WorldWideScience

Sample records for ultra-fine particle composition

  1. Characterization of SiC based composite materials by the infiltration of ultra-fine SiC particles

    International Nuclear Information System (INIS)

    Lee, J.K.; Lee, S.P.; Byun, J.H.

    2010-01-01

    The fabrication route of SiC materials by the complex compound of ultra-fine SiC particles and oxide additive materials has been investigated. Especially, the effect of additive composition ratio on the characterization of SiC materials has been examined. The characterization of C/SiC composites reinforced with plain woven carbon fabrics was also investigated. The fiber preform for C/SiC composites was prepared by the infiltration of complex mixture into the carbon fabric structure. SiC based composite materials were fabricated by a pressure assisted liquid phase sintering process. SiC materials possessed a good density higher than about 3.0 Mg/m 3 , accompanying the creation of secondary phase by the chemical reaction of additive materials. C/SiC composites also represented a dense morphology in the intra-fiber bundle region, even if this material had a sintered density lower than that of monolithic SiC materials. The flexural strength of SiC materials was greatly affected by the composition ratio of additive materials.

  2. Elevated temperature mechanical properties of novel ultra-fine grained Cu–Nb composites

    Energy Technology Data Exchange (ETDEWEB)

    Primorac, Mladen-Mateo [Department of Materials Physics, Montanuniversität Leoben (Austria); Abad, Manuel David; Hosemann, Peter [Department of Nuclear Engineering, University of California, Berkeley (United States); Kreuzeder, Marius [Department of Materials Physics, Montanuniversität Leoben (Austria); Maier, Verena [Department of Materials Physics, Montanuniversität Leoben (Austria); Erich-Schmid Institute for Materials Science, Austrian Academy of Sciences, Leoben (Austria); Kiener, Daniel, E-mail: daniel.kiener@unileoben.ac.at [Department of Materials Physics, Montanuniversität Leoben (Austria)

    2015-02-11

    Ultra-fine grained materials exhibit outstanding properties and are therefore favorable for prospective applications. One of these promising systems is the composite assembled by the body centered cubic niobium and the face centered cubic copper. Cu–Nb composites show a high hardness and good thermal stability, as well as a high radiation damage tolerance. These properties make the material interesting for use in nuclear reactors. The aim of this work was to create a polycrystalline ultra-fine grained composite for high temperature applications. The samples were manufactured via a powder metallurgical route using high pressure torsion, exhibiting a randomly distributed oriented grain size between 100 and 200 nm. The mechanical properties and the governing plastic deformation behavior as a function of temperature were determined by high temperature nanoindentation up to 500 °C. It was found that in the lower temperature regions up to 300 °C the plastic deformation is mainly governed by dislocation interactions, such as dislocation glide and the nucleation of kink pairs. For higher temperatures, thermally activated processes at grain boundaries are proposed to be the main mechanism governing plastic deformation. This mechanistic view is supported by temperature dependent changes in hardness, strain rate sensitivity, activation volume, and activation energy.

  3. NANODERM. Quality of skin as a barrier to ultra-fine particles

    International Nuclear Information System (INIS)

    Kiss, A.Z.; Kertesz, Zs.; Szikszai, Z.; Biro, T.; Czifra, G.; Toth, B.I.; Juhasz, I.; Kiss, B.; Hunyadi, J.

    2007-01-01

    Complete text of publication follows. The EU5 project carried out by a consortium of 12 European universities and research institutes under the leadership of the Faculty of Physics and Geosciences, University of Leipzig started in 2003 and ended with the publication of its final report in 2007. The main goal of the project was to get quantitative information on the penetration of ultra-fine particles in all strata of skin, on their penetration pathways as well as on their impact on human health. Details of the project can be found on the following website: http://www.uni-leipzig.de/"~nanoderm. The Hungarian team was lead by the Department of Dermatology, University of Debrecen, who provided human skin grafted on SCID (Severe Combined Immune Deficiency) mice as a suitable model for studying particle penetration. In the Institute of Physiology, University of Debrecen, the cellular effects of the nanoparticles were assessed. The ATOMKI group performed ion beam analytical investigations using proton induced x-ray emission and scanning transmission ion microscopy techniques to determine the particle distribution on porcine, SCID graft and human skin samples on which various nanoparticle (TiO 2 ) formulations including commercially available sunscreens were applied. Several pre-treatments of the skin were tested, too. The skin samples were cryofixed native specimens, reducing considerably the possibility of creating artefacts. Results Titanium was only detected in the stratum corneum for healthy skin. Penetration to layers consisting of living cells was not observed. No diffusion profile was present therefore we conclude that the penetration takes place through mechanical action. Deep penetration into hair follicles was also observed, but not into vital tissue. Clearance is expected via desquamation and sebum excretion respectively for corneocyte layers and hair follicles. In conclusion, the NANODERM group does not expect any harmful effects of sunscreens containing

  4. Synthesis and Mechanical Characterisation of an Ultra-Fine Grained Ti-Mg Composite

    Directory of Open Access Journals (Sweden)

    Markus Alfreider

    2016-08-01

    Full Text Available The importance of lightweight materials such as titanium and magnesium in various technical applications, for example aerospace, medical implants and lightweight construction is well appreciated. The present study is an attempt to combine and improve the mechanical properties of these two materials by forming an ultra-fine grained composite. The material, with a composition of 75 vol% (88.4 wt% Ti and 25 vol% (11.4 wt% Mg , was synthesized by powder compression and subsequently deformed by high-pressure torsion. Using focused ion beam machining, miniaturised compression samples were prepared and tested in-situ in a scanning electron microscope to gain insights into local deformation behaviour and mechanical properties of the nanocomposite. Results show outstanding yield strength of around 1250 MPa, which is roughly 200 to 500 MPa higher than literature reports of similar materials. The failure mode of the samples is accounted for by cracking along the phase boundaries.

  5. Thermal insulator made of ultra fine particles of silica. Chobiryushi silica kei dannetsuzai

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, T.

    1991-05-30

    An overview was presented of properties and applications of thermal insulator made of ultra fine powder of silica, MICROTHERM. The thermal conductivity of MICROTHERM is as low as (1/3) - (1/4) of that of conventional thermal insulator, because it is mainly composed of fumed silica or aero gel and formed into porous structure. In addition, metal oxide of special particle size is added to it in order to reject the radiative heat. The thermal insulation property and the mechanical strength of MICROTHERM is not affected by a sudden change in temperature and moisture. The standard type of MICROTHERM can be used at a temperature up to 950 {degree}C, while the high temperature type MICROTHERM can stand a high temperature up to 1025 {degree}C for long period of time. The thickness of insulator can be reduced markedly by using MICROTHERM as compared with the use of conventional insulating materials. Many new products in which MICROTHERM is used came into market. New type kilt, Semi-cylindrical block, Super high temperature MICROTHERM are just a few examples. Variety of application and energy saving effect are attracting public attention. 11 figs.

