WorldWideScience

Sample records for ultradisperse crystalline materials

  1. Fabrication of high-alloy powders consisting of spherical particles from ultradispersed components

    Science.gov (United States)

    Samokhin, A. V.; Fadeev, A. A.; Sinayskiy, M. A.; Alekseev, N. V.; Tsvetkov, Yu. V.; Arzhatkina, O. A.

    2017-07-01

    It is shown that powders of a model high alloy consisting of spherical particles 25-50 μm in size can be synthesized from a starting ultradispersed powder, which is made of a mixture of the alloy components and is fabricated by the magnesiothermal reduction of metal chlorides in the potassium chloride melt. The synthesis includes the stages of microgranulation of an ultradispersed powder, heat treatment of microgranules, classification of the microgranules with the separation of microgranule fraction of 25-50 μm, spheroidization of the separated fraction in a thermal plasma flow, and classification with the separation of a fraction of micro- and submicrometer-sized particles.

  2. Spectral analysis of the structure of ultradispersed diamonds

    Science.gov (United States)

    Uglov, V. V.; Shimanski, V. I.; Rusalsky, D. P.; Samtsov, M. P.

    2008-07-01

    The structure of ultradispersed diamonds (UDD) is studied by spectral methods. The presence of diamond crystal phase in the UDD is found based on x-ray analysis and Raman spectra. The Raman spectra also show sp2-and sp3-hybridized carbon. Analysis of IR absorption spectra suggests that the composition of functional groups present in the particles changes during the treatment.

  3. Estimation of attenuation and moderation by nanostructured materials

    International Nuclear Information System (INIS)

    Artem'ev, V.A.

    2003-01-01

    Peculiarities of the attenuation and slowing down of neutrons in ultradispersed powder with the size of particles ∼ 10 nm are discussed. It is noted that at temperature ∼ 10 K ultradispersed powder possesses the best captured ability of thermal neutrons than ordinary compact material or finely divided powder. Slow neutrons capture is size of ultradispersed particles dependent: captured ability of the material tends to widen with the decrease of particles sizes. Use of ultradispersed powder as moderator is advantageous for the cold neutrons moderation to very cold or for the production of ultracold neutrons [ru

  4. Structure of Rhodium in an Ultradispersed Rhodium/Alumina Catalyst as Studied by EXAFS and Other Technique

    NARCIS (Netherlands)

    Koningsberger, D.C.; Blik, H.F.J. van 't; Zon, J.B.A.D. van; Huizinga, T.; Vis, J.C.; Prins, R.

    1985-01-01

    The structure of rhodium in an ultradispersed 0.57 wt % Rh/y-Al,O, catalyst before and after CO adsorption was studied with extended X-ray absorption fine structure (EXAFS), X-ray photoelectron spectroscopy (XPS), electron spin resonance (ESR), temperature programmed reduction (TPR), CO infrared

  5. Solution processed nanogap organic diodes based on liquid crystalline materials

    Science.gov (United States)

    Wang, Yi-Fei; Iino, Hiroaki; Hanna, Jun-ichi

    2017-09-01

    Co-planar nanogap organic diodes were fabricated with smectic liquid crystalline materials of the benzothienobenzothiophene (BTBT) derivative by a spin-coating technique. A high rectification ratio of the order of 106 at ±3 V was achieved when a liquid crystalline material of 2,7-didecyl benzothieno[3,2-b][1]benzothiophene (10-BTBT-10) was used in a device configuration of Al/10-BTBT-10/pentafluorobenzenethiol-treated Au on a glass substrate, which was 4 orders higher than that of the device based on non-liquid crystalline materials of 2,7-dibutyl benzothieno[3,2-b][1]benzothiophene (4-BTBT-4) and BTBT. Similar results were also observed when another liquid crystalline material of ω, ω'-dioctylterthiophene (8-TTP-8) and a non-liquid crystalline material of terthiophene (TTP) were used. These improved rectifications can be ascribed to the self-assembly properties and controllable molecular orientation of liquid crystalline materials, which made uniform perpendicular oriented polycrystalline films favorable for superior charge transport in nano-channels.

  6. Determination of crystallinity of ceramic materials from the Ruland Method

    International Nuclear Information System (INIS)

    Kniess, C.T.; Prates, P.B.; Gomes Junior, J.C.; Lima, J.C. de; Riella, H.G.; Kuhnen, N.C.

    2011-01-01

    Some methods found in literature approach the different characteristics between crystalline and amorphous phases by X ray diffraction technique. These methods use the relation between the intensities of the crystalline peaks and background amorphous or the absolute intensity of one of these to determine the relative amount of crystalline and amorphous material. However, a crystalline substance presents shows coherent diffuse scattering and a loss in the intensity of the peaks of diffraction in function of thermal vibrations of atoms and imperfections in the crystalline structure. A correct method for the determination of the crystallinity must take in account these effects. This work has as objective to determine the crystallinity of ceramic materials obtained with the addition of mineral coal bottom ashes, using the X ray diffraction technique and the Ruland Method, that considers the diminution of the intensity of the crystalline peak because of the disorder affects. The Ruland Method shows adequate for the determination of the crystallinity of the ceramic materials. (author)

  7. Liquid crystalline epoxy nanocomposite material for dental application.

    Science.gov (United States)

    Tai, Yun-Yuan; Hsu, Sheng-Hao; Chen, Rung-Shu; Su, Wei-Fang; Chen, Min-Huey

    2015-01-01

    Novel liquid crystalline epoxy nanocomposites, which exhibit reduced polymerization shrinkage and effectively bond to tooth structures, can be applied in esthetic dentistry, including core and post systems, direct and indirect restorations, and dental brackets. The purposes of this study were to investigate the properties of liquid crystalline epoxy nanocomposites including biocompatibility, microhardness, and frictional forces of bracket-like blocks with different filler contents for further clinical applications. In this study, we evaluated liquid crystalline epoxy nanocomposite materials that exhibited various filler contents, by assessing their cell activity performance using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and their microhardness with or without thermocycling. We also evaluated the frictional force between bracket-like duplicates and commercially available esthetic bracket systems using Instron 5566. The liquid crystalline epoxy nanocomposite materials showed good biocompatibility. The materials having high filler content demonstrated greater microhardness compared with commercially available bracket materials, before and after the thermocycling treatment. Thus, manufacturing processes are important to reduce frictional force experienced by orthodontic brackets. The microhardness of the bracket-like blocks made by our new material is superior to the commercially available brackets, even after thermocycling. Our results indicate that the evaluated liquid crystalline epoxy nanocomposite materials are of an appropriate quality for application in dental core and post systems and in various restorations. By applying technology to refine manufacturing processes, these new materials could also be used to fabricate esthetic brackets for orthodontic treatment. Copyright © 2014. Published by Elsevier B.V.

  8. Plasmonic Physics of 2D Crystalline Materials

    Directory of Open Access Journals (Sweden)

    Zahra Torbatian

    2018-02-01

    Full Text Available Collective modes of doped two-dimensional crystalline materials, namely graphene, MoS 2 and phosphorene, both monolayer and bilayer structures, are explored using the density functional theory simulations together with the random phase approximation. The many-body dielectric functions of the materials are calculated using an ab initio based model involving material-realistic physical properties. Having calculated the electron energy-loss, we calculate the collective modes of each material considering the in-phase and out-of-phase modes for bilayer structures. Furthermore, owing to many band structures and intreband transitions, we also find high-energy excitations in the systems. We explain that the material-specific dielectric function considering the polarizability of the crystalline material such as MoS 2 are needed to obtain realistic plasmon dispersions. For each material studied here, we find different collective modes and describe their physical origins.

  9. Disorder-induced localization in crystalline phase-change materials.

    Science.gov (United States)

    Siegrist, T; Jost, P; Volker, H; Woda, M; Merkelbach, P; Schlockermann, C; Wuttig, M

    2011-03-01

    Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal-insulator transition without a structural change are therefore of interest. Mechanisms leading to metal-insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal-insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal-insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices.

  10. Total scattering of disordered crystalline functional materials

    International Nuclear Information System (INIS)

    Shamoto, Shin-Ichi; Kodama, Katsuaki; Iikubo, Satoshi; Taguchi, Tomitsugu

    2009-01-01

    There are disorders in some modern functional materials. As an example, the crystalline phase of an optical recording material has low thermal conductivity but high electrical conductivity, simultaneously. This contradiction is a challenge to material scientists in designing good functional materials, which should have at least two types of crystallographic sites. One site limits thermal conductivity while the other site carries electrons or holes with high mobility. This problem exists with not only optical recording materials but also thermoelectric materials. The periodic boundary condition gets lost in the disordered parts. This therefore, makes atomic pair distribution function (PDF) analysis with a wide range of real space suitable for investigating the form and size of crystalline parts as well as disordered parts in the material. Pulsed neutron powder diffraction is one of the best tools for use in this new type of emerging research, together with synchrotron X-ray powder diffraction and electron diffraction.

  11. neutron transmission through crystalline materials

    International Nuclear Information System (INIS)

    El Mesiry, M.S.

    2011-01-01

    The aim of the present work is to study the neutron transmission through crystalline materials. Therefore a study of pyrolytic graphite (PG) as a highly efficient selective thermal neutron filter and Iron single crystal as a whole one, as well as the applicability of using their polycrystalline powders as a selective cold neutron filters is given. Moreover, the use of PG and iron single crystal as an efficient neutron monochromator is also investigated. An additive formula is given which allows calculating the contribution of the total neutron cross-section including the Bragg scattering from different )(hkl planes to the neutron transmission through crystalline iron and graphite. The formula takes into account their crystalline form. A computer CFe program was developed in order to provide the required calculations for both poly- and single-crystalline iron. The validity of the CFe program was approved from the comparison of the calculated iron cross-section data with the available experimental ones. The CFe program was also adapted to calculate the reflectivity from iron single crystal when it used as a neutron monochromator The computer package GRAPHITE, developed in Neutron Physics laboratory, Nuclear Research Center, has been used in order to provide the required calculations for crystalline graphite in the neutron energy range from 0.1 meV to 10 eV. A Mono-PG code was added to the computer package GRAPHITE in order to calculate the reflectivity from PG crystal when it used as a neutron monochromator.

  12. Electronic processes in non-crystalline materials

    CERN Document Server

    Mott, Nevill Francis

    2012-01-01

    Since the first edition of this highly successful book the field saw many great developments both in experimental and theoretical studies of electrical properties of non-crystalline solids. It became necessary to rewrite nearly the whole book, while the aims of the second edition remained the same: to set out the theoretical concepts, to test them by comparison with experiment for a wide variety of phenomena, and to apply them to non-crystalline materials. Sir Nevill Mott shared the1977 Nobel Prize for Physics, awarded for his research work in this field. The reissue of this book as part of th

  13. EELS from organic crystalline materials

    International Nuclear Information System (INIS)

    Brydson, R; Seabourne, C R; Hondow, N; Eddleston, M D; Jones, W

    2014-01-01

    We report the use of the electron energy loss spectroscopy (EELS) for providing light element chemical composition information from organic, crystalline pharmaceutical materials including theophylline and paracetamol and discuss how this type of data can complement transmission electron microscopy (TEM) imaging and electron diffraction when investigating polymorphism. We also discuss the potential for the extraction of bonding information using electron loss near-edge structure (ELNES)

  14. Glass-crystalline materials for active waste incorporation

    International Nuclear Information System (INIS)

    Kulichenko, V.V.; Krylova, N.V.; Vlasov, V.I.; Polyakov, A.S.

    1979-01-01

    This paper presents the results of investigations into the possibility and conditions for using glass-crystalline materials for the incorporation of radionuclides. Materials of a cast pyroxene type that are obtained by smelting calcined wastes with acid blast furnace slags are described. A study was also made of materials of a basalt type prepared from wastes with and without alkali metal salt. Changes in the structure and properties of materials in the process of storage at different temperatures have been studied

  15. Electrical transport in crystalline phase change materials

    International Nuclear Information System (INIS)

    Woda, Michael

    2012-01-01

    In this thesis, the electrical transport properties of crystalline phase change materials are discussed. Phase change materials (PCM) are a special class of semiconducting and metallic thin film alloys, typically with a high amount of the group five element antimony or the group six element tellurium, such as Ge 2 Sb 2 Te 5 . The unique property portfolio of this material class makes it suitable for memory applications. PCMs reveal fast switching between two stable room-temperature phases (amorphous and crystalline) realized by optical laser or electrical current pulses in memory devices. Additionally, a pronounced property contrast in form of optical reflectivity and electrical conductivity between the amorphous and crystalline phase is the characteristic fingerprint of PCMs. The emerging electrical solid state memory PCRAM is a very promising candidate to replace Flash memory in the near future or to even become a universal memory, which is non-volatile and shows the speed and cyclability of DRAM. One of the main technological challenges is the switching process into the amorphous state, which is the most power demanding step. In order to reduce the switching power, the crystalline resistivity needs to be increased at a given voltage. Thus understanding and tayloring of this property is mandatory. In this work, first the technological relevance, i.e. optical and electrical memory concepts based on PCMs are introduced. Subsequently a description of the physical properties of PCMs in four categories is given. Namely, structure, kinetics, optical properties and electrical properties are discussed. Then important recent developments such as the identification of resonant bonding in crystalline PCMs and a property predicting coordination scheme are briefly reviewed. The following chapter deals with the theoretical background of electrical transport, while the next chapter introduces the experimental techniques: Sputtering, XRR, XRD, DSC, thermal annealing

  16. Crystalline Bioceramic Materials

    Directory of Open Access Journals (Sweden)

    de Aza, P. N.

    2005-06-01

    Full Text Available A strong interest in the use of ceramics for biomedical engineering applications developed in the late 1960´s. Used initially as alternatives to metallic materials in order to increase the biocompatibility of implants, bioceramics have become a diverse class of biomaterials, presently including three basic types: relatively bioinert ceramics; bioactive or surface reactive bioceramics and bioresorbable ceramics. This review will only refer to bioceramics “sensus stricto”, it is to say, those ceramic materials constituted for nonmetallic inorganic compounds, crystallines and consolidated by thermal treatments of powders to high temperatures. Leaving bioglasses, glass-ceramics and biocements apart, since, although all of them are obtained by thermal treatments to high temperatures, the first are amorphous, the second are obtained by desvitrification of a glass and in them vitreous phase normally prevails on the crystalline phases and the third are consolidated by means of a hydraulic or chemical reaction to room temperature. A review of the composition, physiochemical properties and biological behaviour of the principal types of crystalline bioceramics is given, based on the literature data and on the own experience of the authors.

    A finales de los años sesenta se despertó un gran interés por el uso de los materiales cerámicos para aplicaciones biomédicas. Inicialmente utilizados como una alternativa a los materiales metálicos, con el propósito de incrementar la biocompatibilidad de los implantes, las biocerámicas se han convertido en una clase diversa de biomateriales, incluyendo actualmente tres tipos: cerámicas cuasi inertes; cerámicas bioactivas o reactivas superficialmente y cerámicas reabsorbibles o biodegradables. En la presente revisión se hace referencia a las biocerámicas en sentido estricto, es decir, a aquellos materiales constitutitos por compuestos inorgánicos no metálicos, cristalinos y consolidados

  17. Diffractometric method for determining the degree of crystallinity of materials

    Energy Technology Data Exchange (ETDEWEB)

    Chukhchin, D. G., E-mail: dimatsch@mail.ru; Malkov, A. V.; Tyshkunova, I. V.; Mayer, L. V.; Novozhilov, E. V. [Lomonosov Northen (Arctic) Federal University (Russian Federation)

    2016-05-15

    A new method for determining the degree of crystallinity of a material from X-ray diffraction data has been developed. The method is based on estimating the rate of change in function I = f(2θ) in the entire range of scattering angles. A calculation is performed using the ratio of the integral modulus of the first derivative of intensity with respect to angle 2θ to the integral area under the diffraction pattern curve. The method was tested on two substances with known amorphous and crystalline components. A linear relationship is revealed between the specified ratio of crystalline and amorphous parts and the calculated crystallinity index. The proposed method allows one to estimate impartially and compare the degree of crystallinity for samples of different nature.

  18. Design of multi materials combining crystalline and amorphous metallic alloys

    International Nuclear Information System (INIS)

    Volland, A.; Ragani, J.; Liu, Y.; Gravier, S.; Suéry, M.; Blandin, J.J.

    2012-01-01

    Highlights: ► Elaboration of multi materials associating metallic glasses and conventional crystalline alloys by co-deformation performed at temperatures close to the glass transition temperature of the metallic glasses. ► Elaboration of filamentary metal matrix composites with a core in metallic glass by co extrusion. ► Sandwich structures produced by co-pressing. ► Detection of atomic diffusion from the glass to the crystalline alloys during the processes. ► Good interfaces between the metallic glasses and the crystalline alloys, as confirmed by mechanical characterisation. - Abstract: Multi materials, associating zirconium based bulk metallic glasses and crystalline metallic alloys like magnesium alloys or copper are elaborated by co-deformation processing performed in the supercooled liquid regions (SLR) of the bulk metallic glasses. Two processes are investigated: co-extrusion and co-pressing. In the first case, filamentary composites with various designs can be produced whereas in the second case sandwich structures are obtained. The experimental window (temperature, time) in which processing can be carried out is directly related to the crystallisation resistance of the glass which requires getting information about the crystallisation conditions in the selected metallic glasses. Thermoforming windows are identified for the studied BMGs by thermal analysis and compression tests in their SLR. The mechanical properties of the produced multi materials are investigated thanks to specifically developed mechanical devices and the interfaces between the amorphous and the crystalline alloys are characterised.

  19. Liquid crystalline epoxy nanocomposite material for dental application

    Directory of Open Access Journals (Sweden)

    Yun-Yuan Tai

    2015-01-01

    Conclusion: The microhardness of the bracket-like blocks made by our new material is superior to the commercially available brackets, even after thermocycling. Our results indicate that the evaluated liquid crystalline epoxy nanocomposite materials are of an appropriate quality for application in dental core and post systems and in various restorations. By applying technology to refine manufacturing processes, these new materials could also be used to fabricate esthetic brackets for orthodontic treatment.

  20. Electrical transport in crystalline phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Woda, Michael

    2012-01-06

    In this thesis, the electrical transport properties of crystalline phase change materials are discussed. Phase change materials (PCM) are a special class of semiconducting and metallic thin film alloys, typically with a high amount of the group five element antimony or the group six element tellurium, such as Ge{sub 2}Sb{sub 2}Te{sub 5}. The unique property portfolio of this material class makes it suitable for memory applications. PCMs reveal fast switching between two stable room-temperature phases (amorphous and crystalline) realized by optical laser or electrical current pulses in memory devices. Additionally, a pronounced property contrast in form of optical reflectivity and electrical conductivity between the amorphous and crystalline phase is the characteristic fingerprint of PCMs. The emerging electrical solid state memory PCRAM is a very promising candidate to replace Flash memory in the near future or to even become a universal memory, which is non-volatile and shows the speed and cyclability of DRAM. One of the main technological challenges is the switching process into the amorphous state, which is the most power demanding step. In order to reduce the switching power, the crystalline resistivity needs to be increased at a given voltage. Thus understanding and tayloring of this property is mandatory. In this work, first the technological relevance, i.e. optical and electrical memory concepts based on PCMs are introduced. Subsequently a description of the physical properties of PCMs in four categories is given. Namely, structure, kinetics, optical properties and electrical properties are discussed. Then important recent developments such as the identification of resonant bonding in crystalline PCMs and a property predicting coordination scheme are briefly reviewed. The following chapter deals with the theoretical background of electrical transport, while the next chapter introduces the experimental techniques: Sputtering, XRR, XRD, DSC, thermal annealing

  1. Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding.

    Science.gov (United States)

    Zhu, Min; Cojocaru-Mirédin, Oana; Mio, Antonio M; Keutgen, Jens; Küpers, Michael; Yu, Yuan; Cho, Ju-Young; Dronskowski, Richard; Wuttig, Matthias

    2018-05-01

    Laser-assisted field evaporation is studied in a large number of compounds, including amorphous and crystalline phase change materials employing atom probe tomography. This study reveals significant differences in field evaporation between amorphous and crystalline phase change materials. High probabilities for multiple events with more than a single ion detected per laser pulse are only found for crystalline phase change materials. The specifics of this unusual field evaporation are unlike any other mechanism shown previously to lead to high probabilities of multiple events. On the contrary, amorphous phase change materials as well as other covalently bonded compounds and metals possess much lower probabilities for multiple events. Hence, laser-assisted field evaporation in amorphous and crystalline phase change materials reveals striking differences in bond rupture. This is indicative for pronounced differences in bonding. These findings imply that the bonding mechanism in crystalline phase change materials differs substantially from conventional bonding mechanisms such as metallic, ionic, and covalent bonding. Instead, the data reported here confirm a recently developed conjecture, namely that metavalent bonding is a novel bonding mechanism besides those mentioned previously. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Enhancing the piezoelectric properties of flexible hybrid AlN materials using semi-crystalline parylene

    Science.gov (United States)

    Jackson, Nathan; Mathewson, Alan

    2017-04-01

    Flexible piezoelectric materials are desired for numerous applications including biomedical, wearable, and flexible electronics. However, most flexible piezoelectric materials are not compatible with CMOS fabrication technology, which is desired for most MEMS applications. This paper reports on the development of a hybrid flexible piezoelectric material consisting of aluminium nitride (AlN) and a semi-crystalline polymer substrate. Various types of semi-crystalline parylene and polyimide materials were investigated as the polymer substrate. The crystallinity and surfaces of the polymer substrates were modified by micro-roughening and annealing in order to determine the effects on the AlN quality. The AlN crystallinity and piezoelectric properties decreased when the polymer surfaces were treated with O2 plasma. However, increasing the crystallinity of the parylene substrate prior to deposition of AlN caused enhanced c-axis (002) AlN crystallinity and piezoelectric response of the AlN. Piezoelectric properties of 200 °C annealed parylene-N substrate resulted in an AlN d 33 value of 4.87 pm V-1 compared to 2.17 pm V-1 for AlN on polyimide and 4.0 pm V-1 for unannealed AlN/parylene-N. The electrical response measurements to an applied force demonstrated that the parylene/AlN hybrid material had higher V pp (0.918 V) than commercial flexible piezoelectric material (PVDF) (V pp 0.36 V). The results in this paper demonstrate that the piezoelectric properties of a flexible AlN hybrid material can be enhanced by increasing the crystallinity of the polymer substrate, and the enhanced properties can function better than previous flexible piezoelectrics.

  3. Anisotropy-based crystalline oxide-on-semiconductor material

    Science.gov (United States)

    McKee, Rodney Allen; Walker, Frederick Joseph

    2000-01-01

    A semiconductor structure and device for use in a semiconductor application utilizes a substrate of semiconductor-based material, such as silicon, and a thin film of a crystalline oxide whose unit cells are capable of exhibiting anisotropic behavior overlying the substrate surface. Within the structure, the unit cells of the crystalline oxide are exposed to an in-plane stain which influences the geometric shape of the unit cells and thereby arranges a directional-dependent quality of the unit cells in a predisposed orientation relative to the substrate. This predisposition of the directional-dependent quality of the unit cells enables the device to take beneficial advantage of characteristics of the structure during operation. For example, in the instance in which the crystalline oxide of the structure is a perovskite, a spinel or an oxide of similarly-related cubic structure, the structure can, within an appropriate semiconductor device, exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic, ferromagnetic, antiferromagnetic, magneto-optic or large dielectric properties that synergistically couple to the underlying semiconductor substrate.

  4. Quantitative determination of the crystalline phases of the ceramic materials utilizing the Rietveld method

    International Nuclear Information System (INIS)

    Kniess, C.T.; Prates, P.B.; Lima, J.C. de; Kuhnen, N.C.; Riella, H.G.; Maliska, A.M.

    2009-01-01

    Ceramic materials have properties defined by their chemical and micro-structural composition. The quantification of the crystalline phases is a fundamental stage in the determination of the structure, properties and applications of a ceramic material. Within this context, this study aims is the quantitative determination of the crystalline phases of the ceramic materials developed with addition of mineral coal bottom ash, utilizing the X ray diffraction technique, through the method proposed by Rietveld. For the formulation of the ceramic mixtures a {3,3} simplex-lattice design was used, giving ten formulations of three components (two different types of clays and coal bottom ash). The crystalline phases identified in the ceramic materials after sintering at 1150 deg C during two hours are: quartz, tridimite, mullite and hematite. The proposed methodology utilizing the Rietveld method for the quantification relating to crystalline phases of the materials was shown to be adequate and efficient. (author)

  5. Experimental study of simultaneous Athabasca bitumen recovery and upgrading using ultradispersed catalysts injection

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, R.; Pereira, P. [University of Calgary (Canada)

    2011-07-01

    As the demand for oil is continuously increasing, the need for unconventional resources is rising. Oil extraction from bitumen and heavy oil reservoirs requires advanced techniques in order to decrease the viscosity of the oil. To increase the recovered original oil in place (OOIP) of a reservoir and decrease refining costs, new techniques to upgrade oil in situ are being developed. The current study investigates the use of ultra-dispersed (UD) submicronic catalysts to decrease oil viscosity. The experiment involved the injection of the catalyst and hydrogen gas in a sand pack saturated with Athabasca bitumen. Analysis was carried out by building recovery curves, and by comparing the oil recovery from the catalyzed process with that of catalyst-free processes. The study demonstrated that the oil recovered from the new technique had higher API gravity and lower viscosity, indicating the success of the in situ upgrading process.

  6. Low-cycle fatigue-cracking mechanisms in fcc crystalline materials

    Science.gov (United States)

    Zhang, P.; Qu, S.; Duan, Q. Q.; Wu, S. D.; Li, S. X.; Wang, Z. G.; Zhang, Z. F.

    2011-01-01

    The low-cycle fatigue (LCF) cracking behavior in various face-centered-cubic (fcc) crystalline materials, including Cu single crystals, bicrystals and polycrystals, Cu-Al and Cu-Zn alloys, ultrafine-grained (UFG) Al-Cu and Cu-Zn alloys, was systematically investigated and reviewed. In Cu single crystals, fatigue cracking always nucleates along slip bands and deformation bands. The large-angle grain boundary (GB) becomes the preferential site in bicrystals and polycrystals. In addition, fatigue cracking can also nucleate along slip bands and twin boundaries (TBs) in polycrystalline materials. However, shear bands and coarse deformation bands are observed to the preferential sites for fatigue cracking in UFG materials with a large number of GBs. Based on numerous observations on fatigue-cracking behavior, the fatigue-cracking mechanisms along slip bands, GBs, TBs, shear bands and deformation bands were systematically compared and classified into two types, i.e. shear crack and impingement crack. Finally, these fatigue-cracking behaviors are discussed in depth for a better understanding of their physical nature and the transition from intergranular to transgranular cracking in various fcc crystalline materials. These comprehensive results for fatigue damage mechanisms should significantly aid in obtaining the optimum design to further strengthen and toughen metallic materials in practice.

  7. Adsorption of Dyes in Studying the Surface Chemistry of Ultradispersed Diamond

    Science.gov (United States)

    Khokhlova, T. D.; Yunusova, G. R.; Lanin, S. N.

    2018-05-01

    The effect the surface chemistry of ultradispersed diamond (UDD) has on the adsorption of watersoluble dyes is considered. A comparison is made to adsorption on graphitized thermal carbon black (GTCB), which has a homogeneous and nonporous surface. The adsorption isotherms of dyes and the dependence of the adsorption on the pH of solutions are measured. It is found that UDD adsorbs acid (anionic) dyes—acid orange (AO) and acid anthraquinone blue (AAB)—but barely adsorbs a basic (cationic) dye, methylene blue (MB), because of the predominance of positively charged basic groups on the surface of UDD. The maximum adsorption of AO is much lower on UDD than on GTCB, while the maximum adsorption of AAB is similar for both surfaces. The adsorption of AO on UDD depends strongly on the pH of the solution, while the adsorption of AAB is independent of this parameter. It is suggested that the adsorption of AAB is determined not only by ionic and hydrophobic interactions but also by coordination interactions with impurity metal ions on a UDD surface. It is concluded that the adsorption of dyes characterizes the chemistry of a UDD surface with high sensitivity.

  8. Liquid Crystalline Semiconductors Materials, properties and applications

    CERN Document Server

    Kelly, Stephen; O'Neill, Mary

    2013-01-01

    This is an exciting stage in the development of organic electronics. It is no longer an area of purely academic interest as increasingly real applications are being developed, some of which are beginning to come on-stream. Areas that have already been commercially developed or which are under intensive development include organic light emitting diodes (for flat panel displays and solid state lighting), organic photovoltaic cells, organic thin film transistors (for smart tags and flat panel displays) and sensors. Within the family of organic electronic materials, liquid crystals are relative newcomers. The first electronically conducting liquid crystals were reported in 1988 but already a substantial literature has developed. The advantage of liquid crystalline semiconductors is that they have the easy processability of amorphous and polymeric semiconductors but they usually have higher charge carrier mobilities. Their mobilities do not reach the levels seen in crystalline organics but they circumvent all of t...

  9. Phase behaviour of macromolecular liquid crystalline materials. Computational studies at the molecular level

    International Nuclear Information System (INIS)

    Stimson, Lorna M.

    2003-01-01

    Molecular simulations provide an increasingly useful insight into the static and dynamic characteristics of materials. In this thesis molecular simulations of macro-molecular liquid crystalline materials are reported. The first liquid crystalline material that has been investigated is a side chain liquid crystal polymer (SCLCP). In this study semi-atomistic molecular dynamics simulations have been conducted at a range of temperatures and an aligning potential has been applied to mimic the effect of a magnetic field. In cooling the SCLCP from an isotropic melt, microphase separation was observed yielding a domain structure. The application of a magnetic field to this structure aligns the domains producing a stable smectic mesophase. This is the first study in which mesophases have been observed using an off-lattice model of a SCLCP. The second material that has been investigated is a dendrimer with terminal mesogenic functionalization. Here, a multi-scale approach has been taken with Monte Carlo studies of a single dendrimer molecule in the gas phase at the atomistic level, semi-atomistic molecular dynamics of a single molecule in liquid crystalline solvents and a coarse-grained molecular dynamics study of the dendrimer in the bulk. The coarse-grained model has been developed and parameterized using the results of the atomistic and semi-atomistic work. The single molecule studies showed that the liquid crystalline dendrimer was able to change its structure by conformational changes in the flexible chains that link the mesogenic groups to the core. Structural change was seen under the application of a mean field ordering potential in the gas phase, and in the presence of liquid crystalline solvents. No liquid crystalline phases were observed for the bulk phase studies of the coarse-grained model. However, when the length of the mesogenic units was increased there was some evidence for microphase separation in these systems. (author)

  10. Review of New Technology for Preparing Crystalline Silicon Solar Cell Materials by Metallurgical Method

    Science.gov (United States)

    Li, Man; Dai, Yongnian; Ma, Wenhui; Yang, Bin; Chu, Qingmei

    2017-11-01

    The goals of greatly reducing the photovoltaic power cost and making it less than that of thermal power to realize photovoltaic power grid parity without state subsidies are focused on in this paper. The research status, key technologies and development of the new technology for preparing crystalline silicon solar cell materials by metallurgical method at home and abroad are reviewed. The important effects of impurities and defects in crystalline silicon on its properties are analysed. The importance of new technology on reducing production costs and improving its quality to increase the cell conversion efficiency are emphasized. The previous research results show that the raw materials of crystalline silicon are extremely abundant. The product of crystalline silicon can meet the quality requirements of solar cell materials: Si ≥ 6 N, P 1 Ω cm, minority carrier life > 25 μs cell conversion efficiency of about 19.3%, the product costs energy consumption energy consumption, low carbon and sustainable development are prospected.

  11. Nonlinear optics of liquid crystalline materials

    International Nuclear Information System (INIS)

    Khoo, Iam Choon

    2009-01-01

    Liquid crystals occupy an important niche in nonlinear optics as a result of their unique physical and optical properties. Besides their broadband birefringence and transparency, abilities to self-assemble into various crystalline phases and to conform to various flexible forms and shapes, liquid crystals are compatible with almost all other optoelectronic materials and technology platforms. In both isotropic and ordered phases, liquid crystals possess extraordinarily large optical nonlinearities that stretch over multiple time scales. To date, almost all conceivable nonlinear optical phenomena have been observed in a very broad spectrum spanning the entire visible to infrared and beyond. In this review, we present a self-contained complete discussion of the optical nonlinearities of liquid crystals, and a thorough review of a wide range of nonlinear optical processes and phenomena enabled by these unique properties. Starting with a brief historical account of the development of nonlinear optical studies of the mesophases of liquid crystals, we then review various liquid crystalline materials and structures, and their nonlinear optical properties. Emphasis is placed on the nematic phase, which best exemplifies the dual nature of liquid crystals, although frequent references to other phases are also made. We also delve into recent work on novel structures such as photonic crystals, metamaterials and nanostructures and their special characteristics and emergent properties. The mechanisms and complex nonlocal dynamics of optical nonlinearities associated with laser induced director axis reorientation, thermal, density, and order parameter fluctuations, space charge field formation and photorefractivity are critically reviewed as a foundation for the discussions of various nonlinear optical processes detailed in this paper

  12. A Study of Crystalline Mechanism of Penetration Sealer Materials.

    Science.gov (United States)

    Teng, Li-Wei; Huang, Ran; Chen, Jie; Cheng, An; Hsu, Hui-Mi

    2014-01-14

    It is quite common to dispense a topping material like crystalline penetration sealer materials (CPSM) onto the surface of a plastic substance such as concrete to extend its service life span by surface protections from outside breakthrough. The CPSM can penetrate into the existing pores or possible cracks in such a way that it may form crystals to block the potential paths which provide breakthrough for any unknown materials. This study investigated the crystalline mechanism formed in the part of concrete penetrated by the CPSM. We analyzed the chemical composites, in order to identify the mechanism of CPSM and to evaluate the penetrated depth. As shown in the results, SEM observes the acicular-structured crystals filling capillary pores for mortar substrate of the internal microstructure beneath the concrete surface; meanwhile, XRD and FT-IR showed the main hydration products of CPSM to be C-S-H gel and CaCO₃. Besides, MIP also shows CPSM with the ability to clog capillary pores of mortar substrate; thus, it reduces porosity, and appears to benefit in sealing pores or cracks. The depth of CPSM penetration capability indicated by TGA shows 0-10 mm of sealer layer beneath the concrete surface.

  13. Ultradispersed Nanoarchitecture of LiV3O8 Nanoparticle/Reduced Graphene Oxide with High-Capacity and Long-Life Lithium-Ion Battery Cathodes

    Science.gov (United States)

    Mo, Runwei; Du, Ying; Rooney, David; Ding, Guqiao; Sun, Kening

    2016-01-01

    Lack of high-performance cathode materials has become the major barriers to lithium-ion battery applications in advanced communication equipment and electric vehicles. In this paper, we report a versatile interfacial reaction strategy, which is based on the idea of space confinement, for the synthesis of ultradispersed LiV3O8 nanoparticles (~10 nm) on graphene (denoted as LVO NPs-GNs) with an unprecedented degree of control on the separation and manipulation of the nucleation, growth, anchoring, and crystallization of nanoparticles in a water-in-oil emulsion system over free growth in solution. The prepared LVO NPs-GNs composites displayed high performance as an cathode material for lithium-ion battery, including high reversible lithium storage capacity (237 mA h g-1 after 200 cycles), high Coulombic efficiency (about 98%), excellent cycling stability and high rate capability (as high as 176 mA h g-1 at 0.9 A g-1, 128 mA h g-1 at 1.5 A g-1, 91 mA h g-1 at 3 A g-1 and 59 mA h g-1 at 6 A g-1, respectively). Very significantly, the preparation method employed can be easily adapted and may opens the door to complex hybrid materials design and engineering with graphene for advanced energy storage.

  14. A Study of Crystalline Mechanism of Penetration Sealer Materials

    Directory of Open Access Journals (Sweden)

    Li-Wei Teng

    2014-01-01

    Full Text Available It is quite common to dispense a topping material like crystalline penetration sealer materials (CPSM onto the surface of a plastic substance such as concrete to extend its service life span by surface protections from outside breakthrough. The CPSM can penetrate into the existing pores or possible cracks in such a way that it may form crystals to block the potential paths which provide breakthrough for any unknown materials. This study investigated the crystalline mechanism formed in the part of concrete penetrated by the CPSM. We analyzed the chemical composites, in order to identify the mechanism of CPSM and to evaluate the penetrated depth. As shown in the results, SEM observes the acicular-structured crystals filling capillary pores for mortar substrate of the internal microstructure beneath the concrete surface; meanwhile, XRD and FT-IR showed the main hydration products of CPSM to be C-S-H gel and CaCO3. Besides, MIP also shows CPSM with the ability to clog capillary pores of mortar substrate; thus, it reduces porosity, and appears to benefit in sealing pores or cracks. The depth of CPSM penetration capability indicated by TGA shows 0–10 mm of sealer layer beneath the concrete surface.

  15. Chapter 1.1 Crystallinity of Nanocellulose Materials by Near-IR FT-Raman Spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Richard S. Reiner; Sally A. Ralph

    2013-01-01

    Considering that crystallinity is one of the important properties that influence the end use of cellulose nanomaterials, it is important that the former be measured accurately. Recently, a new method based on near-IR FTRaman spectroscopy was proposed to determine cellulose I crystallinity. It was reported that in the Raman spectrum of cellulose materials, the...

  16. Energy storage crystalline gel materials for 3D printing application

    Science.gov (United States)

    Mao, Yuchen; Miyazaki, Takuya; Gong, Jin; Zhu, Meifang

    2017-04-01

    Phase change materials (PCMs) are considered one of the most reliable latent heat storage and thermoregulation materials. In this paper, a vinyl monomer is used to provide energy storage capacity and synthesize gel with phase change property. The side chain of copolymer form crystal microcell to storage/release energy through phase change. The crosslinking structure of the copolymer can protect the crystalline micro-area maintaining the phase change stable in service and improving the mechanical strength. By selecting different monomers and adjusting their ratios, we design the chemical structure and the crystallinity of gels, which in further affect their properties, such as strength, flexibility, thermal absorb/release transition temperature, transparency and the water content. Using the light-induced polymerization 3D printing techniques, we synthesize the energy storage gel and shape it on a 3D printer at the same time. By optimizing the 3D printing conditions, including layer thickness, curing time and light source, etc., the 3D printing objects are obtained.

  17. Influence of adsorption thermodynamics on guest diffusivities in nanoporous crystalline materials

    NARCIS (Netherlands)

    Krishna, R.; van Baten, J.M.

    2013-01-01

    Published experimental data, underpinned by molecular simulations, are used to highlight the strong influence of adsorption thermodynamics on diffusivities of guest molecules inside ordered nanoporous crystalline materials such as zeolites, metal-organic frameworks (MOFs), and zeolitic imidazolate

  18. Three-dimensional nanomechanical mapping of amorphous and crystalline phase transitions in phase-change materials.

    Science.gov (United States)

    Grishin, Ilja; Huey, Bryan D; Kolosov, Oleg V

    2013-11-13

    The nanostructure of micrometer-sized domains (bits) in phase-change materials (PCM) that undergo switching between amorphous and crystalline phases plays a key role in the performance of optical PCM-based memories. Here, we explore the dynamics of such phase transitions by mapping PCM nanostructures in three dimensions with nanoscale resolution by combining precision Ar ion beam cross-sectional polishing and nanomechanical ultrasonic force microscopy (UFM) mapping. Surface and bulk phase changes of laser written submicrometer to micrometer sized amorphous-to-crystalline (SET) and crystalline-to-amorphous (RESET) bits in chalcogenide Ge2Sb2Te5 PCM are observed with 10-20 nm lateral and 4 nm depth resolution. UFM mapping shows that the Young's moduli of crystalline SET bits exceed the moduli of amorphous areas by 11 ± 2%, with crystalline content extending from a few nanometers to 50 nm in depth depending on the energy of the switching pulses. The RESET bits written with 50 ps pulses reveal shallower depth penetration and show 30-50 nm lateral and few nanometer vertical wavelike topography that is anticorrelated with the elastic modulus distribution. Reverse switching of amorphous RESET bits results in the full recovery of subsurface nanomechanical properties accompanied with only partial topography recovery, resulting in surface corrugations attributed to quenching. This precision sectioning and nanomechanical mapping approach could be applicable to a wide range of amorphous, nanocrystalline, and glass-forming materials for 3D nanomechanical mapping of amorphous-crystalline transitions.

  19. The Maxwell-Stefan description of mixture diffusion in nanoporous crystalline materials

    NARCIS (Netherlands)

    Krishna, R.

    2014-01-01

    The efficacy of nanoporous crystalline materials in separation applications is often influenced to a significant extent by diffusion of guest molecules within the pores of the structural frameworks. The Maxwell-Stefan (M-S) equations provide a fundamental and convenient description of mixture

  20. Growth of crystalline semiconductor materials on crystal surfaces

    CERN Document Server

    Aleksandrov, L

    2013-01-01

    Written for physicists, chemists, and engineers specialising in crystal and film growth, semiconductor electronics, and various applications of thin films, this book reviews promising scientific and engineering trends in thin films and thin-films materials science. The first part discusses the physical characteristics of the processes occurring during the deposition and growth of films, the principal methods of obtaining semiconductor films and of reparing substrate surfaces on which crystalline films are grown, and the main applications of films. The second part contains data on epitaxial i

  1. Crystallinity in starch plastics: consequences for material properties

    NARCIS (Netherlands)

    Soest, van J.J.G.; Vliegenthart, J.F.G.

    1997-01-01

    The processing of starches with biodegradable additives has made biodegradable plastics suitable for a number of applications. Starch plastics are partially crystalline as a result of residual crystallinity and the recrystallization of amylose and amylopectin. Such crystallinity is a key determinant

  2. Proceedings of the international workshop on structural analyses bridging over between amorphous and crystalline materials (SABAC2008)

    International Nuclear Information System (INIS)

    Shamoto, Shin-ichi; Kodama, Katsuaki

    2008-07-01

    International workshop entitled 'Structural Analyses Bridging over between Amorphous and Crystalline Materials' (SABAC2008) was held on January 10 and 11, 2007 at Techno Community Square 'RICOTTI' in Tokai. Amorphous and crystalline materials are studied historically by various approaches. Recent industrial functional materials such as optical memory material, thermoelectric material, hydrogen storage material, and ionic conductor have intrinsic atomic disorders in their lattices. These local lattice disorders cannot be studied by conventional crystal structure analyses such as Rietveld analysis. Similar difficulty also exists in the structure analysis of nanomaterials. In the workshop, new approaches to the structural analysis on these materials were discussed. This report includes abstracts and materials of the presentations in the workshop. (author)

  3. Non-perturbative embedding of local defects in crystalline materials

    International Nuclear Information System (INIS)

    Cances, Eric; Deleurence, Amelie; Lewin, Mathieu

    2008-01-01

    We present a new variational model for computing the electronic first-order density matrix of a crystalline material in the presence of a local defect. A natural way to obtain variational discretizations of this model is to expand the difference Q between the density matrix of the defective crystal and the density matrix of the perfect crystal, in a basis of precomputed maximally localized Wannier functions of the reference perfect crystal. This approach can be used within any semi-empirical or density functional theory framework

  4. Dangling bonds and crystalline inclusions in amorphous materials

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, L [Ferrara Univ. (Italy). Ist. di Matematica; Russo, G [Bologna Univ. (Italy). Ist. di Fisica

    1981-02-07

    It is suggested that on the surface of crystalline inclusions dangling bond formation is favoured due to unbalanced local stresses. The energy for bond tearings is probably originated from the exothermic process leading to the crystalline inclusion configuration which is more stable than the original amorphous one. A thermodynamical calculation is performed giving the ratio nsub(k) of crystalline inclusions having k dangling bonds on their surface.

  5. First-principles study of crystalline and amorphous AlMgB14-based materials

    International Nuclear Information System (INIS)

    Ivashchenko, V. I.; Shevchenko, V. I.; Turchi, P. E. A.; Veprek, S.; Leszczynski, Jerzy; Gorb, Leonid; Hill, Frances

    2016-01-01

    We report first-principles investigations of crystalline and amorphous boron and M1 x M2 y X z B 14−z (M1, M2 = Al, Mg, Li, Na, Y; X = Ti, C, Si) phases (so-called “BAM” materials). Phase stability is analyzed in terms of formation energy and dynamical stability. The atomic configurations as well as the electronic and phonon density states of these phases are compared. Amorphous boron consists of distorted icosahedra, icosahedron fragments, and dioctahedra, connected by an amorphous network. The presence of metal atoms in amorphous BAM materials precludes the formation of icosahedra. For all the amorphous structures considered here, the Fermi level is located in the mobility gap independent of the number of valence electrons. The intra-icosahedral vibrations are localized in the range of 800 cm −1 , whereas the inter-icosahedral vibrations appear at higher wavenumbers. The amorphization leads to an enhancement of the vibrations in the range of 1100–1250 cm −1 . The mechanical properties of BAM materials are investigated at equilibrium and under shear and tensile strain. The anisotropy of the ideal shear and tensile strengths is explained in terms of a layered structure of the B 12 units. The strength of amorphous BAM materials is lower than that of the crystalline counterparts because of the partial fragmentation of the boron icosahedra in amorphous structures. The strength enhancement found experimentally for amorphous boron-based films is very likely related to an increase in film density, and the presence of oxygen impurities. For crystalline BAM materials, the icosahedra are preserved during elongation upon tension as well as upon shear in the (010)[100] slip system.

  6. Nano-Like Effects in Crystalline Thermoelectric Materials at High Temperatures

    Science.gov (United States)

    Korzhuev, M. A.; Katin, I. V.

    2013-05-01

    The mechanisms of improving the figure of merit Z and power parameter W of thermoelectric materials (TEMs) in the transitions λph→a and λe→a are considered (Here λph and λe are the mean free path of the phonons and electrons in the sample, and a is the inter atomic distance). It is shown that the same mechanisms are responsible for the growth of Z and W crystalline TEMs at high temperatures.

  7. Schottky barrier formation at amorphous-crystalline interfaces of GeSb phase change materials

    NARCIS (Netherlands)

    Kroezen, H. J.; Eising, G.; ten Brink, Gert; Palasantzas, G.; Kooi, B. J.; Pauza, A.

    2012-01-01

    The electrical properties of amorphous-crystalline interfaces in phase change materials, which are important for rewritable optical data storage and for random access memory devices, have been investigated by surface scanning potential microscopy. Analysis of GeSb systems indicates that the surface

  8. Novel family of solid acid catalysts: substantially amorphous or partially crystalline zeolitic materials

    CSIR Research Space (South Africa)

    Nicolaides, CP

    1999-01-01

    Full Text Available of the samples obtained at the various temperatures showed that for synthesis temperatures of up to 70 degrees C, X-ray amorphous aluminosilicates were obtained, whereas treatment at 90 degrees C produced a material exhibiting a 2% XRD crystallinity. Higher...

  9. Highly tilted liquid crystalline materials possessing a direct phase transition from antiferroelectric to isotropic phase

    Energy Technology Data Exchange (ETDEWEB)

    Milewska, K.; Drzewiński, W. [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Czerwiński, M., E-mail: mczerwinski@wat.edu.pl [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Dąbrowski, R. [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Piecek, W. [Institute of Applied Physics, Military University of Technology, 00-908 Warsaw (Poland)

    2016-03-01

    Pure compounds and multicomponent mixtures with a broad temperature range of high tilted liquid crystalline antiferroelectric phase and a direct phase transition from antiferroelectric to isotropic phase, were obtained. X-ray diffraction analysis confirms these kinds of materials form a high tilted anticlinic phase, with a fixed layer spacing and very weak dependency upon temperature, after the transition from the isotropic phase. Due to this, not only pure orthoconic antiferroelectric liquid crystals but also those with a moderate tilt should generate a good dark state. Furthermore, due to the increased potential for forming anticlinic forces, such materials could minimize a commonly observed asymmetry of a rise and fall switching times at a surface stabilized geometry. - Highlights: • The new class of liquid crystalline materials with the direct SmC{sub A}*. • Iso phase transition were obtained. • Materials possess the layer spacing fixed and very weak dependent upon temperature. • Smectic layers without shrinkage are observed. • A good dark state can be generate in SSAFLC.

  10. Impact of vacancy ordering on thermal transport in crystalline phase-change materials

    International Nuclear Information System (INIS)

    Siegert, K S; Lange, F R L; Sittner, E R; Volker, H; Schlockermann, C; Wuttig, M; Siegrist, T

    2015-01-01

    Controlling thermal transport in solids is of paramount importance for many applications. Often thermal management is crucial for a device's performance, as it affects both reliability and power consumption. A number of intricate concepts have been developed to address this challenge, such as diamond-like coatings to enhance the thermal conductivity or low symmetry complex super-structures to reduce it. Here, a different approach is pursued, where we explore the potential of solids with a high yet controllable degree of disorder. Recently, it has been demonstrated that an unconventionally high degree of structural disorder characterizes a number of crystalline phase-change materials (PCMs). This disorder strongly impacts electronic transport and even leads to disorder induced localization (Anderson localization). This raises the question how thermal transport is affected by such conditions. Here thermal transport in highly disordered crystalline Ge–Sb–Te (GST) based PCMs is investigated. Glass-like thermal properties are observed for several crystalline PCMs, which are attributed to strong scattering by disordered point defects. A systematic study of different compounds along the pseudo-binary line between GeTe and Sb 2 Te 3 reveals that disordered vacancies act as point defects responsible for pronounced phonon scattering. Annealing causes a gradual ordering of the vacancies and leads to a more ‘crystal-like’ thermal conductivity. While both vibrational and electronic degrees of freedom are affected by disorder, the consequences differ for different stoichiometries. This opens up a pathway to tune electrical and thermal transport by controlling the degree of disorder. Materials with tailored transport properties may not only help to improve power efficiency and scaling in upcoming phase-change memories but are also of fundamental interest in the field of thermoelectric materials. (key issues review)

  11. Impact of vacancy ordering on thermal transport in crystalline phase-change materials.

    Science.gov (United States)

    Siegert, K S; Lange, F R L; Sittner, E R; Volker, H; Schlockermann, C; Siegrist, T; Wuttig, M

    2015-01-01

    Controlling thermal transport in solids is of paramount importance for many applications. Often thermal management is crucial for a device's performance, as it affects both reliability and power consumption. A number of intricate concepts have been developed to address this challenge, such as diamond-like coatings to enhance the thermal conductivity or low symmetry complex super-structures to reduce it. Here, a different approach is pursued, where we explore the potential of solids with a high yet controllable degree of disorder. Recently, it has been demonstrated that an unconventionally high degree of structural disorder characterizes a number of crystalline phase-change materials (PCMs). This disorder strongly impacts electronic transport and even leads to disorder induced localization (Anderson localization). This raises the question how thermal transport is affected by such conditions. Here thermal transport in highly disordered crystalline Ge-Sb-Te (GST) based PCMs is investigated. Glass-like thermal properties are observed for several crystalline PCMs, which are attributed to strong scattering by disordered point defects. A systematic study of different compounds along the pseudo-binary line between GeTe and Sb2Te3 reveals that disordered vacancies act as point defects responsible for pronounced phonon scattering. Annealing causes a gradual ordering of the vacancies and leads to a more 'crystal-like' thermal conductivity. While both vibrational and electronic degrees of freedom are affected by disorder, the consequences differ for different stoichiometries. This opens up a pathway to tune electrical and thermal transport by controlling the degree of disorder. Materials with tailored transport properties may not only help to improve power efficiency and scaling in upcoming phase-change memories but are also of fundamental interest in the field of thermoelectric materials.

  12. First-principles study of crystalline and amorphous AlMgB{sub 14}-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Ivashchenko, V. I.; Shevchenko, V. I., E-mail: shev@materials.kiev.ua [Institute of Problems of Material Science, National Academy of Science of Ukraine, Krzhyzhanosky Str. 3, 03142 Kyiv (Ukraine); Turchi, P. E. A. [Lawrence Livermore National Laboratory (L-352), P.O. Box 808, Livermore, California 94551 (United States); Veprek, S. [Department of Chemistry, Technical University Munich, Lichtenbergstrasse 4, D-85747 Garching (Germany); Leszczynski, Jerzy [Department of Chemistry and Biochemistry, Interdisciplinary Center for Nanotoxicity, Jackson State University, Jackson, Mississippi 39217 (United States); Gorb, Leonid [Department of Chemistry and Biochemistry, Interdisciplinary Center for Nanotoxicity, Jackson State University, Jackson, Mississippi 39217 (United States); Badger Technical Services, LLC, Vicksburg, Mississippi 39180 (United States); Hill, Frances [U.S. Army ERDC, Vicksburg, Mississippi 39180 (United States)

    2016-05-28

    We report first-principles investigations of crystalline and amorphous boron and M1{sub x}M2{sub y}X{sub z}B{sub 14−z} (M1, M2 = Al, Mg, Li, Na, Y; X = Ti, C, Si) phases (so-called “BAM” materials). Phase stability is analyzed in terms of formation energy and dynamical stability. The atomic configurations as well as the electronic and phonon density states of these phases are compared. Amorphous boron consists of distorted icosahedra, icosahedron fragments, and dioctahedra, connected by an amorphous network. The presence of metal atoms in amorphous BAM materials precludes the formation of icosahedra. For all the amorphous structures considered here, the Fermi level is located in the mobility gap independent of the number of valence electrons. The intra-icosahedral vibrations are localized in the range of 800 cm{sup −1}, whereas the inter-icosahedral vibrations appear at higher wavenumbers. The amorphization leads to an enhancement of the vibrations in the range of 1100–1250 cm{sup −1}. The mechanical properties of BAM materials are investigated at equilibrium and under shear and tensile strain. The anisotropy of the ideal shear and tensile strengths is explained in terms of a layered structure of the B{sub 12} units. The strength of amorphous BAM materials is lower than that of the crystalline counterparts because of the partial fragmentation of the boron icosahedra in amorphous structures. The strength enhancement found experimentally for amorphous boron-based films is very likely related to an increase in film density, and the presence of oxygen impurities. For crystalline BAM materials, the icosahedra are preserved during elongation upon tension as well as upon shear in the (010)[100] slip system.

  13. International Annual Conference (29th) of ICT Held in Karlsruhe, Federal Republic of Germany on June 30-July 3, 1998. Energetic Materials; Production, Processing and Characterization

    Science.gov (United States)

    1998-06-26

    QCPE 464, M. Dewar Group, University of Texas, Austin, Texas, 78712. 10. Allen F.H., Brice M.D., Cartwright B.A., Doubleday A., Higgs T., Hummelink T...steel and fusions of Fe- C-Ni. The usage of the materials smelted with addition of ultra-dispersive powders of boson carbide, vanadium carbide and

  14. Imaging of Crystalline and Amorphous Surface Regions Using Time-of-Flight Secondary-Ion Mass Spectrometry (ToF-SIMS): Application to Pharmaceutical Materials.

    Science.gov (United States)

    Iuraş, Andreea; Scurr, David J; Boissier, Catherine; Nicholas, Mark L; Roberts, Clive J; Alexander, Morgan R

    2016-04-05

    The structure of a material, in particular the extremes of crystalline and amorphous forms, significantly impacts material performance in numerous sectors such as semiconductors, energy storage, and pharmaceutical products, which are investigated in this paper. To characterize the spatial distribution for crystalline-amorphous forms at the uppermost molecular surface layer, we performed time-of-flight secondary-ion mass spectroscopy (ToF-SIMS) measurements for quench-cooled amorphous and recrystallized samples of the drugs indomethacin, felodipine, and acetaminophen. Polarized light microscopy was used to localize crystallinity induced in the samples under controlled conditions. Principal component analysis was used to identify the subtle changes in the ToF-SIMS spectra indicative of the amorphous and crystalline forms for each drug. The indicators of amorphous and crystalline surfaces were common in type across the three drugs, and could be explained in general terms of crystal packing and intermolecular bonding, leading to intramolecular bond scission in the formation of secondary ions. Less intramolecular scission occurred in the amorphous form, resulting in a greater intensity of molecular and dimer secondary ions. To test the generality of amorphous-crystalline differentiation using ToF-SIMS, a different recrystallization method was investigated where acetaminophen single crystals were recrystallized from supersaturated solutions. The findings indicated that the ability to assign the crystalline/amorphous state of the sample using ToF-SIMS was insensitive to the recrystallization method. This demonstrates that ToF-SIMS is capable of detecting and mapping ordered crystalline and disordered amorphous molecular materials forms at micron spatial resolution in the uppermost surface of a material.

  15. Ultrathin Hydrophobic Coatings Obtained on Polyethylene Terephthalate Materials in Supercritical Carbon Dioxide with Co-Solvents

    Science.gov (United States)

    Kumeeva, T. Yu.; Prorokova, N. P.

    2018-02-01

    The surface properties of ultradisperse polytetrafluoroethylene coatings on polyethylene terephthalate materials modified in a supercritical carbon dioxide medium with co-solvent additions (aliphatic alcohols) were analyzed. An atomic force microscopy study revealed the peculiarities of the morphology of the hydrophobic coatings formed in the presence of co-solvents. The contribution of the co-solvents to the formation of the surface layer with a low surface energy was evaluated from the surface energy components of the modified polyester material. The stability of the coatings against dry friction was analyzed.

  16. The application of positron annihilation lifetime spectroscopy to the study of glassy and partially crystalline materials

    International Nuclear Information System (INIS)

    Zipper, M.D.; Hill, A.J.

    1994-01-01

    The use of positron annihilation lifetime spectroscopy (PALS) as a materials characterisation technique is discussed and is illustrated by examples from the authors' laboratory. A brief guide to interpretation of PALS results for metals, semiconductors, ionic solids and molecular solids is presented; however, the paper focuses on recent results for glassy and partially crystalline ionic and molecular solids. Case studies are presented in which the phenomena studied by PALS include miscibility of polymer blends, plasticization of solid polymer electrolytes, crystallinity in molecular and ionic solids, nanostructure of glass-ceramics, and refractivity of fluoride glasses. Future directions for PALS research of the electronic and defect structures of materials are discussed. 140 refs., 1 tab., 19 figs

  17. Crystalline Silica Primer

    Science.gov (United States)

    ,

    1992-01-01

    Crystalline silica is the scientific name for a group of minerals composed of silicon and oxygen. The term crystalline refers to the fact that the oxygen and silicon atoms are arranged in a threedimensional repeating pattern. This group of minerals has shaped human history since the beginning of civilization. From the sand used for making glass to the piezoelectric quartz crystals used in advanced communication systems, crystalline silica has been a part of our technological development. Crystalline silica's pervasiveness in our technology is matched only by its abundance in nature. It's found in samples from every geologic era and from every location around the globe. Scientists have known for decades that prolonged and excessive exposure to crystalline silica dust in mining environments can cause silicosis, a noncancerous lung disease. During the 1980's, studies were conducted that suggested that crystalline silica also was a carcinogen. As a result of these findings, crystalline silica has been regulated under the Occupational Safety and Health Administration's (OSHA) Hazard Communication Standard (HCS). Under HCS, OSHAregulated businesses that use materials containing 0.1% or more crystalline silica must follow Federal guidelines concerning hazard communication and worker training. Although the HCS does not require that samples be analyzed for crystalline silica, mineral suppliers or OSHAregulated

  18. Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity

    Science.gov (United States)

    Yucheng Peng; Douglas J. Gardner; Yousoo Han; Alper Kiziltas; Zhiyong Cai; Mandla A. Tshabalala

    2013-01-01

    The effect of drying method on selected material properties of nanocellulose was investigated. Samples of nanofibrillated cellulose (NFC) and cellulose nanocrystals (CNC) were each subjected to four separate drying methods: air-drying, freeze-drying, spray-drying, and supercritical-drying. The thermal stability and crystallinity of the dried nanocellulose were...

  19. Conduit for high temperature transfer of molten semiconductor crystalline material

    Science.gov (United States)

    Fiegl, George (Inventor); Torbet, Walter (Inventor)

    1983-01-01

    A conduit for high temperature transfer of molten semiconductor crystalline material consists of a composite structure incorporating a quartz transfer tube as the innermost member, with an outer thermally insulating layer designed to serve the dual purposes of minimizing heat losses from the quartz tube and maintaining mechanical strength and rigidity of the conduit at the elevated temperatures encountered. The composite structure ensures that the molten semiconductor material only comes in contact with a material (quartz) with which it is compatible, while the outer layer structure reinforces the quartz tube, which becomes somewhat soft at molten semiconductor temperatures. To further aid in preventing cooling of the molten semiconductor, a distributed, electric resistance heater is in contact with the surface of the quartz tube over most of its length. The quartz tube has short end portions which extend through the surface of the semiconductor melt and which are lef bare of the thermal insulation. The heater is designed to provide an increased heat input per unit area in the region adjacent these end portions.

  20. Inverse problems in complex material design: Applications to non-crystalline solids

    Science.gov (United States)

    Biswas, Parthapratim; Drabold, David; Elliott, Stephen

    The design of complex amorphous materials is one of the fundamental problems in disordered condensed-matter science. While impressive developments of ab-initio simulation methods during the past several decades have brought tremendous success in understanding materials property from micro- to mesoscopic length scales, a major drawback is that they fail to incorporate existing knowledge of the materials in simulation methodologies. Since an essential feature of materials design is the synergy between experiment and theory, a properly developed approach to design materials should be able to exploit all available knowledge of the materials from measured experimental data. In this talk, we will address the design of complex disordered materials as an inverse problem involving experimental data and available empirical information. We show that the problem can be posed as a multi-objective non-convex optimization program, which can be addressed using a number of recently-developed bio-inspired global optimization techniques. In particular, we will discuss how a population-based stochastic search procedure can be used to determine the structure of non-crystalline solids (e.g. a-SiH, a-SiO2, amorphous graphene, and Fe and Ni clusters). The work is partially supported by NSF under Grant Nos. DMR 1507166 and 1507670.

  1. From Cellulosic Based Liquid Crystalline Sheared Solutions to 1D and 2D Soft Materials

    Directory of Open Access Journals (Sweden)

    Maria Helena Godinho

    2014-06-01

    Full Text Available Liquid crystalline cellulosic-based solutions described by distinctive properties are at the origin of different kinds of multifunctional materials with unique characteristics. These solutions can form chiral nematic phases at rest, with tuneable photonic behavior, and exhibit a complex behavior associated with the onset of a network of director field defects under shear. Techniques, such as Nuclear Magnetic Resonance (NMR, Rheology coupled with NMR (Rheo-NMR, rheology, optical methods, Magnetic Resonance Imaging (MRI, Wide Angle X-rays Scattering (WAXS, were extensively used to enlighten the liquid crystalline characteristics of these cellulosic solutions. Cellulosic films produced by shear casting and fibers by electrospinning, from these liquid crystalline solutions, have regained wider attention due to recognition of their innovative properties associated to their biocompatibility. Electrospun membranes composed by helical and spiral shape fibers allow the achievement of large surface areas, leading to the improvement of the performance of this kind of systems. The moisture response, light modulated, wettability and the capability of orienting protein and cellulose crystals, opened a wide range of new applications to the shear casted films. Characterization by NMR, X-rays, tensile tests, AFM, and optical methods allowed detailed characterization of those soft cellulosic materials. In this work, special attention will be given to recent developments, including, among others, a moisture driven cellulosic motor and electro-optical devices.

  2. New liquid crystalline materials based on two generations of dendronised cyclophosphazenes.

    Science.gov (United States)

    Jiménez, Josefina; Laguna, Antonio; Gascón, Elena; Sanz, José Antonio; Serrano, José Luis; Barberá, Joaquín; Oriol, Luis

    2012-12-21

    A divergent approach was used for the synthesis of dendritic structures based on a cyclotriphosphazene core with 12 or 24 hydroxyl groups, by starting from [N(3)P(3)(OC(6)H(4)OH-4)(6)] and using an acetal-protected 2,2-di(hydroxymethyl)propionic anhydride as the acylating agent. Hydroxyl groups in these first- and second-generation dendrimers, G1-(OH)(12) or G2-(OH)(24), were then condensed in turn with mono- or polycatenar pro-mesogenic acids to study their ability to promote self-assembly into liquid crystalline structures. Reactions were monitored by using (31)P{(1)H} and (1)H NMR spectroscopy and the chemical structure of the resulting materials was confirmed by using different spectroscopic techniques and mass spectrometry (MALDI-TOF MS). The results were in accordance with monodisperse, fully functionalised cyclotriphosphazene dendrimers. Thermal and liquid crystalline properties were studied by using optical microscopy, differential scanning calorimetry and X-ray diffraction. The dendrimer with 12 4-pentylbiphenyl mesogenic units gives rise to columnar rectangular organisation, whereas the one with 24 pentylbiphenyl units does not exhibit mesomorphic behaviour. In the case of materials that contain polycatenar pro-mesogenic units with two aromatic rings (A4 vs. A5), the incorporation of a short flexible spacer connected to the periphery of the dendron (acid A5) was needed to achieve mesomorphic organisation. In this case, both dendrimer generations G1 A5 and G2 A5 exhibit a hexagonal columnar mesophase. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Approach to magnetic neutron capture therapy

    International Nuclear Information System (INIS)

    Kuznetsov, Anatoly A.; Podoynitsyn, Sergey N.; Filippov, Victor I.; Komissarova, Lubov Kh.; Kuznetsov, Oleg A.

    2005-01-01

    Purpose: The method of magnetic neutron capture therapy can be described as a combination of two methods: magnetic localization of drugs using magnetically targeted carriers and neutron capture therapy itself. Methods and Materials: In this work, we produced and tested two types of particles for such therapy. Composite ultradispersed ferro-carbon (Fe-C) and iron-boron (Fe-B) particles were formed from vapors of respective materials. Results: Two-component ultradispersed particles, containing Fe and C, were tested as magnetic adsorbent of L-boronophenylalanine and borax and were shown that borax sorption could be effective for creation of high concentration of boron atoms in the area of tumor. Kinetics of boron release into the physiologic solution demonstrate that ultradispersed Fe-B (10%) could be applied for an effective magnetic neutron capture therapy. Conclusion: Both types of the particles have high magnetization and magnetic homogeneity, allow to form stable magnetic suspensions, and have low toxicity

  4. 27Al nuclear magnetic resonance of glassy and crystalline Zr(1-x)AlxO(2-x/2) materials prepared from solution precursors

    International Nuclear Information System (INIS)

    Balmer, M.L.; Eckert, H.; Das, N.; Lange, F.F.

    1996-01-01

    The local environment of the aluminum atoms in a series of metastable Zr (1-x) Al x O (2-x/2) crystalline materials (0.08 ≤ x ≤ 0.57), prepared by diffusion-limited crystallization of amorphous precursors, has been determined by 27 Al magic angle spinning nuclear magnetic resonance (MAS NMR). Results show the existence of aluminum in 4-, 5-, and 6-fold coordination in both the amorphous and crystalline states. Although the relative amounts of each type of coordination show no compositional dependence in the amorphous state, the results for the crystalline materials show a systematic decrease in the average aluminum coordination number with increasing aluminum content. Comparisons of MAS NMR results between pure Al 2 O 3 precursors and Zr (1-x) Al x O (2-x/2) crystalline materials processed under similar conditions show a profound effect of ZrO 2 on the coordination environment of the aluminum atom. Both a random distribution model and a model that assumes small-scale clustering of aluminum ions are considered to explain the trends in the type of aluminum coordination as a function of composition

  5. Nanomembrane structures having mixed crystalline orientations and compositions

    Science.gov (United States)

    Lagally, Max G.; Scott, Shelley A.; Savage, Donald E.

    2014-08-12

    The present nanomembrane structures include a multilayer film comprising a single-crystalline layer of semiconductor material disposed between two other single-crystalline layers of semiconductor material. A plurality of holes extending through the nanomembrane are at least partially, and preferably entirely, filled with a filler material which is also a semiconductor, but which differs from the nanomembrane semiconductor materials in composition, crystal orientation, or both.

  6. Silica intercalated crystalline zirconium phosphate-type materials

    NARCIS (Netherlands)

    1988-01-01

    The present invention relates to intercalated crystalline zirconium phosphate-types compositions wherein the interlayers of said composition have been intercalated with three-dimensional silicon oxide pillars whereby the pillars comprise at least two silicon atom layers parallel to the clay

  7. Amorphous physics and materials: Interstitialcy theory of condensed matter states and its application to non-crystalline metallic materials

    International Nuclear Information System (INIS)

    Khonik, V A

    2017-01-01

    A comprehensive review of a novel promising framework for the understanding of non-crystalline metallic materials, i.e., interstitialcy theory of condensed matter states (ITCM), is presented. The background of the ITCM and its basic results for equilibrium/supercooled liquids and glasses are given. It is emphasized that the ITCM provides a new consistent, clear, and testable approach, which uncovers the generic relationship between the properties of the maternal crystal, equilibrium/supercooled liquid and glass obtained by melt quenching. (topical review)

  8. Immunity induced by a broad class of inorganic crystalline materials is directly controlled by their chemistry

    NARCIS (Netherlands)

    G.R. Williams (Gareth); K. Fierens (Kaat); S.G. Preston (Stephen); A.C. Lunn; O. Rysnik (Oliwia); S. de Prijck (Sofie); M. Kool (Mirjam); H.C. Buckley (Hannah); B.N.M. Lambrecht (Bart); D. O'Hare (Dermot); J.M. Austyn (Jonathan)

    2014-01-01

    textabstractThere is currently no paradigm in immunology that enables an accurate prediction of how the immune system will respond to any given agent. Here we show that the immunological responses induced by members of a broad class of inorganic crystalline materials are controlled purely by their

  9. Molecular reorientations in a substance with liquid-crystalline and plastic-crystalline phases

    International Nuclear Information System (INIS)

    Nguyen, Xuan Phuc.

