Analyzers have advanced triggering capabilities, and are useful when a user needs to see the timing relationships between many signals in a digital system.
Perspective: Ultrafast magnetism and THz spintronics
Energy Technology Data Exchange (ETDEWEB)
Walowski, Jakob; Münzenberg, Markus [Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany)
2016-10-14
This year the discovery of femtosecond demagnetization by laser pulses is 20 years old. For the first time, this milestone work by Bigot and coworkers gave insight directly into the time scales of microscopic interactions that connect the spin and electron system. While intense discussions in the field were fueled by the complexity of the processes in the past, it now became evident that it is a puzzle of many different parts. Rather than providing an overview that has been presented in previous reviews on ultrafast processes in ferromagnets, this perspective will show that with our current depth of knowledge the first applications are developed: THz spintronics and all-optical spin manipulation are becoming more and more feasible. The aim of this perspective is to point out where we can connect the different puzzle pieces of understanding gathered over 20 years to develop novel applications. Based on many observations in a large number of experiments. Differences in the theoretical models arise from the localized and delocalized nature of ferromagnetism. Transport effects are intrinsically non-local in spintronic devices and at interfaces. We review the need for multiscale modeling to address the processes starting from electronic excitation of the spin system on the picometer length scale and sub-femtosecond time scale, to spin wave generation, and towards the modeling of ultrafast phase transitions that altogether determine the response time of the ferromagnetic system. Today, our current understanding gives rise to the first usage of ultrafast spin physics for ultrafast magnetism control: THz spintronic devices. This makes the field of ultrafast spin-dynamics an emerging topic open for many researchers right now.
Perspective: Ultrafast magnetism and THz spintronics
International Nuclear Information System (INIS)
Walowski, Jakob; Münzenberg, Markus
2016-01-01
This year the discovery of femtosecond demagnetization by laser pulses is 20 years old. For the first time, this milestone work by Bigot and coworkers gave insight directly into the time scales of microscopic interactions that connect the spin and electron system. While intense discussions in the field were fueled by the complexity of the processes in the past, it now became evident that it is a puzzle of many different parts. Rather than providing an overview that has been presented in previous reviews on ultrafast processes in ferromagnets, this perspective will show that with our current depth of knowledge the first applications are developed: THz spintronics and all-optical spin manipulation are becoming more and more feasible. The aim of this perspective is to point out where we can connect the different puzzle pieces of understanding gathered over 20 years to develop novel applications. Based on many observations in a large number of experiments. Differences in the theoretical models arise from the localized and delocalized nature of ferromagnetism. Transport effects are intrinsically non-local in spintronic devices and at interfaces. We review the need for multiscale modeling to address the processes starting from electronic excitation of the spin system on the picometer length scale and sub-femtosecond time scale, to spin wave generation, and towards the modeling of ultrafast phase transitions that altogether determine the response time of the ferromagnetic system. Today, our current understanding gives rise to the first usage of ultrafast spin physics for ultrafast magnetism control: THz spintronic devices. This makes the field of ultrafast spin-dynamics an emerging topic open for many researchers right now.
Popular lectures on mathematical logic
Wang, Hao
2014-01-01
A noted logician and philosopher addresses various forms of mathematical logic, discussing both theoretical underpinnings and practical applications. Author Hao Wang surveys the central concepts and theories of the discipline in a historical and developmental context, and then focuses on the four principal domains of contemporary mathematical logic: set theory, model theory, recursion theory and constructivism, and proof theory.Topics include the place of problems in the development of theories of logic and logic's relation to computer science. Specific attention is given to Gödel's incomplete
Contextual logic for quantum systems
International Nuclear Information System (INIS)
Domenech, Graciela; Freytes, Hector
2005-01-01
In this work we build a quantum logic that allows us to refer to physical magnitudes pertaining to different contexts from a fixed one without the contradictions with quantum mechanics expressed in no-go theorems. This logic arises from considering a sheaf over a topological space associated with the Boolean sublattices of the ortholattice of closed subspaces of the Hilbert space of the physical system. Different from standard quantum logics, the contextual logic maintains a distributive lattice structure and a good definition of implication as a residue of the conjunction
Tensor product of quantum logics
Pulmannová, Sylvia
1985-01-01
A quantum logic is the couple (L,M) where L is an orthomodular σ-lattice and M is a strong set of states on L. The Jauch-Piron property in the σ-form is also supposed for any state of M. A ``tensor product'' of quantum logics is defined. This definition is compared with the definition of a free orthodistributive product of orthomodular σ-lattices. The existence and uniqueness of the tensor product in special cases of Hilbert space quantum logics and one quantum and one classical logic are studied.
DEFF Research Database (Denmark)
A.N. Prior (1914-69) in the course of the 1950s and 1960s founded a new and revolutionary paradigm in philosophy and logic. Its most central feature is the preoccupation with time and the development of the logic of time. However, this was inseparably interwoven with fundamental questions about h...... human freedom, ethics, and existence. This remarkable integration of themes also embodies an original and in fact revolutionary conception of logic. The book series, Logic and Philosophy of Time, is dedicated to a deep investigation and also the further development of Prior’s paradigm. ...
Optimization methods for logical inference
Chandru, Vijay
2011-01-01
Merging logic and mathematics in deductive inference-an innovative, cutting-edge approach. Optimization methods for logical inference? Absolutely, say Vijay Chandru and John Hooker, two major contributors to this rapidly expanding field. And even though ""solving logical inference problems with optimization methods may seem a bit like eating sauerkraut with chopsticks. . . it is the mathematical structure of a problem that determines whether an optimization model can help solve it, not the context in which the problem occurs."" Presenting powerful, proven optimization techniques for logic in
DEFF Research Database (Denmark)
By blending historical research with current research, this collection (loosely inspired by themes from the work of Arthur Prior) demonstrates the importance of Prior's writings and helps us to gain a deeper understanding of time, its logic(s), and its language(s).......By blending historical research with current research, this collection (loosely inspired by themes from the work of Arthur Prior) demonstrates the importance of Prior's writings and helps us to gain a deeper understanding of time, its logic(s), and its language(s)....
Meta-Logical Reasoning in Higher-Order Logic
DEFF Research Database (Denmark)
Villadsen, Jørgen; Schlichtkrull, Anders; Hess, Andreas Viktor
The semantics of first-order logic (FOL) can be described in the meta-language of higher-order logic (HOL). Using HOL one can prove key properties of FOL such as soundness and completeness. Furthermore, one can prove sentences in FOL valid using the formalized FOL semantics. To aid...
Towards an arithmetical logic the arithmetical foundations of logic
Gauthier, Yvon
2015-01-01
This book offers an original contribution to the foundations of logic and mathematics, and focuses on the internal logic of mathematical theories, from arithmetic or number theory to algebraic geometry. Arithmetical logic is the term used to refer to the internal logic of classical arithmetic, here called Fermat-Kronecker arithmetic, and combines Fermat’s method of infinite descent with Kronecker’s general arithmetic of homogeneous polynomials. The book also includes a treatment of theories in physics and mathematical physics to underscore the role of arithmetic from a constructivist viewpoint. The scope of the work intertwines historical, mathematical, logical and philosophical dimensions in a unified critical perspective; as such, it will appeal to a broad readership from mathematicians to logicians, to philosophers interested in foundational questions. Researchers and graduate students in the fields of philosophy and mathematics will benefit from the author’s critical approach to the foundations of l...
Cleaveland, Rance; Luettgen, Gerald; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
This paper presents the Logical Process Calculus (LPC), a formalism that supports heterogeneous system specifications containing both operational and declarative subspecifications. Syntactically, LPC extends Milner's Calculus of Communicating Systems with operators from the alternation-free linear-time mu-calculus (LT(mu)). Semantically, LPC is equipped with a behavioral preorder that generalizes Hennessy's and DeNicola's must-testing preorder as well as LT(mu's) satisfaction relation, while being compositional for all LPC operators. From a technical point of view, the new calculus is distinguished by the inclusion of: (1) both minimal and maximal fixed-point operators and (2) an unimple-mentability predicate on process terms, which tags inconsistent specifications. The utility of LPC is demonstrated by means of an example highlighting the benefits of heterogeneous system specification.
Fuzzy Logic and Arithmetical Hierarchy III
Czech Academy of Sciences Publication Activity Database
Hájek, Petr
2001-01-01
Roč. 68, č. 1 (2001), s. 129-142 ISSN 0039-3215 R&D Projects: GA AV ČR IAA1030004 Institutional research plan: AV0Z1030915 Keywords : fuzzy logic * basic fuzzy logic * Lukasiewicz logic * Godel logic * product logic * arithmetical hierarchy Subject RIV: BA - General Mathematics
Logical entropy of quantum dynamical systems
Directory of Open Access Journals (Sweden)
Ebrahimzadeh Abolfazl
2016-01-01
Full Text Available This paper introduces the concepts of logical entropy and conditional logical entropy of hnite partitions on a quantum logic. Some of their ergodic properties are presented. Also logical entropy of a quantum dynamical system is dehned and ergodic properties of dynamical systems on a quantum logic are investigated. Finally, the version of Kolmogorov-Sinai theorem is proved.
Questions and dependency in intuitionistic logic
Ciardelli, Ivano; Iemhoff, Rosalie; Yang, Fan
2017-01-01
In recent years, the logic of questions and dependencies has been investigated in the closely related frameworks of inquisitive logic and dependence logic. These investigations have assumed classical logic as the background logic of statements, and added formulas expressing questions and
Reversible logic gates on Physarum Polycephalum
International Nuclear Information System (INIS)
Schumann, Andrew
2015-01-01
In this paper, we consider possibilities how to implement asynchronous sequential logic gates and quantum-style reversible logic gates on Physarum polycephalum motions. We show that in asynchronous sequential logic gates we can erase information because of uncertainty in the direction of plasmodium propagation. Therefore quantum-style reversible logic gates are more preferable for designing logic circuits on Physarum polycephalum
A beginner's guide to mathematical logic
Smullyan, Raymond M
2014-01-01
Combining stories of great philosophers, quotations, and riddles with the fundamentals of mathematical logic, this new textbook for first courses in mathematical logic was written by the subject's creative master. Raymond Smullyan offers clear, incremental presentations of difficult logic concepts with creative explanations and unique problems related to proofs, propositional logic and first-order logic, undecidability, recursion theory, and other topics.
Structural Completeness in Fuzzy Logics
Czech Academy of Sciences Publication Activity Database
Cintula, Petr; Metcalfe, G.
2009-01-01
Roč. 50, č. 2 (2009), s. 153-183 ISSN 0029-4527 R&D Projects: GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10300504 Keywords : structral logics * fuzzy logics * structural completeness * admissible rules * primitive variety * residuated lattices Subject RIV: BA - General Mathematics
A tristate optical logic system
Basuray, A.; Mukhopadhyay, S.; Kumar Ghosh, Hirak; Datta, A. K.
1991-09-01
A method is described to represent data in a tristate logic system which are subsequently replaced by Modified Trinary Numbers (MTN). This system is advantagegeous in parallel processing as carry and borrow free operations in arithmatic computation is possible. The logical operations are also modified according to the three states available. A possible practical application of the same using polarized light is also suggested.
Logic, reasoning, and verbal behavior
Terrell, Dudley J.; Johnston, J. M.
1989-01-01
This paper analyzes the traditional concepts of logic and reasoning from the perspective of radical behaviorism and in the terms of Skinner's treatment of verbal behavior. The topics covered in this analysis include the proposition, premises and conclusions, logicality and rules, and deductive and inductive reasoning.
Flat Coalgebraic Fixed Point Logics
Schröder, Lutz; Venema, Yde
Fixed point logics are widely used in computer science, in particular in artificial intelligence and concurrency. The most expressive logics of this type are the μ-calculus and its relatives. However, popular fixed point logics tend to trade expressivity for simplicity and readability, and in fact often live within the single variable fragment of the μ-calculus. The family of such flat fixed point logics includes, e.g., CTL, the *-nesting-free fragment of PDL, and the logic of common knowledge. Here, we extend this notion to the generic semantic framework of coalgebraic logic, thus covering a wide range of logics beyond the standard μ-calculus including, e.g., flat fragments of the graded μ-calculus and the alternating-time μ-calculus (such as ATL), as well as probabilistic and monotone fixed point logics. Our main results are completeness of the Kozen-Park axiomatization and a timed-out tableaux method that matches ExpTime upper bounds inherited from the coalgebraic μ-calculus but avoids using automata.
Evidence logics with relational evidence
DEFF Research Database (Denmark)
Baltag, Alexandru; Occhipinti, Andrés
2017-01-01
We introduce a family of logics for reasoning about relational evidence: evidence that involves an ordering of states in terms of their relative plausibility. We provide sound and complete axiomatizations for the logics. We also present several evidential actions and prove soundness...
Methods in Logic Based Control
DEFF Research Database (Denmark)
Christensen, Georg Kronborg
1999-01-01
Desing and theory of Logic Based Control systems.Boolean Algebra, Karnaugh Map, Quine McClusky's algorithm. Sequential control design. Logic Based Control Method, Cascade Control Method. Implementation techniques: relay, pneumatic, TTL/CMOS,PAL and PLC- and Soft_PLC implementation. PLC...
Epistemic logics for sceptical agents
Czech Academy of Sciences Publication Activity Database
Bílková, M.; Majer, Ondrej; Peliš, Michal
2016-01-01
Roč. 26, č. 6 (2016), s. 1815-1841 ISSN 0955-792X R&D Projects: GA ČR(CZ) GA13-21076S Institutional support: RVO:67985955 Keywords : epistemic logic * substructural logic * frame semantics Subject RIV: AA - Philosophy ; Religion Impact factor: 0.909, year: 2016
International Nuclear Information System (INIS)
Zapatrin, R.R.
1992-01-01
Given a finite ortholattice L, the *-semigroup is explicitly built whose annihilator ortholattice is isomorphic to L. Thus, it is shown that any finite quantum logic is the additive part of a binary logic. Some areas of possible applications are outlined. 7 refs
Logical independence and quantum randomness
International Nuclear Information System (INIS)
Paterek, T; Kofler, J; Aspelmeyer, M; Zeilinger, A; Brukner, C; Prevedel, R; Klimek, P
2010-01-01
We propose a link between logical independence and quantum physics. We demonstrate that quantum systems in the eigenstates of Pauli group operators are capable of encoding mathematical axioms and show that Pauli group quantum measurements are capable of revealing whether or not a given proposition is logically dependent on the axiomatic system. Whenever a mathematical proposition is logically independent of the axioms encoded in the measured state, the measurement associated with the proposition gives random outcomes. This allows for an experimental test of logical independence. Conversely, it also allows for an explanation of the probabilities of random outcomes observed in Pauli group measurements from logical independence without invoking quantum theory. The axiomatic systems we study can be completed and are therefore not subject to Goedel's incompleteness theorem.
Generator of combined logical signals
International Nuclear Information System (INIS)
Laviron, Andre; Berard, Claude.
1982-01-01
The invention concerns a generator of combined logical signals to form combinations of two outputs at logical level 1 and N-2 outputs at logical level 0, among N generator outputs. This generator is characterized in that it includes a set of N means for storing combinations. Means enable the N storage means to be loaded with the logical levels corresponding to a pre-set starting combination, to control the operations for shifting the contents of the storage means and to control, by transfer facilities, the transfers of contents between these storage means. Controls enable the storage means to be actuated in order to obtain combinations of logical levels 1 and 0. The generation of combinations can be stopped after another pre-set combination. Application is for testing of safety circuits for nuclear power stations [fr
Reliability evaluation programmable logic devices
International Nuclear Information System (INIS)
Srivani, L.; Murali, N.; Thirugnana Murthy, D.; Satya Murty, S.A.V.
2014-01-01
Programmable Logic Devices (PLD) are widely used as basic building modules in high integrity systems, considering their robust features such as gate density, performance, speed etc. PLDs are used to implement digital design such as bus interface logic, control logic, sequencing logic, glue logic etc. Due to semiconductor evolution, new PLDs with state-of-the-art features are arriving to the market. Since these devices are reliable as per the manufacturer's specification, they were used in the design of safety systems. But due to their reduced market life, the availability of performance data is limited. So evaluating the PLD before deploying in a safety system is very important. This paper presents a survey on the use of PLDs in the nuclear domain and the steps involved in the evaluation of PLD using Quantitative Accelerated Life Testing. (author)
Logical independence and quantum randomness
Energy Technology Data Exchange (ETDEWEB)
Paterek, T; Kofler, J; Aspelmeyer, M; Zeilinger, A; Brukner, C [Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna (Austria); Prevedel, R; Klimek, P [Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna (Austria)], E-mail: tomasz.paterek@univie.ac.at
2010-01-15
We propose a link between logical independence and quantum physics. We demonstrate that quantum systems in the eigenstates of Pauli group operators are capable of encoding mathematical axioms and show that Pauli group quantum measurements are capable of revealing whether or not a given proposition is logically dependent on the axiomatic system. Whenever a mathematical proposition is logically independent of the axioms encoded in the measured state, the measurement associated with the proposition gives random outcomes. This allows for an experimental test of logical independence. Conversely, it also allows for an explanation of the probabilities of random outcomes observed in Pauli group measurements from logical independence without invoking quantum theory. The axiomatic systems we study can be completed and are therefore not subject to Goedel's incompleteness theorem.
Marketing Logics, Ambidexterity and Influence
DEFF Research Database (Denmark)
Tollin, Karin; Schmidt, Marcus
2012-01-01
in four CMOs have taken on this challenge, or adopted a marketing logic which could be referred to as ambidextrous. Furthermore, the study shows that this logic exerts a stronger impact on marketing's influence, compared to logics related to assuring brand consistency and measuring the performance...... of marketing processes. Three other ways to enact marketing management were also revealed, namely: an innovation; a communication; and a supporting marketing logic. This leads us to conclude that the influence of companies' marketing functions show up a heterogeneous picture within which the marketing logics......The duties of companies' chief marketing officers (CMOs) seem incompatible. They are expected to ensure that their company's market assets are properly exploited and recorded, while simultaneously enacting a proactive role in the company's business development. This study shows that about one...
Optical programmable Boolean logic unit.
Chattopadhyay, Tanay
2011-11-10
Logic units are the building blocks of many important computational operations likes arithmetic, multiplexer-demultiplexer, radix conversion, parity checker cum generator, etc. Multifunctional logic operation is very much essential in this respect. Here a programmable Boolean logic unit is proposed that can perform 16 Boolean logical operations from a single optical input according to the programming input without changing the circuit design. This circuit has two outputs. One output is complementary to the other. Hence no loss of data can occur. The circuit is basically designed by a 2×2 polarization independent optical cross bar switch. Performance of the proposed circuit has been achieved by doing numerical simulations. The binary logical states (0,1) are represented by the absence of light (null) and presence of light, respectively.
Flow Logic for Process Calculi
DEFF Research Database (Denmark)
Nielson, Hanne Riis; Nielson, Flemming; Pilegaard, Henrik
2012-01-01
Flow Logic is an approach to statically determining the behavior of programs and processes. It borrows methods and techniques from Abstract Interpretation, Data Flow Analysis and Constraint Based Analysis while presenting the analysis in a style more reminiscent of Type Systems. Traditionally...... developed for programming languages, this article provides a tutorial development of the approach of Flow Logic for process calculi based on a decade of research. We first develop a simple analysis for the π-calculus; this consists of the specification, semantic soundness (in the form of subject reduction......, and finally, we extend it to a relational analysis. A Flow Logic is a program logic---in the same sense that a Hoare’s logic is. We conclude with an executive summary presenting the highlights of the approach from this perspective including a discussion of theoretical properties as well as implementation...
Progress in ultrafast intense laser science XIII
III, Wendell; Paulus, Gerhard
2017-01-01
This thirteenth volume covers a broad range of topics from this interdisciplinary research field, focusing on atoms, molecules, and clusters interacting in intense laser field and high-order harmonics generation and their applications. The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, the interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries. .
Progress in Ultrafast Intense Laser Science
Yamanouchi, Kaoru; Li, Ruxin; Chin, See Leang
2009-01-01
The PUILS series presents Progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science. PUILS has been stimulated by the recent development of ultrafast laser technologies. Each volume contains approximately 15 chapters, authored by researchers at the forefront. Each chapter opens with an overview of the topics to be discussed, so that researchers, who are not experts in the specific topics, as well as graduate students can grasp the importance and attractions of this sub-field of research, and these are followed by reports of cutting-edge discoveries. This fourth volume covers a broad range of topics from this interdisciplinary research field, focusing on strong field ionization of atoms; excitation, ionization and fragmentation of molecules; nonlinear intense optical phenomena and attosecond pulses; and laser - solid interactions and photoemission.
Ultrafast surface-enhanced Raman spectroscopy.
Keller, Emily L; Brandt, Nathaniel C; Cassabaum, Alyssa A; Frontiera, Renee R
2015-08-07
Ultrafast surface-enhanced Raman spectroscopy (SERS) with pico- and femtosecond time resolution has the ability to elucidate the mechanisms by which plasmons mediate chemical reactions. Here we review three important technological advances in these new methodologies, and discuss their prospects for applications in areas including plasmon-induced chemistry and sensing at very low limits of detection. Surface enhancement, arising from plasmonic materials, has been successfully incorporated with stimulated Raman techniques such as femtosecond stimulated Raman spectroscopy (FSRS) and coherent anti-Stokes Raman spectroscopy (CARS). These techniques are capable of time-resolved measurement on the femtosecond and picosecond time scale and can be used to follow the dynamics of molecules reacting near plasmonic surfaces. We discuss the potential application of ultrafast SERS techniques to probe plasmon-mediated processes, such as H2 dissociation and solar steam production. Additionally, we discuss the possibilities for high sensitivity SERS sensing using these stimulated Raman spectroscopies.
Ultrafast magnetodynamics with free-electron lasers
Malvestuto, Marco; Ciprian, Roberta; Caretta, Antonio; Casarin, Barbara; Parmigiani, Fulvio
2018-02-01
The study of ultrafast magnetodynamics has entered a new era thanks to the groundbreaking technological advances in free-electron laser (FEL) light sources. The advent of these light sources has made possible unprecedented experimental schemes for time-resolved x-ray magneto-optic spectroscopies, which are now paving the road for exploring the ultimate limits of out-of-equilibrium magnetic phenomena. In particular, these studies will provide insights into elementary mechanisms governing spin and orbital dynamics, therefore contributing to the development of ultrafast devices for relevant magnetic technologies. This topical review focuses on recent advancement in the study of non-equilibrium magnetic phenomena from the perspective of time-resolved extreme ultra violet (EUV) and soft x-ray spectroscopies at FELs with highlights of some important experimental results.
Progress in Ultrafast Intense Laser Science III
Yamanouchi, Kaoru; Agostini, Pierre; Ferrante, Gaetano
2008-01-01
The PUILS series presents Progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science. PUILS has been stimulated by the recent development of ultrafast laser technologies. Each volume contains approximately 15 chapters, authored by researchers at the forefront. Each chapter opens with an overview of the topics to be discussed, so that researchers, who are not experts in the specific topics, as well as graduate students can grasp the importance and attractions of this sub-field of research, and these are followed by reports of cutting-edge discoveries. This third volume covers a diverse range of disciplines, focusing on such topics as strong field ionization of atoms, ionization and fragmentation of molecules and clusters, generation of high-order harmonics and attosecond pulses, filamentation and laser plasma interaction, and the development of ultrashort and ultrahigh-intensity light sources.