  6. Impact of superplasticizer concentration and of ultra-fine particles on the rheological behaviour of dense mortar suspensions

    International Nuclear Information System (INIS)

    Artelt, C.; Garcia, E.

    2008-01-01

    This work aims at investigating the impact of the addition of superplasticizer and of ultra-fine particles, namely of silica fume and of precipitated titania, on the rheological behaviour of water-lean mortar pastes. The pastes are characterised in terms of their spread, their flowing behaviour and by means of performing a shear test, giving access to viscosity/shear gradient correlations. Adding superplasticizer is shown to shift the onset of shear thickening of the referring pastes to higher shear rates and to attenuate its otherwise rapid evolution, possibly by means of favouring steric particle-particle interactions. The workability of these mortars, which is characterised in terms of spread values and draining, is also improved. For the case of fly ash based mortars, adding ultra-fine particles is another way of (slightly) 'retarding' shear thickening and of attenuating its evolution, possibly because of resulting in - on the average - lower hydrodynamic forces and reduced attractive Van der Waals interactions between particles. However, at the same time these mortars are characterised by a worsening in workability which is attributed to the huge amount of surface area provided by the ultra-fines

  7. Effect of shot peening using ultra-fine particles on fatigue properties of 5056 aluminum alloy under rotating bending

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Shoichi, E-mail: kikuchi@mech.kobe-u.ac.jp [Department of Mechanical Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe-shi, Hyogo 657-8501 (Japan); Nakamura, Yuki [Department of Mechanical Engineering, National Institute of Technology, Toyota College, 2-1 Eisei-cho, Toyota-shi, Aichi 471-8525 (Japan); Nambu, Koichiro [Department of Mechanical Engineering, National Institute of Technology, Suzuka College, Shiroko-cho, Suzuka-shi, Mie 510-0294 (Japan); Ando, Masafumi [Innovation Team, IKK SHOT Co. Ltd., 412-4, Nunowari, Minami-Shibata-machi, Tokai-shi, Aichi 476-0001 (Japan)

    2016-01-15

    Shot peening using particles 10 μm in diameter (ultra-fine particle peening: Ultra-FPP) was introduced to improve the fatigue properties of 5056 aluminum alloy. The surface microstructures of the Ultra-FPP treated specimens were characterized using a micro-Vickers hardness tester, scanning electron microscopy (SEM), X-ray diffraction (XRD), non-contact scanning white light interferometry, and electron backscatter diffraction (EBSD). The Ultra-FPP treated specimen had higher hardness than the conventional FPP treated specimen with a short nozzle distance due to the high velocity of the ultra-fine particles. Furthermore, the surface hardness of the Ultra-FPP treated specimen tended to increase as the peening time decreased. Fatigue tests were performed in air at room temperature using a cantilever-type rotating bending fatigue testing machine. It was found that the fatigue life of the Ultra-FPP treated specimen tended to increase with decreasing peening time. Mainly, the Ultra-FPP improved the fatigue properties of 5056 aluminum alloy in the very high cycle regime of more than 10{sup 7} cycles compared with the un-peened specimens. This is because the release of the compressive residual stress is small during fatigue tests at low stress amplitudes.

  8. Seasonal variation and volatility of ultra-fine particles in coastal Antarctic troposphere

    Directory of Open Access Journals (Sweden)

    Keiichiro Hara

    2010-12-01

    Full Text Available The Size distribution and volatility of ultrafine aerosol particles were measured at Syowa Station during the 46-47 Japanese Antarctic Research Expeditions. During the summer, most of the ultrafine particles were volatile particles, which were composed of H_2SO_4, CH_3SO_3H and sulfates bi-sulfates. The abundance of non-volatile particles was ~ 20% during the summer, increasing to>90% in winter-spring. Non-volatile particles in winter were dominantly sea-salt particles. Some ultrafine sea-salt particles might be released from sea-ice. When air mass was transported from the free troposphere over the Antarctic continent, the abundance of non-volatile particles dropped to<30% even in winter.

  9. Detecting charging state of ultra-fine particles: instrumental development and ambient measurements

    Directory of Open Access Journals (Sweden)

    L. Laakso

    2007-01-01

    Full Text Available The importance of ion-induced nucleation in the lower atmosphere has been discussed for a long time. In this article we describe a new instrumental setup – Ion-DMPS – which can be used to detect contribution of ion-induced nucleation on atmospheric new particle formation events. The device measures positively and negatively charged particles with and without a bipolar charger. The ratio between "charger off" to "charger on" describes the charging state of aerosol particle population with respect to equilibrium. Values above one represent more charges than in an equilibrium (overcharged state, and values below unity stand for undercharged situation, when there is less charges in the particles than in the equilibrium. We performed several laboratory experiments to test the operation of the instrument. After the laboratory tests, we used the device to observe particle size distributions during atmospheric new particle formation in a boreal forest. We found that some of the events were clearly dominated by neutral nucleation but in some cases also ion-induced nucleation contributed to the new particle formation. We also found that negative and positive ions (charged particles behaved in a different manner, days with negative overcharging were more frequent than days with positive overcharging.

  10. Deposition velocities to Sorbus aria, Acer campestre, Populus deltoides x trichocarpa 'Beaupre', Pinus nigra and x Cupressocyparis leylandii for coarse, fine and ultra-fine particles in the urban environment

    International Nuclear Information System (INIS)

    Freer-Smith, P.H.; Beckett, K.P.; Taylor, Gail

    2005-01-01

    Trees are effective in the capture of particles from urban air to the extent that they can significantly improve urban air quality. As a result of their aerodynamic properties conifers, with their smaller leaves and more complex shoot structures, have been shown to capture larger amounts of particle matter than broadleaved trees. This study focuses on the effects of particle size on the deposition velocity of particles (Vg) to five urban tree species (coniferous and broadleaved) measured at two field sites, one urban and polluted and a second more rural. The larger uptake to conifers is confirmed, and for broadleaves and conifers Vg values are shown to be greater for ultra-fine particles (Dp<1.0 μm) than for fine and coarse particles. This is important since finer particles are more likely to be deposited deep in the alveoli of the human lung causing adverse health effects. The finer particle fraction is also shown to be transported further from the emission source; in this study a busy urban road. In further sets of data the aqueous soluble and insoluble fractions of the ultra-fines were separated, indicating that aqueous insoluble particles made up only a small proportion of the ultra-fines. Much of the ultra-fine fraction is present as aerosol. Chemical analysis of the aqueous soluble fractions of coarse, fine and ultra-fine particles showed the importance of nitrates, chloride and phosphates in all three size categories at the polluted and more rural location

  11. Ultra fine particulates. Small particulates with large consequences?; Ultrafijn stof. Kleine deeltjes met grote gevolgen?