    1986-05-01

    Results of dielectric relaxation (DR), quasielastic neutron scattering (QNS), far infrared absorption (FIR), proton magnetic resonance (PMR), differential scanning calorimetry (DSC) and preliminary X-ray diffraction measurements on the di-n-pentyloxyazoxybenzene (5.OAOB) are presented. The measurements carried out by all these methods showed that 5.OAOB exhibits a nontypical for liquid-crystalline materials phase diagram. It has two mesophases: a nematic (N) and an ''intermediate'' crystalline phase just below it. A complex interpretation of results obtained is given. All suggestions concerning the character of reorientational motions of the molecule as a whole as well as of its segments in mesomorphic phases are analyzed. From comparison of the DR and QNS studies one can conclude that in the N phase the molecule as a whole performs rotational diffusion around the long axis (τ DR ∼ 100 ps) and at the same time the two moieties perform faster independent reorientations around N - benzene rings bonds withτ QNS ∼ 5 ps. On the basis of various experimental data it is shown that the CrI phase is a plastic-crystalline phase for which the molecule and its segments perform fast stochastic unaxial reorientations. This is the first case where the existence of such a phase in liquid-crystalline materials has been experimentally confirmed. (author)

  10. Crystallinity and mechanical effects from annealing Parylene thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Nathan, E-mail: Nathan.Jackson@tyndall.ie [Tyndall National Institute, University College Cork, Cork (Ireland); Stam, Frank; O' Brien, Joe [Tyndall National Institute, University College Cork, Cork (Ireland); Kailas, Lekshmi [University of Limerick, Limerick (Ireland); Mathewson, Alan; O' Murchu, Cian [Tyndall National Institute, University College Cork, Cork (Ireland)

    2016-03-31

    Parylene is commonly used as thin film polymer for MEMS devices and smart materials. This paper investigates the impact on bulk properties due to annealing various types of Parylene films. A thin film of Parylene N, C and a hybrid material consisting of Parylene N and C were deposited using a standard Gorham process. The thin film samples were annealed at varying temperatures from room temperature up to 300 °C. The films were analyzed to determine the mechanical and crystallinity effects due to different annealing temperatures. The results demonstrate that the percentage of crystallinity and the full-width-half-maximum value on the 2θ X-ray diffraction scan increases as the annealing temperature increases until the melting temperature of the Parylene films was achieved. Highly crystalline films of 85% and 92% crystallinity were achieved for Parylene C and N respectively. Investigation of the hybrid film showed that the individual Parylene films behave independently to each other, and the crystallinity of one film had no significant impact to the other film. Mechanical testing showed that the elastic modulus and yield strength increase as a function of annealing, whereas the elongation-to-break parameter decreases. The change in elastic modulus was more significant for Parylene C than Parylene N and this is attributed to the larger change in crystallinity that was observed. Parylene C had a 112% increase in crystallinity compared to a 61% increase for Parylene N, because the original Parylene N material was more crystalline than Parylene C so the change of crystallinity was greater for Parylene C. - Highlights: • A hybrid material consisting of Parylene N and C was developed. • Parylene N has greater crystallinity than Parylene C. • Phase transition of Parylene N due to annealing results in increased crystallinity. • Annealing caused increased crystallinity and elastic modulus in Parylene films. • Annealed hybrid Parylene films crystallinity behave

  11. Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response

    International Nuclear Information System (INIS)

    Ortiz, Rocio; Quintana, Iban; Etxarri, Jon; Lejardi, Ainhoa; Sarasua, Jose-Ramon

    2011-01-01

    The picosecond laser ablation of poly-L-lactide (PLLA) as a function of laser fluence and degree of crystallinity was examined. The ablation parameters and the surface modifications were analyzed under various irradiation conditions using laser wavelengths ranging from the ultraviolet through the visible. When processing the amorphous PLLA, both energy threshold and topography varied considerably depending on laser wavelength. Laser irradiation showed a reduction in the energy ablation threshold as the degree of crystallinity increased, probably related to photomechanical effects involved in laser ablation with ultra-short pulses and the lower stress accommodation behavior of semicrystalline polymers. In particular, cooperative chain motions are impeded by the higher degree of crystallinity, showing fragile mechanical behavior and lower energy dissipation. The experimental results on ablation rate versus laser energy showed that UV laser ablation on semicrystalline PLLA was more efficient than the visible ablation, i.e., it exhibits higher etch rates over a wide range of pulse energy conditions. These results were interpreted in terms of photo-thermal and photo-chemical response of polymers as a function of material micro-structure and incident laser wavelength. High quality micro-grooves were produced in amorphous PLLA, reveling the potential of ultra-fast laser processing technique in the field of micro-structuring biocompatible and biodegradable polymers for biomedical applications.

  12. Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Rocio; Quintana, Iban; Etxarri, Jon [Manufacturing Processes Department, Fundacion TEKNIKER, Av. Otaola 20, 20600, Eibar, Guipuzcoa (Spain); Lejardi, Ainhoa; Sarasua, Jose-Ramon [Department of Mining and Metallurgy Engineering and Materials Science, School of Engineering, University of the Basque Country (EHU-UPV), Alameda de Urquijo s/n, 48013 Bilbao (Spain)

    2011-11-01

    The picosecond laser ablation of poly-L-lactide (PLLA) as a function of laser fluence and degree of crystallinity was examined. The ablation parameters and the surface modifications were analyzed under various irradiation conditions using laser wavelengths ranging from the ultraviolet through the visible. When processing the amorphous PLLA, both energy threshold and topography varied considerably depending on laser wavelength. Laser irradiation showed a reduction in the energy ablation threshold as the degree of crystallinity increased, probably related to photomechanical effects involved in laser ablation with ultra-short pulses and the lower stress accommodation behavior of semicrystalline polymers. In particular, cooperative chain motions are impeded by the higher degree of crystallinity, showing fragile mechanical behavior and lower energy dissipation. The experimental results on ablation rate versus laser energy showed that UV laser ablation on semicrystalline PLLA was more efficient than the visible ablation, i.e., it exhibits higher etch rates over a wide range of pulse energy conditions. These results were interpreted in terms of photo-thermal and photo-chemical response of polymers as a function of material micro-structure and incident laser wavelength. High quality micro-grooves were produced in amorphous PLLA, reveling the potential of ultra-fast laser processing technique in the field of micro-structuring biocompatible and biodegradable polymers for biomedical applications.

  13. Thermodynamics of water-solid interactions in crystalline and amorphous pharmaceutical materials.

    Science.gov (United States)

    Sacchetti, Mark

    2014-09-01

    Pharmaceutical materials, crystalline and amorphous, sorb water from the atmosphere, which affects critical factors in the development of drugs, such as the selection of drug substance crystal form, compatibility with excipients, dosage form selection, packaging, and product shelf-life. It is common practice to quantify the amount of water that a material sorbs at a given relative humidity (RH), but the results alone provide minimal to no physicochemical insight into water-solid interactions, without which pharmaceutical scientists cannot develop an understanding of their materials, so as to anticipate and circumvent potential problems. This research was conducted to advance the science of pharmaceutical materials by examining the thermodynamics of solids with sorbed water. The compounds studied include nonhygroscopic drugs, a channel hydrate drug, a stoichiometric hydrate excipient, and an amorphous excipient. The water sorption isotherms were measured over a range of temperature to extract the partial molar enthalpy and entropy of sorbed water as well as the same quantities for some of the solids. It was found that water-solid interactions spanned a range of energy and entropy as a function of RH, which was unique to the solid, and which could be valuable in identifying batch-to-batch differences and effects of processing in material performance. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. Mesomorphous versus traces of crystallinity: The itraconazole example

    Energy Technology Data Exchange (ETDEWEB)

    Atassi, Faraj, E-mail: fatassi@yahoo.com; Behme, Robert J.; Patel, Phenil J.

    2013-12-20

    Highlights: • Characterizing partially disordered pharmaceuticals is very challenging due to the fact that more than one discrete disordered phase can be present. • Dynamic mechanical analysis and dielectric analysis are extremely helpful in characterizing pharmaceutical mesophases (liquid crystals). • Thermotropic pharmaceutical mesophases, often mistaken as amorphous or partially crystalline, can show different phases of liquid crystallinity at different temperature. • Liquid crystalline pharmaceutical materials often show amorphous behavior along with other characteristics specific to mesomorphous materials. • The thermal and mechanical history of pharmaceutical disordered samples has a significant effect on their phase composition. - Abstract: Characterizing disordered pharmaceutical materials can be challenging, especially materials with partially disordered structures that lose one or two directional order (mesophases) and do not fit the traditional characterization categories of amorphous, crystalline or a combination of the two. Itraconazole, an antifungal agent, was chosen as a model compound that, when quench cooled, exhibits atypical disordered structure. Five different analytical tools were used to map out the molecular structure of this material and how it changes with changing temperature. X-ray diffraction showed some remnant crystallinity while dielectric analysis, dynamic mechanical analysis, DSC and hot stage microscopy gave more detailed molecular structure of the disordered material and explained all temperature related structural changes. The characterization of mesomorphous Itraconazole described here will help characterize a wide range of pharmaceuticals that exhibit thermotropic (temperature induced) mesomorphism at the molecular level.

  15. Mesomorphous versus traces of crystallinity: The itraconazole example

    International Nuclear Information System (INIS)

    Atassi, Faraj; Behme, Robert J.; Patel, Phenil J.

    2013-01-01

    Highlights: • Characterizing partially disordered pharmaceuticals is very challenging due to the fact that more than one discrete disordered phase can be present. • Dynamic mechanical analysis and dielectric analysis are extremely helpful in characterizing pharmaceutical mesophases (liquid crystals). • Thermotropic pharmaceutical mesophases, often mistaken as amorphous or partially crystalline, can show different phases of liquid crystallinity at different temperature. • Liquid crystalline pharmaceutical materials often show amorphous behavior along with other characteristics specific to mesomorphous materials. • The thermal and mechanical history of pharmaceutical disordered samples has a significant effect on their phase composition. - Abstract: Characterizing disordered pharmaceutical materials can be challenging, especially materials with partially disordered structures that lose one or two directional order (mesophases) and do not fit the traditional characterization categories of amorphous, crystalline or a combination of the two. Itraconazole, an antifungal agent, was chosen as a model compound that, when quench cooled, exhibits atypical disordered structure. Five different analytical tools were used to map out the molecular structure of this material and how it changes with changing temperature. X-ray diffraction showed some remnant crystallinity while dielectric analysis, dynamic mechanical analysis, DSC and hot stage microscopy gave more detailed molecular structure of the disordered material and explained all temperature related structural changes. The characterization of mesomorphous Itraconazole described here will help characterize a wide range of pharmaceuticals that exhibit thermotropic (temperature induced) mesomorphism at the molecular level

  16. Metamict state radiation damage in crystalline materials

    International Nuclear Information System (INIS)

    Haaker, R.F.; Ewing, R.C.

    1979-01-01

    Metamict minerals provide an excellent basis for the evaluation of long-term radiation damage effects, particularly such changes in physical and chemical properties as microfracturing, hydrothermal alteration, and solubility. This paper summarizes pertinent literature on metamictization and proposes experiments that are critical to the elucidation of structural controls on radiation damage in crystalline phases

  17. Hydroprocessing full-range of heavy oils and bitumen using ultradispersed catalysts at low severity

    Science.gov (United States)

    Peluso, Enzo

    The progressive exhaustion of light crude oils is forcing the petroleum industry to explore new alternatives for the exploitation of unconventional oils. New approaches are searching for technologies able to produce, transport and refine these feedstocks at lower costs, in which symbiotic processes between the enhanced oil recovery (EOR) and the conventional upgrading technologies are under investigation. The process explored in this thesis is an interesting alternative for in-situ upgrading of these crude oils in the presence of ultradispersed (UD) catalysts, which are included as a disperse phase able to circulate along with the processed feed. The objectives of this work are: (a) study the performance of UD catalysts in the presence of a full range (non fractioned) heavy oil and bitumen and (b) evaluate the recyclability of the UD catalysts. Four different heavy crude oils were evaluated in the presence with UD catalysts at a total pressure of 2.8 MPa, residence time of 8 hours and reaction temperatures from 360 up to 400ºC. Thermal and catalytic hydro-processing were compared in terms of conversion and product stability. A comparison between the different crude oils was additionally derived in terms of SARA, initial micro-carbon content and virgin oil stability among other properties. Advantages of catalytic hydro-processing over thermal hydro-processing were evidenced, with UD catalysts playing an essential hydrogenating role while retarding coke formation; microcarbon and asphaltenes reduction in the presence of UD catalysts was observed. To evaluate the feasibility of recycling the UD catalysts, a micro-slurry recycled unit was developed as part of this research. These main results showed: (a) a successful design of this unit, (b) that temperature, LHSV and fractional recycling ratio have more impact on VGO conversion, while pressure has almost no effect, and (c) an UD catalysts agglomeration process was detected, however this process is slow and reversible.

  18. A Hybrid Solid-State NMR and Electron Microscopy Structure-Determination Protocol for Engineering Advanced para-Crystalline Optical Materials

    NARCIS (Netherlands)

    Thomas, Brijith; Rombouts, Jeroen; Oostergetel, Gert T.; Gupta, Karthick B.S.S.; Buda, Francesco; Lammertsma, Koop; Orru, Romano; de Groot, Huub J.M.

    2017-01-01

    Hybrid magic-angle spinning (MAS) NMR spectroscopy and TEM were demonstrated for de novo structure determination of para-crystalline materials with a bioinspired fused naphthalene diimide (NDI)–salphen–phenazine prototype light-harvesting compound. Starting from chiral building blocks with C2

  19. Crystallinity of Electrospun and Centrifugal Spun Polycaprolactone Fibers: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Eva Kuzelova Kostakova

    2017-01-01

    Full Text Available Crystalline properties of semicrystalline polymers are very important parameters that can influence the application area. The internal structure, like the mentioned crystalline properties, of polymers can be influenced by the production technology itself and by changing technology parameters. The present work is devoted to testing of electrospun and centrifugal spun fibrous and nanofibrous materials and compare them to foils and granules made from the same raw polymer. The test setup reveals the structural differences caused by the production technology. Effects of average molecular weight are also exhibited. The applied biodegradable and biocompatible polymer is polycaprolactone (PCL as it is a widespread material for medical purposes. The crystallinity of PCL has significant effect on rate of degradation that is an important parameter for a biodegradable material and determines the applicability. The results of differential scanning calorimetry (DSC showed that, at the degree of crystallinity, there is a minor difference between the electrospun and centrifugal spun fibrous materials. However, the significant influence of polymer molecular weight was exhibited. The morphology of the fibrous materials, represented by fiber diameter, also did not demonstrate any connection to final measured crystallinity degree of the tested materials.

  20. Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics.

    Science.gov (United States)

    Hwang, Suk-Won; Park, Gayoung; Edwards, Chris; Corbin, Elise A; Kang, Seung-Kyun; Cheng, Huanyu; Song, Jun-Kyul; Kim, Jae-Hwan; Yu, Sooyoun; Ng, Joanne; Lee, Jung Eun; Kim, Jiyoung; Yee, Cassian; Bhaduri, Basanta; Su, Yewang; Omennetto, Fiorenzo G; Huang, Yonggang; Bashir, Rashid; Goddard, Lynford; Popescu, Gabriel; Lee, Kyung-Mi; Rogers, John A

    2014-06-24

    Single-crystalline silicon nanomembranes (Si NMs) represent a critically important class of material for high-performance forms of electronics that are capable of complete, controlled dissolution when immersed in water and/or biofluids, sometimes referred to as a type of "transient" electronics. The results reported here include the kinetics of hydrolysis of Si NMs in biofluids and various aqueous solutions through a range of relevant pH values, ionic concentrations and temperatures, and dependence on dopant types and concentrations. In vitro and in vivo investigations of Si NMs and other transient electronic materials demonstrate biocompatibility and bioresorption, thereby suggesting potential for envisioned applications in active, biodegradable electronic implants.

  1. 17th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B. L.

    2007-08-01

    The National Center for Photovoltaics sponsored the 17th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, held in Vail, CO, August 5-8, 2007. This meeting provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The theme of this year's meeting was 'Expanding Technology for a Future Powered by Si Photovoltaics.'

  2. Effect of Ultrasonic Vibration on Mechanical Properties of 3D Printing Non-Crystalline and Semi-Crystalline Polymers.

    Science.gov (United States)

    Li, Guiwei; Zhao, Ji; Wu, Wenzheng; Jiang, Jili; Wang, Bofan; Jiang, Hao; Fuh, Jerry Ying Hsi

    2018-05-17

    Fused deposition modeling 3D printing has become the most widely used additive manufacturing technology because of its low manufacturing cost and simple manufacturing process. However, the mechanical properties of the 3D printing parts are not satisfactory. Certain pressure and ultrasonic vibration were applied to 3D printed samples to study the effect on the mechanical properties of 3D printed non-crystalline and semi-crystalline polymers. The tensile strength of the semi-crystalline polymer polylactic acid was increased by 22.83% and the bending strength was increased by 49.05%, which were almost twice the percentage increase in the tensile strength and five times the percentage increase in the bending strength of the non-crystalline polymer acrylonitrile butadiene styrene with ultrasonic strengthening. The dynamic mechanical properties of the non-crystalline and semi-crystalline polymers were both improved after ultrasonic enhancement. Employing ultrasonic energy can significantly improve the mechanical properties of samples without modifying the 3D printed material or adjusting the forming process parameters.

  3. Development of ultrafine and pure amorphous and crystalline new materials and their fabrication process

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Kim, Y. E.; Kim, J. G.; Gu, J. H.; Yoon, N. K.; Seong, S. Y.; Ryu, S. E.; Lee, J. C.

    1996-07-01

    Based on an estimation of annual rice production of 5.2 Million tons, rice husks by-production reaches to 1.17 Million tons per year in Korea. distinguished to other corns, rice contains a lot of Si; 10 ∼ 20 % by weight in rice husks calculated as silica. The aim of this research project is to develop technologies for ceramic powders and materials utilizing the silica in rice husks called phytoliths. In this researches of the following subjects were performed; decomposition of the organic components, acid treatments, extraction of the organic matter, effect of gamma-ray irradiation on the acid treatment, plasma treatment, crystallization of silica powder, dispersion of amorphous silica powder, fabrication of ultrafine crystalline fibrous materials.. (author). 18 refs., 5 tabs., 55 figs

  4. Investigating the relative influences of molecular dimensions and binding energies on diffusivities of guest species inside nanoporous crystalline materials

    NARCIS (Netherlands)

    Krishna, R.; van Baten, J.M.

    2012-01-01

    The primary objective of this article is to investigate the relative influences of molecular dimensions and adsorption binding energies on unary diffusivities of guest species inside nanoporous crystalline materials such as zeolites and metal-organic frameworks (MOFs). The investigations are based

  5. Learning structure-property relationship in crystalline materials: A study of lanthanide-transition metal alloys

    Science.gov (United States)

    Pham, Tien-Lam; Nguyen, Nguyen-Duong; Nguyen, Van-Doan; Kino, Hiori; Miyake, Takashi; Dam, Hieu-Chi

    2018-05-01

    We have developed a descriptor named Orbital Field Matrix (OFM) for representing material structures in datasets of multi-element materials. The descriptor is based on the information regarding atomic valence shell electrons and their coordination. In this work, we develop an extension of OFM called OFM1. We have shown that these descriptors are highly applicable in predicting the physical properties of materials and in providing insights on the materials space by mapping into a low embedded dimensional space. Our experiments with transition metal/lanthanide metal alloys show that the local magnetic moments and formation energies can be accurately reproduced using simple nearest-neighbor regression, thus confirming the relevance of our descriptors. Using kernel ridge regressions, we could accurately reproduce formation energies and local magnetic moments calculated based on first-principles, with mean absolute errors of 0.03 μB and 0.10 eV/atom, respectively. We show that meaningful low-dimensional representations can be extracted from the original descriptor using descriptive learning algorithms. Intuitive prehension on the materials space, qualitative evaluation on the similarities in local structures or crystalline materials, and inference in the designing of new materials by element substitution can be performed effectively based on these low-dimensional representations.

  6. Irradiation-induced dimensional changes of poorly crystalline carbons

    International Nuclear Information System (INIS)

    Bullock, R.E.

    1979-01-01

    Data are presented on irradiation-induced changes of poorly crystalline carbons at high temperatures(>900 0 C). The materials surveyed include: (1) carbon fibers, (2) glassy carbons, (3) carbonaceous matrix materials for HTGR fuel rods and (4) pyrocarbons. The materials are listed in order of increasing stability, with maximum strains ranging from more than 50% for fibers to less than 10% for pyrocarbons. Dimensional changes of highly anisotropic carbon fibers appear to be sensitive to irradiation temperature, as slightly anisotropic pyrocarbons are, whereas temperature seems to have little influence on the behavior of isotropic glassy carbons over the range from 600 to 1350 0 C. Dimensional changes for graphite-filled matrix materials were roughly isotropic on the average and did not seem to be strongly temperature dependent for the lower fluences investigated. Increased graphite filler lowered volumetric dimensional changes of the matrix in agreement with a rule-of-mixtures relationship between change components for the filler and the less-stable binder phases. Instabilities of all of the poorly crystalline materials were generally greater than those for more crystalline carbons under the same conditions, including highly orientated graphites that approximate single-crystal behavior. (author)

  7. Eighth Workshop on Crystalline Silicon Solar Cell Materials and Processes; Summary Discussion Sessions

    International Nuclear Information System (INIS)

    Sopori, B.; Swanson, D.; Sinton, R.; Stavola, M.; Tan, T.

    1998-01-01

    This report is a summary of the panel discussions included with the Eighth Workshop on Crystalline Silicon Solar Cell Materials and Processes. The theme of the workshop was ''Supporting the Transition to World Class Manufacturing.'' This workshop provided a forum for an informal exchange of information between researchers in the photovoltaic and nonphotovoltaic fields on various aspects of impurities and defects in silicon, their dynamics during device processing, and their application in defect engineering. This interaction helped establish a knowledge base that can be used for improving device-fabrication processes to enhance solar-cell performance and reduce cell costs. It also provided an excellent opportunity for researchers from industry and universities to recognize mutual needs for future joint research

  8. Materials Characterization and Microelectronic Implementation of Metal-insulator Transition Materials and Phase Change Materials

    Science.gov (United States)

    2015-03-26

    materials like crystalline semiconductors, graphene , and composites, the materials discussed here could have a significant impact. This thesis investigates...diagnosis [124], crystallinity of pharmaceutical materials [125], materials diagnosis for restoration of paintings [126], and materials research [127...temperature dots and paint were placed on samples on the substrate. Temperature dots are typically used in the transportation of goods such as food in order

  9. On the use of crystalline admixtures in cement based construction materials: from porosity reducers to promoters of self healing

    Science.gov (United States)

    Ferrara, Liberato; Krelani, Visar; Moretti, Fabio

    2016-08-01

    The project detailed in this paper aims at a thorough characterization of the effects of crystalline admixtures, currently employed as porosity reducing admixtures, on the self-healing capacity of the cementitious composites, i.e. their capacity to completely or partially re-seal cracks and, in case, also exhibit recovery of mechanical properties. The problem has been investigated with reference to both a normal strength concrete (NSC) and a high performance fibre reinforced cementitious composite (HPFRCC). In the latter case, the influence of flow-induced fibre alignment has also been considered in the experimental investigation. With reference to either 3-point (for NSC) or 4-point (for HPFRCC) bending tests performed up to controlled crack opening and up to failure, respectively before and after exposure/conditioning recovery of stiffness and stress bearing capacity has been evaluated to assess the self-healing capacity. In a durability-based design framework, self-healing indices to quantify the recovery of mechanical properties will also be defined. In NSC, crystalline admixtures are able to promote up to 60% of crack sealing even under exposure to open air. In the case of HPFRCCs, which would already feature autogenous healing capacity because of their peculiar mix compositions, the synergy between the dispersed fibre reinforcement and the action of the crystalline admixture has resulted in a likely ‘chemical pre-stressing’ of the same reinforcement, from which the recovery of mechanical performance of the material has greatly benefited, up to levels even higher than the performance of the virgin un-cracked material.

  10. Highlights from the Faraday Discussion on New Directions in Porous Crystalline Materials, Edinburgh, UK, June 2017.

    Science.gov (United States)

    Addicoat, Matthew A; Bennett, Thomas D; Stassen, Ivo

    2017-09-28

    A lively discussion on new directions in porous crystalline materials took place in June 2017, with the beautiful city of Edinburgh as a backdrop, in the context of the unique Faraday Discussions format. Here, 5 minute presentations were given on papers which had been submitted in advance of the conference, with copious time allocated for in-depth discussion of the work presented. Prof. Mircea Dincă (MIT), chair of the scientific committee, opened the conference by welcoming the many different nationalities attending, and outlining the format of discussions.

  11. Effects of crystalline quality and electrode material on fatigue in Pb(Zr,Ti)O3 thin film capacitors

    Science.gov (United States)

    Lee, J.; Johnson, L.; Safari, A.; Ramesh, R.; Sands, T.; Gilchrist, H.; Keramidas, V. G.

    1993-07-01

    Pb(Zr(0.52)Ti(0.48))O3 (PZT)/Y1Ba2Cu3O(x) (YBCO) heterostructures were grown by pulsed laser deposition, in which PZT films were epitaxial, highly oriented, or polycrystalline. These PZT films were obtained by varying the deposition temperature from 550 to 760 C or by using various substrates such as SrTiO3 (100), MgO (100), and r-plane sapphire. PZT films with Pt top electrodes exhibited large fatigue with 35-50 percent loss of the remanent polarization after 10 exp 9 cycles, depending on the crystalline quality. Polycrystalline films showed better fatigue resistance than epitaxial or highly oriented films. However, PZT films with both top and bottom YBCO electrodes had significantly improved fatigue resistance for both epitaxial and polycrystalline films. Electrode material seems to be a more important parameter in fatigue than the crystalline quality of the PZT films.

  12. A Review on Disorder-Driven Metal-Insulator Transition in Crystalline Vacancy-Rich GeSbTe Phase-Change Materials.

    Science.gov (United States)

    Wang, Jiang-Jing; Xu, Ya-Zhi; Mazzarello, Riccardo; Wuttig, Matthias; Zhang, Wei

    2017-07-27

    Metal-insulator transition (MIT) is one of the most essential topics in condensed matter physics and materials science. The accompanied drastic change in electrical resistance can be exploited in electronic devices, such as data storage and memory technology. It is generally accepted that the underlying mechanism of most MITs is an interplay of electron correlation effects (Mott type) and disorder effects (Anderson type), and to disentangle the two effects is difficult. Recent progress on the crystalline Ge₁Sb₂Te₄ (GST) compound provides compelling evidence for a disorder-driven MIT. In this work, we discuss the presence of strong disorder in GST, and elucidate its effects on electron localization and transport properties. We also show how the degree of disorder in GST can be reduced via thermal annealing, triggering a disorder-driven metal-insulator transition. The resistance switching by disorder tuning in crystalline GST may enable novel multilevel data storage devices.

  13. Comparison of defects in crystalline oxide semiconductor materials by electron spin resonance

    International Nuclear Information System (INIS)

    Matsuda, Tokiyoshi; Kimura, Mutsumi

    2015-01-01

    Defects in crystalline InGaZnO 4 (IGZO) induced by plasma were investigated using electron spin resonance (ESR). Thermal stabilities and g factors of two ESR signals (A and B observed at g = 1.939 and 2.003, respectively) in IGZO were different from those of the ESR signals observed in component materials such as Ga 2 O 3 (signal observed at g = 1.969), In 2 O 3 (no signal), and ZnO (signal observed at g = 1.957). Signal A in IGZO increased upon annealing at 300 °C for 1 h, but decreased when annealing was continued for more than 2 h. On the other hand, signal B decreased upon annealing at 300 °C for 1 h. The ESR signal in ZnO decayed in accordance with a second-order decay model with a rate constant of 2.1 × 10 −4 s −1 ; however, this phenomenon was not observed in other materials. This difference might have been due to randomly formed IGZO lattices such as asymmetrical (Ga, Zn)O and In-O layers. Defects in signals A and B in IGZO were formed in trap states (at the deep level) and tail states, respectively

  14. Ab Initio Calculation of XAFS Debye-Waller Factors for Crystalline Materials

    Science.gov (United States)

    Dimakis, Nicholas

    2007-02-01

    A direct an accurate technique for calculating the thermal X-ray absorption fine structure (XAFS) Debye-Waller factors (DWF) for materials of crystalline structure is presented. Using the Density Functional Theory (DFT) under the hybrid X3LYP functional, a library of MnO spin—optimized clusters are built and their phonon spectrum properties are calculated; these properties in the form of normal mode eigenfrequencies and eigenvectors are in turn used for calculation of the single and multiple scattering XAFS DWF. DWF obtained via this technique are temperature dependent expressions and can be used to substantially reduce the number of fitting parameters when experimental spectra are fitted with a hypothetical structure without any ad hoc assumptions. Due to the high computational demand a hybrid approach of mixing the DFT calculated DWF with the correlated Debye model for inner and outer shells respectively is presented. DFT obtained DWFs are compared with corresponding values from experimental XAFS spectra on manganosite. The cluster size effect and the spin parameter on the DFT calculated DWFs are discussed.

  15. Stimuli-responsive liquid crystalline materials

    NARCIS (Netherlands)

    Debije, M.G.; Schenning, A.P.H.J.; Hashmi, Saleem

    2016-01-01

    Stimuli-responsive materials which respond to triggers from the environment by changing their properties are one of the focal points in materials science. For precise functional properties, well-defined hierarchically ordered supramolecular materials are crucial. The self-assembly of liquid crystals

  16. Crystalline and Crystalline International Disposal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Hari S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffrey De' Haven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    This report presents the results of work conducted between September 2015 and July 2016 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program. Los Alamos focused on two main activities during this period: Discrete fracture network (DFN) modeling to describe flow and radionuclide transport in complex fracture networks that are typical of crystalline rock environments, and a comprehensive interpretation of three different colloid-facilitated radionuclide transport experiments conducted in a fractured granodiorite at the Grimsel Test Site in Switzerland between 2002 and 2013. Chapter 1 presents the results of the DFN work and is divided into three main sections: (1) we show results of our recent study on the correlation between fracture size and fracture transmissivity (2) we present an analysis and visualization prototype using the concept of a flow topology graph for characterization of discrete fracture networks, and (3) we describe the Crystalline International work in support of the Swedish Task Force. Chapter 2 presents interpretation of the colloidfacilitated radionuclide transport experiments in the crystalline rock at the Grimsel Test Site.

  17. Diffraction enhanced X-ray imaging of mammals crystalline lens

    International Nuclear Information System (INIS)

    Antunes, A.; Hoennicke, M.G.; Safatle, A.M.V.; Cusatis, C.; Moraes Barros, P.S.; Morelhao, S.L.

    2005-01-01

    Crystalline lenses are transparent biological materials where the organization of the lens fibers can also be affected by changes at molecular level, and therefore the structure and morphology of the tissue can be correlated to the loss of transparency of the lens. In this work, internal structure of mammal lenses regarding the long-range ordering of the fibers are investigated by diffraction enhanced X-ray imaging (DEI) radiography. Moreover, DEI and absorption X-ray synchrotron radiographs for healthy and cataractous crystalline lenses are compared. Significant differences in healthy and cataractous crystalline lenses are observed

  18. A Review on Disorder-Driven Metal–Insulator Transition in Crystalline Vacancy-Rich GeSbTe Phase-Change Materials

    Science.gov (United States)

    Wang, Jiang-Jing; Xu, Ya-Zhi; Mazzarello, Riccardo; Wuttig, Matthias; Zhang, Wei

    2017-01-01

    Metal–insulator transition (MIT) is one of the most essential topics in condensed matter physics and materials science. The accompanied drastic change in electrical resistance can be exploited in electronic devices, such as data storage and memory technology. It is generally accepted that the underlying mechanism of most MITs is an interplay of electron correlation effects (Mott type) and disorder effects (Anderson type), and to disentangle the two effects is difficult. Recent progress on the crystalline Ge1Sb2Te4 (GST) compound provides compelling evidence for a disorder-driven MIT. In this work, we discuss the presence of strong disorder in GST, and elucidate its effects on electron localization and transport properties. We also show how the degree of disorder in GST can be reduced via thermal annealing, triggering a disorder-driven metal–insulator transition. The resistance switching by disorder tuning in crystalline GST may enable novel multilevel data storage devices. PMID:28773222

  19. Observing the amorphous-to-crystalline phase transition in Ge{sub 2}Sb{sub 2}Te{sub 5} non-volatile memory materials from ab initio molecular-dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.H.; Elliott, S.R. [Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge (United Kingdom)

    2012-10-15

    Phase-change memory is a promising candidate for the next generation of non-volatile memory devices. This technology utilizes reversible phase transitions between amorphous and crystalline phases of a recording material, and has been successfully used in rewritable optical data storage, revealing its feasibility. In spite of the importance of understanding the nucleation and growth processes that play a critical role in the phase transition, this understanding is still incomplete. Here, we present observations of the early stages of crystallization in Ge{sub 2}Sb{sub 2}Te{sub 5} materials through ab initio molecular-dynamics simulations. Planar structures, including fourfold rings and planes, play an important role in the formation and growth of crystalline clusters in the amorphous matrix. At the same time, vacancies facilitate crystallization by providing space at the glass-crystalline interface for atomic diffusion, which results in fast crystal growth, as observed in simulations and experiments. The microscopic mechanism of crystallization presented here may deepen our understanding of the phase transition occurring in real devices, providing an opportunity to optimize the memory performance of phase-change materials. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure

    Science.gov (United States)

    Sachtler, W.M.H.; Huang, Y.Y.

    1998-07-28

    Methods are disclosed for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physical sorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics. 17 figs.

  1. Circuit design techniques for non-crystalline semiconductors

    CERN Document Server

    Sambandan, Sanjiv

    2012-01-01

    Despite significant progress in materials and fabrication technologies related to non-crystalline semiconductors, fundamental drawbacks continue to limit real-world application of these devices in electronic circuits. To help readers deal with problems such as low mobility and intrinsic time variant behavior, Circuit Design Techniques for Non-Crystalline Semiconductors outlines a systematic design approach, including circuit theory, enabling users to synthesize circuits without worrying about the details of device physics. This book: Offers examples of how self-assembly can be used as a powerf

  2. Liquid crystallinity driven highly aligned large graphene oxide composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Eun; Oh, Jung Jae; Yun, Taeyeong [Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701 (Korea, Republic of); Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Kim, Sang Ouk, E-mail: sangouk.kim@kaist.ac.kr [Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701 (Korea, Republic of); Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of)

    2015-04-15

    Graphene is an emerging graphitic carbon materials, consisting of sp{sup 2} hybridized two dimensinal honeycomb structure. It has been widely studied to incorporate graphene with polymer to utilize unique property of graphene and reinforce electrical, mechanical and thermal property of polymer. In composite materials, orientation control of graphene significantly influences the property of composite. Until now, a few method has been developed for orientation control of graphene within polymer matrix. Here, we demonstrate facile fabrication of high aligned large graphene oxide (LGO) composites in polydimethylsiloxane (PDMS) matrix exploiting liquid crystallinity. Liquid crystalline aqueous dispersion of LGO is parallel oriented within flat confinement geometry. Freeze-drying of the aligned LGO dispersion and subsequent infiltration with PDMS produce highly aligned LGO/PDMS composites. Owing to the large shape anisotropy of LGO, liquid crystalline alignment occurred at low concentration of 2 mg/ml in aqueous dispersion, which leads to the 0.2 wt% LGO loaded composites. - Graphical abstract: Liquid crystalline LGO aqueous dispersions are spontaneous parallel aligned between geometric confinement for highly aligned LGO/polymer composite fabrication. - Highlights: • A simple fabrication method for highly aligned LGO/PDMS composites is proposed. • LGO aqueous dispersion shows nematic liquid crystalline phase at 0.8 mg/ml. • In nematic phase, LGO flakes are highly aligned by geometric confinement. • Infiltration of PDMS into freeze-dried LGO allows highly aligned LGO/PDMS composites.

  3. Crystalline and Crystalline International Disposal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Hari S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffrey De' Haven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-21

    This report presents the results of work conducted between September 2014 and July 2015 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program.

  4. Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness

    International Nuclear Information System (INIS)

    Chai, Luxiao; Wang, Xiaodong; Wu, Dezhen

    2015-01-01

    Highlights: • We designed and synthesized a sort of bifunctional PCMs-based microcapsules. • These microcapsules have an n-eicosane core and a crystalline TiO 2 shell. • Such a crystalline TiO 2 shell exhibited a good photocatalytic activity. • The microcapsules showed good performance in energy storage and sterilization. - Abstract: A sort of novel bifunctional microencapsulated phase change material (PCM) was designed by encapsulating n-eicosane into a crystalline titanium dioxide (TiO 2 ) shell and, then, was successfully synthesized through in-situ polycondensation in the sol–gel process using tetrabutyl titanate as a titania precursor. The resultant microcapsule samples were characterized by Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy to determine their chemical compositions and structures. Furthermore, the crystallinity of the TiO 2 shell was verified by powder X-ray diffraction patterns. It was confirmed that the fluorinions could induce the phase transition from the amorphous TiO 2 to the brookite-form crystals during the sol–gel process, thus resulting in a crystalline TiO 2 shell for the microencapsulated n-eicosane. The scanning and transmission electron microscopy investigations indicated that all of the resultant microcapsules presented a perfect spherical shape with a uniform particle size of 1.5–2 μm, and they also exhibited a well-defined core–shell structure as well as a smooth and compact shell. The crystalline TiO 2 shell made the resultant microcapsules a photocatalytic activity, and therefore, these microcapsules demonstrated a good photocatalytic effect for the chemical degradation and an antimicrobial function for some of the Gram-negative bacteria. Most of all, all of the microencapsulated n-eicosane samples indicated good phase-change performance and high thermal reliability for latent-heat storage and release, and moreover, they achieved a high

  5. Comparison of defects in crystalline oxide semiconductor materials by electron spin resonance

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Tokiyoshi, E-mail: toki@rins.ryukoku.ac.jp; Kimura, Mutsumi [Department of Electronics and Informatics, Faculty of Science and Technology, Ryukoku University, 1-438, 1-5 Yokotani, Seta Oe-Cho, Otsu, Shiga 520-2194, Japan and Joint Research Center for Science and Technology, Ryukoku University, 1-5 Yokotani, Seta Oe-Cho, Otsu, Shiga 520-2194 (Japan)

    2015-03-15

    Defects in crystalline InGaZnO{sub 4} (IGZO) induced by plasma were investigated using electron spin resonance (ESR). Thermal stabilities and g factors of two ESR signals (A and B observed at g = 1.939 and 2.003, respectively) in IGZO were different from those of the ESR signals observed in component materials such as Ga{sub 2}O{sub 3} (signal observed at g = 1.969), In{sub 2}O{sub 3} (no signal), and ZnO (signal observed at g = 1.957). Signal A in IGZO increased upon annealing at 300 °C for 1 h, but decreased when annealing was continued for more than 2 h. On the other hand, signal B decreased upon annealing at 300 °C for 1 h. The ESR signal in ZnO decayed in accordance with a second-order decay model with a rate constant of 2.1 × 10{sup −4} s{sup −1}; however, this phenomenon was not observed in other materials. This difference might have been due to randomly formed IGZO lattices such as asymmetrical (Ga, Zn)O and In-O layers. Defects in signals A and B in IGZO were formed in trap states (at the deep level) and tail states, respectively.

  6. Topological crystalline superconductivity and second-order topological superconductivity in nodal-loop materials

    Science.gov (United States)

    Shapourian, Hassan; Wang, Yuxuan; Ryu, Shinsei

    2018-03-01

    We study the intrinsic fully gapped odd-parity superconducting order in doped nodal-loop materials with a torus-shaped Fermi surface. We show that the mirror symmetry, which protects the nodal loop in the normal state, also protects the superconducting state as a topological crystalline superconductor. As a result, the surfaces preserving the mirror symmetry host gapless Majorana cones. Moreover, for a Weyl-loop system (twofold degenerate at the nodal loop), the surfaces that break the mirror symmetry (those parallel to the bulk nodal loop) contribute a Chern (winding) number to the quasi-two-dimensional system in a slab geometry, which leads to a quantized thermal Hall effect and a single Majorana zero mode bound at a vortex line penetrating the system. This Chern number can be viewed as a higher-order topological invariant, which supports hinge modes in a cubic sample when mirror symmetry is broken. For a Dirac-loop system (fourfold degenerate at the nodal loop), the fully gapped odd-parity state can be either time-reversal symmetry-breaking or symmetric, similar to the A and B phases of 3He. In a slab geometry, the A phase has a Chern number two, while the B phase carries a nontrivial Z2 invariant. We discuss the experimental relevance of our results to nodal-loop materials such as CaAgAs.

  7. NATO Advanced Study Institute on Engineering of Crystalline Materials Properties : State of the Art in Modeling Design and Applications. New Materials for better Defence and Security

    CERN Document Server

    Braga, Dario; Addadi, Lia

    2008-01-01

    This volume collects the lecture notes (ordered alphabetically according to the first author surname) of the talks delivered by the main speakers at the Erice 2007 International School of Crystallography, generously selected by NATO as an Advanced Study Institute (# 982582). The aim of the school was to discuss the state-of-the-art in molecular materials design, that is, the rational analysis and fabrication of crystalline solids showing a predefined structural organization of their component molecules and ions, which results in the manifestation of a specific collective property of technological interest. The School was held on June 7–17, 2007, in Erice (an old town, over 3000 years, located on the top of a Sicilian hill that oversees the sea near Trapani). The school developed following two parallel lines. First we established “where we are” in terms of modelling, design, synthesis and applications of crystalline solids with predefined properties. Second, we attempted to define current and possible fu...

  8. Liquid crystalline thermosetting polymers as protective coatings for aerospace

    OpenAIRE

    Guerriero, G.L.

    2012-01-01

    Environmental regulations are driving the development of new aerospace coating systems, mainly to eliminate chromates and reduce volatile organic compound (VOC) emissions. Among the various potential options for new coating materials, liquid crystalline polymers (LCPs) are attractive due to their unique combination of mechanical properties and chemical resistance. Their use, however, has been limited mainly due to poor adhesion properties. Thermotropic liquid crystalline thermosets displayed ...

  9. Carrier mobility in mesoscale heterogeneous organic materials: Effects of crystallinity and anisotropy on efficient charge transport

    Science.gov (United States)

    Kobayashi, Hajime; Shirasawa, Raku; Nakamoto, Mitsunori; Hattori, Shinnosuke; Tomiya, Shigetaka

    2017-07-01

    Charge transport in the mesoscale bulk heterojunctions (BHJs) of organic photovoltaic devices (OPVs) is studied using multiscale simulations in combination with molecular dynamics, the density functional theory, the molecular-level kinetic Monte Carlo (kMC) method, and the coarse-grained kMC method, which was developed to estimate mesoscale carrier mobility. The effects of the degree of crystallinity and the anisotropy of the conductivity of donors on hole mobility are studied for BHJ structures that consist of crystalline and amorphous pentacene grains that act as donors and amorphous C60 grains that act as acceptors. We find that the hole mobility varies dramatically with the degree of crystallinity of pentacene because it is largely restricted by a low-mobility amorphous region that occurs in the hole transport network. It was also found that the percolation threshold of crystalline pentacene is relatively high at approximately 0.6. This high percolation threshold is attributed to the 2D-like conductivity of crystalline pentacene, and the threshold is greatly improved to a value of approximately 0.3 using 3D-like conductive donors. We propose essential guidelines to show that it is critical to increase the degree of crystallinity and develop 3D conductive donors for efficient hole transport through percolative networks in the BHJs of OPVs.

  10. Project for a beam line consecrated to soft condensed matter, common heterogeneous materials and non-crystalline materials on soleil

    International Nuclear Information System (INIS)

    Ne, F.; Zemb, T.

    1998-01-01

    This project is a part of the 'SOLEIL' synchrotron project. The camera proposed is optimized for small angle x-ray scattering in the domain of soft condensed matter, common heterogeneous materials such as wood, cements, glass, and more generally non-crystalline materials. The beam line is designed to allow a quick succession of different users without time consuming adjustments. Therefore, optical settings are minimized, taking into account the pluri-disciplinary nature of the analysis possibilities. To this end, the technical requirements are as follows. First and essentially, the wave-length has to be fixed and set around 12 keV. Focusing mirrors, optics to sample and sample to detector distances, and the size of the detector allow for a wide range of wave vector to be used. Rejection rate will be lower, and angular dynamical range will be larger than any of the current synchrotron lines. We want this line to be, and to stay, complementary to more specific systems, such as reflectivity experiments or grazing angle scattering experiments. However, we are thinking of an adaptation to ultra small angle scattering mode, based on the Bonse and Hart camera. Such equipment, actually a kind of 'Instamatic' of the reciprocal space, will fulfill to the need of chemical engineers, biophysicists or material scientists interested in hard as well as soft condensed matter. It will allow a large amount of experiments per time unit. (author)

  11. On the relevance of the micromechanics approach for predicting the linear viscoelastic behavior of semi-crystalline poly(ethylene)terephtalates (PET)

    International Nuclear Information System (INIS)

    Diani, J.; Bedoui, F.; Regnier, G.

    2008-01-01

    The relevance of micromechanics modeling to the linear viscoelastic behavior of semi-crystalline polymers is studied. For this purpose, the linear viscoelastic behaviors of amorphous and semi-crystalline PETs are characterized. Then, two micromechanics modeling methods, which have been proven in a previous work to apply to the PET elastic behavior, are used to predict the viscoelastic behavior of three semi-crystalline PETs. The microstructures of the crystalline PETs are clearly defined using WAXS techniques. Since microstructures and mechanical properties of both constitutive phases (the crystalline and the amorphous) are defined, the simulations are run without adjustable parameters. Results show that the models are unable to reproduce the substantial decrease of viscosity induced by the increase of crystallinity. Unlike the real materials, for moderate crystallinity, both models show materials of viscosity nearly identical to the amorphous material

  12. Multi-material gate poly-crystalline thin film transistors: Modeling and simulation for an improved gate transport efficiency

    International Nuclear Information System (INIS)

    Sehgal, Amit; Mangla, Tina; Gupta, Mridula; Gupta, R.S.

    2008-01-01

    In this work, a two-dimensional potential distribution formulation is presented for multi-material gate poly-crystalline silicon thin film transistors. The developed formulation incorporates the effects due to traps and grain-boundaries. In short-channel devices, short-channel effects and drain-induced barrier lowering (DIBL) effect exists, and are accounted for in the analysis. The work aims at the reduction of DIBL effect and grain-boundary effects i.e. to reduce the potential barriers generated in the channel by employing gate-engineered structures. A study of work-functions and electrode lengths of multi-material gate electrode is done to suppress the potential barriers, hot electron effect and to improve the carrier transport efficiency. Green's function approach is adopted for the two-dimensional potential solution. The results obtained show a good agreement with simulated results, thus, demonstrating the validity of our model

  13. Ninth workshop on crystalline silicon solar cell materials and processes: Summary discussion sessions

    International Nuclear Information System (INIS)

    Sopori, B.; Tan, T.; Swanson, D.; Rosenblum, M.; Sinton, R.

    1999-01-01

    This report is a summary of the panel discussions included with the Ninth Workshop on Crystalline Silicon Solar Cell Materials and Processes. The theme for the workshop was ''R and D Challenges and Opportunities in Si Photovoltaics''. This theme was chosen because it appropriately reflects a host of challenges that the growing production of Si photovoltaics will be facing in the new millennium. The anticipated challenges will arise in developing strategies for cost reduction, increased production, higher throughput per manufacturing line, new sources of low-cost Si, and the introduction of new manufacturing processes for cell production. At the same time, technologies based on CdTe and CIS will come on line posing new competition. With these challenges come new opportunities for Si PV to wean itself from the microelectronics industry, to embark on a more aggressive program in thin-film Si solar cells, and to try new approaches to process monitoring

  14. Amorphous/crystalline (A/C) thermodynamic "rules of thumb": estimating standard thermodynamic data for amorphous materials using standard data for their crystalline counterparts.

    Science.gov (United States)

    Holland, Diane; Jenkins, H Donald Brooke

    2012-05-07

    Standard thermochemical data (in the form of Δ(f)H° and Δ(f)G°) are available for crystalline (c) materials but rarely for their corresponding amorphous (a) counterparts. This paper establishes correlations between the sets of data for the two material forms (where known), which can then be used as a guideline for estimation of missing data. Accordingly, Δ(f)H°(a)/kJ mol(-1) ≈ 0.993Δ(f)H°(c)/kJ mol(-1) + 12.52 (R(2) = 0.9999; n = 50) and Δ(f)G°/kJ mol(-1) ≈ 0.988Δ(f)H°(c)/kJ mol(-1) + 0.70 (R(2) = 0.9999; n = 10). Much more tentatively, we propose that S°(298)(c)/J K(-1) mol(-1) ≈ 1.084S°(298)(c)/J K(-1) mol(-1) + 6.54 (R(2) = 0.9873; n = 11). An amorphous hydrate enthalpic version of the Difference Rule is also proposed (and tested) in the form [Δ(f)H°(M(p)X(q)·nH(2)O,a) - Δ(f)H°(M(p)X(q),a)]/kJ mol(-1) ≈ Θ(Hf)n ≈ -302.0n, where M(p)X(q)·nH(2)O represents an amorphous hydrate and M(p)X(q) the corresponding amorphous anhydrous parent salt.

  15. Size and Crystallinity in Protein-Templated Inorganic Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, Craig C.; Uchida, Masaki; Reichhardt, Courtney; Harrington, Richard; Kang, Sebyung; Klem, Michael T.; Parise, John B.; Douglas, Trevor (SBU); (Montana)

    2010-12-01

    Protein cages such as ferritins and virus capsids have been used as containers to synthesize a wide variety of protein-templated inorganic nanoparticles. While identification of the inorganic crystal phase has been successful in some cases, very little is known about the detailed nanoscale structure of the inorganic component. We have used pair distribution function analysis of total X-ray scattering to measure the crystalline domain size in nanoparticles of ferrihydrite, {gamma}-Fe{sub 2}O{sub 3}, Mn{sub 3}O{sub 4}, CoPt, and FePt grown inside 24-meric ferritin cages from H. sapiens and P. furiosus. The material properties of these protein-templated nanoparticles are influenced by processes at a variety of length scales: the chemistry of the material determines the precise arrangement of atoms at very short distances, while the interior volume of the protein cage constrains the maximum nanoparticle size attainable. At intermediate length scales, the size of coherent crystalline domains appears to be constrained by the arrangement of crystal nucleation sites on the interior of the cage. On the basis of these observations, some potential synthetic strategies for the control of crystalline domain size in protein-templated nanoparticles are suggested.

  16. Aminopropyl groups of the functionalized Mobil Crystalline Material 41 as a carrier for controlled diclofenac sodium and piroxicam delivery.

    Science.gov (United States)

    Khodaverdi, Elham; Ahmadi, Mina; Kamali, Hossein; Hadizadeh, Farzin

    2017-01-01

    Synthetic Mobil Crystalline Material 41 (MCM-41) as a mesoporous material and functionalized MCM-41 using aminopropyl groups were studied in order to investigate their ability to encapsulate and to control the release of diclofenac sodium and piroxicam. MCM-41 was synthesized through sol-gel procedure and functionalized with aminopropyl groups. The physicochemical properties of MCM-41 were studied through particle size analysis, infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and carbon-hydrogen-nitrogen analysis. Diclofenac sodium and piroxicam were loaded into the MCM-41 matrix using the filtration and solvent evaporation methods. The drug-loading capacity was determined by ultraviolet, Fourier transform infrared, X-ray diffraction, and Brunauer-Emmett-Teller analysis. According to the results for pure drug release, >57% was released in the 1 st h, but when these drugs were loaded into pure Mobil Crystalline Material 41 (MCM-41) and functionalized MCM-41, the release into the simulated gastrointestinal medium was less, continuous, and slower. The release of piroxicam from functionalized MCM-41 was slower than that from MCM-41 in the simulated intestinal medium because of the formation of electrostatic bonds between piroxicam and the aminopropyl groups of the functionalized MCM-41. However, in the case of diclofenac sodium, there was no significant difference between pure MCM-41 and functionalized MCM-41. The difference between piroxicam and diclofenac sodium was due to the high solubility of diclofenac sodium in the intestinal medium (pH 6.8), which caused more rapid release from the matrixes than for piroxicam. Our findings indicate that, after functionalization of MCM-41, it could offer a good means of delivering controlled diclofenac sodium and piroxicam.

  17. Biomimetic processing of oriented crystalline ceramic layers

    Energy Technology Data Exchange (ETDEWEB)

    Cesarano, J.; Shelnutt, J.A.

    1997-10-01

    The aim of this project was to develop the capabilities for Sandia to fabricate self assembled Langmuir-Blodgett (LB) films of various materials and to exploit their two-dimensional crystalline structure to promote the growth of oriented thin films of inorganic materials at room temperature. This includes the design and synthesis of Langmuir-active (amphiphilic) organic molecules with end groups offering high nucleation potential for various ceramics. A longer range goal is that of understanding the underlying principles, making it feasible to use the techniques presented in this report to fabricate unique oriented films of various materials for electronic, sensor, and membrane applications. Therefore, whenever possible, work completed in this report was completed with the intention of addressing the fundamental phenomena underlying the growth of crystalline, inorganic films on template layers of highly organized organic molecules. This problem was inspired by biological processes, which often produce exquisitely engineered structures via templated growth on polymeric layers. Seashells, for example, exhibit great toughness owing to their fine brick-and-mortar structure that results from templated growth of calcium carbonate on top of layers of ordered organic proteins. A key goal in this work, therefore, is to demonstrate a positive correlation between the order and orientation of the template layer and that of the crystalline ceramic material grown upon it. The work completed was comprised of several parallel efforts that encompassed the entire spectrum of biomimetic growth from solution. Studies were completed on seashells and the mechanisms of growth for calcium carbonate. Studies were completed on the characterization of LB films and the capability developed for the in-house fabrication of these films. Standard films of fatty acids were studied as well as novel polypeptides and porphyrins that were synthesized.

  18. Research Article Special Issue

    African Journals Online (AJOL)

    pc

    2018-04-16

    Apr 16, 2018 ... during the process of milling materials was evaluated. ... Recently to obtain new properties of metals in founding and ... production (flint clays, catalysts, aluminum oxides, chromium, melting slags, etc., has been ..... [3] Ushakov A.V. Preparation of ultradisperse powders in low-pressure arc discharge plasma:.

  19. Electrochemically synthesized amorphous and crystalline nanowires: dissimilar nanomechanical behavior in comparison with homologous flat films

    Science.gov (United States)

    Zeeshan, M. A.; Esqué-de Los Ojos, D.; Castro-Hartmann, P.; Guerrero, M.; Nogués, J.; Suriñach, S.; Baró, M. D.; Nelson, B. J.; Pané, S.; Pellicer, E.; Sort, J.

    2016-01-01

    The effects of constrained sample dimensions on the mechanical behavior of crystalline materials have been extensively investigated. However, there is no clear understanding of these effects in nano-sized amorphous samples. Herein, nanoindentation together with finite element simulations are used to compare the properties of crystalline and glassy CoNi(Re)P electrodeposited nanowires (φ ~ 100 nm) with films (3 μm thick) of analogous composition and structure. The results reveal that amorphous nanowires exhibit a larger hardness, lower Young's modulus and higher plasticity index than glassy films. Conversely, the very large hardness and higher Young's modulus of crystalline nanowires are accompanied by a decrease in plasticity with respect to the homologous crystalline films. Remarkably, proper interpretation of the mechanical properties of the nanowires requires taking the curved geometry of the indented surface and sink-in effects into account. These findings are of high relevance for optimizing the performance of new, mechanically-robust, nanoscale materials for increasingly complex miniaturized devices.The effects of constrained sample dimensions on the mechanical behavior of crystalline materials have been extensively investigated. However, there is no clear understanding of these effects in nano-sized amorphous samples. Herein, nanoindentation together with finite element simulations are used to compare the properties of crystalline and glassy CoNi(Re)P electrodeposited nanowires (φ ~ 100 nm) with films (3 μm thick) of analogous composition and structure. The results reveal that amorphous nanowires exhibit a larger hardness, lower Young's modulus and higher plasticity index than glassy films. Conversely, the very large hardness and higher Young's modulus of crystalline nanowires are accompanied by a decrease in plasticity with respect to the homologous crystalline films. Remarkably, proper interpretation of the mechanical properties of the nanowires

  20. The strength of crystalline color superconductors

    International Nuclear Information System (INIS)

    Mannarelli, Massimo; Rajagopal, Krishna; Sharma, Rishi

    2007-01-01

    We present a study of the shear modulus of the crystalline color superconducting phase of quark matter, showing that this phase of dense, but not asymptotically dense, quark matter responds to shear stress as a very rigid solid. This phase is characterized by a gap parameter Δ that is periodically modulated in space and therefore spontaneously breaks translational invariance. We derive the effective action for the phonon fields that describe space- and time-dependent fluctuations of the crystal structure formed by Δ, and obtain the shear modulus from the coefficients of the spatial derivative terms. Within a Ginzburg-Landau approximation, we find shear moduli which are 20 to 1000 times larger than those of neutron star crusts. This phase of matter is thus more rigid than any known material in the universe, but at the same time the crystalline color superconducting phase is also superfluid. These properties raise the possibility that the presence of this phase within neutron stars may have distinct implications for their phenomenology. For example (some) pulsar glitches may originate in crystalline superconducting neutron star cores

  1. 18th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Workshop Proceedings, 3-6 August 2008, Vail, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B. L.

    2008-09-01

    The National Center for Photovoltaics sponsored the 18th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, held in Vail, CO, August 3-6, 2008. This meeting provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The theme of this year's meeting was 'New Directions for Rapidly Growing Silicon Technologies.'

  2. Comparison of mechanical and friction properties of composite materials based on AlMg2 containing nano-dimensional particles of crystalline graphite and nanofibers of gamma oxide of aluminum

    Science.gov (United States)

    Aborkin, A. V.; Babin, D. M.; Soboĺkov, A. V.

    2018-04-01

    The method of mechanical synthesis in a planetary ball mill was used for production of composite powders based on the AlMg2 alloy containing 1 wt. % of nanosized particles of crystalline graphite or γ-Al2O3. The resulting powders are consolidated by the sintering under pressure. Using the methods of X-ray diffraction analysis, scanning and transmission electron microscopy, the structural-phase composition of bulk composite materials was studied. Comparative analysis of the microhardness, the conditional yield stress at compression, and the friction coefficient of bulk composite materials is carried out. It has been found out that the mechanical properties of composites reinforced with γ-Al2O3 nanofibers are higher than when reinforcing with nanoscale particles of crystalline graphite.

  3. Quasi-crystalline geometry for architectural structures

    DEFF Research Database (Denmark)

    Wester, Ture; Weinzieri, Barbara

    The quasi-crystal (QC) type of material was discovered in 1983 by Dan Schechtman from Technion, Haifa. This new crystalline structure of material broke totally with the traditional conception of crystals and geometry introducing non-periodic close packing of cells with fivefold symmetry in 3D space....... The quasi-crystal geometry can be constructed from two different cubic cells with identical rhombic facets, where the relation between the diagonals is the golden section. All cells have identical rhombic faces, identical edges and identical icosahedral/dodecahedral nodes....

  4. Numerically modeling Brownian thermal noise in amorphous and crystalline thin coatings

    Science.gov (United States)

    Lovelace, Geoffrey; Demos, Nicholas; Khan, Haroon

    2018-01-01

    Thermal noise is expected to be one of the noise sources limiting the astrophysical reach of Advanced LIGO (once commissioning is complete) and third-generation detectors. Adopting crystalline materials for thin, reflecting mirror coatings, rather than the amorphous coatings used in current-generation detectors, could potentially reduce thermal noise. Understanding and reducing thermal noise requires accurate theoretical models, but modeling thermal noise analytically is especially challenging with crystalline materials. Thermal noise models typically rely on the fluctuation-dissipation theorem, which relates the power spectral density of the thermal noise to an auxiliary elastic problem. In this paper, we present results from a new, open-source tool that numerically solves the auxiliary elastic problem to compute the Brownian thermal noise for both amorphous and crystalline coatings. We employ the open-source deal.ii and PETSc frameworks to solve the auxiliary elastic problem using a finite-element method, adaptive mesh refinement, and parallel processing that enables us to use high resolutions capable of resolving the thin reflective coating. We verify numerical convergence, and by running on up to hundreds of compute cores, we resolve the coating elastic energy in the auxiliary problem to approximately 0.1%. We compare with approximate analytic solutions for amorphous materials, and we verify that our solutions scale as expected with changing beam size, mirror dimensions, and coating thickness. Finally, we model the crystalline coating thermal noise in an experiment reported by Cole et al (2013 Nat. Photon. 7 644–50), comparing our results to a simpler numerical calculation that treats the coating as an ‘effectively amorphous’ material. We find that treating the coating as a cubic crystal instead of as an effectively amorphous material increases the thermal noise by about 3%. Our results are a step toward better understanding and reducing thermal noise to

  5. Influence of hydroxyapatite granule size, porosity, and crystallinity on tissue reaction in vivo. Part A: synthesis, characterization of the materials, and SEM analysis.

    Science.gov (United States)

    Maté Sánchez de Val, José E; Calvo-Guirado, José L; Gómez-Moreno, Gerardo; Pérez-Albacete Martínez, Carlos; Mazón, Patricia; De Aza, Piedad N

    2016-11-01

    The aim of this study was the synthesis and analysis of the tissue reaction to three different Hydroxyapatite (HA)-based bone substitute materials differing only in granule size, porosity, and crystallinity through an animal experimental model at 60 days. Three different HA-based biomaterials were synthesized and characterized by X-ray diffraction, SEM, and EDS analysis, the resultant product was ground in three particle sizes: Group I (2000-4000 μm), Group II (1000-2000 μm), and Group III (600-1000 μm). Critical size defects were created in both tibias of 15 rabbits. Four defects per rabbit for a total of 60 defects were grafted with the synthesized materials as follows: Group I (15 defects), Group II (15 defects), Group III (15 defects), and empty (15 defects control). After animals sacrifice at 60 days samples were obtained and processed for SEM and EDS evaluation of Ca/P ratios, elemental mapping was performed to determine the chemical degradation process and changes to medullary composition in all the four study groups. The tendency for the density was to increase with the increasing annealing temperature; in this way it was possible to observe that the sample that shows highest crystallinity and crystal size corresponding to that of group I. The SEM morphological examination showed that group III implant showed numerous resorption regions, group II implant presented an average resorption rate of all the implants. The group I displayed smoother surface features, in comparison with the other two implants. The data from this study show that changing the size, porosity, and crystallinity of one HA-based bone substitute material can influence the integration of the biomaterials within the implantation site and the new bone formation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. 14th Workshop on Crystalline Silicon Solar Cells& Modules: Materials and Processes; Extended Abstracts and Papers

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B. L.

    2004-08-01

    The 14th Workshop will provide a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. It will offer an excellent opportunity for researchers in private industry and at universities to prioritize mutual needs for future collaborative research. The workshop is intended to address the fundamental properties of PV silicon, new solar cell designs, advanced solar cell processing techniques, and cell-related module issues. A combination of oral presentations by invited speakers, poster sessions, and discussion sessions will review recent advances in crystal growth, new cell designs, new processes and process characterization techniques, cell fabrication approaches suitable for future manufacturing demands, and solar cell encapsulation. This year's theme, ''Crystalline Si Solar Cells: Leapfrogging the Barriers,'' reflects the continued success of crystalline Si PV in overcoming technological barriers to improve solar cell performance and lower the cost of Si PV. The workshop will consist of presentations by invited speakers, followed by discussion sessions. In addition, there will be two poster sessions presenting the latest research and development results. Some presentations will address recent technologies in the microelectronics field that may have a direct bearing on PV. The sessions will include: Advances in crystal growth and material issues; Impurities and defects; Dynamics during device processing; Passivation; High-efficiency Si solar cells; Advanced processing; Thin Si solar cells; and Solar cell reliability and module issues.

  7. Thermal Plasma Synthesis of Crystalline Gallium Nitride Nanopowder from Gallium Nitrate Hydrate and Melamine

    Directory of Open Access Journals (Sweden)

    Tae-Hee Kim

    2016-02-01

    Full Text Available Gallium nitride (GaN nanopowder used as a blue fluorescent material was synthesized by using a direct current (DC non-transferred arc plasma. Gallium nitrate hydrate (Ga(NO33∙xH2O was used as a raw material and NH3 gas was used as a nitridation source. Additionally, melamine (C3H6N6 powder was injected into the plasma flame to prevent the oxidation of gallium to gallium oxide (Ga2O3. Argon thermal plasma was applied to synthesize GaN nanopowder. The synthesized GaN nanopowder by thermal plasma has low crystallinity and purity. It was improved to relatively high crystallinity and purity by annealing. The crystallinity is enhanced by the thermal treatment and the purity was increased by the elimination of residual C3H6N6. The combined process of thermal plasma and annealing was appropriate for synthesizing crystalline GaN nanopowder. The annealing process after the plasma synthesis of GaN nanopowder eliminated residual contamination and enhanced the crystallinity of GaN nanopowder. As a result, crystalline GaN nanopowder which has an average particle size of 30 nm was synthesized by the combination of thermal plasma treatment and annealing.

  8. The effect of structurally related impurities on crystallinity reduction of sulfamethazine by grinding.

    Science.gov (United States)

    Hamada, Yoshito; Ono, Makoto; Ohara, Motomu; Yonemochi, Etsuo

    2016-12-30

    In this study, the effect of structurally related impurities on crystallinity reduction of sulfamethazine by grinding was evaluated. The crystallinity of sulfamethazine was not decreased when it was ground alone. However, when structurally related impurities with sulfonamide derivatives were blended, the crystallinity of sulfamethazine was decreased by grinding. Other materials without a sulfonamide moiety showed no such effect. The Raman spectra of sulfamethazine demonstrated that there was a difference between its crystalline and amorphous states within its sulfonamide structure. It was suggested that the sulfonamide structure of the impurities was important in causing the inhibition of recrystallization of sulfamethazine during grinding. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Improving the thermal stability and electrical parameters of a liquid crystalline material 4-n-(nonyloxy) benzoic acid by using Li ion beam irradiation

    Science.gov (United States)

    Kumar, Satendra; Verma, Rohit; Dwivedi, Aanchal; Dhar, R.; Tripathi, Ambuj

    2018-05-01

    Li ion beam irradiation studies on a liquid crystalline material 4-n-(nonyloxy) benzoic acid (NOBA) have been carried out. The material has phase sequence of I-N-SmC-Cr. Thermodynamic studies demonstrate that an irradiation fluence of 1×1013 ions-cm-2 results in the increased thermal stability of the smectic C (SmC) phase of the material. Dielectric measurements illustrate that the transverse component of the dielectric permittivity and hence the dielectric anisotropy of the material in the nematic (N) and SmC phases are increased as compared to those of the pure material due to irradiation. UV-Visible spectrum of the irradiated material shows an additional peak along with the peak of the pure material. The observed change in the thermodynamic and electrical parameters is attributed to the conversion of some of the dimers of NOBA to monomers of NOBA due to irradiation.

  10. Facile method to align crystalline needles composed of organic ...

    Indian Academy of Sciences (India)

    2017-09-23

    Sep 23, 2017 ... (using self-assembly) used for the purpose, its disadvantage is that a larger amount of the material dissolves in the solution than what ... Working hypothesis for aligning crystalline needles .... using a home-made equipment.

  11. Thermal degradation and isothermal crystalline behavior of poly(trimethylene terephthalate)

    Institute of Scientific and Technical Information of China (English)

    Jian Liu; Shu Guang Bian; Min Xiao; Shuan Jin Wang; Yue Zhong Meng

    2009-01-01

    Poly(trimethylene terephthalate)(PTT)is an excellent fiber material.Its thermal degradation and isothermal crystalline behaviors were in this study investigated using thermogravimetric analysis(TGA),thermogravimetric analysis-Fourier transform infrared spectroscopy(TGA-FTIR)analysis,differential scanning calorimetry(DSC)and X-ray diffraction(XRD).The thermal degradation mechanism of PTT follows Mclafferty rearrangement principle.The PTT with intrinsicviscosity(IV)of 0.74 dL/g has a maximum crystallinity of about 55%at 190℃,as demonstrated by DSC and XRD measurements consistently.