Ultra-fast framing camera tube
Kalibjian, Ralph
1981-01-01
An electronic framing camera tube features focal plane image dissection and synchronized restoration of the dissected electron line images to form two-dimensional framed images. Ultra-fast framing is performed by first streaking a two-dimensional electron image across a narrow slit, thereby dissecting the two-dimensional electron image into sequential electron line images. The dissected electron line images are then restored into a framed image by a restorer deflector operated synchronously with the dissector deflector. The number of framed images on the tube's viewing screen is equal to the number of dissecting slits in the tube. The distinguishing features of this ultra-fast framing camera tube are the focal plane dissecting slits, and the synchronously-operated restorer deflector which restores the dissected electron line images into a two-dimensional framed image. The framing camera tube can produce image frames having high spatial resolution of optical events in the sub-100 picosecond range.
Progress in Ultrafast Intense Laser Science VIII
Nisoli, Mauro; Hill, Wendell; III, III
2012-01-01
The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science and optical science which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield as well as graduate students can grasp the importance and attractions of the research topic at hand. These are followed by reports of cutting-edge discoveries. This eighth volume covers a broad range of topics from this interdisciplinary research field, focusing on molecules interacting with ultrashort and intense laser fields, advanced technologies for the characterization of ultrashort laser pulses and their applications, laser plasma formation and laser acceleration.
Ultrafast Terahertz Conductivity of Photoexcited Nanocrystalline Silicon
DEFF Research Database (Denmark)
Cooke, David; MacDonald, A. Nicole; Hryciw, Aaron
2007-01-01
The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described by a class...... in the silicon nanocrystal films is dominated by trapping at the Si/SiO2 interface states, occurring on a 1–100 ps time scale depending on particle size and hydrogen passivation......The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described...
Development of Scanning Ultrafast Electron Microscope Capability.
Energy Technology Data Exchange (ETDEWEB)
Collins, Kimberlee Chiyoko [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Talin, Albert Alec [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Chandler, David W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Michael, Joseph R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-11-01
Modern semiconductor devices rely on the transport of minority charge carriers. Direct examination of minority carrier lifetimes in real devices with nanometer-scale features requires a measurement method with simultaneously high spatial and temporal resolutions. Achieving nanometer spatial resolutions at sub-nanosecond temporal resolution is possible with pump-probe methods that utilize electrons as probes. Recently, a stroboscopic scanning electron microscope was developed at Caltech, and used to study carrier transport across a Si p-n junction [ 1 , 2 , 3 ] . In this report, we detail our development of a prototype scanning ultrafast electron microscope system at Sandia National Laboratories based on the original Caltech design. This effort represents Sandia's first exploration into ultrafast electron microscopy.
Coherent combination of ultrafast fiber amplifiers
International Nuclear Information System (INIS)
Hanna, Marc; Guichard, Florent; Druon, Frédéric; Georges, Patrick; Zaouter, Yoann; Papadopoulos, Dimitris N
2016-01-01
We review recent progress in coherent combining of femtosecond pulses amplified in optical fibers as a way to scale the peak and average power of ultrafast sources. Different methods of achieving coherent pulse addition in space (beam combining) and time (divided pulse amplification) domains are described. These architectures can be widely classified into active methods, where the relative phases between pulses are subject to a servomechanism, and passive methods, where phase matching is inherent to the geometry. Other experiments that combine pulses with different spectral contents, pulses that have been nonlinearly broadened or successive pulses from a mode-locked laser oscillator, are then presented. All these techniques allow access to unprecedented parameter range for fiber ultrafast sources. (topical review)
Silicon based ultrafast optical waveform sampling
DEFF Research Database (Denmark)
Ji, Hua; Galili, Michael; Pu, Minhao
2010-01-01
A 300 nmx450 nmx5 mm silicon nanowire is designed and fabricated for a four wave mixing based non-linear optical gate. Based on this silicon nanowire, an ultra-fast optical sampling system is successfully demonstrated using a free-running fiber laser with a carbon nanotube-based mode-locker as th......A 300 nmx450 nmx5 mm silicon nanowire is designed and fabricated for a four wave mixing based non-linear optical gate. Based on this silicon nanowire, an ultra-fast optical sampling system is successfully demonstrated using a free-running fiber laser with a carbon nanotube-based mode......-locker as the sampling source. A clear eye-diagram of a 320 Gbit/s data signal is obtained. The temporal resolution of the sampling system is estimated to 360 fs....
Progress in Ultrafast Intense Laser Science VI
Yamanouchi, Kaoru; Bandrauk, André D
2010-01-01
The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries. This sixth volume covers a broad range of topics from this interdisciplinary research field, focusing on responses of molecules to ultrashort intense laser pulses, generation and characterization of attosecond pulses and high-order harmonics, and filamentation and laser-plasma interaction.
Progress in ultrafast intense laser science XII
Roso, Luis; Li, Ruxin; Mathur, Deepak; Normand, Didier
2015-01-01
This volume covers a broad range of topics focusing on atoms, molecules, and clusters interacting in intense laser field, laser induced filamentation, and laser plasma interaction and application. The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries. .
The Logic of Practice in the Practice of Logics
DEFF Research Database (Denmark)
Raviola, Elena; Dubini, Paola
2016-01-01
of logics through a six months full-time ethnographic study at Il Sole-24 Ore, the largest Italian financial newspaper, between 2007 and 2008. An original conceptual framework is developed to analyse how the logic of journalism is enacted vis-à-vis that of advertising in a setting in which an old technology...... for news production – print newspaper – coexists with a new one – website – and thus encounters between new and old technological possibilities make workings of institutional logics particularly visible. The findings point out different mechanisms of institutional work dealing with actions that, made...
Ultrafast Photovoltaic Response in Ferroelectric Nanolayers
2016-04-19
the free energy of the system [3,4,8]. Intensive research has been aimed at bypassing the intrinsic size limits imposed by the depolarization field...Page 1 of 21 Ultrafast photovoltaic response in ferroelectric nanolayers Dan Daranciang1,2, Matthew J. Highland3, Haidan Wen4, Steve M. Young5...ferroelectric PbTiO3 via direct coupling to its intrinsic photovoltaic response. Using time-resolved x-ray scattering to visualize atomic displacements on
Optical Detection in Ultrafast Short Wavelength Science
International Nuclear Information System (INIS)
Fullagar, Wilfred K.; Hall, Chris J.
2010-01-01
A new approach to coherent detection of ionising radiation is briefly motivated and recounted. The approach involves optical scattering of coherent light fields by colour centres in transparent solids. It has significant potential for diffractive imaging applications that require high detection dynamic range from pulsed high brilliance short wavelength sources. It also motivates new incarnations of Bragg's X-ray microscope for pump-probe studies of ultrafast molecular structure-dynamics.
Quantum modeling of ultrafast photoinduced charge separation
Rozzi, Carlo Andrea; Troiani, Filippo; Tavernelli, Ivano
2018-01-01
Phenomena involving electron transfer are ubiquitous in nature, photosynthesis and enzymes or protein activity being prominent examples. Their deep understanding thus represents a mandatory scientific goal. Moreover, controlling the separation of photogenerated charges is a crucial prerequisite in many applicative contexts, including quantum electronics, photo-electrochemical water splitting, photocatalytic dye degradation, and energy conversion. In particular, photoinduced charge separation is the pivotal step driving the storage of sun light into electrical or chemical energy. If properly mastered, these processes may also allow us to achieve a better command of information storage at the nanoscale, as required for the development of molecular electronics, optical switching, or quantum technologies, amongst others. In this Topical Review we survey recent progress in the understanding of ultrafast charge separation from photoexcited states. We report the state-of-the-art of the observation and theoretical description of charge separation phenomena in the ultrafast regime mainly focusing on molecular- and nano-sized solar energy conversion systems. In particular, we examine different proposed mechanisms driving ultrafast charge dynamics, with particular regard to the role of quantum coherence and electron-nuclear coupling, and link experimental observations to theoretical approaches based either on model Hamiltonians or on first principles simulations.
Basic logic and quantum entanglement
International Nuclear Information System (INIS)
Zizzi, P A
2007-01-01
As it is well known, quantum entanglement is one of the most important features of quantum computing, as it leads to massive quantum parallelism, hence to exponential computational speed-up. In a sense, quantum entanglement is considered as an implicit property of quantum computation itself. But... can it be made explicit? In other words, is it possible to find the connective 'entanglement' in a logical sequent calculus for the machine language? And also, is it possible to 'teach' the quantum computer to 'mimic' the EPR 'paradox'? The answer is in the affirmative, if the logical sequent calculus is that of the weakest possible logic, namely Basic logic. - A weak logic has few structural rules. But in logic, a weak structure leaves more room for connectives (for example the connective 'entanglement'). Furthermore, the absence in Basic logic of the two structural rules of contraction and weakening corresponds to the validity of the no-cloning and no-erase theorems, respectively, in quantum computing
Basic logic and quantum entanglement
Energy Technology Data Exchange (ETDEWEB)
Zizzi, P A [Dipartimento di Matematica Pura ed Applicata, Via Trieste 63, 35121 Padova (Italy)
2007-05-15
As it is well known, quantum entanglement is one of the most important features of quantum computing, as it leads to massive quantum parallelism, hence to exponential computational speed-up. In a sense, quantum entanglement is considered as an implicit property of quantum computation itself. But... can it be made explicit? In other words, is it possible to find the connective 'entanglement' in a logical sequent calculus for the machine language? And also, is it possible to 'teach' the quantum computer to 'mimic' the EPR 'paradox'? The answer is in the affirmative, if the logical sequent calculus is that of the weakest possible logic, namely Basic logic. - A weak logic has few structural rules. But in logic, a weak structure leaves more room for connectives (for example the connective 'entanglement'). Furthermore, the absence in Basic logic of the two structural rules of contraction and weakening corresponds to the validity of the no-cloning and no-erase theorems, respectively, in quantum computing.
Logic regression and its extensions.
Schwender, Holger; Ruczinski, Ingo
2010-01-01
Logic regression is an adaptive classification and regression procedure, initially developed to reveal interacting single nucleotide polymorphisms (SNPs) in genetic association studies. In general, this approach can be used in any setting with binary predictors, when the interaction of these covariates is of primary interest. Logic regression searches for Boolean (logic) combinations of binary variables that best explain the variability in the outcome variable, and thus, reveals variables and interactions that are associated with the response and/or have predictive capabilities. The logic expressions are embedded in a generalized linear regression framework, and thus, logic regression can handle a variety of outcome types, such as binary responses in case-control studies, numeric responses, and time-to-event data. In this chapter, we provide an introduction to the logic regression methodology, list some applications in public health and medicine, and summarize some of the direct extensions and modifications of logic regression that have been proposed in the literature. Copyright © 2010 Elsevier Inc. All rights reserved.
Kral, M J
1994-01-01
Although suicide is not viewed as a mental disorder per se, it is viewed by many if not most clinicians, researchers, and lay people as a real or natural symptom of depression. It is at least most typically seen as the unfortunate, severe, yet logical end result of a chain of negative self-appraisals, negative events, and hopelessness. Extending an approach articulated by the early French sociologist Gabriel Tarde, in this paper I argue that suicide is merely an idea, albeit a very bad one, having more in common with societal beliefs and norms regarding such things as divorce, abortion, sex, politics, consumer behavior, and fashion. I make a sharp contrast between perturbation and lethality, concepts central to Edwin S. Shneidman's theory of suicide. Evidence supportive of suicide as an idea is discussed based on what we are learning from the study of history and culture, and about contagion/cluster phenomena, media/communication, and choice of method. It is suggested that certain individuals are more vulnerable to incorporate the idea and act of suicide into their concepts of self, based on the same principles by which ideas are spread throughout society. Just as suicide impacts on society, so does society impact on suicide.
Remmel, Jeffrey; Shore, Richard; Sweedler, Moss; Progress in Computer Science and Applied Logic
1993-01-01
The twenty-six papers in this volume reflect the wide and still expanding range of Anil Nerode's work. A conference on Logical Methods was held in honor of Nerode's sixtieth birthday (4 June 1992) at the Mathematical Sciences Institute, Cornell University, 1-3 June 1992. Some of the conference papers are here, but others are from students, co-workers and other colleagues. The intention of the conference was to look forward, and to see the directions currently being pursued, in the development of work by, or with, Nerode. Here is a brief summary of the contents of this book. We give a retrospective view of Nerode's work. A number of specific areas are readily discerned: recursive equivalence types, recursive algebra and model theory, the theory of Turing degrees and r.e. sets, polynomial-time computability and computer science. Nerode began with automata theory and has also taken a keen interest in the history of mathematics. All these areas are represented. The one area missing is Nerode's applied mathematica...
Rethinking logic logic in relation to mathematics, evolution, and method
Cellucci, Carlo
2014-01-01
This book examines the limitations of mathematical logic and proposes a new approach intended to overcome them. Formulates new rules of discovery, such as induction, analogy, generalization, specialization, metaphor, metonymy, definition and diagrams.
The conditional in quantum logic
International Nuclear Information System (INIS)
Hardegree, G.M.
1976-01-01
In this article it is argued that orthodox quantum logic, which is represented by the lattice of projections on Hilbert space, does in fact admit an operation which possesses the essential properties of a material conditional. It is proposed that this connective can be interpreted as a Stalnaker (counter factual) conditional, where the nearness ordering among 'worlds' (in this case, QM pure states) derives in a natural way from the Hilbert space inner-product metric. It is a characteristic of the quantum logic conditional that the law of modus ponens is equivalent to the orthomodular law of conventional quantum logic. (B.R.H.)
Handling Pressures of Community Logic
DEFF Research Database (Denmark)
Minbaeva, Dana; Hotho, Jasper; Muratbekova-Touron, Maral
2013-01-01
The paper aims at investigating how in pluralistic societies, such as emerging economies and countries in transition, organizational decision-makers respond to pressures of community logics in non-community settings, such as the work place. We theorize that in non-community settings, social...... relations and interactions with community members can act as social cues that induce and expose individuals to community logics. We subsequently propose that properties of these relations – immediacy and relatedness - will affect individual response strategies towards community logics. We test these ideas...... with an experimental vignette study of the effects of clan and kinship ties on recruitment and selection decisions in Kazakhstan, followed by qualitative interviews....
Miniaturization of Josephson logic circuits
International Nuclear Information System (INIS)
Ko, H.; Van Duzer, T.
1985-01-01
The performances of Current Injection Logic (CIL) and Resistor Coupled Josephson Logic (RCJL) have been evaluated for minimum features sizes ranging from 5 μm to 0.2 μm. The logic delay is limited to about 10 ps for both the CIL AND gate and the RCJL OR gate biased at 70% of maximum bias current. The maximum circuit count on an 6.35 x 6.35 chip is 13,000 for CIL gates and 20,000 for RCJL gates. Some suggestions are given for further improvements
Nanoelectromechanical resonator for logic operations
Kazmi, Syed N. R.
2017-08-29
We report an electro-thermally tunable in-plane doubly-clamped nanoelectromechanical resonator capable of dynamically performing NOR, NOT, XNOR, XOR, and AND logic operations. Toward this, a silicon based resonator is fabricated using standard e-beam lithography and surface nanomachining of a highly conductive device layer of a silicon-on-insulator (SOI) wafer. The performance of this logic device is examined at elevated temperatures, ranging from 25 °C to 85 °C, demonstrating its resilience for most of the logic operations; thereby paving the way towards nano-elements-based mechanical computing.
Formalized Epistemology, Logic, and Grammar
Bitbol, Michel
The task of a formal epistemology is defined. It appears that a formal epistemology must be a generalization of "logic" in the sense of Wittgenstein's Tractatus. The generalization is required because, whereas logic presupposes a strict relation between activity and language, this relation may be broken in some domains of experimental enquiry (e.g., in microscopic physics). However, a formal epistemology should also retain a major feature of Wittgenstein's "logic": It must not be a discourse about scientific knowledge, but rather a way of making manifest the structures usually implicit in knowledge-gaining activity. This strategy is applied to the formalism of quantum mechanics.
2015-01-01
Implementing parallel and multivalued logic operations at the molecular scale has the potential to improve the miniaturization and efficiency of a new generation of nanoscale computing devices. Two-dimensional photon-echo spectroscopy is capable of resolving dynamical pathways on electronic and vibrational molecular states. We experimentally demonstrate the implementation of molecular decision trees, logic operations where all possible values of inputs are processed in parallel and the outputs are read simultaneously, by probing the laser-induced dynamics of populations and coherences in a rhodamine dye mounted on a short DNA duplex. The inputs are provided by the bilinear interactions between the molecule and the laser pulses, and the output values are read from the two-dimensional molecular response at specific frequencies. Our results highlights how ultrafast dynamics between multiple molecular states induced by light–matter interactions can be used as an advantage for performing complex logic operations in parallel, operations that are faster than electrical switching. PMID:25984269
Ultrafast photoinduced structure phase transition in antimony single crystals
Fausti, Daniele; Misochko, Oleg V.; van Loosdrecht, Paul H. M.
2009-01-01
Picosecond Raman scattering is used to study the photoinduced ultrafast dynamics in Peierls distorted antimony. We find evidence for an ultrafast nonthermal reversible structural phase transition. Most surprisingly, we find evidence that this transition evolves toward a lower symmetry in contrast to
Ultrafast electron diffraction studies of optically excited thin bismuth films
International Nuclear Information System (INIS)
Rajkovic, Ivan
2008-01-01
This thesis contains work on the design and the realization of an experimental setup capable of providing sub-picosecond electron pulses for ultrafast electron diffraction experiments, and performing the study of ultrafast dynamics in bismuth after optical excitation using this setup. (orig.)
Generation of ultrafast pulse via combined effects of stimulated
Indian Academy of Sciences (India)
A project of ultrafast pulse generation has been presented and demonstrated by utilizing the combined nonlinear effects of stimulated Raman scattering (SRS) and non-degenerate two-photon absorption (TPA) based on silicon nanophotonic chip, in which a continuous wave (CW) and an ultrafast dark pulse are ...
Ultrafast electron diffraction studies of optically excited thin bismuth films
Energy Technology Data Exchange (ETDEWEB)
Rajkovic, Ivan
2008-10-21
This thesis contains work on the design and the realization of an experimental setup capable of providing sub-picosecond electron pulses for ultrafast electron diffraction experiments, and performing the study of ultrafast dynamics in bismuth after optical excitation using this setup. (orig.)
Decision logics in radiotherapy
International Nuclear Information System (INIS)
Gauwerky, F.
1979-01-01
Decisions in planning procedures can generally, at least for beam therapy to deep seated tumors, be based on a self-consistent system of criteria of optimization, namely: 1. The absorbed dose to the target volume must be applied as uniformly as possible. 2. Absorbed doses to organs (volumes) at risk must be as low as possible, at least below an accepted limit. 3. Radiation effects to outside volumes must be kept as low as possible. Whereas these criteria, as being reduced to the simplest possible requirements, have to be regarded as the stable elements, the radiotherapy parameters, such as geometric arrangements, special techniques, absorbed dose contributions to reference points or systems, have to be taken as the variables within decision processes. The properties of the criteria which have widely proved to be valuable in routine clinical practice, have been investigated in relation to the theoretical system of axioms as it is e.g. offered by Karl Popper's general logics of scientific research. An axiomatic system, as it is demanded (after Popper) must be a) free of discrepancies, i.e. self-consistent (not any sentence can be derived), b) independent, that is, one axiom cannot be derived from another one within the system, c) sufficient for deduction of statements needed, d) necessary, that is complete. All these requirements are fitting also to the offered system of radiotherapy optimization criteria. It has been demonstrated, that Popper's axiomatic system can be regarded as to be the general case for all scientific fields of application, the set of optimization criteria being a special system for radiation therapy, which would have been derivable from Popper's theory. Also practical use could be demonstrated. (orig./ORU) [de
Quantum supports and modal logic
International Nuclear Information System (INIS)
Svetlichny, G.
1986-01-01
Recently Foulis, Piron, and Randall introduced a new interpretation of empirical and quantum logics which substitute for the notion of a probabilistic weight a combinatorial notion called a support. The informal use of the notion of ''possible outcomes of experiments'' suggests that this interpretation can be related to corresponding formal notions as treated by modal logic. The purpose of this paper is to prove that in fact supports are in one-to-one correspondence with the sets of possibly true elementary propositions in Kripke models of a set of modal formulas associated to the empirical or quantum logic. This hopefully provides a sufficiently detailed link between the two rather distinct logical systems to shed useful light on both
Classical Limit and Quantum Logic
Losada, Marcelo; Fortin, Sebastian; Holik, Federico
2018-02-01
The analysis of the classical limit of quantum mechanics usually focuses on the state of the system. The general idea is to explain the disappearance of the interference terms of quantum states appealing to the decoherence process induced by the environment. However, in these approaches it is not explained how the structure of quantum properties becomes classical. In this paper, we consider the classical limit from a different perspective. We consider the set of properties of a quantum system and we study the quantum-to-classical transition of its logical structure. The aim is to open the door to a new study based on dynamical logics, that is, logics that change over time. In particular, we appeal to the notion of hybrid logics to describe semiclassical systems. Moreover, we consider systems with many characteristic decoherence times, whose sublattices of properties become distributive at different times.
Logical Theories for Agent Introspection
DEFF Research Database (Denmark)
Bolander, Thomas
2004-01-01
Artificial intelligence systems (agents) generally have models of the environments they inhabit which they use for representing facts, for reasoning about these facts and for planning actions. Much intelligent behaviour seems to involve an ability to model not only one's external environment...... by self-reference. In the standard approach taken in artificial intelligence, the model that an agent has of its environment is represented as a set of beliefs. These beliefs are expressed as logical formulas within a formal, logical theory. When the logical theory is expressive enough to allow...... introspective reasoning, the presence of self-reference causes the theory to be prone to inconsistency. The challenge therefore becomes to construct logical theories supporting introspective reasoning while at the same time ensuring that consistency is retained. In the thesis, we meet this challenge by devising...
Dependence logic theory and applications
Kontinen, Juha; Väänänen, Jouko; Vollmer, Heribert
2016-01-01
In this volume, different aspects of logics for dependence and independence are discussed, including both the logical and computational aspects of dependence logic, and also applications in a number of areas, such as statistics, social choice theory, databases, and computer security. The contributing authors represent leading experts in this relatively new field, each of whom was invited to write a chapter based on talks given at seminars held at the Schloss Dagstuhl Leibniz Center for Informatics in Wadern, Germany (in February 2013 and June 2015) and an Academy Colloquium at the Royal Netherlands Academy of Arts and Sciences (March 2014). Altogether, these chapters provide the most up-to-date look at this developing and highly interdisciplinary field and will be of interest to a broad group of logicians, mathematicians, statisticians, philosophers, and scientists. Topics covered include a comprehensive survey of many propositional, modal, and first-order variants of dependence logic; new results concerning ...
Nanoelectromechanical resonator for logic operations
Kazmi, Syed N. R.; Hafiz, Md A. Al; Chappanda, Karumbaiah N.; Ilyas, Saad; Holguin, Jorge; Da Costa, Pedro M. F. J.; Younis, Mohammad I.
