WorldWideScience

Sample records for ultra-low temperature lithium

  1. Experiments on Quantum Hall Topological Phases in Ultra Low Temperatures

    International Nuclear Information System (INIS)

    Du, Rui-Rui

    2015-01-01

    This project is to cool electrons in semiconductors to extremely low temperatures and to study new states of matter formed by low-dimensional electrons (or holes). At such low temperatures (and with an intense magnetic field), electronic behavior differs completely from ordinary ones observed at room temperatures or regular low temperature. Studies of electrons at such low temperatures would open the door for fundamental discoveries in condensed matter physics. Present studies have been focused on topological phases in the fractional quantum Hall effect in GaAs/AlGaAs semiconductor heterostructures, and the newly discovered (by this group) quantum spin Hall effect in InAs/GaSb materials. This project consists of the following components: 1) Development of efficient sample cooling techniques and electron thermometry: Our goal is to reach 1 mK electron temperature and reasonable determination of electron temperature; 2) Experiments at ultra-low temperatures: Our goal is to understand the energy scale of competing quantum phases, by measuring the temperature-dependence of transport features. Focus will be placed on such issues as the energy gap of the 5/2 state, and those of 12/5 (and possible 13/5); resistive signature of instability near 1/2 at ultra-low temperatures; 3) Measurement of the 5/2 gaps in the limit of small or large Zeeman energies: Our goal is to gain physics insight of 5/2 state at limiting experimental parameters, especially those properties concerning the spin polarization; 4) Experiments on tuning the electron-electron interaction in a screened quantum Hall system: Our goal is to gain understanding of the formation of paired fractional quantum Hall state as the interaction pseudo-potential is being modified by a nearby screening electron layer; 5) Experiments on the quantized helical edge states under a strong magnetic field and ultralow temperatures: our goal is to investigate both the bulk and edge states in a quantum spin Hall insulator under

  2. An ultra-low-power CMOS temperature sensor for RFID applications

    International Nuclear Information System (INIS)

    Xu Conghui; Gao Peijun; Che Wenyi; Tan Xi; Yan Na; Min Hao

    2009-01-01

    An ultra-low-power CMOS temperature sensor with analog-to-digital readout circuitry for RFID applications was implemented in a 0.18-μm CMOS process. To achieve ultra-low power consumption, an error model is proposed and the corresponding novel temperature sensor front-end with a new double-measure method is presented. Analog-to-digital conversion is accomplished by a sigma-delta converter. The complete system consumes only 26 μA and 1.8 V for continuous operation and achieves an accuracy of ±0.65 deg. C from -20 to 120 deg. C after calibration at one temperature.

  3. An ultra-low-power CMOS temperature sensor for RFID applications

    Energy Technology Data Exchange (ETDEWEB)

    Xu Conghui; Gao Peijun; Che Wenyi; Tan Xi; Yan Na; Min Hao, E-mail: yanna@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2009-04-15

    An ultra-low-power CMOS temperature sensor with analog-to-digital readout circuitry for RFID applications was implemented in a 0.18-mum CMOS process. To achieve ultra-low power consumption, an error model is proposed and the corresponding novel temperature sensor front-end with a new double-measure method is presented. Analog-to-digital conversion is accomplished by a sigma-delta converter. The complete system consumes only 26 muA and 1.8 V for continuous operation and achieves an accuracy of +-0.65 deg. C from -20 to 120 deg. C after calibration at one temperature.

  4. Ultra-low temperature curable nano-silver conductive adhesive for piezoelectric composite material

    Science.gov (United States)

    Yan, Chao; Liao, Qingwei; Zhou, Xingli; Wang, Likun; Zhong, Chao; Zhang, Di

    2018-01-01

    Limited by the low thermal resistance of composite material, ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conduction treatment of piezoelectric composite material. An ultra-low temperature curable nano-silver conductive adhesive with high adhesion strength for the applications of piezoelectric composite material was investigated. The crystal structure of cured adhesive, SEM/EDS analysis, thermal analysis, adhesive properties and conductive properties of different content of nano-silver filler or micron-silver doping samples were studied. The results show that with 60 wt.% nano-silver filler the ultra-low temperature curable conductive silver adhesive had the relatively good conductivity as volume resistivity of 2.37 × 10-4 Ω cm, and good adhesion strength of 5.13 MPa. Minor micron-doping (below 15 wt.%) could improve conductivity, but would decrease other properties. The ultra-low temperature curable nano-silver conductive adhesive could successfully applied to piezoelectric composite material.

  5. Ultra low power temperature compensation method for palladium nanowire grid

    NARCIS (Netherlands)

    Ing. Erik Puik; J.F. van der Bent; C.J.M. van Rijn

    2010-01-01

    From Science direct: One of the nanowires was covered with a 2-Hydroxyethyl methacrylate based compound to prevent hydrogen from reaching the wire. The compound was dried by a UV source and tested in chamber for comparison with previous measurements. The results shows that temperature effects can

  6. Achieving low return temperature for domestic hot water preparation by ultra-low-temperature district heating

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Svendsen, Svend

    2017-01-01

    District heating (DH) is a cost-effective method of heat supply, especially to area with high heat density. Ultra-low-temperature district heating (ULTDH) is defined with supply temperature at 35-45 degrees C. It aims at making utmost use of the available low-temperature energy sources. In order...... to achieve high efficiency of the ULTDH system, the return temperature should be as low as possible. For the energy-efficient buildings in the future, it is feasible to use ULTDH to cover the space heating demand. However, considering the comfort and hygiene requirements of domestic hot water (DHW...... lower return temperature and higher efficiency for DHW supply, an innovative substation was devised, which replaced the bypass with an instantaneous heat exchanger and a micro electric storage tank. The energy performance of the proposed substation and the resulting benefits for the DH system...

  7. Ultra-low Temperature Curable Conductive Silver Adhesive with different Resin Matrix

    Science.gov (United States)

    Zhou, Xingli; Wang, Likun; Liao, Qingwei; Yan, Chao; Li, Xing; Qin, Lei

    2018-03-01

    The ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conductive treatment of piezoelectric composite material due to the low thermal resistance of composite material and low adhesion strength of adhesive. An ultra-low temperature curable conductive adhesive with high adhesion strength was obtained for the applications of piezoelectric composite material. The microstructure, conductive properties and adhesive properties with different resin matrix were investigated. The conductive adhesive with AG-80 as the resin matrix has the shorter curing time (20min), lower curing temperature (90°C) and higher adhesion strength (7.6MPa). The resistivity of AG-80 sample has the lower value (2.13 × 10-4Ω·cm) than the 618 sample (4.44 × 10-4Ω·cm).

  8. Effect of Diluent on Ultra-low Temperature Curable Conductive Silver Adhesive

    Science.gov (United States)

    Zhou, Xingli; Wang, Likun; Liao, Qingwei; Yan, Chao; Du, Haibo; Qin, Lei

    2018-03-01

    The ultra-low temperature curable conductive silver adhesive needed urgently for the surface conductive treatment of piezoelectric composite material. The effect of diluent acetone on ultra-low temperature curable conductive silver adhesive were investigated for surface conductive treatment of piezoelectric composite material. In order to improve the operability and extend the life of the conductive adhesive, the diluent was added to dissolve and disperse conductive adhesive. With the increase of the content of diluent, the volume resistivity of conductive adhesive decreased at first and then increased, and the shear strength increased at first and then decreased. When the acetone content is 10%, the silver flaky bonded together, arranged the neatest, the smallest gap, the most closely connected, the surface can form a complete conductive network, and the volume resistivity is 2.37 × 10-4Ω · cm, the shear strength is 5.13MPa.

  9. TEMPERATURE ANISOTROPY IN THE PRESENCE OF ULTRA LOW FREQUENCY WAVES IN THE TERRESTRIAL FORESHOCK

    International Nuclear Information System (INIS)

    Selzer, L. A.; Hnat, B.; Osman, K. T.; Nakariakov, V. M.; Eastwood, J. P.; Burgess, D.

    2014-01-01

    We report the first study of the correlation between elevated solar wind core plasma temperatures and temperature anisotropy in the terrestrial foreshock. Plasma temperature is enhanced near the fire hose marginal stability threshold in the presence of ultra low frequency (ULF) large amplitude magnetic perturbations, which are intrinsically right-hand circularly polarized. Direct comparison of contemporaneous anisotropic temperatures in the upstream solar wind and the foreshock suggests that the net heating of plasma is mediated via increase of the parallel temperature in the foreshock region where the ULF waves are present. We consider the possibility that a mechanism based on Landau damping, where solar wind plasma temperature parallel to the background magnetic field is increased by interaction with oblique compressible fast magneto-acoustic ULF waves, influences temperature anisotropy

  10. TEMPERATURE ANISOTROPY IN THE PRESENCE OF ULTRA LOW FREQUENCY WAVES IN THE TERRESTRIAL FORESHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Selzer, L. A.; Hnat, B.; Osman, K. T.; Nakariakov, V. M. [Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Eastwood, J. P. [Space and Atmospheric Physics, The Blackett Laboratory, Imperial College London, London (United Kingdom); Burgess, D., E-mail: L.A.Selzer@warwick.ac.uk [School of Physics and Astronomy, Queen Mary University of London (United Kingdom)

    2014-06-10

    We report the first study of the correlation between elevated solar wind core plasma temperatures and temperature anisotropy in the terrestrial foreshock. Plasma temperature is enhanced near the fire hose marginal stability threshold in the presence of ultra low frequency (ULF) large amplitude magnetic perturbations, which are intrinsically right-hand circularly polarized. Direct comparison of contemporaneous anisotropic temperatures in the upstream solar wind and the foreshock suggests that the net heating of plasma is mediated via increase of the parallel temperature in the foreshock region where the ULF waves are present. We consider the possibility that a mechanism based on Landau damping, where solar wind plasma temperature parallel to the background magnetic field is increased by interaction with oblique compressible fast magneto-acoustic ULF waves, influences temperature anisotropy.

  11. A University Consortium on Low Temperature Combustion for High Efficiency, Ultra-Low Emission Engines

    Energy Technology Data Exchange (ETDEWEB)

    Assanis, Dennis N. [Univ. of Michigan, Ann Arbor, MI (United States); Atreya, Arvind [Univ. of Michigan, Ann Arbor, MI (United States); Chen, Jyh-Yuan [Univ. of California, Berkeley, CA (United States); Cheng, Wai K. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Dibble, Robert W. [Univ. of California, Berkeley, CA (United States); Edwards, Chris [Stanford Univ., CA (United States); Filipi, Zoran S. [Univ. of Michigan, Ann Arbor, MI (United States); Gerdes, Christian [Stanford Univ., CA (United States); Im, Hong [Univ. of Michigan, Ann Arbor, MI (United States); Lavoie, George A. [Univ. of Michigan, Ann Arbor, MI (United States); Wooldridge, Margaret S. [Univ. of Michigan, Ann Arbor, MI (United States)

    2009-12-31

    The objective of the University consortium was to investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines and develop methods to extend those boundaries to improve the fuel economy of these engines, while operating with ultra low emissions. This work involved studies of thermal effects, thermal transients and engine management, internal mixing and stratification, and direct injection strategies for affecting combustion stability. This work also examined spark-assisted Homogenous Charge Compression Ignition (HCCI) and exhaust after-treatment so as to extend the range and maximize the benefit of Homogenous Charge Compression Ignition (HCCI)/ Partially Premixed Compression Ignition (PPCI) operation. In summary the overall goals were; Investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines; Develop methods to extend LTC boundaries to improve the fuel economy of HCCI engines fueled on gasoline and alternative blends, while operating with ultra low emissions; and Investigate alternate fuels, ignition and after-treatment for LTC and Partially Premixed compression Ignition (PPCI) engines.

  12. Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    of Legionella in the DHW (domestic hot water) and assure the comfortable temperature, all substations were installed with supplementary heating devices. Detailed measurements were taken in the substations, including the electricity demand of the supplementary heating devices. To compare the energy and economic......This study investigated the performances of five different substation configurations in single-family houses supplied with ULTDH (ultra-low-temperature district heating). The temperature at the heat plant is 46 degrees C and around 40 degrees C at the substations. To avoid the proliferation...... performance of the substations, separate models were built based on standard assumptions. The relative heat and electricity delivered for preparing DHW were calculated. The results showed that substations with storage tanks and heat pumps have high relative electricity demand, which leads to higher integrated...

  13. Performance of ultra low temperature district heating systems with utility plant and booster heat pumps

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Thorsen, Jan Eric; Markussen, Wiebke Brix

    2017-01-01

    The optimal integration of booster heat pumps in ultra low temperature district heating (ULTDH) was investigated and compared to the performance of low temperature district heating. Two possible heat production technologies for the DH networks were analysed, namely extraction combined heat...... temperature and the heat consumption profile. For reference conditions, the optimal return of ULTDH varies between 21 °C and 27 °C. When using a central HP to supply the DH system, the resulting coefficient of system performance (COSP) was in the range of 3.9 (-) to 4.7 (-) for equipment with realistic...... component efficiencies and effectiveness, when including the relevant parameters such as DH system pressure and heat losses. By using ULTDH with booster HPs, performance improvements of 12% for the reference calculations case were found, if the system was supplied by central HPs. Opposite results were found...

  14. Ultra-low-temperature neutron diffraction. Final report, July 1, 1983-June 30, 1985. Final report

    International Nuclear Information System (INIS)

    Halperin, W.P.; Ketterson, J.B.

    1985-07-01

    An ultra-low-temperature neutron diffraction facility has been constructed at Argonne National Laboratory. The initial and primary purpose of this facility is to study nuclear magnetic ordering phenomenon. Magnetic structure information is commonly recognized as being fundamental to the progress in theoretical and experimental efforts in the field of magnetism. We have initiated study of the nuclear spin in solid 3 He and in metals. In 3 He the nuclear spins order at 1.1 mK. Structure information for neutron diffraction would contribute significantly to this problem of nuclear magnetism. Despite substantial experimental difficulties, careful evaluation suggests that examination of the nuclear structure in this unique quantum crystal is indeed feasible by neutron diffraction. Substantial progress has been made in growing single crystals of 3 He and establishing its temperature in the presence of a neutron flux. We have also initiated investigation of nuclear ordering in copper and PrCu 6

  15. Writing single-mode waveguides in lithium niobate by ultra-low intensity solitons

    International Nuclear Information System (INIS)

    Fazio, E.; Ramadan, W.; Petris, A.; Chauvet, M.; Bosco, A.; Vlad, V.I.; Bertolotti, M.

    2005-01-01

    Optical waveguides can be conveniently written in photorefractive materials by using spatial solitons. We have generated bright spatial solitons inside lithium niobate which allow single-mode light propagation. Efficient waveguides have been generated with CW light powers as high as few microwatts. According to the soliton formation, waveguides can be formed with different shapes. Due to the slow response time of the lithium niobate, both for soliton formation and relaxation, the soliton waveguide remains memorised for a long time, of the order of months

  16. Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating

    International Nuclear Information System (INIS)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    This study investigated the performances of five different substation configurations in single-family houses supplied with ULTDH (ultra-low-temperature district heating). The temperature at the heat plant is 46 °C and around 40 °C at the substations. To avoid the proliferation of Legionella in the DHW (domestic hot water) and assure the comfortable temperature, all substations were installed with supplementary heating devices. Detailed measurements were taken in the substations, including the electricity demand of the supplementary heating devices. To compare the energy and economic performance of the substations, separate models were built based on standard assumptions. The relative heat and electricity delivered for preparing DHW were calculated. The results showed that substations with storage tanks and heat pumps have high relative electricity demand, which leads to higher integrated costs considering both heat and electricity for DHW preparation. The substations with in-line electric heaters have low relative electricity usage because very little heat is lost due to the instantaneous DHW preparation. Accordingly, the substations with in-line electric heaters would have the lowest energy cost for DHW preparation. To achieve optimal design and operation for the ULTDH substation, the electricity peak loads of the in-line electric heaters were analysed according to different DHW-heating strategies. - Highlights: • Five different substations supplied with ultra-low-temperature district heating were measured. • The relative heat and electricity delivered for DHW preparation were modelled for different substations. • The levelized cost of the five substations in respect of DHW preparation was calculated. • The feasibility of applying instantaneous electric heater with normal power supply was tested.

  17. Performance of room temperature mercuric iodide (HgI2) detectors in the ultra low energy x-ray region

    International Nuclear Information System (INIS)

    Dabrowski, A.J.; Iwanczyk, J.S.; Barton, J.B.; Huth, G.C.; Whited, R.; Ortale, C.; Economou, T.E.; Turkevich, A.L.

    1980-01-01

    Performance of room temperature mercuric iodide x-ray spectrometers has been recently improved through new fabrication techniques and further development of low noise associated electronic systems. This progress has extended the range of measurements to the ultra low energy x-ray region at room temperature. This paper reports the study of the effect of contact material on the performance of HgI 2 detectors in the low energy x-ray region

  18. A study on low temperature transformation ferrite in ultra low carbon IF steels (I) - effects of manganese and annealing conditions

    International Nuclear Information System (INIS)

    Jeong, Woo Chang; Lee, Jae Yeon; Jin, Young Sool

    2001-01-01

    An investigation was made to determine the effects of Mn content and annealing conditions on the formation of the low temperature transformation products in ultra low carbon interstitial free steels. With increasing the Mn content, yield and tensile strengths increased, but yield ratio decreased. The Mn was found to be effective to decrease the yield point elongation, causing continuous yielding in 3% Mn steel. Low temperature transformation ferrites such as quasi-polygonal ferrite, granular bainitic ferrite, and bainitic ferrite more easily formed with higher Mn content, higher annealing temperature, longer annealing time, and faster cooling rate. Polygonal ferrite grain was readily identified in the light microscope and was characterized by the polyhedral and equiaxed shape while quasi-polygonal ferrite showed the irregular changeful grain boundaries. It was found that both granular bainitic and bainitic ferrites revealed some etching evidence of substructures in the light microscope

  19. Ultra-low temperature process by ion shower doping technique for poly-Si TFTs on plastics

    International Nuclear Information System (INIS)

    Kim, Jong-Man; Lim, Huck; Kim, Do-Young; Jung, Ji-Sim; Kwon, Jang-Yeon; Hong, Wan-Shick; Noguchi, Takashi

    2006-01-01

    An ion doping process was performed by using a basic ion shower system. After ion doping and subsequent activation of the dopants in the Si film by excimer laser annealing (ELA), we studied the crystallinity of the Si surface using UV-reflectance spectroscopy and the sheet resistance by using 4-point probe measurements. To prevent excessive temperature increase on the plastic substrate during ion shower doping, the plasma shower was applied in a series of short pulses. As a result, dopant ions were efficiently incorporated and were activated into the a-Si film on plastic substrate after ELA. The sheet resistance decreased with increase of actual doping time, which corresponds to the incorporated dose. Also, we confirmed a distinct relationship between the crystallinity and the sheet resistance. This work shows that pulsed ion shower doping is a promising technique for ultra-low-temperature poly-Si TFTs on plastic substrates.

  20. Characterization of piezoelectric materials for simultaneous strain and temperature sensing for ultra-low frequency applications

    International Nuclear Information System (INIS)

    Islam, Mohammad Nouroz; Seethaler, Rudolf; Alam, M Shahria

    2015-01-01

    Piezoelectric materials are used extensively in a number of sensing applications ranging from aerospace industries to medical diagnostics. Piezoelectric materials generate charge when they are subjected to strain. However, since measuring charge is difficult at low frequencies, traditional piezoelectric sensors are limited to dynamic applications. In this research an alternative technique is proposed to determine static strain that relies upon the measurement of piezoelectric capacitance and resistance using piezoelectric sensors. To demonstrate the validity of this approach, the capacitance and resistance of a piezoelectric patch sensor was characterized for a wide range of strain and temperature. The study shows that the piezoelectric capacitance is sensitive to both strain and temperature while the resistance is mostly dependent on the temperature variation. The findings can be implemented to obtain thermally compensated static strain from piezoelectric sensors, which does not require an additional temperature sensor. (paper)

  1. Efficient decomposition of formaldehyde at room temperature over Pt/honeycomb ceramics with ultra-low Pt content.

    Science.gov (United States)

    Nie, Longhui; Zheng, Yingqiu; Yu, Jiaguo

    2014-09-14

    Pt/honeycomb ceramic (Pt/HC) catalysts with ultra-low Pt content (0.005-0.055 wt%) were for the first time prepared by an impregnation of honeycomb ceramics with Pt precursor and NaBH4-reduction combined method. The microstructures, morphologies and textural properties of the resulting samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The obtained Pt/HC catalysts were used for catalytic oxidative decomposition of formaldehyde (HCHO) at room temperature. It was found that the as-prepared Pt/HC catalysts can efficiently decompose HCHO in air into CO2 and H2O at room temperature. The catalytic activity of the Pt/HC catalysts increases with increasing the Pt loading in the range of 0.005-0.013 wt%, and the further increase of the Pt loading does not obviously improve catalytic activity. From the viewpoint of cost and catalytic performance, 0.013 wt% Pt loading is the optimal Pt loading amount, and the Pt/HC catalyst with 0.013 wt% Pt loading also exhibited good catalytic stability. Considering practical applications, this work will provide new insights into the low-cost and large-scale fabrication of advanced catalytic materials for indoor air purification.

  2. Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    of Legionella in the DHW (domestic hot water) and assure the comfortable temperature, all substations were installed with supplementary heating devices. Detailed measurements were taken in the substations, including the electricity demand of the supplementary heating devices. To compare the energy and economic...

  3. Tip preparation for usage in an ultra-low temperature UHV scanning tunneling microscope

    Directory of Open Access Journals (Sweden)

    S. Ernst, S. Wirth, M. Rams, V. Dolocan and F. Steglich

    2007-01-01

    Full Text Available This work deals with the preparation and characterization of tungsten tips for the use in UHV low-temperature scanning tunneling microscopy and spectroscopy (STM and STS, respectively. These specific environments require in situ facilities for tip conditioning, for further sharpening of the tips, as well as for reliable tip characterization. The implemented conditioning methods include direct resistive annealing, annealing by electron bombardment, and self-sputtering with noble gas ions. Moreover, results from in situ tip characterization by field emission and STM experiments were compared to ex situ scanning electron microscopy. Using the so-prepared tips, high resolution STM images and tunneling spectra were obtained in a temperature range from ambient down to 350 mK, partially with applied magnetic field, on a variety of materials.

  4. Development of Ultra Low-Temperature Electronics for the AEgIS Experiment

    CERN Document Server

    Kaltenbacher, Thomas; Kellerbauer, Alban; Doser, Michael; Caspers, Friedhelm

    This thesis presents the development of electronics for operation at cryogenic temperatures, with particular emphasis on the cryogenic electronics required for the Antimatter Experiment: Gravity, Interferometry, Spectroscopy (AEgIS) experiment at the European Organisation for Nuclear Research (CERN). The research is focused on a highly sensitive charged particle detection system for a Penning trap, on cryogenic low-pass filters and on a low-loss DC-contact RF switch. The detection system consists of a high quality factor tuned circuit including a superconducting coil, and a low-noise amplifier. Since the experimental setup of the AEgIS experiment requires it, the developed electronics must reliably operate at 4.2 K (~269C) and in high constant magnetic field of more than 1 Tesla. Therefore, the performance of the cryogenic electronic designs were carefully evaluated at low-temperature/high magnetic field, the result of which have important implications for the AEgIS experiment. Moreover, a new possibility of ...

  5. Characterization of fluorinated silica thin films with ultra-low refractive index deposited at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi-Firouzjah, Marzieh [Semnan Science and Technology Park, 3614933578, Shahrood (Iran, Islamic Republic of); Shokri, Babak, E-mail: b-shokri@sbu.ac.ir [Laser & Plasma Research Institute, Shahid Beheshti University, G.C., Evin, Tehran 1983963113 (Iran, Islamic Republic of); Physics Department, Shahid Beheshti University, G.C., Evin, Tehran 1983963113 (Iran, Islamic Republic of)

    2015-02-27

    Structural and optical properties of low refractive index fluorinated silica (SiO{sub x}C{sub y}F{sub z}) films were investigated. The films were deposited on p-type silicon and polycarbonate substrates by radio frequency plasma enhanced chemical vapor deposition method at low temperatures. A mixture of tetraethoxysilane vapor, oxygen, and CF{sub 4} was used for deposition of the films. The influence of oxygen flow rate on the elemental compositions, chemical bonding states and surface roughness of the films was studied using energy dispersive X-ray analyzer, Fourier transform infrared spectroscopy in reflectance mode and atomic force microscopy, respectively. Effects of chemical bonds of the film matrix on optical properties and chemical stability were discussed. Energy dispersive spectroscopy showed high fluorine content in the SiO{sub x}C{sub y}F{sub z} film matrix which is in the range of 7.6–11.3%. It was concluded that in fluorine content lower than a certain limit, chemical stability of the film enhances, while higher contents of fluorine heighten moisture absorption followed by increasing refractive index. All of the deposited films were highly transparent. Finally, it was found that the refractive index of the SiO{sub x}C{sub y}F{sub z} film was continuously decreased with the increase of the O{sub 2} flow rate down to the minimum value of 1.16 ± 0.01 (at 632.8 nm) having the most ordered and nano-void structure and the least organic impurities. This sample also had the most chemical stability against moisture absorption. - Highlights: • Low deposition temperature and organic precursor led to higher film fluorination. • High fluorine and nanovoid structure led to drastic decrease in the refractive index. • Silica based thin film with ultralow refractive index of 1.16 was produced. • The produced ultralow-n film is highly stable against moisture absorption.

  6. N-type nano-silicon powders with ultra-low electrical resistivity as anode materials in lithium ion batteries

    Science.gov (United States)

    Yue, Zhihao; Zhou, Lang; Jin, Chenxin; Xu, Guojun; Liu, Liekai; Tang, Hao; Li, Xiaomin; Sun, Fugen; Huang, Haibin; Yuan, Jiren

    2017-06-01

    N-type silicon wafers with electrical resistivity of 0.001 Ω cm were ball-milled to powders and part of them was further mechanically crushed by sand-milling to smaller particles of nano-size. Both the sand-milled and ball-milled silicon powders were, respectively, mixed with graphite powder (silicon:graphite = 5:95, weight ratio) as anode materials for lithium ion batteries. Electrochemical measurements, including cycle and rate tests, present that anode using sand-milled silicon powder performed much better. The first discharge capacity of sand-milled silicon anode is 549.7 mAh/g and it is still up to 420.4 mAh/g after 100 cycles. Besides, the D50 of sand-milled silicon powder shows ten times smaller in particle size than that of ball-milled silicon powder, and they are 276 nm and 2.6 μm, respectively. In addition, there exist some amorphous silicon components in the sand-milled silicon powder excepting the multi-crystalline silicon, which is very different from the ball-milled silicon powder made up of multi-crystalline silicon only.

  7. Construction of an ultra low temperature cryostat and transverse acoustic spectroscopy in superfluid helium-3 in compressed aerogels

    Science.gov (United States)

    Bhupathi, Pradeep

    An ultra low temperature cryostat is designed and implemented in this work to perform experiments at sub-millikelvin temperatures, specifically aimed at understanding the superfluid phases of 3He in various scenarios. The cryostat is a combination of a dilution refrigerator (Oxford Kelvinox 400) with a base temperature of 5.2 mK and a 48 mole copper block as the adiabatic nuclear demagnetization stage with a lowest temperature of ≈ 200 muK. With the various techniques implemented for limiting the ambient heat leak to the cryostat, we were able to stay below 1 mK for longer than 5 weeks. The details of design, construction and performance of the cryostat are presented. We measured high frequency shear acoustic impedance in superfluid 3He in 98% porosity aerogel at pressures of 29 bar and 32 bar in magnetic fields upto 3 kG with the aerogel cylinder compressed along the symmetry axis to generate global anisotropy. With 5% compression, there is an indication of a supercooled A-like to B-like transition in aerogel in a wider temperature width than the A phase in the bulk, while at 10% axial compression, the A-like to B-like transition is absent on cooling down to ≈ 300 muK in zero magnetic field and in magnetic fields up to 3 kG. This behavior is in contrast to that in 3He in uncompressed aerogels, in which the supercooled A-like to B-like transitions have been identified by various experimental techniques. Our result is consistent with theoretical predictions. To characterize the anisotropy in compressed aerogels, optical birefringence is measured in 98% porosity silica aerogel samples subjected to various degrees of uniaxial compression up to 15% strain, with wavelengths between 200 to 800 nm. Uncompressed aerogels exhibit no or a minimal degree of birefringence, indicating the isotropic nature of the material over the length scale of the wavelength. Uniaxial compression of aerogel introduces global anisotropy, which produces birefringence in the material. We

  8. Space heating with ultra-low-temperature district heating - A case study of four single-family houses from the 1980s

    DEFF Research Database (Denmark)

    Østergaard, Dorte Skaarup; Svendsen, Svend

    . These benefits can be maximized if district heating temperatures are lowered as much as possible. In this paper we report on a project where 18 Danish single-family houses from the 1980s were supplied by ultra-low-temperature district heating with a supply temperature as low as 45 °C for the main part...... the four houses were modelled in the building simulation tool IDA ICE. The simulation models included the actual radiator sizes and the models were used to simulate the expected thermal comfort in the houses and resulting district heating return temperatures. Secondly measurements of the actual district...... heating return temperatures in the houses were analysed for different times of the year. The study found that existing Danish single-family houses from the 1980s can be heated with supply temperatures as low as 45 °C for the main part of the year. Both simulation models and test measurements showed...

  9. In situ observation · analytical technologies of high temperature superconductor for fusion reactor at ultra low temperature

    International Nuclear Information System (INIS)

    Kimoto, Takayoshi; Sun, Wei; Fukutomi, Katsuo; Togano, Kazumasa; Saito, Tetsuya; Hiraga, Kenji; Takeda, Toshiyuki

    1998-01-01

    An image installation program of SPARK station 20 was accomplished. It can induce continuously 2.1 MB TEM image at 5 sheet/sec until 160 sheets. An image processing (shift addition) program was developed at first in the world. The program can overlap many sheet of TEM images by shifting them to the correct position. Other image processing programs such as flatfielding and reducing noise processing were developed. High temperature lattice fringe image of superconductive oxide Bi2223 in the drift chamber can be observed at low temperature by using the above image processing programs. New type laser device for filament radiation which consists of argon ion laser was developed as the first step of development of high brightness electron gun. Bi2212 single crystal was determined by the large angle convergent beam electron diffraction. The results showed the crystal structure belonged to Bbmb. (S.Y.)

  10. Space heating with ultra-low-temperature district heating - a case study of four single-family houses from the 1980s

    DEFF Research Database (Denmark)

    Østergaard, Dorte Skaarup; Svendsen, Svend

    2017-01-01

    . These benefits can be maximized if district heating temperatures are lowered as much as possible. In this paper we report on a project where 18 Danish single-family houses from the 1980s were supplied by ultra-low temperature district heating with a supply temperature as low as 45 degrees C for the main part...... of the year. The houses were heated by the existing hydraulic radiator systems, while domestic hot water was prepared by use of district heating and electric boosting. This paper evaluated the heating system temperatures that were necessary in order to maintain thermal comfort in four of the houses. First...... the four houses were modelled in the building simulation tool IDA ICE. The simulation models included the actual radiator sizes and the models were used to simulate the expected thermal comfort in the houses and resulting district heating return temperatures. Secondly measurements of the actual district...

  11. Microscopic origin of read current noise in TaO{sub x}-based resistive switching memory by ultra-low temperature measurement

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yue; Cai, Yimao, E-mail: caiyimao@pku.edu.cn; Liu, Yefan; Fang, Yichen; Yu, Muxi; Tan, Shenghu; Huang, Ru [Institute of Microelectronics, Peking University, Beijing 100871 (China)

    2016-04-11

    TaO{sub x}-based resistive random access memory (RRAM) attracts considerable attention for the development of next generation nonvolatile memories. However, read current noise in RRAM is one of the critical concerns for storage application, and its microscopic origin is still under debate. In this work, the read current noise in TaO{sub x}-based RRAM was studied thoroughly. Based on a noise power spectral density analysis at room temperature and at ultra-low temperature of 25 K, discrete random telegraph noise (RTN) and continuous average current fluctuation (ACF) are identified and decoupled from the total read current noise in TaO{sub x} RRAM devices. A statistical comparison of noise amplitude further reveals that ACF depends strongly on the temperature, whereas RTN is independent of the temperature. Measurement results combined with conduction mechanism analysis show that RTN in TaO{sub x} RRAM devices arises from electron trapping/detrapping process in the hopping conduction, and ACF is originated from the thermal activation of conduction centers that form the percolation network. At last, a unified model in the framework of hopping conduction is proposed to explain the underlying mechanism of both RTN and ACF noise, which can provide meaningful guidelines for designing noise-immune RRAM devices.

  12. Microscopic origin of read current noise in TaO_x-based resistive switching memory by ultra-low temperature measurement

    International Nuclear Information System (INIS)

    Pan, Yue; Cai, Yimao; Liu, Yefan; Fang, Yichen; Yu, Muxi; Tan, Shenghu; Huang, Ru

    2016-01-01

    TaO_x-based resistive random access memory (RRAM) attracts considerable attention for the development of next generation nonvolatile memories. However, read current noise in RRAM is one of the critical concerns for storage application, and its microscopic origin is still under debate. In this work, the read current noise in TaO_x-based RRAM was studied thoroughly. Based on a noise power spectral density analysis at room temperature and at ultra-low temperature of 25 K, discrete random telegraph noise (RTN) and continuous average current fluctuation (ACF) are identified and decoupled from the total read current noise in TaO_x RRAM devices. A statistical comparison of noise amplitude further reveals that ACF depends strongly on the temperature, whereas RTN is independent of the temperature. Measurement results combined with conduction mechanism analysis show that RTN in TaO_x RRAM devices arises from electron trapping/detrapping process in the hopping conduction, and ACF is originated from the thermal activation of conduction centers that form the percolation network. At last, a unified model in the framework of hopping conduction is proposed to explain the underlying mechanism of both RTN and ACF noise, which can provide meaningful guidelines for designing noise-immune RRAM devices.

  13. Ultra-low power high temperature and radiation hard complementary metal-oxide-semiconductor (CMOS) silicon-on-insulator (SOI) voltage reference.

    Science.gov (United States)

    Boufouss, El Hafed; Francis, Laurent A; Kilchytska, Valeriya; Gérard, Pierre; Simon, Pascal; Flandre, Denis

    2013-12-13

    This paper presents an ultra-low power CMOS voltage reference circuit which is robust under biomedical extreme conditions, such as high temperature and high total ionized dose (TID) radiation. To achieve such performances, the voltage reference is designed in a suitable 130 nm Silicon-on-Insulator (SOI) industrial technology and is optimized to work in the subthreshold regime of the transistors. The design simulations have been performed over the temperature range of -40-200 °C and for different process corners. Robustness to radiation was simulated using custom model parameters including TID effects, such as mobilities and threshold voltages degradation. The proposed circuit has been tested up to high total radiation dose, i.e., 1 Mrad (Si) performed at three different temperatures (room temperature, 100 °C and 200 °C). The maximum drift of the reference voltage V(REF) depends on the considered temperature and on radiation dose; however, it remains lower than 10% of the mean value of 1.5 V. The typical power dissipation at 2.5 V supply voltage is about 20 μW at room temperature and only 75 μW at a high temperature of 200 °C. To understand the effects caused by the combination of high total ionizing dose and temperature on such voltage reference, the threshold voltages of the used SOI MOSFETs were extracted under different conditions. The evolution of V(REF) and power consumption with temperature and radiation dose can then be explained in terms of the different balance between fixed oxide charge and interface states build-up. The total occupied area including pad-ring is less than 0.09 mm2.

  14. Novel Electrolytes for -100°C Lithium Battery Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA requires advanced high power primary lithium batteries for ultra low temperature applications. The key component that limits the performance at low temperature...

  15. Multi-frequency ESR studies on a Haldane magnet in a field-induced phase at ultra-low temperatures

    International Nuclear Information System (INIS)

    Hagiwara, Masayuki; Kashiwagi, Takanari; Idutsu, Yuichi; Honda, Zentaro; Miyazaki, Hiroshi; Harada, Isao

    2010-01-01

    We report the results of multi-frequency electron spin resonance (ESR) measurements on single crystals of Ni(C 5 H 14 N 2 ) 2 N 3 (PF 6 ) which is regarded as the one-dimensional Heisenberg antiferromagnet with spin one, namely the Haldane magnet, at very low temperatures down to about 100 mK. We observed the lowest resonance branch below about 500 mK for the field along the chain direction (H||c), which was observed previously only in an inelastic neutron scattering experiment at 30 mK. We compare the resonance branch with that calculated by a phenomenological field theory, and discuss the field dependence and the temperature sensitivity of this ESR branch.

  16. Application of SQUIDs to low temperature and high magnetic field measurements—Ultra low noise torque magnetometry

    Science.gov (United States)

    Arnold, F.; Naumann, M.; Lühmann, Th.; Mackenzie, A. P.; Hassinger, E.

    2018-02-01

    Torque magnetometry is a key method to measure the magnetic anisotropy and quantum oscillations in metals. In order to resolve quantum oscillations in sub-millimeter sized samples, piezo-electric micro-cantilevers were introduced. In the case of strongly correlated metals with large Fermi surfaces and high cyclotron masses, magnetic torque resolving powers in excess of 104 are required at temperatures well below 1 K and magnetic fields beyond 10 T. Here, we present a new broadband read-out scheme for piezo-electric micro-cantilevers via Wheatstone-type resistance measurements in magnetic fields up to 15 T and temperatures down to 200 mK. By using a two-stage superconducting-quantum interference device as a null detector of a cold Wheatstone bridge, we were able to achieve a magnetic moment resolution of Δm = 4 × 10-15 J/T at maximal field and 700 mK, outperforming conventional magnetometers by at least one order of magnitude in this temperature and magnetic field range. Exemplary de Haas-van Alphen measurement of a newly grown delafossite, PdRhO2, was used to show the superior performance of our setup.

  17. {sup 1}H-NMR and charge transport in metallic polypyrrole at ultra-low temperatures and high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Jugeshwar Singh, K; Ramesh, K P; Menon, Reghu [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Clark, W G [Department of Physics and Astronomy, University of California at Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095 (United States)], E-mail: jshwar@physics.iisc.ernet.in

    2008-11-19

    The temperature dependence of conductivity, proton spin relaxation time (T{sub 1}) and magnetoconductance (MC) in metallic polypyrrole (PPy) doped with PF{sub 6}{sup -} have been carried out at mK temperatures and high magnetic fields. At T<1 K both electron-electron interaction (EEI) and hopping contributes to conductivity. The temperature dependence of a proton T{sub 1} is classified in three regimes: (a) for T<6 K-relaxation mechanism follows a modified Korringa relation due to EEI and disorder, (b) for 6 K50 K-relaxation is due to the dipolar interaction modulated by the reorientation of the symmetric PF{sub 6} groups following the Bloembergen, Purcell and Pound (BPP) model. The data analysis shows that the Korringa ratio is enhanced by an order of magnitude. The positive and negative MC at T<250 mK is due to the contributions from weak localization and Coulomb-correlated hopping transport, respectively. The role of EEI is observed to be consistent in conductivity, T{sub 1} and MC data, especially at T<1 K.

  18. Ultra Low Concentration Adsorption Equilibria

    National Research Council Canada - National Science Library

    Mahle, John J; Buettner, Leonard C; LeVan, M. D; Schindler, Bryan J

    2006-01-01

    .... Specifically this work focuses on novel experimental and modeling methods to characterize and predict at ultra-low chemical vapor concentrations the protection afforded by adsorption-based vapor filtration systems...

  19. Ultra low and negative expansion glass–ceramic materials ...

    Indian Academy of Sciences (India)

    Ultra low and negative expansion glass–ceramic materials have been obtained from pyrophyllite and blast furnace slag. The batch composition was modified with the addition of lithium carbonate, hydrated alumina, boric acid and nucleating agent (titania). The batch was melted at 1400°C followed by casting in the form of ...

  20. Advanced Durable Flexible Ultra Low Outgassing Thermal Control Coatings for NASA Science Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I program proposes to synthesize novel nanoengineered ultra low out gassing elastomers and formulate high temperature capable flexible thermal control...

  1. New experimental perspectives for soft x-ray absorption spectroscopies at ultra-low temperatures below 50 mK and in high magnetic fields up to 7 T

    International Nuclear Information System (INIS)

    Beeck, T.; Baev, I.; Gieschen, S.; Meyer, H.; Meyer, S.; Palutke, S.; Martins, M.; Feulner, P.; Uhlig, K.; Wurth, W.

    2016-01-01

    A new ultra-low temperature experiment including a superconducting vector magnet has been developed for soft x-ray absorption spectroscopy experiments at third generation synchrotron light sources. The sample is cooled below 50 mK by a cryogen free "3He-"4He dilution refrigerator. At the same time, magnetic fields of up to ±7 T in the horizontal direction and ±0.5 T in the vertical direction can be applied by a superconducting vector magnet. The setup allows to study ex situ and in situ prepared samples, offered by an attached UHV preparation chamber with load lock. The transfer of the prepared samples between the preparation section and the dilution refrigerator is carried out under cryogenic temperatures. First commissioning studies have been carried out at the Variable Polarization XUV Beamline P04 at PETRA III and the influence of the incident photon beam to the sample temperature has been studied.

  2. Advances in ambient temperature secondary lithium cells

    Science.gov (United States)

    Subbarao, S.; Shen, D. H.; Deligiannis, F.; Huang, C-K.; Halpert, G.

    1989-01-01

    The Jet Propulsion Laboratory is involved in a Research and Development program sponsored by NASA/OAST on the development of ambient temperature secondary lithium cells for future space applications. Some of the projected applications are planetary spacecraft, planetary rovers, and astronaut equipment. The main objective is to develop secondary lithium cells with greater than 100 Wh/kg specific energy while delivering 1000 cycles at 50 percent Depth of Discharge (DOD). To realize these ambitious goals, the work was initially focused on several important basic issues related to the cell chemistry, selection of cathode materials and electrolytes, and component development. The performance potential of Li-TiS2, Li-MoS3, Li-V6O13 and Li-NbSe3 electrochemical systems was examined. Among these four, the Li-TiS2 system was found to be the most promising system in terms of realizable specific energy and cycle life. Some of the major advancements made so far in the development of Li-TiS2 cells are in the areas of cathode processing technology, mixed solvent electrolytes, and cell assembly. Methods were developed for the fabrication of large size high performance TiS2 cathodes. Among the various electrolytes examined, 1.5M LiAsF6/EC + 2-MeTHF mixed solvent electrolyte was found to be more stable towards lithium. Experimental cells activated with this electrolyte exhibited more than 300 cycles at 100 percent Depth of Discharge. Work is in progress in other areas such as selection of lithium alloys as candidate anode materials, optimization of cell design, and development of 5 Ah cells. The advances made at the Jet Propulsion Laboratory on the development of secondary lithium cells are summarized.

  3. Evaluation Method for Low-Temperature Performance of Lithium Battery

    Science.gov (United States)

    Wang, H. W.; Ma, Q.; Fu, Y. L.; Tao, Z. Q.; Xiao, H. Q.; Bai, H.; Bai, H.

    2018-05-01

    In this paper, the evaluation method for low temperature performance of lithium battery is established. The low temperature performance level was set up to determine the best operating temperature range of the lithium battery using different cathode materials. Results are shared with the consumers for the proper use of lithium battery to make it have a longer service life and avoid the occurrence of early rejection.

  4. Liquefied Gas Catholytes for UItra-Low Temperature Lithium Primary Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Ocean Worlds exploration missions require batteries which operate as low as -100 C (defined here are "Ultra-Low Temperatures") and lower, a critically...

  5. Description of tritium release from lithium titanate at constant temperature

    Energy Technology Data Exchange (ETDEWEB)

    Pena, L; Lagos, S; Jimenez, J; Saravia, E [Comision Chilena de Energia Nuclear, Santiago (Chile)

    1998-03-01

    Lithium Titanate Ceramics have been prepared by the solid-state route, pebbles and pellets were fabricated by extrusion and their microstructure was characterized in our laboratories. The ceramic material was irradiated in the La Reina Reactor, RECH-1. A study of post-irradiation annealing test, was performed measuring Tritium release from the Lithium Titanate at constant temperature. The Bertone`s method modified by R. Verrall is used to determine the parameters of Tritium release from Lithium Titanate. (author)

  6. Low temperature safety of lithium-thionyl chloride cells

    Science.gov (United States)

    Subbarao, S.; Deligiannis, F.; Shen, D. H.; Dawson, S.; Halpert, G.

    The use of lithium thionyl chloride cells for low-temperature applications is presently restricted because of their unsafe behavior. An attempt is made in the present investigation to identify the safe/unsafe low temperature operating conditions and to understand the low temperature cell chemistry responsible for the unsafe behavior. Cells subjected to extended reversal at low rate and -40 C were found to explode upon warm-up. Lithium was found to deposit on the carbon cathodes during reversal. Warming up to room temperature may be accelerating the lithium corrosion in the electrolyte. This may be one of the reasons for the cell thermal runaway.

  7. Electrolytes for Wide Operating Temperature Lithium-Ion Cells

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor)

    2016-01-01

    Provided herein are electrolytes for lithium-ion electrochemical cells, electrochemical cells employing the electrolytes, methods of making the electrochemical cells and methods of using the electrochemical cells over a wide temperature range. Included are electrolyte compositions comprising a lithium salt, a cyclic carbonate, a non-cyclic carbonate, and a linear ester and optionally comprising one or more additives.

  8. The impact of environmental temperature on lithium serum levels

    NARCIS (Netherlands)

    Wilting, Ingeborg; Fase, Sandra; Martens, Edwin P.; Heerdink, Eibert R.; Nolen, Willem A.; Egberts, Antoine C. G.

    Objectives: Three studies have reported a seasonal variation in lithium serum levels, with higher levels during summer. Our objective was to investigate the impact of actual environmental temperature on lithium serum levels. Methods: A retrospective study was conducted using available records of

  9. Lithium vapor trapping at a high-temperature lithium PFC divertor target

    Science.gov (United States)

    Jaworski, Michael; Abrams, T.; Goldston, R. J.; Kaita, R.; Stotler, D. P.; de Temmerman, G.; Scholten, J.; van den Berg, M. A.; van der Meiden, H. J.

    2014-10-01

    Liquid lithium has been proposed as a novel plasma-facing material for NSTX-U and next-step fusion devices but questions remain on the ultimate temperature limits of such a PFC during plasma bombardment. Lithium targets were exposed to high-flux plasma bombardment in the Magnum-PSI experimental device resulting in a temperature ramp from room-temperature to above 1200°C. A stable lithium vapor cloud was found to form directly in front of the target and persist to temperature above 1000°C. Consideration of mass and momentum balance in the pre-sheath region of an attached plasma indicates an increase in the magnitude of the pre-sheath potential drop with the inclusion of ionization sources as well as the inclusion of momentum loss terms. The low energy of lithium emission from a surface measured in previous experiments (Contract DE-AC02-09CH11466.

  10. Influence of temperature and lithium purity on corrosion of ferrous alloys in a flowing lithium environment

    International Nuclear Information System (INIS)

    Chopra, O.K.; Smith, D.L.

    1986-03-01

    Corrosion data have been obtained on ferritic HT-9 and Fe-9Cr-1Mo steel and austenitic Type 316 stainless steel in a flowing lithium environment at temperatures between 372 and 538 0 C. The corrosion behavior is evaluated by measurements of weight loss as a function of time and temperature. A metallographic characterization of materials exposed to a flowing lithium environment is presented

  11. The chemistry of ultra-low concentrations

    International Nuclear Information System (INIS)

    Vertes, Attila; Kiss, Istvan

    1987-01-01

    Methods for the separation and enrichment of radionuclides in the ultra-low concentration range (coprecipitation, adsorption of radioactive substances on crystals) are disscussed in this chapter of the textbook. The properties and behaviour of ultra-dilute solutions, radiocolloids and the electrochemistry of ultra-dilute solution are also overviewed

  12. Dielectric response of KCN crystals at ultra-low frequencies

    OpenAIRE

    Ziemath, Ervino C.; Aegerter, Michel A.; Slaets, J.

    1987-01-01

    We describe an ultra low frequency equipment employing programmable digital technique. The system is used to measure the dielectric parameters et, en and tg d or pure KCN crystals as a function of temperature in the frequency range 10-2 Hz to 40 Hz. The relaxation time of the Cn dipoles presents a classical temperature activated reorientation behaviour characterized by an Arrhenius law t=to exp (U/kT) with t0=7,26 x 10-15 s and U = 0,147 eV.

  13. Stability of lithium niobate on irradiation at elevated temperature

    International Nuclear Information System (INIS)

    Primak, W.; Gavin, A.P.; Anderson, T.T.; Monahan, E.

    1977-01-01

    In contrast to results obtained for neutron irradiation in a thermal reactor near room temperature, lithium niobate plates irradiated in the Experimental Breeder Reactor II (EBR-II) did not become metamict. This is attributed to the elevated temperature of the EBR-II. Ion bombardment experiments indicate that to avoid disordering of lithium niobate on irradiation, its temperature should be maintained above 673 K. Evidence for ionic conductivity was found at 873 K, indicating that it would be inadvisable to permit the temperature to rise that high, particularly with voltage across the plate. In reactor application as a microphone transducer, it is tentatively recommended that the lithium niobate be maintained in the middle of this temperature range for a major portion of reactor operating time

  14. Ultra low bit-rate speech coding

    CERN Document Server

    Ramasubramanian, V

    2015-01-01

    "Ultra Low Bit-Rate Speech Coding" focuses on the specialized topic of speech coding at very low bit-rates of 1 Kbits/sec and less, particularly at the lower ends of this range, down to 100 bps. The authors set forth the fundamental results and trends that form the basis for such ultra low bit-rates to be viable and provide a comprehensive overview of various techniques and systems in literature to date, with particular attention to their work in the paradigm of unit-selection based segment quantization. The book is for research students, academic faculty and researchers, and industry practitioners in the areas of speech processing and speech coding.

  15. Physics with ultra-low energy antiprotons

    International Nuclear Information System (INIS)

    Holtkamp, D.B.; Holzscheiter, M.H.; Hughes, R.J.

    1989-01-01

    The experimental observation that all forms of matter experience the same gravitational acceleration is embodied in the weak equivalence principle of gravitational physics. However no experiment has tested this principle for particles of antimatter such as the antiproton or the antihydrogen atom. Clearly the question of whether antimatter is in compliance with weak equivalence is a fundamental experimental issue, which can best be addressed at an ultra-low energy antiproton facility. This paper addresses the issue. 20 refs

  16. Ultra low power full adder topologies

    DEFF Research Database (Denmark)

    Moradi, Farshad; Wisland, Dag T.; Mahmoodi, Hamid

    In this paper several low power full adder topologies are presented. The main idea of these circuits is based on the sense energy recovery full adder (SERF) design and the GDI (gate diffusion input) technique. These subthreshold circuits are employed for ultra low power applications. While the pr...... the proposed circuits have some area overhead that is negligible, they have at least 62% less power dissipation when compared with existing designs. In this paper, 65 nm standard models are used for simulations....

  17. PHYSICS WITH ULTRA-LOW ENERGY ANTIPROTONS

    Energy Technology Data Exchange (ETDEWEB)

    M. HOLZSCHEITER

    2001-02-01

    In this report the author describes the current status of the antiproton deceleration (AD) facility at CERN, and highlights the physics program with ultra-low energy antiproton at this installation. He also comments on future possibilities provided higher intensity antiproton beams become available at Fermilab, and review possibilities for initial experiments using direct degrading of high energy antiprotons in material has been developed and proven at CERN.

  18. Towards room-temperature performance for lithium-polymer batteries

    International Nuclear Information System (INIS)

    Kerr, J.B.; Liu, Gao; Curtiss, L.A.; Redfern, Paul C.

    2003-01-01

    Recent work on molecular simulations of the mechanisms of lithium ion conductance has pointed towards two types of limiting process. One has involved the commonly cited segmental motion while the other is related to energy barriers in the solvation shell of polymeric ether oxygens around the lithium ions. Calculations of the barriers to lithium ion migration have provided important indicators as to the best design of the polymer. The theoretical work has coincided with and guided some recent developments on polymer synthesis for lithium batteries. Structural change of the polymer solvation shell has been pursued by the introduction of trimethylene oxide (TMO) units into the polymer. The conductivity measurements on polymers containing TMO unit are encouraging. The architecture of the polymer networks has been varied upon which the solvating groups are attached and significant improvements in sub-ambient performance are observed as a result. However, the above-ambient temperature performance appears controlled by an Arrhenius process that is not completely consistent with the theoretical calculations described here and may indicate the operation of a different mechanism. The new polymers possess significantly lower T g values in the presence of lithium salts, which indicates weaker binding of the lithium ions by the polymers. These properties provide considerable improvement in the transport properties close to the electrode surfaces resulting in decreased impedances at the surfaces both at lithium metal and in composite electrodes. The greater flexibility of the solvation groups combined with appropriate architecture not only has applications in lithium metal-polymer batteries but also in lithium ion liquid and gel systems as well as in fuel cell electrodes

  19. Temperature dependence of the thermoelectric coeffiicients of lithium niobate and lithium tantalate

    International Nuclear Information System (INIS)

    Khachaturyan, O.A.; Gabrielyan, A.I.; Kolesnik, S.P.

    1988-01-01

    Thermoelectric Zeebeck,Thomson, Peltier coefficients for LiNbO 3 and LiTaO 3 monocrystals and their dependence on temperature in 300-1400 K range were investigated. It is shown that Zeebeck (α) coefficient changes its sign, depending on temperature change - the higher is α, the higher is material conductivity in the corresponding temperature region. Thomson and Peltier coefficients were calculated analytically for lithium niobate and tantalate

  20. Temperature effects on lithium-nitrogen reaction rates

    International Nuclear Information System (INIS)

    Ijams, W.J.; Kazimi, M.S.

    1985-08-01

    A series of experiments have been run with the aim of measuring the reaction rate of lithium and nitrogen over a wide spectrum of lithium pool temperatures. In these experiments, pure nitrogen was blown at a controlled flow rate over a preheated lithium pool. The pool had a surface area of approximately 4 cm 2 and a total volume of approximately 6 cm 3 . The system pressure varied from 0 to 4 psig. The reaction rate was very small - approximately 0.002 to 0.003 g Li min cm 2 for lithium temperatures below 500 0 C. Above 500 0 C the reaction rate began to increase sharply, and reached a maximum of approximately 0.80 g Li min cm 2 above 700 0 C. It dropped off beyond 1000 0 C and seemed to approach zero at 1150 0 C. The maximum reaction rate observed in these forced convection experiments was higher by 60% than those previously observed in experiments where the nitrogen flowed to the reaction site by means of natural convection. During a reaction, a hard nitride layer built up on the surface of the lithium pool - its effect on the reaction rate was observed. The effect of the nitrogen flow rate on the reaction rate was also observed

  1. Ultra-Low-Dropout Linear Regulator

    Science.gov (United States)

    Thornton, Trevor; Lepkowski, William; Wilk, Seth

    2011-01-01

    A radiation-tolerant, ultra-low-dropout linear regulator can operate between -150 and 150 C. Prototype components were demonstrated to be performing well after a total ionizing dose of 1 Mrad (Si). Unlike existing components, the linear regulator developed during this activity is unconditionally stable over all operating regimes without the need for an external compensation capacitor. The absence of an external capacitor reduces overall system mass/volume, increases reliability, and lowers cost. Linear regulators generate a precisely controlled voltage for electronic circuits regardless of fluctuations in the load current that the circuit draws from the regulator.

  2. Room-Temperature-Cured Copolymers for Lithium Battery Gel Electrolytes

    Science.gov (United States)

    Meador, Mary Ann B.; Tigelaar, Dean M.

    2009-01-01

    Polyimide-PEO copolymers (PEO signifies polyethylene oxide) that have branched rod-coil molecular structures and that can be cured into film form at room temperature have been invented for use as gel electrolytes for lithium-ion electric-power cells. These copolymers offer an alternative to previously patented branched rod-coil polyimides that have been considered for use as polymer electrolytes and that must be cured at a temperature of 200 C. In order to obtain sufficient conductivity for lithium ions in practical applications at and below room temperature, it is necessary to imbibe such a polymer with a suitable carbonate solvent or ionic liquid, but the high-temperature cure makes it impossible to incorporate and retain such a liquid within the polymer molecular framework. By eliminating the high-temperature cure, the present invention makes it possible to incorporate the required liquid.

  3. In Situ Monitoring of Temperature inside Lithium-Ion Batteries by Flexible Micro Temperature Sensors

    Directory of Open Access Journals (Sweden)

    Pei-Chi Chen

    2011-10-01

    Full Text Available Lithium-ion secondary batteries are commonly used in electric vehicles, smart phones, personal digital assistants (PDA, notebooks and electric cars. These lithium-ion secondary batteries must charge and discharge rapidly, causing the interior temperature to rise quickly, raising a safety issue. Over-charging results in an unstable voltage and current, causing potential safety problems, such as thermal runaways and explosions. Thus, a micro flexible temperature sensor for the in in-situ monitoring of temperature inside a lithium-ion secondary battery must be developed. In this work, flexible micro temperature sensors were integrated into a lithium-ion secondary battery using the micro-electro-mechanical systems (MEMS process for monitoring temperature in situ.

  4. High temperature flow behaviour of SiC reinforced lithium

    Indian Academy of Sciences (India)

    The compressive flow behaviour of lithium aluminosilicate (LAS) glass, with and without SiC particulate reinforcements, was studied. The LAS glass crystallized to spodumene during high-temperature testing. The flow behaviour of LAS glass changed from Newtonian to non-Newtonian due to the presence of crystalline ...

  5. Negative thermal expansion of lithium aluminosilicate ceramics at cryogenic temperatures

    International Nuclear Information System (INIS)

    Garcia-Moreno, Olga; Fernandez, Adolfo; Khainakov, Sergei; Torrecillas, Ramon

    2010-01-01

    Five lithium aluminosilicate compositions of the LAS system have been synthesized and sintered. The coefficient of thermal expansion of the sintered samples has been studied down to cryogenic conditions. The data presented here under cryogenic conditions will be of value in the future design of new composite materials with very low thermal expansion values. The variation in thermal expansion properties with composition and sintering temperature was studied and is discussed in relation to composition and crystal structure.

  6. Tritium release from lithium ceramics at constant temperature

    International Nuclear Information System (INIS)

    Verrall, R.A.; Miller, J.M.

    1992-02-01

    Analytic methods for post-irradiation annealing tests to measure tritium release from lithium ceramics at constant temperature are examined. Modifications to the Bertone (1) relations for distinguishing diffusion-controlled release from desorption-controlled release are shown. The methods are applied to tests on sintered LiA10 2 ; first-order desorption is shown to control tritium release for these tests

  7. Temperature diagnostics using lithium-like satellites

    International Nuclear Information System (INIS)

    Datla, R.U.; Jones, L.A.; Thomson, D.B.

    1980-10-01

    A 60-kJ theta-pinch was operated at a filling pressure of 16 mtorr using a gas mixture of 2% neon and 98% helium. The resonance and intercombination lines from Ne IX and the Li-like satellites were observed with a Bragg crystal monochromator. The electron temperature of the plasma was deduced from the intensity ratios of the Ne IX resonance line and the dielectronic satellites using recent theoretical calculations. The temperature values ranged from 210 eV to 340 eV during the time of occurrence of these satellites. The temperature measured at 1.0 μs by laser scattering for a similar plasma condition was in close agreement with that obtained by the resonance line/satellite ratio. This lends confidence to use of the satellite technique for temperature measurements in other plasmas

  8. Endometrial safety of ultra-low-dose estradiol vaginal tablets

    DEFF Research Database (Denmark)

    Simon, James; Nachtigall, Lila; Ulrich, Lian G

    2010-01-01

    To evaluate the endometrial hyperplasia and carcinoma rate after 52-week treatment with ultra-low-dose 10-microgram 17ß-estradiol vaginal tablets in postmenopausal women with vaginal atrophy.......To evaluate the endometrial hyperplasia and carcinoma rate after 52-week treatment with ultra-low-dose 10-microgram 17ß-estradiol vaginal tablets in postmenopausal women with vaginal atrophy....

  9. Endometrial safety of ultra-low-dose estradiol vaginal tablets

    DEFF Research Database (Denmark)

    Simon, James; Nachtigall, Lila; Ulrich, Lian G

    2010-01-01

    To evaluate the endometrial hyperplasia and carcinoma rate after 52-week treatment with ultra-low-dose 10-microgram 17β-estradiol vaginal tablets in postmenopausal women with vaginal atrophy.......To evaluate the endometrial hyperplasia and carcinoma rate after 52-week treatment with ultra-low-dose 10-microgram 17β-estradiol vaginal tablets in postmenopausal women with vaginal atrophy....

  10. Mechanical behavior of aluminum-lithium alloys at cryogenic temperatures

    International Nuclear Information System (INIS)

    Glazer, J.; Verzasconi, S.L.; Sawtell, R.R.; Morris, J.W. Jr.

    1987-01-01

    The cryogenic mechanical properties of aluminum-lithium alloys are of interest because these alloys are attractive candidate materials for cryogenic tankage. Previous work indicates that the strength-toughness relationship for alloy 2090-T81 (Al-2.7Cu-2.2Li-0.12Zr by weight) improves significantly as temperature decreases. The subject of this investigation is the mechanism of this improvement. Deformation behavior was studied since the fracture morphology did not change with temperature. Tensile failures in 2090-T81 and -T4 occur at plastic instability. In contrast, in the binary aluminum-lithium alloy studied here they occur well before plastic instability. For all three materials, the strain hardening rate in the longitudinal direction increases as temperature decreases. This increase is associated with an improvement in tensile elongation at low temperatures. In alloy 2090-T4, these results correlate with a decrease in planar slip at low temperatures. The improved toughness at low temperatures is believed to be due to increased stable deformation prior to fracture

  11. Ultra-low pollutant emission combustion method and apparatus

    International Nuclear Information System (INIS)

    Khinkis, M.J.

    1992-01-01

    This patent describes a method for ultra-low pollutant emission combustion of fossil fuel. It comprises: introducing into a primary combustion chamber a first fuel portion of about 1 percent to about 20 percent of a total fuel to be combusted; introducing primary combustion air into the primary combustion chamber; introducing a first portion of water into the primary combustion chamber, having a first water heat capacity equivalent to a primary combustion air heat capacity of one of a primary combustion air amount of about 10 percent to about 60 percent of the first stoichiometirc requirement for complete combustion of the first fuel portion and an excess primary combustion air amount of about 20 percent to about 150 percent of the first stoichiometric requirement for complete combustion of the first fuel portion; burning the first fuel portion with the primary combustion air in the primary combustion chamber at a temperature abut 2000 degrees F to about 2700 degrees F producing initial combustion products; passing the initial combustion products into a secondary combustion chamber; introducing into the secondary combustion chamber a second fuel portion of about 80 percent to about 99 percent of the total fuel to be combusted; introducing secondary combustion air into the secondary combustion chamber in an amount of about 105 percent to about 130 percent of a second stoichiometric requirement for complete combustion of the second fuel portion; introducing a second portion of water into the secondary combustion chamber; burning the second fuel portion and any remaining fuel in the initial combustion products; passing the final combustion products into a dilution chamber; introducing dilution air into the dilution chamber; discharging the ultra-low pollutant emission vitiated air form the dilution chamber

  12. Wide-Temperature Electrolytes for Lithium-Ion Batteries.

    Science.gov (United States)

    Li, Qiuyan; Jiao, Shuhong; Luo, Langli; Ding, Michael S; Zheng, Jianming; Cartmell, Samuel S; Wang, Chong-Min; Xu, Kang; Zhang, Ji-Guang; Xu, Wu

    2017-06-07

    Formulating electrolytes with solvents of low freezing points and high dielectric constants is a direct approach to extend the service-temperature range of lithium (Li)-ion batteries (LIBs). In this study, we report such wide-temperature electrolyte formulations by optimizing the ethylene carbonate (EC) content in the ternary solvent system of EC, propylene carbonate (PC), and ethyl methyl carbonate (EMC) with LiPF 6 salt and CsPF 6 additive. An extended service-temperature range from -40 to 60 °C was obtained in LIBs with lithium nickel cobalt aluminum oxide (LiNi 0.80 Co 0.15 Al 0.05 O 2 , NCA) as cathode and graphite as anode. The discharge capacities at low temperatures and the cycle life at room temperature and elevated temperatures were systematically investigated together with the ionic conductivity and phase-transition behaviors. The most promising electrolyte formulation was identified as 1.0 M LiPF 6 in EC-PC-EMC (1:1:8 by wt) with 0.05 M CsPF 6 , which was demonstrated in both coin cells of graphite∥NCA and 1 Ah pouch cells of graphite∥LiNi 1/3 Mn 1/3 Co 1/3 O 2 . This optimized electrolyte enables excellent wide-temperature performances, as evidenced by the high capacity retention (68%) at -40 °C and C/5 rate, significantly higher than that (20%) of the conventional LIB electrolyte, and the nearly identical stable cycle life as the conventional LIB electrolyte at room temperature and elevated temperatures up to 60 °C.

  13. Molded ultra-low density microcellular foams

    International Nuclear Information System (INIS)

    Rand, P.B.; Montoya, O.J.

    1986-07-01

    Ultra-low density (< 0.01 g/cc) microcellular foams were required for the NARYA pulsed-power-driven x-ray laser development program. Because of their extreme fragility, molded pieces would be necessary to successfully field these foams in the pulsed power accelerator. All of the foams evaluated were made by the thermally induced phase separation technique from solutions of water soluble polymers. The process involved rapidly freezing the solution to induce the phase separation, and then freeze drying to remove the water without destroying the foam's structure. More than sixty water soluble polymers were evaluated by attempting to make their solutions into foams. The foams were evaluated for shrinkage, density, and microstructure to determine their suitability for molding and meeting the required density and cell size requirements of 5.0 mg/cc and less than twenty μmeters. Several promising water soluble polymers were identified including the polyactylic acids, guar gums, polyactylamide, and polyethylene oxide. Because of thier purity, structure, and low shrinkage, the polyacrylic acids were chosen to develop molding processes. The initial requirements were for 2.0 cm. long molded rods with diameters of 1.0, 2.0. and 3.0 mm. These rods were made by freezing the solution in thin walled silicon rubber molds, extracting the frozen preform from the mold, and then freeze drying. Requirements for half rods and half annuli necessitated using aluminum molds. Again we successfully molded these shapes. Our best efforts to date involve molding annuli with 3.0 mm outside diameters and 2.0 mm inside diameters

  14. Wide-Temperature Electrolytes for Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qiuyan; Jiao, Shuhong; Luo, Langli; Ding, Michael S.; Zheng, Jianming; Cartmell, Samuel S.; Wang, Chong-Min; Xu, Kang; Zhang, Ji-Guang; Xu, Wu

    2017-05-26

    Formulating electrolytes with solvents of low freezing points and high dielectric constants is a direct approach to extend the service temperature range of lithium (Li)-ion batteries (LIBs), for which propylene carbonate (PC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), methyl butyrate (MB) are excellent candidates. In this work, we report such low temperature electrolyte formulations by optimizing the content of ethylene carbonate (EC) in the EC-PC-EMC ternary solvent system with LiPF6 salt and CsPF6 additive. An extended service temperature range from 40°C to 60°C was obtained in LIBs with lithium nickel cobalt aluminum mixed oxide (LiNi0.80Co0.15Al0.05O2, NCA) as cathode and graphite as anode. The discharge capacities at low temperatures and the cycle life at room and elevated temperatures were systematically investigated in association with the ionic conductivity and phase transition behaviors. The most promising electrolyte formulation was identified as 1.0 M LiPF6 in EC-PC-EMC (1:1:8 by wt.) with 0.05 M CsPF6, which was demonstrated in both coin cells of graphite||NCA and 1 Ah pouch cells of graphite||LiNi1/3Mn1/3Co1/3O2. This optimized electrolyte enables excellent wide-temperature performances, as evidenced by the 68% capacity retention at 40C and C/5 rate, and nearly identical stable cycle life at room and elevated temperatures up to 60C.

  15. Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K0.5Bi0.5TiO3-BaTiO3-Na0.5Bi0.5TiO3 piezoelectric materials.