  12. Photo-responsive liquid crystalline epoxy networks with exchangeable disulfide bonds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuzhan [Washington State Univ., Pullman, WA (United States); Zhang, Yuehong [Washington State Univ., Pullman, WA (United States); Rios, Orlando [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Keum, Jong K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kessler, Michael R. [Washington State Univ., Pullman, WA (United States); North Dakota State Univ., Fargo, ND (United States)

    2017-07-27

    The increasing demand for intelligent materials has driven the development of polymers with a variety of functionalities. However, combining multiple functionalities within one polymer is still challenging because of the difficulties encountered in coordinating different functional building blocks during fabrication. In this work, we demonstrate the fabrication of a multifunctional liquid crystalline epoxy network (LCEN) using the combination of thermotropic liquid crystals, photo-responsive azobenzene molecules, and exchangeable disulfide bonds. In addition to shape memory behavior enabled by the reversible liquid crystalline phase transition and photo-induced bending behavior resulting from the photo-responsive azobenzene molecules, the introduction of dynamic disulfide bonds into the LCEN resulted in a structurally dynamic network, allowing the reshaping, repairing, and recycling of the material.

  13. Optical properties of crystalline semiconductors and dielectrics

    International Nuclear Information System (INIS)

    Forouhi, A.R.; Bloomer, I.

    1988-01-01

    A new formulation for the complex index of refraction, N(E) = n(E)-ik(E), as a function of photon energy E, for crystalline semiconductors and dielectrics is developed based on our previous derivation of N(E) for amorphous materials. The extinction coefficient k(E) is deduced from a one-electron model with finite lifetime for the excited electron state. The refractive index n(E) is then derived from the Kramers-Kronig relation as the Hilbert transform of k(E). It is shown that n(∞)>1. Excellent agreement is found between our equations for n(E) and k(E) and published measured values for crystalline Si, Ge, GaP, GaAs, GaSb, InP, InAs, InSb, SiC, cubic C, and α-SiO 2 , over a wide range of energies (∼0--20 eV). Far fewer parameters, all of which have physical significance, are required and they can be determined for a particular material from the position and strength of the peaks in the k spectrum

  14. Crystalline and amorphous rare-earth metallic compounds

    International Nuclear Information System (INIS)

    Burzo, E.

    1975-01-01

    During the last years the study of magnetic behaviour of rare-earth (or yttrium) compounds with cobalt and iron has growth of interest. This interest of justified by a large area of experimental and theoretical problems coming into being in the study of some rare-earth materials as well as in their technical applications. In the last three years a great number of new rare earth materials were studied and also new models explaining the magnetic behaviour of these systems have been used. In this paper we refer especially to some typical systems in order to analyse the magnetic behaviour of iron and cobalt and also the part played by the magnetic interactions in the values of the cobalt or iron moments. The model used will be generally the molecular field model. In the second chapter we present comparatively the structure of crystalline and amorphous compounds for further correlation with the magnetic properties. In chapter III we analyse the magnetic interactions in some crystalline and amorphous rare-earth alloys. Finally, we exemplify the ways in which we ensure better requried characteristics by the technical utilizations of these materials. These have in view the modifications of the magnetic interactions and are closely related with the analysis made in chapter III

  15. Novel Insights into the Proteus mirabilis Crystalline Biofilm Using Real-Time Imaging.

    Directory of Open Access Journals (Sweden)

    Sandra A Wilks

    Full Text Available The long-term use of indwelling catheters results in a high risk from urinary tract infections (UTI and blockage. Blockages often occur from crystalline deposits, formed as the pH rises due to the action of urease-producing bacteria; the most commonly found species being Proteus mirabilis. These crystalline biofilms have been found to develop on all catheter materials with P. mirabilis attaching to all surfaces and forming encrustations. Previous studies have mainly relied on electron microscopy to describe this process but there remains a lack of understanding into the stages of biofilm formation. Using an advanced light microscopy technique, episcopic differential interference contrast (EDIC microscopy combined with epifluorescence (EF, we describe a non-destructive, non-contact, real-time imaging method used to track all stages of biofilm development from initial single cell attachment to complex crystalline biofilm formation. Using a simple six-well plate system, attachment of P. mirabilis (in artificial urine to sections of silicone and hydrogel latex catheters was tracked over time (up to 24 days. Using EDIC and EF we show how initial attachment occurred in less than 1 h following exposure to P. mirabilis. This was rapidly followed by an accumulation of an additional material (indicated to be carbohydrate based using lectin staining and the presence of highly elongated, motile cells. After 24 h exposure, a layer developed above this conditioning film and within 4 days the entire surface (of both catheter materials was covered with diffuse crystalline deposits with defined crystals embedded. Using three-dimensional image reconstruction software, cells of P. mirabilis were seen covering the crystal surfaces. EDIC microscopy could resolve these four components of the complex crystalline biofilm and the close relationship between P. mirabilis and the crystals. This real-time imaging technique permits study of this complex biofilm development

  16. Novel Insights into the Proteus mirabilis Crystalline Biofilm Using Real-Time Imaging.

    Science.gov (United States)

    Wilks, Sandra A; Fader, Mandy J; Keevil, C William

    2015-01-01

    The long-term use of indwelling catheters results in a high risk from urinary tract infections (UTI) and blockage. Blockages often occur from crystalline deposits, formed as the pH rises due to the action of urease-producing bacteria; the most commonly found species being Proteus mirabilis. These crystalline biofilms have been found to develop on all catheter materials with P. mirabilis attaching to all surfaces and forming encrustations. Previous studies have mainly relied on electron microscopy to describe this process but there remains a lack of understanding into the stages of biofilm formation. Using an advanced light microscopy technique, episcopic differential interference contrast (EDIC) microscopy combined with epifluorescence (EF), we describe a non-destructive, non-contact, real-time imaging method used to track all stages of biofilm development from initial single cell attachment to complex crystalline biofilm formation. Using a simple six-well plate system, attachment of P. mirabilis (in artificial urine) to sections of silicone and hydrogel latex catheters was tracked over time (up to 24 days). Using EDIC and EF we show how initial attachment occurred in less than 1 h following exposure to P. mirabilis. This was rapidly followed by an accumulation of an additional material (indicated to be carbohydrate based using lectin staining) and the presence of highly elongated, motile cells. After 24 h exposure, a layer developed above this conditioning film and within 4 days the entire surface (of both catheter materials) was covered with diffuse crystalline deposits with defined crystals embedded. Using three-dimensional image reconstruction software, cells of P. mirabilis were seen covering the crystal surfaces. EDIC microscopy could resolve these four components of the complex crystalline biofilm and the close relationship between P. mirabilis and the crystals. This real-time imaging technique permits study of this complex biofilm development with no risk

  17. Liquid crystalline thermosetting polymers as protective coatings for aerospace

    NARCIS (Netherlands)

    Guerriero, G.L.

    2012-01-01

    Environmental regulations are driving the development of new aerospace coating systems, mainly to eliminate chromates and reduce volatile organic compound (VOC) emissions. Among the various potential options for new coating materials, liquid crystalline polymers (LCPs) are attractive due to their

  18. Effects of Crystallinity, Composition, and Texture on Hydrogen Solubility and Adsorption in Lunar Surface Materials and their Relevance to Remote Sensing

    Science.gov (United States)

    Dyar, M. D.; Hibbitts, C.; Orlando, T. M.; Poston, M.; Grieves, G. A.

    2011-12-01

    Abundant spacecraft data now demonstrate the presence of features associated with H on the lunar surface. The origin of that lunar H, whether as OH or H2O, is some combination of endogenic (juvenile) sources in the interiors of planetary materials and those resulting from exogenic deposition such as from the solar wind or comets. The ability of mineral (rock) and glass surfaces to internally host and surficially adsorb H is a function of several interrelated variables -- composition, crystallinity, and texture -- all of which will have an effect on observed band depth in remote sensing measurements. Studies of terrestrial materials show that the ability of nominally-anhydrous minerals to host H is related to composition in ways that reflect partition coefficients for H between melt and mineral, variations in bond strengths, and defect densities. This is important because the ability of a mineral to adsorb water on its exterior surface (chemisorption) should be related to some of the same factors that govern 'solubility' of H in the interiors of different mineral groups and compositions. IR signatures of internal OH/H2O can easily be confused with those of adsorbed OH/H2O. No correlation between H solubility and surface adsorptivity is observed in pristine glasses, which generally have passivated bonds on the surface and are hydrophobic. However, on the Moon, glass 'matures' rapidly via micrometeorite bombardment, potentially exposing dangling bonds on the surface that provide sites for H to adsorb. Unlike glasses, crystalline materials provide both defect lattice sites and dangling bonds on freshly-fractured surfaces that may enhance H adsorption. For example, bonding on mineral surfaces ranges from hydrogen bonding at non-lattice oxygen atoms (electronegative sites) to chemisorption at electropositive surface sites, such as structural defects or unsatisfied cations. Moreover, glasses and different mineral species also have different optical absorption coefficients

  19. Shape-memory effect of nanocomposites based on liquid-crystalline elastomers

    Science.gov (United States)

    Marotta, A.; Lama, G. C.; Gentile, G.; Cerruti, P.; Carfagna, C.; Ambrogi, V.

    2016-05-01

    In this work, nanocomposites based on liquid crystalline (LC) elastomers were prepared and characterized in their shape memory properties. For the synthesis of materials, p-bis(2,3-epoxypropoxy)-α-methylstilbene (DOMS) was used as mesogenic epoxy monomer, sebacic acid (SA) as curing agent and multi-walled carbon nanotubes (MWCNT) and graphene oxide (GO) as fillers. First, an effective compatibilization methodology was set up to improve the interfacial adhesion between the matrix and the carbonaceous nanofillers, thus obtaining homogeneous distribution and dispersion of the nanofillers within the polymer phase. Then, the obtained nanocomposite films were characterized in their morphological and thermal properties. In particular, the effect of the addition of the nanofillers on liquid crystalline behavior, as well as on shape-memory properties of the realized materials was investigated. It was found that both fillers were able to enhance the thermomechanical response of the LC elastomers, making them good candidates as shape memory materials.

  20. The crystalline-to-amorphous transition in ion-bombarded silicon

    International Nuclear Information System (INIS)

    Mueller, G.; Kalbitzer, S.

    1980-01-01

    Hydrogen-free, but defect-rich a-Si can be obtained by ion bombardment of c-Si. The formation of such material has been studied in detail using carrier-removal measurements in the characterization of the bombardment damage. In order to develop an overall view of the disordering process these data are discussed together with results obtained on similar films by Rutherford back-scattering, electron spin resonance, electron microscopy and optical measurements. It is concluded that amorphous material generally evolves from an intermediate crystalline phase supersaturated with point defects. The transition occurs locally at the sites of energetic ion impacts into critically predamaged crystalline material. As a consequence, an amorphous layer is built up from small clusters with dimensions typically of the order of 50 A. From the net expansion of the bombarded layers it is concluded that regions of lower atomic density are locally present, very likely a consequence of a structural mismatch between individual amorphous clusters. In this way a heterogeneous defect structure may build up in these films which determines their electronic properties. (author)

  1. Rheological phase synthesis of nanosized α-LiFeO_2 with higher crystallinity degree for cathode material of lithium-ion batteries

    International Nuclear Information System (INIS)

    Liu, Haowen; Ji, Panyin; Han, Xiaoyan

    2016-01-01

    In this paper, rheological phase method has been successfully applied to synthesize nanosized α-LiFeO_2, a promising cathode material of lithium-ion batteries. The formation, structure and morphology of the as-prepared powder were characterized by Thermogravimetric and differential thermal analyses (TGA/DTA), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM). The particle size of the obtained α-LiFeO_2 ranged from 100 to 300 nm. It exhibited an initial discharge capacity 169 mAh g"−"1 at 0.1 C between 1.5 and 4.3 V, especially excellent cycling retention from the 10th to the 50th cycle (96.8%) between 1.5 and 4.3 V. The higher crystallinity degree might be responsible for the cyclability improvement. - Highlights: • α-LiFeO_2 with higher crystallinity degree has been synthesized. • The obtained samples were investigated by TGA/DTA, FTIR, SEM, XRD. • The prepared α-LiFeO_2 indicated excellent cycling retention.

  2. Amplifying (Im)perfection: The Impact of Crystallinity in Discrete and Disperse Block Co-oligomers.

    Science.gov (United States)

    van Genabeek, Bas; Lamers, Brigitte A G; de Waal, Bas F M; van Son, Martin H C; Palmans, Anja R A; Meijer, E W

    2017-10-25

    Crystallinity is seldomly utilized as part of the microphase segregation process in ultralow-molecular-weight block copolymers. Here, we show the preparation of two types of discrete, semicrystalline block co-oligomers, comprising an amorphous oligodimethylsiloxane block and a crystalline oligo-l-lactic acid or oligomethylene block. The self-assembly of these discrete materials results in lamellar structures with unforeseen uniformity in the domain spacing. A systematic introduction of dispersity reveals the extreme sensitivity of the microphase segregation process toward chain length dispersity in the crystalline block.

  3. Crystallinity evaluation of polyhydroxybutyrate and polycaprolactone blends

    International Nuclear Information System (INIS)

    Cavalcante, Maxwell P.; Rodrigues, Elton Jorge R.; Tavares, Maria Ines B.

    2015-01-01

    Polyhydroxybutyrate, PHB, is a polymer obtained through bacterial or synthetic pathways. It has been used in the biomedical field as a matrix for drug delivery, medical implants and as scaffold material for tissue engineering. PHB has high structural organization, which makes it highly crystalline and brittle, making biodegradation difficult, reducing its employability. In order to enhance the mechanical and biological properties of PHB, blends with other polymers, biocompatible or not, are researched and produced. In this regard, blends of PHB and polycaprolactone, PCL, another biopolymer widely used in the biomedical industry, were obtained via solution casting and were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and low field nuclear magnetic resonance (LF-NMR). Results have shown a dependence between PHB's crystallinity index and PCL quantity employed to obtain the blends.(author)

  4. Trilayered Morphology of an ABC Triple Crystalline Triblock Terpolymer

    KAUST Repository

    Palacios, Jordana K.

    2017-09-07

    Triple crystalline triblock terpolymers are materials with remarkable semicrystalline superstructures. In this work, we report for first time the alternating triple lamellar morphology that self-assembles inside spherulites of a triblock terpolymer composed of poly(ethylene oxide) (PEO), poly(ε-caprolactone) (PCL), and poly(l-lactide) (PLLA). The morphology of the PEO-b-PCL-b-PLLA triblock terpolymer is compared to an analogous PCL-b-PLLA diblock copolymer. Both diblock and triblock form a single phase in the melt. Two crystallization protocols were employed to create particular crystalline morphologies. In both cases, the isothermal crystallization of the PLA block is induced first (at 81 °C, a temperature above the melting points of both PCL and PEO blocks) and PLLA spherulites form a template, whereupon cooling the other two blocks can crystallize within the PLLA interlamellar spaces. WAXS analysis demonstrated the double crystalline and triple crystalline nature of the materials. The lamellar structure was evaluated by AFM observations and SAXS measurements. Moreover, theoretical SAXS curves of one-dimensional structural models were calculated. AFM micrographs of the triblock terpolymer evidenced the three different lamellae of PLLA, PCL and PEO that coexist together within the same spherulite. Three different lamellar thickness were determined, and their dimensions suggested that all blocks crystallized in chain-folded conformations. The evolution of the triple lamellar morphology during heating of tricrystalline samples was followed by in situ synchrotron SAXS measurements. The theoretical analysis of the SAXS curves of the triblock terpolymer allowed us to propose a stacking morphological model, in which a particular trilayer structure exists, where one lamella of PCL or one lamella of PEO is inserted randomly between two adjacent PLLA lamellae.

  5. Reaction Front Evolution during Electrochemical Lithiation of Crystalline Silicon Nanopillars

    KAUST Repository

    Lee, Seok Woo

    2012-12-01

    The high theoretical specific capacity of Si as an anode material is attractive in lithium-ion batteries, although the issues caused by large volume changes during cycling have been a major challenge. Efforts have been devoted to understanding how diffusion-induced stresses cause fracture, but recent observations of anisotropic volume expansion in single-crystalline Si nanostructures require new theoretical considerations of expansion behavior during lithiation. Further experimental investigation is also necessary to better understand the anisotropy of the lithiation process. Here, we present a method to reveal the crystalline core of partially lithiated Si nanopillars with three different crystallographic orientations by using methanol to dissolve the Li atoms from the amorphous Li-Si alloy. The exposed crystalline cores have flat {110} surfaces at the pillar sidewalls; these surfaces represent the position of the reaction front between the crystalline core and the amorphous Li-Si alloy. It was also found that an amorphous Si structure remained on the flat surfaces of the crystalline core after dissolution of the Li, which was presumed to be caused by the accumulation of Si atoms left over from the removal of Li from the Li-Si alloy. © 2012 Wiley-VCH Verlag GmbH &Co. KGaA, Weinheim.

  6. Reaction Front Evolution during Electrochemical Lithiation of Crystalline Silicon Nanopillars

    KAUST Repository

    Lee, Seok Woo; Berla, Lucas A.; McDowell, Matthew T.; Nix, William D.; Cui, Yi

    2012-01-01

    The high theoretical specific capacity of Si as an anode material is attractive in lithium-ion batteries, although the issues caused by large volume changes during cycling have been a major challenge. Efforts have been devoted to understanding how diffusion-induced stresses cause fracture, but recent observations of anisotropic volume expansion in single-crystalline Si nanostructures require new theoretical considerations of expansion behavior during lithiation. Further experimental investigation is also necessary to better understand the anisotropy of the lithiation process. Here, we present a method to reveal the crystalline core of partially lithiated Si nanopillars with three different crystallographic orientations by using methanol to dissolve the Li atoms from the amorphous Li-Si alloy. The exposed crystalline cores have flat {110} surfaces at the pillar sidewalls; these surfaces represent the position of the reaction front between the crystalline core and the amorphous Li-Si alloy. It was also found that an amorphous Si structure remained on the flat surfaces of the crystalline core after dissolution of the Li, which was presumed to be caused by the accumulation of Si atoms left over from the removal of Li from the Li-Si alloy. © 2012 Wiley-VCH Verlag GmbH &Co. KGaA, Weinheim.

  7. Reverse-phase HPLC analysis of human alpha crystallin.

    Science.gov (United States)

    Swamy, M S; Abraham, E C

    1991-03-01

    A rapid and highly sensitive reverse-phase HPLC (RP-HPLC) method was used to separate crystallin subunits from human alpha crystallin. Three distinct peaks were separated; by electrophoretic and immunological analyses the first and second peaks were identified as alpha B and alpha A respectively. On the other hand, peak 3 appeared to be a modified form of alpha crystallin. The ratio of alpha A and alpha B proteins was 3:1 in 1 day old lenses which gradually changed to 2:1 in 17 year old lenses and to 1:1 in the 50 and 82 year old whole lenses and 82 year old lens cortex, with a concomitant increase in the modified alpha, suggesting that alpha A subunits are relatively more involved in aggregation. Analysis of the 82 year old lens nucleus also supported this conclusion. The RP-HPLC analysis of the HMW aggregate fraction showed substantial enrichment of the modified alpha. The alpha A and alpha B subunits independently reassociated to form polymeric alpha crystallin whereas the modified alpha reassociated to form HMW aggregates as shown by molecular sieve HPLC. Hence it appears that the HMW aggregate peak was constituted by modified alpha crystallin. Only in the peak 3 material the 280 nm absorbance was about 2-fold higher than what was expected from the actual protein content. The data suggest that the changes induced by post-translational modifications may have some role in the formation of modified alpha. The present RP-HPLC method is useful in separating these modified alpha from the unmodified alpha A and alpha B subunits.

  8. Ion conduction in crystalline superionic solids and its applications

    Science.gov (United States)

    Chandra, Angesh

    2014-06-01

    Superionic solids an area of multidisciplinary research activity, incorporates to study the physical, chemical and technological aspects of rapid ion movements within the bulk of the special class of ionic materials. It is an emerging area of materials science, as these solids show tremendous technological scopes to develop wide variety of solid state electrochemical devices such as batteries, fuel cells, supercapacitors, sensors, electrochromic displays (ECDs), memories, etc. These devices have wide range of applicabilities viz. power sources for IC microchips to transport vehicles, novel sensors for controlling atmospheric pollution, new kind of memories for computers, smart windows/display panels, etc. The field grew with a rapid pace since then, especially with regards to designing new materials as well as to explore their device potentialities. Amongst the known superionic solids, fast Ag+ ion conducting crystalline solid electrolytes are attracted special attention due to their relatively higher room temperature conductivity as well as ease of materials handling/synthesis. Ion conduction in these electrolytes is very much interesting part of today. In the present review article, the ion conducting phenomenon and some device applications of crystalline/polycrystalline superionic solid electrolytes have been reviewed in brief. Synthesis and characterization tools have also been discussed in the present review article.

  9. Reducing burn-in voltage loss in polymer solar cells by increasing the polymer crystallinity

    KAUST Repository

    Heumueller, Thomas

    2014-08-01

    In order to commercialize polymer solar cells, the fast initial performance losses present in many high efficiency materials will have to be managed. This burn-in degradation is caused by light-induced traps and its characteristics depend on which polymer is used. We show that the light-induced traps are in the bulk of the active layer and we find a direct correlation between their presence and the open-circuit voltage loss in devices made with amorphous polymers. Solar cells made with crystalline polymers do not show characteristic open circuit voltage losses, even though light-induced traps are also present in these devices. This indicates that crystalline materials are more resistant against the influence of traps on device performance. Recent work on crystalline materials has shown there is an energetic driving force for charge carriers to leave amorphous, mixed regions of bulk heterojunctions, and charges are dominantly transported in pure, ordered phases. This energetic landscape allows efficient charge generation as well as extraction and also may benefit the stability against light-induced traps. This journal is © the Partner Organisations 2014.

  10. Development of shear bands in amorphous-crystalline metallic alloys

    International Nuclear Information System (INIS)

    Pozdnyakov, V.A.

    2004-01-01

    A theoretical study is made into conditions of shear band evolution in amorphous-crystalline alloys with various morphological types of structural constituents. The condition of shear band evolution in thin amorphous alloys in the interior of the crystalline matrix is obtained. It is shown that a scale effect exists which manifests itself in suppression of the process of localized plastic flow with amorphous alloy thickness decreasing down to the limit. The analysis of the condition for shear band evolution in an amorphous alloy with nanocrystalline inclusions is accomplished. The relationship of a critical stress of shear band evolution to a volume fraction of disperse crystal inclusions is obtained. A consideration is also given to the evolution of shear bands in the material containing amorphous and crystalline areas of micro meter size. For the alloy with the structure of this type conditions for propagation of localized flows by a relay race type mechanism are determined [ru

  11. Cross-Linked Liquid Crystalline Systems From Rigid Polymer Networks to Elastomers

    CERN Document Server

    Broer, Dirk

    2011-01-01

    With rapidly expanding interest in liquid crystalline polymers and elastomers among the liquid crystal community, researchers are currently exploring the wide range of possible application areas for these unique materials, including optical elements on displays, tunable lasers, strain gauges, micro-structures, and artificial muscles. Written by respected scientists from academia and industry around the world, who are not only active in the field but also well-known in more traditional areas of research, "Cross-Linked Liquid Crystalline Systems: From Rigid Polymer Networks to Elastomers&qu

  12. Casimir Force Contrast Between Amorphous and Crystalline Phases of AIST

    NARCIS (Netherlands)

    Torricelli, Gauthier; van Zwol, Peter J.; Shpak, Olex; Palasantzas, George; Svetovoy, Vitaly B.; Binns, Chris; Kooi, Bart J.; Jost, Peter; Wuttig, Matthias

    2012-01-01

    Phase change materials (PCMs) can be rapidly and reversibly switched between the amorphous and crystalline state. The structural transformation is accompanied by a significant change of optical and electronic properties rendering PCMs suitable for rewritable optical data storage and non-volatile

  13. Casimir Force Contrast Between Amorphous and Crystalline Phases of AIST

    NARCIS (Netherlands)

    Torrichelli, G.; van Zwol, P.J.; Shpak, O.; Palasantzas, G.; Svetovoy, Vitaly; Binns, C.; Kooi, B.J.; Jost, P.; Wittig, M.

    2012-01-01

    Phase change materials (PCMs) can be rapidly and reversibly switched between the amorphous and crystalline state. The structural transformation is accompanied by a signifi cant change of optical and electronic properties rendering PCMs suitable for rewritable optical data storage and nonvolatile

  14. Rotary Ultrasonic Machining of Poly-Crystalline Cubic Boron Nitride

    Directory of Open Access Journals (Sweden)

    Kuruc Marcel

    2014-12-01

    Full Text Available Poly-crystalline cubic boron nitride (PCBN is one of the hardest material. Generally, so hard materials could not be machined by conventional machining methods. Therefore, for this purpose, advanced machining methods have been designed. Rotary ultrasonic machining (RUM is included among them. RUM is based on abrasive removing mechanism of ultrasonic vibrating diamond particles, which are bonded on active part of rotating tool. It is suitable especially for machining hard and brittle materials (such as glass and ceramics. This contribution investigates this advanced machining method during machining of PCBN.

  15. Unravelling the local structure of topological crystalline insulators using hyperfine interactions

    CERN Multimedia

    Phenomena emerging from relativistic electrons in solids have become one the main topical subjects in condensed matter physics. Among a wealth of intriguing new phenomena, several classes of materials have emerged including graphene, topological insulators and Dirac semi-metals. This project is devoted to one such class of materials, in which a subtle distortion of the crystalline lattice drives a material through different topological phases: Z$_{2}$ topological insulator (Z$_{2}$-TI), topological crystalline insulator (TCI), or ferroelectric Rashba semiconductor (FERS). We propose to investigate the local structure of Pb$_{1-x}$Sn$_{x}$Te and Ge$_{1-x}$Sn$_{x}$Te (with $\\textit{x}$ from 0 to 1) using a combination of experimental techniques based on hyperfine interactions: emission Mössbauer spectroscopy (eMS) and perturbed angular correlation spectroscopy (PAC). In particular, we propose to study the effect of composition ($\\textit{x}$ in Pb$_{1-x}$Sn$_{x}$Te and Ge$_{1-x}$Sn$_{x}$Te) on: \\\\ \\\\(1) the mag...

  16. γ-irradiated crystalline sugars and amino acids: A chemical analysis

    International Nuclear Information System (INIS)

    Gejvall, T.

    1975-01-01

    Crystalline sugars and amino acids were irradiated at room temperature in a 60 Co γ-source at a dose rate ranging from 2 to 3x10 19 eV/g per hour. The investigation has geen performed to broaden the knowledge about what happens to food at irradiation preservation. The total degradation and the role of the glycosidic bond were investigated in some carbonhydrates. Transfer reactions of tritium constitute another specific problem which has been treated. Several components are formed in the crystalline amino acids, and a new gas chromatographic method was developed for analysis of amines in degraded material. (K.K)

  17. Crystalline color superconductivity

    International Nuclear Information System (INIS)

    Alford, Mark; Bowers, Jeffrey A.; Rajagopal, Krishna

    2001-01-01

    In any context in which color superconductivity arises in nature, it is likely to involve pairing between species of quarks with differing chemical potentials. For suitable values of the differences between chemical potentials, Cooper pairs with nonzero total momentum are favored, as was first realized by Larkin, Ovchinnikov, Fulde, and Ferrell (LOFF). Condensates of this sort spontaneously break translational and rotational invariance, leading to gaps which vary periodically in a crystalline pattern. Unlike the original LOFF state, these crystalline quark matter condensates include both spin-zero and spin-one Cooper pairs. We explore the range of parameters for which crystalline color superconductivity arises in the QCD phase diagram. If in some shell within the quark matter core of a neutron star (or within a strange quark star) the quark number densities are such that crystalline color superconductivity arises, rotational vortices may be pinned in this shell, making it a locus for glitch phenomena

  18. 15th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Extended Abstracts and Papers

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B. L.

    2005-11-01

    The National Center for Photovoltaics sponsored the 15th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, held in Vail, CO, August 7-10, 2005. This meeting provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The workshop addressed the fundamental properties of PV silicon, new solar cell designs, and advanced solar cell processing techniques. A combination of oral presentations by invited speakers, poster sessions, and discussion sessions reviewed recent advances in crystal growth, new cell designs, new processes and process characterization techniques, and cell fabrication approaches suitable for future manufacturing demands. The theme of this year's meeting was 'Providing the Scientific Basis for Industrial Success.' Specific sessions during the workshop included: Advances in crystal growth and material issues; Impurities and defects in Si; Advanced processing; High-efficiency Si solar cells; Thin Si solar cells; and Cell design for efficiency and reliability module operation. The topic for the Rump Session was ''Si Feedstock: The Show Stopper'' and featured a panel discussion by representatives from various PV companies.

  19. Study of clay chemical composition in formation of new phases in crystalline materials ceramic

    International Nuclear Information System (INIS)

    Lima, L.K.S.; Goncalves, W.P.; Silva, V.J.; Dias, G.; Neves, G.A.; Santana, L.N.L.

    2016-01-01

    The knowledge of the characteristics of raw materials and the behavior of these during the heat treatment is crucial before starting any manufacturing process of clay-based products. The objective of this work was to study phase transformations of clay under different heat treatments using conventional oven. To achieve the same were used two clays coming from the municipality of Cubati - PB and kaolin from an industry in the Northeast. The samples were subjected to beneficiation process, crushing, grinding and sieving and further characterized: chemical analysis, particle size, thermal and mineralogical. For heat treatment temperatures employed were 1000, 1100 and 1200 ° C, heating rate 5 ° C / min and residence time of 60min. After this step, the mineralogical characterization was performed by x-ray diffraction technique. Clays with larger particle size fraction below 2um and greater amount of flux oxides showed higher amount of mullite for the temperatures studied. The results also showed nucleation of mullite phase from 1100 °C, a band 2theta in the range of between 20 and 25°, characteristic of amorphous silica and the temperature rise was observed intensification of crystalline phases. (author)

  20. RNA aptamers targeted for human αA-crystallin do not bind αB-crystallin, and spare the α-crystallin domain.

    Science.gov (United States)

    Mallik, Prabhat K; Shi, Hua; Pande, Jayanti

    2017-09-16

    The molecular chaperones, α-crystallins, belong to the small heat shock protein (sHSP) family and prevent the aggregation and insolubilization of client proteins. Studies in vivo have shown that the chaperone activity of the α-crystallins is raised or lowered in various disease states. Therefore, the development of tools to control chaperone activity may provide avenues for therapeutic intervention, as well as enable a molecular understanding of chaperone function. The major human lens α-crystallins, αA- (HAA) and αB- (HAB), share 57% sequence identity and show similar activity towards some clients, but differing activities towards others. Notably, both crystallins contain the "α-crystallin domain" (ACD, the primary client binding site), like all other members of the sHSP family. Here we show that RNA aptamers selected for HAA, in vitro, exhibit specific affinity to HAA but do not bind HAB. Significantly, these aptamers also exclude the ACD. This study thus demonstrates that RNA aptamers against sHSPs can be designed that show high affinity and specificity - yet exclude the primary client binding region - thereby facilitating the development of RNA aptamer-based therapeutic intervention strategies. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Molecular Dynamics Study of Crystalline Swelling of Montmorillonite as Affected by Interlayer Cation Hydration

    Science.gov (United States)

    Li, Hongliang; Song, Shaoxian; Dong, Xianshu; Min, Fanfei; Zhao, Yunliang; Peng, Chenliang; Nahmad, Yuri

    2018-04-01

    Swelling of montmorillonite (Mt) is an important factor for many industrial applications. In this study, crystalline swelling of alkali-metal- and alkaline-earth-metal-Mt has been studied through energy optimization and molecular dynamics simulations using the clay force field by Materials Studio 8.0. The delamination and exfoliation of Mt are primarily realized by crystalline swelling caused by the enhanced interlayer cation hydration. The initial position of the interlayer cations and water molecules is the dominated factor for the accuracy of the Mt simulations. Crystalline swelling can be carried out in alkali-metal-Mt and Mg-Mt but with difficulty in Ca-Mt, Sr-Mt and Ba-Mt. The crystalline swelling capacity values are in the order Na-Mt > K-Mt > Cs-Mt > Mg-Mt. This order of crystalline swelling of Mt in the same group can be attributed to the differences between the interlayer cation hydration strengths. In addition, the differences in the crystalline swelling between the alkali-metal-Mt and alkaline-earth-metal-Mt can be primarily attributed to the valence of the interlayer cations.

  2. Effects of stoichiometry on the transport properties of crystalline phase-change materials.

    Science.gov (United States)

    Zhang, Wei; Wuttig, Matthias; Mazzarello, Riccardo

    2015-09-03

    It has recently been shown that a metal-insulator transition due to disorder occurs in the crystalline state of the GeSb2Te4 phase-change compound. The transition is triggered by the ordering of the vacancies upon thermal annealing. In this work, we investigate the localization properties of the electronic states in selected crystalline (GeTe)x-(Sb2Te3)y compounds with varying GeTe content by large-scale density functional theory simulations. In our models, we also include excess vacancies, which are needed to account for the large carrier concentrations determined experimentally. We show that the models containing a high concentration of stoichiometric vacancies possess states at the Fermi energy localized inside vacancy clusters, as occurs for GeSb2Te4. On the other hand, the GeTe-rich models display metallic behavior, which stems from two facts: a) the tail of localized states shrinks due to the low probability of having sizable vacancy clusters, b) the excess vacancies shift the Fermi energy to the region of extended states. Hence, a stoichiometry-controlled metal-insulator transition occurs. In addition, we show that the localization properties obtained by scalar-relativistic calculations with gradient-corrected functionals are unaffected by the inclusion of spin-orbit coupling or the use of hybrid functionals.

  3. Bacterial adhesion on amorphous and crystalline metal oxide coatings

    International Nuclear Information System (INIS)

    Almaguer-Flores, Argelia; Silva-Bermudez, Phaedra; Galicia, Rey; Rodil, Sandra E.

    2015-01-01

    Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO 2 and ZrO 2 coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical–chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 μm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 μm) rough surfaces, where the crystalline oxides (TiO 2 > ZrO 2 ) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO 2 , which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion. - Highlights: • Amorphous (a) and crystalline (c) TiO 2 and ZrO 2 coatings were deposited. • The atomic ordering influences the coatings surface charge and nano-topography. • The atomic ordering modifies the bacterial adhesion for the same surface chemistry. • S. aureus adhesion was lower on a-TiO 2 and a-ZrO 2 than on their c-oxide counterpart. • E. coli adhesion on a-TiO 2 was lower than on the c-TiO 2

  4. Bacterial adhesion on amorphous and crystalline metal oxide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Almaguer-Flores, Argelia [Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Silva-Bermudez, Phaedra, E-mail: suriel21@yahoo.com [Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, 14389 México D.F. (Mexico); Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Galicia, Rey; Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico)

    2015-12-01

    Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO{sub 2} and ZrO{sub 2} coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical–chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 μm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 μm) rough surfaces, where the crystalline oxides (TiO{sub 2} > ZrO{sub 2}) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO{sub 2}, which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion. - Highlights: • Amorphous (a) and crystalline (c) TiO{sub 2} and ZrO{sub 2} coatings were deposited. • The atomic ordering influences the coatings surface charge and nano-topography. • The atomic ordering modifies the bacterial adhesion for the same surface chemistry. • S. aureus adhesion was lower on a-TiO{sub 2} and a-ZrO{sub 2} than on their c-oxide counterpart. • E. coli adhesion on a-TiO{sub 2} was lower than on the c-TiO{sub 2}.

  5. The effect of modified ijuk fibers to crystallinity of polypropylene composite

    Science.gov (United States)

    Prabowo, I.; Nur Pratama, J.; Chalid, M.

    2017-07-01

    Nowadays, plastics becomes concern associated with its degradation and environmental issues. It has led studies to develop an environmental-friendly material. To minimize the impact of those problems, recently the usage of natural fibers as a filler are introduced because of biodegradability and availability. The promising natural fiber is “ijuk” fiber from Arenga pinnata plant as a filler and polypropylene (PP) polymer as a matrix. Unfortunately, the natural fibers and polymers have the different properties on which polymers are polar while natural fibers are non-polar so that reducing the compatibility and resulting the poor crystallinity. To enhance the compatibility and crystallinity, ijuk fibers were prepared by multistage treatments including alkalinization with 5 and 10% sodium hydroxide (NaOH), oxidation with 3 and 6% sodium hypochlorite (NaClO) and hydrolysis with 20% sulphuric acid (H2SO4) in sequences. The purposes of multistage treatments are to remove the components such as lignin, wax, hemicellulose, to cause an oxidative fragmentation of remaining lignin and to annihilate the amorphous parts respectively. Fourier-Transform Infrared (FTIR) confirms the compatibility meanwhile Differential Scanning Calorimetry (DSC) reveals the crystallinity and Scanning Electron Microscope (SEM) displays surface morphology of polypropylene. The experiments were revealing that the effects of “ijuk” fibers by the multistage treatments of 5 and 10% NaOH resulting the crystallinity of polypropylene around 31.2 and 27.64% respectively compared to the crystallinity before adding the “ijuk” fibers for 16.8%. It indicates that the entire treatments increasing the compatibility and crystallinity of polypropylene. In addition, the use of 5% NaOH offers the better crystallinity than non-treated polypropylene. The experiments conclude that by adding alkalinized “ijuk” fibers of multistage treatments can increase the compatibility and crystallinity of polypropylene.

  6. Liquid crystalline order in polymers

    CERN Document Server

    Blumstein, Alexandre

    1978-01-01

    Liquid Crystalline Order in Polymers examines the topic of liquid crystalline order in systems containing rigid synthetic macromolecular chains. Each chapter of the book provides a review of one important area of the field. Chapter 1 discusses scattering in polymer systems with liquid crystalline order. It also introduces the field of liquid crystals. Chapter 2 treats the origin of liquid crystalline order in macromolecules by describing the in-depth study of conformation of such macromolecules in their unassociated state. The chapters that follow describe successively the liquid crystalli

  7. Electrospun single crystalline fork-like K2V8O21 as high-performance cathode materials for lithium-ion batteries

    Science.gov (United States)

    Hao, Pengfei; Zhu, Ting; Su, Qiong; Lin, Jiande; Cui, Rong; Cao, Xinxin; Wang, Yaping; Pan, Anqiang

    2018-06-01

    Single crystalline fork-like potassium vanadate (K2V8O21) has been successfully prepared through electrospinning combined with a subsequent annealing process. The as-obtained K2V8O21 forks show a unique layer-by-layer stacked structure with conductive carbon. When used as cathode materials for lithium-ion batteries, the as-prepared fork-like materials exhibit high specific discharge capacity and excellent cyclic stability. High specific discharge capacity of 200.2 mA h g-1 and 131.5 mA h g-1 can be delivered at the current densities of 50 mA g-1 and 500 mA g-1, respectively. Furthermore, the K2V8O21 electrodes exhibit excellent long-term cycling stability that maintain a capacity of 108.3 mA h g-1 after 300 cycles at 500 mA g-1 with a fading rate of only 0.054% per cycle, revealing their potential applications in next generation high-performance lithium-ion batteries.

  8. Feasibility Study On Using Crystalline Lead As a Neutron and Gamma Ray Filter

    International Nuclear Information System (INIS)

    Adib, M.; Naguib, K.; Ashry, A.; Fathalla, M.

    2000-01-01

    A generalized formula is given which allows to calculate the contribution of the total neutron cross- section including the Bragg scattering from different (hkI) planes to the neutron transmission through a solid crystalline material. The formula takes into account the crystalline form of the material (poly- or mono- crystal ) and crystal parameters. A computer program ISCANF-II was developed to provide the required calculations. The calculated values of the neutron transmission through a lead single crystal cut along the (311) plane were compared with the previously measured ones in the wavelength range 0.03-0.52 nm. The measured and calculated values were found to be in reasonable agreement within the statistical accuracy. The feasibility study on using a poly crystalline lead as a cold neutron filter and monocrystalline as a thermal neutron one is given. The optimum crystal thickness, temperature and characteristics for efficiently transmitting the thermal reactor neutrons, while removing simultaneously fast neutrons and gamma rays accompanying the thermal ones for the both cases are given

  9. Development of highly porous crystalline titania photocatalysts

    Science.gov (United States)

    Marszewski, Michal

    The objectives of this dissertation are the design, synthesis, and characterization of titania materials with surface area, porosity, crystallinity and doping tailored toward photocatalytic applications. Ultimately, the research should result in a strategy allowing the synthesis of titania with all these important features. The synthetic methods investigated in this research will include: i) soft-templating, ii) hard-templating, and iii) modified precursor strategy. Soft-templating strategy uses organic templates--either block copolymers or surfactants--that under specific conditions assemble into micelles, and later, these micelles are used to template the desired material around them. The resulting organic-inorganic composite is then calcined in air to remove the organic template and recover the final material with high surface area and large pore volume. This work explores 1) synthesis of titania materials in the presence of polymer templates, and the effects of different synthetic conditions on the structure of the resulting materials. Hard-templating, in contrast to soft-templating, uses inorganic templates. The hard template is introduced during the synthesis to cast its shape onto the fabricated material and removed afterwards, when the material has formed. The final material is an inverse replica of the hard template used, typically with a well-developed mesostructure. This work explores 1) hard templating synthesis of titania materials using silica and alumina, and 2) the effects of the template amount and type. The modified precursor strategy is a novel synthetic method, developed in this research, and designed specifically to achieve titania material with high surface area, large pore volume, high crystallinity, and possibly doping. The modified precursors are prepared by reacting generic titania precursors, such as titanium isopropoxide (TIPO), with organic acids, which results in substitution of some or all alkoxide groups in TIPO structure. The goal

  10. Microstructurally Based Prediction of High Strain Failure Modes in Crystalline Solids

    Science.gov (United States)

    2016-07-05

    interfaces in hcp– fcc systems subjected to high strain-rate deformation and fracture modes, Journal of Materials Research, (8 2015): 0. doi: 10.1557/jmr...rupture • Comparison and validation with experimental observations/ measurements • New dislocation-density crystalline plasticity that accounts for...relationships between coherent interfaces in hcp– fcc systems subjected to high strain-rate deformation and fracture modes, Journal of Materials Research, Vol. 30

  11. Characterization of single crystalline ZnTe and ZnSe grown by vapor phase transport

    Energy Technology Data Exchange (ETDEWEB)

    Trigubo, A B; Di Stefano, M C [FRBA-UTN, (1179) Buenos Aires (Argentina); Aguirre, M H [Dpto de Quim Inorg, Fac de Cs Quim, Univ Complutense, (28040) Madrid (Spain); Martinez, A M; D' Elia, R; Canepa, H; Heredia, E, E-mail: atrigubo@citefa.gov.a [CINSO-CITEFA: (1603) Villa Martelli, Pcia de Buenos Aires (Argentina)

    2009-05-01

    Tubular furnaces were designed and built to obtain single crystalline ZnTe and ZnSe ingots using respectively physical and chemical transport methods. Different temperature profiles and growth rates were analyzed in order to optimize the necessary crystalline quality for device development. Optical and scanning electron micrographs of the corrosion figures produced by chemical etching were used to obtain the dislocation density and the misorientation between adjacent subgrains in ZnTe and ZnSe wafers. Structural quality of the single crystalline material was determined by transmission electronic microscopy. Optical transmittance was measured by infrared transmission spectrometry and the resulting values were compared to commercial samples.

  12. Optical, electrical and solid state properties of nano crystalline zinc ...

    African Journals Online (AJOL)

    Semiconducting Zinc Sulphide (ZnS) thin films were deposited on glass substrate using relatively simple Chemical Bath Deposition (CBD) technique. Nano crystalline ZnS thin films were fabricated in the study. Optical characterization of the films showed that the materials are transparent to visible light, opaque to ultraviolet ...

  13. Precise Ab-initio prediction of terahertz vibrational modes in crystalline systems

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Clark, Stewart J.

    2007-01-01

    We use a combination of experimental THz time-domain spectroscopy and ab-initio density functional perturbative theory to accurately predict the terahertz vibrational spectrum of molecules in the crystalline phase. Our calculations show that distinct vibrational modes found in solid-state materials...

  14. Quasi-crystalline and disordered photonic structures fabricated using direct laser writing

    Science.gov (United States)

    Sinelnik, Artem D.; Pinegin, Konstantin V.; Bulashevich, Grigorii A.; Rybin, Mikhail V.; Limonov, Mikhail F.; Samusev, Kirill B.

    2017-09-01

    Direct laser writing is a rapid prototyping technology that has been utilized for the fabrication of micro- and nano-scale materials that have a perfect structure in most of the cases. In this study we exploit the direct laser writing to create several classes of non-periodic materials, such as quasi-crystalline lattices and three-dimensional (3D) objects with an orientation disorder in structural elements. Among quasi-crystalline lattices we consider Penrose tiling and Lévy-type photonic glasses. Images of the fabricated structures are obtained with a scanning electron microscope. In experiment we study the optical diffraction from 3D woodpile photonic structures with orientation disorder and analyze diffraction patters observed on a flat screen positioned behind the sample. With increasing of the disorder degree, we find an impressive transformation of the diffraction patterns from perfect Laue picture to a speckle pattern.

  15. 16th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Program, Extended Abstracts, and Papers

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B. L.

    2006-08-01

    The National Center for Photovoltaics sponsored the 16th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes held August 6-9, 2006 in Denver, Colorado. The workshop addressed the fundamental properties of PV-Si, new solar cell designs, and advanced solar cell processing techniques. It provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The Workshop Theme was: "Getting more (Watts) for Less ($i)". A combination of oral presentations by invited speakers, poster sessions, and discussion sessions reviewed recent advances in crystal growth, new cell structures, new processes and process characterization techniques, and cell fabrication approaches suitable for future manufacturing demands. The special sessions included: Feedstock Issues: Si Refining and Purification; Metal-impurity Engineering; Thin Film Si; and Diagnostic Techniques.

  16. ZnO Coatings with Controlled Pore Size, Crystallinity and Electrical Conductivity

    Directory of Open Access Journals (Sweden)

    Roman SCHMACK

    2016-05-01

    Full Text Available Zinc oxide is a wide bandgap semiconductor with unique optical, electrical and catalytic properties. Many of its practical applications rely on the materials pore structure, crystallinity and electrical conductivity. We report a synthesis method for ZnO films with ordered mesopore structure and tuneable crystallinity and electrical conductivity. The synthesis relies on dip-coating of solutions containing micelles of an amphiphilic block copolymer and complexes of Zn2+ ions with aliphatic ligands. A subsequent calcination at 400°C removes the template and induces crystallization of the pore walls. The pore structure is controlled by the template polymer, whereas the aliphatic ligands control the crystallinity of the pore walls. Complexes with a higher thermal stability result in ZnO films with a higher content of residual carbon, smaller ZnO crystals and therefore lower electrical conductivity. The paper discusses the ability of different types of ligands to assist in the synthesis of mesoporous ZnO and relates the structure and thermal stability of the precursor complexes to the crystallinity and electrical conductivity of the zinc oxide.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.8634

  17. Temperature dependence of viscoelasticity of crystalline cellulose with different molecular weights added to silicone elastomer

    Science.gov (United States)

    Sugino, Naoto; Nakajima, Shinya; Kameda, Takao; Takei, Satoshi; Hanabata, Makoto

    2017-08-01

    Silicone elastomers ( polydimethylsiloxane _ PDMS) are widely used in the field of imprint lithography and microcontactprinting (μCP). When performing microcontactprinting, the mechanical properties of the PCMS as a base material have a great influence on the performance of the device. Cellulose nanofibers having features of high strength, high elasticity and low coefficient of linear expansion have attracted attention in recent years due to their characteristics. Therefore, three types of crystalline cellulose having different molecular weights were added to PDMS to prepare a composite material, and dynamic viscoelasticity was measured using a rheometer. The PDMS with the highest molecular weight crystalline cellulose added exhibited smaller storage modulus than PDMS with other molecular weight added in all temperature ranges. Furthermore, when comparing PDMS to which crystalline cellulose was added and PDMS which is not added, the storage modulus of PDMS to which cellulose was added in the low temperature region was higher than that of PDMS to which it was not added, but it was reversed in the high temperature region It was a result. When used in a low temperature range (less than 150 ° C.), it can be said that cellulose can function as a reinforcing material for PDMS.

  18. Characterization of crystalline structures in Opuntia ficus-indica.

    Science.gov (United States)

    Contreras-Padilla, Margarita; Rivera-Muñoz, Eric M; Gutiérrez-Cortez, Elsa; del López, Alicia Real; Rodríguez-García, Mario Enrique

    2015-01-01

    This research studies the crystalline compounds present in nopal (Opuntia ficus-indica) cladodes. The identification of the crystalline structures was performed using X-ray diffraction, scanning electron microscopy, mass spectrometry, and Fourier transform infrared spectroscopy. The crystalline structures identified were calcium carbonate (calcite) [CaCO3], calcium-magnesium bicarbonate [CaMg(CO3)2], magnesium oxide [MgO], calcium oxalate monohydrate [Ca(C2O4)•(H2O)], potassium peroxydiphosphate [K4P2O8] and potassium chloride [KCl]. The SEM images indicate that calcite crystals grow to dipyramidal, octahedral-like, prismatic, and flower-like structures; meanwhile, calcium-magnesium bicarbonate structures show rhombohedral exfoliation and calcium oxalate monohydrate is present in a drusenoid morphology. These calcium carbonate compounds have a great importance for humans because their bioavailability. This is the first report about the identification and structural analysis of calcium carbonate and calcium-magnesium bicarbonate in nopal cladodes, as well as the presence of magnesium oxide, potassium peroxydiphosphate and potassium chloride in these plants. The significance of the study of the inorganic components of these cactus plants is related with the increasing interest in the potential use of Opuntia as a raw material of products for the food, pharmaceutical, and cosmetic industries.

  19. Probing crystallinity of never-dried wood cellulose with Raman spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Sally A. Ralph; Richard S. Reiner; Carlos Baez

    2016-01-01

    The structure of wood cell wall cellulose in its native state remains poorly understood, limiting the progress of research and development in numerous areas, including plant science, biofuels, and nanocellulose based materials. It is generally believed that cellulose in cell wall microfibrils has both crystalline and amorphous regions. However, there is evidence that...

  20. Single-crystalline AlN growth on sapphire using physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas-Valencia, Andres M., E-mail: andres.cardenas@sri.co [SRI International (United States); Onishi, Shinzo; Rossie, Benjamin [SRI International (United States)

    2011-02-07

    A novel technique for growing single crystalline aluminum nitride (AlN) films is presented. The novelty of the technique, specifically, comes from the use of an innovative physical vapor deposition magnetron sputtering tool, which embeds magnets into the target material. A relatively high deposition rates is achieved ({approx}0.2 {mu}m/min), at temperatures between 860 and 940 {sup o}C. The AlN, grown onto sapphire, is single-crystalline as evidenced by observation using transmission electron microscopy. Tool configuration and growth conditions are discussed, as well as a first set of other analytical results, namely, x-ray diffraction and ultraviolet-visible transmission spectrophotometry.

  1. Advancements in n-type base crystalline silicon solar cells and their emergence in the photovoltaic industry.

    Science.gov (United States)

    ur Rehman, Atteq; Lee, Soo Hong

    2013-01-01

    The p-type crystalline silicon wafers have occupied most of the solar cell market today. However, modules made with n-type crystalline silicon wafers are actually the most efficient modules up to date. This is because the material properties offered by n-type crystalline silicon substrates are suitable for higher efficiencies. Properties such as the absence of boron-oxygen related defects and a greater tolerance to key metal impurities by n-type crystalline silicon substrates are major factors that underline the efficiency of n-type crystalline silicon wafer modules. The bi-facial design of n-type cells with good rear-side electronic and optical properties on an industrial scale can be shaped as well. Furthermore, the development in the industrialization of solar cell designs based on n-type crystalline silicon substrates also highlights its boost in the contributions to the photovoltaic industry. In this paper, a review of various solar cell structures that can be realized on n-type crystalline silicon substrates will be given. Moreover, the current standing of solar cell technology based on n-type substrates and its contribution in photovoltaic industry will also be discussed.

  2. Universal aspects of sonolubrication in amorphous and crystalline materials

    Science.gov (United States)

    Pfahl, V.; Ma, C.; Arnold, W.; Samwer, K.

    2018-01-01

    We studied sonolubricity, a phenomenon reducing the friction between two sliding surfaces by ultrasound. Friction force measurements were performed using an atomic force microscope (AFM) when the tip-surface contact was excited to out-of-plane oscillations by a transducer attached to the rear of the sample or by oscillating the AFM cantilever by the built-in piezoelectric element in the cantilever holder. Experiments were carried out near or at the first cantilever contact-resonance. We studied friction on crystalline and amorphous Pd77.5Cu6Si16.5 ribbons, on a silicon wafer at room temperature, and on a La0.6Sr0.4MnO3 (LSMO) thin film at different temperatures. Measurements were carried out varying the cantilever amplitude, the ultrasonic frequency, and the normal static load. The effect of sonolubrication is explained by the non-linear force-distance curve between the sample and the tip due to the local interaction potential. The reduction of friction in LSMO as a function temperature is due to the direct coupling of the tip's stress-field to the electrons.

  3. Influence of Chemical Treatments Sequence on Morphology and Crystallinity of Sorghum Fibers

    Directory of Open Access Journals (Sweden)

    Ismojo Ismojo

    2018-05-01

    Full Text Available Micro-fibrillated cellulose (MFC derived from natural fibre is continuously gaining interest to produce an environmentally-friendly material, due to economic and ecological reasons. In consequence, sorghum is one of the most-cultivated crops that usually remain the waste as by product of bioethanol production. Indeed, it will be a promising area to utilize sorghum waste to produce MFC for enhancing polymer performance, especially in terms of crystallinity. The objective of this study is to investigate the effect of a sequence of chemical modification was applied to sorghum fibres, i.e. alkalization using 4% sodium hydroxide followed by bleaching using 1.7% sodium chlorite plus acetic acid as a buffer. The treatment was purposed to unbundle the lignocellulose networks into microfibrils cellulose with less amorphous part and lower hydrophilic properties. Evaluation of the chemical treatments effect on internal microstructure, crystallinity index and chemical composition of sorghum fibre was measured via Field-Emission Scanning Electron microscope (FE-SEM, X-ray Diffraction (XRD and Fourier Transformation Infra-Red (FTIR Spectroscopy. The experiments show that treatments led to a removal of binding materials, such as amorphous parts hemicellulose and lignin, from the sorghum fibres, resulting MFC of sorghum fibres and enhanced crystallinity index from 41.12 % to 75.73%.

  4. DEVELOPMENT OF CRYSTALLINE CERAMICS FOR IMMOBILIZATION OF ADVANCED FUEL CYCLE REPROCESSING WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Brinkman, K.

    2011-09-22

    The Savannah River National Laboratory (SRNL) is developing crystalline ceramic waste forms to incorporate CS/LN/TM high Mo waste streams consisting of perovskite, hollandite, pyrochlore, zirconolite, and powellite phase assemblages. Simple raw materials, including Al{sub 2}O{sub 3}, CaO, and TiO{sub 2} were combined with simulated waste components to produce multiphase crystalline ceramics. Fiscal Year 2011 (FY11) activities included (i) expanding the compositional range by varying waste loading and fabrication of compositions rich in TiO{sub 2}, (ii) exploring the processing parameters of ceramics produced by the melt and crystallize process, (iii) synthesis and characterization of select individual phases of powellite and hollandite that are the target hosts for radionuclides of Mo, Cs, and Rb, and (iv) evaluating the durability and radiation stability of single and multi-phase ceramic waste forms. Two fabrication methods, including melting and crystallizing, and pressing and sintering, were used with the intent of studying phase evolution under various sintering conditions. An analysis of the XRD and SEM/EDS results indicates that the targeted crystalline phases of the FY11 compositions consisting of pyrochlore, perovskite, hollandite, zirconolite, and powellite were formed by both press and sinter and melt and crystallize processing methods. An evaluation of crystalline phase formation versus melt processing conditions revealed that hollandite, perovskite, zirconolite, and residual TiO{sub 2} phases formed regardless of cooling rate, demonstrating the robust nature of this process for crystalline phase development. The multiphase ceramic composition CSLNTM-06 demonstrated good resistance to proton beam irradiation. Electron irradiation studies on the single phase CaMoO{sub 4} (a component of the multiphase waste form) suggested that this material exhibits stability to 1000 years at anticipated self-irradiation doses (2 x 10{sup 10}-2 x 10{sup 11} Gy), but that

  5. Observation of crystalline changes of titanium dioxide during lithium insertion by visible spectrum analysis.

    Science.gov (United States)

    Nam, Inho; Park, Jongseok; Park, Soomin; Bae, Seongjun; Yoo, Young Geun; Han, Jeong Woo; Yi, Jongheop

    2017-05-24

    Real-time analysis of changes in the atomic environment of materials is a cutting edge technology that is being used to explain reaction dynamics in many fields of science. Previously, this kind of analysis was only possible using heavy nucleonic equipment such as XANES and EXAFS, or Raman spectroscopy on a moderate scale. Here, a new methodology is described that can be used to track changes in crystalline developments during complex Li insertion reactions via the observation of structural color. To be specific, the changes in atomic crystalline and nanostructure are shown during Li insertion in a complex TiO 2 polymorph. Structural color corresponds to the refractive indices of materials originating from their atomic bonding nature and precise wave interferences in accordance with their nanostructure. Therefore, this new analysis simultaneously reveals changes in the nanostructure as well as changes in the atomic bonding nature of materials.

  6. Blending crystalline/liquid crystalline small molecule semiconductors: A strategy towards high performance organic thin film transistors

    Science.gov (United States)

    He, Chao; He, Yaowu; Li, Aiyuan; Zhang, Dongwei; Meng, Hong

    2016-10-01

    Solution processed small molecule polycrystalline thin films often suffer from the problems of inhomogeneity and discontinuity. Here, we describe a strategy to solve these problems through deposition of the active layer from a blended solution of crystalline (2-phenyl[1]benzothieno[3,2-b][1]benzothiophene, Ph-BTBT) and liquid crystalline (2-(4-dodecylphenyl) [1]benzothieno[3,2-b]benzothiophene, C12-Ph-BTBT) small molecule semiconductors with the hot spin-coating method. Organic thin film transistors with average hole mobility approaching 1 cm2/V s, much higher than that of single component devices, have been demonstrated, mainly due to the improved uniformity, continuity, crystallinity, and stronger intermolecular π-π stacking in blend thin films. Our results indicate that the crystalline/liquid crystalline semiconductor blend method is an effective way to enhance the performance of organic transistors.

  7. Aspirin degradation in surface-charged TEMPO-oxidized mesoporous crystalline nanocellulose.

    Science.gov (United States)

    Carlsson, Daniel O; Hua, Kai; Forsgren, Johan; Mihranyan, Albert

    2014-01-30

    TEMPO-mediated surface oxidation of mesoporous highly crystalline Cladophora cellulose was used to introduce negative surface charges onto cellulose nanofibrils without significantly altering other structural characteristics. This enabled the investigation of the influence of mesoporous nanocellulose surface charges on aspirin chemical stability to be conducted. The negative surface charges (carboxylate content 0.44±0.01 mmol/g) introduced on the mesoporous crystalline nanocellulose significantly accelerated aspirin degradation, compared to the starting material which had significantly less surface charge (0.06±0.01 mmol/g). This effect followed from an increased aspirin amorphisation ability in mesopores of the oxidized nanocellulose. These results highlight the importance of surface charges in formulating nanocellulose for drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Crystalline Organic Pigment-Based Field-Effect Transistors.

    Science.gov (United States)

    Zhang, Haichang; Deng, Ruonan; Wang, Jing; Li, Xiang; Chen, Yu-Ming; Liu, Kewei; Taubert, Clinton J; Cheng, Stephen Z D; Zhu, Yu

    2017-07-05

    Three conjugated pigment molecules with fused hydrogen bonds, 3,7-diphenylpyrrolo[2,3-f]indole-2,6(1H,5H)-dione (BDP), (E)-6,6'-dibromo-[3,3'-biindolinylidene]-2,2'-dione (IIDG), and 3,6-di(thiophen-2-yl)-2,5-dihydropyrrolo-[3,4-c]pyrrole-1,4-dione (TDPP), were studied in this work. The insoluble pigment molecules were functionalized with tert-butoxylcarbonyl (t-Boc) groups to form soluble pigment precursors (BDP-Boc, IIDG-Boc, and TDPP-Boc) with latent hydrogen bonding. The single crystals of soluble pigment precursors were obtained. Upon simple thermal annealing, the t-Boc groups were removed and the soluble pigment precursor molecules with latent hydrogen bonding were converted into the original pigment molecules with fused hydrogen bonding. Structural analysis indicated that the highly crystalline soluble precursors were directly converted into highly crystalline insoluble pigments, which are usually only achievable by gas-phase routes like physical vapor transport. The distinct crystal structure after the thermal annealing treatment suggests that fused hydrogen bonding is pivotal for the rearrangement of molecules to form a new crystal in solid state, which leads to over 2 orders of magnitude enhancement in charge mobility in organic field-effect transistor (OFET) devices. This work demonstrated that crystalline OFET devices with insoluble pigment molecules can be fabricated by their soluble precursors. The results indicated that a variety of commercially available conjugated pigments could be potential active materials for high-performance OFETs.

  9. Stilbene crystalline powder in polymer base as a new fast neutron detector

    International Nuclear Information System (INIS)

    Budakovsky, S.V.; Galunov, N.Z.; Grinyov, B.V.; Karavaeva, N.L.; Kyung Kim, Jong; Kim, Yong-Kyun; Pogorelova, N.V.; Tarasenko, O.A.

    2007-01-01

    A new organic scintillation material consisting of stilbene grains in a polymer glue base is presented. The crystalline grains of stilbene are obtained by mechanical grinding of stilbene single crystals. The resulting composite scintillators have been studied as detectors for fast neutrons

  10. Laser writing of single-crystalline gold substrates for surface enhanced Raman spectroscopy

    Science.gov (United States)

    Singh, Astha; Sharma, Geeta; Ranjan, Neeraj; Mittholiya, Kshitij; Bhatnagar, Anuj; Singh, B. P.; Mathur, Deepak; Vasa, Parinda

    2017-07-01

    Surface enhanced Raman scattering (SERS) spectroscopy, a powerful contemporary tool for studying low-concentration analytes via surface plasmon induced enhancement of local electric field, is of utility in biochemistry, material science, threat detection, and environmental studies. We have developed a simple, fast, scalable, and relatively low-cost optical method of fabricating and characterizing large-area, reusable and broadband SERS substrates with long storage lifetime. We use tightly focused, intense infra-red laser pulses to write gratings on single-crystalline, Au (1 1 1) gold films on mica which act as SERS substrates. Our single-crystalline SERS substrates compare favourably, in terms of surface quality and roughness, to those fabricated in poly-crystalline Au films. Tests show that our SERS substrates have the potential of detecting urea and 1,10-phenantroline adulterants in milk and water, respectively, at 0.01 ppm (or lower) concentrations.

  11. PHB, crystalline and amorphous magnesium alloys: Promising candidates for bioresorbable osteosynthesis implants?

    Energy Technology Data Exchange (ETDEWEB)

    Celarek, Anna [Institute for Building Construction and Technology E-206-4, Vienna University of Technology, Karlsplatz 13, 1040 Vienna (Austria); Kraus, Tanja [Department of Paediatric Orthopaedics, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz (Austria); Tschegg, Elmar K., E-mail: elmar.tschegg@tuwien.ac.at [Institute for Building Construction and Technology E-206-4, Vienna University of Technology, Karlsplatz 13, 1040 Vienna (Austria); Fischerauer, Stefan F. [Department of Paediatric and Adolescent Surgery, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz (Austria); Stanzl-Tschegg, Stefanie [Department of Material Sciences and Process Engineering, Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Peter Jordan Str. 82, 1190 Vienna (Austria); Uggowitzer, Peter J. [Department of Materials, Laboratory for Metal Physics and Technology, ETH Zurich, 8093 Zurich (Switzerland); Weinberg, Annelie M. [Department of Paediatric and Adolescent Surgery, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz (Austria)

    2012-08-01

    In this study various biodegradable materials were tested for their suitability for use in osteosynthesis implants, in particular as elastically stable intramedullary nails for fracture treatment in paediatric orthopaedics. The materials investigated comprise polyhydroxybutyrate (PHB), which belongs to the polyester family and is produced by microorganisms, with additions of ZrO{sub 2} and a bone graft substitute; two crystalline magnesium alloys with significantly different degradation rates ZX50 (MgZnCa, fast) and WZ21 (MgYZnCa, slow); and MgZnCa bulk metallic glasses (BMG). Push-out tests were conducted after various implantation times in rat femur meta-diaphysis to evaluate the shear forces between the implant material and the bone. The most promising materials are WZ21 and BMG, which exhibit high shear forces and push-out energies. The degradation rate of ZX50 is too fast and thus the alloy does not maintain its mechanical stability long enough during the fracture-healing period. PHB exhibits insufficient mechanical properties: it degrades very slowly and the respective low shear forces and push-out energy levels are unsatisfactory. - Highlights: Black-Right-Pointing-Pointer In-vivo (rat model) investigation of biodegradable materials suitable for ESIN. Black-Right-Pointing-Pointer Materials: polymer PHB, crystalline Mg ZX50 and Mg WZ21, MgZnCa bulk metallic glasses. Black-Right-Pointing-Pointer Evaluated interface shear strength, push-out energies, stiffness, histology. Black-Right-Pointing-Pointer Mg WZ21 suitable, other materials only after alterations.

  12. PHB, crystalline and amorphous magnesium alloys: Promising candidates for bioresorbable osteosynthesis implants?

    International Nuclear Information System (INIS)

    Celarek, Anna; Kraus, Tanja; Tschegg, Elmar K.; Fischerauer, Stefan F.; Stanzl-Tschegg, Stefanie; Uggowitzer, Peter J.; Weinberg, Annelie M.

    2012-01-01

    In this study various biodegradable materials were tested for their suitability for use in osteosynthesis implants, in particular as elastically stable intramedullary nails for fracture treatment in paediatric orthopaedics. The materials investigated comprise polyhydroxybutyrate (PHB), which belongs to the polyester family and is produced by microorganisms, with additions of ZrO 2 and a bone graft substitute; two crystalline magnesium alloys with significantly different degradation rates ZX50 (MgZnCa, fast) and WZ21 (MgYZnCa, slow); and MgZnCa bulk metallic glasses (BMG). Push-out tests were conducted after various implantation times in rat femur meta-diaphysis to evaluate the shear forces between the implant material and the bone. The most promising materials are WZ21 and BMG, which exhibit high shear forces and push-out energies. The degradation rate of ZX50 is too fast and thus the alloy does not maintain its mechanical stability long enough during the fracture-healing period. PHB exhibits insufficient mechanical properties: it degrades very slowly and the respective low shear forces and push-out energy levels are unsatisfactory. - Highlights: ► In-vivo (rat model) investigation of biodegradable materials suitable for ESIN. ► Materials: polymer PHB, crystalline Mg ZX50 and Mg WZ21, MgZnCa bulk metallic glasses. ► Evaluated interface shear strength, push-out energies, stiffness, histology. ► Mg WZ21 suitable, other materials only after alterations.

  13. Prediction of degree of crystallinity for the LTA zeolite using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Ghanbari Shahram

    2017-10-01

    Full Text Available Zeolites are microporous aluminosilicate/silicate crystalline materials with three-dimensional tetrahedral configuration. In this study, the degree of crystallinity of the synthesized Linde Type A (LTA zeolite, which is the main indicator of its quality/purity is tried to be modeled. Effect of crystallization time, temperature, molar ratio of the synthesis gel on the relative crystallinity of the LTA zeolites is investigated using artificial neural networks. Our experimental observations and some data collected from literature have been used for adjusting the parameters of the proposed model and evaluating its performance. It has been observed that two-layer perceptron network with eight hidden neurons is the most accurate approach for the considered task. The designed model predicts the experimental datasets with a mean square error of 3.99 × 10-6, absolute average relative deviation of 8.69 %, and regression coefficient of 0.9596. The proposed model can decrease the required time and number of experiments to evaluate the extent of crystallinity of the LTA zeolites.

  14. Quasi-crystalline geometry for architectural structures

    DEFF Research Database (Denmark)

    Weizierl, Barbara; Wester, Ture

    2001-01-01

    Artikel på CD-Rom 8 sider. The quasi-crystal (QC) type of material was discovered in 1983 by Dan Schechtman from Technion, Haifa. This new crystalline structure of material broke totally with the traditional conception of crystals and geometry introducing non-periodic close packing of cells...... with fivefold symmetry in 3D space. The quasi-crystal geometry can be constructed from two different cubic cells with identical rhombic facets, where the relation between the diagonals is the golden section. All cells have identical rhombic faces, identical edges and identical icosahedral/dedecahedral nodes....... The purpose of the paper is to investigate some possibilities for the application of Quasi-Crystal geometry for structures in architecture. The basis for the investigations is A: to use the Golden Cubes (the two different hexahedra consisting of rhombic facets where the length of the diagonals has the Golden...