2017-01-01
We report an electro-thermally tunable in-plane doubly-clamped nanoelectromechanical resonator capable of dynamically performing NOR, NOT, XNOR, XOR, and AND logic operations. Toward this, a silicon based resonator is fabricated using standard e
Empirical logic and quantum mechanics
International Nuclear Information System (INIS)
Foulis, D.J.; Randall, C.H.
1976-01-01
This article discusses some of the basic notions of quantum physics within the more general framework of operational statistics and empirical logic (as developed in Foulis and Randall, 1972, and Randall and Foulis, 1973). Empirical logic is a formal mathematical system in which the notion of an operation is primitive and undefined; all other concepts are rigorously defined in terms of such operations (which are presumed to correspond to actual physical procedures). (Auth.)
Logical operations using phenyl ring
Patra, Moumita; Maiti, Santanu K.
2018-02-01
Exploiting the effects of quantum interference we put forward an idea of designing three primary logic gates, OR, AND and NOT, using a benzene molecule. Under a specific molecule-lead interface geometry, anti-resonant states appear which play the crucial role for AND and NOT operations, while for OR gate no such states are required. Our analysis leads to a possibility of designing logic gates using simple molecular structure which might be significant in the area of molecular electronics.
Observation Predicates in Flow Logic
DEFF Research Database (Denmark)
Nielson, Flemming; Nielson, Hanne Riis; Sun, Hongyan
2003-01-01
in such a way that the hard constraints are satisfi ed exactly when the observation predicates report no violations. The development is carried out in a large fragment of a first order logic with negation and also takes care of the transformations necessary in order to adhere to the stratification restrictions...... inherent in Alternation-free Least Fixed Point Logic and similar formalisms such as Datalog....
Logically automorphically equivalent knowledge bases
Aladova, Elena; Plotkin, Tatjana
2017-01-01
Knowledge bases theory provide an important example of the field where applications of universal algebra and algebraic logic look very natural, and their interaction with practical problems arising in computer science might be very productive. In this paper we study the equivalence problem for knowledge bases. Our interest is to find out how the informational equivalence is related to the logical description of knowledge. Studying various equivalences of knowledge bases allows us to compare d...
Brünnler, Kai; Flumini, Dandolo; Studer, Thomas
2017-01-01
Blockchains are distributed data structures that are used to achieve consensus in systems for cryptocurrencies (like Bitcoin) or smart contracts (like Ethereum). Although blockchains gained a lot of popularity recently, there is no logic-based model for blockchains available. We introduce BCL, a dynamic logic to reason about blockchain updates, and show that BCL is sound and complete with respect to a simple blockchain model.
Logical Reasoning and Decision Making
Ong, D; Khaddaj, Souheil; Bashroush, Rabih
2011-01-01
Most intelligent systems have some form of \\ud decision making mechanisms built into their \\ud organisations. These normally include a logical \\ud reasoning element into their design. This paper reviews \\ud and compares the different logical reasoning strategies, \\ud and tries to address the accuracy and precision of \\ud decision making by formulating a tolerance to \\ud imprecision view which can be used in conjunction with \\ud the various reasoning strategies.
Flow Logics and Operational Semantics
DEFF Research Database (Denmark)
Nielson, Flemming; Nielson, Hanne Riis
1998-01-01
Flow logic is a “fast prototyping” approach to program analysis that shows great promise of being able to deal with a wide variety of languages and calculi for computation. However, seemingly innocent choices in the flow logic as well as in the operational semantics may inhibit proving the analys...... correct. Our main conclusion is that environment based semantics is more flexible than either substitution based semantics or semantics making use of structural congruences (like alpha-renaming)....
Optically controllable molecular logic circuits
International Nuclear Information System (INIS)
Nishimura, Takahiro; Fujii, Ryo; Ogura, Yusuke; Tanida, Jun
2015-01-01
Molecular logic circuits represent a promising technology for observation and manipulation of biological systems at the molecular level. However, the implementation of molecular logic circuits for temporal and programmable operation remains challenging. In this paper, we demonstrate an optically controllable logic circuit that uses fluorescence resonance energy transfer (FRET) for signaling. The FRET-based signaling process is modulated by both molecular and optical inputs. Based on the distance dependence of FRET, the FRET pathways required to execute molecular logic operations are formed on a DNA nanostructure as a circuit based on its molecular inputs. In addition, the FRET pathways on the DNA nanostructure are controlled optically, using photoswitching fluorescent molecules to instruct the execution of the desired operation and the related timings. The behavior of the circuit can thus be controlled using external optical signals. As an example, a molecular logic circuit capable of executing two different logic operations was studied. The circuit contains functional DNAs and a DNA scaffold to construct two FRET routes for executing Input 1 AND Input 2 and Input 1 AND NOT Input 3 operations on molecular inputs. The circuit produced the correct outputs with all possible combinations of the inputs by following the light signals. Moreover, the operation execution timings were controlled based on light irradiation and the circuit responded to time-dependent inputs. The experimental results demonstrate that the circuit changes the output for the required operations following the input of temporal light signals
Application of linear logic to simulation
Clarke, Thomas L.
1998-08-01
Linear logic, since its introduction by Girard in 1987 has proven expressive and powerful. Linear logic has provided natural encodings of Turing machines, Petri nets and other computational models. Linear logic is also capable of naturally modeling resource dependent aspects of reasoning. The distinguishing characteristic of linear logic is that it accounts for resources; two instances of the same variable are considered differently from a single instance. Linear logic thus must obey a form of the linear superposition principle. A proportion can be reasoned with only once, unless a special operator is applied. Informally, linear logic distinguishes two kinds of conjunction, two kinds of disjunction, and also introduces a modal storage operator that explicitly indicates propositions that can be reused. This paper discuses the application of linear logic to simulation. A wide variety of logics have been developed; in addition to classical logic, there are fuzzy logics, affine logics, quantum logics, etc. All of these have found application in simulations of one sort or another. The special characteristics of linear logic and its benefits for simulation will be discussed. Of particular interest is a connection that can be made between linear logic and simulated dynamics by using the concept of Lie algebras and Lie groups. Lie groups provide the connection between the exponential modal storage operators of linear logic and the eigen functions of dynamic differential operators. Particularly suggestive are possible relations between complexity result for linear logic and non-computability results for dynamical systems.
On Structural Completeness of Tabular Superintuitionistic Logics
Citkin, Alexander
2015-01-01
As usual, the superintuitionistic (propositional) logics (that is, logics extending intuitionistic logic) are being studied “modulo derivability”, meaning such logics are viewed extensionally — they are identified with the set of formulae that are valid (derivable in the corresponding calculus) in
Temporal logics and real time expert systems
Blom, J.A.
1996-01-01
This paper introduces temporal logics. Due to the eternal compromise between expressive adequacy and reasoning efficiency that must decided upon in any application, full (first order logic or modal logic based) temporal logics are frequently not suitable. This is especially true in real time expert
Breaking the fault tree circular logic
International Nuclear Information System (INIS)
Lankin, M.
2000-01-01
Event tree - fault tree approach to model failures of nuclear plants as well as of other complex facilities is noticeably dominant now. This approach implies modeling an object in form of unidirectional logical graph - tree, i.e. graph without circular logic. However, genuine nuclear plants intrinsically demonstrate quite a few logical loops (circular logic), especially where electrical systems are involved. This paper shows the incorrectness of existing practice of circular logic breaking by elimination of part of logical dependencies and puts forward a formal algorithm, which enables the analyst to correctly model the failure of complex object, which involves logical dependencies between system and components, in form of fault tree. (author)
Proposal for the Formalization of Dialectical Logic
Directory of Open Access Journals (Sweden)
José Luis Usó-Doménech
2016-12-01
Full Text Available Classical logic is typically concerned with abstract analysis. The problem for a synthetic logic is to transcend and unify available data to reconstruct the object as a totality. Three rules are proposed to pass from classic logic to synthetic logic. We present the category logic of qualitative opposition using examples from various sciences. This logic has been defined to include the neuter as part of qualitative opposition. The application of these rules to qualitative opposition, and, in particular, its neuter, demonstrated that a synthetic logic allows the truth of some contradictions. This synthetic logic is dialectical with a multi-valued logic, which gives every proposition a truth value in the interval [0,1] that is the square of the modulus of a complex number. In this dialectical logic, contradictions of the neuter of an opposition may be true.
Sensors for ultra-fast silicon detectors
Energy Technology Data Exchange (ETDEWEB)
Sadrozinski, H.F.-W., E-mail: hartmut@scipp.ucsc.edu [Santa Cruz Institute for Particle Physics, UC Santa Cruz, Santa Cruz, CA 95064 (United States); Baselga, M.; Ely, S.; Fadeyev, V.; Galloway, Z.; Ngo, J.; Parker, C.; Schumacher, D.; Seiden, A.; Zatserklyaniy, A. [Santa Cruz Institute for Particle Physics, UC Santa Cruz, Santa Cruz, CA 95064 (United States); Cartiglia, N. [INFN Torino, Torino (Italy); Pellegrini, G.; Fernández-Martínez, P.; Greco, V.; Hidalgo, S.; Quirion, D. [Centro Nacional de Microelectrónica, IMB-CNM-CSIC, Barcelona (Spain)
2014-11-21
We report on electrical and charge collection tests of silicon sensors with internal gain as part of our development of ultra-fast silicon detectors. Using C–V and α TCT measurements, we investigate the non-uniform doping profile of so-called low-gain avalanche detectors (LGAD). These are n-on-p pad sensors with charge multiplication due to the presence of a thin, low-resistivity diffusion layer below the junction, obtained with a highly doped implant. We compare the bias dependence of the pulse shapes of traditional sensors and of LGAD sensors with different dopant density of the diffusion layer, and extract the internal gain.
Ultra-fast relaxation kinetics in semiconductors
International Nuclear Information System (INIS)
Luzzi, R.
1983-01-01
It is presented a brief description of relaxation processes in highly excited semiconductor plasmas (HESP). Comparison with experimental data obtained by means of ultra-fast laser light spectroscopy (UFLS) is made. Some aspects of response funtion theory in systems far-from-equilibrium are reviewed in Section II. In Section III we present some comments on the question of nonequilibrium thermodynamics relevant to the problem to be considered. In last section we present a brief summary of the different aspects of the subject. (author) [pt
Ultrafast Optical Signal Processing with Bragg Structures
Directory of Open Access Journals (Sweden)
Yikun Liu
2017-05-01
Full Text Available The phase, amplitude, speed, and polarization, in addition to many other properties of light, can be modulated by photonic Bragg structures. In conjunction with nonlinearity and quantum effects, a variety of ensuing micro- or nano-photonic applications can be realized. This paper reviews various optical phenomena in several exemplary 1D Bragg gratings. Important examples are resonantly absorbing photonic structures, chirped Bragg grating, and cholesteric liquid crystals; their unique operation capabilities and key issues are considered in detail. These Bragg structures are expected to be used in wide-spread applications involving light field modulations, especially in the rapidly advancing field of ultrafast optical signal processing.
Sensors for ultra-fast silicon detectors
International Nuclear Information System (INIS)
Sadrozinski, H.F.-W.; Baselga, M.; Ely, S.; Fadeyev, V.; Galloway, Z.; Ngo, J.; Parker, C.; Schumacher, D.; Seiden, A.; Zatserklyaniy, A.; Cartiglia, N.; Pellegrini, G.; Fernández-Martínez, P.; Greco, V.; Hidalgo, S.; Quirion, D.
2014-01-01
We report on electrical and charge collection tests of silicon sensors with internal gain as part of our development of ultra-fast silicon detectors. Using C–V and α TCT measurements, we investigate the non-uniform doping profile of so-called low-gain avalanche detectors (LGAD). These are n-on-p pad sensors with charge multiplication due to the presence of a thin, low-resistivity diffusion layer below the junction, obtained with a highly doped implant. We compare the bias dependence of the pulse shapes of traditional sensors and of LGAD sensors with different dopant density of the diffusion layer, and extract the internal gain
Femtosecond laser studies of ultrafast intramolecular processes
Energy Technology Data Exchange (ETDEWEB)
Hayden, C. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
The goal of this research is to better understand the detailed mechanisms of chemical reactions by observing, directly in time, the dynamics of fundamental chemical processes. In this work femtosecond laser pulses are used to initiate chemical processes and follow the progress of these processes in time. The authors are currently studying ultrafast internal conversion and subsequent intramolecular relaxation in unsaturated hydrocarbons. In addition, the authors are developing nonlinear optical techniques to prepare and monitor the time evolution of specific vibrational motions in ground electronic state molecules.
Imacon 600 ultrafast streak camera evaluation
International Nuclear Information System (INIS)
Owen, T.C.; Coleman, L.W.
1975-01-01
The Imacon 600 has a number of designed in disadvantages for use as an ultrafast diagnostic instrument. The unit is physically large (approximately 5' long) and uses an external power supply rack for the image intensifier. Water cooling is required for the intensifier; it is quiet but not conducive to portability. There is no interlock on the cooling water. The camera does have several switch selectable sweep speeds. This is desirable if one is working with both slow and fast events. The camera can be run in a framing mode. (MOW)
Ultra-fast relaxation kinetics in semiconductors
International Nuclear Information System (INIS)
Luzzi, R.
1983-01-01
It is presented a brief description of relaxation processes in highly excited semiconductor plasmas (HESP). Comparison with experimental data obtained by means of ultra-fast laser light spectroscopy (UFLS) is made. Some aspects of response function theory in systems far-from-equilibrium are reviewed in Section II. In Section III some comments on the question of nonequilibrium thermodynamics relevant to the problem to be considered are presented. In last Section a brief summary of the different aspects of the subject is also presented. (Author) [pt
A Resolution Prover for Coalition Logic
Nalon, Cláudia; Zhang, Lan; Dixon, Clare; Hustadt, Ullrich
2014-01-01
We present a prototype tool for automated reasoning for Coalition Logic, a non-normal modal logic that can be used for reasoning about cooperative agency. The theorem prover CLProver is based on recent work on a resolution-based calculus for Coalition Logic that operates on coalition problems, a normal form for Coalition Logic. We provide an overview of coalition problems and of the resolution-based calculus for Coalition Logic. We then give details of the implementation of CLProver and prese...
A vindication of logical necessity against scepticism
Philie, Patrice
2002-01-01
Some philosophers dispute the claim that there is a notion of logical necessity involved in the concept of logical consequence. They are sceptical about logical necessity. They argue that a proper characterisation of logical consequence - of what follows from what - need not and should not appeal to the notion of necessity at all. Quine is the most prominent philosopher holding such a view. In this doctoral dissertation, I argue that scepticism about logical necessity is not successful. Quine...
A new hierarchy of infinitary logics in abstract algebraic logic
Czech Academy of Sciences Publication Activity Database
Lávička, Tomáš; Noguera, Carles
2017-01-01
Roč. 105, č. 3 (2017), s. 521-551 ISSN 0039-3215 R&D Projects: GA ČR GA13-14654S EU Projects: European Commission(XE) 689176 - SYSMICS Institutional support: RVO:67985556 ; RVO:67985807 Keywords : Abstract algebraic logic * consequence relations * infinitary logics * completeness properties Subject RIV: BA - General Mathematics; BA - General Mathematics (UIVT-O) OBOR OECD: Pure mathematics; Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) (UIVT-O) Impact factor: 0.589, year: 2016 http://library.utia.cas.cz/separaty/2017/MTR/noguera-0469118.pdf
Fuzzy logic of Aristotelian forms
Energy Technology Data Exchange (ETDEWEB)
Perlovsky, L.I. [Nichols Research Corp., Lexington, MA (United States)
1996-12-31
Model-based approaches to pattern recognition and machine vision have been proposed to overcome the exorbitant training requirements of earlier computational paradigms. However, uncertainties in data were found to lead to a combinatorial explosion of the computational complexity. This issue is related here to the roles of a priori knowledge vs. adaptive learning. What is the a-priori knowledge representation that supports learning? I introduce Modeling Field Theory (MFT), a model-based neural network whose adaptive learning is based on a priori models. These models combine deterministic, fuzzy, and statistical aspects to account for a priori knowledge, its fuzzy nature, and data uncertainties. In the process of learning, a priori fuzzy concepts converge to crisp or probabilistic concepts. The MFT is a convergent dynamical system of only linear computational complexity. Fuzzy logic turns out to be essential for reducing the combinatorial complexity to linear one. I will discuss the relationship of the new computational paradigm to two theories due to Aristotle: theory of Forms and logic. While theory of Forms argued that the mind cannot be based on ready-made a priori concepts, Aristotelian logic operated with just such concepts. I discuss an interpretation of MFT suggesting that its fuzzy logic, combining a-priority and adaptivity, implements Aristotelian theory of Forms (theory of mind). Thus, 2300 years after Aristotle, a logic is developed suitable for his theory of mind.
Strategies and logics of internationalization
Directory of Open Access Journals (Sweden)
Mahjouba Ben Salem
2013-07-01
Full Text Available The race between firms to acquire capacities worldwide has evolved in a chronological order which centered at first around products, then around position to move later on to skills and to focus currently on networks. Similarly, when observing the evolution of the different international development strategies, it was found out that they have started by the exportation and the setting up of production subsidiaries to move more recently to such strategies as mergers & acquisitions and international alliances. The present paper investigates the relationship between the internationalization strategies and logics and comes to the conclusion that, a particular logic is behind every choice made. Indeed, the present work was conducted within the Tunisian food enterprises and helped confirm this hypothesis as it was found out that the position logic is behind the choice of exportation and the creation of production subsidiaries while the choice of partnership is based on the logic of skills. The option for merger, on the other hand, is motivated by the networks logic.
Directory of Open Access Journals (Sweden)
Iryna Khomenko
2018-04-01
Full Text Available The challenges of the global time require new solutions and up-to-date ways of thinking and communication. These challenges call for the ability to use critical thinking to face the ever-changing world and the ability to maintain a dialog based on the effective skills of communication. Studies in the fields of logic and argumentation theory are of particular importance in this regard. Nowadays they can be presented as a mix of theoretical and practical approaches. In this paper, I will present my reflections on informal logic, which was formed in the late 1970s. Unfortunately, in spite of numerous papers, books, and text-books published over the last forty years, consensus on many issues in this field has not been achieved so far. Therefore, it is difficult to treat informal logic as one of the well-defined approaches to argumentation. The goal of this paper is to take a look at the place of informal logic in state-of-the art study of argumentation by clarifying its subject matter and figuring out the realm to which informal logic belongs.
Ultrafast Microscopy of Energy and Charge Transport
Huang, Libai
The frontier in solar energy research now lies in learning how to integrate functional entities across multiple length scales to create optimal devices. Advancing the field requires transformative experimental tools that probe energy transfer processes from the nano to the meso lengthscales. To address this challenge, we aim to understand multi-scale energy transport across both multiple length and time scales, coupling simultaneous high spatial, structural, and temporal resolution. In my talk, I will focus on our recent progress on visualization of exciton and charge transport in solar energy harvesting materials from the nano to mesoscale employing ultrafast optical nanoscopy. With approaches that combine spatial and temporal resolutions, we have recently revealed a new singlet-mediated triplet transport mechanism in certain singlet fission materials. This work demonstrates a new triplet exciton transport mechanism leading to favorable long-range triplet exciton diffusion on the picosecond and nanosecond timescales for solar cell applications. We have also performed a direct measurement of carrier transport in space and in time by mapping carrier density with simultaneous ultrafast time resolution and 50 nm spatial precision in perovskite thin films using transient absorption microscopy. These results directly visualize long-range carrier transport of 220nm in 2 ns for solution-processed polycrystalline CH3NH3PbI3 thin films. The spatially and temporally resolved measurements reported here underscore the importance of the local morphology and establish an important first step towards discerning the underlying transport properties of perovskite materials.
A US Based Ultrafast Interdisciplinary Research Facility
Gueye, Paul; Hill, Wendell; Johnson, Anthony
2006-10-01
The US scientific competitiveness on the world arena has substantially decreased due to the lack of funding and training of qualified personnel. Most of the potential workforce found in higher education is composed of foreign students and post-docs. In the specific field of low- and high-field science, the European and Asian communities are rapidly catching-up with the US, even leading in some areas. To remain the leader in ultrafast science and technology, new visions and commitment must be embraced. For that reason, an international effort of more than 70 countries for a US-based interdisciplinary research facility using ultrafast laser technology is under development. It will provide research and educational training, as well as new venues for a strong collaboration between the fields of astrophysics, nuclear/high energy physics, plasma physics, optical sciences, biological and medical physics. This facility will consist of a uniquely designed high contrast multi-lines concept housing twenty experimental rooms shared between four beams:[0.1 TW, 1 kHz], [10 TW, 9 kHz], [100-200 TW, 10 Hz] and [500 TW, 10 Hz]. The detail schematic of this multi-laser system, foreseen research and educational programs, and organizational structure of this facility will be presented.
Logical foundation of quantum mechanics
International Nuclear Information System (INIS)
Stachow, E.W.
1980-01-01
The subject of this article is the reconstruction of quantum mechanics on the basis of a formal language of quantum mechanical propositions. During recent years, research in the foundations of the language of science has given rise to a dialogic semantics that is adequate in the case of a formal language for quantum physics. The system of sequential logic which is comprised by the language is more general than classical logic; it includes the classical system as a special case. Although the system of sequential logic can be founded without reference to the empirical content of quantum physical propositions, it establishes an essential part of the structure of the mathematical formalism used in quantum mechanics. It is the purpose of this paper to demonstrate the connection between the formal language of quantum physics and its representation by mathematical structures in a self-contained way. (author)
Coinductive Logic Programming with Negation
Min, Richard; Gupta, Gopal
We introduce negation into coinductive logic programming (co-LP) via what we term Coinductive SLDNF (co-SLDNF) resolution. We present declarative and operational semantics of co-SLDNF resolution and present their equivalence under the restriction of rationality. Co-LP with co-SLDNF resolution provides a powerful, practical and efficient operational semantics for Fitting's Kripke-Kleene three-valued logic with restriction of rationality. Further, applications of co-SLDNF resolution are also discussed and illustrated where Co-SLDNF resolution allows one to develop elegant implementations of modal logics. Moreover it provides the capability of non-monotonic inference (e.g., predicate Answer Set Programming) that can be used to develop novel and effective first-order modal non-monotonic inference engines.
Logic, probability, and human reasoning.
Johnson-Laird, P N; Khemlani, Sangeet S; Goodwin, Geoffrey P
2015-04-01
This review addresses the long-standing puzzle of how logic and probability fit together in human reasoning. Many cognitive scientists argue that conventional logic cannot underlie deductions, because it never requires valid conclusions to be withdrawn - not even if they are false; it treats conditional assertions implausibly; and it yields many vapid, although valid, conclusions. A new paradigm of probability logic allows conclusions to be withdrawn and treats conditionals more plausibly, although it does not address the problem of vapidity. The theory of mental models solves all of these problems. It explains how people reason about probabilities and postulates that the machinery for reasoning is itself probabilistic. Recent investigations accordingly suggest a way to integrate probability and deduction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Optimization and practical implementation of ultrafast 2D NMR experiments
Energy Technology Data Exchange (ETDEWEB)
Queiroz Junior, Luiz H. K., E-mail: professorkeng@gmail.com [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Universidade Federal de Goias (UFGO), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Giraudeau, Patrick [Universite de Nantes (France). CNRS, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation
2013-09-01
Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively. (author)
Classical Syllogisms in Logic Teaching
DEFF Research Database (Denmark)
Øhrstrøm, Peter; Sandborg-Petersen, Ulrik; Thorvaldsen, Steinar
2013-01-01
This paper focuses on the challenges of introducing classical syllogisms in university courses in elementary logic and human reasoning. Using a program written in Prolog+CG, some empirical studies have been carried out involving three groups of students in Denmark; one group of philosophy students...... have a tendency correctly to assess valid syllogisms as such more often than correctly assessing invalid syllogisms as such. It is also investigated to what extent the students have improved their skills in practical reasoning by attending the logic courses. Finally, some open questions regarding...