    Science.gov (United States)

    Maurya, Deepam; Zhou, Yuan; Wang, Yaojin; Yan, Yongke; Li, Jiefang; Viehland, Dwight; Priya, Shashank

    2015-02-26

    We synthesized grain-oriented lead-free piezoelectric materials in (K0.5Bi0.5TiO3-BaTiO3-xNa0.5Bi0.5TiO3 (KBT-BT-NBT) system with high degree of texturing along the [001]c (c-cubic) crystallographic orientation. We demonstrate giant field induced strain (~0.48%) with an ultra-low hysteresis along with enhanced piezoelectric response (d33 ~ 190pC/N) and high temperature stability (~160°C). Transmission electron microscopy (TEM) and piezoresponse force microscopy (PFM) results demonstrate smaller size highly ordered domain structure in grain-oriented specimen relative to the conventional polycrystalline ceramics. The grain oriented specimens exhibited a high degree of non-180° domain switching, in comparison to the randomly axed ones. These results indicate the effective solution to the lead-free piezoelectric materials.

  16. Spreading of lithium on a stainless steel surface at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, C.H., E-mail: cskinner@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Capece, A.M. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Roszell, J.P.; Koel, B.E. [Department of Chemical and Biological Engineering, Princeton University, NJ 08540 (United States)

    2016-01-15

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. The spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separate experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (E{sub des} = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (E{sub des} = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium–lithium bonding.

  17. Lithium

    Science.gov (United States)

    Bradley, Dwight C.; Stillings, Lisa L.; Jaskula, Brian W.; Munk, LeeAnn; McCauley, Andrew D.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Lithium, the lightest of all metals, is used in air treatment, batteries, ceramics, glass, metallurgy, pharmaceuticals, and polymers. Rechargeable lithium-ion batteries are particularly important in efforts to reduce global warming because they make it possible to power cars and trucks from renewable sources of energy (for example, hydroelectric, solar, or wind) instead of by burning fossil fuels. Today, lithium is extracted from brines that are pumped from beneath arid sedimentary basins and extracted from granitic pegmatite ores. The leading producer of lithium from brine is Chile, and the leading producer of lithium from pegmatites is Australia. Other potential sources of lithium include clays, geothermal brines, oilfield brines, and zeolites. Worldwide resources of lithium are estimated to be more than 39 million metric tons, which is enough to meet projected demand to the year 2100. The United States is not a major producer at present but has significant lithium resources.

  18. Ultra-low-frequency dust-electromagnetic modes in self-gravitating magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.

    1999-07-01

    Obliquely propagating ultra-low-frequency dust-electromagnetic waves in a self-gravitating, warm, magnetized two fluid dusty plasma system have been investigated. Two special cases, namely, dust-Alfven mode propagating parallel to the external magnetic field and dust-magnetosonic mode propagating perpendicular to the external magnetic field have also been considered. It has been shown that effects of self-gravitational field, dust fluid temperature, and obliqueness significantly modify the dispersion properties of these ultra-low-frequency dust-electromagnetic modes. It is also found that these effects of self-gravitational field and dust/ion fluid temperature play no role in parallel propagating dust-Alfven mode, but in obliquely propagating dust-Alfven mode or perpendicular propagating dust-magnetosonic mode the effect of self-gravitational field plays a destabilizing role whereas the effect of dust/ion fluid temperature plays a stabilizing role. (author)

  19. Ultra low carbon bainitic (ULCB) steels after quenching and tempering

    International Nuclear Information System (INIS)

    Lis, A.K.; Lis, J.; Kolan, C.; Jeziorski, L.

    1998-01-01

    The mechanical and Charpy V impact strength properties of new advanced ultra low carbon bainitic (ULBC) steels after water quenching and tempering (WQT) have been investigated. Their chemical compositions are given. The nine continuous cooling transformation diagrams (CCT) of the new ULCB steel grades have been established. The CCT diagrams for ULCB N i steels containing 9% Ni - grade 10N9 and 5% Ni - grade HN5MVNb are given. The comparison between CCT diagrams of 3.5%Ni + 1.5%Cu containing steels grade HSLA 100 and HN3MCu is shown. The effect of the increase in carbon and titanium contents in the chemical composition of ULCB M n steels 04G3Ti, 06G3Ti and 09G3Ti on the kinetics of phase transformations during continuous cooling is presented by the shifting CCT diagrams. The Charpy V impact strength and brittle fracture occurence curves are shown. The effect of tempering temperature on tensile properties of WQT HN3MCu steel is shown and Charpy V impact strength curves after different tempering conditions are shown. The optimum tempering temperatures region of HN3MCu steel for high Charpy V impact toughness at law temperatures - 80 o C(193 K) and -120 o C(153 K) is estimated. The effect of tempering temperature on mechanical properties of HN5MVNb steel is given. The low temperature impact Charpy V toughness of HN5MVNb steel is shown. The optimum range of tempering temperature during 1 hour for high toughness of WQT HN5MVNb steel is given. HN3MCu and HN5MVNb steels after WQT have high yield strength YS≥690 MPa and high Charpy V impact toughness KV≥80 J at -100 o C (173K) and KCV≥50 J/cm 2 at - 120 o C (153K) so they may be used for cryogenic applications

  20. Ultra-low-frequency dust-electromagnetic modes in self-gravitating magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Banerjee, A.K.; Alam, M.N.; Mamun, A.A.

    2001-01-01

    Obliquely propagating ultra-low-frequency dust-electromagnetic waves in a self-gravitating, warm, magnetized, two fluid dusty plasma system have been investigated. Two special cases, namely, dust-Alfven mode propagating parallel to the external magnetic field and dust- magnetosonic mode propagating perpendicular to the external magnetic field have also been considered. It has been shown that effects of self-gravitational field, dust fluid temperature, and obliqueness significantly modify the dispersion properties of these ultra-low-frequency dust-electromagnetic modes. It is also found that in parallel propagating dust-Alfven mode these effects play no role, but in obliquely propagating dust-Alfven mode or perpendicular propagating dust-magnetosonic mode the effect of self-gravitational field plays destabilizing role whereas the effect of dust/ion fluid temperature plays stabilizing role. (author)

  1. Biodiesel as a lubricity additive for ultra low sulfur diesel

    Directory of Open Access Journals (Sweden)

    Subongkoj Topaiboul1 and 2,*

    2010-05-01

    Full Text Available With the worldwide trend to reduce emission from diesel engines, ultra low sulfur diesel has been introduced with thesulfur concentration of less than 10 ppm. Unfortunately, the desulfurization process inevitably reduces the lubricity of dieselfuel significantly. Alternatively, biodiesel, with almost zero sulfur content, has been added to enhance lubricity in an ultralow sulfur diesel. This work has evaluated the effectiveness of the biodiesel amount, sourced from palm and jatropha oil,and origin in ultra low sulfur diesel locally available in the market. Wear scar from a high-frequency reciprocating rig isbenchmarked to the standard value (460 m of diesel fuel lubricity. It was found that very small amount (less than 1% ofbiodiesel from either source significantly improves the lubricity in ultra low sulfur diesel, and the biodiesel from jatropha oilis a superior lubricity enhancer.

  2. Remote Sensing Extraction of Stopes and Tailings Ponds in AN Ultra-Low Iron Mining Area

    Science.gov (United States)

    Ma, B.; Chen, Y.; Li, X.; Wu, L.

    2018-04-01

    With the development of economy, global demand for steel has accelerated since 2000, and thus mining activities of iron ore have become intensive accordingly. An ultra-low-grade iron has been extracted by open-pit mining and processed massively since 2001 in Kuancheng County, Hebei Province. There are large-scale stopes and tailings ponds in this area. It is important to extract their spatial distribution information for environmental protection and disaster prevention. A remote sensing method of extracting stopes and tailings ponds is studied based on spectral characteristics by use of Landsat 8 OLI imagery and ground spectral data. The overall accuracy of extraction is 95.06 %. In addition, tailings ponds are distinguished from stopes based on thermal characteristics by use of temperature image. The results could provide decision support for environmental protection, disaster prevention, and ecological restoration in the ultra-low-grade iron ore mining area.

  3. Rapid self-heating and internal temperature sensing of lithium-ion batteries at low temperatures

    International Nuclear Information System (INIS)

    Zhang, Guangsheng; Ge, Shanhai; Xu, Terrence; Yang, Xiao-Guang; Tian, Hua; Wang, Chao-Yang

    2016-01-01

    Highlights: • Self-heating lithium-ion battery (SHLB) structure provided a practical solution to the poor performance at subzero temperatures. • We report an improved SHLB that heats from −20 °C to 0 °C in 12.5 seconds, or 56% more rapidly, while consuming 24% less energy than previously reported. • The nickel foil heating element embedded inside a SHLB cell plays a dominant role in rapid self-heating. • The embedded nickel foil can simultaneously perform as an internal temperature sensor (ITS). • 2-sheet design self-heats faster than 1-sheet design due to more uniform internal temperature distribution. - Abstract: The recently discovered self-heating lithium-ion battery structure provided a practical solution to the poor performance at subzero temperatures that has hampered battery technology for decades. Here we report an improved self-heating lithium-ion battery (SHLB) that heats from −20 °C to 0 °C in 12.5 seconds, or 56% more rapidly, while consuming 24% less energy than that reported previously. We reveal that a nickel foil heating element embedded inside a SHLB cell plays a dominant role in self-heating and we experimentally demonstrate that a 2-sheet design can achieve dramatically accelerated self-heating due to more uniform internal temperature distribution. We also report, for the first time, that this embedded nickel foil can simultaneously perform as an internal temperature sensor (ITS) due to the perfectly linear relationship between the foil’s electrical resistance and temperature.

  4. Ultra-low field MRI food inspection system prototype

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, Satoshi, E-mail: s133413@edu.tut.ac.jp; Toyota, Hirotomo; Hatta, Junichi; Ariyoshi, Seiichiro; Tanaka, Saburo, E-mail: tanakas@ens.tut.ac.jp

    2016-11-15

    Highlights: • We have developed a ULF-MRI system using HTS-SQUID for food inspection. • We developed a compact magnetically shielded box to attenuate environmental noise. • The 2D-MR image was reconstructed from the grid processing data using 2D-FFT method. • The 2D-MR images of a disk-shaped and a multiple cell water sample were obtained. • The results showed the possibility of applying the ULF-MRI system to food inspection. - Abstract: We develop an ultra-low field (ULF) magnetic resonance imaging (MRI) system using a high-temperature superconducting quantum interference device (HTS-SQUID) for food inspection. A two-dimensional (2D)-MR image is reconstructed from the grid processing raw data using the 2D fast Fourier transform method. In a previous study, we combined an LC resonator with the ULF-MRI system to improve the detection area of the HTS-SQUID. The sensitivity was improved, but since the experiments were performed in a semi-open magnetically shielded room (MSR), external noise was a problem. In this study, we develop a compact magnetically shielded box (CMSB), which has a small open window for transfer of a pre-polarized sample. Experiments were performed in the CMSB and 2D-MR images were compared with images taken in the semi-open MSR. A clear image of a disk-shaped water sample is obtained, with an outer dimension closer to that of the real sample than in the image taken in the semi-open MSR. Furthermore, the 2D-MR image of a multiple cell water sample is clearly reconstructed. These results show the applicability of the ULF-MRI system in food inspection.

  5. The lithium-lithium hydride process for the production of hydrogen: comparison of two concepts for 950 and 1300 deg C HTR helium outlet temperature

    International Nuclear Information System (INIS)

    Oertel, M.; Weirich, W.; Kuegler, B.; Luecke, L.; Pietsch, M.; Winkelmann, U.

    1987-01-01

    The lithium-lithium hydride process serves to generate hydrogen from water efficiently, using the high temperature heat of a nuclear reactor. Thermodynamic analyses show that hydrogen can be produced with an overall thermal efficiency of 48% at conventional HTR outlet temperatures of 950 0 C. Assuming helium heat of 1300 0 C, 56% overall thermal efficiency can be achieved. (author)

  6. Encoded low swing for ultra low power interconnect

    NARCIS (Netherlands)

    Krishnan, R.; Pineda de Gyvez, J.

    2003-01-01

    We present a novel encoded-low swing technique for ultra low power interconnect. Using this technique and an efficient circuit implementation, we achieve an average of 45.7% improvement in the power-delay product over the schemes utilizing low swing techniques alone, for random bit streams. Also, we

  7. Ultra-low-angle boundary networks within recrystallizing grains

    DEFF Research Database (Denmark)

    Ahl, Sonja Rosenlund; Simons, Hugh; Zhang, Yubin

    2017-01-01

    We present direct evidence of a network of well-defined ultra-low-angle boundaries in bulk recrystallizing grains of 99.5% pure aluminium (AA1050) by means of a new, three-dimensional X-ray mapping technique; dark-field X-ray microscopy. These boundaries separate lattice orientation differences o...

  8. FORMULATING ULTRA-LOW-VOC WOOD FURNITURE COATINGS

    Science.gov (United States)

    The article discusses the formulation of ultra-low volatile organic compound (VOC) wood furniture coatings. The annual U.S. market for wood coatings is about 240, 000 cu m (63 million gal). In this basis, between 57 and 91 million kg (125 and 200 million lb) of VOCs are emitted i...

  9. Reaching ultra low phosphorus concentrations by filtration techniques

    NARCIS (Netherlands)

    Scherrenberg, S.M.

    2011-01-01

    This research deals with tertiary treatment techniques used for the removal of phosphorus from wastewater treatment plant (WWTP) effluent. The main objective of this research is to obtain ultra low total phosphorus (<0.15 mg total phosphorus/L) concentrations by coagulation, flocculation and

  10. The development of an ultra-low-emission gas-fired combustor for space heaters

    International Nuclear Information System (INIS)

    Xiong, Tian-yu; Khinkis, M.J.; Coppin, W.P.

    1991-01-01

    An ultra-low-emission as-fired combustor has been developed for relatively low-temperature direct-air heating applications. High-lean premixed cyclonic combustion with a flame stabilizer is employed to achieve ultra-low emissions and high turndown operation. On the basis of analytical studies and cold modeling a 350-kW test combustor was designed and successfully tested. Experimental results obtained using natural gas and ambient air demonstrated that the test combustor can operate steadily at high excess air up to 80% to 100% over a large turndown range up to 40:1. At design operating conditions, NO x emissions as low as 0.6 vppm and CO and total hydrocarbon (THC) emissions below 3 vppm were achieved. Over the full operating range, NO x emissions from 0.3 to 1.0 vppm and CO and THC emissions below 4 vppm were demonstrated. In all tests, concentrations of NO 2 were less than 40% of the total NO 2 emissions from combustion processes required for good indoor air quality (0.5 vppm). This paper presents the concept of high-lean premixed ultra-low-emission cyclonic combustion, design specifications for the combustion system, and the major experimental results, including flame stability, emissions, and turndown performance. 15 refs., 10 figs., 1 tab

  11. The development of an ultra-low-emission gas-fired cyclonic combustor

    International Nuclear Information System (INIS)

    Xiong, Tian-yu; Khinkis, M.J.; Coppin, W.P.

    1991-01-01

    A gas-fired cyclonic combustor has been developed for relatively low-temperature direct-air heating applications that require ultra-low pollutant emissions. High-lean premixed combustion with a flame stabilizer is adopted to achieve ultra-low emissions and high turndown operation. On the basis of analytical studies and cold modeling, a 350-kW test combustor was designed and successfully tested. Experimental results obtained using natural gas and ambient air demonstrated that the test combustor can operate steadily at high excess air up to 80% to 100% over a large turndown range up to 40:1. At design operating conditions, NO x emissions as low as 0.6 vppm and CO and total hydrocarbon (THC) emissions below 3 vppm were achieved. Over the full operating range, NO x emissions from 0.3 to 1.0 vppm and CO and THC emissions below 4 vppm were demonstrated. In all tests, concentrations of NO 2 were less than 40% of the total NO x emissions -- lower than the level of NO 2 emissions from combustion processes required for good indoor air quality (0.5 vppm). This paper presents the concept of high-lean premixed ultra-low-emission cyclonic combustion, design specifications for the combustion system, and the major experimental results, including flame stability, emissions, and turndown performance. 13 refs., 12 figs., 1 tab

  12. PHASE EVOLUTION AND MICROWAVE DIELECTRIC PROPERTIES OF (Li0.5Bi0.5)(W1-xMox)O4(0.0 ≤ x ≤ 1.0) CERAMICS WITH ULTRA-LOW SINTERING TEMPERATURES

    Science.gov (United States)

    Zhou, Di; Guo, Jing; Yao, Xi; Pang, Li-Xia; Qi, Ze-Ming; Shao, Tao

    2012-11-01

    The (Li0.5Bi0.5)(W1-xMox)O4(0.0 ≤ x ≤ 1.0) ceramics were prepared via the solid state reaction method. The sintering temperature decreased almost linearly from 755°C for (Li0.5Bi0.5)WO4 to 560°C for (Li0.5Bi0.5)MoO4. When the x≤0.3, a wolframite solid solution can be formed. For x = 0.4 and x = 0.6 compositions, both the wolframite and scheelite phases can be formed from the X-ray diffraction analysis, while two different kinds of grains can be revealed from the scanning electron microscopy and energy-dispersive X-ray spectrometer results. High performance of microwave dielectric properties were obtained in the (Li0.5Bi0.5)(W0.6Mo0.4)O4 ceramic sintered at 620°C with a relative permittivity of 31.5, a Qf value of 8500 GHz (at 8.2 GHz), and a temperature coefficient value of +20 ppm/°C. Complex dielectric spectra of pure (Li0.5Bi0.5)WO4 ceramic gained from the infrared spectra were extrapolated down to microwave range, and they were in good agreement with the measured values. The (Li0.5Bi0.5)(W1-xMox)O4(0.0 ≤ x ≤ 1.0) ceramics might be promising for low temperature co-fired ceramic technology.

  13. Temperature and field independence of the fluorine and lithium NMR shift tensors in lithium rare-earth tetrafluorides

    DEFF Research Database (Denmark)

    Nevald, Rolf; Hansen, P. E.

    1978-01-01

    The fluorine and lithium NMR line shifts have been followed in temperature from 300 to 1.3 K and in fields up to 40 kG for LiTbF4 and LiHoF4. The Tb3+ and Ho3+ ionic moments cause these shifts. The Li shifts are dominated by dipole interactions, whereas the F shifts also have transferred hyperfine...... contributions of comparable sizes. The transferred hyperfine interactions turn out to be almost isotropic and exhibiting no temperature or field dependence. In LiHoF4 the line shifts are detectable within the entire temperature range. In LiTbF4 the fluorine and lithium lines broaden to such an extent...

  14. Compatibility between vandium-base alloys and flowing lithium: Partitioning of hydrogen at elevated temperatures

    International Nuclear Information System (INIS)

    Hull, A.B.; Chopra, O.K.; Loomis, B.; Smith, D.

    1989-12-01

    A major concern in fusion reactor design is possible hydrogen-isotope-induced embrittlement of structural alloys in the neutron environment expected in these reactors. Hydrogen fractionation occurs between lithium and various refractory metals according to a temperature-dependent distribution coefficient, K H , that is defined as the ration of the hydrogen concentration in the metallic specimen to that in the liquid lithium. In the present work, K H was determined for pure vanadium and several binary and ternary alloys, and the commercial Vanstar 7. Hydrogen distribution studies were performed in an austenitic steel forced-circulation lithium loop. Equilibrium concentrations of hydrogen in vanadium-base alloys exposed to flowing lithium at temperatures of 350 to 550 degree C were measured by inert gas fusion techniques and residual gas analysis. Thermodynamic calculations are consistent with the effect of chromium and titanium in the alloys on the resultant hydrogen fractionation. Experimental and calculated results indicate that K H values are very low; i.e., the hydrogen concentrations in the lithium-equilibrated vanadium-base alloy specimens are about two orders of magnitude lower than those in the lithium. Because of this low distribution coefficient, embrittlement of vanadium alloys by hydrogen in lithium would not be expected. 15 refs., 5 figs., 4 tabs

  15. Oxidation of ultra low carbon and silicon bearing steels

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, Lucia [CTM - Technologic Centre, Materials Technology Area, Manresa, Barcelona (Spain)], E-mail: lucia.suarez@ctm.com.es; Rodriguez-Calvillo, Pablo [CTM - Technologic Centre, Materials Technology Area, Manresa, Barcelona (Spain)], E-mail: pablo.rodriguez@ctm.com.es; Houbaert, Yvan [Department of Materials Science and Engineering, University of Ghent (Belgium)], E-mail: Yvan.Houbaert@UGent.be; Colas, Rafael [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico)], E-mail: rcolas@mail.uanl.mx

    2010-06-15

    Oxidation tests were carried out in samples from an ultra low carbon and two silicon bearing steels to determine the distribution and morphology of the oxide species present. The ultra low carbon steel was oxidized for short periods of time within a chamber designed to obtain thin oxide layers by controlling the atmosphere, and for longer times in an electric furnace; the silicon steels were reheated only in the electric furnace. The chamber was constructed to study the behaviour encountered during the short period of time between descaling and rolling in modern continuous mills. It was found that the oxide layers formed on the samples reheated in the electric furnace were made of different oxide species. The specimens treated in the chamber had layers made almost exclusively of wustite. Selected oxide samples were studied by scanning electron microscopy to obtain electron backscattered diffraction patterns, which were used to identify the oxide species in the layer.

  16. Design of ultra-low power impulse radios

    CERN Document Server

    Apsel, Alyssa; Dokania, Rajeev

    2014-01-01

    This book covers the fundamental principles behind the design of ultra-low power radios and how they can form networks to facilitate a variety of applications within healthcare and environmental monitoring, since they may operate for years off a small battery or even harvest energy from the environment. These radios are distinct from conventional radios in that they must operate with very constrained resources and low overhead.  This book provides a thorough discussion of the challenges associated with designing radios with such constrained resources, as well as fundamental design concepts and practical approaches to implementing working designs.  Coverage includes integrated circuit design, timing and control considerations, fundamental theory behind low power and time domain operation, and network/communication protocol considerations.   • Enables detailed understanding of the design space for ultra-low power radio; • Provides detailed discussion and examples of the design of a practical low power ...

  17. Ultra-Low Voltage Class AB Switched Current Memory Cell

    DEFF Research Database (Denmark)

    Igor, Mucha

    1996-01-01

    This paper presents the theoretical basis for the design of class AB switched current memory cells employing floating-gate MOS transistors, suitable for ultra-low-voltage applications. To support the theoretical assumptions circuits based on these cells were designed using a CMOS process with thr......This paper presents the theoretical basis for the design of class AB switched current memory cells employing floating-gate MOS transistors, suitable for ultra-low-voltage applications. To support the theoretical assumptions circuits based on these cells were designed using a CMOS process...... with threshold voltages of 0.9V. Both hand calculations and PSPICE simulations showed that the cells designed allowed a maximum signal range better than +/-13 micoamp, with a supply voltage down to 1V and a quiescent bias current of 1 microamp, resulting in a very high current efficiency and effective power...

  18. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles.

    KAUST Repository

    Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha; Archer, Lynden A

    2015-01-01

    Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries.

  19. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles.

    KAUST Repository

    Choudhury, Snehashis

    2015-12-04

    Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries.

  20. Method to increase the toughness of aluminum-lithium alloys at cryogenic temperatures

    Science.gov (United States)

    Sankaran, Krishnan K. (Inventor); Sova, Brian J. (Inventor); Babel, Henry W. (Inventor)

    2006-01-01

    A method to increase the toughness of the aluminum-lithium alloy C458 and similar alloys at cryogenic temperatures above their room temperature toughness is provided. Increasing the cryogenic toughness of the aluminum-lithium alloy C458 allows the use of alloy C458 for cryogenic tanks, for example for launch vehicles in the aerospace industry. A two-step aging treatment for alloy C458 is provided. A specific set of times and temperatures to age the aluminum-lithium alloy C458 to T8 temper is disclosed that results in a higher toughness at cryogenic temperatures compared to room temperature. The disclosed two-step aging treatment for alloy 458 can be easily practiced in the manufacturing process, does not involve impractical heating rates or durations, and does not degrade other material properties.

  1. Amorphous boron nanorod as an anode material for lithium-ion batteries at room temperature.

    Science.gov (United States)

    Deng, Changjian; Lau, Miu Lun; Barkholtz, Heather M; Xu, Haiping; Parrish, Riley; Xu, Meiyue Olivia; Xu, Tao; Liu, Yuzi; Wang, Hao; Connell, Justin G; Smith, Kassiopeia A; Xiong, Hui

    2017-08-03

    We report an amorphous boron nanorod anode material for lithium-ion batteries prepared through smelting non-toxic boron oxide in liquid lithium. Boron in theory can provide capacity as high as 3099 mA h g -1 by alloying with Li to form B 4 Li 5 . However, experimental studies of the boron anode have been rarely reported for room temperature lithium-ion batteries. Among the reported studies the electrochemical activity and cycling performance of the bulk crystalline boron anode material are poor at room temperature. In this work, we utilized an amorphous nanostructured one-dimensional (1D) boron material aiming at improving the electrochemical reactivity between boron and lithium ions at room temperature. The amorphous boron nanorod anode exhibited, at room temperature, a reversible capacity of 170 mA h g -1 at a current rate of 10 mA g -1 between 0.01 and 2 V. The anode also demonstrated good rate capability and cycling stability. The lithium storage mechanism was investigated by both sweep voltammetry measurements and galvanostatic intermittent titration techniques (GITTs). The sweep voltammetric analysis suggested that the contributions from lithium ion diffusion into boron and the capacitive process to the overall lithium charge storage are 57% and 43%, respectively. The results from GITT indicated that the discharge capacity at higher potentials (>∼0.2 V vs. Li/Li + ) could be ascribed to a capacitive process and at lower potentials (ions and the amorphous boron nanorod. This work provides new insights into designing nanostructured boron materials for lithium-ion batteries.

  2. Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials

    Science.gov (United States)

    Matlashov, Andrei Nikolaevich; Urbaitis, Algis V.; Savukov, Igor Mykhaylovich; Espy, Michelle A.; Volegov, Petr Lvovich; Kraus, Jr., Robert Henry

    2013-03-05

    Method comprising obtaining an NMR measurement from a sample wherein an ultra-low field NMR system probes the sample and produces the NMR measurement and wherein a sampling temperature, prepolarizing field, and measurement field are known; detecting the NMR measurement by means of inductive coils; analyzing the NMR measurement to obtain at least one measurement feature wherein the measurement feature comprises T1, T2, T1.rho., or the frequency dependence thereof; and, searching for the at least one measurement feature within a database comprising NMR reference data for at least one material to determine if the sample comprises a material of interest.

  3. Jump chaotic behaviour of ultra low loss bulk acoustic wave cavities

    Energy Technology Data Exchange (ETDEWEB)

    Goryachev, Maxim, E-mail: maxim.goryachev@uwa.edu.au; Farr, Warrick G.; Tobar, Michael E. [ARC Centre of Excellence for Engineered Quantum Systems, University of Western Australia, 35 Stirling Highway, Crawley WA 6009 (Australia); Galliou, Serge [Department of Time and Frequency, FEMTO-ST Institute, ENSMM, 26 Chemin de l' Épitaphe 25000 Besançon (France)

    2014-08-11

    We demonstrate a previously unobserved nonlinear phenomenon in an ultra-low loss quartz bulk acoustic wave cavity (Q>3>10{sup 9}), which only occurs below 20 mK in temperature and under relatively weak pumping. The phenomenon reveals the emergence of several stable equilibria (at least two foci and two nodes) and jumps between these quasi states at random times. The degree of this randomness as well as separations between levels can be controlled by the frequency of the incident carrier signal. It is demonstrated that the nature of the effect lies beyond the standard Duffing model.

  4. High-rate capability of lithium-ion batteries after storing at elevated temperature

    International Nuclear Information System (INIS)

    Wu, Mao-Sung; Chiang, Pin-Chi Julia

    2007-01-01

    High-rate performances of a lithium-ion battery after storage at elevated temperature are investigated electrochemically by means of three-electrode system. The high-rate capability is decreased significantly after high-temperature storage. A 3 C discharge capacities after room-temperature storage and 60 o C storage are 650 and 20 mAh, respectively. Lithium-ion diffusion in lithium cobalt oxide cathode limits the battery's capacity and the results show that storage temperature changes this diffusion behavior. Transmission electron microscopy (TEM) images show that many defects are directly observed in the cathode after storage compared with the fresh cathode; the structural defects block the diffusion within the particles. Electrochemical impedance and polarization curve indicate that mass-transfer (diffusion) dominates the discharge capacity during high-rate discharge

  5. Ultra-low-power and ultra-low-cost short-range wireless receivers in nanoscale CMOS

    CERN Document Server

    Lin, Zhicheng; Martins, Rui Paulo

    2016-01-01

    This book provides readers with a description of state-of-the-art techniques to be used for ultra-low-power (ULP) and ultra-low-cost (ULC), short-range wireless receivers. Readers will learn what is required to deploy these receivers in short-range wireless sensor networks, which are proliferating widely to serve the internet of things (IoT) for “smart cities.” The authors address key challenges involved with the technology and the typical tradeoffs between ULP and ULC. Three design examples with advanced circuit techniques are described in order to address these trade-offs, which specially focus on cost minimization. These three techniques enable respectively, cascading of radio frequency (RF) and baseband (BB) circuits under an ultra-low-voltage (ULV) supply, cascoding of RF and BB circuits in current domain for current reuse, and a novel function-reuse receiver architecture, suitable for ULV and multi-band ULP applications such as the sub-GHz ZigBee. ·         Summarizes the state-of-the-art i...

  6. Shape of isolated domains in lithium tantalate single crystals at elevated temperatures

    International Nuclear Information System (INIS)

    Shur, V. Ya.; Akhmatkhanov, A. R.; Baturin, I. S.; Chezganov, D. S.; Lobov, A. I.; Smirnov, M. M.

    2013-01-01

    The shape of isolated domains has been investigated in congruent lithium tantalate (CLT) single crystals at elevated temperatures and analyzed in terms of kinetic approach. The obtained temperature dependence of the growing domain shape in CLT including circular shape at temperatures above 190 °C has been attributed to increase of relative input of isotropic ionic conductivity. The observed nonstop wall motion and independent domain growth after merging in CLT as opposed to stoichiometric lithium tantalate have been attributed to difference in wall orientation. The computer simulation has confirmed applicability of the kinetic approach to the domain shape explanation

  7. Observation of Flat Electron Temperature Profiles in the Lithium Tokamak Experiment

    International Nuclear Information System (INIS)

    Boyle, D. P.; Majeski, R.; Schmitt, J. C.; Auburn University, AL; Hansen, C.

    2017-01-01

    It has been predicted for over a decade that low-recycling plasma-facing components in fusion devices would allow high edge temperatures and flat or nearly flat temperature profiles. In recent experiments with lithium wall coatings in the Lithium Tokamak Experiment (LTX), a hot edge (> 200 eV) and flat electron temperature profiles have been measured following the termination of external fueling. In this work, reduced recycling was demonstrated by retention of ~ 60% of the injected hydrogen in the walls following the discharge. Electron energy confinement followed typical Ohmic confinement scaling during fueling, but did not decrease with density after fueling terminated, ultimately exceeding the scaling by ~ 200% . Lastly, achievement of the low-recycling, hot edge regime has been an important goal of LTX and lithium plasma-facing component research in general, as it has potentially significant implications for the operation, design, and cost of fusion devices.

  8. Aerosol nucleation in an ultra-low ion density environment

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Enghoff, Martin Andreas Bødker; Paling, Sean M.

    2012-01-01

    Ion-induced nucleation has been studied in a deep underground ultra-low background radiation environment where the role of ions can be distinguished from alternative neutral aerosol nucleation mechanisms. Our results demonstrate that ions have a significant effect on the production of small...... sulfuric acid–water clusters over a range of sulfuric acid concentrations although neutral nucleation mechanisms remain evident at low ionization levels. The effect of ions is found both to enhance the nucleation rate of stable clusters and the initial growth rate. The effects of possible contaminations...

  9. Ultra-low-power short-range radios

    CERN Document Server

    Chandrakasan, Anantha

    2015-01-01

    This book explores the design of ultra-low-power radio-frequency integrated circuits (RFICs), with communication distances ranging from a few centimeters to a few meters. Such radios have unique challenges compared to longer-range, higher-powered systems. As a result, many different applications are covered, ranging from body-area networks to transcutaneous implant communications and Internet-of-Things devices. A mix of introductory and cutting-edge design techniques and architectures which facilitate each of these applications are discussed in detail. Specifically, this book covers:.

  10. A programmable ultra-low noise X-band exciter.

    Science.gov (United States)

    MacMullen, A; Hoover, L R; Justice, R D; Callahan, B S

    2001-07-01

    A programmable ultra-low noise X-band exciter has been developed using commercial off-the-shelf components. Its phase noise is more than 10 dB below the best available microwave synthesizers. It covers a 7% frequency band with 0.1-Hz resolution. The X-band output at +23 dBm is a combination of signals from an X-band sapphire-loaded cavity oscillator (SLCO), a low noise UHF frequency synthesizer, and special-purpose frequency translation and up-conversion circuitry.

  11. Note: Ultra-low birefringence dodecagonal vacuum glass cell

    Energy Technology Data Exchange (ETDEWEB)

    Brakhane, Stefan, E-mail: brakhane@iap.uni-bonn.de; Alt, Wolfgang; Meschede, Dieter; Robens, Carsten; Moon, Geol; Alberti, Andrea [Institut für Angewandte Physik, Universität Bonn, Wegelerstr. 8, D-53115 Bonn (Germany)

    2015-12-15

    We report on an ultra-low birefringence dodecagonal glass cell for ultra-high vacuum applications. The epoxy-bonded trapezoidal windows of the cell are made of SF57 glass, which exhibits a very low stress-induced birefringence. We characterize the birefringence Δn of each window with the cell under vacuum conditions, obtaining values around 10{sup −8}. After baking the cell at 150 °C, we reach a pressure below 10{sup −10} mbar. In addition, each window is antireflection coated on both sides, which is highly desirable for quantum optics experiments and precision measurements.

  12. GRABGAM Analysis of Ultra-Low-Level HPGe Gamma Spectra

    International Nuclear Information System (INIS)

    Winn, W.G.

    1999-01-01

    The GRABGAM code has been used successfully for ultra-low level HPGe gamma spectrometry analysis since its development in 1985 at Savannah River Technology Center (SRTC). Although numerous gamma analysis codes existed at that time, reviews of institutional and commercial codes indicated that none addressed all features that were desired by SRTC. Furthermore, it was recognized that development of an in-house code would better facilitate future evolution of the code to address SRTC needs based on experience with low-level spectra. GRABGAM derives its name from Gamma Ray Analysis BASIC Generated At MCA/PC

  13. Ultra-low-energy wide electron exposure unit

    International Nuclear Information System (INIS)

    Yonago, Akinobu; Oono, Yukihiko; Tokunaga, Kazutoshi; Kishimoto, Junichi; Wakamoto, Ikuo

    2001-01-01

    Heat and ultraviolet ray processes are used in surface dryness of paint, surface treatment of construction materials and surface sterilization of food containers. A process using a low-energy wide-area electron beam (EB) has been developed that features high speed and low drive cost. EB processing is not widespread in general industry, however, due to high equipment cost and difficult maintenance. We developed an ultra-low-energy wide-area electron beam exposure unit, the Mitsubishi Wide Electron Exposure Unit (MIWEL) to solve these problems. (author)

  14. GRABGAM Analysis of Ultra-Low-Level HPGe Gamma Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Winn, W.G.

    1999-07-28

    The GRABGAM code has been used successfully for ultra-low level HPGe gamma spectrometry analysis since its development in 1985 at Savannah River Technology Center (SRTC). Although numerous gamma analysis codes existed at that time, reviews of institutional and commercial codes indicated that none addressed all features that were desired by SRTC. Furthermore, it was recognized that development of an in-house code would better facilitate future evolution of the code to address SRTC needs based on experience with low-level spectra. GRABGAM derives its name from Gamma Ray Analysis BASIC Generated At MCA/PC.

  15. Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation

    Science.gov (United States)

    Shen, Fei-Ran; Kuang, Hao; Hu, Feng-Xia; Wu, Hui; Huang, Qing-Zhen; Liang, Fei-Xiang; Qiao, Kai-Ming; Li, Jia; Wang, Jing; Liu, Yao; Zhang, Lei; He, Min; Zhang, Ying; Zuo, Wen-Liang; Sun, Ji-Rong; Shen, Bao-Gen

    2017-10-01

    Materials with zero thermal expansion (ZTE) or precisely tailored thermal expansion are in urgent demand of modern industries. However, the overwhelming majority of materials show positive thermal expansion. To develop ZTE or negative thermal expansion (NTE) materials as compensators has become an important challenge. Here, we present the evidence for the realization of ultra-low thermal expansion in Mn-Co-Ge-In particles. The bulk with the Ni2In-type hexagonal structure undergoes giant NTE owing to a martensitic magnetostructural transition. The major finding is that the thermal expansion behavior can be totally controlled by modulating the crystallinity degree and phase transition from atomic scale. Self-compensation effect leads to ultra-low thermal expansion with a linear expansion coefficient as small as +0.68 × 10-6/K over a wide temperature range around room temperature. The present study opens an avenue to reach ZTE particularly from the large class of giant NTE materials based on phase transition.

  16. Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation

    Directory of Open Access Journals (Sweden)

    Fei-Ran Shen

    2017-10-01

    Full Text Available Materials with zero thermal expansion (ZTE or precisely tailored thermal expansion are in urgent demand of modern industries. However, the overwhelming majority of materials show positive thermal expansion. To develop ZTE or negative thermal expansion (NTE materials as compensators has become an important challenge. Here, we present the evidence for the realization of ultra-low thermal expansion in Mn–Co–Ge–In particles. The bulk with the Ni2In-type hexagonal structure undergoes giant NTE owing to a martensitic magnetostructural transition. The major finding is that the thermal expansion behavior can be totally controlled by modulating the crystallinity degree and phase transition from atomic scale. Self-compensation effect leads to ultra-low thermal expansion with a linear expansion coefficient as small as +0.68 × 10−6/K over a wide temperature range around room temperature. The present study opens an avenue to reach ZTE particularly from the large class of giant NTE materials based on phase transition.

  17. Extraction of lithium from salt lake brine using room temperature ionic liquid in tributyl phosphate

    International Nuclear Information System (INIS)

    Shi, Chenglong; Jia, Yongzhong; Zhang, Chao; Liu, Hong; Jing, Yan

    2015-01-01

    Highlights: • We proposed a new system for Li recovery from salt lake brine by extraction using an ionic liquid. • Cation exchange was proposed to be the mechanism of extraction followed in ionic liquid. • This ionic liquid system shown considerable extraction ability for lithium and the single extraction efficiency of lithium reached 87.28% under the optimal conditions. - Abstract: Lithium is known as the energy metal and it is a key raw material for preparing lithium isotopes which have important applications in nuclear energy source. In this work, a typical room temperature ionic liquid (RTILs), 1-butyl-3-methyl-imidazolium hexafluorophosphate ([C 4 mim][PF 6 ]), was used as an alternative solvent to study liquid/liquid extraction of lithium from salt lake brine. In this system, the ionic liquid, NaClO 4 and tributyl phosphate (TBP) were used as extraction medium, co-extraction reagent and extractant respectively. The effects of solution pH value, phase ratio, ClO 4 − amount and other factors on lithium extraction efficiency had been investigated. Optimal extraction conditions of this system include the ratio of TBP/IL at 4/1 (v/v), O/A at 2:1, n(ClO 4 − )/n(Li + ) at 2:1, the equilibration time of 10 min and unadjusted pH. Under the optimal conditions, the single extraction efficiency of lithium was 87.28% which was much higher than the conventional extraction system. Total extraction efficiency of 99.12% was obtained by triple-stage countercurrent extraction. Study on the mechanism revealed that the use of ionic liquid increased the extraction yield of lithium through cation exchange in this system. Preliminary results indicated that the use of [C 4 mim][PF 6 ] as an alternate solvent to replace traditional organic solvents (VOCs) in liquid/liquid extraction was very promising

  18. Ultra-low energy storage ring at FLAIR

    International Nuclear Information System (INIS)

    Welsch, Carsten P.; Papash, A. I.; Gorda, O.; Harasimowicz, J.; Karamyshev, O.; Karamysheva, G.; Newton, D.; Panniello, M.; Putignano, M.; Siggel-King, M. R. F.; Smirnov, A.

    2012-01-01

    The Ultra-low energy electrostatic Storage Ring (USR) at the future Facility for Low-energy Antiproton and Ion Research (FLAIR) will provide cooled beams of antiprotons in the energy range between 300 keV down to 20 keV and possibly less. The USR has been completely redesigned over the past three years. The ring structure is based on a “split achromat” lattice that allows in-ring experiments with internal gas jet target. Beam parameters might be adjusted in a wide range: from very short pulses in the nanosecond regime to a Coasting beam. In addition, a combined fast and slow extraction scheme was developed that allows for providing external experiments with cooled beams of different time structure. Detailed investigations of the USR, including studies into the ring’s long term beam dynamics, life time, equilibrium momentum spread and equilibrium lateral spread during collisions with an internal target were carried out. New tools and beam handling techniques for diagnostics of ultra-low energy ions at beam intensities less than 10 6 were developed by the QUASAR Group. In this paper, progress on the USR project will be presented with an emphasis on the expected beam parameters available to the experiments at FLAIR.

  19. Prevention of burn-on defect on surface of hydroturbine blade casting of ultra-low-carbon refining stainless steel

    Directory of Open Access Journals (Sweden)

    Li Ling

    2008-08-01

    Full Text Available The burn-on sand is common surface defect encountered in CO2-cured silicate-bonded sand casting of hydroturbine blade of ultra-low-carbon martensitic stainless steel, its feature, causes and prevention measures are presented in this paper. Experiments showed that the burn-on defect is caused by oxidization of chromium in the molten steel at high temperature and can be effectively eliminated by using chromium-corundum coating.

  20. Lithium Batteries and Supercapacitors Capable of Operating at Low Temperatures for Planetary Exploration

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; West, W. C.; Brandon, E. J.

    2012-01-01

    Demonstrated improved performance with wide operating temperature electrolytes containing ester co - solvents (i.e., methyl propionate and ethyl butyrate) in a number of prototype cells: center dot Successfully scaled up low temperature technology to 12 Ah size prismatic Li - ion cells (Quallion, LCC), and demonstrated good performance down to - 60 o C. center dot Demonstrated wide operating temperature range performance ( - 60 o to +60 o C) in A123 Systems LiFePO 4 - based lithium - ion cells containing methyl butyrate - based low temperature electrolytes. These systems were also demonstrated to have excellent cycle life performance at ambient temperatures, as well as the ability to be cycled up to high temperatures.

  1. Temperature and composition dependence of birefringence of lithium-tantalate crystals determined by holographic scattering

    International Nuclear Information System (INIS)

    Bastwoeste, K.; Schwalenberg, S.; Baeumer, Ch.; Kraetzig, E.

    2003-01-01

    Iron-doped lithium-tantalate samples with different compositions ranging from the congruently melting to the stoichiometric one are analyzed by anisotropic holographic scattering. The temperature dependence of the birefringence yields information on the composition of the crystals. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Temperature and composition dependence of birefringence of lithium-tantalate crystals determined by holographic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bastwoeste, K.; Schwalenberg, S.; Baeumer, Ch.; Kraetzig, E. [Fachbereich Physik, Universitaet Osnabrueck, D-49069 Osnabrueck (Germany)

    2003-09-01

    Iron-doped lithium-tantalate samples with different compositions ranging from the congruently melting to the stoichiometric one are analyzed by anisotropic holographic scattering. The temperature dependence of the birefringence yields information on the composition of the crystals. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. The cycle life chemistry of ambient-temperature secondary lithium cells

    Science.gov (United States)

    Somoano, R.; Carter, B. J.; Subba Rao, S.; Shen, D.; Yen, S. P. S.

    1985-01-01

    The Jet Propulsion Laboratory is involved in a NASA-sponsored research program to demonstrate the feasibility of ambient-temperature secondary lithium batteries for geosynchronous space applications. Encouraging cycle life has been demonstrated in sealed, cathode-limited laboratory cells. However, the cell capacity declines with cycle life. The results of recent studies of the lithium electrode passivation chemistry, and of conductive diluents for TiS2 cathodes and their possible contribution to capacity decline, are here presented. Technical issues associated with the unique operational requirements of a geosynchronous mission are also described.

  4. A Lithium-Air Battery Stably Working at High Temperature with High Rate Performance.

    Science.gov (United States)

    Pan, Jian; Li, Houpu; Sun, Hao; Zhang, Ye; Wang, Lie; Liao, Meng; Sun, Xuemei; Peng, Huisheng

    2018-02-01

    Driven by the increasing requirements for energy supply in both modern life and the automobile industry, the lithium-air battery serves as a promising candidate due to its high energy density. However, organic solvents in electrolytes are likely to rapidly vaporize and form flammable gases under increasing temperatures. In this case, serious safety problems may occur and cause great harm to people. Therefore, a kind of lithium-air that can work stably under high temperature is desirable. Herein, through the use of an ionic liquid and aligned carbon nanotubes, and a fiber shaped design, a new type of lithium-air battery that can effectively work at high temperatures up to 140 °C is developed. Ionic liquids can offer wide electrochemical windows and low vapor pressures, as well as provide high thermal stability for lithium-air batteries. The aligned carbon nanotubes have good electric and heat conductivity. Meanwhile, the fiber format can offer both flexibility and weavability, and realize rapid heat conduction and uniform heat distribution of the battery. In addition, the high temperature has also largely improved the specific powers by increasing the ionic conductivity and catalytic activity of the cathode. Consequently, the lithium-air battery can work stably at 140 °C with a high specific current of 10 A g -1 for 380 cycles, indicating high stability and good rate performance at high temperatures. This work may provide an effective paradigm for the development of high-performance energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Chromatic dispersion effects in ultra-low coherence interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Lychagov, V V; Ryabukho, V P [N.G.Chernyshevsky Saratov State University (Russian Federation)

    2015-06-30

    We consider the properties of an interference signal shift from zero-path-difference position in the presence of an uncompensated dispersive layer in one of the interferometer arms. It is experimentally shown that in using an ultra-low coherence light source, the formation of the interference signal is also determined by the group velocity dispersion, which results in a nonlinear dependence of the position of the interference signal on the geometrical thickness of the dispersive layer. The discrepancy in the dispersive layer and compensator refractive indices in the third decimal place is experimentally shown to lead to an interference signal shift that is an order of magnitude greater than the pulse width. (interferometry)

  6. Ultra-low-head hydroelectric technology: A review

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Daqing; Deng, Zhiqun (Daniel)

    2017-10-01

    In recent years, distributed renewable energy-generation technologies, such as wind and solar, have developed rapidly. Nevertheless, the utilization of ultra-low-head (ULH) water energy (i.e., situations where the hydraulic head is less than 3 m or the water flow is more than 0.5 m/s with zero head) has received little attention. We believe that, through technological innovations and cost reductions, ULH hydropower has the potential to become an attractive, renewable, and sustainable resource. This paper investigates potential sites for ULH energy resources, the selection of relevant turbines and generators, simplification of civil works, and project costs. This review introduces the current achievements on ULH hydroelectric technology to stimulate discussions and participation of stakeholders to develop related technologies for further expanding its utilization as an important form of renewable energy.

  7. Lithium implantation at low temperature in silicon for sharp buried amorphous layer formation and defect engineering

    International Nuclear Information System (INIS)

    Oliviero, E.; David, M. L.; Beaufort, M. F.; Barbot, J. F.; Fichtner, P. F. P.

    2013-01-01

    The crystalline-to-amorphous transformation induced by lithium ion implantation at low temperature has been investigated. The resulting damage structure and its thermal evolution have been studied by a combination of Rutherford backscattering spectroscopy channelling (RBS/C) and cross sectional transmission electron microscopy (XTEM). Lithium low-fluence implantation at liquid nitrogen temperature is shown to produce a three layers structure: an amorphous layer surrounded by two highly damaged layers. A thermal treatment at 400 °C leads to the formation of a sharp amorphous/crystalline interfacial transition and defect annihilation of the front heavily damaged layer. After 600 °C annealing, complete recrystallization takes place and no extended defects are left. Anomalous recrystallization rate is observed with different motion velocities of the a/c interfaces and is ascribed to lithium acting as a surfactant. Moreover, the sharp buried amorphous layer is shown to be an efficient sink for interstitials impeding interstitial supersaturation and {311} defect formation in case of subsequent neon implantation. This study shows that lithium implantation at liquid nitrogen temperature can be suitable to form a sharp buried amorphous layer with a well-defined crystalline front layer, thus having potential applications for defects engineering in the improvement of post-implantation layers quality and for shallow junction formation.

  8. Ultra-low dispersion spectroscopy of stars and galaxies

    International Nuclear Information System (INIS)

    Bappu, M.K.V.; Parthasarathy, M.

    1977-01-01

    Application of ultra-low dispersion spectroscopy 10,000 A mm - 1 , is described to study the nuclei of elliptical galaxies, the quasi-stellar objects and for the discovery of faint OB stars, reddened stars and red stars. The instrument used is an f/2 slitless spectrograph with a three degree quartz prism at the Cassegrain focus of the 102-cm Ritchey-Chratien reflector at Kavalur. The spectra cover a field of 40 minutes of arc and the dispersion is 10,000 A mm - 1 . Ultra-low dispersion spectra (microspectra) were obtained for fifteen elliptical and three SO galaxies from the list of Ekers and Ekers (1973) who classified them as compact and extended sources from the observations of radio emission at 6 cms. From an analysis of micro-spectra and from direct photographs with graded exposure times, it is found that all compact radio galaxies in the Ekers list also have optically compact nuclei. Some of these elliptical galaxies with compact nuclei show enhancement of intensity in the blue violet region. From an examination of microspectra of forty-three of the known quasi-stellar objects of different redshifts it is found that the most striking characteristic of the spectra is their flat appearance. This characteristic flatness is also noticed in the microspectrum of the large redshift quasi-stellar objects like OH 471 and OQ 172 which do not have UV excess. Because of this characteristic difference in the appearance of the microspectra of the quasi-stellar objects and stellar objects, it is possible to detect new OSO's with this technique. An application of this technique to detect red stars in our galaxy and in the Large Magellanic cloud is discussed. (author)

  9. Ultra-low power integrated circuit design circuits, systems, and applications

    CERN Document Server

    Li, Dongmei; Wang, Zhihua

    2014-01-01

    This book describes the design of CMOS circuits for ultra-low power consumption including analog, radio frequency (RF), and digital signal processing circuits (DSP). The book addresses issues from circuit and system design to production design, and applies the ultra-low power circuits described to systems for digital hearing aids and capsule endoscope devices. Provides a valuable introduction to ultra-low power circuit design, aimed at practicing design engineers; Describes all key building blocks of ultra-low power circuits, from a systems perspective; Applies circuits and systems described to real product examples such as hearing aids and capsule endoscopes.

  10. Isotope effect in glass-transition temperature and ionic conductivity of lithium-borate glasses

    International Nuclear Information System (INIS)

    Nagasaki, Takanori; Morishima, Ryuta; Matsui, Tsuneo

    2002-01-01

    The glass-transition temperature and the electrical conductivity of lithium borate (0.33Li 2 O-0.67B 2 O 3 ) glasses with various isotopic compositions were determined by differential thermal analysis and by impedance spectroscopy, respectively. The obtained glass-transition temperature as well as the vibrational frequency of B-O network structure was independent of lithium isotopic composition. This result indicates that lithium ions, which exist as network modifier, only weakly interact with B-O network structure. In addition, the glass-transition temperature increased with 10 B content although the reason has not been understood. The electrical conductivity, on the other hand, increased with 6 Li content. The ratio of the conductivity of 6 Li glass to that of 7 Li glass was found to be 2, being larger than the value (7/6) 1/2 calculated with the simple classical diffusion theory. This strong mass dependence could be explained by the dynamic structure model, which assumes local structural relaxation even far below the glass-transition temperature. Besides, the conductivity appeared to increase with the glass-transition temperature. Possible correlations between the glass-transition temperature and the electrical conductivity were discussed. (author)

  11. Investigating the low-temperature impedance increase of lithium-ion cells

    International Nuclear Information System (INIS)

    Abraham, D. P.; Heaton, J. R.; Kang, S.-H.; Dees, D. W.; Jansen, A. N.; Chemical Engineering

    2008-01-01

    Low-temperature performance loss is a significant barrier to commercialization of lithium-ion cells in hybrid electric vehicles. Increased impedance, especially at temperatures below 0 C, reduces the cell pulse power performance required for cold engine starts, quick acceleration, or regenerative braking. Here we detail electrochemical impedance spectroscopy data on binder- and carbon-free layered-oxide and spinel-oxide electrodes, obtained over the +30 to ?30 C temperature range, in coin cells containing a lithium-preloaded Li 4/3 Ti 5/3 O 4 composite (LTOc) counter electrode and a LiPF 6 -bearing ethylene carbonate/ethyl methyl carbonate electrolyte. For all electrodes studied, the impedance increased with decreasing cell temperature; the increases observed in the midfrequency arc dwarfed the increases in ohmic resistance and diffusional impedance. Our data suggest that the movement of lithium ions across the electrochemical interface on the active material may have been increasingly hindered at lower temperatures, especially below 0 C. Low-temperature performance may be improved by modifying the electrolyte-active material interface (for example, through electrolyte composition changes). Increasing surface area of active particles (for example, through nanoparticle use) can lower the initial electrode impedance and lead to lower cell impedances at -30 C

  12. Fragility Variation of Lithium Borate Glasses Studied by Temperature-Modulated DSC

    Science.gov (United States)

    Matsuda, Yu; Fukawa, Yasuteru; Kawashima, Mitsuru; Kojima, Seiji

    2008-02-01

    The fragility of lithium borate glass system has been investigated by Temperature-Modulated Differential Scanning Calorimetry (TMDSC). The frequency and temperature dependences of dynamic specific heat have been observed in the vicinity of a glass transition temperature Tg. It is shown that the value of the fragility index m can be determined from the temperature dependence of the α-relaxation times observed by TMDSC, when the raw phase angle is properly corrected. The composition dependence of the fragility has been also discussed.

  13. Ultra low density biodegradable shape memory polymer foams with tunable physical properties

    Science.gov (United States)

    Singhal, Pooja; Wilson, Thomas S.; Cosgriff-Hernandez, Elizabeth; Maitland, Duncan J.

    2017-12-12

    Compositions and/or structures of degradable shape memory polymers (SMPs) ranging in form from neat/unfoamed to ultra low density materials of down to 0.005 g/cc density. These materials show controllable degradation rate, actuation temperature and breadth of transitions along with high modulus and excellent shape memory behavior. A method of m ly low density foams (up to 0.005 g/cc) via use of combined chemical and physical aking extreme blowing agents, where the physical blowing agents may be a single compound or mixtures of two or more compounds, and other related methods, including of using multiple co-blowing agents of successively higher boiling points in order to achieve a large range of densities for a fixed net chemical composition. Methods of optimization of the physical properties of the foams such as porosity, cell size and distribution, cell openness etc. of these materials, to further expand their uses and improve their performance.

  14. Ultra-low field NMR for detection and characterization of 235 UF6

    Energy Technology Data Exchange (ETDEWEB)

    Espy, Michelle A [Los Alamos National Laboratory; Magnelind, Per E [Los Alamos National Laboratory; Matlashov, Andrei N [Los Alamos National Laboratory; Urbaitis, Algis V [Los Alamos National Laboratory; Volegov, Petr L [Los Alamos National Laboratory

    2009-01-01

    We have demonstrated the first ultra-low field (ULF) nuclear magnetic resonance measurements of uranium hexafluoride (UF{sub 6}), both depleted and 70% enriched, which is used in the uranium enrichment process. A sensitive non-invasive detection system would have an important role in non-proliferation surveillance. A two-frequency technique was employed to remove the transients induced by rapidly switching off the 50 mT pre-polarization field. A mean transverse relaxation time T{sub 2} of 24 ms was estimated for the un-enriched UF{sub 6} sample measured at a mean temperature of 80 C. Nuclear magnetic resonance at ULF has several advantages including the ability to measure through metal, such as pipes, and simple magnetic field generation hardware. We present here recent data and discuss the potential for non-proliferation monitoring of enrichment and flow velocity.

  15. Many-body spin related phenomena in ultra-low-disorder quantum wires

    International Nuclear Information System (INIS)

    Reilly, D.J.; Facer, G.R.; Dzurak, A.S.; Kane, B.E.; Clark, R.G.; Stiles, P.J.; O'Brien, J.L.; Lumpkin, N.E.

    2000-01-01

    Full text: Zero length quantum wires (or point contacts) exhibit unexplained conductance structure close to 0.7 x 2e 2 /h in the absence of an applied magnetic field. We have studied the density- and temperature-dependent conductance of ultra-low-disorder GaAs AlGaAs quantum wires with nominal lengths l=0 and 2μm, fabricated from structures free of the disorder associated with modulation doping. In a direct comparison we observe structure near 0.7 x 2e 2 /h for l=0 whereas the l = 2μm wires show structure evolving with increasing density to 0.5 x 2e 2 /h in zero magnetic field, the value expected for an ideal spin split sub-band. Our results suggest the dominant mechanism through which electrons interact can be strongly affected by the length of the 1D region

  16. Nitrogen Recovery by Fe-Ti Alloy from Molten Lithium at High Temperatures

    International Nuclear Information System (INIS)

    Juro Yagi; Akihiro Suzuki; Takayuki Terai; Takeo Muroga

    2006-01-01

    Molten lithium will be used as a beam target of IFMIF (International Fusion Materials Irradiation Facility), and is also expected as a self-cooling and tritium breeding material in fusion reactors. Since tritium is generated in both cases, tritium recovery is required from viewpoints of safety and a feasible fuel cycle. Nitrogen impurity in the lithium, however, not only enhance corrosion to tubing materials, but also promote nitride contamination on a surface of yttrium, which is considered to be a tritium gettering candidate. In our previous study, nitrogen recovery by hot trap method with Fe + 5%Ti alloy as a gettering material showed a higher nitrogen reduction capacity than that with Ti or Cr metal. In this study, high temperature recovery of nitrogen with Fe-Ti alloy was examined to achieve more efficient recovery and higher recovery rate coefficient. Fe - 4%Ti alloy are fabricated by electron beam melting, and its thin plates (40 mm x 10 mm x 1 mm) are used in our experiments. The Fe - 4%Ti alloy plates were immersed into 25 g of liquid lithium in Mo crucible under Ar atmosphere. The crucible was put in a SUS316 stainless steel pot heated at 600, 700, or 800 o C up to 100 hours. A small portion of the liquid lithium in the crucible was sampled out with adequate time interval, and the nitrogen concentrations in the sampled lithium were observed by changing nitrogen to ammonia. Experiments using lithium containing about 100 wt. ppm of nitrogen at the beginning show that the nitrogen reduction became faster with temperature and the minimum achieved nitrogen concentration was less than 20 wppm in case of 800 C. SEM-EDS analysis on the plates after experiment shows a Ti-rich surface layer of tens of micrometers on the alloy immersed in lithium at 800 C, and XPS analysis indicates the surface layer is TiN, while no Ti-rich layer nor TiN were observed on the alloys immersed at 600 o C and 700 o C. By increasing temperature from 600 o C to 800 o C, the diffusion

  17. Quantum mechanical study of molecular collisions at ultra-low energy: applications to alkali and alkaline-earth systems

    International Nuclear Information System (INIS)

    Quemener, G.

    2006-10-01

    In order to investigate the collisional processes which occur during the formation of molecular Bose-Einstein condensates, a time-independent quantum mechanical formalism, based on hyperspherical coordinates, has been applied to the study of atom-diatom dynamics at ultra-low energies. We present theoretical results for three alkali systems, each composed of lithium, sodium or potassium atoms, and for an alkaline-earth system composed of calcium atoms. We also study dynamics at large and positive atom-atom scattering length. Evidence for the suppression of inelastic processes in a fermionic system is given, as well as a linear relation between the atom-diatom scattering length and the atom-atom scattering length. (author)

  18. Optimization of ultra-low-power CMOS transistors

    International Nuclear Information System (INIS)

    Stockinger, M.

    2000-01-01

    Ultra-low-power CMOS integrated circuits have constantly gained importance due to the fast growing portable electronics market. High-performance applications like mobile telephones ask for high-speed computations and low stand-by power consumption to increase the actual operating time. This means that transistors with low leakage currents and high drive currents have to be provided. Common fabrication methods will soon reach their limits if the on-chip feature size of CMOS technology continues to shrink at this very fast rate. New device architectures will help to keep track with the roadmap of the semiconductor industry. Especially doping profiles offer much freedom for performance improvements as they determine the 'inner functioning' of a transistor. In this work automated doping profile optimization is performed on MOS transistors within the TCAD framework SIESTA. The doping between and under the source/drain wells is discretized on an orthogonal optimization grid facilitating almost arbitrary two-dimensional shapes. A linear optimizer issued to find the optimum doping profile by variation of the doping parameters utilizing numerical device simulations with MINIMOS-NT. Gaussian functions are used in further optimization runs to make the doping profiles smooth. Two device generations are considered, one with 0.25 μm, the other with 0.1 μm gate length. The device geometries and source/drain doping profiles are kept fixed during optimization and supply voltages are chosen suitable for ultra-low-power purposes. In a first optimization study the drive current of NMOS transistors is maximized while keeping the leakage current below a limit of 1 pA/μm. This results in peaking channel doping devices (PCD) with narrow doping peaks placed asymmetrically in the channel. Drive current improvements of 45 % and 71 % for the 0.25 μm and 0.1 μm devices, respectively, are achieved compared to uniformly doped devices. The PCD device is studied in detail and explanations for

  19. Extraction of lithium from salt lake brine using room temperature ionic liquid in tributyl phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Chenglong [Key Laboratory of Salt Lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 810008 Xining (China); University of Chinese Academy of Sciences, 100049 Beijing (China); Jia, Yongzhong [Key Laboratory of Salt Lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 810008 Xining (China); Zhang, Chao [Key Laboratory of Salt Lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 810008 Xining (China); University of Chinese Academy of Sciences, 100049 Beijing (China); Liu, Hong [Qinghai Salt Chemical Products Supervision and Inspection Center, 816000 Golmud (China); Jing, Yan, E-mail: 1580707906@qq.com [Key Laboratory of Salt Lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 810008 Xining (China)

    2015-01-15

    Highlights: • We proposed a new system for Li recovery from salt lake brine by extraction using an ionic liquid. • Cation exchange was proposed to be the mechanism of extraction followed in ionic liquid. • This ionic liquid system shown considerable extraction ability for lithium and the single extraction efficiency of lithium reached 87.28% under the optimal conditions. - Abstract: Lithium is known as the energy metal and it is a key raw material for preparing lithium isotopes which have important applications in nuclear energy source. In this work, a typical room temperature ionic liquid (RTILs), 1-butyl-3-methyl-imidazolium hexafluorophosphate ([C{sub 4}mim][PF{sub 6}]), was used as an alternative solvent to study liquid/liquid extraction of lithium from salt lake brine. In this system, the ionic liquid, NaClO{sub 4} and tributyl phosphate (TBP) were used as extraction medium, co-extraction reagent and extractant respectively. The effects of solution pH value, phase ratio, ClO{sub 4}{sup −} amount and other factors on lithium extraction efficiency had been investigated. Optimal extraction conditions of this system include the ratio of TBP/IL at 4/1 (v/v), O/A at 2:1, n(ClO{sub 4}{sup −})/n(Li{sup +}) at 2:1, the equilibration time of 10 min and unadjusted pH. Under the optimal conditions, the single extraction efficiency of lithium was 87.28% which was much higher than the conventional extraction system. Total extraction efficiency of 99.12% was obtained by triple-stage countercurrent extraction. Study on the mechanism revealed that the use of ionic liquid increased the extraction yield of lithium through cation exchange in this system. Preliminary results indicated that the use of [C{sub 4}mim][PF{sub 6}] as an alternate solvent to replace traditional organic solvents (VOCs) in liquid/liquid extraction was very promising.

  20. Ultra low-power integrated circuit design for wireless neural interfaces

    CERN Document Server

    Holleman, Jeremy; Otis, Brian

    2014-01-01

    Presenting results from real prototype systems, this volume provides an overview of ultra low-power integrated circuits and systems for neural signal processing and wireless communication. Topics include analog, radio, and signal processing theory and design for ultra low-power circuits.

  1. Structural developments in un-stabilized ultra low carbon steel during warm deformation and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Unnikrishnan, Rahul, E-mail: rahulunnikrishnannair@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Kumar, Amit, E-mail: chaudhary65amit@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Khatirkar, Rajesh K., E-mail: rajesh.khatirkar@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Shekhawat, Satish K., E-mail: satishshekhawat@gmail.com [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay (IITB), Powai, Mumbai 400076, Maharashtra (India); Sapate, Sanjay G., E-mail: sgsapate@yahoo.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India)

    2016-11-01

    In the present investigation, ultra low carbon steel samples were deformed in plane strain compression mode in a deformation simulator. The deformation was carried out at four different temperatures in the warm rolling region (293, 473, 673 and 873 K) upto 70% strain at two different strain rates (0.1/s and 1/s). Subsequently, all the deformed samples were fully recrystallized at 1073 K. Afterwards, all the deformed and fully recrystallized samples were subjected to detailed microstructural characterization using optical microscope, scanning electron microscope and electron backscattered diffraction. Bulk texture was measured for all the samples by X-ray diffraction. In-grain misorientation developments (kernel average misorientations) were estimated for the deformed γ-fibre (ND//<111>) and α-fibre (RD//<110>). Deformed γ-fibre showed an increase in in-grain misorientation at intermediate deformation temperatures. This increase was explained by using the plastic instability criterion. After complete recrystallization, the γ-fibre strengthened for deformation at lower temperatures (293 K and 473 K), while Goss texture developed for samples deformed at higher temperatures (673 K and 873 K). - Highlights: • ULC steel samples were deformed in near plane strain condition. • Microstructural developments were characterized using EBSD. • Increase in in-grain misorientation at intermediate deformation temperatures. • γ-fibre strengthened for low temperature deformation. • Goss texture developed for high temperature deformation.

  2. Lithium based alloy-thionyl chloride cells for applications at temperatures to 200 C

    Science.gov (United States)

    Kane, P.; Marincic, N.; Epstein, J.; Lindsey, A.

    A long-life lithium battery for industrial applications at temperatures up to 200 C was developed by combining Li-based alloy anodes with oxyhalide electrolytes. Cathodes were fabricated by rolling the blend of polycarbonomonofluoride, a conductive carbon additive, and a binder, while anodes were fabricated as those used in oxyhalide cells, incorporating a modified anode current collector designed to prevent the formation of 'lithium islands' at the end of discharge; nonwoven glass fiber separators were pretreated to remove excessive binders and lubricants. Various active electrode surface areas were combined with a corresponding thickness of electrodes and separators, matched in capacity. Tests of the high-rate electrode structure, using Li-Mg alloy anode in conjunction with thionyl chloride electrolyte, have demonstrated that the battery with this anode can be used under abusive conditions such as short circuit and external heating (at 175 C). Raising the operating temperature to 200 C did require some modifications of regular cell hardware.

  3. Morphology of Burned Ultra-low Density Fiberboards

    Directory of Open Access Journals (Sweden)

    Min Niu

    2015-09-01

    Full Text Available The synergistic effect of two fire retardants, a Si-Al compound and chlorinated paraffin, was tested on ultra-low density fiberboards (ULDFs. To further understand the mechanism of fire retardancy, morphologies of unburned and burned ULDFs were studied using a scanning electron microscope with energy dispersive spectroscopy. It was found that as the volume of the burned ULDFs shrank, some crevices appeared. In addition, less fly ash formed on the top of specimens, and more bottom ashes remained in the original framework, with a clear network of structure built by the fibers. Carbon was almost absent in the fly ash; however, the weight ratio of C in the bottom ashes reached the maximum (> 43% of the composition. Oxygen, Al, and Si appeared to have varying weight ratios for different ashes. Oxygen content increased with increasing Si and Al contents. Furthermore, Cl sharply decreased to less than 1% after combustion. Therefore, upon combustion, it was found that almost all of the substances in ULDFs, except for the Si-Al compound, were pyrolyzed to volatile carbon oxides and Cl compounds, especially the fly ash and lightweight C compounds.