    Energy Technology Data Exchange (ETDEWEB)

    Hensema, A.; Keuken, M.; Kooter, I.; Verbeek, R.; Van Vugt, M. [TNO Science and Industry, Delft (Netherlands)

    2009-02-15

    The concentrations of ultra fine particles (and elementary carbon) have increased significantly near traffic routes. The amount of ultra fine particles (and the chemical composition of particulate matter) are related to traffic emissions and are therefore relevant to the established health effects. Better insight in the effectiveness of particulate matter policy requires more attention for ultra fine particles than just maintaining the standards for PM2,5 and PM10. [mk]. [Dutch] De concentraties van ultrafijne deeltjes (en elementair koolstof) zijn fors verhoogd in de buurt van verkeerswegen. Het aantal ultrafijne deeltjes (en de chemische samenstelling van fijnstof) gerelateerd aan verkeersemissies lijkt daarom relevant voor de vastgestelde gezondheidseffecten. Voor een beter inzicht in de effectiviteit van het fijnstofbeleid is meer aandacht nodig voor ultrafijne deeltjes dan alleen handhaving van de normen voor PM2,5 en PM10.

  12. Seasonal variations of ultra-fine and submicron aerosols in Taipei, Taiwan: implications for particle formation processes in a subtropical urban area

    Directory of Open Access Journals (Sweden)

    H. C. Cheung

    2016-02-01

    Full Text Available The aim of this study is to investigate the seasonal variations in the physicochemical properties of atmospheric ultra-fine particles (UFPs, d ≤ 100 nm and submicron particles (PM1, d ≤ 1 µm in an east Asian urban area, which are hypothesized to be affected by the interchange of summer and winter monsoons. An observation experiment was conducted at TARO (Taipei Aerosol and Radiation Observatory, an urban aerosol station in Taipei, Taiwan, from October 2012 to August 2013. The measurements included the mass concentration and chemical composition of UFPs and PM1, as well as the particle number concentration (PNC and the particle number size distribution (PSD with size range of 4–736 nm. The results indicated that the mass concentration of PM1 was elevated during cold seasons with a peak level of 18.5 µg m−3 in spring, whereas the highest concentration of UFPs was measured in summertime with a mean of 1.64 µg m−3. Moreover, chemical analysis revealed that the UFPs and PM1 were characterized by distinct composition; UFPs were composed mostly of organics, whereas ammonium and sulfate were the major constituents of PM1. The seasonal median of total PNCs ranged from 13.9  ×  103 cm−3 in autumn to 19.4  ×  103 cm−3 in spring. Median concentrations for respective size distribution modes peaked in different seasons. The nucleation-mode PNC (N4 − 25 peaked at 11.6  ×  103 cm−3 in winter, whereas the Aitken-mode (N25 − 100 and accumulation-mode (N100 − 736 PNC exhibited summer maxima at 6.0  ×  103 and 3.1  ×  103 cm−3, respectively. The change in PSD during summertime was attributed to the enhancement in the photochemical production of condensable organic matter that, in turn, contributed to the growth of aerosol particles in the atmosphere. In addition, clear photochemical production of particles was observed, mostly in the summer season

  13. Co-formation of hydroperoxides and ultra-fine particles during the reactions of ozone with a complex VOC mixture under simulated indoor conditions

    DEFF Research Database (Denmark)

    Fan, Z.H.; Weschler, Charles J.; Han, IK

    2005-01-01

    In this study we examined the co-formation of hydrogen peroxide and other hydroperoxides (collectively presented as H2O2*) as well as submicron particles, including ultra-fine particles (UFP), resulting from the reactions of ozone (O-3) with a complex mixture of volatile organic compounds (VOCs...... higher than typical indoor levels. When O-3 was added to a 25-m(3) controlled environmental facility (CEF) containing the 23 VOC mixture, both H2O2* and submicron particles were formed. The 2-h average concentration of H2O2* was 1.89 +/- 0.30ppb, and the average total particle number concentration was 46...... to achieve saturated concentrations of the condensable organics. When the 2 terpenes were removed from the O-3/23 VOCs mixture, no H2O2* or particles were formed, indicating that the reactions of O-3 With the two terpenes were the key processes contributing to the formation of H2O2* and submicron particles...

  14. The formation of ultra-fine particles during ozone-initiated oxidations with terpenes emitted from natural paint

    International Nuclear Information System (INIS)

    Lamorena, Rheo B.; Jung, Sang-Guen; Bae, Gwi-Nam; Lee, Woojin

    2007-01-01

    The formation of secondary products during the ozone-initiated oxidations with biogenic VOCs emitted from natural paint was investigated in this study. Mass spectrometry and infrared spectroscopy measurements have shown that the major components of gas-phase chemicals emitted from natural paint are monoterpenes including α- and β-pinenes, camphene, p-cymene, and limonene. A significant formation of gaseous carbonyl products and nano-sized particles (4.4-168 nm) was observed in the presence of ozone. Carboxylic acids were also observed to form during the reactions (i.e. formic acid at 0.170 ppm and acetic acid at 0.260 ppm). The formation of particles increased as the volume of paint introduced into a reaction chamber increased. A secondary increase in the particle number concentration was observed after 440 min, which suggests further partitioning of oxidation products (i.e. carboxylic acids) into the particles previously existing in the reaction chamber. The growth of particles increased as the mean particle diameter and particle mass concentrations increased during the reaction. The experimental results obtained in this study may provide insight into the potential exposure of occupants to irritating chemical compounds formed during the oxidations of biogenic VOCs emitted from natural paint in indoor environments

  15. Fabrication and Characterization of Electrospun Semiconductor Nanoparticle—Polyelectrolyte Ultra-Fine Fiber Composites for Sensing Applications

    Directory of Open Access Journals (Sweden)

    Caroline L. Schauer

    2011-10-01

    Full Text Available Fluorescent composite fibrous assembles of nanoparticle-polyelectrolyte fibers are useful multifunctional materials, utilized in filtration, sensing and tissue engineering applications, with the added benefits of improved mechanical, electrical or structural characteristics over the individual components. Composite fibrous mats were prepared by electrospinning aqueous solutions of 6 wt% poly(acrylic acid (PAA loaded with 0.15 and 0.20% v/v, carboxyl functionalized CdSe/ZnS nanoparticles (SNPs. The resulting fluorescent composite fibrous mats exhibits recoverable quenching when exposed to high humidity. The sensor response is sensitive to water concentration and is attributed to the change in the local charges around the SNPs due to deprotonation of the carboxylic acids on the SNPs and the surrounding polymer matrix.