The logical foundations of mathematics
Hatcher, William S
1981-01-01
The Logical Foundations of Mathematics offers a study of the foundations of mathematics, stressing comparisons between and critical analyses of the major non-constructive foundational systems. The position of constructivism within the spectrum of foundational philosophies is discussed, along with the exact relationship between topos theory and set theory.Comprised of eight chapters, this book begins with an introduction to first-order logic. In particular, two complete systems of axioms and rules for the first-order predicate calculus are given, one for efficiency in proving metatheorems, and
Symmetric normalisation for intuitionistic logic
DEFF Research Database (Denmark)
Guenot, Nicolas; Straßburger, Lutz
2014-01-01
We present two proof systems for implication-only intuitionistic logic in the calculus of structures. The first is a direct adaptation of the standard sequent calculus to the deep inference setting, and we describe a procedure for cut elimination, similar to the one from the sequent calculus......, but using a non-local rewriting. The second system is the symmetric completion of the first, as normally given in deep inference for logics with a DeMorgan duality: all inference rules have duals, as cut is dual to the identity axiom. We prove a generalisation of cut elimination, that we call symmetric...
Sequential logic analysis and synthesis
Cavanagh, Joseph
2007-01-01
Until now, there was no single resource for actual digital system design. Using both basic and advanced concepts, Sequential Logic: Analysis and Synthesis offers a thorough exposition of the analysis and synthesis of both synchronous and asynchronous sequential machines. With 25 years of experience in designing computing equipment, the author stresses the practical design of state machines. He clearly delineates each step of the structured and rigorous design principles that can be applied to practical applications. The book begins by reviewing the analysis of combinatorial logic and Boolean a
An exercise in 'anhomomorphic logic'
International Nuclear Information System (INIS)
Sorkin, Rafael D
2007-01-01
A classical logic exhibits a threefold inner structure comprising an algebra of propositions U, a space of 'truth values' V, and a distinguished family of mappings φ from propositions to truth values. Classically U is a Boolean algebra, V = Z 2 , and the admissible maps φ: U Z 2 are homomorphisms. If one admits a larger set of maps, one obtains an anhomomorphic logic that seems better suited to quantal reality (and the needs of quantum gravity). I explain these ideas and illustrate them with three simple examples
Logic programming and metadata specifications
Lopez, Antonio M., Jr.; Saacks, Marguerite E.
1992-01-01
Artificial intelligence (AI) ideas and techniques are critical to the development of intelligent information systems that will be used to collect, manipulate, and retrieve the vast amounts of space data produced by 'Missions to Planet Earth.' Natural language processing, inference, and expert systems are at the core of this space application of AI. This paper presents logic programming as an AI tool that can support inference (the ability to draw conclusions from a set of complicated and interrelated facts). It reports on the use of logic programming in the study of metadata specifications for a small problem domain of airborne sensors, and the dataset characteristics and pointers that are needed for data access.
Design and experimentation of BSFQ logic devices
International Nuclear Information System (INIS)
Hosoki, T.; Kodaka, H.; Kitagawa, M.; Okabe, Y.
1999-01-01
Rapid single flux quantum (RSFQ) logic needs synchronous pulses for each gate, so the clock-wiring problem is more serious when designing larger scale circuits with this logic. So we have proposed a new SFQ logic which follows Boolean algebra perfectly by using set and reset pulses. With this logic, the level information of current input is transmitted with these pulses generated by level-to-pulse converters, and each gate calculates logic using its phase level made by these pulses. Therefore, our logic needs no clock in each gate. We called this logic 'Boolean SFQ (BSFQ) logic'. In this paper, we report design and experimentation for an AND gate with inverting input based on BSFQ logic. The experimental results for OR and XOR gates are also reported. (author)
Logical space and the origins of pluralism in logic
Czech Academy of Sciences Publication Activity Database
Arazim, Pavel
-, č. 2 (2017), s. 7-26 ISSN 0567-8293 R&D Projects: GA ČR(CZ) GA17-15645S Institutional support: RVO:67985955 Keywords : pluralism * expressivism * logical space * geometry * holism Subject RIV: AA - Philosophy ; Religion OBOR OECD: Philosophy, History and Philosophy of science and technology
Implicational (semilinear) logics III: completeness properties
Czech Academy of Sciences Publication Activity Database
Cintula, Petr; Noguera, Carles
2018-01-01
Roč. 57, 3-4 (2018), s. 391-420 ISSN 0933-5846 R&D Projects: GA ČR GA13-14654S EU Projects: European Commission(XE) 689176 - SYSMICS Institutional support: RVO:67985807 ; RVO:67985556 Keywords : abstract algebraic logic * protoalgebraic logics * implicational logics * disjunctional logics * semilinear logics * non-classical logics * completeness theorems * rational completeness Subject RIV: BA - General Mathematics; BA - General Mathematics (UTIA-B) OBOR OECD: Computer science s, information science , bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 0.394, year: 2016
International Nuclear Information System (INIS)
Kawashima, Hideo.
1977-01-01
A fast-slow logic system has been made for use in multi-detector experiments in nuclear physics such as particle-gamma and particle-particle coincidence experiments. The system consists of a fast logic system and a slow logic system. The fast logic system has a function of fast coincidences and provides timing signals for the slow logic system. The slow logic system has a function of slow coincidences and a routing control of input analog signals to the ADCs. (auth.)
Microelectromechanical resonator based digital logic elements
Hafiz, Md Abdullah Al
2016-10-20
Micro/nano-electromechanical resonator based mechanical computing has recently attracted significant attention. However, its full realization has been hindered by the difficulty in realizing complex combinational logics, in which the logic function is constructed by cascading multiple smaller logic blocks. In this work we report an alternative approach for implementation of digital logic core elements, multiplexer and demultiplexer, which can be used to realize combinational logic circuits by suitable concatenation. Toward this, shallow arch shaped microresonators are electrically connected and their resonance frequencies are tuned based on an electrothermal frequency modulation scheme. This study demonstrates that by reconfiguring the same basic building block, the arch microresonator, complex logic circuits can be realized.
Aspects and modular reasoning in nonmonotonic logic
DEFF Research Database (Denmark)
Ostermann, Klaus
2008-01-01
Nonmonotonic logic is a branch of logic that has been developed to model situations with incomplete information. We argue that there is a connection between AOP and nonmonotonic logic which deserves further study. As a concrete technical contribution and "appetizer", we outline an AO semantics de...... defined in default logic (a form of nonmonotonic logic), propose a definition of modular reasoning, and show that the default logic version of the language semantics admits modular reasoning whereas a conventional language semantics based on weaving does not....
Implicational (semilinear) logics III: completeness properties
Czech Academy of Sciences Publication Activity Database
Cintula, Petr; Noguera, Carles
2018-01-01
Roč. 57, 3-4 (2018), s. 391-420 ISSN 0933-5846 R&D Projects: GA ČR GA13-14654S EU Projects: European Commission(XE) 689176 - SYSMICS Institutional support: RVO:67985807 ; RVO:67985556 Keywords : abstract algebraic logic * protoalgebraic logics * implicational logics * disjunctional logics * semilinear logics * non-classical logics * completeness theorems * rational completeness Subject RIV: BA - General Mathematics; BA - General Mathematics (UTIA-B) OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 0.394, year: 2016
Microelectromechanical resonator based digital logic elements
Hafiz, Md Abdullah Al; Kosuru, Lakshmoji; Younis, Mohammad I.; Fariborzi, Hossein
2016-01-01
Micro/nano-electromechanical resonator based mechanical computing has recently attracted significant attention. However, its full realization has been hindered by the difficulty in realizing complex combinational logics, in which the logic function is constructed by cascading multiple smaller logic blocks. In this work we report an alternative approach for implementation of digital logic core elements, multiplexer and demultiplexer, which can be used to realize combinational logic circuits by suitable concatenation. Toward this, shallow arch shaped microresonators are electrically connected and their resonance frequencies are tuned based on an electrothermal frequency modulation scheme. This study demonstrates that by reconfiguring the same basic building block, the arch microresonator, complex logic circuits can be realized.
The Ultrafast Wolff Rearrangement in the Gas Phase
Steinbacher, Andreas; Roeding, Sebastian; Brixner, Tobias; Nuernberger, Patrick
The Wolff rearrangement of gas-phase 5-diazo Meldrum's acid is disclosed with femtosecond ion spectroscopy. Distinct differences are found for 267 nm and 200 nm excitation, the latter leading to even two ultrafast rearrangement reactions.
Ultrafast Plasmonic Electron Emission from Ag Nanolayers with Different Roughness
Czech Academy of Sciences Publication Activity Database
Márton, I.; Ayadi, V.; Rácz, P.; Stefaniuk, T.; Wróbel, Piotr; Földi, P.; Dombi, P.
2016-01-01
Roč. 11, č. 3 (2016), s. 811-816 ISSN 1557-1955 Institutional support: RVO:67985882 Keywords : Nanoparticles * Ultrafast phenomena * Electron emission Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.139, year: 2016
Ultrafast dynamic ellipsometry and spectroscopies of laser shocked materials
Energy Technology Data Exchange (ETDEWEB)
Mcgrane, Shawn David [Los Alamos National Laboratory; Bolme, Cindy B [Los Alamos National Laboratory; Whitley, Von H [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory
2010-01-01
Ultrafast ellipsometry and transient absorption spectroscopies are used to measure material dynamics under extreme conditions of temperature, pressure, and volumetric compression induced by shock wave loading with a chirped, spectrally clipped shock drive pulse.
Direct Characterization of Ultrafast Energy-Time Entangled Photon Pairs.
MacLean, Jean-Philippe W; Donohue, John M; Resch, Kevin J
2018-02-02
Energy-time entangled photons are critical in many quantum optical phenomena and have emerged as important elements in quantum information protocols. Entanglement in this degree of freedom often manifests itself on ultrafast time scales, making it very difficult to detect, whether one employs direct or interferometric techniques, as photon-counting detectors have insufficient time resolution. Here, we implement ultrafast photon counters based on nonlinear interactions and strong femtosecond laser pulses to probe energy-time entanglement in this important regime. Using this technique and single-photon spectrometers, we characterize all the spectral and temporal correlations of two entangled photons with femtosecond resolution. This enables the witnessing of energy-time entanglement using uncertainty relations and the direct observation of nonlocal dispersion cancellation on ultrafast time scales. These techniques are essential to understand and control the energy-time degree of freedom of light for ultrafast quantum optics.
Probabilistic Logic and Probabilistic Networks
Haenni, R.; Romeijn, J.-W.; Wheeler, G.; Williamson, J.
2009-01-01
While in principle probabilistic logics might be applied to solve a range of problems, in practice they are rarely applied at present. This is perhaps because they seem disparate, complicated, and computationally intractable. However, we shall argue in this programmatic paper that several approaches
Phonotactics in inductive logic programming
Nerbonne, J.; Konstantopoulos, S.; Klopotek, M.A.; Wierzchon, S.T.; Trojanowski, K.
2004-01-01
We examine the results of applying inductive logic programming (ILP) to a relatively simple linguistic task, that of recognizing monosyllables in one language. ILP is suited to linguistic problems given linguists' preference for formulating their theories in discrete rules, and because of ILP's
Logics of communication and change
van Benthem, Johan; van Eijck, Jan; Kooi, Barteld
2006-01-01
Current dynamic epistemic logics for analyzing effects of informational events often become cumbersome and opaque when common knowledge is added for groups of agents. Still, postconditions involving common knowledge are essential to successful multi-agent communication. We propose new systems that
Generic physical protection logic trees
International Nuclear Information System (INIS)
Paulus, W.K.
1981-10-01
Generic physical protection logic trees, designed for application to nuclear facilities and materials, are presented together with a method of qualitative evaluation of the trees for design and analysis of physical protection systems. One or more defense zones are defined where adversaries interact with the physical protection system. Logic trees that are needed to describe the possible scenarios within a defense zone are selected. Elements of a postulated or existing physical protection system are tagged to the primary events of the logic tree. The likelihood of adversary success in overcoming these elements is evaluated on a binary, yes/no basis. The effect of these evaluations is propagated through the logic of each tree to determine whether the adversary is likely to accomplish the end event of the tree. The physical protection system must be highly likely to overcome the adversary before he accomplishes his objective. The evaluation must be conducted for all significant states of the site. Deficiencies uncovered become inputs to redesign and further analysis, closing the loop on the design/analysis cycle
Generic physical protection logic trees
Energy Technology Data Exchange (ETDEWEB)
Paulus, W.K.
1981-10-01
Generic physical protection logic trees, designed for application to nuclear facilities and materials, are presented together with a method of qualitative evaluation of the trees for design and analysis of physical protection systems. One or more defense zones are defined where adversaries interact with the physical protection system. Logic trees that are needed to describe the possible scenarios within a defense zone are selected. Elements of a postulated or existing physical protection system are tagged to the primary events of the logic tree. The likelihood of adversary success in overcoming these elements is evaluated on a binary, yes/no basis. The effect of these evaluations is propagated through the logic of each tree to determine whether the adversary is likely to accomplish the end event of the tree. The physical protection system must be highly likely to overcome the adversary before he accomplishes his objective. The evaluation must be conducted for all significant states of the site. Deficiencies uncovered become inputs to redesign and further analysis, closing the loop on the design/analysis cycle.
Hamkins, J.D.; Löwe, B.
2008-01-01
A set theoretical assertion psi is forceable or possible, written lozenge psi, if psi holds in some forcing extension, and necessary, written square psi, if psi holds in all forcing extensions. In this forcing interpretation of modal logic, we establish that if ZFC is consistent, then the
Logical Entity Level Sentiment Analysis
DEFF Research Database (Denmark)
Petersen, Niklas Christoffer; Villadsen, Jørgen
2017-01-01
We present a formal logical approach using a combinatory categorial grammar for entity level sentiment analysis that utilizes machine learning techniques for efficient syntactical tagging and performs a deep structural analysis of the syntactical properties of texts in order to yield precise resu...
Ultrafast characterization of optoelectronic devices and systems
Zheng, Xuemei
The recent fast growth in high-speed electronics and optoelectronics has placed demanding requirements on testing tools. Electro-optic (EO) sampling is a well-established technique for characterization of high-speed electronic and optoelectronic devices and circuits. However, with the progress in device miniaturization, lower power consumption (smaller signal), and higher throughput (higher clock rate), EO sampling also needs to be updated, accordingly, towards better signal-to-noise ratio (SNR) and sensitivity, without speed sacrifice. In this thesis, a novel EO sampler with a single-crystal organic 4-dimethylamino-N-methy-4-stilbazolium tosylate (DAST) as the EO sensor is developed. The system exhibits sub-picosecond temporal resolution, sub-millivolt sensitivity, and a 10-fold improvement on SNR, compared with its LiTaO3 counterpart. The success is attributed to the very high EO coefficient, the very low dielectric constant, and the fast response, coming from the major contribution of the pi-electrons in DAST. With the advance of ultrafast laser technology, low-noise and compact femtosecond fiber lasers have come to maturation and become light-source options for ultrafast metrology systems. We have successfully integrated a femtosecond erbium-doped-fiber laser into an EO sampler, making the system compact and very reliable. The fact that EO sampling is essentially an impulse-response measurement process, requires integration of ultrashort (sub-picosecond) impulse generation network with the device under test. We have implemented a reliable lift-off and transfer technique in order to obtain epitaxial-quality freestanding low-temperature-grown GaAs (LT-GaAs) thin-film photo-switches, which can be integrated with many substrates. The photoresponse of our freestanding LT-GaAs devices was thoroughly characterized with the help of our EO sampler. As fast as 360 fs full-width-at-half-maximum (FWHM) and >1 V electrical pulses were obtained, with quantum efficiency
Ultrafast demagnetisation dependence on film thickness: A TDDFT calculation
Singh, N.; Sharma, S.
2018-04-01
Ferromagnetic materials when subjected to intense laser pulses leads to reduction of their magnetisation on an ultrafast scale. Here, we perform an ab-initio calculation to study the behavior of ultrafast demagnetisation as a function of film thickness for Nickel as compared to the bulk of the material. In thin films surface formation results in amplification of demagnetisation with the percentage of demagnetisation depending upon the film thickness.
Ultrafast optical signal processing using semiconductor quantum dot amplifiers
DEFF Research Database (Denmark)
Berg, Tommy Winther; Mørk, Jesper
2002-01-01
The linear and nonlinear properties of quantum dot amplifiers are discussed on the basis of an extensive theoretical model. These devices show great potential for linear amplification as well as ultrafast signal processing.......The linear and nonlinear properties of quantum dot amplifiers are discussed on the basis of an extensive theoretical model. These devices show great potential for linear amplification as well as ultrafast signal processing....
Tissue strain rate estimator using ultrafast IQ complex data
TERNIFI , Redouane; Elkateb Hachemi , Melouka; Remenieras , Jean-Pierre
2012-01-01
International audience; Pulsatile motion of brain parenchyma results from cardiac and breathing cycles. In this study, transient motion of brain tissue was estimated using an Aixplorer® imaging system allowing an ultrafast 2D acquisition mode. The strain was computed directly from the ultrafast IQ complex data using the extended autocorrelation strain estimator (EASE), which provides great SNRs regardless of depth. The EASE first evaluates the autocorrelation function at each depth over a set...
FUZZY LOGIC IN LEGAL EDUCATION
Directory of Open Access Journals (Sweden)
Z. Gonul BALKIR
2011-04-01
Full Text Available The necessity of examination of every case within its peculiar conditions in social sciences requires different approaches complying with the spirit and nature of social sciences. Multiple realities require different and various perceptual interpretations. In modern world and social sciences, interpretation of perception of valued and multi-valued have been started to be understood by the principles of fuzziness and fuzzy logic. Having the verbally expressible degrees of truthness such as true, very true, rather true, etc. fuzzy logic provides the opportunity for the interpretation of especially complex and rather vague set of information by flexibility or equivalence of the variables’ of fuzzy limitations. The methods and principles of fuzzy logic can be benefited in examination of the methodological problems of law, especially in the applications of filling the legal loopholes arising from the ambiguities and interpretation problems in order to understand the legal rules in a more comprehensible and applicable way and the efficiency of legal implications. On the other hand, fuzzy logic can be used as a technical legal method in legal education and especially in legal case studies and legal practice applications in order to provide the perception of law as a value and the more comprehensive and more quality perception and interpretation of value of justice, which is the core value of law. In the perception of what happened as it has happened in legal relationships and formations, the understanding of social reality and sociological legal rules with multi valued sense perspective and the their applications in accordance with the fuzzy logic’s methods could create more equivalent and just results. It can be useful for the young lawyers and law students as a facilitating legal method especially in the materialization of the perception and interpretation of multi valued and variables. Using methods and principles of fuzzy logic in legal
Two-dimensional materials for ultrafast lasers
International Nuclear Information System (INIS)
Wang Fengqiu
2017-01-01
As the fundamental optical properties and novel photophysics of graphene and related two-dimensional (2D) crystals are being extensively investigated and revealed, a range of potential applications in optical and optoelectronic devices have been proposed and demonstrated. Of the many possibilities, the use of 2D materials as broadband, cost-effective and versatile ultrafast optical switches (or saturable absorbers) for short-pulsed lasers constitutes a rapidly developing field with not only a good number of publications, but also a promising prospect for commercial exploitation. This review primarily focuses on the recent development of pulsed lasers based on several representative 2D materials. The comparative advantages of these materials are discussed, and challenges to practical exploitation, which represent good future directions of research, are laid out. (paper)
Ultrafast Synaptic Events in a Chalcogenide Memristor
Li, Yi; Zhong, Yingpeng; Xu, Lei; Zhang, Jinjian; Xu, Xiaohua; Sun, Huajun; Miao, Xiangshui
2013-04-01
Compact and power-efficient plastic electronic synapses are of fundamental importance to overcoming the bottlenecks of developing a neuromorphic chip. Memristor is a strong contender among the various electronic synapses in existence today. However, the speeds of synaptic events are relatively slow in most attempts at emulating synapses due to the material-related mechanism. Here we revealed the intrinsic memristance of stoichiometric crystalline Ge2Sb2Te5 that originates from the charge trapping and releasing by the defects. The device resistance states, representing synaptic weights, were precisely modulated by 30 ns potentiating/depressing electrical pulses. We demonstrated four spike-timing-dependent plasticity (STDP) forms by applying programmed pre- and postsynaptic spiking pulse pairs in different time windows ranging from 50 ms down to 500 ns, the latter of which is 105 times faster than the speed of STDP in human brain. This study provides new opportunities for building ultrafast neuromorphic computing systems and surpassing Von Neumann architecture.
Laser-driven ultrafast antiproton beam
Li, Shun; Pei, Zhikun; Shen, Baifei; Xu, Jiancai; Zhang, Lingang; Zhang, Xiaomei; Xu, Tongjun; Yu, Yong; Bu, Zhigang
2018-02-01
Antiproton beam generation is investigated based on the ultra-intense femtosecond laser pulse by using two-dimensional particle-in-cell and Geant4 simulations. A high-flux proton beam with an energy of tens of GeV is generated in sequential radiation pressure and bubble regime and then shoots into a high-Z target for producing antiprotons. Both yield and energy of the antiproton beam increase almost linearly with the laser intensity. The generated antiproton beam has a short pulse duration of about 5 ps and its flux reaches 2 × 10 20 s - 1 at the laser intensity of 2.14 × 10 23 W / cm 2 . Compared to conventional methods, this new method based on the ultra-intense laser pulse is able to provide a compact, tunable, and ultrafast antiproton source, which is potentially useful for quark-gluon plasma study, all-optical antihydrogen generation, and so on.
Ultrafast strain engineering in complex oxide heterostructures
Energy Technology Data Exchange (ETDEWEB)
Popovich, Paul; Caviglia, Andrea; Hu, Wanzheng; Bromberger, Hubertus; Singla, Rashmi; Mitrano, Matteo; Hoffmann, Matthias C.; Kaiser, Stefan; Foerst, Michael [Max-Planck Research Group for Structural Dynamics - Center for Free Electron Laser Science, University of Hamburg (Germany); Scherwitzl, Raoul; Zubko, Pavlo; Gariglio, Sergio; Triscone, Jean-Marc [Departement de Physique de la Matiere Condensee, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneve 4, Geneva (Switzerland); Cavalleri, Andrea [Max-Planck Research Group for Structural Dynamics - Center for Free Electron Laser Science, University of Hamburg (Germany); Department of Physics, Clarendon Laboratory, University of Oxford (United Kingdom)
2012-07-01
The mechanical coupling between the substrate and the thin film is expected to be effective on the ultrafast timescale, and could be exploited for the dynamic control of materials properties. Here, we demonstrate that a large-amplitude mid-infrared field, made resonant with a stretching mode of the substrate, can switch the electronic properties of a thin film across an interface. Exploiting dynamic strain propagation between different components of a heterostructure, insulating antiferromagnetic NdNiO{sub 3} is driven through a prompt, five-order-of-magnitude increase of the electrical conductivity, with resonant frequency and susceptibility that is controlled by choice of the substrate material. Vibrational phase control, extended here to a wide class of heterostructures and interfaces, may be conductive to new strategies for electronic phase control at THz repetition rates.