  15. Evaluating the Type of Light Transmittance in Mono Crystalline, Poly Crystalline and Sapphire Brackets- An Invitro Spectrofluorometer Study.

    Science.gov (United States)

    Mohamed, Jauhar P; Kommi, Pradeep Babu; Kumar, M Senthil; Hanumanth; Venkatesan; Aniruddh; Arvinth; Kumar, Arani Nanda

    2016-08-01

    Most of the patients seek orthodontic treatment to improve the smile, which improves the facial profile by means of fixed appliances i.e., brackets and wires. The brackets are of different types like stainless steel and ceramic. Ceramic brackets were considered as aesthetic appliance which was divided into mono-crystalline, polycrystalline and sapphire brackets. The light transmittance might influence the degree of curing adhesive material in mono crystalline, polycrystalline and sapphire brackets. The aim of the present study was to evaluate the translucency and intensity of three different aesthetic brackets (mono crystalline, poly crystalline and sapphire ceramic brackets) and to determine their influence on shear bond strength of the brackets. The adhesive remnant index was also measured after debonding of the brackets from the tooth surface. Twenty six samples each of monocrystalline, polycrystalline and sapphire brackets (total 78 ceramic brackets) were used for the study. The bracket samples were subjected to optical fluorescence test using spectrofluorometer to measure the intensity of the brackets. Seventy eight extracted premolar teeth were procured and divided into 3 groups. The brackets were then bonded to the tooth using Transbond XT (3M Unitek) light cure composite material and cured with new light cure unit (Light Emitting Diode) of wood pecker company (400-450nm) for 30 seconds, and these samples were subjected to shear bond strength test with Instron Universal Testing Machine (UNITEK-94100) with a load range between 0 to 100 KN with a maximum cross head speed of 0.5mm/min. ARI (Adhesive Remnant Index) scores were evaluated according to Artun and Bergland scoring system using stereomicroscope at 20x magnification. The light absorption values obtained from spectrofluorometeric study were 3300000-3500000 cps for group 1 (monocrystalline ceramic brackets), 6000000-6500000 cps for Group 2 (polycrystalline ceramic brackets) and 2700000 -3000000 cps for

  16. Momentum-dependent excitation processes in crystalline and amorphous films of conjugated oligomers

    International Nuclear Information System (INIS)

    Zojer, E.; Knupfer, M.; Shuai, Z.; Fink, J.; Bredas, J.L.; Hoerhold, H.-H.; Grimme, J.; Scherf, U.; Benincori, T.; Leising, G.

    2000-01-01

    The electronic structure of periodic materials is usually described on the basis of band-structure models, in which each state is not only characterized by its energy but also by the corresponding electron momentum. In this paper we present investigations of momentum-dependent excitation processes in a number of molecular crystals and amorphous thin films. For our studies we have chosen ladder-type quinquephenyl (5LP), distyrylbenzene (3PV), a substituted quinquephenylenevinylene (5PV), and a bridged quarterthienyl (4TB). These substances are representative for several classes of conjugated organic materials. Their physical properties are dominated by the molecular building blocks. The investigated films, however, also allow us to study differences in the characteristics of crystalline (3PV and 4TB), partly amorphous (5LP) and fully amorphous (5PV) systems. Momentum-dependent excitations are induced by inelastic electron scattering in electron-energy-loss spectroscopy (EELS) experiments. The experimental data are compared to molecule based post-Hartree-Fock quantum-chemical simulations performed with the intermediate neglect of differential overlap (INDO) approach coupled to a configuration interaction (CI) technique applying the proper momentum-dependent transition matrix elements. Our results show that even in relatively small systems the molecular electronic states can be characterized by an associated range in momentum space. In addition, differences between inelastic electron scattering spectra for low values of momentum transfer and the optical data obtained for the crystalline samples underline the strong impact of light propagation on the absorption characteristics of highly anisotropic crystalline materials

  17. Characterization of low crystallinity cellulose as a direct compression excipient: Effects of physicochemical properties of cellulose excipients on their tabletting characteristics

    Science.gov (United States)

    Kothari, Sanjeev Hukmichand

    A scale-up method for the preparation of a new excipient, low crystallinity powder cellulose (LCPC), was established. Physicochemical characterization of a series of LCPC materials was performed, and compared to the physicochemical properties of commercially existing cellulose excipients, microcrystalline cellulose (AvicelsRTM) and powdered celluloses (Solka Flocs RTM). Low crystallinity cellulose powders had high amorphous contents (>50%) and a low degree of polymerization (2 kg), typically showed low yield pressures (200 MPa), and intermediate compactability (250--600 MPa2) values. Mechanical characterization of the three types of cellulose materials, and the statistical models obtained for the results, indicated that a high porosity (>810%), a high average of amorphous content (>40%) and moisture content (>4%), and a low degree of polymerization (disintegration times (5 to 90 seconds) for LCPC tablets at low as well as high solid fractions suggest the high affinity of these materials to water, due to their high amorphous contents that expose a larger number of hydroxyl groups to water, compared to the more crystalline materials, such as microcrystalline celluloses, the tablets of which showed extremely long disintegration times (24 to 6000 seconds). The physicochemical and mechanical characterization of low crystallinity cellulose suggests it to be a promising direct compression excipient for immediate release tablet formulations.

  18. Dissolution of crystalline ceramics

    International Nuclear Information System (INIS)

    White, W.B.

    1982-01-01

    The present program objectives are to lay out the fundamentals of crystalline waste form dissolution. Nuclear waste ceramics are polycrystalline. An assumption of the work is that to the first order, the release rate of a particular radionuclide is the surface-weighted sum of the release rates of the radionuclide from each crystalline form that contains it. In the second order, of course, there will be synergistic effects. There will be also grain boundary and other microstructural influences. As a first approximation, we have selected crystalline phases one at a time. The sequence of investigations and measurements is: (i) Identification of the actual chemical reactions of dissolution including identification of the solid reaction products if such occur. (ii) The rates of these reactions are then determined empirically to give what may be called macroscopic kinetics. (iii) Determination of the rate-controlling mechanisms. (iv) If the rate is controlled by surface reactions, the final step would be to determine the atomic kinetics, that is the specific atomic reactions that occur at the dissolving interface. Our concern with the crystalline forms are in two areas: The crystalline components of the reference ceramic waste form and related ceramics and the alumino-silicate phases that appear in some experimental waste forms and as waste-rock interaction products. Specific compounds are: (1) Reference Ceramic Phases (zirconolite, magnetoplumbite, spinel, Tc-bearing spinel and perovskite); (2) Aluminosilicate phases (nepheline, pollucite, CsAlSi 5 O 12 , Sr-feldspar). 5 figures, 1 table

  19. Immunohistochemical studies of lens crystallins in the dysgenetic lens (dyl) mutant mice

    NARCIS (Netherlands)

    Brahma, S.K.; Sanyal, S.

    1984-01-01

    The lens in the dyl mutant mice shows a persistent lens-ectodermal connection as well as degeneration and extrusion of lens materials after the initial differentiation of the fibres. Immunohistochemical investigation of the ontogeny of the lens crystallins in this developing mutant lens has been

  20. Modified crystalline structure of silane-crosslinked polyethylene in the proximity of nanodiamonds

    Czech Academy of Sciences Publication Activity Database

    Roumeli, E.; Brus, Jiří; Policianová, Olivia; Chrissafis, K.; Bikiaris, D. N.

    2016-01-01

    Roč. 301, č. 4 (2016), s. 441-450 ISSN 1438-7492 R&D Projects: GA ČR(CZ) GA13-29009S Institutional support: RVO:61389013 Keywords : crosslinked polyethylene * crystalline conformation * deformation Subject RIV: JI - Composite Materials Impact factor: 2.863, year: 2016

  1. Damage characterization for particles filled semi-crystalline polymer

    Directory of Open Access Journals (Sweden)

    Lauro Franck

    2015-01-01

    Full Text Available Damage evolution and characterization in semi-crystalline polymer filled with particles under various loadings is still a challenge. A specific damage characterization method using Digital Image Correlation is proposed for a wide range of strain rates considering tensile tests with hydraulic jacks as well as Hopkinson's bars. This damage measurement is obtained by using and adapting the SEE method [1] which was developed to characterize the behaviour laws at constant strain rates of polymeric materials in dynamic. To validate the characterization process, various damage measurement techniques are used under quasi-static conditions before to apply the procedure in dynamic. So, the well-known damage characterization by loss of stiffness technique under quasi-static loading is applied to a polypropylene. In addition, an in-situ tensile test, carried out in a microtomograph, is used to observe the cavitation phenomenon in real time. A good correlation is obtained between all these techniques and consequently the proposed technique is supposed suitable for measuring the ductile damage observed in semi-crystalline polymers under dynamic loading. By applying it to the semi-crystalline polymer at moderate and high speed loadings, the damage evolution is measured and it is observed that the damage evolution is not strain rate dependent but the failure strain on the contrary is strain rate dependent.

  2. Diverse topics in crystalline beams

    International Nuclear Information System (INIS)

    Wei, Jie; Draeseke, A.; Sessler, A.M.; Li, Xiao-Ping

    1995-01-01

    Equations of motion are presented, appropriate to interacting charged particles of diverse charge and mass, subject to the external forces produced by various kinds of magnetic fields and radio-frequency (rf) electric fields in storage rings. These equations are employed in the molecular dynamics simulations to study the properties of crystalline beams. The two necessary conditions for the formation and maintenance of crystalline beams are summarized. The transition from ID to 2D, and from 2D to 3D is explored, and the scaling behavior of the heating rates is discussed especially in the high temperature limit. The effectiveness of various cooling techniques in achieving crystalline states has been investigated. Crystalline beams made of two different species of ions via sympathetic cooling are presented, as well as circulating ''crystal balls'' bunched in all directions by magnetic focusing and rf field. By numerically reconstructing the original experimental conditions of the NAP-M ring, it is found that only at extremely low beam intensities, outside of the range of the original measurement, proton particles can form occasionally-passing disks. The proposed New ASTRID ring is shown to be suitable for the formation and maintenance of crystalline beams of all dimensions

  3. High-strength bulk nano-crystalline silver prepared by selective leaching combined with spark plasma sintering

    Czech Academy of Sciences Publication Activity Database

    Marek, I.; Vojtěch, D.; Michalcová, A.; Kubatík, Tomáš František

    2015-01-01

    Roč. 627, March (2015), s. 326-332 ISSN 0921-5093 Institutional support: RVO:61389021 Keywords : Nano-crystalline material * Selective leaching * Silver * Spark plasma sintering * Strength Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.647, year: 2015 http://dx.doi.org/10.1016/j.msea.2015.01.014

  4. Neutron transmission through crystalline Fe

    International Nuclear Information System (INIS)

    Adib, M.; Habib, N.; Kilany, M.; El-Mesiry, M.S.

    2004-01-01

    The neutron transmission through crystalline Fe has been calculated for neutron energies in the range 10 4 < E<10 eV using an additive formula. The formula permits calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-section as a function of temperature and crystalline form. The obtained agreement between the calculated values and available experimental ones justifies the applicability of the used formula. A feasibility study on using poly-crystalline Fe as a cold neutron filter and a large Fe single crystal as a thermal one is given

  5. Lateral topological crystalline insulator heterostructure

    Science.gov (United States)

    Sun, Qilong; Dai, Ying; Niu, Chengwang; Ma, Yandong; Wei, Wei; Yu, Lin; Huang, Baibiao

    2017-06-01

    The emergence of lateral heterostructures fabricated by two-dimensional building blocks brings many exciting realms in material science and device physics. Enriching available nanomaterials for creating such heterostructures and enabling the underlying new physics is highly coveted for the integration of next-generation devices. Here, we report a breakthrough in lateral heterostructure based on the monolayer square transition-metal dichalcogenides MX2 (M  =  W, X  =  S/Se) modules. Our results reveal that the MX2 lateral heterostructure (1S-MX2 LHS) can possess excellent thermal and dynamical stability. Remarkably, the highly desired two-dimensional topological crystalline insulator phase is confirmed by the calculated mirror Chern number {{n}\\text{M}}=-1 . A nontrivial band gap of 65 meV is obtained with SOC, indicating the potential for room-temperature observation and applications. The topologically protected edge states emerge at the edges of two different nanoribbons between the bulk band gap, which is consistent with the mirror Chern number. In addition, a strain-induced topological phase transition in 1S-MX2 LHS is also revealed, endowing the potential utilities in electronics and spintronics. Our predictions not only introduce new member and vitality into the studies of lateral heterostructures, but also highlight the promise of lateral heterostructure as appealing topological crystalline insulator platforms with excellent stability for future devices.

  6. Principles and operation of crystalline and amorphous silicon solar cells

    International Nuclear Information System (INIS)

    Chambouleyron, I.

    1983-01-01

    This paper deals with the fundamental aspects of photovoltaic energy conversion. Crystalline silicon solar cell physics together with design criteria and conversion losses are discussed. The general properties of hydrogenated amorphous silicon and the principles of a-Si:H solar cell operation are briefly reviewed. New trends in amorphous materials of photovoltaic interest and novel device structures are finally presented. (Author) [pt

  7. Nature of phase transitions in crystalline and amorphous GeTe-Sb2Te3 phase change materials.

    Science.gov (United States)

    Kalkan, B; Sen, S; Clark, S M

    2011-09-28

    The thermodynamic nature of phase stabilities and transformations are investigated in crystalline and amorphous Ge(1)Sb(2)Te(4) (GST124) phase change materials as a function of pressure and temperature using high-resolution synchrotron x-ray diffraction in a diamond anvil cell. The phase transformation sequences upon compression, for cubic and hexagonal GST124 phases are found to be: cubic → amorphous → orthorhombic → bcc and hexagonal → orthorhombic → bcc. The Clapeyron slopes for melting of the hexagonal and bcc phases are negative and positive, respectively, resulting in a pressure dependent minimum in the liquidus. When taken together, the phase equilibria relations are consistent with the presence of polyamorphism in this system with the as-deposited amorphous GST phase being the low entropy low-density amorphous phase and the laser melt-quenched and high-pressure amorphized GST being the high entropy high-density amorphous phase. The metastable phase boundary between these two polyamorphic phases is expected to have a negative Clapeyron slope. © 2011 American Institute of Physics

  8. Towards Cost-Effective Crystalline Silicon Based Flexible Solar Cells: Integration Strategy by Rational Design of Materials, Process, and Devices

    KAUST Repository

    Bahabry, Rabab R.

    2017-11-30

    The solar cells market has an annual growth of more than 30 percent over the past 15 years. At the same time, the cost of the solar modules diminished to meet both of the rapid global demand and the technological improvements. In particular for the crystalline silicon solar cells, the workhorse of this technology. The objective of this doctoral thesis is enhancing the efficiency of c-Si solar cells while exploring the cost reduction via innovative techniques. Contact metallization and ultra-flexible wafer based c-Si solar cells are the main areas under investigation. First, Silicon-based solar cells typically utilize screen printed Silver (Ag) metal contacts which affect the optimal electrical performance. To date, metal silicide-based ohmic contacts are occasionally used for the front contact grid lines. In this work, investigation of the microstructure and the electrical characteristics of nickel monosilicide (NiSi) ohmic contacts on the rear side of c-Si solar cells has been carried out. Significant enhancement in the fill factor leading to increasing the total power conversion efficiency is observed. Second, advanced classes of modern application require a new generation of versatile solar cells showcasing extreme mechanical resilience. However, silicon is a brittle material with a fracture strains <1%. Highly flexible Si-based solar cells are available in the form thin films which seem to be disadvantageous over thick Si solar cells due to the reduction of the optical absorption with less active Si material. Here, a complementary metal oxide semiconductor (CMOS) technology based integration strategy is designed where corrugation architecture to enable an ultra-flexible solar cell module from bulk mono-crystalline silicon solar wafer with 17% efficiency. This periodic corrugated array benefits from an interchangeable solar cell segmentation scheme which preserves the active silicon thickness and achieves flexibility via interdigitated back contacts. These cells

  9. The make up of crystalline bedrock - crystalline body and blocks

    International Nuclear Information System (INIS)

    Huber, M.; Huber, A.

    1986-01-01

    Statements of a geological nature can be made on the basis of investigations of the bedrock exposed in southern Black Forest and these can, in the form of prognoses, be applied to the crystalline Basement of northern Switzerland. Such statements relate to the average proportions of the main lithological groups at the bedrock surface and the surface area of the granite body. Some of the prognoses can be compared and checked with the results from the deep drilling programme in northern Switzerland. Further, analogical interferences from the situation in the southern Black Forest allow predictions to be made on the anticipated block structure of the crystalline Basement. (author)

  10. Pengaruh Kecepatan Pendinginan Terhadap Perubahan Volume Leburan Polymer Crystalline dan Non-Crystalline

    OpenAIRE

    Fahrurrozi, Mohammad; Moristanto, Bagus Senowulung dan

    2003-01-01

    AbstractThe study was directed to develop a method to predict the influence of the rate of cooling to the degree of crystallittitv (DOC) and volume change of crystalline polymers. Crystalline polymer melts exhibit volume shrinkage on cooling below melting point due to crystallization. Crystallization and volunrc shrinkage will proceed with varies rate as long as the temperature is above the glass tansition temperatrre. DOC achieved by polymer is not only determined by the inherent crystallini...

  11. Results of intraocular lens implantation with capsular tension ring in subluxated crystalline or cataractous lenses in children

    OpenAIRE

    Das, Pranab; Ram, Jagat; Brar, Gagandeep Singh; Dogra, Mangat R

    2009-01-01

    Purpose : To evaluate the outcome of intraocular lens (IOL) implantation using capsular tension ring (CTR) in subluxated crystalline or cataractous lenses in children. Setting : Tertiary care setting Materials and Methods : We prospectively studied 18 eyes of 15 children with subluxation of crystalline or cataractous lenses between 90° up to 210° after phacoemulsification, CTR and IOL implantation. Each child was examined for IOL centration, zonular dehiscence and posterior ...

  12. Guiding principle for crystalline Si photovoltaic modules with high tolerance to acetic acid

    Science.gov (United States)

    Masuda, Atsushi; Hara, Yukiko

    2018-04-01

    A guiding principle for highly reliable crystalline Si photovoltaic modules, especially those with high tolerance to acetic acid generated by hydrolysis reaction between water vapor and an ethylene-vinyl acetate (EVA) encapsulant, is proposed. Degradation behavior evaluated by the damp heat test strongly depends on Ag finger electrodes and also EVA encapsulants. The acetic acid concentration in EVA on the glass side directly determines the degradation behavior. The most important factor for high tolerance is the type of Ag finger electrode materials when using an EVA encapsulant. Photovoltaic modules using newly developed crystalline Si cells with improved Ag finger electrode materials keep their maximum power of 80% of the initial value even after the damp heat test at 85 °C and 85% relative humidity for 10000 h. The pattern of dark regions in electroluminescence images is also discussed on the basis of the dynamics of acetic acid in the modules.

  13. Angle-adjustable density field formulation for the modeling of crystalline microstructure

    Science.gov (United States)

    Wang, Zi-Le; Liu, Zhirong; Huang, Zhi-Feng

    2018-05-01

    A continuum density field formulation with particle-scale resolution is constructed to simultaneously incorporate the orientation dependence of interparticle interactions and the rotational invariance of the system, a fundamental but challenging issue in modeling the structure and dynamics of a broad range of material systems across variable scales. This generalized phase field crystal-type approach is based upon the complete expansion of particle direct correlation functions and the concept of isotropic tensors. Through applications to the modeling of various two- and three-dimensional crystalline structures, our study demonstrates the capability of bond-angle control in this continuum field theory and its effects on the emergence of ordered phases, and provides a systematic way of performing tunable angle analyses for crystalline microstructures.

  14. Functionalized Nanoporous Polymer Membranes with Well-Defined Pore Architectures via Lyotropic Liquid-Crystalline Monomers

    National Research Council Canada - National Science Library

    Gin, Douglas

    1997-01-01

    .... Two lyotropic liquid-crystalline monomer platforms have been synthesized. The interchannel separations in the polymerizable materials can be varied in the 30-40 A range by the choice of counterion on the ionic headgroup of the monomers...

  15. The quest for crystalline ion beams

    CERN Document Server

    Schramm, U; Bussmann, M; Habs, D

    2002-01-01

    The phase transition of an ion beam into its crystalline state has long been expected to dramatically influence beam dynamics beyond the limitations of standard accelerator physics. Yet, although considerable improvement in beam cooling techniques has been made, strong heating mechanisms inherent to existing high-energy storage rings have prohibited the formation of the crystalline state in these machines up to now. Only recently, laser cooling of low-energy beams in the table-top rf quadrupole storage ring PAaul Laser cooLing Acceleration System (PALLAS) has lead to the experimental realization of crystalline beams. In this article, the quest for crystalline beams as well as their unique properties as experienced in PALLAS will be reviewed.

  16. Topological Crystalline Insulators and Dirac Octets in Anti-perovskites

    OpenAIRE

    Hsieh, Timothy H.; Liu, Junwei; Fu, Liang

    2014-01-01

    We predict a new class of topological crystalline insulators (TCI) in the anti-perovskite material family with the chemical formula A$_3$BX. Here the nontrivial topology arises from band inversion between two $J=3/2$ quartets, which is described by a generalized Dirac equation for a "Dirac octet". Our work suggests that anti-perovskites are a promising new venue for exploring the cooperative interplay between band topology, crystal symmetry and electron correlation.

  17. Magnetic Properties of Nanometer-sized Crystalline and Amorphous Particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Bødker, Franz; Hansen, Mikkel Fougt

    1997-01-01

    Amorphous transition metal-metalloid alloy particles can be prepared by chemical preparation techniques. We discuss the preparation of transition metal-boron and iron-carbon particles and their magnetic properties. Nanometer-sized particles of both crystalline and amorphous magnetic materials...... are superparamagnetic at finite temperatures. The temperature dependence of the superparamagnetic relaxation time and the influence of inter-particle interactions is discussed. Finally, some examples of studies of surface magnetization of alpha-Fe particles are presented....

  18. Effect of iron and chromium on the graphitization behaviour of sulfur-containing carbon

    International Nuclear Information System (INIS)

    Tyumentsev, V.A.; Belenkov, E.A.; Saunina, S.I.; Podkopaev, S.A.; Shvejkin, G.P.

    1998-01-01

    Process of transition of carbonaceous material, containing structurally incorporated sulfur, into graphite and impact of iron and chromium additions are studied. It is established that carbonaceous material, containing more than 1.5 mass % S and also 1.5 mass % Cr 2 O 3 is heterogeneous after thermal treatment at 1300-1600 deg C. It consists of large and sufficiency complete areas of coherent scattering having graphite structure and ultra-dispersed matrix. The number of graphite crystals formed in the presence of dispersed iron within this temperature range, decreases by two times [ru

  19. Recovery of waste and side products of apatite-nepheline and eudialyte ores processing in manufacture of heat-insulating foam glassy-crystalline materials

    Directory of Open Access Journals (Sweden)

    Suvorova O. V.

    2017-03-01

    Full Text Available Overburden and dressing tailings accumulated in the Murmansk region in impressive volumes represent serious challenges of both economic and ecological character. Maintenance of overburden dumps and dressing tailings involves considerable capital and material expenses. Therefore reprocessing of mining waste and manufacture of building materials, including heat-insulating foam-glass materials, is a promising trend. The work discusses the feasibility of recovering silica-containing waste and ore processing byproducts on the Kola Peninsula. Compositions and techniques for producing blocks and pellets from foam-glass crystalline materials have been developed. The effect of modifying agents on the foam-silicate materials' mechanical properties has been investigated. The production conditions for high-quality foam-silicate blocks have been identified. The foam silicates obtained under optimal conditions have featured a relatively low viscosity (0.3–0.5 g/cm³, high strength (up to 5 MPa and heat conductivity (0.09–0.107 Wt/m·K. Methods of improving the operating characteristics of foam silicates based on structure perfecting have been proposed. It has been found that as a result of shorttime baking of grainy samples the product has a grain strength of 5–6 MPa, density of 0.25–0.35 g/cm3 and a resistance to crushing in cylinder of 2.2–3 MPa, which is 2–3 times higher than that of a material subjected to one-stage thermal treatment. The water absorption of the material is 5–6 %, which is by a half lower compared to a one-stage treated material. The thermal conduction coefficient is 0.091–0.096 Wt/m·K. The obtained materials are recommended for use as heat-insulating surfacing and filling material for garrets, floors and roofs in construction and renovation of industrial and civic buildings

  20. LPE growth and scintillation properties of (Zn,Mg)O single crystalline film

    Czech Academy of Sciences Publication Activity Database

    Yoshikawa, A.; Yanagida, T.; Fujimoto, Y.; Kurosawa, S.; Yokota, Y.; Yamaji, A.; Sugiyama, M.; Wakahara, S.; Futami, Y.; Kikuchi, M.; Miyamoto, M.; Sekiwa, H.; Nikl, Martin

    2012-01-01

    Roč. 59, č. 5 (2012), 2286-2289 ISSN 0018-9499 R&D Projects: GA MŠk LH12150 Institutional research plan: CEZ:AV0Z10100521 Keywords : crystalline materials * epitaxial layers * liquid phase epitaxy * scintillator * semiconductor films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.219, year: 2012

  1. Liquid crystalline dihydroazulene photoswitches

    DEFF Research Database (Denmark)

    Petersen, Anne Ugleholdt; Jevric, Martyn; Mandle, Richard J.

    2015-01-01

    A large selection of photochromic dihydroazulene (DHA) molecules incorporating various substituents at position 2 of the DHA core was prepared and investigated for their ability to form liquid crystalline phases. Incorporation of an octyloxy-substituted biphenyl substituent resulted in nematic...... phase behavior and it was possible to convert one such compound partly into its vinylheptafulvene (VHF) isomer upon irradiation with light when in the liquid crystalline phase. This conversion resulted in an increase in the molecular alignment of the phase. In time, the meta-stable VHF returns...... to the DHA where the alignment is maintained. The systematic structural variation has revealed that a biaryl spacer between the DHA and the alkyl chain is needed for liquid crystallinity and that the one aromatic ring in the spacer cannot be substituted by a triazole. This work presents an important step...

  2. Durable crystalline Si photovoltaic modules based on silicone-sheet encapsulants

    Science.gov (United States)

    Hara, Kohjiro; Ohwada, Hiroto; Furihata, Tomoyoshi; Masuda, Atsushi

    2018-02-01

    Crystalline Si photovoltaic (PV) modules were fabricated with sheets of poly(dimethylsiloxane) (silicone) as an encapsulant. The long-term durability of the silicone-encapsulated PV modules was experimentally investigated. The silicone-based modules enhanced the long-term durability against potential-induced degradation (PID) and a damp-heat (DH) condition at 85 °C with 85% relative humidity (RH). In addition, we designed and fabricated substrate-type Si PV modules based on the silicone encapsulant and an Al-alloy plate as the substratum, which demonstrated high impact resistance and high incombustible performance. The high chemical stability, high volume resistivity, rubber-like elasticity, and incombustibility of the silicone encapsulant resulted in the high durability of the modules. Our results indicate that silicone is an attractive encapsulation material, as it improves the long-term durability of crystalline Si PV modules.

  3. Ibuprofen in mesopores of Mobil Crystalline Material 41 (MCM-41): a deeper understanding.

    Science.gov (United States)

    Skorupska, Ewa; Jeziorna, Agata; Paluch, Piotr; Potrzebowski, Marek J

    2014-05-05

    In this work, we compared two methods (incipient wetness and melting) for the encapsulation of ibuprofen in the pores of Mobil Crystalline Material 41 (MCM-41) through NMR (nuclear magnetic resonance) spectroscopy. (1)H NMR spectra were recorded under very fast MAS (sample spinning 60 kHz) conditions in both 1D and 2D mode (NOESY sequence). We also performed (13)C cross-polarization magic angle spinning (CP/MAS) experiments, (13)C single pulse experiments (SPE), and (1)H-(13)C HSQC HR/MAS (heteronuclear single quantum coherence high resolution) HR/MAS correlations. Evaluation of the encapsulation methods included an analysis of the filling factor of the drug into the pores. The stability of Ibu/MCM in an environment of ethanol or water vapor was tested. Our study showed that melting a mixture of Ibu and MCM is a much more efficient method of confining the drug in the pores compared to incipient wetness. The optimal experiments for the former method achieved a filling factor of approximately 60%. We concluded that the major limitation to the applicability of the incipient wetness method (filling factor ca. 20%) is the high affinity of solvent (typically ethanol) for MCM-41. We found that even ethanol vapor can remove Ibu from the pores. When a sample of Ibu/MCM was stored for a few hours in a closed vessel with ethanol vapor, Ibu was transported from the pores to the outer walls of MCM. We observed a similar phenomenon with water vapor, although this process is slower compared to the analogous procedure using ethanol. Our study clearly demonstrates that existing methods used to encapsulate drugs in mesoporous silica nanoparticles (MSNs) require reevaluation.

  4. Effect of the processing parameters on the crystalline structure of lanthanide ortho tantalates

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, Kisla P.F.; Dias, Anderson, E-mail: anderson_dias@iceb.ufop.br [Universidade Federal de Ouro Preto (UFOP), MG (Brazil). Dept. de Quimica

    2014-08-15

    The influence of the synthesis parameters on the crystalline structures of ortho tantalate ceramics has been investigated. Powder materials were prepared by the solid-state reaction route. X-ray diffraction and Raman scattering measurements were employed to investigate the crystal structure of the produced materials. In this work, we analyzed three different examples in which the temperature and time were decisive on the final crystal structure of LnTaO{sub 4} compounds besides the lanthanide ionic size. Firstly, the thermal evolution for NdTaO{sub 4} samples showed that mixed crystal phases are formed up to 1100 °C, while well-crystallized M-NdTaO{sub 4} (I2/a) materials are obtained in temperatures higher than 1200 °C. Also, the influence of the synthesis time was investigated for the LaTaO{sub 4} ceramics: it was necessary 14 h to obtain samples in the P2{sub 1}/c structure. Finally, two polymorphs could be obtained for the DyTaO{sub 4} ceramics: P2/a and I2/a space groups were obtained at 1300 °C and 1500 °C, respectively. This study indicated that the temperature, time and lanthanide size are directly correlated with the crystalline arrangement of the ortho tantalate materials.(author)

  5. Thermodynamics of Crystalline States

    CERN Document Server

    Fujimoto, Minoru

    2010-01-01

    Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattices, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. This book is divided into three parts. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. In the third part, the multi-electron system is discussed theoretically, as a quantum-mechanical example, for the superconducting state in metallic crystals. Throughout the book, the role played by the lattice is emphasized and examined in-depth. Thermodynamics of Crystalline States is an introductory treatise and textbook on meso...

  6. Cellulose nanocrystal from pomelo (C. Grandis osbeck) albedo: Chemical, morphology and crystallinity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Zain, Nor Fazelin Mat; Yusop, Salma Mohamad [Food Science Program, School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor (Malaysia); Ahmad, Ishak [Polymer Research Centre (PORCE), School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor (Malaysia)

    2013-11-27

    Citrus peel is one of the under-utilized waste materials that have potential in producing a valuable fibre, which are cellulose and cellulose nanocrystal. Cellulose was first isolated from pomelo (C. Grandis Osbeck) albedo by combination of alkali treatment and bleaching process, followed by acid hydrolysis (65% H{sub 2}SO{sub 4}, 45 °C, 45min) to produce cellulose nanocrystal. The crystalline, structural, morphological and chemical properties of both materials were studied. Result reveals the crystallinity index obtained from X-ray diffraction for cellulose nanocrystal was found higher than extracted cellulose with the value of 60.27% and 57.47%, respectively. Fourier transform infrared showed that the chemical treatments removed most of the hemicellulose and lignin from the pomelo albedo fibre. This has been confirmed further by SEM and TEM for their morphological studies. These results showed that cellulose and cellulose nanocrystal were successfully obtained from pomelo albedo and might be potentially used in producing functional fibres for food application.

  7. Cellulose nanocrystal from pomelo (C. Grandis osbeck) albedo: Chemical, morphology and crystallinity evaluation

    International Nuclear Information System (INIS)

    Zain, Nor Fazelin Mat; Yusop, Salma Mohamad; Ahmad, Ishak

    2013-01-01

    Citrus peel is one of the under-utilized waste materials that have potential in producing a valuable fibre, which are cellulose and cellulose nanocrystal. Cellulose was first isolated from pomelo (C. Grandis Osbeck) albedo by combination of alkali treatment and bleaching process, followed by acid hydrolysis (65% H 2 SO 4 , 45 °C, 45min) to produce cellulose nanocrystal. The crystalline, structural, morphological and chemical properties of both materials were studied. Result reveals the crystallinity index obtained from X-ray diffraction for cellulose nanocrystal was found higher than extracted cellulose with the value of 60.27% and 57.47%, respectively. Fourier transform infrared showed that the chemical treatments removed most of the hemicellulose and lignin from the pomelo albedo fibre. This has been confirmed further by SEM and TEM for their morphological studies. These results showed that cellulose and cellulose nanocrystal were successfully obtained from pomelo albedo and might be potentially used in producing functional fibres for food application

  8. X-ray and neutron diffraction studies of crystallinity in hydroxyapatite coatings.

    Science.gov (United States)

    Girardin, E; Millet, P; Lodini, A

    2000-02-01

    To standardize industrial implant production and make comparisons between different experimental results, we have to be able to quantify the crystallinity of hydroxyapatite. Methods of measuring crystallinity ratio were developed for various HA samples before and after plasma spraying. The first series of methods uses X-ray diffraction. The advantage of these methods is that X-ray diffraction equipment is used widely in science and industry. In the second series, a neutron diffraction method is developed and the results recorded are similar to those obtained by the modified X-ray diffraction methods. The advantage of neutron diffraction is the ability to obtain measurements deep inside a component. It is a nondestructive method, owing to the very low absorption of neutrons in most materials. Copyright 2000 John Wiley & Sons, Inc.

  9. Well-crystalline porous ZnO-SnO2 nanosheets: an effective visible-light driven photocatalyst and highly sensitive smart sensor material.

    Science.gov (United States)

    Lamba, Randeep; Umar, Ahmad; Mehta, S K; Kansal, Sushil Kumar

    2015-01-01

    This work demonstrates the synthesis and characterization of porous ZnO-SnO2 nanosheets prepared by the simple and facile hydrothermal method at low-temperature. The prepared nanosheets were characterized by several techniques which revealed the well-crystallinity, porous and well-defined nanosheet morphology for the prepared material. The synthesized porous ZnO-SnO2 nanosheets were used as an efficient photocatalyst for the photocatalytic degradation of highly hazardous dye, i.e., direct blue 15 (DB 15), under visible-light irradiation. The excellent photocatalytic degradation of prepared material towards DB 15 dye could be ascribed to the formation of ZnO-SnO2 heterojunction which effectively separates the photogenerated electron-hole pairs and possess high surface area. Further, the prepared porous ZnO-SnO2 nanosheets were utilized to fabricate a robust chemical sensor to detect 4-nitrophenol in aqueous medium. The fabricated sensor exhibited extremely high sensitivity of ~ 1285.76 µA/mmol L(-1)cm(-2) and an experimental detection limit of 0.078 mmol L(-1) with a linear dynamic range of 0.078-1.25 mmol L(-1). The obtained results confirmed that the prepared porous ZnO-SnO2 nanosheets are potential material for the removal of organic pollutants under visible light irradiation and efficient chemical sensing applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Purity and crystallinity of microwave synthesized antimony sulfide microrods

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Alonso, Claudia, E-mail: claudiamartinezalonso30@gmail.com [Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, 76010 (Mexico); Olivos-Peralta, Eliot U. [Instituto de Energías Renovables, Universidad NacionalAutónoma de México, Temixco, Morelos, 62580 (Mexico); Sotelo-Lerma, Mérida [Universidad de Sonora, Hermosillo, Sonora, 83000 (Mexico); Sato-Berrú, Roberto Y. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, MéxicoD.F., 04510 (Mexico); Mayén-Hernández, S.A. [Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, 76010 (Mexico); Hu, Hailin, E-mail: hzh@ier.unam.mx [Instituto de Energías Renovables, Universidad NacionalAutónoma de México, Temixco, Morelos, 62580 (Mexico)

    2017-01-15

    Antimony sulfide (Sb{sub 2}S{sub 3}) is a promising semiconductor material for solar cell applications. In this work, microrods of Sb{sub 2}S{sub 3} were synthesized by microwave heating with different sulfur sources, solvents, temperature, heating rate, power, and solution concentration. It was found that 90% of stoichiometric Sb{sub 2}S{sub 3} can be obtained with thiourea (TU) or thioacetamide (TA) as sulfur sources and that their optical band gap values were within the range of 1.59–1.60 eV. The most crystalline Sb{sub 2}S{sub 3} were obtained by using TU. The morphology of the Sb{sub 2}S{sub 3} with TU the individual rods were exhibited, whereas rods bundles appeared in TA-based products. The solvents were ethylene glycol (EG) and dimethylformamide (DMF). EG generates more heat than DMF during the microwave synthesis. As a result, the Sb{sub 2}S{sub 3} obtained with EG contained a larger percentage of oxygen and smaller crystal sizes compared to those from DMF. On the other hand, the length and diameter of Sb{sub 2}S{sub 3} microrods can be increased by applying higher heating power although the crystal size did not change at all. In summary, pure and highly crystalline Sb{sub 2}S{sub 3} microrods of 6–10 μm long and 330–850 nm in diameter can be obtained by the microwave method with a careful selection of chemical and thermodynamic parameters of the synthesis. - Highlights: • Purity up to 90% of crystalline Sb{sub 2}S{sub 3} nanorods can be obtained by microwave heating. • The combination of solvent and sulfide type affects crystallinity & purity of Sb2S3. • The high pressure generated in microwave heating helps to form Sb{sub 2}S{sub 3} nanorods.

  11. Purity and crystallinity of microwave synthesized antimony sulfide microrods

    International Nuclear Information System (INIS)

    Martínez-Alonso, Claudia; Olivos-Peralta, Eliot U.; Sotelo-Lerma, Mérida; Sato-Berrú, Roberto Y.; Mayén-Hernández, S.A.; Hu, Hailin

    2017-01-01

    Antimony sulfide (Sb_2S_3) is a promising semiconductor material for solar cell applications. In this work, microrods of Sb_2S_3 were synthesized by microwave heating with different sulfur sources, solvents, temperature, heating rate, power, and solution concentration. It was found that 90% of stoichiometric Sb_2S_3 can be obtained with thiourea (TU) or thioacetamide (TA) as sulfur sources and that their optical band gap values were within the range of 1.59–1.60 eV. The most crystalline Sb_2S_3 were obtained by using TU. The morphology of the Sb_2S_3 with TU the individual rods were exhibited, whereas rods bundles appeared in TA-based products. The solvents were ethylene glycol (EG) and dimethylformamide (DMF). EG generates more heat than DMF during the microwave synthesis. As a result, the Sb_2S_3 obtained with EG contained a larger percentage of oxygen and smaller crystal sizes compared to those from DMF. On the other hand, the length and diameter of Sb_2S_3 microrods can be increased by applying higher heating power although the crystal size did not change at all. In summary, pure and highly crystalline Sb_2S_3 microrods of 6–10 μm long and 330–850 nm in diameter can be obtained by the microwave method with a careful selection of chemical and thermodynamic parameters of the synthesis. - Highlights: • Purity up to 90% of crystalline Sb_2S_3 nanorods can be obtained by microwave heating. • The combination of solvent and sulfide type affects crystallinity & purity of Sb2S3. • The high pressure generated in microwave heating helps to form Sb_2S_3 nanorods.

  12. Magnetic-field induced semimetal in topological crystalline insulator thin films

    International Nuclear Information System (INIS)

    Ezawa, Motohiko

    2015-01-01

    We investigate electromagnetic properties of a topological crystalline insulator (TCI) thin film under external electromagnetic fields. The TCI thin film is a topological insulator indexed by the mirror-Chern number. It is demonstrated that the gap closes together with the emergence of a pair of gapless cones carrying opposite chirarities by applying in-plane magnetic field. A pair of gapless points have opposite vortex numbers. This is a reminiscence of a pair of Weyl cones in 3D Weyl semimetal. We thus present an a magnetic-field induced semimetal–semiconductor transition in 2D material. This is a giant-magnetoresistance, where resistivity is controlled by magnetic field. Perpendicular electric field is found to shift the gapless points and also renormalize the Fermi velocity in the direction of the in-plane magnetic field. - Highlights: • The band structure of topological crystalline insulator thin films can be controlled by applying in-plane magnetic field. • At the gap closing magnetic field, a pair of gapless cones carrying opposite chirarities emerge. • A pair of gapless points have opposite vortex numbers. • This is a reminiscence of a pair of Weyl cones in 3D Weyl semimetal. • A magnetic-field induced semimetal–semiconductor transition occurs in 2D material

  13. Magnetic-field induced semimetal in topological crystalline insulator thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ezawa, Motohiko, E-mail: ezawa@ap.t.u-tokyo.ac.jp

    2015-06-19

    We investigate electromagnetic properties of a topological crystalline insulator (TCI) thin film under external electromagnetic fields. The TCI thin film is a topological insulator indexed by the mirror-Chern number. It is demonstrated that the gap closes together with the emergence of a pair of gapless cones carrying opposite chirarities by applying in-plane magnetic field. A pair of gapless points have opposite vortex numbers. This is a reminiscence of a pair of Weyl cones in 3D Weyl semimetal. We thus present an a magnetic-field induced semimetal–semiconductor transition in 2D material. This is a giant-magnetoresistance, where resistivity is controlled by magnetic field. Perpendicular electric field is found to shift the gapless points and also renormalize the Fermi velocity in the direction of the in-plane magnetic field. - Highlights: • The band structure of topological crystalline insulator thin films can be controlled by applying in-plane magnetic field. • At the gap closing magnetic field, a pair of gapless cones carrying opposite chirarities emerge. • A pair of gapless points have opposite vortex numbers. • This is a reminiscence of a pair of Weyl cones in 3D Weyl semimetal. • A magnetic-field induced semimetal–semiconductor transition occurs in 2D material.

  14. Radiation-induced attenuation in integrated optical materials

    International Nuclear Information System (INIS)

    Evans, B.D.

    1989-01-01

    This paper reports that three materials commonly employed in opto-electronic integrated circuits evaluated for radiation-induced optical attenuation in the range 300 nm to 3000 nm. These include optically clear epoxy and crystalline lithium niobate after Co-60 exposure and crystalline tellurium dioxide after mixed gamma/fast-neutron exposure. In all these materials, however, induced loss was restricted to shorter wavelengths; attenuation induced at the telecommunications windows near 850, 1300 and 1550 nm was <0.1 dB/cm

  15. Terahertz and direct current losses and the origin of non-Drude terahertz conductivity in the crystalline states of phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Shimakawa, Koichi [Department of General and Inorganic Chemistry, University of Pardubice, Pardubice (Czech Republic); Department of Electrical Engineering, Gifu University (Japan); Wagner, Tomas; Frumar, Miloslav [Department of General and Inorganic Chemistry, University of Pardubice, Pardubice (Czech Republic); Kadlec, Filip; Kadlec, Christelle [Institute of Physics, Academy of Sciences of the Czech Republic, Prague (Czech Republic); Kasap, Safa [Department of Electrical Engineering, University of Saskatchewan, Saskatoon SK S7N 5A9 (Canada)

    2013-12-21

    THz and DC losses in crystalline states of GeSbTe and AgInSbTe phase-change material systems are re-examined and discussed. Although a simple free carrier transport has been assumed so far in the GeSbTe (GST) system, it is shown through recent experimental results that a series sequence of intragrain and intergrain (tunneling) transport, as recently formulated in Shimakawa et al., “The origin of non-Drude terahertz conductivity in nanomaterials,” Appl. Phys. Lett. 100, 132102 (2012) may dominate the electronic transport in the commercially utilized GST system, producing a non-Drude THz conductivity. The extracted physical parameters such as the free-carrier density and mobility are significantly different from those obtained from the Drude law. These physical parameters are consistent with those obtained from the DC loss data, and provide further support for the model. Negative temperature coefficient of resistivity is found even in the metallic state, similar to amorphous metals, when the mean free path is short. It is shown that the concept of minimum metallic conductivity, often used in the metal-insulator transition, cannot be applied to electronic transport in these materials.

  16. Bio-based liquid crystalline polyesters

    Science.gov (United States)

    Wilsens, Carolus; Rastogi, Sanjay; Dutch Collaboration

    2013-03-01

    The reported thin-film polymerization has been used as a screening method in order to find bio-based liquid crystalline polyesters with convenient melting temperatures for melt-processing purposes. An in depth study of the structural, morphological and chemical changes occurring during the ongoing polycondensation reactions of these polymers have been performed. Structural and conformational changes during polymerization for different compositions have been followed by time resolved X-ray and Infrared spectroscopy. In this study, bio-based monomers such as vanillic acid and 2,5-furandicarboxylic acid are successfully incorporated in liquid crystalline polyesters and it is shown that bio-based liquid crystalline polymers with high aromatic content and convenient processing temperatures can be synthesized. Special thanks to the Dutch Polymer Institute for financial support

  17. Physicochemical studies of silicoaluminophosphate microporous materials

    International Nuclear Information System (INIS)

    Durrani, S.K.; Chughtai, N.A.; Akhtar, J.; Saeed, K.; Arif, M.; Moughal, M.J.; Ahmad, M.

    2000-01-01

    Crystalline microporous molecular sieve materials such as alumino phosphates (AlPO/sub 4/-n) and silicoaluminophosphates (SAPO-n) are gaining tremendous importance for petroleum refining and petrochemical industries due to its fascinating catalytic and ion exchange properties. Some selected silicoaluminophosphate crystalline microporous materials topologically related to the zeolites chabazite (SAPO-34), faujasite (SAPO-37) structure and to the novel structure Pentasil-types ( SAPO-5 and SAPO-11) have been synthesized hydrothermally at an autogenous pressure and different temperatures in PTFE-lined stainless steel digestion bomb. The physico-chemical characteristics of as-synthesized and calcined products were studied using different analytical techniques such as the differential thermal analysis (DTA), thermogravimetric (TG), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and x-ray diffraction (XRD). Pore size was measured by the sorption of hydrocarbon molecules (n-hexane, neopentane). The surface area, porosity, particle size and particle size distribution were resolved using BET volumetric system and laser particle size analyzer. Crystallinity and unit cell parameters of these materials were also ascertained. (author)

  18. Nanoscale crystallinity modulates cell proliferation on plasma sprayed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Alan M. [School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH (United Kingdom); Paxton, Jennifer Z.; Hung, Yi-Pei; Hadley, Martin J.; Bowen, James; Williams, Richard L. [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom); Grover, Liam M., E-mail: l.m.grover@bham.ac.uk [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom)

    2015-03-01

    Calcium phosphate coatings have been applied to the surface of metallic prostheses to mediate hard and soft tissue attachment for more than 40 years. Most coatings are formed of high purity hydroxyapatite, and coating methods are often designed to produce highly crystalline surfaces. It is likely however, that coatings of lower crystallinity can facilitate more rapid tissue attachment since the surface will exhibit a higher specific surface area and will be considerably more reactive than a comparable highly crystalline surface. Here we test this hypothesis by growing a population of MC3T3 osteoblast-like cells on the surface of two types of hip prosthesis with similar composition, but with differing crystallinity. The surfaces with lower crystallinity facilitated more rapid cell attachment and increased proliferation rate, despite having a less heterogeneous surface topography. This work highlights that the influence of the crystallinity of HA at the nano-scale is dominant over macro-scale topography for cell adhesion and growth. Furthermore, crystallinity could be easily adjusted by without compromising coating purity. These findings could facilitate designing novel coated calcium phosphate surfaces that more rapidly bond tissue following implantation. - Highlights: • Crystallinity of HA at the nano-scale was dominant over macro-scale topography. • Lower crystallinity caused rapid cell attachment and proliferation rate. • Crystallinity could be easily adjusted by without compromising coating purity.

  19. Nanoscale crystallinity modulates cell proliferation on plasma sprayed surfaces

    International Nuclear Information System (INIS)

    Smith, Alan M.; Paxton, Jennifer Z.; Hung, Yi-Pei; Hadley, Martin J.; Bowen, James; Williams, Richard L.; Grover, Liam M.

    2015-01-01

    Calcium phosphate coatings have been applied to the surface of metallic prostheses to mediate hard and soft tissue attachment for more than 40 years. Most coatings are formed of high purity hydroxyapatite, and coating methods are often designed to produce highly crystalline surfaces. It is likely however, that coatings of lower crystallinity can facilitate more rapid tissue attachment since the surface will exhibit a higher specific surface area and will be considerably more reactive than a comparable highly crystalline surface. Here we test this hypothesis by growing a population of MC3T3 osteoblast-like cells on the surface of two types of hip prosthesis with similar composition, but with differing crystallinity. The surfaces with lower crystallinity facilitated more rapid cell attachment and increased proliferation rate, despite having a less heterogeneous surface topography. This work highlights that the influence of the crystallinity of HA at the nano-scale is dominant over macro-scale topography for cell adhesion and growth. Furthermore, crystallinity could be easily adjusted by without compromising coating purity. These findings could facilitate designing novel coated calcium phosphate surfaces that more rapidly bond tissue following implantation. - Highlights: • Crystallinity of HA at the nano-scale was dominant over macro-scale topography. • Lower crystallinity caused rapid cell attachment and proliferation rate. • Crystallinity could be easily adjusted by without compromising coating purity

  20. RELATIONSHIP BETWEEN CRYSTALLINE STRUCTURE AND OPTICAL PROPERTIES OF WHEAT (Triticum aestevum L. STRAW SODA-OXYGEN PULP

    Directory of Open Access Journals (Sweden)

    Esat Gümüşkaya

    2003-04-01

    Full Text Available In this study; pulp was produced with soda-oxygen process by using wheat (Triticum aestevum L. straw as raw material and this pulp bleached with hypocholoride (H and peroxyde (P stages. It was found that crystalline properties of unbleached and bleached pulp samples increased by removing amorphous components. In addition, paper sheets made from unbleached and bleached soda-oxygen pulp and determined their optical properties. Consequently; while crystalline properties of pulp samples was rising with HP bleaching, it was determined that optical properties of paper sheets improved with bleaching.

  1. Mechanical dispersion in fractured crystalline rock systems

    International Nuclear Information System (INIS)

    Lafleur, D.W.; Raven, K.G.

    1986-12-01

    This report compiles and evaluates the hydrogeologic parameters describing the flow of groundwater and transport of solutes in fractured crystalline rocks. This report describes the processes of mechanical dispersion in fractured crystalline rocks, and compiles and evaluates the dispersion parameters determined from both laboratory and field tracer experiments. The compiled data show that extrapolation of the reliable test results performed over intermediate scales (10's of m and 10's to 100's of hours) to larger spatial and temporal scales required for performance assessment of a nuclear waste repository in crystalline rock is not justified. The reliable measures of longitudinal dispersivity of fractured crystalline rock are found to range between 0.4 and 7.8 m

  2. PM4 crystalline silica emission factors and ambient concentrations at aggregate-producing sources in California.

    Science.gov (United States)

    Richards, John R; Brozell, Todd T; Rea, Charles; Boraston, Geoff; Hayden, John

    2009-11-01

    The California Construction and Industrial Minerals Association and the National Stone, Sand, & Gravel Association have sponsored tests at three sand and gravel plants in California to compile crystalline silica emission factors for particulate matter (PM) of aerodynamic diameter of 4 microm or less (PM4) and ambient concentration data. This information is needed by industrial facilities to evaluate compliance with the Chronic Reference Exposure Level (REL) for ambient crystalline silica adopted in 2005 by the California Office of Environmental Health Hazard Assessment. The REL applies to PM4 respirable PM. Air Control Techniques, P.C. sampled for PM4 crystalline silica using a conventional sampler for PM of aerodynamic diameter of 2.5 microm or less (PM2.5), which met the requirements of 40 Code of Federal Regulations Part 50, Appendix L. The sample flow rate was adjusted to modify the 50% cut size to 4 microm instead of 2.5 microm. The filter was also changed to allow for crystalline silica analyses using National Institute for Occupational Safety and Health (NIOSH) Method 7500. The particle size-capture efficiency curve for the modified Appendix L instrument closely matched the performance curve of NIOSH Method 0600 for PM4 crystalline silica and provided a minimum detection limit well below the levels attainable with NIOSH Method 0600. The results of the tests indicate that PM4 crystalline silica emissions range from 0.000006 to 0.000110 lb/t for screening operations, tertiary crushers, and conveyor transfer points. The PM4 crystalline silica emission factors were proportional to the crystalline silica content of the material handled in the process equipment. Measured ambient concentrations ranged from 0 (below detectable limit) to 2.8 microg/m3. All values measured above 2 microg/m3 were at locations upwind of the facilities being tested. The ambient PM4 crystalline silica concentrations measured during this study were below the California REL of 3 microg/m3

  3. Highly-crystalline ultrathin gadolinium doped and carbon-coated Li4Ti5O12 nanosheets for enhanced lithium storage

    Science.gov (United States)

    Xu, G. B.; Yang, L. W.; Wei, X. L.; Ding, J. W.; Zhong, J. X.; Chu, P. K.

    2015-11-01

    Highly-crystalline gadolinium doped and carbon-coated ultrathin Li4Ti5O12 (LTO) nanosheets (denoted as LTO-Gd-C) as an anode material for Li-ion batteries (LIBs) are synthesized on large scale by controlling the amount of carbon precursor in the topotactic transformation of layered ultrathin Li1.81H0.19Ti2O5·xH2O (H-LTO) nanosheets at 700 °C. The characterizations of structure and morphology reveal that the gadolinium doped and carbon-coated ultrathin LTO nanosheets have high crystallinity with a thickness of about 10 nm. Gadolinium doping allows the spinel LTO products to be stabilized, thereby preserving the precursor's sheet morphology and single crystal structure. Carbon encapsulation serves dual functions by restraining crystal growth of the LTO primary nanoparticles in the LTO-Gd-C nanosheets and decreasing the external electron transport resistance. Owing to the synergistic effects rendered by ultrathin nanosheets with high crystallinity, gadolinium doping and carbon coating, the developed ultrathin LTO nanosheets possess excellent specific capacity, cycling performance, and rate capability compared with reference materials, when evaluated as an anode material for lithium ion batteries (LIBs). The simple and effective strategy encompassing nanoscale morphological engineering, surface modification, and doping improves the performance of LTO-based anode materials for high energy density and high power LIBs applied in large scale energy storage.

  4. Melting behavior of a model molecular crystalline GeI4

    International Nuclear Information System (INIS)

    Fuchizaki, Kazuhiro; Asano, Yuta

    2015-01-01

    A model molecular crystalline GeI 4 was examined using molecular dynamics simulation. The model was constructed in such a way that rigid tetrahedral molecules interact with each other via Lennard-Jones potentials whose centers are located at the vertices of a tetrahedron. Because no other interaction that can “soften” the intermolecular interaction was introduced, the melting curve of the model crystalline material does not exhibit the anomaly that was found for the real substance. However, the current investigation is useful in that it could settle the upper bound of pressure below which the model can predict properties of the molecular liquid. Moreover, singularity-free nature of the melting curve allowed us to analytically treat the melting curve in the light of the Kumari-Dass-Kechin equation. As a result, we could definitely conclude that the well-known Simon equation for the melting curve is merely an approximate expression. The condition for the validity of Simon’s equation was identified. (author)

  5. Synthesis and structure of large single crystalline silver hexagonal microplates suitable for micromachining

    Energy Technology Data Exchange (ETDEWEB)

    Lyutov, Dimitar L.; Genkov, Kaloyan V.; Zyapkov, Anton D.; Tsutsumanova, Gichka G.; Tzonev, Atanas N. [Department of Solid State Physics and Microelectronics, Faculty of Physics, University of Sofia, 5, J. Bouchier Blvd, Sofia (Bulgaria); Lyutov, Lyudmil G. [Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Sofia, 1, J. Bouchier Blvd, Sofia (Bulgaria); Russev, Stoyan C., E-mail: scr@phys.uni-sofia.bg [Department of Solid State Physics and Microelectronics, Faculty of Physics, University of Sofia, 5, J. Bouchier Blvd, Sofia (Bulgaria)

    2014-01-15

    We report a simple one-step synthesis method of large single crystalline Ag (111) hexagonal microplates with sharp edges and a size of up to tens of microns. Single silver crystals were produced by reduction silver nitrate aqueous solution with 4-(methylamino)phenol sulfate. Scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy, selected area electron diffraction and optical microscopy techniques were combined to characterize the crystals. It is shown that the microplates can be easily dispersed and transferred as single objects onto different substrates and subsequently used as a high quality plasmonic starting material for micromachining of future nanocomponents, using modern top-down techniques like focused-ion beam milling and gas injection deposition. - Highlights: • Synthesis of large Ag hexagonal microplates with high crystallinity. • It is shown and discussed the role of twinning for the anisotropic 2D growth. • The Ag plates are stable in water and can be dispersed onto different substrates. • Their positioning and subsequent micromachining with FIB/GIS is demonstrated. • Suitable starting material for future plasmonic nanocomponents.

  6. Generic Crystalline Disposal Reference Case

    Energy Technology Data Exchange (ETDEWEB)

    Painter, Scott Leroy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harp, Dylan Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perry, Frank Vinton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-20

    A generic reference case for disposal of spent nuclear fuel and high-level radioactive waste in crystalline rock is outlined. The generic cases are intended to support development of disposal system modeling capability by establishing relevant baseline conditions and parameters. Establishment of a generic reference case requires that the emplacement concept, waste inventory, waste form, waste package, backfill/buffer properties, EBS failure scenarios, host rock properties, and biosphere be specified. The focus in this report is on those elements that are unique to crystalline disposal, especially the geosphere representation. Three emplacement concepts are suggested for further analyses: a waste packages containing 4 PWR assemblies emplaced in boreholes in the floors of tunnels (KBS-3 concept), a 12-assembly waste package emplaced in tunnels, and a 32-assembly dual purpose canister emplaced in tunnels. In addition, three failure scenarios were suggested for future use: a nominal scenario involving corrosion of the waste package in the tunnel emplacement concepts, a manufacturing defect scenario applicable to the KBS-3 concept, and a disruptive glaciation scenario applicable to both emplacement concepts. The computational approaches required to analyze EBS failure and transport processes in a crystalline rock repository are similar to those of argillite/shale, with the most significant difference being that the EBS in a crystalline rock repository will likely experience highly heterogeneous flow rates, which should be represented in the model. The computational approaches required to analyze radionuclide transport in the natural system are very different because of the highly channelized nature of fracture flow. Computational workflows tailored to crystalline rock based on discrete transport pathways extracted from discrete fracture network models are recommended.

  7. A computer program for calculation of reliable pair distribution functions of non-crystalline materials from limited diffraction data. III

    International Nuclear Information System (INIS)

    Hansen, F.Y.

    1978-01-01

    This program calculates the final pair distribution functions of non-crystalline materials on the basis of the experimental structure factor as calculated in part I and the parameters of the small distance part of the pair distribution function as calculated in part II. In this way, truncation error may be eliminated from the final pair distribution function. The calculations with this program depend on the results of calculations with the programs described in parts I and II. The final pair distribution function is calculated by a Fourier transform of a combination of an experimental structure factor and a model structure factor. The storage requirement depends on the number of data points in the structure factor, the number of data points in the final pair distribution function and the number of peaks necessary to resolve the small distance part of the pair distribution function. In the present set-up a storage requirement is set to 8860 words which is estimated to be satisfactory for a large number of cases. (Auth.)

  8. Selecting polymers for two-phase partitioning bioreactors (TPPBs): Consideration of thermodynamic affinity, crystallinity, and glass transition temperature.

    Science.gov (United States)

    Bacon, Stuart L; Peterson, Eric C; Daugulis, Andrew J; Parent, J Scott

    2015-01-01

    Two-phase partitioning bioreactor technology involves the use of a secondary immiscible phase to lower the concentration of cytotoxic solutes in the fermentation broth to subinhibitory levels. Although polymeric absorbents have attracted recent interest due to their low cost and biocompatibility, material selection requires the consideration of properties beyond those of small molecule absorbents (i.e., immiscible organic solvents). These include a polymer's (1) thermodynamic affinity for the target compound, (2) degree of crystallinity (wc ), and (3) glass transition temperature (Tg ). We have examined the capability of three thermodynamic models to predict the partition coefficient (PC) for n-butyric acid, a fermentation product, in 15 polymers. Whereas PC predictions for amorphous materials had an average absolute deviation (AAD) of ≥16%, predictions for semicrystalline polymers were less accurate (AAD ≥ 30%). Prediction errors were associated with uncertainties in determining the degree of crystallinity within a polymer and the effect of absorbed water on n-butyric acid partitioning. Further complications were found to arise for semicrystalline polymers, wherein strongly interacting solutes increased the polymer's absorptive capacity by actually dissolving the crystalline fraction. Finally, we determined that diffusion limitations may occur for polymers operating near their Tg , and that the Tg can be reduced by plasticization by water and/or solute. This study has demonstrated the impact of basic material properties that affects the performance of polymers as sequestering phases in TPPBs, and reflects the additional complexity of polymers that must be taken into account in material selection. © 2015 American Institute of Chemical Engineers.

  9. Thermodynamic properties of chemical species in nuclear waste: Topical report: The solubilities of crystalline neodymium and americium trihydroxides

    International Nuclear Information System (INIS)

    Silva, R.J.

    1982-12-01

    The solubilities of crystalline Nd(OH) 3 and Am(OH) 3 were measured at 25 +- 1 0 C in aqueous solutions of 0.1 M NaClO 4 under argon as a function of pH by determination of the solution concentrations of Nd and Am. Prior to use in the solubility measurements, the solid materials were characterized through their x-ray powder patterns. Analyses of the solubility data with the computer code MINEQL allowed estimates of the solubility product constants, K/sub s10/, and the second and third hydrolysis constants, K 12 and K 13 , for Nd 3+ and Am 3+ . Upper limits for the fourth hydrolysis constants were also estimated. For Nd, they are: log K/sub s10/ = 16.0 +- .2, log K 12 = -15.8 +- .5, log K 13 = -23.9 +- .2 and log K 14 12 = -16.0 +- .7, log K 13 = -24.3 +- .3 and log K 14 3 was found to be a factor of 100 to 300 less soluble than predicted from previously reported thermodynamic data over much of the pH range of environmental interest. The measured solubility of crystalline Am(OH) 3 was also considerably less than predicted from the previously estimated solubility product constant, i.e., a factor of about 600. For Am, the solubility of the crystalline material was a factor of about 30 less than the amorphous material. The solubilities of crystalline Nd(OH) 3 and Am(OH) 3 as a function of pH were found to be very similar and Nd(OH) 3 should be a good analog compound for Am(OH) 3

  10. Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility

    Directory of Open Access Journals (Sweden)

    Himmel Michael E

    2011-10-01

    Full Text Available Abstract Background In converting biomass to bioethanol, pretreatment is a key step intended to render cellulose more amenable and accessible to cellulase enzymes and thus increase glucose yields. In this study, four cellulose samples with different degrees of polymerization and crystallinity indexes were subjected to aqueous sodium hydroxide and anhydrous liquid ammonia treatments. The effects of the treatments on cellulose crystalline structure were studied, in addition to the effects on the digestibility of the celluloses by a cellulase complex. Results From X-ray diffractograms and nuclear magnetic resonance spectra, it was revealed that treatment with liquid ammonia produced the cellulose IIII allomorph; however, crystallinity depended on treatment conditions. Treatment at a low temperature (25°C resulted in a less crystalline product, whereas treatment at elevated temperatures (130°C or 140°C gave a more crystalline product. Treatment of cellulose I with aqueous sodium hydroxide (16.5 percent by weight resulted in formation of cellulose II, but also produced a much less crystalline cellulose. The relative digestibilities of the different cellulose allomorphs were tested by exposing the treated and untreated cellulose samples to a commercial enzyme mixture (Genencor-Danisco; GC 220. The digestibility results showed that the starting cellulose I samples were the least digestible (except for corn stover cellulose, which had a high amorphous content. Treatment with sodium hydroxide produced the most digestible cellulose, followed by treatment with liquid ammonia at a low temperature. Factor analysis indicated that initial rates of digestion (up to 24 hours were most strongly correlated with amorphous content. Correlation of allomorph type with digestibility was weak, but was strongest with cellulose conversion at later times. The cellulose IIII samples produced at higher temperatures had comparable crystallinities to the initial cellulose I

  11. Black GE based on crystalline/amorphous core/shell nanoneedle arrays

    Science.gov (United States)

    Javey, Ali; Chueh, Yu-Lun; Fan, Zhiyong

    2014-03-04

    Direct growth of black Ge on low-temperature substrates, including plastics and rubber is reported. The material is based on highly dense, crystalline/amorphous core/shell Ge nanoneedle arrays with ultrasharp tips (.about.4 nm) enabled by the Ni catalyzed vapor-solid-solid growth process. Ge nanoneedle arrays exhibit remarkable optical properties. Specifically, minimal optical reflectance (<1%) is observed, even for high angles of incidence (.about.75.degree.) and for relatively short nanoneedle lengths (.about.1 .mu.m). Furthermore, the material exhibits high optical absorption efficiency with an effective band gap of .about.1 eV. The reported black Ge can have important practical implications for efficient photovoltaic and photodetector applications on nonconventional substrates.

  12. Ambient pressure hydrometallurgical conversion of arsenic trioxide to crystalline scorodite

    Energy Technology Data Exchange (ETDEWEB)

    Debekaussen, R. [Corus Consulting and Technical Services, Delft (Netherlands); Droppert, D. [Solumet Inc., Montreal, PQ (Canada); Demopoulos, G. P. [McGill Univ., Dept. of Metallurgical Enginering, Montreal, PQ (Canada)

    2001-06-01

    Development of a novel process for the ambient pressure conversion of arsenic trioxide, a common, but extremely toxic by-product of the non-ferrous smelting industry, is described. The process consists of three main stages; (1) dissolution of arsenic trioxide, (2) oxidation of trivalent arsenic with the addition of hydrogen peroxide at 95 degree C, to pentavalent arsenic, and (3) step-wise precipitation of crystalline scorodite from highly concentrated arsenic containing solutions, by operating below a characteristics induction pH in the presence of seed material. The technical feasibility of the process has been confirmed by bench-scale testing of industrial flue dust material or acid plant effluents. 30 refs., 2 tabs., 5 figs.

  13. Liquid Crystalline Thermosets from Ester, Ester-imide, and Ester-amide Oligomers

    Science.gov (United States)

    Dingemans, Theodorus J. (Inventor); Weiser, Erik S. (Inventor); St. Clair, Terry L. (Inventor)

    2009-01-01

    Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,000 grams per mole. The end-capped liquid crystaloligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oli-gomers are stable forup to an hour in the melt phase. They are highly processable by a variety of melt process shape forming and blending techniques. Once processed and shaped, the end-capped liquid crystal oigomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures.

  14. Sputtering and inelastic processes

    International Nuclear Information System (INIS)

    Baranov, I.A.; Tsepelevic, S.O.

    1987-01-01

    Experimental data and models of a new type of material sputtering with ions of relatively high energies due to inelastic (electron) processes are reviewed. This area of investigations began to develop intensively during the latest years. New experimental data of the authors on differential characteristics of ultradisperse gold and americium dioxide layers with fission fragments are given as well. Practical applications of the new sputtering type are considered as well as setup of possibl experiments at heavy multiply charged ion accelerators

  15. Nanoparticles containing allotropes of carbon have genotoxic effects on glioblastomamultiforme cells

    Directory of Open Access Journals (Sweden)

    Hinzmann M

    2014-05-01

    Full Text Available Mateusz Hinzmann,1 Slawomir Jaworski,1 Marta Kutwin,1 Joanna Jagiello,2 Rafal Kozinski,2 Mateusz Wierzbicki,1 Marta Grodzik,1 Ludwika Lipinska,2 Ewa Sawosz,1 Andrè Chwalibog31Division of Nanobiotechnology, Warsaw University of Life Sciences, 2Institute of Electronic Materials Technology, Warsaw, Poland; 3Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Copenhagen, DenmarkAbstract: The carbon-based nanomaterial family consists of nanoparticles containing allotropes of carbon, which may have a number of interactions with biological systems. The objective of this study was to evaluate the toxicity of nanoparticles comprised of pristine graphene, reduced graphene oxide, graphene oxide, graphite, and ultradispersed detonation diamond in a U87 cell line. The scope of the work consisted of structural analysis of the nanoparticles using transmission electron microscopy, evaluation of cell morphology, and assessment of cell viability by Trypan blue assay and level of DNA fragmentation of U87 cells after 24 hours of incubation with 50 µg/mL carbon nanoparticles. DNA fragmentation was studied using single-cell gel electrophoresis. Incubation with nanoparticles containing the allotropes of carbon did not alter the morphology of the U87 cancer cells. However, incubation with pristine graphene and reduced graphene oxide led to a significant decrease in cell viability, whereas incubation with graphene oxide, graphite, and ultradispersed detonation diamond led to a smaller decrease in cell viability. The results of a comet assay demonstrated that pristine graphene, reduced graphene oxide, graphite, and ultradispersed detonation diamond caused DNA damage and were therefore genotoxic in U87 cells, whereas graphene oxide was not.Keywords: nanostructures, graphene, graphite, diamond, glioblastoma multiforme, geno toxicity

  16. Plastic deformation, residual stress, and crystalline texture measurements for in-process characterization of FCC metal alloys

    International Nuclear Information System (INIS)

    Ruud, C.O.; Jacobs, M.E.; Weedman, S.D.; Snoha, D.J.