  4. Ultra low power signal oriented approach for wireless health monitoring.

    Science.gov (United States)

    Marinkovic, Stevan; Popovici, Emanuel

    2012-01-01

    In recent years there is growing pressure on the medical sector to reduce costs while maintaining or even improving the quality of care. A potential solution to this problem is real time and/or remote patient monitoring by using mobile devices. To achieve this, medical sensors with wireless communication, computational and energy harvesting capabilities are networked on, or in, the human body forming what is commonly called a Wireless Body Area Network (WBAN). We present the implementation of a novel Wake Up Receiver (WUR) in the context of standardised wireless protocols, in a signal-oriented WBAN environment and present a novel protocol intended for wireless health monitoring (WhMAC). WhMAC is a TDMA-based protocol with very low power consumption. It utilises WBAN-specific features and a novel ultra low power wake up receiver technology, to achieve flexible and at the same time very low power wireless data transfer of physiological signals. As the main application is in the medical domain, or personal health monitoring, the protocol caters for different types of medical sensors. We define four sensor modes, in which the sensors can transmit data, depending on the sensor type and emergency level. A full power dissipation model is provided for the protocol, with individual hardware and application parameters. Finally, an example application shows the reduction in the power consumption for different data monitoring scenarios.

  5. Assembly techniques for ultra-low mass drift chambers

    International Nuclear Information System (INIS)

    Assiro, R.; Cascella, M.; Grancagnolo, F.; L'Erario, A.; Miccoli, A.; Rella, S.; Spedicato, M.; Tassielli, G.

    2014-01-01

    We presents a novel technique for the fast assembly of next generation ultra low mass drift chambers offering space point resolution of the order of 100 μm and high tolerance to pile-up. The chamber design has been developed keeping in mind the requirements for the search of rare processes: high resolutions (order of 100–200 KeV/c) for particles momenta in a range (50–100 MeV/c) totally dominated by the multiple scattering contribution (e.g., muon and kaon decay experiment such as MEG at PSI and Mu2e and ORKA at Fermilab). We describe a novel wiring strategy enabling the semiautomatic wiring of a complete layer with a high degree of control over wire tension and position. We also present feed-through-less wire anchoring system. These techniques have been already implemented at INFN-Lecce in the construction of a prototype drift chamber to be soon tested with cosmic rays and particle beams

  6. Assembly techniques for ultra-low mass drift chambers

    Science.gov (United States)

    Assiro, R.; Cascella, M.; Grancagnolo, F.; L'Erario, A.; Miccoli, A.; Rella, S.; Spedicato, M.; Tassielli, G.

    2014-03-01

    We presents a novel technique for the fast assembly of next generation ultra low mass drift chambers offering space point resolution of the order of 100 μm and high tolerance to pile-up. The chamber design has been developed keeping in mind the requirements for the search of rare processes: high resolutions (order of 100-200 KeV/c) for particles momenta in a range (50-100 MeV/c) totally dominated by the multiple scattering contribution (e.g., muon and kaon decay experiment such as MEG at PSI and Mu2e and ORKA at Fermilab). We describe a novel wiring strategy enabling the semiautomatic wiring of a complete layer with a high degree of control over wire tension and position. We also present feed-through-less wire anchoring system. These techniques have been already implemented at INFN-Lecce in the construction of a prototype drift chamber to be soon tested with cosmic rays and particle beams.

  7. Ultra Low Friction of DLC Coating with Lubricant

    International Nuclear Information System (INIS)

    Kano, M; Yoshida, K

    2010-01-01

    The objective of this study was to find a trigger to make clear a mechanism of the ultra low friction by evaluating the friction property of DLC-DLC combination under lubrication with the simple fluid. The Pin-on-disc reciprocating and rotating sliding tests were conducted to evaluate the friction property. The super low friction property of pure sliding with the ta-C(T) pair coated by the filtered arc deposition process under oleic acid lubrication was found at the mixed lubrication condition. It was thought that the low share strength tribofilm composed of water and acid seemed to be formed on ta-C sliding interface. Additionally, the smooth sliding surface formed on ta-C(T) was seemed to be required to keep this tribofilm. Then, the super low friction was thought to be obtained by this superlubrication condition. Although the accurate and direct experimental data must be required to make clear this super low friction mechanism, the advanced effect obtained by the simple material combination is expected to be applied on the large industrial fields in near future.

  8. Ultra-low noise miniaturized neural amplifier with hardware averaging.

    Science.gov (United States)

    Dweiri, Yazan M; Eggers, Thomas; McCallum, Grant; Durand, Dominique M

    2015-08-01

    Peripheral nerves carry neural signals that could be used to control hybrid bionic systems. Cuff electrodes provide a robust and stable interface but the recorded signal amplitude is small (concept of hardware averaging to nerve recordings obtained with cuff electrodes. An optimization procedure is developed to minimize noise and power simultaneously. The novel design was based on existing neural amplifiers (Intan Technologies, LLC) and is validated with signals obtained from the FINE in chronic dog experiments. We showed that hardware averaging leads to a reduction in the total recording noise by a factor of 1/√N or less depending on the source resistance. Chronic recording of physiological activity with FINE using the presented design showed significant improvement on the recorded baseline noise with at least two parallel operation transconductance amplifiers leading to a 46.1% reduction at N = 8. The functionality of these recordings was quantified by the SNR improvement and shown to be significant for N = 3 or more. The present design was shown to be capable of generating hardware averaging on noise improvement for neural recording with cuff electrodes, and can accommodate the presence of high source impedances that are associated with the miniaturized contacts and the high channel count in electrode arrays. This technique can be adopted for other applications where miniaturized and implantable multichannel acquisition systems with ultra-low noise and low power are required.

  9. Correlated electron phenomena in ultra-low disorder quantum wires

    International Nuclear Information System (INIS)

    Reilly, D.J.; Facer, G.R.; Dzurak, A.S.; Kane, B.E.; Clark, R.G.; Lumpkin, N.E.

    1999-01-01

    Full text: Quantum point contacts in the lowest disorder HEMTs display structure at 0.7 x 2e 2 /h, which cannot be interpreted within a single particle Landauer model. This structure has been attributed to a spontaneous spin polarisation at zero B field. We have developed novel GaAs/AlGaAs enhancement mode FETs, which avoid the random impurity potential present in conventional MODFET devices by using epitaxially grown gates to produce ultra-low-disorder QPCs and quantum wires using electron beam lithography. The ballistic mean free path within these devices exceeds 160 μm 2 . Quantum wires of 5 μm in length show up to 15 conductance plateaux, indicating that these may be the lowest-disorder quantum wires fabricated using conventional surface patterning techniques. These structures are ideal for the study of correlation effects in QPCs and quantum wires as a function of electron density. Our data provides strong evidence that correlation effects are enhanced as the length of the 1D region is increased and also that additional structure moves close to 0.5 x 2e 2 /h, the value expected for an ideal spin-split 1D level

  10. Ultra low and negative expansion glass–ceramic materials ...

    Indian Academy of Sciences (India)

    Unknown

    Clay and Traditional Ceramics Division, Central Glass and Ceramic Research Institute, Kolkata 700 032, India ... The batch composition was modified with the addition of lithium carbonate, hydrated ... dustrial waste due to their great technological advantage ..... applications of glass ceramic the present glass composi-.

  11. Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range

    Science.gov (United States)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2012-01-01

    Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.

  12. High Temperature Solid State Lithium Battery, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Reliable energy systems with high energy density capable of operating at high temperatures, pressures and radiation levels are needed for certain NASA missions....

  13. Lithium doping on covalent organic framework-320 for enhancing hydrogen storage at ambient temperature

    International Nuclear Information System (INIS)

    Xia, Liangzhi; Liu, Qing

    2016-01-01

    Density Functional Theory (DFT) combines with grand canonical Monte Carlo (GCMC) simulations are performed to explore the effect of Li doping on the hydrogen storage capability of COF-320. The results show that the interaction energy between the H 2 and the Li-doped COF-320 is about three times higher than that of pristine COF-320. GCMC simulations are employed to study the hydrogen uptake of Li-doped COF-320 at ambient temperature, further confirm that the lithium doping can improve the hydrogen uptake at ambient temperature. Our results demonstrate that Li-doped COFs have good potential in the field of hydrogen storage. - Graphical abstract: Fig. 1. The optimized cluster model used here to represent the COF-320 and possible adsorption sites (A, B, C) for adsorption of metals in the COF-320. The dangling bonds are terminated by H atoms. C, H, and N atoms are shown as gray, white, and blue colors, respectively. Fig. 2. The adsorption isotherm of H 2 in the pristine and Li-doped COF-320 at 298 K. - Highlights: • The binding sites of single and two lithium atoms in COF-320 were studied. • The interaction energy between the H 2 and the Li-doped COF-320 is about three times higher than that of pristine COF-320. • H 2 uptakes on the Li-doped COFs obtain significant improvement at ambient temperature. • Lithium-doping is a successful strategy for improving hydrogen uptake.

  14. Ultra-low Pt decorated PdFe Alloy Nanoparticles for Formic Acid Electro-oxidation

    International Nuclear Information System (INIS)

    Zhou, Yawei; Du, Chunyu; Han, Guokang; Gao, Yunzhi; Yin, Geping

    2016-01-01

    Highlights: • A cost-efficient way is used to prepare transition-noble metal alloy nanoparticles. • The Pd 50 Fe 50 /C catalyst shows excellent activity for formic acid oxidation (FAO). • Much activity enhancement of FAO is acquired by ultra-low Pt decorated Pd 50 Fe 50 . • A synergistic mechanism between Pt clusters and PdFe is proposed during the FAO. - Abstract: Palladium (Pd), has demonstrated promising electro-catalytic activity for formic acid oxidation, but suffers from extremely low abundance. Recently alloying with a transition metal has been considered as an effective approach to reducing the loading of Pd and enhancing the activity of Pd-based catalysts simultaneously. Herein, carbon supported PdFe nanoparticles (NPs) are synthesized at room temperature by using sodium borohydride as reducing agent and potassium ferrocyanide as Fe precursor. The Pd 50 Fe 50 alloy sample annealed at 900 °C for 1 h shows the best catalytic activity among Pd x Fe 1-x (x = 0.2, 0.4, 0.5, 0.6, and 0.8) towards formic acid oxidation. To further improve both catalytic activity and stability, the ultra-low Pt (0.09 wt %) decorated Pd 50 Fe 50 NPs (PtPd/PdFe) are prepared via the galvanic replacement reaction. Compared with Pd 50 Fe 50 /C, the PtPd/PdFe/C Exhibits 1.52 times higher catalytic activity and lower onset potential (−0.12 V). The significant enhancements of formic acid oxidation can be attributed to the accelerated dehydrogenation reaction of formic acid by Pt atomic clusters. Moreover, the PtPd/PdFe/C also demonstrates better tolerance to poisons during formic acid oxidation.

  15. Temperature dependent power capability estimation of lithium-ion batteries for hybrid electric vehicles

    International Nuclear Information System (INIS)

    Zheng, Fangdan; Jiang, Jiuchun; Sun, Bingxiang; Zhang, Weige; Pecht, Michael

    2016-01-01

    The power capability of lithium-ion batteries affects the safety and reliability of hybrid electric vehicles and the estimate of power by battery management systems provides operating information for drivers. In this paper, lithium ion manganese oxide batteries are studied to illustrate the temperature dependency of power capability and an operating map of power capability is presented. Both parametric and non-parametric models are established in conditions of temperature, state of charge, and cell resistance to estimate the power capability. Six cells were tested and used for model development, training, and validation. Three samples underwent hybrid pulse power characterization tests at varied temperatures and were used for model parameter identification and model training. The other three were used for model validation. By comparison, the mean absolute error of the parametric model is about 29 W, and that of the non-parametric model is around 20 W. The mean relative errors of two models are 0.076 and 0.397, respectively. The parametric model has a higher accuracy in low temperature and state of charge conditions, while the non-parametric model has better estimation result in high temperature and state of charge conditions. Thus, two models can be utilized together to achieve a higher accuracy of power capability estimation. - Highlights: • The temperature dependency of power capability of lithium-ion battery is investigated. • The parametric and non-parametric power capability estimation models are proposed. • An exponential function is put forward to compensate the effects of temperature. • A comparative study on the accuracy of two models using statistical metrics is presented.

  16. Integrated Interface Strategy toward Room Temperature Solid-State Lithium Batteries.

    Science.gov (United States)

    Ju, Jiangwei; Wang, Yantao; Chen, Bingbing; Ma, Jun; Dong, Shanmu; Chai, Jingchao; Qu, Hongtao; Cui, Longfei; Wu, Xiuxiu; Cui, Guanglei

    2018-04-25

    Solid-state lithium batteries have drawn wide attention to address the safety issues of power batteries. However, the development of solid-state lithium batteries is substantially limited by the poor electrochemical performances originating from the rigid interface between solid electrodes and solid-state electrolytes. In this work, a composite of poly(vinyl carbonate) and Li 10 SnP 2 S 12 solid-state electrolyte is fabricated successfully via in situ polymerization to improve the rigid interface issues. The composite electrolyte presents a considerable room temperature conductivity of 0.2 mS cm -1 , an electrochemical window exceeding 4.5 V, and a Li + transport number of 0.6. It is demonstrated that solid-state lithium metal battery of LiFe 0.2 Mn 0.8 PO 4 (LFMP)/composite electrolyte/Li can deliver a high capacity of 130 mA h g -1 with considerable capacity retention of 88% and Coulombic efficiency of exceeding 99% after 140 cycles at the rate of 0.5 C at room temperature. The superior electrochemical performance can be ascribed to the good compatibility of the composite electrolyte with Li metal and the integrated compatible interface between solid electrodes and the composite electrolyte engineered by in situ polymerization, which leads to a significant interfacial impedance decrease from 1292 to 213 Ω cm 2 in solid-state Li-Li symmetrical cells. This work provides vital reference for improving the interface compatibility for room temperature solid-state lithium batteries.

  17. Temperature Dependence of Lattice Dynamics of Lithium 7

    DEFF Research Database (Denmark)

    Beg, M. M.; Nielsen, Mourits

    1976-01-01

    10% smaller than those at 100 K. Temperature dependences of selected phonons have been studied from 110 K to near the melting point. The energy shifts and phonon linewidths have been evaluated at 293, 383, and 424 K by comparing the widths and energies to those measured at 110 K. The lattice...

  18. Pengaruh Variasi Temperatur Hidrotermal Pada Sintesis Lithium Mangan Oksida (Limn2o4 Spinel Terhadap Efisiensi Adsorpsi Dan Desorpsi Ion Lithium Dari Lumpur Sidoarjo

    Directory of Open Access Journals (Sweden)

    Yusuf Kurniawan

    2014-09-01

    Full Text Available Perkembangan teknologi dalam bidang material menunjukkan perkembangan yang sangat pesat dalam beberapa tahun terakhir.Salah satu material yang sangat dibutuhkan dalam berbagai aplikasi adalah lithium. Lithium sendiri bisa didapatkan dari air laut brines dan geothermal fluid. Salah satunya adalah Lumpur Sidoarjo. Lithium Mangan Oksida Spinel digunakan sebagai material absorben karena murah, tidak beracun dan mudah didapatkan. Pada penelitian ini metode hidrotermal digunakan sebagai metode sintesis pada LiMn2O4 karena dapat dilakukan pada temperatur yang relatif rendah dan menghasilkan partikel yang lebih homogen. Metode hidrotermal dilakukan pada temperatur 160 oC, 180 oC dan 200 oC selama 24 jam. Pengujian XRD dilakukan untuk mengetahui struktur kristal. Pengujian SEM dilakukan untuk mengetahui morfologi material setelah proses hidrotermal. Pengujian BET dilakukan untuk mengetahui surface area. Setelah itu metode acid treatment dilakukan untuk proses adsorpsi dan desorpsi. Adsorpsi dilakukan dengan mencelupkan Lithium Mangan Oksida Spinel yang telah disintesis kedalam Lumpur Sidoarjo.Pengujian ICP dilakukan untuk mengetahui kandungan lithium yang terdapat pada Lumpur Sidoarjo sebelum dan sesudah adsorpsi untuk mengetahui jumlah lithium yang terserap.Pengujian desorpsi dilakukan dengan mencelupkan LiMn2O4 kedalam larutan HCL. Pada uji XRD menunjukkan bahwa LiMn2O4 berstruktur kristal cubic. Dari hasil uji SEM terlihat bahwa tidak banyak perbedaan morfologi pada ketiga variasi.Partikel cenderung membentuk aglomerasi. Pada hasil uji ICP menunjukkan bahwa LiMn2O4 dengan temperatur hidrotermal 160oC memiliki efisiensi adsorpsi paling tinggi dengan 6,775 ppm. Sementara untuk desorpsi yang paling tinggi adalah 200oC sebesar 0.081 ppm

  19. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance

    International Nuclear Information System (INIS)

    Ogawa, Makoto; Morita, Masashi; Igarashi, Shota; Sato, Soh

    2013-01-01

    A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassium lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst

  20. Evaluation of cermet materials suitable for lithium lubricated thrust bearings for high temperature operation

    Science.gov (United States)

    Sinclair, J. H.; Hendrixson, W. H.

    1974-01-01

    Cerment materials (HfC - 10 wt% W; HfC - 10 wt% TaC - 10 wt%W; HfC - 2 wt% CbC - 8 wt% Mo;Hfn - 10 wt% W; Hfn - 10 wt% TaN - 10 wt% W; and ZrC - 17 wt% W) were evaluated for possible use as lithium-lubricated bearings in the control system of a nuclear reactor. Tests of compatibility with lithium were made in T-111 (Ta-8W-2Hf) capsules at temperatures up to 1090 C. The tendencies of HfC-TaC-W, HfC-CbC-Mo, and HfN-W to bond to themselves and to the refractory alloys T-111 and TZM when enclosed in lithium-filled capsules under a pressure of 2000 psi at 980 and 1200 C for 1933 hours were evaluated. Thermal expansion characteristics were determined for the same three materials from room temperature to 1200 C. On the basis of these tests, HfC-10 TaC-10W and HfN-10W were selected as the best and second best candidates, respectively, of the materials tested for the bearing application.

  1. Pengaruh Temperatur Hydrothermal Terhadap Performa Elektrokimia Lifepo4 Sebagai Katoda Baterai Ion Lithium Type Aqueous Elektrolit

    Directory of Open Access Journals (Sweden)

    Hendro Waluyo

    2014-09-01

    Full Text Available Katoda yang biasa digunakan produsen baterai lithium saat ini adalah LiCoO2. Dimana LiCoO2 memilki beberapa kekurangan beracun, tidak stabil, dan harganya mahal. Bahan katoda yang sangat menjanjikan adalah lithium iron phosphate (LiFePO4 untuk bisa menggantikan LiCoO2 .Dalam proses sintesis katoda LiFePO4 pada penelitian ini menggunakan metode hydrothermal dengan variasi temperatur 1500C,1750C dan 2000C selama 12 jam untuk waktu holdingnya. Dari hasil pengujian XRD menunjukkan terbentuknya fase LiFePO4 pada semua sampel, namun masih ditemukan zat pengotor. Untuk hasil uji SEM, serbuk LiFePO4 memiliki bentuk bulat tidak beraturan dan terjadi aglomerasi. Serbuk LiFePO4 dengan variasi temperatur 2000C memiliki performance yang paling baik dengan nilai kapasitas sebesar 109.32 mA/g hal ini karena dari hasil CV menunjukkan kinetik tranfer ion Lithium yang baik akibat distribusi ukuran partikel yang merata dan juga tingkat kristanilitas yang tinggi.

  2. Investigating Ultra-low Velocity Zones beneath the Southwestern Pacific

    Science.gov (United States)

    Carson, S. E.; Hansen, S. E.; Garnero, E.

    2017-12-01

    The core mantle boundary (CMB), where the solid silicate mantle meets the liquid iron-nickel outer core, represents the largest density contrast on our planet, and it has long been recognized that the CMB is associated with significant structural heterogeneities. One CMB structure of particular interest are ultra low-velocity zones (ULVZs), laterally-varying, 5-50 km thick isolated patches seen in some locations just above the CMB that are associated with increased density and reduced seismic wave velocities. These variable characteristics have led to many questions regarding ULVZ origins, but less than 40% of the CMB has been surveyed for the presence of ULVZs given limited seismic coverage of the lowermost mantle. Therefore, investigations that sample the CMB with new geometries are critical to further our understanding of ULVZs and their potential connection to other deep Earth processes. The Transantarctic Mountains Northern Network (TAMNNET), a 15-station seismic array that was recently deployed in Antarctica, provides a unique dataset to further study ULVZ structure with new and unique path geometry. Core-reflected ScP and PcP phases from the TAMNNET dataset particularly well sample the CMB in the vicinity of New Zealand in the southwestern Pacific, providing coverage between an area to the north where ULVZ structure has been previously identified and another region to the south, which shows no ULVZ evidence. By identifying and modeling pre- and post-cursor ScP and PcP energy, we are exploring a new portion of the CMB with a goal of better understanding potential ULVZ origins. Our study area also crosses the southern boundary of the Pacific Large Low Shear Velocity Province (LLSVP); therefore, our investigations may allow us to examine the possible relationship between LLSVPs and ULVZs.

  3. Ultra Low Sulfur Home Heating Oil Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Batey, John E. [Energy Research Center, Inc., Easton, CT (United States); McDonald, Roger [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-30

    This Ultra Low Sulfur (ULS) Home Heating Oil Demonstration Project was funded by the New York State Energy Research and Development Authority (NYSERDA) and has successfully quantified the environmental and economic benefits of switching to ULS (15 PPM sulfur) heating oil. It advances a prior field study of Low Sulfur (500 ppm sulfur) heating oil funded by NYSERDA and laboratory research conducted by Brookhaven National Laboratory (BNL) and Canadian researchers. The sulfur oxide and particulate matter (PM) emissions are greatly reduced as are boiler cleaning costs through extending cleaning intervals. Both the sulfur oxide and PM emission rates are directly related to the fuel oil sulfur content. The sulfur oxide and PM emission rates approach near-zero levels by switching heating equipment to ULS fuel oil, and these emissions become comparable to heating equipment fired by natural gas. This demonstration project included an in-depth review and analysis of service records for both the ULS and control groups to determine any difference in the service needs for the two groups. The detailed service records for both groups were collected and analyzed and the results were entered into two spreadsheets that enabled a quantitative side-by-side comparison of equipment service for the entire duration of the ULS test project. The service frequency for the ULS and control group were very similar and did indicate increased service frequency for the ULS group. In fact, the service frequency with the ULS group was slightly less (7.5 percent) than the control group. The only exception was that three burner fuel pump required replacement for the ULS group and none were required for the control group.

  4. An Electronic System for Ultra-low Power Hearing Implants

    Science.gov (United States)

    2013-02-15

    Battery Charger Circuit ," IEEE Transactions on Biomedical Circuits and Systems, Vol. 5, No.2, pp. 131-137,2011. [6] K. H. Wee, L. Turicchia, and R...analyzers [1], [2], useful in several hearing systems. 4) We have designed and built a lithium-ion battery -recharging circuit that exploits a novel analog...lab and the use of intelligent low-power filters and circuits have been successful in reducing noise exposure while improving speech intelligibility

  5. Low-temperature structural phase transition in deuterated and protonated lithium acetate dihydrate

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, F., E-mail: schroeder@kristall.uni-frankfurt.d [Goethe-Universitaet Frankfurt am Main, Institut fuer Geowissenschaften, Abt. Kristallographie, Altenhoeferallee 1, 60438 Frankfurt am Main (Germany); Winkler, B.; Haussuehl, E. [Goethe-Universitaet Frankfurt am Main, Institut fuer Geowissenschaften, Abt. Kristallographie, Altenhoeferallee 1, 60438 Frankfurt am Main (Germany); Cong, P.T.; Wolf, B. [Goethe-Universitaet Frankfurt am Main, Physikalisches Institut, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Avalos-Borja, M. [Instituto Potosino de Investigacion Cientifica y Tecnologica, A.C. Camino a la Presa San Jose 2055, Col. Lomas 4 seccion CP 78216, San Luis Potosi (Mexico); Quilichini, M.; Hennion, B. [Laboratoire Leon Brillouin, CEN Saclay, 91191 Gif-sur-Yvette (France)

    2010-08-15

    Heat capacity measurements of protonated lithium acetate dihydrate show a structural phase transition at T = 12 K. This finding is in contrast to earlier work, where it was thought that only the deuterated compound undergoes a low temperature structural phase transition. This finding is confirmed by low temperature ultrasound spectroscopy, where the structural phase transition is associated with a velocity decrease of the ultrasonic waves, i.e. with an elastic softening. We compare the thermodynamic properties of the protonated and deuterated compounds and discuss two alternatives for the mechanism of the phase transition based on the thermal expansion measurements.

  6. Organic solvents, electrolytes, and lithium ion cells with good low temperature performance

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor)

    2002-01-01

    Multi-component organic solvent systems, electrolytes and electrochemical cells characterized by good low temperature performance are provided. In one embodiment, an improved organic solvent system contains a ternary mixture of ethylene carbonate, dimethyl carbonate and diethyl carbonate. In other embodiments, quaternary systems include a fourth component, i.e, an aliphatic ester, an asymmetric alkyl carbonate or a compound of the formula LiOX, where X is R, COOR, or COR, where R is alkyl or fluoroalkyl. Electrolytes based on such organic solvent systems are also provided and contain therein a lithium salt of high ionic mobility, such as LiPF.sub.6. Reversible electrochemical cells, particularly lithium ion cells, are constructed with the improved electrolytes, and preferably include a carbonaceous anode, an insertion type cathode, and an electrolyte interspersed therebetween.

  7. Concept of polymer alloy electrolytes: towards room temperature operation of lithium-polymer batteries

    International Nuclear Information System (INIS)

    Noda, Kazuhiro; Yasuda, Toshikazu; Nishi, Yoshio

    2004-01-01

    Polymer alloy technique is very powerful tool to tune the ionic conductivity and mechanical strength of polymer electrolyte. A semi-interpenetrating polymer network (semi-IPN) polymer alloy electrolyte, composed of non-cross-linkable siloxane-based polymer and cross-linked 3D network polymer, was prepared. Such polymer alloy electrolyte has quite high ionic conductivity (more than 10 -4 Scm -1 at 25 o C and 10 -5 Scm -1 at -10 o C) and mechanical strength as a separator film with a wide electrochemical stability window. A lithium metal/semi-IPN polymer alloy solid state electrolyte/LiCoO 2 cell demonstrated promising cycle performance with room temperature operation of the energy density of 300Wh/L and better rate performance than conventional PEO based lithium polymer battery ever reported

  8. System and method for magnetic current density imaging at ultra low magnetic fields

    Science.gov (United States)

    Espy, Michelle A.; George, John Stevens; Kraus, Robert Henry; Magnelind, Per; Matlashov, Andrei Nikolaevich; Tucker, Don; Turovets, Sergei; Volegov, Petr Lvovich

    2016-02-09

    Preferred systems can include an electrical impedance tomography apparatus electrically connectable to an object; an ultra low field magnetic resonance imaging apparatus including a plurality of field directions and disposable about the object; a controller connected to the ultra low field magnetic resonance imaging apparatus and configured to implement a sequencing of one or more ultra low magnetic fields substantially along one or more of the plurality of field directions; and a display connected to the controller, and wherein the controller is further configured to reconstruct a displayable image of an electrical current density in the object. Preferred methods, apparatuses, and computer program products are also disclosed.

  9. DEVELOPMENT AND DEMONSTRATION OF AN ULTRA LOW NOx COMBUSTOR FOR GAS TURBINES

    Energy Technology Data Exchange (ETDEWEB)

    NEIL K. MCDOUGALD

    2005-04-30

    Alzeta Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOX emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. This technology is being commercialized under the product name nanoSTAR. Initial tests demonstrated low NOX emissions but, were limited by flashback failure of the injectors. The weld seams required to form cylindrical injectors from flat sheet material were identified as the cause of the failures. The approach for this project was to first develop new fabrication methods to produce injectors without weld seams, verify similar emissions performance to the original flat sheet material and then develop products for microturbines and small gas turbines along parallel development paths. A 37 month project was completed to develop and test a surface stabilized combustion system for gas turbine applications. New fabrication techniques developed removed a technological barrier to the success of the product by elimination of conductive weld seams from the injector surface. The injectors demonstrated ultra low emissions in rig tests conducted under gas turbine operating conditions. The ability for injectors to share a common combustion chamber allowing for deployment in annular combustion liner was also demonstrated. Some further development is required to resolve integration issues related to specific engine constraints, but the nanoSTAR technology has clearly demonstrated its low emissions potential. The overall project conclusions can be summarized: (1) A wet-laid casting method successfully eliminated weld seams from the injector surface without degrading performance. (2) Gas turbine cycle analysis identified several injector designs and control schemes to start and load engines using

  10. Temperature-dependent electrochemical heat generation in a commercial lithium-ion battery

    Science.gov (United States)

    Bandhauer, Todd M.; Garimella, Srinivas; Fuller, Thomas F.

    2014-02-01

    Lithium-ion batteries suffer from inherent thermal limitations (i.e., capacity fade and thermal runaway); thus, it is critical to understand heat generation experienced in the batteries under normal operation. In the current study, reversible and irreversible electrochemical heat generation rates were measured experimentally on a small commercially available C/LiFePO4 lithium-ion battery designed for high-rate applications. The battery was tested over a wide range of temperatures (10-60 °C) and discharge and charge rates (∼C/4-5C) to elucidate their effects. Two samples were tested in a specially designed wind tunnel to maintain constant battery surface temperature within a maximum variation of ±0.88 °C. A data normalization technique was employed to account for the observed capacity fade, which was largest at the highest rates. The heat rate was shown to increase with both increasing rate and decreasing temperature, and the reversible heat rate was shown to be significant even at the highest rate and temperature (7.4% at 5C and 55 °C). Results from cycling the battery using a dynamic power profile also showed that constant-current data predict the dynamic performance data well. In addition, the reversible heat rate in the dynamic simulation was shown to be significant, especially for charge-depleting HEV applications.

  11. Temperature dependent dielectric properties and ion transportation in solid polymer electrolyte for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sengwa, R. J., E-mail: rjsengwa@rediffmail.com; Dhatarwal, Priyanka, E-mail: dhatarwalpriyanka@gmail.com; Choudhary, Shobhna, E-mail: shobhnachoudhary@rediffmail.com [Dielectric Research Laboratory, Department of Physics, Jai Narain Vyas University, Jodhpur – 342 005 (India)

    2016-05-06

    Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF{sub 4}) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governed by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10{sup −6} S cm{sup −1} which suggests the suitability of the SPE film for rechargeable lithium batteries.

  12. Lithium doping on covalent organic framework-320 for enhancing hydrogen storage at ambient temperature

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Liangzhi, E-mail: 15004110853@163.com; Liu, Qing

    2016-12-15

    Density Functional Theory (DFT) combines with grand canonical Monte Carlo (GCMC) simulations are performed to explore the effect of Li doping on the hydrogen storage capability of COF-320. The results show that the interaction energy between the H{sub 2} and the Li-doped COF-320 is about three times higher than that of pristine COF-320. GCMC simulations are employed to study the hydrogen uptake of Li-doped COF-320 at ambient temperature, further confirm that the lithium doping can improve the hydrogen uptake at ambient temperature. Our results demonstrate that Li-doped COFs have good potential in the field of hydrogen storage. - Graphical abstract: Fig. 1. The optimized cluster model used here to represent the COF-320 and possible adsorption sites (A, B, C) for adsorption of metals in the COF-320. The dangling bonds are terminated by H atoms. C, H, and N atoms are shown as gray, white, and blue colors, respectively. Fig. 2. The adsorption isotherm of H{sub 2} in the pristine and Li-doped COF-320 at 298 K. - Highlights: • The binding sites of single and two lithium atoms in COF-320 were studied. • The interaction energy between the H{sub 2} and the Li-doped COF-320 is about three times higher than that of pristine COF-320. • H{sub 2} uptakes on the Li-doped COFs obtain significant improvement at ambient temperature. • Lithium-doping is a successful strategy for improving hydrogen uptake.

  13. Ultra-low background retrieval of photons stored in warm Rb vapor

    Science.gov (United States)

    Figueroa, Eden; Neuzner, Andreas; Latka, Tobias; Schupp, Josef; Noelleke, Christian; Reiserer, Andreas; Ritter, Stephan; Rempe, Gerhard

    2013-05-01

    The development of a simple and inexpensive platform for interconnecting light and matter at the quantum level has recently emerged as one of the key challenges of the rapidly evolving field of quantum engineering. Although elementary quantum memory capabilities have been already shown using ensembles of cold atoms or single-atoms in optical cavities, a scalable-friendly architecture might still require room temperature operation. Here we use an ensemble of Rb atoms in the gaseous state and store light pulses at the single-photon level to demonstrate that even in a common vapor cell it is possible to achieve quantum-level operation with ultra-low background noise. We have obtained a measured signal- to-background noise ratio of 3.5, which is the first time this figure of merit has been lifted beyond unity for experiments with room temperature operation. In addition, we also show the capabilities of the system to arbitrarily tailor the temporal properties of the retrieved single-photon-level pulses.

  14. A 32 kb 9T near-threshold SRAM with enhanced read ability at ultra-low voltage operation

    Science.gov (United States)

    Kim, Tony Tae-Hyoung; Lee, Zhao Chuan; Do, Anh Tuan

    2018-01-01

    Ultra-low voltage SRAMs are highly sought-after in energy-limited systems such as battery-powered and self-harvested SoCs. However, ultra-low voltage operation diminishes SRAM read bitline (RBL) sensing margin significantly. This paper tackles this issue by presenting a novel 9T cell with data-independent RBL leakage in combination with an RBL boosting technique for enhancing the sensing margin. The proposed technique automatically tracks process, temperature and voltage (PVT) variations for robust sensing margin enhancement. A test chip fabricated in 65 nm CMOS technology shows that the proposed scheme significantly enlarges the sensing margin compared to the conventional bitline sensing scheme. It also achieves the minimum operating voltage of 0.18 V and the minimum energy consumption of 0.92 J/access at 0.4 V. He received 2016 International Low Power Design Contest Award from ISLPED, a best paper award at 2014 and 2011 ISOCC, 2008 AMD/CICC Student Scholarship Award, 2008 Departmental Research Fellowship from Univ. of Minnesota, 2008 DAC/ISSCC Student Design Contest Award, 2008, 2001, and 1999 Samsung Humantec Thesis Award and, 2005 ETRI Journal Paper of the Year Award. He is an author/co-author of +100 journal and conference papers and has 17 US and Korean patents registered. His current research interests include low power and high performance digital, mixed- mode, and memory circuit design, ultra-low voltage circuits and systems design, variation and aging tolerant circuits and systems, and circuit techniques for 3D ICs. He serves as an associate editor of IEEE Transactions on VLSI Systems. He is an IEEE senior member and the Chair of IEEE Solid-State Circuits Society Singapore Chapter. He has served numerous conferences as a committee member.

  15. Impedance Characterization and Modeling of Lithium-Ion Batteries Considering the Internal Temperature Gradient

    Directory of Open Access Journals (Sweden)

    Haifeng Dai

    2018-01-01

    Full Text Available Battery impedance is essential to the management of lithium-ion batteries for electric vehicles (EVs, and impedance characterization can help to monitor and predict the battery states. Many studies have been undertaken to investigate impedance characterization and the factors that influence impedance. However, few studies regarding the influence of the internal temperature gradient, which is caused by heat generation during operation, have been presented. We have comprehensively studied the influence of the internal temperature gradient on impedance characterization and the modeling of battery impedance, and have proposed a discretization model to capture battery impedance characterization considering the temperature gradient. Several experiments, including experiments with artificial temperature gradients, are designed and implemented to study the influence of the internal temperature gradient on battery impedance. Based on the experimental results, the parameters of the non-linear impedance model are obtained, and the relationship between the parameters and temperature is further established. The experimental results show that the temperature gradient will influence battery impedance and the temperature distribution can be considered to be approximately linear. The verification results indicate that the proposed discretization model has a good performance and can be used to describe the actual characterization of the battery with an internal temperature gradient.

  16. Cyclic performance tests of Sn/MWCNT composite lithium ion battery anodes at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Tocoglu, U., E-mail: utocoglu@sakarya.edu.tr; Cevher, O.; Akbulut, H. [Sakarya University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Esentepe Campus 54187 (Turkey)

    2016-04-21

    In this study tin-multi walled carbon nanotube (Sn-MWCNT) lithium ion battery anodes were produced and their electrochemical galvanostatic charge/discharge tests were conducted at various (25 °C, 35 °C, 50 °C) temperatures to determine the cyclic behaviors of anode at different temperatures. Anodes were produced via vacuum filtration and DC magnetron sputtering technique. Tin was sputtered onto buckypapers to form composite structure of anodes. SEM analysis was conducted to determine morphology of buckypapers and Sn-MWCNT composite anodes. Structural and phase analyses were conducted via X-ray diffraction and Raman Spectroscopy technique. CR2016 coin cells were assembled for electrochemical tests. Cyclic voltammetry test were carried out to determine the reversibility of reactions between anodes and reference electrode between 0.01-2.0 V potential window. Galvanostatic charge/discharge tests were performed to determine cycle performance of anodes at different temperatures.

  17. Silicon anode materials with ultra-low resistivity from the inside out for lithium ion batteries

    Science.gov (United States)

    Xu, Guojun; Jin, Chenxin; Liu, Liekai; Lan, Yu; Yue, Zhihao; Li, Xiaomin; Sun, Fugen; Huang, Haibin; Zhou, Lang

    2017-12-01

    Broken silicon (Si) wafers with electrical resistivity of 1 and 0.001 Ω cm were respectively ball-milled to Si particles with median diameters of less than 1 μm. Both these two types of Si particles were deposited with silver (Ag) nanoparticles by self-selective electroless deposition method. 1-Ω cm-Si particles, 0.001-Ω cm-Si particles, Ag-deposited 1-Ω cm-Si particles and Ag-deposited 0.001-Ω cm-Si particles were, respectively, mixed with graphite particles in weight ratio of 1:9 to form four types of Si-C anode materials and then they were assembled into coin cells. The experimental results indicate that the Ag-deposited 0.001-Ω cm-Si sample shows the higher capacity, better rate and cycle performance than other three samples, due to the high conductivity of Ag-deposited 0.001-Ω cm-Si sample from the inside out. At the current density of 750 mA g-1, the discharge capacity gap of Ag-deposited 0.001-Ω cm-Si sample and 0.001-Ω cm-Si sample is as high as 141.7 mA h g-1, which is almost equal to the discharge capacity of the latter. Besides, the discharge capacity retention ratio of Ag-deposited 0.001-Ω cm-Si sample after 50 cycles is 70%, which is 23.5% higher than that of 0.001-Ω cm-Si sample.

  18. Lithium-ion battery structure that self-heats at low temperatures

    Science.gov (United States)

    Wang, Chao-Yang; Zhang, Guangsheng; Ge, Shanhai; Xu, Terrence; Ji, Yan; Yang, Xiao-Guang; Leng, Yongjun

    2016-01-01

    Lithium-ion batteries suffer severe power loss at temperatures below zero degrees Celsius, limiting their use in applications such as electric cars in cold climates and high-altitude drones. The practical consequences of such power loss are the need for larger, more expensive battery packs to perform engine cold cranking, slow charging in cold weather, restricted regenerative braking, and reduction of vehicle cruise range by as much as 40 per cent. Previous attempts to improve the low-temperature performance of lithium-ion batteries have focused on developing additives to improve the low-temperature behaviour of electrolytes, and on externally heating and insulating the cells. Here we report a lithium-ion battery structure, the ‘all-climate battery’ cell, that heats itself up from below zero degrees Celsius without requiring external heating devices or electrolyte additives. The self-heating mechanism creates an electrochemical interface that is favourable for high discharge/charge power. We show that the internal warm-up of such a cell to zero degrees Celsius occurs within 20 seconds at minus 20 degrees Celsius and within 30 seconds at minus 30 degrees Celsius, consuming only 3.8 per cent and 5.5 per cent of cell capacity, respectively. The self-heated all-climate battery cell yields a discharge/regeneration power of 1,061/1,425 watts per kilogram at a 50 per cent state of charge and at minus 30 degrees Celsius, delivering 6.4-12.3 times the power of state-of-the-art lithium-ion cells. We expect the all-climate battery to enable engine stop-start technology capable of saving 5-10 per cent of the fuel for 80 million new vehicles manufactured every year. Given that only a small fraction of the battery energy is used for self-heating, we envisage that the all-climate battery cell may also prove useful for plug-in electric vehicles, robotics and space exploration applications.

  19. Lithium-ion battery structure that self-heats at low temperatures.

    Science.gov (United States)

    Wang, Chao-Yang; Zhang, Guangsheng; Ge, Shanhai; Xu, Terrence; Ji, Yan; Yang, Xiao-Guang; Leng, Yongjun

    2016-01-28

    Lithium-ion batteries suffer severe power loss at temperatures below zero degrees Celsius, limiting their use in applications such as electric cars in cold climates and high-altitude drones. The practical consequences of such power loss are the need for larger, more expensive battery packs to perform engine cold cranking, slow charging in cold weather, restricted regenerative braking, and reduction of vehicle cruise range by as much as 40 per cent. Previous attempts to improve the low-temperature performance of lithium-ion batteries have focused on developing additives to improve the low-temperature behaviour of electrolytes, and on externally heating and insulating the cells. Here we report a lithium-ion battery structure, the 'all-climate battery' cell, that heats itself up from below zero degrees Celsius without requiring external heating devices or electrolyte additives. The self-heating mechanism creates an electrochemical interface that is favourable for high discharge/charge power. We show that the internal warm-up of such a cell to zero degrees Celsius occurs within 20 seconds at minus 20 degrees Celsius and within 30 seconds at minus 30 degrees Celsius, consuming only 3.8 per cent and 5.5 per cent of cell capacity, respectively. The self-heated all-climate battery cell yields a discharge/regeneration power of 1,061/1,425 watts per kilogram at a 50 per cent state of charge and at minus 30 degrees Celsius, delivering 6.4-12.3 times the power of state-of-the-art lithium-ion cells. We expect the all-climate battery to enable engine stop-start technology capable of saving 5-10 per cent of the fuel for 80 million new vehicles manufactured every year. Given that only a small fraction of the battery energy is used for self-heating, we envisage that the all-climate battery cell may also prove useful for plug-in electric vehicles, robotics and space exploration applications.

  20. Reversed-field-pinch and ultra-low-q discharges in REPUTE-2

    International Nuclear Information System (INIS)

    Inoue, N.; Yoshida, Z.; Kamada, Y.; Saito, M.; Miyamoto, K.

    1987-01-01

    Ultra-low q (ULQ) and very-low q (VLQ) discharge experiments have been done using the REPUTE-1 RFP. It was found that in these q regime, the plasma density and beta are fairly high, and the confinement property is less sensitive to the error field compared to the RFP. However, since the temperature of the REPUTE-1 discharge is limited in low value because of the small plasma current due to the small toroidal field, its magnetic Reynolds number is too small to simulate the reactor plasma behavior. The radiation barrier has not been overcome yet, and consequently the energy confinement time is very short. In order to improve these aspects of the REPUTE-1 experiment, the REPUTE-2 is designed to produce higher toroidal field of 2T. The toroidal field increases slowly to the final value as in the case of the ramp-up mode of the RFP operation. The first stage of the REPUTE-2 project will be devoted to study the confinement physics of RFP, ULQ, and VLQ. In the second stage, innovation of these configurations, such as resistive shell RFP, neutral beam current drive, and higher current density, is planned. 8 refs., 1 fig., 2 tabs

  1. Frustrated incomplete donor ionization in ultra-low resistivity germanium films

    International Nuclear Information System (INIS)

    Xu, Chi; Menéndez, J.; Senaratne, C. L.; Kouvetakis, J.

    2014-01-01

    The relationship between carrier concentration and donor atomic concentration has been determined in n-type Ge films doped with P. The samples were carefully engineered to minimize non-active dopant incorporation by using specially designed P(SiH 3 ) 3 and P(GeH 3 ) 3 hydride precursors. The in situ nature of the doping and the growth at low temperatures, facilitated by the Ge 3 H 8 and Ge 4 H 10 Ge sources, promote the creation of ultra-low resistivity films with flat doping profiles that help reduce the errors in the concentration measurements. The results show that Ge deviates strongly from the incomplete ionization expected when the donor atomic concentration exceeds N d  = 10 17  cm −3 , at which the energy separation between the donor and Fermi levels ceases to be much larger than the thermal energy. Instead, essentially full ionization is seen even at the highest doping levels beyond the solubility limit of P in Ge. The results can be explained using a model developed for silicon by Altermatt and coworkers, provided the relevant model parameter is properly scaled. The findings confirm that donor solubility and/or defect formation, not incomplete ionization, are the major factors limiting the achievement of very high carrier concentrations in n-type Ge. The commercially viable chemistry approach applied here enables fabrication of supersaturated and fully ionized prototypes with potential for broad applications in group-IV semiconductor technologies

  2. Li + -Desolvation Dictating Lithium-Ion Battery’s Low-Temperature Performances

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qiuyan [Energy and Environmental; Lu, Dongping [Energy and Environmental; Zheng, Jianming [Energy and Environmental; Jiao, Shuhong [Energy and Environmental; Luo, Langli [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States; Wang, Chong-Min [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States; Xu, Kang [Electrochemistry Branch, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, United States; Zhang, Ji-Guang [Energy and Environmental; Xu, Wu [Energy and Environmental

    2017-11-28

    Lithium (Li) ion battery (LIB) has penetrated almost every aspects of human life, from portable electronics, vehicles to grids, and its operation stability in extreme environments becomes increasingly important. Among these, sub-zero temperature presents a kinetic challenge to the electrochemical reactions required to deliver the stored energy. In this work, we attempted to identify the rate-determining process for Li+ migration under such low temperatures, so that an optimum electrolyte formulation could be designed to maximize the energy output. Substantial increase in available capacities from graphite||LiNi0.80Co0.15Al0.05O2 chemistry down to -40°C is achieved by reducing the solvent molecule that more tightly binds to Li+ and thus constitutes high desolvation energy barrier. The fundamental understanding is applicable universally to all electrochemical devices that have to operate in similar environments.

  3. Multi-temperature state-dependent equivalent circuit discharge model for lithium-sulfur batteries

    DEFF Research Database (Denmark)

    Propp, Karsten; Marinescu, Monica; Auger, Daniel J.

    2016-01-01

    Lithium-sulfur (Li-S) batteries are described extensively in the literature, but existing computational models aimed at scientific understanding are too complex for use in applications such as battery management. Computationally simple models are vital for exploitation. This paper proposes a non......-linear state-of-charge dependent Li-S equivalent circuit network (ECN) model for a Li-S cell under discharge. Li-S batteries are fundamentally different to Li-ion batteries, and require chemistry-specific models. A new Li-S model is obtained using a ‘behavioural’ interpretation of the ECN model; as Li...... pulse profile at four temperatures from 10 °C to 50 °C, giving linearized ECN parameters for a range of states-of-charge, currents and temperatures. These are used to create a nonlinear polynomial-based battery model suitable for use in a battery management system. When the model is used to predict...

  4. Mechanical properties of aluminium–copper–lithium alloy AA2195 at cryogenic temperatures

    International Nuclear Information System (INIS)

    Nayan, Niraj; Narayana Murty, S.V.S.; Jha, Abhay K.; Pant, Bhanu; Sharma, S.C.; George, Koshy M.; Sastry, G.V.S.

    2014-01-01

    Highlights: • 4 mm thick sheet of AA2195 was imparted T87 temper. • 7% cold work to impart T87 was given by combination of cold rolling and stretching. • Mechanical properties were evaluated at RT and cryogenic temperatures. • Strength of AA2195 are superior to the conventional aluminum alloy 2219 at all temperatures. • Strength decreases with decrease in temperature whereas ductility remains unchanged. - Abstract: Tensile testing was performed on a 4 mm thick sheet of the aluminum–lithium alloy AA2195 in T87 (solution treatment + water quenching + 7% cold work + peak aging) temper which was subjected to 7% cold working by combination of cold rolling and stretching, over a temperature range from ambient to liquid hydrogen (20 K) conditions. Properties were evaluated in longitudinal as well as transverse directions to characterize anisotropy with respect to strength and ductility. Strength and ductility were compared to the conventional aluminum alloy AA2219-T87, developed for similar cryogenic applications. Decreases in test temperature led to higher strengths with little or no change in ductility. As the temperature decreases, the differences between ultimate tensile strength as well as yield strength for two different combinations of cold roll and stretch studied in the present work, narrows down and become equal at 20 K

  5. Suppressed gross erosion of high-temperature lithium via rapid deuterium implantation

    Science.gov (United States)

    Abrams, T.; Jaworski, M. A.; Chen, M.; Carter, E. A.; Kaita, R.; Stotler, D. P.; De Temmerman, G.; Morgan, T. W.; van den Berg, M. A.; van der Meiden, H. J.

    2016-01-01

    Lithium-coated high-Z substrates are planned for use in the NSTX-U divertor and are a candidate plasma facing component (PFC) for reactors, but it remains necessary to characterize the gross Li erosion rate under high plasma fluxes (>1023 m-2 s-1), typical for the divertor region. In this work, a realistic model for the compositional evolution of a Li/D layer is developed that incorporates first principles molecular dynamics (MD) simulations of D diffusion in liquid Li. Predictions of Li erosion from a mixed Li/D material are also developed that include formation of lithium deuteride (LiD). The erosion rate of Li from LiD is predicted to be significantly lower than from pure Li. This prediction is tested in the Magnum-PSI linear plasma device at ion fluxes of 1023-1024 m-2 s-1 and Li surface temperatures  ⩽800 °C. Li/LiD coatings ranging in thickness from 0.2 to 500 μm are studied. The dynamic D/Li concentrations are inferred via diffusion simulations. The pure Li erosion rate remains greater than Langmuir Law evaporation, as expected. For mixed-material Li/LiD surfaces, the erosion rates are reduced, in good agreement with modelling in almost all cases. These results imply that the temperature limit for a Li-coated PFC may be significantly higher than previously imagined.

  6. A Flexible Three-in-One Microsensor for Real-Time Monitoring of Internal Temperature, Voltage and Current of Lithium Batteries.

    Science.gov (United States)

    Lee, Chi-Yuan; Peng, Huan-Chih; Lee, Shuo-Jen; Hung, I-Ming; Hsieh, Chien-Te; Chiou, Chuan-Sheng; Chang, Yu-Ming; Huang, Yen-Pu

    2015-05-19

    Lithium batteries are widely used in notebook computers, mobile phones, 3C electronic products, and electric vehicles. However, under a high charge/discharge rate, the internal temperature of lithium battery may rise sharply, thus causing safety problems. On the other hand, when the lithium battery is overcharged, the voltage and current may be affected, resulting in battery instability. This study applies the micro-electro-mechanical systems (MEMS) technology on a flexible substrate, and develops a flexible three-in-one microsensor that can withstand the internal harsh environment of a lithium battery and instantly measure the internal temperature, voltage and current of the battery. Then, the internal information can be fed back to the outside in advance for the purpose of safety management without damaging the lithium battery structure. The proposed flexible three-in-one microsensor should prove helpful for the improvement of lithium battery design or material development in the future.

  7. A Flexible Three-in-One Microsensor for Real-Time Monitoring of Internal Temperature, Voltage and Current of Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Chi-Yuan Lee

    2015-05-01

    Full Text Available Lithium batteries are widely used in notebook computers, mobile phones, 3C electronic products, and electric vehicles. However, under a high charge/discharge rate, the internal temperature of lithium battery may rise sharply, thus causing safety problems. On the other hand, when the lithium battery is overcharged, the voltage and current may be affected, resulting in battery instability. This study applies the micro-electro-mechanical systems (MEMS technology on a flexible substrate, and develops a flexible three-in-one microsensor that can withstand the internal harsh environment of a lithium battery and instantly measure the internal temperature, voltage and current of the battery. Then, the internal information can be fed back to the outside in advance for the purpose of safety management without damaging the lithium battery structure. The proposed flexible three-in-one microsensor should prove helpful for the improvement of lithium battery design or material development in the future.

  8. Electrospun polymer membrane activated with room temperature ionic liquid: Novel polymer electrolytes for lithium batteries

    Science.gov (United States)

    Cheruvally, Gouri; Kim, Jae-Kwang; Choi, Jae-Won; Ahn, Jou-Hyeon; Shin, Yong-Jo; Manuel, James; Raghavan, Prasanth; Kim, Ki-Won; Ahn, Hyo-Jun; Choi, Doo Seong; Song, Choong Eui

    A new class of polymer electrolytes (PEs) based on an electrospun polymer membrane incorporating a room-temperature ionic liquid (RTIL) has been prepared and evaluated for suitability in lithium cells. The electrospun poly(vinylidene fluoride- co-hexafluoropropylene) P(VdF-HFP) membrane is activated with a 0.5 M solution of LiTFSI in 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMITFSI) or a 0.5 M solution of LiBF 4 in 1-butyl-3-methylimidazolium tetrafluoroborate (BMIBF 4). The resulting PEs have an ionic conductivity of 2.3 × 10 -3 S cm -1 at 25 °C and anodic stability at >4.5 V versus Li +/Li, making them suitable for practical applications in lithium cells. A Li/LiFePO 4 cell with a PE based on BMITFSI delivers high discharge capacities when evaluated at 25 °C at the 0.1 C rate (149 mAh g -1) and the 0.5 C rate (132 mAh g -1). A very stable cycle performance is also exhibited at these low current densities. The properties decrease at the higher, 1 C rate, when operated at 25 °C. Nevertheless, improved properties are obtained at a moderately elevated temperature of operation, i.e. 40 °C. This is attributed to enhanced conductivity of the electrolyte and faster reaction kinetics at higher temperatures. At 40 °C, a reversible capacity of 140 mAh g -1 is obtained at the 1 C rate.

  9. Instantaneous measurement of the internal temperature in lithium-ion rechargeable cells

    International Nuclear Information System (INIS)

    Srinivasan, Rengaswamy; Carkhuff, Bliss G.; Butler, Michael H.; Baisden, Andrew C.

    2011-01-01

    We demonstrate, in three different rechargeable lithium-ion cells, the existence of an intrinsic relationship between a cell's internal temperature and a readily measurable electrical parameter, namely the phase shift between an applied sinusoidal current and the resulting voltage. The temperature range examined spanned from -20 to 66 deg. C. The optimum single frequency for the phase measurement is in the 40-100 Hz range, allowing for a measurement time of much less than a second; the phase shift in this range depends predominantly on temperature, and is almost completely independent of the state-of-charge. Literature reports suggest that the observed dependence of the phase shift on temperature arises from the ionic conduction of the so-called solid-electrolyte-interphase layer between the graphite anode and the electrolyte. A meter measuring the phase shift across this interphase is analogous to a thermometer reporting the temperature, thereby providing feedback for rapid corrections of any operating conditions that might lead to the catastrophic destruction of the cell. This level of monitoring and control is distinctly different from the present safety-enabling mechanisms: typically positive thermal coefficient ceramics/plastics, or 'shutdown' separators based on polyethylene that act to often permanently shut down current flow through the cell.

  10. Simulation of temperature distribution in cylindrical and prismatic lithium ion secondary batteries

    International Nuclear Information System (INIS)

    Inui, Y.; Kobayashi, Y.; Watanabe, Y.; Watase, Y.; Kitamura, Y.

    2007-01-01

    The authors develop two-dimensional and three-dimensional simulation codes of the transient response of the temperature distribution in the lithium ion secondary battery during a discharge cycle. At first, a two-dimensional simulation code for a cylindrical battery is developed, and the simulation results for a commercially available small size battery are compared with the corresponding experimental results. The simulation results of the transient temperature and voltage variations coincide very well with the experimental results. The simulation result of the temperature difference between the center of the battery body and the center of the battery side is also in reasonable agreement with the experimental result. Next, the authors develop a three-dimensional simulation code and perform numerical simulations for three large size prismatic batteries with the same capacity and different cross sectional shapes. It is made clear that selecting the battery with the laminated cross section has a remarkable effect on the suppression of the temperature rise in comparison with the battery with square cross section, whereas the effect of the lamination on the suppression of the temperature unevenness is unexpectedly small. These results indicate the accuracy and usefulness of the developed simulation codes

  11. Experiences of ultra-low-crud high-nickel control in Onagawa nuclear power station

    International Nuclear Information System (INIS)

    Saito, M.; Goto, Y.; Shinomiya, T.; Sato, M.; Yamazaki, K.; Hirasawa, H.; Yotsuyanagi, T.

    2002-01-01

    We have adopted various countermeasures for worker dose reduction to plants in Onagawa Nuclear Power Station. ''Ni/Fe ratio control'' has been adopted to Unit 1, and ''ultra-low-crud high-nickel control'' has been adopted to Unit 2 and 3, along with other countermeasures like wide utilization of low Co materials, for the purpose of dose rate reduction of primary recirculation piping which is thought to be one of the main exposure sources. In this paper, we describe, first, the reason and background that ultra-low-crud high-nickel control has been adopted to Unit 2, and, second, water chemistry of Unit 2 up to the 5. cycle under ultra-low-crud high-nickel control compared to that of Unit 1 under Ni/Fe ratio control. Following those, we show brief analysis of the fuel crud of Unit 2 and water chemistry of Unit 3 only at the startup stage. (authors)

  12. Experimental study of ultra-low q discharges in the linear Extrap L1 device

    International Nuclear Information System (INIS)

    Brunsell, P.; Karlsson, Per.

    1991-01-01

    Linear pinch discharges with combined octupole and longitudinal magnetic fields are experimentally studied in the Extrap L1 device. Plasma currents are around I p =10 kA, plasma temperautres are up to T e =50 eV and plasma densities are of the order of n=5x10 21 m -3 . The plasma equilibria are in the ultra-low q (ULQ) regime corresponding to operation with plasma currents in excess of the Kruskal-Shafranov stability limit (q less than 1). The plasma current exhibits the typical time behaviour seen in toroidal ULQ experiments; the unstable setting up phase and the step-wise decay with current levels corresponding to q-values in windows between rational values. Longitudinal plasma current generated by radial plasma diffusion is seen, with amplitudes up to 30% of the externally driven current during the initial phase of the discharge. The effect of the octupole magnetic field on the ULQ confinement is investigated. The plasma temperature increases by more than a factor of two, for the optimum octupole rod current (I v =I p ), compared to the case without octupole field. A plasma current limitation for stable operation corresponding to q bigger than 1/2 is observed, excepts for low axial magnetic field strength. In the low axial field regime, the octupole field alone provides sufficient stabilization for operation with q less than 1/2. Plasma density and temperature both increase linearly with applied axial magnetic field. The density shows a strong, approximately exponential, dependence on discharge voltage. (au)

  13. Ultra-low loss nano-taper coupler for Silicon-on-Insulator ridge waveguide

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan

    2010-01-01

    A nano-taper coupler is optimized specially for the transverse-magnetic mode for interfacing light between a silicon-on-insulator ridge waveguide and a single-mode fiber. An ultra-low coupling loss of ~0.36dB is achieved for the nano-taper coupler.......A nano-taper coupler is optimized specially for the transverse-magnetic mode for interfacing light between a silicon-on-insulator ridge waveguide and a single-mode fiber. An ultra-low coupling loss of ~0.36dB is achieved for the nano-taper coupler....

  14. Ultra-low coupling loss fully-etched apodized grating coupler with bonded metal mirror

    DEFF Research Database (Denmark)

    Ding, Yunhong; Peucheret, Christophe; Ou, Haiyan

    2014-01-01

    A fully etched apodized grating coupler with bonded metal mirror is designed and demonstrated on the silicon-on-insulator platform, showing an ultra-low coupling loss of only 1.25 dB with 3 dB bandwidth of 69 nm.......A fully etched apodized grating coupler with bonded metal mirror is designed and demonstrated on the silicon-on-insulator platform, showing an ultra-low coupling loss of only 1.25 dB with 3 dB bandwidth of 69 nm....

  15. Advanced Technology for Ultra-Low Power System-on-Chip (SoC)

    Science.gov (United States)

    2017-06-01

    was proposed for lower power applications with Ioff=10pA/μm and VDD=0.5V. In this project, the optimized structure shows great potential in both Lg...AFRL-RY-WP-TR-2017-0115 ADVANCED TECHNOLOGY FOR ULTRA-LOW POWER SYSTEM-ON-CHIP (SoC) Jason Woo, Weicong Li, and Peng Lu University of California...September 2015 – 31 March 2017 4. TITLE AND SUBTITLE ADVANCED TECHNOLOGY FOR ULTRA-LOW POWER SYSTEM-ON- CHIP (SoC) 5a. CONTRACT NUMBER FA8650-15-1-7574 5b

  16. Stimulatory and protective effects of alkylating agents applied in ultra-low concentrations.

    Science.gov (United States)

    Pukhalsky, A L; Shmarina, G V

    2001-01-01

    Alkylating drugs belonging to the nitrogen mustard family are known as cytostatic and immunosuppressive agents. Ultra-low doses of these drugs may demonstrate pharmacological effects unlike this category of drugs. In the case of a gradual dose decrease, the number of targets for alkylation is also reduced and the drug switches from cytostatic to cell growth modifier. We postulate that application of ultra-low doses of alkylating drugs may result in a beneficial effect in the therapy of diseases associated with chronic inflammation of the mucosa, especially with the signs of epithelial atrophy. Copyright 2001 S. Karger AG, Basel

  17. Fabrication of cermet bearings for the control system of a high temperature lithium cooled nuclear reactor

    Science.gov (United States)

    Yacobucci, H. G.; Heestand, R. L.; Kizer, D. E.

    1973-01-01

    The techniques used to fabricate cermet bearings for the fueled control drums of a liquid metal cooled reference-design reactor concept are presented. The bearings were designed for operation in lithium for as long as 5 years at temperatures to 1205 C. Two sets of bearings were fabricated from a hafnium carbide - 8-wt. % molybdenum - 2-wt. % niobium carbide cermet, and two sets were fabricated from a hafnium nitride - 10-wt. % tungsten cermet. Procedures were developed for synthesizing the material in high purity inert-atmosphere glove boxes to minimize oxygen content in order to enhance corrosion resistance. Techniques were developed for pressing cylindrical billets to conserve materials and to reduce machining requirements. Finishing was accomplished by a combination of diamond grinding, electrodischarge machining, and diamond lapping. Samples were characterized in respect to composition, impurity level, lattice parameter, microstructure and density.

  18. Lithium line radiation in turbulent edge plasmas: Effects of low and high frequency temperature fluctuations

    Science.gov (United States)

    Rosato, J.; Capes, H.; Catoire, F.; Kadomtsev, M. B.; Levashova, M. G.; Lisitsa, V. S.; Marandet, Y.; Rosmej, F. B.; Stamm, R.

    2011-08-01

    In lithium-wall-conditioned tokamaks, the line radiation due to the intrinsic impurities (Li/Li+/Li++) plays a significant role on the power balance. Calculations of the radiation losses are usually performed using a stationary collisional-radiative model, assuming constant values for the plasma parameters (Ne, Te,…). Such an approach is not suitable for turbulent plasmas where the various parameters are time-dependent. This is critical especially for the edge region, where the fluctuation rates can reach several tens of percents [e.g. J.A. Boedo, J. Nucl. Mater. 390-391 (2009) 29-37]. In this work, the role of turbulence on the radiated power is investigated with a statistical formalism. A special emphasis is devoted to the role of temperature fluctuations, successively for low-frequency fluctuations and in the general case where the characteristic turbulence frequencies can be comparable to the collisional and radiative rates.

  19. Evolution of Surface Temperature of a 13 Amp Hour Nano Lithium-Titanate Battery Cell under Fast Charging

    DEFF Research Database (Denmark)

    Saeed Madani, Seyed; Swierczynski, Maciej Jozef; Kær, Søren Knudsen

    2017-01-01

    Lithium-ion batteries have already gained acceptability for Electric Vehicles (EVs) and Hybrid Electric Vehicles (HEVs) applications because of several reasons such as high theoretical capacity, their cycle-life, and high specific energy density. The intention of this experimental research...... is to study the surface temperature evolution of a 13 Ah Nano Lithium-Titanate battery cell for the usage of rechargeable energy storage system under fast charging conditions. The nominal voltage of the cell is 2.26V and the nominal capacity is 13.4 Ah. In this research, contact thermocouples were employed...

  20. The standard Gibbs free energy of formation of lithium manganese oxides at the temperatures of (680, 740 and 800) K

    International Nuclear Information System (INIS)

    Rog, G.; Kucza, W.; Kozlowska-Rog, A.

    2004-01-01

    The standard Gibbs free energy of formation of LiMnO 2 and LiMn 2 O 4 at the temperatures of (680, 740 and 800) K has been determined with the help of the solid-state galvanic cells involving lithium-β-alumina electrolyte. The equilibrium electrical potentials of cathode containing Li x Mn 2 O 4 spinel, in the composition ranges 0≤x≤1 and 1≤x≤2, vs. metallic lithium in the reversible intercalation galvanic cell have been calculated. The existence of two-voltage plateaus which appeared during charging and discharging processes in reversible intercalation of lithium into Li x Mn 2 O 4 spinel, has been discussed

  1. Surface temperature evolution and the location of maximum and average surface temperature of a lithium-ion pouch cell under variable load profiles

    DEFF Research Database (Denmark)

    Goutam, Shovon; Timmermans, Jean-Marc; Omar, Noshin

    2014-01-01

    This experimental work attempts to determine the surface temperature evolution of large (20 Ah-rated capacity) commercial Lithium-Ion pouch cells for the application of rechargeable energy storage of plug in hybrid electric vehicles and electric vehicles. The cathode of the cells is nickel...

  2. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures

    International Nuclear Information System (INIS)

    Jaguemont, J.; Boulon, L.; Dubé, Y.

    2016-01-01

    Highlights: • We present a comprehensive review on lithium ion batteries used in hybrid and electric vehicles under cold temperatures. • The weak performances of lithium-ion batteries in cold weather are explained. • The influence of low temperatures on the aging mechanisms of lithium ion batteries is discussed. • The different uses of thermal strategies in an automotive application are proposed. - Abstract: Because of their numerous advantages, lithium-ion (Li-ion) batteries have recently become a focus of research interest for vehicle applications. Li-ion batteries are suitable for electric vehicles (EVs) and hybrid electric vehicles (HEVs) because of advantages such as their high specific energy, high energy density, and low self-discharge rate in comparison with other secondary batteries. Nevertheless, the commercial availability of Li-ion batteries for vehicle applications has been hindered by issues of safety, cost, charging time, and recycling. One principal limitation of this technology resides in its poor low-temperature performance. Indeed, the effects of low temperature reduce the battery’s available energy and increase its internal impedance. In addition, performance-hampering cell degradation also occurs at low temperatures and throughout the entire life of a Li-ion battery. All of these issues pose major difficulties for cold-climate countries. This paper reviews the effects of cold temperatures on the capacity/power fade of Li-ion battery technology. Extensive attention is paid to the aging mechanisms of Li-ion batteries at cold temperatures. This paper also reviews several battery models found in the literature. Finally, thermal strategies are detailed, along with a discussion of the ideal approach to cold-temperature operation.

  3. Microcalorimetric studies on lithium thionyl chloride cells: temperature effects between 25deg C and -40deg C

    Energy Technology Data Exchange (ETDEWEB)

    Hill, I.R.; Sibbald, A.M.; Donepudi, V.S.; Adams, W.A. (Ottawa Univ., ON (Canada). Electrochemical Science and Technology Centre); Donaldson, G.J. (Dept. of National Defence, Ottawa, ON (Canada))

    1992-06-01

    Microcalorimetry studies were performed on commercial lithium/thionyl chloride cells to investigate whether there was a change in reaction mechanisms in the temperature range between 25deg C and -40deg C. The entropy change associated with cell discharge was calculated from the calorimetry data and was also determined from the temperature dependence of the open-circuit potential. The entropy changes determined by the two methods are compared and discussed in terms of the electrolyte composition variable. (orig.).