Ultrafast photoconductor detector-laser-diode transmitter
International Nuclear Information System (INIS)
Wang, C.L.; Davis, B.A.; Davies, T.J.; Nelson, M.A.; Thomas, M.C.; Zagarino, P.A.
1987-01-01
We report the results of an experiment in which we used an ultrafast, photoconductive, radiation detector to drive a fast laser-diode transmitter. When we irradiated the neutron-damaged Cr-doped GaAs detector with 17-MeV electron beams, the temporal response was measured to be less than 30 ps. The pulses from this detector modulated a fast GaAlAs laser diode to transmit the laser output through 30- and 1100-m optical fibers. Preliminary results indicate that 50- and 80-ps time resolutions, respectively, are obtainable with these fibers. We are now working to integrate the photoconductive detector and the laser diode transmitter into a single chip
Ultrafast photoconductive detector-laser-diode transmitter
International Nuclear Information System (INIS)
Wang, C.L.; Davies, T.J.; Nelson, M.A.; Thomas, M.C.; Zagarino, P.A.; Davis, B.A.
1987-01-01
The authors report the results of an experiment in which they used an ultrafast, photoconductive, radiation detector to drive a fast laser-diode transmitter. When they irradiated the neutron-damaged Cr-doped Ga/As detector with 17-MeV electron beams, the temporal response of was measured to be less than 30 ps. The pulses from this detector modulated a fast GaAlAs laser diode to transmit the laser output through 30- and 1100-m optical fibers. Preliminary results indicate that 50- and 80-ps time resolutions, respectively, are obtainable with these fibers. They are now working to integrate the photoconductive detector and the laser diode transmitter into a single chip
Logical and mathematical structures of quantum mechanics
International Nuclear Information System (INIS)
Beltrametti, E.G.; Cassinelli, G.
1976-01-01
The logic associated with a physical system is first analysed, and the general properties of observable and states are discussed. The logic of the Hilbert-space formulation of quantum mechanics and of pure, ideal measurements is described
A superposition principle in quantum logics
International Nuclear Information System (INIS)
Pulmannova, S.
1976-01-01
A new definition of the superposition principle in quantum logics is given which enables us to define the sectors. It is shown that the superposition principle holds only in the irreducible quantum logics. (orig.) [de
A Current Logical Framework: The Propositional Fragment
National Research Council Canada - National Science Library
Watkins, Kevin
2003-01-01
We present the propositional fragment CLF of the Concurrent Logical Framework (CLF). CLF extends the Linear Logical Framework to allow the natural representation of concurrent computations in an object language...
Mathematical logic foundations for information science
Li, Wei
2010-01-01
This book presents the basic principles and formal calculus of mathematical logic. It covers core contents, extensions and developments of classical mathematical logic, and it offers formal proofs and concrete examples for all theoretical results.
Logic functions and equations examples and exercises
Steinbach, Bernd
2009-01-01
With a free, downloadable software package available to help solve the exercises, this book focuses on practical and relevant problems that arise in the field of binary logics, with its two main applications - digital circuit design, and propositional logics.
Semantic foundation for preferential description logics
CSIR Research Space (South Africa)
Britz, K
2011-12-01
Full Text Available Description logics are a well-established family of knowledge representation formalisms in Artificial Intelligence. Enriching description logics with non-monotonic reasoning capabilities, especially preferential reasoning as developed by Lehmann...
Towards practical defeasible reasoning for description logics
CSIR Research Space (South Africa)
Casini, G
2013-07-01
Full Text Available The formalisation of defeasible reasoning in automated systems is becoming increasingly important. Description Logics (DLs) are nowadays the main logical formalism in the field of formal ontologies. Our focus in this paper is to devise a practical...
Ultrafast pulse lasers jump to macro applications
Griebel, Martin; Lutze, Walter; Scheller, Torsten
2016-03-01
Ultrafast Lasers have been proven for several micro applications, e.g. stent cutting, for many years. Within its development of applications Jenoptik has started to use ultrafast lasers in macro applications in the automotive industry. The JenLas D2.fs-lasers with power output control via AOM is an ideal tool for closed loop controlled material processing. Jenoptik enhanced his well established sensor controlled laser weakening process for airbag covers to a new level. The patented process enables new materials using this kind of technology. One of the most sensitive cover materials is genuine leather. As a natural product it is extremely inhomogeneous and sensitive for any type of thermal load. The combination of femtosecond pulse ablation and closed loop control by multiple sensor array opens the door to a new quality level of defined weakening. Due to the fact, that the beam is directed by scanning equipment the process can be split in multiple cycles additionally reducing the local energy input. The development used the 5W model as well as the latest 10W release of JenLas D2.fs and achieved amazing processing speeds which directly fulfilled the requirements of the automotive industry. Having in mind that the average cycle time of automotive processes is about 60s, trials had been done of processing weakening lines in genuine leather of 1.2mm thickness. Parameters had been about 15 cycles with 300mm/s respectively resulting in an average speed of 20mm/s and a cycle time even below 60s. First samples had already given into functional and aging tests and passed successfully.
A Logical Characterisation of Static Equivalence
DEFF Research Database (Denmark)
Hüttel, Hans; Pedersen, Michael D.
2007-01-01
-order logic for frames with quantification over environment knowledge which, under certain general conditions, characterizes static equivalence and is amenable to construction of characteristic formulae. The logic can be used to reason about environment knowledge and can be adapted to a particular application...... by defining a suitable signature and associated equational theory. The logic can furthermore be extended with modalities to yield a modal logic for e.g. the Applied Pi calculus....
BIO Logical Agents: Norms, Beliefs, Intentions in Defeasible Logic
Governatori, Guido; Rotolo, Antonino
2007-01-01
In this paper we follow the BOID (Belief, Obligation, Intention, Desire) architecture to describe agents and agent types in Defeasible Logic. We argue, in particular, that the introduction of obligations can provide a new reading of the concepts of intention and intentionality. Then we examine the notion of social agent (i.e., an agent where obligations prevail over intentions) and discuss some computational and philosophical issues related to it. We show th...
Proof systems for Moss’ coalgebraic logic
Bílková, M.; Palmigiano, A.; Venema, Y.
2014-01-01
We study Gentzen-style proof theory of the finitary version of the coalgebraic logic introduced by L. Moss. The logic captures the behaviour of coalgebras for a large class of set functors. The syntax of the logic, defined uniformly with respect to a finitary coalgebraic type functor T , uses a
The Dynamic Turn in Quantum Logic
Baltag, A.; Smets, S.
2012-01-01
In this paper we show how ideas coming from two areas of research in logic can reinforce each other. The first such line of inquiry concerns the "dynamic turn" in logic and especially the formalisms inspired by Propositional Dynamic Logic (PDL); while the second line concerns research into the
Quantum team logic and Bell's inequalities
Hyttinen, T.; Paolini, G.; Väänänen, J.
2015-01-01
A logical approach to Bell’s Inequalities of quantum mechanics has been introduced by Abramsky and Hardy (Abramsky & Hardy, 2012). We point out that the logical Bell’s Inequalities of Abramsky & Hardy (2012) are provable in the probability logic of Fagin, Halpern and Megiddo (Fagin et al., 1990).
The dynamic turn in quantum logic
Baltag, Alexandru; Smets, Sonja
In this paper we show how ideas coming from two areas of research in logic can reinforce each other. The first such line of inquiry concerns the "dynamic turn" in logic and especially the formalisms inspired by Propositional Dynamic Logic (PDL); while the second line concerns research into the
Translating Dominant Institutional Logics in Practice
DEFF Research Database (Denmark)
Agger Nielsen, Jeppe; Jensen, Tina Blegind
In this paper we examine the proliferation of a new mobile technology in a structured setting of home care in Denmark, focusing on how actions at multiple levels interact to enable technology diffusion and institutionalization. The case study shows how a dominating field level logic...... that combining an institutional logic perspective with a translation perspective furthers our understanding of the malleability of institutional logics....
An Adequate First Order Logic of Intervals
DEFF Research Database (Denmark)
Chaochen, Zhou; Hansen, Michael Reichhardt
1998-01-01
This paper introduces left and right neighbourhoods as primitive interval modalities to define other unary and binary modalities of intervals in a first order logic with interval length. A complete first order logic for the neighbourhood modalities is presented. It is demonstrated how the logic can...... support formal specification and verification of liveness and fairness, and also of various notions of real analysis....
Piaget's Logic of Meanings: Still Relevant Today
Wavering, Michael James
2011-01-01
In his last book, "Toward a Logic of Meanings" (Piaget & Garcia, 1991), Jean Piaget describes how thought can be categorized into a form of propositional logic, a logic of meanings. The intent of this article is to offer this analysis by Piaget as a means to understand the language and teaching of science. Using binary propositions, conjunctions,…
Dialogues as a dynamic framework for logic
Rückert, Helge
2007-01-01
Dialogical logic is a game-theoretical approach to logic. Logic is studied with the help of certain games, which can be thought of as idealized argumentations. Two players, the Proponent, who puts forward the initial thesis and tries to defend it, and the Opponent, who tries to attack the
Petri Nets as Models of Linear Logic
DEFF Research Database (Denmark)
Engberg, Uffe Henrik; Winskel, Glynn
1990-01-01
The chief purpose of this paper is to appraise the feasibility of Girad's linear logic as a specification language for parallel processes. To this end we propose an interpretation of linear logic in Petri nets, with respect to which we investigate the expressive power of the logic...
Hybrid Logical Analyses of the Ambient Calculus
DEFF Research Database (Denmark)
Bolander, Thomas; Hansen, Rene Rydhof
2010-01-01
In this paper, hybrid logic is used to formulate three control flow analyses for Mobile Ambients, a process calculus designed for modelling mobility. We show that hybrid logic is very well-suited to express the semantic structure of the ambient calculus and how features of hybrid logic can...
Mathematical Fuzzy Logic - State of Art 2001
Czech Academy of Sciences Publication Activity Database
Hájek, Petr
2003-01-01
Roč. 24, - (2003), s. 71-89 ISSN 0103-9059. [WOLLIC'2001. Brasília, 31.07.2001-03.08.2001] R&D Projects: GA MŠk LN00A056 Keywords : fuzzy logic * many valued logic * basic fuzzy logic BL Subject RIV: BA - General Mathematics http://www.mat.unb.br/~matcont/24_4.pdf
Venema, Y.
This contribution gives a short introduction to arrow logic. We start by explaining the basic idea underlying arrow logic and the motivation for studying it (sections 1 and 2) We discuss some elementary duality theory between arrow logic and the algebraic theory of binary relations (section 3).
Logics of Business Education for Sustainability
Andersson, Pernilla; Öhman, Johan
2016-01-01
This paper explores various kinds of logics of "business education for sustainability" and how these "logics" position the subject business person, based on eight teachers' reasoning of their own practices. The concept of logics developed within a discourse theoretical framework is employed to analyse the teachers' reasoning.…
General Logic-Systems and Consequence Operators
Herrmann, Robert A.
2005-01-01
In this paper, general logic-systems are investigated. It is shown that there are infinitely many finite consequence operators defined on a fixed language L that cannot be generated from a finite logic-system. It is shown that a set map is a finite consequence operator iff it is defined by a general logic-system.
Against All Odds: When Logic Meets Probability
van Benthem, J.; Katoen, J.-P.; Langerak, R.; Rensink, A.
2017-01-01
This paper is a light walk along interfaces between logic and probability, triggered by a chance encounter with Ed Brinksma. It is not a research paper, or a literature survey, but a pointer to issues. I discuss both direct combinations of logic and probability and structured ways in which logic can
Applications of Logic Coverage Criteria and Logic Mutation to Software Testing
Kaminski, Garrett K.
2011-01-01
Logic is an important component of software. Thus, software logic testing has enjoyed significant research over a period of decades, with renewed interest in the last several years. One approach to detecting logic faults is to create and execute tests that satisfy logic coverage criteria. Another approach to detecting faults is to perform mutation…
Nanowire NMOS Logic Inverter Characterization.
Hashim, Yasir
2016-06-01
This study is the first to demonstrate characteristics optimization of nanowire N-Channel Metal Oxide Semiconductor (NW-MOS) logic inverter. Noise margins and inflection voltage of transfer characteristics are used as limiting factors in this optimization. A computer-based model used to produce static characteristics of NW-NMOS logic inverter. In this research two circuit configuration of NW-NMOS inverter was studied, in first NW-NMOS circuit, the noise margin for (low input-high output) condition was very low. For second NMOS circuit gives excellent noise margins, and results indicate that optimization depends on applied voltage to the inverter. Increasing gate to source voltage with (2/1) nanowires ratio results better noise margins. Increasing of applied DC load transistor voltage tends to increasing in decreasing noise margins; decreasing this voltage will improve noise margins significantly.
Programming Games for Logical Thinking
Directory of Open Access Journals (Sweden)
H. Tsalapatas
2013-03-01
Full Text Available Analytical thinking is a transversal skill that helps learners synthesize knowledge across subject areas; from mathematics, science, and technology to critical reading, critical examination, and evaluation of lessons. While most would not doubt the importance of analytical capacity in academic settings and its growing demand for the skill in professional environments, school curricula do not comprehensively address its development. As a result, the responsibility for structuring related learning activities falls to teachers. This work examines learning paradigms that can be integrated into mathematics and science school education for developing logical thinking through game-based exercises based on programming. The proposed learning design promotes structured algorithmic mindsets, is based on inclusive universal logic present in all cultures, and promotes constructivism educational approaches encouraging learners to drive knowledge building by composing past and emerging experiences.
An Embedded Reconfigurable Logic Module
Tucker, Jerry H.; Klenke, Robert H.; Shams, Qamar A. (Technical Monitor)
2002-01-01
A Miniature Embedded Reconfigurable Computer and Logic (MERCAL) module has been developed and verified. MERCAL was designed to be a general-purpose, universal module that that can provide significant hardware and software resources to meet the requirements of many of today's complex embedded applications. This is accomplished in the MERCAL module by combining a sub credit card size PC in a DIMM form factor with a XILINX Spartan I1 FPGA. The PC has the ability to download program files to the FPGA to configure it for different hardware functions and to transfer data to and from the FPGA via the PC's ISA bus during run time. The MERCAL module combines, in a compact package, the computational power of a 133 MHz PC with up to 150,000 gate equivalents of digital logic that can be reconfigured by software. The general architecture and functionality of the MERCAL hardware and system software are described.
The Relevance of Hegel's Logic
Directory of Open Access Journals (Sweden)
John W Burbidge
2007-12-01
Full Text Available Hegel defines his Logic as the science that thinks about thinking.nbsp; But when we interpret that work as outlining what happens when we reason we are vulnerable to Fregersquo;s charge of psychologism.nbsp; I use Hegelrsquo;s tripartite distinction among understanding, dialectical and speculative reason as operations of pure thought to suggest how thinking can work with objective concepts.nbsp; In the last analysis, however, our ability to move from the subjective contingency of representations and ideas to the pure concepts we think develops from mechanical memory, which separates sign from sense so hat we can focus simply on the latter.nbsp; By becoming aware of the connections that underlie our thinking processes we may be able to both move beyond the abstractions of symbolic logic and clarify what informal logicians call relevance.
Contextual Validity in Hybrid Logic
DEFF Research Database (Denmark)
Blackburn, Patrick Rowan; Jørgensen, Klaus Frovin
2013-01-01
interpretations. Moreover, such indexicals give rise to a special kind of validity—contextual validity—that interacts with ordinary logi- cal validity in interesting and often unexpected ways. In this paper we model these interactions by combining standard techniques from hybrid logic with insights from the work...... of Hans Kamp and David Kaplan. We introduce a simple proof rule, which we call the Kamp Rule, and first we show that it is all we need to take us from logical validities involving now to contextual validities involving now too. We then go on to show that this deductive bridge is strong enough to carry us...... to contextual validities involving yesterday, today and tomorrow as well....
Fuzzy Versions of Epistemic and Deontic Logic
Gounder, Ramasamy S.; Esterline, Albert C.
1998-01-01
Epistemic and deontic logics are modal logics, respectively, of knowledge and of the normative concepts of obligation, permission, and prohibition. Epistemic logic is useful in formalizing systems of communicating processes and knowledge and belief in AI (Artificial Intelligence). Deontic logic is useful in computer science wherever we must distinguish between actual and ideal behavior, as in fault tolerance and database integrity constraints. We here discuss fuzzy versions of these logics. In the crisp versions, various axioms correspond to various properties of the structures used in defining the semantics of the logics. Thus, any axiomatic theory will be characterized not only by its axioms but also by the set of properties holding of the corresponding semantic structures. Fuzzy logic does not proceed with axiomatic systems, but fuzzy versions of the semantic properties exist and can be shown to correspond to some of the axioms for the crisp systems in special ways that support dependency networks among assertions in a modal domain. This in turn allows one to implement truth maintenance systems. For the technical development of epistemic logic, and for that of deontic logic. To our knowledge, we are the first to address fuzzy epistemic and fuzzy deontic logic explicitly and to consider the different systems and semantic properties available. We give the syntax and semantics of epistemic logic and discuss the correspondence between axioms of epistemic logic and properties of semantic structures. The same topics are covered for deontic logic. Fuzzy epistemic and fuzzy deontic logic discusses the relationship between axioms and semantic properties for these logics. Our results can be exploited in truth maintenance systems.
The PLC: a logical development
Walker, Mark; Bissell, Christopher; Monk, John
2010-01-01
Programmable Logic Controllers (PLCs) have been used to control industrial processes and equipment for over 40 years, having their first commercially recognised application in 1969. Since then there have been enormous changes in the design and application of PLCs, yet developments were evolutionary rather than radical. The flexibility of the PLC does not confine it to industrial use and it has been used for disparate non-industrial control applications . This article reviews the history, deve...
Logic Learning in Hopfield Networks
Sathasivam, Saratha; Abdullah, Wan Ahmad Tajuddin Wan
2008-01-01
Synaptic weights for neurons in logic programming can be calculated either by using Hebbian learning or by Wan Abdullah's method. In other words, Hebbian learning for governing events corresponding to some respective program clauses is equivalent with learning using Wan Abdullah's method for the same respective program clauses. In this paper we will evaluate experimentally the equivalence between these two types of learning through computer simulations.
Admissible Rules of Lukasiewicz Logic
Czech Academy of Sciences Publication Activity Database
Jeřábek, Emil
2010-01-01
Roč. 20, č. 2 (2010), s. 425-447 ISSN 0955-792X R&D Projects: GA AV ČR IAA900090703; GA AV ČR IAA100190902; GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10190503 Keywords : linear temporal logic * unification * consecutions Subject RIV: BA - General Mathematics Impact factor: 0.586, year: 2010 http://logcom.oxfordjournals.org/content/20/2/425
Session Types in Abelian Logic
Directory of Open Access Journals (Sweden)
Yoichi Hirai
2013-12-01
Full Text Available There was a PhD student who says "I found a pair of wooden shoes. I put a coin in the left and a key in the right. Next morning, I found those objects in the opposite shoes." We do not claim existence of such shoes, but propose a similar programming abstraction in the context of typed lambda calculi. The result, which we call the Amida calculus, extends Abramsky's linear lambda calculus LF and characterizes Abelian logic.
Is special relativity logically inconsistent
International Nuclear Information System (INIS)
Prokhovnik, S.J.
1980-01-01
The author gives his view that Special Relativity is logically and mathematically consistent, as well as physically comprehensible if, and only if, it is firmly based on the single assumption of a unique fundamental reference frame for light propagation. The theory and all its results are derivable from this assumption; the Relativity and Light Principles become intelligible consequences of this assumption; the physical significance and source of time dilation and length contraction are made manifest thereby. (Auth.)
Cosmic logic: a computational model
International Nuclear Information System (INIS)
Vanchurin, Vitaly
2016-01-01
We initiate a formal study of logical inferences in context of the measure problem in cosmology or what we call cosmic logic. We describe a simple computational model of cosmic logic suitable for analysis of, for example, discretized cosmological systems. The construction is based on a particular model of computation, developed by Alan Turing, with cosmic observers (CO), cosmic measures (CM) and cosmic symmetries (CS) described by Turing machines. CO machines always start with a blank tape and CM machines take CO's Turing number (also known as description number or Gödel number) as input and output the corresponding probability. Similarly, CS machines take CO's Turing number as input, but output either one if the CO machines are in the same equivalence class or zero otherwise. We argue that CS machines are more fundamental than CM machines and, thus, should be used as building blocks in constructing CM machines. We prove the non-computability of a CS machine which discriminates between two classes of CO machines: mortal that halts in finite time and immortal that runs forever. In context of eternal inflation this result implies that it is impossible to construct CM machines to compute probabilities on the set of all CO machines using cut-off prescriptions. The cut-off measures can still be used if the set is reduced to include only machines which halt after a finite and predetermined number of steps
Hybrid Logic and its Proof-Theory
Brauner, Torben
2011-01-01
This is the first book-length treatment of hybrid logic and its proof-theory. Hybrid logic is an extension of ordinary modal logic which allows explicit reference to individual points in a model (where the points represent times, possible worlds, states in a computer, or something else). This is useful for many applications, for example when reasoning about time one often wants to formulate a series of statements about what happens at specific times. There is little consensus about proof-theory for ordinary modal logic. Many modal-logical proof systems lack important properties and the relatio
A Resolution Prover for Coalition Logic
Directory of Open Access Journals (Sweden)
Cláudia Nalon
2014-04-01
Full Text Available We present a prototype tool for automated reasoning for Coalition Logic, a non-normal modal logic that can be used for reasoning about cooperative agency. The theorem prover CLProver is based on recent work on a resolution-based calculus for Coalition Logic that operates on coalition problems, a normal form for Coalition Logic. We provide an overview of coalition problems and of the resolution-based calculus for Coalition Logic. We then give details of the implementation of CLProver and present the results for a comparison with an existing tableau-based solver.
All-optical symmetric ternary logic gate
Chattopadhyay, Tanay
2010-09-01
Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.
Logic and discrete mathematics a concise introduction
Conradie, Willem
2015-01-01
A concise yet rigorous introduction to logic and discrete mathematics. This book features a unique combination of comprehensive coverage of logic with a solid exposition of the most important fields of discrete mathematics, presenting material that has been tested and refined by the authors in university courses taught over more than a decade. The chapters on logic - propositional and first-order - provide a robust toolkit for logical reasoning, emphasizing the conceptual understanding of the language and the semantics of classical logic as well as practical applications through the easy
Logical design for computers and control
Dodd, Kenneth N
1972-01-01
Logical Design for Computers and Control Logical Design for Computers and Control gives an introduction to the concepts and principles, applications, and advancements in the field of control logic. The text covers topics such as logic elements; high and low logic; kinds of flip-flops; binary counting and arithmetic; and Boolean algebra, Boolean laws, and De Morgan's theorem. Also covered are topics such as electrostatics and atomic theory; the integrated circuit and simple control systems; the conversion of analog to digital systems; and computer applications and control. The book is recommend
Asynchronous Operators of Sequential Logic Venjunction & Sequention
Vasyukevich, Vadim
2011-01-01
This book is dedicated to new mathematical instruments assigned for logical modeling of the memory of digital devices. The case in point is logic-dynamical operation named venjunction and venjunctive function as well as sequention and sequentional function. Venjunction and sequention operate within the framework of sequential logic. In a form of the corresponding equations, they organically fit analytical expressions of Boolean algebra. Thus, a sort of symbiosis is formed using elements of asynchronous sequential logic on the one hand and combinational logic on the other hand. So, asynchronous
Harvey, E.; Pochet, M.; Schmidt, J.; Locke, T.; Naderi, N.; Usechak, N. G.