  16. Quality of skin as a barrier to ultra-fine particles. Contribution of the IBA group to the NANODERM EU-5 project in 2003-2004

    International Nuclear Information System (INIS)

    Kertesz, Zs.; Szikszai, Z.; Kiss, A.Z.

    2004-01-01

    Complete text of publication follows. Micronised titanium-, zinc- or silicon-oxide is a widely used physical photoprotective agent as a component of various cosmetic products. Due to the small particle size (down to 15 nm) it is supposed, that the particles may pass through the uppermost horny skin layer, and penetrate into deeper vital skin layers. However, only a few experiments have been carried out on its penetration through the human epidermal barrier and its possible biological effects in vivo and in vitro, using the tape stripping method which has no lateral and limited depth resolution. A consortium consisting of 12 European universities and scientific institutes has been established under the leadership of the Fakultat fuer Physik und Geowissenchaft Universitat Leipzig, whose goal is to get quantitative information on the penetration of ultrafine particles in all strata of skin, on their penetration pathways as well as on their impact on human health [1]. The IBA group of the Atomki takes part in this project as a subcontractor of the Department of Dermatology, University of Debrecen, Hungary. Ion microscopy, electron microscopy and autoradiography are used to trace the penetration of the nanoparticles into the skin layers, molecular and cell-biological methods are applied to assess the skin response and activation of dermal cells. The IBA group of the Atomki takes part in WP3: Ion Microscopy Work Package together with five other nuclear microprobe laboratories. The participants provide quantitative elemental composition in all strata of skin with detection limits of about 1 μg/g and lateral resolution of 1-2 μm by applying various ion beam analytical techniques. Samples investigated by ion microscopy are 14-16 μm thick cryo-fixed freeze-dried sections of porcine and human skin. Since the sample preparation requires completely different treatment for ion microscopy than for conventional microscopy, the members of the IBA group, who already have

  17. Electrode geometry effects on the collection efficiency of submicron and ultra-fine dust particles in spike-plate electrostatic precipitators

    International Nuclear Information System (INIS)

    Brocilo, D; Podlinski, J; Chang, J S; Mizeraczyk, J; Findlay, R D

    2008-01-01

    The collection efficiency of electrostatic precipitators for the submicron particles ranging from 0.1 to 1 μm and ultrafine particles smaller than 0. lμm is below the requirements of new PM2.5 emission regulations. In this work, numerical and experimental studies were conducted to examine the effect of discharge and collecting electrode geometries on the ion density and electric field profiles and consequently their effect on the particle surface charge and collection efficiency. The collection efficiency prediction was based on a modified Deutsche's equation after calculation of three dimensional electric field and ion density profiles. Whereas, the particle surface charge was obtained from diffusion and field charging models. Results show that the collection efficiency of fine particles for the spike-type discharge electrode when compared to the conventional wire-type was improved. Experimental validations were conducted on a bench scale electrostatic precipitator for total and partial collection efficiency of particles ranging in size from 0.01 to 20 μm and the results indicated that the model can be effectively applied for prototype design, modification, and scale-up of collecting and discharge electrodes.

  18. High Heat Load Properties of Ultra Fine Grain Tungsten

    International Nuclear Information System (INIS)

    Zhou, Z.; Du, J.; Ge, C.; Linke, J.; Pintsuk, G.; Song, S.X.

    2007-01-01

    Full text of publication follows: Tungsten is increasingly considered as a promising candidate armour materials facing the plasma in tokamaks for medium to high heat flux components (EAST, ASDEX, ITER). Fabrication tungsten with ultra fine grain size is considered as an effective way to ameliorate some disadvantages of tungsten, such as its brittleness at room temperature. But the research data on the performance of ultra fine grain tungsten is still very limit. In this work, high heat load properties of pure ultra-fine grain tungsten have been studied. The ultra fine grain tungsten samples with average grain size of 0.2 μm, 1 μm and 3 μm were fabricated by resistance sintering under ultra high pressure. The annealing experiments for the investigation of the material resistance against grain growth have been done by annealing samples in a vacuum furnace at different temperature holding for 2 hours respectively. It is found that recrystallization and grain growth occur at heating temperature of 1250 deg. c. The finer the initial grain sizes of tungsten, the smaller its grain growth grain. The effects of transient high thermal loads (off normal events like disruptions) on tungsten surface morphology have been performed in electron beam test facility JUDITH. The thermal loads tests have been carried out with 4 ms pulses at different power density of 0.22, 0.33, 0.44, 0.55 and 0.88 GW/m 2 respectively. Horizontal cracks formed for all tungsten samples at 0.44 GW/m 2 . Particle erosions occurred for tungsten with 3 μm size at 0.33 GW/m 2 and for tungsten with 0.2 and 1 μm size at 0.55 GW/m 2 . The weight loss of tungsten with 0.2, 1 and 3 μm size are 2,0.1,0.6 mg respectively at 0.88 GW/m 2 . The effects of a large number of very short transient repetitive thermal loads (ELM-like) on tungsten surface morphology also have been performed by using a fundamental wave of a YAG laser. It is found that tungsten with 0.2 μm size has the best performance. (authors)

  19. High Heat Load Properties of Ultra Fine Grain Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.; Du, J.; Ge, C. [Lab. of Special Ceramic and P/M, University of Science and Technology, 100083 Beijing (China); Linke, J.; Pintsuk, G. [FZJ-Forschungszentrum Juelich GmbH, Association Euratom-FZJ, Institut fur Plasmaphysik, Postfach 1913, D-52425 Juelich (Germany); Song, S.X. [Research Center on Fusion Materials (RCFM), University of Science and Technology Beijing (USTB), 100083 Beijing (China)