  4. Microcalorimetric studies on lithium thionyl chloride cells: temperature effects between 25 °C and -40 °C

    Science.gov (United States)

    Hill, I. R.; Sibbald, A. M.; Donepudi, V. S.; Adams, W. A.; Donaldson, G. J.

    Microcalorimetry studies were performed on commercial lithium thionyl chloride cells to investigate whether there was a change in reaction mechanism in the temperature range between 25 °C and -40 °C. The entropy change associated with cell discharge was calculated from the calorimetry data and was also determined from the temperature dependence of the open-circuit potential. The entropy changes determined by the two methods are compared and discussed in terms of the electrolyte composition variable.

  5. Steam reforming of commercial ultra-low sulphur diesel

    Energy Technology Data Exchange (ETDEWEB)

    Boon, J.; Van Dijk, E.; De Munck, S.; Van den Brink, R. [Energy research Centre of The Netherlands, ECN Hydrogen and Clean Fossil Fuels, P.O. Box 1, NL1755ZG Petten (Netherlands)

    2011-03-11

    Two main routes for small-scale diesel steam reforming exist: low-temperature pre-reforming followed by well-established methane steam reforming on the one hand and direct steam reforming on the other hand. Tests with commercial catalysts and commercially obtained diesel fuels are presented for both processes. The fuels contained up to 6.5 ppmw sulphur and up to 4.5 vol.% of biomass-derived fatty acid methyl ester (FAME). Pre-reforming sulphur-free diesel at around 475C has been tested with a commercial nickel catalyst for 118 h without observing catalyst deactivation, at steam-to-carbon ratios as low as 2.6. Direct steam reforming at temperatures up to 800C has been tested with a commercial precious metal catalyst for a total of 1190 h with two catalyst batches at steam-to-carbon ratios as low as 2.5. Deactivation was neither observed with lower steam-to-carbon ratios nor for increasing sulphur concentration. The importance of good fuel evaporation and mixing for correct testing of catalysts is illustrated. Diesel containing biodiesel components resulted in poor spray quality, hence poor mixing and evaporation upstream, eventually causing decreasing catalyst performance. The feasibility of direct high temperature steam reforming of commercial low-sulphur diesel has been demonstrated.

  6. Steam reforming of commercial ultra-low sulphur diesel

    Science.gov (United States)

    Boon, Jurriaan; van Dijk, Eric; de Munck, Sander; van den Brink, Ruud

    Two main routes for small-scale diesel steam reforming exist: low-temperature pre-reforming followed by well-established methane steam reforming on the one hand and direct steam reforming on the other hand. Tests with commercial catalysts and commercially obtained diesel fuels are presented for both processes. The fuels contained up to 6.5 ppmw sulphur and up to 4.5 vol.% of biomass-derived fatty acid methyl ester (FAME). Pre-reforming sulphur-free diesel at around 475 °C has been tested with a commercial nickel catalyst for 118 h without observing catalyst deactivation, at steam-to-carbon ratios as low as 2.6. Direct steam reforming at temperatures up to 800 °C has been tested with a commercial precious metal catalyst for a total of 1190 h with two catalyst batches at steam-to-carbon ratios as low as 2.5. Deactivation was neither observed with lower steam-to-carbon ratios nor for increasing sulphur concentration. The importance of good fuel evaporation and mixing for correct testing of catalysts is illustrated. Diesel containing biodiesel components resulted in poor spray quality, hence poor mixing and evaporation upstream, eventually causing decreasing catalyst performance. The feasibility of direct high temperature steam reforming of commercial low-sulphur diesel has been demonstrated.

  7. Ultra-Low Field SQUID-NMR using LN2 Cooled Cu Polarizing Field coil

    Science.gov (United States)

    Demachi, K.; Kawagoe, S.; Ariyoshi, S.; Tanaka, S.

    2017-07-01

    We are developing an Ultra-Low Field (ULF) Magnetic Resonance Imaging (MRI) system using a High-Temperature Superconductor superconducting quantum interference device (HTS rf-SQUID) for food inspection. The advantages of the ULF-NMR (Nuclear Magnetic Resonance) / MRI as compared with a conventional high field MRI are that they are compact and of low cost. In this study, we developed a ULF SQUID-NMR system using a polarizing coil to measure fat of which relaxation time T1 is shorter. The handmade polarizing coil was cooled by liquid nitrogen to reduce the resistance and accordingly increase the allowable current. The measured decay time of the polarizing field was 40 ms. The measurement system consisted of the liquid nitrogen cooled polarizing coil, a SQUID, a Cu wound flux transformer, a measurement field coil for the field of 47 μT, and an AC pulse coil for a 90°pulse field. The NMR measurements were performed in a magnetically shielded room to reduce the environmental magnetic field. The size of the sample was ϕ35 mm × L80 mm. After applying a polarizing field and a 90°pulse, an NMR signal was detected by the SQUID through the flux transformer. As a result, the NMR spectra of fat samples were obtained at 2.0 kHz corresponding to the measurement field Bm of 47 μT. The T1 relaxation time of the mineral oil measured in Bm was 45 ms. These results suggested that the ULF-NMR/MRI system has potential for food inspection.

  8. Ultra-low-noise transition edge sensors for the SAFARI L-band on SPICA

    Science.gov (United States)

    Goldie, D. J.; Gao, J. R.; Glowacka, D. M.; Griffin, D. K.; Hijmering, R.; Khosropanah, P.; Jackson, B. D.; Mauskopf, P. D.; Morozov, D.; Murphy, J. A.; Ridder, M.; Trappe, N.; O'Sullivan, C.; Withington, S.

    2012-09-01

    The Far-Infrared Fourier transform spectrometer instrument SAFARI-SPICA which will operate with cooled optics in a low-background space environment requires ultra-sensitive detector arrays with high optical coupling efficiencies over extremely wide bandwidths. In earlier papers we described the design, fabrication and performance of ultra-low-noise Transition Edge Sensors (TESs) operated close to 100mk having dark Noise Equivalent Powers (NEPs) of order 4 × 10-19W/√Hz close to the phonon noise limit and an improvement of two orders of magnitude over TESs for ground-based applications. Here we describe the design, fabrication and testing of 388-element arrays of MoAu TESs integrated with far-infrared absorbers and optical coupling structures in a geometry appropriate for the SAFARI L-band (110 - 210 μm). The measured performance shows intrinsic response time τ ~ 11ms and saturation powers of order 10 fW, and a dark noise equivalent powers of order 7 × 10-19W/√Hz. The 100 × 100μm2 MoAu TESs have transition temperatures of order 110mK and are coupled to 320×320μm2 thin-film β-phase Ta absorbers to provide impedance matching to the incoming fields. We describe results of dark tests (i.e without optical power) to determine intrinsic pixel characteristics and their uniformity, and measurements of the optical performance of representative pixels operated with flat back-shorts coupled to pyramidal horn arrays. The measured and modeled optical efficiency is dominated by the 95Ω sheet resistance of the Ta absorbers, indicating a clear route to achieve the required performance in these ultra-sensitive detectors.

  9. Lithium bromide high-temperature absorption heat pump: coefficient of performance and exergetic efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, M [Consejo Superior de Investigaciones Cientificas, Madrid (ES). Inst. de Optica; Aroca, S [Escuela Tecnica Superior de Ingenieros Industriales, Valladolid (ES). Catedratico de Ingenieria Termica

    1990-04-01

    A theoretical study of a lithium bromide absorption heat pump, used as a machine type I and aimed to produce heat at 120{sup 0}C via waste heat sources at 60{sup 0}C, is given. Real performance conditions are stated for each component of the machine. By means of thermodynamic diagrams (p, t, x) and (h, x), the required data are obtained for calculation of the heat recovered in the evaporator Q{sub e}, the heat delivered to the absorber Q{sub a} and to the condenser Q{sub c}, and the heat supplied to the generator Q{sub g}. The heat delivered by the hot solution to the cold solution in the heat recovered Q{sub r}, and the work W{sub p} done by the solution pump are calculated. The probable COP is calculated as close to 1.4 and the working temperature in the generator ranges from 178 to 200{sup 0}C. The heat produced by the heat pump is 22% cheaper than that obtained from a cogeneration system comprising a natural gas internal combustion engine and high temperature heat pump with mechanical compression. Compared with a high temperature heat pump with mechanical compression, the heat produced by the absorption heat pump is 31% cheaper. From (h, x) and (s, x) diagrams, exergy losses for each component can be determined leading to an exergetic efficiency of 75% which provides the quality index of the absorption cycle. (author).

  10. Ultra-low leakage and high breakdown Schottky diodes fabricated on free-standing GaN substrate

    International Nuclear Information System (INIS)

    Wang, Yaqi; Alur, Siddharth; Sharma, Yogesh; Tong, Fei; Thapa, Resham; Gartland, Patrick; Issacs-Smith, Tamara; Ahyi, Claude; Williams, John; Park, Minseo; Johnson, Mark; Paskova, Tanya; Preble, Edward A; Evans, Keith R

    2011-01-01

    Vertical Schottky diodes were fabricated on the bulk GaN substrate with decreasing impurity concentration from N-face to Ga-face. An array of circular Pt Schottky contacts and a full backside Ti/Al/Ni/Au ohmic contact were prepared on the Ga-face and the N-face of the n-GaN substrate, respectively. The Schottky diode exhibits a minimum specific on-state resistance of 1.3 mΩ cm 2 and a maximum breakdown voltage of 600 V, resulting in a figure-of- merit of 275 MW cm −2 . An ultra-low reverse leakage current density of 3.7 × 10 −4 A cm −2 at reverse bias of 400 V was observed. Temperature-dependent I–V measurements were also carried out to study the forward and reverse transportation mechanisms. (fast track communication)

  11. Relevant parameters in the micro silica selection for the self-flowing ultra-low cement castables production

    International Nuclear Information System (INIS)

    Studart, A.R.; Pandolfelli, V.C.; Rodrigues, J.A.; Vendrasco, S.L.

    1997-01-01

    Self-flowing ultra-low cement castables typically contain a large fraction of the particles, usually fume silica, which increase their flowability and mechanical strength at low temperatures. Fume silicas available in the market differ mainly from their amount of impurities. It is assumed that the content of soluble alkali and free carbon containing in this raw-material affects strongly the processing of self-flowing castable. In this work high alumina castables with gap-sized particle size distribution were prepared to evaluate their flowability, workability and mechanical strength for each sort of fume silica studied. It was observed that the amount of impurities affects both deflocculation and setting time of the castables and their cold and hot mechanical strength. Considerations regarding the physical and chemical characteristics relevant for selecting fume silicas for the production of self-flowing castables are presented and discussed. (author)

  12. Optimizing Parameters of Axial Pressure-Compounded Ultra-Low Power Impulse Turbines at Preliminary Design

    Science.gov (United States)

    Kalabukhov, D. S.; Radko, V. M.; Grigoriev, V. A.

    2018-01-01

    Ultra-low power turbine drives are used as energy sources in auxiliary power systems, energy units, terrestrial, marine, air and space transport within the confines of shaft power N td = 0.01…10 kW. In this paper we propose a new approach to the development of surrogate models for evaluating the integrated efficiency of multistage ultra-low power impulse turbine with pressure stages. This method is based on the use of existing mathematical models of ultra-low power turbine stage efficiency and mass. It has been used in a method for selecting the rational parameters of two-stage axial ultra-low power turbine. The article describes the basic features of an algorithm for two-stage turbine parameters optimization and for efficiency criteria evaluating. Pledged mathematical models are intended for use at the preliminary design of turbine drive. The optimization method was tested at preliminary design of an air starter turbine. Validation was carried out by comparing the results of optimization calculations and numerical gas-dynamic simulation in the Ansys CFX package. The results indicate a sufficient accuracy of used surrogate models for axial two-stage turbine parameters selection

  13. Specific gravity and API gravity of biodiesel and ultra-low sulfur diesel (ULSD) blends

    Science.gov (United States)

    Biodiesel is an alternative fuel made from vegetable oils and animal fats. In 2006, the U. S. Environmental Protection Agency mandated a maximum sulfur content of 15 ppm in on-road diesel fuels. Processing to produce the new ultra-low sulfur petrodiesel (ULSD) alters specific gravity (SG) and othe...

  14. An Ultra-Low-Latency Geo-Routing Scheme for Team-Based Unmanned Vehicular Applications

    KAUST Repository

    Bader, Ahmed; Alouini, Mohamed-Slim

    2016-01-01

    Results and lessons learned from the implementation of a novel ultra low-latency geo-routing scheme are presented in this paper. The geo-routing scheme is intended for team-based mobile systems whereby a cluster of unmanned autonomous vehicles

  15. Channel coding study for ultra-low power wireless design of autonomous sensor works

    NARCIS (Netherlands)

    Zhang, P.; Huang, Li; Willems, F.M.J.

    2011-01-01

    Ultra-low power wireless design is highly demanded for building up autonomous wireless sensor networks (WSNs) for many application areas. To keep certain quality of service with limited power budget, channel coding techniques can be applied to maintain the robustness and reliability of WSNs. In this

  16. The PS 200 catching trap: A new tool for ultra-low energy antiproton physics

    International Nuclear Information System (INIS)

    Holzscheiter, M.H.; Dyer, P.L.; King, N.S.P.; Lizon, D.C.; Morgan, G.L.; Schauer, M.M.; Schecker, J.A.; Hoibraten, S.; Lewis, R.A.; Otto, T.

    1994-01-01

    Approximately one million antiprotons have been trapped and electron cooled in the PS200 catching trap from a single fast extracted pulse from LEAR. The system is described in detail, different extraction schemes are discussed, and possible applications of this instrument to ultra-low energy atomic and nuclear physics with antiprotons are mentioned

  17. Convolutional auto-encoder for image denoising of ultra-low-dose CT

    Directory of Open Access Journals (Sweden)

    Mizuho Nishio

    2017-08-01

    Conclusion: Neural network with convolutional auto-encoder could be trained using pairs of standard-dose and ultra-low-dose CT image patches. According to the visual assessment by radiologists and technologists, the performance of our proposed method was superior to that of large-scale nonlocal mean and block-matching and 3D filtering.

  18. Ultra-low friction and excellent elastic recovery of fullerene-like ...

    Indian Academy of Sciences (India)

    2017-08-24

    Aug 24, 2017 ... a high elastic recovery (∼90%), ultra-low friction coefficient (∼0.019) and low wear rate ... Y Meng et al .... [3] Liu D G, Tu J P, Gu C D, Hong C F, Chen R and Yang W S ... [7] Cumings J and Zettl A 2000 Science 289 602.

  19. Preparation of Ultra Low-κ Porous SiOCH Films from Ring-Type Siloxane with Unsaturated Hydrocarbon Side Chains by Spin-On Deposition

    International Nuclear Information System (INIS)

    Chun-Xiao, Yang; Chi, Zhang; Qing-Qing, Sun; Sai-Sheng, Xu; Li-Feng, Zhang; Yu, Shi; Shi-Jin, Ding; Wei, Zhang

    2010-01-01

    An ultra-low-dielectric-constant (ultra low-k, or ULK) porous SiOCH film is prepared using a single ring-type siloxane precursor of the 2,4,6,8-tetravinyl-2,4,6,8-tetramethylcyclotetrasiloxane by means of spin-on deposition, followed by crosslinking reactions between the precursor monomers under UV irradiation. The as-prepared film has an ultra low k of 2.41 at 1 MHz due to incorporation of pores and hydrocarbon crosslinkages, a leakage current density of 9.86 × 10 −7 A/cm 2 at 1 MV/cm, as well as a breakdown field strength of ∼1.5 MV/cm. Further, annealing at 300°C results in lower k (i.e., 1.94 at 1 MHz), smaller leakage current density (2.96 × 10 −7 A/cm 2 at 1 MV/cm) and higher breakdown field strength (about 3.5 MV/cm), which are likely caused by the short-ranged structural rearrangement and reduction of defects in the film. Finally, the mechanical properties and surface morphology of films are also evaluated after different temperature annealing. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. Experimental researches on hydrogen generation by aluminum with adding lithium at high temperature

    International Nuclear Information System (INIS)

    Yang, Weijuan; Zhang, Tianyou; Liu, Jianzhong; Wang, Zhihua; Zhou, Junhu; Cen, Kefa

    2015-01-01

    In order to recover the released heat of Al–H_2O reaction and promote the reaction itself, the hydrogen production processes of aluminum with lithium addition in molten state are investigated. Experiments are conducted by both a thermogravimetric analyzer and a special experimental facility at high temperature. The results on both apparatuses show that the addition of Li can promote the reactivity of aluminum with water. Compared with pure aluminum, only 5% of Li content can achieve a great improvement: the H_2 yield increases from 8.7% to 53% and the average H_2 generation rate from 15 to 112 mL min"−"1 g"−"1. With the increase of Li content, H_2 yield is improved distinctly and the period with a high H_2 generation rate is prolonged. In the Al–20%Li case, the H_2 yield of 88% is obtained, and it appears a stable period in which the H_2 generation rate keeps high. When adding lithium, LiAlO_2 appears in the products and the products are made of columnar crystals. The pores with an average size of 17–33 nm in the LiAlO_2 products are manyfold bigger than the pores of alumina, which takes an important role in improving the reactivity of aluminum and water. - Highlights: • The Al–H_2O reaction with Li addition in molten state was researched. • Li addition can achieve a great promotion of H_2 yield and H_2 generation rate. • The Al–20%Li case achieved a H_2 yield of 88%. • With Li addition, LiAlO_2 was detected in the reaction products. • XRD and TEM-EDS results indicated the promoting mechanism of Li.

  1. Expanding the Operational Limits of the Single-Point Impedance Diagnostic for Internal Temperature Monitoring of Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Spinner, Neil S.; Love, Corey T.; Rose-Pehrsson, Susan L.; Tuttle, Steven G.

    2015-01-01

    Highlights: • Single-point impedance diagnostic technique demonstrated for lithium-ion batteries • Correlation between imaginary impedance and internal temperature determined • Instantaneous monitoring of commercial lithium-ion battery internal temperature • Expanded temperature range from −10°C up to 95°C • Non-invasive method useful for practical temperature monitoring of commercial cells - Abstract: Instantaneous internal temperature monitoring of a commercial 18650 LiCoO 2 lithium-ion battery was performed using a single-point EIS measurement. A correlation between the imaginary impedance, –Z imag , and internal temperature at 300 Hz was developed that was independent of the battery’s state of charge. An Arrhenius-type dependence was applied, and the activation energy for SEI ionic conductivity was found to be 0.13 eV. Two separate temperature-time experiments were conducted with different sequences of temperature, and single-point impedance tests at 300 Hz were performed to validate the correlation. Limitations were observed with the upper temperature range (68°C < T < 95°C), and consequently a secondary, empirical fit was applied for this upper range to improve accuracy. Average differences between actual and fit temperatures decreased around 3-7°C for the upper range with the secondary correlation. The impedance response at this frequency corresponded to the anode/SEI layer, and the SEI is reported to be thermally stable up to around 100°C, at which point decomposition may occur leading to battery deactivation and/or total failure. It is therefore of great importance to be able to track internal battery temperatures up to this critical point of 100°C, and this work demonstrates an expansion of the single-point EIS diagnostic to these elevated temperatures

  2. Single-ion polymer electrolyte membranes enable lithium-ion batteries with a broad operating temperature range.

    Science.gov (United States)

    Cai, Weiwei; Zhang, Yunfeng; Li, Jing; Sun, Yubao; Cheng, Hansong

    2014-04-01

    Conductive processes involving lithium ions are analyzed in detail from a mechanistic perspective, and demonstrate that single ion polymeric electrolyte (SIPE) membranes can be used in lithium-ion batteries with a wide operating temperature range (25-80 °C) through systematic optimization of electrodes and electrode/electrolyte interfaces, in sharp contrast to other batteries equipped with SIPE membranes that display appreciable operability only at elevated temperatures (>60 °C). The performance is comparable to that of batteries using liquid electrolyte of inorganic salt, and the batteries exhibit excellent cycle life and rate performance. This significant widening of battery operation temperatures coupled with the inherent flexibility and robustness of the SIPE membranes makes it possible to develop thin and flexible Li-ion batteries for a broad range of applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Ultra-low threshold gallium nitride photonic crystal nanobeam laser

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Nan, E-mail: nanniu@fas.harvard.edu; Woolf, Alexander; Wang, Danqing; Hu, Evelyn L. [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Zhu, Tongtong; Oliver, Rachel A. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Quan, Qimin [Rowland Institute at Harvard University, Cambridge, Massachusetts 02142 (United States)

    2015-06-08

    We report exceptionally low thresholds (9.1 μJ/cm{sup 2}) for room temperature lasing at ∼450 nm in optically pumped Gallium Nitride (GaN) nanobeam cavity structures. The nanobeam cavity geometry provides high theoretical Q (>100 000) with small modal volume, leading to a high spontaneous emission factor, β = 0.94. The active layer materials are Indium Gallium Nitride (InGaN) fragmented quantum wells (fQWs), a critical factor in achieving the low thresholds, which are an order-of-magnitude lower than obtainable with continuous QW active layers. We suggest that the extra confinement of photo-generated carriers for fQWs (compared to QWs) is responsible for the excellent performance.

  4. Ultra-low threshold gallium nitride photonic crystal nanobeam laser

    International Nuclear Information System (INIS)

    Niu, Nan; Woolf, Alexander; Wang, Danqing; Hu, Evelyn L.; Zhu, Tongtong; Oliver, Rachel A.; Quan, Qimin

    2015-01-01

    We report exceptionally low thresholds (9.1 μJ/cm 2 ) for room temperature lasing at ∼450 nm in optically pumped Gallium Nitride (GaN) nanobeam cavity structures. The nanobeam cavity geometry provides high theoretical Q (>100 000) with small modal volume, leading to a high spontaneous emission factor, β = 0.94. The active layer materials are Indium Gallium Nitride (InGaN) fragmented quantum wells (fQWs), a critical factor in achieving the low thresholds, which are an order-of-magnitude lower than obtainable with continuous QW active layers. We suggest that the extra confinement of photo-generated carriers for fQWs (compared to QWs) is responsible for the excellent performance

  5. Gel polymer electrolyte lithium-ion cells with improved low temperature performance

    Energy Technology Data Exchange (ETDEWEB)

    Smart, M.C.; Ratnakumar, B.V.; Behar, A.; Whitcanack, L.D. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Yu, J.-S. [LG Chem/Research Park, P.O. Box 61Yu Song, Science Town, Daejon (Korea); Alamgir, M. [Compact Power, Inc., 1857 Technology Drive, Troy, MI 48083 (United States)

    2007-03-20

    For a number of NASA's future planetary and terrestrial applications, high energy density rechargeable lithium batteries that can operate at very low temperature are desired. In the pursuit of developing Li-ion batteries with improved low temperature performance, we have also focused on assessing the viability of using gel polymer systems, due to their desirable form factor and enhanced safety characteristics. In the present study we have evaluated three classes of promising liquid low-temperature electrolytes that have been impregnated into gel polymer electrolyte carbon-LiMn{sub 2}O{sub 4}-based Li-ion cells (manufactured by LG Chem. Inc.), consisting of: (a) binary EC + EMC mixtures with very low EC-content (10%), (b) quaternary carbonate mixtures with low EC-content (16-20%), and (c) ternary electrolytes with very low EC-content (10%) and high proportions of ester co-solvents (i.e., 80%). These electrolytes have been compared with a baseline formulation (i.e., 1.0 M LiPF{sub 6} in EC + DEC + DMC (1:1:1%, v/v/v), where EC, ethylene carbonate, DEC, diethyl carbonate, and DMC, dimethyl carbonate). We have performed a number of characterization tests on these cells, including: determining the rate capacity as a function of temperature (with preceding charge at room temperature and also at low temperature), the cycle life performance (both 100% DOD and 30% DOD low earth orbit cycling), the pulse capability, and the impedance characteristics at different temperatures. We have obtained excellent performance at low temperatures with ester-based electrolytes, including the demonstration of >80% of the room temperature capacity at -60 C using a C/20 discharge rate with cells containing 1.0 M LiPF{sub 6} in EC + EMC + MB (1:1:8%, v/v/v) (MB, methyl butyrate) and 1.0 M LiPF{sub 6} in EC + EMC + EB (1:1:8%, v/v/v) (EB, ethyl butyrate) electrolytes. In addition, cells containing the ester-based electrolytes were observed to support 5C pulses at -40 C, while still

  6. High-Temperature Stable Anatase Titanium Oxide Nanofibers for Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Lee, Sangkyu; Eom, Wonsik; Park, Hun; Han, Tae Hee

    2017-08-02

    Control of the crystal structure of electrochemically active materials is an important approach to fabricating high-performance electrodes for lithium-ion batteries (LIBs). Here, we report a methodology for controlling the crystal structure of TiO 2 nanofibers by adding aluminum isopropoxide to a common sol-gel precursor solution utilized to create TiO 2 nanofibers. The introduction of aluminum cations impedes the phase transformation of electrospun TiO 2 nanofibers from the anatase to the rutile phase, which inevitably occurs in the typical annealing process utilized for the formation of TiO 2 crystals. As a result, high-temperature stable anatase TiO 2 nanofibers were created in which the crystal structure was well-maintained even at high annealing temperatures of up to 700 °C. Finally, the resulting anatase TiO 2 nanofibers were utilized to prepare LIB anodes, and their electrochemical performance was compared to pristine TiO 2 nanofibers that contain both anatase and rutile phases. Compared to the electrode prepared with pristine TiO 2 nanofibers, the electrode prepared with anatase TiO 2 nanofibers exhibited excellent electrochemical performances such as an initial Coulombic efficiency of 83.9%, a capacity retention of 89.5% after 100 cycles, and a rate capability of 48.5% at a current density of 10 C (1 C = 200 mA g -1 ).

  7. Temperature dependent capacity contribution of thermally treated anode current collectors in lithium ion batteries

    International Nuclear Information System (INIS)

    Kim, Tae Kwon; Li Xifei; Wang Chunlei

    2013-01-01

    Highlights: ► We studied the influence of the thermal treatment of current collectors on the energy capacity. ► Different current collectors show different thermal treatment effect on performance. ► The non-negligible capacity contribution is closely related to the treatment temperatures. ► Our results could be beneficial to designing battery architectures. - Abstract: Metal current collectors, offering a good connection between the active materials and the external circuit, is an important component in a rechargeable lithium ion battery. Some necessary thermal treatment in the battery fabrication and assembly procedure results in current collectors with some non-negligible reversible energy capacities; however, these energy capacities were negligible in the previous references. In this research, for the first time, we investigated the influence of the thermal treatment of current collectors (such as copper foil and stainless steel disk) on energy capacities. Our results indicate that different current collector materials have different thermal treatment effects on their electrochemical performance. The non-negligible capacity contribution is closely related to the treatment temperature.

  8. Study and mathematical model of ultra-low gas burner

    International Nuclear Information System (INIS)

    Gueorguieva, A.

    2001-01-01

    The main objective of this project is prediction and reduction of NOx and CO 2 emissions under levels recommended from European standards for gas combustion processes. A mathematical model of burner and combustion chamber is developed based on interacting fluid dynamics processes: turbulent flow, gas phase chemical reactions, heat and radiation transfer The NOx prediction model for prompt and thermal NOx is developed. The validation of CFD (Computer fluid-dynamics) simulations corresponds to 5 MWI burner type - TEA, installed on CASPER boiler. This burner is three-stream air distribution burner with swirl effect, designed by ENEL to meet future NOx emission standards. For performing combustion computer modelling, FLUENT CFD code is preferred, because of its capabilities to provide accurately description of large number of rapid interacting processes: turbulent flow, phase chemical reactions and heat transfer and for its possibilities to present wide range of calculation and graphical output reporting data The computational tool used in this study is FLUENT version 5.4.1, installed on fs 8200 UNIX systems The work includes: study the effectiveness of low-NOx concepts and understand the impact of combustion and swirl air distribution and flue gas recirculation on peak flame temperatures, flame structure and fuel/air mixing. A finite rate combustion model: Eddy-Dissipation (Magnussen-Hjertager) Chemical Model for 1, 2 step Chemical reactions of bi-dimensional (2D) grid is developed along with NOx and CO 2 predictions. The experimental part of the project consists of participation at combustion tests on experimental facilities located in Livorno. The results of the experiments are used, to obtain better vision for combustion process on small-scaled design and to collect the necessary input data for further Fluent simulations

  9. Application of lithium orthosilicate for high-temperature thermochemical energy storage

    International Nuclear Information System (INIS)

    Takasu, Hiroki; Ryu, Junichi; Kato, Yukitaka

    2017-01-01

    Highlights: • Li_4SiO_4/CO_2 system is proposed for use in chemical heat pump systems at 650 and 700 °C. • Li_4SiO_4/CO_2 system showed an enough cyclic reaction durability for 5 cycles. • The energy storage density of Li_4SiO_4 was estimated to be 750 kJ L"−"1 and 780 kJ kg"−"1. • It was demonstrated that Li_4SiO_4 could be used as a thermal heat storage material. - Abstract: A lithium orthosilicate/carbon dioxide (Li_4SiO_4/CO_2) reaction system is proposed for use in thermochemical energy storage (TcES) and chemical heat pump (CHP) systems at around 700 °C. Carbonation of Li_4SiO_4 exothermically produces lithium carbonate (Li_2CO_3) and lithium metasilicate (Li_2SiO_3). Decarbonation of these products is used for heat storage, and carbonation is used for heat output in a TcES system. A Li_4SiO_4 sample around 20 μm in diameter was prepared from Li_2CO_3 and SiO_2 using a solid-state reaction method. To determine the reactivity of the sample, Li_4SiO_4 carbonation and decarbonation experiments were conducted under CO_2 at several pressures in a closed reactor using thermogravimetric analysis. The Li_4SiO_4 sample’s carbonation and decarbonation performance was sufficient for use as a TcES material at around 700 °C. In addition, both reaction temperatures of Li_4SiO_4 varied with the CO_2 pressure. The durability under repeated Li_4SiO_4 carbonation and decarbonation was tested using temperature swing and pressure swing methods. Both methods showed that the Li_4SiO_4 sample has sufficient durability. These results indicate that the temperature for heat storage and heat output by carbonation and decarbonation, respectively, could be controlled by controlling the CO_2 pressure. Li_4SiO_4/CO_2 can be used not only for TcES but also in CHPs. The volumetric and gravimetric thermal energy densities of Li_4SiO_4 for TcES were found to be 750 kJ L"−"1 and 780 kJ kg"−"1, where the porosity of Li_4SiO_4 was assumed to be 59%. When the reaction system

  10. Density and surface tension of high-temperature stratifying mixtures of alkali metal bromides and lithium fluoride

    International Nuclear Information System (INIS)

    Rukavishnikova, I.V.; Lokett, V.N.; Burukhin, A.S.; Stepanov, V.P.

    2006-01-01

    The density and interphase tension of molten mixtures of lithium fluoride with potassium, rubidium, and cesium bromides were measured over the temperature range 1120-1320 K in the region of limited mutual solubility by the hydrostatic weighing and meniscus weight methods. The dependences of properties on the size ratio between the mixed ions were determined. The critical order parameters for systems with the predominantly ionic character of interparticle interactions were estimated [ru

  11. Velocity profile measurement of lead-lithium flows by high-temperature ultrasonic doppler velocimetry

    International Nuclear Information System (INIS)

    Ueki, Y.; Kunugi, T.; Hirabayashi, Masaru; Nagai, Keiichi; Saito, Junichi; Ara, Kuniaki; Morley, N.B.

    2014-01-01

    This paper describes a high-temperature ultrasonic Doppler Velocimetry (HT-UDV) technique that has been successfully applied to measure velocity profiles of the lead-lithium eutectic alloy (PbLi) flows. The impact of tracer particles is investigated to determine requirements for HT-UDV measurement of PbLi flows. The HT-UDV system is tested on a PbLi flow driven by a rotating-disk in an inert atmosphere. We find that a sufficient amount of particles contained in the molten PbLi are required to successfully measure PbLi velocity profiles by HT-UDV. An X-ray diffraction analysis is performed to identify those particles in PbLi, and indicates that those particles were made of the lead mono-oxide (PbO). Since the specific densities of PbLi and PbO are close to each other, the PbO particles are expected to be well-dispersed in the bulk of molten PbLi. We conclude that the excellent dispersion of PbO particles enables in HT-UDV to obtain reliable velocity profiles for operation times of around 12 hours. (author)

  12. High temperature capture of CO2 on lithium-based sorbents from rice husk ash.

    Science.gov (United States)

    Wang, Ke; Guo, Xin; Zhao, Pengfei; Wang, Fanzi; Zheng, Chuguang

    2011-05-15

    Highly efficient Li(4)SiO(4) (lithium orthosilicate)-based sorbents for CO(2) capture at high temperature, was developed using waste materials (rice husk ash). Two treated rice husk ash (RHA) samples (RHA1 and RHA2) were prepared and calcined at 800°C in the presence of Li(2)CO(3). Pure Li(4)SiO(4) and RHA-based sorbents were characterized by X-ray fluorescence, X-ray diffraction, scanning electron microscopy, nitrogen adsorption, and thermogravimetry. CO(2) sorption was tested through 15 carbonation/calcination cycles in a fixed bed reactor. The metals of RHA were doped with Li(4)SiO(4) resulting to inhibited growth of the particles and increased pore volume and surface area. Thermal analyses indicated a much better CO(2) absorption in Li(4)SiO(4)-based sorbent prepared from RHA1 (higher metal content sample) because the activation energies for the chemisorption process and diffusion process were smaller than that of pure Li(4)SiO(4). RHA1-based sorbent also maintained higher capacities during the multiple cycles. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Measurement and modeling of surface temperature dynamics of the NSTX liquid lithium divertor

    Science.gov (United States)

    McLean, A. G.; Gan, K. F.; Ahn, J.-W.; Gray, T. K.; Maingi, R.; Abrams, T.; Jaworski, M. A.; Kaita, R.; Kugel, H. W.; Nygren, R. E.; Skinner, C. H.; Soukhanovskii, V. A.

    2013-07-01

    Dual-band infrared (IR) measurements of the National Spherical Torus eXperiment (NSTX) Liquid Lithium Divertor (LLD) are reported that demonstrate liquid Li is more effective at removing plasma heat flux than Li-conditioned graphite. Extended dwell of the outer strike point (OSP) on the LLD caused an incrementally larger area to be heated above the Li melting point through the discharge leading to enhanced D retention and plasma confinement. Measurement of Tsurface near the OSP demonstrates a significant reduction of the LLD surface temperature compared to that of Li-coated graphite at the same major radius. Modeling of these data with a 2-D simulation of the LLD structure in the DFLUX code suggests that the structure of the LLD was successful at handling up to q⊥,peak = 5 MW/m2 inter-ELM and up to 10 MW/m2 during ELMs from its plasma-facing surface as intended, and provide an innovative method for inferring the Li layer thickness.

  14. Measurement and modeling of surface temperature dynamics of the NSTX liquid lithium divertor

    Energy Technology Data Exchange (ETDEWEB)

    McLean, A.G., E-mail: mclean@fusion.gat.com [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Gan, K.F. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Ahn, J.-W.; Gray, T.K.; Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Abrams, T.; Jaworski, M.A.; Kaita, R.; Kugel, H.W. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Nygren, R.E. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Soukhanovskii, V.A. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)

    2013-07-15

    Dual-band infrared (IR) measurements of the National Spherical Torus eXperiment (NSTX) Liquid Lithium Divertor (LLD) are reported that demonstrate liquid Li is more effective at removing plasma heat flux than Li-conditioned graphite. Extended dwell of the outer strike point (OSP) on the LLD caused an incrementally larger area to be heated above the Li melting point through the discharge leading to enhanced D retention and plasma confinement. Measurement of T{sub surface} near the OSP demonstrates a significant reduction of the LLD surface temperature compared to that of Li-coated graphite at the same major radius. Modeling of these data with a 2-D simulation of the LLD structure in the DFLUX code suggests that the structure of the LLD was successful at handling up to q{sub ⊥,peak} = 5 MW/m{sup 2} inter-ELM and up to 10 MW/m{sup 2} during ELMs from its plasma-facing surface as intended, and provide an innovative method for inferring the Li layer thickness.

  15. Lithium line radiation in turbulent edge plasmas: Effects of low and high frequency temperature fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Rosato, J., E-mail: joel.rosato@univ-provence.fr [PIIM, UMR 6633, Universite de Provence/CNRS, Centre de St.-Jerome, Case 232, F-13397 Marseille Cedex 20 (France); Capes, H.; Catoire, F. [PIIM, UMR 6633, Universite de Provence/CNRS, Centre de St.-Jerome, Case 232, F-13397 Marseille Cedex 20 (France); Kadomtsev, M.B.; Levashova, M.G.; Lisitsa, V.S. [ITP, Russian Research Center ' Kurchatov Institute' , Moscow (Russian Federation); Marandet, Y. [PIIM, UMR 6633, Universite de Provence/CNRS, Centre de St.-Jerome, Case 232, F-13397 Marseille Cedex 20 (France); Rosmej, F.B. [LULI, UMR 7605, Universite Pierre et Marie Curie/CNRS, 4 Place Jussieu, Case 128, F-75252 Paris Cedex 05 (France); Stamm, R. [PIIM, UMR 6633, Universite de Provence/CNRS, Centre de St.-Jerome, Case 232, F-13397 Marseille Cedex 20 (France)

    2011-08-01

    In lithium-wall-conditioned tokamaks, the line radiation due to the intrinsic impurities (Li/Li{sup +}/Li{sup ++}) plays a significant role on the power balance. Calculations of the radiation losses are usually performed using a stationary collisional-radiative model, assuming constant values for the plasma parameters (N{sub e}, T{sub e},...). Such an approach is not suitable for turbulent plasmas where the various parameters are time-dependent. This is critical especially for the edge region, where the fluctuation rates can reach several tens of percents [e.g. J.A. Boedo, J. Nucl. Mater. 390-391 (2009) 29-37]. In this work, the role of turbulence on the radiated power is investigated with a statistical formalism. A special emphasis is devoted to the role of temperature fluctuations, successively for low-frequency fluctuations and in the general case where the characteristic turbulence frequencies can be comparable to the collisional and radiative rates.

  16. Cavity magnon polaritons with lithium ferrite and three-dimensional microwave resonators at millikelvin temperatures

    Science.gov (United States)

    Goryachev, Maxim; Watt, Stuart; Bourhill, Jeremy; Kostylev, Mikhail; Tobar, Michael E.

    2018-04-01

    Single crystal lithium ferrite (LiFe) spheres of sub-mm dimension are examined at mK temperatures, microwave frequencies, and variable dc magnetic field, for use in hybrid quantum systems and condensed matter and fundamental physics experiments. Strong coupling regimes of the photon-magnon interaction (cavity magnon polariton quasiparticles) were observed with coupling strength of up to 250 MHz at 9.5 GHz (2.6%) with magnon linewidths of order 4 MHz (with potential improvement to sub-MHz values). We show that the photon-magnon coupling can be significantly improved and exceed that of the widely used yttrium iron garnet crystal, due to the small unit cell of LiFe, allowing twice the spins per unit volume. Magnon mode softening was observed at low dc fields and, combined with the normal Zeeman effect, creates magnon spin-wave modes that are insensitive to first-order magnetic-field fluctuations. This effect is observed in the Kittel mode at 5.5 GHz (and another higher order mode at 6.5 GHz) with a dc magnetic field close to 0.19 tesla. We show that if the cavity is tuned close to this frequency, the magnon polariton particles exhibit an enhanced range of strong coupling and insensitivity to magnetic field fluctuations with both first-order and second-order insensitivity to magnetic field as a function of frequency (double magic point clock transition), which could potentially be exploited in cavity QED experiments.

  17. An Ultra-low Frequency Modal Testing Suspension System for High Precision Air Pressure Control

    Directory of Open Access Journals (Sweden)

    Qiaoling YUAN

    2014-05-01

    Full Text Available As a resolution for air pressure control challenges in ultra-low frequency modal testing suspension systems, an incremental PID control algorithm with dead band is applied to achieve high-precision pressure control. We also develop a set of independent hardware and software systems for high-precision pressure control solutions. Taking control system versatility, scalability, reliability, and other aspects into considerations, a two-level communication employing Ethernet and CAN bus, is adopted to complete such tasks as data exchange between the IPC, the main board and the control board ,and the pressure control. Furthermore, we build a single set of ultra-low frequency modal testing suspension system and complete pressure control experiments, which achieve the desired results and thus confirm that the high-precision pressure control subsystem is reasonable and reliable.

  18. Ultra-low-dose continuous combined estradiol and norethisterone acetate: improved bleeding profile in postmenopausal women

    DEFF Research Database (Denmark)

    Sturdee, D.W.; Archer, D.F.; Rakov, V.

    2008-01-01

    OBJECTIVE: To evaluate the effect of two ultra-low-dose hormone treatments containing estradiol (E2) 0.5 mg and norethisterone acetate (NETA) 0.1 or 0.25 mg on the endometrium and bleeding. METHODS: A prospective, randomized, placebo-controlled trial of 6 months. Local Ethics Committee approval...... and informed consent were obtained prior to initiation and enrollment. Out of 577 postmenopausal women randomized, 575 took E2/NETA 0.1 (n = 194), or E2/NETA 0.25 (n = 181) or placebo (n = 200). Endometrial bleeding was monitored by daily diary cards and endometrial thickness by transvaginal ultrasound......: The ultra-low-dose combination of E2/NETA 0.1 or E2/NETA 0.25 resulted in a high incidence of amenorrhea and no bleeding in postmenopausal women, and a corresponding high level of compliance. Overall, there was no significant change in mean endometrial thickness during 6 months of active treatment...

  19. Ultra low-cost, portable smartphone optosensors for mobile point-of-care diagnostics

    Science.gov (United States)

    Wang, Li-Ju; Chang, Yu-Chung; Sun, Rongrong; Li, Lei

    2018-02-01

    Smartphone optosensors with integrated optical components make mobile point-of-care (MPoC) diagnostics be done near patients' side. It'll especially have a significant impact on healthcare delivery in rural or remote areas. Current FDA-approved PoC devices achieving clinical level are still at high cost and not affordable in rural hospitals. We present a series of ultra low-cost smartphone optical sensing devices for mobile point-of-care diagnosis. Aiming different targeting analytes and sensing mechanisms, we developed custom required optical components for each smartphone optosensros. These optical devices include spectrum readers, colorimetric readers for microplate, lateral flow device readers, and chemiluminescence readers. By integrating our unique designed optical components into smartphone optosening platform, the anlaytes can be precisely detected. Clinical testing results show the clinical usability of our smartphone optosensors. Ultra low-cost portable smartphone optosensors are affordable for rural/remote doctors.

  20. Security Implications for Ultra-Low Power Configurable SoC FPAA Embedded Systems

    Directory of Open Access Journals (Sweden)

    Jennifer Hasler

    2018-06-01

    Full Text Available We discuss the impact of physical computing techniques to classifying network security issues for ultra-low power networked IoT devices. Physical computing approaches enable at least a factor of 1000 improvement in computational energy efficiency empowering a new generation of local computational structures for embedded IoT devices. These techniques offer computational capability to address network security concerns. This paper begins the discussion of security opportunities for, and issues using, FPAA devices for small embedded IoT platforms. These FPAAs enable devices often utilized for low-power context aware computation. Embedded FPAA devices have both positive Security attributes, as well as potential vulnerabilities. FPAA devices can be part of the resulting secure computation, such as implementing unique functions. FPAA devices can be used investigate security of analog/mixed signal capabilities. The paper concludes with summarizing key improvements for secure ultra-low power embedded FPAA devices.

  1. Ultra Low Energy Binary Decision Diagram Circuits Using Few Electron Transistors

    Science.gov (United States)

    Saripalli, Vinay; Narayanan, Vijay; Datta, Suman

    Novel medical applications involving embedded sensors, require ultra low energy dissipation with low-to-moderate performance (10kHz-100MHz) driving the conventional MOSFETs into sub-threshold operation regime. In this paper, we present an alternate ultra-low power computing architecture using Binary Decision Diagram based logic circuits implemented using Single Electron Transistors (SETs) operating in the Coulomb blockade regime with very low supply voltages. We evaluate the energy - performance tradeoff metrics of such BDD circuits using time domain Monte Carlo simulations and compare them with the energy-optimized CMOS logic circuits. Simulation results show that the proposed approach achieves better energy-delay characteristics than CMOS realizations.

  2. CMOS circuits for electromagnetic vibration transducers interfaces for ultra-low voltage energy harvesting

    CERN Document Server

    Maurath, Dominic

    2015-01-01

    Chip-integrated power management solutions are a must for ultra-low power systems. This enables not only the optimization of innovative sensor applications. It is also essential for integration and miniaturization of energy harvesting supply strategies of portable and autonomous monitoring systems. The book particularly addresses interfaces for energy harvesting, which are the key element to connect micro transducers to energy storage elements. Main features of the book are: - A comprehensive technology and application review, basics on transducer mechanics, fundamental circuit and control design, prototyping and testing, up to sensor system supply and applications. - Novel interfacing concepts - including active rectifiers, MPPT methods for efficient tracking of DC as well as AC sources, and a fully-integrated charge pump for efficient maximum AC power tracking at sub-100µW ultra-low power levels. The chips achieve one of widest presented operational voltage range in standard CMOS technology: 0.44V to over...

  3. Ultra-low energy electrons from fast heavy-ion helium collisions: the `target Cusp`

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, W. [Freiburg Univ. (Germany)]|[Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Moshammer, R.; Kollmus, H.; Ullrich, J. [Freiburg Univ. (Germany); O`Rourke, F.S.C. [Queen`s Univ., Belfast, Northern Ireland (United Kingdom); Sarkadi, L. [Magyar Tudomanyos Akademia, Debrecen (Hungary). Atommag Kutato Intezete; Mann, R. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Hagmann, S. [Kansas State Univ., Manhattan, KS (United States). J.R. MacDonald Lab.; Olson, R.E. [Missouri Univ., Rolla, MO (United States). Dept. of Physics

    1998-09-01

    Doubly differential cross sections d{sup 2}{sigma}/dv {sub parallel} dv {sub perpendicular} {sub to} have been obtained by mapping the 3-dimensional velocity space of ultra-low and low-energy electrons (1.5 meV{<=} E{sub e}{<=}100 eV) emitted in singly ionizing 3.6 MeV/u Au{sup 53+} on helium collisions. A sharp ({Delta}E{sub e} {sub perpendicular} {sub to} {sup FWHM} {<=} 22 meV) asymmetric peak centered at vertical stroke anti {nu} vertical stroke =0 is observed to emerge at ultra-low energies from the strongly forward shifted low-energy electron velocity distribution. The shape of this ``target cusp``, which is very sensitive on the details of the two-center potential, is in excellent accord with theoretical CTMC and CDW-EIS predictions. (orig.)

  4. Ultra-low magnetic damping in metallic and half-metallic systems

    Science.gov (United States)

    Shaw, Justin

    The phenomenology of magnetic damping is of critical importance to devices which seek to exploit the electronic spin degree of freedom since damping strongly affects the energy required and speed at which a device can operate. However, theory has struggled to quantitatively predict the damping, even in common ferromagnetic materials. This presents a challenge for a broad range of applications in magnonics, spintronics and spin-orbitronics that depend on the ability to precisely control the damping of a material. I will discuss our recent work to precisely measure the intrinsic damping in several metallic and half-metallic material systems and compare experiment with several theoretical models. This investigation uncovered a metallic material composed of Co and Fe that exhibit ultra-low values of damping that approach values found in thin film YIG. Such ultra-low damping is unexpected in a metal since magnon-electron scattering dominates the damping in conductors. However, this system possesses a distinctive feature in the bandstructure that minimizes the density of states at the Fermi energy n(EF). These findings provide the theoretical framework by which such ultra-low damping can be achieved in metallic ferromagnets and may enable a new class of experiments where ultra-low damping can be combined with a charge current. Half-metallic Heusler compounds by definition have a bandgap in one of the spin channels at the Fermi energy. This feature can also lead to exceptionally low values of the damping parameter. Our results show a strong correlation of the damping with the order parameter in Co2MnGe. Finally, I will provide an overview of the recent advances in achieving low damping in thin film Heusler compounds.

  5. Silicon for ultra-low-level detectors and sup 32 Si

    Energy Technology Data Exchange (ETDEWEB)

    Plaga, R. (Max Planck Inst. fuer Kernphysik, Heidelberg (Germany))

    1991-11-15

    A recent dark matter experiment using a silicon diode detector confirms that the decay of {sup 32}Si is a dangerous background in ultra-low-level experiments using silicon as detector material or shielding. In this Letter we study the mechanism of how {sup 32}Si enters commercially available silicon. Ways to avoid this contamination are pointed out. Limits on the {sup 32}Si content of silicon from measurements with miniaturized low-level proportional counters are also given. (orig.).

  6. Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation

    OpenAIRE

    Fei-Ran Shen; Hao Kuang; Feng-Xia Hu; Hui Wu; Qing-Zhen Huang; Fei-Xiang Liang; Kai-Ming Qiao; Jia Li; Jing Wang; Yao Liu; Lei Zhang; Min He; Ying Zhang; Wen-Liang Zuo; Ji-Rong Sun

    2017-01-01

    Materials with zero thermal expansion (ZTE) or precisely tailored thermal expansion are in urgent demand of modern industries. However, the overwhelming majority of materials show positive thermal expansion. To develop ZTE or negative thermal expansion (NTE) materials as compensators has become an important challenge. Here, we present the evidence for the realization of ultra-low thermal expansion in Mn–Co–Ge–In particles. The bulk with the Ni2In-type hexagonal structure undergoes giant NTE o...

  7. Study of multi-layered graphene by ultra-low energy SEM/STEM

    Czech Academy of Sciences Publication Activity Database

    Mikmeková, Eliška; Frank, Luděk; Müllerová, Ilona; Li, B. W.; Ruoff, R. S.; Lejeune, M.

    2016-01-01

    Roč. 63, March 2016 (2016), s. 136-142 ISSN 0925-9635 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1212 EU Projects: European Commission(XE) 606988 - SIMDALEE2 Institutional support: RVO:68081731 Keywords : scanning ultra low energy electron microscopy * graphene * contamination * CVD Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.561, year: 2016

  8. Component Development to Accelerate Commercial Implementation of Ultra-Low Emissions Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, Jon; Berry, Brian; Lundberg, Kare; Anson, Orris

    2003-03-31

    This final report describes a 2000-2003 program for the development of components and processes to enhance the commercialization of ultra-low emissions catalytic combustion in industrial gas turbines. The range of project tasks includes: development of more durable, lower-cost catalysts and catalytic combustor components; development and design of a catalytic pre-burner and a catalytic pilot burner for gas turbines, and on-site fuel conversion processing for utilization of liquid fuel.

  9. Ultra-low-energy (<10 eV/u) ion beam bombardment effect on naked DNA

    Energy Technology Data Exchange (ETDEWEB)

    Thopan, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Suwannakachorn, D. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2014-05-01

    Highlights: • Decelerated ultra-low energy ion beam bombarded naked DNA. • DNA form change induced by ion bombardment was investigated. • N-ion bombardment at 32 eV induced DNA single and double strand breaks. • Ar-ion bombardment at a-few-hundreds eV induced DNA single strand break. - Abstract: Since ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range, it is very interesting to know effects from ultra-low-energy ion interaction with DNA for understanding ion-beam-induced genetic mutation. Tens-keV Ar- and N-ion beams were decelerated to ultra-low energy ranging from 20 to 100 eV, or only a few to 10 eV/u, to bombard naked plasmid DNA. The bombarded DNA was analyzed using gel electrophoresis for DNA form changes. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks after bombarded by tens-eV ion beam. N-ion beam was found more effective in inducing DNA change and mutation than Ar-ion beam. The study demonstrated that the ion bombardment with energy as low as several-tens eV was able to break DNA strands and thus potentially to cause genetic modification of biological cells. The experimental results were discussed in terms of direct atomic collision between the ions and DNA atoms.

  10. Ultra-low-energy (<10 eV/u) ion beam bombardment effect on naked DNA

    International Nuclear Information System (INIS)

    Thopan, P.; Thongkumkoon, P.; Prakrajang, K.; Suwannakachorn, D.; Yu, L.D.

    2014-01-01

    Highlights: • Decelerated ultra-low energy ion beam bombarded naked DNA. • DNA form change induced by ion bombardment was investigated. • N-ion bombardment at 32 eV induced DNA single and double strand breaks. • Ar-ion bombardment at a-few-hundreds eV induced DNA single strand break. - Abstract: Since ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range, it is very interesting to know effects from ultra-low-energy ion interaction with DNA for understanding ion-beam-induced genetic mutation. Tens-keV Ar- and N-ion beams were decelerated to ultra-low energy ranging from 20 to 100 eV, or only a few to 10 eV/u, to bombard naked plasmid DNA. The bombarded DNA was analyzed using gel electrophoresis for DNA form changes. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks after bombarded by tens-eV ion beam. N-ion beam was found more effective in inducing DNA change and mutation than Ar-ion beam. The study demonstrated that the ion bombardment with energy as low as several-tens eV was able to break DNA strands and thus potentially to cause genetic modification of biological cells. The experimental results were discussed in terms of direct atomic collision between the ions and DNA atoms

  11. Temperature dependence of electrochemical properties of cross-linked poly(ethylene oxide)–lithium bis(trifluoromethanesulfonyl)imide–N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide solid polymer electrolytes for lithium batteries

    International Nuclear Information System (INIS)

    Wetjen, Morten; Kim, Guk-Tae; Joost, Mario; Winter, Martin; Passerini, Stefano

    2013-01-01

    Highlights: ► Solid-state electrolyte for lithium batteries. ► Polymer electrolyte with improved mechanical properties by cross-linking. ► Enhanced performance of polymer electrolytes using water- and air-stable ionic liquids as co-salts. ► Polymer electrolyte with high rate capability at moderate temperatures. - Abstract: An advanced electrochemical characterization of cross-linked ternary solid polymer electrolytes (SPEs), prepared by a solvent-free hot-pressing process, is reported. Ionic conductivity, electrochemical stability window and limiting current measurements were performed as a function of the temperature by using both potentiodynamic and galvanostatic techniques. Additionally, the lithium cycleability was evaluated with respect to its dependence on both the operating temperature and the current density by using a new multi-rate Li-stripping-plating procedure. The results clearly indicate the beneficial effect of higher operating temperatures on the rate-capability, without major degradation of the electrochemical stability of the SPE. All-solid-state lithium metal polymer batteries (LMPBs), comprising a lithium metal anode, the cross-linked ternary solid polymer electrolyte and a LiFePO 4 composite cathode, were manufactured and investigated in terms of the interdependencies of the delivered capacity, operating temperature and discharge rate. The results prove quite exceptional delivered capacities both at medium current densities at ambient temperatures and even more impressive capacities above 160 mAh g −1 at high discharge rates (1 C) and temperatures above 60 °C.

  12. Effect of heat treatment and cleanness of ultra low carbon bainitic (ULCB) steel on its impact toughness

    International Nuclear Information System (INIS)

    Lis, A.K.

    1998-01-01

    The small variations in sulphur and carbon concentrations can have a major influence on the impact transition temperature (ITT) of ultra low carbon HSLA-100 steel which has been quenched in water and tempered (WQ and T). Since the average carbon concentration is very low thus sensitivity of ITT to heat treatment parameters depends also on the yield strength increase due to precipitation effect of ε C u phase. The regression analysis has been used to establish equations taking into account those parameters. The properties of a mixed microstructure formed from partially austenitic regions have been also considered. The fine austenitic grains transform into more desirable fine bainitic ferrite phases with lower hardness values and higher toughness. On the other hand, if cooling rate is sufficiently large, then the carbon enriched austenite transforms partially into hard martensite and some of remaining untransformed austenite being retained to ambient temperature. Because hard martensite islands are located in much softer surroundings consisting of tempered ferrite, they do not cause a general reduction in impact toughness tests. Due to further grain refinement of microstructure the measured toughness on Charpy V specimens can be very high at low temperatures. The very detrimental effect of sulphur in ULCB steel has been confirmed by presented results. (author)

  13. Cleanliness of Ti-bearing Al-killed ultra-low-carbon steel during different heating processes

    Science.gov (United States)

    Guo, Jian-long; Bao, Yan-ping; Wang, Min

    2017-12-01

    During the production of Ti-bearing Al-killed ultra-low-carbon (ULC) steel, two different heating processes were used when the converter tapping temperature or the molten steel temperature in the Ruhrstahl-Heraeus (RH) process was low: heating by Al addition during the RH decarburization process and final deoxidation at the end of the RH decarburization process (process-I), and increasing the oxygen content at the end of RH decarburization, heating and final deoxidation by one-time Al addition (process-II). Temperature increases of 10°C by different processes were studied; the results showed that the two heating processes could achieve the same heating effect. The T.[O] content in the slab and the refining process was better controlled by process-I than by process-II. Statistical analysis of inclusions showed that the numbers of inclusions in the slab obtained by process-I were substantially less than those in the slab obtained by process-II. For process-I, the Al2O3 inclusions produced by Al added to induce heating were substantially removed at the end of decarburization. The amounts of inclusions were substantially greater for process-II than for process-I at different refining stages because of the higher dissolved oxygen concentration in process-II. Industrial test results showed that process-I was more beneficial for improving the cleanliness of molten steel.

  14. A new lithium-ion battery internal temperature on-line estimate method based on electrochemical impedance spectroscopy measurement

    Science.gov (United States)

    Zhu, J. G.; Sun, Z. C.; Wei, X. Z.; Dai, H. F.

    2015-01-01

    The power battery thermal management problem in EV (electric vehicle) and HEV (hybrid electric vehicle) has been widely discussed, and EIS (electrochemical impedance spectroscopy) is an effective experimental method to test and estimate the status of the battery. Firstly, an electrochemical-based impedance matrix analysis for lithium-ion battery is developed to describe the impedance response of electrochemical impedance spectroscopy. Then a method, based on electrochemical impedance spectroscopy measurement, has been proposed to estimate the internal temperature of power lithium-ion battery by analyzing the phase shift and magnitude of impedance at different ambient temperatures. Respectively, the SoC (state of charge) and temperature have different effects on the impedance characteristics of battery at various frequency ranges in the electrochemical impedance spectroscopy experimental study. Also the impedance spectrum affected by SoH (state of health) is discussed in the paper preliminary. Therefore, the excitation frequency selected to estimate the inner temperature is in the frequency range which is significantly influenced by temperature without the SoC and SoH. The intrinsic relationship between the phase shift and temperature is established under the chosen excitation frequency. And the magnitude of impedance related to temperature is studied in the paper. In practical applications, through obtaining the phase shift and magnitude of impedance, the inner temperature estimation could be achieved. Then the verification experiments are conduced to validate the estimate method. Finally, an estimate strategy and an on-line estimation system implementation scheme utilizing battery management system are presented to describe the engineering value.

  15. High Temperature Analysis of Aluminum-Lithium 2195 Alloy to Aid in the Design of Improved Welding Techniques

    Science.gov (United States)

    Talia, George E.; Widener, Christian

    1996-01-01

    Aluminum-lithium alloys have extraordinary properties. The addition of lithium to an aluminum alloy decreases its density, while making large increases in its strength and hardness. The down side is that they are unstable at higher temperatures, and are subsequently difficult to weld or even manufacture. Martin Marietta, though, developed an aluminum-lithium alloy 2195 that was reported to have exceptional properties and good weldability. Thus, it was chosen as the alloy for the space shuttles super light external tank. Unfortunately, welding 2195 has turned out to be much more of a challenge than anticipated. Thus, research has been undergone in order to understand the mechanisms that are causing the welding problems. Gas reactions have been observed to be detrimental to weld strength. Water vapor has often been identified as having a significant role in these reactions. Nitrogen, however, has also been shown to have a direct correlation to porosity. These reactions were suspected as being complex and responsible for the two main problems of welding 2195. One, the initial welds of 2195 are much weaker than the parent metal. Second, each subsequent welding pass increases the size and number of cracks and porosity, yielding significant reductions in strength. Consequently, the objective of this research was to characterize the high-temperature reactions of 2195 in order to understand the mechanisms for crack growth and the formation of porosity in welds. In order to accomplish that goal, an optical hot-stage microscope, HSM, was used to observe those reactions as they occurred. Surface reactions of 2195 were observed in a variety of environments, such as air, vacuum, nitrogen and helium. For comparison, some samples of Al-2219 were also observed. Some of the reacted surfaces were then analyzed on a scanning electron microscope, SEM. Additionally, a gas chromatograph was used to analyze the gaseous products of the high temperature reactions.

  16. Ultra-low background and environmental measurements at Laboratorio Subterráneo de Canfranc (LSC).

    Science.gov (United States)

    Bandac, I; Borjabad, S; Ianni, A; Nuñez-Lagos, R; Pérez, C; Rodríguez, S; Villar, J A

    2017-08-01

    To support the construction of experiments at the Laboratorio Subterráneo de Canfranc (LSC) in Spain, an Ultra-Low Background Service (ULBS) and a Copper Electroforming Service (CES) were created. The measurement technique employed at the ULBS is gamma spectroscopy with high purity germanium (HPGe) detectors. A new anti-radon system is being implemented. The main goal of CES is to obtain high-purity copper pieces. A new electroforming set-up inside LSC underground clean room is planned. Radon and environmental measurements at the LSC are presented. The ULBS and CES are reviewed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. An Ultra-Low-Latency Geo-Routing Scheme for Team-Based Unmanned Vehicular Applications

    KAUST Repository

    Bader, Ahmed

    2016-02-26

    Results and lessons learned from the implementation of a novel ultra low-latency geo-routing scheme are presented in this paper. The geo-routing scheme is intended for team-based mobile systems whereby a cluster of unmanned autonomous vehicles are deployed to accomplish a critical mission under human supervision. The contention-free nature of the developed scheme lends itself to jointly achieve lower latency and higher throughput. Implementation challenges are presented and corresponding resolutions are discussed herewith. © 2015 IEEE.

  18. The MAJORANA experiment: an ultra-low background search for neutrinoless double-beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, D.; Aguayo Navarrete, Estanislao; Avignone, Frank T.; Back, Henning O.; Barabash, Alexander S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Collar, J. I.; Combs, Dustin C.; Cooper, R. J.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, Steven R.; Esterline, James H.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor; Giovanetti, G. K.; Green, Matthew P.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, Reyco; Hime, Andrew; Hoppe, Eric W.; Horton, Mark; Howard, Stanley; Howe, M. A.; Johnson, R. A.; Keeter, K.; Keller, C.; Kidd, Mary; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; LaRoque, B. H.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Merriman, Jason H.; Miller, M. L.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; Overman, Nicole R.; Poon, Alan; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Steele, David; Strain, J.; Thomas, K.; Timkin, V.; Tornow, W.; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, J. F.; Wolfe, B. A.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir; Zhang, C.

    2012-12-01

    The observation of neutrinoless double-beta decay would resolve the Majorana nature of the neutrino and could provide information on the absolute scale of the neutrino mass. The initial phase of the Majorana Experiment, known as the Demonstrator, will house 40 kg of Ge in an ultra-low background shielded environment at the 4850' level of the Sanford Underground Laboratory in Lead, SD. The objective of the Demonstrator is to validate whether a future 1-tonne experiment can achieve a background goal of one count per tonne-year in a narrow region of interest around the 76Ge neutrinoless double-beta decay peak.

  19. Ultra-low-frequency electromagnetic waves in the Earth's crust and magnetosphere

    International Nuclear Information System (INIS)

    Guglielmi, A V

    2007-01-01

    Research on natural intra- and extraterrestrially produced electromagnetic waves with periods ranging from 0.2 to 600 s is reviewed. The way in which the energy of rock movements transforms into the energy of an alternating magnetic field is analyzed. Methods for detecting seismomagnetic signals against a strong background are described. In discussing the physics of ultra-low-frequency waves in the magnetosphere, the 11-year activity modulation of 1-Hz waves and ponderomotive forces affecting plasma distribution are emphasized. (reviews of topical problems)

  20. Analysis of recrystallization and grain growth in ultra low carbon steels using EBSD

    International Nuclear Information System (INIS)

    Novillo, E.; Petite, M. M.; Bocos, J. L.; Gutierrez, I.

    2004-01-01

    This work is focused on the study of recrystallization texture and micro texture in a cold rolled ultra low carbon steel and its relationship with the global texture. Aspects like nucleation, evolution of the volume fraction and grain size were considered. An important grain selection associated with a significant size and number advantages of the recrystallized grains is observed. This grain selection gives rise to the development, at the latest stages of recrystallization, of a strong γ-fibre associated to good drawing properties. (Author) 24 refs

  1. Simultaneous measurement of tritium and radiocarbon by ultra-low-background proportional counting.

    Science.gov (United States)

    Mace, Emily; Aalseth, Craig; Alexander, Tom; Back, Henning; Day, Anthony; Hoppe, Eric; Keillor, Martin; Moran, Jim; Overman, Cory; Panisko, Mark; Seifert, Allen

    2017-08-01

    Use of ultra-low-background capabilities at Pacific Northwest National Laboratory provide enhanced sensitivity for measurement of low-activity sources of tritium and radiocarbon using proportional counters. Tritium levels are nearly back to pre-nuclear test backgrounds (~2-8 TU in rainwater), which can complicate their dual measurement with radiocarbon due to overlap in the beta decay spectra. We present results of single-isotope proportional counter measurements used to analyze a dual-isotope methane sample synthesized from ~120mg of H 2 O and present sensitivity results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Ultrastructural Study on Ultra-Low Frequency Electromagnetic Fields and Transfer Factor Effects on Skin Ulcers

    International Nuclear Information System (INIS)

    Cadena, M. S. Reyes; Chapul, L. Sanchez; Perez, Javier; Garcia, M. N. Jimenez; Lopez, M. A. Jimenez; Espindola, M. E. Sanchez; Perez, R. Paniagua; Hernandez, N. A.; Paniagua, G.; Uribe, F.; Nava, J. J. Godina; Segura, M. A. Rodriguez

    2008-01-01

    We determined the effect of 120Hz ultra low frequency electromagnetic field (ELF) on the healing process of skin in 20 Wistar rats distributed in four groups in which chronic dermal ulcers had been produced. The first two groups received a dose of the transfer factor and interferon-beta (IFN-β) every 24 h during 12 days. The third group (positive control) received only electromagnetic field (ELF) sessions, and in the fourth group (negative control), no treatment was applied. The electromagnetic field was applied through a Helmholtz coils; 30 Gauss of intensity. Results shown histological changes that improve the healing process in animals subjected to ELF together with the transfer factor

  3. 65NM sub-threshold 11T-SRAM for ultra low voltage applications

    DEFF Research Database (Denmark)

    Moradi, Farshad; Wisland, Dag T.; Aunet, Snorre

    In this paper a new ultra low power SRAM cell is proposed. In the proposed SRAM topology, additional circuitry has been added to a standard 6T-SRAM cell to improve the static noise margin (SNM) and the performance. Foundry models for a 65 nm standard CMOS process were used for obtaining reliable...... simulated results. The circuit was simulated for supply voltages from 0.2 V to 0.35 V verifying the robustness of the proposed circuit for different supply voltages. The simulations show a significant improvement in SNM and a 4X improvement in read speed still maintaining a satisfactory write noise margin...

  4. Design Margin Elimination Through Robust Timing Error Detection at Ultra-Low Voltage

    OpenAIRE

    Reyserhove, Hans; Dehaene, Wim

    2017-01-01

    This paper discusses a timing error masking-aware ARM Cortex M0 microcontroller system. Through in-path timing error detection, operation at the point-of-first-failure is possi- ble without corrupting the pipeline state, effectively eliminat- ing traditional timing margins. Error events are flagged and gathered to allow dynamic voltage scaling. The error-aware microcontroller was implemented in a 40nm CMOS process and realizes ultra-low voltage operation down to 0.29V at 5MHz consuming 12.90p...

  5. Capacitively coupled EMG detection via ultra-low-power microcontroller STFT.

    Science.gov (United States)

    Roland, Theresa; Baumgartner, Werner; Amsuess, Sebastian; Russold, Michael F

    2017-07-01

    As motion artefacts are a major problem with electromyography sensors, a new algorithm is developed to differentiate artefacts to contraction EMG. The performance of myoelectric prosthesis is increased with this algorithm. The implementation is done for an ultra-low-power microcontroller with limited calculation resources and memory. Short Time Fourier Transformation is used to enable real-time application. The sum of the differences (SOD) of the currently measured EMG to a reference contraction EMG is calculated. The SOD is a new parameter introduced for EMG classification. The satisfactory error rates are determined by measurements done with the capacitively coupling EMG prototype, recently developed by the research group.