2013-03-01
This work investigates the implementation of all-optical logic gates based on optical injection locking (OIL). All-optical inverting, NOR, and NAND gates are experimentally demonstrated using two distributed feedback (DFB) lasers, a multi-mode Fabry-Perot laser diode, and an optical band-pass filter. The DFB lasers are externally modulated to represent logic inputs into the cavity of the multi-mode Fabry-Perot slave laser. The input DFB (master) lasers' wavelengths are aligned with the longitudinal modes of the Fabry-Perot slave laser and their optical power is used to modulate the injection conditions in the Fabry-Perot slave laser. The optical band-pass filter is used to select a Fabry- Perot mode that is either suppressed or transmitted given the logic state of the injecting master laser signals. When the input signal(s) is (are) in the on state, injection locking, and thus the suppression of the non-injected Fabry-Perot modes, is induced, yielding a dynamic system that can be used to implement photonic logic functions. Additionally, all-optical photonic processing is achieved using the cavity-mode shift produced in the injected slave laser under external optical injection. The inverting logic case can also be used as a wavelength converter — a key component in advanced wavelength-division multiplexing networks. As a result of this experimental investigation, a more comprehensive understanding of the locking parameters involved in injecting multiple lasers into a multi-mode cavity and the logic transition time is achieved. The performance of optical logic computations and wavelength conversion has the potential for ultrafast operation, limited primarily by the photon decay rate in the slave laser.
MEMS Logic Using Mixed-Frequency Excitation
Ilyas, Saad
2017-06-22
We present multi-function microelectromechanical systems (MEMS) logic device that can perform the fundamental logic gate AND, OR, universal logic gates NAND, NOR, and a tristate logic gate using mixed-frequency excitation. The concept is based on exciting combination resonances due to the mixing of two or more input signals. The device vibrates at two steady states: a high state when the combination resonance is activated and a low state when no resonance is activated. These vibration states are assigned to logical value 1 or 0 to realize the logic gates. Using ac signals to drive the resonator and to execute the logic inputs unifies the input and output wave forms of the logic device, thereby opening the possibility for cascading among logic devices. We found that the energy consumption per cycle of the proposed logic resonator is higher than those of existing technologies. Hence, integration of such logic devices to build complex computational system needs to take into consideration lowering the total energy consumption. [2017-0041
Introduction to fuzzy logic using Matlab
Sivanandam, SN; Deepa, S N
2006-01-01
Fuzzy Logic, at present is a hot topic, among academicians as well various programmers. This book is provided to give a broad, in-depth overview of the field of Fuzzy Logic. The basic principles of Fuzzy Logic are discussed in detail with various solved examples. The different approaches and solutions to the problems given in the book are well balanced and pertinent to the Fuzzy Logic research projects. The applications of Fuzzy Logic are also dealt to make the readers understand the concept of Fuzzy Logic. The solutions to the problems are programmed using MATLAB 6.0 and the simulated results are given. The MATLAB Fuzzy Logic toolbox is provided for easy reference.
The logic of relations and the logic of management.
Buntinx, W
2008-07-01
Increasing emphasis on financial and administrative control processes is affecting service culture in support organisations for persons with intellectual disability. This phenomenon is currently obvious in Dutch service organisations that find themselves in transition towards more community care and at the same time under pressure from new administrative and funding managerial bureaucracy. As a result, the logic of management is becoming more dominant in direct support settings and risk to overshadow the logic of relationships between staff and clients. The article presents a reflection on this phenomenon, starting from a description of service team characteristics as found in the literature. Next, findings about direct support staff (DSS) continuity are summarised from four Dutch studies. Following up these findings, the concept of 'microsystems' is explored as a possible answer to the organisational challenges demonstrated in the studies. Team characteristics, especially team size and membership continuity for DSS, appear relevant factors for assuring supportive relationships and service quality in direct support teams. The structure of the primary support team shows to be of special interest. The organisational concept of 'microsystems' is explored with respect to transcending the present conflict between bureaucratic managerial pressure and the need for supportive relationships. Service organisations need to create structural conditions for the efficacy of direct support teams in terms of client relationships and relevant client outcomes. At the same time, the need for administrative and control processes can not be denied. The concept of 'microsystems', application of a Quality of Life framework and the use of new instruments, such as the Supports Intensity Scale, can contribute to an organisational solution for the present conflicting logic of relations and management.
Ultrafast Ultrasound Imaging With Cascaded Dual-Polarity Waves.
Zhang, Yang; Guo, Yuexin; Lee, Wei-Ning
2018-04-01
Ultrafast ultrasound imaging using plane or diverging waves, instead of focused beams, has advanced greatly the development of novel ultrasound imaging methods for evaluating tissue functions beyond anatomical information. However, the sonographic signal-to-noise ratio (SNR) of ultrafast imaging remains limited due to the lack of transmission focusing, and thus insufficient acoustic energy delivery. We hereby propose a new ultrafast ultrasound imaging methodology with cascaded dual-polarity waves (CDWs), which consists of a pulse train with positive and negative polarities. A new coding scheme and a corresponding linear decoding process were thereby designed to obtain the recovered signals with increased amplitude, thus increasing the SNR without sacrificing the frame rate. The newly designed CDW ultrafast ultrasound imaging technique achieved higher quality B-mode images than coherent plane-wave compounding (CPWC) and multiplane wave (MW) imaging in a calibration phantom, ex vivo pork belly, and in vivo human back muscle. CDW imaging shows a significant improvement in the SNR (10.71 dB versus CPWC and 7.62 dB versus MW), penetration depth (36.94% versus CPWC and 35.14% versus MW), and contrast ratio in deep regions (5.97 dB versus CPWC and 5.05 dB versus MW) without compromising other image quality metrics, such as spatial resolution and frame rate. The enhanced image qualities and ultrafast frame rates offered by CDW imaging beget great potential for various novel imaging applications.
Progress in ultrafast laser processing and future prospects
Sugioka, Koji
2017-03-01
The unique characteristics of ultrafast lasers have rapidly revolutionized materials processing after their first demonstration in 1987. The ultrashort pulse width of the laser suppresses heat diffusion to the surroundings of the processed region, which minimizes the formation of a heat-affected zone and thereby enables ultrahigh precision micro- and nanofabrication of various materials. In addition, the extremely high peak intensity can induce nonlinear multiphoton absorption, which extends the diversity of materials that can be processed to transparent materials such as glass. Nonlinear multiphoton absorption enables three-dimensional (3D) micro- and nanofabrication by irradiation with tightly focused femtosecond laser pulses inside transparent materials. Thus, ultrafast lasers are currently widely used for both fundamental research and practical applications. This review presents progress in ultrafast laser processing, including micromachining, surface micro- and nanostructuring, nanoablation, and 3D and volume processing. Advanced technologies that promise to enhance the performance of ultrafast laser processing, such as hybrid additive and subtractive processing, and shaped beam processing are discussed. Commercial and industrial applications of ultrafast laser processing are also introduced. Finally, future prospects of the technology are given with a summary.
Pulse coded safety logic for PFBR
International Nuclear Information System (INIS)
Anwer, Md. Najam; Satheesh, N.; Nagaraj, C.P.; Krishnakumar, B.
2002-01-01
Full text: Reactor safety logic is designed to initiate safety action against design basis events. The reactor is shutdown by de-energizing electromagnets and dropping the absorber rods under gravity. In prototype fast breeder reactor (PFBR), shutdown is affected by two independent shutdown systems, viz., control and safety rod drive mechanism (CSRDM) and diverse safety rod drive mechanism (DSRDM). Two separate safety logics are proposed for CSRDM and DSRDM, i.e. solid state logic with on-line fine impulse test (FIT) for CSRDM and pulse coded safety logic (PCSL) for DSRDM. The PCSL primarily utilizes the fact that the vast majority of faults in the logic circuitry result in static conditions at the output. It is arranged such that the presence of pulses are required to hold the shutdown actuators and any DC logic state, either logic 0 or logic 1 releases them. It is a dynamic, self-testing logic and used in a number of reactors. This paper describes the principle of operation of PCSL, its advantages, the concept of guard line logic (GLL), detection of stuck at 0 and stuck at 1 faults, fail safe and diversity features. The implementation of PCSL using Altera Max+Plus II software for PFBR trip signals and the results of simulation are discussed. This paper also describes a test jig using 80186 based system for testing PCSL for various input parameter's combinations and monitoring the outputs
Ultrafast Electron Dynamics in Solar Energy Conversion.
Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy
2017-08-23
Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.
Impact system for ultrafast synchrotron experiments
International Nuclear Information System (INIS)
Jensen, B. J.; Owens, C. T.; Ramos, K. J.; Yeager, J. D.; Saavedra, R. A.; Luo, S. N.; Hooks, D. E.; Iverson, A. J.; Fezzaa, K.
2013-01-01
The impact system for ultrafast synchrotron experiments, or IMPULSE, is a 12.6-mm bore light-gas gun (<1 km/s projectile velocity) designed specifically for performing dynamic compression experiments using the advanced imaging and X-ray diffraction methods available at synchrotron sources. The gun system, capable of reaching projectile velocities up to 1 km/s, was designed to be portable for quick insertion/removal in the experimental hutch at Sector 32 ID-B of the Advanced Photon Source (Argonne, IL) while allowing the target chamber to rotate for sample alignment with the beam. A key challenge in using the gun system to acquire dynamic data on the nanosecond time scale was synchronization (or bracketing) of the impact event with the incident X-ray pulses (80 ps width). A description of the basic gun system used in previous work is provided along with details of an improved launch initiation system designed to significantly reduce the total system time from launch initiation to impact. Experiments were performed to directly measure the gun system time and to determine the gun performance curve for projectile velocities ranging from 0.3 to 0.9 km/s. All results show an average system time of 21.6 ± 4.5 ms, making it possible to better synchronize the gun system and detectors to the X-ray beam.
PTL: A Propositional Typicality Logic
CSIR Research Space (South Africa)
Booth, R
2012-09-01
Full Text Available consequence relations first studied by Lehmann and col- leagues in the 90?s play a central role in nonmonotonic reasoning [13, 14]. This has been the case due to at least three main reasons. Firstly, they are based on semantic constructions that are elegant...) j ; 6j : ^ j PTL: A Propositional Typicality Logic 3 The semantics of (propositional) rational consequence is in terms of ranked models. These are partially ordered structures in which the ordering is modular. Definition 1. Given a set S...
Contributions to Logical Database Design
Directory of Open Access Journals (Sweden)
Vitalie COTELEA
2012-01-01
Full Text Available This paper treats the problems arising at the stage of logical database design. It comprises a synthesis of the most common inference models of functional dependencies, deals with the problems of building covers for sets of functional dependencies, makes a synthesizes of normal forms, presents trends regarding normalization algorithms and provides a temporal complexity of those. In addition, it presents a summary of the most known keys’ search algorithms, deals with issues of analysis and testing of relational schemes. It also summarizes and compares the different features of recognition of acyclic database schemas.
CSIR Research Space (South Africa)
Britz, K
2014-07-01
Full Text Available modulo logical equivalence. This result allows us to write ForgetS(K) for the semantically unique result of forgetting all the atoms in S in the knowledge base K. If K is a singleton set, say K = {α}, we write ForgetS(α) as shorthand for Forget...= ∅}. uunionsq This result allows us to write SForgetnS(K) for the (semantically unique) result of selective forgetting any n atoms from S in K. It then follows from Lemma 1 that SForgetnS(K) arises from a tolerance space 〈U , Ω n〉 in which Ωn has a particular...
Empirical logic and tensor products
International Nuclear Information System (INIS)
Foulis, D.J.; Randall, C.H.
1981-01-01
In our work we are developing a formalism called empirical logic to support a generalization of conventional statistics; the resulting generalization is called operational statistics. We are not attempting to develop or advocate any particular physical theory; rather we are formulating a precision 'language' in which such theories can be expressed, compared, evaluated, and related to laboratory experiments. We believe that only in such a language can the connections between real physical procedures (operations) and physical theories be made explicit and perspicuous. (orig./HSI)
Bacon, John B; McCarty, David Charles; Bacon, John B
1999-01-01
First published in the most ambitious international philosophy project for a generation; the Routledge Encyclopedia of Philosophy. Logic from A to Z is a unique glossary of terms used in formal logic and the philosophy of mathematics. Over 500 entries include key terms found in the study of: * Logic: Argument, Turing Machine, Variable * Set and model theory: Isomorphism, Function * Computability theory: Algorithm, Turing Machine * Plus a table of logical symbols. Extensively cross-referenced to help comprehension and add detail, Logic from A to Z provides an indispensable reference source for students of all branches of logic.
Carrier dynamics in graphene. Ultrafast many-particle phenomena
Energy Technology Data Exchange (ETDEWEB)
Malic, E.; Brem, S.; Jago, R. [Department of Physics, Chalmers University of Technology, Goeteborg (Sweden); Winzer, T.; Wendler, F.; Knorr, A. [Institut fuer Theoretische Physik, Technische Universitaet Berlin (Germany); Mittendorff, M.; Koenig-Otto, J.C.; Schneider, H.; Helm, M.; Winnerl, S. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Ploetzing, T.; Neumaier, D. [Advanced Microelectronic Center Aachen, AMO GmbH, Aachen (Germany)
2017-11-15
Graphene is an ideal material to study fundamental Coulomb- and phonon-induced carrier scattering processes. Its remarkable gapless and linear band structure opens up new carrier relaxation channels. In particular, Auger scattering bridging the valence and the conduction band changes the number of charge carriers and gives rise to a significant carrier multiplication - an ultrafast many-particle phenomenon that is promising for the design of highly efficient photodetectors. Furthermore, the vanishing density of states at the Dirac point combined with ultrafast phonon-induced intraband scattering results in an accumulation of carriers and a population inversion suggesting the design of graphene-based terahertz lasers. Here, we review our work on the ultrafast carrier dynamics in graphene and Landau-quantized graphene is presented providing a microscopic view on the appearance of carrier multiplication and population inversion. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
9th International Symposium on Ultrafast Processes in Spectroscopy
Silvestri, S; Denardo, G
1996-01-01
This volume is a collection of papers presented at the Ninth International Symposium on "Ultrafast Processes in Spectroscopy" (UPS '95) held at the International Centre for Theo retical Physics (ICTP), Trieste (Italy), October 30 -November 3, 1995. These meetings have become recognized as the major forum in Europe for discussion of new work in this rapidly moving field. The UPS'95 Conference in Trieste brought together a multidisciplinary group of researchers sharing common interests in the generation of ultrashort optical pulses and their application to studies of ultrafast phenomena in physics, chemistry, material science, electronics, and biology. It was attended by approximately 250 participants from 20 countries and the five-day program comprises more than 200 papers. The progress of both technology and applications in the field of ultrafast processes during these last years is truly remarkable. The advent of all solid state femtosecond lasers and the extension of laser wavelengths by frequency convers...
All-optical temporal integration of ultrafast pulse waveforms.
Park, Yongwoo; Ahn, Tae-Jung; Dai, Yitang; Yao, Jianping; Azaña, José
2008-10-27
An ultrafast all-optical temporal integrator is experimentally demonstrated. The demonstrated integrator is based on a very simple and practical solution only requiring the use of a widely available all-fiber passive component, namely a reflection uniform fiber Bragg grating (FBG). This design allows overcoming the severe speed (bandwidth) limitations of the previously demonstrated photonic integrator designs. We demonstrate temporal integration of a variety of ultrafast optical waveforms, including Gaussian, odd-symmetry Hermite Gaussian, and (odd-)symmetry double pulses, with temporal features as fast as ~6-ps, which is about one order of magnitude faster than in previous photonic integration demonstrations. The developed device is potentially interesting for a multitude of applications in all-optical computing and information processing, ultrahigh-speed optical communications, ultrafast pulse (de-)coding, shaping and metrology.
How Objects Shape Logics in Construction
DEFF Research Database (Denmark)
Tryggestad, Kjell; Georg, Susse
2011-01-01
The notion of institutional logics is a key tenet in institutional theory but few studies have attended to the micro‐foundations of logics. The sociology of associations is used to explore the micro‐foundations of logics, their emergence and temporal–spatial importance. A case study of the constr......The notion of institutional logics is a key tenet in institutional theory but few studies have attended to the micro‐foundations of logics. The sociology of associations is used to explore the micro‐foundations of logics, their emergence and temporal–spatial importance. A case study...... and identities as emergent and contingent outcomes of the material practices of building construction. The argument is concluded by considering the building construction as a materially mediated meaning structure....
Synthesizing biomolecule-based Boolean logic gates.
Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari
2013-02-15
One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, and hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications.
5th World Congress of Paraconsistent Logic
Chakraborty, Mihir; Dutta, Soma
2015-01-01
The present book discusses all aspects of paraconsistent logic, including the latest findings, and its various systems. It includes papers by leading international researchers, which address the subject in many different ways: development of abstract paraconsistent systems and new theorems about them; studies of the connections between these systems and other non-classical logics, such as non-monotonic, many-valued, relevant, paracomplete and fuzzy logics; philosophical interpretations of these constructions; and applications to other sciences, in particular quantum physics and mathematics. Reasoning with contradictions is the challenge of paraconsistent logic. The book will be of interest to graduate students and researchers working in mathematical logic, computer science, philosophical logic, linguistics and physics.
Molecular processors: from qubits to fuzzy logic.
Gentili, Pier Luigi
2011-03-14
Single molecules or their assemblies are information processing devices. Herein it is demonstrated how it is possible to process different types of logic through molecules. As long as decoherent effects are maintained far away from a pure quantum mechanical system, quantum logic can be processed. If the collapse of superimposed or entangled wavefunctions is unavoidable, molecules can still be used to process either crisp (binary or multi-valued) or fuzzy logic. The way for implementing fuzzy inference engines is declared and it is supported by the examples of molecular fuzzy logic systems devised so far. Fuzzy logic is drawing attention in the field of artificial intelligence, because it models human reasoning quite well. This ability may be due to some structural analogies between a fuzzy logic system and the human nervous system. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesizing Biomolecule-based Boolean Logic Gates
Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari
2012-01-01
One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications. PMID:23526588
A Denotational Semantics for Logic Programming
DEFF Research Database (Denmark)
Frandsen, Gudmund Skovbjerg
A fully abstract denotational semantics for logic programming has not been constructed yet. In this paper we present a denotational semantics that is almost fully abstract. We take the meaning of a logic program to be an element in a Plotkin power domain of substitutions. In this way our result...... shows that standard domain constructions suffice, when giving a semantics for logic programming. Using the well-known fixpoint semantics of logic programming we have to consider two different fixpoints in order to obtain information about both successful and failed computations. In contrast, our...... semantics is uniform in that the (single) meaning of a logic program contains information about both successful, failed and infinite computations. Finally, based on the full abstractness result, we argue that the detail level of substitutions is needed in any denotational semantics for logic programming....
All optical programmable logic array (PLA)
Hiluf, Dawit
2018-03-01
A programmable logic array (PLA) is an integrated circuit (IC) logic device that can be reconfigured to implement various kinds of combinational logic circuits. The device has a number of AND and OR gates which are linked together to give output or further combined with more gates or logic circuits. This work presents the realization of PLAs via the physics of a three level system interacting with light. A programmable logic array is designed such that a number of different logical functions can be combined as a sum-of-product or product-of-sum form. We present an all optical PLAs with the aid of laser light and observables of quantum systems, where encoded information can be considered as memory chip. The dynamics of the physical system is investigated using Lie algebra approach.
Interdisciplinarity, logic of uncertainty and fuzzy logic in primary school
Directory of Open Access Journals (Sweden)
Luciana Delli Rocili
2015-12-01
Full Text Available On the occasion of the 120th anniversary of Mathesis, this work wants to be a memory, a tribute to two great presidents of Mathesis: Bruno de Finetti and Angelo Fadini. Both have pursued the idea of interdisciplinary teaching and research. Bruno de Finetti, with his books on The invention of truth, (1934, and on Logic and Intuitive Mathematics, (1959, and his very famous "Theory of probability", (1970, shows a rejection of formal education, comfortable, monodisciplinary, made of certainties, and chooses the impervious way of addressing the problems that are to the base of science. Angelo Fadini, with his papers and books on Theory of Fuzzy Sets, shows first in Italy several logical questions which puts as the basis for practical applications in Architecture. This paper is an attempt to experiment, in an interdisciplinary framework, the basic ideas of Bruno de Finetti and Angelo Fadini in primary school, in the belief that in the Primary School are formed ideas and intuitions, while in the secondary school the attention is focused mainly on specific issues of Mathematics. We shows some results of a still ongoing experimentation. Interdisciplinarietà, logica dell'incerto e logica sfumata nella scuola primaria In occasione dei 120 anni della Mathesis, questo lavoro vuole essere un ricordo, un omaggio a due grandi Presidenti della Mathesis: Bruno de Finetti e Angelo Fadini. Entrambi hanno portato avanti l’idea della interdisciplinarietà nell’insegnamento e nella ricerca. Bruno de Finetti, con la sua “Matematica Logico Intuitiva” del 1959, e la sua “Teoria delle probabilità”, del 1970, e ancora prima, con “L’invenzione della verità”, del 1934, mostra un rifiuto dell’insegnamento formale, comodo, monodisciplinare, fatto di certezze, e sceglie la strada impervia dell’affrontare i problemi che sono alla base della scienza. Angelo Fadini, con la sua Teoria degli Insiemi Sfocati, mostra per primo in Italia varie questioni
Analogical proportions: another logical view
Prade, Henri; Richard, Gilles
This paper investigates the logical formalization of a restricted form of analogical reasoning based on analogical proportions, i.e. statements of the form a is to b as c is to d. Starting from a naive set theoretic interpretation, we highlight the existence of two noticeable companion proportions: one states that a is to b the converse of what c is to d (reverse analogy), while the other called paralogical proportion expresses that what a and b have in common, c and d have it also. We identify the characteristic postulates of the three types of proportions and examine their consequences from an abstract viewpoint. We further study the properties of the set theoretic interpretation and of the Boolean logic interpretation, and we provide another light on the understanding of the role of permutations in the modeling of the three types of proportions. Finally, we address the use of these proportions as a basis for inference in a propositional setting, and relate it to more general schemes of analogical reasoning. The differences between analogy, reverse-analogy, and paralogy is still emphasized in a three-valued setting, which is also briefly presented.