    2007-07-01

    Full text of publication follows: Tungsten is increasingly considered as a promising candidate armour materials facing the plasma in tokamaks for medium to high heat flux components (EAST, ASDEX, ITER). Fabrication tungsten with ultra fine grain size is considered as an effective way to ameliorate some disadvantages of tungsten, such as its brittleness at room temperature. But the research data on the performance of ultra fine grain tungsten is still very limit. In this work, high heat load properties of pure ultra-fine grain tungsten have been studied. The ultra fine grain tungsten samples with average grain size of 0.2 {mu}m, 1 {mu}m and 3 {mu}m were fabricated by resistance sintering under ultra high pressure. The annealing experiments for the investigation of the material resistance against grain growth have been done by annealing samples in a vacuum furnace at different temperature holding for 2 hours respectively. It is found that recrystallization and grain growth occur at heating temperature of 1250 deg. c. The finer the initial grain sizes of tungsten, the smaller its grain growth grain. The effects of transient high thermal loads (off normal events like disruptions) on tungsten surface morphology have been performed in electron beam test facility JUDITH. The thermal loads tests have been carried out with 4 ms pulses at different power density of 0.22, 0.33, 0.44, 0.55 and 0.88 GW/m{sup 2} respectively. Horizontal cracks formed for all tungsten samples at 0.44 GW/m{sup 2}. Particle erosions occurred for tungsten with 3 {mu}m size at 0.33 GW/m{sup 2} and for tungsten with 0.2 and 1 {mu}m size at 0.55 GW/m{sup 2}. The weight loss of tungsten with 0.2, 1 and 3 {mu}m size are 2,0.1,0.6 mg respectively at 0.88 GW/m{sup 2}. The effects of a large number of very short transient repetitive thermal loads (ELM-like) on tungsten surface morphology also have been performed by using a fundamental wave of a YAG laser. It is found that tungsten with 0.2 {mu}m size has

  20. Effect of rare earth oxide addition on microstructures of ultra-fine WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering

    International Nuclear Information System (INIS)

    Gu Dongdong; Shen Yifu; Zhao Long; Xiao Jun; Wu Peng; Zhu Yongbing

    2007-01-01

    This paper presents a detailed investigation into the influence of the rare earth (RE) oxide (La 2 O 3 ) addition upon the densification and the resultant microstructural characteristics of the submicron WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering. It is found that the relative density of the laser sintered sample with 1 wt.% La 2 O 3 addition increased by 11.5% as compared with the sample without RE addition. The addition of RE element favored the microstructural refinement and improved the particulate dispersion homogeneity and the particulate/matrix interfacial coherence. The metallurgical functions of the RE element in improving the sinterability were also addressed. It shows that due to the unique properties of RE element such as high surface activity and large atomic radius, the addition of trace RE element can decrease the surface tension of the melt, resist the grain growth coarsening and increase the heterogeneous nucleation rate during laser sintering

  1. Nanofiber Anisotropic Conductive Films (ACF) for Ultra-Fine-Pitch Chip-on-Glass (COG) Interconnections

    Science.gov (United States)

    Lee, Sang-Hoon; Kim, Tae-Wan; Suk, Kyung-Lim; Paik, Kyung-Wook

    2015-11-01

    Nanofiber anisotropic conductive films (ACF) were invented, by adapting nanofiber technology to ACF materials, to overcome the limitations of ultra-fine-pitch interconnection packaging, i.e. shorts and open circuits as a result of the narrow space between bumps and electrodes. For nanofiber ACF, poly(vinylidene fluoride) (PVDF) and poly(butylene succinate) (PBS) polymers were used as nanofiber polymer materials. For PVDF and PBS nanofiber ACF, conductive particles of diameter 3.5 μm were incorporated into nanofibers by electrospinning. In ultra-fine-pitch chip-on-glass assembly, insulation was significantly improved by using nanofiber ACF, because nanofibers inside the ACF suppressed the mobility of conductive particles, preventing them from flowing out during the bonding process. Capture of conductive particles was increased from 31% (conventional ACF) to 65%, and stable electrical properties and reliability were achieved by use of nanofiber ACF.

  2. A practice of ultra-fine tailings disposal as filling material in a gold mine.

    Science.gov (United States)

    Deng, D Q; Liu, L; Yao, Z L; Song, K I-I L; Lao, D Z

    2017-07-01

    A practice of cemented backfill technology with ultra-fine tailings in a gold mine was comprehensively presented, and a series of tests were conducted in accordance with the peculiar properties of ultra-fine tailings and the mining technology conditions. The test results show that, the tailings from Shuiyindong Gold Mine have a great grinding fineness, with the average particle diameter 22.03 μm, in which the ultra-fine particles with the diameter below 20 μm occupying 66.13%. The analysis results of chemical components of tailings indicate that the content of SiO 2 is relatively low, i.e., 33.08%, but the total content of CaO, MgO and Al 2 O 3 is relatively high i.e., 36.5%. After the settlement of 4-6 h, the tailing slurry with the initial concentration of 40% has the maximum settling concentration of 54.692%, and the corresponding maximum settling unit weight is 1.497 g/cm 3 . During the field application, the ultra-fine tailings and PC32.5 cement were mixed with the cement-tailings ratios of 1:3-1:8, and the slurry concentration of 50 wt% was prepared. Using the slurry pump, the prepared cemented backfill slurries flowed into the goaf, and then the strength of the cemented backfill body met the mining technique requirements in Shuiyindong Gold Mine, where the ore body has a smooth occurrence, with the average thickness of approximately 2 m and the inclination angle ranging from 5 to 10°. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Determination of permeability of ultra-fine cupric oxide aerosol through military filters and protective filters

    Science.gov (United States)

    Kellnerová, E.; Večeřa, Z.; Kellner, J.; Zeman, T.; Navrátil, J.

    2018-03-01

    The paper evaluates the filtration and sorption efficiency of selected types of military combined filters and protective filters. The testing was carried out with the use of ultra-fine aerosol containing cupric oxide nanoparticles ranging in size from 7.6 nm to 299.6 nm. The measurements of nanoparticles were carried out using a scanning mobility particle sizer before and after the passage through the filter and a developed sampling device at the level of particle number concentration approximately 750000 particles·cm-3. The basic parameters of permeability of ultra-fine aerosol passing through the tested material were evaluated, in particular particle size, efficiency of nanoparticle capture by filter, permeability coefficient and overall filtration efficiency. Results indicate that the military filter and particle filters exhibited the highest aerosol permeability especially in the nanoparticle size range between 100–200 nm, while the MOF filters had the highest permeability in the range of 200 to 300 nm. The Filter Nuclear and the Health and Safety filter had 100% nanoparticle capture efficiency and were therefore the most effective. The obtained measurement results have shown that the filtration efficiency over the entire measured range of nanoparticles was sufficient; however, it was different for particular particle sizes.