  6. Temperature gradient compatibility tests of some refractory metals and alloys in bismuth and bismuth--lithium solutions

    International Nuclear Information System (INIS)

    DiStefano, J.R.; Cavin, O.B.

    1976-11-01

    Quartz, T-111, and Mo thermal-convection loop tests were conducted at temperatures up to 700 0 C (100 0 C ΔT) to determine the compatibility of several refractory metals/alloys with bismuth and bismuth-lithium solutions for molten salt breeder reactor applications. Methods of evaluation included weight change measurements, metallographic examination, chemical and electron microprobe analysis, and mechanical properties tests. Molybdenum, T-111, and TA--10 percent W appear to be the most promising containment materials, while niobium and iron-based alloys are unacceptable

  7. Lithium-deficient Li YMn2O4 spinels (0.9 ≤ Y < 1): Lithium content, synthesis temperature, thermal behaviour and electrochemical properties

    International Nuclear Information System (INIS)

    Pascual, Laura; Perez-Revenga, M. Luz; Rojas, Rosa M.; Rojo, Jose M.; Amarilla, J. Manuel

    2006-01-01

    Lithium-deficient Li Y Mn 2 O 4 spinels (LD-Li Y Mn 2 O 4 ) with nominal composition (0.9 ≤ Y 2 O 3 and LiNO 3 at temperatures ranging from 700 deg. C to 850 deg. C. X-ray diffraction data show that LD-Li Y Mn 2 O 4 spinels are obtained as single phases in the range Y = 0.975-1 at 700 deg. C and 750 deg. C. Morphological characterization by transmission electron microscopy shows that the particle size of LD-Li Y Mn 2 O 4 spinels increases on decreasing the Li-content. The influence of the Li-content and the synthesis temperature on the thermal and electrochemical behaviours has been systematically studied. Thermal analysis studies indicate that the temperature of the first thermal effect in the differential thermal analysis (DTA)/thermogravimetric (TG) curves, T C1 , linearly increases on decreasing the Li-content. The electrochemical properties of LD-Li Y Mn 2 O 4 spinels, determined by galvanostatic cycling, notably change with the synthesis conditions. So, the first discharge capacity, Q disch. , at C rate increases on rising the Li-content and the synthesis temperature. The sample Li 0.975 Mn 2 O 4 synthesized at 700 deg. C has a Q disch. = 123 mAh g -1 and a capacity retention of 99.77% per cycle. This LD-Li Y Mn 2 O 4 sample had the best electrochemical characteristics of the series

  8. High-temperature irradiation of niobium-1 w/o zirconium-clad UO/sub 2/. [Compatibility with lithium

    Energy Technology Data Exchange (ETDEWEB)

    Kangilaski, M.; Fromm, E.O.; Lozier, D.H.; Storhok, V.W.; Gates, J.E.

    1965-06-28

    Twenty-four 0.225-in.-diameter and six 0.290-in.-diameter UO/sub 2/ specimens clad with 80 mils of niobium-1 w/o zirconium were irradiated to burnups of 1.4 to 6.0 at. % of uranium at surface temperatures of 900 to 1400/sup 0/C. UO/sub 2/ and lithium were found to be incompatible at these temperatures, and the thick cladding was used primarily to minimize the chances of contact of UO/sub 2/ and the lithium coolant. The thickly clad specimens did not undergo any dimensional changes as a result of irradiation, although it was found that movement of UO/sub 2/ took place in the axial direction by a vaporization-redeposition mechanism. It was found that 32 to 87% of the fission gases was released from the fuel, depending on the temperature of the specimen. Metallographic examination of longitudinal and transverse sections of the specimens indicated the usual UO/sub 2/ microstructure with columnar grains. Grain-boundary thickening was observed in the UO/sub 2/ at higher burnups. The oxygen/uranium ratio of UO/sub 2/ increased with increasing burnup.

  9. Suppressed gross erosion of high-temperature lithium via rapid deuterium implantation

    NARCIS (Netherlands)

    Abrams, T.; Jaworski, M. A.; Chen, M.; Carter, E. A.; Kaita, R.; Stotler, D. P.; De Temmerman, G.; Morgan, T. W.; van den Berg, M. A.; van der Meiden, H. J.

    2016-01-01

    Lithium-coated high- Z substrates are planned for use in the NSTX-U divertor and are a candidate plasma facing component (PFC) for reactors, but it remains necessary to characterize the gross Li erosion rate under high plasma fluxes (>10 23 m −2 s −1 ), typical for the divertor region. In this

  10. Erbium medium temperature localised doping into lithium niobate and sapphire: A comparative study

    Czech Academy of Sciences Publication Activity Database

    Nekvindová, P.; Macková, Anna; Peřina, Vratislav; Červená, Jarmila; Čapek, P.; Schrofel, J.; Špirková, J.; Oswald, Jiří

    90-91, - (2003), s. 559-564 ISSN 1012-0394 Institutional research plan: CEZ:AV0Z1048901 Keywords : lithium niobate * sapphire * erbium Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.687, year: 2003

  11. Dissolution behavior of lithium compounds in ethanol

    Directory of Open Access Journals (Sweden)

    Tomohiro Furukawa

    2016-12-01

    Full Text Available In order to exchange the components which received irradiation damage during the operation at the International Fusion Materials Irradiation Facility, the adhered lithium, which is partially converted to lithium compounds such as lithium oxide and lithium hydroxide, should be removed from the components. In this study, the dissolution experiments of lithium compounds (lithium nitride, lithium hydroxide, and lithium oxide were performed in a candidate solvent, allowing the clarification of time and temperature dependence. Based on the results, a cleaning procedure for adhered lithium on the inner surface of the components was proposed.

  12. Electrical activation of solid-phase epitaxially regrown ultra-low energy boron implants in Ge preamorphised silicon and SOI

    International Nuclear Information System (INIS)

    Hamilton, J.J.; Collart, E.J.H.; Colombeau, B.; Jeynes, C.; Bersani, M.; Giubertoni, D.; Sharp, J.A.; Cowern, N.E.B.; Kirkby, K.J.

    2005-01-01

    The formation of highly activated ultra-shallow junctions (USJ) is one of the key requirements for the next generation of CMOS devices. One promising method for achieving this is the use of Ge preamorphising implants (PAI) prior to ultra-low energy B implantation. In future technology nodes, bulk silicon wafers may be supplanted by Silicon-on-Insulator (SOI), and an understanding of the Solid Phase Epitaxial (SPE) regrowth process and its correlation to dopant electrical activation in both bulk silicon and SOI is essential in order to understand the impact of this potential technology change. This kind of understanding will also enable tests of fundamental models for defect evolution and point-defect reactions at silicon/oxide interfaces. In the present work, B is implanted into Ge PAI silicon and SOI wafers with different PAI conditions and B doses, and resulting samples are annealed at various temperatures and times. Glancing-exit Rutherford Backscattering Spectrometry (RBS) is used to monitor the regrowth of the amorphous silicon, and the resulting redistribution and electrical activity of B are monitored by SIMS and Hall measurements. The results confirm the expected enhancement of regrowth velocity by B doping, and show that this velocity is otherwise independent of the substrate type and the Ge implant distribution within the amorphised layer. Hall measurements on isochronally annealed samples show that B deactivates less in SOI material than in bulk silicon, in cases where the Ge PAI end-of-range defects are close to the SOI back interface

  13. Ultra-low-energy ion-beam synthesis of nanometer-separated Si nanoparticles and Ag nanocrystals 2D layers

    Science.gov (United States)

    Carrada, M.; Haj Salem, A.; Pecassou, B.; Paillard, V.; Ben Assayag, G.

    2018-03-01

    2D networks of Si and Ag nanocrystals have been fabricated in the same SiO2 matrix by Ultra-Low-Energy Ion-Beam-Synthesis. Our synthesis scheme differs from a simple sequential ion implantation and its key point is the control of the matrix integrity through an appropriate intermediate thermal annealing. Si nanocrystal layer is synthesised first due to high thermal budget required for nucleation, while the second Ag nanocrystal plane is formed during a subsequent implantation due to the high diffusivity of Ag in silica. The aim of this work is to show how it is possible to overcome the limitation related to ion mixing and implantation damage to obtain double layers of Si-NCs and Ag-NCs with controlled characteristics. For this, we take advantage of annealing under slight oxidizing ambient to control the oxidation of Si-NCs and the Si excess in the matrix. The nanocrystal characteristics and in particular their position and size can be adjusted thanks to a compromise between the implantation energy, the implanted dose for both Si and Ag ions and the intermediate annealing conditions (atmosphere, temperature and duration).

  14. Ultra-low-pressure sputtering to improve exchange bias and tune linear ranges in spin valves

    Energy Technology Data Exchange (ETDEWEB)

    Tang, XiaoLi, E-mail: tangtang1227@163.com; Yu, You; Liu, Ru; Su, Hua; Zhang, HuaiWu; Zhong, ZhiYong; Jing, YuLan

    2017-05-01

    A series of CoFe/IrMn exchange bilayers was grown by DC-sputtering at different ultra-low argon pressures ranging from 0.008 to 0.1 Pa. This pressure range was one to two orders lower than the normal sputtering pressure. Results revealed that the exchange bias increased from 140 to 250 Oe in CoFe(10 nm)/IrMn (15 nm) bilayers of fixed thickness because of the improved crystalline structure and morphological uniformity of films. Since ferromagnetic /antiferromagnetic (FM/AF) bilayers are always used in linear magnetic sensors as detection layers, the varying exchange bias can successfully achieve tunable linear range in a crossed pinning spin valve. The linear range could be adjustable from −80 Oe – +80 Oe to −150 Oe – +150 Oe on the basis of giant magnetoresistance responses. Therefore, this method provides a simple method to tune the operating range of magnetic field sensors. - Highlights: • Increasing exchange bias was achieved in bilayer at ultra-low-pressure sputtering. • The low void density and smooth surface were achieved in low pressure. • Varying exchange bias achieved tunable linear range in spin valve.

  15. Ultra low nanowear in novel chromium/amorphous chromium carbide nanocomposite films

    Science.gov (United States)

    Yate, Luis; Martínez-de-Olcoz, Leyre; Esteve, Joan; Lousa, Arturo

    2017-10-01

    In this work, we report the first observation of novel nanocomposite thin films consisting of nanocrystalline chromium embedded in an amorphous chromium carbide matrix (nc-Cr/a-CrC) with relatively high hardness (∼22,3 GPa) and ultra low nanowear. The films were deposited onto silicon substrates using a magnetic filtered cathodic arc deposition system at various negative bias voltages, from 50 to 450 V. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) suggested the co-existence of chromium and chromium carbide phases, while high resolution transmission electron microscopy (HRTEM) confirmed the presence of the nc-Cr/a-CrC structure. The friction coefficient measured with the ball-on disk technique and the nanowear results showed a strong correlation between the macro and nano-tribological properties of the samples. These novel nanocomposite films show promising properties as solid lubricant and wear resistant coatings with relatively high hardness, low friction coefficient and ultra low nanowear.

  16. Operator dependency of the radiation exposure in cardiac interventions: feasibility of ultra low dose levels

    International Nuclear Information System (INIS)

    Emre Ozpelit, Mehmet; Ercan, Ertugrul; Pekel, Nihat; Tengiz, Istemihan; Yilmaz, Akar; Ozpelit, Ebru; Ozyurtlu, Ferhat

    2017-01-01

    Introduction: Mean radiation exposure in invasive cardiology varies greatly between different centres and interventionists. The International Commission on Radiological Protection and the EURATOM Council stipulate that, despite reference values, 'All medical exposure for radiodiagnostic purposes shall be kept as low as reasonably achievable' (ALARA). The purpose of this study is to establish the effects of the routine application of ALARA principles and to determine operator and procedure impact on radiation exposure in interventional cardiology. Materials and methods: A total of 240 consecutive cardiac interventional procedures were analysed. Five operators performed the procedures, two of whom were working in accordance with ALARA principles (Group 1 operators) with the remaining three working in a standard manner (Group 2 operators). Radiation exposure levels of these two groups were compared. Results: Total fluoroscopy time and the number of radiographic runs were similar between groups. However, dose area product and cumulative dose were significantly lower in Group 1 when compared with Group 2. Radiation levels of Group 1 were far below even the reference levels in the literature, thus representing an ultra-low-dose radiation exposure in interventional cardiology. Conclusion: By use of simple radiation reducing techniques, ultra-low-dose radiation exposure is feasible in interventional cardiology. Achievability of such levels depends greatly on operator awareness, desire, knowledge and experience of radiation protection. (authors)

  17. Controlling low-rate signal path microdischarge for an ultra-low-background proportional counter

    International Nuclear Information System (INIS)

    Mace, E.K.; Aalseth, C.E.; Bonicalzi, R.M.; Day, A.R.; Hoppe, E.W.; Keillor, M.E.; Myers, A.W.; Overman, C.T.; Seifert, A.

    2013-01-01

    Pacific Northwest National Laboratory (PNNL) has developed an ultra-low-background proportional counter (ULBPC) made of high purity copper. These detectors are part of an ultra-low-background counting system (ULBCS) in the newly constructed shallow underground laboratory at PNNL (at a depth of ∼30 m water-equivalent). To control backgrounds, the current preamplifier electronics are located outside the ULBCS shielding. Thus the signal from the detector travels through ∼1 m of cable and is potentially susceptible to high voltage microdischarge and other sources of electronic noise. Based on initial successful tests, commercial cables and connectors were used for this critical signal path. Subsequent testing across different batches of commercial cables and connectors, however, showed unwanted (but still low) rates of microdischarge noise. To control this noise source, two approaches were pursued: first, to carefully validate cables, connectors, and other commercial components in this critical signal path, making modifications where necessary; second, to develop a custom low-noise, low-background preamplifier that can be integrated with the ULBPC and thus remove most commercial components from the critical signal path. This integrated preamplifier approach is based on the Amptek A250 low-noise charge-integrating preamplifier module. The initial microdischarge signals observed are presented and characterized according to the suspected source. Each of the approaches for mitigation is described, and the results from both are compared with each other and with the original performance seen with commercial cables and connectors. (author)

  18. Note: Expanding the bandwidth of the ultra-low current amplifier using an artificial negative capacitor.

    Science.gov (United States)

    Xie, Kai; Liu, Yan; Li, XiaoPing; Guo, Lixin; Zhang, Hanlu

    2016-04-01

    The bandwidth and low noise characteristics are often contradictory in ultra-low current amplifier, because an inevitable parasitic capacitance is paralleled with the high value feedback resistor. In order to expand the amplifier's bandwidth, a novel approach was proposed by introducing an artificial negative capacitor to cancel the parasitic capacitance. The theory of the negative capacitance and the performance of the improved amplifier circuit with the negative capacitor are presented in this manuscript. The test was conducted by modifying an ultra-low current amplifier with a trans-impedance gain of 50 GΩ. The results show that the maximum bandwidth was expanded from 18.7 Hz to 3.3 kHz with more than 150 times of increase when the parasitic capacitance (∼0.17 pF) was cancelled. Meanwhile, the rise time decreased from 18.7 ms to 0.26 ms with no overshot. Any desired bandwidth or rise time within these ranges can be obtained by adjusting the ratio of cancellation of the parasitic and negative capacitance. This approach is especially suitable for the demand of rapid response to weak current, such as transient ion-beam detector, mass spectrometry analysis, and fast scanning microscope.

  19. Ultra-low current biosensor output detection using portable electronic reader

    Science.gov (United States)

    Yahaya, N. A. N.; Rajapaksha, R. D. A. A.; Uda, M. N. Afnan; Hashim, U.

    2017-09-01

    Generally, the electrical biosensor usually shows extremely low current signal output around pico ampere to microampere range. In this research, electronic reader with amplifier has been demonstrated to detect ultra low current via the biosensor. The operational amplifier Burr-Brown OPA 128 and Arduino Uno board were used to construct the portable electronic reader. There are two cascaded inverting amplifier were used to detect ultra low current through the biosensor from pico amperes (pA) to nano amperes ranges (nA). A small known input current was form by applying variable voltage between 0.1V to 5.0V across a 5GΩ high resistor to check the amplifier circuit. The amplifier operation was measured with the high impedance current source and has been compared with the theoretical measurement. The Arduino Uno was used to convert the analog signal to digital signal and process the data to display on reader screen. In this project, Proteus software was used to design and test the circuit. Then it was implemented together with Arduino Uno board. Arduino board was programmed using C programming language to make whole circuit communicate each order. The current was measured then it shows a small difference values compared to theoretical values, which is approximately 14pA.

  20. Note: Expanding the bandwidth of the ultra-low current amplifier using an artificial negative capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Kai, E-mail: kaixie@mail.xidian.edu.cn; Liu, Yan; Li, XiaoPing [School of Aerospace Science and Technology, Xidian University, Xi’an 710071 (China); Guo, Lixin [School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071 (China); Zhang, Hanlu [School of Communication & Information Engineering, Xi’an University of Posts & Telecommunication, Xi’an 710121 (China)

    2016-04-15

    The bandwidth and low noise characteristics are often contradictory in ultra-low current amplifier, because an inevitable parasitic capacitance is paralleled with the high value feedback resistor. In order to expand the amplifier’s bandwidth, a novel approach was proposed by introducing an artificial negative capacitor to cancel the parasitic capacitance. The theory of the negative capacitance and the performance of the improved amplifier circuit with the negative capacitor are presented in this manuscript. The test was conducted by modifying an ultra-low current amplifier with a trans-impedance gain of 50 GΩ. The results show that the maximum bandwidth was expanded from 18.7 Hz to 3.3 kHz with more than 150 times of increase when the parasitic capacitance (∼0.17 pF) was cancelled. Meanwhile, the rise time decreased from 18.7 ms to 0.26 ms with no overshot. Any desired bandwidth or rise time within these ranges can be obtained by adjusting the ratio of cancellation of the parasitic and negative capacitance. This approach is especially suitable for the demand of rapid response to weak current, such as transient ion-beam detector, mass spectrometry analysis, and fast scanning microscope.

  1. Effect of weld metal toughness on fracture behavior under ultra-low cycle fatigue loading (earthquake)

    Energy Technology Data Exchange (ETDEWEB)

    Kermajani, M. [School of Materials Engineering, College of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ghaini, F. Malek, E-mail: Fmalek@modares.ac.ir [School of Materials Engineering, College of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Miresmaeili, R. [School of Materials Engineering, College of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Aghakouchak, A.A. [School of Civil Engineering, College of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Shadmand, M. [Department of Research and Development, MAPNA Electric and Control (MECO) Company, Karaj (Iran, Islamic Republic of)

    2016-06-21

    Results from 12 ultra-low cycle fatigue tests performed on the weld metals of both toughness and non-toughness rated grades are presented. Fracture resistance under these loadings seemed to be dependent on materials' toughness, displacement amplitude, and stress state triaxiality, while the toughness effect was more highlighted at high stress levels and concentrations. To study the effect of microstructures on these failures, supporting ancillary tests including all-weld tension coupons, Charpy V-notched impact tests, and optical and scanning electron microscope analyses were performed. The favored microstructures appeared to be those which absorbed energy by plastic deformation and, hence, hindered void formation and/or could avoid crack propagation by deflection. Considering the response of the tested materials to cyclic loadings and the requirements of the materials specified in AISC341 Provisions could question the adequacy of these requirements for weld metals. However, the role of microstructural features like inclusions would be the same in both the Charpy impact tests and ultra-low cycle loadings.

  2. Calibration of an ultra-low-background proportional counter for measuring 37Ar

    International Nuclear Information System (INIS)

    Seifert, A.; Aalseth, C. E.; Bonicalzi, R. M.; Bowyer, T. W.; Day, A. R.; Fuller, E. S.; Haas, D. A.; Hayes, J. C.; Hoppe, E. W.; Humble, P. H.; Keillor, M. E.; LaFerriere, B. D.; Mace, E. K.; McIntyre, J. I.; Merriman, J. H.; Miley, H. S.; Myers, A. W.; Orrell, J. L.; Overman, C. T.; Panisko, M. E.

    2013-01-01

    An ultra-low-background proportional counter design has been developed at Pacific Northwest National Laboratory (PNNL) using clean materials, primarily electro-chemically-purified copper. This detector, along with an ultra-low-background counting system (ULBCS), was developed to complement a new shallow underground laboratory (30 meters water-equivalent) at PNNL. The ULBCS design includes passive neutron and gamma shielding, along with an active cosmic-veto system. This system provides a capability for making ultra-sensitive measurements to support applications like age-dating soil hydrocarbons with 14 C/ 3 H, age-dating of groundwater with 39 Ar, and soil-gas assay for 37 Ar to support On-Site Inspection (OSI). On-Site Inspection is a key component of the verification regime for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Measurements of radionuclides created by an underground nuclear explosion are valuable signatures of a Treaty violation. For OSI, the 35-day half-life of 37 Ar, produced from neutron interactions with calcium in soil, provides both high specific activity and sufficient time for inspection before decay limits sensitivity. This work describes the calibration techniques and analysis methods developed to enable quantitative measurements of 37 Ar samples over a broad range of proportional counter operating pressures. These efforts, along with parallel work in progress on gas chemistry separation, are expected to provide a significant new capability for 37 Ar soil gas background studies

  3. Molybdenum disulfide for ultra-low detection of free radicals: electrochemical response and molecular modeling

    Science.gov (United States)

    Gupta, Ankur; Rawal, Takat B.; Neal, Craig J.; Das, Soumen; Rahman, Talat S.; Seal, Sudipta

    2017-06-01

    Two-dimensional (2D) molybdenum disulfide (MoS2) offers attractive properties due to its band gap modulation and has led to significant research-oriented applications (i.e. DNA and protein detection, cell imaging (fluorescent label) etc.). In biology, detection of free radicals (i.e. reactive oxygen species and reactive nitrogen (NO*) species are very important for early discovery and treatment of diseases. Herein, for the first time, we demonstrate the ultra-low (pico-molar) detection of pharmaceutically relevant free radicals using MoS2 for electrochemical sensing. We present pico- to nano- molar level sensitivity in smaller MoS2 with S-deficiency as revealed by x-ray photoelectron spectroscopy. Furthermore, the detection mechanism and size-dependent sensitivity have been investigated by density functional theory (DFT) showing the change in electronic density of states of Mo atoms at edges which lead to the preferred adsorption of H2O2 on Mo edges. The DFT analysis signifies the role of size and S-deficiency in the higher catalytic activity of smaller MoS2 particles and, thus, ultra-low detection.

  4. Investigation of ultra low-dose scans in the context of quantum-counting clinical CT

    Science.gov (United States)

    Weidinger, T.; Buzug, T. M.; Flohr, T.; Fung, G. S. K.; Kappler, S.; Stierstorfer, K.; Tsui, B. M. W.

    2012-03-01

    In clinical computed tomography (CT), images from patient examinations taken with conventional scanners exhibit noise characteristics governed by electronics noise, when scanning strongly attenuating obese patients or with an ultra-low X-ray dose. Unlike CT systems based on energy integrating detectors, a system with a quantum counting detector does not suffer from this drawback. Instead, the noise from the electronics mainly affects the spectral resolution of these detectors. Therefore, it does not contribute to the image noise in spectrally non-resolved CT images. This promises improved image quality due to image noise reduction in scans obtained from clinical CT examinations with lowest X-ray tube currents or obese patients. To quantify the benefits of quantum counting detectors in clinical CT we have carried out an extensive simulation study of the complete scanning and reconstruction process for both kinds of detectors. The simulation chain encompasses modeling of the X-ray source, beam attenuation in the patient, and calculation of the detector response. Moreover, in each case the subsequent image preprocessing and reconstruction is modeled as well. The simulation-based, theoretical evaluation is validated by experiments with a novel prototype quantum counting system and a Siemens Definition Flash scanner with a conventional energy integrating CT detector. We demonstrate and quantify the improvement from image noise reduction achievable with quantum counting techniques in CT examinations with ultra-low X-ray dose and strong attenuation.

  5. Using MOF-74 for Hg{sup 2+} removal from ultra-low concentration aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Yang Yang; Li, Jian Qiang; Gong, Le Le; Feng, Xue Feng; Meng, Li Na; Zhang, Le; Meng, Pan Pan; Luo, Ming Biao; Luo, Feng, E-mail: ecitluofeng@163.com

    2017-02-15

    Mercury (Hg{sup 2+}) ions have very high toxicity and widely spread as environmental pollutants. At present, many efforts have been taken to remove the hazardous materials of mercury(II) by adsorption, and it is highly desirable to develop a novel adsorbent with high adsorptive capacities. However it is still a big challenge to remove the ultra-low-concentration mercury ions from water. In this paper, MOF-74-Zn is explored for such function, showing high removal rate of Hg(II) from water without any pretreatment, especially for the ultra-trace Hg(II) ions in the ppb magnitude with the removal rate reaching to 54.48%, 69.71%, 72.26% when the initial concentration of Hg(II) is 20ppb, 40ppb, 50ppb, respectively. - Graphical abstract: The absorption of mercury ions on MOF-74-Zn is due to somewhat weak interactions between MOF skeleton that is composed of carboxylate and hydroxy group and Hg2+ ions. - Highlights: • MOF-74-Zn shows high removal rate of Hg(II) from water without any pretreatment. • The MOF-74-Zn has a notable performance at ultra-low concentration of Hg(II). • MOF-74-Zn shows the potential for Hg(II) removal from industrial waste water.

  6. Environmental response nanosilica for reducing the pressure of water injection in ultra-low permeability reservoirs

    Science.gov (United States)

    Liu, Peisong; Niu, Liyong; Li, Xiaohong; Zhang, Zhijun

    2017-12-01

    The super-hydrophobic silica nanoparticles are applied to alter the wettability of rock surface from water-wet to oil-wet. The aim of this is to reduce injection pressure so as to enhance water injection efficiency in low permeability reservoirs. Therefore, a new type of environmentally responsive nanosilica (denote as ERS) is modified with organic compound containing hydrophobic groups and "pinning" groups by covalent bond and then covered with a layer of hydrophilic organic compound by chemical adsorption to achieve excellent water dispersibility. Resultant ERS is homogeneously dispersed in water with a size of about 4-8 nm like a micro-emulsion system and can be easily injected into the macro or nano channels of ultra-low permeability reservoirs. The hydrophobic nanosilica core can be released from the aqueous delivery system owing to its strong dependence on the environmental variation from normal condition to injection wells (such as pH and salinity). Then the exposed silica nanoparticles form a thin layer on the surface of narrow pore throat, leading to the wettability from water-wet to oil-wet. More importantly, the two rock cores with different permeability were surface treated with ERS dispersion with a concentration of 2 g/L, exhibit great reduce of water injection pressure by 57.4 and 39.6%, respectively, which shows great potential for exploitation of crude oil from ultra-low permeability reservoirs during water flooding. [Figure not available: see fulltext.

  7. Perineal pseudocontinent colostomy for ultra-low rectal adenocarcinoma: the muscular graft as a pseudosphincter.

    Science.gov (United States)

    Souadka, Amine; Majbar, Mohammed Anass; Amrani, Laila; Souadka, Abdelilah

    2016-10-01

    The aim of this study was to analyze objectively the role of the muscular graft in the continence using manometric study in the patients who underwent pseudocontinent perineal colostomy after abdominoperineal resection for rectal adenocarcinoma. This was a retrospective study including all the patients from January 2002 to December 2009 who underwent an abdominoperineal resection followed by perineal pseudocontinent colostomy for ultra-low rectal adenocarcinoma and agreed to perform the manometric evaluation of the muscular graft. Fifteen patients were included, six males and nine females, with a mean age of 50 years. According to Kirwan's classification, 2 (13.3%) patients had normal continence (Stage A) had 10 (66.6%) no soiling (stage B) and 3 (20%) patients had minimal soiling (Stage C). The manometric evaluation was performed after a median period of 12 months post-surgery. The mean maximal resting and squeeze pressures were respectively 41 cmH2O and 59 cmH2O and the mean colonic sensory volume was 12 ml. This study showed that the musculae graft of Pseudocontinent Perineal colostomy acted as a hypotonic sphincter that pressure can increase during the voluntary squeeze. These data may help to clarify the functional outcomes of this technique after APR for ultra-low rectal adenocarcinoma.

  8. Using MOF-74 for Hg2+ removal from ultra-low concentration aqueous solution

    International Nuclear Information System (INIS)

    Xiong, Yang Yang; Li, Jian Qiang; Gong, Le Le; Feng, Xue Feng; Meng, Li Na; Zhang, Le; Meng, Pan Pan; Luo, Ming Biao; Luo, Feng

    2017-01-01

    Mercury (Hg 2+ ) ions have very high toxicity and widely spread as environmental pollutants. At present, many efforts have been taken to remove the hazardous materials of mercury(II) by adsorption, and it is highly desirable to develop a novel adsorbent with high adsorptive capacities. However it is still a big challenge to remove the ultra-low-concentration mercury ions from water. In this paper, MOF-74-Zn is explored for such function, showing high removal rate of Hg(II) from water without any pretreatment, especially for the ultra-trace Hg(II) ions in the ppb magnitude with the removal rate reaching to 54.48%, 69.71%, 72.26% when the initial concentration of Hg(II) is 20ppb, 40ppb, 50ppb, respectively. - Graphical abstract: The absorption of mercury ions on MOF-74-Zn is due to somewhat weak interactions between MOF skeleton that is composed of carboxylate and hydroxy group and Hg2+ ions. - Highlights: • MOF-74-Zn shows high removal rate of Hg(II) from water without any pretreatment. • The MOF-74-Zn has a notable performance at ultra-low concentration of Hg(II). • MOF-74-Zn shows the potential for Hg(II) removal from industrial waste water.

  9. Ultra-Low Noise Germanium Neutrino Detection system (ULGeN).

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera-Palmer, Belkis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barton, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-07-01

    Monitoring nuclear power plant operation by measuring the antineutrino flux has become an active research field for safeguards and non-proliferation. We describe various efforts to demonstrate the feasibility of reactor monitoring based on the detection of the Coherent Neutrino Nucleus Scattering (CNNS) process with High Purity Germanium (HPGe) technology. CNNS detection for reactor antineutrino energies requires lowering the electronic noise in low-capacitance kg-scale HPGe detectors below 100 eV as well as stringent reduction in other particle backgrounds. Existing state- of-the-art detectors are limited to an electronic noise of 95 eV-FWHM. In this work, we employed an ultra-low capacitance point-contact detector with a commercial integrated circuit preamplifier- on-a-chip in an ultra-low vibration mechanically cooled cryostat to achieve an electronic noise of 39 eV-FWHM at 43 K. We also present the results of a background measurement campaign at the Spallation Neutron Source to select the area with sufficient low background to allow a successful first-time measurement of the CNNS process.

  10. Development of an underground HPGe array facility for ultra low radioactivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sala, E.; Kang, W. G.; Kim, Y. D.; Lee, M. H.; Leonard, D. S. [Center for Underground Physics - Institute for Basic Science, Daejeon (Korea, Republic of); Hahn, I. S.; Kim, G. W.; Park, S. Y. [Ewha Womans University, Physics Department, Seoul (Korea, Republic of)

    2015-08-17

    Low Level Counting techniques using low background facilities are continuously under development to increase the possible sensitivity needed for rare physics events experiments. The CUP (Center for Underground Physics) group of IBS is developing, in collaboration with Canberra, a ultra low background instrument composed of two arrays facing each other with 7 HPGe detectors each. The low radioactive background of each detector has been evaluated and improved by the material selection of the detector components. Samples of all the building materials have been provided by the manufacturer and the contaminations had been measured using an optimized low background 100% HPGe with a dedicated shielding. The evaluation of the intrinsic background has been performed using MonteCarlo simulations and considering the contribution of each material with the measured contamination. To further reduce the background, the instrument will be placed in the new underground laboratory at YangYang exploiting the 700m mountain coverage and radon-free air supplying system. The array has been designed to perform various Ultra Low background measurements; the sensitivity we are expecting will allow not only low level measurements of Ra and Th contaminations in Copper or other usually pure materials, but also the search for rare decays. In particular some possible candidates and configurations to detect the 0νECEC (for example {sup 106}Cd and {sup 156}Dy) and rare β decays ({sup 96}Zr, {sup 180m}Ta , etc ) are under study.

  11. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    Energy Technology Data Exchange (ETDEWEB)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2015-12-15

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  12. Ultra-Low Power Sensor System for Disaster Event Detection in Metro Tunnel Systems

    Directory of Open Access Journals (Sweden)

    Jonah VINCKE

    2017-05-01

    Full Text Available In this extended paper, the concept for an ultra-low power wireless sensor network (WSN for underground tunnel systems is presented highlighting the chosen sensors. Its objectives are the detection of emergency events either from natural disasters, such as flooding or fire, or from terrorist attacks using explosives. Earlier works have demonstrated that the power consumption for the communication can be reduced such that the data acquisition (i.e. sensor sub-system becomes the most significant energy consumer. By using ultra-low power components for the smoke detector, a hydrostatic pressure sensor for water ingress detection and a passive acoustic emission sensor for explosion detection, all considered threats are covered while the energy consumption can be kept very low in relation to the data acquisition. In addition to 1 the sensor system is integrated into a sensor board. The total average power consumption for operating the sensor sub-system is measured to be 35.9 µW for lower and 7.8 µW for upper nodes.

  13. Continuous operation of an ultra-low-power microcontroller using glucose as the sole energy source.

    Science.gov (United States)

    Lee, Inyoung; Sode, Takashi; Loew, Noya; Tsugawa, Wakako; Lowe, Christopher Robin; Sode, Koji

    2017-07-15

    An ultimate goal for those engaged in research to develop implantable medical devices is to develop mechatronic implantable artificial organs such as artificial pancreas. Such devices would comprise at least a sensor module, an actuator module, and a controller module. For the development of optimal mechatronic implantable artificial organs, these modules should be self-powered and autonomously operated. In this study, we aimed to develop a microcontroller using the BioCapacitor principle. A direct electron transfer type glucose dehydrogenase was immobilized onto mesoporous carbon, and then deposited on the surface of a miniaturized Au electrode (7mm 2 ) to prepare a miniaturized enzyme anode. The enzyme fuel cell was connected with a 100 μF capacitor and a power boost converter as a charge pump. The voltage of the enzyme fuel cell was increased in a stepwise manner by the charge pump from 330mV to 3.1V, and the generated electricity was charged into a 100μF capacitor. The charge pump circuit was connected to an ultra-low-power microcontroller. Thus prepared BioCapacitor based circuit was able to operate an ultra-low-power microcontroller continuously, by running a program for 17h that turned on an LED every 60s. Our success in operating a microcontroller using glucose as the sole energy source indicated the probability of realizing implantable self-powered autonomously operated artificial organs, such as artificial pancreas. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Development of ultra-low pressure reverse osmosis membranes; Choteiatsu gyakushintomaku no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, M.; Ito, H.; Ohara, T. [Nitto Denko Corp., Osaka (Japan)

    1998-06-05

    Described herein is development of ultra-low pressure reverse osmosis (RO) membranes. The composite RO membrane, which is now widely used, has a cross-sectional structure consisting of an ultrafilter membrane as the support and a very thin skin layer responsible for filtration. It is confirmed that the skin layer is of a pleated structure. Growing this structure can greatly accelerate permeation of water without damaging arresting and durability characteristics of the membrane, and hence is a desired approach. Utilization of molecular structure simulation of the skin layer materials is investigated by the molecular dynamics. The results show that the stable structure of the material for the skin layer in the RO membrane is a network structure with regularly arranged honeycombs, when it should arrest at least 99% of salt. These techniques serve as the bases for development of the ultra-low pressure RO membranes (ES Series), where the skin layer is made of cross-linked, totally aromatic polyamide. The membrane passes twice as large a quantity of water as the conventional one, is highly resistant to chemicals, and arrests 99.7% of salt. 3 refs., 4 figs.

  15. Ultra-low-volume space sprays in mosquito control: a critical review.

    Science.gov (United States)

    Bonds, J A S

    2012-06-01

    The availability of tools to control mosquito (Diptera:Culicidae) vectors that transmit disease is often limited by a variety of economic, environmental and social issues. In emergency conditions (epidemics, hurricanes, floods etc.), the application of pesticides as space sprays (either by ground or air) is the common method of choice in order to rapidly limit adult local mosquito production in the affected area. Space spray application now employs ultra-low-volume technology for the control of adult mosquitoes. However, the use of space sprays often raises social and environmental concerns by the general public that is served. This review will define and illustrate modern ultra-low-volume technology for the purpose of application as a space spray, as well as describing the engineering controls that have been developed to minimize the environmental impact. The primary social concern is validity and efficacy of application. To address this point, the review will attempt to synthesize the global literature to address the effectiveness of space sprays to significantly impact mosquito vectors in relation to human disease. © 2012 The Author. Medical and Veterinary Entomology © 2012 The Royal Entomological Society.

  16. Ultra-Low Noise Germanium Neutrino Detection system (ULGeN)

    International Nuclear Information System (INIS)

    Cabrera-Palmer, Belkis; Barton, Paul

    2017-01-01

    Monitoring nuclear power plant operation by measuring the antineutrino flux has become an active research field for safeguards and non-proliferation. We describe various efforts to demonstrate the feasibility of reactor monitoring based on the detection of the Coherent Neutrino Nucleus Scattering (CNNS) process with High Purity Germanium (HPGe) technology. CNNS detection for reactor antineutrino energies requires lowering the electronic noise in low-capacitance kg-scale HPGe detectors below 100 eV as well as stringent reduction in other particle backgrounds. Existing state- of-the-art detectors are limited to an electronic noise of 95 eV-FWHM. In this work, we employed an ultra-low capacitance point-contact detector with a commercial integrated circuit preamplifier- on-a-chip in an ultra-low vibration mechanically cooled cryostat to achieve an electronic noise of 39 eV-FWHM at 43 K. We also present the results of a background measurement campaign at the Spallation Neutron Source to select the area with sufficient low background to allow a successful first-time measurement of the CNNS process.

  17. A Combined State of Charge Estimation Method for Lithium-Ion Batteries Used in a Wide Ambient Temperature Range

    Directory of Open Access Journals (Sweden)

    Fei Feng

    2014-05-01

    Full Text Available Ambient temperature is a significant factor that influences the characteristics of lithium-ion batteries, which can produce adverse effects on state of charge (SOC estimation. In this paper, an integrated SOC algorithm that combines an advanced ampere-hour counting (Adv Ah method and multistate open-circuit voltage (multi OCV method, denoted as “Adv Ah + multi OCV”, is proposed. Ah counting is a simple and general method for estimating SOC. However, the available capacity and coulombic efficiency in this method are influenced by the operating states of batteries, such as temperature and current, thereby causing SOC estimation errors. To address this problem, an enhanced Ah counting method that can alter the available capacity and coulombic efficiency according to temperature is proposed during the SOC calculation. Moreover, the battery SOCs between different temperatures can be mutually converted in accordance with the capacity loss. To compensate for the accumulating errors in Ah counting caused by the low precision of current sensors and lack of accurate initial SOC, the OCV method is used for calibration and as a complement. Given the variation of available capacities at different temperatures, rated/non-rated OCV–SOCs are established to estimate the initial SOCs in accordance with the Ah counting SOCs. Two dynamic tests, namely, constant- and alternated-temperature tests, are employed to verify the combined method at different temperatures. The results indicate that our method can provide effective and accurate SOC estimation at different ambient temperatures.

  18. Ultra-Low Heat-Leak, High-Temperature Superconducting Current Leads for Space Applications

    Science.gov (United States)

    Rey, Christopher M.

    2013-01-01

    NASA Goddard Space Flight Center has a need for current leads used in an adiabatic demagnetization refrigerator (ADR) for space applications. These leads must comply with stringent requirements such as a heat leak of approximately 100 W or less while conducting up to 10 A of electric current, from more than 90 K down to 10 K. Additionally, a length constraint of leak leads currently to NASA's specs.

  19. Improvement of lithium-ion battery performance at low temperature by adopting polydimethylsiloxane-based electrolyte additives

    International Nuclear Information System (INIS)

    Kim, Kwang Man; Ly, Nguyen Vu; Won, Jung Ha; Lee, Young-Gi; Cho, Won Il; Ko, Jang Myoun; Kaner, Richard B.

    2014-01-01

    Three kinds of polydimethylsiloxane (PDMS)-based grafted and ungrafted copolymers such as poly[dimethylsiloxane-co-(siloxane-g-acrylate)] (PDMS-A), poly(dimethylsiloxane-co-phenylsiloxane) (PDMS-P), and poly[dimethylsiloxane-co-(siloxane-g-ethylene oxide)] (PDMS-EO) are used as additives to standard liquid electrolyte solutions to enhance the lithium-ion battery performance at low temperatures. Liquid electrolyte solutions with PDMS-based additives are electrochemically stable under 5.0 V and have adequate ionic conductivities of 10 −4 S cm −1 at -20 °C. Particularly, liquid electrolytes with PDMS-P and PDMS-EO exhibit higher ionic conductivities of around 5 × 10 −4 S cm −1 at -20 °C, indicating a specific resisting property against the freezing of the liquid electrolyte components. As a result, the addition of PDMS-based additives to liquid electrolytes improves the capacity retention ratio and rate-capability of lithium-ion batteries at low temperatures

  20. Electrolytes for Low Impedance, Wide Operating Temperature Range Lithium-Ion Battery Module

    Science.gov (United States)

    Hallac, Boutros (Inventor); Krause, Frederick C. (Inventor); Jiang, Junwei (Inventor); Smart, Marshall C. (Inventor); Metz, Bernhard M. (Inventor); Bugga, Ratnakumar V. (Inventor)

    2018-01-01

    A lithium ion battery cell includes a housing, a cathode disposed within the housing, wherein the cathode comprises a cathode active material, an anode disposed within the housing, wherein the anode comprises an anode active material, and an electrolyte disposed within the housing and in contact with the cathode and anode. The electrolyte consists essentially of a solvent mixture, a lithium salt in a concentration ranging from approximately 1.0 molar (M) to approximately 1.6 M, and an additive mixture. The solvent mixture includes a cyclic carbonate, an non-cyclic carbonate, and a linear ester. The additive mixture consists essentially of lithium difluoro(oxalato)borate (LiDFOB) in an amount ranging from approximately 0.5 weight percent to approximately 2.0 weight percent based on the weight of the electrolyte, and vinylene carbonate (VC) in an amount ranging from approximately 0.5 weight percent to approximately 2.0 weight percent based on the weight of the electrolyte.

  1. Liquid-liquid extraction to lithium isotope separation based on room-temperature ionic liquids containing 2,2'-binaphthyldiyl-17-crown-5

    International Nuclear Information System (INIS)

    Sun Xiaoli; Zhou Wen; Gu Lin; Qiu Dan; Ren Donghong; Gu Zhiguo; Li Zaijun

    2015-01-01

    A novel liquid-liquid extraction system was investigated for the selective separation of lithium isotopes using ionic liquids (ILs = C 8 mim + PF 6 - , C 8 mim + BF 4 - , and C 8 mim + NTf 2 - ) as extraction solvent and 2,2'-binaphthyldiyl-17-crown-5 (BN-17-5) as extractant. The effects of the concentration of lithium salt, counter anion of lithium salt, initial pH of aqueous phase, extraction temperature, and time on the lithium isotopes separation were discussed. Under optimized conditions, the maximum single-stage separation factor α of 6 Li/ 7 Li obtained in the present study was 1.046 ± 0.002, indicating the lighter isotope 6 Li was enriched in IL phase while the heavier isotope 7 Li was concentrated in the solution phase. The formation of 1:1 complex Li(BN-17-5) + in the IL phase was determined on the basis of slope analysis method. The large value of the free energy change (-ΔG° = 92.89 J mol -1 ) indicated the high separation capability of the Li isotopes by BN-17-5/IL system. Lithium in Li(BN-17-5) + complex was stripped by 1 mol L -1 HCl solution. The extraction system offers high efficiency, simplicity, and green application prospect to lithium isotope separation. (author)

  2. Hysteresis-free high-temperature precise bimorph actuators produced by direct bonding of lithium niobate wafers

    Energy Technology Data Exchange (ETDEWEB)

    Shur, V. Ya.; Baturin, I. S.; Mingaliev, E. A.; Zorikhin, D. V.; Udalov, A. R.; Greshnyakov, E. D. [Ferroelectric Laboratory, Institute of Natural Sciences, Ural Federal University, 51 Lenin Ave., 620000 Ekaterinburg (Russian Federation)

    2015-02-02

    The current paper presents a piezoelectric bimorph actuator produced by direct bonding of lithium niobate wafers with the mirrored Y and Z axes. Direct bonding technology allowed to fabricate bidomain plate with precise positioning of ideally flat domain boundary. By optimizing the cutting angle (128° Y-cut), the piezoelectric constant became as large as 27.3 pC/N. Investigation of voltage dependence of bending displacement confirmed that bimorph actuator has excellent linearity and hysteresis-free. Decrease of the applied voltage down to mV range showed the perfect linearity up to the sub-nm deflection amplitude. The frequency and temperature dependences of electromechanical transmission coefficient in wide temperature range (from 300 to 900 K) were investigated.

  3. COST-EFFECTIVE CONTROL OF NOx WITH INTEGRATED ULTRA LOW-NOx BURNERS AND SNCR

    International Nuclear Information System (INIS)

    Hamid Farzan

    2001-01-01

    Coal-fired electric utilities are facing a serious challenge with regards to curbing their NO(sub x) emissions. At issue are the NO(sub x) contributions to the acid rain, ground level ozone, and particulate matter formation. Substantial NO(sub x) control requirements could be imposed under the proposed Ozone Transport Rule, National Ambient Air Quality Standards, and New Source Performance Standards. McDermott Technology, Inc. (MTI), Babcock and Wilcox (B and W), and Fuel Tech are teaming to provide an integrated solution for NO(sub x) control. The system will be comprised of an ultra low-NO(sub x) pulverized coal (PC) burner technology plus a urea-based, selective non-catalytic reduction (SNCR) system. This system will be capable of meeting a target emission limit of 0.15 lb NO(sub x)/10(sup 6) Btu and target ammonia (NH3) slip level targeted below 5 ppmV for commercial units. Our approach combines the best available combustion and post-combustion NO(sub x) control technologies. More specifically, B and W's DRB-4Z TM ultra low-NO(sub x) PC burner technology will be combined with Fuel Tech's NO(sub x)OUT (SNCR) and NO(sub x)OUT Cascade (SNCR/SCR hybrid) systems and jointly evaluated and optimized in a state-of-the-art test facility at MTI. Although the NO(sub x)OUT Cascade (SNCR/SCR hybrid) system will not be tested directly in this program, its potential application for situations that require greater NO(sub x) reductions will be inferred from other measurements (i.e., SNCR NO(sub x) removal efficiency plus projected NO(sub x) reduction by the catalyst based on controlled ammonia slip). Our analysis shows that the integrated ultra low-NO(sub x) burner and SNCR system has the lowest cost when the burner emissions are 0.25 lb NO(sub x)/10(sup 6) Btu or less. At burner NO(sub x) emission level of 0.20 lb NO(sub x)/10(sup 6) Btu, the levelized cost per ton of NO(sub x) removed is 52% lower than the SCR cost

  4. [Electric traction magnetic fields of ultra-low frequency as an occupational risk factor of ischemic heart disease].

    Science.gov (United States)

    Ptitsyna, N G; Kudrin, V A; Villorezi, D; Kopytenko, Iu A; Tiasto, M I; Kopytenko, E A; Bochko, V A; Iuchchi, N

    1996-01-01

    The study was inspired by earlier results that displayed influence of variable natural geomagnetic field (0.005-10 Hz range-ultra-low frequencies) on circulatory system, indicated possible correlation between industrial ultra-low frequency fields and prevalence of myocardial infarction. The authors conducted unique measurements of ultra-low frequency fields produced by electric engines. The results were compared with data on morbidity among railway transport workers. The findings are that level of magnetic variations in electric locomotive cabin can exceed 280 micro Tesla, whereas that in car sections reaches 50 micro Tesla. Occurrence of coronary heart disease among the locomotive operators appeared to be 2.0 + 0.2 times higher than that among the car section operators. Higher risk of coronary heart disease in the locomotive operators is associated with their increased occupational magnetic load.

  5. Robust and Energy-Efficient Ultra-Low-Voltage Circuit Design under Timing Constraints in 65/45 nm CMOS

    Directory of Open Access Journals (Sweden)

    David Bol

    2011-01-01

    Full Text Available Ultra-low-voltage operation improves energy efficiency of logic circuits by a factor of 10×, at the expense of speed, which is acceptable for applications with low-to-medium performance requirements such as RFID, biomedical devices and wireless sensors. However, in 65/45 nm CMOS, variability and short-channel effects significantly harm robustness and timing closure of ultra-low-voltage circuits by reducing noise margins and jeopardizing gate delays. The consequent guardband on the supply voltage to meet a reasonable manufacturing yield potentially ruins energy efficiency. Moreover, high leakage currents in these technologies degrade energy efficiency in case of long stand-by periods. In this paper, we review recently published techniques to design robust and energy-efficient ultra-low-voltage circuits in 65/45 nm CMOS under relaxed yet strict timing constraints.

  6. Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan

    2010-01-01

    An ultra-low-loss coupler for interfacing a silicon-on-insulator ridge waveguide and a single-mode fiber in both polarizations is presented. The inverted taper coupler, embedded in a polymer waveguide, is optimized for both the transverse-magnetic and transverse-electric modes through tapering...... the width of the silicon-on-insulator waveguide from 450 nm down to less than 15 nm applying a thermal oxidation process. Two inverted taper couplers are integrated with a 3-mm long silicon-on-insulator ridge waveguide in the fabricated sample. The measured coupling losses of the inverted taper coupler...... for transverse-magnetic and transverse-electric modes are ~0.36 dB and ~0.66 dB per connection, respectively....

  7. Ultra low-noise differential ac-coupled photodetector for sensitive pulse detection applications

    International Nuclear Information System (INIS)

    Windpassinger, Patrick J; Boisen, Axel; Kjærgaard, Niels; Polzik, Eugene S; Müller, Jörg Helge; Kubasik, Marcin; Koschorreck, Marco

    2009-01-01

    We report on the performance of ultra low-noise differential photodetectors especially designed for probing of atomic ensembles with weak light pulses. The working principle of the detectors is described together with the analysis procedures employed to extract the photon shot noise of light pulses with ∼1 μs duration. As opposed to frequency response peaked detectors, our approach allows for broadband quantum noise measurements. The equivalent noise charge (ENC) for two different hardware approaches is evaluated to 280 and 340 electrons per pulse, respectively, which corresponds to a dark noise equivalent photon number of n 3dB = 0.8 × 10 5 and n 3dB = 1.2 × 10 5 in the two approaches. Finally, we discuss the possibility of removing classical correlations in the output signal caused by detector imperfection by using double-correlated sampling methods

  8. Development of contaminant detection system based on ultra-low field SQUID-NMR/MRI

    International Nuclear Information System (INIS)

    Tsunaki, S; Yamamoto, M; Hatta, J; Hatsukade, Y; Tanaka, S

    2014-01-01

    We have developed an ultra-low field (ULF) NMR/MRI system using an HTS-rf-SQUID and evaluated performance of the system as a contaminant detection system for foods and drinks. In this work, we measured 1D MRIs from water samples with or without various contaminants, such as aluminum and glass balls using the system. In the 1D MRIs, changes of the MRI spectra were detected, corresponding to positions of the contaminants. We measured 2D MRIs from food samples with and without a hole. In the 2D MRIs, the hole position in the sample was well visualized. These results show that the feasibility of the system to detect and localize contaminants in foods and drinks.

  9. Theory and experiment research for ultra-low frequency maglev vibration sensor

    International Nuclear Information System (INIS)

    Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Fan, Shangchun; Zhao, Xiaomeng

    2015-01-01

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements

  10. Ultra-Low-Power Design and Hardware Security Using Emerging Technologies for Internet of Things

    Directory of Open Access Journals (Sweden)

    Jiann-Shiun Yuan

    2017-09-01

    Full Text Available In this review article for Internet of Things (IoT applications, important low-power design techniques for digital and mixed-signal analog–digital converter (ADC circuits are presented. Emerging low voltage logic devices and non-volatile memories (NVMs beyond CMOS are illustrated. In addition, energy-constrained hardware security issues are reviewed. Specifically, light-weight encryption-based correlational power analysis, successive approximation register (SAR ADC security using tunnel field effect transistors (FETs, logic obfuscation using silicon nanowire FETs, and all-spin logic devices are highlighted. Furthermore, a novel ultra-low power design using bio-inspired neuromorphic computing and spiking neural network security are discussed.

  11. Detection of ultra-low oxygen concentration based on the fluorescence blinking dynamics of single molecules

    Science.gov (United States)

    Wu, Ruixiang; Chen, Ruiyun; Zhou, Haitao; Qin, Yaqiang; Zhang, Guofeng; Qin, Chengbing; Gao, Yan; Gao, Yajun; Xiao, Liantuan; Jia, Suotang

    2018-01-01

    We present a sensitive method for detection of ultra-low oxygen concentrations based on the fluorescence blinking dynamics of single molecules. The relationship between the oxygen concentration and the fraction of time spent in the off-state, stemming from the population and depopulation of triplet states and radical cationic states, can be fitted with a two-site quenching model in the Stern-Volmer plot. The oxygen sensitivity is up to 43.42 kPa-1 in the oxygen partial pressure region as low as 0.01-0.25 kPa, which is seven times higher than that of the fluorescence intensity indicator. This method avoids the limitation of the sharp and non-ignorable fluctuations that occur during the measurement of fluorescence intensity, providing potential applications in the field of low oxygen-concentration monitoring in life science and industry.

  12. Design of an ultra-low-power digital processor for passive UHF RFID tags

    Energy Technology Data Exchange (ETDEWEB)

    Shi Wanggen; Zhuang Yiqi; Li Xiaoming; Wang Xianghua; Jin Zhao; Wang Dan, E-mail: wanggen_shi@163.co [Key Laboratory of the Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, Institute of Microelectronics, Xidian University, Xi' an 710071 (China)

    2009-04-15

    A new architecture of digital processors for passive UHF radio-frequency identification tags is proposed. This architecture is based on ISO/IEC 18000-6C and targeted at ultra-low power consumption. By applying methods like system-level power management, global clock gating and low voltage implementation, the total power of the design is reduced to a few microwatts. In addition, an innovative way for the design of a true RNG is presented, which contributes to both low power and secure data transaction. The digital processor is verified by an integrated FPGA platform and implemented by the Synopsys design kit for ASIC flows. The design fits different CMOS technologies and has been taped out using the 2P4M 0.35 mum process of Chartered Semiconductor.

  13. Theory and experiment research for ultra-low frequency maglev vibration sensor

    Science.gov (United States)

    Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Zhao, Xiaomeng; Fan, Shangchun

    2015-10-01

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.

  14. 39Ar/Ar measurements using ultra-low background proportional counters

    International Nuclear Information System (INIS)

    Hall, Jeter; Aalseth, Craig E.; Bonicalzi, Ricco M.; Brandenberger, Jill M.; Day, Anthony R.; Humble, Paul H.; Mace, Emily K.; Panisko, Mark E.; Seifert, Allen

    2016-01-01

    Age-dating groundwater and seawater using the 39 Ar/Ar ratio is an important tool to understand water mass-flow rates and mean residence time. Low-background proportional counters developed at Pacific Northwest National Laboratory use mixtures of argon and methane as counting gas. We demonstrate sensitivity to 39 Ar by comparing geological (ancient) argon recovered from a carbon dioxide gas well and commercial argon. The demonstrated sensitivity to the 39 Ar/Ar ratio is sufficient to date water masses as old as 1000 years. - Highlights: • 39 Ar/Ar age dating is important for understanding environmental water migration. • Ultra low background proportional counters have been developed. • 39 Ar is detected in atmospheric argon at a rate of 70.3 counts per day. The demonstrated background is 166 counts per day. • Age dating is possible for water with underground residence time of up to 1000 years.

  15. Formation mechanism of spheroidal carbide in ultra-low carbon ductile cast iron

    Directory of Open Access Journals (Sweden)

    Bin-guo Fu

    2016-09-01

    Full Text Available The formation mechanism of the spheroidal carbide in the ultra-low carbon ductile cast iron fabricated by the metal mold casting technique was systematically investigated. The results demonstrated that the spheroidal carbide belonged to eutectic carbide and crystallized in the isolated eutectic liquid phase area. The formation process of the spheroidal carbide was related to the contact and the intersection between the primary dendrite and the secondary dendrite of austenite. The oxides of magnesium, rare earths and other elements can act as heterogeneous nucleation sites for the spheroidal carbide. It was also found that the amount of the spheroidal carbide would increase with an increase in carbon content. The cooling rate has an important influence on the spheroidal carbide under the same chemical composition condition.

  16. Direct imaging of neural currents using ultra-low field magnetic resonance techniques

    Science.gov (United States)

    Volegov, Petr L [Los Alamos, NM; Matlashov, Andrei N [Los Alamos, NM; Mosher, John C [Los Alamos, NM; Espy, Michelle A [Los Alamos, NM; Kraus, Jr., Robert H.

    2009-08-11

    Using resonant interactions to directly and tomographically image neural activity in the human brain using magnetic resonance imaging (MRI) techniques at ultra-low field (ULF), the present inventors have established an approach that is sensitive to magnetic field distributions local to the spin population in cortex at the Larmor frequency of the measurement field. Because the Larmor frequency can be readily manipulated (through varying B.sub.m), one can also envision using ULF-DNI to image the frequency distribution of the local fields in cortex. Such information, taken together with simultaneous acquisition of MEG and ULF-NMR signals, enables non-invasive exploration of the correlation between local fields induced by neural activity in cortex and more `distant` measures of brain activity such as MEG and EEG.

  17. Electrical activation and spin coherence of ultra low doseantimony implants in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Schenkel, T.; Tyryshkin, A.M.; de Sousa, R.; Whaley, K.B.; Bokor,J.; Liddle, J.A.; Persaud, A.; Shangkuan, J.; Chakarov, I.; Lyon, S.A.

    2005-07-13

    We implanted ultra low doses (0.2 to 2 x 10{sup 11} cm{sup -2}) of Sb ions into isotopically enriched {sup 28}Si, and probed electrical activation and electron spin relaxation after rapid thermal annealing. Strong segregation of dopants towards both Si{sub 3}N{sub 4} and SiO{sub 2} interfaces limits electrical activation. Pulsed Electron Spin Resonance shows that spin echo decay is sensitive to the dopant profiles, and the interface quality. A spin decoherence time, T{sub 2}, of 1.5 ms is found for profiles peaking 25 nm below a Si/SiO{sub 2} interface, increasing to 2.1 ms when the surface is passivated with hydrogen. These measurements provide benchmark data for the development of devices in which quantum information is encoded in donor electron spins.

  18. Ultra-Low Power Consuming Direct Radiation Sensors Based on Floating Gate Structures

    Directory of Open Access Journals (Sweden)

    Evgeny Pikhay

    2017-07-01

    Full Text Available In this paper, we report on ultra-low power consuming single poly floating gate direct radiation sensors. The developed devices are intended for total ionizing dose (TID measurements and fabricated in a standard CMOS process flow. Sensor design and operation is discussed in detail. Original array sensors were suggested and fabricated that allowed high statistical significance of the radiation measurements and radiation imaging functions. Single sensors and array sensors were analyzed in combination with the specially developed test structures. This allowed insight into the physics of sensor operations and exclusion of the phenomena related to material degradation under irradiation in the interpretation of the measurement results. Response of the developed sensors to various sources of ionizing radiation (Gamma, X-ray, UV, energetic ions was investigated. The optimal design of sensor for implementation in dosimetry systems was suggested. The roadmap for future improvement of sensor performance is suggested.

  19. Ultra-low noise TES bolometer arrays for SAFARI instrument on SPICA

    Science.gov (United States)

    Khosropanah, P.; Suzuki, T.; Ridder, M. L.; Hijmering, R. A.; Akamatsu, H.; Gottardi, L.; van der Kuur, J.; Gao, J. R.; Jackson, B. D.

    2016-07-01

    SRON is developing ultra-low noise Transition Edge Sensors (TESs) based on a superconducting Ti/Au bilayer on a suspended SiN island with SiN legs for the SAFARI instrument aboard the SPICA mission. We successfully fabricated TESs with very narrow (0.5-0.7 μm) and thin (0.25 μm) SiN legs on different sizes of SiN islands using deep reactiveion etching process. The pixel size is 840x840 μm2 and there are variety of designs with and without optical absorbers. For TESs without absorbers, we measured electrical NEPs as low as <1x10-19 W/√Hz with response time of 0.3 ms and reached the phonon noise limit. Using TESs with absorbers, we quantified the darkness of our setup and confirmed a photon noise level of 2x10-19 W/√Hz.

  20. Ultra low field MR imaging of cervical spine involvement in rheumatoid arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Fagerlund, M.; Bjoernebrink, J.; Ekelund, L.; Toolanen, G. (Umeaa Univ. Hospital (Sweden). Depts. of Diagnostic Radiology and Orthopedic Surgery)

    1992-03-01

    In a study of 30 patients with longstanding rheumatoid arthritis the diagnostic usefulness of ultra low field MR equipment was analyzed in assessing lesions of the craniocervical junction. It was found that at 0.04 T all the examinations were diagnostic and that in combination with plain radiography the diagnostic information obtained was valuable in further planning of the treatment strategies. The neurologic findings were related to the degree and severity of atlantoaxial luxation, either horizontal or vertical, and to the periodontoid pannus formation. The correlation between the degree of cord compression shown with MR imaging and the clinical symptoms, especially long tract symptoms, was poor. The only correlating factor was the duration of the disease. (orig.).

  1. Theory and experiment research for ultra-low frequency maglev vibration sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Dezhi; Liu, Yixuan, E-mail: xuan61x@163.com; Guo, Zhanshe; Fan, Shangchun [School of Instrument Science and Opto-electronics Engineering, Beihang University, Beijing 100191 (China); Zhao, Xiaomeng [Laser Medicine Laboratory, Institute of Biomedical Engineering, Chinese Academy of medical Sciences and Peking Union Medical College, Tianjin 300192 (China)

    2015-10-15

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.

  2. Ultra Low Voltage Class AB Switched Current Memory Cells Based on Floating Gate Transistors

    DEFF Research Database (Denmark)

    Mucha, Igor

    1999-01-01

    current memory cells were designed using a CMOS process with threshold voltages V-T0n = \\V-T0p\\ = 0.9 V for the n- and p-channel devices. Both hand calculations and PSPICE simulations showed that the designed example switched current memory cell allowed a maximum signal range better than +/-18 mu......A proposal for a class AB switched current memory cell, suitable for ultra-low-voltage applications is presented. The proposal employs transistors with floating gates, allowing to build analog building blocks for ultralow supply voltage operation also in CMOS processes with high threshold voltages....... This paper presents the theoretical basis for the design of "floating-gate'' switched current memory cells by giving a detailed description and analysis of the most important impacts degrading the performance of the cells. To support the theoretical assumptions circuits based on "floating-gate'' switched...

  3. Seventy kilovolt ultra-low dose CT of the paranasal sinus: first clinical results

    International Nuclear Information System (INIS)

    Bodelle, B.; Wichmann, J.L.; Klotz, N.; Lehnert, T.; Vogl, T.J.; Luboldt, W.; Schulz, B.

    2015-01-01

    Aim: To evaluate the diagnostic image quality and radiation dose of low-dose 70 kV computed tomography (CT) of the paranasal sinus in comparison to 100 and 120 kV CT. Materials and methods: CT of the paranasal sinus was performed in 127 patients divided into three groups using different tube voltages and currents (70 kV/75 mAs, ultra-low dose protocol, n = 44; 100 kV/40 mAs, standard low-dose protocol, n = 42; 120 kV/40 mAs, standard protocol, n = 41). CT dose index (CTDIvol), dose–length product (DLP), attenuation, image noise and signal-to-noise ratio (SNR) were compared between the groups using Wilcoxon–Mann–Whitney U-test. Subjective diagnostic image quality was compared by using a five-point scale (1 = non-diagnostic, 5 = excellent, read by two readers in consensus) and Cohen's weighted kappa analysis for interobserver agreement. Results: Radiation dose was significantly lower with 70 kV acquisition than 100 and 120 kV (DLP: 31 versus 52 versus 82 mGy·cm; CTDI 2.33 versus 3.95 versus 6.31 mGy, all p < 0.05). Mean SNR (70 kV: 0.37; 100 kV: 0.21; 120 kV: 0.13; p < 0.05) and organ attenuation increased significantly with lower voltages. All examinations showed diagnostic image quality. Subjective diagnostic image quality was higher with standard protocols than the 70 kV protocol (120 kV: 5.0; 100 kV: 4.5; 70 kV: 3.5, p < 0.05) without significant differences with substantial interobserver agreement (κ > 0.59). Conclusion: The ultra-low dose (70 kV) CT imaging of the paranasal sinus allowed for significant dose reduction by 61% and an increased attenuation of organ structures in comparison to standard acquisition while maintaining diagnostic image quality with a slight reduction in subjective image quality. -- Highlights: •Image quality and radiation dose of 70 kV ultra-low dose CT of the paranasal sinus. •70 kV ultra-low dose CT of the paranasal sinus allows for dose reduction by 61%. •70 kV CT of the

  4. Design of an ultra-low-power digital processor for passive UHF RFID tags

    International Nuclear Information System (INIS)

    Shi Wanggen; Zhuang Yiqi; Li Xiaoming; Wang Xianghua; Jin Zhao; Wang Dan

    2009-01-01

    A new architecture of digital processors for passive UHF radio-frequency identification tags is proposed. This architecture is based on ISO/IEC 18000-6C and targeted at ultra-low power consumption. By applying methods like system-level power management, global clock gating and low voltage implementation, the total power of the design is reduced to a few microwatts. In addition, an innovative way for the design of a true RNG is presented, which contributes to both low power and secure data transaction. The digital processor is verified by an integrated FPGA platform and implemented by the Synopsys design kit for ASIC flows. The design fits different CMOS technologies and has been taped out using the 2P4M 0.35 μm process of Chartered Semiconductor.

  5. Development of Ultra-Low Power Metal Oxide Sensors and Arrays for Embedded Applications

    Science.gov (United States)

    Lutz, Brent; Wind, Rikard; Kostelecky, Clayton; Routkevitch, Dmitri; Deininger, Debra

    2011-09-01

    Metal oxide semiconductor sensors are widely used as individual sensors and in arrays, and a variety of designs for low power microhotplates have been demonstrated.1 Synkera Technologies has developed an embeddable chemical microsensor platform, based on a unique ceramic MEMS technology, for practical implementation in cell phones and other mobile electronic devices. Key features of this microsensor platform are (1) small size, (2) ultra-low power consumption, (3) high chemical sensitivity, (4) accurate response to a wide-range of threats, and (5) low cost. The sensor platform is enabled by a combination of advances in ceramic micromachining, and precision deposition of sensing films inside the high aspect ratio pores of anodic aluminum oxide (AAO).

  6. Ultra low-K shrinkage behavior when under electron beam in a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Lorut, F.; Imbert, G. [ST Microelectronics, 850 rue Jean Monnet, 38926 Crolles Cedex (France); Roggero, A. [Centre National d' Etudes Spatiales, 18 Avenue Edouard Belin, 31400 Toulouse (France)

    2013-08-28

    In this paper, we investigate the tendency of porous low-K dielectrics (also named Ultra Low-K, ULK) behavior to shrink when exposed to the electron beam of a scanning electron microscope. Various experimental electron beam conditions have been used for irradiating ULK thin films, and the resulting shrinkage has been measured through use of an atomic force microscope tool. We report the shrinkage to be a fast, cumulative, and dose dependent effect. Correlation of the shrinkage with incident electron beam energy loss has also been evidenced. The chemical modification of the ULK films within the interaction volume has been demonstrated, with a densification of the layer and a loss of carbon and hydrogen elements being observed.