    1989-01-01

    This paper describes the results of several on-going investigations on the measurement of plastic deformation, residual stress, and crystalline texture in nickel, copper, and aluminum base alloys by x-ray diffraction techniques. X-ray diffraction techniques have been shown to be effective in the measurement of plastic deformation, residual stress, and crystalline texture in FCC metals, from the breadth, position, and intensity of the x-ray diffraction peaks. The Ruud-Barrett position-sensitive scintillation detector has been demonstrated to be fast, non-contacting, and tolerant of detector to component distance variation -- necessary requirements for cost-effective in-process inspection of materials

  17. Autokinase activity of alpha-crystallin inhibits its specific interaction with the DOTIS element in the murine gamma D/E/F-crystallin promoter in vitro.

    Science.gov (United States)

    Pietrowski, D; Graw, J

    1997-10-01

    In a previous report we demonstrated the in vitro interaction of alpha-crystallin with an element downstream of the transcriptional initiation site (DOTIS) of the murine gamma E-crystallin promoter (Pietrowski et al., 1994, Gene 144, 171-178). The aim of the present study was to investigate the influence of phosphorylation on this particular interaction. We could demonstrate that the autophosphorylation of alpha-crystallin leads to a complete loss of interaction with the DOTIS element, however, PKA-dependent phosphorylation of alpha-crystallin is without effect on the interaction. It is hypothesized that the autophosphorylation of alpha-crystallin might be involved in regulatory mechanisms of the murine gamma D/E/F-crystallin gene expression.

  18. XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite

    International Nuclear Information System (INIS)

    Reyes-Gasga, José; Martínez-Piñeiro, Esmeralda L.; Rodríguez-Álvarez, Galois; Tiznado-Orozco, Gaby E.; García-García, Ramiro

    2013-01-01

    The crystallinity index (CI) is a measure of the percentage of crystalline material in a given sample and it is also correlated to the degree of order within the crystals. In the literature two ways are reported to measure the CI: X-ray diffraction and infrared spectroscopy. Although the CI determined by these techniques has been adopted in the field of archeology as a structural order measure in the bone with the idea that it can help e.g. in the sequencing of the bones in chronological and/or stratigraphic order, some debate remains about the reliability of the CI values. To investigate similarities and differences between the two techniques, the CI of sound human tooth enamel and synthetic hydroxyapatite (HAP) was measured in this work by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), at room temperature and after heat treatment. Although the (CI) XRD index is related to the crystal structure of the samples and the (CI) FTIR index is related to the vibration modes of the molecular bonds, both indices showed similar qualitative behavior for heat-treated samples. At room temperature, the (CI) XRD value indicated that enamel is more crystalline than synthetic HAP, while (CI) FTIR indicated the opposite. Scanning (SEM) and transmission (TEM) images were also used to corroborate the measured CI values. - Highlights: • XRD and FTIR crystallinity indices for tooth enamel and synthetic HAP were obtained. • SEM and TEM images were more correlated with (CI) XRD than with (CI) FTIR . • Regardless of the temperature, (CI) XRD and (CI) FTIR showed similar behavior. • XRD and FTIR crystallinity indices resulted in a fast and qualitative measurement

  19. Glycation precedes lens crystallin aggregation

    International Nuclear Information System (INIS)

    Swamy, M.S.; Perry, R.E.; Abraham, E.C.

    1987-01-01

    Non-enzymatic glycosylation (glycation) seems to have the potential to alter the structure of crystallins and make them susceptible to thiol oxidation leading to disulfide-linked high molecular weight (HMW) aggregate formation. They used streptozotocin diabetic rats during precataract and cataract stages and long-term cell-free glycation of bovine lens crystallins to study the relationship between glycation and lens crystallin aggregation. HMW aggregates and other protein components of the water-soluble (WS) and urea-soluble (US) fractions were separated by molecular sieve high performance liquid chromatography. Glycation was estimated by both [ 3 H]NaBH 4 reduction and phenylboronate agarose affinity chromatography. Levels of total glycated protein (GP) in the US fractions were about 2-fold higher than in the WS fractions and there was a linear increase in GP in both WS and US fractions. This increase was parallelled by a corresponding increase in HMW aggregates. Total GP extracted by the affinity method from the US fraction showed a predominance of HMW aggregates and vice versa. Cell-free glycation studies with bovine crystallins confirmed the results of the animals studies. Increasing glycation caused a corresponding increase in protein insolubilization and the insoluble fraction thus formed also contained more glycated protein. It appears that lens protein glycation, HMW aggregate formation, and protein insolubilization are interrelated

  20. The molecular chaperone α-crystallin inhibits UV-induced protein aggregation

    International Nuclear Information System (INIS)

    Borkman, R.F.; Knight, Grady; Obi, Bettie

    1996-01-01

    Solutions of γ-crystallin, and various enzymes, at neutral pH and 24-26 o C, became turbid upon exposure to UV radiation at 295 or 308 nm. SDS-PAGE analysis revealed interchain cross-linking and aggregate formation compared to dark control solutions as reported previously. When α-crystallin was added to the protein solutions in stoichiometric amounts. UV irradiation resulted in significantly less turbidity than in the absence of α-crystallin. For example, addition of 0.5 mg of α-crystallin to 0.5 mg of γ-crystallin in 1.0 ml solution yielded only 25% of the turbidity seen in the absence of α-crystallin. Addition of 2.0 mg of α-crystallin resulted in 20% of the turbidity. Given the molecular weights of α- and γ-crystallin (about 800 kDa and 20 kDa, respectively), A γ/α 1:1 weight ratio corresponds to a 40:1 molar ratio, and a γ-/α 1:4 weight ratio corresponds to a 10:1 molar ratio. Hence, the molar ratio of α-crystallin needed to effectively protect γ-crystallin from photochemical opacification was γ/α = n:1, where n was in the range 10-40. In terms of subunits, this ratio is γ/α = 1:m, where m = 1-4. Thus, each γ-crystallin molecule needs 1-4 α subunits for protection. Similar stoichiometries were observed for protection of the other proteins studied. The protection stems in part from screening of UV radiation by α-crystallin but more importantly from a chaperone effect analogous to that seen in thermal aggregation experiments. (author)

  1. FY 1997 report on the study on the formation condition of hetero-structure of single-crystalline semiconductor thin films; 1997 nendo chosa hokokusho (tankessho no handotai usumaku hetero kozo no keisei joken ni kansuru kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Since ion implantation causes material degradation by formation of crystalline defects, and hydrogen embrittlement deteriorates material strength, reduction of such defects has been positively studied. Study was made on a new active application of hydrogen separation into ion implantation defects. After H ion implantation of a proper depth into single-crystalline Si and SiC and successive annealing, single-crystalline films of sub-micron to several micron thick were obtained by hydrogen-induced delamination at the implantation depth due to hydrogen embrittlement in crystalline defects. The implantation depth is dependent on implantation energy. H atom forms (111) face defect through connection with dangling bond of crystalline defects. This crystal face defect forms a delamination plane through (100) face cleavage. This hydrogen embrittlement delamination by ion implantation is applicable to production of light-weight high-efficiency single-crystalline Si solar cells, and large single-crystalline SiC wafers as new resource saving process. 33 refs., 19 figs., 2 tabs.

  2. Effect of hydroxyapatite particle size, morphology and crystallinity on proliferation of colon cancer HCT116 cells

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Sangeeta; Das, Mitun, E-mail: mitun@cgcri.res.in; Balla, Vamsi Krishna

    2014-06-01

    The aim of the present work is to chemically and physically characterize the synthesized Hydroxyapatite (HAp) micro and nanoparticles and to explore the inhibitory effect of nano-HAps on the in vitro growth of human colon cancerous cells HCT116. HAp powder was synthesized using three different routes to achieve micro and nanosized powders, with different morphologies and crystallinity. The synthesized powders were characterized using X-ray diffraction, FTIR spectroscopy and scanning electron microscope. The results showed that the average crystallite size of HAp powder varies from 11 nm to 177 nm and respective crystallinity of powder found to be in the range of 0.12 and 0.92. The effect of these physico-chemical properties of HAp powders on human colon cancer HCT116 cells inhibition was determined in vitro. It was found that decreasing the HAp powder crystallite size between 11 nm and 22 nm significantly increases the HCT116 cell inhibition. Our results demonstrate that apart from HAp powder size their crystallinity and morphology also play an important role in cellular inhibition of human colon cancer cells. - Highlights: • Chemically synthesized hydroxyapatite micro and nano-particles with different morphologies and crystallinity. • In vitro cell–material interaction showed that hydroxyapatite nano-particles inhibit colon cancer cells. • Human colon cancer cell inhibition also depends on crystallinity and morphology of HAp powder.

  3. Highly-crystalline ultrathin Li4Ti5O12 nanosheets decorated with silver nanocrystals as a high-performance anode material for lithium ion batteries

    Science.gov (United States)

    Xu, G. B.; Li, W.; Yang, L. W.; Wei, X. L.; Ding, J. W.; Zhong, J. X.; Chu, Paul K.

    2015-02-01

    A novel composite of highly-crystalline ultrathin Li4Ti5O12 (LTO) nanosheets and Ag nanocrystals (denoted as LTO NSs/Ag) as an anode material for Li-ion batteries (LIBs) is prepared by hydrothermal synthesis, post calcination and electroless deposition. The characterizations of structure and morphology reveal that the LTO nanosheets have single-crystal nature with a thickness of about 10 nm and highly dispersed Ag nanocrystals have an average diameter of 5.8 nm. The designed LTO NSs/Ag composite takes advantage of both components, thereby providing large contact area between the electrolyte and electrode, low polarization of voltage difference, high electrical conductivity and lithium ion diffusion coefficient during electrochemical processes. The evaluation of its electrochemical performance demonstrates that the prepared LTO NSs/Ag composite has superior lithium storage performance. More importantly, this unique composite has an ability to deliver high reversible capacities with superlative cyclic capacity retention at different current rates, and exhibit excellent high-rate performance at a current rate as high as 30 C. Our results improve the current performance of LTO based anode material for LIBs.

  4. Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size

    Science.gov (United States)

    Umesh P. Agarwal; Sally A. Ralph; Carlos Baez; Richard S. Reiner; Steve P. Verrill

    2017-01-01

    Although X-ray diffraction (XRD) has been the most widely used technique to investigate crystallinity index (CrI) and crystallite size (L200) of cellulose materials, there are not many studies that have taken into account the role of sample moisture on these measurements. The present investigation focuses on a variety of celluloses and cellulose...

  5. Orientation dependent size effects in single crystalline anisotropic nanoplates with regard to surface energy

    International Nuclear Information System (INIS)

    Assadi, Abbas; Salehi, Manouchehr; Akhlaghi, Mehdi

    2015-01-01

    In this work, size dependent behavior of single crystalline normal and auxetic anisotropic nanoplates is discussed with consideration of material surface stresses via a generalized model. Bending of pressurized nanoplates and their fundamental resonant frequency are discussed for different crystallographic directions and anisotropy degrees. It is explained that the orientation effects are considerable when the nanoplates' edges are pinned but for clamped nanoplates, the anisotropy effect may be ignored. The size effects are the highest when the simply supported nanoplates are parallel to [110] direction but as the anisotropy gets higher, the size effects are reduced. The orientation effect is also discussed for possibility of self-instability occurrence in nanoplates. The results in simpler cases are compared with previous experiments for nanowires but with a correction factor. There are still some open questions for future studies. - Highlights: • Size effects in single crystalline anisotropic nanoplates are discussed. • A generalized model is established containing some physical assumptions. • Orientation dependent size effects due to material anisotropy are explained. • Bending, instability and frequencies are studied at normal/auxetic domain

  6. Biological Activity of Mesoporous Dendrimer-Coated Titanium Dioxide: Insight on the Role of the Surface-Interface Composition and the Framework Crystallinity.

    Science.gov (United States)

    Milowska, Katarzyna; Rybczyńska, Aneta; Mosiolek, Joanna; Durdyn, Joanna; Szewczyk, Eligia M; Katir, Nadia; Brahmi, Younes; Majoral, Jean-Pierre; Bousmina, Mosto; Bryszewska, Maria; El Kadib, Abdelkrim

    2015-09-16

    Hitherto, the field of nanomedicine has been overwhelmingly dominated by the use of mesoporous organosilicas compared to their metal oxide congeners. Despite their remarkable reactivity, titanium oxide-based materials have been seldom evaluated and little knowledge has been gained with respect to their "structure-biological activity" relationship. Herein, a fruitful association of phosphorus dendrimers (both "ammonium-terminated" and "phosphonate-terminated") and titanium dioxide has been performed by means of the sol-gel process, resulting in mesoporous dendrimer-coated nanosized crystalline titanium dioxide. A similar organo-coating has been reproduced using single branch-mimicking dendrimers that allow isolation of an amorphous titanium dioxide. The impact of these materials on red blood cells was evaluated by studying cell hemolysis. Next, their cytotoxicity toward B14 Chinese fibroblasts and their antimicrobial activity were also investigated. Based on their variants (cationic versus anionic terminal groups and amorphous versus crystalline titanium dioxide phase), better understanding of the role of the surface-interface composition and the nature of the framework has been gained. No noticeable discrimination was observed for amorphous and crystalline material. In contrast, hemolysis and cytotoxicity were found to be sensitive to the nature of the interface composition, with the ammonium-terminated dendrimer-coated titanium dioxide being the most hemolytic and cytotoxic material. This surface-functionalization opens the door for creating a new synergistic machineries mechanism at the cellular level and seems promising for tailoring the biological activity of nanosized organic-inorganic hybrid materials.

  7. What Is Crystalline Silica?

    Science.gov (United States)

    ... and ceramic manufacturing and the tool and die, steel and foundry industries. Crystalline silica is used in manufacturing, household abrasives, adhesives, paints, soaps, and glass. Additionally, ...

  8. Liquid-Crystalline Ionic Liquids as Ordered Reaction Media for the Diels-Alder Reaction.

    Science.gov (United States)

    Bruce, Duncan W; Gao, Yanan; Canongia Lopes, José Nuno; Shimizu, Karina; Slattery, John M

    2016-11-02

    Liquid-crystalline ionic liquids (LCILs) are ordered materials that have untapped potential to be used as reaction media for synthetic chemistry. This paper investigates the potential for the ordered structures of LCILs to influence the stereochemical outcome of the Diels-Alder reaction between cyclopentadiene and methyl acrylate. The ratio of endo- to exo-product from this reaction was monitored for a range of ionic liquids (ILs) and LCILs. Comparison of the endo:exo ratios in these reactions as a function of cation, anion and liquid crystallinity of the reaction media, allowed for the effects of liquid crystallinity to be distinguished from anion effects or cation alkyl chain length effects. These data strongly suggest that the proportion of exo-product increases as the reaction media is changed from an isotropic IL to a LCIL. A detailed molecular dynamics (MD) study suggests that this effect is related to different hydrogen bonding interactions between the reaction media and the exo- and endo-transition states in solvents with layered, smectic ordering compared to those that are isotropic. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Hyperelastic modelling of the crystalline lens: Accommodation and presbyopia

    Science.gov (United States)

    Lanchares, Elena; Navarro, Rafael; Calvo, Begoña

    2012-01-01

    Purpose The modification of the mechanical properties of the human crystalline lens with age can be a major cause of presbyopia. Since these properties cannot be measured in vivo, numerical simulation can be used to estimate them. We propose an inverse method to determine age-dependent change in the material properties of the tissues composing the human crystalline lens. Methods A finite element model of a 30-year-old lens in the accommodated state was developed. The force necessary to achieve full accommodation in a 30-year-old lens of known external geometry was computed using this model. Two additional numerical models of the lens corresponding to the ages of 40 and 50 years were then built. Assuming that the accommodative force applied to the lens remains constant with age, the material properties of nucleus and cortex were estimated by inverse analysis. Results The zonular force necessary to reshape the model of a 30-year-old lens from the accommodated to the unaccommodated geometry was 0.078 newton (N). Both nucleus and cortex became stiffer with age. The stiffness of the nucleus increased with age at a higher rate than the cortex. Conclusions In agreement with the classical theory of Helmholtz, on which we based our model, our results indicate that a major cause of presbyopia is that both nucleus and cortex become stiffer with age; therefore, a constant value of the zonular forces with aging does not achieve full accommodation, that is, the accommodation capability decreases.

  10. Lens proteome map and alpha-crystallin profile of the catfish Rita rita.

    Science.gov (United States)

    Mohanty, Bimal Prasanna; Bhattacharjee, Soma; Das, Manas Kumar

    2011-02-01

    Crystallins are a diverse group of proteins that constitute nearly 90% of the total soluble proteins of the vertebrate eye lens and these tightly packed crystallins are responsible for transparency of the lens. These proteins have been studied in different model and non-model species for understanding the modifications they undergo with ageing that lead to cataract, a disease of protein aggregation. In the present investigation, we studied the lens crystallin profile of the tropical freshwater catfish Rita rita. Profiles of lens crystallins were analyzed and crystallin proteome maps of Rita rita were generated for the first time. alphaA-crystallins, member of the alpha-crystallin family, which are molecular chaperons and play crucial role in maintaining lens transparency were identified by 1- and 2-D immunoblot analysis with anti-alphaA-crystallin antibody. Two protein bands of 19-20 kDa were identified as alphaA-crystallins on 1-D immunoblots and these bands separated into 10 discrete spots on 2-D immunoblot. However, anti-alphaB-crystallin and antiphospho-alphaB-crystallin antibodies were not able to detect any immunoreactive bands on 1- and 2-D immunoblots, indicating alphaB-crystallin was either absent or present in extremely low concentration in Rita rita lens. Thus, Rita rita alpha-crystallins are more like that of the catfish Clarias batrachus and the mammal kangaroo in its alphaA- and alphaB-crystallin content (contain low amount from 5-9% of alphaB-crystallin) and unlike the dogfish, zebrafish, human, bovine and mouse alpha-crystallins (contain higher amount of alphaB-crystallin from 25% in mouse and bovine to 85% in dogfish). Results of the present study can be the baseline information for stimulating further investigation on Rita rita lens crystallins for comparative lens proteomics. Comparing and contrasting the alpha-crystallins of the dogfish and Rita rita may provide valuable information on the functional attributes of alphaA- and alphaB-isoforms, as

  11. Waste separation and pretreatment using crystalline silicotitanate ion exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Tadros, M.E.; Miller, J.E. [Sandia National Lab., Albuquerque, NM (United States); Anthony, R.G. [Texas A& M Univ., College Station, TX (United States)

    1997-10-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CSTs) has been developed jointly by Sandia National Laboratories and Texas A&M University to selectively remove Cs and other radionuclides from a wide spectrum of radioactive defense wastes. The CST exhibits high selectivity and affinity for Cs and Sr under a wide range of conditions. Tests show it can remove part-per-million concentrations of Cs{sup +} from highly alkaline, high-sodium simulated radioactive waste solutions modeled after those at Hanford, Oak Ridge, and Savannah River. The materials exhibit ion exchange properties based on ionic size selectivity. Specifically, crystalline lattice spacing is controlled to be highly selective for Cs ions even in waste streams containing very high (5 to 10 M) concentrations of sodium. The CST technology is being demonstrated with actual waste at several DOE facilities. The use of inorganic ion exchangers. The inorganics are more resistant to chemical, thermal, and radiation degradation. Their high selectivities result in more efficient operations offering the possibility of a simple single-pass operation. In contrast, regenerable organic ion exchangers require additional processing equipment to handle the regeneration liquids and the eluant with the dissolved Cs.

  12. Ultraviolet photosensitivity of sulfur-doped micro- and nano-crystalline diamond

    International Nuclear Information System (INIS)

    Mendoza, Frank; Makarov, Vladimir; Hidalgo, Arturo; Weiner, Brad; Morell, Gerardo

    2011-01-01

    The room-temperature photosensitivity of sulfur-doped micro- (MCD), submicro- (SMCD) and nano- (NCD) crystalline diamond films synthesized by hot-filament chemical vapor deposition was studied. The structure and composition of these diamond materials were characterized by Raman spectroscopy, scanning electron microscopy and X-ray diffraction. The UV sensitivity and response time were studied for the three types of diamond materials using a steady state broad UV excitation source and two pulsed UV laser radiations. It was found that they have high sensitivity in the UV region, as high as 10 9 sec -1 mV -1 range, linear response in a broad spectral range below 320 nm, photocurrents around ∼10 -5 A, and short response time better than 100 ns, which is independent of fluency intensity. A phenomenological model was applied to help understand the role of defects and dopant concentration on the materials' photosensitivity

  13. Characterization of crystalline structures in Opuntia ficus-indica

    OpenAIRE

    Contreras-Padilla, Margarita; Rivera-Muñoz, Eric M.; Gutiérrez-Cortez, Elsa; del López, Alicia Real; Rodríguez-García, Mario Enrique

    2014-01-01

    This research studies the crystalline compounds present in nopal (Opuntia ficus-indica) cladodes. The identification of the crystalline structures was performed using X-ray diffraction, scanning electron microscopy, mass spectrometry, and Fourier transform infrared spectroscopy. The crystalline structures identified were calcium carbonate (calcite) [CaCO3], calcium-magnesium bicarbonate [CaMg(CO3)2], magnesium oxide [MgO], calcium oxalate monohydrate [Ca(C2O4)•(H2O)], potassium peroxydiphosph...

  14. United States Crystalline Repository Project - key research areas

    International Nuclear Information System (INIS)

    Patera, E.S.

    1986-01-01

    The Crystalline Repository Project is responsible for siting the second high-level nuclear waste repository in crystalline rock for the US Department of Energy. A methodology is being developed to define data and information needs and a way to evaluate that information. The areas of research the Crystalline Repository Project is involved in include fluid flow in a fractured network, coupled thermal, chemical and flow processes and cooperation in other nations and OECD research programs

  15. The plastic flow localization effect on crystalline material

    International Nuclear Information System (INIS)

    Pajot, A.

    2011-01-01

    Irradiation affects the mechanical properties of materials. In particular, an increase of yield strength followed by a decrease of ductility and a reduction of the elongation to fracture are observed above a threshold irradiation dose. The last two phenomena are correlated with the appearance of bands free of defects (clear bands) in which plastic deformation is confined. These bands also determine accumulation of dislocations at grain boundaries, thereby favouring local grain decohesion and possibly initiating fracture. Clear bands have an important impact on metal resistance, nevertheless our level of understanding is not sufficient to evaluate quantitatively their effect on the loss of ductility and reduction of elongation to fracture that are observed experimentally. A clear band is a microstructural defect, created when loading an irradiated material. Its complex interaction with defects on the nano scale affects the behaviour of the metal at the macroscopic scale. A full understanding implies the application of a multi scale modeling approach. This explains why, even though clear bands have first been

  16. XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Gasga, José, E-mail: jreyes@fisica.unam.mx [Instituto de Física, UNAM, Circuito de la Investigación Científica s/n., Cd. Universitaria, Coyoacán 04510, México, D.F. (Mexico); Martínez-Piñeiro, Esmeralda L., E-mail: esmemapi@gmail.com [Instituto de Física, UNAM, Circuito de la Investigación Científica s/n., Cd. Universitaria, Coyoacán 04510, México, D.F. (Mexico); Rodríguez-Álvarez, Galois, E-mail: galoisborre@yahoo.com [Instituto de Física, UNAM, Circuito de la Investigación Científica s/n., Cd. Universitaria, Coyoacán 04510, México, D.F. (Mexico); Tiznado-Orozco, Gaby E., E-mail: gab0409@yahoo.com.mx [Unidad Académica de Odontología, Universidad Autónoma de Nayarit, Edificio E7, Ciudad de la Cultura “Amado Nervo”, C.P. 63190 Tepic, Nayarit (Mexico); García-García, Ramiro, E-mail: ramiro@fisica.unam.mx [Instituto de Física, UNAM, Circuito de la Investigación Científica s/n., Cd. Universitaria, Coyoacán 04510, México, D.F. (Mexico); and others

    2013-12-01

    The crystallinity index (CI) is a measure of the percentage of crystalline material in a given sample and it is also correlated to the degree of order within the crystals. In the literature two ways are reported to measure the CI: X-ray diffraction and infrared spectroscopy. Although the CI determined by these techniques has been adopted in the field of archeology as a structural order measure in the bone with the idea that it can help e.g. in the sequencing of the bones in chronological and/or stratigraphic order, some debate remains about the reliability of the CI values. To investigate similarities and differences between the two techniques, the CI of sound human tooth enamel and synthetic hydroxyapatite (HAP) was measured in this work by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), at room temperature and after heat treatment. Although the (CI){sub XRD} index is related to the crystal structure of the samples and the (CI){sub FTIR} index is related to the vibration modes of the molecular bonds, both indices showed similar qualitative behavior for heat-treated samples. At room temperature, the (CI){sub XRD} value indicated that enamel is more crystalline than synthetic HAP, while (CI){sub FTIR} indicated the opposite. Scanning (SEM) and transmission (TEM) images were also used to corroborate the measured CI values. - Highlights: • XRD and FTIR crystallinity indices for tooth enamel and synthetic HAP were obtained. • SEM and TEM images were more correlated with (CI){sub XRD} than with (CI){sub FTIR}. • Regardless of the temperature, (CI){sub XRD} and (CI){sub FTIR} showed similar behavior. • XRD and FTIR crystallinity indices resulted in a fast and qualitative measurement.

  17. Irreducible tensor operators and crystalline potentials

    International Nuclear Information System (INIS)

    Boutron, F.; Saint-James, D.

    1961-01-01

    It is often accepted that the effects of its neighbourhood on the quantum state of an ion A may be obtained by the model of the crystalline effective field approximation. Within this assumption Stevens has developed a method which provides equivalent operators that facilitate the calculation of the matrix elements of the crystalline field in a given multiplicity. This method has been extended here. We demonstrate that in the expansion of the crystalline field in powers of the electrons coordinates of the ion A - for electrons of the same sub-shell of A - only even terms can contribute. Equivalent operators and matrix elements, in a given multiplicity, are given for these development terms - up to order 6 - and for potential invariant by the operations of one of the thirty-two point-groups. (author) [fr

  18. Dancing with light advances in photofunctional liquid-crystalline materials

    CERN Document Server

    Yu, Haifeng

    2015-01-01

    Recent progress in this field indicates that integrating photochromic molecules into LC materials enables one to photo-manipulate unique features such as photoinduced phase transition, photocontrolled alignment and phototriggered molecular cooperative motion, leading to their novel applications beyond displays. This book introduces readers to this field, from the primary- to the advanced level in photoresponsive LC materials. The subject is introduced step-by-step, including the basic knowledge of LCs, photoresponsive properties of LCs, and their detailed performances in the form of low-molecu

  19. A Filtering Method to Reveal Crystalline Patterns from Atom Probe Microscopy Desorption Maps

    Science.gov (United States)

    2016-03-26

    reveal crystalline patterns from atom probe microscopy desorption maps Lan Yao Department of Materials Science and Engineering, University of Michigan, Ann...reveal the crystallographic information present in Atom Probe Microscopy (APM) data is presented. Themethod filters atoms based on the time difference...between their evaporation and the evaporation of the previous atom . Since this time difference correlates with the location and the local structure of

  20. On the origin of anisotropic lithiation in crystalline silicon over germanium: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Yun [Materials Science and Engineering Program, University of Texas at Austin, Austin, TX 78712 (United States); Hwang, Gyeong S., E-mail: gshwang@che.utexas.edu [Materials Science and Engineering Program, University of Texas at Austin, Austin, TX 78712 (United States); Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States)

    2014-12-30

    Graphical abstract: - Highlights: • We examine the underlying reasons for the anisotropic lithiation of Si over Ge in the crystalline phase. • Crystalline Si is lithiated in a layer-by-layer fashion, yielding a sharp amorphous–crystalline interface. • Lithiated c-Ge exhibits a graded lithiation front, which proceeds much faster than that in c-Si. • Lithiation behavior tends to be subject to the stiffness and dynamics of the host matrix. • We reveal the origin and extended impacts of the anisotropic Si vs. isotropic Ge lithiation. - Abstract: Silicon (Si) and germanium (Ge) are both recognized as a promising anode material for high-energy lithium-ion batteries. Si is abundant and best known for its superior gravimetric energy storage capacity, while Ge exhibits faster charge/discharge rates and better capacity retention. Recently, it was discovered that Si lithiation exhibits strong orientation dependence while Ge lithiation proceeds isotropically, although they have the same crystalline structure. To better understand the underlying reasons behind these distinctive differences, we examine and compare the lithiation behaviors at the Li{sub 4}Si/c-Si(1 1 0) and Li{sub 4}Ge/c-Ge(1 1 0) model systems using ab initio molecular dynamics simulations. In comparison to lithiated c-Si, where a sharp amorphous–crystalline interface remains and advances rather slowly, lithiated c-Ge tends to loose its crystallinity rapidly, resulting in a graded lithiation front of fast propagation speed. Analysis of the elastic responses and dynamics of the host Si and Ge lattices clearly demonstrate that from the beginning of the lithiation process, Ge lattice responds with more significant weakening as compared to the rigid Si lattice. Moreover, the more flexible Ge lattice is found to undergo facile atomic rearrangements during lithiation, overshadowing the original crystallographic characteristic. These unique properties of Ge thereby contribute synergistically to the rapid

  1. Crystalline morphology of the matrix of PEEK-carbon fiber aromatic polymer composites. I. Assessment of crystallinity

    International Nuclear Information System (INIS)

    Blundell, D.J.; Chalmers, J.M.; Mackenzie, M.W.; Gaskin, W.F.

    1985-01-01

    The crystallinity of the polyetheretherketone (PEEK) matrix polymer in the Aromatic Polymer Composite APC-2 has been estimated using a combination of techniques based on wide angle x-ray diffraction and infrared reflection spectroscopy. Crystallinity varies systematically with cooling rate and annealing time over the range 20 to 40%. The occurrence of oriented crystal growth of the PEEK relative to the carbon fiber can be monitored by x-ray diffraction. 8 references, 10 figures, 1 table

  2. Irradiation sterilization of semi-crystalline polymers

    International Nuclear Information System (INIS)

    Williams, J.; Dunn, T.; Stannett, V.

    1978-01-01

    A semi-crystalline polymer such as polypropylene, is sterilized by high energy irradiation, with the polymer containing a non-crystalline mobilizing additive which increases the free volume of the polymer, to prevent embrittlement of the polymer during and subsequent to the irradiation. The additive has a density of from 0.6 to 1.9 g/cm 3 and a molecular weight from 100 to 10,000 g/mole

  3. STM, SECPM, AFM and Electrochemistry on Single Crystalline Surfaces

    Directory of Open Access Journals (Sweden)

    Ulrich Stimming

    2010-08-01

    Full Text Available Scanning probe microscopy (SPM techniques have had a great impact on research fields of surface science and nanotechnology during the last decades. They are used to investigate surfaces with scanning ranges between several 100 mm down to atomic resolution. Depending on experimental conditions, and the interaction forces between probe and sample, different SPM techniques allow mapping of different surface properties. In this work, scanning tunneling microscopy (STM in air and under electrochemical conditions (EC-STM, atomic force microscopy (AFM in air and scanning electrochemical potential microscopy (SECPM under electrochemical conditions, were used to study different single crystalline surfaces in electrochemistry. Especially SECPM offers potentially new insights into the solid-liquid interface by providing the possibility to image the potential distribution of the surface, with a resolution that is comparable to STM. In electrocatalysis, nanostructured catalysts supported on different electrode materials often show behavior different from their bulk electrodes. This was experimentally and theoretically shown for several combinations and recently on Pt on Au(111 towards fuel cell relevant reactions. For these investigations single crystals often provide accurate and well defined reference and support systems. We will show heteroepitaxially grown Ru, Ir and Rh single crystalline surface films and bulk Au single crystals with different orientations under electrochemical conditions. Image studies from all three different SPM methods will be presented and compared to electrochemical data obtained by cyclic voltammetry in acidic media. The quality of the single crystalline supports will be verified by the SPM images and the cyclic voltammograms. Furthermore, an outlook will be presented on how such supports can be used in electrocatalytic studies.

  4. Crystalline structure of metals

    International Nuclear Information System (INIS)

    Holas, A.

    1972-01-01

    An attempt is made to find the crystalline structure of metals on the basis of the existing theory of metals. The considerations are limited to the case of free crystals, that is, not subjected to any stresses and with T=0. The energy of the crystal lattice has been defined and the dependence of each term on structures and other properties of metals has been described. The energy has been used to find the values of crystalline structure parameters as the values at which the energy has an absolute minimum. The stability of the structure has been considered in cases of volume changes and shearing deformations. A semiqualitative description has been obtained which explains characteristic properties of one-electron metals. (S.B.)

  5. Influence of the local structure in phase-change materials on their dielectric permittivity.

    Science.gov (United States)

    Shportko, Kostiantyn V; Venger, Eugen F

    2015-01-01

    Ge-Sb-Te alloys, which belong to the phase-change materials, are promising materials for data storage and display and data visualization applications due to their unique properties. This includes a remarkable difference of their electrical and optical properties in the amorphous and crystalline state. Pronounced change of optical properties for Ge-Sb-Te alloys is linked to the different bonding types and different atomic arrangements in amorphous and crystalline states. The dielectric function of phase-change materials has been investigated in the far infrared (FIR) range. Phonons have been detected by FTIR spectroscopy. Difference of the dispersion of the dielectric permittivity of amorphous and crystalline samples is caused by different structures in different states which contribute to the dielectric permittivity.

  6. Characterization of a wollastonite glass-ceramic material prepared using sugar cane bagasse ash (SCBA) as one of the raw materials

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Silvio R., E-mail: rainho@fct.unesp.br [Universidade Estadual Paulista — UNESP, Faculdade de Ciências e Tecnologia — FCT, 19060-900 Presidente Prudente — SP (Brazil); Souza, Agda E. [Universidade Estadual Paulista — UNESP, Faculdade de Ciências e Tecnologia — FCT, 19060-900 Presidente Prudente — SP (Brazil); Carvalho, Claudio L.; Reynoso, Victor C.S. [Universidade Estadual Paulista — UNESP, Faculdade de Engenharia de Ilha Solteira — FEIS, 15385-000 Ilha Solteira – SP (Brazil); Romero, Maximina; Rincón, Jesús Ma. [Instituto de Ciencias de la Construccion Eduardo Torroja — IETCC, CSIC, 28033 Madrid (Spain)

    2014-12-15

    Glass-ceramic material prepared with sugar cane bagasse ash as one of the raw materials was characterized to determine some important properties for its application as a coating material. X-ray diffraction patterns showed that wollastonite-2M (CaSiO{sub 3}) was the major glass-ceramic phase. The Rietveld method was used to quantify the crystalline (60 wt.%) and vitreous (40 wt.%) phases in the glass-ceramic. The microstructure (determined by scanning electron microscopy) of this material had a marble appearance, showing a microporous network of elongated crystals with some areas with dendritic, feather-like ordering. Microhardness data gave a mean hardness value of 564.4 HV (Vickers-hardness), and light microscopy disclosed a greenish brown colored material with a vitreous luster. - Highlights: • We studied the properties of a glass-ceramic material obtained from sugarcane ash. • This material has the appearance and hardness of natural stones. • A refining method gave information about its amorphous and crystalline phases. • This material has potential to be used as coating plates for buildings.

  7. Characterization of a wollastonite glass-ceramic material prepared using sugar cane bagasse ash (SCBA) as one of the raw materials

    International Nuclear Information System (INIS)

    Teixeira, Silvio R.; Souza, Agda E.; Carvalho, Claudio L.; Reynoso, Victor C.S.; Romero, Maximina; Rincón, Jesús Ma.

    2014-01-01

    Glass-ceramic material prepared with sugar cane bagasse ash as one of the raw materials was characterized to determine some important properties for its application as a coating material. X-ray diffraction patterns showed that wollastonite-2M (CaSiO 3 ) was the major glass-ceramic phase. The Rietveld method was used to quantify the crystalline (60 wt.%) and vitreous (40 wt.%) phases in the glass-ceramic. The microstructure (determined by scanning electron microscopy) of this material had a marble appearance, showing a microporous network of elongated crystals with some areas with dendritic, feather-like ordering. Microhardness data gave a mean hardness value of 564.4 HV (Vickers-hardness), and light microscopy disclosed a greenish brown colored material with a vitreous luster. - Highlights: • We studied the properties of a glass-ceramic material obtained from sugarcane ash. • This material has the appearance and hardness of natural stones. • A refining method gave information about its amorphous and crystalline phases. • This material has potential to be used as coating plates for buildings

  8. Titanium carbide nanocube core induced interfacial growth of crystalline polypyrrole/polyvinyl alcohol lamellar shell for wide-temperature range supercapacitors

    Science.gov (United States)

    Weng, Yu-Ting; Pan, Hsiao-An; Wu, Nae-Lih; Chen, Geroge Zheng

    2015-01-01

    This is the first investigation on electrically conducting polymers-based supercapacitor electrodes over a wide temperature range, from -18 °C to 60 °C. A high-performance supercapacitor electrode material consisting of TiC nanocube core and conformal crystalline polypyrrole (PPy)/poly-vinyl-alcohol (PVA) lamellar shell has been synthesized by heterogeneous nucleation-induced interfacial crystallization. PPy is induced to crystallize on the negatively charged TiC nanocube surfaces via strong interfacial interactions. In this organic-inorganic hybrid nanocomposite, the long chain PVA enables enhanced cycle life due to improved mechanical properties, and the TiC nanocube not only contributes to electron conduction, but also dictates the PPy morphology/crystallinity for maximizing the charging-discharging performance. The crystalline PPy/PAV layer on the TiC nanocube offers unprecedented high capacity (>350 F g-1-PPy at 300 mV s-1 with ΔV = 1.6 V) and cycling stability in a temperature range from -18 °C to 60 °C. The presented hybrid-filler and interfacial crystallization strategies can be applied to the exploration of new-generation high-power conducting polymer-based supercapacitor materials.

  9. Siloxane D4 capture by hydrophobic microporous materials

    OpenAIRE

    Mito-oka, Yasuko; Horike, Satoshi; Nishitani, Yusuke; Masumori, Tadao; Inukai, Munehiro; Hijikata, Yuh; Kitagawa, Susumu

    2013-01-01

    Porous substances, including crystalline coordination materials and an amorphous organic polymer, were studied for their selective adsorption of siloxane D4. The investigated materials demonstrated a level of uptake comparable to that of conventional activated carbon.

  10. Role of αA-crystallin-derived αA66-80 peptide in guinea pig lens crystallin aggregation and insolubilization.

    Science.gov (United States)

    Raju, Murugesan; Mooney, Brian P; Thakkar, Kavi M; Giblin, Frank J; Schey, Kevin L; Sharma, K Krishna

    2015-03-01

    Earlier we reported that low molecular weight (LMW) peptides accumulate in aging human lens tissue and that among the LMW peptides, the chaperone inhibitor peptide αA66-80, derived from α-crystallin protein, is one of the predominant peptides. We showed that in vitro αA66-80 induces protein aggregation. The current study was undertaken to determine whether LMW peptides are also present in guinea pig lens tissue subjected to hyperbaric oxygen (HBO) in vivo. The nuclear opacity induced by HBO in guinea pig lens is the closest animal model for studying age-related cataract formation in humans. A LMW peptide profile by mass spectrometry showed the presence of an increased amount of LMW peptides in HBO-treated guinea pig lenses compared to age-matched controls. Interestingly, the mass spectrometric data also showed that the chaperone inhibitor peptide αA66-80 accumulates in HBO-treated guinea pig lens. Following incubation of synthetic chaperone inhibitor peptide αA66-80 with α-crystallin from guinea pig lens extracts, we observed a decreased ability of α-crystallin to inhibit the amorphous aggregation of the target protein alcohol dehydrogenase and the formation of large light scattering aggregates, similar to those we have observed with human α-crystallin and αA66-80 peptide. Further, time-lapse recordings showed that a preformed complex of α-crystallin and αA66-80 attracted additional crystallin molecules to form even larger aggregates. These results demonstrate that LMW peptide-mediated cataract development in aged human lens and in HBO-induced lens opacity in the guinea pig may have common molecular pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Accumulation of glycation products in. cap alpha. -H pig lens crystallin and its bearing to diabetic cataract genesis

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, P; Cabezas-Cerrato, J

    1988-01-01

    The incorporation of /sup 11/C-glucose in native pig crystalline by in vitro incubation was found, after subsequent dialysis, to affect all 5 classes of crystallin separated by Sepharose CL-6B column chromatography. Though the radioactivity of the ..cap alpha..-H fraction was three times greater than that of any of the others, autoradiographs of SDS-PAGE gels showed /sup 11/C-glucose adducts to be present in all soluble protein subunits, without there being any evidence of preferential glycation of the ..cap alpha..-H subunits. The concentration of stable glycation products in the ..cap alpha..-H chromatographic fraction of soluble crystallins is suggested to be due the addition of glycated material to this fraction as result of glycation-induced hyperaggregation, and not because the ..cap alpha..-H subunits were especially susceptible to glycation.

  12. Crystalline Chromium Doped Aluminum Oxide (RUBY) Use as a Luminescent Screen for Proton Beams

    International Nuclear Information System (INIS)

    Brown, K. A.; Gassner, D. M.

    1999-01-01

    In the search for a better luminescent screen material, the authors tested pieces of mono-crystalline chromium doped aluminum oxide (more commonly known as a ruby) using a 24 GeV proton beam. Due to the large variations in beam intensity and species which are run at the Alternating Gradient Synchrotron (AGS), they hope to find a material which can sufficiently luminesce, is compatible in vacuum, and maintain its performance level over extended use. Results from frame grabbed video camera images using a variety of neutral density filters are presented

  13. Crystallinity changes of electron-beam irradiated ethylene-vinyl alcohol copolymer (EVOH) as a function of radiation dose

    International Nuclear Information System (INIS)

    Nogueira, Beatriz R.; Martins, Joao F.T.; Oliveira, Rene R.; Moura, Esperidiana A.B.

    2011-01-01

    The treatment with electron-beam radiation is a promising approach to the controllable modification of the properties of the polymeric materials, in order to adjust their properties. In recent years, electron-beam irradiation have been efficiently applied in the flexible packaging industry to promote cross-linking and scission of the polymeric chains in order to improve material mechanical properties. On the other hand, ionizing irradiation can also affect the polymeric materials itself leading to a production of free radicals. These free radicals can in turn lead to degradation and or cross-linking phenomena. In the present work the changes in thermal properties of electron-beam irradiated ethylene-vinyl alcohol copolymer (EVOH) resin were investigated. The EVOH resin was irradiated up to 500 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. The EVOH samples irradiated from 300 kGy presented increases in melting temperature, except for 350 kGy. The changes in properties of the EVOH resin after irradiation were evaluated by differential scanning calorimetry (DSC) and X-Rays Diffraction (XRD). The correlation between the properties of EVOH non-irradiated and irradiated EVOH samples were discussed. The XRD results showed a slight shift of diffraction peaks, as well as an increase of width, DSC results also showed differences on crystallinity degree, for irradiated EVOH samples, which suggests that a decrease or an increase in degree crystallinity of EVOH will depends on radiation dose applied. These results are very important because shows a slight decrease in crystallinity of irradiated EVOH, a decrease in the crystallinity degree usually is related with an increase of the amorphous phase due to, probably, the predominance of molecular chain cross-linking of EVOH over the molecular chain scission and degradation process, caused by ionizing radiation, and a consequent improvement of their properties, such as thermal, mechanical

  14. Inducing β Phase Crystallinity in Block Copolymers of Vinylidene Fluoride with Methyl Methacrylate or Styrene

    Directory of Open Access Journals (Sweden)

    Nahal Golzari

    2017-07-01

    Full Text Available Block copolymers of poly(vinylidene fluoride (PVDF with either styrene or methyl methacrylate (MMA were synthesized and analyzed with respect to the type of the crystalline phase occurring. PVDF with iodine end groups (PVDF-I was prepared by iodine transfer polymerization either in solution with supercritical CO2 or in emulsion. To activate all iodine end groups Mn2(CO10 is employed. Upon UV irradiation Mn(CO5 radicals are obtained, which abstract iodine from PVDF-I generating PVDF radicals. Subsequent polymerization with styrene or methyl methacrylate (MMA yields block copolymers. Size exclusion chromatography and NMR results prove that the entire PVDF-I is converted. XRD, FT-IR, and differential scanning calorimetry (DSC analyses allow for the identification of crystal phase transformation. It is clearly shown that the original α crystalline phase of PVDF-I is changed to the β crystalline phase in case of the block copolymers. For ratios of the VDF block length to the MMA block length ranging from 1.4 to 5 only β phase material was detected.

  15. Quantifying low amorphous or crystalline amounts of alpha-lactose-monohydrate using X-ray powder diffraction, near-infrared spectroscopy, and differential scanning calorimetry.

    Science.gov (United States)

    Fix, I; Steffens, K J

    2004-05-01

    Efficient and accurate quantification of low amorphous and crystalline contents within pharmaceutical materials still remains a challenging task in the pharmaceutical industry. Since X-ray powder diffraction (XRPD) equipment has improved in recent years, our aim was 1) to investigate the possibility of substantially lowering the detection limits of amorphous or crystalline material to about 1% or 0.5% w/w respectively by applying conventional Bragg Brentano optics, combined with a fast and simple evaluation technique; 2) to perform these measurements within a short time to make it suitable for routine analysis; and 3) to subject the same data sets to a partial least squares regression (PLSR) in order to investigate whether it is possible to improve accuracy and precision compared to the standard integration method. Near-infrared spectroscopy (NIRS) and differential scanning calorimetry (DSC) were chosen as reference method. As model substance, alpha lactose monohydrate was chosen to create calibration curves based on predetermined mixtures of highly crystalline and amorphous substance. In contrast to DSC, XRPD and NIRS revealed an excellent linearity, precision, and accuracy with the percent of crystalline amount and a detectability down to about 0.5% w/w. Chemometric evaluation (partial least squares regression) applied to the XRPD data further improved the quality of our calibration.

  16. Structural transformations of mechanically induced top-down approach BaFe12O19 nanoparticles synthesized from high crystallinity bulk materials

    International Nuclear Information System (INIS)

    Low, Zhi Huang; Chen, Soo Kien; Ismail, Ismayadi; Tan, Kim Song; Liew, J.Y.C.

    2017-01-01

    In this work, a top-down approach was applied to high crystallinity BaFe 12 O 19 bulks, breaking them into smaller nanoparticles by mechanochemical route. The effects of milling time, reaction mechanisms and structural information were investigated. Interestingly, three distinct stages of the mechanochemical mechanism were observed. The XRD results indicated that the BaFe 12 O 19 phase existed even though the mechanical energy had induced the formation of an amorphous phase in the material. The average crystallite size decreased during the first stage and the intermediate stage, and increased during the final stage of the mechanical alloying. A Rietveld refinement analysis suggested the deformation of a mechanically-triggered polyhedral in the magnetoplumbite structure. FESEM micrographs indicated that fragmentation predominated during the first and intermediate stages, until a steady equilibrium state was achieved at in the final stage, where a narrow particle size distribution was observed. HRTEM micrographs suggested the formation of a non-uniform nanostructure shell surrounding the ordered core materials at the edge-interface region. The thickness of the amorphous surface layer extended up to 12 nm during the first and intermediate stages, and diminished to approximately 3 nm after 20 h milling. VSM results showed a mixture of ferromagnetic, superparamagnetic, and paramagnetic behaviours. However, different magnetic behaviours predominated at different milling time, which strongly related to the defects, distorted polyhedra, and non-equilibrium amorphous layers of the material. - Highlights: • Nanoparticles of BaFe 12 O 19 are successfully prepared. • Morphological and structural properties rely on mechanochemical mechanism. • Three stages of mechanochemical mechanism was observed. • Core shell structures (3–12 nm) was found during by extending the milling time. • Magnetic properties were strongly related with the mechanically induced defects.

  17. Interlayer exchange coupling, crystalline and magnetic structure in Fe/CsCl-FeSi multilayers grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Dekoster, J.; Degroote, S.; Meersschaut, J.; Moons, R.; Vantomme, A. [K.U. Leuven, Instituut voor Kern- en Stralingsfysica (Belgium); Bottyan, L.; Deak, L.; Szilagyi, E.; Nagy, D.L. [KFKI Research Institute for Particle and Nuclear Physics (Hungary); Baron, A.Q.R. [European Synchrotron Radiation Facility (France); Langouche, G. [K.U. Leuven, Instituut voor Kern- en Stralingsfysica (Belgium)

    1999-09-15

    Crystalline and magnetic structure as well as the interlayer exchange coupling in MBE grown Fe/FeSi multilayers are investigated. From conversion electron Moessbauer spectroscopy and ion beam channeling measurements the spacer FeSi material is found to be stabilized in a crystalline metastable metallic FeSi phase with the CsCl structure. Strong non-oscillatory interlayer exchange coupling is identified with magnetometry and synchrotron Moessbauer reflectometry. From the fits of the time spectrum and the resonant {phi}-{phi} scans a model for the sublayer magnetization of the multilayer is deduced.

  18. Towards the understanding of the molecular weight dependence of essential work of fracture in semi-crystalline polymers: A study on poly(ε-caprolactone

    Directory of Open Access Journals (Sweden)

    F. Tuba

    2014-11-01

    Full Text Available The plane-stress ductile fracture of poly(#-caprolactone (PCL has been investigated as a function of molecular weight and related crystalline structure. Because of the interacting effects in semi-crystalline polymers a separate study of a given structural parameter is rather challenging. Nevertheless, this polymer seems to be a good model material to study the effect of molecular weight on the essential work of fracture, as the interactions between the separate parameters, at room temperature, are negligible. The molecular characteristics of PCL were determined by size exclusion chromatography. To confirm the entangled molecular structure of studied polymers rheological measurements were performed. The crystalline morphology has been characterized by differential scanning calorimetry and wide angle X-ray diffraction. Quasi-static tensile tests and essential work of fracture tests were performed to study the mechanical behavior. Based on the experimental observations an empirical model has been proposed to outline the molecular weight and crystallinity dependence of the essential work of fracture in this semi-crystalline polymer.

  19. Research and development of basic technologies for next generation industries, 'high crystalline polymeric material'. Evaluation on second term research and development; Jisedai sangyo kiban gijutsu kenkyu kaihatsu. Kokesshosei kobunshi zairyo (dainiki kenkyu kaihatsu kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-03-01

    This research and development is intended to establish a basic technology related to high crystalline polymeric material that has dynamic properties comparable to metallic materials by single polymeric material as a structural material. Thick and large high-elasticity molded forms were obtained by searching poly-arylate material, and by developing such processing technologies as high-pressure injection molding, composite injection molding, and elongation fluidity molding. High-elasticity molded forms with uniform internal orientation were obtained by heating and molding liquid crystal polymers under high magnetic field. Solution molding was performed on a molecular composite consisting of rigid chains and soft chains, which was laminated and bonded to have obtained an isotropic form with as high elasticity as 54 GPa. In addition, high pressure powder formation of cross-linked polymers of di-acetylene system provided an isotropic form with sound wave elasticity of 23 GPa.

  20. Biphenyl liquid crystalline epoxy resin as a low-shrinkage resin-based dental restorative nanocomposite.

    Science.gov (United States)

    Hsu, Sheng-Hao; Chen, Rung-Shu; Chang, Yuan-Ling; Chen, Min-Huey; Cheng, Kuo-Chung; Su, Wei-Fang

    2012-11-01

    Low-shrinkage resin-based photocurable liquid crystalline epoxy nanocomposite has been investigated with regard to its application as a dental restoration material. The nanocomposite consists of an organic matrix and an inorganic reinforcing filler. The organic matrix is made of liquid crystalline biphenyl epoxy resin (BP), an epoxy resin consisting of cyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (ECH), the photoinitiator 4-octylphenyl phenyliodonium hexafluoroantimonate and the photosensitizer champhorquinone. The inorganic filler is silica nanoparticles (∼70-100 nm). The nanoparticles were modified by an epoxy silane of γ-glycidoxypropyltrimethoxysilane to be compatible with the organic matrix and to chemically bond with the organic matrix after photo curing. By incorporating the BP liquid crystalline (LC) epoxy resin into conventional ECH epoxy resin, the nanocomposite has improved hardness, flexural modulus, water absorption and coefficient of thermal expansion. Although the incorporation of silica filler may dilute the reinforcing effect of crystalline BP, a high silica filler content (∼42 vol.%) was found to increase the physical and chemical properties of the nanocomposite due to the formation of unique microstructures. The microstructure of nanoparticle embedded layers was observed in the nanocomposite using scanning and transmission electron microscopy. This unique microstructure indicates that the crystalline BP and nanoparticles support each other and result in outstanding mechanical properties. The crystalline BP in the LC epoxy resin-based nanocomposite was partially melted during exothermic photopolymerization, and the resin expanded via an order-to-disorder transition. Thus, the post-gelation shrinkage of the LC epoxy resin-based nanocomposite is greatly reduced, ∼50.6% less than in commercialized methacrylate resin-based composites. This LC epoxy nanocomposite demonstrates good physical and chemical properties and good biocompatibility

  1. Scattering of x rays from low-Z materials

    International Nuclear Information System (INIS)

    Gaines, J.L.; Kissel, L.D.; Catron, H.C.; Hansen, R.A.

    1980-01-01

    X rays incident on thin beryllium, boron, carbon, and other low-Z materials undergo both elastic and inelastic scattering as well as diffraction from the crystalline or crystalline-like structure of the material. Unpolarized monoenergetic x rays in the 1.5 to 8.0-keV energy range were used to determine the absolute scattering efficiency of thin beryllium, carbon, and boron foils. These measurements are compared to calculated scattering efficiencies predicted by single-atom theories. In addition, the relative scattering efficiency versus x-ray energy was measured for other low-Z foils using unpolarized bremsstrahlung x rays. In all the low-Z foils examined, we observed Bragg-like x-ray diffraction due to the ordered structure of the materials

  2. Multi-crystalline II-VI based multijunction solar cells and modules

    Science.gov (United States)

    Hardin, Brian E.; Connor, Stephen T.; Groves, James R.; Peters, Craig H.

    2015-06-30

    Multi-crystalline group II-VI solar cells and methods for fabrication of same are disclosed herein. A multi-crystalline group II-VI solar cell includes a first photovoltaic sub-cell comprising silicon, a tunnel junction, and a multi-crystalline second photovoltaic sub-cell. A plurality of the multi-crystalline group II-VI solar cells can be interconnected to form low cost, high throughput flat panel, low light concentration, and/or medium light concentration photovoltaic modules or devices.

  3. Silicon heterojunction solar cells with novel fluorinated n-type nanocrystalline silicon oxide emitters on p-type crystalline silicon

    Science.gov (United States)

    Dhar, Sukanta; Mandal, Sourav; Das, Gourab; Mukhopadhyay, Sumita; Pratim Ray, Partha; Banerjee, Chandan; Barua, Asok Kumar

    2015-08-01

    A novel fluorinated phosphorus doped silicon oxide based nanocrystalline material have been used to prepare heterojunction solar cells on flat p-type crystalline silicon (c-Si) Czochralski (CZ) wafers. The n-type nc-SiO:F:H material were deposited by radio frequency plasma enhanced chemical vapor deposition. Deposited films were characterized in detail by using atomic force microscopy (AFM), high resolution transmission electron microscopy (HRTEM), Raman, fourier transform infrared spectroscopy (FTIR) and optoelectronics properties have been studied using temperature dependent conductivity measurement, Ellipsometry, UV-vis spectrum analysis etc. It is observed that the cell fabricated with fluorinated silicon oxide emitter showing higher initial efficiency (η = 15.64%, Jsc = 32.10 mA/cm2, Voc = 0.630 V, FF = 0.77) for 1 cm2 cell area compare to conventional n-a-Si:H emitter (14.73%) on flat c-Si wafer. These results indicate that n type nc-SiO:F:H material is a promising candidate for heterojunction solar cell on p-type crystalline wafers. The high Jsc value is associated with excellent quantum efficiencies at short wavelengths (<500 nm).

  4. Nickel hydroxide–carbon nanotube nanocomposites as supercapacitor electrodes: crystallinity dependent performances

    International Nuclear Information System (INIS)

    Jiang, Wenchao; Zhai, Shengli; Wei, Li; Yuan, Yang; Yu, Dingshan; Chen, Yuan; Wang, Liang; Wei, Jun

    2015-01-01

    Nickel hydroxide (Ni(OH)_2) is a promising pseudocapacitive material to increase the energy storage capacity of supercapacitors. Ni(OH)_2 has three common crystalline structures: amorphous (amor-), α-, and β-Ni(OH)_2. There is a lack of good understanding on their pros and cons as supercapacitor electrodes. In this work, we synthesized three nanocomposites with thin layers (10–15 nm) of amor-, α-, and β-Ni(OH)_2 deposited on conductive multi-walled carbon nanotubes (MWCNTs). The mass loading of Ni(OH)_2 is analogous in these nanocomposites, ranging from 49.1–52.2 wt% with a comparable narrow-pore size distribution centered around 4–5 nm. They were fabricated into supercapacitor electrodes at a mass loading of 6 mg cm"−"2 with a thickness of ∼250 μm, similar to the electrodes used in commercial supercapacitors. Our results show that MWCNT/amor-Ni(OH)_2 has the highest specific capacitance (1495 or 2984 F g"−"1, based on the mass of total active materials or Ni(OH)_2 only at the scan rate of 5 mV s"−"1 in 1 M KOH electrolyte). It also has the best rate capability among the three nanocomposites. Better performances can be attributed to its disordered structure, which increases its effective surface area and reduces diffusion resistance for redox reactions. However, superior performances gradually deteriorate to the same level as that of MWCNT/β-Ni(OH)_2 over 3000 charge/discharge cycles, because amor- and α-Ni(OH)_2 transform slowly to more ordered β-Ni(OH)_2. Our results highlight that the electrochemical performances of MWCNT/Ni(OH)_2 nanocomposites depend on the crystallinity of Ni(OH)_2, and the performances of electrodes change upon the crystalline structure transformation of Ni(OH)_2 under repeated redox reactions. Future research should focus on improving the structure stability of amor-Ni(OH)_2. (paper)

  5. Controlling the morphology of side chain liquid crystalline block copolymer thin films through variations in liquid crystalline content.

    Science.gov (United States)

    Verploegen, Eric; Zhang, Tejia; Jung, Yeon Sik; Ross, Caroline; Hammond, Paula T

    2008-10-01

    In this paper, we describe methods for manipulating the morphology of side-chain liquid crystalline block copolymers through variations in the liquid crystalline content. By systematically controlling the covalent attachment of side chain liquid crystals to a block copolymer (BCP) backbone, the morphology of both the liquid crystalline (LC) mesophase and the phase-segregated BCP microstructures can be precisely manipulated. Increases in LC functionalization lead to stronger preferences for the anchoring of the LC mesophase relative to the substrate and the intermaterial dividing surface. By manipulating the strength of these interactions, the arrangement and ordering of the ultrathin film block copolymer nanostructures can be controlled, yielding a range of morphologies that includes perpendicular and parallel cylinders, as well as both perpendicular and parallel lamellae. Additionally, we demonstrate the utilization of selective etching to create a nanoporous liquid crystalline polymer thin film. The unique control over the orientation and order of the self-assembled morphologies with respect to the substrate will allow for the custom design of thin films for specific nanopatterning applications without manipulation of the surface chemistry or the application of external fields.

  6. Photoluminescence of crystalline and disordered BTO:Mn powder: Experimental and theoretical modeling

    International Nuclear Information System (INIS)

    Gurgel, M.F.C.; Espinosa, J.W.M.; Campos, A.B.; Rosa, I.L.V.; Joya, M.R.; Souza, A.G.; Zaghete, M.A.; Pizani, P.S.; Leite, E.R.; Varela, J.A.; Longo, E.

    2007-01-01

    Disordered and crystalline Mn-doped BaTiO 3 (BTO:Mn) powders were synthesized by the polymeric precursor method. After heat treatment, the nature of visible photoluminescence (PL) at room temperature in amorphous BTO:Mn was discussed, considering results of experimental and theoretical studies. X-ray diffraction (XRD), PL, and UV-vis were used to characterize this material. Rietveld refinement of the BTO:Mn from XRD data was used to built two models, which represent the crystalline BTO:Mn (BTO:Mn c ) and disordered BTO:Mn (BTO:Mn d ) structures. Theses models were analyzed by the periodic ab initio quantum mechanical calculations using the CRYSTAL98 package within the framework of density functional theory at the B3LYP level. The experimental and theoretical results indicated that PL is related with the degree of disorder in the BTO:Mn powders and also suggests the presence of localized states in the disordered structure

  7. Direct assembly of in situ templated CdSe quantum dots via crystalline lamellae structure of polyamide 66

    Energy Technology Data Exchange (ETDEWEB)

    Cheval, Nicolas; Brooks, Richard [University of Nottingham, Division of Materials, Mechanics and Structures, Faculty of Engineering (United Kingdom); Fahmi, Amir, E-mail: Amir.Fahmi@hochschule-Rhein-waal.de [Rhein-Waal University of Applied Sciences, Faculty of Technology and Bionics (Germany)

    2012-03-15

    A simple concept is proposed for templating in situ synthesised CdSe quantum dots (QDs) into an organised nano-pattern using the crystalline lamellae structure of polyamide 66 (PA66). The morphology obtained for PA66 and the hybrid material on Si/SiO{sub x} solid substrate was characterised by means of atomic force microscope. Controlling the PA66 concentration in solution and the organic-inorganic interactions are found to be the keys factors to direct the assembly of CdSe QDs along the PA66 linear crystalline structure. This simple approach could be opened a new avenue for a large spectrum of innovative high-tech applications.

  8. Roll-to-Roll printed large-area all-polymer solar cells with 5% efficiency based on a low crystallinity conjugated polymer blend

    Science.gov (United States)

    Gu, Xiaodan; Zhou, Yan; Gu, Kevin; Kurosawa, Tadanori; Yan, Hongping; Wang, Cheng; Toney, Micheal; Bao, Zhenan

    The challenge of continuous printing in high efficiency large-area organic solar cells is a key limiting factor for their widespread adoption. We present a materials design concept for achieving large-area, solution coated all-polymer bulk heterojunction (BHJ) solar cells with stable phase separation morphology between the donor and acceptor. The key concept lies in inhibiting strong crystallization of donor and acceptor polymers, thus forming intermixed, low crystallinity and mostly amorphous blends. Based on experiments using donors and acceptors with different degree of crystallinity, our results showed that microphase separated donor and acceptor domain sizes are inversely proportional to the crystallinity of the conjugated polymers. This methodology of using low crystallinity donors and acceptors has the added benefit of forming a consistent and robust morphology that is insensitive to different processing conditions, allowing one to easily scale up the printing process from a small scale solution shearing coater to a large-scale continuous roll-to-roll (R2R) printer. We were able to continuously roll-to-roll slot die print large area all-polymer solar cells with power conversion efficiencies of 5%, with combined cell area up to 10 cm2. This is among the highest efficiencies realized with R2R coated active layer organic materials on flexible substrate. DOE BRIDGE sunshot program. Office of Naval Research.

  9. Gamma crystallins of the human eye lens.

    Science.gov (United States)

    Vendra, Venkata Pulla Rao; Khan, Ismail; Chandani, Sushil; Muniyandi, Anbukkarasi; Balasubramanian, Dorairajan

    2016-01-01

    Protein crystallins co me in three types (α, β and γ) and are found predominantly in the eye, and particularly in the lens, where they are packed into a compact, plastic, elastic, and transparent globule of proper refractive power range that aids in focusing incoming light on to the retina. Of these, the γ-crystallins are found largely in the nuclear region of the lens at very high concentrations (>400 mg/ml). The connection between their structure and inter-molecular interactions and lens transparency is an issue of particular interest. We review the origin and phylogeny of the gamma crystallins, their special structure involving the use of Greek key supersecondary structural motif, and how they aid in offering the appropriate refractive index gradient, intermolecular short range attractive interactions (aiding in packing them into a transparent ball), the role that several of the constituent amino acid residues play in this process, the thermodynamic and kinetic stability and how even single point mutations can upset this delicate balance and lead to intermolecular aggregation, forming light-scattering particles which compromise transparency. We cite several examples of this, and illustrate this by cloning, expressing, isolating and comparing the properties of the mutant protein S39C of human γS-crystallin (associated with congenital cataract-microcornea), with those of the wild type molecule. In addition, we note that human γ-crystallins are also present in other parts of the eye (e.g., retina), where their functions are yet to be understood. There are several 'crucial' residues in and around the Greek key motifs which are essential to maintain the compact architecture of the crystallin molecules. We find that a mutation that replaces even one of these residues can lead to reduction in solubility, formation of light-scattering particles and loss of transparency in the molecular assembly. Such a molecular understanding of the process helps us construct the

  10. A REVIEW OF THE MEASUREMENT AND DEVELOPMENT OF CRYSTALLINITY AND ITS RELATION TO PROPERTIES IN NEAT POLY(PHENYLENE SULFIDE) AND ITS FIBER REINFORCED COMPOSITES

    Energy Technology Data Exchange (ETDEWEB)

    Spruiell, J.E.

    2005-01-31

    This literature review paper was prepared for the Department of Energy Automotive Lightweighting Program to address materials interest expressed by the Automotive Composites Consortium and it summarizes the measurement and development of crystallinity and its relation to properties in poly(phenylene sulfide) (PPS) and its fiber reinforced composites. The objective of this effort was to broaden the understanding of low-cost, semi-crystalline thermoplastic resins and composites for use in potential future automotive applications. PPS has an excellent combination of attributes including good mechanical properties and thermal stability, high chemical resistance, low moisture absorption, good weathering resistance, high dimensional stability, low flammability, and excellent processability. Specific areas addressed in this report include: Structure of PPS; Techniques for measuring crystallinity; Crystallinity as a function of prior treatment; Crystallization kinetics and morphology; Effect of variation of crystallinity on properties of PPS and its composites; Environmental stability; Unusual effects of cooling rates and degree of crystallinity on mechanical properties of AS4/PPS composites; Recent PPS laminate data (Ten Cate Advanced Composites); and Recommendations for future research.

  11. Manufacture of amorphous and poly-crystalline materials with the sol-gel process; Fabricacion de materiales amorfos y policristalinos con la ruta sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda-Contreras, J. [Centro Universitario de Los Lagos, Universidad de Guadalajara, Guadalajara, Jalisco (Mexico)

    2006-01-15

    The sun-gel process is a chemical route that allows the manufacture of amorphous and poly-crystalline materials in a relatively simple way. New materials can be obtained, materials that through the traditional manufacture methods, are very difficult to obtain, such as oxide combinations (SiO{sub 2}, TiO{sub 2}, ZrO{sub 2}, etc.), and that, when being produced by traditional methods, they run the risk of being contaminated with rare earth ions or organic dyes. The unique structures, micro- structures and compounds that can be made with the sun-gel process open many possibilities for practical applications, to name a few: the manufacture of optical components, preforms for optical fibers, dielectric coatings, superconductors, waveguides, nanoparticles, solar cells, etc. [Spanish] El proceso sol-gel es una ruta quimica que permite fabricar materiales amorfos y policristalinos de forma relativamente sencilla. Se pueden obtener nuevos materiales que a traves de los metodos tradicionales de fabricacion son muy dificiles de obtener, tales como combinaciones de oxidos (SiO{sub 2}, TiO{sub 2}, ZrO{sub 2}, etc.), y que, de ser producidos por metodos tradicionales corren el riesgo de contaminarse con iones de tierras raras o colorantes organicos. Las estructuras unicas, micro estructuras y compuestos que pueden hacerse con el proceso sol-gel abren muchas posibilidades para aplicaciones practicas, por nombrar algunas, la fabricacion de componentes opticos, preformas para fibras opticas, recubrimientos dielectricos, superconductores, guias de onda, nanoparticulas, celdas solares, etc.

  12. [Representation and mathematical analysis of human crystalline lens].

    Science.gov (United States)

    Tălu, Stefan; Giovanzana, Stefano; Tălu, Mihai

    2011-01-01

    The surface of human crystalline lens can be described and analyzed using mathematical models based on parametric representations, used in biomechanical studies and 3D solid modeling of the lens. The mathematical models used in lens biomechanics allow the study and the behavior of crystalline lens on variables and complex dynamic loads. Also, the lens biomechanics has the potential to improve the results in the development of intraocular lenses and cataract surgery. The paper presents the most representative mathematical models currently used for the modeling of human crystalline lens, both optically and biomechanically.