Logic and its Pragmatic Aspects
Directory of Open Access Journals (Sweden)
Michele Marsonet
2018-03-01
(2 the Platonistic, and (3 the instrumentalistic viewpoints. According to (1 logic is viewed as fundamentally descriptive, and its task is taken to be that of outlining a “theory of reasoning,” i.e. a systematic account of how we humans proceed when reasoning successufully. According to (3, instead, logic’s task is that of constructing rigorous systems codifying not only actual, but also possible instrumentalities for conducting valid inferences, and these would be available (should someone want to avail himself to them for adoption as an organon of reasoning, but no empirical claims are made that anyone has (or will avail himself of this opportunity. The logician devises a tool or instrument for correct reasoning, but does not concern himself about the uses of this instrument. Philosophy and logic cannot be linked so closely, and today the idea that the analytic style of philosophizing is just one style among many others, and not the only possible one, is gaining increasing acceptance.
Logic circuits from zero forcing.
Burgarth, Daniel; Giovannetti, Vittorio; Hogben, Leslie; Severini, Simone; Young, Michael
We design logic circuits based on the notion of zero forcing on graphs; each gate of the circuits is a gadget in which zero forcing is performed. We show that such circuits can evaluate every monotone Boolean function. By using two vertices to encode each logical bit, we obtain universal computation. We also highlight a phenomenon of "back forcing" as a property of each function. Such a phenomenon occurs in a circuit when the input of gates which have been already used at a given time step is further modified by a computation actually performed at a later stage. Finally, we show that zero forcing can be also used to implement reversible computation. The model introduced here provides a potentially new tool in the analysis of Boolean functions, with particular attention to monotonicity. Moreover, in the light of applications of zero forcing in quantum mechanics, the link with Boolean functions may suggest a new directions in quantum control theory and in the study of engineered quantum spin systems. It is an open technical problem to verify whether there is a link between zero forcing and computation with contact circuits.
HDL to verification logic translator
Gambles, J. W.; Windley, P. J.
1992-01-01
The increasingly higher number of transistors possible in VLSI circuits compounds the difficulty in insuring correct designs. As the number of possible test cases required to exhaustively simulate a circuit design explodes, a better method is required to confirm the absence of design faults. Formal verification methods provide a way to prove, using logic, that a circuit structure correctly implements its specification. Before verification is accepted by VLSI design engineers, the stand alone verification tools that are in use in the research community must be integrated with the CAD tools used by the designers. One problem facing the acceptance of formal verification into circuit design methodology is that the structural circuit descriptions used by the designers are not appropriate for verification work and those required for verification lack some of the features needed for design. We offer a solution to this dilemma: an automatic translation from the designers' HDL models into definitions for the higher-ordered logic (HOL) verification system. The translated definitions become the low level basis of circuit verification which in turn increases the designer's confidence in the correctness of higher level behavioral models.
People Like Logical Truth: Testing the Intuitive Detection of Logical Value in Basic Propositions.
Directory of Open Access Journals (Sweden)
Hiroko Nakamura
Full Text Available Recent studies on logical reasoning have suggested that people are intuitively aware of the logical validity of syllogisms or that they intuitively detect conflict between heuristic responses and logical norms via slight changes in their feelings. According to logical intuition studies, logically valid or heuristic logic no-conflict reasoning is fluently processed and induces positive feelings without conscious awareness. One criticism states that such effects of logicality disappear when confounding factors such as the content of syllogisms are controlled. The present study used abstract propositions and tested whether people intuitively detect logical value. Experiment 1 presented four logical propositions (conjunctive, biconditional, conditional, and material implications regarding a target case and asked the participants to rate the extent to which they liked the statement. Experiment 2 tested the effects of matching bias, as well as intuitive logic, on the reasoners' feelings by manipulating whether the antecedent or consequent (or both of the conditional was affirmed or negated. The results showed that both logicality and matching bias affected the reasoners' feelings, and people preferred logically true targets over logically false ones for all forms of propositions. These results suggest that people intuitively detect what is true from what is false during abstract reasoning. Additionally, a Bayesian mixed model meta-analysis of conditionals indicated that people's intuitive interpretation of the conditional "if p then q" fits better with the conditional probability, q given p.
Femtochemistry and femtobiology ultrafast dynamics in molecular science
Douhal, Abderrazzak
2002-01-01
This book contains important contributions from top international scientists on the-state-of-the-art of femtochemistry and femtobiology at the beginning of the new millennium. It consists of reviews and papers on ultrafast dynamics in molecular science.The coverage of topics highlights several important features of molecular science from the viewpoint of structure (space domain) and dynamics (time domain). First of all, the book presents the latest developments, such as experimental techniques for understanding ultrafast processes in gas, condensed and complex systems, including biological mol
Patellofemoral joint motion: Evaluation by ultrafast computed tomography
International Nuclear Information System (INIS)
Stanford, W.; Phelan, J.; Kathol, M.H.; Rooholamini, S.A.; El-Khoury, G.Y.; Palutsis, G.R.; Albright, J.P.
1988-01-01
Patellofemoral maltracking is a recognized cause of peripatellar pain. Clinicians currently rely on observation, palpation, and static radiographic images to evaluate the symptomatic patient. Ultrafast computed tomography (ultrafast CT) offers objective observations of the dynamic influences of muscle contraction on the patellofemoral joint as the knee is actively moved through a range of motion from 90 0 C flexion of full extension. This study reports our initial observations and establishes a range of normal values so that patients with a clinical suspicion of patellar maltracking may be evaluated. (orig./GDG)
Patellofemoral joint motion: Evaluation by ultrafast computed tomography
Energy Technology Data Exchange (ETDEWEB)
Stanford, W.; Phelan, J.; Kathol, M.H.; Rooholamini, S.A.; El-Khoury, G.Y.; Palutsis, G.R.; Albright, J.P.
1988-10-01
Patellofemoral maltracking is a recognized cause of peripatellar pain. Clinicians currently rely on observation, palpation, and static radiographic images to evaluate the symptomatic patient. Ultrafast computed tomography (ultrafast CT) offers objective observations of the dynamic influences of muscle contraction on the patellofemoral joint as the knee is actively moved through a range of motion from 90/sup 0/C flexion of full extension. This study reports our initial observations and establishes a range of normal values so that patients with a clinical suspicion of patellar maltracking may be evaluated. (orig./GDG).
Formalization of Many-Valued Logics
DEFF Research Database (Denmark)
Villadsen, Jørgen; Schlichtkrull, Anders
2017-01-01
Partiality is a key challenge for computational approaches to artificial intelligence in general and natural language in particular. Various extensions of classical two-valued logic to many-valued logics have been investigated in order to meet this challenge. We use the proof assistant Isabelle...... to formalize the syntax and semantics of many-valued logics with determinate as well as indeterminate truth values. The formalization allows for a concise presentation and makes automated verification possible....
On the Predictability of Classical Propositional Logic
Finger, Marcelo; Reis, Poliana
2013-01-01
In this work we provide a statistical form of empirical analysis of classical propositional logic decision methods called SAT solvers. This work is perceived as an empirical counterpart of a theoretical movement, called the enduring scandal of deduction, that opposes considering Boolean Logic as trivial in any sense. For that, we study the predictability of classical logic, which we take to be the distribution of the runtime of its decision process. We present a series of experiments that det...
A Dynamic Logic for Learning Theory
DEFF Research Database (Denmark)
Baltag, Alexandru; Gierasimczuk, Nina; Özgün, Aybüke
2017-01-01
Building on previous work that bridged Formal Learning Theory and Dynamic Epistemic Logic in a topological setting, we introduce a Dynamic Logic for Learning Theory (DLLT), extending Subset Space Logics with dynamic observation modalities, as well as with a learning operator, which encodes the le...... the learner’s conjecture after observing a finite sequence of data. We completely axiomatise DLLT, study its expressivity and use it to characterise various notions of knowledge, belief, and learning. ...
Enhancing programming logic thinking using analogy mapping
Sukamto, R. A.; Megasari, R.
2018-05-01
Programming logic thinking is the most important competence for computer science students. However, programming is one of the difficult subject in computer science program. This paper reports our work about enhancing students' programming logic thinking using Analogy Mapping for basic programming subject. Analogy Mapping is a computer application which converts source code into analogies images. This research used time series evaluation and the result showed that Analogy Mapping can enhance students' programming logic thinking.
Research on Judgment Aggregation Based on Logic
Directory of Open Access Journals (Sweden)
Li Dai
2014-05-01
Full Text Available Preference aggregation and judgment aggregation are two basic research models of group decision making. And preference aggregation has been deeply studied in social choice theory. However, researches of social choice theory gradually focus on judgment aggregation which appears recently. Judgment aggregation focuses on how to aggregate many consistent logical formulas into one, from the perspective of logic. We try to start with judgment aggregation model based on logic and then explore different solutions to problem of judgment aggregation.
From Interpreter to Logic Engine by Defunctionalization
DEFF Research Database (Denmark)
Biernacki, Dariusz; Danvy, Olivier
2003-01-01
Starting from a continuation-based interpreter for a simple logic programming language, propositional Prolog with cut, we derive the corresponding logic engine in the form of an abstract machine. The derivation originates in previous work (our article at PPDP 2003) where it was applied to the lam......Starting from a continuation-based interpreter for a simple logic programming language, propositional Prolog with cut, we derive the corresponding logic engine in the form of an abstract machine. The derivation originates in previous work (our article at PPDP 2003) where it was applied...
From Interpreter to Logic Engine by Defunctionalization
DEFF Research Database (Denmark)
Biernacki, Dariusz; Danvy, Olivier
2004-01-01
Starting from a continuation-based interpreter for a simple logic programming language, propositional Prolog with cut, we derive the corresponding logic engine in the form of an abstract machine. The derivation originates in previous work (our article at PPDP 2003) where it was applied to the lam......Starting from a continuation-based interpreter for a simple logic programming language, propositional Prolog with cut, we derive the corresponding logic engine in the form of an abstract machine. The derivation originates in previous work (our article at PPDP 2003) where it was applied...
From Interpreter to logic Engine by Defunctionalization
DEFF Research Database (Denmark)
Biernacki, Dariusz; Danvy, Olivier
2003-01-01
Starting from a continuation-based interpreter for a simple logic programming language, propositional Prolog with cut, we derive the corresponding logic engine in the form of an abstract machine. The derivation originates in previous work (our article at PPDP 2003) where it was applied to the lam......Starting from a continuation-based interpreter for a simple logic programming language, propositional Prolog with cut, we derive the corresponding logic engine in the form of an abstract machine. The derivation originates in previous work (our article at PPDP 2003) where it was applied...
A Verification Logic for GOAL Agents
Hindriks, K. V.
Although there has been a growing body of literature on verification of agents programs, it has been difficult to design a verification logic for agent programs that fully characterizes such programs and to connect agent programs to agent theory. The challenge is to define an agent programming language that defines a computational framework but also allows for a logical characterization useful for verification. The agent programming language GOAL has been originally designed to connect agent programming to agent theory and we present additional results here that GOAL agents can be fully represented by a logical theory. GOAL agents can thus be said to execute the corresponding logical theory.
Temporal logics and real time expert systems.
Blom, J A
1996-10-01
This paper introduces temporal logics. Due to the eternal compromise between expressive adequacy and reasoning efficiency that must decided upon in any application, full (first order logic or modal logic based) temporal logics are frequently not suitable. This is especially true in real time expert systems, where a fixed (and usually small) response time must be guaranteed. One such expert system, Fagan's VM, is reviewed, and a delineation is given of how to formally describe and reason with time in medical protocols. It is shown that Petri net theory is a useful tool to check the correctness of formalised protocols.
Fuzzy logic control of nuclear power plant
International Nuclear Information System (INIS)
Yao Liangzhong; Guo Renjun; Ma Changwen
1996-01-01
The main advantage of the fuzzy logic control is that the method does not require a detailed mathematical model of the object to be controlled. In this paper, the shortcomings and limitations of the model-based method in nuclear power plant control were presented, the theory of the fuzzy logic control was briefly introduced, and the applications of the fuzzy logic control technology in nuclear power plant controls were surveyed. Finally, the problems to be solved by using the fuzzy logic control in nuclear power plants were discussed
Towards a formal logic of design rationalization
DEFF Research Database (Denmark)
Galle, Per
1997-01-01
Certain extensions to standard predicate logic are proposed and used as a framework for critical logical study of patterns of inference in design reasoning. It is shown that within this framework a modal logic of design rationalization (suggested by an empirical study reported earlier) can...... be formally defined in terms of quantification over a universe of discourse of ‘relevant points of view’. Five basic principles of the extended predicate logic are listed, on the basis of which the validity of ten modal patterns of inference encountered in design rationalization is tested. The basic idea...
A functional language for describing reversible logic
DEFF Research Database (Denmark)
Thomsen, Michael Kirkedal
2012-01-01
Reversible logic is a computational model where all gates are logically reversible and combined in circuits such that no values are lost or duplicated. This paper presents a novel functional language that is designed to describe only reversible logic circuits. The language includes high....... Reversibility of descriptions is guaranteed with a type system based on linear types. The language is applied to three examples of reversible computations (ALU, linear cosine transformation, and binary adder). The paper also outlines a design flow that ensures garbage- free translation to reversible logic...... circuits. The flow relies on a reversible combinator language as an intermediate language....
Application of fuzzy logic control in industry
International Nuclear Information System (INIS)
Van der Wal, A.J.
1994-01-01
An overview is given of the various ways fuzzy logic can be used to improve industrial control. The application of fuzzy logic in control is illustrated by two case studies. The first example shows how fuzzy logic, incorporated in the hardware of an industrial controller, helps to finetune a PID controller, without the operator having any a priori knowledge of the system to be controlled. The second example is from process industry. Here, fuzzy logic supervisory control is implemented in software and enhances the operation of a sintering oven through a subtle combination of priority management and deviation-controlled timing
A History of Probabilistic Inductive Logic Programming
Directory of Open Access Journals (Sweden)
Fabrizio eRiguzzi
2014-09-01
Full Text Available The field of Probabilistic Logic Programming (PLP has seen significant advances in the last 20 years, with many proposals for languages that combine probability with logic programming. Since the start, the problem of learning probabilistic logic programs has been the focus of much attention. Learning these programs represents a whole subfield of Inductive Logic Programming (ILP. In Probabilistic ILP (PILP two problems are considered: learning the parameters of a program given the structure (the rules and learning both the structure and the parameters. Usually structure learning systems use parameter learning as a subroutine. In this article we present an overview of PILP and discuss the main results.
A Case for Embedded Natural Logic for Ontological Knowledge Bases
DEFF Research Database (Denmark)
Andreasen, Troels; Nilsson, Jørgen Fischer
2014-01-01
We argue in favour of adopting a form of natural logic for ontology-structured knowledge bases as an alternative to description logic and rule based languages. Natural logic is a form of logic resembling natural language assertions, unlike description logic. This is essential e.g. in life sciences...... negation in description logic. We embed the natural logic in DATALOG clauses which is to take care of the computational inference in connection with querying...
Classical Logic and Quantum Logic with Multiple and Common Lattice Models
Directory of Open Access Journals (Sweden)
Mladen Pavičić
2016-01-01
Full Text Available We consider a proper propositional quantum logic and show that it has multiple disjoint lattice models, only one of which is an orthomodular lattice (algebra underlying Hilbert (quantum space. We give an equivalent proof for the classical logic which turns out to have disjoint distributive and nondistributive ortholattices. In particular, we prove that both classical logic and quantum logic are sound and complete with respect to each of these lattices. We also show that there is one common nonorthomodular lattice that is a model of both quantum and classical logic. In technical terms, that enables us to run the same classical logic on both a digital (standard, two-subset, 0-1-bit computer and a nondigital (say, a six-subset computer (with appropriate chips and circuits. With quantum logic, the same six-element common lattice can serve us as a benchmark for an efficient evaluation of equations of bigger lattice models or theorems of the logic.
The hardware implementation of the CERN SPS ultrafast feedback processor demonstrator
Dusakto, J E; Fox, J D; Olsen, J; Rivetta, C H; Höfle, W
2013-01-01
An ultrafast 4GSa/s transverse feedback processor has been developed for proof-of-concept studies of feedback control of e-cloud driven and transverse mode coupled intra-bunch instabilities in the CERN SPS. This system consists of a high-speed ADC on the front end and equally fast DAC on the back end. All control and signal processing is implemented in FPGA logic. This system is capable of taking up to 16 sample slices across a single SPS bunch and processing each slice individually within a reconfigurable signal processor. This demonstrator system is a rapidly developed prototype, consisting of both commercial and custom-design components. It can stabilize the motion of a single particle bunch using closed loop feedback. The system can also run open loop as a high-speed arbitrary waveform generator and contains diagnostic features including a special ADC snapshot capture memory. This paper describes the overall system, the feedback processor and focuses on the hardware architecture, design ...
Chedjou, Jean Chamberlain; Kyamakya, Kyandoghere
2015-04-01
This paper develops and validates a comprehensive and universally applicable computational concept for solving nonlinear differential equations (NDEs) through a neurocomputing concept based on cellular neural networks (CNNs). High-precision, stability, convergence, and lowest-possible memory requirements are ensured by the CNN processor architecture. A significant challenge solved in this paper is that all these cited computing features are ensured in all system-states (regular or chaotic ones) and in all bifurcation conditions that may be experienced by NDEs.One particular quintessence of this paper is to develop and demonstrate a solver concept that shows and ensures that CNN processors (realized either in hardware or in software) are universal solvers of NDE models. The solving logic or algorithm of given NDEs (possible examples are: Duffing, Mathieu, Van der Pol, Jerk, Chua, Rössler, Lorenz, Burgers, and the transport equations) through a CNN processor system is provided by a set of templates that are computed by our comprehensive templates calculation technique that we call nonlinear adaptive optimization. This paper is therefore a significant contribution and represents a cutting-edge real-time computational engineering approach, especially while considering the various scientific and engineering applications of this ultrafast, energy-and-memory-efficient, and high-precise NDE solver concept. For illustration purposes, three NDE models are demonstratively solved, and related CNN templates are derived and used: the periodically excited Duffing equation, the Mathieu equation, and the transport equation.
FPS-vidicon television camras for ultrafast-scan data acquisition
International Nuclear Information System (INIS)
Noel, B.W.; Yates, G.J.
1980-06-01
Two ultrafast-scan ( 500 TV lines per picture height with a corresponding dynamic range (to light input) of more than 100. The cameras use the unique properties of FPS vidicons and specially designed electronics to achieve their performance levels and versatility. The advantages and disadvantages of FPS vidicons and of antimony trisulfide and silicon target materials in such applications are discussed in detail. All of the electronics circuits are discussed. The sweep generator designs are treated at length because they are the key to the cameras' versatility. Emphasis is placed on remotely controllable analog and digital sweep generators. The latter is a complete CAMAC-compatible subsystem containing a 16-function master arithmetic logic unit. Pulsed and cw methods of obtaining transfer characteristics are described and compared. The effects of generation rates, tube types, and target types on the resolution, determined from contrast-transfer-function curves, are discussed. Several applications are described, including neutron TV pinhole, TREAT, and barium-release experiments
Spherical transceivers for ultrafast optical wireless communications
Jin, Xian; Hristovski, Blago A.; Collier, Christopher M.; Geoffroy-Gagnon, Simon; Born, Brandon; Holzman, Jonathan F.
2016-02-01
Optical wireless communications (OWC) offers the potential for high-speed and mobile operation in indoor networks. Such OWC systems often employ a fixed transmitter grid and mobile transceivers, with the mobile transceivers carrying out bi-directional communication via active downlinks (ideally with high-speed signal detection) and passive uplinks (ideally with broad angular retroreflection and high-speed modulation). It can be challenging to integrate all of these bidirectional communication capabilities within the mobile transceivers, however, as there is a simultaneous desire for compact packaging. With this in mind, the work presented here introduces a new form of transceiver for bi-directional OWC systems. The transceiver incorporates radial photoconductive switches (for high-speed signal detection) and a spherical retro-modulator (for broad angular retroreflection and high-speed all-optical modulation). All-optical retromodulation are investigated by way of theoretical models and experimental testing, for spherical retro-modulators comprised of three glasses, N-BK7, N-LASF9, and S-LAH79, having differing levels of refraction and nonlinearity. It is found that the spherical retro-modulator comprised of S-LAH79, with a refractive index of n ≍ 2 and a Kerr nonlinear index of n2 ≍ (1.8 ± 0.1) × 10-15 cm2/W, yields both broad angular retroreflection (over a solid angle of 2π steradians) and ultrafast modulation (over a duration of 120 fs). Such transceivers can become important elements for all-optical implementations in future bi-directional OWC systems.
Moral Particularism and Deontic Logic
Parent, Xavier
The aim of this paper is to strengthen the point made by Horty about the relationship between reason holism and moral particularism. In the literature prima facie obligations have been considered as the only source of reason holism. I strengthen Horty's point in two ways. First, I show that contrary-to-duties provide another independent support for reason holism. Next I outline a formal theory that is able to capture these two sources of holism. While in simple settings the proposed account coincides with Horty's one, this is not true in more complicated or "realistic" settings in which more than two norms collide. My chosen formalism is so-called input/output logic.
Universal Programmable Logic Controller Software
International Nuclear Information System (INIS)
Mohd Arif Hamzah; Azhar Shamsudin; Fadil Ismail; Muhammad Nor Atan; Anwar Abdul Rahman
2013-01-01
Programmable Logic Controller (PLC) is an electronic hardware which is widely used in manufacturing or processing industries. It is also serve as the main control system hardware to run the production and manufacturing process. There are more than ten (10) well known company producing PLC hardware, with their own specialties, including the method of programming and language used. Malaysia Nuclear Agency have various plant and equipment, runs and control by PLC, such as Mintex Sinagama Plant, Alurtron Plant, and few laboratory equipment. Since all the equipment and plant are equipped with various brand or different manufacture of PLC, it creates difficulties to the supporting staff to master the control program. The same problems occur for new application of this hardware, since there no policies to purchase only one specific brand of PLC. (author)
Design of reconfigurable logic controllers
Bukowiec, Arkadiusz; Doligalski, Michał; Tkacz, Jacek
2016-01-01
This book presents the original concepts and modern techniques for specification, synthesis, optimisation and implementation of parallel logical control devices. It deals with essential problems of reconfigurable control systems like dependability, modularity and portability. Reconfigurable systems require a wider variety of design and verification options than the application-specific integrated circuits. The book presents a comprehensive selection of possible design techniques. The diversity of the modelling approaches covers Petri nets, state machines and activity diagrams. The preferences of the presented optimization and synthesis methods are not limited to increasing of the efficiency of resource use. One of the biggest advantages of the presented methods is the platform independence, the FPGA devices and single board computers are some of the examples of possible platforms. These issues and problems are illustrated with practical cases of complete control systems. If you expect a new look at the recon...
Superposition as a logical glue
Directory of Open Access Journals (Sweden)
Andrea Asperti
2011-03-01
Full Text Available The typical mathematical language systematically exploits notational and logical abuses whose resolution requires not just the knowledge of domain specific notation and conventions, but not trivial skills in the given mathematical discipline. A large part of this background knowledge is expressed in form of equalities and isomorphisms, allowing mathematicians to freely move between different incarnations of the same entity without even mentioning the transformation. Providing ITP-systems with similar capabilities seems to be a major way to improve their intelligence, and to ease the communication between the user and the machine. The present paper discusses our experience of integration of a superposition calculus within the Matita interactive prover, providing in particular a very flexible, "smart" application tactic, and a simple, innovative approach to automation.