  7. Effect of ultra-low dose whole-body-irradiation on severe patients with myasthenia gravis

    International Nuclear Information System (INIS)

    Arimori, Shigeru; Koriyama, Kenji

    1982-01-01

    An ultra-low dose whole body irradiation therapy was given to 5 patients with intractable bulbar syndrome, in a dose of 10 rad/fraction, 2 times a week for 5 weeks, with a total of 100 rad; and effects of this therapy on their clinical symptoms and immunological ability were discussed. In 3 of them, bulbar syndrome was improved, and the other one, the first irradiation was effective. The peripheral leukocyte count and lymphocyte count became lowest immediately after completion of the irradiation, and returned to the normal level within 1 to 2 months. The function of T-cells, especially suppressive T-cells, was recovered; and decrease in B-cells, resulted in a decrease in the AChR antibody titer. (Ueda, J.)

  8. Effect of ultra-low dose whole-body-irradiation on patients with severe myasthenia gravis

    Energy Technology Data Exchange (ETDEWEB)

    Arimori, Shigeru; Koriyama, Kenji (Tokai Univ., Isehara, Kanagawa (Japan). School of Medicine)

    1982-12-01

    An ultra-low dose whole body irradiation therapy was given to 5 patients with intractable bulbar syndrome, in a dose of 10 rad/fraction, 2 times a week for 5 weeks, with a total of 100 rad; and effects of this therapy on their clinical symptoms and immunological ability were discussed. In 3 of them, bulbar syndrome was improved, and the other one, the first irradiation was effective. The peripheral leukocyte count and lymphocyte count became lowest immediately after completion of the irradiation, and returned to the normal level within 1 to 2 months. The function of T-cells, especially suppressive T-cells, was recovered; and decrease in B-cells, resulted in a decrease in the AChR antibody titer.

  9. Nonlinear propagation of ultra-low-frequency electronic modes in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Mamun, A.A.

    1999-07-01

    A theoretical investigation has been made of nonlinear propagation of ultra-low-frequency electromagnetic waves in a magnetized two fluid (negatively charged dust and positively charged ion fluids) dusty plasma. These are modified Alfven waves for small value of θ and are modified magnetosonic waves for large θ, where θ is the angle between the directions of the external magnetic field and the wave propagation. A nonlinear evolution equation for the wave magnetic field, which is known as Korteweg de Vries (K-dV) equation and which admits a stationary solitary wave solution, is derived by the reductive perturbation method. The effects of external magnetic field and dust characteristics on the amplitude and the width of these solitary structures are examined. The implications of these results to some space and astrophysical plasma systems, especially to planetary ring-systems, are briefly mentioned. (author)

  10. GRABGAM: A Gamma Analysis Code for Ultra-Low-Level HPGe SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Winn, W.G.

    1999-07-28

    The GRABGAM code has been developed for analysis of ultra-low-level HPGe gamma spectra. The code employs three different size filters for the peak search, where the largest filter provides best sensitivity for identifying low-level peaks and the smallest filter has the best resolution for distinguishing peaks within a multiplet. GRABGAM basically generates an integral probability F-function for each singlet or multiplet peak analysis, bypassing the usual peak fitting analysis for a differential f-function probability model. Because F is defined by the peak data, statistical limitations for peak fitting are avoided; however, the F-function does provide generic values for peak centroid, full width at half maximum, and tail that are consistent with a Gaussian formalism. GRABGAM has successfully analyzed over 10,000 customer samples, and it interfaces with a variety of supplementary codes for deriving detector efficiencies, backgrounds, and quality checks.

  11. Development of a dedicated ethanol ultra-low-emissions vehicle (ULEV): Phase 3 report

    Energy Technology Data Exchange (ETDEWEB)

    Dodge, L; Callahan, T; Leone, D; Naegeli, D; Shouse, K; Smith, L; Whitney, K [Southwest Research Inst., San Antonio, TX (United States)

    1998-04-01

    The objective of the 3.5 year project discussed in this report was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s Ultra Low Emissions Vehicle (ULEV) standards and equivalent Corporate Average Fuel Economy (CAFE) energy efficiency for a light duty passenger car application. This particular report summarizes the third phase of the project, which lasted 12 months. Emissions tests were conducted with advanced after-treatment devices on one of the two, almost identical, test vehicles, a 1993 Ford Taurus flexible fuel vehicle. The report also covers tests on the engine removed from the second Taurus vehicle. This engine was modified for an increased compression ratio, fitted with air assist injectors, and included an advanced engine control system with model-based control.

  12. Ultra Low-Power Acoustic Detector Applicable in Ambient Assistance Living Systems

    Directory of Open Access Journals (Sweden)

    Iliev I.

    2009-12-01

    Full Text Available Ambient Assisted Living (AAL includes methods, concepts, systems, devices as well as services, which provide unobtrusive support for daily life based on the context and situation of the assisted person. The technologies applied for AAL are user-centric, i.e. oriented towards the needs and capabilities of the particular user. They are also integrated into the immediate personal environment of the user. As a consequence, the technology is adapting to the user rather than the other way around. The in-house monitoring of elderly or disabled people (hard of hearing, deaf, with limited movement ability, using intelligent sensors is a very desirable service that may potentially increase the user's autonomy and independence while minimizing the risks of living alone. The described ultra low-power acoustic detector allows upgrade of the presented warning systems. It features long-term autonomy and possibility to use it as an element of the wireless personal area network (WPAN.

  13. Simultaneous measurement of tritium and radiocarbon by ultra-low-background proportional counting

    Energy Technology Data Exchange (ETDEWEB)

    Mace, Emily; Aalseth, Craig; Alexander, Tom; Back, Henning; Day, Anthony; Hoppe, Eric; Keillor, Martin; Moran, Jim; Overman, Cory; Panisko, Mark; Seifert, Allen

    2017-08-01

    Use of ultra-low-background capabilities at Pacific Northwest National Laboratory provide enhanced sensitivity for measurement of low-activity sources of tritium and radiocarbon using proportional counters. Tritium levels are nearly back to pre-nuclear test backgrounds (~2-8 TU in rainwater), which can complicate their dual measurement with radiocarbon due to overlap in the isotope’s respective energy spectra. This activity makes direct dual-isotope measurements challenging without additional chemistry to concentrate the tritium in a sample. We present results of single-isotope proportional counter measurements used to analyze a dual-isotope methane sample synthesized from ~120 mg of H2O and present sensitivity results.

  14. Localization of Ultra-Low Frequency Waves in Multi-Ion Plasmas of the Planetary Magnetosphere

    Directory of Open Access Journals (Sweden)

    Eun-Hwa Kim

    2015-12-01

    Full Text Available By adopting a 2D time-dependent wave code, we investigate how mode-converted waves at the Ion-Ion Hybrid (IIH resonance and compressional waves propagate in 2D density structures with a wide range of field-aligned wavenumbers to background magnetic fields. The simulation results show that the mode-converted waves have continuous bands across the field line consistent with previous numerical studies. These waves also have harmonic structures in frequency domain and are localized in the field-aligned heavy ion density well. Our results thus emphasize the importance of a field-aligned heavy ion density structure for ultra-low frequency wave propagation, and suggest that IIH waves can be localized in different locations along the field line.

  15. Ultra-low damping in lift-off structured yttrium iron garnet thin films

    Science.gov (United States)

    Krysztofik, A.; Coy, L. E.; Kuświk, P.; Załeski, K.; Głowiński, H.; Dubowik, J.

    2017-11-01

    We show that using maskless photolithography and the lift-off technique, patterned yttrium iron garnet thin films possessing ultra-low Gilbert damping can be accomplished. The films of 70 nm thickness were grown on (001)-oriented gadolinium gallium garnet by means of pulsed laser deposition, and they exhibit high crystalline quality, low surface roughness, and the effective magnetization of 127 emu/cm3. The Gilbert damping parameter is as low as 5 ×10-4. The obtained structures have well-defined sharp edges which along with good structural and magnetic film properties pave a path in the fabrication of high-quality magnonic circuits and oxide-based spintronic devices.

  16. Ultra Low Level Tritium Analysis Method Using a Liquid Scintillation Counter

    Energy Technology Data Exchange (ETDEWEB)

    Noh, S. J.; Kim, H. J.; Kim, H.; Lim, H. J.; Lee, M. W.; Jeong, D. H.; Kim, J. K.; Kang, Y. R. [Dongnam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of); Nam, S. H. [Inje University, Gimhae, (Korea, Republic of)

    2015-05-15

    To evaluate {sup 3}H concentration in the atmosphere more accurately compared to the conventional methods, the author of this paper intended to suggest more improved analytical methods and derived the elements which might occur during analysis or required improvements. The method suggested in this study is able to reduce the uncertainty and errors which may be existent in evaluating the {sup 3}H concentration of environmental sample s and thus will serve as the best solution in the technical and economic point of view. Liquid Scintillation Counter is the most widely used to analyze ultra-low level {sup 3}H by using CPM / DPM Counting Mode using external radiation source and Spectrum Plot Mode using internal radiation source. In CPM / DPM Counting Mode, multiple samples can be measured by single calibration despite its rather higher background whereas Spectrum Plot Mode requires more time and cost to analyze multiple samples despite its reliability to reduce the contribution of other radionuclides.

  17. Ultra-low energy Ar+ beam applied for SIMS depth profile analysis of layered nanostructures

    International Nuclear Information System (INIS)

    Konarski, P.; Mierzejewska, A.; Iwanejko, I.

    2001-01-01

    Secondary ion mass spectrometry (SIMS) depth profile analyses of flat layered nanostructures: 10 nm Ta 2 O 3 /Ta and 20 nm (10 x B 4 C/Mo)/Si as well as microparticles of core (illite) - shell (rutile) structure, performed with the use of ultra-low energy ion beam (180-880 eV, Ar + ), are presented. The profiles were obtained using 'mesa' scanning technique and also sample rotation. Depth profile resolution below 1 nanometer was obtained for flat nanostructures. Presented experimental results are compared with Monte Carlo sputtering simulations of analysed structures. A method of finding beam energy, optimal for the best resolution SIMS depth profile analysis, is suggested. (author)

  18. Ultra Low Density Shape Memory Polymer Foams With Tunable Physicochemical Properties for Treatment of intracranial Aneurysms

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, Pooja [Texas A & M Univ., College Station, TX (United States)

    2013-12-01

    Shape memory polymers (SMPs) are a rapidly emerging class of smart materials that can be stored in a deformed temporary shape, and can actively return to their original shape upon application of an external stimulus such as heat, pH or light. This behavior is particularly advantageous for minimally invasive biomedical applications comprising embolic/regenerative scaffolds, as it enables a transcatheter delivery of the device to the target site. The focus of this work was to exploit this shape memory behavior of polyurethanes, and develop an efficient embolic SMP foam device for the treatment of intracranial aneurysms.In summary, this work reports a novel family of ultra low density polymer foams which can be delivered via a minimally invasive surgery to the aneurysm site, actuated in a controlled manner to efficiently embolize the aneurysm while promoting physiological fluid/blood flow through the reticulated/open porous structure, and eventually biodegrade leading to complete healing of the vasculature.

  19. An ultra-low-power RF transceiver for WBANs in medical applications

    International Nuclear Information System (INIS)

    Zhang Qi; Wu Nanjian; Kuang Xiaofei

    2011-01-01

    A 2.4 GHz ultra-low-power RF transceiver with a 900 MHz auxiliary wake-up link for wireless body area networks (WBANs) in medical applications is presented. The RF transceiver with an asymmetric architecture is proposed to achieve high energy efficiency according to the asymmetric communication in WBANs. The transceiver consists of a main receiver (RX) with an ultra-low-power free-running ring oscillator and a high speed main transmitter (TX) with fast lock-in PLL. A passive wake-up receiver (WuRx) for wake-up function with a high power conversion efficiency (PCE) CMOS rectifier is designed to offer the sensor node the capability of work-on-demand with zero standby power. The chip is implemented in a 0.18 μm CMOS process. Its core area is 1.6 mm 2 . The main RX achieves a sensitivity of -55 dBm at a 100 kbps OOK data rate while consuming just 210 μA current from the 1 V power supply. The main TX achieves +3 dBm output power with a 4 Mbps/500 kbps/200 kbps data rate for OOK/4 FSK/2 FSK modulation and dissipates 3.25 mA/6.5 mA/6.5 mA current from a 1.8 V power supply. The minimum detectable RF input energy for the wake-up RX is -15 dBm and the PCE is more than 25%. (semiconductor integrated circuits)

  20. An ultra-low-power RF transceiver for WBANs in medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Qi; Wu Nanjian [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Kuang Xiaofei, E-mail: nanjian@semi.ac.cn [College of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2011-06-15

    A 2.4 GHz ultra-low-power RF transceiver with a 900 MHz auxiliary wake-up link for wireless body area networks (WBANs) in medical applications is presented. The RF transceiver with an asymmetric architecture is proposed to achieve high energy efficiency according to the asymmetric communication in WBANs. The transceiver consists of a main receiver (RX) with an ultra-low-power free-running ring oscillator and a high speed main transmitter (TX) with fast lock-in PLL. A passive wake-up receiver (WuRx) for wake-up function with a high power conversion efficiency (PCE) CMOS rectifier is designed to offer the sensor node the capability of work-on-demand with zero standby power. The chip is implemented in a 0.18 {mu}m CMOS process. Its core area is 1.6 mm{sup 2}. The main RX achieves a sensitivity of -55 dBm at a 100 kbps OOK data rate while consuming just 210 {mu}A current from the 1 V power supply. The main TX achieves +3 dBm output power with a 4 Mbps/500 kbps/200 kbps data rate for OOK/4 FSK/2 FSK modulation and dissipates 3.25 mA/6.5 mA/6.5 mA current from a 1.8 V power supply. The minimum detectable RF input energy for the wake-up RX is -15 dBm and the PCE is more than 25%. (semiconductor integrated circuits)

  1. Ultra-low fertility in South Korea: The role of the tempo effect

    Directory of Open Access Journals (Sweden)

    Sam Hyun Yoo

    2018-02-01

    Full Text Available Background: The total fertility rate (TFR in South Korea has fallen below 1.3 since 2001. The role of the rapid shift toward a late-childbearing pattern in driving Korean fertility decline to this ultra-low level has been little explored until now. Objective: We provide an in-depth analysis of period fertility trends by birth order in South Korea from 1981 to 2015, when the period TFR fell from 2.57 to extremely low levels. Methods: We combine census and birth registration data to estimate period and cohort fertility indicators by birth order. We compare changes in conventional TFR with tempo- and parity-adjusted total fertility rate (TFRp* and their birth-order-specific components. Results: The tempo effect linked to the shift toward delayed childbearing has had a strong and persistent negative influence on period TFRs in South Korea since the early 1980s. Without the shift to later childbearing, period fertility rates in South Korea would consistently stay higher and decline more gradually, reaching a threshold of very low fertility, 1.5, only in 2014. The postponement of childbearing and the resulting tempo effect were strongest in the early 2000s, when Korean TFR reached the lowest levels. More recently, Korean fertility has been characterized by a diminishing tempo effect and falling first and second birth rates. This trend marks a break with the previous pattern of almost universal fertility and a strong two-child family model. Contribution: Our study demonstrates the importance of the tempo effect in explaining the shift to ultra-low fertility in South Korea and in East Asia

  2. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    Science.gov (United States)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  3. Usefulness of intraoperative ultra low-field magnetic resonance imaging in glioma surgery.

    Science.gov (United States)

    Senft, Christian; Seifert, Volker; Hermann, Elvis; Franz, Kea; Gasser, Thomas

    2008-10-01

    The aim of this study was to demonstrate the usefulness of a mobile, intraoperative 0.15-T magnetic resonance imaging (MRI) scanner in glioma surgery. We analyzed our prospectively collected database of patients with glial tumors who underwent tumor resection with the use of an intraoperative ultra low-field MRI scanner (PoleStar N-20; Odin Medical Technologies, Yokneam, Israel/Medtronic, Louisville, CO). Sixty-three patients with World Health Organization Grade II to IV tumors were included in the study. All patients were subjected to postoperative 1.5-T imaging to confirm the extent of resection. Intraoperative image quality was sufficient for navigation and resection control in both high- and low-grade tumors. Primarily enhancing tumors were best detected on T1-weighted imaging, whereas fluid-attenuated inversion recovery sequences proved best for nonenhancing tumors. Intraoperative resection control led to further tumor resection in 12 (28.6%) of 42 patients with contrast-enhancing tumors and in 10 (47.6%) of 21 patients with noncontrast-enhancing tumors. In contrast-enhancing tumors, further resection led to an increased rate of complete tumor resection (71.2 versus 52.4%), and the surgical goal of gross total removal or subtotal resection was achieved in all cases (100.0%). In patients with noncontrast-enhancing tumors, the surgical goal was achieved in 19 (90.5%) of 21 cases, as intraoperative MRI findings were inconsistent with postoperative high-field imaging in 2 cases. The use of the PoleStar N-20 intraoperative ultra low-field MRI scanner helps to evaluate the extent of resection in glioma surgery. Further tumor resection after intraoperative scanning leads to an increased rate of complete tumor resection, especially in patients with contrast-enhancing tumors. However, in noncontrast- enhancing tumors, the intraoperative visualization of a complete resection seems less specific, when compared with postoperative 1.5-T MRI.

  4. An ultra low-power off-line APDM-based switchmode power supply with very high conversion efficiency

    DEFF Research Database (Denmark)

    Nielsen, Nils

    2001-01-01

    This article describes the results from the research work on design of a ultra low power off-line power supply with very high conversion efficiency. The input voltage is 230 VAC nominal and output voltage is 5 VDC. By ultra low power levels, an output power level in the area ranging from 50 m......W and up to 1000 mW is meant. The small power supply is intended for use as a standby power supply in mains operated equipment, which requires a small amount of power in standby mode....

  5. Solid-state lithium battery

    Science.gov (United States)

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  6. Low temperature molten salt synthesis of Y(sub2)Sn(sub2)O(sub7) anode material for lithium ion batteries

    CSIR Research Space (South Africa)

    Nithyadharseni, P

    2015-10-01

    Full Text Available Acta 182 (2015) 1060–1069 Low temperature molten salt synthesis of Y2Sn2O7 anode material for lithium ion batteries P. Nithyadharsenia,b, M.V. Reddya,c,*, Kenneth I. Ozoemenab,d, R. Geetha Balakrishnae, B.V.R. Chowdaria a Advanced Batteries...

  7. Analysis of influence of heat exchange conditions on the outer surface of the lithium-ion battery to electrolyte temperature under the conditions of high current loads

    Directory of Open Access Journals (Sweden)

    Krasnoshlykov Alexander

    2017-01-01

    Full Text Available Numerical analysis of thermal conditions of a lithium-ion battery using the software package ANSYS Electric and ANSYS Fluent has been carried out. Time dependence of the electrolyte temperature on the various heat exchange conditions on the outer surface has been obtained.

  8. Effect of sintering temperature on microstructure and transport properties of Li3xLa2/3-xTiO3 with different lithium contents

    International Nuclear Information System (INIS)

    Geng Hongxia; Lan Jinle; Mei Ao; Lin Yuanhua; Nan, C.W.

    2011-01-01

    Li 3x La 2/3-x TiO 3 (LLTO) powder with different lithium contents (nominal 3x = 0.03-0.75) was synthesized via a simple sol-gel route and then calcination of gel-derived precursor at 900 o C which was much below the calcination temperature required for synthesizing the LLTO powder via solid state reaction route. The LLTO powder of sub-micron sized particles, derived from such sol-gel method, showed almost no aggregation. Starting from the sol-gel-derived powder, the LLTO ceramics with different lithium contents were prepared at different sintering temperatures of 1250 and 1350 o C. It demonstrated that our sol-gel route is quite simple and convenient compared to the previous sol-gel method and requires lower temperature for the LLTO. Our results also illustrated that lithium content significantly affects the structure and ionic conductivity of the LLTO ceramics. The dependence of the ionic conductivity on the lithium content, lattice structure, microstructure and sintering temperature was investigated systematically.

  9. Effect of calcination temperature on microstructure and electrochemical performance of lithium-rich layered oxide cathode materials

    International Nuclear Information System (INIS)

    Ma, Quanxin; Peng, Fangwei; Li, Ruhong; Yin, Shibo; Dai, Changsong

    2016-01-01

    Highlights: • A series of Li-rich layered oxide cathode materials (Li_1_._2Mn_0_._5_6Ni_0_._1_6Co_0_._0_8O_2) were successfully synthesized via a two-step synthesis method. • The effects of calcination temperature on the cathode materials were researched in detail. • A well-crystallized layered structure was obtained as the calcination temperature increased. • The samples calcined in a range of 850–900 °C exhibited excellent electrochemical performance. - Abstract: Lithium-rich layered oxide cathode materials (Li_1_._2Mn_0_._5_6Ni_0_._1_6Co_0_._0_8O_2 (LLMO)) were synthesized via a two-step synthesis method involving co-precipitation and high-temperature calcination. The effects of calcination temperature on the cathode materials were studied in detail. Structural and morphological characterizations revealed that a well-crystallized layered structure was obtained at a higher calcination temperature. Electrochemical performance evaluation revealed that a cathode material obtained at a calcination temperature of 850 °C delivered a high initial discharge capacity of 266.8 mAh g"−"1 at a 0.1 C rate and a capacity retention rate of 95.8% after 100 cycles as well as excellent rate capability. Another sample calcinated at 900 °C exhibited good cycling stability. It is concluded that the structural stability and electrochemical performance of Li-rich layered oxide cathode materials were strongly dependent on calcination temperatures. The results suggest that a calcination temperature in a range of 850–900 °C could promote electrochemical performance of this type of cathode materials.

  10. Effect of calcination temperature on microstructure and electrochemical performance of lithium-rich layered oxide cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Quanxin; Peng, Fangwei; Li, Ruhong; Yin, Shibo; Dai, Changsong, E-mail: changsd@hit.edu.cn

    2016-11-15

    Highlights: • A series of Li-rich layered oxide cathode materials (Li{sub 1.2}Mn{sub 0.56}Ni{sub 0.16}Co{sub 0.08}O{sub 2}) were successfully synthesized via a two-step synthesis method. • The effects of calcination temperature on the cathode materials were researched in detail. • A well-crystallized layered structure was obtained as the calcination temperature increased. • The samples calcined in a range of 850–900 °C exhibited excellent electrochemical performance. - Abstract: Lithium-rich layered oxide cathode materials (Li{sub 1.2}Mn{sub 0.56}Ni{sub 0.16}Co{sub 0.08}O{sub 2} (LLMO)) were synthesized via a two-step synthesis method involving co-precipitation and high-temperature calcination. The effects of calcination temperature on the cathode materials were studied in detail. Structural and morphological characterizations revealed that a well-crystallized layered structure was obtained at a higher calcination temperature. Electrochemical performance evaluation revealed that a cathode material obtained at a calcination temperature of 850 °C delivered a high initial discharge capacity of 266.8 mAh g{sup −1} at a 0.1 C rate and a capacity retention rate of 95.8% after 100 cycles as well as excellent rate capability. Another sample calcinated at 900 °C exhibited good cycling stability. It is concluded that the structural stability and electrochemical performance of Li-rich layered oxide cathode materials were strongly dependent on calcination temperatures. The results suggest that a calcination temperature in a range of 850–900 °C could promote electrochemical performance of this type of cathode materials.

  11. Streamline three-dimensional thermal model of a lithium titanate pouch cell battery in extreme temperature conditions with module simulation

    Science.gov (United States)

    Jaguemont, Joris; Omar, Noshin; Martel, François; Van den Bossche, Peter; Van Mierlo, Joeri

    2017-11-01

    In this paper, the development of a three-dimensional (3D) lithium titanium oxide (LTO) pouch cell is presented to first better comprehend its thermal behavior within electrified vehicle applications, but also to propose a strong modeling base for future thermal management system. Current 3D-thermal models are based on electrochemical reactions which are in need for elaborated meshing effort and long computational time. There lacks a fast electro-thermal model which can capture voltage, current and thermal distribution variation during the whole process. The proposed thermal model is a reduce-effort temperature simulation approach involving a 0D-electrical model accommodating a 3D-thermal model to exclude electrochemical processes. The thermal model is based on heat-transfer theory and its temperature distribution prediction incorporates internal conduction and heat generation effect as well as convection. In addition, experimental tests are conducted to validate the model. Results show that both the heat dissipation rate and surface temperature uniformity data are in agreement with simulation results, which satisfies the application requirements for electrified vehicles. Additionally, a LTO battery pack sizing and modeling is also designed, applied and displays a non-uniformity of the cells under driving operation. Ultimately, the model will serve as a basis for the future development of a thermal strategy for LTO cells that operate in a large temperature range, which is a strong contribution to the existing body of scientific literature.

  12. Electrochemical improvement of low-temperature petroleum cokes by chemical oxidation with H2O2 for their use as anodes in lithium ion batteries

    International Nuclear Information System (INIS)

    Concheso, A.; Santamaria, R.; Menendez, R.; Jimenez-Mateos, J.M.; Alcantara, R.; Lavela, P.; Tirado, J.L.

    2006-01-01

    The electrochemical performance of non-graphitized petroleum cokes has been improved by mild oxidation using hydrogen peroxide, a procedure used for the first time in these materials. For this purpose, various carbonisation temperatures and H 2 O 2 treatments were tested. For low sulfur content cokes, the aqueous oxidative treatment significantly increases the capacity values above 372 mAh/g during the first cycles. In contrast, cokes with a sulfur content of ca. 5%, did not shown a real improvement. The former results have been interpreted in terms of an effective oxidation of the particles surface, which removes unorganized carbon, where lithium can be irreversibly trapped. Moreover, a stable and less resistive passivating layer grows during the first discharge of lithium, as revealed by impedance spectroscopy. Therefore, chemical procedures, as mild oxidation, open an interesting field of research for the improvement of disordered carbons as anode materials in lithium ion batteries

  13. Nano-Sn embedded in expanded graphite as anode for lithium ion batteries with improved low temperature electrochemical performance

    International Nuclear Information System (INIS)

    Yan, Yong; Ben, Liubin; Zhan, Yuanjie; Huang, Xuejie

    2016-01-01

    Highlights: • Nano-Sn embedded in interlayers of expanded graphite is fabricated. • The graphene/nano-Sn/graphene stacked structure promotes cycling stability of Sn. • The Sn/EG shows improved low temperature electrochemical performance. • Chemical diffusion coefficients of the Sn/EG are obtained by GITT. • The Sn/EG exhibits faster Li-ion intercalation kinetics than graphite. - Abstract: Metallic tin (Sn) used as anode material for lithium ion batteries has long been proposed, but its low temperature electrochemical performance has been rarely concerned. Here, a Sn/C composite with nano-Sn embedded in expanded graphite (Sn/EG) is synthesized. The nano-Sn particles (∼30 nm) are uniformly distributed in the interlayers of expanded graphite forming a tightly stacked layered structure. The electrochemical performance of the Sn/EG, particularly at low temperature, is carefully investigated compared with graphite. At -20 °C, the Sn/EG shows capacities of 200 mAh g −1 at 0.1C and 130 mAh g −1 at 0.2C, which is much superior to graphite (<10 mAh g −1 ). EIS measurements suggest that the charge transfer impedance of the Sn/EG increases less rapidly than graphite with decreasing temperatures, which is responsible for the improved low temperature electrochemical performance. The Li-ion chemical diffusion coefficients of the Sn/EG obtained by GITT are an order of magnitude higher at room temperature than that at -20 °C. Furthermore, the Sn/EG exhibits faster Li-ion intercalation kinetics than graphite in the asymmetric charge/discharge measurements, which shows great promise for the application in electric vehicles charged at low temperature.

  14. Hydrogen Outgassing from Lithium Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

    2006-04-20

    Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

  15. Determination of ultra-low level 129I in vegetation using pyrolysis for iodine separation and accelerator mass spectrometry measurements

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Wang, Yanyun

    2016-01-01

    Radioactive isotopes of iodine are the most common radiological toxins from nuclear accidents due to their high release and high enrichment in human thyroid. Among the radioactive isotopes, long-lived 129I can not only be used for the estimation of the radioactive risk of short-lived radioactive...... and ultra-low concentration in normal environmental and biological samples, it is important to efficiently separate iodine from the sample matrix and sensitively measure 129I. However, the complicated chemical properties of iodine and high organic content in biological samples make efficient separation...... of iodine very difficult using conventional acid digestion and alkaline ashing methods. By optimizing the key parameters related to the separation of iodine by pyrolysis using a tube furnace, including carbonization temperature, heating protocol, combustion assisting gas, iodine volatilization process...

  16. Field evaluation of indoor thermal fog and ultra-low volume applications for control of Aedes aegypti, in Thailand

    Science.gov (United States)

    Efficacies of a hand-held thermal fogger (PatriotTM) and hand-held Ultra-low volume (ULV) sprayer (TwisterTM) with combinations of two different adulticides and an insect growth regulator (pyriproxyfen) were field assessed and compared for their impact on reducing dengue vector populations in Thaila...

  17. A NEW ANIMAL-MODEL FOR HUMAN PREECLAMPSIA - ULTRA-LOW-DOSE ENDOTOXIN INFUSION IN PREGNANT RATS

    NARCIS (Netherlands)

    FAAS, MM; SCHUILING, GA; BALLER, JFW; VISSCHER, CA; BAKKER, WW

    OBJECTIVE: An animal model for preeclampsia was developed by means of an ultra-low-dose endotoxin infusion protocol in conscious pregnant rats. STUDY DESIGN: Rats received a permanent jugular vein cannula on day 0 of pregnancy, through which endotoxin (1.0 mu/kg body weight) (n = 10) or saline

  18. The FUBR-1B experiment, irradiation of lithium ceramics to high burnups under large temperature gradients

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Knight, R.C.; Densley, P.J.; Pember, L.A.; Johnson, C.E.; Poeppel, R.B.; Yang, L.

    1985-01-01

    Solid breeder materials used for supplying the tritium for fueling fusion power reactors will be required to withstand a variety of severe environmental conditions such as irradiation damage, thermal stresses and chemical reactions while continuing to produce tritium and not interfering with other essential components in the complex blanket region. In the FUBR-1B experiment several solid breeder candidates are being subjected to the most hostile conditions foreseen in a fusion reactor's blanket. Some material, such as Li 2 O, Li 8 ZrO 6 , and Li 4 SiO 4 , possess high lithium atom densities which are reflected in high tritium breeding ratios. Other material, such as LiAlO 2 and Li 2 ZrO 3 , appear to have exceptional irradiation stability. Verifying the magnitude of these differences will allow national selection between design options

  19. Quantum mechanical study of molecular collisions at ultra-low energy: applications to alkali and alkaline-earth systems; Etude quantique de collisions moleculaires a ultra-basse energie: applications aux alcalins et alcalino-terreux

    Energy Technology Data Exchange (ETDEWEB)

    Quemener, G

    2006-10-15

    In order to investigate the collisional processes which occur during the formation of molecular Bose-Einstein condensates, a time-independent quantum mechanical formalism, based on hyperspherical coordinates, has been applied to the study of atom-diatom dynamics at ultra-low energies. We present theoretical results for three alkali systems, each composed of lithium, sodium or potassium atoms, and for an alkaline-earth system composed of calcium atoms. We also study dynamics at large and positive atom-atom scattering length. Evidence for the suppression of inelastic processes in a fermionic system is given, as well as a linear relation between the atom-diatom scattering length and the atom-atom scattering length. (author)

  20. Ammonia-lithium nitrate absorption chiller with an integrated low-pressure compression booster cycle for low driving temperatures

    International Nuclear Information System (INIS)

    Ventas, R.; Lecuona, A.; Zacarias, A.; Venegas, M.

    2010-01-01

    Single-effect absorption refrigeration hybridized with mechanical vapor compression in a vapor circuit is known as the absorption cycle with an integrated booster compressor. In this study, the compressor is located between the evaporator and the absorber. This paper presents a numerical model of this cycle with ammonia-lithium nitrate solution as the working pair. It is based on UA-ΔT lm models for separate regions of plate-type heat exchangers. The results are offered as a function of external circuit flow parameters. Different pressure ratios of the compressor were tested for a wide range of hot water driving temperatures (55-95 deg. C), showing that low values are more beneficial. This cycle allows for working at lower driving temperatures than the single-effect cycle, with low electricity consumption. At the same driving temperature, the capacity is augmented with an increased compressor pressure ratio, thus allowing for demand matching of the cooling. This cycle, operating with hot water at 67 deg. C with a pressure ratio of 2.0, has the capacity of a single-effect absorption cycle at 94 deg. C. The electrical COP was found to be higher than that in an ammonia vapor compression cycle for comprehensive working conditions.

  1. Virtual Colonoscopy Screening With Ultra Low-Dose CT and Less-Stressful Bowel Preparation: A Computer Simulation Study

    Science.gov (United States)

    Wang, Jing; Wang, Su; Li, Lihong; Fan, Yi; Lu, Hongbing; Liang, Zhengrong

    2008-10-01

    Computed tomography colonography (CTC) or CT-based virtual colonoscopy (VC) is an emerging tool for detection of colonic polyps. Compared to the conventional fiber-optic colonoscopy, VC has demonstrated the potential to become a mass screening modality in terms of safety, cost, and patient compliance. However, current CTC delivers excessive X-ray radiation to the patient during data acquisition. The radiation is a major concern for screening application of CTC. In this work, we performed a simulation study to demonstrate a possible ultra low-dose CT technique for VC. The ultra low-dose abdominal CT images were simulated by adding noise to the sinograms of the patient CTC images acquired with normal dose scans at 100 mA s levels. The simulated noisy sinogram or projection data were first processed by a Karhunen-Loeve domain penalized weighted least-squares (KL-PWLS) restoration method and then reconstructed by a filtered backprojection algorithm for the ultra low-dose CT images. The patient-specific virtual colon lumen was constructed and navigated by a VC system after electronic colon cleansing of the orally-tagged residue stool and fluid. By the KL-PWLS noise reduction, the colon lumen can successfully be constructed and the colonic polyp can be detected in an ultra low-dose level below 50 mA s. Polyp detection can be found more easily by the KL-PWLS noise reduction compared to the results using the conventional noise filters, such as Hanning filter. These promising results indicate the feasibility of an ultra low-dose CTC pipeline for colon screening with less-stressful bowel preparation by fecal tagging with oral contrast.

  2. Intraarterial CT Angiography Using Ultra Low Volume of Iodine Contrast – Own Experiences

    International Nuclear Information System (INIS)

    Garcarek, Jerzy; Kurcz, Jacek; Guziński, Maciej; Banasik, Mirosław; Miś, Marcin; Gołębiowski, Tomasz

    2015-01-01

    High volume of intravenous contrast in CT-angiography may result in contrast-induced nephropathy. Intraarterial ultra-low volume of contrast medium results in its satisfactory blood concentration with potentially good image quality. The first main purpose was to assess the influence of the method on function of transplanted kidney in patients with impaired graft function. The second main purpose of the study was to evaluate the usefulness of this method for detection of gastrointestinal and head-and-neck haemorrhages. Between 2010 and 2013 intraarterial CT-angiography was performed in 56 patients, including 28 with chronic kidney disease (CKD). There were three main subgroups: 18 patients after kidney transplantation, 10 patients with gastrointestinal hemorrhage, 8 patients with head-and-neck hemorrhage. Contralateral or ipsilateral inguinal arterial approach was performed. The 4-French vascular sheaths and 4F-catheters were introduced under fluoroscopy. Intraarterial CT was performed using 64-slice scanner. The scanning protocol was as follows: slice thickness 0.625 mm, pitch 1.3, gantry rotation 0.6 sec., scanning delay 1–2 sec. The extent of the study was established on the basis of scout image. In patients with CKD 6–8 mL of Iodixanol (320 mg/mL) diluted with saline to 18–24 mL was administered at a speed of 4–5 mL/s. Vasculature was properly visualized in all patients. In patients with impaired renal function creatinine/eGFR levels remained stable in all but one case. Traditional arteriography failed and CT-angiography demonstrated the site of bleeding in 3 of 10 patients with symptoms of gastrointestinal bleeding (30%). In 8 patients with head-and-neck bleeding CT-angiography did not prove beneficial when compared to traditional arteriography. 1. Ultra-low contrast intraarterial CT-angiography does not deteriorate the function of transplanted kidneys in patients with impaired graft function. 2. 3D reconstructions allow for excellent visualization of

  3. Ultra-Low-Noise Sub-mm/Far-IR Detectors for Space-Based Telescopes

    Science.gov (United States)

    Rostem, Karwan

    The sub-mm and Far-IR spectrum is rich with information from a wide range of astrophysical sources, including exoplanet atmospheres and galaxies at the peak star formation. In the 10-400 μm range, the spectral lines of important chemical species such H2O, HD, and [OI] can be used to map the formation and evolution of planetary systems. Dust emission in this spectral range is also an important tool for characterizing the morphology of debris disks and interstellar magnetic fields. At larger scales, accessing the formation and distribution of luminous Far-IR and sub-mm galaxies is essential to understanding star formation triggers, as well as the last stages of reionization at z 6. Detector technology is essential to realizing the full science potential of a next-generation Far-IR space telescope (Far-IR Surveyor). The technology gap in large-format, low-noise and ultra-low-noise Far-IR direct detectors is specifically highlighted by NASA's Cosmic Origins Program, and prioritized for development now to enable a flagship mission such as the Far-IR Surveyor that will address the key Cosmic Origins science questions of the next two decades. The detector requirements for a mid-resolution spectrometer are as follows: (1) Highly sensitive detectors with performance approaching 10^-19 - 10^-20 WHz 1/2 for background- limited operation in telescopes with cold optics. (2) Detector time constant in the sub- millisecond range. (3) Scalable architecture to a kilo pixel array with uniform detector characteristics. (4) Compatibility with space operation in the presence of particle radiation. We propose phononic crystals to meet the requirements of ultra-low-noise thermal detectors. By design, a phononic crystal exhibits phonon bandgaps where heat transport is forbidden. The size and location of the bandgaps depend on the elastic properties of the dielectric and the geometry of the phononic unit cell. A wide-bandwidth low-pass thermal filter with a cut-off frequency of 1.5 GHz and

  4. Terrestrial gamma radiation baseline mapping using ultra low density sampling methods

    International Nuclear Information System (INIS)

    Kleinschmidt, R.; Watson, D.

    2016-01-01

    Baseline terrestrial gamma radiation maps are indispensable for providing basic reference information that may be used in assessing the impact of a radiation related incident, performing epidemiological studies, remediating land contaminated with radioactive materials, assessment of land use applications and resource prospectivity. For a large land mass, such as Queensland, Australia (over 1.7 million km 2 ), it is prohibitively expensive and practically difficult to undertake detailed in-situ radiometric surveys of this scale. It is proposed that an existing, ultra-low density sampling program already undertaken for the purpose of a nationwide soil survey project be utilised to develop a baseline terrestrial gamma radiation map. Geoelement data derived from the National Geochemistry Survey of Australia (NGSA) was used to construct a baseline terrestrial gamma air kerma rate map, delineated by major drainage catchments, for Queensland. Three drainage catchments (sampled at the catchment outlet) spanning low, medium and high radioelement concentrations were selected for validation of the methodology using radiometric techniques including in-situ measurements and soil sampling for high resolution gamma spectrometry, and comparative non-radiometric analysis. A Queensland mean terrestrial air kerma rate, as calculated from the NGSA outlet sediment uranium, thorium and potassium concentrations, of 49 ± 69 nGy h −1 (n = 311, 3σ 99% confidence level) is proposed as being suitable for use as a generic terrestrial air kerma rate background range. Validation results indicate that catchment outlet measurements are representative of the range of results obtained across the catchment and that the NGSA geoelement data is suitable for calculation and mapping of terrestrial air kerma rate. - Highlights: • A baseline terrestrial air kerma map of Queensland, Australia was developed using geochemical data from a major drainage catchment ultra-low density sampling program

  5. Research, Development and Fabrication of Lithium Solar Cells, Part 2

    Science.gov (United States)

    Iles, P. A.

    1972-01-01

    The development and fabrication of lithium solar cells are discussed. Several single-step, lithium diffusion schedules using lower temperatures and times are described. A comparison was made using evaporated lithium metal as the lithium source, and greatly improved consistency in lithium concentrations was obtained. It was possible to combine all processing steps to obtain lithium doped cells of high output which also contained adequate lithium to ensure good recoverability.

  6. Primary and Secondary Lithium Batteries Capable of Operating at Low Temperatures for Planetary Exploration

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; West, W. C.; Brandon, E. J.

    2011-01-01

    Objectives and Approach: (1) Develop advanced Li ]ion electrolytes that enable cell operation over a wide temperature range (i.e., -60 to +60 C). Improve the high temperature stability and lifetime characteristics of wide operating temperature electrolytes. (2) Define the performance limitations at low and high temperature extremes, as well as, life limiting processes. (3) Demonstrate the performance of advanced electrolytes in large capacity prototype cells.

  7. Fluorinated Graphene Prepared by Direct Fluorination of N, O-Doped Graphene Aerogel at Different Temperatures for Lithium Primary Batteries

    Directory of Open Access Journals (Sweden)

    Xu Bi

    2018-06-01

    Full Text Available Fluorinated graphene (FG has been a star material as a new derivative of graphene. In this paper, a series of fluorinated graphene materials are prepared by using N, O-doped graphene aerogel as precursor via a direct fluorination method, and the effect of fluorination temperature on the FG structure is investigated. The prepared FG samples are systematically characterized by scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. It is found that the structure of FG, including features such as layer size, chemical composition, chemical bond state of the component elements, etc., is significantly related to the fluorination temperature. With the change of the fluorination temperature, fluorine atoms enter the graphene framework by a substitution process of the N, O-containing groups, including residual phenol, ether, carbonyl groups, or C–N groups, and the addition to CC bonds, subsequently forming a fluoride with different fluorine contents. The fluorine content increases as the fluorination temperature increases from 200 °C to 300 °C, but decreases at a fluorination temperature of 350 °C due to the decomposition of the fluorinated graphene. The prepared FG samples are used as cathode material for lithium primary batteries. The FG sample prepared at 300 °C gives a high specific capacity of 632 mAh g−1 and a discharge plateau of 2.35 V at a current density of 10 mA g−1, corresponding to a high energy density of 1485 Wh kg−1.

  8. 3D nonlinear MHD simulations of ultra-low q plasmas

    International Nuclear Information System (INIS)

    Bonfiglio, D.; Cappello, S.; Piovan, R.; Zanotto, L.; Zuin, M.

    2008-01-01

    Magnetohydrodynamic (MHD) phenomena occurring in the ultra-low safety factor (ULq) configuration are investigated by means of 3D nonlinear MHD simulations. The ULq configuration, a screw pinch characterized by the edge safety factor q edge in the interval 0 edge edge values which are about the major rational numbers, suggesting plasma self-organization. Similar behaviour is observed in experimental ULq discharges, like those recently obtained exploiting the flexibility of the RFX-mod device. The transition of q edge from a major rational number to the next one occurs together with the development of a kink deformation of the plasma column, whose stabilization yields a nearly axisymmetric state with a rather flat q profile. Numerical simulations also show that it is possible to sustain either of the two conditions, namely, the saturated kink helical configuration and the axisymmetric one, by forcing q edge at a suitable value. Finally, the effects of this MHD phenomenology on the confinement properties of ULq plasmas are discussed.

  9. Exploring Sub-Femtosecond Correlated Dynamics with an Ultra-low Energy Electrostatic Storage Ring

    International Nuclear Information System (INIS)

    Welsch, C.P.; Grieser, M.; Dorn, A.; Moshammer, R.; Ullrich, J.

    2005-01-01

    Whereas the three-body Coulomb problem for single excitation and ionization was claimed to be solved in a mathematically correct way during 1999 until 2004 for electron impact on hydrogen and helium, ion-impact ionization still represents a major challenge for theory. Troubling discrepancies have been observed recently in fully differential cross sections (FDCS) for helium single ionization by fast ion impact and even experimental total cross sections are in striking disagreement with the predictions of all state-of-the-art theories for low-energy antiproton collisions. Therefore, within the future Facility for Low-energy Antiproton and Ion Research (FLAIR), it has been proposed to combine state-of-the-art many-particle imaging methods with a novel electrostatic storage ring for slow antiprotons in order to realize single and multiple ionization cross section measurements for antiprotons colliding with atoms, molecules and clusters. Total, as well as any differential cross sections up to FDCS including ionization-excitation reactions are envisaged to become available, serving as benchmark data for theory. Here, the present status of experiments in comparison with theory is presented and the layout of an Ultra-low energy Storage Ring (USR) with its integrated reaction microscope at FLAIR is described

  10. Ultra-low velocity zone heterogeneities at the core-mantle boundary from diffracted PKKPab waves

    Science.gov (United States)

    Ma, Xiaolong; Sun, Xinlei

    2017-08-01

    Diffracted waves around Earth's core could provide important information of the lowermost mantle that other seismic waves may not. We examined PKKPab diffraction waves from 52 earthquakes occurring at the western Pacific region and recorded by USArray to probe the velocity structure along the core-mantle boundary (CMB). These diffracted waves emerge at distances up to 10° past the theoretical cutoff epicentral distance and show comparable amplitudes. We measured the ray parameters of PKKPab diffraction waves by Radon transform analysis that is suitable for large-aperture arrays. These ray parameters show a wide range of values from 4.250 to 4.840 s/deg, suggesting strong lateral heterogeneities in sampling regions at the base of the mantle. We further estimated the P-wave velocity variations by converting these ray parameters and found the CMB regions beneath the northwestern edge of African Anomaly (Ritsma et al. in Science 286:1925-1928, 1999) and southern Sumatra Islands exhibit velocity reductions up to 8.5% relative to PREM. We suggest that these low velocity regions are Ultra-low velocity zones, which may be related to partial melt or iron-enriched solids.[Figure not available: see fulltext.

  11. Global Ultra-Low-Frequency Geomagnetic Pulsations Associated with the March 24, 1991 Geomagnetic Storm

    Directory of Open Access Journals (Sweden)

    Nan-Wei Chen Jann-Yenq Liu

    2008-01-01

    Full Text Available On 24 March 1991, global ultra-low-frequency (ULF pulsations (1.1 - 3.3 mHz observed in the magnetosphere as well as on the ground were studied via analyzing magnetic field data obtained from a global network, comprising ground-based observatories and geosynchronous satellites. In the magnetosphere, the compressional and transverse components of the magnetic fields recorded at two satellites, GOES 6 and GOES 7, showed dominant fluctuations when they were in the vicinity of the noon sector, whereas the transverse fluctuations became dominant when they were at the dawn side. Similarly, on the ground, the H and D components had major fluctuations along with an increase in amplitude from low to high geomagnetic latitudes. In addition, the amplitude of the ULF pulsation was enhanced at the dawn and dusk sides. The geomagnetic pulsations propagated anti-sunward and were of counterclockwise and clockwise elliptical polarizations at the dawn and dusk sides respectively. The counterclockwise elliptical polarization reversed to a clockwise elliptical polarization at geomagnetic local noon and linear polarization was observed during the reversal. It appears that the analysis of the global network data not only provided us with a study of the characteristics of the waves in the magnetosphere and on the ground but also provided us with correlations between the geosynchronous and ground observations, which should be essential to the determination of possible mechanisms of this storm-related wave event.

  12. An ultra low noise AC beam transformer for deceleration and diagnostics of low intensity beams

    CERN Document Server

    González, C

    1999-01-01

    The design of a broad band ultra-low noise ferrite loaded AC beam transformer is presented. It is designed for use in the CERN Antiproton Decelerator (AD), where beams of a few 107 charges must be decelerated from 3.5 GeV/c to 100 MeV/c. It is used in the RF beam-phase loop, and for intensity and bunch shape measurements during deceleration. When the beam is debunched for cooling on magnetic flat tops, the pick-up is used for measurements of intensity and momentum distribution by means of longitudinal Schottky scans. When used as Schottky pick-up, the signal to noise ratio should be better by about 40 dB than the existing stripline based longitudinal Schottky pick-up. The integrated design of pick-up and associated low-noise amplifier is presented. The achieved noise performance of a few from 1 to 3 MHz is obtained by attaching a low-noise, high-impedance silicon JFET (junction field effect transistor) amplifier to a high-Q resonant ferrite loaded cavity, and then eliminating the resonant response by low-nois...

  13. Effect of PVDC on the Fire Performance of Ultra-Low Density Fiberboards (ULDFs

    Directory of Open Access Journals (Sweden)

    Zhenzeng Wu

    2016-08-01

    Full Text Available Poly vinylidene chloride-vinyl chloride emulsions (PVDC were added as a substitute for chlorinated paraffin (CP in the preparation of ultra-low density fiberboards (ULDFs. The micromorphology and fire performance of ULDFs were investigated using a scanning electron microscope, limiting oxygen index instrument, and cone calorimeter. The results showed that PVDC specimens were coated with a regularly smooth film, while the distribution of CP inside CP specimens was uneven. The limiting oxygen index increased with the dosage of PVDC, then reached a plateau at 50 mL and 28%, slightly higher than CP specimens (27.3%. The peak of heat release rate, mean heat release rate, mean CO, and total smoke release of PVDC specimens was reduced 43.3%, 13.5%, 38.5%, and 51.5% lower than respective CP specimens, and with nearly the same total heat release (only 0.04 MJ/m2 higher. Thus, PVDC exhibited excellent heat-reducing and smoke-suppressing properties and could replace CP in ULDFs.

  14. Effects of ultra-low sulphur diesel fuel and diesel oxidation catalysts on nitrogen dioxide emissions

    International Nuclear Information System (INIS)

    Stachulak, J.S.; Zarling, D.

    2010-01-01

    Diesel oxidation catalysts (DOCs) are used on diesel equipment in underground mines to reduce exhaust emissions of carbon monoxide (CO), hydrocarbons (C) and odour that are associated with gaseous HCs. New catalysts have also been formulated to minimize sulphate production, but little is know about their effects on nitrogen dioxide (NO 2 ) emissions. DOCs are known to oxidize nitric oxide (NO) to NO 2 , which is more toxic than NO at low levels. Vale Inco uses ultra-low sulphur diesel (ULSD) fuel for its underground diesel equipment. Although ULSD is a cleaner burning fuel, its impact on the emissions performance of DOCs is not fully known. Technical material gathered during a literature review suggested that ULSD fuel may increase NO 2 production if DOCs are used, but that the increase would be small. This paper presented the results of a laboratory evaluation of DOCs with varying amounts of time-in service in Vale Inco mines. The 4 Vale Inco DOCs were found to produce excess NO 2 during some test conditions. In both steady-state and transient testing, there were no obvious trends in NO 2 increases with increasing DOC age. Two possibilities for these observations are that the DOCs may have been well within their useful life or their initial compositions differed. Future studies will make use of improved instrumentation, notably NO 2 analyzers, to definitely determine the influence of DOCs on NO 2 formation. 13 refs., 1 tab., 8 figs.

  15. Ultra-low Dose CT for Attenuation Correction of 82Rb Cardiac PET

    DEFF Research Database (Denmark)

    Sørensen, Maria Balshøj; Bouchelouche, Kirsten; Tolbod, Lars Poulsen

    Aim: Myocardial perfusion imaging (MPI) using cardiac PET with tracers like 82Rb and 15O-water is substantially lower in radiation dose than classic MIBI-based SPECT. However, for cardiac PET, the dose contribution of CT for attenuation correction (CTAC) is typically 20-30% of the total dose....... To reduce the total radiation dose of cardiac PET further, we set out to examine if the use of ultra-low dose CTAC (UL-CTAC) would affect the accuracy of the quantitative parameters related to MPI. Furthermore, we examined whether the low quality of the UL-CTAC would affect the technologist’s ability...... to perform manual adjustment for misalignment between PET and CTAC. The CT reconstruction algorithm Q.AC was used to improve quality and consistency of the CTAC. Method: 23 consecutive clinical patients (BMI: 26.9 [range: 15.4-38.8]) referred for 82Rb PET rest and stress imaging were included in the study...

  16. Research and Development of Natural Draft Ultra-Low Emissions Burners for Gas Appliances

    Energy Technology Data Exchange (ETDEWEB)

    Therkelsen, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cheng, Robert [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sholes, Darren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-31

    Combustion systems used in residential and commercial cooking appliances must be robust and easy to use while meeting air quality standards. Current air quality standards for cooking appliances are far greater than other stationary combustion equipment. By developing an advanced low emission combustion system for cooking appliances, the air quality impacts from these devices can be reduced. This project adapted the Lawrence Berkeley National Laboratory (LBNL) Ring-Stabilizer Burner combustion technology for residential and commercial natural gas fired cooking appliances (such as ovens, ranges, and cooktops). LBNL originally developed the Ring-Stabilizer Burner for a NASA funded microgravity experiment. This natural draft combustion technology reduces NOx emissions significantly below current SCAQMD emissions standards without post combustion treatment. Additionally, the Ring-Stabilizer Burner technology does not require the assistance of a blower to achieve an ultra-low emission lean premix flame. The research team evaluated the Ring-Stabilizer Burner and fabricated the most promising designs based on their emissions and turndown.

  17. Ultra-low emittance electron beam generation using ionization injection in a plasma beatwave accelerator

    Science.gov (United States)

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; Leemans, Wim

    2017-10-01

    Ultra-low emittance beams can be generated using ionization injection of electrons into a wakefield excited by a plasma beatwave accelerator. This all-optical method of electron beam generation uses three laser pulses of different colors. Two long-wavelength laser pulses, with frequency difference equal to the plasma frequency, resonantly drive a plasma wave without fully ionizing a gas. A short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the beating long-wavelength lasers, ionizes a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wakefield. Using the beating of long-wavelength pulses to generate the wakefield enables atomically-bound electrons to remain at low ionization potentials, reducing the required amplitude of the ionization pulse, and, hence, the initial transverse momentum and emittance of the injected electrons. An example is presented using two lines of a CO2 laser to form a plasma beatwave accelerator to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection. Supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  18. Correlation of ultra-low dose chest CT findings with physiologic measures of asbestosis

    Energy Technology Data Exchange (ETDEWEB)

    Manners, David [Sir Charles Gairdner Hospital, Department of Respiratory Medicine, Nedlands, WA (Australia); Wong, Patrick; Murray, Conor; Teh, Joelin [Royal Perth Hospital, Department of Diagnostic Imaging, Perth (Australia); Kwok, Yi Jin [Sir Charles Gairdner Hospital, Department of Diagnostic Imaging, Nedlands, WA (Australia); De Klerk, Nick; Franklin, Peter [University of Western Australia, School of Population Health, Perth, WA (Australia); Alfonso, Helman; Reid, Alison [Curtin University, School of Public Health, Perth, WA (Australia); Musk, A.W.B. [Sir Charles Gairdner Hospital, Department of Respiratory Medicine, Nedlands, WA (Australia); University of Western Australia, School of Population Health, Perth, WA (Australia); University of Western Australia, School of Medicine and Pharmacology, Perth, WA (Australia); Brims, Fraser J.H. [Sir Charles Gairdner Hospital, Department of Respiratory Medicine, Nedlands, WA (Australia); University of Western Australia, School of Population Health, Perth, WA (Australia); Curtin University, Curtin Medical School, Perth (Australia)

    2017-08-15

    The correlation between ultra low dose computed tomography (ULDCT)-detected parenchymal lung changes and pulmonary function abnormalities is not well described. This study aimed to determine the relationship between ULDCT-detected interstitial lung disease (ILD) and measures of pulmonary function in an asbestos-exposed population. Two thoracic radiologists independently categorised prone ULDCT scans from 143 participants for ILD appearances as absent (score 0), probable (1) or definite (2) without knowledge of asbestos exposure or lung function. Pulmonary function measures included spirometry and diffusing capacity to carbon monoxide (DLCO). Participants were 92% male with a median age of 73.0 years. CT dose index volume was between 0.6 and 1.8 mGy. Probable or definite ILD was reported in 63 (44.1%) participants. Inter-observer agreement was good (k = 0.613, p < 0.001). There was a statistically significant correlation between the ILD score and both forced expiratory volume in 1 second (FEV{sub 1}) and forced vital capacity (FVC) (r = -0.17, p = 0.04 and r = -0.20, p = 0.02). There was a strong correlation between ILD score and DLCO (r = -0.34, p < 0.0001). Changes consistent with ILD on ULDCT correlate well with corresponding reductions in gas transfer, similar to standard CT. In asbestos-exposed populations, ULDCT may be adequate to detect radiological changes consistent with asbestosis. (orig.)

  19. High platinum utilization in ultra-low Pt loaded PEM fuel cell cathodes prepared by electrospraying

    Energy Technology Data Exchange (ETDEWEB)

    Martin, S.; Garcia-Ybarra, P.L.; Castillo, J.L. [Dept. Fisica Matematica y de Fluidos, Facultad de Ciencias, UNED, Senda del Rey 9, 28040 Madrid (Spain)

    2010-10-15

    Cathode electrodes for proton exchange membrane fuel cells (PEMFCs) with ultra-low platinum loadings as low as 0.012 mg{sub Pt}cm{sup -2} have been prepared by the electrospray method. The electrosprayed layers have nanostructured fractal morphologies with dendrites formed by clusters (about 100 nm diameter) of a few single catalyst particles rendering a large exposure surface of the catalyst. Optimization of the control parameters affecting this morphology has allowed us to overcome the state of the art for efficient electrodes prepared by electrospraying. Thus, using these cathodes in membrane electrode assemblies (MEAs), a high platinum utilization in the range 8-10 kW g{sup -1} was obtained for the fuel cell operating at 40 C and atmospheric pressure. Moreover, a platinum utilization of 20 kW g{sup -1} was attained under more suitable operating conditions (70 C and 3.4 bar over-pressure). These results substantially improve the performances achieved previously with other low platinum loading electrodes prepared by electrospraying. (author)

  20. An ultra-low-voltage electronic implementation of inertial neuron model with nonmonotonous Liao's activation function.

    Science.gov (United States)

    Kant, Nasir Ali; Dar, Mohamad Rafiq; Khanday, Farooq Ahmad

    2015-01-01

    The output of every neuron in neural network is specified by the employed activation function (AF) and therefore forms the heart of neural networks. As far as the design of artificial neural networks (ANNs) is concerned, hardware approach is preferred over software one because it promises the full utilization of the application potential of ANNs. Therefore, besides some arithmetic blocks, designing AF in hardware is the most important for designing ANN. While attempting to design the AF in hardware, the designs should be compatible with the modern Very Large Scale Integration (VLSI) design techniques. In this regard, the implemented designs should: only be in Metal Oxide Semiconductor (MOS) technology in order to be compatible with the digital designs, provide electronic tunability feature, and be able to operate at ultra-low voltage. Companding is one of the promising circuit design techniques for achieving these goals. In this paper, 0.5 V design of Liao's AF using sinh-domain technique is introduced. Furthermore, the function is tested by implementing inertial neuron model. The performance of the AF and inertial neuron model have been evaluated through simulation results, using the PSPICE software with the MOS transistor models provided by the 0.18-μm Taiwan Semiconductor Manufacturer Complementary Metal Oxide Semiconductor (TSM CMOS) process.

  1. Correlation of ultra-low dose chest CT findings with physiologic measures of asbestosis

    International Nuclear Information System (INIS)

    Manners, David; Wong, Patrick; Murray, Conor; Teh, Joelin; Kwok, Yi Jin; De Klerk, Nick; Franklin, Peter; Alfonso, Helman; Reid, Alison; Musk, A.W.B.; Brims, Fraser J.H.

    2017-01-01

    The correlation between ultra low dose computed tomography (ULDCT)-detected parenchymal lung changes and pulmonary function abnormalities is not well described. This study aimed to determine the relationship between ULDCT-detected interstitial lung disease (ILD) and measures of pulmonary function in an asbestos-exposed population. Two thoracic radiologists independently categorised prone ULDCT scans from 143 participants for ILD appearances as absent (score 0), probable (1) or definite (2) without knowledge of asbestos exposure or lung function. Pulmonary function measures included spirometry and diffusing capacity to carbon monoxide (DLCO). Participants were 92% male with a median age of 73.0 years. CT dose index volume was between 0.6 and 1.8 mGy. Probable or definite ILD was reported in 63 (44.1%) participants. Inter-observer agreement was good (k = 0.613, p < 0.001). There was a statistically significant correlation between the ILD score and both forced expiratory volume in 1 second (FEV 1 ) and forced vital capacity (FVC) (r = -0.17, p = 0.04 and r = -0.20, p = 0.02). There was a strong correlation between ILD score and DLCO (r = -0.34, p < 0.0001). Changes consistent with ILD on ULDCT correlate well with corresponding reductions in gas transfer, similar to standard CT. In asbestos-exposed populations, ULDCT may be adequate to detect radiological changes consistent with asbestosis. (orig.)

  2. Ultra-low specific on-resistance SOI double-gate trench-type MOSFET

    International Nuclear Information System (INIS)

    Lei Tianfei; Luo Xiaorong; Ge Rui; Chen Xi; Wang Yuangang; Yao Guoliang; Jiang Yongheng; Zhang Bo; Li Zhaoji

    2011-01-01

    An ultra-low specific on-resistance (R on,sp ) silicon-on-insulator (SOI) double-gate trench-type MOSFET (DG trench MOSFET) is proposed. The MOSFET features double gates and an oxide trench: the oxide trench is in the drift region, one trench gate is inset in the oxide trench and one trench gate is extended into the buried oxide. Firstly, the double gates reduce R on,sp by forming dual conduction channels. Secondly, the oxide trench not only folds the drift region, but also modulates the electric field, thereby reducing device pitch and increasing the breakdown voltage (BV). ABV of 93 V and a R on,sp of 51.8 mΩ·mm 2 is obtained for a DG trench MOSFET with a 3 μm half-cell pitch. Compared with a single-gate SOI MOSFET (SG MOSFET) and a single-gate SOI MOSFET with an oxide trench (SG trench MOSFET), the R on,sp of the DG trench MOSFET decreases by 63.3% and 33.8% at the same BV, respectively. (semiconductor devices)

  3. Investigation of plasma etch damage to porous oxycarbosilane ultra low-k dielectric

    International Nuclear Information System (INIS)

    Bruce, R L; Engelmann, S; Purushothaman, S; Volksen, W; Frot, T J; Magbitang, T; Dubois, G; Darnon, M

    2013-01-01

    There has been much interest recently in porous oxycarbosilane (POCS)-based materials as the ultra-low k dielectric (ULK) in back-end-of-line (BEOL) applications due to their superior mechanical properties compared to traditional organosilicate-based ULK materials at equivalent porosity and dielectric constant. While it is well known that plasma etching and strip processes can cause significant damage to ULK materials in general, little has been reported about the effect of plasma damage to POCS as the ULK material. We investigated the effect of changing the gas discharge chemistry and substrate bias in the dielectric trench etch and also the subsequent effect of the cap-open etch on plasma damage to POCS during BEOL integration. Large differences in surface roughness and damage behaviour were observed by changing the fluorocarbon depositing conditions. These damage behaviour trends will be discussed and potential rationalizations offered based on the formation of pits and craters at the etch front that lead to surface roughness and microtrenching. (paper)

  4. Cross-validation of independent ultra-low-frequency magnetic recording systems for active fault studies

    Science.gov (United States)

    Wang, Can; Bin, Chen; Christman, Lilianna E.; Glen, Jonathan M. G.; Klemperer, Simon L.; McPhee, Darcy K.; Kappler, Karl N.; Bleier, Tom E.; Dunson, J. Clark

    2018-04-01

    When working with ultra-low-frequency (ULF) magnetic datasets, as with most geophysical time-series data, it is important to be able to distinguish between cultural signals, internal instrument noise, and natural external signals with their induced telluric fields. This distinction is commonly attempted using simultaneously recorded data from a spatially remote reference site. Here, instead, we compared data recorded by two systems with different instrumental characteristics at the same location over the same time period. We collocated two independent ULF magnetic systems, one from the QuakeFinder network and the other from the United States Geological Survey (USGS)-Stanford network, in order to cross-compare their data, characterize data reproducibility, and characterize signal origin. In addition, we used simultaneous measurements at a remote geomagnetic observatory to distinguish global atmospheric signals from local cultural signals. We demonstrated that the QuakeFinder and USGS-Stanford systems have excellent coherence, despite their different sensors and digitizers. Rare instances of isolated signals recorded by only one system or only one sensor indicate that caution is needed when attributing specific recorded signal features to specific origins.[Figure not available: see fulltext.

  5. Analytical validation of an ultra low-cost mobile phone microplate reader for infectious disease testing.

    Science.gov (United States)

    Wang, Li-Ju; Naudé, Nicole; Demissie, Misganaw; Crivaro, Anne; Kamoun, Malek; Wang, Ping; Li, Lei

    2018-07-01

    Most mobile health (mHealth) diagnostic devices for laboratory tests only analyze one sample at a time, which is not suitable for large volume serology testing, especially in low-resource settings with shortage of health professionals. In this study, we developed an ultra-low-cost clinically-accurate mobile phone microplate reader (mReader), and clinically validated this optical device for 12 infectious disease tests. The mReader optically reads 96 samples on a microplate at one time. 771 de-identified patient samples were tested for 12 serology assays for bacterial/viral infections. The mReader and the clinical instrument blindly read and analyzed all tests in parallel. The analytical accuracy and the diagnostic performance of the mReader were evaluated across the clinical reportable categories by comparison with clinical laboratorial testing results. The mReader exhibited 97.59-99.90% analytical accuracy and envision the mReader can benefit underserved areas/populations and low-resource settings in rural clinics/hospitals at a low cost (~$50 USD) with clinical-level analytical quality. It has the potential to improve health access, speed up healthcare delivery, and reduce health disparities and education disparities by providing access to a low-cost spectrophotometer. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. The ultra low frequency electromagnetic radiation observed in the topside ionosphere above boundaries of tectonic plates

    Directory of Open Access Journals (Sweden)

    Michael A. Athanasiou

    2015-01-01

    Full Text Available In this paper we present results of a comparison between ultra low frequency (ULF electromagnetic (EM radiation, recorded by an electric field instrument onboard the satellite detection of electromagnetic emissions transmitted from earthquake regions in the topside ionosphere, and the seismicity of regions with high and low seismic activity. In particular, we evaluated the energy variations of the ULF Ezelectric field component during a period of four years (2006-2009, in order to examine the possible relation of ULF EM radiation with seismogenic regions located in Central America, Indonesia, the Eastern Mediterranean Basin and Greece. As a tool for evaluating the ULF Ez energy variations we used singular spectrum analysis techniques. The results of our analysis clearly show a significant increase of the ULF EM energy emitted from regions of highest seismic activity at the boundaries tectonic plates. Furthermore, we found that higher electromagnetic radiation was detected in a region above the northern- western Greek Arc (R1 than above the adjacent region including Athens and its urban area. We interpret these results of the present study as suggesting that: i the seismogenic regions at the boundary of tectonic plates radiate ULF EM emissions observed by satellites in the topside ionosphere; and ii that this EM radiation is not only related with the occurrence time of great (M≥5 earthquakes, but it is often present in intermediate times and it appears as a quasi-permanent phenomenon.

  7. Environmental fate model for ultra-low-volume insecticide applications used for adult mosquito management

    Science.gov (United States)

    Schleier, Jerome J.; Peterson, Robert K.D.; Irvine, Kathryn M.; Marshall, Lucy M.; Weaver, David K.; Preftakes, Collin J.

    2012-01-01

    One of the more effective ways of managing high densities of adult mosquitoes that vector human and animal pathogens is ultra-low-volume (ULV) aerosol applications of insecticides. The U.S. Environmental Protection Agency uses models that are not validated for ULV insecticide applications and exposure assumptions to perform their human and ecological risk assessments. Currently, there is no validated model that can accurately predict deposition of insecticides applied using ULV technology for adult mosquito management. In addition, little is known about the deposition and drift of small droplets like those used under conditions encountered during ULV applications. The objective of this study was to perform field studies to measure environmental concentrations of insecticides and to develop a validated model to predict the deposition of ULV insecticides. The final regression model was selected by minimizing the Bayesian Information Criterion and its prediction performance was evaluated using k-fold cross validation. Density of the formulation and the density and CMD interaction coefficients were the largest in the model. The results showed that as density of the formulation decreases, deposition increases. The interaction of density and CMD showed that higher density formulations and larger droplets resulted in greater deposition. These results are supported by the aerosol physics literature. A k-fold cross validation demonstrated that the mean square error of the selected regression model is not biased, and the mean square error and mean square prediction error indicated good predictive ability.