  13. Amorphous and nanocrystalline materials preparation, properties, and applications

    CERN Document Server

    Inoue, A

    2001-01-01

    Amorphous and nanocrystalline materials are a class of their own. Their properties are quite different to those of the corresponding crystalline materials. This book gives systematic insight into their physical properties, structure, behaviour, and design for special advanced applications.

  14. Crystallinity and flux pinning properties of MgB2 bulks

    International Nuclear Information System (INIS)

    Yamamoto, A.; Shimoyama, J.; Ueda, S.; Katsura, Y.; Iwayama, I.; Horii, S.; Kishio, K.

    2006-01-01

    The relationship between flux pinning properties and crystallinity of MgB 2 bulks was systematically studied. Improved flux pinning properties under high fields were observed for samples with low crystallinity. Increased impurity scattering due to strain and defects in lattice corresponding to the degraded crystallinity was considered to enhance flux pinning strength at grain boundaries. Low-temperature synthesis and carbon substitution were confirmed to be effective for degrading crystallinity of MgB 2 bulks, resulting in high critical current properties under high fields

  15. Lattice Boltzmann simulations of liquid crystalline fluids: active gels and blue phases

    OpenAIRE

    Cates, M. E.; Henrich, O.; Marenduzzo, D.; Stratford, K.

    2010-01-01

    Lattice Boltzmann simulations have become a method of choice to solve the hydrodynamic equations of motion of a number of complex fluids. Here we review some recent applications of lattice Boltzmann to study the hydrodynamics of liquid crystalline materials. In particular, we focus on the study of (a) the exotic blue phases of cholesteric liquid crystals, and (b) active gels - a model system for actin plus myosin solutions or bacterial suspensions. In both cases lattice Boltzmann studies have...

  16. Confocal Raman mapping of collagen cross-link and crystallinity of human dentin-enamel junction

    Science.gov (United States)

    Slimani, Amel; Nouioua, Fares; Desoutter, Alban; Levallois, Bernard; Cuisinier, Frédéric J. G.; Tassery, Hervé; Terrer, Elodie; Salehi, Hamideh

    2017-08-01

    The separation zone between enamel and dentin [dentin-enamel junction (DEJ)] with different properties in biomechanical composition has an important role in preventing crack propagation from enamel to dentin. The understanding of the chemical structure (inorganic and organic components), physical properties, and chemical composition of the human DEJ could benefit biomimetic materials in dentistry. Spatial distribution of calcium phosphate crystallinity and the collagen crosslinks near DEJ were studied using confocal Raman microscopy and calculated by different methods. To obtain collagen crosslinking, the ratio of two peaks 1660 cm-1 over 1690 cm-1 (amide I bands) is calculated. For crystallinity, the inverse full-width at half maximum of phosphate peak at 960 cm-1, and the ratio of two Raman peaks of phosphate at 960/950 cm-1 is provided. In conclusion, the study of chemical and physical properties of DEJ provides many benefits in the biomaterial field to improve the synthesis of dental materials in respect to the natural properties of human teeth. Confocal Raman microscopy as a powerful tool provides the molecular structure to identify the changes along DEJ and can be expanded for other mineralized tissues.

  17. Nanodefects in ultrahard crystalline cubic boron nitride

    International Nuclear Information System (INIS)

    Nistor, S. V.; Stefan, M.; Goovaerts, E.; Schoemaker, D.

    2002-01-01

    Cubic boron nitride (cBN), the second hardest known material after diamond, exhibits high thermal conductivity and an excellent ability to be n or p doped, which makes it a strong candidate for the next generation of high-temperature micro optical and micro electronic devices. According to recent studies, cBN exhibits a better resistance to radiation damage than diamond, which suggests potential applications in extreme radiation environments. Crystalline cBN powders of up to 0.5 mm linear size is obtained in a similar way as diamond, by catalytic conversion of hexagonal BN (hBN) to cBN at even higher pressures (> 5GPa) and temperatures (∼ 1900 K). Considering the essential role played by the nanodefects (point defects and impurities) in determining its physical properties, it is surprising how limited is the amount of published data concerning the properties of nanodefects in this material, especially by Electron Paramagnetic Resonance (EPR) spectroscopy, the most powerful method for identification and characterization of nanodefects in both insulators and semiconductors. This seems to be due mainly to the absence of natural cBN gems and the extreme difficulties in producing even mm 3 sized synthetic crystals. We shall present our recent EPR studies on cBN crystalline powders, performed in a broad temperature range from room temperature (RT) down to 1.2 K on several sorts of large size cBN powder grits of yellow and amber color for industrial applications. Previous multifrequency (9.3 GHz and 95 GHz) EPR studies of brown to black cBN crystallites prepared with excess of boron, resulted in the discovery of two new types of paramagnetic point defects with different spectral properties, called the D1 and D2 centers. Our X(9.3 GHz)-band EPR investigations resulted in the observation in amber cBN crystalline powders of a spectrum with a strong temperature dependence of the lineshape. It was found that for high and low temperatures, respectively, the numerical

  18. Biocompatibility of crystalline opal nanoparticles.

    Science.gov (United States)

    Hernández-Ortiz, Marlen; Acosta-Torres, Laura S; Hernández-Padrón, Genoveva; Mendieta, Alicia I; Bernal, Rodolfo; Cruz-Vázquez, Catalina; Castaño, Victor M

    2012-10-22

    Silica nanoparticles are being developed as a host of biomedical and biotechnological applications. For this reason, there are more studies about biocompatibility of silica with amorphous and crystalline structure. Except hydrated silica (opal), despite is presents directly and indirectly in humans. Two sizes of crystalline opal nanoparticles were investigated in this work under criteria of toxicology. In particular, cytotoxic and genotoxic effects caused by opal nanoparticles (80 and 120 nm) were evaluated in cultured mouse cells via a set of bioassays, methylthiazolyldiphenyl-tetrazolium-bromide (MTT) and 5-bromo-2'-deoxyuridine (BrdU). 3T3-NIH cells were incubated for 24 and 72 h in contact with nanocrystalline opal particles, not presented significant statistically difference in the results of cytotoxicity. Genotoxicity tests of crystalline opal nanoparticles were performed by the BrdU assay on the same cultured cells for 24 h incubation. The reduction of BrdU-incorporated cells indicates that nanocrystalline opal exposure did not caused unrepairable damage DNA. There is no relationship between that particles size and MTT reduction, as well as BrdU incorporation, such that the opal particles did not induce cytotoxic effect and genotoxicity in cultured mouse cells.

  19. Graphene on insulating crystalline substrates

    International Nuclear Information System (INIS)

    Akcoeltekin, S; El Kharrazi, M; Koehler, B; Lorke, A; Schleberger, M

    2009-01-01

    We show that it is possible to prepare and identify ultra-thin sheets of graphene on crystalline substrates such as SrTiO 3 , TiO 2 , Al 2 O 3 and CaF 2 by standard techniques (mechanical exfoliation, optical and atomic force microscopy). On the substrates under consideration we find a similar distribution of single layer, bilayer and few-layer graphene and graphite flakes as with conventional SiO 2 substrates. The optical contrast C of a single graphene layer on any of those substrates is determined by calculating the optical properties of a two-dimensional metallic sheet on the surface of a dielectric, which yields values between C = -1.5% (G/TiO 2 ) and C = -8.8% (G/CaF 2 ). This contrast is in reasonable agreement with experimental data and is sufficient to make identification by an optical microscope possible. The graphene layers cover the crystalline substrate in a carpet-like mode and the height of single layer graphene on any of the crystalline substrates as determined by atomic force microscopy is d SLG = 0.34 nm and thus much smaller than on SiO 2 .

  20. Crystalline maricite NaFePO4 as a positive electrode material for sodium secondary batteries operating at intermediate temperature

    Science.gov (United States)

    Hwang, Jinkwang; Matsumoto, Kazuhiko; Orikasa, Yuki; Katayama, Misaki; Inada, Yasuhiro; Nohira, Toshiyuki; Hagiwara, Rika

    2018-02-01

    Maricite NaFePO4 (m-NaFePO4) was investigated as a positive electrode material for intermediate-temperature operation of sodium secondary batteries using ionic liquid electrolytes. Powdered m-NaFePO4 was prepared by a conventional solid-state method at 873 K and subsequently fabricated in two different conditions; one is ball-milled in acetone and the other is re-calcined at 873 K after the ball-milling. Electrochemical properties of the electrodes prepared with the as-synthesized m-NaFePO4, the ball-milled m-NaFePO4, and the re-calcined m-NaFePO4 were investigated in Na[FSA]-[C2C1im][FSA] (C2C1im+ = 1-ethyl-3-methylimidazolium, FSA- = bis(fluorosulfonyl)amide) ionic liquid electrolytes at 298 K and 363 K to assess the effects of temperature and particle size on their electrochemical properties. A reversible charge-discharge capacity of 107 mAh g-1 was achieved with a coulombic efficiency >98% from the 2nd cycle using the ball-milled m-NaFePO4 electrode at a C-rate of 0.1 C and 363 K. Electrochemical impedance spectroscopy using m-NaFePO4/m-NaFePO4 symmetric cells indicated that inactive m-NaFePO4 becomes an active material through ball-milling treatment and elevation of operating temperature. X-ray diffraction analysis of crystalline m-NaFePO4 confirmed the lattice contraction and expansion upon charging and discharging, respectively. These results indicate that the desodiation-sodiation process in m-NaFePO4 is reversible in the intermediate-temperature range.

  1. Stoichiometrical trends in differential scanning calorimetry measurements on phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Michael; Linn, Malte; Wuttig, Matthias [I. Physikalisches Institut, RWTH Aachen University, Aachen (Germany)

    2009-07-01

    Phase-change materials are alloys which can be rapidly switched between two metastable states, the amorphous and the crystalline phase. At the same time they show pronounced contrast in their electrical and optical properties. They are widely used as the functional layer in rewritable optical discs. Prototypes of electrical devices employing phase change materials as non-volatile memory are already entering the market. Here we present calorimetric measurements, mainly on ternary Ge-Sb-Te alloys. Scratched-off thin film samples were heated in a differential scanning calorimeter to measure the transition from as-deposited amorphous to metastable crystalline phase and finally to the stable crystalline phase. The different transition temperatures will be analysed as a function of stoichiometry in order to improve the understanding of their interconnection.

  2. Quantitative determination of amorphous content in ceramic materials using x-ray powder diffraction

    International Nuclear Information System (INIS)

    Kuchinski, M.A.; Hubbard, C.R.

    1988-01-01

    A quantitative technique which employs a modified method of additions approach to analyze for low amorphous content in crystalline matrices was developed and tested. Known amounts of amorphous material are added to the starting powder. The method uses the ratio of a measure of the intensity of the amorphous phase corrected for background to the background corrected intensity of a reference line from a crystalline phase. The amorphous spiking phase must be close in composition to the amorphous phase existing in the analyte. A critical step of the method is to correctly establish the background intensity. A completely crystalline material of similar scattering power was used to establish background intensity

  3. Early hydration of portland cement with crystalline mineral additions

    International Nuclear Information System (INIS)

    Rahhal, V.; Talero, R.

    2005-01-01

    This research presents the effects of finely divided crystalline mineral additions (quartz and limestone), commonly known as filler, on the early hydration of portland cements with very different mineralogical composition. The used techniques to study the early hydration of blended cements were conduction calorimeter, hydraulicity (Fratini's test), non-evaporable water and X-ray diffraction. Results showed that the stimulation and the dilution effects increase when the percentage of crystalline mineral additions used is increased. Depending on the replacement proportion, the mineralogical cement composition and the type of crystalline addition, at 2 days, the prevalence of the dilution effect or the stimulation effect shows that crystalline mineral additions could act as sites of heat dissipation or heat stimulation, respectively

  4. Crystalline beam ground state

    International Nuclear Information System (INIS)

    Wei, Jie; Li, Xiao-Ping

    1993-01-01

    In order to employ molecular dynamics (MD) methods, commonly used in condensed matter physics, we have derived the equations of motion for a beam of charged particles in the rotating rest frame of the reference particle. We include in the formalism that the particles are confined by the guiding and focusing magnetic fields, and that they are confined in a conducting vacuum pipe while interacting with each other via a Coulomb force. Numerical simulations using MD methods has been performed to obtain the equilibrium crystalline beam structure. The effect of the shearing force, centrifugal force, and azimuthal variation of the focusing strength are investigated. It is found that a constant gradient storage ring can not give a crystalline beam, but that an alternating-gradient (AG) structure can. In such a machine the ground state is, except for one-dimensional (1-D) crystals, time dependent. The ground state is a zero entropy state, despite the time-dependent, periodic variation of the focusing force. The nature of the ground state, similar to that found by Schiffer et al. depends upon the density and the relative focusing strengths in the transverse directions. At low density, the crystal is 1-D. As the density increases, it transforms into various kinds of 2-D and 3-D crystals. If the energy of the beam is higher than the transition energy of the machine, the crystalline structure can not be formed for lack of radial focusing

  5. Liquid crystalline biopolymers: A new arena for liquid crystal research

    International Nuclear Information System (INIS)

    Rizvi, Tasneem Zahra

    2001-07-01

    This paper gives a brief introduction to liquid crystals on the basis of biopolymers and reviews literature on liquid crystalline behaviour of biopolymers both in vitro and in vivo in relation to their implications in the fields of biology, medicine and material science. Knowledge in the field of biological liquid crystals is crucial for understanding complex phenomena at supramolecular level which will give information about processes involved in biological organization and function. The understanding of the interaction of theses crystals with electric, magnetic, optical and thermal fields will uncover mechanisms of near quantum-energy detection capabilities of biosystems

  6. Quantitative aspects of crystalline lactose in milk products

    NARCIS (Netherlands)

    Roetman, K.

    1982-01-01

    The occurrence of crystalline lactose in milk products and its influence on their physical properties are briefly reviewed. The importance of the quantitive determination of crystalline lactose for scientific and industrial purposes is indicated, and a summary is given of our earlier work. This

  7. Flexible-CMOS and biocompatible piezoelectric AlN material for MEMS applications

    International Nuclear Information System (INIS)

    Jackson, Nathan; Keeney, Lynette; Mathewson, Alan

    2013-01-01

    The development of a CMOS compatible flexible piezoelectric material is desired for numerous applications and in particular for biomedical MEMS devices. Aluminum nitride (AlN) is the most commonly used CMOS compatible piezoelectric material, which is typically deposited on Si in order to enhance the c-axis (002) crystal orientation which gives AlN its high piezoelectric properties. This paper reports on the successful deposition of AlN on polyimide (PI-2611) material. The AlN deposited has a FWHM (002) value of 5.1° and a piezoelectric d 33 value of 1.12 pm V −1 , and SEM images show high quality columnar grains. The highly crystalline AlN material is due to the semi-crystalline properties of the polyimide film used. Cytotoxicity testing showed the AlN/polyimide material to be non-toxic to 3T3 cells and primary neurons. Surface properties of the AlN/polyimide film were evaluated as they have a significant effect on the adhesion of cells to the film. The results show neurons adhering to the AlN surface. The results of this paper show the characterization of a new flexible-CMOS and biocompatible AlN/polyimide material for MEMS devices with improved crystallinity and piezoelectric properties. (paper)

  8. Attenuation of Thermal Neutrons by Crystalline Silicon

    International Nuclear Information System (INIS)

    Adib, M.; Habib, N.; Ashry, A.; Fathalla, M.

    2002-01-01

    A simple formula is given which allows to calculate the contribution of the total neutron cross - section including the Bragg scattering from different (hkt) planes to the neutron * transmission through a solid crystalline silicon. The formula takes into account the silicon form of poly or mono crystals and its parameters. A computer program DSIC was developed to provide the required calculations. The calculated values of the total neutron cross-section of perfect silicon crystal at room and liquid nitrogen temperatures were compared with the experimental ones. The obtained agreement shows that the simple formula fits the experimental data with sufficient accuracy .A good agreement was also obtained between the calculated and measured values of polycrystalline silicon in the energy range from 5 eV to 500μ eV. The feasibility study on using a poly-crystalline silicon as a cold neutron filter and mono-crystalline as a thermal neutron one is given. The optimum crystal thickness, mosaic spread, temperature and cutting plane for efficiently transmitting the thermal reactor neutrons, while rejecting both fast neutrons and gamma rays accompanying the thermal ones for the mono crystalline silicon are also given

  9. The effect of the stretching of PLA extruded films on their crystallinity and gas barrier properties

    Science.gov (United States)

    Guinault, A.; Menary, G. H.; Courgneau, C.; Griffith, D.; Ducruet, V.; Miri, V.; Sollogoub, C.

    2011-05-01

    Driven by environmental concerns, new polymers based on renewable resources are arriving on the market to replace conventional polymers, obtained from petroleum, for different applications like food packaging. One of the most prominent polymers among these materials is poly(lactic acid) (PLA), a biodegradable, thermoplastic, aliphatic polyester derived from renewable resources, such as corn starch (in the USA) or sugarcanes (in the rest of the world). However this polymer presents different disadvantages and especially low gas barrier properties [1]. Thermal crystallization can be used to increase its gas barrier properties but long times are necessary [2] and are not compatible with an industrial process. Another way to increase the gas barrier properties consists in stretching the film in order to increase its crystallinity and so its diffusion coefficient. We have prepared stretched PLA films with different stretch ratio and we have studied the effect of the stretching parameters on the gas barrier properties of PLA films. Finally we compared this process with the isothermal crystallization process by taking into account the crystallinity degree and the crystalline morphology.

  10. Highly Crystalline C8-BTBT Thin-Film Transistors by Lateral Homo-Epitaxial Growth on Printed Templates.

    Science.gov (United States)

    Janneck, Robby; Pilet, Nicolas; Bommanaboyena, Satya Prakash; Watts, Benjamin; Heremans, Paul; Genoe, Jan; Rolin, Cedric

    2017-11-01

    Highly crystalline thin films of organic semiconductors offer great potential for fundamental material studies as well as for realizing high-performance, low-cost flexible electronics. The fabrication of these films directly on inert substrates is typically done by meniscus-guided coating techniques. The resulting layers show morphological defects that hinder charge transport and induce large device-to-device variability. Here, a double-step method for organic semiconductor layers combining a solution-processed templating layer and a lateral homo-epitaxial growth by a thermal evaporation step is reported. The epitaxial regrowth repairs most of the morphological defects inherent to meniscus-guided coatings. The resulting film is highly crystalline and features a mobility increased by a factor of three and a relative spread in device characteristics improved by almost half an order of magnitude. This method is easily adaptable to other coating techniques and offers a route toward the fabrication of high-performance, large-area electronics based on highly crystalline thin films of organic semiconductors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Crystalline silicotitanates -- novel commercial cesium ion exchangers

    International Nuclear Information System (INIS)

    Braun, R.; Dangieri, T.J.; Fennelly, D.J.

    1996-01-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CST), invented by researchers at Sandia National Laboratories and Texas A ampersand M University, has been commercialized in a joint Sandia-UOP effort. The original developmental materials exhibited high selectivity for the ion exchange of cesium, strontium, and several other radionuclides from highly alkaline solutions containing molar concentrations of Na + . The materials also showed excellent chemical and radiation stability. These CST properties made them excellent candidates for treatment of solutions such as the Hanford tank supernates and other DOE radwastes. Sandia and UOP, under a Cooperative Research and Development Agreement (CRADA), developed CSTs in the powdered form and in an engineered form suitable for column ion exchange use. A continuous-flow, column ion exchange process is expected to be used to remove Cs and other radionuclides from the Hanford supernatant. The powder material invented by Sandia and Texas A ampersand M consists of submicron-size particles. It is not designed for column ion exchange but may be used in other applications such as batch waste processing. Data are also presented confirming the excellent stability of the commercial CSTs over a broad pH range and the high radiation stability of the exchangers. In addition, data are provided that demonstrate the high physical strength and attrition resistance of IONSIV reg-sign IE-911, critical properties for column ion exchange applications

  12. Single-crystalline ceria nanocubes: size-controlled synthesis, characterization and redox property

    International Nuclear Information System (INIS)

    Yang Zhiqiang; Zhou Kebin; Liu Xiangwen; Tian Qun; Lu Deyi; Yang Sen

    2007-01-01

    Single-crystalline CeO 2 nanocubes were synthesized through a hydrothermal treatment. By varying reaction temperature and the NaOH concentration, the size control of CeO 2 nanocubes has been achieved, which produces the nanocubes with a controllable edge length in the regime of 20-360 nm. HRTEM studies reveal that the CeO 2 nanocubes expose their high energy {001} planes. Consequently, it is demonstrated that the CeO 2 nanocubes exhibit excellent reducibility and high oxygen storage capacity, indicating they are potential novel catalytic materials

  13. Pilot study of the dose in crystalline lens in the interventional radiology practice

    International Nuclear Information System (INIS)

    Castro, A.; Martinez, A.; Fernandez, A.; Molina, D.; Sanchez, L.; Diaz, A.

    2014-08-01

    Hp(10) and dosimeters for crystalline lens with three detectors of the same material to evaluate the personal equivalent dose Hp(3). The selected detectors were previously subjected to tests recommended by the standard IEC-61066 and segregated by their individual sensibility. For the reading dosimeters was used the automatic system TLD RADOS model of the Laboratorio de Dosimetria Externa del Centro de Proteccion e Higiene de las Radiaciones, calibrated in function of the magnitude to evaluate. This study allowed demonstrating that the application of the new established dose limit for crystalline lens can result in different implications from the operational view point in the radiological surveillance programs. Also it facilitated the diffusion of some recommendations regarding type of singular radiological surveillance and use frequency for the OEP during the interventional procedures. (author)

  14. Epitaxial hexagonal materials on IBAD-textured substrates

    Science.gov (United States)

    Matias, Vladimir; Yung, Christopher

    2017-08-15

    A multilayer structure including a hexagonal epitaxial layer, such as GaN or other group III-nitride (III-N) semiconductors, a oriented textured layer, and a non-single crystal substrate, and methods for making the same. The textured layer has a crystalline alignment preferably formed by the ion-beam assisted deposition (IBAD) texturing process and can be biaxially aligned. The in-plane crystalline texture of the textured layer is sufficiently low to allow growth of high quality hexagonal material, but can still be significantly greater than the required in-plane crystalline texture of the hexagonal material. The IBAD process enables low-cost, large-area, flexible metal foil substrates to be used as potential alternatives to single-crystal sapphire and silicon for manufacture of electronic devices, enabling scaled-up roll-to-roll, sheet-to-sheet, or similar fabrication processes to be used. The user is able to choose a substrate for its mechanical and thermal properties, such as how well its coefficient of thermal expansion matches that of the hexagonal epitaxial layer, while choosing a textured layer that more closely lattice matches that layer.

  15. Nonlinear optical properties of TeO$_2$ crystalline phases from first principles

    OpenAIRE

    Berkaine, Nabil; Orhan, Emmanuelle; Masson, Olivier; Thomas, Philippe; Junquera, Javier

    2010-01-01

    We have computed second and third nonlinear optical susceptibilities of two crystalline bulk tellurium oxide polymorphs: $\\alpha$-TeO$_{2}$ (the most stable crystalline bulk phase) and $\\gamma$-TeO$_{2}$ (the crystalline phase that ressembles the more to the glass phase. Third order nonlinear susceptibilities of the crystalline phases are two orders of magnitude larger than $\\alpha$-SiO$_{2}$ cristoballite, thus extending the experimental observations on glasses to the case of crystalline com...

  16. Characterization of thin-film silicon materials and solar cells through numerical modeling

    NARCIS (Netherlands)

    Pieters, B.E.

    2008-01-01

    At present most commercially available solar cells are made of crystalline silicon (c-Si). The disadvantages of crystalline silicon solar cells are the high material cost and energy consumption during production. A cheaper alternative can be found in thin-film silicon solar cells. The thin-film

  17. Cesium removal using crystalline silicotitanate. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-05-01

    Approximately 100 million gallons of radioactive waste is stored in underground storage tanks at the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation, and Savannah River Site (SRS). Most of the radioactivity comes from 137 Cs, which emits high-activity gamma radiation. The Cesium Removal System is a modular, transportable, ion-exchange system configured as a compact processing unit. Liquid tank waste flows through columns packed with solid material, called a sorbent, that selectively adsorbs cesium and allows the other materials to pass through. The sorbent is crystalline silicotitanate (CST), an engineered material with a high capacity for sorbing cesium from alkaline wastes. The Cesium Removal System was demonstrated at Oak Ridge using Melton Valley Storage Tank (MVST) waste for feed. Demonstration operations began in September 1996 and were completed during June 1997. Prior to the demonstration, a number of ion-exchange materials were evaluated at Oak Ridge with MVST waste. Also, three ion-exchange materials and three waste types were tested at Hanford. These bench-scale tests were conducted in a hot cell. Hanford's results showed that 300 times less sorbent was used by selecting Ionsiv IE-911 over organic ion-exchange resins for cesium removal. This paper gives a description of the technology and discusses its performance, applications, cost, regulatory and policy issues and lessons learned

  18. Novel polypyrrole films with excellent crystallinity and good thermal stability

    International Nuclear Information System (INIS)

    Jeeju, Pullarkat P.; Varma, Sreekanth J.; Francis Xavier, Puthampadath A.; Sajimol, Augustine M.; Jayalekshmi, Sankaran

    2012-01-01

    Polypyrrole has drawn a lot of interest due to its high thermal and environmental stability in addition to high electrical conductivity. The present work highlights the enhanced crystallinity of polypyrrole films prepared from the redoped sample solution. Initially hydrochloric acid doped polypyrrole was prepared by chemical oxidative polymerization of pyrrole using ammonium peroxidisulphate as oxidant. The doped polypyrrole was dedoped using ammonia solution and then redoped with camphor sulphonic acid. Films were coated on ultrasonically cleaned glass substrates from the redoped sample solution in meta-cresol. The enhanced crystallinity of the polypyrrole films has been established from X-ray diffraction (XRD) studies. The room temperature electrical conductivity of the redoped polypyrrole film is about 30 times higher than that of the hydrochloric acid doped pellet sample. The results of Raman spectroscopy, Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA) of the samples support the enhancement in crystallinity. Percentage crystallinity of the samples is estimated from XRD and DSC data. The present work is significant, since crystallinity of films is an important parameter for selecting polymers for specific applications. - Highlights: ► Polypyrrole films redoped with CSA have been prepared from meta-cresol solution. ► The solution casted films exhibit semi-crystallinity and good thermal stability. ► Percentage crystallinity estimated using XRD and DSC analysis is about 65%. ► Raman studies support the enhancement in crystallinity based on XRD and DSC data. ► The conductivity of the film is 30 times higher than that of HCl doped sample.

  19. Novel polypyrrole films with excellent crystallinity and good thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Jeeju, Pullarkat P., E-mail: jeejupp@gmail.com [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Cochin-22, Kerala (India); Varma, Sreekanth J.; Francis Xavier, Puthampadath A.; Sajimol, Augustine M. [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Cochin-22, Kerala (India); Jayalekshmi, Sankaran, E-mail: jayalekshmi@cusat.ac.in [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Cochin-22, Kerala (India)

    2012-06-15

    Polypyrrole has drawn a lot of interest due to its high thermal and environmental stability in addition to high electrical conductivity. The present work highlights the enhanced crystallinity of polypyrrole films prepared from the redoped sample solution. Initially hydrochloric acid doped polypyrrole was prepared by chemical oxidative polymerization of pyrrole using ammonium peroxidisulphate as oxidant. The doped polypyrrole was dedoped using ammonia solution and then redoped with camphor sulphonic acid. Films were coated on ultrasonically cleaned glass substrates from the redoped sample solution in meta-cresol. The enhanced crystallinity of the polypyrrole films has been established from X-ray diffraction (XRD) studies. The room temperature electrical conductivity of the redoped polypyrrole film is about 30 times higher than that of the hydrochloric acid doped pellet sample. The results of Raman spectroscopy, Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA) of the samples support the enhancement in crystallinity. Percentage crystallinity of the samples is estimated from XRD and DSC data. The present work is significant, since crystallinity of films is an important parameter for selecting polymers for specific applications. - Highlights: Black-Right-Pointing-Pointer Polypyrrole films redoped with CSA have been prepared from meta-cresol solution. Black-Right-Pointing-Pointer The solution casted films exhibit semi-crystallinity and good thermal stability. Black-Right-Pointing-Pointer Percentage crystallinity estimated using XRD and DSC analysis is about 65%. Black-Right-Pointing-Pointer Raman studies support the enhancement in crystallinity based on XRD and DSC data. Black-Right-Pointing-Pointer The conductivity of the film is 30 times higher than that of HCl doped sample.

  20. Determination of the crystalline structure of scale solids from the 16H evaporator gravity drain line to tank 38H

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-01

    August 2015, scale solids from the 16H Evaporator Gravity Drain Line (GDL) to the Tank 38H were delivered to SRNL for analysis. The desired analytical goal was to identify and confirm the crystalline structure of the scale material and determine if the form of the aluminosilicate mineral was consistent with previous analysis of the scale material from the GDL.

  1. Characterization of highly crystalline lead iodide nanosheets prepared by room-temperature solution processing

    Science.gov (United States)

    Frisenda, Riccardo; Island, Joshua O.; Lado, Jose L.; Giovanelli, Emerson; Gant, Patricia; Nagler, Philipp; Bange, Sebastian; Lupton, John M.; Schüller, Christian; Molina-Mendoza, Aday J.; Aballe, Lucia; Foerster, Michael; Korn, Tobias; Niño, Miguel Angel; Perez de Lara, David; Pérez, Emilio M.; Fernandéz-Rossier, Joaquín; Castellanos-Gomez, Andres

    2017-11-01

    Two-dimensional (2D) semiconducting materials are particularly appealing for many applications. Although theory predicts a large number of 2D materials, experimentally only a few of these materials have been identified and characterized comprehensively in the ultrathin limit. Lead iodide, which belongs to the transition metal halides family and has a direct bandgap in the visible spectrum, has been known for a long time and has been well characterized in its bulk form. Nevertheless, studies of this material in the nanometer thickness regime are rather scarce. In this article we demonstrate an easy way to synthesize ultrathin, highly crystalline flakes of PbI2 by precipitation from a solution in water. We thoroughly characterize the produced thin flakes with different techniques ranging from optical and Raman spectroscopy to temperature-dependent photoluminescence and electron microscopy. We compare the results to ab initio calculations of the band structure of the material. Finally, we fabricate photodetectors based on PbI2 and study their optoelectronic properties.

  2. Injection molding of ceramic filled polypropylene: The effect of thermal conductivity and cooling rate on crystallinity

    International Nuclear Information System (INIS)

    Suplicz, A.; Szabo, F.; Kovacs, J.G.

    2013-01-01

    Highlights: • BN, talc and TiO 2 in 30 vol% were compounded with polypropylene matrix. • According to the DSC measurements, the fillers are good nucleating agents. • The thermal conductivity of the fillers influences the cooling rate of the melt. • The higher the cooling rate is, the lower the crystallinity in the polymer matrix. - Abstract: Three different nano- and micro-sized ceramic powders (boron-nitride (BN), talc and titanium-dioxide (TiO 2 )) in 30 vol% have been compounded with a polypropylene (PP) matrix. Scanning electron microscopy (SEM) shows that the particles are dispersed smoothly in the matrix and larger aggregates cannot be discovered. The cooling gradients and the cooling rate in the injection-molded samples were estimated with numerical simulations and finite element analysis software. It was proved with differential scanning calorimetry (DSC) measurements that the cooling rate has significant influence on the crystallinity of the compounds. At a low cooling rate BN works as a nucleating agent so the crystallinity of the compound is higher than that of unfilled PP. On the other hand, at a high cooling rate, the crystallinity of the compound is lower than that of unfilled PP because of its higher thermal conductivity. The higher the thermal conductivity is, the higher the real cooling rate in the material, which influences the crystallization kinetics significantly

  3. Fourier transform infrared spectroscopic estimation of crystallinity in ...

    Indian Academy of Sciences (India)

    Wintec

    The crystallinity parameter is calculated by using a standard procedure which can be used to estimate the distribution of quartz in various rocks for mining purpose. The infrared ... The X-ray diffraction full ... crystallinity and trace mineral components of rocks (Partha- ... infrared techniques (Rice et al 1995). ... The absorption.

  4. Antibacterial photocatalytic activity of different crystalline TiO2 phases in oral multispecies biofilm.

    Science.gov (United States)

    Pantaroto, Heloisa N; Ricomini-Filho, Antonio P; Bertolini, Martinna M; Dias da Silva, José Humberto; Azevedo Neto, Nilton F; Sukotjo, Cortino; Rangel, Elidiane C; Barão, Valentim A R

    2018-07-01

    Titanium dioxide (TiO 2 ) incorporation in biomaterials is a promising technology due to its photocatalytic and antibacterial activities. However, the antibacterial potential of different TiO 2 crystalline structures on a multispecies oral biofilm remains unknown. We hypothesized that the different crystalline TiO 2 phases present different photocatalytic and antibacterial activities. Three crystalline TiO 2 films were deposited by magnetron sputtering on commercially pure titanium (cpTi), in order to obtain four groups: (1) machined cpTi (control); (2) A-TiO 2 (anatase); (3) M-TiO 2 (mixture of anatase and rutile); (4) R-TiO 2 (rutile). The morphology, crystalline phase, chemical composition, hardness, elastic modulus and surface free energy of the surfaces were evaluated. The photocatalytic potential was assessed by methylene blue degradation assay. The antibacterial activity was evaluated on relevant oral bacteria, by using a multispecies biofilm (Streptococcus sanguinis, Actinomyces naeslundii and Fusobacterium nucleatum) formed on the treated titanium surfaces (16.5h) followed by UV-A light exposure (1h) to generate reactive oxygen species production. All TiO 2 films presented around 300nm thickness and improved the hardness and elastic modulus of cpTi surfaces (p0.05 vs. control). This study brings new insights on the development of extra oral protocols for the photocatalytic activity of TiO 2 in oral biofilm-associated disease. Anatase and mixture-TiO 2 showed antibacterial activity on this oral bacterial biofilm, being promising surface coatings for dental implant components. Copyright © 2018 The Academy of Dental Materials. All rights reserved.

  5. Preparation and structural characterization of the thermoluminescent material CaSO{sub 4}: Dy; Preparacion y caracterizacion estructural del material termoluminiscente CaSO{sub 4}: Dy

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez R, A.; Azorin, J. [UAM-I, 09340 Mexico D.F. (Mexico); Gonzalez M, P.R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Rivera, T. [CICATA-IPN, Legaria 694, 11500 Mexico D.F. (Mexico)

    2005-07-01

    The grade of crystallinity of a material is important so that the one is presented the thermoluminescence phenomenon; for what is necessary to study those structural characteristic of a TL material and to correlate them with its TL response when being irradiated with ionizing radiation. The calcium sulfate activated with Dysprosium (CaSO{sub 4}: Dy) it is a material that has demonstrated its efficiency in the dosimetry of the ionizing radiation for the thermoluminescence method. In this work the structural characterization of this prepared material for the recrystallization method by means of the evaporation of the solvent and their relationship with their TL response is presented. The results showed that the best material to be used in thermoluminescent dosimetry presents a crystalline structure in orthorhombic phase and a particle size in the interval of 80 {mu}m to 200 {mu}m. (Author)

  6. Used fuel disposition in crystalline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kalinina, Elena Arkadievna [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jerden, James L. [Argonne National Lab. (ANL), Argonne, IL (United States); Copple, Jacqueline M. [Argonne National Lab. (ANL), Argonne, IL (United States); Cruse, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Ebert, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Buck, E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Eittman, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tinnacher, R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tournassat, Christophe. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Davis, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Viswanathan, H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Joseph, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-01

    The U.S. Department of Energy Office of Nuclear Energy, Office of Fuel Cycle Technology established the Used Fuel Disposition Campaign (UFDC) in fiscal year 2010 (FY10) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel and high level nuclear waste. The objective of the Crystalline Disposal R&D Work Package is to advance our understanding of long-term disposal of used fuel in crystalline rocks and to develop necessary experimental and computational capabilities to evaluate various disposal concepts in such media.

  7. Irradiation induced crystalline to amorphous transition

    International Nuclear Information System (INIS)

    Bourgoin, J.

    1980-01-01

    Irradiation of a crystalline solid with energetic heavy particles results in cascades of defects which, with increasing dose, overlap and form a continuous disordered layer. In semiconductors the physical properties of such disordered layers are found to be similar to those of amorphous layers produced by evaporation. It is shown in the case of silicon, that the transition from a disordered crystalline (X) layer to an amorphous (α) layer occurs when the Gibbs energy of the X phase and of the defects it contains becomes larger than the Gibbs energy of the α phase. (author)

  8. Observations on the development of the crystalline bacterial biofilms that encrust and block Foley catheters.

    Science.gov (United States)

    Stickler, D J; Morgan, S D

    2008-08-01

    The care of many patients undergoing long-term bladder catheterisation is complicated when the flow of urine through the catheter is blocked by encrustation. The problem results from infection by urease-producing bacteria, especially Proteus mirabilis, and the subsequent formation of crystalline biofilms on the catheter. The aim of this study was to discover how P. mirabilis initiates the development of these crystalline biofilms. The early stages in the formation of the biofilms were observed on a range of Foley catheters in a laboratory model of the catheterised bladder. Scanning electron micrographs revealed that when all-silicone, silicone-coated latex, hydrogel-coated latex, hydrogel/silver-coated latex and nitrofurazone silicone catheters were inserted into bladder models containing P. mirabilis and alkaline urine, their surfaces were rapidly coated with a microcrystalline foundation layer. X-ray microanalysis showed that this material was composed of calcium phosphate. Bacterial colonisation of the foundation layer followed and by 18h the catheters were encrusted by densely populated crystalline P. mirabilis biofilms. These observations have important implications for the development of encrustation-resistant catheters. In the case of silver catheters for example, bacterial cells can attach to the crystalline foundation layer and continue to grow, protected from contact with the underlying silver. If antimicrobials are to be incorporated into catheters to prevent encrustation, it is important that they diffuse into the urine and prevent the rise in pH that triggers crystal formation.

  9. Phase-change materials: vibrational softening upon crystallization and its impact on thermal properties

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Toshiyuki [Materials Science and Analysis Technology Centre, Panasonic Corporation, Osaka (Japan); Japan Synchrotron Radiation Research Institute Hyogo (Japan); Yamada, Noboru [Digital and Network Technology Development Centre, Panasonic Corporation, Osaka (Japan); Japan Synchrotron Radiation Research Institute Hyogo (Japan); Kojima, Rie [Digital and Network Technology Development Centre, Panasonic Corporation, Osaka (Japan); Shamoto, Shinichi [Neutron Science Research Centre, Japan Atomic Energy Research Institute, Ibaraki (Japan); Sato, Masugu; Tanida, Hajime; Uruga, Tomoya; Kohara, Shinji [Japan Synchrotron Radiation Research Institute, Hyogo (Japan); Takata, Masaki [SPring-8/RIKEN, Hyogo, Japan, Department of Advanced Materials Science, School of Frontier Sciences, The University of Tokyo, Chiba (Japan); Zalden, Peter; Bruns, Gunnar; Wuttig, Matthias [I. Physikalisches Institut und JARA-FIT, RWTH Aachen Univ. (Germany); Sergueev, Ilya [European Synchrotron Radiation Facility, Grenoble (France); Wille, Hans Christian [Deutsches Elektronen-Synchrotron, Hamburg (Germany); Hermann, Raphael Pierre [Juelich Centre for Neutron Science JCNS and Peter Gruenberg, Institut PGI, JARA-FIT, Forschungszentrum Juelich GmbH (Germany); Faculte des Sciences, Universite de Liege (Belgium)

    2011-06-21

    Crystallization of an amorphous solid is usually accompanied by a significant change of transport properties, such as an increase in thermal and electrical conductivity. This fact underlines the importance of crystalline order for the transport of charge and heat. Phase-change materials, however, reveal a remarkably low thermal conductivity in the crystalline state. The small change in this conductivity upon crystallization points to unique lattice properties. The present investigation reveals that the thermal properties of the amorphous and crystalline state of phase-change materials show remarkable differences such as higher thermal displacements and a more pronounced anharmonic behavior in the crystalline phase. These findings are related to the change of bonding upon crystallization, which leads to an increase of the sound velocity and a softening of the optical phonon modes at the same time. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Planar-integrated single-crystalline perovskite photodetectors

    KAUST Repository

    Saidaminov, Makhsud I.

    2015-11-09

    Hybrid perovskites are promising semiconductors for optoelectronic applications. However, they suffer from morphological disorder that limits their optoelectronic properties and, ultimately, device performance. Recently, perovskite single crystals have been shown to overcome this problem and exhibit impressive improvements: low trap density, low intrinsic carrier concentration, high mobility, and long diffusion length that outperform perovskite-based thin films. These characteristics make the material ideal for realizing photodetection that is simultaneously fast and sensitive; unfortunately, these macroscopic single crystals cannot be grown on a planar substrate, curtailing their potential for optoelectronic integration. Here we produce large-area planar-integrated films made up of large perovskite single crystals. These crystalline films exhibit mobility and diffusion length comparable with those of single crystals. Using this technique, we produced a high-performance light detector showing high gain (above 104 electrons per photon) and high gain-bandwidth product (above 108 Hz) relative to other perovskite-based optical sensors.

  11. General Theory of Absorption in Porous Materials: Restricted Multilayer Theory.

    Science.gov (United States)

    Aduenko, Alexander A; Murray, Andy; Mendoza-Cortes, Jose L

    2018-04-18

    In this article, we present an approach for the generalization of adsorption of light gases in porous materials. This new theory goes beyond Langmuir and Brunauer-Emmett-Teller theories, which are the standard approaches that have a limited application to crystalline porous materials by their unphysical assumptions on the amount of possible adsorption layers. The derivation of a more general equation for any crystalline porous framework is presented, restricted multilayer theory. Our approach allows the determination of gas uptake considering only geometrical constraints of the porous framework and the interaction energy of the guest molecule with the framework. On the basis of this theory, we calculated optimal values for the adsorption enthalpy at different temperatures and pressures. We also present the use of this theory to determine the optimal linker length for a topologically equivalent framework series. We validate this theoretical approach by applying it to metal-organic frameworks (MOFs) and show that it reproduces the experimental results for seven different reported materials. We obtained the universal equation for the optimal linker length, given the topology of a porous framework. This work applied the general equation to MOFs and H 2 to create energy-storage materials; however, this theory can be applied to other crystalline porous materials and light gases, which opens the possibility of designing the next generations of energy-storage materials by first considering only the geometrical constraints of the porous materials.

  12. One-Pot Synthesis of Tunable Crystalline Ni3 S4 @Amorphous MoS2 Core/Shell Nanospheres for High-Performance Supercapacitors.

    Science.gov (United States)

    Zhang, Yu; Sun, Wenping; Rui, Xianhong; Li, Bing; Tan, Hui Teng; Guo, Guilue; Madhavi, Srinivasan; Zong, Yun; Yan, Qingyu

    2015-08-12

    Transition metal sulfides gain much attention as electrode materials for supercapacitors due to their rich redox chemistry and high electrical conductivity. Designing hierarchical nanostructures is an efficient approach to fully utilize merits of each component. In this work, amorphous MoS(2) is firstly demonstrated to show specific capacitance 1.6 times as that of the crystalline counterpart. Then, crystalline core@amorphous shell (Ni(3)S(4)@MoS(2)) is prepared by a facile one-pot process. The diameter of the core and the thickness of the shell can be independently tuned. Taking advantages of flexible protection of amorphous shell and high capacitance of the conductive core, Ni(3)S(4) @amorphous MoS(2) nanospheres are tested as supercapacitor electrodes, which exhibit high specific capacitance of 1440.9 F g(-1) at 2 A g(-1) and a good capacitance retention of 90.7% after 3000 cycles at 10 A g(-1). This design of crystalline core@amorphous shell architecture may open up new strategies for synthesizing promising electrode materials for supercapacitors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Thermodynamics of Crystalline States

    CERN Document Server

    Fujimoto, Minoru

    2013-01-01

    Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium with the surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattice, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. New to this edition is the examination of magnetic crystals, where magnetic symmetry is essential for magnetic phase transitions. The multi-electron system is also discussed  theoretically, as a quantum-mechanical example, for superconductivity in metallic crystals. Throughout the book, the role played by the lattice is emphasized and studied in-depth. Thermod...

  14. Formation process of hierarchical structures in crystalline polymers as analyzed by simultaneous measurements of small-angle X-ray scattering and other techniques

    International Nuclear Information System (INIS)

    Yamamoto, Katsuhiro; Sakurai, Shinichi

    2006-01-01

    Crystalline polymers spontaneously form hierarchical structures, which provide us a potential use as a specialty material. Recently, not only a crystalline homopolymer but also semi-crystalline block copolymers and crystalline polymer blends have been attracting interests for the study of a hierarchical structure. In order to analyze such hierarchical structures in a variety of length scales, a simultaneous measurement of small-(SAXS) and wide-angle (WAXS) X-ray scattering with differential scanning calorimetry (DSC), or with small-angle light scattering (Hv-SALS) are most suitable. In this review, we show some examples of the simultaneous measurements. With DSC, exothermic heat flow can be simultaneously measured with X-ray scattering. On the other hand, with Hv-SALS it is possible to analyze evolution of a spherulitic structure, which is the structure at the highest rank in the hierarchy. For both cases, one can realize that it is impossible to obtain good statistics for SAXS and WAXS measurements without synchrotron radiations. (author)

  15. Surfactant media to grow new crystalline cobalt 1,3,5-benzenetricarboxylate metal-organic frameworks

    KAUST Repository

    Lu, Haisheng

    2014-08-18

    In this report, three new metal-organic frameworks (MOFs), [Co 3(μ3-OH)(HBTC)(BTC)2Co(HBTC)]·(HTEA) 3·H2O (NTU-Z30), [Co(BTC)] ·HTEA·H2O (NTU-Z31), [Co3(BTC) 4]·(HTEA)4 (NTU-Z32), where H3BTC = 1,3,5-benzenetricarboxylic acid, TEA = triethylamine, and NTU = Nanyang Technological University, have been successfully synthesized under surfactant media and have been carefully characterized by single-crystal X-ray diffraction, powder X-ray diffraction, thermogravimetric analysis, and IR spectromtry. NTU-Z30 has an unusual trimeric [Co3(μ3-OH)(COO) 7] secondary building unit (SBU), which is different from the well-known trimeric [Co3O(COO)6] SBU. The topology studies indicate that NTU-Z30 and NTU-Z32 possess two new topologies, 3,3,6,7-c net and 2,8-c net, respectively, while NTU-Z31 has a known topology rtl type (3,6-c net). Magnetic analyses show that all three materials have weak antiferromagnetic behavior. Furthermore, NTU-Z30 has been selected as the heterogeneous catalyst for the aerobic epoxidation of alkene, and our results show that this material exhibits excellent catalytic activity as well as good stability. Our success in growing new crystalline cobalt 1,3,5- benzenetricarboxylate MOFs under surfactant media could pave a new road to preparing new diverse crystalline inorganic materials through a surfactant-thermal method. © 2014 American Chemical Society.

  16. The quataron concept: a key to solve the problem of the nanostate

    Science.gov (United States)

    Askhabov, A. M.

    2003-04-01

    In a number of our works (Askhabov, 1998-2002) we have described a set of ideas and principles dealing with structural organization of substance in the nanorange and its role for formation of crystalline and noncrystalline materials. These ideas have been collectively referred to as the “quataron concept”. Central in this new concept is the idea that there are specific nanosize clusters arising under non-equilibrium conditions. These clusters are understood as a peculiar form of structural organization of substance at the nanolevel and referred to as "hidden" phase clusters or quatarons. As inequilibrium objects, quatarons are capable of self-organization and self-development. With their valencies fully realized (in covalent interactions), they can become large molecules; with a three-dimensional ordering (atom arrangement in a crystal lattice) they will produce crystalline particles. Quatarons are the basis for all kinds of equilibrium nanostructures from ordinary tetra- and octahedral groupings to the widely known fullerenes or dense dodecahedral and icosahedral clusters, colloidal, fractal particles. In particular, the quataron theory offers a very simple solution to the fullerene problem. Quatarons are fullerene predecessors. The fullerene architecture is dictated by hollow quatarons. Besides, it has been found that only clusters more than ~1.2 nm in size can become potenial centers of crystallization. Thus, quatarons seem to be behind all the rest of nanoparticles, including nanocrystals. This theory also broadens our understanding of the amorphous state. If for some reason quatarons or their aggregates fail to crystallize, for example, as a result of the fractal structure of the cluster surface or owing to their non-crystallographic (icosahedral) shape, then in the condensed state they give rise to a special class of solid ultradisperse materials (quatarites) of various degrees of ordering. The closest analogue of such materials is opal, a material made

  17. Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes

    KAUST Repository

    Cui, Li-Feng

    2009-01-14

    Silicon is an attractive alloy-type anode material for lithium ion batteries because of its highest known capacity (4200 mAh/g). However silicon\\'s large volume change upon lithium insertion and extraction, which causes pulverization and capacity fading, has limited its applications. Designing nanoscale hierarchical structures is a novel approach to address the issues associated with the large volume changes. In this letter, we introduce a core-shell design of silicon nanowires for highpower and long-life lithium battery electrodes. Silicon crystalline- amorphous core-shell nanowires were grown directly on stainless steel current collectors by a simple one-step synthesis. Amorphous Si shells instead of crystalline Si cores can be selected to be electrochemically active due to the difference of their lithiation potentials. Therefore, crystalline Si cores function as a stable mechanical support and an efficient electrical conducting pathway while amorphous shells store Li ions. We demonstrate here that these core-shell nanowires have high charge storage capacity (̃1000 mAh/g, 3 times of carbon) with ̃90% capacity retention over 100 cycles. They also show excellent electrochemical performance at high rate charging and discharging (6.8 A/g, ̃20 times of carbon at 1 h rate). © 2009 American Chemical Society.

  18. Morphology and crystallinity of sisal nanocellulose after sonication

    Science.gov (United States)

    Sosiati, H.; Wijayanti, D. A.; Triyana, K.; Kamiel, B.

    2017-09-01

    Different preparation methods on the natural fibers resulted in different morphology. However, the relationships between type of natural fibers, preparation methods and the morphology of produced nanocellulose could not be exactly defined. The sisal nanocellulose was presently prepared by alkalization and bleaching followed by sonication to verify changes in the morphology and crystallinity of nanocellulose related to the formation mechanism. The extracted microcellulose was subjected to scanning electron microscopy (SEM) and x-ray diffraction (XRD) analysis. The isolated cellulose nanospheres were examined with respect to morphology by SEM and transmission electron microscopy (TEM) and, to crystallinity by electron diffraction analysis. Bleaching after alkalization made the microfibrils clearly separated from each other to the individual fiber whose width of the single fiber was ranging from 6 to 13 µm. The XRD crystallinity index (CI) of microcellulose gradually increased after the chemical treatments; 83.12% for raw sisal fiber, 88.57% for alkali treated fiber and 94.03% for bleached fibers. The ultrasonic agitation after bleaching that was carried out at 750 Watt, 20 kHz and amplitude of 39% for 2 h produces homogeneous cellulose nanospheres less than 50 nm in diameter with relatively low crystallinity. The electron diffraction analysis confirmed that the low crystallinity of produced nnocellulose is related to the effect of chemical treatment done before sonication.

  19. Effect of glycation on α-crystallin structure and chaperone-like function

    Science.gov (United States)

    Kumar, P. Anil; Kumar, M. Satish; Reddy, G. Bhanuprakash

    2007-01-01

    The chaperone-like activity of α-crystallin is considered to play an important role in the maintenance of the transparency of the eye lens. However, in the case of aging and in diabetes, the chaperone function of α-crystallin is compromized, resulting in cataract formation. Several post-translational modifications, including non-enzymatic glycation, have been shown to affect the chaperone function of α-crystallin in aging and in diabetes. A variety of agents have been identified as the predominant sources for the formation of AGEs (advanced glycation end-products) in various tissues, including the lens. Nevertheless, glycation of α-crystallin with various sugars has resulted in divergent results. In the present in vitro study, we have investigated the effect of glucose, fructose, G6P (glucose 6-phosphate) and MGO (methylglyoxal), which represent the major classes of glycating agents, on the structure and chaperone function of α-crystallin. Modification of α-crystallin with all four agents resulted in the formation of glycated protein, increased AGE fluorescence, protein cross-linking and HMM (high-molecular-mass) aggregation. Interestingly, these glycation-related profiles were found to vary with different glycating agents. For instance, CML [Nϵ-(carboxymethyl)lysine] was the predominant AGE formed upon glycation of α-crystallin with these agents. Although fructose and MGO caused significant conformational changes, there were no significant structural perturbations with glucose and G6P. With the exception of MGO modification, glycation with other sugars resulted in decreased chaperone activity in aggregation assays. However, modification with all four sugars led to the loss of chaperone activity as assessed using an enzyme inactivation assay. Glycation-induced loss of α-crystallin chaperone activity was associated with decreased hydrophobicity. Furthermore, α-crystallin isolated from glycated TSP (total lens soluble protein) had also increased AGE

  20. XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite.

    Science.gov (United States)

    Reyes-Gasga, José; Martínez-Piñeiro, Esmeralda L; Rodríguez-Álvarez, Galois; Tiznado-Orozco, Gaby E; García-García, Ramiro; Brès, Etienne F

    2013-12-01

    The crystallinity index (CI) is a measure of the percentage of crystalline material in a given sample and it is also correlated to the degree of order within the crystals. In the literature two ways are reported to measure the CI: X-ray diffraction and infrared spectroscopy. Although the CI determined by these techniques has been adopted in the field of archeology as a structural order measure in the bone with the idea that it can help e.g. in the sequencing of the bones in chronological and/or stratigraphic order, some debate remains about the reliability of the CI values. To investigate similarities and differences between the two techniques, the CI of sound human tooth enamel and synthetic hydroxyapatite (HAP) was measured in this work by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), at room temperature and after heat treatment. Although the (CI)XRD index is related to the crystal structure of the samples and the (CI)FTIR index is related to the vibration modes of the molecular bonds, both indices showed similar qualitative behavior for heat-treated samples. At room temperature, the (CI)XRD value indicated that enamel is more crystalline than synthetic HAP, while (CI)FTIR indicated the opposite. Scanning (SEM) and transmission (TEM) images were also used to corroborate the measured CI values. © 2013.

  1. The configurational energy gap between amorphous and crystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kail, F. [GRMT, Department of Physics, University of Girona, Montilivi Campus, 17071 Girona, Catalonia (Spain); Univ. Barcelona, Dept. Fisica Aplicada and Optica, 08028 Barcelona (Spain); Farjas, J.; Roura, P. [GRMT, Department of Physics, University of Girona, Montilivi Campus, 17071 Girona, Catalonia (Spain); Secouard, C. [Univ. Barcelona, Dept. Fisica Aplicada and Optica, 08028 Barcelona (Spain); Nos, O.; Bertomeu, J. [CEA Grenoble, LTS, 17 rue des Martyrs, 38054 Grenoble cedex (France); Roca i Cabarrocas, P. [LPICM, Ecole Polytechnique, 91128 Palaiseau (France)

    2011-11-15

    The crystallization enthalpy of pure amorphous silicon (a-Si) and hydrogenated a-Si was measured by differential scanning calorimetry (DSC) for a large set of materials deposited from the vapour phase by different techniques. Although the values cover a wide range (200-480 J/g), the minimum value is common to all the deposition techniques used and close to the predicted minimum strain energy of relaxed a-Si (240 {+-} 25 J/g). This result gives a reliable value for the configurational energy gap between a-Si and crystalline silicon. An excess of enthalpy above this minimum value can be ascribed to coordination defects. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Crosslinking and photoreaction of ozone-oxidized calf-lens alpha-crystallin

    International Nuclear Information System (INIS)

    Fujimori, E.

    1982-01-01

    Direct-photo-oxidation, singlet oxygen-oxidation, or photosensitized oxidation can modify lens crystallins, causing an increase in blue fluorescence and covalent crosslinking. A relationship between these changes has not been elucidated. We now report results from experiments with ozone oxidation. When calf-lens alpha-crystallin is treated with zone oxidation. When calf-lens alpha-crystallin is treated with ozone, new absorption, fluorescence, and phosphorescence, which are characteristic of the oxidized product of tryptophan (N-formylkynurenine), appear at 320, 435, and 445 nm, respectively. In addition, in this ozonization of alpha-crystallin, its polypeptides are crosslinked by nondisulfide bonds. Irradiation of ozone-treated alpha-crystallin with near-ultraviolet (365 nm) light increases crosslinking and reduces the 320 nm absorbance with a concomitant appearance of a new absorption at about 420 nm. This photoproduct exhibits an intense fluorescence around 450 nm and a weak phosphorescence at 510 nm, with excitation peaks at 400, 415, and 422 nm. These findings are essentially the same as those observed in photo-oxidized alpha-crystallin, suggesting the involvement of the same tryptophan oxidized product in the modification of the lens protein

  3. Introduction

    International Nuclear Information System (INIS)

    2000-01-01

    In the Introduction a brief review on application of high-current electron beams (HEB) and powerful pulse ion beams (PPB) is given. It is noted that at present the following principal trends on HEB and PPB application in technologies are formed: production of super-dense plasma for controlled thermonuclear synthesis; implantation and annealing of semiconductors; modification of metals and alloys properties: strength, tribo-technical and anticorrosion ones; synthesis of new composite materials, including metastable phases and compounds; manufacture of thin films and coverings with preset structure and properties by means of ablation plasma deposition; cleaning, polishing and glancing of surfaces; synthesis of ultra-disperse and nano-sized powders; destruction and cutting of solid materials

  4. 76 FR 78313 - Crystalline Silicon Photovoltaic Cells and Modules From China

    Science.gov (United States)

    2011-12-16

    ...)] Crystalline Silicon Photovoltaic Cells and Modules From China Determinations On the basis of the record \\1... injured by reason of imports from China of crystalline silicon photovoltaic cells and modules, provided... imports of crystalline silicon photovoltaic cells and modules from China. Accordingly, effective October...

  5. α-Crystallin localizes to the leading edges of migrating lens epithelial cells

    International Nuclear Information System (INIS)

    Maddala, Rupalatha; Vasantha Rao, P.

    2005-01-01

    α-crystallin (αA and αB) is a major lens protein, which belongs to the small heat-shock family of proteins and binds to various cytoskeletal proteins including actin, vimentin and desmin. In this study, we investigated the cellular localization of αA and αB-crystallins in migrating epithelial cells isolated from porcine lens. Immunofluorescence localization and confocal imaging of αB-crystallin in confluent and in migrating subconfluent cell cultures revealed a distinct pattern of subcellular distribution. While αB-crystallin localization was predominantly cytoplasmic in confluent cultures, it was strongly localized to the leading edges of cell membrane or the lamellipodia in migrating cells. In accordance with this pattern, we found abundant levels of αB-crystallin in membrane fractions compared to cytosolic and nuclear fractions in migrating lens epithelial cells. αA-crystallin, which has 60% sequence identity to αB-crystallin, also exhibited a distribution profile localizing to the leading edge of the cell membrane in migrating lens epithelial cells. Localization of αB-crystallin to the lamellipodia appears to be dependent on phosphorylation of residue serine-59. An inhibitor of p38 MAP kinase (SB202190), but not the ERK kinase inhibitor PD98059, was found to diminish localization of αB-crystallin to the lamellipodia, and this effect was found to be associated with reduced levels of Serine-59 phosphorylated αB-crystallin in SB202190-treated migrating lens epithelial cells. αB-crystallin localization to the lamellipodia was also altered by the treatment with RGD (Arg-Ala-Asp) peptide, dominant negative N17 Rac1 GTPase, cytochalasin D and Src kinase inhibitor (PP2), but not by the Rho kinase inhibitor Y-27632 or the myosin II inhibitor, blebbistatin. Additionally, in migrating lens epithelial cells, αB-crystallin exhibited a clear co-localization with the actin meshwork, β-catenin, WAVE-1, a promoter of actin nucleation, Abi-2, a component of WAVE

  6. Initial evaluation of Sandia National Laboratory-prepared crystalline silico-titanates for cesium recovery

    International Nuclear Information System (INIS)

    Bray, L.A.; Carson, K.J.; Elovich, R.J.

    1993-10-01

    Pacific Northwest Laboratory initiated a study of a new class of inorganic ion exchange materials that selectively extracts cesium (Cs), strontium (Sr), and plutonium (Pu) from alkaline radioactive waste solutions. These materials, identified as crystalline silico-titanates (CST), were developed by scientists at the Sandia National Laboratory (SNL) and Texas A ampersand M. This report summarizes preliminary results for the measurement of batch distribution coefficient (K d ) values for the powdered CST materials compared to previously tested ion exchange materials: IONSIV IE-96 (a zeolite produced by UOP), CS-100 (an organic resin produced by Rohm and Haas), and BIB-DJ (a new resorcinol-formaldehyde organic resin produced by Boulder Scientific). Excellent results were obtained for CST inorganic exchangers that could be significant in the development of processes for the near-term pretreatment of Hanford alkaline wastes. The following observations and conclusions resulted from this study: (1) Several CST samples prepared at SNL had a higher capacity to remove Cs from solution as compared to BIB-DJ, IE-96, and CS-100. (2) Cesium distribution results showed that CST samples TAM-40, -42, -43, -70, and -74 had λ values of ∼2,200 (λ = Cs K d x ρ b ; where λ represents the number of exchanger bed volumes of feed that can be loaded on an ion exchange column) at a pH value >14. (3) Cesium distribution values for CST exchangers doubled as the aqueous temperature decreased from 40 degrees to 10 degrees C. (4) Crystalline silico-titanates have the capacity to remove Cs as well as Sr and Pu from alkaline wastes unless organic complexants are present. Experimental results indicated that complexed Sr was not removed, and Pu is not expected to be removed

  7. Non-destructive inspection approach using ultrasound to identify the material state for amorphous and semi-crystalline materials

    Science.gov (United States)

    Jost, Elliott; Jack, David; Moore, David

    2018-04-01

    At present, there are many methods to identify the temperature and phase of a material using invasive techniques. However, most current methods require physical contact or implicit methods utilizing light reflectance of the specimen. This work presents a nondestructive inspection method using ultrasonic wave technology that circumvents these disadvantages to identify phase change regions and infer the temperature state of a material. In the present study an experiment is performed to monitor the time of flight within a wax as it undergoes melting and the subsequent cooling. Results presented in this work show a clear relationship between a material's speed of sound and its temperature. The phase change transition of the material is clear from the time of flight results, and in the case of the investigated material, this change in the material state occurs over a range of temperatures. The range of temperatures over which the wax material melts is readily identified by speed of sound represented as a function of material temperature. The melt temperature, obtained acoustically, is validated using Differential Scanning Calorimetry (DSC), which uses shifts in heat flow rates to identify phase transition temperature ranges. The investigated ultrasonic NDE method has direct applications in many industries, including oil and gas, food and beverage, and polymer composites, in addition to many implications for future capabilities of nondestructive inspection of multi-phase materials.

  8. Liquid Crystalline Perylene diimides : Architecture and Charge Carrier Mobilities

    NARCIS (Netherlands)

    Struijk, C.W.; Sieval, A.B.; Dakhorst, J.E.J.; Dijk, van M.; Kimkes, P.; Koehorst, R.B.M.; Donker, H.

    2000-01-01

    The phase behavior of three N-alkyl-substituted perylene diimide derivatives is examined by differential scanning calorimetry and polarized optical microscopy. The occurrence of multiple phase transitions indicates several crystalline and several liquid crystalline phases. X-ray diffraction

  9. Dry Powder Precursors of Cubic Liquid Crystalline Nanoparticles (cubosomes)

    International Nuclear Information System (INIS)

    Spicer, Patrick T.; Small, William B.; Small, William B.; Lynch, Matthew L.; Burns, Janet L.

    2002-01-01

    Cubosomes are dispersed nanostructured particles of cubic phase liquid crystal that have stimulated significant research interest because of their potential for application in controlled-release and drug delivery. Despite the interest, cubosomes can be difficult to fabricate and stabilize with current methods. Most of the current work is limited to liquid phase processes involving high shear dispersion of bulk cubic liquid crystalline material into sub-micron particles, limiting application flexibility. In this work, two types of dry powder cubosome precursors are produced by spray-drying: (1) starch-encapsulated monoolein is produced by spray-drying a dispersion of cubic liquid crystalline particles in an aqueous starch solution and (2) dextran-encapsulated monoolein is produced by spray-drying an emulsion formed by the ethanol-dextran-monoolein-water system. The encapsulants are used to decrease powder cohesion during drying and to act as a soluble colloidal stabilizer upon hydration of the powders. Both powders are shown to form (on average) 0.6 μm colloidally-stable cubosomes upon addition to water. However, the starch powders have a broader particle size distribution than the dextran powders because of the relative ease of spraying emulsions versus dispersions. The developed processes enable the production of nanostructured cubosomes by end-users rather than just specialized researchers and allow tailoring of the surface state of the cubosomes for broader application

  10. Proceedings of the workshop on crystalline ion beams

    International Nuclear Information System (INIS)

    Hasse, R.W.; Hofmann, I.; Liesen, D.

    1989-04-01

    The workshop consisted of mainly invited and some contributed papers. More informal discussions took place in three working groups on the following topics: beam cooling techniques; diagnostics of crystalline beams; storage rings for crystalline beams. The present volume collects all papers as well as the summaries of the working groups. See hints under the relevant topics. (orig./HSI)

  11. Synthesis and characterization of organic-inorganic hybrids formed between conducting polymers and crystalline antimonic acid

    Directory of Open Access Journals (Sweden)

    Beleze Fábio A.

    2001-01-01

    Full Text Available In this paper we report the synthesis and characterization of novel organic-inorganic hybrid materials between the crystalline antimonic acid (CAA and two conductive polymers: polypyrrole and polyaniline. The hybrids were obtained by in situ oxidative polymerization of monomers by the Sb(V present in the pyrochlore-like CAA structure. The materials were characterized by infrared and Raman spectroscopy, X-ray diffraction, cyclic voltammetry, CHN elemental analysis and electronic paramagnetic resonance spectroscopy. The results showed that both polymers were formed in their oxidized form, with the CAA structure acting as a counter anion.

  12. Electrochemical synthesis of highly crystalline copper nanowires

    International Nuclear Information System (INIS)

    Kaur, Amandeep; Gupta, Tanish; Kumar, Akshay; Kumar, Sanjeev; Singh, Karamjeet; Thakur, Anup

    2015-01-01

    Copper nanowires were fabricated within the pores of anodic alumina template (AAT) by template synthesis method at pH = 2.9. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to investigate the structure, morphology and composition of fabricated nanowires. These characterizations revealed that the deposited copper nanowires were highly crystalline in nature, dense and uniform. The crystalline copper nanowires are promising in application of future nanoelectronic devices and circuits

  13. An Investigation of X-ray Luminosity versus Crystalline Powder Granularity

    Energy Technology Data Exchange (ETDEWEB)

    Borade, Ramesh; Bourret-Courchesne, Edith; ,

    2012-03-07

    At the High-throughput Discovery of Scintillator Materials Facility at Lawrence Berkeley National Laboratory, scintillators are synthesized by solid-state reaction or melt mixing, forming crystalline powders. These powders are formed in various granularity and the crystal grain size affects the apparent luminosity of the scintillator. To accurately predict a "full-size" scintillator's crystal luminosity, the crystal luminosity as a function of crystal granularity size has to be known. In this study, we examine Bi{sub 4}Ge{sub 3}O{sub 12} (BGO), Lu{sub 2}SiO{sub 5}:Ce (LSO), YAlO{sub 3}:Ce (YAP:Ce), and CsBa{sub 2}I{sub 5}:Eu{sup 2+} (CBI) luminosities as a function of crystalline grain size. The highest luminosities were measured for 600- to 1000-{micro}m crystal grain sizes for BGO and LSO, for 310- to 600-{micro}m crystal grain sizes for CBI, and for crystal grains larger than 165{micro}m for YAP:Ce. Crystal grains that were larger than 1 mm had a lower packing fraction, and smaller grains were affected by internal scattering. We measured a 34% decrease in luminosity for BGO when decreasing from the 600- to 1000- {micro}m crystal grain size range down to the 20- to 36-{micro}m range. The corresponding luminosity decrease for LSO was 44% for the same grain size decrease. YAP:Ce exhibited a luminosity decrease of 47% when the grain size decreased from the 165- to 310-{micro}m crystal grains to the 20- to 36-{micro}m range, and CBI exhibited a luminosity decrease of 98% when the grain size decreased from the 310- to 600-{micro}m crystal grain range to the 36- to 50-{micro}m range. We were able to very accurately estimate full-size crystal luminosities from crystalline grains that are larger than 90 {micro}m.