Classical foundations of quantum logic
International Nuclear Information System (INIS)
Garola, C.
1991-01-01
The author constructs a language L for a classical first-order predicate calculus with monadic predicates only, extended by means of a family of statistical quantifiers. Then, a formal semantic model M is put forward for L which is compatible with a physical interpretation and embodies a truth theory which provides the statistical quantifiers with properties that fit their interpretation; in this framework, the truth mode of physical laws is suitably characterized and a probability-frequency correlation principle is established. By making use of L and M, a set of basic physical laws is stated that hold both in classical physics (CP) and in quantum physics (QP), which allow the selection of suitable subsets of primitive predicates of L and the introduction on these subsets of binary relations. Two languages L E x and L E S are constructed that can be mapped into L; the mapping induces on them mathematical structures, some kind of truth function, an interpretation. The formulas of L E S can be endowed with two different interpretations as statements about the frequency of some physical property in some class (state) of physical objects; consequently, a two-valued truth function and a multivalued fuzzy-truth function are defined on L E S . In all cases the algebras of propositions of these 'logics' are complete ortho-complemented lattices isomorphic to (E E , prec). These results hold both in CP and in QP; further physical assumptions endow the lattice (E E , prec), hence L E x and L E s , with further properties, such as distributivity in CP and weak modularity and covering law in QP. In the latter case, L E x and L E s , together with their interpretations, can be considered different models of the same basic mathematical structure, and can be identified with standard (elementary) quantum logics
An Algebraic View of Super-Belnap Logics
Czech Academy of Sciences Publication Activity Database
Albuquerque, H.; Přenosil, Adam; Rivieccio, U.
2017-01-01
Roč. 105, č. 6 (2017), s. 1051-1086 ISSN 0039-3215 R&D Projects: GA ČR GBP202/12/G061 Grant - others:EU(XE) PIRSES- GA-2012-31898 Institutional support: RVO:67985807 Keywords : Super-Belnap logics * Four-valued logic * Paraconsistent logic * Belnap–Dunn logic * FDE * Logic of Paradox * Kleene logic * Exactly True logic * De Morgan algebras * Abstract Algebraic Logic * Leibniz filters * Strong versions of logics Subject RIV: BA - General Mathematics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 0.589, year: 2016
International Nuclear Information System (INIS)
Roy, Sukhdev; Yadav, Chandresh
2013-01-01
A detailed theoretical analysis of ultrafast transition from saturable absorption (SA) to reverse saturable absorption (RSA) has been presented in graphene-oxide thin films with femtosecond laser pulses at 800 nm. Increase in pulse intensity leads to switching from SA to RSA with increased contrast due to two-photon absorption induced excited-state absorption. Theoretical results are in good agreement with reported experimental results. Interestingly, it is also shown that increase in concentration results in RSA to SA transition. The switching has been optimized to design parallel all-optical femtosecond NOT, AND, OR, XOR, and the universal NAND and NOR logic gates
Ultra-fast ipsilateral DPOAE adaptation not modulated by attention?
Dalhoff, Ernst; Zelle, Dennis; Gummer, Anthony W.
2018-05-01
Efferent stimulation of outer hair cells is supposed to attenuate cochlear amplification of sound waves and is accompanied by reduced DPOAE amplitudes. Recently, a method using two subsequent f2 pulses during presentation of a longer f1 pulse was introduced to measure fast ipsilateral adaptation effects on separated DPOAE components. Compensating primary-tone onsets for their latencies at the f2-tonotopic place, the average adaptation measured in four normal-hearing subjects was 5.0 dB with a time constant below 5 ms. In the present study, two experiments were performed to determine the origin of this ultra-fast ipsilateral adaptation effect. The first experiment measured ultra-fast ipsilateral adaptation using a two-pulse paradigm at three frequencies in the four subjects, while controlling for visual attention of the subjects. The other experiment also controlled for visual attention, but utilized a sequence of f2 short pulses in the presence of a continuous f1 tone to sample ipsilateral adaptation effects with longer time constants in eight subjects. In the first experiment, no significant change in the ultra-fast adaptation between non-directed attention and visual attention could be detected. In contrast, the second experiment revealed significant changes in the magnitude of the slower ipsilateral adaptation in the visual-attention condition. In conclusion, the lack of an attentional influence indicates that the ultra-fast ipsilateral DPOAE adaptation is not solely mediated by the medial olivocochlear reflex.
Ultrafast geometric control of a single qubit using chirped pulses
International Nuclear Information System (INIS)
Hawkins, Patrick E; Malinovskaya, Svetlana A; Malinovsky, Vladimir S
2012-01-01
We propose a control strategy to perform arbitrary unitary operations on a single qubit based solely on the geometrical phase that the qubit state acquires after cyclic evolution in the parameter space. The scheme uses ultrafast linearly chirped pulses and provides the possibility of reducing the duration of a single-qubit operation to a few picoseconds.
Measuring and understanding ultrafast phenomena using X-rays
DEFF Research Database (Denmark)
Haldrup, Kristoffer; Nielsen, Martin Meedom
2014-01-01
Within the last decade, significant advances in X-ray sources and instrumentation as well as simultaneous developments in analysis methodology has allowed the field of fast- and ultrafast time-resolved X-ray studies of solution-state systems to truly come of age. We here describe some aspects of ...
Tracking ultrafast relaxation dynamics of furan by femtosecond photoelectron imaging
International Nuclear Information System (INIS)
Liu, Yuzhu; Knopp, Gregor; Qin, Chaochao; Gerber, Thomas
2015-01-01
Graphical abstract: - Highlights: • Relaxation dynamics of furan are tracked by femtosecond photoelectron imaging. • The mechanism for ultrafast formation of α-carbene and β-carbene is proposed. • Ultrafast internal conversion from S 2 to S 1 is observed. • The transient characteristics of the fragment ions are obtained. • Single-color multi-photon ionization dynamics at 800 nm are also studied. - Abstract: Ultrafast internal conversion dynamics of furan has been studied by femtosecond photoelectron imaging (PEI) coupled with photofragmentation (PF) spectroscopy. Photoelectron imaging of single-color multi-photon ionization and two-color pump–probe ionization are obtained and analyzed. Photoelectron bands are assigned to the related states. The time evolution of the photoelectron signal by pump–probe ionization can be well described by a biexponential decay: two rapid relaxation pathways with time constants of ∼15 fs and 85 (±11) fs. The rapid relaxation is ascribed to the ultrafast internal conversion (IC) from the S 2 state to the vibrationally hot S 1 state. The second relaxation process is attributed to the redistributions and depopulation of secondarily populated high vibronic S 1 state and the formation of α-carbene and β-carbene by H immigration. Additionally, the transient characteristics of the fragment ions are also measured and discussed as a complementary understanding
Ultrafast terahertz scanning tunneling microscopy with atomic resolution
DEFF Research Database (Denmark)
Jelic, Vedran; Iwaszczuk, Krzysztof; Nguyen, Peter H.
2016-01-01
We demonstrate that ultrafast terahertz scanning tunneling microscopy (THz-STM) can probe single atoms on a silicon surface with simultaneous sub-nanometer and sub-picosecond spatio-temporal resolution. THz-STM is established as a new technique for exploring high-field non-equilibrium tunneling...
Ultrafast Digital Printing toward 4D Shape Changing Materials.
Huang, Limei; Jiang, Ruiqi; Wu, Jingjun; Song, Jizhou; Bai, Hao; Li, Bogeng; Zhao, Qian; Xie, Tao
2017-02-01
Ultrafast 4D printing (printing converts the structure into 3D. An additional dimension can be incorporated by choosing the printing precursors. The process overcomes the speed limiting steps of typical 3D (4D) printing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultrafast Dynamics of Quantum-Dot Semiconductor Optical Amplifiers
DEFF Research Database (Denmark)
Poel, Mike van der; Hvam, Jørn Märcher
2007-01-01
We report on a series of experiments on the dynamical properties of quantum-dot semiconductor optical amplifiers. We show how the amplifier responds to one or several ultrafast (170 fs) pulses in rapid succession and our results demonstrate applicability and ultimate limitations to application...
Tracking ultrafast relaxation dynamics of furan by femtosecond photoelectron imaging
Energy Technology Data Exchange (ETDEWEB)
Liu, Yuzhu, E-mail: yuzhu.liu@gmail.com [School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Knopp, Gregor [Paul Scherrer Institute, Villigen 5232 (Switzerland); Qin, Chaochao [Department of Physics, Henan Normal University, Xinxiang 453007 (China); Gerber, Thomas [Paul Scherrer Institute, Villigen 5232 (Switzerland)
2015-01-13
Graphical abstract: - Highlights: • Relaxation dynamics of furan are tracked by femtosecond photoelectron imaging. • The mechanism for ultrafast formation of α-carbene and β-carbene is proposed. • Ultrafast internal conversion from S{sub 2} to S{sub 1} is observed. • The transient characteristics of the fragment ions are obtained. • Single-color multi-photon ionization dynamics at 800 nm are also studied. - Abstract: Ultrafast internal conversion dynamics of furan has been studied by femtosecond photoelectron imaging (PEI) coupled with photofragmentation (PF) spectroscopy. Photoelectron imaging of single-color multi-photon ionization and two-color pump–probe ionization are obtained and analyzed. Photoelectron bands are assigned to the related states. The time evolution of the photoelectron signal by pump–probe ionization can be well described by a biexponential decay: two rapid relaxation pathways with time constants of ∼15 fs and 85 (±11) fs. The rapid relaxation is ascribed to the ultrafast internal conversion (IC) from the S{sub 2} state to the vibrationally hot S{sub 1} state. The second relaxation process is attributed to the redistributions and depopulation of secondarily populated high vibronic S{sub 1} state and the formation of α-carbene and β-carbene by H immigration. Additionally, the transient characteristics of the fragment ions are also measured and discussed as a complementary understanding.
Ultrafast control and monitoring of material properties using terahertz pulses
Energy Technology Data Exchange (ETDEWEB)
Bowlan, Pamela Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Lab. for Ultrafast Materials Optical Science (LUMOS)
2016-05-02
These are a set of slides on ultrafast control and monitoring of material properties using terahertz pulses. A few of the topics covered in these slides are: How fast is a femtosecond (fs), Different frequencies probe different properties of molecules or solids, What can a THz pulse do to a material, Ultrafast spectroscopy, Generating and measuring ultrashort THz pulses, Tracking ultrafast spin dynamics in antiferromagnets through spin wave resonances, Coherent two-dimensional THz spectroscopy, and Probing vibrational dynamics at a surface. Conclusions are: Coherent two-dimensional THz spectroscopy: a powerful approach for studying coherence and dynamics of low energy resonances. Applying this to graphene we investigated the very strong THz light mater interaction which dominates over scattering. Useful for studying coupled excitations in multiferroics and monitoring chemical reactions. Also, THz-pump, SHG-probe spectoscopy: an ultrafast, surface sensitive probe of atomic-scale symmetry changes and nonlinear phonon dymanics. We are using this in Bi_{2}Se_{3} to investigate the nonlinear surface phonon dynamics. This is potentially very useful for studying catalysis.
Update on The Ultra-Fast Flash Observatory (UFFO) Pathfinder
DEFF Research Database (Denmark)
Grossan, B.; Brandt, Søren; Budtz-Jørgensen, Carl
2011-01-01
The Ultra-Fast Flash Observatory (UFFO) uses an X/gamma and an optical/UV instrument to observe gamma-ray bursts (GRB) starting milliseconds after burst trigger and location. The X/gamma instrument, a standard coded-mask camera, locates the GRB and triggers the system. The optical/UV instrument, ...
Ultrafast nonlinear response of silicon carbide to intense THz fields
DEFF Research Database (Denmark)
Tarekegne, Abebe Tilahun; Iwaszczuk, Krzysztof; Kaltenecker, Korbinian J.
2017-01-01
We demonstrate ultrafast nonlinear absorption induced by strong, single-cycle THz fields in bulk, lightly doped 4H silicon carbide. A combination of Zener tunneling and intraband transitions makes the effect as at least as fast as the excitation pulse. The sub-picosecond recovery time makes...
Ultrafast Non-Thermal Electron Dynamics in Single Layer Graphene
Directory of Open Access Journals (Sweden)
Novoselov K.S.
2013-03-01
Full Text Available We study the ultrafast dynamics of non-thermal electron relaxation in graphene upon impulsive excitation. The 10-fs resolution two color pump-probe allows us to unveil the non-equilibrium electron gas decay at early times.
Ultrafast Laser Fabrication of Bragg Waveguides in GLS Chalcogenide Glass
Directory of Open Access Journals (Sweden)
McMillen Ben
2013-11-01
Full Text Available We present work on the fabrication of Bragg waveguides in gallium-lanthanum-sulfide chalcogenide glass using an ultrafast laser. Waveguides were written with a single pass while modulating the writing beam. The spatial and temporal profile of the writing beam was ontrolled during waveguide fabrication in order to control the shape and size of the waveguide cross-section.
Development of Ultrafast Indirect Flash Heating Methods for RDX
2014-02-01
8 1 1. Introduction The mission of the Multiscale Response of Energetic Materials program is to establish...vinyl nitrate ) Films. J. Phys. Chem. A 2004, 108 (43), 9342–9347. 11 12. Gottfried, J. L.; de Lucia, F. C., Jr.; Piraino, S. M. Ultrafast Laser
An ultrafast study of Zinc Phthalocyanine in DMSO
CSIR Research Space (South Africa)
Ombinda-Lemboumba, Saturnin
2010-10-01
Full Text Available The ultrafast dynamics of Zinc Phthalocyanine was studied using trasient absorption pump probe spectroscopy. Zinc Phthalocyanine was excited (pumped) at 672nm and probed by a white light continuum. The pump-probe technique used in this study...
All-optical devices for ultrafast packet switching
DEFF Research Database (Denmark)
Dorren, H.J.S.; HerreraDorren, J.; Raz, O.
2007-01-01
We discuss integrated devices for all-optical packet switching. We focus on monolithically integrated all-optical flip-flops, ultra-fast semiconductor based wavelength converters and explain the operation principles. Finally, a 160 Gb/s all-optical packet switching experiment over 110 km of field...
An Authorization Logic with Explicit Time
2008-02-02
that η-logic can be used in specifying the behavior of systems with time-dependent authorization policies. In such cases, the logic can be used to...10(4):265– 310, November 1992. [26] Christopher Lesniewski-Laas, Bryan Ford, Jacob Strauss, M. Frans Kaashoek, and Robert Morris. Alpaca : extensible
Quantum logic in dagger kernel categories
Heunen, C.; Jacobs, B.P.F.
2009-01-01
This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to (1) encompass many examples of interest, such as categories of relations, partial
Symmetries and retracts of quantum logics
International Nuclear Information System (INIS)
Kallus, M.; Trnkova, V.
1987-01-01
The authors prove that there are arbitrarily many quantum logics, none of which is similar to a part of another and each of which has the group of all symmetries isomorphic to a given abstract group. Moreover, each of them contains a given logic with atomic blocks as its sublogic
Quantum logic in dagger kernel categories
Heunen, C.; Jacobs, B.P.F.; Coecke, B.; Panangaden, P.; Selinger, P.
2011-01-01
This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to (1) encompass many examples of interest, such as categories of relations, partial
r-Universal reversible logic gates
International Nuclear Information System (INIS)
Vos, A de; Storme, L
2004-01-01
Reversible logic plays a fundamental role both in ultra-low power electronics and in quantum computing. It is therefore important to know which reversible logic gates can be used as building block for the reversible implementation of an arbitrary boolean function and which cannot
Quantum Probabilistic Dyadic Second-Order Logic
Baltag, A.; Bergfeld, J.M.; Kishida, K.; Sack, J.; Smets, S.J.L.; Zhong, S.; Libkin, L.; Kohlenbach, U.; de Queiroz, R.
2013-01-01
We propose an expressive but decidable logic for reasoning about quantum systems. The logic is endowed with tensor operators to capture properties of composite systems, and with probabilistic predication formulas P ≥ r (s), saying that a quantum system in state s will yield the answer ‘yes’ (i.e.
A SELF-ORGANISING FUZZY LOGIC CONTROLLER
African Journals Online (AJOL)
ES Obe
One major drawback of fuzzy logic controllers is the difficulty encountered in the construction of a rule- base ... The greatest limitation of fuzzy logic control is the lack ..... c(kT)= e(kT)-e((k-1)T). (16) .... with the aid of fuzzy models”, It in Industrial.
Abstract Object Creation in Dynamic Logic
I. Grabe (Immo); F.S. de Boer (Frank); W. Ahrendt (Wolfgang); A. Cavalcanti; D.R. Dams
2009-01-01
textabstractIn this paper we give a representation of a weakest precondition calculus for abstract object creation in dynamic logic, the logic underlying the KeY theorem prover. This representation allows to both specify and verify properties of objects at the abstraction level of the
A Logic of Modification and Creation
Renardel de Lavalette, Gerard R.
2001-01-01
In this paper, MCL (modification and creation logic) is presented, a variant of quantified dynamic logic (QDL) with enhanced expressivity. In MCL, functions and predicates can be modified by actions f := λx.t and p := λx.φ, respectively, and new objects can be created by the action Create. This
Permissive Subsorted Partial Logic in CASL
DEFF Research Database (Denmark)
Cerioli, Maura; Haxthausen, Anne Elisabeth; Krieg-Brückner, Bernd
1997-01-01
This paper presents a permissive subsorted partial logic used in the CoFI Algebraic Specification Language. In contrast to other order-sorted logics, subsorting is not modeled by set inclusions, but by injective embeddings allowing for more general models in which subtypes can have different data...
The Logic of the RAISE Specification Language
DEFF Research Database (Denmark)
George, Chris; Haxthausen, Anne Elisabeth
2003-01-01
This paper describes the logic of the RAISE Specification Language, RSL. It explains the particular logic chosen for RAISE, and motivates this choice as suitable for a wide spectrum language to be used for designs as well as initial specifications, and supporting imperative and concurrent...
A proof theory for constructive default logic
Y-H. Tan (Yao-Hua)
1993-01-01
textabstractWe present what we call Constructive Default Logic (CDL) - a default logic in which the fixed-point definition of extensions is replaced by a constructive definition which yield so-called constructive extensions. Selection functions are used to represent explicitly the control of the
Reasoning by cases in Default Logic
Roos, N.; Roos, Nico
1998-01-01
Reiter's Default Logic is one of the most popular formalisms for describing default reasoning. One important defect of Default Logic is, however, the inability to reason by cases. Over the years, several solutions for this problem have been proposed. All these proposals deal with deriving new
Contending logics of action in development cooperation
DEFF Research Database (Denmark)
Fejerskov, Adam Moe
2017-01-01
and organizational change. This article builds an analytical framework for empirically exploring logics of action in development cooperation and then explores a case of how two strong logics, those of ‘cost-effectiveness’ and ‘gender equality and women’s empowerment’, respectively, contend in the Bill and Melinda...
Modular sequent calculi for classical modal logics
Gilbert, David; Maffezioli, Paolo
This paper develops sequent calculi for several classical modal logics. Utilizing a polymodal translation of the standard modal language, we are able to establish a base system for the minimal classical modal logic E from which we generate extensions (to include M, C, and N) in a modular manner. Our
The Logic of the RAISE Specification Language
DEFF Research Database (Denmark)
George, Chris; Haxthausen, Anne Elisabeth
2008-01-01
This chapter describes the logic of the RAISE Specification Language, RSL. It explains the particular logic chosen for RAISE, and motivates this choice as suitable for a wide spectrum language to be used for designs as well as initial specifications, and supporting imperative and concurrent...
Decidability and Expressiveness of Recursive Weighted Logic
DEFF Research Database (Denmark)
Xue, Bingtian; Larsen, Kim Guldstrand; Mardare, Radu Iulian
2014-01-01
Labelled weighted transition systems (LWSs) are transition systems labelled with actions and real numbers. The numbers represent the costs of the corresponding actions in terms of resources. RecursiveWeighted Logic (RWL) is a multimodal logic that expresses qualitative and quantitative properties...
Fuzzy Logic in Medicine and Bioinformatics
Directory of Open Access Journals (Sweden)
Angela Torres
2006-01-01
Full Text Available The purpose of this paper is to present a general view of the current applications of fuzzy logic in medicine and bioinformatics. We particularly review the medical literature using fuzzy logic. We then recall the geometrical interpretation of fuzzy sets as points in a fuzzy hypercube and present two concrete illustrations in medicine (drug addictions and in bioinformatics (comparison of genomes.
Semantics and logic for security protocols
Jacobs, B.P.F.; Hasuo, I.
2009-01-01
This paper presents a sound BAN-like logic for reasoning about security protocols with theorem prover support. The logic has formulas for sending and receiving messages (with nonces, public and private encryptions, etc.), and has both temporal and epistemic operators (describing the knowledge of
From Interpreter to Logic Engine by Defunctionalization
DEFF Research Database (Denmark)
Biernacki, Dariusz; Danvy, Olivier
2004-01-01
Starting from a continuation-based interpreter for a simple logic programming language, propositional Prolog with cut, we derive the corresponding logic engine in the form of an abstract machine. The derivation originates in previous work (our article at PPDP 2003) where it was applied...
From Interpreter to Logic Engine by Defunctionalization
DEFF Research Database (Denmark)
Biernacki, Dariusz; Danvy, Olivier
2003-01-01
Starting from a continuation-based interpreter for a simple logic programming language, propositional Prolog with cut, we derive the corresponding logic engine in the form of an abstract machine. The derivation originates in previous work (our article at PPDP 2003) where it was applied...
Dialectical Multivalued Logic and Probabilistic Theory
Directory of Open Access Journals (Sweden)
José Luis Usó Doménech
2017-02-01
Full Text Available There are two probabilistic algebras: one for classical probability and the other for quantum mechanics. Naturally, it is the relation to the object that decides, as in the case of logic, which algebra is to be used. From a paraconsistent multivalued logic therefore, one can derive a probability theory, adding the correspondence between truth value and fortuity.
Sort logic and foundations of mathematics
Väänänen, J.; Chong, C.; Feng, Q.; Slaman, T.A.; Woodin, W.H.
2014-01-01
I have argued elsewhere [8] that second order logic provides a foundation for mathematics much in the same way as set theory does, despite the fact that the former is second order and the latter first order, but second order logic is marred by reliance on ad hoc large domain assumptions. In this
Some Reflections on Logic and Transcendence
DEFF Research Database (Denmark)
Øhrstrøm, Peter
2010-01-01
It is sometimes argued that the very existence of a notion of validity of logical inference on which all rational persons should agree is an indication of the existence of something transcendent. It has also been argued that logic can be used in order to demonstrate the problematic status of natu...
The Logic of Self-Organized Criticality
Directory of Open Access Journals (Sweden)
Bakhtiyarov Kamil I.
2015-07-01
Full Text Available A consideration of non-classical logic in terms of classical one allows us to show a role of designated truth values. In this way we show that our version of non-classical many-valued logic can be based on the structure of genetic code.
CRS and Guarded Logics: a fruitful contact
van Benthem, J.; Andréka, H.; Ferenczi, M.; Németi, I.
2013-01-01
Back and forth between algebra and model theory. Algebra and model theory are complementary stances in the history of logic, and their interaction continues to spawn new ideas, witness the interface of First-Order Logic and Cylindric Algebra. This chapter is about a more specialized contact: the