  8. Input comparison of radiogenic neutron estimates for ultra-low background experiments

    Science.gov (United States)

    Cooley, J.; Palladino, K. J.; Qiu, H.; Selvi, M.; Scorza, S.; Zhang, C.

    2018-04-01

    Ultra-low-background experiments address some of the most important open questions in particle physics, cosmology and astrophysics: the nature of dark matter, whether the neutrino is its own antiparticle, and does the proton decay. These rare event searches require well-understood and minimized backgrounds. Simulations are used to understand backgrounds caused by naturally occurring radioactivity in the rock and in every piece of shielding and detector material used in these experiments. Most important are processes like spontaneous fission and (α,n) reactions in material close to the detectors that can produce neutrons. A comparison study of the (α,n) reactions between two dedicated software packages is detailed. The cross section libraries, neutron yields, and spectra from the Mei-Zhang-Hime and the SOURCES-4A codes are presented. The resultant yields and spectra are used as inputs to direct dark matter detector toy models in GEANT4, to study the impact of their differences on background estimates and fits. Although differences in neutron yield calculations up to 50% were seen, there was no systematic difference between the Mei-Hime-Zhang and SOURCES-4A results. Neutron propagation simulations smooth differences in spectral shape and yield, and both tools were found to meet the broad requirements of the low-background community.

  9. Transducer project and optimization of the ultra low magnetic field NMR tomograph reception system system

    International Nuclear Information System (INIS)

    Vidoto, Edson Luiz Gea

    1995-01-01

    The aim of the present work was to optimize the signal to noise ratio in our NMR imaging system (TORM 005) by improving transducer's reception quality through better designed coils, balanced tuning circuit for this coils and power decoupling circuits and by reducing interference from the electromagnetic environment. For this purpose, we had to modify the internal electromagnetic shielding and incorporate line filters in the more critical signals paths. Also, new types of coils were developed, improving the signal to noise ratio, and allowing us to make clinical exams with superior quality for several anatomies. Balanced circuits for tuning and matching of the coil were studied and built, allowing a reduction of the coil losses because patient's load. This produced a more reliable coil tuning after positioning each new patient. Circuits to avoid the receiver input overload and decoupling circuits for the isolation of receiver coils from excitation coil were designed and incorporated to the TORM 005. All these alterations of our imaging system (TORM 005) contributed to a significant improvement in the signal to noise ratio, reliability and reproducibility of the system. This permitted to operate the system routinely for clinical applications, research and development in the area of ultra low magnetic field tomography. (author)

  10. Online Internal Temperature Estimation for Lithium-Ion Batteries Based on Kalman Filter

    OpenAIRE

    Jinlei Sun; Guo Wei; Lei Pei; Rengui Lu; Kai Song; Chao Wu; Chunbo Zhu

    2015-01-01

    The battery internal temperature estimation is important for the thermal safety in applications, because the internal temperature is hard to measure directly. In this work, an online internal temperature estimation method based on a simplified thermal model using a Kalman filter is proposed. As an improvement, the influences of entropy change and overpotential on heat generation are analyzed quantitatively. The model parameters are identified through a current pulse test. The charge/discharg...

  11. Mechanism transition of cell-impedance-controlled lithium transport through Li1-δMn2O4 composite electrode caused by surface-modification and temperature variation

    International Nuclear Information System (INIS)

    Jung, Kyu-Nam; Pyun, Su-Il

    2007-01-01

    The mechanism transition of lithium transport through a Li 1-δ Mn 2 O 4 composite electrode caused by the surface-modification and temperature variation was investigated using the galvanostatic intermittent titration technique (GITT), electrochemical impedance spectroscopy (EIS) and the potentiostatic current transient technique. From the analyses of the ac-impedance spectra, experimentally measured from unmodified Li 1-δ Mn 2 O 4 and surface-modified Li 1-δ Mn 2 O 4 with MgO composite electrodes, the internal cell resistance of the MgO-modified Li 1-δ Mn 2 O 4 electrode was determined to be much smaller in value than that of the unmodified electrode over the whole potential range. Moreover, from the analysis of the anodic current transients measured on the MgO-modified Li 1-δ Mn 2 O 4 electrode, it was found that the cell-impedance-controlled constraint at the electrode surface is changed to a diffusion-controlled constraint, which is characterised by a large potential step and simultaneously by a small amount of lithium transferred during lithium transport. This strongly suggests that the internal cell resistance plays a significant role in determining the cell-impedance-controlled lithium transport through the MgO-modified Li 1-δ Mn 2 O 4 electrode. Furthermore, from the temperature dependence of the internal cell resistance and diffusion resistance in the unmodified Li 1-δ Mn 2 O 4 composite electrode measured by GITT and EIS, it was concluded that which mechanism of lithium transport will be operative strongly depends on the diffusion resistance as well as on the internal cell resistance

  12. Lithium battery management system

    Science.gov (United States)

    Dougherty, Thomas J [Waukesha, WI

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  13. Corrosion studies of austenitic and duplex stainless steels in aqueous lithium bromide solution at different temperatures

    International Nuclear Information System (INIS)

    Igual Munoz, A.; Garcia Anton, J.; Lopez Nuevalos, S.; Guinon, J.L.; Perez Herranz, V.

    2004-01-01

    The corrosion behavior of three stainless steels EN 14311, EN 14429 (austenitic stainless steels) and EN 14462 (duplex stainless steel) was studied in a commercial LiBr solution (850 g/l LiBr solution containing chromate as inhibitor) at different temperatures (25, 50, 75 and 85 deg C) by electrochemical methods. Open circuit potentials shifted towards more active values as temperature increased, while corrosion potentials presented the opposite tendency. The most resistant alloys to general corrosion were EN 14429 and EN 14462 because they had the lowest corrosion current for all temperatures. In all the cases corrosion current increases with temperature. Pitting corrosion resistance is improved by the EN 14462, which presented the highest pitting potential, and the lowest passivation current for the whole range of temperatures studied. The duplex alloy also presents the worst repassivation behavior (in terms of the narrowest difference between corrosion potential and pitting potential); it does not repassivate from 50 deg C

  14. Rechargeable Lithium Sulfur (Li-S) Battery with Specific Energy 400 Wh/kg and Operating Temperature Range -60°C to 60°C, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Sion Power is developing a rechargeable lithium sulfur (Li-S) battery with a demonstrated specific energy exceeding 350 Wh/kg and the range of operating temperatures...

  15. A Real-Time Simulink Interfaced Fast-Charging Methodology of Lithium-Ion Batteries under Temperature Feedback with Fuzzy Logic Control

    Directory of Open Access Journals (Sweden)

    Muhammad Umair Ali

    2018-05-01

    Full Text Available The lithium-ion battery has high energy and power density, long life cycle, low toxicity, low discharge rate, more reliability, and better efficiency compared to other batteries. On the other hand, the issue of a reduction in charging time of the lithium-ion battery is still a bottleneck for the commercialization of electric vehicles (EVs. Therefore, an approach to charge lithium-ion batteries at a faster rate is needed. This paper proposes an efficient, real-time, fast-charging methodology of lithium-ion batteries. Fuzzy logic was adopted to drive the charging current trajectory. A temperature control unit was also implemented to evade the effects of fast charging on the aging mechanism. The proposed method of charging also protects the battery from overvoltage and overheating. Extensive testing and comprehensive analysis were conducted to examine the proposed charging technique. The results show that the proposed charging strategy favors a full battery recharging in 9.76% less time than the conventional constant-current–constant-voltage (CC/CV method. The strategy charges the battery at a 99.26% state of charge (SOC without significant degradation. The entire scheme was implemented in real time, using Arduino interfaced with MATLABTM Simulink. This decrease in charging time assists in the fast charging of cell phones and notebooks and in the large-scale deployment of EVs.

  16. Novel determination of surface temperature of lithium hydride hydrolysis using DRIFT spectroscopy

    International Nuclear Information System (INIS)

    Awbery, Roy P.; Tsang, S.C.

    2008-01-01

    Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy has been used to show how increasing temperature causes the hydroxyl band of LiOH to shift linearly and reversibly towards lower wavenumbers. The band shift with temperature was used to determine the surface temperature of LiH when exposed to water vapour at 158, 317, 793 and >1900 Pa (5%, 10%, 25% and >60% relative humidity), the exothermic hydrolysis reaction resulting in surface temperature increases of up to 50 deg. C. The rate of surface heating was found to increase slightly with increasing water vapour exposures up to 793 Pa, demonstrating that the LiH hydrolysis reaction rate was dependent upon the partial pressure of water vapour. The growth of surface LiOH appeared to significantly slow down further reaction until the water vapour exposure was increased beyond 1900 Pa, when formation of hydrated LiOH occurred. The effect of temperature on detectors was also investigated showing that baselines shifted towards higher intensities with increasing temperature when measured with a DTGS detector and towards lower intensities with an MCT detector, over the temperature range 25-450 deg. C

  17. Ultra-Low Inductance Design for a GaN HEMT Based 3L-ANPC Inverter

    DEFF Research Database (Denmark)

    Gurpinar, Emre; Castellazzi, Alberto; Iannuzzo, Francesco

    2016-01-01

    contributors to voltage overshoots and increase of switching losses, are discussed. The ultra-low inductance power cell design based on a four layer PCB with the aim to maximise the switching performance of GaN HEMTs is explained. Gate driver design for GaN HEMT devices is presented. Common-mode behaviours......In this paper, an ultra-low inductance power cell design for a 3L-ANPC based on 650 V GaN HEMT devices is presented. The 3L-ANPC topology with GaN HEMT devices and the selected modulation scheme suitable for wide-bandgap (WBG) devices are presented. The commutation loops, which are the main...

  18. Cystic Fibrosis: Are Volumetric Ultra-Low-Dose Expiratory CT Scans Sufficient for Monitoring Related Lung Disease?

    DEFF Research Database (Denmark)

    Loeve, Martine; Lequin, Maarten H; Bruijne, Marleen de

    2009-01-01

    Purpose: To assess whether chest computed tomography (CT) scores from ultra-low-dose end-expiratory scans alone could suffice for assessment of all cystic fibrosis (CF)-related structural lung abnormalities. Materials and Methods: In this institutional review board–approved study, 20 patients...... with CF aged 6–20 years (eight males, 12 females) underwent low-dose end-inspiratory CT and ultra-low-dose end-expiratory CT. Informed consent was obtained. Scans were randomized and scored by using the Brody-II CT scoring system to assess bronchiectasis, airway wall thickening, mucus plugging......-Altman plots. Results: Median age was 12.6 years (range, 6.3–20.3 years), median forced expiratory volume in 1 second was 100% (range, 46%–127%) of the predicted value, and median forced vital capacity was 99% (range, 61%–123%) of the predicted value. Very good agreement was observed between end...

  19. Ultra-low power anti-crosstalk collision avoidance light detection and ranging using chaotic pulse position modulation approach

    International Nuclear Information System (INIS)

    Hao Jie; Gong Ma-li; Du Peng-fei; Lu Bao-jie; Zhang Fan; Zhang Hai-tao; Fu Xing

    2016-01-01

    A novel concept of collision avoidance single-photon light detection and ranging (LIDAR) for vehicles has been demonstrated, in which chaotic pulse position modulation is applied on the transmitted laser pulses for robust anti-crosstalk purposes. Besides, single-photon detectors (SPD) and time correlated single photon counting techniques are adapted, to sense the ultra-low power used for the consideration of compact structure and eye safety. Parameters including pulse rate, discrimination threshold, and number of accumulated pulses have been thoroughly analyzed based on the detection requirements, resulting in specified receiver operating characteristics curves. Both simulation and indoor experiments were performed to verify the excellent anti-crosstalk capability of the presented collision avoidance LIDAR despite ultra-low transmitting power. (paper)

  20. Combination of Continuous Dexmedetomidine Infusion with Titrated Ultra-Low-Dose Propofol-Fentanyl for an Awake Craniotomy; Case report

    Directory of Open Access Journals (Sweden)

    Samaresh Das

    2016-08-01

    Full Text Available An awake craniotomy is a continuously evolving technique used for the resection of brain tumours from the eloquent cortex. We report a 29-year-old male patient who presented to the Khoula Hospital, Muscat, Oman, in 2016 with a two month history of headaches and convulsions due to a space-occupying brain lesion in close proximity with the left motor cortex. An awake craniotomy was conducted using a scalp block, continuous dexmedetomidine infusion and a titrated ultra-low-dose of propofol-fentanyl. The patient remained comfortable throughout the procedure and the intraoperative neuropsychological tests, brain mapping and tumour resection were successful. This case report suggests that dexmedetomidine in combination with titrated ultra-low-dose propofolfentanyl are effective options during an awake craniotomy, ensuring optimum sedation, minimal disinhibition and a rapid recovery. To the best of the authors’ knowledge, this is the first awake craniotomy conducted successfully in Oman.

  1. Combination of Continuous Dexmedetomidine Infusion with Titrated Ultra-Low-Dose Propofol-Fentanyl for an Awake Craniotomy

    Science.gov (United States)

    Das, Samaresh; Al-Mashani, Ali; Suri, Neelam; Salhotra, Neeraj; Chatterjee, Nilay

    2016-01-01

    An awake craniotomy is a continuously evolving technique used for the resection of brain tumours from the eloquent cortex. We report a 29-year-old male patient who presented to the Khoula Hospital, Muscat, Oman, in 2016 with a two month history of headaches and convulsions due to a space-occupying brain lesion in close proximity with the left motor cortex. An awake craniotomy was conducted using a scalp block, continuous dexmedetomidine infusion and a titrated ultra-low-dose of propofolfentanyl. The patient remained comfortable throughout the procedure and the intraoperative neuropsychological tests, brain mapping and tumour resection were successful. This case report suggests that dexmedetomidine in combination with titrated ultra-low-dose propofolfentanyl are effective options during an awake craniotomy, ensuring optimum sedation, minimal disinhibition and a rapid recovery. To the best of the authors’ knowledge, this is the first awake craniotomy conducted successfully in Oman. PMID:27606116

  2. Push-back technique facilitates ultra-low anterior resection without nerve injury in total mesorectal excision for rectal cancer.

    Science.gov (United States)

    Inoue, Yasuhiro; Hiro, Junichiro; Toiyama, Yuji; Tanaka, Koji; Uchida, Keiichi; Miki, Chikao; Kusunoki, Masato

    2011-01-01

    To describe our push-back approach to ultra-low anterior resection using the concept of the mucosal stump. We mobilize the rectum using an abdominal approach, and perform mucosal cutting circumferentially at the dentate line. The mucosal stump is closed, and the internal sphincteric muscle resected partially or totally according to tumor location. Perianal dissection is performed along the medial plane of the external sphincteric muscles, and the hiatal ligament is dissected posteriorly. To resect the entire rectum, the closed rectal stump is pushed back to the abdominal cavity using composed gauze. This prevents injury to the autonomic nerve. We performed colonic J-pouch anal anastomosis using our mucosal stump approach in 58 patients with rectal cancer located push-back approach for internal sphincter resection produces satisfactory functional and oncological results in ultra-low anterior rectal cancer. Copyright © 2011 S. Karger AG, Basel.

  3. From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

    Science.gov (United States)

    Hartmann, Pascal; Bender, Conrad L; Busche, Martin; Eufinger, Christine

    2015-01-01

    Summary Research devoted to room temperature lithium–sulfur (Li/S8) and lithium–oxygen (Li/O2) batteries has significantly increased over the past ten years. The race to develop such cell systems is mainly motivated by the very high theoretical energy density and the abundance of sulfur and oxygen. The cell chemistry, however, is complex, and progress toward practical device development remains hampered by some fundamental key issues, which are currently being tackled by numerous approaches. Quite surprisingly, not much is known about the analogous sodium-based battery systems, although the already commercialized, high-temperature Na/S8 and Na/NiCl2 batteries suggest that a rechargeable battery based on sodium is feasible on a large scale. Moreover, the natural abundance of sodium is an attractive benefit for the development of batteries based on low cost components. This review provides a summary of the state-of-the-art knowledge on lithium–sulfur and lithium–oxygen batteries and a direct comparison with the analogous sodium systems. The general properties, major benefits and challenges, recent strategies for performance improvements and general guidelines for further development are summarized and critically discussed. In general, the substitution of lithium for sodium has a strong impact on the overall properties of the cell reaction and differences in ion transport, phase stability, electrode potential, energy density, etc. can be thus expected. Whether these differences will benefit a more reversible cell chemistry is still an open question, but some of the first reports on room temperature Na/S8 and Na/O2 cells already show some exciting differences as compared to the established Li/S8 and Li/O2 systems. PMID:25977873

  4. From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

    Directory of Open Access Journals (Sweden)

    Philipp Adelhelm

    2015-04-01

    Full Text Available Research devoted to room temperature lithium–sulfur (Li/S8 and lithium–oxygen (Li/O2 batteries has significantly increased over the past ten years. The race to develop such cell systems is mainly motivated by the very high theoretical energy density and the abundance of sulfur and oxygen. The cell chemistry, however, is complex, and progress toward practical device development remains hampered by some fundamental key issues, which are currently being tackled by numerous approaches. Quite surprisingly, not much is known about the analogous sodium-based battery systems, although the already commercialized, high-temperature Na/S8 and Na/NiCl2 batteries suggest that a rechargeable battery based on sodium is feasible on a large scale. Moreover, the natural abundance of sodium is an attractive benefit for the development of batteries based on low cost components. This review provides a summary of the state-of-the-art knowledge on lithium–sulfur and lithium–oxygen batteries and a direct comparison with the analogous sodium systems. The general properties, major benefits and challenges, recent strategies for performance improvements and general guidelines for further development are summarized and critically discussed. In general, the substitution of lithium for sodium has a strong impact on the overall properties of the cell reaction and differences in ion transport, phase stability, electrode potential, energy density, etc. can be thus expected. Whether these differences will benefit a more reversible cell chemistry is still an open question, but some of the first reports on room temperature Na/S8 and Na/O2 cells already show some exciting differences as compared to the established Li/S8 and Li/O2 systems.

  5. Advanced 65 nm CMOS devices fabricated using ultra-low energy plasma doping

    International Nuclear Information System (INIS)

    Walther, S.; Lenoble, D.; Lallement, F.; Grouillet, A.; Erokhin, Y.; Singh, V.; Testoni, A.

    2005-01-01

    For leading edge CMOS and DRAM technologies, plasma doping (PLAD) offers several unique advantages over conventional beamline implantation. For ultra-low energy source and drain extensions (SDE), source drain contact and high dose poly doping implants PLAD delivers 2-5x higher throughput compared to beamline implanters. In this work we demonstrate process performance and process integration benefits enabled by plasma doping for advanced 65 nm CMOS devices. Specifically, p + /n ultra-shallow junctions formed with BF 3 plasma doping have superior X j /R s characteristics to beamline implants and yield up to 30% lower R s for 20 nm X j while using standard spike anneal with ramp-up rate of 75 deg. C/s. These results indicate that PLAD could extend applicability of standard spike anneal by at least one technology node past 65 nm. A CMOS split lot has been run to investigate process integration advantages unique to plasma doping and to determine CMOS device characteristics. Device data measured on 65 nm transistors fabricated with offset spacers indicate that devices with SDE formed by plasma doping have superior V t roll-off characteristics arguably due to improved lateral gate-overlap of PLAD SDE junctions. Furthermore, offset spacers could be eliminated in 65 nm devices with PLAD SDE implants while still achieving V t roll-off and I on -I off performance at least equivalent to control devices with offset spacers and SDE formed by beamline implantation. Thus, another advantage of PLAD is simplified 65 nm CMOS manufacturing process flow due to elimination of offset spacers. Finally, we present process transfer from beamline implants to PLAD for several applications, including SDE and gate poly doping with very high productivity

  6. Quantitative depth profiling of near surface semiconductor structures using ultra low energy SIMS analysis

    International Nuclear Information System (INIS)

    Elliner, D.I.

    1999-09-01

    The continual reduction in size of semiconductor structures and depths of junctions is putting a greater strain on characterization techniques. Accurate device and process modelling requires quantified electrical and dopant profiles from the topmost few nanometres. Secondary ion mass spectrometry (SIMS) is an analytical technique commonly used in the semiconductor industry to measure concentration depth profiles. To allow the quantification of the features that are closer to the surface, lower energy ions are employed, which also improves the available depth resolution. The development of the floating ion gun (FLIG) has made it possible to use sub keV beam energies on a routine basis, allowing quantified dopant profiles to be obtained within the first few nanometres of the surface. This thesis demonstrates that, when profiling with oxygen ion beams, greatest certainty in the retained dose is achieved at normal incidence, and when analysing boron accurate profile shapes are only obtained when the primary beam energy is less than half that of the implant. It was shown that it is now possible to profile, though with slower erosion rates and a limited dynamic range, with 100 eV oxygen (0 2 + ) ion beams. Profile features that had developed during rapid thermal annealing, that could only be observed when ultra low energy ion beams were used, were investigated using various analytical techniques. Explanations of the apparently inactive dopant were proposed, and included suggestions for cluster molecules. The oxide thickness of fully formed altered layers has also been investigated. The results indicate that a fundamental change in the mechanism of oxide formation occurs, and interfaces that are sharper than those grown by thermal oxidation can be produced using sub-keV ion beams. (author)

  7. Ultra-low dose CT attenuation correction for PET/CT

    International Nuclear Information System (INIS)

    Xia Ting; Kinahan, Paul E; Alessio, Adam M; De Man, Bruno; Manjeshwar, Ravindra; Asma, Evren

    2012-01-01

    A challenge for positron emission tomography/computed tomography (PET/CT) quantitation is patient respiratory motion, which can cause an underestimation of lesion activity uptake and an overestimation of lesion volume. Several respiratory motion correction methods benefit from longer duration CT scans that are phase matched with PET scans. However, even with the currently available, lowest dose CT techniques, extended duration cine CT scans impart a substantially high radiation dose. This study evaluates methods designed to reduce CT radiation dose in PET/CT scanning. We investigated selected combinations of dose reduced acquisition and noise suppression methods that take advantage of the reduced requirement of CT for PET attenuation correction (AC). These include reducing CT tube current, optimizing CT tube voltage, adding filtration, CT sinogram smoothing and clipping. We explored the impact of these methods on PET quantitation via simulations on different digital phantoms. CT tube current can be reduced much lower for AC than that in low dose CT protocols. Spectra that are higher energy and narrower are generally more dose efficient with respect to PET image quality. Sinogram smoothing could be used to compensate for the increased noise and artifacts at radiation dose reduced CT images, which allows for a further reduction of CT dose with no penalty for PET image quantitation. When CT is not used for diagnostic and anatomical localization purposes, we showed that ultra-low dose CT for PET/CT is feasible. The significant dose reduction strategies proposed here could enable respiratory motion compensation methods that require extended duration CT scans and reduce radiation exposure in general for all PET/CT imaging. (paper)

  8. The Role of Localized Compressional Ultra-low Frequency Waves in Energetic Electron Precipitation

    Science.gov (United States)

    Rae, I. Jonathan; Murphy, Kyle R.; Watt, Clare E. J.; Halford, Alexa J.; Mann, Ian R.; Ozeke, Louis G.; Sibeck, David G.; Clilverd, Mark A.; Rodger, Craig J.; Degeling, Alex W.; Forsyth, Colin; Singer, Howard J.

    2018-03-01

    Typically, ultra-low frequency (ULF) waves have historically been invoked for radial diffusive transport leading to acceleration and loss of outer radiation belt electrons. At higher frequencies, very low frequency waves are generally thought to provide a mechanism for localized acceleration and loss through precipitation into the ionosphere of radiation belt electrons. In this study we present a new mechanism for electron loss through precipitation into the ionosphere due to a direct modulation of the loss cone via localized compressional ULF waves. We present a case study of compressional wave activity in tandem with riometer and balloon-borne electron precipitation across keV-MeV energies to demonstrate that the experimental measurements can be explained by our new enhanced loss cone mechanism. Observational evidence is presented demonstrating that modulation of the equatorial loss cone can occur via localized compressional wave activity, which greatly exceeds the change in pitch angle through conservation of the first and second adiabatic invariants. The precipitation response can be a complex interplay between electron energy, the localization of the waves, the shape of the phase space density profile at low pitch angles, ionospheric decay time scales, and the time dependence of the electron source; we show that two pivotal components not usually considered are localized ULF wave fields and ionospheric decay time scales. We conclude that enhanced precipitation driven by compressional ULF wave modulation of the loss cone is a viable candidate for direct precipitation of radiation belt electrons without any additional requirement for gyroresonant wave-particle interaction. Additional mechanisms would be complementary and additive in providing means to precipitate electrons from the radiation belts during storm times.

  9. The role of localised Ultra-Low Frequency waves in energetic electron precipitation

    Science.gov (United States)

    Rae, J.; Murphy, K. R.; Watt, C.; Mann, I. R.; Ozeke, L.; Halford, A. J.; Sibeck, D. G.; Clilverd, M. A.; Rodger, C. J.; Degeling, A. W.; Singer, H. J.

    2016-12-01

    Electromagnetic waves play pivotal roles in radiation belt dynamics through a variety of different means. Typically, Ultra-Low Frequency (ULF) waves have historically been invoked for radial diffusive transport leading to both acceleration and loss of outer radiation belt electrons. Very-Low Frequency (VLF) and Extremely-Low Frequency (ELF) waves are generally thought to provide a mechanism for localized acceleration and loss through precipitation into the ionosphere. In this study we present a new mechanism for electron loss through precipitation into the ionosphere due to direct modulation of the loss cone via localized compressional ULF waves. Observational evidence is presented demonstrating that modulation of the equatorial loss cone can occur via localized compressional wave activity. We then perform statistical computations of the probability distribution to determine how likely a given magnetic perturbation would produce a given percentage change in the bounce loss-cone (BLC). We discuss the ramifications of the action of coherent, localized compressional ULF waves on drifting electron populations; their precipitation response can be a complex interplay between electron energy, the shape of the phase space density profile at pitch angles close to the loss cone, ionospheric decay timescales, and the time-dependence of the electron source. We present a case study of compressional wave activity in tandem with riometer and balloon-borne electron precipitation across keV-MeV energies to demonstrate that the experimental measurements can be explained by our new enhanced loss cone mechanism. We determine that the two pivotal components not usually considered are localized ULF wave fields and ionospheric decay timescales. We conclude that ULF wave modulation of the loss cone is a viable candidate for direct precipitation of radiation belt electrons without any additional requirement for gyroresonant wave-particle interaction. Additional mechanisms would be

  10. MESSENGER Magnetic Field Observations of Upstream Ultra-Low Frequency Waves at Mercury

    Science.gov (United States)

    Le, G.; Chi, P. J.; Boardsen, S.; Blanco-Cano, X.; Anderosn, B. J.; Korth, H.

    2012-01-01

    The region upstream from a planetary bow shock is a natural plasma laboratory containing a variety of wave particle phenomena. The study of foreshocks other than the Earth's is important for extending our understanding of collisionless shocks and foreshock physics since the bow shock strength varies with heliocentric distance from the Sun, and the sizes of the bow shocks are different at different planets. The Mercury's bow shock is unique in our solar system as it is produced by low Mach number solar wind blowing over a small magnetized body with a predominately radial interplanetary magnetic field. Previous observations of Mercury upstream ultra-low frequency (ULF) waves came exclusively from two Mercury flybys of Mariner 10. The MESSENGER orbiter data enable us to study of upstream waves in the Mercury's foreshock in depth. This paper reports an overview of upstream ULF waves in the Mercury's foreshock using high-time resolution magnetic field data, 20 samples per second, from the MESSENGER spacecraft. The most common foreshock waves have frequencies near 2 Hz, with properties similar to the I-Hz waves in the Earth's foreshock. They are present in both the flyby data and in every orbit of the orbital data we have surveyed. The most common wave phenomenon in the Earth's foreshock is the large-amplitude 30-s waves, but similar waves at Mercury have frequencies at near 0.1 Hz and occur only sporadically with short durations (a few wave cycles). Superposed on the "30-s" waves, there are spectral peaks at near 0.6 Hz, not reported previously in Mariner 10 data. We will discuss wave properties and their occurrence characteristics in this paper.

  11. Possible operation of the European XFEL with ultra-low emittance beams

    International Nuclear Information System (INIS)

    Brinkmann, R.; Schneidmiller, E.A.; Yurkov, M.V.

    2010-01-01

    Recent successful lasing of the Linac Coherent Light Source (LCLS) in the hard x-ray regime and the experimental demonstration of a possibility to produce low-charge bunches with ultra-small normalized emittance have lead to the discussions on optimistic scenarios of operation of the European XFEL. In this paper we consider new options that make use of low-emittance beams, a relatively high beam energy, tunable-gap undulators, and a multibunch capability of this facility. We study the possibility of operation of a spontaneous radiator (combining two of them, U1 and U2, in one beamline) in the SASE mode in the designed photon energy range 20-90 keV and show that it becomes possible with ultra-low emittance electron beams similar to those generated in LCLS. As an additional attractive option we consider the generation of powerful soft X-ray and VUV radiation by the same electron bunch for pump-probe experiments, making use of recently invented compact afterburner scheme. We also propose a betatron switcher as a simple, cheap, and robust solution for multi-color operation of SASE1 and SASE2 undulators, allowing to generate 2 to 5 X-ray beams of different independent colors from each of these undulators for simultaneous multi-user operation. We describe a scheme for pump-probe experiments, based on a production of two different colors by two closely spaced electron bunches (produced in photoinjector) with the help of a very fast betatron switcher. Finally, we discuss how without significant modifications of the layout the European XFEL can become a unique facility that continuously covers with powerful, coherent radiation a part of the electromagnetic spectrum from far infrared to gamma-rays. (orig.)

  12. Ultra-low level plutonium isotopes in the NIST SRM 4355A (Peruvian Soil-1)

    International Nuclear Information System (INIS)

    Inn, Kenneth G.W.; LaRosa, Jerome; Nour, Svetlana; Brooks, George; LaMont, Steve; Steiner, Rob; Williams, Ross; Patton, Brad; Bostick, Debbie; Eiden, Gregory; Petersen, Steve; Douglas, Matthew; Beals, Donna; Cadieux, James; Hall, Greg; Goldberg, Steve; Vogt, Stephan

    2009-01-01

    For more than 20 years, countries and their agencies which monitor radionuclide discharge sites and storage facilities have relied on the National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 4355 Peruvian Soil. Its low fallout contamination makes it an ideal soil blank for measurements associated with terrestrial-pathway-to-man studies. Presently, SRM 4355 is out of stock, and a new batch of the Peruvian soil is currently under development as future NIST SRM 4355A. Both environmental radioanalytical laboratories and mass spectrometry communities will benefit from the use of this SRM. The former must assess their laboratory procedural contamination and measurement detection limits by measurement of blank sample material. The Peruvian Soil is so low in anthropogenic radionuclide content that it is a suitable virtual blank. On the other hand, mass spectrometric laboratories have high sensitivity instruments that are capable of quantitative isotopic measurements at low plutonium levels in the SRM 4355 (first Peruvian Soil SRM) that provided the mass spectrometric community with the calibration, quality control, and testing material needed for methods development and legal defensibility. The quantification of the ultra-low plutonium content in the SRM 4355A was a considerable challenge for the mass spectrometric laboratories. Careful blank control and correction, isobaric interferences, instrument stability, peak assessment, and detection assessment were necessary. Furthermore, a systematic statistical evaluation of the measurement results and considerable discussions with the mass spectroscopy metrologists were needed to derive the certified values and uncertainties. The one sided upper limit of the 95% tolerance with 95% confidence for the massic 239 Pu content in SRM 4355A is estimated to be 54,000 atoms/g.

  13. Terrestrial gamma radiation baseline mapping using ultra low density sampling methods.

    Science.gov (United States)

    Kleinschmidt, R; Watson, D

    2016-01-01

    Baseline terrestrial gamma radiation maps are indispensable for providing basic reference information that may be used in assessing the impact of a radiation related incident, performing epidemiological studies, remediating land contaminated with radioactive materials, assessment of land use applications and resource prospectivity. For a large land mass, such as Queensland, Australia (over 1.7 million km(2)), it is prohibitively expensive and practically difficult to undertake detailed in-situ radiometric surveys of this scale. It is proposed that an existing, ultra-low density sampling program already undertaken for the purpose of a nationwide soil survey project be utilised to develop a baseline terrestrial gamma radiation map. Geoelement data derived from the National Geochemistry Survey of Australia (NGSA) was used to construct a baseline terrestrial gamma air kerma rate map, delineated by major drainage catchments, for Queensland. Three drainage catchments (sampled at the catchment outlet) spanning low, medium and high radioelement concentrations were selected for validation of the methodology using radiometric techniques including in-situ measurements and soil sampling for high resolution gamma spectrometry, and comparative non-radiometric analysis. A Queensland mean terrestrial air kerma rate, as calculated from the NGSA outlet sediment uranium, thorium and potassium concentrations, of 49 ± 69 nGy h(-1) (n = 311, 3σ 99% confidence level) is proposed as being suitable for use as a generic terrestrial air kerma rate background range. Validation results indicate that catchment outlet measurements are representative of the range of results obtained across the catchment and that the NGSA geoelement data is suitable for calculation and mapping of terrestrial air kerma rate. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  14. An ion beam deceleration lens for ultra-low-energy ion bombardment of naked DNA

    Energy Technology Data Exchange (ETDEWEB)

    Thopan, P.; Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Suwannakachorn, D. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuldyuld@gmail.com [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: ► An ion beam deceleration lens was designed and constructed. ► The deceleration lens was installed and tested. ► The decelerated ion beam energy was measured using an electrical field. ► Decelerated ultra-low-energy ion beam bombarded naked DNA. ► Ion beam with energy of a few tens of eV could break DNA strands. -- Abstract: Study of low-energy ion bombardment effect on biological living materials is of significance. High-energy ion beam irradiation of biological materials such as organs and cells has no doubt biological effects. However, ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range. To investigate effects from very-low-energy ion bombardment on biological materials, an ion beam deceleration lens is necessary for uniform ion energy lower than keV. A deceleration lens was designed and constructed based on study of the beam optics using the SIMION program. The lens consisted of six electrodes, able to focus and decelerate primary ion beam, with the last one being a long tube to obtain a parallel uniform exiting beam. The deceleration lens was installed to our 30-kV bioengineering-specialized ion beam line. The final decelerated-ion energy was measured using a simple electrostatic field to bend the beam to range from 10 eV to 1 keV controlled by the lens parameters and the primary beam condition. In a preliminary test, nitrogen ion beam at 60 eV decelerated from a primary 20-keV beam bombarded naked plasmid DNA. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks. The study demonstrated that the ion bombardment with energy as low as several-tens eV was possible to break DNA strands and thus potential to cause genetic modification of biological cells.

  15. Ultra-low dose CT attenuation correction for PET/CT

    Science.gov (United States)

    Xia, Ting; Alessio, Adam M.; De Man, Bruno; Manjeshwar, Ravindra; Asma, Evren; Kinahan, Paul E.

    2012-01-01

    A challenge for PET/CT quantitation is patient respiratory motion, which can cause an underestimation of lesion activity uptake and an overestimation of lesion volume. Several respiratory motion correction methods benefit from longer duration CT scans that are phase matched with PET scans. However, even with the currently-available, lowest dose CT techniques, extended duration CINE CT scans impart a substantially high radiation dose. This study evaluates methods designed to reduce CT radiation dose in PET/CT scanning. Methods We investigated selected combinations of dose reduced acquisition and noise suppression methods that take advantage of the reduced requirement of CT for PET attenuation correction (AC). These include reducing CT tube current, optimizing CT tube voltage, adding filtration, CT sinogram smoothing and clipping. We explored the impact of these methods on PET quantitation via simulations on different digital phantoms. Results CT tube current can be reduced much lower for AC than that in low dose CT protocols. Spectra that are higher energy and narrower are generally more dose efficient with respect to PET image quality. Sinogram smoothing could be used to compensate for the increased noise and artifacts at radiation dose reduced CT images, which allows for a further reduction of CT dose with no penalty for PET image quantitation. Conclusion When CT is not used for diagnostic and anatomical localization purposes, we showed that ultra-low dose CT for PET/CT is feasible. The significant dose reduction strategies proposed here could enable respiratory motion compensation methods that require extended duration CT scans and reduce radiation exposure in general for all PET/CT imaging. PMID:22156174

  16. An ion beam deceleration lens for ultra-low-energy ion bombardment of naked DNA

    International Nuclear Information System (INIS)

    Thopan, P.; Prakrajang, K.; Thongkumkoon, P.; Suwannakachorn, D.; Yu, L.D.

    2013-01-01

    Highlights: ► An ion beam deceleration lens was designed and constructed. ► The deceleration lens was installed and tested. ► The decelerated ion beam energy was measured using an electrical field. ► Decelerated ultra-low-energy ion beam bombarded naked DNA. ► Ion beam with energy of a few tens of eV could break DNA strands. -- Abstract: Study of low-energy ion bombardment effect on biological living materials is of significance. High-energy ion beam irradiation of biological materials such as organs and cells has no doubt biological effects. However, ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range. To investigate effects from very-low-energy ion bombardment on biological materials, an ion beam deceleration lens is necessary for uniform ion energy lower than keV. A deceleration lens was designed and constructed based on study of the beam optics using the SIMION program. The lens consisted of six electrodes, able to focus and decelerate primary ion beam, with the last one being a long tube to obtain a parallel uniform exiting beam. The deceleration lens was installed to our 30-kV bioengineering-specialized ion beam line. The final decelerated-ion energy was measured using a simple electrostatic field to bend the beam to range from 10 eV to 1 keV controlled by the lens parameters and the primary beam condition. In a preliminary test, nitrogen ion beam at 60 eV decelerated from a primary 20-keV beam bombarded naked plasmid DNA. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks. The study demonstrated that the ion bombardment with energy as low as several-tens eV was possible to break DNA strands and thus potential to cause genetic modification of biological cells

  17. Bystander Exposure to Ultra-Low-Volume Insecticide Applications Used for Adult Mosquito Management

    Directory of Open Access Journals (Sweden)

    Robert K.D. Peterson

    2011-06-01

    Full Text Available A popular and effective management option for adult mosquitoes is the use of insecticides applied by ultra-low-volume (ULV equipment. However, there is a paucity of data on human dermal exposure to insecticides applied by this method. The objective of the current study was to estimate dermal exposures to the insecticide active ingredient permethrin using water- (Aqua-Reslin® and oil-based (Permanone® 30-30 formulations with passive dosimetry. No significant differences in deposition of permethrin were observed between years, distance from the spray source, front or back of the body, or the placement of the patches on the body. However, exposure to Aqua-Reslin was significantly greater than Permanone 30-30 and average concentrations deposited on the body were 4.2 and 2.1 ng/cm2, respectively. The greater deposition of Aqua-Reslin is most likely due to the higher density of the water-based formulation which causes it to settle out faster than the lighter oil-based formulation of Permanone 30-30. The estimated average absorbed dermal exposure for permethrin from Aqua-Reslin and Permanone 30-30 was 0.00009 and 0.00005 mg/kg body weight, respectively. We also found that ground deposition of ULV insecticides can be used as a surrogate for estimating dermal exposure. The estimated exposures support the findings of previous risk assessments that exposure to ULV applications used for mosquito management are below regulatory levels of concern.

  18. Construction and Evaluation of an Ultra Low Latency Frameless Renderer for VR.

    Science.gov (United States)

    Friston, Sebastian; Steed, Anthony; Tilbury, Simon; Gaydadjiev, Georgi

    2016-04-01

    Latency - the delay between a user's action and the response to this action - is known to be detrimental to virtual reality. Latency is typically considered to be a discrete value characterising a delay, constant in time and space - but this characterisation is incomplete. Latency changes across the display during scan-out, and how it does so is dependent on the rendering approach used. In this study, we present an ultra-low latency real-time ray-casting renderer for virtual reality, implemented on an FPGA. Our renderer has a latency of ~1 ms from 'tracker to pixel'. Its frameless nature means that the region of the display with the lowest latency immediately follows the scan-beam. This is in contrast to frame-based systems such as those using typical GPUs, for which the latency increases as scan-out proceeds. Using a series of high and low speed videos of our system in use, we confirm its latency of ~1 ms. We examine how the renderer performs when driving a traditional sequential scan-out display on a readily available HMO, the Oculus Rift OK2. We contrast this with an equivalent apparatus built using a GPU. Using captured human head motion and a set of image quality measures, we assess the ability of these systems to faithfully recreate the stimuli of an ideal virtual reality system - one with a zero latency tracker, renderer and display running at 1 kHz. Finally, we examine the results of these quality measures, and how each rendering approach is affected by velocity of movement and display persistence. We find that our system, with a lower average latency, can more faithfully draw what the ideal virtual reality system would. Further, we find that with low display persistence, the sensitivity to velocity of both systems is lowered, but that it is much lower for ours.

  19. Ultra-low dose of Mycobacterium tuberculosis aerosol creates partial infection in mice.

    Science.gov (United States)

    Saini, Divey; Hopkins, Gregory W; Seay, Sarah A; Chen, Ching-Ju; Perley, Casey C; Click, Eva M; Frothingham, Richard

    2012-03-01

    A murine low dose (LD) aerosol model is commonly used to test tuberculosis vaccines. Doses of 50-400 CFU (24h lung CFU) infect 100% of exposed mice. The LD model measures progression from infection to disease based on organ CFU at defined time points. To mimic natural exposure, we exposed mice to an ultra-low dose (ULD) aerosol. We estimated the presented dose by sampling the aerosol. Female C57BL/6 mice were exposed to Mycobacterium tuberculosis H37Rv aerosol at 1.0, 1.1, 1.6, 5.4, and 11 CFU presented dose, infecting 27%, 36%, 36%, 100%, and 95% of mice, respectively. These data are compatible with a stochastic infection event (Poisson distribution, weighted R(2)=0.97) or with a dose-response relationship (sigmoid distribution, weighted R(2)=0.97). Based on the later assumption, the ID50 was 1.6CFU presented dose (95% confidence interval, 1.2-2.1). We compared organ CFU after ULD and LD aerosols (5.4 vs. 395CFU presented dose). Lung burden was 30-fold lower in the ULD model at 4 weeks (3.4 vs. 4.8 logs, pLD aerosols had greater within-group CFU variability. Exposure to ULD aerosols leads to infection in a subset of mice, and to persistently low organ CFU. The ULD aerosol model may resemble human pulmonary tuberculosis more closely than the standard LD model, and may be used to identify host or bacterial factors that modulate the initial infection event. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Lithium-ion Energy Storage at Very Low Temperatures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Li-ion batteries with specific energy >180 Wh/kg, calendar life (>15years), and a wide operating temperature range (-60oC to 60oC) are crucial for the...

  1. Online Internal Temperature Estimation for Lithium-Ion Batteries Based on Kalman Filter

    Directory of Open Access Journals (Sweden)

    Jinlei Sun

    2015-05-01

    Full Text Available The battery internal temperature estimation is important for the thermal safety in applications, because the internal temperature is hard to measure directly. In this work, an online internal temperature estimation method based on a simplified thermal model using a Kalman filter is proposed. As an improvement, the influences of entropy change and overpotential on heat generation are analyzed quantitatively. The model parameters are identified through a current pulse test. The charge/discharge experiments under different current rates are carried out on the same battery to verify the estimation results. The internal and surface temperatures are measured with thermocouples for result validation and model construction. The accuracy of the estimated result is validated with a maximum estimation error of around 1 K.

  2. Reaction of lithium, sodium and potassium polyphosphates with potassium permanganate at elevated temperatures

    International Nuclear Information System (INIS)

    Paderova, L.V.; Onuchina, T.V.; Kochergin, V.P.

    1996-01-01

    A study was made on destruction of molten polyphosphates of alkaline metals by potassium permanganate during change of KMnO 4 content, test time and temperature. Ortho-, di, tri- and tetraphosphate-anions, as well as manganese compounds with different oxidation degree were revealed in products of component interaction. Empirical equations of the dependence of the value of average molecular mass on change of melt temperature were derived. 11 refs.; 2 figs.; 2 tabs

  3. A reduced low-temperature electro-thermal coupled model for lithium-ion batteries

    International Nuclear Information System (INIS)

    Jiang, Jiuchun; Ruan, Haijun; Sun, Bingxiang; Zhang, Weige; Gao, Wenzhong; Wang, Le Yi; Zhang, Linjing

    2016-01-01

    Highlights: • A reduced low-temperature electro-thermal coupled model is proposed. • A novel frequency-dependent equation for polarization parameters is presented. • The model is validated under different frequency and low-temperature conditions. • The reduced model exhibits a high accuracy with a low computational effort. • The adaptability of the proposed methodology for model reduction is verified. - Abstract: A low-temperature electro-thermal coupled model, which is based on the electrochemical mechanism, is developed to accurately capture both electrical and thermal behaviors of batteries. Activation energies reveal that temperature dependence of resistances is greater than that of capacitances. The influence of frequency on polarization voltage and irreversible heat is discussed, and frequency dependence of polarization resistance and capacitance is obtained. Based on the frequency-dependent equation, a reduced low-temperature electro-thermal coupled model is proposed and experimentally validated under different temperature, frequency and amplitude conditions. Simulation results exhibit good agreement with experimental data, where the maximum relative voltage error and temperature error are below 2.65% and 1.79 °C, respectively. The reduced model is demonstrated to have almost the same accuracy as the original model and require a lower computational effort. The effectiveness and adaptability of the proposed methodology for model reduction is verified using batteries with three different cathode materials from different manufacturers. The reduced model, thanks to its high accuracy and simplicity, provides a promising candidate for development of rapid internal heating and optimal charging strategies at low temperature, and for evaluation of the state of battery health in on-board battery management system.

  4. Influence of Fracture Width on Sealability in High-Strength and Ultra-Low-Permeability Concrete in Seawater

    OpenAIRE

    Fukuda, Daisuke; Nara, Yoshitaka; Hayashi, Daisuke; Ogawa, Hideo; Kaneko, Katsuhiko

    2013-01-01

    For cementitious composites and materials, the sealing of fractures can occur in water by the precipitation of calcium compounds. In this study, the sealing behavior in a macro-fractured high-strength and ultra-low-permeability concrete (HSULPC) specimen was investigated in simulated seawater using micro-focus X-ray computed tomography (CT). In particular, the influence of fracture width (0.10 and 0.25 mm) on fracture sealing was investigated. Precipitation occurred mainly at the outermost pa...

  5. Gamma-ray spectrometry of ultra low levels of radioactivity within the material screening program for the GERDA experiment.

    Science.gov (United States)

    Budjás, D; Gangapshev, A M; Gasparro, J; Hampel, W; Heisel, M; Heusser, G; Hult, M; Klimenko, A A; Kuzminov, V V; Laubenstein, M; Maneschg, W; Simgen, H; Smolnikov, A A; Tomei, C; Vasiliev, S I

    2009-05-01

    In present and future experiments in the field of rare events physics a background index of 10(-3) counts/(keV kg a) or better in the region of interest is envisaged. A thorough material screening is mandatory in order to achieve this goal. The results of a systematic study of radioactive trace impurities in selected materials using ultra low-level gamma-ray spectrometry in the framework of the GERDA experiment are reported.

  6. Sensitivity of LDEF foil analyses using ultra-low background germanium vs. large NaI(Tl) multidimensional spectrometers

    International Nuclear Information System (INIS)

    Reeves, J.H.; Arthur, R.J.; Brodzinski, R.L.

    1992-06-01

    Cobalt foils and stainless steel samples were analyzed for induced 6O Co activity with both an ultra-low background germanium gamma-ray spectrometer and with a large NaI(Tl) multidimensional spectrometer, both of which use electronic anticoincidence shielding to reduce background counts resulting from cosmic rays. Aluminum samples were analyzed for 22 Na. The results, in addition to the relative sensitivities and precisions afforded by the two methods, are presented

  7. An Analog Circuit Approximation of the Discrete Wavelet Transform for Ultra Low Power Signal Processing in Wearable Sensor Nodes

    OpenAIRE

    Casson, Alexander J.

    2015-01-01

    Ultra low power signal processing is an essential part of all sensor nodes, and particularly so in emerging wearable sensors for biomedical applications. Analog signal processing has an important role in these low power, low voltage, low frequency applications, and there is a key drive to decrease the power consumption of existing analog domain signal processing and to map more signal processing approaches into the analog domain. This paper presents an analog domain signal processing circuit ...

  8. Single-mode optical fiber design with wide-band ultra low bending-loss for FTTH application.

    Science.gov (United States)

    Watekar, Pramod R; Ju, Seongmin; Han, Won-Taek

    2008-01-21

    We propose a new design of a single-mode optical fiber (SMF) which exhibits ultra low bend sensitivity over a wide communication band (1.3 microm to 1.65 microm). A five-cladding fiber structure has been proposed to minimize the bending loss, estimated to be as low as 4.4x10(-10) dB/turn for the bend radius of 10 mm.

  9. Nanocrystals manufacturing by ultra-low-energy ion-beam-synthesis for non-volatile memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Normand, P. E-mail: p.normand@imel.demokritos.gr; Kapetanakis, E.; Dimitrakis, P.; Skarlatos, D.; Beltsios, K.; Tsoukalas, D.; Bonafos, C.; Ben Assayag, G.; Cherkashin, N.; Claverie, A.; Berg, J.A. van den; Soncini, V.; Agarwal, A.; Ameen, M.; Perego, M.; Fanciulli, M

    2004-02-01

    An overview of recent developments regarding the fabrication and structure of thin silicon dioxide films with embedded nanocrystals through ultra-low-energy ion-beam-synthesis (ULE-IBS) is presented. Advances in fabrication, increased understanding of structure formation processes and ways to control them allow for the fabrication of reproducible and attractive silicon-nanocrystal memory devices for a wide-range of memory applications as herein demonstrated in the case of low-voltage EEPROM-like applications.

  10. Nanocrystals manufacturing by ultra-low-energy ion-beam-synthesis for non-volatile memory applications

    International Nuclear Information System (INIS)

    Normand, P.; Kapetanakis, E.; Dimitrakis, P.; Skarlatos, D.; Beltsios, K.; Tsoukalas, D.; Bonafos, C.; Ben Assayag, G.; Cherkashin, N.; Claverie, A.; Berg, J.A. van den; Soncini, V.; Agarwal, A.; Ameen, M.; Perego, M.; Fanciulli, M.

    2004-01-01

    An overview of recent developments regarding the fabrication and structure of thin silicon dioxide films with embedded nanocrystals through ultra-low-energy ion-beam-synthesis (ULE-IBS) is presented. Advances in fabrication, increased understanding of structure formation processes and ways to control them allow for the fabrication of reproducible and attractive silicon-nanocrystal memory devices for a wide-range of memory applications as herein demonstrated in the case of low-voltage EEPROM-like applications

  11. Approach to lithium burn-up effect in lithium ceramics

    International Nuclear Information System (INIS)

    Rasneur, B.

    1994-01-01

    The lithium burn-up in Li 2 ZrO 3 is simulated by removing lithium under Li 2 O form and trapping it in high specific surface area powder while heating during 15 days or 1 month at moderate temperature so that lithium mobility be large enough without causing any sintering neither of the specimens nor of the powder. In a first treatment at 775 deg C during 1 month. 30% of the lithium content could be removed inducing a lithium concentration gradient in the specimen and the formation of a lithium-free monoclinic ZrO 2 skin. Improvements led to similar results at 650 deg C and 600 deg C, the latter temperatures are closer to the operating temperature of the ceramic breeder blanket of a fusion reactor. (author) 4 refs.; 4 figs.; 1 tab

  12. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    Science.gov (United States)

    Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C

    2016-01-01

    We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  13. An ultra-low power output capacitor-less low-dropout regulator with slew-rate-enhanced circuit

    Science.gov (United States)

    Cheng, Xin; Zhang, Yu; Xie, Guangjun; Yang, Yizhong; Zhang, Zhang

    2018-03-01

    An ultra-low power output-capacitorless low-dropout (LDO) regulator with a slew-rate-enhanced (SRE) circuit is introduced. The increased slew rate is achieved by sensing the transient output voltage of the LDO and then charging (or discharging) the gate capacitor quickly. In addition, a buffer with ultra-low output impedance is presented to improve line and load regulations. This design is fabricated by SMIC 0.18 μm CMOS technology. Experimental results show that, the proposed LDO regulator only consumes an ultra-low quiescent current of 1.2 μA. The output current range is from 10 μA to 200 mA and the corresponding variation of output voltage is less than 40 mV. Moreover, the measured line regulation and load regulation are 15.38 mV/V and 0.4 mV/mA respectively. Project supported by the National Natural Science Foundation of China (Nos. 61401137, 61404043, 61674049).

  14. CORK Study in Cystic Fibrosis: Sustained Improvements in Ultra-Low-Dose Chest CT Scores After CFTR Modulation With Ivacaftor.

    Science.gov (United States)

    Ronan, Nicola J; Einarsson, Gisli G; Twomey, Maria; Mooney, Denver; Mullane, David; NiChroinin, Muireann; O'Callaghan, Grace; Shanahan, Fergus; Murphy, Desmond M; O'Connor, Owen J; Shortt, Cathy A; Tunney, Michael M; Eustace, Joseph A; Maher, Michael M; Elborn, J Stuart; Plant, Barry J

    2018-02-01

    Ivacaftor produces significant clinical benefit in patients with cystic fibrosis (CF) with the G551D mutation. Prevalence of this mutation at the Cork CF Centre is 23%. This study assessed the impact of cystic fibrosis transmembrane conductance regulator modulation on multiple modalities of patient assessment. Thirty-three patients with the G551D mutation were assessed at baseline and prospectively every 3 months for 1 year after initiation of ivacaftor. Change in ultra-low-dose chest CT scans, blood inflammatory mediators, and the sputum microbiome were assessed. Significant improvements in FEV 1 , BMI, and sweat chloride levels were observed post-ivacaftor treatment. Improvement in ultra-low-dose CT imaging scores were observed after treatment, with significant mean reductions in total Bhalla score (P < .01), peribronchial thickening (P = .035), and extent of mucous plugging (P < .001). Reductions in circulating inflammatory markers, including interleukin (IL)-1β, IL-6, and IL-8 were demonstrated. There was a 30% reduction in the relative abundance of Pseudomonas species and an increase in the relative abundance of bacteria associated with more stable community structures. Posttreatment community richness increased significantly (P = .03). Early and sustained improvements on ultra-low-dose CT scores suggest it may be a useful method of evaluating treatment response. It paralleled improvement in symptoms, circulating inflammatory markers, and changes in the lung microbiota. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  15. Deformation, Stress Relaxation, and Crystallization of Lithium Silicate Glass Fibers Below the Glass Transition Temperature

    Science.gov (United States)

    Ray, Chandra S.; Brow, Richard K.; Kim, Cheol W.; Reis, Signo T.

    2004-01-01

    The deformation and crystallization of Li(sub 2)O (center dot) 2SiO2 and Li(sub 2)O (center dot) 1.6SiO2 glass fibers subjected to a bending stress were measured as a function of time over the temperature range -50 to -150 C below the glass transition temperature (Tg). The glass fibers can be permanently deformed at temperatures about 100 C below T (sub)g, and they crystallize significantly at temperatures close to, but below T,, about 150 C lower than the onset temperature for crystallization for these glasses in the no-stress condition. The crystallization was found to occur only on the surface of the glass fibers with no detectable difference in the extent of crystallization in tensile and compressive stress regions. The relaxation mechanism for fiber deformation can be best described by a stretched exponential (Kohlrausch-Williams-Watt (KWW) approximation), rather than a single exponential model.The activation energy for stress relaxation, Es, for the glass fibers ranges between 175 and 195 kJ/mol, which is considerably smaller than the activation energy for viscous flow, E, (about 400 kJ/mol) near T, for these glasses at normal, stress-free condition. It is suspected that a viscosity relaxation mechanism could be responsible for permanent deformation and crystallization of the glass fibers below T,

  16. Pyrrolidinium FSI and TFSI-Based Polymerized Ionic Liquids as Electrolytes for High-Temperature Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Manfred Kerner

    2018-02-01

    Full Text Available Promising electrochemical and dynamical properties, as well as high thermal stability, have been the driving forces behind application of ionic liquids (ILs and polymerized ionic liquids (PILs as electrolytes for high-temperature lithium-ion batteries (HT-LIBs. Here, several ternary lithium-salt/IL/PIL electrolytes (PILel have been investigated for synergies of having both FSI and TFSI anions present, primarily in terms of physico-chemical properties, for unique application in HT-LIBs operating at 80 °C. All of the electrolytes tested have low Tg and are thermally stable ≥100 °C, and with TFSI as the exclusive anion the electrolytes (set A have higher thermal stabilities ≥125 °C. Ionic conductivities are in the range of 1 mS/cm at 100 °C and slightly higher for set A PILel, which, however, have lower oxidation stabilities than set B PILel with both FSI and TFSI anions present: 3.4–3.7 V vs. 4.2 V. The evolution of the interfacial resistance increases for all PILel during the first 40 h, but are much lower for set B PILel and generally decrease with increasing Li-salt content. The higher interfacial resistances only influence the cycling performance at high C-rates (1 C, where set B PILel with high Li-salt content performs better, while the discharge capacities at the 0.1 C rate are comparable. Long-term cycling at 0.5 C, however, shows stable discharge capacities for 100 cycles, with the exception of the set B PILel with high Li-salt content. Altogether, the presence of both FSI and TFSI anions in the PILel results in lower ionic conductivities and decreased thermal stabilities, but also higher oxidation stabilities and reduced interfacial resistances and, in total, result in an improved rate capability, but compromised long-term capacity retention. Overall, these electrolytes open for novel designs of HT-LIBs.

  17. Curie temperature variation in polycrystalline sodium-lithium niobate with various thermodynamic prehistory

    International Nuclear Information System (INIS)

    Pozdnyakova, I.V.; Reznichenko, L.A.

    2000-01-01

    The Curie temperature T C in the samples obtained by various methods is measured with the purpose of establishing the effect of the structure formation conditions (thermal prehistory) of the Na 1-x Li x NbO 3 ceramic samples by 0.015 ≤ x ≤ 0.0275 on the behavior of solid solutions in the external electrical field. It is established that essential dependence of the transition temperature shift in the electrical field and also in T C on the conditions of the solid solution preparation is observed in the (NaLi)NbO 3 system. The conclusion is made that hot pressing with increased high-temperature seasoning is the best method for obtaining the ceramics of the given composition in the area of antiferro-ferroelectrical transition [ru

  18. State of Charge Estimation for Lithium-Ion Battery with a Temperature-Compensated Model

    Directory of Open Access Journals (Sweden)

    Shichun Yang

    2017-10-01

    Full Text Available Accurate estimation of the state of charge (SOC of batteries is crucial in a battery management system. Many studies on battery SOC estimation have been investigated recently. Temperature is an important factor that affects the SOC estimation accuracy while it is still not adequately addressed at present. This paper proposes a SOC estimator based on a new temperature-compensated model with extended Kalman Filter (EKF. The open circuit voltage (OCV, capacity, and resistance and capacitance (RC parameters in the estimator are temperature dependent so that the estimator can maintain high accuracy at various temperatures. The estimation accuracy decreases when applied in high current continuous discharge, because the equivalent polarization resistance decreases as the discharge current increases. Therefore, a polarization resistance correction coefficient is proposed to tackle this problem. The estimator also demonstrates a good performance in dynamic operating conditions. However, the equivalent circuit model shows huge uncertainty in the low SOC region, so measurement noise variation is proposed to improve the estimation accuracy there.

  19. Experimental investigation on tritium release from lithium titanate pebble under high temperature of 1073 K

    Energy Technology Data Exchange (ETDEWEB)

    Ochiai, Kentaro, E-mail: howartre@onid.oregonstate.edu [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki (Japan); Edao, Yuki; Kawamura, Yoshinori [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki (Japan); Hoshino, Tsuyoshi [Japan Atomic Energy Agency, Rokkasho-mura, Kamikita-gun, Aomori (Japan); Ohta, Masayuki; Sato, Satoshi; Konno, Chikara [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki (Japan)

    2015-10-15

    Highlights: • We have performed the tritium recovery experiment with the DT neutron source at 1073 K. • The tritium recovery corresponded with the calculated tritium production. • The chemical form of recovered tritium is affected by the temperature and kind of sweep gas. • The recovered HT increases at higher temperature and dry hydrogen circumstance. - Abstract: The temperature of Li{sub 2}TiO{sub 3} pebble breeder in a fusion DEMO blanket is assumed to be more than 1000 K. For the investigation of tritium release from a Li{sub 2}TiO{sub 3} pebble breeder blanket at such a high temperature, we have carried out a tritium release experiment with the DT neutron source at the JAEA-FNS. The Li{sub 2}TiO{sub 3} pebble (1.0–1.2 mm in diameter) of 70 g was put into a stainless steel container and installed into an assembly stratified with beryllium and Li{sub 2}TiO{sub 3} layers. During the DT neutron irradiation, the temperature was kept at 1073 K with wire heaters in the blanket container. Helium gas including 1% hydrogen gas (H{sub 2}/He) mainly flowed inside the container as the purge gas. Two chemical forms, HT and HTO, of extracted tritium were separately collected during the DT neutron irradiation by using water bubblers and CuO bed. The tritium activity in the water bubbler was measured by a liquid scintillation counter. To investigate the effect of moisture in the purge gas, we also performed the same experiments with H{sub 2}O/He gas (H{sub 2}O content: 1%) or pure helium gas. From our experiment at 1073 K, in the case of the purge gas includes H{sub 2}, it is indicated that the increasing tendency of HT release is similar to that of the dry H{sub 2}/He.

  20. Effect of Heat-Pressing Temperature and Holding Time on the Microstructure and Flexural Strength of Lithium Disilicate Glass-Ceramics

    Science.gov (United States)

    Gao, Jing; Wang, Hui; Chen, Jihua

    2015-01-01

    The present study aimed to evaluate the influence of various heat-pressing procedures (different holding time and heat pressing temperature) on the microstructure and flexural strength of lithium disilicate glass ceramic. An experimental lithium silicate glass ceramic (ELDC) was prepared from the SiO2-Li2O-K2O-Al2O3-ZrO2-P2O5 system and heat-pressed following different procedures by varying temperature and holding time. The flexural strength was tested and microstructure was analyzed. The relationships between the microstructure, mechanical properties and heat-pressing procedures were discussed in-depth. Results verified the feasibility of the application of dental heat-pressing technique in processing the experimental lithium disilicate glass ceramic. Different heat-pressing procedures showed significant influence on microstructure and flexural strength. ELDC heat-pressed at 950℃ with holding time of 15 min achieved an almost pore-free microstructure and the highest flexural strength, which was suitable for dental restorative application. PMID:25985206

  1. Effect of heat-pressing temperature and holding time on the microstructure and flexural strength of lithium disilicate glass-ceramics.

    Directory of Open Access Journals (Sweden)

    Fu Wang

    Full Text Available The present study aimed to evaluate the influence of various heat-pressing procedures (different holding time and heat pressing temperature on the microstructure and flexural strength of lithium disilicate glass ceramic. An experimental lithium silicate glass ceramic (ELDC was prepared from the SiO2-Li2O-K2O-Al2O3-ZrO2-P2O5 system and heat-pressed following different procedures by varying temperature and holding time. The flexural strength was tested and microstructure was analyzed. The relationships between the microstructure, mechanical properties and heat-pressing procedures were discussed in-depth. Results verified the feasibility of the application of dental heat-pressing technique in processing the experimental lithium disilicate glass ceramic. Different heat-pressing procedures showed significant influence on microstructure and flexural strength. ELDC heat-pressed at 950℃ with holding time of 15 min achieved an almost pore-free microstructure and the highest flexural strength, which was suitable for dental restorative application.

  2. Static disorder and structural correlations in the low-temperature phase of lithium imide

    Science.gov (United States)

    Miceli, Giacomo; Ceriotti, Michele; Bernasconi, Marco; Parrinello, Michele

    2011-02-01

    Based on ab initio molecular dynamics simulations, we investigate the low-temperature crystal structure of Li2NH which in spite of its great interest as H-storage material is still a matter of debate. The dynamical simulations reveal a precise correlation in the fractional occupation of Li sites which leads average atomic positions in excellent agreement with diffraction data and solves the inconsistencies of previous proposals.

  3. Synthesis of Highly Uniform and Compact Lithium Zinc Ferrite Ceramics via an Efficient Low Temperature Approach.

    Science.gov (United States)

    Xu, Fang; Liao, Yulong; Zhang, Dainan; Zhou, Tingchuan; Li, Jie; Gan, Gongwen; Zhang, Huaiwu

    2017-04-17

    LiZn ferrite ceramics with high saturation magnetization (4πM s ) and low ferromagnetic resonance line widths (ΔH) represent a very critical class of material for microwave ferrite devices. Many existing approaches emphasize promotion of the grain growth (average size is 10-50 μm) of ferrite ceramics to improve the gyromagnetic properties at relatively low sintering temperatures. This paper describes a new strategy for obtaining uniform and compact LiZn ferrite ceramics (average grains size is ∼2 μm) with enhanced magnetic performance by suppressing grain growth in great detail. The LiZn ferrites with a formula of Li 0.415 Zn 0.27 Mn 0.06 Ti 0.1 Fe 2.155 O 4 were prepared by solid reaction routes with two new sintering strategies. Interestingly, results show that uniform, compact, and pure spinel ferrite ceramics were synthesized at a low temperature (∼850 °C) without obvious grain growth. We also find that a fast second sintering treatment (FSST) can further improve their gyromagnetic properties, such as higher 4πM s and lower ΔH. The two new strategies are facile and efficient for densification of LiZn ferrite ceramics via suppressing grain growth at low temperatures. The sintering strategy reported in this study also provides a referential experience for other ceramics, such as soft magnetism ferrite ceramics or dielectric ceramics.

  4. Ultra-low-density genotype panels for breed assignment of Angus and Hereford cattle.

    Science.gov (United States)

    Judge, M M; Kelleher, M M; Kearney, J F; Sleator, R D; Berry, D P

    2017-06-01

    Angus and Hereford beef is marketed internationally for apparent superior meat quality attributes; DNA-based breed authenticity could be a useful instrument to ensure consumer confidence on premium meat products. The objective of this study was to develop an ultra-low-density genotype panel to accurately quantify the Angus and Hereford breed proportion in biological samples. Medium-density genotypes (13 306 single nucleotide polymorphisms (SNPs)) were available on 54 703 commercial and 4042 purebred animals. The breed proportion of the commercial animals was generated from the medium-density genotypes and this estimate was regarded as the gold-standard breed composition. Ten genotype panels (100 to 1000 SNPs) were developed from the medium-density genotypes; five methods were used to identify the most informative SNPs and these included the Delta statistic, the fixation (F st) statistic and an index of both. Breed assignment analyses were undertaken for each breed, panel density and SNP selection method separately with a programme to infer population structure using the entire 13 306 SNP panel (representing the gold-standard measure). Breed assignment was undertaken for all commercial animals (n=54 703), animals deemed to contain some proportion of Angus based on pedigree (n=5740) and animals deemed to contain some proportion of Hereford based on pedigree (n=5187). The predicted breed proportion of all animals from the lower density panels was then compared with the gold-standard breed prediction. Panel density, SNP selection method and breed all had a significant effect on the correlation of predicted and actual breed proportion. Regardless of breed, the Index method of SNP selection numerically (but not significantly) outperformed all other selection methods in accuracy (i.e. correlation and root mean square of prediction) when panel density was ⩾300 SNPs. The correlation between actual and predicted breed proportion increased as panel density increased. Using

  5. Back End of Line Nanorelays for Ultra-low Power Monolithic Integrated NEMS-CMOS Circuits

    KAUST Repository

    Lechuga Aranda, Jesus Javier

    2016-05-01

    Since the introduction of Complementary-Metal-Oxide-Semiconductor (CMOS) technology, the chip industry has enjoyed many benefits of transistor feature size scaling, including higher speed and device density and improved energy efficiency. However, in the recent years, the IC designers have encountered a few roadblocks, namely reaching the physical limits of scaling and also increased device leakage which has resulted in a slow-down of supply voltage and power density scaling. Therefore, there has been an extensive hunt for alternative circuit architectures and switching devices that can alleviate or eliminate the current crisis in the semiconductor industry. The Nano-Electro-Mechanical (NEM) relay is a promising alternative switch that offers zero leakage and abrupt turn-on behaviour. Even though these devices are intrinsically slower than CMOS transistors, new circuit design techniques tailored for the electromechanical properties of such devices can be leveraged to design medium performance, ultra-low power integrated circuits. In this thesis, we deal with a new generation of such devices that is built in the back end of line (BEOL) CMOS process and is an ideal option for full integration with current CMOS transistor technology. Simulation and verification at the circuit and system level is a critical step in the design flow of microelectronic circuits, and this is especially important for new technologies that lack the standard design infrastructure and well-known verification platforms. Although most of the physical and electrical properties of NEM structures can be simulated using standard electronic automation software, there is no report of a reliable behavioural model for NEMS switches that enable large circuit simulations. In this work, we present an optimised model of a BEOL nano relay that encompasses all the electromechanical characteristics of the device and is robust and lightweight enough for VLSI applications that require simulation of thousands of

  6. Estimation of Cosmic Induced Contamination in Ultra-low Background Detector Materials

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Orrell, John L.; Berguson, Timothy J.; Greene, Austen T.