  4. Computational Fluid-Particle Dynamics for the Flame Synthesis of Alumina Particles

    DEFF Research Database (Denmark)

    Johannessen, Tue; Pratsinis, Sotirie E.; Livbjerg, Hans

    2000-01-01

    A mathematical model for the dynamics of particle growth during synthesis of ultra fine particles in diffusion flames is presented. The model includes the kinetics of particle coalescence and coagulation, and when combined with a calculation of the temperature, velocity and gas composition distri...

  5. Radiation-induced copolymerization of styrene/n-butyl acrylate in the presence of ultra-fine powdered styrene-butadiene rubber

    Energy Technology Data Exchange (ETDEWEB)

    Yu Haibo [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Peng Jing [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)], E-mail: jpeng@pku.edu.cn; Zhai Maolin; Li Jiuqiang; Wei Genshuan [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Qiao Jinliang [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013 (China)

    2007-11-15

    Styrene (St)/n-butyl acrylate (BA) copolymers were prepared by two-stage polymerization: St/BA was pre-polymerized to a viscous state by bulk polymerization with initiation by benzoyl peroxide (BPO) followed by {sup 60}Co {gamma}-ray radiation curing. The resultant copolymers had higher molecular weight and narrower molecular weight distribution than conventional methods. After incorporation of ultra-fine powdered styrene-butadiene rubber (UFSBR) with a particle size of 100 nm in the monomer, the glass transition temperature (T{sub g}) of St-BA copolymer increased at low rubber content. Both the St-BA copolymer and the St-BA copolymer/UFSBR composites had good transparency at BA content below 40%.

  6. Ultra fine grained Ti prepared by severe plastic deformation

    Science.gov (United States)

    Lukáč, F.; Čížek, J.; Knapp, J.; Procházka, I.; Zháňal, P.; Islamgaliev, R. K.

    2016-01-01

    The positron annihilation spectroscopy was employed for characterisation of defects in pure Ti with ultra fine grained (UFG) structure. UFG Ti samples were prepared by two techniques based on severe plastic deformation (SPD): (i) high pressure torsion (HPT) and (ii) equal channel angular pressing (ECAP). Although HPT is the most efficient technique for grain refinement, the size of HPT-deformed specimens is limited. On the other hand, ECAP is less efficient in grain refinement but enables to produce larger samples more suitable for industrial applications. Characterisation of defects by positron annihilation spectroscopy was accompanied by hardness testing in order to monitor the development of mechanical properties of UFG Ti.

  7. Low energy particle composition

    International Nuclear Information System (INIS)

    Gloeckler, G.

    1975-01-01

    More than 50 papers presented at this Conference dealt with the composition of low energy particles. The topics can be divided roughly into two broad categories. The first is the study of the energy spectra and composition of the steady or 'quiet-time' particle flux, whose origin is at this time unknown. The second category includes the study of particles and photons which are associated with solar flares or active regions on the sun. (orig.) [de

  8. An ultra-fine group slowing down benchmark

    International Nuclear Information System (INIS)

    Ganapol, B. D.; Maldonado, G. I.; Williams, M. L.

    2009-01-01

    We suggest a new solution to the neutron slowing down equation in terms of multi-energy panels. Our motivation is to establish a computational benchmark featuring an ultra-fine group calculation, where the number of groups could be on the order of 100,000. While the CENTRM code of the SCALE code package has been shown to adequately treat this many groups, there is always a need for additional verification. The multi panel solution principle is simply to consider the slowing down region as sub regions of panels, with each panel a manageable number of groups, say 100. In this way, we reduce the enormity of dealing with the entire spectrum all at once by considering many smaller problems. We demonstrate the solution in the unresolved U3o8 resonance region. (authors)

  9. Formation of ultra-fine grained SUS316L steels by ball-milling and their mechanical properties after neutron irradiation

    International Nuclear Information System (INIS)

    Zheng, Y.J.; Yamasaki, T.; Fukami, T.; Terasawa, M.; Mitamura, T.

    2003-01-01

    In order to overcome the irradiation embrittlement in austenitic stainless steels, ultra-fine grained SUS316L steels with very fine TiC particles have been developed. The SUS316L-TiC nanocomposite powders having 1.0 to 2.0 mass% TiC were prepared by ball-milling SUS316L-TiC powder mixtures for 125 h in an argon gas atmosphere. The milled powders were consolidated by hot isostatic pressing (HIP) under a pressure of 200 MPa at temperatures between 700 and 1000 C, and the bulk materials with grain sizes between 100 and 400 nm have been produced. The possibility of using fine-grained TiC particles to pin grain boundaries and thereby maintain the ultra-fine grained structures has been discussed. In order to clarify the effects of the neutron irradiation on mechanical properties of the ultra-fine grained SUS316L steels, Vickers microhardness measurements were performed before and after the irradiation of 1.14 x 10 23 n/m 2 and 1.14 x 10 24 n/m 2 . The hardness increased with increasing the dose of the irradiation. However, these increasing rates of the ultra-fine grained steels were much smaller than those of the coarse-grained SUS316L steels having grain sizes between 13 and 50 μm. (orig.)

  10. Fabrication of ultra-fine nanostructures using edge transfer printing.

    Science.gov (United States)

    Xue, Mianqi; Li, Fengwang; Cao, Tingbing

    2012-03-21

    The exploration of new methods and techniques for application in diverse fields, such as photonics, microfluidics, biotechnology and flexible electronics is of increasing scientific and technical interest for multiple uses over distance of 10-100 nm. This article discusses edge transfer printing--a series of unconventional methods derived from soft lithography for nanofabrication. It possesses the advantages of easy fabrication, low-cost and great serviceability. In this paper, we show how to produce exposed edges and use various materials for edge transfer printing, while nanoskiving, nanotransfer edge printing and tunable cracking for nanogaps are introduced. Besides this, different functional materials, such as metals, inorganic semiconductors and polymers, as well as localised heating and charge patterning, are described here as unconventional "inks" for printing. Edge transfer printing, which can effectively produce sub-100 nm scale ultra-fine structures, has broad applications, including metallic nanowires as nanoelectrodes, semiconductor nanowires for chemical sensors, heterostructures of organic semiconductors, plasmonic devices and so forth. This journal is © The Royal Society of Chemistry 2012

  11. [A technological study on the extraction of ultra-fine powder of Panax notoginsen].