  14. An investigation of X-ray luminosity versus crystalline powder granularity

    International Nuclear Information System (INIS)

    Janecek, Martin; Borade, Ramesh; Bourret-Courchesne, Edith; Derenzo, Stephen E.

    2011-01-01

    At the High-Throughput Discovery of Scintillator Materials Facility at Lawrence Berkeley National Laboratory, scintillators are synthesized by solid-state reaction or melt mixing, forming crystalline powders. These powders are formed in various granularity and the crystal grain size affects the apparent luminosity of the scintillator. To accurately predict a “full-size” scintillator's crystal luminosity, the crystal luminosity as a function of crystal granularity size has to be known. In this study, we examine Bi 4 Ge 3 O 12 (BGO), Lu 2 SiO 5 :Ce 3+ (LSO), YAlO 3 :Ce 3+ (YAP:Ce), and CsBa 2 I 5 :Eu 2+ (CBI) luminosities as a function of crystalline grain size. The highest luminosities were measured for 600- to 1000-μm crystal grain sizes for BGO and LSO, for 310- to 600-μm crystal grain sizes for CBI, and for crystal grains larger than 165 μm for YAP:Ce. Crystal grains that were larger than 1 mm had a lower packing fraction, and smaller grains were affected by internal scattering. We measured a 34% decrease in luminosity for BGO when decreasing from the 600- to 1000-μm crystal grain size range down to the 20- to 36-μm range. The corresponding luminosity decrease for LSO was 44% for the same grain size decrease. YAP:Ce exhibited a luminosity decrease of 47% when the grain size decreased from the 165- to 310-μm crystal grains to the 20- to 36-μm range, and CBI exhibited a luminosity decrease of 98% when the grain size decreased from the 310- to 600-μm crystal grain range to the 36- to 50-μm range. We were able to very accurately estimate full-size crystal luminosities from crystalline grains that are larger than 90 μm.

  15. Soil Crystallinity As a Climate Indicator: Field Experiments on Earth and Mars

    Science.gov (United States)

    Horgan, Briony; Scudder, Noel; Rampe, Elizabeth; Rutledge, Alicia

    2016-01-01

    Soil crystallinity is largely determined by leaching rates, as high leaching rates favor the rapid precipitation of short order or poorly-crystalline phases like the aluminosilicate allophane. High leaching rates can occur due to high precipitation rates, seasonal monsoons, or weathering of glass, but are also caused by the rapid onset of seasonal melting of snow and ice in cold environments. Thus, cold climate soils are commonly dominated by poorly crystalline phases, which mature into kaolin minerals over time. Thus, we hypothesize that, in some contexts, soils with high abundances of poorly crystalline phases could indicate formation under cold climatic conditions. This model could be helpful in interpreting the poorly-constrained paleoclimate of ancient Mars, as the crystallinity of ancient soils and soil-derived sediments appears to be highly variable in time and space. While strong signatures of crystalline phyllosilicates have been identified in possible ancient paleosols on Mars, Mars Science Laboratory rover investigations of diverse ancient sediments at Gale Crater has shown that they can contain very high abundances (40-50 wt%) of poorly crystalline phases. We hypothesize that these poorly crystalline phases could be the result of weathering by ice/snow melt, perhaps providing support for sustained cold climates on early Mars punctuated by more limited warm climates. Furthermore, such poorly crystalline soils could be highly fertile growth media for future human exploration and colonization on Mars. To test this hypothesis, we are currently using rover-like instrumentation to investigate the mineralogy and chemistry of weathering products generated by snow and ice melt in a Mars analog alpine environment: the glaciated Three Sisters volcanic complex in central Oregon. Alteration in this glacial environment generates high abundances of poorly crystalline phases, many of which have compositions distinct from those identified in previous terrestrial

  16. Gamma-irradiation effects to posttranslational modification and chaperon function of bovine α-crystalline

    International Nuclear Information System (INIS)

    Hiroki, K; Matsumoto, S.; Awakura, M.; Fujii, N.

    2001-01-01

    The formation of D-asparate (D-Asp) in αA-crystallin of the aged human eye and the cataract crystalline lens has been reported. Crystalline lens keeps the transparency by forming α-crystallin which consists of a high order association of αA-and αB-crystallin. Bovine α-crystallin for investigating a chaperone function which protects the crystalline lens from getting to opaque or disordered agglutination with heat or light, is irradiated by gamma-ray (Co-60) at 0, 1, 2, 3, and 4 kGy, respectively. The irradiated bovine α-crystallin are analyzed with electrophoresis, gel permeation chromatograph, and UV absorption spectrometer for checking on the agglutination and the isomerization of macromolecules. Oxidation of methionine residues (Met-1) and isomerization of asparagine residues (Asp-151) in the αA-crystallin are ascertained in molecular levels with reversed phase liquid chromatography. The Met-1 oxidation and the Asp-151 isomerization depend on gamma-irradiation doses. It is thought that OH radical and H radical in water generated by the irradiation lead to the oxidation and the isomerization. Stereoinversion in the α-crystallin following to such a chemical change are considered to lead to the agglutination of polymer and the reduction of chaperon function. (M. Suetake)

  17. Petrophysics Features of the Hydrocarbon Reservoirs in the Precambrian Crystalline Basement

    Science.gov (United States)

    Plotnikova, Irina

    2014-05-01

    A prerequisite for determining the distribution patterns of reservoir zones on the section of crystalline basement (CB) is the solution of a number of problems connected with the study of the nature and structure of empty spaces of reservoirs with crystalline basement (CB) and the impact of petrological, and tectonic factors and the intensity of the secondary transformation of rocks. We decided to choose the Novoelhovskaya well # 20009 as an object of our research because of the following factors. Firstly, the depth of the drilling of the Precambrian crystalline rocks was 4077 m ( advance heading - 5881 m) and it is a maximum for the Volga-Urals region. Secondly, petrographic cut of the well is made on core and waste water, and the latter was sampled regularly and studied macroscopically. Thirdly, a wide range of geophysical studies were performed for this well, which allowed to identify promising areas of collector with high probability. Fourth, along with geological and technical studies that were carried out continuously (including washing and bore hole redressing periods), the studies of the gaseous component of deep samples of clay wash were also carried out, which indirectly helped us estimate reservoir properties and fluid saturation permeable zones. As a result of comprehensive analysis of the stone material and the results of the geophysical studies we could confidently distinguish 5 with strata different composition and structure in the cut of the well. The dominating role in each of them is performed by rocks belonging to one of the structural-material complexes of Archean, and local variations in composition and properties are caused by later processes of granitization on different stages and high temperature diaphthoresis imposed on them. Total capacity of reservoir zones identified according to geophysical studies reached 1034.2 m, which corresponds to 25.8% of the total capacity of 5 rock masses. However, the distribution of reservoirs within the cut

  18. 21 CFR 524.2620 - Liquid crystalline trypsin, Peru balsam, castor oil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Liquid crystalline trypsin, Peru balsam, castor... NEW ANIMAL DRUGS § 524.2620 Liquid crystalline trypsin, Peru balsam, castor oil. (a)(1) Specifications... delivered to the wound site contains 0.12 milligram of crystalline trypsin, 87.0 milligrams of Peru balsam...

  19. Investigations of possibilities to dispose of spent nuclear fuel in Lithuania: a model case. Volume 2, Concept of Repository in Crystalline Rocks

    International Nuclear Information System (INIS)

    Motiejunas, S.; Poskas, P.

    2005-01-01

    The aim is to present the generic repository concept in crystalline rocks in Lithuania and cost assessment of the disposal of spent nuclear fuel and long-lived intermediate level waste in this repository. Due to limited budget of this project the repository concept development for Lithuania was based mostly on the experience of foreign countries. In this Volume a review of the existing information on disposal concept in crystalline rocks from various countries is presented. Described repository concept for crystalline rocks in Lithuania covers repository layout, backfill, canister, construction materials and auxiliary buildings. Costs calculations for disposal of spent nuclear fuel and long-lived intermediate-level wastes from Ignalina NPP are presented too. Thermal, criticality and other important disposal evaluations for RBMK-1500 spent nuclear fuel emplaced in copper canister were performed and described

  20. Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Franta, Benjamin, E-mail: bafranta@gmail.com; Pastor, David; Gandhi, Hemi H.; Aziz, Michael J.; Mazur, Eric [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Rekemeyer, Paul H.; Gradečak, Silvija [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-12-14

    Hyperdoped black silicon fabricated with femtosecond laser irradiation has attracted interest for applications in infrared photodetectors and intermediate band photovoltaics due to its sub-bandgap optical absorptance and light-trapping surface. However, hyperdoped black silicon typically has an amorphous and polyphasic polycrystalline surface that can interfere with carrier transport, electrical rectification, and intermediate band formation. Past studies have used thermal annealing to obtain high crystallinity in hyperdoped black silicon, but thermal annealing causes a deactivation of the sub-bandgap optical absorptance. In this study, nanosecond laser annealing is used to obtain high crystallinity and remove pressure-induced phases in hyperdoped black silicon while maintaining high sub-bandgap optical absorptance and a light-trapping surface morphology. Furthermore, it is shown that nanosecond laser annealing reactivates the sub-bandgap optical absorptance of hyperdoped black silicon after deactivation by thermal annealing. Thermal annealing and nanosecond laser annealing can be combined in sequence to fabricate hyperdoped black silicon that simultaneously shows high crystallinity, high above-bandgap and sub-bandgap absorptance, and a rectifying electrical homojunction. Such nanosecond laser annealing could potentially be applied to non-equilibrium material systems beyond hyperdoped black silicon.

  1. Highly crystalline mesoporous C{sub 60} with ordered pores. A class of nanomaterials for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Benzigar, Mercy R.; Joseph, Stalin; Ilbeygi, Hamid [Future Industries Institute (FII), Division of Information Technology Energy and Environment (DivITEE), University of South Australia, Adelaide, SA (Australia); Park, Dae-Hwan; Talapaneni, Siddulu Naidu [Global Innovative Center for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW (Australia); Sarkar, Sujoy; Chandra, Goutam; Umapathy, Siva; Srinivasan, Sampath [Department of Inorganic and Physical Chemistry and Department of Instrumentation and Applied Physics, Indian Institute of Science (IISc), Bangalore (India); Vinu, Ajayan [Future Industries Institute (FII), Division of Information Technology Energy and Environment (DivITEE), University of South Australia, Adelaide, SA (Australia); Global Innovative Center for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW (Australia)

    2018-01-08

    Highly ordered mesoporous C{sub 60} with a well-ordered porous structure and a high crystallinity is prepared through the nanohard templating method using a saturated solution of C{sub 60} in 1-chloronaphthalene (51 mg mL{sup -1}) as a C{sub 60} precursor and SBA-15 as a hard template. The high solubility of C{sub 60} in 1-chloronaphthalene helps not only to encapsulate a huge amount of the C{sub 60} into the mesopores of the template but also supports the oligomerization of C{sub 60} and the formation of crystalline walls made of C{sub 60}. The obtained mesoporous C{sub 60} exhibits a rod-shaped morphology, a high specific surface area (680 m{sup 2} g{sup -1}), tuneable pores, and a highly crystalline wall structure. This exciting ordered mesoporous C{sub 60} offers high supercapacitive performance and a high selectivity to H{sub 2}O{sub 2} production and methanol tolerance for ORR. This simple strategy could be adopted to make a series of mesoporous fullerenes with different structures and carbon atoms as a new class of energy materials. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Thermoluminescence induced by X-rays in silica materials with metallic impurities

    International Nuclear Information System (INIS)

    Mendoza A, D.; Gonzalez M, P.; Espinosa P, M.; Salas, P.; Castano, V.M.

    1999-01-01

    Diverse materials of silica with Fe, Cu, Mg, and Mn impurities were synthesized by the sol-gel method, using tetraethyl orthosilicate as precursor. The materials obtained were subjected to thermal treatment at 500, 700 and 1000 Centigrade also they were irradiated with X-ray generated by a X-ray diffractometer which is installed in the ININ. The thermoluminescent signal was analysed and correlated with the type of impurities that are present in the material and with the grade of crystallinity produced by the thermal treatment in them. In according to the results obtained these materials show a thermoluminescent signal which is influenced by the crystallinity grade. It was analysed the behavior of the response for different doses, with the purpose of utilizing them to quantify very intense fields of radiation. (Author)

  3. Preparation of high crystalline nanoparticles of rare-earth based complex pervoskites and comparison of their structural and magnetic properties with bulk counterparts

    DEFF Research Database (Denmark)

    Basith, M. A.; Islam, M. A.; Ahmmad, Bashir

    2017-01-01

    of crystalline and amorphous phases. FESEM images demonstrate the formation of nanoparticles with average particle size in the range of 50–100 nm for both ultrasonication and 4 h (h) of ball milling. The bulk materials and nanoparticles synthesized by both ultrasonication and 4 h ball milling exhibit...... of the nanoparticles due to ball milling particularly for milling time exceeding 8 h. This investigation demonstrates the potential of ultrasonication as a simple route to prepare high crystalline rare-earth based manganite nanoparticles with improved control compared to the traditional ball milling technique....

  4. Microwave synthesis of electrode materials for lithium batteries

    Indian Academy of Sciences (India)

    A novel microwave method is described for the preparation of electrode materials required for lithium batteries. The method is simple, fast and carried out in most cases with the same starting material as in conventional methods. Good crystallinity has been noted and lower temperatures of reaction has been inferred in ...

  5. Research and development project in fiscal 1989 for fundamental technologies for next generation industries. Achievement report on research and development on high-crystalline polymeric materials; 1989 nendo kokesshosei kobunshi zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    With an objective to expand applications of polymeric materials having features of light weight, high corrosion resistance, and easy-to-process performance, researches have been performed on fundamental technologies for high-crystalline polymeric materials. This paper summarizes the achievements in fiscal 1989. In monophyletic system materials, thermotropic liquid crystal polyarylate was taken as the object to study optimization of the polymeric chemical structure, and elongation and fluid orientation processing. In the research of polyphyletic materials by means of special dissolution forming, researches were carried out on elastic modules manifestation factors of poly-PIBO, and the relationship between the melting viscosity and the orientation performance of polyazomethine. For molecular composite formed polyphyletic materials, a tape with tensile modulus of elasticity of 142 GPa using aromatic copolyamide as matrix, and laminates with bending modules of elasticity of 110 GPa were obtained. Regarding cross-linking system materials, synthesizing, forming, and improvements were discussed on hybrid cross-linking polymers containing multiple number of cross-linking functional groups. In addition, research was performed on a poly-functional diacetylene based material as a three-dimensional cross-linking material with high elasticity modulus of new conception having covalent linkage. (NEDO)

  6. Epitaxial hexagonal materials on IBAD-textured substrates

    Energy Technology Data Exchange (ETDEWEB)

    Matias, Vladimir; Yung, Christopher

    2017-08-15

    A multilayer structure including a hexagonal epitaxial layer, such as GaN or other group III-nitride (III-N) semiconductors, a <111> oriented textured layer, and a non-single crystal substrate, and methods for making the same. The textured layer has a crystalline alignment preferably formed by the ion-beam assisted deposition (IBAD) texturing process and can be biaxially aligned. The in-plane crystalline texture of the textured layer is sufficiently low to allow growth of high quality hexagonal material, but can still be significantly greater than the required in-plane crystalline texture of the hexagonal material. The IBAD process enables low-cost, large-area, flexible metal foil substrates to be used as potential alternatives to single-crystal sapphire and silicon for manufacture of electronic devices, enabling scaled-up roll-to-roll, sheet-to-sheet, or similar fabrication processes to be used. The user is able to choose a substrate for its mechanical and thermal properties, such as how well its coefficient of thermal expansion matches that of the hexagonal epitaxial layer, while choosing a textured layer that more closely lattice matches that layer.

  7. Ordered materials for organic electronics and photonics.

    Science.gov (United States)

    O'Neill, Mary; Kelly, Stephen M

    2011-02-01

    We present a critical review of semiconducting/light emitting, liquid crystalline materials and their use in electronic and photonic devices such as transistors, photovoltaics, OLEDs and lasers. We report that annealing from the mesophase improves the order and packing of organic semiconductors to produce state-of-the-art transistors. We discuss theoretical models which predict how charge transport and light emission is affected by the liquid crystalline phase. Organic photovoltaics and OLEDs require optimization of both charge transport and optical properties and we identify the various trade-offs involved for ordered materials. We report the crosslinking of reactive mesogens to give pixellated full-colour OLEDs and distributed bi-layer photovoltaics. We show how the molecular organization inherent to the mesophase can control the polarization of light-emitting devices and the gain in organic, thin-film lasers and can also provide distributed feedback in chiral nematic mirrorless lasers. We update progress on the surface alignment of liquid crystalline semiconductors to obtain monodomain devices without defects or devices with spatially varying properties. Finally the significance of all of these developments is assessed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Structural transformations of mechanically induced top-down approach BaFe{sub 12}O{sub 19} nanoparticles synthesized from high crystallinity bulk materials

    Energy Technology Data Exchange (ETDEWEB)

    Low, Zhi Huang [Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan (Malaysia); Chen, Soo Kien [Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan (Malaysia); Department of Physics, Faculty of Science, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan (Malaysia); Ismail, Ismayadi, E-mail: kayzen@gmail.com [Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan (Malaysia); Tan, Kim Song [Advanced Imaging Centre, Malaysian Rubber Board, RRIM Sungai Buloh, 47000 Selangor (Malaysia); Liew, J.Y.C. [Department of Physics, Faculty of Science, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan (Malaysia)

    2017-05-01

    In this work, a top-down approach was applied to high crystallinity BaFe{sub 12}O{sub 19} bulks, breaking them into smaller nanoparticles by mechanochemical route. The effects of milling time, reaction mechanisms and structural information were investigated. Interestingly, three distinct stages of the mechanochemical mechanism were observed. The XRD results indicated that the BaFe{sub 12}O{sub 19} phase existed even though the mechanical energy had induced the formation of an amorphous phase in the material. The average crystallite size decreased during the first stage and the intermediate stage, and increased during the final stage of the mechanical alloying. A Rietveld refinement analysis suggested the deformation of a mechanically-triggered polyhedral in the magnetoplumbite structure. FESEM micrographs indicated that fragmentation predominated during the first and intermediate stages, until a steady equilibrium state was achieved at in the final stage, where a narrow particle size distribution was observed. HRTEM micrographs suggested the formation of a non-uniform nanostructure shell surrounding the ordered core materials at the edge-interface region. The thickness of the amorphous surface layer extended up to 12 nm during the first and intermediate stages, and diminished to approximately 3 nm after 20 h milling. VSM results showed a mixture of ferromagnetic, superparamagnetic, and paramagnetic behaviours. However, different magnetic behaviours predominated at different milling time, which strongly related to the defects, distorted polyhedra, and non-equilibrium amorphous layers of the material. - Highlights: • Nanoparticles of BaFe{sub 12}O{sub 19} are successfully prepared. • Morphological and structural properties rely on mechanochemical mechanism. • Three stages of mechanochemical mechanism was observed. • Core shell structures (3–12 nm) was found during by extending the milling time. • Magnetic properties were strongly related with the

  9. Synthesis of Programmable Main-chain Liquid-crystalline Elastomers Using a Two-stage Thiol-acrylate Reaction

    OpenAIRE

    Saed, Mohand O.; Torbati, Amir H.; Nair, Devatha P.; Yakacki, Christopher M.

    2016-01-01

    This study presents a novel two-stage thiol-acrylate Michael addition-photopolymerization (TAMAP) reaction to prepare main-chain liquid-crystalline elastomers (LCEs) with facile control over network structure and programming of an aligned monodomain. Tailored LCE networks were synthesized using routine mixing of commercially available starting materials and pouring monomer solutions into molds to cure. An initial polydomain LCE network is formed via a self-limiting thiol-acrylate Michael-addi...

  10. Crystalline to amorphous transformation in silicon

    International Nuclear Information System (INIS)

    Cheruvu, S.M.

    1982-09-01

    In the present investigation, an attempt was made to understand the fundamental mechanism of crystalline-to-amorphous transformation in arsenic implanted silicon using high resolution electron microscopy. A comparison of the gradual disappearance of simulated lattice fringes with increasing Frenkel pair concentration with the experimental observation of sharp interfaces between crystalline and amorphous regions was carried out leading to the conclusion that when the defect concentration reaches a critical value, the crystal does relax to an amorphous state. Optical diffraction experiments using atomic models also supported this hypothesis. Both crystalline and amorphous zones were found to co-exist with sharp interfaces at the atomic level. Growth of the amorphous fraction depends on the temperature, dose rate and the mass of the implanted ion. Preliminary results of high energy electron irradiation experiments at 1.2 MeV also suggested that clustering of point defects occurs near room temperature. An observation in a high resolution image of a small amorphous zone centered at the core of a dislocation is presented as evidence that the nucleation of an amorphous phase is heterogeneous in nature involving clustering or segregation of point defects near existing defects

  11. Material for a luminescent solar concentrator

    Science.gov (United States)

    Andrews, L.J.

    1984-01-01

    A material for use in a luminescent solar concentrator, formed by ceramitizing the luminescent ion Cr/sup 3 +/ with a transparent ceramic glass containing mullite. The resultant material has tiny Cr/sup 3 +/-bearing crystallites dispersed uniformly through an amorphous glass. The invention combines the high luminescent efficiency of Cr/sup 3 +/ in the crystalline phase with the practical and economical advantages of glass technology.

  12. Metal - Insulator Transition Driven by Vacancy Ordering in GeSbTe Phase Change Materials

    OpenAIRE

    Bragaglia, Valeria; Arciprete, Fabrizio; Privitera, Stefania; Rimini, Emanuele; Mazzarello, Riccardo; Calarco, Raffaella; Zhang, Wei; Mio, Antonio Massimiliano; Zallo, Eugenio; Perumal, Karthick; Giussani, Alessandro; Cecchi, Stefano; Boschker, Jos Emiel; Riechert, Henning

    2016-01-01

    Phase Change Materials (PCMs) are unique compounds employed in non-volatile random access memory thanks to the rapid and reversible transformation between the amorphous and crystalline state that display large differences in electrical and optical properties. In addition to the amorphous-to-crystalline transition, experimental results on polycrystalline GeSbTe alloys (GST) films evidenced a Metal-Insulator Transition (MIT) attributed to disorder in the crystalline phase. Here we report on a f...

  13. Tenth Workshop on Crystalline Silicon Solar Cell Materials and Processes: A Summary of Discussion Sessions

    Energy Technology Data Exchange (ETDEWEB)

    Tan, T.; Swanson, D.; Sinton, R.; Sopori, B.

    2001-01-22

    The 10th Workshop on Silicon Solar Cell Materials and Processes was held in Copper Mountain, Colorado, on August 13-16, 2000. The workshop was attended by 85 scientists and engineers from 15 international photovoltaic (PV) companies and 24 research institutions. Review and poster presentations were augmented by discussion sessions to address the recent progress and critical issues in meeting the goals for Si in the PV Industry Roadmap. The theme of the workshop was Si Photovoltaics: 10 Years of Progress and Opportunities for the Future. Two special sessions were held: Advanced Metallization and Interconnections - covering recent advances in solar cell metallization, printed contacts and interconnections, and addressing new metallization schemes for low-cost cell interconnections; and Characterization Methods - addressing the growing need for process monitoring techniques in the PV industry. The following major issues emerged from the discussion sessions: (1) Mechanical breakage in the P V industry involves a large fraction, about 5%-10%, of the wafers. (2) The current use of Al screen-printed back-contacts appears to be incompatible with the PV Industry Roadmap requirements. (3) The PV manufacturers who use hydrogen passivation should incorporate the plasma-enhanced chemical vapor deposited (PECVD) nitride for antireflection coating and hydrogenation. (4) There is an imminent need to dissolve metallic precipitates to minimize the electrical shunt problem caused by the ''bad'' regions in wafers. (5) Industry needs equipment for automated, in-line monitoring and testing. There are simply not many tools available to industry. (6) In the Wrap-Up Session of the workshop, there was consensus to create four industry/university teams that would address critical research topics in crystalline silicon. (7) The workshop attendees unanimously agreed that the workshop has served well the PV community by promoting the fundamental understanding of industrial

  14. Used Fuel Disposition in Crystalline Rocks: FY16 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kalinina, Elena Arkadievna [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jerden, James L. [Argonne National Lab. (ANL), Argonne, IL (United States); Copple, Jacqueline M. [Argonne National Lab. (ANL), Argonne, IL (United States); Cruse, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Ebert, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Buck, E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Eittman, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tinnacher, R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tournassat, Christophe [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Davis, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Viswanathan, H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Joseph, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-21

    The objective of the Crystalline Disposal R&D Work Package is to advance our understanding of long-term disposal of used fuel in crystalline rocks and to develop necessary experimental and computational capabilities to evaluate various disposal concepts in such media. FY16 continued to be a successful year in both experimental and modeling arenas in evaluation of used fuel disposal in crystalline rocks. The work covers a wide range of research topics identified in the R&D plan.

  15. Enhanced piezoelectric properties of vertically aligned single-crystalline NKN nano-rod arrays.

    Science.gov (United States)

    Kang, Min-Gyu; Oh, Seung-Min; Jung, Woo-Suk; Moon, Hi Gyu; Baek, Seung-Hyub; Nahm, Sahn; Yoon, Seok-Jin; Kang, Chong-Yun

    2015-05-08

    Piezoelectric materials capable of converting between mechanical and electrical energy have a great range of potential applications in micro- and nano-scale smart devices; however, their performance tends to be greatly degraded when reduced to a thin film due to the large clamping force by the substrate and surrounding materials. Herein, we report an effective method for synthesizing isolated piezoelectric nano-materials as means to relax the clamping force and recover original piezoelectric properties of the materials. Using this, environmentally friendly single-crystalline NaxK1-xNbO3 (NKN) piezoelectric nano-rod arrays were successfully synthesized by conventional pulsed-laser deposition and demonstrated to have a remarkably enhanced piezoelectric performance. The shape of the nano-structure was also found to be easily manipulated by varying the energy conditions of the physical vapor. We anticipate that this work will provide a way to produce piezoelectric micro- and nano-devices suitable for practical application, and in doing so, open a new path for the development of complex metal-oxide nano-structures.

  16. On the “Tertiary Structure” of Poly-Carbenes; Self-Assembly of sp3-Carbon-Based Polymers into Liquid-Crystalline Aggregates

    NARCIS (Netherlands)

    Franssen, N.G.M.; Ensing, B.; Hegde, M.; Dingemans, T.J.; Norder, B.; Picken, S.J.; Alberda van Ekenstein, G.O.R.; van Eck, E.R.H.; Elemans, J.A.A.W; Vis, M.; Reek, J.N.H.; de Bruin, B.

    2013-01-01

    The self-assembly of poly(ethylidene acetate) (st-PEA) into van der Waals-stabilized liquid-crystalline (LC) aggregates is reported. The LC behavior of these materials is unexpected, and unusual for flexible sp(3)-carbon backbone polymers. Although the dense packing of polar ester functionalities

  17. Structural aspects of fish skin collagen which forms ordered arrays via liquid crystalline states.

    Science.gov (United States)

    Giraud-Guille, M M; Besseau, L; Chopin, C; Durand, P; Herbage, D

    2000-05-01

    The ability of acid-soluble type I collagen extracts from Soleidae flat fish to form ordered arrays in condensed phases has been compared with data for calf skin collagen. Liquid crystalline assemblies in vitro are optimized by preliminary treatment of the molecular population with ultrasounds. This treatment requires the stability of the fish collagen triple helicity to be controlled by X-ray diffraction and differential scanning calorimetry and the effect of sonication to be evaluated by viscosity measurements and gel electrophoresis. The collagen solution in concentrations of at least 40 mg ml(-1) showed in polarized light microscopy birefringent patterns typical of precholesteric phases indicating long-range order within the fluid collagen phase. Ultrastructural data, obtained after stabilization of the liquid crystalline collagen into a gelated matrix, showed that neutralized acid-soluble fish collagen forms cross-striated fibrils, typical of type I collagen, following sine wave-like undulations in precholesteric domains. These ordered geometries, approximating in vivo situations, give interesting mechanical properties to the material.

  18. The effect of crystallinity on cell growth in semi-crystalline microcellular foams by solid-state process: modeling and numerical simulation

    Science.gov (United States)

    Rezvanpanah, Elham; Ghaffarian Anbaran, S. Reza

    2017-11-01

    This study establishes a model and simulation scheme to describe the effect of crystallinity as one of the most effective parameters on cell growth phenomena in a solid batch foaming process. The governing model of cell growth dynamics, based on the well-known ‘Cell model’, is attained in details. To include the effect of crystallinity in the model, the properties of the polymer/gas mixtures (i.e. solubility, diffusivity, surface tension and viscosity) are estimated by modifying relations to consider the effect of crystallinity. A finite element-finite difference (FEFD) method is employed to solve the highly nonlinear and coupled equations of cell growth dynamics. The proposed simulation is able to evaluate all properties of the system at the given process condition and uses them to calculate the cell size, pressure and gas concentration gradient with time. A high-density polyethylene/nitrogen (HDPE/N2) system is used herein as a case study. Comparing the simulation results with the others works and experimental results verify the accuracy of the simulation scheme. The cell growth is a complicated combination of several phenomena. This study attempted to reach a better understanding of cell growth trend, driving and retarding forces and the effect of crystallinity on them.

  19. Application of phase-change materials in memory taxonomy

    OpenAIRE

    Wang, Lei; Tu, Liang; Wen, Jing

    2017-01-01

    Abstract Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other...

  20. Small-angle neutron scattering in materials science

    International Nuclear Information System (INIS)

    Fratzl, P.

    1999-01-01

    Small-angle scattering (SAS) in an ideal tool for studying the structure of materials in the mesoscopic size range between 1 and about 100 nanometers. The basic principles of the method are reviewed, with particular emphasis on data evaluation and interpretation for isotropic as well as oriented or single-crystalline materials. Examples include metal alloys, composites and porous materials. The last section gives a comparison between the use of neutrons and (synchrotron) x-rays for small-angle scattering in materials physics. (author)

  1. Necrotizing Infundibular Crystalline Folliculitis: A Case Report of an Exceptional Lesion of Unknown Etiology

    Directory of Open Access Journals (Sweden)

    Nikolina Saxer-Sekulic

    2014-01-01

    Full Text Available Necrotizing infundibular crystalline folliculitis is a rare follicular lesion of which the etiology is not well understood. Here we describe the case of a 71-year-old male patient presenting with multiple hyperkeratotic lesions localized on the forehead. Histopathological analysis of one of the lesions revealed a follicular invagination containing cellular debris and keratin lamellae containing filamentous mucinous material and numerous crystals birefringent in polarized light microscopy. © 2014 S. Karger AG, Basel

  2. Solar cell structure incorporating a novel single crystal silicon material

    Science.gov (United States)

    Pankove, Jacques I.; Wu, Chung P.

    1983-01-01

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  3. New materials for solid state electrochemistry

    International Nuclear Information System (INIS)

    Ferloni, P.; Consiglio Nazionale delle Ricerche, Pavia; Magistris, A.; Consiglio Nazionale delle Ricerche, Pavia

    1994-01-01

    Solid state electrochemistry is an interdisciplinary area, undergoing nowadays a fast development. It is related on the one hand to chemistry, and on the other hand to crystallography, solid state physics and materials science. In this paper structural and electrical properties of some families of new materials interesting for solid state electrochemistry are reviewed. Attention is focused essentially on ceramic and crystalline materials, glasses and polymers, displaying high ionic conductivity and potentially suitable for various applications in solid state electrochemical devices. (orig.)

  4. Research and development of basic technologies for next-generation industry. Ultimate evaluation report on research and development of highly crystalline polymeric material; Jisedai sangyo kiban gijutsu kenkyu kaihatsu. Kokesshosei kobunshi zairyo saishu kenkyu kaihatsu hyoka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-05-01

    Basic technologies are developed involving highly crystalline polymeric materials comparable to metals in dynamic property even when used singly. The aim is to expand the application scope of polymeric materials including those designed as structural materials so that their light weight, high resistance to corrosion, and excellent machinability may be utilized in various fields. Target performance includes an elastic modulus under bending force of 100GPa or more in anisotropic materials and 50GPa or more in isotropic materials, a linear expansion coefficient of 5 times 10{sup -5}/degrees C or less, and a thermal deformation temperature of 180 degrees C or more. Tasks faced in relation to film or molded articles of anisotropic materials are the rigid molecular design, molding method including molecular orientation control, and molecular complex technology; and, in isotropic materials, the strengthening of interaction between molecules, establishment of molding methods, and equipping materials with high machinability. After a 10-year/3-phase development endeavors, the initially intended goals are sufficiently achieved. To be mentioned are achievements involving the generation of multidimensionally bound diacetylene polymeric crystals, higher elastic modulus and moldability provided to polyarylate materials, magnetic field orientation, ultrahigh-elasticity layered body, and organic-inorganic ionically bonded complex material, etc. (NEDO)

  5. Synthesis and crystalline properties of CdS incorporated polyvinylidene fluoride (PVDF) composite film

    Science.gov (United States)

    Patel, Arunendra Kumar; Sunder, Aishwarya; Mishra, Shweta; Bajpai, Rakesh

    2018-05-01

    This paper gives an insight on the synthesis and crystalline properties of Polyvinylidene Fluoride (PVDF) (host matrix) composites impregnated with Cadmium Sulphide (CdS) using Dimethyl formamide (DMF) as the base, prepared by the well known solvent casting technique. The effect of doping concentration of CdS in to the PVDF matrix was studied using X-ray diffraction technique. The structural properties like crystallinity Cr, interplanar distance d, average size of the crystalline region (D), and average inter crystalline separation (R) have been estimated for the developed composite. The crystallinity index, crystallite size and inter crystalline separation is increasing with increase in the concentration of CdS in to the PVDF matrix while the interplanar distance d is decreasing.

  6. Electrophoretic variation in low molecular weight lens crystallins from inbred strains of rats.

    Science.gov (United States)

    Donner, M E; Skow, L C; Kunz, H W; Gill, T J

    1985-10-01

    Analysis of rat lens soluble proteins by analytical isoelectric focusing detected two inherited electrophoretic differences in low molecular weight (LM) crystallins from inbred strains of rats (Rattus norvegicus). The polymorphic lens crystallins were shown to be similar to a genetically variant LM crystallin, LEN-1, previously described in mice (Mus musculus) and encoded on chromosome 1, at a locus linked to Pep-3 (dipeptidase). Linkage analysis demonstrated that the rat crystallin locus was loosely linked to Pep-3 at a recombination distance of 38 +/- 4.5 U. These data suggest the conservation of a large chromosomal region during the evolution of Rodentia and support the hypothesis that the gamma-crystallins are evolving more rapidly than alpha- or beta-crystallins.

  7. Characterization of temperature-dependent optical material properties of polymer powders

    Energy Technology Data Exchange (ETDEWEB)

    Laumer, Tobias [Bayerisches Laserzentrum GmbH, 91052 Erlangen (Germany); SAOT Erlangen Graduate School in Advanced Optical Technologies, 91052 Erlangen (Germany); CRC Collaborative Research Center 814 - Additive Manufacturing, 91052 Erlangen (Germany); Stichel, Thomas; Bock, Thomas; Amend, Philipp [Bayerisches Laserzentrum GmbH, 91052 Erlangen (Germany); CRC Collaborative Research Center 814 - Additive Manufacturing, 91052 Erlangen (Germany); Schmidt, Michael [Bayerisches Laserzentrum GmbH, 91052 Erlangen (Germany); University of Erlangen-Nürnberg, Institute of Photonic Technologies, 91052 Erlangen (Germany); SAOT Erlangen Graduate School in Advanced Optical Technologies, 91052 Erlangen (Germany); CRC Collaborative Research Center 814 - Additive Manufacturing, 91052 Erlangen (Germany)

    2015-05-22

    In former works, the optical material properties of different polymer powders used for Laser Beam Melting (LBM) at room temperature have been analyzed. With a measurement setup using two integration spheres, it was shown that the optical material properties of polymer powders differ significantly due to multiple reflections within the powder compared to solid bodies of the same material. Additionally, the absorption behavior of the single particles shows an important influence on the overall optical material properties, especially the reflectance of the powder bed. Now the setup is modified to allow measurements at higher temperatures. Because crystalline areas of semi-crystalline thermoplastics are mainly responsible for the absorption of the laser radiation, the influence of the temperature increase on the overall optical material properties is analyzed. As material, conventional polyamide 12 and polypropylene as new polymer powder material, is used. By comparing results at room temperature and at higher temperatures towards the melting point, the temperature-dependent optical material properties and their influence on the beam-matter interaction during the process are discussed. It is shown that the phase transition during melting leads to significant changes of the optical material properties of the analyzed powders.

  8. Systematic comparison of crystalline and amorphous phases: Charting the landscape of water structures and transformations

    International Nuclear Information System (INIS)

    Pietrucci, Fabio; Martoňák, Roman

    2015-01-01

    Systematically resolving different crystalline phases starting from the atomic positions, a mandatory step in algorithms for the prediction of structures or for the simulation of phase transitions, can be a non-trivial task. Extending to amorphous phases and liquids which lack the discrete symmetries, the problem becomes even more difficult, involving subtle topological differences at medium range that, however, are crucial to the physico-chemical and spectroscopic properties of the corresponding materials. Typically, system-tailored order parameters are devised, like global or local symmetry indicators, ring populations, etc. We show that a recently introduced metric provides a simple and general solution to this intricate problem. In particular, we demonstrate that a map can be traced displaying distances among water phases, including crystalline as well as amorphous states and the liquid, consistently with experimental knowledge in terms of phase diagram, structural features, and preparation routes

  9. Preparation and structural characterization of the thermoluminescent material CaSO4: Dy

    International Nuclear Information System (INIS)

    Sanchez R, A.; Azorin, J.; Gonzalez M, P.R.; Rivera, T.

    2005-01-01

    The grade of crystallinity of a material is important so that the one is presented the thermoluminescence phenomenon; for what is necessary to study those structural characteristic of a TL material and to correlate them with its TL response when being irradiated with ionizing radiation. The calcium sulfate activated with Dysprosium (CaSO 4 : Dy) it is a material that has demonstrated its efficiency in the dosimetry of the ionizing radiation for the thermoluminescence method. In this work the structural characterization of this prepared material for the recrystallization method by means of the evaporation of the solvent and their relationship with their TL response is presented. The results showed that the best material to be used in thermoluminescent dosimetry presents a crystalline structure in orthorhombic phase and a particle size in the interval of 80 μm to 200 μm. (Author)

  10. Carrier mobility enhancement of nano-crystalline semiconductor films: Incorporation of redox -relay species into the grain boundary interface

    Science.gov (United States)

    Desilva, L. A.; Bandara, T. M. W. J.; Hettiarachchi, B. H.; Kumara, G. R. A.; Perera, A. G. U.; Rajapaksa, R. M. G.; Tennakone, K.

    Dye-sensitized and perovskite solar cells and other nanostructured heterojunction electronic devices require securing intimate electronic contact between nanostructured surfaces. Generally, the strategy is solution phase coating of a hole -collector over a nano-crystalline high-band gap n-type oxide semiconductor film painted with a thin layer of the light harvesting material. The nano-crystallites of the hole - collector fills the pores of the painted oxide surface. Most ills of these devices are associated with imperfect contact and high resistance of the hole conducting layer constituted of nano-crystallites. Denaturing of the delicate light harvesting material forbid sintering at elevated temperatures to reduce the grain boundary resistance. It is found that the interfacial and grain boundary resistance can be significantly reduced via incorporation of redox species into the interfaces to form ultra-thin layers. Suitable redox moieties, preferably bonded to the surface, act as electron transfer relays greatly reducing the film resistance offerring a promising method of enhancing the effective hole mobility of nano-crystalline hole-collectors and developing hole conductor paints for application in nanostructured devices.

  11. Ninth Workshop on Crystalline Silicon Solar Cell Materials and Processes: Extended Abstracts and Papers of the Workshop, 9-11 August 1999, Breckenridge, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B.L.; Gee, J.; Kalejs, J.; Saitoh, R.; Stavola, M.; Swanson, D.; Tan, T.; Weber, E.; Werner, J.

    2000-08-04

    Since 1997, the PV sales have exceeded 100 MW/yr with > 85% of the production coming from silicon photovoltaics (Si-PV). As the PV demands increase in the new millennium, there will be a host of challenges to Si-PV. The challenges will arise in developing strategies for cost reduction, increased production, higher throughput per manufacturing line, new sources of low-cost Si, and introduction of new manufacturing processes for cell fabrication. At the same time, newer thin-film technologies, based on CdTe and CIS, will come on board posing new competition. With these challenges come new opportunities for the Si-PV-to detach itself from the microelectronics industry, to embark on an aggressive program in thin-film Si solar cells, and to try new approaches to process monitoring. The 9th Workshop on Crystalline Silicon Solar Cell Materials and Processes addressed these issues in a number of sessions. In addition to covering the usual topics of impurity gettering, defects, passivation, and solar cell processing, there were sessions on poly feedstock, mechanical properties of Si, metallization, and process monitoring.

  12. Direct Observation of Active Material Concentration Gradients and Crystallinity Breakdown in LiFePO4 Electrodes During Charge/Discharge Cycling of Lithium Batteries.

    Science.gov (United States)

    Roberts, Matthew R; Madsen, Alex; Nicklin, Chris; Rawle, Jonathan; Palmer, Michael G; Owen, John R; Hector, Andrew L

    2014-04-03

    The phase changes that occur during discharge of an electrode comprised of LiFePO 4 , carbon, and PTFE binder have been studied in lithium half cells by using X-ray diffraction measurements in reflection geometry. Differences in the state of charge between the front and the back of LiFePO 4 electrodes have been visualized. By modifying the X-ray incident angle the depth of penetration of the X-ray beam into the electrode was altered, allowing for the examination of any concentration gradients that were present within the electrode. At high rates of discharge the electrode side facing the current collector underwent limited lithium insertion while the electrode as a whole underwent greater than 50% of discharge. This behavior is consistent with depletion at high rate of the lithium content of the electrolyte contained in the electrode pores. Increases in the diffraction peak widths indicated a breakdown of crystallinity within the active material during cycling even during the relatively short duration of these experiments, which can also be linked to cycling at high rate.

  13. Reversible amorphous-crystalline phase changes in a wide range of Se1-xTex alloys studied using ultrafast differential scanning calorimetry

    NARCIS (Netherlands)

    Vermeulen, Paul. A.; Momand, Jamo; Kooi, Bart J.

    The reversible amorphous-crystalline phase change in a chalcogenide material, specifically the Se1-xTex alloy, has been investigated for the first time using ultrafast differential scanning calorimetry. Heating rates and cooling rates up to 5000 K/s were used. Repeated reversible

  14. Extensively Reversible Thermal Transformations of a Bistable, Fluorescence-Switchable Molecular Solid: Entry into Functional Molecular Phase-Change Materials.

    Science.gov (United States)

    Srujana, P; Radhakrishnan, T P

    2015-06-15

    Functional phase-change materials (PCMs) are conspicuously absent among molecular materials in which the various attributes of inorganic solids have been realized. While organic PCMs are primarily limited to thermal storage systems, the amorphous-crystalline transformation of materials like Ge-Sb-Te find use in advanced applications such as information storage. Reversible amorphous-crystalline transformations in molecular solids require a subtle balance between robust supramolecular assembly and flexible structural elements. We report novel diaminodicyanoquinodimethanes that achieve this transformation by interlinked helical assemblies coupled with conformationally flexible alkoxyalkyl chains. They exhibit highly reversible thermal transformations between bistable (crystalline/amorphous) forms, along with a prominent switching of the fluorescence emission energy and intensity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Research and development project in fiscal 1988 for fundamental technologies for next generation industries. Achievement report on research and development on high crystallinity polymeric materials; 1988 nendo kokesshosei kobunshi zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-03-01

    With an objective to realize structural materials characterized by light weight, high corrosion resistance and easy-to-process performance, research and development has been performed on high crystallinity polymeric materials. This paper summarizes the achievement in fiscal 1988. With regard to monophyletic materials, using thermotropic liquid crystal polyallylate as the object, researches were performed on optimization, polymerization, and elongation fluid orientation processing of the polymer chemical structures. In the polyphyletic materials, discussions were given on aromatic heterocyclic polymers as to the synthesizing process for PIBO expected of higher elasticity rate than with PIBT. Discussions were given on the phase transfer transient film making process for molecular composites for an attempt of enhancing performance of tapes and laminates. With regard to cross-linking materials, forming and improvements were discussed on heat hardening molecular composites of ionic/inorganic hybrid cross-linking polymer, modified ion cross-linking polymer, poly-ion complex, and diacetylene polymer. In addition, researches were performed on the high-density three-dimensional cross-linking process and inter-molecular reinforcement of mono-axially and highly oriented substances to obtain high elasticity forms. (NEDO)

  16. Crystallinity evaluation of polyhydroxybutyrate and polycaprolactone blends; Avaliacao da cristalinidade de blendas de polihidroxibutirato e policaprolactona

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcante, Maxwell P.; Rodrigues, Elton Jorge R.; Tavares, Maria Ines B., E-mail: maxdpc@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Macromoleculas

    2015-07-01

    Polyhydroxybutyrate, PHB, is a polymer obtained through bacterial or synthetic pathways. It has been used in the biomedical field as a matrix for drug delivery, medical implants and as scaffold material for tissue engineering. PHB has high structural organization, which makes it highly crystalline and brittle, making biodegradation difficult, reducing its employability. In order to enhance the mechanical and biological properties of PHB, blends with other polymers, biocompatible or not, are researched and produced. In this regard, blends of PHB and polycaprolactone, PCL, another biopolymer widely used in the biomedical industry, were obtained via solution casting and were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and low field nuclear magnetic resonance (LF-NMR). Results have shown a dependence between PHB's crystallinity index and PCL quantity employed to obtain the blends.(author)

  17. Crystallinity of polyethylene in uni-axial extensional flow

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; van Drongelen, Martin; Mortensen, Kell

    Flow history of polymer melts in processing greatly influences the crystallinity and hence the solid properties of the final material. A wide range of polymer processes involve extensional flows e.g. fiber spinning, blow moulding etc. However, due to instrumental difficulties, experimental studies...... on polymer crystallization in controlled uniaxial extension are quite rare compared to studies of crystallization in shear. Inherently uniaxial extensional flows are strong and simple relative to shear flows, in the sense that chain stretch is easily obtained and that the molecules experience no tumbling...... such that crystallization from a stretched state can take place. In this work we explore this feature in the attempt to link the nonlinear extensional rheology to the final morphology. We investigate polyethylenes (PE) of various chain architectures and observe that, even for complex architectures like long chain branched...

  18. Blocking of grain reorientation in self-doped alumina materials

    International Nuclear Information System (INIS)

    Suarez, M.; Fernandez, A.; Menendez, J.L.; Ramirez-Rico, J.; Torrecillas, R.

    2011-01-01

    Alumina nanoparticles 10-20 nm in diameter were nucleated on alumina particles, 150 nm average diameter, by a colloidal route followed by calcination. It is shown that after sintering, the final grain size is up to 20% smaller due to the addition of the alumina nanoparticles. Electron backscattered diffraction analysis shows that whereas a correlation in the relative crystalline orientations between neighbouring grains exists in the pure materials, the addition of alumina nanoparticles results in a random crystalline orientation.

  19. On the determination of crystallinity and cellulose content in plant fibres

    DEFF Research Database (Denmark)

    Thygesen, Anders; Oddershede, Jette; Lilholt, Hans

    2005-01-01

    A comparative study of cellulose crystallinity based on the sample crystallinity and the cellulose content in plant fibres was performed for samples of different origin. Strong acid hydrolysis was found superior to agricultural fibre analysis and comprehensive plant fibre analysis for a consistent...... determination of the cellulose content. Crystallinity determinations were based on X-ray powder diffraction methods using side-loaded samples in reflection (Bragg-Brentano) mode. Rietveld refinements based on the recently published crystal structure of cellulose I beta followed by integration of the crystalline...... and 60 - 70 g/ 100 g cellulose in wood based fibres. These findings are significant in relation to strong fibre composites and bio-ethanol production....

  20. Chaotic behavior in Casimir oscillators: A case study for phase-change materials.

    Science.gov (United States)

    Tajik, Fatemeh; Sedighi, Mehdi; Khorrami, Mohammad; Masoudi, Amir Ali; Palasantzas, George

    2017-10-01

    Casimir forces between material surfaces at close proximity of less than 200 nm can lead to increased chaotic behavior of actuating devices depending on the strength of the Casimir interaction. We investigate these phenomena for phase-change materials in torsional oscillators, where the amorphous to crystalline phase transitions lead to transitions between high and low Casimir force and torque states, respectively, without material compositions. For a conservative system bifurcation curve and Poincare maps analysis show the absence of chaotic behavior but with the crystalline phase (high force-torque state) favoring more unstable behavior and stiction. However, for a nonconservative system chaotic behavior can take place introducing significant risk for stiction, which is again more pronounced for the crystalline phase. The latter illustrates the more general scenario that stronger Casimir forces and torques increase the possibility for chaotic behavior. The latter is making it impossible to predict whether stiction or stable actuation will occur on a long-term basis, and it is setting limitations in the design of micronano devices operating at short-range nanoscale separations.

  1. Adhesion and multi-materials

    International Nuclear Information System (INIS)

    Schultz, J.

    1997-01-01

    Adhesion is a multidisciplinary science relevant to many practical fields. The main application of adhesion is bonding by adhesives. This technique is widely used in the industrial world and more specifically in the advanced technical domains. Adhesion is also involved in multi-component materials such as coatings, multilayer materials, polymer blends, composite materials... The multidisciplinary aspect of adhesion is well demonstrated by considering the wide variety of concepts, models and theories proposed for its description. An example of the adhesion between a fiber and a matrix in a composite material will lead to a general model relating the molecular properties of the interface to its capacity of stress transfer and hence to the macroscopic mechanical properties of the composite. This relationship is valid whatever the fiber (glass, carbon, polymeric) or the polymer matrix (thermoplastics, thermosetting). Any deviation from this model can be attributed to the existence of an interfacial zone or interphase exhibiting properties, mainly mechanical properties, different from the bulk matrix. Two examples are examined: the first one deals with the creation of a trans crystalline interphase in a semi-crystalline thermoplastic matrix and the second one is concerned with the formation of a pseudo glassy interphase in an elastomer matrix. These examples stress the need for complementary approaches in the understanding of adhesion phenomena at different levels of knowledge, from molecular to macroscopic. They also show how important it is to understand the mechanisms of formation of inter phases in order to be able to master the performance of multicomponent materials. (Author)

  2. New photo-convertible reactions of blue-fluorescent calf α-crystallin

    International Nuclear Information System (INIS)

    Fujimori, E.

    1979-01-01

    Both native blue fluorescent α-crystalline from calf lenses and UV (300 nm)-irradiated blue-fluorescent α-crystalline, when further irradiated with 365 nm-UV light, produce photo-products capable of emitting a new fluorescence at 455 nm. Illumination of the photo-products with 420 nm visible light regenerates the original fluorescence at 420-425 nm. In addition, another fluorescence at 400 nm has also been found in UV (300 nm)-irradiated blue-fluorescent α-crystallin, when exposed to 365 nm-UV light. (author)

  3. Effects of γ-irradiation and thermal treatment of crystallinity of drawn HDPE

    International Nuclear Information System (INIS)

    Liu Zhanjun; Silverman, J.

    1997-01-01

    The effect of absorbed dose irradiated in vacuum and air on the crystallinity of drawn HDPE was studied. Experimental results show that up to 250 kGy of absorbed dose when irradiated in vacuum, the crystallinity of drawn HDPE is decreased from about 75% to about 71%, and then the increase of absorbed dose until 1000 kGy has no further effect in lowering the crystallinity; when irradiated in air, an absorbed dose of 1000 kGy has no effect on the crystallinity of drawn HDPE. The effect of temperature of thermal treatment on the crystallinity of unirradiated drawn HDPE was also investigated. At first, the crystallinity is increased with the increase of temperature of thermal treatment, at about 120 degree C, it reaches the maximum value, and then it is rapidly lowered with the further increase of temperature of thermal treatment. Based on the existence of a lot of voids and lattice defects inside the drawn HDPE, the above experimental results were explained

  4. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    The studies clearly indicate that the synthesized Y2O3 nanoparticle is a crystalline material with a particle size from 23 to 66 nm. Further analysis ... M Sundrarajan1. Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu, India ...

  5. Prediction of the forming-limit curve in steels using crystalline plasticity

    International Nuclear Information System (INIS)

    Signorelli, J; Bolmaro, R; Turner, P; Bertinetti, M; Insausti, J; Lucaioli, A; Garc, C; Iurman, L

    2006-01-01

    Forming-limit curves (FLD) are predicted by using crystalline plasticity together with the Marciniak-Kuczynski (MK) model. The location on the sheet is modeled through the presence of an initial imperfection on a thin band of material. The deformations within and outside the band are supposed to be homogenous. Conditions of compatibility and equilibrium are imposed in the interface. Therefore, the polycrystalline model is applied to both sides of the sheet (inside and outside the band). The constitutive law at simple scale crystal is visco-plastic, while the response of the aggregate is obtained with the visco-plastic self-consistent approach (VPSC) . The experiences will be carried out using two plates of two embedding qualities. The consistency of the model predictions will be verified in both cases with experimental results. Tests with uniaxial traction, plane deformation traction and biaxial traction with hydraulic cupping and SWIFT embedding with a plane punch will be carried out to obtain the embedding limit relationships. This work analyzed the formability of two steel qualities that are fit for embedding. Approximately 1mm thick sheets were examined by simple mechanical testing, their forming-limit curves and crystallographic texture at the start and finish of the test. The results were also analyzed based on numerical simulations using a crystalline plasticity model together with the methodology proposed by Marciniak y Kuczynski. The results show that the simulated FLDs using MK-VPSC agree acceptably with the available experimental evidence. The values of simulated limit deformation for both materials are similar. Such behavior may be explained by the similarity in the values for n, grain shape, CRSS and initial texture of both plates. The proposed calculation model MK-VPSC also substantially improves the MK-Taylor approximation used by Inal et al. This approximation heavily overestimates the limit deformation values for a BCC structure like the steels

  6. CHEMICAL COMPOSITION, CRYSTALLINITY, AND THERMAL DEGRADATION OF BLEACHED AND UNBLEACHED KENAF BAST (Hibiscus cannabinus PULP AND NANOFIBERS

    Directory of Open Access Journals (Sweden)

    Mehdi Jonoobi

    2009-05-01

    Full Text Available Kenaf (Hibiscus cannabinus nanofibers were isolated from unbleached and bleached pulp by a combination of chemical and mechanical treatments. The chemical methods were based on NaOH-AQ (anthraquinone and three-stage bleaching (DEpD processes, whereas the mechanical techniques involved refining, cryo-crushing, and high-pressure homogenization. The size and morphology of the obtained fibers were characterized by environmental scanning electron microscopy (ESEM and transmission electron microscopy (TEM, and the studies showed that the isolated nanofibers from unbleached and bleached pulp had diameters between 10-90 nm, while their length was in the micrometer range. Fourier transform infrared (FTIR spectroscopy demonstrated that the content of lignin and hemicellulose decreased in the pulping process and that lignin was almost completely removed during bleaching. Moreover, thermogravimetric analysis (TGA indicated that both pulp types as well as the nanofibers displayed a superior thermal stability as compared to the raw kenaf. Finally, X-ray analyses showed that the chemo-mechanical treatments altered the crystallinity of the pulp and the nanofibers: the bleached pulp had a higher crystallinity than its unbleached counterpart, and the bleached nanofibers presented the highest crystallinity of all the investigated materials.

  7. Effects of crystalline FE and MN oxides on contaminant migration through soil liners

    International Nuclear Information System (INIS)

    Dodson, M.E.; Serne, R.J.; Gee, G.W.

    1983-12-01

    Tailings solution, produced from tailings excavated at the Canonsburg, Pennsylvania UMTRAP site, was used in liner material column flow studies to test the attenuation characteristics of local borrow pit soil found adjacent to the tailings area. The effluents from linear columns, under saturated conditions, were sampled at fractional pore volumes and analyzed for macro cation, anion, trace metal and radionuclide contents. Solution displacement was allowed to continue until three pore volumes of tailings solution had contacted the liner material. In addition, two amended liner mixtures were contacted with Canonsburg tailings solution to assess the effects of crystalline iron and manganese oxides in attenuating contaminants. The amended mixes represented Canonsburg soil plus either 2% (dry wt basis) reagent grade iron oxide of 2% manganese saturated green sand zeolite. Attenuation of most trace metals and readionuclides was high in all three column studies, while macro ions, zinc, and the anions Cl and SO 4 showed limited signs of attenuation regardless of whether the soil was amended or not. In addition, there were no signs of excess leaching to Fe or Mn from the columns enriched with their oxides. General results indicate that the addition of iron and manganese oxides in their crystalline form is of little additional value compared to the attenuation of contaminants achieved with native iron and manganese oxides found as partial coatings on the silicate minerals of the unamended Canonsburg soil. 8 references, 3 figures, 3 tables

  8. Crystalline beams: Theory, experiments, and proposals

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1995-01-01

    Crystalline Beams are an ordered state of an ensemble of ions, circulating in a storage ring, with very small velocity fluctuations. They can be obtained from ordinary warm ion beams with the application of intense cooling techniques (stochastic, electron, laser). A phase transition occurs when sufficiently small velocity spreads are reached, freezing the particle-to-particle spacing in strings, Zigzags, and helices ... The properties and the feasibility of Crystalline Beams depend on the choice of the lattice of the Storage Ring. There are three issues closely related to the design of the Storage Ring; namely: the determination of Equilibrium Configurations, Confinement Conditions, and Stability Conditions. Of particular concern is the effect of the trajectory curvature and of the beam momentum spread, since they set the requirements on the amount of momentum cooling, on the focussing, and on the distribution of bending in the lattice of the storage ring. The practical demonstration of Crystalline Beams may create the basis for an advanced technology for particle accelerators, where the limitations due to Coulomb intrabeam scattering and space-charge forces would finally be brought under control, so that beams of ions, more dense than normal, can be achieved for a variety of new applications

  9. X-ray scattering and diffraction from Xe-induced ripples in crystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Biermanns, Andreas; Pietsch, Ullrich; Grigorian, Souren [Universitaet Siegen (Germany); Grenzer, Joerg; Facsko, Stefan; Hanisch, Antje [Foschungszentrum Dresden-Rossendorf (Germany); Carbone, Dina; Metzger, Hartmut [ID Beamline, ESRF (France)

    2008-07-01

    The formation of surface-nanostructures with a characteristic size ranging from several nanometer up to microns has attracted significant interest in the last decades in the context of fabrication of novel opto-electronic and storage devices. One kind of those nanostructures are wave-like patterns (ripples) produced by an interplay between a roughening process caused by ion beam erosion (sputtering) of the surface and smoothening processes caused by surface diffusion. In this contribution we report on investigations of patterned Si(001) surfaces after irradiation with Xe{sup +}-ions using ion-energies up to 40 keV. During the sputtering, an amorphous surface-layer is formed followed by a rather sharp interface towards crystalline material, showing the same morphology as the surface. The structures of the amorphous layer and the amorphous-crystalline interface were studied by means of grazing-incidence-small angle scattering (GISAXS) and diffraction (GID) using synchrotron-radiation. We found that the crystal structure at the interface is expanded along the ripples, caused by the creation of defects inside the surface region, whereas this expansion is strongly reduced across the ripples. This different relaxation may play a driving role in pattern formation at the interface.

  10. Interaction between clay-based sealing components and crystalline host rock

    Science.gov (United States)

    Priyanto, D. G.; Dixon, D. A.; Man, A. G.

    The results of hydraulic-mechanical (H-M) numerical simulation of a shaft seal installed at a fracture zone (FZ) in a crystalline host rock using the finite element method are presented. The primary function of a shaft seal is to limit short-circuiting of the groundwater flow regime via the shaft in a deep geological repository. Two different stages of system evolution were considered in this numerical modelling. Stage 1 simulates the groundwater flow into an open shaft, prior to seal installation. Stage 2 simulates the groundwater flow into the shaft seal after seal installation. Four different cases were completed to: (i) evaluate H-M response due to the interaction between clay-based sealing material and crystalline host rock in the shaft seal structure; (ii) quantify the effect of the different times between the completion of the shaft excavation and the completion of shaft seal installation on the H-M response; and (iii) define the potential effects of different sealing material configurations. Shaft sealing materials include the bentonite-sand mixture (BSM), dense backfill (DBF), and concrete plug (CP). The BSM has greater swelling capacity and lower hydraulic conductivity ( K) than the DBF. The results of these analyses show that the decrease of the pore water pressure is concentrated along the fracture zone (FZ), which has the greatest K. As the time increases, the greatest decrease in pore water pressure is found around the FZ. Following FZ isolation and the subsequent filling of the shaft with water as it floods, the pore water pressure profile tends to recover back to the initial conditions prior to shaft excavation. The majority of the fluids that ultimately saturate the centre of the shaft seal flow radially inwards from the FZ. The time between the completion of the shaft excavation and the completion of shaft seal installation has a significant effect on the saturation time. A shorter time can reduce the saturation time. Since most of the inflow

  11. Determination of cellulose I crystallinity by FT-Raman spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Richard S. Reiner; Sally A. Ralph

    2009-01-01

    Two new methods based on FT-Raman spectroscopy, one simple, based on band intensity ratio, and the other, using a partial least-squares (PLS) regression model, are proposed to determine cellulose I crystallinity. In the simple method, crystallinity in semicrystalline cellulose I samples was determined based on univariate regression that was first developed using the...

  12. Electrochemical synthesis of self-organized TiO2 crystalline nanotubes without annealing

    Science.gov (United States)

    Giorgi, Leonardo; Dikonimos, Theodoros; Giorgi, Rossella; Buonocore, Francesco; Faggio, Giuliana; Messina, Giacomo; Lisi, Nicola

    2018-03-01

    This work demonstrates that upon anodic polarization in an aqueous fluoride-containing electrolyte, TiO2 nanotube array films can be formed with a well-defined crystalline phase, rather than an amorphous one. The crystalline phase was obtained avoiding any high temperature annealing. We studied the formation of nanotubes in an HF/H2O medium and the development of crystalline grains on the nanotube wall, and we found a facile way to achieve crystalline TiO2 nanotube arrays through a one-step anodization. The crystallinity of the film was influenced by the synthesis parameters, and the optimization of the electrolyte composition and anodization conditions (applied voltage and time) were carried out. For comparison purposes, crystalline anatase TiO2 nanotubes were also prepared by thermal treatment of amorphous nanotubes grown in an organic bath (ethylene glycol/NH4F/H2O). The morphology and the crystallinity of the nanotubes were studied by field emission gun-scanning electron microscopy (FEG-SEM) and Raman spectroscopy, whereas the electrochemical and semiconducting properties were analyzed by means of linear sweep voltammetry, impedance spectroscopy, and Mott-Schottky plots. X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) allowed us to determine the surface composition and the electronic structure of the samples and to correlate them with the electrochemical data. The optimal conditions to achieve a crystalline phase with high donor concentration are defined.

  13. Solid State Characterization of Commercial Crystalline and Amorphous Atorvastatin Calcium Samples

    OpenAIRE

    Shete, Ganesh; Puri, Vibha; Kumar, Lokesh; Bansal, Arvind K.

    2010-01-01

    Atorvastatin calcium (ATC), an anti-lipid BCS class II drug, is marketed in crystalline and amorphous solid forms. The objective of this study was to perform solid state characterization of commercial crystalline and amorphous ATC drug samples available in the Indian market. Six samples each of crystalline and amorphous ATC were characterized using X-ray powder diffractometry (XRPD), differential scanning calorimetry (DSC), thermogravimetric analysis, Karl Fisher titrimetry, microscopy (hot s...

  14. Laterally inherently thin amorphous-crystalline silicon heterojunction photovoltaic cell

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Zahidur R., E-mail: zr.chowdhury@utoronto.ca; Kherani, Nazir P., E-mail: kherani@ecf.utoronto.ca [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada)

    2014-12-29

    This article reports on an amorphous-crystalline silicon heterojunction photovoltaic cell concept wherein the heterojunction regions are laterally narrow and distributed amidst a backdrop of well-passivated crystalline silicon surface. The localized amorphous-crystalline silicon heterojunctions consisting of the laterally thin emitter and back-surface field regions are precisely aligned under the metal grid-lines and bus-bars while the remaining crystalline silicon surface is passivated using the recently proposed facile grown native oxide–plasma enhanced chemical vapour deposited silicon nitride passivation scheme. The proposed cell concept mitigates parasitic optical absorption losses by relegating amorphous silicon to beneath the shadowed metallized regions and by using optically transparent passivation layer. A photovoltaic conversion efficiency of 13.6% is obtained for an untextured proof-of-concept cell illuminated under AM 1.5 global spectrum; the specific cell performance parameters are V{sub OC} of 666 mV, J{sub SC} of 29.5 mA-cm{sup −2}, and fill-factor of 69.3%. Reduced parasitic absorption, predominantly in the shorter wavelength range, is confirmed with external quantum efficiency measurement.

  15. Confinement and stability of crystalline beams in storage rings

    International Nuclear Information System (INIS)

    Haffmans, A.F.

    1995-01-01

    We present a fully analytical approach to the study of the confinement and stability of open-quote open-quote Crystalline Beams close-quote close-quote in storage rings, in terms of such fundamental accelerator concepts as tune shift and stopband. We consider a open-quote open-quote Crystalline Beam close-quote close-quote consisting of substrings, arranged symmetrically around the reference trajectory, and we examine the motion of a slightly perturbed test particle on one of them. Our approach quite naturally leads to the conclusion, that (a) storage rings need to be operated below the transition energy, and (b) the open-quote open-quote Crystalline Beam close-quote close-quote has the same periodicity as the storage ring. Each open-quote open-quote Crystalline Beam close-quote close-quote has an upper and lower limit of the spacing between the ions. The upper limit is determined by condition (b), and the lower limit is set by the stability of the test particle motion around the equilibrium. copyright 1995 American Institute of Physics

  16. Endogenous α-crystallin inhibits expression of caspase-3 induced by hypoxia in retinal neurons.

    Science.gov (United States)

    Ying, Xi; Peng, Yanli; Zhang, Jiaping; Wang, Xingli; Wu, Nan; Zeng, Yuxiao; Wang, Yi

    2014-08-28

    To investigate the expression of endogenous, hypoxic stress-induced α-crystallin and caspase-3 in rat retinal neurons in vitro. Retinal neurons were cultured from Long-Evans rats. The expression of endogenous α-crystallin was analyzed by immunohistochemistry and reverse transcriptase-polymerase chain reaction (RT-PCR). Furthermore, hypoxic exposure was performed in cultured cells, and the expression of endogenous α-crystallin and caspase-3 was assayed by Western blotting. Positive α-crystallin staining was observed in cultured retinal neurons, and expression of endogenous α-crystallin mRNA peaked 3-5d after inoculation (Pendogenous, hypoxic stress-induced α-crystallin expression increased gradually, peaking 6h after hypoxia. The expression was more abundant compared to the control (Pendogenous α-crystallin in retinal neurons, especially over-expression induced by hypoxic stress, results in the down regulation of caspase-3. The data suggest that endogenous α-crystallin may act as an endogenous neuroprotective factor in retinal neurons. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Rock-welding materials for deep borehole nuclear waste disposal.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Pin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodriguez, Mark A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swift, Peter N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The concept of deep borehole nuclear waste disposal has recently been proposed. Effective sealing of a borehole after waste emplacement is generally required. In a high temperature disposal mode, the sealing function will be fulfilled by melting the ambient granitic rock with waste decay heat or an external heating source, creating a melt that will encapsulate waste containers or plug a portion of the borehole above a stack of the containers. However, there are certain drawbacks associated with natural materials, such as high melting temperatures, slow crystallization kinetics, the resulting sealing materials generally being porous with low mechanical strength, insufficient adhesion to waste container surface, and lack of flexibility for engineering controls. Here we show that natural granitic materials can be purposefully engineered through chemical modifications to enhance the sealing capability of the materials for deep borehole disposal. This work systematically explores the effect of chemical modification and crystallinity (amorphous vs. crystalline) on the melting and crystallization processes of a granitic rock system. A number of engineered granitic materials have been obtained that have decreased melting points, enhanced viscous densification, and accelerated recrystallization rates without compromising the mechanical integrity of the materials.