    2012-08-01

    Executive Summary This document presents the result of investigating a way to reliably determine cosmic induced backgrounds for ultra-low background materials. In particular, it focuses on those radioisotopes produced by the interactions with cosmic ray particles in the detector materials that act as a background for experiments looking for neutrinoless double beta decay. This investigation is motivated by the desire to determine background contributions from cosmic ray activation of the electroformed copper that is being used in the construction of the MAJORANA DEMONSTRATOR. The most important radioisotope produced in copper that contributes to the background budget is 60Co, which has the potential to deposit energy in the region of interest of this experiment. Cobalt-60 is produced via cosmic ray neutron collisions in the copper. This investigation aims to provide a method for determining whether or not the copper has been exposed to cosmic radiation beyond the threshold which the Majorana Project has established as the maximum exposure. This threshold is set by the Project as the expected contribution of this source of background to the overall background budget. One way to estimate cosmic ray neutron exposure of materials on the surface of the Earth is to relate it to the cosmic ray muon exposure. Muons are minimum-ionizing particles and the available technologies to detect muons are easier to implement than those to detect neutrons. We present the results of using a portable, ruggedized muon detector, the µ-Witness made by our research group, for determination of muon exposure of materials for the MAJORANA DEMONSTRATOR. From the muon flux measurement, this report presents a method to estimate equivalent sea-level exposure, and then infer the neutron exposure of the tracked material and thus the cosmogenic activation of the copper. This report combines measurements of the muon flux taken by the µ-Witness detector with Geant4 simulations in order to assure our

  7. In Situ formation of pentafluorophosphate benzimidazole anion stabilizes high-temperature performance of lithium-ion batteries

    International Nuclear Information System (INIS)

    Pradanawati, Sylvia Ayu; Wang, Fu-Ming; Rick, John

    2014-01-01

    Highlights: • A new pentafluorophosphate benzimidazole anion was formed by Lewis acid-base reaction. • This pentafluorophosphate benzimidazole anion is fabricated with the benzimidazole anion and PF 5 . • This pentafluorophosphate benzimidazole anion avoids the ominous side reactions that PF 5 reacts SEI to form LiF and HF at high temperature. • The additional pentafluorophosphate benzimidazole anion formation well maintains the battery performance at 60 °C measurement compares to the electrolyte only with contains the salt, LiPF 6 . - Abstract: Lithium salts play a critical role in initiating electrochemical reactions in Li-ion batteries. Single Li ions dissociate from bulk-salt and associate with carbonates to form a solid electrolyte interface (SEI) during the first charge-discharge of the battery. SEI formation and the chemical stability of salt must both be controlled and optimized to minimize irreversible reactions in SEI formation and to suppress the decomposition of the salt at high temperatures. This study synthesizes a new benzimidazole-based anion in the electrolyte. This anion, pentafluorophosphate benzimidazole, results from a Lewis acid-base reaction between the benzimidazole anion and PF 5 . The new pentafluorophosphate benzimidazole anion inhibits the decomposition of LiPF 6 by inhibiting PF 5 side reactions, which degrade the SEI, and lead to the formation of LiF and HF at high temperatures. In addition, the use of the pentafluorophosphate benzimidazole anion results in the formation of a modified SEI that is able to modify the battery's performance. Cyclic voltammetry, scanning electron microscopy, differential scanning calorimetry, electrochemical impedance spectroscopy, as well as charge-discharge and X-ray photoelectron spectroscopy measurements have been used to characterize the materials in this study. The formation of the pentafluorophosphate benzimidazole anion in the electrolyte caused a 14% decrease in the activation energy

  8. Results of ultra-low level 71ge counting for application in the Gallex-solar neutrino experiment at the Gran Sasso Underground Physics Laboratory

    Science.gov (United States)

    Hampel, W.; Heusser, G.; Huebner, M.; Kiko, J.; Kirsten, T.; Schneider, K.; Schlotz, R.

    1985-01-01

    It has been experimentally verified that the Ultra-Low-Level Counting System for the Gallex solar neutrino experiment is capable of measuring the expected solar up silon-flux to plus or minus 12% during two years of operation.

  9. Cyclic voltammetry of Monel 400 in lithium hydroxide solution at elevated temperatures

    International Nuclear Information System (INIS)

    MacDonald, D.D.

    1976-01-01

    The electrochemistry of Monel 400 in 1 mole/kg -1 LiOH solution at 25, 125 and 250 0 C has been investigated using the technique of cyclic voltammetry. The general electrochemical behaviour is found to most closely approximate to that of the major component, nickel, although expansion of the current scale reveals anodic and cathodic peaks which probably arise from redox processes involving copper. The general similarity to nickel can be rationalized in terms of either the d electron theory for cupronickel alloys or phase separation, the latter being favoured in the present study. At 25 0 C the majority of charge consumed on sweeping the potential in the positive direction is involved in the formation of an oxide film at potentials close to oxygen evolution. This process is no longer observed at 2500C, due to a sharp reduction in the oxygen evolution overpotential with temperature. The majority of charge consumed on cyclic sweeping at this temperature is attributed to active dissolution of the nickel component of the alloy to form HNiO 2 - (or Ni(OH) 3 - ) at potentials slightly positive to the hydrogen evolution region. (author)

  10. Electrodeless, multi-megawatt reactor for room-temperature, lithium-6/deuterium nuclear reactions

    International Nuclear Information System (INIS)

    Drexler, J.

    1993-01-01

    This paper describes a reactor design to facilitate a room-temperature nuclear fusion/fission reaction to generate heat without generating unwanted neutrons, gamma rays, tritium, or other radioactive products. The room-temperature fusion/fission reaction involves the sequential triggering of billions of single-molecule, 6 LiD 'fusion energy pellets' distributed in lattices of a palladium ion accumulator that also acts as a catalyst to produce the molecules of 6 LiD from a solution comprising D 2 O, 6 LiOD with D 2 gas bubbling through it. The D 2 gas is the source of the negative deuterium ions in the 6 LiD molecules. The next step is to trigger a first nuclear fusion/fission reaction of some of the 6 LiD molecules, according to the well-known nuclear reaction: 6 Li + D → 2 4 He + 22.4 MeV. The highly energetic alpha particles ( 4 He nuclei) generated by this nuclear reaction within the palladium will cause shock and vibrations in the palladium lattices, leading to compression of other 6 LiD molecules and thereby triggering a second series of similar fusion/fission reactions, leading to a third series, and so on. The absorption of the kinetic energy in the palladium will, in turn, generate a continuous flow of heat into the heavy water carrier, which would be removed with a heat exchanger. (author)

  11. Geothermal Thermoelectric Generation (G-TEG) with Integrated Temperature Driven Membrane Distillation and Novel Manganese Oxide for Lithium Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Renew, Jay [Southern Research Inst., Birmingham, AL (United States); Hansen, Tim [Southern Research Inst., Birmingham, AL (United States)

    2017-06-01

    Southern Research Institute (Southern) teamed with partners Novus Energy Technologies (Novus), Carus Corporation (Carus), and Applied Membrane Technology, Inc. (AMT) to develop an innovative Geothermal ThermoElectric Generation (G-TEG) system specially designed to both generate electricity and extract high-value lithium (Li) from low-temperature geothermal brines. The process combined five modular technologies including – silica removal, nanofiltration (NF), membrane distillation (MD), Mn-oxide sorbent for Li recovery, and TEG. This project provides a proof of concept for each of these technologies. The first step in the process is silica precipitation through metal addition and pH adjustment to prevent downstream scaling in membrane processes. Next, the geothermal brine is concentrated with the first of a two stage MD system. The first stage MD system is made of a high-temperature material to withstand geothermal brine temperatures up to 150C.° The first stage MD is integrated with a G-TEG module for simultaneous energy generation. The release of energy from the MD permeate drives heat transfer across the TE module, producing electricity. The first stage MD concentrate is then treated utilizing an NF system to remove Ca2+ and Mg2+. The NF concentrate will be disposed in the well by reinjection. The NF permeate undergoes concentration in a second stage of MD (polymeric material) to further concentrate Li in the NF permeate and enhance the efficiency of the downstream Li recovery process utilizing a Mn-oxide sorbent. Permeate from both the stages of the MD can be beneficially utilized as the permeates will contain less contaminants than the feed water. The concentrated geothermal brines are then contacted with the Mn-oxide sorbent. After Li from the geothermal brine is adsorbed on the sorbent, HCl is then utilized to regenerate the sorbent and recover the Li. The research and development project showed that the Si removal goal (>80%) could

  12. Development of Solution-Processable, Optically Transparent Polyimides with Ultra-Low Linear Coefficients of Thermal Expansion

    Directory of Open Access Journals (Sweden)

    Masatoshi Hasegawa

    2017-10-01

    Full Text Available This paper reviews the development of new high-temperature polymeric materials applicable to plastic substrates in image display devices with a focus on our previous results. Novel solution-processable colorless polyimides (PIs with ultra-low linear coefficients of thermal expansion (CTE are proposed in this paper. First, the principles of the coloration of PI films are briefly discussed, including the influence of the processing conditions on the film coloration, as well as the chemical and physical factors dominating the low CTE characteristics of the resultant PI films to clarify the challenges in simultaneously achieving excellent optical transparency, a very high Tg, a very low CTE, and excellent film toughness. A possible approach of achieving these target properties is to use semi-cycloaliphatic PI systems consisting of linear chain structures. However, semi-cycloaliphatic PIs obtained using cycloaliphatic diamines suffer various problems during precursor polymerization, cyclodehydration (imidization, and film preparation. In particular, when using trans-1,4-cyclohexanediamine (t-CHDA as the cycloaliphatic diamine, a serious problem emerges: salt formation in the initial stages of the precursor polymerization, which terminates the polymerization in some cases or significantly extends the reaction period. The system derived from 3,3′,4,4′-biphenyltetracarboxylic dianhydride (s-BPDA and t-CHDA can be polymerized by a controlled heating method and leads to a PI film with relatively good properties, i.e., excellent light transmittance at 400 nm (T400 = ~80%, a high Tg (>300 °C, and a very low CTE (10 ppm·K−1. However, this PI film is somewhat brittle (the maximum elongation at break, εb max is about 10%. On the other hand, the combination of cycloaliphatic tetracarboxylic dianhydrides and aromatic diamines does not result in salt formation. The steric structures of cycloaliphatic tetracarboxylic dianhydrides significantly influence

  13. Deformation and fracture of thin sheet aluminum-lithium alloys: The effect of cryogenic temperatures

    Science.gov (United States)

    Wagner, John A.; Gangloff, Richard P.

    1990-01-01

    The objective is to characterize the fracture behavior and to define the fracture mechanisms for new Al-Li-Cu alloys, with emphasis on the role of indium additions and cryogenic temperatures. Three alloys were investigated in rolled product form: 2090 baseline and 2090 + indium produced by Reynolds Metals, and commercial AA 2090-T81 produced by Alcoa. The experimental 2090 + In alloy exhibited increases in hardness and ultimate strength, but no change in tensile yield strength, compared to the baseline 2090 composition in the unstretched T6 condition. The reason for this behavior is not understood. Based on hardness and preliminary Kahn Tear fracture experiments, a nominally peak-aged condition was employed for detailed fracture studies. Crack initiation and growth fracture toughness were examined as a function of stress state and microstructure using J(delta a) methods applied to precracked compact tension specimens in the LT orientation. To date, J(delta a) experiments have been limited to 23 C. Alcoa 2090-T81 exhibited the highest toughness regardless of stress state. Fracture was accompanied by extensive delamination associated with high angle grain boundaries normal to the fatigue precrack surface and progressed microscopically by a transgranular shear mechanism. In contrast the two peak-aged Reynolds alloys had lower toughness and fracture was intersubgranular without substantial delamination. The influences of cryogenic temperature, microstructure, boundary precipitate structure, and deformation mode in governing the competing fracture mechanisms will be determined in future experiments. Results contribute to the development of predictive micromechanical models for fracture modes in Al-Li alloys, and to fracture resistant materials.

  14. Intermetallic and electrical insulator coatings on high-temperature alloys in liquid-lithium environments

    International Nuclear Information System (INIS)

    Park, J.H.

    1994-06-01

    In the design of liquid-metal cooling systems for fusion-reactor blanket, applications, the corrosion resistance of structural materials and the magnetohydrodynamic (MHD) force and its subsequent influence on thermal hydraulics and corrosion are major concerns. When the system is cooled by liquid metals, insulator coatings are required on piping surfaces in contact with the coolant. The objective of this study is to develop stable corrosion-resistant electrical insulator coatings at the liquid-metal/structural-material interface, with emphasis on electrically insulating coatings that prevent adverse MHD-generated currents from passing through the structural wall, and Be-V intermetallic coatings for first-wall components that face the plasma. Vanadium and V-base alloys are leading candidate materials for structural applications in a fusion reactor. Various intermetallic films were produced on V-alloys and on Types 304 and 316 stainless steel. The intermetallic layers were developed by exposure of the materials to liquid Li containing 2 at temperatures of 500--1030 degree C. CaO electrical insulator coatings were produced by reaction of the oxygen-rich layer with <5 at. % Ca dissolved in liquid Li at 400--700 degree C. The reaction converted the oxygen-rich layer to an electrically insulating film. This coating method is applicable to reactor components because the liquid metal can be used over and over; only the solute within the liquid metal is consumed. This paper will discuss initial results on the nature of the coatings and their in-situ electrical resistivity characteristics in liquid Li at high temperatures

  15. Electrodeposition of Vanadium Oxides at Room Temperature as Cathodes in Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Michalis Rasoulis

    2017-07-01

    Full Text Available Electrodeposition of vanadium pentoxide coatings was performed at room temperature and a short growth period of 15 min based on an alkaline solution of methanol and vanadyl (III acetyl acetonate. All samples were characterized by X-ray diffraction, Raman spectroscopy, field-emission scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. The current density and electrolyte concentration were found to affect the characteristics of the as-grown coatings presenting enhanced crystallinity and porous structure at the highest values employed in both cases. The as-grown vanadium pentoxide at current density of 1.3 mA·cm−2 and electrolyte concentration of 0.5 M indicated the easiest charge transfer of Li+ across the vanadium pentoxide/electrolyte interface presenting a specific discharge capacity of 417 mAh·g−1, excellent capacitance retention of 95%, and coulombic efficiency of 94% after 1000 continuous Li+ intercalation/deintercalation scans. One may then suggest that this route is promising to prepare large area vanadium pentoxide electrodes with excellent stability and efficiency at very mild conditions.

  16. Sensitivity of new detection method for ultra-low frequency gravitational waves with pulsar spin-down rate statistics

    Science.gov (United States)

    Yonemaru, Naoyuki; Kumamoto, Hiroki; Takahashi, Keitaro; Kuroyanagi, Sachiko

    2018-04-01

    A new detection method for ultra-low frequency gravitational waves (GWs) with a frequency much lower than the observational range of pulsar timing arrays (PTAs) was suggested in Yonemaru et al. (2016). In the PTA analysis, ultra-low frequency GWs (≲ 10-10 Hz) which evolve just linearly during the observation time span are absorbed by the pulsar spin-down rates since both have the same effect on the pulse arrival time. Therefore, such GWs cannot be detected by the conventional method of PTAs. However, the bias on the observed spin-down rates depends on relative direction of a pulsar and GW source and shows a quadrupole pattern in the sky. Thus, if we divide the pulsars according to the position in the sky and see the difference in the statistics of the spin-down rates, ultra-low frequency GWs from a single source can be detected. In this paper, we evaluate the potential of this method by Monte-Carlo simulations and estimate the sensitivity, considering only the "Earth term" while the "pulsar term" acts like random noise for GW frequencies 10-13 - 10-10 Hz. We find that with 3,000 milli-second pulsars, which are expected to be discovered by a future survey with the Square Kilometre Array, GWs with the derivative of amplitude of about 3 × 10^{-19} {s}^{-1} can in principle be detected. Implications for possible supermassive binary black holes in Sgr* and M87 are also given.

  17. Electrochemical performance of LiV3O8 micro-rod at various calcination temperatures as cathode materials for lithium ion batteries

    Science.gov (United States)

    Noerochim, Lukman; Ginanjar, Edith Setia; Susanti, Diah; Prihandoko, Bambang

    2018-04-01

    Lithium vanadium oxide (LiV3O8) has been successfully synthesized by hydrothermal method followed by calcination via the reaction of Lithium hydroxide (LiOH) and ammonium metavanade (NH4VO3). The precursors were heated at hydrothermal at 200 °C and then calcined at different calcination temperature in 400, 450, and 500 °C. The characterization by X-ray diffraction (XRD) and scanning electron microscope (SEM) is indicated that LiV3O8 micro-rod have been obtained by this method. The cyclic voltammetry (CV) result showed that redox reaction occur in potential range between 2.42 - 3.57 V for the reduction reaction and oxidation reaction in potential range between 2.01 V-3.69 V. The highest result was obtained for sample 450 °C with specific discharge capacity of 138 mA/g. The result showed that LiV3O8 has a promising candidate as a cathode material for lithium ion batteries.

  18. Free induction decay MR signal measurements toward ultra-low field MRI with an optically pumped atomic magnetometer.

    Science.gov (United States)

    Oida, Takenori; Kobayashi, Tetsuo

    2013-01-01

    Ultra-low field magnetic resonance imaging (ULF-MRI) has attracted attention because of its low running costs and minimum patient exposure. An optically pumped atomic magnetometer (OPAM) is a magnetic sensor with high sensitivity in the low frequency range, which does not require a cryogenic cooling system. In an effort to develop a ULF-MRI, we attempted to measure the free induction decay MR signals with an OPAM. We successfully detected the MR signals by combining an OPAM and a flux transformer, demonstrating the feasibility of the proposed system.

  19. Growth and decomposition of Lithium and Lithium hydride on Nickel

    DEFF Research Database (Denmark)

    Engbæk, Jakob; Nielsen, Gunver; Nielsen, Jane Hvolbæk

    2006-01-01

    In this paper we have investigated the deposition, structure and decomposition of lithium and lithium-hydride films on a nickel substrate. Using surface sensitive techniques it was possible to quantify the deposited Li amount, and to optimize the deposition procedure for synthesizing lithium......-hydride films. By only making thin films of LiH it is possible to study the stability of these hydride layers and compare it directly with the stability of pure Li without having any transport phenomena or adsorbed oxygen to obscure the results. The desorption of metallic lithium takes place at a lower...... temperature than the decomposition of the lithium-hydride, confirming the high stability and sintering problems of lithium-hydride making the storage potential a challenge. (c) 2006 Elsevier B.V. All rights reserved....

  20. Solid composite electrolytes for lithium batteries

    Science.gov (United States)

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2000-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

  1. Exposure of liquid lithium confined in a capillary structure to high plasma fluxes in PILOT-PSI—Influence of temperature on D retention

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Rojo, A.B., E-mail: anabmr2010@hotmail.com [Ciemat, Laboratorio Nacional de Fusión, Av Complutense 22, 28040 Madrid (Spain); Oyarzabal, E. [Ciemat, Laboratorio Nacional de Fusión, Av Complutense 22, 28040 Madrid (Spain); Fundación UNED Guzman el Bueno, 133, 28003 Madrid (Spain); Morgan, T.W. [FOM Institute for Plasma Physics Rijnhuizen, Edisonbaan 14, 3439 MN, Nieuwegein (Netherlands); Tabarés, F.L. [Ciemat, Laboratorio Nacional de Fusión, Av Complutense 22, 28040 Madrid (Spain)

    2017-04-15

    Experiments on deuterium retention on liquid lithium confined in a capillary structure followed by ex-situ thermal desorption spectrometry (TDS) at high plasma fluxes (∼10{sup 23} m{sup 2} s{sup −1}) and high temperatures (440 °C and 580 °C) have been performed. Deuterium plasmas were generated at the PILOT-PSI linear plasma device and the targets were a 30 mm diameter stainless steel disc, 5 mm thick, covered with a porous mesh and filled with lithium. The settings (current) of the plasma source were varied in order to get different sample surface temperatures during irradiation. The targets were kept at floating potential during the exposure. Hydrogen and Li emission signals were monitored during the plasma exposure and TDS analysis was made afterwards in a separated system. Decreased retention at high exposure temperatures was deduced from the analysis of the hydrogen emission signals. Nevertheless, the results from TDS signal analysis were not conclusive.

  2. Room temperature large-scale synthesis of layered frameworks as low-cost 4 V cathode materials for lithium ion batteries

    Science.gov (United States)

    Hameed, A. Shahul; Reddy, M. V.; Nagarathinam, M.; Runčevski, Tomče; Dinnebier, Robert E; Adams, Stefan; Chowdari, B. V. R.; Vittal, Jagadese J.

    2015-01-01

    Li-ion batteries (LIBs) are considered as the best available technology to push forward the production of eco-friendly electric vehicles (EVs) and for the efficient utilization of renewable energy sources. Transformation from conventional vehicles to EVs are hindered by the high upfront price of the EVs and are mainly due to the high cost of LIBs. Hence, cost reduction of LIBs is one of the major strategies to bring forth the EVs to compete in the market with their gasoline counterparts. In our attempt to produce cheaper high-performance cathode materials for LIBs, an rGO/MOPOF (reduced graphene oxide/Metal-Organic Phosphate Open Framework) nanocomposite with ~4 V of operation has been developed by a cost effective room temperature synthesis that eliminates any expensive post-synthetic treatments at high temperature under Ar/Ar-H2. Firstly, an hydrated nanocomposite, rGO/K2[(VO)2(HPO4)2(C2O4)]·4.5H2O has been prepared by simple magnetic stirring at room temperature which releases water to form the anhydrous cathode material while drying at 90 °C during routine electrode fabrication procedure. The pristine MOPOF material undergoes highly reversible lithium storage, however with capacity fading. Enhanced lithium cycling has been witnessed with rGO/MOPOF nanocomposite which exhibits minimal capacity fading thanks to increased electronic conductivity and enhanced Li diffusivity. PMID:26593096

  3. Room temperature large-scale synthesis of layered frameworks as low-cost 4 V cathode materials for lithium ion batteries

    Science.gov (United States)

    Hameed, A. Shahul; Reddy, M. V.; Nagarathinam, M.; Runčevski, Tomče; Dinnebier, Robert E.; Adams, Stefan; Chowdari, B. V. R.; Vittal, Jagadese J.

    2015-11-01

    Li-ion batteries (LIBs) are considered as the best available technology to push forward the production of eco-friendly electric vehicles (EVs) and for the efficient utilization of renewable energy sources. Transformation from conventional vehicles to EVs are hindered by the high upfront price of the EVs and are mainly due to the high cost of LIBs. Hence, cost reduction of LIBs is one of the major strategies to bring forth the EVs to compete in the market with their gasoline counterparts. In our attempt to produce cheaper high-performance cathode materials for LIBs, an rGO/MOPOF (reduced graphene oxide/Metal-Organic Phosphate Open Framework) nanocomposite with ~4 V of operation has been developed by a cost effective room temperature synthesis that eliminates any expensive post-synthetic treatments at high temperature under Ar/Ar-H2. Firstly, an hydrated nanocomposite, rGO/K2[(VO)2(HPO4)2(C2O4)]·4.5H2O has been prepared by simple magnetic stirring at room temperature which releases water to form the anhydrous cathode material while drying at 90 °C during routine electrode fabrication procedure. The pristine MOPOF material undergoes highly reversible lithium storage, however with capacity fading. Enhanced lithium cycling has been witnessed with rGO/MOPOF nanocomposite which exhibits minimal capacity fading thanks to increased electronic conductivity and enhanced Li diffusivity.

  4. Capture, Electron-Cooling and Compression of Antiprotons in a Large Penning-Trap for Physics Experiments with an Ultra-Low Energy Extracted Antiproton Beam

    CERN Multimedia

    2002-01-01

    % PS200 \\\\ \\\\The availability of ultra-low energy antiprotons is a crucial ingredient for the execution of the gravity measurements PS200. We have developed a method to provide such low energy antiprotons based on a large Penning trap (the PS200 catching trap). This system can accept a fast-extracted pulse from LEAR, reduce the energy of the antiprotons in the pulse from 5.9~MeV to several tens of kilovolts using a degrading foil, and then capture the antiprotons in a large Penning trap. These antiprotons are cooled by electrons previously admitted to the trap and are collected in a small region at the center of the trap. We have demonstrated our capability to capture up to 1~million antiprotons from LEAR in a single shot, electron cool these antiprotons, and transfer up to 95\\% of them into the inner, harmonic region. A storage time in excess of 1 hour was observed. These results have been obtained with the cryogenic trap vacuum coupled to a room temperature vacuum at about l0$ ^- ^{1} ^0 $ Torr, which is an...

  5. An oxidative desulfurization method using ultrasound/Fenton's reagent for obtaining low and/or ultra-low sulfur diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yongchuan; Qi, Yutai [Department of Applied Chemistry, School of Science, Harbin Institute of Technology, Harbin 115001 (China); Zhao, Dezhi [Department of Petroleum Chemical Engineering, Liaoning Shihua University, Fushun 113001 (China); Zhang, Huicheng [Fushun Research Institute of Petroleum and Petrochemicals of SINOPEC Corp., Fushun 113001 (China)

    2008-10-15

    The total development trend in the world is towards continuously lower of sulfur content as a quality standard of diesel fuels. Integrating of an oxidative desulfurization unit with a conventional hydrotreating unit can bring benefits to producing low and/or ultra-low sulfur diesel fuels. Using the hydrotreated Middle East diesel fuel as a feedstock, four processes of the oxidative desulfurization have been studied: a hydrogen peroxide-acetic acid system and a Fenton's reagent system both without/with ultrasound. Results showed that the oxidative desulfurization reaction mechanics fitted apparent first-order kinetics. The addition of Fenton's reagent could enhance the oxidative desulfurization efficiency for diesel fuels and sono-oxidation treatment in combination with Fenton's reagent shows a good synergistic effect. Under our best operating condition for the oxidative desulfurization: temperature 313 K, ultrasonic power 200 W, ultrasonic frequency 28 kHz, Fe{sup 2+}/H{sub 2}O{sub 2} 0.05 mol/mol, pH 2.10 in aqueous phase and reaction time 15 min, the sulfur content in the diesel fuels was decreased from 568.75 {mu}g/g to 9.50 {mu}g/g. (author)

  6. Evaluation method of TiO2-SiO2 ultra-low-expansion glasses with periodic striae using the LFB ultrasonic material characterization system.

    Science.gov (United States)

    Kushibiki, Jun-ichi; Arakawa, Mototaka; Ohashi, Yuji; Suzuki, Kouji

    2006-09-01

    Experimental procedures and standard specimens for characterizing and evaluating TiO2-SiO2 ultra-low expansion glasses with periodic striae using the line-focus-beam (LFB) ultrasonic material characterization system are discussed. Two types of specimens were prepared, with specimen surfaces parallel and perpendicular to the striae plane using two different grades of glass ingots. The inhomogeneities of each of the specimens were evaluated at 225 MHz. It was clarified that parallel specimens are useful for accurately measuring velocity variations of leaky surface acoustic waves (LSAWs) excited on a water-loaded specimen surface associated with the striae. Perpendicular specimens are useful for obtaining periodicities in the striae for LSAW propagation perpendicular to the striae plane on a surface and for precisely measuring averaged velocities for LSAW propagation parallel to the striae plane. The standard velocity of Rayleigh-type LSAWs traveling parallel to the striae plane for the perpendicular specimens was numerically calculated using the measured velocities of longitudinal and shear waves and density. Consequently, a reliable standard specimen with an LSAW velocity of 3308.18 +/- 0.35 m/s at 23 degrees C and its temperature coefficient of 0.39 (m/s)/degrees C was obtained for a TiO2-SiO2 glass with a TiO2 concentration of 7.09 wt%. A basis for the striae analysis using this ultrasonic method was established.

  7. Novel mechanism for the modification of Al2O3-based inclusions in ultra-low carbon Al-killed steel considering the effects of magnesium and calcium

    Science.gov (United States)

    Guo, Jing; Cheng, Shu-sen; Guo, Han-jie; Mei, Ya-guang

    2018-03-01

    Many researchers have explored the inclusion modification mechanism to improve non-metallic inclusion modifications in steelmaking. In this study, two types of industrial trials on inclusion modifications in liquid steel were conducted using ultra-low-carbon Al-killed steel with different Mg and Ca contents to verify the effects of Ca and Mg contents on the modification mechanism of Al2O3-based inclusions during secondary refining. The results showed that Al2O3-based inclusions can be modified into liquid calcium aluminate or a multi-component inclusion with the addition of a suitable amount of Ca. In addition, [Mg] in liquid steel can further reduce CaO in liquid calcium aluminate to drive its evolution into CaO-MgO-Al2O3 multi-component inclusions. Thermodynamic analysis confirmed that the reaction between [Mg] and CaO in liquid calcium aluminate occurs when the MgO content of liquid calcium aluminate is less than 3wt% and the temperature is higher than 1843 K.

  8. Lithium Intoxication

    Directory of Open Access Journals (Sweden)

    Sermin Kesebir

    2011-09-01

    Full Text Available Lithium has been commonly used for the treatment of several mood disorders particularly bipolar disorder in the last 60 years. Increased intake and decreased excretion of lithium are the main causes for the development of lithium intoxication. The influence of lithium intoxication on body is evaluated as two different groups; reversible or irreversible. Irreversible damage is usually related with the length of time passed as intoxicated. Acute lithium intoxication could occur when an overdose of lithium is received mistakenly or for the purpose of suicide. Patients may sometimes take an overdose of lithium for self-medication resulting in acute intoxication during chronic, while others could develop chronic lithium intoxication during a steady dose treatment due to a problem in excretion of drug. In such situations, it is crucial to be aware of risk factors, to recognize early clinical symptoms and to conduct a proper medical monitoring. In order to justify or exclude the diagnosis, quantitative evaluation of lithium in blood and toxicologic screening is necessary. Following the monitoring schedules strictly and urgent intervention in case of intoxication would definitely reduce mortality and sequela related with lithium intoxication. In this article, the etiology, frequency, definition, clinical features and treatment approaches to the lithium intoxication have been briefly reviewed.

  9. A low-cost, ultra-fast and ultra-low noise preamplifier for silicon avalanche photodiodes

    Science.gov (United States)

    Gasmi, Khaled

    2018-02-01

    An ultra-fast and ultra-low noise preamplifier for amplifying the fast and weak electrical signals generated by silicon avalanche photodiodes has been designed and developed. It is characterized by its simplicity, compactness, reliability and low cost of construction. A very wide bandwidth of 300 MHz, a very good linearity from 1 kHz to 280 MHz, an ultra-low noise level at the input of only 1.7 nV Hz-1/2 and a very good stability are its key features. The compact size (70 mm  ×  90 mm) and light weight (45 g), as well as its excellent characteristics, make this preamplifier very competitive compared to any commercial preamplifier. The preamplifier, which is a main part of the detection system of a homemade laser remote sensing system, has been successfully tested. In addition, it is versatile and can be used in any optical detection system requiring high speed and very low noise electronics.

  10. Magnetic Random Access Memory based non-volatile asynchronous Muller cell for ultra-low power autonomous applications

    Science.gov (United States)

    Di Pendina, G.; Zianbetov, E.; Beigne, E.

    2015-05-01

    Micro and nano electronic integrated circuit domain is today mainly driven by the advent of the Internet of Things for which the constraints are strong, especially in terms of power consumption and autonomy, not only during the computing phases but also during the standby or idle phases. In such ultra-low power applications, the circuit has to meet new constraints mainly linked to its changing energetic environment: long idle phases, automatic wake up, data back-up when the circuit is sporadically turned off, and ultra-low voltage power supply operation. Such circuits have to be completely autonomous regarding their unstable environment, while remaining in an optimum energetic configuration. Therefore, we propose in this paper the first MRAM-based non-volatile asynchronous Muller cell. This cell has been simulated and characterized in a very advanced 28 nm CMOS fully depleted silicon-on-insulator technology, presenting good power performance results due to an extremely efficient body biasing control together with ultra-wide supply voltage range from 160 mV up to 920 mV. The leakage current can be reduced to 154 pA thanks to reverse body biasing. We also propose an efficient standard CMOS bulk version of this cell in order to be compatible with different fabrication processes.

  11. Magnetic Random Access Memory based non-volatile asynchronous Muller cell for ultra-low power autonomous applications

    Energy Technology Data Exchange (ETDEWEB)

    Di Pendina, G., E-mail: gregory.dipendina@cea.fr, E-mail: eldar.zianbetov@cea.fr, E-mail: edith.beigne@cea.fr; Zianbetov, E., E-mail: gregory.dipendina@cea.fr, E-mail: eldar.zianbetov@cea.fr, E-mail: edith.beigne@cea.fr [Univ. Grenoble Alpes, INAC-SPINTEC, F-38000 Grenoble (France); CNRS, SPINTEC, F-38000 Grenoble (France); CEA, INAC-SPINTEC, F-38000 Grenoble (France); Beigne, E., E-mail: gregory.dipendina@cea.fr, E-mail: eldar.zianbetov@cea.fr, E-mail: edith.beigne@cea.fr [Univ. Grenoble Alpes, CEA, LETI, F-38000 Grenoble (France)

    2015-05-07

    Micro and nano electronic integrated circuit domain is today mainly driven by the advent of the Internet of Things for which the constraints are strong, especially in terms of power consumption and autonomy, not only during the computing phases but also during the standby or idle phases. In such ultra-low power applications, the circuit has to meet new constraints mainly linked to its changing energetic environment: long idle phases, automatic wake up, data back-up when the circuit is sporadically turned off, and ultra-low voltage power supply operation. Such circuits have to be completely autonomous regarding their unstable environment, while remaining in an optimum energetic configuration. Therefore, we propose in this paper the first MRAM-based non-volatile asynchronous Muller cell. This cell has been simulated and characterized in a very advanced 28 nm CMOS fully depleted silicon-on-insulator technology, presenting good power performance results due to an extremely efficient body biasing control together with ultra-wide supply voltage range from 160 mV up to 920 mV. The leakage current can be reduced to 154 pA thanks to reverse body biasing. We also propose an efficient standard CMOS bulk version of this cell in order to be compatible with different fabrication processes.

  12. Non-invasive paper-based microfluidic device for ultra-low detection of urea through enzyme catalysis

    Science.gov (United States)

    Suresh, Vignesh; Qunya, Ong; Kanta, Bera Lakshmi; Yuh, Lee Yeong; Chong, Karen S. L.

    2018-03-01

    This work describes the design, fabrication and characterization of a paper-based microfluidic device for ultra-low detection of urea through enzyme catalysis. The microfluidic system comprises an entry port, a fluidic channel, a reaction zone and two electrodes (contacts). Wax printing was used to create fluidic channels on the surface of a chromatography paper. Pre-conceptualized designs of the fluidic channel are wax-printed on the paper substrate while the electrodes are screen-printed. The paper printed with wax is heated to cause the wax reflow along the thickness of the paper that selectively creates hydrophilic and hydrophobic zones inside the paper. Urease immobilized in the reaction zone catalyses urea into releasing ions and, thereby, generating a current flow between the electrodes. A measure of current with respect to time at a fixed potential enables the detection of urea. The methodology enabled urea concentration down to 1 pM to be detected. The significance of this work lies in the use of simple and inexpensive paper-based substrates to achieve detection of ultra-low concentrations of analytes such as urea. The process is non-invasive and employs a less cumbersome two-electrode assembly.

  13. An Analog Circuit Approximation of the Discrete Wavelet Transform for Ultra Low Power Signal Processing in Wearable Sensor Nodes.

    Science.gov (United States)

    Casson, Alexander J

    2015-12-17

    Ultra low power signal processing is an essential part of all sensor nodes, and particularly so in emerging wearable sensors for biomedical applications. Analog signal processing has an important role in these low power, low voltage, low frequency applications, and there is a key drive to decrease the power consumption of existing analog domain signal processing and to map more signal processing approaches into the analog domain. This paper presents an analog domain signal processing circuit which approximates the output of the Discrete Wavelet Transform (DWT) for use in ultra low power wearable sensors. Analog filters are used for the DWT filters and it is demonstrated how these generate analog domain DWT-like information that embeds information from Butterworth and Daubechies maximally flat mother wavelet responses. The Analog DWT is realised in hardware via g(m)C circuits, designed to operate from a 1.3 V coin cell battery, and provide DWT-like signal processing using under 115 nW of power when implemented in a 0.18 μm CMOS process. Practical examples demonstrate the effective use of the new Analog DWT on ECG (electrocardiogram) and EEG (electroencephalogram) signals recorded from humans.

  14. An Analog Circuit Approximation of the Discrete Wavelet Transform for Ultra Low Power Signal Processing in Wearable Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Alexander J. Casson

    2015-12-01

    Full Text Available Ultra low power signal processing is an essential part of all sensor nodes, and particularly so in emerging wearable sensors for biomedical applications. Analog signal processing has an important role in these low power, low voltage, low frequency applications, and there is a key drive to decrease the power consumption of existing analog domain signal processing and to map more signal processing approaches into the analog domain. This paper presents an analog domain signal processing circuit which approximates the output of the Discrete Wavelet Transform (DWT for use in ultra low power wearable sensors. Analog filters are used for the DWT filters and it is demonstrated how these generate analog domain DWT-like information that embeds information from Butterworth and Daubechies maximally flat mother wavelet responses. The Analog DWT is realised in hardware via g m C circuits, designed to operate from a 1.3 V coin cell battery, and provide DWT-like signal processing using under 115 nW of power when implemented in a 0.18 μm CMOS process. Practical examples demonstrate the effective use of the new Analog DWT on ECG (electrocardiogram and EEG (electroencephalogram signals recorded from humans.

  15. Passive shimming of the fringe field of a superconducting magnet for ultra-low field hyperpolarized noble gas MRI.

    Science.gov (United States)

    Parra-Robles, Juan; Cross, Albert R; Santyr, Giles E

    2005-05-01

    Hyperpolarized noble gases (HNGs) provide exciting possibilities for MR imaging at ultra-low magnetic field strengths (superconductive magnets used in clinical MR imaging can provide a stable magnetic field for this purpose. In addition to offering the benefit of HNG MR imaging alongside conventional high field proton MRI, this approach offers the other useful advantage of providing different field strengths at different distances from the magnet. However, the extremely strong field gradients associated with the fringe field present a major challenge for imaging since impractically high active shim currents would be required to achieve the necessary homogeneity. In this work, a simple passive shimming method based on the placement of a small number of ferromagnetic pieces is proposed to reduce the fringe field inhomogeneities to a level that can be corrected using standard active shims. The method explicitly takes into account the strong variations of the field over the volume of the ferromagnetic pieces used to shim. The method is used to obtain spectra in the fringe field of a high-field (1.89 T) superconducting magnet from hyperpolarized 129Xe gas samples at two different ultra-low field strengths (8.5 and 17 mT). The linewidths of spectra measured from imaging phantoms (30 Hz) indicate a homogeneity sufficient for MRI of the rat lung.

  16. Ultra-low-dose CT imaging of the thorax: decreasing the radiation dose by one order of magnitude

    International Nuclear Information System (INIS)

    Lambert, Lukas; Banerjee, Rohan; Votruba, Jiri; El-Lababidi, Nabil; Zeman, Jiri

    2016-01-01

    Computed tomography (CT) is an indispensable tool for imaging of the thorax and there is virtually no alternative without associated radiation burden. The authors demonstrate ultra-low-dose CT of the thorax in three interesting cases. In an 18-y-old girl with rheumatoid arthritis, CT of the thorax identified alveolitis in the posterior costophrenic angles (radiation dose = 0.2 mSv). Its resolution was demonstrated on a follow-up scan (4.2 mSv) performed elsewhere. In an 11-y-old girl, CT (0.1 mSv) showed changes of the right collar bone consistent with chronic recurrent multifocal osteomyelitis. CT (0.1 mSv) of a 9-y-old girl with mucopolysaccharidosis revealed altogether three hamartomas, peribronchial infiltrate, and spine deformity. In some indications, the radiation dose from CT of the thorax can approach that of several plain radiographs. This may help the pediatrician in deciding whether 'gentle' ultra-low-dose CT instead of observation or follow-up radiographs will alleviate the uncertainty of the diagnosis with little harm to the child. (author)

  17. An Ultra-Low Power CMOS Image Sensor with On-Chip Energy Harvesting and Power Management Capability

    Directory of Open Access Journals (Sweden)

    Ismail Cevik

    2015-03-01

    Full Text Available An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability is introduced in this paper. The photodiode pixel array can not only capture images but also harvest solar energy. As such, the CMOS image sensor chip is able to switch between imaging and harvesting modes towards self-power operation. Moreover, an on-chip maximum power point tracking (MPPT-based power management system (PMS is designed for the dual-mode image sensor to further improve the energy efficiency. A new isolated P-well energy harvesting and imaging (EHI pixel with very high fill factor is introduced. Several ultra-low power design techniques such as reset and select boosting techniques have been utilized to maintain a wide pixel dynamic range. The chip was designed and fabricated in a 1.8 V, 1P6M 0.18 µm CMOS process. Total power consumption of the imager is 6.53 µW for a 96 × 96 pixel array with 1 V supply and 5 fps frame rate. Up to 30 μW of power could be generated by the new EHI pixels. The PMS is capable of providing 3× the power required during imaging mode with 50% efficiency allowing energy autonomous operation with a 72.5% duty cycle.

  18. Digital pulse-shape discrimination applied to an ultra-low-background gas-proportional counting system. First results

    International Nuclear Information System (INIS)

    Aalseth, C.E.; Day, A.R.; Fuller, E.S.; Hoppe, E.W.; Keillor, M.E.; Mace, E.K.; Myers, A.W.; Overman, C.T.; Panisko, M.E.; Seifert, A.

    2013-01-01

    A new ultra-low-background proportional counter design was recently developed at Pacific Northwest National Laboratory (PNNL). This design, along with an ultra-low-background counting system which provides passive and active shielding with radon exclusion, has been developed to complement a new shallow underground laboratory (∼30 m water-equivalent) constructed at PNNL. After these steps to mitigate dominant backgrounds (cosmic rays, external gamma-rays, radioactivity in materials), remaining background events do not exclusively arise from ionization of the proportional counter gas. Digital pulse-shape discrimination (PSD) is thus employed to further improve measurement sensitivity. In this work, a template shape is generated for each individual sample measurement of interest, a 'self-calibrating' template. Differences in event topology can also cause differences in pulse shape. In this work, the temporal region analyzed for each event is refined to maximize background discrimination while avoiding unwanted sensitivity to event topology. This digital PSD method is applied to sample and background data, and initial measurement results from a biofuel methane sample are presented in the context of low-background measurements currently being developed. (author)

  19. An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability.

    Science.gov (United States)

    Cevik, Ismail; Huang, Xiwei; Yu, Hao; Yan, Mei; Ay, Suat U

    2015-03-06

    An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability is introduced in this paper. The photodiode pixel array can not only capture images but also harvest solar energy. As such, the CMOS image sensor chip is able to switch between imaging and harvesting modes towards self-power operation. Moreover, an on-chip maximum power point tracking (MPPT)-based power management system (PMS) is designed for the dual-mode image sensor to further improve the energy efficiency. A new isolated P-well energy harvesting and imaging (EHI) pixel with very high fill factor is introduced. Several ultra-low power design techniques such as reset and select boosting techniques have been utilized to maintain a wide pixel dynamic range. The chip was designed and fabricated in a 1.8 V, 1P6M 0.18 µm CMOS process. Total power consumption of the imager is 6.53 µW for a 96 × 96 pixel array with 1 V supply and 5 fps frame rate. Up to 30 μW of power could be generated by the new EHI pixels. The PMS is capable of providing 3× the power required during imaging mode with 50% efficiency allowing energy autonomous operation with a 72.5% duty cycle.

  20. Magnetic Random Access Memory based non-volatile asynchronous Muller cell for ultra-low power autonomous applications

    International Nuclear Information System (INIS)

    Di Pendina, G.; Zianbetov, E.; Beigne, E.

    2015-01-01

    Micro and nano electronic integrated circuit domain is today mainly driven by the advent of the Internet of Things for which the constraints are strong, especially in terms of power consumption and autonomy, not only during the computing phases but also during the standby or idle phases. In such ultra-low power applications, the circuit has to meet new constraints mainly linked to its changing energetic environment: long idle phases, automatic wake up, data back-up when the circuit is sporadically turned off, and ultra-low voltage power supply operation. Such circuits have to be completely autonomous regarding their unstable environment, while remaining in an optimum energetic configuration. Therefore, we propose in this paper the first MRAM-based non-volatile asynchronous Muller cell. This cell has been simulated and characterized in a very advanced 28 nm CMOS fully depleted silicon-on-insulator technology, presenting good power performance results due to an extremely efficient body biasing control together with ultra-wide supply voltage range from 160 mV up to 920 mV. The leakage current can be reduced to 154 pA thanks to reverse body biasing. We also propose an efficient standard CMOS bulk version of this cell in order to be compatible with different fabrication processes

  1. Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms

    Science.gov (United States)

    Rui, Xue; Cheng, Lishui; Long, Yong; Fu, Lin; Alessio, Adam M.; Asma, Evren; Kinahan, Paul E.; De Man, Bruno

    2015-01-01

    For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition. Methods We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 seconds. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.04375 mAs, were investigated. Both the analytical FDK algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality. Results With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose levels

  2. Phase I Final Report: Ultra-Low Background Alpha Activity Counter

    International Nuclear Information System (INIS)

    Warburton, W.K.

    2005-01-01

    In certain important physics experiments that search for rare-events, such as neutrino or double beta decay detections, it is critical to minimize the number of background events that arise from alpha particle emitted by the natural radioactivity in the materials used to construct the experiment. Similarly, the natural radioactivity in materials used to connect and package silicon microcircuits must also be minimized in order to eliminate ''soft errors'' caused by alpha particles depositing charges within the microcircuits and thereby changing their logic states. For these, and related reasons in the areas of environmental cleanup and nuclear materials tracking, there is a need that is important from commercial, scientific, and national security perspectives to develop an ultra-low background alpha counter that would be capable of measuring materials' alpha particle emissivity at rates well below 0.00001 alpha/cm 2 /hour. This rate, which corresponds to 24 alpha particles per square meter per day, is essentially impossible to achieve with existing commercial instruments because the natural radioactivity of the materials used to construct even the best of these counters produces background rates at the 0.005 alpha/cm 2 /hr level. Our company (XIA) had previously developed an instrument that uses electronic background suppression to operate at the 0.0005 0.005 alpha/cm 2 /hr level. This patented technology sets up an electric field between a large planar sample and a large planar anode, and fills the gap with pure Nitrogen. An alpha particle entering the chamber ionizes the Nitrogen, producing a ''track'' of electrons, which drift to the anode in the electric field. Tracks close to the anode take less than 10 microseconds (us) to be collected, giving a preamplifier signal with a 10 us risetime. Tracks from the sample have to drift across the full anode-sample gap and produce a 35 us risetime signal. By analyzing the preamplifier signals with a digital signal

  3. An Ultra Low Power Cryo-Refrigerator for Space, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA Space Science Missions will incorporate detectors, sensors, shields, and telescopes that must be cooled to cryogenic temperatures. An enabling technology...

  4. [The reaction of human surface and inside body temperature to extreme hypothermia].

    Science.gov (United States)

    Panchenko, O A; Onishchenko, V O; Liakh, Iu Ie

    2011-01-01

    The dynamics of changes in the parameters of the surface and core body temperature under the systematic impact of ultra-low temperature is described in this article. As a source of ultra-low temperature was used (Cryo Therapy Chamber) Zimmer Medizin Systeme firm Zimmer Electromedizin (Germany) (-110 degrees C). Surface and internal body temperature was measured by infrared thermometer immediately before visiting cryochamber and immediately after exiting. In the study conducted 47,464 measurements of body temperature. It was established that the internal temperature of the human body under the influence of ultra-low temperatures in the proposed mode of exposure remains constant, and the surface temperature of the body reduces by an average of 11.57 degrees C. The time frame stabilization of adaptive processes of thermoregulation under the systematic impact of ultra-low temperature was defined in the study.

  5. The Effects of Temperature and Oxidation on Deuterium Retention in Solid and Liquid Lithium Films on Molybdenum Plasma-Facing Components

    Science.gov (United States)

    Capece, Angela

    2014-10-01

    Liquid metal plasma-facing components (PFCs) enable in-situ renewal of the surface, thereby offering a solution to neutron damage, erosion, and thermal fatigue experienced by solid PFCs. Lithium in particular has a high chemical affinity for hydrogen, which has resulted in reduced recycling and enhanced plasma performance on many fusion devices including TFTR, T11-M, FTU, CDX-U, LTX, TJ-II, and NSTX. A key component to the improvement in plasma performance is deuterium retention in Li; however, this process is not well understood in the complex tokamak environment. Recent surface science experiments conducted at the Princeton Plasma Physics Laboratory have used electron spectroscopy and temperature programmed desorption to understand the mechanisms for D retention in Li coatings on Mo substrates. The experiments were designed to give monolayer-control of Li films and were conducted in ultrahigh vacuum under controlled environments. An electron cyclotron resonance plasma source was used to deliver a beam of deuterium ions to the surface over a range of ion energies. Our work shows that D is retained as LiD in metallic Li films. However, when oxygen is present in the film, either by diffusion from the subsurface at high temperature or as a contaminant during the deposition process, Li oxides are formed that retain D as LiOD. Experiments indicate that LiD is more thermally stable than LiOD, which decomposes to liberate D2 gas and D2O at temperatures 100 K lower than the LiD decomposition temperature. Other experiments show how D retention varies with substrate temperature to provide insight into the differences between solid and liquid lithium films. This work was supported by DOE Contract No. DE AC02-09CH11466.

  6. Problem of the lithium peroxide thermal stability

    International Nuclear Information System (INIS)

    Nefedov, R A; Ferapontov, Yu A; Kozlova, N P

    2016-01-01

    The behavior of lithium peroxide and lithium peroxide monohydrate samples under heating in atmospheric air was studied by the method of thermogravimetric analysis (TGA) and differential thermal analysis (DTA). It was found that in the temperature range of 32°C to 82°C the interaction of lithium peroxides and steam with the formation of lithium peroxide monohydrate occurs, which was confirmed chemically and by X-ray Single-qualitative analysis. It was experimentally found that lithium peroxide starts to decompose into the lithium oxide and oxygen in the temperature range of 340 ÷ 348°C. It was established that the resulting thermal decomposition of lithium oxide, lithium peroxide at the temperature of 422°C melts with lithium carbonate eutecticly. The manifestation of polymorphism was not marked(seen or noticed) under the heating of studied samples of lithium peroxide and lithium peroxide monohydrate in the temperature range of 25°C ÷ 34°C. (paper)

  7. High power, gel polymer lithium-ion cells with improved low temperature performance for NASA and DoD applications

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.; Chin, K. B.; Surampudi, S.; Narayanan, S. R.; Alamgir, Mohamed; Yu, Ji-Sang; Plichta, Edward P.

    2004-01-01

    Both NASA and the U.S. Army have interest in developing secondary energy storage devices that are capable of meeting the demanding performance requirements of aerospace and man-portable applications. In order to meet these demanding requirements, gel-polymer electrolyte-based lithium-ion cells are being actively considered, due to their promise of providing high specific energy and enhanced safety aspects.

  8. Lithium Poisoning

    DEFF Research Database (Denmark)

    Baird-Gunning, Jonathan; Lea-Henry, Tom; Hoegberg, Lotte C G

    2017-01-01

    Lithium is a commonly prescribed treatment for bipolar affective disorder. However, treatment is complicated by lithium's narrow therapeutic index and the influence of kidney function, both of which increase the risk of toxicity. Therefore, careful attention to dosing, monitoring, and titration...... is required. The cause of lithium poisoning influences treatment and 3 patterns are described: acute, acute-on-chronic, and chronic. Chronic poisoning is the most common etiology, is usually unintentional, and results from lithium intake exceeding elimination. This is most commonly due to impaired kidney...... function caused by volume depletion from lithium-induced nephrogenic diabetes insipidus or intercurrent illnesses and is also drug-induced. Lithium poisoning can affect multiple organs; however, the primary site of toxicity is the central nervous system and clinical manifestations vary from asymptomatic...

  9. Quantification of the toxic hexavalent chromium content in an organic matrix by X-ray photoelectron spectroscopy (XPS) and ultra-low-angle microtomy (ULAM)

    Energy Technology Data Exchange (ETDEWEB)

    Greunz, Theresia, E-mail: theresia.greunz@jku.at [Christian Doppler Laboratory for Microscopic and Spectroscopic Material Characterisation (CDL-MS-MACH), Center for Surface and Nanoanalytics (ZONA), Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Duchaczek, Hubert; Sagl, Raffaela [voestalpine Stahl GmbH, voestalpine-Straße 3, 4031 Linz (Austria); Duchoslav, Jiri; Steinberger, Roland [Christian Doppler Laboratory for Microscopic and Spectroscopic Material Characterisation (CDL-MS-MACH), Center for Surface and Nanoanalytics (ZONA), Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Strauß, Bernhard [voestalpine Stahl GmbH, voestalpine-Straße 3, 4031 Linz (Austria); Stifter, David [Christian Doppler Laboratory for Microscopic and Spectroscopic Material Characterisation (CDL-MS-MACH), Center for Surface and Nanoanalytics (ZONA), Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria)

    2017-02-28

    Highlights: • Common methods are not suitable for a reliable determination of Cr(VI) in organic coatings on steel. • Our proposed method is a combination of XPS and ultra-low-angle microtomy (ULAM). • The results allow referring to legal regulations of the Cr(VI) concentration. • For this method no accurate sample parameters are required. - Abstract: Cr(VI) is known for its corrosion inhibitive properties and is, despite legal regulations, still a potential candidate to be added to thin (1–3 μm) protective coatings applied on, e.g., electrical steel as used for transformers, etc. However, Cr(VI) is harmful to the environment and to the human health. Hence, a reliable quantification of it is of decisive interest. Commonly, an alkaline extraction with a photometric endpoint detection of Cr(VI) is used for such material systems. However, this procedure requires an accurate knowledge on sample parameters such as dry film thickness and coating density that are occasionally associated with significant experimental errors. We present a comprehensive study of a coating system with a defined Cr(VI) pigment concentration applied on electrical steel. X-ray photoelectron spectroscopy (XPS) was employed to resolve the elemental chromium concentration and the chemical state. Turning to the fact that XPS is extremely surface sensitive (<10 nm) and that the lowest commonly achievable lateral resolution is a number of times higher than the coating thickness (∼2 μm), a bulk analysis was achieved with XPS line scans on extended wedge-shaped tapers through the coating. For that purpose a special sample preparation step performed on an ultra-microtome was required prior to analysis. Since a temperature increase leads to a reduction of Cr(VI) we extend our method on samples, which were subjected to different curing temperatures. We show that our proposed approach now allows to determine the elemental and Cr(VI) concentration and distribution inside the coating.

  10. Ultra-low fouling and high antibody loading zwitterionic hydrogel coatings for sensing and detection in complex media.

    Science.gov (United States)

    Chou, Ying-Nien; Sun, Fang; Hung, Hsiang-Chieh; Jain, Priyesh; Sinclair, Andrew; Zhang, Peng; Bai, Tao; Chang, Yung; Wen, Ten-Chin; Yu, Qiuming; Jiang, Shaoyi

    2016-08-01

    For surface-based diagnostic devices to achieve reliable biomarker detection in complex media such as blood, preventing nonspecific protein adsorption and incorporating high loading of biorecognition elements are paramount. In this work, a novel method to produce nonfouling zwitterionic hydrogel coatings was developed to achieve these goals. Poly(carboxybetaine acrylamide) (pCBAA) hydrogel thin films (CBHTFs) prepared with a carboxybetaine diacrylamide crosslinker (CBAAX) were coated on gold and silicon dioxide surfaces via a simple spin coating process. The thickness of CBHTFs could be precisely controlled between 15 and 150nm by varying the crosslinker concentration, and the films demonstrated excellent long-term stability. Protein adsorption from undiluted human blood serum onto the CBHTFs was measured with surface plasmon resonance (SPR). Hydrogel thin films greater than 20nm exhibited ultra-low fouling (crosslinked, purely zwitterionic, carboxybetaine thin film hydrogel (CBHTF) coating platform. The CBHTF on a hydrophilic surface demonstrated long-term stability. By varying the crosslinker content in the spin-coated hydrogel solution, the thickness of CBHTFs could be precisely controlled. Optimized CBHTFs exhibited ultra-low nonspecific protein adsorption below 5ng/cm(2) measured by a surface plasmon resonance (SPR) sensor, and their 3D architecture allowed antibody loading to reach 693ng/cm(2). This strategy provides a facile method to modify SPR biosensor chips with an advanced nonfouling material, and can be potentially expanded to a variety of implantable medical devices and diagnostic biosensors. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. CTA-enhanced perfusion CT: an original method to perform ultra-low-dose CTA-enhanced perfusion CT

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Elizabeth; Wintermark, Max [University of Virginia, Department of Radiology, Neuroradiology Division, Charlottesville, VA (United States)

    2014-11-15

    Utilizing CT angiography enhances image quality in PCT, thereby permitting acquisition at ultra-low dose. Dynamic CT acquisitions were obtained at 80 kVp with decreasing tube current-time product [milliamperes x seconds (mAs)] in patients suspected of ischemic stroke, with concurrent CTA of the cervical and intracranial arteries. By utilizing fast Fourier transformation, high spatial frequencies of CTA were combined with low spatial frequencies of PCT to create a virtual PCT dataset. The real and virtual PCT datasets with decreasing mAs were compared by assessing contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and noise and PCT values and by visual inspection of PCT parametric maps. Virtual PCT attained CNR and SNR three- to sevenfold superior to real PCT and noise reduction by a factor of 4-6 (p < 0.05). At 20 mAs, virtual PCT achieved diagnostic parametric maps, while the quality of real PCT maps was inadequate. At 10 mAs, both real and virtual PCT maps were nondiagnostic. Virtual PCT (but not real PCT) maps regained diagnostic quality at 10 mAs by applying 40 % adaptive statistical iterative reconstruction (ASIR) and improved further with 80 % ASIR. Our new method of creating virtual PCT by combining ultra-low-dose PCT with CTA information yields diagnostic perfusion parametric maps from PCT acquired at 20 or 10 mAs with 80 % ASIR. Effective dose is approximately 0.20 mSv, equivalent to two chest radiographs. (orig.)

  12. A novel ultra-low carbon grain oriented silicon steel produced by twin-roll strip casting

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang, E-mail: wy069024019@163.com [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Zhang, Yuan-Xiang; Lu, Xiang; Fang, Feng; Xu, Yun-Bo; Cao, Guang-Ming; Li, Cheng-Gang [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, TX 79968 (United States); Wang, Guo-Dong [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China)

    2016-12-01

    A novel ultra-low carbon grain oriented silicon steel was successfully produced by strip casting and two-stage cold rolling method. The microstructure, texture and precipitate evolution under different first cold rolling reduction were investigated. It was shown that the as-cast strip was mainly composed of equiaxed grains and characterized by very weak Goss texture ({110}<001>) and λ-fiber (<001>//ND). The coarse sulfides of size ~100 nm were precipitated at grain boundaries during strip casting, while nitrides remained in solution in the as-cast strip and the fine AlN particles of size ~20–50 nm, which were used as grain growth inhibitors, were formed in intermediate annealed sheet after first cold rolling. In addition, the suitable Goss nuclei for secondary recrystallization were also formed during intermediate annealing, which is totally different from the conventional process that the Goss nuclei originated in the subsurface layer of the hot rolled sheet. Furthermore, the number of AlN inhibitors and the intensity of desirable Goss texture increased with increasing first cold rolling reduction. After secondary recrystallization annealing, very large grains of size ~10–40 mm were formed and the final magnetic induction, B{sub 8}, was as high as 1.9 T. - Highlights: • A novel chemical composition base on strip casting silicon steel was proposed. • The ultra-low carbon design could shorten the processing routes. • The novel composition and processes were beneficial to obtain more inhibitors. • The magnetic induction of grain oriented silicon steel was significantly improved.

  13. Corrosion resistance of Ultra-Low-Carbon 19% Cr-11% Ni stainless steel for nuclear fuel reprocessing plants in nitric acid

    International Nuclear Information System (INIS)

    Ariga, Tamako; Takagi, Yoshio; Inazumi, Toru; Masamura, Katsumi; Sukekawa, M.

    1995-01-01

    An Ultra-Low-Carbon 19% Cr-11% Ni Stainless Steels used in nuclear fuel reprocessing plants where highly corrosion resistance in nitric acid is required has been developed. This steel has optimized the chemistry composition to decrease inclusions and deformation-induced martensitic transformation. The formation of deformation-induced martensite has the potential danger of accelerating corrosion in nitric acid. In this paper, effects of cold reduction and martensitic transformation on corrosion resistance of Ultra-Low-Carbon Stainless Steels in nitric acid are discussed. The developed steel showed excellent corrosion resistance during long-term exposure to nitric acid. (author)

  14. Lithium Batteries

    Science.gov (United States)

    National Laboratory, Materials Science and Technology Division Lithium Batteries Resources with Additional thin-film lithium batteries for a variety of technological applications. These batteries have high essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for

  15. Determination of the Optimum Heat Transfer Coefficient and Temperature Rise Analysis for a Lithium-Ion Battery under the Conditions of Harbin City Bus Driving Cycles

    Directory of Open Access Journals (Sweden)

    Xiaogang Wu

    2017-10-01

    Full Text Available This study investigated the heat problems that occur during the operation of power batteries, especially thermal runaway, which usually take place in high temperature environments. The study was conducted on a ternary polymer lithium-ion battery. In addition, a lumped parameter thermal model was established to analyze the thermal behavior of the electric bus battery system under the operation conditions of the driving cycles of the Harbin city electric buses. Moreover, the quantitative relationship between the optimum heat transfer coefficient of the battery and the ambient temperature was investigated. The relationship between the temperature rise (Tr, the number of cycles (c, and the heat transfer coefficient (h under three Harbin bus cycles have been investigated at 30 °C, because it can provide a basis for the design of the battery thermal management system. The results indicated that the heat transfer coefficient that meets the requirements of the battery thermal management system is the cubic power function of the ambient temperature. Therefore, if the ambient temperature is 30 °C, the heat transfer coefficient should be at least 12 W/m2K in the regular bus lines, 22 W/m2K in the bus rapid transit lines, and 32 W/m2K in the suburban lines.

  16. The CCT diagrams of ultra low carbon bainitic steels and their impact toughness properties

    International Nuclear Information System (INIS)

    Lis, A.K.; Lis, J.; Jeziorski, L.

    1998-01-01

    The CCT diagrams of ULCB N i steels, HN3MV, HN3MVCu having 5.1% Ni and 3.5% Ni and Cu bearing steels; HN3M1.5Cu, HSLA 100 have been determined. The reduced carbon concentration in steel, in order to prevent the formation of cementite, allowed for using nickel, manganese, chromium and molybdenum to enhance hardenability and refinement of the bainitic microstructures by lowering B S temperature. Copper and microadditions of vanadium and niobium are successfully used for precipitation strengthening of steel both in thermomechanically or heat treated conditions. Very good fracture toughness at low temperatures and high yield strength properties of HN3MVCu and HN3MV steels allowed for fulfillment of the requirements for steel plates for pressure vessels and cryogenic applications. (author)

  17. Design and Operation of Cryogenic Distillation Research Column for Ultra-Low Background Experiments

    Science.gov (United States)

    Chiller, Christopher; Alanson Chiller, Angela; Jasinski, Benjamin; Snyder, Nathan; Mei, Dongming

    2013-04-01

    Motivated by isotopically enriched germanium (76Ge and 73Ge) for monocrystalline crystal growth for neutrinoless double-beta decay and dark matter experiments, a cryogenic distillation research column was developed. Without market availability of distillation columns in the temperature range of interest with capabilities necessary for our purposes, we designed, fabricated, tested, refined and operated a two-meter research column for purifying and separating gases in the temperature range from 100-200K. Due to interest in defining stratification, purity and throughput optimization, capillary lines were integrated at four equidistant points along the length of the column such that real-time residual gas analysis could guide the investigation. Interior gas column temperatures were monitored and controlled within 0.1oK accuracy at the top and bottom. Pressures were monitored at the top of the column to four significant figures. Subsequent impurities were measured at partial pressures below 2E-8torr. We report the performance of the column in this paper.

  18. Feasibility study of ultra-low NOx Gas turbine combustor using the RML combustion concept

    International Nuclear Information System (INIS)

    Van, Tien Giap; Hwang, Jeong Jae; Kim, Min Kuk; Ahn, Kook Young

    2016-01-01

    A new combustion concept, the so called RML, was investigated to validate its application as a gas turbine combustor for combustor outlet temperatures over 1973 K. The feasibility study of the RML combustor was conducted with zero dimensional combustion calculations. The emission characteristics of RQL, LEAN, EGR and RML combustors were compared. The calculation results showed that the RQL combustor has lower NOx emissions than the LEAN at high outlet temperature. NOx emissions of the RML combustor at equivalence ratio of the rich chamber of 2.0 can be reduced by 30 % compared with the EGR combustor, and lower than the RQL combustor at a combustor outlet temperature over 1973 K. However, the CO emissions of the RML combustor were higher than those of the LEAN and EGR combustors. Also, the possibility of applying the RML combustor to gas turbines was discussed considering residence time, equivalence ratio of the rich chamber and recirculation rate. Although further research to design and realize the proposed RML combustor is needed, this study verified that the RML concept can be successfully used in a gas turbine combustor

  19. Feasibility study of ultra-low NOx Gas turbine combustor using the RML combustion concept

    Energy Technology Data Exchange (ETDEWEB)

    Van, Tien Giap; Hwang, Jeong Jae; Kim, Min Kuk; Ahn, Kook Young [Environment and Energy Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon (Korea, Republic of)

    2016-12-15

    A new combustion concept, the so called RML, was investigated to validate its application as a gas turbine combustor for combustor outlet temperatures over 1973 K. The feasibility study of the RML combustor was conducted with zero dimensional combustion calculations. The emission characteristics of RQL, LEAN, EGR and RML combustors were compared. The calculation results showed that the RQL combustor has lower NOx emissions than the LEAN at high outlet temperature. NOx emissions of the RML combustor at equivalence ratio of the rich chamber of 2.0 can be reduced by 30 % compared with the EGR combustor, and lower than the RQL combustor at a combustor outlet temperature over 1973 K. However, the CO emissions of the RML combustor were higher than those of the LEAN and EGR combustors. Also, the possibility of applying the RML combustor to gas turbines was discussed considering residence time, equivalence ratio of the rich chamber and recirculation rate. Although further research to design and realize the proposed RML combustor is needed, this study verified that the RML concept can be successfully used in a gas turbine combustor.

  20. Large lithium loop experience

    International Nuclear Information System (INIS)

    Kolowith, R.; Owen, T.J.; Berg, J.D.; Atwood, J.M.

    1981-10-01

    An engineering design and operating experience of a large, isothermal, lithium-coolant test loop are presented. This liquid metal coolant loop is called the Experimental Lithium System (ELS) and has operated safely and reliably for over 6500 hours through September 1981. The loop is used for full-scale testing of components for the Fusion Materials Irradiation Test (FMIT) Facility. Main system parameters include coolant temperatures to 430 0 C and flow to 0.038 m 3 /s (600 gal/min). Performance of the main pump, vacuum system, and control system is discussed. Unique test capabilities of the ELS are also discussed