    Science.gov (United States)

    Huang, Yaohai; Huang, Mingqing; Zeng, Huifang; Guo, Wei; Xi, Ping

    2005-12-01

    To investigate the extraction of ultra-fine powder Panax notoginsen. The extraction rate of ginseng saponin Rg1, Re, Rb1, notoginseng saponin R1 and filtrated time were determined by alcoholic and aqueous extraction of Panax notoginsen in tablet, coarse powder, ultra-fine powder and recostitution granules of ultra-fine powder. The filtered time of ultra-fine powder of Panax notoginsen extraction and that of the tablet of Panax notoginsen extraction were similar, while the extraction rates of various saponins of it were high. The method of aqueous extrction in ltra-fine powder of Panax notoginsen is easy in filtrationer, higher in extraction rate of Panax notoginsen and lower in production cost.

  12. Composite magnetic particles

    International Nuclear Information System (INIS)

    Davies, G.E.; Janata, J.

    1981-01-01

    This patent claim on behalf of I.C.I. Ltd., relates to the preparation and use of composite magnetic particles, comprising a low density core, and having a magnetic coating over at least a proportion of the surface. The density of such particles can be chosen to suit a range of applications, e.g. in affinity chromatography, in radioimmunoassay, in the transport of the associated component, such as a drug or enzyme, to a specific site in a living organism. (U.K.)

  13. Formation of ultra-fine grained TiC-dispersed SUS316L by ball-milling and their consolidation by hot isostatic pressing

    International Nuclear Information System (INIS)

    Zheng, Yongjia; Yamasaki, Tohru; Fukami, Takeshi; Mitamura, Tohru; Terasawa, Mititaka

    2003-01-01

    In order to overcome the irradiation embrittlement in austenitic stainless steels, ultra-fine grained SUS316L steels with very fine TiC particles have been developed. The SUS316-TiC nanocomposite powders having 1.0 to 2.0 mass%TiC were prepared by ball-milling SUS316-TiC powder mixtures for 125h in an argon gas atmosphere. The milled powders were consolidated by hot isostatic pressing (HIP) under a pressure of 200 MPa at temperature between 700-1000degC, and the bulk materials with crystallite size ranging between 100-400 nm have been produced. The possibility of using fine-grained TiC particles for pinning grain boundaries and thereby to maintain the ultra-fine grained structures has been discussed. (author)

  14. The Radiation Synthesis of Ultra-Fine Powdered Carboxylated Styrene-Butadiene Rubber (UFCSBR) and Property of Nylon 6/ UFCSBR Blends

    International Nuclear Information System (INIS)

    Xu, L.

    2006-01-01

    A serial of novel ultra-fine powdered carboxylated styrene-butadiene rubber (UFCSBR) were prepared by using radiation crosslinking and spray drying method. Thereafter, these powdered rubber particles were used as toughener of nylon 6.The radiation synthesis of ultra-fine powdered rubbers were studied, moreover, the mechanical and thermal property of nylon 6/UFCSBR blends were investigated. Finally, the toughening mechanism of nylon 6 modified with ultra-fine rubber particles was discussed. The UFCSBR could be dispersed well in nylon 6 as individual particles with a diameter of 150 nm by using melt blending. The Nylon 6/UFCSBR (80/20) blend possesses higher toughness and higher thermal stability than Nylon 6/POE-g-MAH (which is most often used elastomer in toughening nylon now). The deformation mechanism of nylon 6/UFCSBR blends includes shear deformation of nylon 6 and the formation of elongated rubber particles in matrix. In addition, the UFCSBR has good interfacial compatibility with nylon 6. Therefore, the nylon 6/UFCSBR blends with good mechanical performance could be prepared in this work

  15. Improved microstructure of cement-based composites through the addition of rock wool particles

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wei-Ting [Dept. of Civil Engineering, National Ilan University, Ilan 26047, Taiwan (China); Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 32546, Taiwan (China); Cheng, An, E-mail: ancheng@niu.edu.tw [Dept. of Civil Engineering, National Ilan University, Ilan 26047, Taiwan (China); Huang, Ran; Zou, Si-Yu [Dept. of Harbor and River Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan (China)

    2013-10-15

    Rock wool is an inorganic fibrous substance produced by steam blasting and cooling molten glass. As with other industrial by-products, rock wool particles can be used as cementitious materials or ultra fine fillers in cement-based composites. This study investigated the microstructure of mortar specimens produced with cement-based composites that include various forms of rock wool particles. It conducted compressive strength testing, rapid chloride penetration tests, X-ray diffraction analysis, thermo-gravimetric analysis, and scanning electronic microscopy to evaluate the macro- and micro-properties of the cement-based composites. Test results indicate that inclusion of rock wool particles in composites improved compressive strength and reduced chloride ion penetration at the age of 91 days due to the reduction of calcium hydroxide content. Microscopic analysis confirms that the use of rock wool particles contributed to the formation of a denser, more compact microstructure within the hardened paste. In addition, X-ray diffraction analysis shows few changes in formation of pozzolanic reaction products and no new hydrations are formed with incorporating rock wool particles. - Highlights: • We report the microstructural characterization of cement-based composites. • Different mixes produced with various rock wool particles have been tested. • The influence of different mixes on macro and micro properties has been discussed. • The macro properties are included compressive strength and permeability. • XRD and SEM observations confirm the pozzolanic reaction in the resulting pastes.