  18. Magnetic hysteresis at the domain scale of a multi-scale material model for magneto-elastic behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Vanoost, D., E-mail: dries.vanoost@kuleuven-kulak.be [KU Leuven Technology Campus Ostend, ReMI Research Group, Oostende B-8400 (Belgium); KU Leuven Kulak, Wave Propagation and Signal Processing Research Group, Kortrijk B-8500 (Belgium); Steentjes, S. [Institute of Electrical Machines, RWTH Aachen University, Aachen D-52062 (Germany); Peuteman, J. [KU Leuven Technology Campus Ostend, ReMI Research Group, Oostende B-8400 (Belgium); KU Leuven, Department of Electrical Engineering, Electrical Energy and Computer Architecture, Heverlee B-3001 (Belgium); Gielen, G. [KU Leuven, Department of Electrical Engineering, Microelectronics and Sensors, Heverlee B-3001 (Belgium); De Gersem, H. [KU Leuven Kulak, Wave Propagation and Signal Processing Research Group, Kortrijk B-8500 (Belgium); TU Darmstadt, Institut für Theorie Elektromagnetischer Felder, Darmstadt D-64289 (Germany); Pissoort, D. [KU Leuven Technology Campus Ostend, ReMI Research Group, Oostende B-8400 (Belgium); KU Leuven, Department of Electrical Engineering, Microelectronics and Sensors, Heverlee B-3001 (Belgium); Hameyer, K. [Institute of Electrical Machines, RWTH Aachen University, Aachen D-52062 (Germany)

    2016-09-15

    This paper proposes a multi-scale energy-based material model for poly-crystalline materials. Describing the behaviour of poly-crystalline materials at three spatial scales of dominating physical mechanisms allows accounting for the heterogeneity and multi-axiality of the material behaviour. The three spatial scales are the poly-crystalline, grain and domain scale. Together with appropriate scale transitions rules and models for local magnetic behaviour at each scale, the model is able to describe the magneto-elastic behaviour (magnetostriction and hysteresis) at the macroscale, although the data input is merely based on a set of physical constants. Introducing a new energy density function that describes the demagnetisation field, the anhysteretic multi-scale energy-based material model is extended to the hysteretic case. The hysteresis behaviour is included at the domain scale according to the micro-magnetic domain theory while preserving a valid description for the magneto-elastic coupling. The model is verified using existing measurement data for different mechanical stress levels. - Highlights: • A ferromagnetic hysteretic energy-based multi-scale material model is proposed. • The hysteresis is obtained by new proposed hysteresis energy density function. • Avoids tedious parameter identification.

  19. Definitions of terms relating to crystalline polymers (IUPAC Recommendations 2011)

    Czech Academy of Sciences Publication Activity Database

    Meille, S. V.; Allegra, G.; Geil, P. H.; He, J.; Hess, M.; Jin, J.-I.; Kratochvíl, Pavel; Mormann, W.; Stepto, R.

    2011-01-01

    Roč. 83, č. 10 (2011), s. 1831-1871 ISSN 0033-4545 Institutional research plan: CEZ:AV0Z40500505 Keywords : IUPAC Polymer Division * crystalline polymers * crystalline polymer conformation Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.789, year: 2011

  20. Study and modeling of heat transfer during the solidification of semi-crystalline polymers

    Energy Technology Data Exchange (ETDEWEB)

    Le Goff, R.; Poutot, G.; Delaunay, D. [Laboratoire de Thermocinetique de l' ecole polytechnique de l' universite de Nantes, UMR CNRS 6607, rue Christian Pauc, BP 50609 44306 Nantes cedex 3 (France); Fulchiron, R.; Koscher, E. [Laboratoire des Materiaux Polymeres et des Biomateriaux, IMP/UMR CNRS 5627, Universite Claude Bernard, Lyon 1, 69622 Villeurbanne Cedex (France)

    2005-12-01

    Semi-crystalline polymers are materials whose behavior during their cooling is difficult to model because of the strong coupling between the crystallization, heat transfer, pressure and shear. Thanks to two original apparatus we study solidification of such a polymer without shear. Firstly the comparison between experimental results and a numerical model will permit to validate crystallization kinetic for cooling rate reachable by DSC. The second experiment makes it possible to analyze solidification for high cooling rate, corresponding to some manufacturing processes. It appears that crystallization has an influence on the thermal contact resistance. (author)

  1. Protein Crystals as Novel Catalytic Materials.

    Science.gov (United States)

    Margolin, Alexey L.; Navia, Manuel A.

    2001-06-18

    In this era of molecular biology, protein crystallization is often considered to be a necessary first step in obtaining structural information through X-ray diffraction analysis. In a different light, protein crystals can also be thought of as materials, whose chemical and physical properties make them broadly attractive and useful across a larger spectrum of disciplines. The full potential of these protein crystalline materials has been severely restricted in practice, however, both by their inherent fragility, and by strongly held skepticism concerning their routine and predictable growth, formulation, and practical application. Fortunately, these problems have turned out to be solvable. A systematic exploration of the biophysics and biochemistry of protein crystallization has shown that one can dependably create new protein crystalline materials more or less at will. In turn, these crystals can be readily strengthened, both chemically and mechanically, to make them suitable for practical commercialization. Today, these novel materials are used as industrial catalysts on a commercial scale, in bioremediation and "green chemistry" applications, and in enantioselective chromatography of pharmaceuticals and fine chemicals. In the near future, their utility will expand, to include the purification of protein drugs, formulation of direct protein therapeutics, and development of adjuvant-less vaccines.

  2. Melt extrusion vs. spray drying: The effect of processing methods on crystalline content of naproxen-povidone formulations.

    Science.gov (United States)

    Haser, Abbe; Cao, Tu; Lubach, Joe; Listro, Tony; Acquarulo, Larry; Zhang, Feng

    2017-05-01

    Our hypothesis is that melt extrusion is a more suitable processing method than spray drying to prepare amorphous solid dispersions of drugs with a high crystallization tendency. Naproxen-povidone K25 was used as the model system in this study. Naproxen-povidone K25 solid dispersions at 30% and 60% drug loadings were characterized by modulated DSC, powder X-ray diffraction, FT-IR, and solid-state 13 C NMR to identify phase separation and drug recrystallization during processing and storage. At 30% drug loading, hydrogen bond (H-bond) sites of povidone K25 were not saturated and the glass transition (T g ) temperature of the formulation was higher. As a result, both melt-extruded and spray-dried materials were amorphous initially and remained so after storage at 40°C. At 60% drug loading, H-bond sites were saturated, and T g was low. We were not able to prepare amorphous materials. The initial crystallinity of the formulations was 0.4%±0.2% and 5.6%±0.6%, and increased to 2.7%±0.3% and 21.6%±1.0% for melt-extruded and spray-dried materials, respectively. Spray-dried material was more susceptible to re-crystallization during processing, due to the high diffusivity of naproxen molecules in the formulation matrix and lack of kinetic stabilization from polymer solution. A larger number of crystalline nucleation sites and high surface area made the spray-dried material more susceptible to recrystallization during storage. This study demonstrated the unique advantages of melt extrusion over spray drying for the preparation of amorphous solid dispersions of naproxen at high drug level. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Solid state characterization of commercial crystalline and amorphous atorvastatin calcium samples.

    Science.gov (United States)

    Shete, Ganesh; Puri, Vibha; Kumar, Lokesh; Bansal, Arvind K

    2010-06-01

    Atorvastatin calcium (ATC), an anti-lipid BCS class II drug, is marketed in crystalline and amorphous solid forms. The objective of this study was to perform solid state characterization of commercial crystalline and amorphous ATC drug samples available in the Indian market. Six samples each of crystalline and amorphous ATC were characterized using X-ray powder diffractometry (XRPD), differential scanning calorimetry (DSC), thermogravimetric analysis, Karl Fisher titrimetry, microscopy (hot stage microscopy, scanning electron microscopy), contact angle, and intrinsic dissolution rate (IDR). All crystalline ATC samples were found to be stable form I, however one sample possessed polymorphic impurity, evidenced in XRPD and DSC analysis. Amongst the amorphous ATC samples, XRPD demonstrated five samples to be amorphous 'form 27', while, one matched amorphous 'form 23'. Thermal behavior of amorphous ATC samples was compared to amorphous ATC generated by melt quenching in DSC. ATC was found to be an excellent glass former with T(g)/T(m) of 0.95. Residual crystallinity was detected in two of the amorphous samples by complementary use of conventional and modulated DSC techniques. The wettability and IDR of all amorphous samples was found to be higher than the crystalline samples. In conclusion, commercial ATC samples exhibited diverse solid state behavior that can impact the performance and stability of the dosage forms.

  4. Development of Ceramic Solid-State Laser Host Material

    Science.gov (United States)

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra

    2009-01-01

    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  5. Thermodynamic model for grain boundary effects on hydrogen solubility, diffusivity and permeability in poly-crystalline tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Takuji, E-mail: oda@snu.ac.kr

    2016-11-15

    Highlights: • A thermodynamic model to simulate grain boundary effects on hydrogen behaviors in poly-crystalline W was established. • With this model, the effective solubility, diffusivity and permeability of hydrogen are calculated as a function of grain size. • Grain boundary significantly change the hydrogen behaviors in poly-crystalline W up to around 1000 K. - Abstract: A thermodynamic model to evaluate effects of grain boundary (GB) on hydrogen behaviors in poly-crystalline tungsten is established. With this model, the effective solubility, diffusivity and permeability of hydrogen in tungsten equilibrated with surrounding H{sub 2} gas can be calculated as a function of grain size, temperature and H{sub 2} partial pressure. By setting 1.0 eV to the binding energy of hydrogen to GBs and 0.4 eV to the diffusion barrier of hydrogen along GBs, the model reasonably reproduces some experimental data on the effective diffusivity and permeability. Comparisons between calculation results by the model and available experimental data show that GBs significantly affect the hydrogen behaviors up to around 1000 K or higher in practical materials. Therefore, the effects of GBs need to be considered in analysis of experimental results, for which the present model can be utilized, and in prediction of tritium inventory and leakage in fusion reactors.

  6. Effect of the UV modification of α-crystallin on its ability to suppress nonspecific aggregation

    International Nuclear Information System (INIS)

    Ellozy, A.R.; Ceger, Patricia; Wang, R.H.; Dillon, James

    1996-01-01

    Recent studies have shown that structural modifications of α-crystallin during lens aging decrease it's effectiveness as a molecular chaperone. Some of these post-translational modifications have been linked to UV radiation, and this study was undertaken to investigate the effect of UV irradiation on the ability of α-crystallin to suppress nonspecific aggregation. The effect of 3-hydroxykynurenine (3-HK) was also investigated as a model for its glucoside (3-HKG), a main lens chromophore that has been linked to photochemical changes in the human lens. Alpha- and γ-crystallin solutions (1 mg/mL, 1:0.125 wt/wt) were photolyzed (transmission above 295nm) for various time intervals. Thermal denaturation of γ-crystallin with or without α-crystallin was carried out at 70 o C and increases in light scattering were measured at 360 nm. We found that (1) irradiation of γ-crystallin increased its susceptibility to heat-induced scattering. The addition of α-crystallin protects it against thermal denaturation, although its ability to do so decreases the longer γ-crystallin is irradiated and (2) irradiation of α-crystallin decreases its ability to suppress nonspecific aggregation and the presence of 3-HK during irradiation decreases its further. Our results indicate that post-translational modifications of α-crystallin due to UV irradiation affect the sites and mechanisms by which it interacts with γ-crystallin. The kinetics of γ-crystallin unfolding during thermal denaturation were also analyzed. We found that a simple two state model applied for nonirradiated γ-crystallin. This model does not hold when γ-crystallin is irradiated in the prescence or absence of α-crystallin. In these cases, two step or multistep mechanisms are more likely. (Author)

  7. A zero density change phase change memory material: GeTe-O structural characteristics upon crystallisation.

    Science.gov (United States)

    Zhou, Xilin; Dong, Weiling; Zhang, Hao; Simpson, Robert E

    2015-06-11

    Oxygen-doped germanium telluride phase change materials are proposed for high temperature applications. Up to 8 at.% oxygen is readily incorporated into GeTe, causing an increased crystallisation temperature and activation energy. The rhombohedral structure of the GeTe crystal is preserved in the oxygen doped films. For higher oxygen concentrations the material is found to phase separate into GeO2 and TeO2, which inhibits the technologically useful abrupt change in properties. Increasing the oxygen content in GeTe-O reduces the difference in film thickness and mass density between the amorphous and crystalline states. For oxygen concentrations between 5 and 6 at.%, the amorphous material and the crystalline material have the same density. Above 6 at.% O doping, crystallisation exhibits an anomalous density change, where the volume of the crystalline state is larger than that of the amorphous. The high thermal stability and zero-density change characteristic of Oxygen-incorporated GeTe, is recommended for efficient and low stress phase change memory devices that may operate at elevated temperatures.

  8. Nanoscale phase-change materials and devices

    International Nuclear Information System (INIS)

    Zheng, Qinghui; Wang, Yuxi; Zhu, Jia

    2017-01-01

    Phase-change materials (PCMs) that can reversibly transit between crystalline and amorphous phases have been widely used for data-storage and other functional devices. As PCMs scale down to nanoscale, the properties and transition procedures can vary, bringing both challenges and opportunities in scalability. This article describes the physical structures, properties and applications of nanoscale phase-change materials and devices. The limitations and performance of scaling properties in phase-change materials and the recent progress and challenges in phase-change devices are presented. At the end, some emerging applications related to phase-change materials are also introduced. (topical review)

  9. Nanoscale phase-change materials and devices

    Science.gov (United States)

    Zheng, Qinghui; Wang, Yuxi; Zhu, Jia

    2017-06-01

    Phase-change materials (PCMs) that can reversibly transit between crystalline and amorphous phases have been widely used for data-storage and other functional devices. As PCMs scale down to nanoscale, the properties and transition procedures can vary, bringing both challenges and opportunities in scalability. This article describes the physical structures, properties and applications of nanoscale phase-change materials and devices. The limitations and performance of scaling properties in phase-change materials and the recent progress and challenges in phase-change devices are presented. At the end, some emerging applications related to phase-change materials are also introduced.

  10. The molecular chaperone function of α-crystallin is impaired by UV photolysis

    International Nuclear Information System (INIS)

    Borkman, R.F.; McLaughlin, J.

    1995-01-01

    Buffer solutions of the lens protein γ-crystallin and the enzymes aldolase and liver alcohol dehydrogenase became turbid and formed solid precipitate upon exposure to an elevated temperature of 63 o C or to UV radiation at 308 nm. When α-crystallin was added to the protein solutions in stoichiometric amounts, heat or UV irradiation did not cause turbidity, or turbidity developed much less rapidly than in the absence of α-crystallin. Hence, normal α-crystallin functioned as a ''molecular chaperone,'' providing protection against both UV and heat-induced protein aggregation. When α-crystallin was preirradiated with UV at 308 nm, its ability to function as a chaperone vis-a-vis both UV and heat-induced aggregation was significantly impaired, but only at relatively high UV doss. (author)

  11. Microscopic theory of singlet exciton fission. III. Crystalline pentacene

    International Nuclear Information System (INIS)

    Berkelbach, Timothy C.; Reichman, David R.; Hybertsen, Mark S.

    2014-01-01

    We extend our previous work on singlet exciton fission in isolated dimers to the case of crystalline materials, focusing on pentacene as a canonical and concrete example. We discuss the proper interpretation of the character of low-lying excited states of relevance to singlet fission. In particular, we consider a variety of metrics for measuring charge-transfer character, conclusively demonstrating significant charge-transfer character in the low-lying excited states. The impact of this electronic structure on the subsequent singlet fission dynamics is assessed by performing real-time master-equation calculations involving hundreds of quantum states. We make direct comparisons with experimental absorption spectra and singlet fission rates, finding good quantitative agreement in both cases, and we discuss the mechanistic distinctions that exist between small isolated aggregates and bulk systems

  12. Microscopic theory of singlet exciton fission. III. Crystalline pentacene

    Energy Technology Data Exchange (ETDEWEB)

    Berkelbach, Timothy C., E-mail: tcb2112@columbia.edu; Reichman, David R., E-mail: drr2103@columbia.edu [Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027 (United States); Hybertsen, Mark S., E-mail: mhyberts@bnl.gov [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    2014-08-21

    We extend our previous work on singlet exciton fission in isolated dimers to the case of crystalline materials, focusing on pentacene as a canonical and concrete example. We discuss the proper interpretation of the character of low-lying excited states of relevance to singlet fission. In particular, we consider a variety of metrics for measuring charge-transfer character, conclusively demonstrating significant charge-transfer character in the low-lying excited states. The impact of this electronic structure on the subsequent singlet fission dynamics is assessed by performing real-time master-equation calculations involving hundreds of quantum states. We make direct comparisons with experimental absorption spectra and singlet fission rates, finding good quantitative agreement in both cases, and we discuss the mechanistic distinctions that exist between small isolated aggregates and bulk systems.

  13. Light and current induced degradation in p-type multi-crystalline cells and development of an inspection method and a stabilization method

    Energy Technology Data Exchange (ETDEWEB)

    Broek, K.M.; Bennett, I.J.; Jansen, M.J.; Borg, Van der N.J.C.M.; Eerenstein, W. [ECN Solar Energy, Petten (Netherlands)

    2012-09-15

    Stable solar cells are needed for durability testing of different combinations of module materials. In such a test, significant power losses in full-size modules with multi-crystalline cells after thermal cycling have been observed. This has been related to degradation of the solar cells used and it appeared that this was caused by current induced degradation. This phenomenon is not limited to boron doped Cz-Si, but can also occur in p-type multi-crystalline silicon. Work was done to develop an incoming inspection method for new batches of cells. Also, stabilisation procedures for modules containing cells that are sensitive to degradation have been determined.

  14. Modeling the self-assembly of ordered nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Monson, Peter [Univ. of Massachusetts, Amherst, MA (United States); Auerbach, Scott [Univ. of Massachusetts, Amherst, MA (United States)

    2017-11-13

    This report describes progress on a collaborative project on the multiscale modeling of the assembly processes in the synthesis of nanoporous materials. Such materials are of enormous importance in modern technology with application in the chemical process industries, biomedicine and biotechnology as well as microelectronics. The project focuses on two important classes of materials: i) microporous crystalline materials, such as zeolites, and ii) ordered mesoporous materials. In the first case the pores are part of the crystalline structure, while in the second the structures are amorphous on the atomistic length scale but where surfactant templating gives rise to order on the length scale of 2 - 20 nm. We have developed a modeling framework that encompasses both these kinds of materials. Our models focus on the assembly of corner sharing silica tetrahedra in the presence of structure directing agents. We emphasize a balance between sufficient realism in the models and computational tractibility given the complex many-body phenomena. We use both on-lattice and off-lattice models and the primary computational tools are Monte Carlo simulations with sampling techniques and ensembles appropriate to specific situations. Our modeling approach is the first to capture silica polymerization, nanopore crystallization, and mesopore formation through computer-simulated self assembly.

  15. Alpha B- and βA3-crystallins containing d-aspartic acids exist in a monomeric state.

    Science.gov (United States)

    Sakaue, Hiroaki; Takata, Takumi; Fujii, Norihiko; Sasaki, Hiroshi; Fujii, Noriko

    2015-01-01

    Crystallin stability and subunit-subunit interaction are essential for eye lens transparency. There are three types of crystallins in lens, designated as α-, β-, and γ-crystallins. Alpha-crystallin is a hetero-polymer of about 800kDa, consisting of 35-40 subunits of two different αA- and αB-subunits, each of 20kDa. The β/γ-crystallin superfamily comprises oligomeric β-crystallin (2-6 subunits) and monomeric γ-crystallin. Since lens proteins have very long half-lives, they undergo numerous post-translational modifications including racemization, isomerization, deamidation, oxidation, glycation, and truncation, which may decrease crystallin solubility and ultimately cause cataract formation. Racemization and isomerization of aspartyl (Asp) residues have been detected only in polymeric α- and oligomeric β-crystallin, while the situation in monomeric γ-crystallin has not been studied. Here, we investigated the racemization and isomerization of Asp in the γ-crystallin fraction of elderly donors. The results show that Asp residues of γS-, γD- and γC-crystallins were not racemized and isomerized. However, strikingly, we found that a portion of αB-crystallin and βA3-crystallin moved to the lower molecular weight fraction which is the same size of γ-crystallin. In those fractions, Asp-96 of αB-crystallin and Asp-37 of βA3-crystallin were highly inverted, which do not occur in the native lens higher molecular weight fraction. Our results indicate the possibility that the inversion of Asp residues may induce dissociation of αB- and βA3-crystallins from the polymeric and oligomeric states. This is the first report that stereoinversion of amino acids disturbs lens protein assembly in aged human lens. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Autophobicity and layering behavior of thin liquid-crystalline polymer films.

    NARCIS (Netherlands)

    Wielen, van der M.W.J.; Cohen Stuart, M.A.; Fleer, G.J.

    1998-01-01

    The stability against breaking-up of thin spin-coated films of liquid-crystalline polymers depends on the film thickness and annealing temperature. This study concerns side-chain liquid-crystalline polymers, based on alternating copolymers of maleic anhydride and mesogenic alkenes. The mesogenic

  17. [Crystalline lens photodisruption using femtosecond laser: experimental study].

    Science.gov (United States)

    Chatoux, O; Touboul, D; Buestel, C; Balcou, P; Colin, J

    2010-09-01

    The aim of this study was to analyze the interactions during femtosecond (fs) laser photodisruption in ex vivo porcine crystalline lenses and to study the parameters for laser interaction optimization. An experimental femtosecond laser was used. The laser characteristics were: 1030 nm wavelength; pulse duration, 400 fs; and numerical aperture, 0.13. Specific software was created to custom and monitor any type of photoablation pattern for treatment purposes. Porcine crystalline lenses were placed in an open sky holder filled with physiological liquid (BSS) covered by a glass plate. A numerical camera was associated with metrological software in order to magnify and quantify the results. Transmission electron microscopy (TEM) was performed on some samples to identify the microscopic plasma interactions with the lens. The optimization of parameters was investigated in terms of the optical breakdown threshold, the sizing of interactions, and the best pattern for alignments. More than 150 crystalline lenses of freshly enucleated pigs were treated. The optical breakdown threshold (OBT) was defined as the minimal energy level per pulse necessary to observe a physical interaction. In our study, the OBT varied according to the following parameters: the crystalline lens itself, varying from 4.2 to 7.6 μJ (mean, 5.1 μJ), and the depth of laser focus, varying up to 1 μJ, increasing in the depth of the tissue. Analyzing the distance between impacts, we observed that the closer the impacts were the less power was needed to create a clear well-drawn defect pattern (lines), i.e., with a 4-μJ optimized OBT, when the impacts were placed every 2 μm for the x,y directions and 60 μm for the z direction. Coalescent bubbles created by plasma formation always disappeared in less than 24h. The nonthermal effect of plasma and the innocuousness on surrounding tissues were proven by the TEM results. The crystalline lens photodisruption by the femtosecond laser seems an innovative

  18. Thermal transport during the growth of crystalline fibers by the laser-heated float zone method

    International Nuclear Information System (INIS)

    Feigelson, R.S.

    1990-01-01

    Single crystal fibers may someday prove useful in a variety of advanced device applications. At the current time, fibers for optical, superconducting, and structural applications are under investigation. The advantage of single crystal fibers for optical devices lies in the enhanced light guiding properties one can obtain compared to a bulk crystal of the same material. Potential fiber-optic applications include optical transmission lines for remote temperature sensing and spectroscopy, solid-state lasers and amplifiers, and nonlinear devices such as harmonic generators, Raman shifters and optical parameters oscillators. In the area of superconductivity, the potential for producing long flexible fibers of the Bi 2 Sr 2 CaCu 2 O 8 high temperature superconductor which are capable of carrying high electrical current has been demonstrated. This superconductor, like other high T c materials is incongruently melting and growth rates (fiber throughput), therefore, have to be reduced to optimize the superconducting properties. Interest in single crystal fibers for structural applications stems from a strong technological interest in high strength, light weight fiber-matrix composites capable of operating at elevated temperatures. The very high crystalline perfection possible in single crystal fibers of certain materials, for example Al 2 O 3 , make them very attractive for special high temperature structural applications. Single crystal fibers are noted for having greater lower defects and hence higher strength than comparable bulk crystals. For most of the fiber applications mentioned above, stringent requirements exist for uniform diameter, homogeneous composition, and a low density of crystalline defects. Excellent growth stability is needed to obtain such fibers

  19. Optimal Composite Material for Low Cost Fabrication of Large Composite Aerospace Structures using NASA Resins or POSS Nanoparticle Modifications

    Science.gov (United States)

    Lamontia, Mark A.; Gruber, Mark B.; Jensen, Brian J.

    2006-01-01

    Thermoplastic laminates in situ consolidated via tape or tow placement require full mechanical properties. Realizing full properties requires resin crystallinity to be controlled - partial crystallinity leads to unacceptably low laminate compression properties. There are two approaches: utilize an amorphous matrix resin; or place material made from a semi-crystalline resin featuring kinetics faster than the process. In this paper, a matrix resin evaluation and trade study was completed with commercial and NASA amorphous polyimides on the one hand, and with PEKK mixed with POSS nanoparticles for accelerated crystallinity growth on the other. A new thermoplastic impregnated material, 6 mm wide (0.25-in) AS-4 carbon/LaRC(TradeMark)8515 dry polyimide tow, was fabricated. Since LaRC(TradeMark)8515 is fully amorphous, it attains full properties following in situ consolidation, with no post processing required to build crystallinity. The tow in situ processing was demonstrated via in situ thermoplastic filament winding it into rings.

  20. Electromagnetic processes in strong crystalline fields

    CERN Multimedia

    2007-01-01

    We propose a number of new investigations on aspects of radiation from high energy electron and positron beams (10-300 GeV) in single crystals and amorphous targets. The common heading is radiation emission by electrons and positrons in strong electromagnetic fields, but as the setup is quite versatile, other related phenomena in radiation emission can be studied as well. The intent is to clarify the role of a number of important aspects of radiation in strong fields as e.g. observed in crystals. We propose to measure trident 'Klein-like' production in strong crystalline fields, 'crystalline undulator' radiation, 'sandwich' target phenomena, LPM suppression of pair production as well as axial and planar effects in contributions of spin to the radiation.

  1. Age-related changes in spectral transmittance of the human crystalline lens in situ.

    Science.gov (United States)

    Sakanishi, Yoshihito; Awano, Masakazu; Mizota, Atsushi; Tanaka, Minoru; Murakami, Akira; Ohnuma, Kazuhiko

    2012-01-01

    It was the aim of this study to measure spectral transmission of the human crystalline lens in situ. The crystalline lens was illuminated by one of four light-emitting diodes of different colors. The relative spectral transmittance of the human crystalline lens was measured with the Purkinje-Sanson mirror images over a wide range of ages. The study evaluated 36 crystalline lenses of 28 subjects aged 21-76 years. There was a significant correlation between the age and spectral transmittance for blue light. Spectral transmittance of the crystalline lens in situ could be measured with Purkinje-Sanson mirror images. Copyright © 2012 S. Karger AG, Basel.

  2. Ultrasonic nondestructive materials characterization

    Science.gov (United States)

    Green, R. E., Jr.

    1986-01-01

    A brief review of ultrasonic wave propagation in solid materials is presented with consideration of the altered behavior in anisotropic and nonlinear elastic materials in comparison with isotropic and linear elastic materials. Some experimental results are described in which ultrasonic velocity and attenuation measurements give insight into materials microstructure and associated mechanical properties. Recent developments with laser beam non-contact generation and detection of ultrasound are presented. The results of several years of experimental measurements using high-power ultrasound are discussed, which provide substantial evidence of the inability of presently accepted theories to fully explain the interaction of ultrasound with solid materials. Finally, a special synchrotron X-ray topographic system is described which affords the possibility of observing direct interaction of ultrasonic waves with the microstructural features of real crystalline solid materials for the first time.

  3. Nonlinear laser pulse response in a crystalline lens.

    Science.gov (United States)

    Sharma, R P; Gupta, Pradeep Kumar; Singh, Ram Kishor; Strickland, D

    2016-04-01

    The propagation characteristics of a spatial Gaussian laser pulse have been studied inside a gradient-index structured crystalline lens with constant-density plasma generated by the laser-tissue interaction. The propagation of the laser pulse is affected by the nonlinearities introduced by the generated plasma inside the crystalline lens. Owing to the movement of plasma species from a higher- to a lower-temperature region, an increase in the refractive index occurs that causes the focusing of the laser pulse. In this study, extended paraxial approximation has been applied to take into account the evolution of the radial profile of the Gaussian laser pulse. To examine the propagation characteristics, variation of the beam width parameter has been observed as a function of the laser power and initial beam radius. The cavitation bubble formation, which plays an important role in the restoration of the elasticity of the crystalline lens, has been investigated.

  4. Mixing induced reactive transport in fractured crystalline rocks

    International Nuclear Information System (INIS)

    Martinez-Landa, Lurdes; Carrera, Jesus; Dentz, Marco; Fernàndez-Garcia, Daniel; Nardí, Albert; Saaltink, Maarten W.

    2012-01-01

    In this paper the solute retention properties of crystalline fractured rocks due to mixing-induced geochemical reactions are studied. While fractured media exhibit paths of fast flow and transport and thus short residence times for conservative solutes, at the same time they promote mixing and dilution due to strong heterogeneity, which leads to sharp concentration contrasts. Enhanced mixing and dilution have a double effect that favors crystalline fractured media as a possible host medium for nuclear waste disposal. Firstly, peak radionuclide concentrations are attenuated and, secondly, mixing-induced precipitation reactions are enhanced significantly, which leads to radionuclide immobilization. An integrated framework is presented for the effective modeling of these flow, transport and reaction phenomena, and the interaction between them. In a simple case study, the enhanced dilution and precipitation potential of fractured crystalline rocks are systematically studied and quantified and contrasted it to retention and attenuation in an equivalent homogeneous formation.

  5. Synthesis of Foam-Shaped Nanoporous Zeolite Material: A Simple Template-Based Method

    Science.gov (United States)

    Saini, Vipin K.; Pires, Joao

    2012-01-01

    Nanoporous zeolite foam is an interesting crystalline material with an open-cell microcellular structure, similar to polyurethane foam (PUF). The aluminosilicate structure of this material has a large surface area, extended porosity, and mechanical strength. Owing to these properties, this material is suitable for industrial applications such as…

  6. Status and applications of diamond and diamond-like materials: An emerging technology

    Science.gov (United States)

    1990-01-01

    Recent discoveries that make possible the growth of crystalline diamond by chemical vapor deposition offer the potential for a wide variety of new applications. This report takes a broad look at the state of the technology following from these discoveries in relation to other allied materials, such as high-pressure diamond and cubic boron nitride. Most of the potential defense, space, and commercial applications are related to diamond's hardness, but some utilize other aspects such as optical or electronic properties. The growth processes are reviewed, and techniques for characterizing the resulting materials' properties are discussed. Crystalline diamond is emphasized, but other diamond-like materials (silicon carbide, amorphous carbon containing hydrogen) are also examined. Scientific, technical, and economic problem areas that could impede the rapid exploitation of these materials are identified. Recommendations are presented covering broad areas of research and development.

  7. Properties analysis of tensile strength, crystallinity degree and microstructure of polymer composite polypropylene-sand

    International Nuclear Information System (INIS)

    Sudirman; Karo-Karo, Aloma; Ari-Handayani; Bambang-Sugeng; Rukihati; Mashuri

    2004-01-01

    Materials modification base on polymer toward polymer composite is needed by addition of filler. Mechanical properties such as tensile strength, crystallinity degree and microstructure of polymer composite based on polypropylene with sand filler have been investigated. In this work, the polymer composite has been made by mixing the matrix of polypropylene melt flow 2 (PP MF2) or polypropylene melt flow 10 (PP MF 10) with sand filler in a labo plastomill. The composition of sand filler was varied to 10, 30, 40 and 50 % v/v, a then the composite were casted to the film sheets form. The sheets were characterized mechanically i.e tensile strength, crystallinity degree and microstructure. The result showed that the tensile strength decreased by increasing the volume fraction of sand filler, in accordance with microstructure investigation that the matrix area under zone plastic deformation (more cracks), while the filler experienced elastic deformation, so that the strength mechanism of filler did not achieved with expectation (Danusso and Tieghi theory). For filler more than 30 % of volume fraction, the tensile strength of polypropylene melt flow 10 (PP MF 10) was greater than that polypropylene melt flow 2 (PP MF2). It was caused by plasticities in PP MF 10. The tensile strength of PP MF2 was greater than that PP MF 10 for volume fraction of sand filler less than 30 %. It was caused by PP MF2 to be have more degree of crystallinity

  8. Magnetic Field Alignment of PS-P4VP: a Non-Liquid Crystalline Coil-Coil Block Copolymer

    Science.gov (United States)

    Rokhlenko, Yekaterina; Zhang, Kai; Larson, Steven; Gopalan, Padma; O'Hern, Corey; Osuji, Chinedum

    2015-03-01

    Magnetic fields provide the ability to control alignment of self-assembled soft materials such as block copolymers. Most prior work in this area has relied on the presence of ordered assemblies of anisotropic liquid crystalline species to ensure sufficient magnetic anisotropy to drive alignment. Recent experiments with poly(styrene-b-4-vinylpyridine), a non-liquid crystalline BCP, however, show field-induced alignment of a lamellar microstructure during cooling across the order-disorder transition. Using in situ x-ray scattering, we examine the roles of field strength and cooling rate on the alignment response of this low MW coil-coil BCP. Alignment is first observed at field strengths as low as 1 Tesla and improves markedly with both increasing field strength and slower cooling. We present a geometric argument to illustrate the origin of a finite, non-trivial magnetic susceptibility anisotropy for highly stretched surface-tethered polymer chains and corroborate this using coarse-grained molecular dynamics simulations. We rationalize the magnetic field response of the system in terms of the mobility afforded by the absence of entanglements, the intrinsic anisotropy resulting from the stretched polymer chains and sterically constrained conjugated rings, and the large grain size in these low molecular weight materials.

  9. Reconstruction of Single-Grain Orientation Distribution Functions for Crystalline Materials

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Sørensen, Henning Osholm; Sükösd, Zsuzsanna

    2009-01-01

    for individual grains of the material in consideration. We study two iterative large-scale reconstruction algorithms, the algebraic reconstruction technique (ART) and conjugate gradients for least squares (CGLS), and demonstrate that right preconditioning is necessary in both algorithms to provide satisfactory...

  10. Halide based MBE of crystalline metals and oxides

    Energy Technology Data Exchange (ETDEWEB)

    Greenlee, Jordan D.; Calley, W. Laws; Henderson, Walter; Doolittle, W. Alan [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, Georgia (United States)

    2012-02-15

    A halide based growth chemistry has been demonstrated which can deliver a range of transition metals using low to moderate effusion cell temperatures (30-700 C) even for high melting point metals. Previously, growth with transition metal species required difficult to control electron beam or impurity inducing metal organic sources. Both crystalline oxide and metal films exhibiting excellent crystal quality are grown using this halide-based growth chemistry. Films are grown using a plasma assisted Molecular Beam Epitaxy (MBE) system with metal-chloride precursors. Crystalline niobium, cobalt, iron, and nickel were grown using this chemistry but the technology can be generalized to almost any metal for which a chloride precursor is available. Additionally, the oxides LiNbO{sub 3} and LiNbO{sub 2} were grown with films exhibiting X-ray diffraction (XRD) rocking curve full-widths at half maximum of 150 and 190 arcseconds respectively. LiNbO{sub 2} films demonstrate a memristive response due to the rapid movement of lithium in the layered crystal structure. The rapid movement of lithium ions in LiNbO{sub 2} memristors is characterized using impedance spectroscopy measurements. The impedance spectroscopy measurements suggest an ionic current of.1 mA for a small drive voltage of 5 mV AC or equivalently an ionic current density of {proportional_to}87 A/cm{sup 2}. This high ionic current density coupled with low charge transfer resistance of {proportional_to}16.5 {omega} and a high relaxation frequency (6.6 MHz) makes this single crystal material appealing for battery applications in addition to memristors. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Excimer fluorescence of liquid crystalline systems

    Science.gov (United States)

    Sakhno, Tamara V.; Khakhel, Oleg A.; Barashkov, Nikolay N.; Korotkova, Irina V.

    1996-04-01

    The method of synchronous scanning fluorescence spectroscopy shows a presence of dimers of pyrene in a polymeric matrix. The results suggest that excimer formation takes place with dimers in liquid crystalline systems.

  12. Different alpha crystallin expression in human age-related and congenital cataract lens epithelium.

    Science.gov (United States)

    Yang, Jing; Zhou, Sheng; Guo, Minfei; Li, Yuting; Gu, Jianjun

    2016-05-28

    The purpose of this study was to investigate the different expressions of αA-crystallin and αB-crystallin in human lens epithelium of age-related and congenital cataracts. The central part of the human anterior lens capsule approximately 5 mm in diameter together with the adhering epithelial cells, were harvested and processed within 6 hours after cataract surgery from age-related and congenital cataract patients or from normal eyes of fresh cadavers. The mRNA and soluble protein levels of αA-crystallin and αB-crystallin in the human lens epithelium were detected by real-time PCR and western blots, respectively. The mRNA and soluble protein expressions of αA-crystallin and αB-crystallin in the lens epithelium were both reduced in age-related and congenital cataract groups when compared with the normal control group. However, the degree of α-crystallin loss in the lens epithelium was highly correlated with different cataract types. The α-crystallin expression of the lens epithelium was greatly reduced in the congenital cataract group but only moderately decreased in the age-related cataract group. The reduction of αA-crystallin soluble protein levels in the congenital cataract group was approximately 2.4 fold decrease compared with that of the age-related cataract group, while an mRNA fold change of 1.67 decrease was observed for the age-related cataract group. Similarly, the reduction of soluble protein levels of αB-crystallin in the congenital cataract group was approximately a 1.57 fold change compared with that of the age-related cataract group. A 1.75 fold change for mRNA levels compared with that of the age-related cataract group was observed. The results suggest that the differential loss of α-crystallin in the human lens epithelium could be associated with the different mechanisms of cataractogenesis in age-related versus congenital cataracts, subsequently resulting in different clinical presentations.

  13. Mean-field theory of photoinduced molecular reorientation in azobenzene liquid crystalline side-chain polymers

    DEFF Research Database (Denmark)

    Pedersen, T.G.; Johansen, P.M.

    1997-01-01

    . The theory provides an explanation for the high long-term stability of the photoinduced anisotropy as well as a theoretical prediction of the temporal behavior of photoinduced birefringence. The theoretical results agree favorably with measurements in the entire range of writing intensities used......A novel mean-field theory of photoinduced reorientation and optical anisotropy in liquid crystalline side-chain polymers is presented and compared with experiments, The reorientation mechanism is based on photoinduced trans cis isomerization and a multidomain model of the material is introduced...

  14. Nanometre-thick single-crystalline nanosheets grown at the water-air interface

    Science.gov (United States)

    Wang, Fei; Seo, Jung-Hun; Luo, Guangfu; Starr, Matthew B.; Li, Zhaodong; Geng, Dalong; Yin, Xin; Wang, Shaoyang; Fraser, Douglas G.; Morgan, Dane; Ma, Zhenqiang; Wang, Xudong

    2016-01-01

    To date, the preparation of free-standing 2D nanomaterials has been largely limited to the exfoliation of van der Waals solids. The lack of a robust mechanism for the bottom-up synthesis of 2D nanomaterials from non-layered materials has become an obstacle to further explore the physical properties and advanced applications of 2D nanomaterials. Here we demonstrate that surfactant monolayers can serve as soft templates guiding the nucleation and growth of 2D nanomaterials in large area beyond the limitation of van der Waals solids. One- to 2-nm-thick, single-crystalline free-standing ZnO nanosheets with sizes up to tens of micrometres are synthesized at the water-air interface. In this process, the packing density of surfactant monolayers adapts to the sub-phase metal ions and guides the epitaxial growth of nanosheets. It is thus named adaptive ionic layer epitaxy (AILE). The electronic properties of ZnO nanosheets and AILE of other materials are also investigated.

  15. Phosphorylation of αB-crystallin: Role in stress, aging and patho-physiological conditions.

    Science.gov (United States)

    Bakthisaran, Raman; Akula, Kranthi Kiran; Tangirala, Ramakrishna; Rao, Ch Mohan

    2016-01-01

    αB-crystallin, once thought to be a lenticular protein, is ubiquitous and has critical roles in several cellular processes that are modulated by phosphorylation. Serine residues 19, 45 and 59 of αB-crystallin undergo phosphorylation. Phosphorylation of S45 is mediated by p44/42 MAP kinase, whereas S59 phosphorylation is mediated by MAPKAP kinase-2. Pathway involved in S19 phosphorylation is not known. The review highlights the role of phosphorylation in (i) oligomeric structure, stability and chaperone activity, (ii) cellular processes such as apoptosis, myogenic differentiation, cell cycle regulation and angiogenesis, and (iii) aging, stress, cardiomyopathy-causing αB-crystallin mutants, and in other diseases. Depending on the context and extent of phosphorylation, αB-crystallin seems to confer beneficial or deleterious effects. Phosphorylation alters structure, stability, size distribution and dynamics of the oligomeric assembly, thus modulating chaperone activity and various cellular processes. Phosphorylated αB-crystallin has a tendency to partition to the cytoskeleton and hence to the insoluble fraction. Low levels of phosphorylation appear to be protective, while hyperphosphorylation has negative implications. Mutations in αB-crystallin, such as R120G, Q151X and 464delCT, associated with inherited myofibrillar myopathy lead to hyperphosphorylation and intracellular inclusions. An ongoing study in our laboratory with phosphorylation-mimicking mutants indicates that phosphorylation of R120GαB-crystallin increases its propensity to aggregate. Phosphorylation of αB-crystallin has dual role that manifests either beneficial or deleterious consequences depending on the extent of phosphorylation and interaction with cytoskeleton. Considering that disease-causing mutants of αB-crystallin are hyperphosphorylated, moderation of phosphorylation may be a useful strategy in disease management. This article is part of a Special Issue entitled Crystallin

  16. Crystalline lens power and refractive error.

    Science.gov (United States)

    Iribarren, Rafael; Morgan, Ian G; Nangia, Vinay; Jonas, Jost B

    2012-02-01

    To study the relationships between the refractive power of the crystalline lens, overall refractive error of the eye, and degree of nuclear cataract. All phakic participants of the population-based Central India Eye and Medical Study with an age of 50+ years were included. Calculation of the refractive lens power was based on distance noncycloplegic refractive error, corneal refractive power, anterior chamber depth, lens thickness, and axial length according to Bennett's formula. The study included 1885 subjects. Mean refractive lens power was 25.5 ± 3.0 D (range, 13.9-36.6). After adjustment for age and sex, the standardized correlation coefficients (β) of the association with the ocular refractive error were highest for crystalline lens power (β = -0.41; P lens opacity grade (β = -0.42; P lens power (β = -0.95), lower corneal refractive power (β = -0.76), higher lens thickness (β = 0.30), deeper anterior chamber (β = 0.28), and less marked nuclear lens opacity (β = -0.05). Lens thickness was significantly lower in eyes with greater nuclear opacity. Variations in refractive error in adults aged 50+ years were mostly influenced by variations in axial length and in crystalline lens refractive power, followed by variations in corneal refractive power, and, to a minor degree, by variations in lens thickness and anterior chamber depth.

  17. A metastable liquid melted from a crystalline solid under decompression

    Science.gov (United States)

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin

    2017-01-01

    A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid-solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure-temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.

  18. Crystalline anhydrous {alpha},{alpha}-trehalose (polymorph {beta}) and crystalline dihydrate {alpha},{alpha}-trehalose: A calorimetric study

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Susana S. [Centro de Quimica Estrutural, Complexo Interdisciplinar, Instituto Superior Tecnico, 1049-001 Lisbon (Portugal)]. E-mail: susanapinto@ist.utl.pt; Diogo, Herminio P. [Centro de Quimica Estrutural, Complexo Interdisciplinar, Instituto Superior Tecnico, 1049-001 Lisbon (Portugal)]. E-mail: hdiogo@ist.utl.pt; Moura-Ramos, Joaquim J. [Centro de Quimica-Fisica Molecular, Complexo Interdisciplinar, Instituto Superior Tecnico, 1049-001 Lisbon (Portugal)]. E-mail: mouraramos@ist.utl.pt

    2006-09-15

    The mean values of the standard massic energy of combustion of crystalline anhydrous {alpha},{alpha}-trehalose (C{sub 12}H{sub 22}O{sub 11}, polymorph {beta}) and crystalline dihydrate {alpha},{alpha}-trehalose (C{sub 12}H{sub 26}O{sub 13}) measured by static-bomb combustion calorimetry in oxygen, at the temperature T=298.15K, are {delta}{sub c}u{sup o}=-(16434.05+/-4.50)J.g{sup -1} and {delta}{sub c}u{sup o}=-(14816.05+/-3.52)J.g{sup -1}, respectively. The standard (p{sup o}=0.1MPa) molar enthalpy of formation of these compounds were derived from the corresponding standard molar enthalpies of combustion, respectively, {delta}{sub f}H{sub m}{sup o} (C{sub 12}H{sub 22}O{sub 11},cr)=-(2240.9+/-3.9)kJ.mol{sup -1}, and {delta}{sub f}H{sub m}{sup o} (C{sub 12}H{sub 26}O{sub 13},cr)=-(2832.6+/-3.6)kJ.mol{sup -1}. The values of the standard enthalpies of formation obtained in this work, together with data on enthalpies of solution at infinite dilution ({delta}{sub sol}H{sup {approx}}) for crystalline dihydrate and amorphous anhydrous trehalose, allow a better insight on the thermodynamic description of the trehalose system which can provide, together with the future research on the subject, a contribution for understanding the metabolism in several organisms, as well as the phase transition between the different polymorphs.

  19. Comparative studies on the pest reactions of single- and poly- crystalline MoSi2

    International Nuclear Information System (INIS)

    Chou, T.C.; Nieh, T.G.

    1992-01-01

    Molybdenum disilicide (MoSi 2 ) has many attractive properties, e.g., high melting point (2020 degrees C), relatively low density (6.28 g/cm 3 ), good thermal stability and thermal shock resistance, and excellent oxidation resistance, for potential high temperature applications. Specifically, it is oxidation resistant at temperatures up to about 1900 degrees C, resulting from the formation of a self-healing, glassy silica (SiO 2 ) surface layer. Because of its suitability for use as a high temperature coating and as heating elements, the oxidation properties of MoSi 2 have been extensively studied in the past 30 years, but mainly in the high temperature regimes. In this paper, the authors investigate the evolution and morphological characteristics of the oxidation products of both MoSi 2 single crystals and cast polycrystals. Special attention is given to addressing the nucleation of pest in single crystalline material. The results from both the single- and poly-crystalline samples are correlated with an effort to resolve the origin of MoSi 2 pest. Their implications to the early-stage formation (nucleation) of pest are discussed

  20. Pulsed Laser-Induced Effects in the Material Properties of Tungsten Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R [Centro de Investigacion CientIfica y de Educacion Superior de Ensenada, Km. 107 Carretera Tijuana-Ensenada, BC, 22860 (Mexico); Camacho-Lopez, S [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Km. 107 Carretera Tijuana-Ensenada, BC, 22860 (Mexico); Camacho-Lopez, M A [Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Paseo Colon y Tollocan, Toluca Edo. de Mexico, 50110 (Mexico); Sanchez-Perez, C [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, UNAM, Apdo. Postal 70-186, Mexico DF 04510 (Mexico); Esparza-GarcIa, A [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, UNAM, Apdo. Postal 70-186, Mexico DF 04510 (Mexico)

    2007-04-15

    In this work we present evidence of photo-induced effects on crystalline Tungsten (W) films. A frequency doubled Nd:YAG (5ns) laser was used in our experiments. The W thin films were deposited on silicon substrates by the DC-sputtering technique using W (Lesker, 99.95% purity) targets in an argon atmosphere. The crystalline phase of the deposited W films was determined by X-ray diffraction. Our experimental results show clear evidence that several events take place as a consequence of exposure of the W films to the laser nanosecond pulses. One of those events has a chemical effect that results in a significant degree of oxidation of the film; a second event affects the structural nature of the initial W material, resulting into a material phase change; and a third event changes the initially homogeneous morphology of the film into an unexpected porous material film. As it has been confirmed by the experiments, all of these effects are laser fluence dependent. A full post exposure analysis of the W thin films included Energy Dispersive Spectrometry to determine the degree of oxidation of the W film; a micro-Raman system was used to explore and to study the transition of the crystalline W to the amorphous-crystalline WO{sub 3} phase; further analysis with Scanning Electron Microscopy showed a definite laser-induced porosity which changes the initial homogeneous film into a highly porous film with small features in the range from 100 to 300 nm.

  1. Pulsed Laser-Induced Effects in the Material Properties of Tungsten Thin Films

    International Nuclear Information System (INIS)

    Evans, R; Camacho-Lopez, S; Camacho-Lopez, M A; Sanchez-Perez, C; Esparza-GarcIa, A

    2007-01-01

    In this work we present evidence of photo-induced effects on crystalline Tungsten (W) films. A frequency doubled Nd:YAG (5ns) laser was used in our experiments. The W thin films were deposited on silicon substrates by the DC-sputtering technique using W (Lesker, 99.95% purity) targets in an argon atmosphere. The crystalline phase of the deposited W films was determined by X-ray diffraction. Our experimental results show clear evidence that several events take place as a consequence of exposure of the W films to the laser nanosecond pulses. One of those events has a chemical effect that results in a significant degree of oxidation of the film; a second event affects the structural nature of the initial W material, resulting into a material phase change; and a third event changes the initially homogeneous morphology of the film into an unexpected porous material film. As it has been confirmed by the experiments, all of these effects are laser fluence dependent. A full post exposure analysis of the W thin films included Energy Dispersive Spectrometry to determine the degree of oxidation of the W film; a micro-Raman system was used to explore and to study the transition of the crystalline W to the amorphous-crystalline WO 3 phase; further analysis with Scanning Electron Microscopy showed a definite laser-induced porosity which changes the initial homogeneous film into a highly porous film with small features in the range from 100 to 300 nm

  2. Nanoscale phase change memory materials.

    Science.gov (United States)

    Caldwell, Marissa A; Jeyasingh, Rakesh Gnana David; Wong, H-S Philip; Milliron, Delia J

    2012-08-07

    Phase change memory materials store information through their reversible transitions between crystalline and amorphous states. For typical metal chalcogenide compounds, their phase transition properties directly impact critical memory characteristics and the manipulation of these is a major focus in the field. Here, we discuss recent work that explores the tuning of such properties by scaling the materials to nanoscale dimensions, including fabrication and synthetic strategies used to produce nanoscale phase change memory materials. The trends that emerge are relevant to understanding how such memory technologies will function as they scale to ever smaller dimensions and also suggest new approaches to designing materials for phase change applications. Finally, the challenges and opportunities raised by integrating nanoscale phase change materials into switching devices are discussed.

  3. Electron spin resonance investigaton of semiconductor materials for application in thin-film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Lihong

    2012-07-01

    In the present work, hydrogenated silicon and its alloys silicon carbide and silicon oxide have been investigated using electron spin resonance (ESR). The microstructure of these materials ranges from highly crystalline to amorphous. The correlation between the paramagnetic defects, microstructure, optical and electrical properties has been discussed. Correspondingly, these properties were characterized by the spin density (N{sub S}), g-value and the lineshape of ESR spectra, Infrared (I{sup IR}{sub C}) and/or Raman crystallinity (I{sup RS}{sub C}) as well as optical absorption and electrical dark conductivity ({sigma}{sub D}). 1. As the light absorber, Si layers essentially should have low defect density and good stability against light exposure. The spin density (N{sub S}) measured by ESR is often used as a measure for the paramagnetic defect density (N{sub D}) in the material. However, ESR sample preparation procedures can potentially cause discrepancy between N{sub S} and N{sub D}. Using Mo-foil, Al-foil and ZnO:Al-covered glass as sacrificial substrates, {mu}c-Si:H and a-Si:H films were deposited by plasma-enhanced chemical vapor deposition (PECVD), and ESR powder samples have been prepared with corresponding procedures. Possible preparation-related metastability and instability effects have been investigated in terms of substrate dependence, HCl-etching and atmosphere exposure. A sequence of 'preparation - annealing - air-exposure - annealing' has been designed to investigate the metastability and instability effects. N{sub S} after post-preparation air exposure is higher than in the annealed states, especially for the highly crystalline {mu}c-Si:H material the discrepancy reached one order of magnitude. Low temperature ESR measurements at 40 K indicated that atmospheric exposure leads to a redistribution of the defect states which in turn influence the evaluated N{sub S}. In annealed conditions the samples tend to have lower N{sub S} presumably due

  4. Synthesis of single-crystalline Al layers in sapphire

    International Nuclear Information System (INIS)

    Schlosser, W.; Lindner, J.K.N.; Zeitler, M.; Stritzker, B.

    1999-01-01

    Single-crystalline, buried aluminium layers were synthesized by 180 keV high-dose Al + ion implantation into sapphire at 500 deg. C. The approximately 70 nm thick Al layers exhibit in XTEM investigations locally abrupt interfaces to the single-crystalline Al 2 O 3 top layer and bulk, while thickness and depth position are subjected to variations. The layers grow by a ripening process of oriented Al precipitates, which at low doses exist at two different orientations. With increasing dose, precipitates with one out of the two orientations are observed to exist preferentially, finally leading to the formation of a single-crystalline layer. Al outdiffusion to the surface and the formation of spherical Al clusters at the surface are found to be competing processes to buried layer formation. The formation of Al layers is described by Rutherford Backscattering Spectroscopy (RBS), Cross-section transmission electron microscopy (XTEM) and Scanning electron microscopy (SEM) studies as a function of dose, temperature and substrate orientation

  5. The physics of large deformation of crystalline solids

    CERN Document Server

    Bell, James F

    1968-01-01

    Historically, a major problem for the study of the large deformation of crystalline solids has been the apparent lack of unity in experimentally determined stress-strain functions. The writer's discovery in 1949 of the unexpectedly high velocity of incremental loading waves in pre-stressed large deformation fields emphasized to him the pressing need for the independent, systematic experimental study of the subject, to provide a firm foundation upon which physically plausible theories for the finite deformation of crystalline solids could be constructed. Such a study undertaken by the writer at that time and continued uninterruptedly to the present, led in 1956 to the development of the diffraction grating experiment which permitted, for the first time, the optically accurate determination of the strain-time detail of non-linear finite amplitude wave fronts propagating into crystalline solids whose prior history was precisely known. These experimental diffraction grating studies during the past decade have led...

  6. Multiscale modeling of materials. Materials Research Society symposium proceedings: Volume 538

    International Nuclear Information System (INIS)

    Bulatov, V.V.; Diaz de la Rubia, T.; Phillips, R.; Kaxiras, E.; Ghoniem, N.

    1999-01-01

    The symposium, Multiscale Modeling of Materials, was held at the 1998 MRS Fall Meeting in Boston, Massachusetts, November 30 to December 3. Though multiple scale models are not new the topic has recently taken on a new sense of urgency. This is in large part due to the recognition that brute force computational approaches often fall short of allowing for direct simulation of both the characteristic structures and temporal processes found in real materials. As a result, a number of hybrid approaches are now finding favor in which ideas borrowed from distinct disciplines or modeling paradigms are unified to produce more powerful techniques. Topics included are modeling dislocation properties and behavior, defect dynamics and microstructural evolution, crystal defects and interfaces, novel methods for materials modeling, and non-crystalline and nanocrystalline materials. Eighty papers have been processed separately for inclusion on the data base

  7. Chemistry and Bioactivity of NeoMTA Plus™ versus MTA Angelus® Root Repair Materials

    Directory of Open Access Journals (Sweden)

    Sawsan T. Abu Zeid

    2017-01-01

    Full Text Available Objectives. To analyse the chemistry and bioactivity of NeoMTA Plus in comparison with the conventional root repair materials. Method and Materials. Unhydrated and hydrated (initial and final sets materials were analysed by Fourier transform infrared (FTIR spectroscopy and X-ray diffraction (XRD. For bioactivity study, small holes of dentin discs were filled with either materials, immersed in PBS for 15 days, and analysed with FTIR and scanning electron microscope with energy dispersive X-ray (SEM/EDX. The calculation of crystallinity and carbonate/phosphate (CO3/PO4 ratio of surface precipitates (from FTIR and calcium/phosphate (Ca/P ratio (from EDX was statistically analysed using t-test or ANOVA, respectively, at 0.05 significance. Results. Both materials are tricalcium silicate-based that finally react to be calcium silicate hydrate. NeoMTA Plus has relatively high aluminium and sulfur content, with tantalum oxide as an opacifier instead of zirconium oxide in MTA Angelus. NeoMTA Plus showed better apatite formation, higher crystallinity and Ca/P but lower CO3/PO4 ratio than MTA Angelus. SEM showed globular structure with a small particle size in NeoMTA Plus while spherical structure with large particle size in MTA Angelus. Conclusion. Due to fast setting, higher crystallinity, and better bioactivity of NeoMTA Plus, it can be used as a pulp and root repair material.

  8. Magnetic properties of crystalline nanoparticles with different sizes and shapes

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Ana T.A. [Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-760 Fortaleza, Ceará (Brazil); Universidade Federal Rural do Semi-Árido, Campus de Caraubas, RN 333, Rio Grande do Norte (Brazil); Dantas, Ana L.; Almeida, N.S. [Departamento de Física, Universidade do Estado do Rio Grande do Norte, 59610-210 Mossoró, Rio Grande do Norte (Brazil)

    2017-03-01

    The effects of shape and finite size on the physical behavior of nanostructured antiferromagnetic particles are investigated. They were modeled as ellipsoidal systems which preserve the crystalline structure of the correspondent bulk material. In our analysis we consider nanoparticles composed by magnetic ions which are themselves insensitive to the presence of surfaces and/or interfaces. Results are shown for structures similar to MnF{sub 2} and NiO crystals. Special attention is given to these last once their singular magnetic arrangement, as well as, their use at different technological and/or biomedical applications, has motivated intense experimental studies at different laboratories. We use the parameters that describe the correspondent bulk material to discuss the magnetic behavior of these particles for different volumes and shapes. - Highlights: • The number of magnetic phases of tetragonal AFM nanoparticles depends on their shape. • Hysteresis loops of NiO particles depends on the direction of the dc magnetic field. • The high frequencies normal modes of NiO particles are insensitive to their geometry.

  9. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 25; Issue 3 ... Sintering of nano crystalline silicon carbide by doping with boron carbide ... of these powders was achieved by addition of boron carbide of 0.5 wt% together with carbon of 1 wt% at 2050°C at vacuum (3 mbar) for 15 min. ... pp 213-217 Alloys and Steels.

  10. Results of intraocular lens implantation with capsular tension ring in subluxated crystalline or cataractous lenses in children

    Directory of Open Access Journals (Sweden)

    Das Pranab

    2009-01-01

    Full Text Available Purpose : To evaluate the outcome of intraocular lens (IOL implantation using capsular tension ring (CTR in subluxated crystalline or cataractous lenses in children. Setting : Tertiary care setting Materials and Methods : We prospectively studied 18 eyes of 15 children with subluxation of crystalline or cataractous lenses between 90° up to 210° after phacoemulsification, CTR and IOL implantation. Each child was examined for IOL centration, zonular dehiscence and posterior capsular opacification (PCO. Results : Age of the patient ranged between five to 15 years. Out of 18 eyes, seven had traumatic and 11 had spontaneous subluxation of crystalline or cataractous lens. Phacoemulsification was successfully performed with CTR implantation in the capsular bag. Intraoperative zonular dialysis occurred in two eyes. Anterior vitrectomy was performed in six eyes to manage vitreous prolapse. IOL implanted was polymethyl methacrylate (PMMA in eight eyes, hydrophobic acrylic in seven and hydrophilic acrylic in three. Follow-up ranged from 24 months to 72 months. Sixteen eyes had a best corrected visual acuity of 20/40 or better. Nine eyes developed significant PCO and were managed with Neodymium Yttrium Aluminum Garnet (Nd:YAG laser posterior capsulotomy. One eye with acrylic IOL in the capsular bag had IOL dislocation after two years which was managed with vitrectomy and secondary trans-scleral fixation of IOL. Conclusions : Phacoaspiration with CTR implantation makes capsular bag IOL fixation possible in most of the eyes with subluxated crystalline or cataractous lenses. PCO still remains a challenge in children with successful phacoaspiration with CTR implantation

  11. Growth and Brilliant Photo-Emission of Crystalline Hexagonal Column of Alq3 Microwires

    Directory of Open Access Journals (Sweden)

    Seokho Kim

    2018-03-01

    Full Text Available We report the growth and nanoscale luminescence characteristics of 8-hydroxyquinolinato aluminum (Alq3 with a crystalline hexagonal column morphology. Pristine Alq3 nanoparticles (NPs were prepared using a conventional reprecipitation method. Crystal hexagonal columns of Alq3 were grown by using a surfactant-assisted self-assembly technique as an adjunct to the aforementioned reprecipitation method. The formation and structural properties of the crystalline and non-crystalline Alq3 NPs were analyzed with scanning electron microscopy and X-ray diffraction. The nanoscale photoluminescence (PL characteristics and the luminescence color of the Alq3 single NPs and their crystal microwires (MWs were evaluated from color charge-coupled device images acquired using a high-resolution laser confocal microscope. In comparison with the Alq3 NPs, the crystalline MWs exhibited a very bright and sharp emission. This enhanced and sharp emission from the crystalline Alq3 single MWs originated from effective π-π stacking of the Alq3 molecules due to strong interactions in the crystalline structure.

  12. Crystallinity changes in wheat starch during the bread-making process: Starch crystallinity in the bread crust

    NARCIS (Netherlands)

    Primo-Martín, C.; Nieuwenhuijzen, N.H. van; Hamer, R.J.; Vliet, T. van

    2007-01-01

    The crystallinity of starch in crispy bread crust was quantified using several different techniques. Confocal scanning laser microscopy (CSLM) demonstrated the presence of granular starch in the crust and remnants of granules when moving towards the crumb. Differential scanning calorimetry (DSC)

  13. Crystallinity changes in wheat starch during the bread-making process: starch crystallinity in the bread crust

    NARCIS (Netherlands)

    Primo-Martin, C.; Nieuwenhuijzen, van N.H.; Hamer, R.J.; Vliet, van T.

    2007-01-01

    The crystallinity of starch in crispy bread crust was quantified using several different techniques. Confocal scanning laser microscopy (CSLM) demonstrated the presence of granular starch in the crust and remnants of granules when moving towards the crumb. Differential scanning calorimetry (DSC)

  14. Syntheses, molecular and crystalline architectures, and ...

    Indian Academy of Sciences (India)

    Syntheses, molecular and crystalline architectures, and luminescence behaviour of terephthalate bridged heptacoordinated dinuclear lead(II) complexes containing a pentadentate N-donor Schiff base. SUBHASIS ROYa, SOMNATH CHOUBEYa, SUMITAVA KHANa, KISHALAY BHARa,. PARTHA MITRAb and BARINDRA ...

  15. Improvements in numerical modelling of highly injected crystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Altermatt, P.P. [University of New South Wales, Centre for Photovoltaic Engineering, 2052 Sydney (Australia); Sinton, R.A. [Sinton Consulting, 1132 Green Circle, 80303 Boulder, CO (United States); Heiser, G. [University of NSW, School of Computer Science and Engineering, 2052 Sydney (Australia)

    2001-01-01

    We numerically model crystalline silicon concentrator cells with the inclusion of band gap narrowing (BGN) caused by injected free carriers. In previous studies, the revised room-temperature value of the intrinsic carrier density, n{sub i}=1.00x10{sup 10}cm{sup -3}, was inconsistent with the other material parameters of highly injected silicon. In this paper, we show that high-injection experiments can be described consistently with the revised value of n{sub i} if free-carrier induced BGN is included, and that such BGN is an important effect in silicon concentrator cells. The new model presented here significantly improves the ability to model highly injected silicon cells with a high level of precision.

  16. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J S; Geisler, P; Bruening, C; Kern, J; Prangsma, J C; Wu, X; Feichtner, Thorsten; Ziegler, J; Weinmann, P; Kamp, M; Forchel, A; Hecht, B [Wilhelm-Conrad-Roentgen-Center for Complex Material Systems, University of Wuerzburg (Germany); Biagioni, P [CNISM, Dipartimento di Fisica, Politecnico di Milano (Italy)

    2011-07-01

    Deep subwavelength integration of high-definition plasmonic nano-structures is of key importance for the development of future optical nanocircuitry. So far the experimental realization of proposed extended plasmonic networks remains challenging, mainly due to the multi-crystallinity of commonly used thermally evaporated gold layers. Resulting structural imperfections in individual circuit elements drastically reduce the yield of functional integrated nanocircuits. Here we demonstrate the use of very large but thin chemically grown single-crystalline gold flakes. After immobilization on any arbitrary surface, they serve as an ideal basis for focused-ion beam milling. We present high-definition ultra-smooth gold nanostructures with reproducible nanosized features over micrometer lengthscales. By comparing multi- and single-crystalline optical antennas we prove that the latter have superior optical properties which are in good agreement with numerical simulations.

  17. WORKSHOP: Crystalline beams

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Following pioneer work by specialists at the Soviet Novosibirsk Laboratory some ten years ago, interest developed in the possibility of 'freezing' ion beams in storage rings by pushing cooling (to smooth out beam behaviour) to its limits, the final goal being to lock the ions into a neat crystal pattern. After advances by groups working on laser cooled ions in traps, and with several cooling rings now in operation, a workshop on crystalline ion beams was organized recently by the GSI (Darmstadt) Laboratory and held at Wertheim in Germany

  18. Structural and Functional Consequences of Chaperone Site Deletion in αA-Crystallin

    Science.gov (United States)

    Santhoshkumar, Puttur; Karmakar, Srabani; Sharma, Krishna K.

    2016-01-01

    The chaperone-like activity of αA-crystallin has an important role in maintaining lens transparency. Previously we identified residues 70–88 as a chaperone site in αA-crystallin. In this study, we deleted the chaperone site residues to generate αAΔ70–76 and αAΔ70–88 mutants and investigated if there are additional substrate-binding sites in αA-crystallin. Both mutant proteins when expressed in E. coli formed inclusion bodies, and on solubilizing and refolding, they exhibited similar structural properties, with a 2- to 3-fold increase in molar mass compared to the molar mass of wild-type protein. The deletion mutants were less stable than the wild-type αA-crystallin. Functionally αAΔ70–88 was completely inactive as a chaperone, while αAΔ70–76 demonstrated a 40–50% reduction in anti-aggregation activity against alcohol dehydrogenase (ADH). Deletion of residues 70–88 abolished the ADH binding sites in αA-crystallin at physiological temperature. At 45 °C, cryptic ADH binding site(s) became exposed, which contributed subtly to the chaperone-like activity of αAΔ70–88. Both of the deletion mutants were completely inactive in suppressing aggregation of βL-crystallin at 53 °C. The mutants completely lost the anti-apoptotic property that αA-crystallin exhibits while they protected ARPE-19 (a human retinal pigment epithelial cell line) and primary human lens epithelial (HLE) cells from oxidative stress. Our studies demonstrate that residues 70–88 in αA-crystallin act as a primary substrate binding site and account for the bulk of the total chaperone activity. The β3 and β4 strands in αA-crystallin comprising 70–88 residues play an important role in maintenance of the structure and in preventing aggregation of denaturing proteins. PMID:27524665

  19. Postradiation reactions of free radicals in crystalline carbohydrates

    International Nuclear Information System (INIS)

    Yudin, I.V.; Filyanin, G.A.; Panasyuk, S.L.

    1990-01-01

    In order to determine the nature of the elementary stages of chain process of formation of molecular products in irradiated carbohydrates, the kinetics of their accumulation in crystalline matrices at 100-400 K were investigated. Chain formation of carbonyl products in xylose crystals irradiated at 100 K was identified at temperatures above 240 K and in saccharose, rhamnose, and arabinose crystals at T > 273 K. Chain formation of hydroxy acids with a radiochemical yield of ∼ 150 molecules/100 eV was confirmed in crystalline lactose

  20. Proceedings of the scientific visit on crystalline rock repository development.

    Energy Technology Data Exchange (ETDEWEB)

    Mariner, Paul E.; Hardin, Ernest L.; Miksova, Jitka [RAWRA, Czech Republic

    2013-02-01

    A scientific visit on Crystalline Rock Repository Development was held in the Czech Republic on September 24-27, 2012. The visit was hosted by the Czech Radioactive Waste Repository Authority (RAWRA), co-hosted by Sandia National Laboratories (SNL), and supported by the International Atomic Energy Agency (IAEA). The purpose of the visit was to promote technical information exchange between participants from countries engaged in the investigation and exploration of crystalline rock for the eventual construction of nuclear waste repositories. The visit was designed especially for participants of countries that have recently commenced (or recommenced) national repository programmes in crystalline host rock formations. Discussion topics included repository programme development, site screening and selection, site characterization, disposal concepts in crystalline host rock, regulatory frameworks, and safety assessment methodology. Interest was surveyed in establishing a %E2%80%9Cclub,%E2%80%9D the mission of which would be to identify and address the various technical challenges that confront the disposal of radioactive waste in crystalline rock environments. The idea of a second scientific visit to be held one year later in another host country received popular support. The visit concluded with a trip to the countryside south of Prague where participants were treated to a tour of the laboratory and underground facilities of the Josef Regional Underground Research Centre.