  16. Size-dependent characteristics of ultra-fine oxygen-enriched nanoparticles in austenitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin, E-mail: ymiao@anl.gov [Argonne National Laboratory, Lemont, IL 60439 (United States); University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Mo, Kun [Argonne National Laboratory, Lemont, IL 60439 (United States); Zhou, Zhangjian [University of Science and Technology Beijing, Beijing 100082 (China); Liu, Xiang; Lan, Kuan-Che [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Zhang, Guangming [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); University of Science and Technology Beijing, Beijing 100082 (China); Miller, Michael K.; Powers, Kathy A. [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); Stubbins, James F. [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, Fukuoka 819-0395 (Japan)

    2016-11-15

    Here, a coordinated investigation of the elemental composition and morphology of ultra-fine-scale nanoparticles as a function of size within a variety of austenitic oxide dispersion-strengthened (ODS) steels is reported. Atom probe tomography was utilized to evaluate the elemental composition of these nanoparticles. Meanwhile, the crystal structures and orientation relationships were determined by high-resolution transmission electron microscopy. The nanoparticles with sufficient size (>4 nm) to maintain a Y{sub 2}Ti{sub 2−x}O{sub 7−2x} stoichiometry were found to have a pyrochlore structure, whereas smaller Y{sub x}Ti{sub y}O{sub z} nanoparticles lacked a well-defined structure. The size-dependent characteristics of the nanoparticles in austenitic ODS steels differ from those in ferritic/martensitic ODS steels. - Highlights: • The structural and chemical characteristics of nanoparticles are revealed. • Nanoparticles' crystal structure and elemental composition are size-dependent. • Characteristics of austenitic ODS steels are compared to that of an F/M ODS steel. • Hypothesis about the formation mechanism of nanoparticles is proposed accordingly.

  17. Ultra-Fine Friction Grinding of Sunflower Kernels – Thereof Tahini and Halva Production and Rheological Characterization

    Directory of Open Access Journals (Sweden)

    Emil RACOLŢA

    2016-11-01

    Full Text Available Tahini is a paste obtained by milling the roasted sunflower kernel. Usually, a time and energy consuming two-steps process is involved, a three-roll refiner and a beating machine. The aim of this work was to identify and test a milling process for roasted sunflower kernels with lower time and energy consumption. Different particle size sunflower tahini and halva samples were produced by Ultra-Fine Friction Grinding machine Masuko Sangyo “Supermasscolloider” MKCA6-2 and compared to standard technology. The rheological properties of tahini and textural parameters of halva were assessed. Rheological analysis revealed that all tahini samples produced by “Supermasscolloider” showed a different viscosity profile, as compared to control, the sample milled with the gap set at 100µm being the most viscous and the one at 200µm being the most fluid. When testing the halva samples texture, the sample obtained from the tahini milled at 200µm was clearly highlighted as having the lowest hardness values, while the other samples showed similar texture profiles. The feasibility of using an Ultra-Fine Friction Grinding machine for obtaining sunflower tahini and thereof halva with improved textural properties, was assessed successfully.

  18. Development of ultra-fine grained W-TiC and their mechanical properties for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Kurishita, H. [International Research Center for Nuclear Materials Science, Institute for Materials Research (IMR), Tohoku University, Oarai, Ibaraki 311-1313 (Japan)]. E-mail: kurishi@imr.tohoku.ac.jp; Amano, Y. [Department of Materials Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Kobayashi, S. [Department of Materials Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Nakai, K. [Department of Materials Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Arakawa, H. [International Research Center for Nuclear Materials Science, Institute for Materials Research (IMR), Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Hiraoka, Y. [Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005 (Japan); Takida, T. [A.L.M.T. Corp., 2 Iwase-koshi-machi, Toyama 931-8371 (Japan); Takebe, K. [A.L.M.T. Corp., 2 Iwase-koshi-machi, Toyama 931-8371 (Japan); Matsui, H. [International Research Center for Nuclear Materials Science, Institute for Materials Research (IMR), Tohoku University, Oarai, Ibaraki 311-1313 (Japan)

    2007-08-01

    Effects of neutron irradiation on microstructural evolution and radiation hardening were examined for fine-grained W-0.3 wt%TiC (grain size of 0.9 {mu}m) and commercially available pure W (20 {mu}m). Both materials were neutron irradiated at 563 K to 9 x 10{sup 23} n/m{sup 2} (E > 1 MeV) in the Japan Materials Testing Reactor (JMTR). Post-irradiation examinations showed that the microstructural changes and the degree of hardening due to irradiation were significantly reduced for fine-grained W-0.3TiC compared with pure W, demonstrating the significance of grain refinement to improve radiation resistance. In order to develop ultra-fine grained W-TiC compacts with nearly full densification, the fabrication process was modified, so that W-(0.3-0.7)%TiC with 0.06-0.2 {mu}m grain size and 99% of relative density was fabricated. The achievable grain refinement depended on TiC content and milling atmosphere. The three-point bending fracture strength at room temperature for ultra-fine grained W-TiC compacts of powder milled in H{sub 2} reached approximately 1.6-2 GPa for composition near 0.5%TiC.

  19. Bake hardening of ultra-fine grained low carbon steel produced by constrained groove pressing

    International Nuclear Information System (INIS)

    Alihosseini, H.; Dehghani, K.

    2012-01-01

    Highlights: ► BH of UFG low carbon steel sheets was studied. ► Three passes of CGP are used for producing of UFG sheets. ► Maximum BH was achieved to the UFG specimen pre-strained 8% by baking at 250 °C. - Abstract: In the present work, the bake hardening of ultra-fine grained low carbon steel was compared with that of its coarse-grain counterpart. The ultra-fine grained sheets were produced by applying three passes of constrained groove pressing resulting the grains of 260–270 nm. The microstructure of ultra-fine grain specimens were characterized using electron back-scatter diffraction technique. Then, the bake hardenability of ultra-fine grain and coarse-grain samples were compared by pre-straining to 4, 6 and 8% followed by baking at 150 °C and 250 °C for 20 min. The results show that in case of baking at 250 °C, there was an increase about 108%, 93%, and 72% in the bake hardening for 4%, 6% and 8% pre-strain, respectively. As for baking at 150 °C, these values were 170%, 168%, and 100%, respectively for 4%, 6% and 8% pre-strain. The maximum in bake hardenability (103 MPa) and final yield stress (563 MPa) were pertaining to the ultra-fine grain specimen pre-strained 8% followed by baking at 250 °C.

  20. Structural control of ultra-fine CoPt nanodot arrays via electrodeposition process

    Energy Technology Data Exchange (ETDEWEB)

    Wodarz, Siggi [Department of Applied Chemistry, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Hasegawa, Takashi; Ishio, Shunji [Department of Materials Science, Akita University, Akita City 010-8502 (Japan); Homma, Takayuki, E-mail: t.homma@waseda.jp [Department of Applied Chemistry, Waseda University, Shinjuku, Tokyo 169-8555 (Japan)

    2017-05-15

    CoPt nanodot arrays were fabricated by combining electrodeposition and electron beam lithography (EBL) for the use of bit-patterned media (BPM). To achieve precise control of deposition uniformity and coercivity of the CoPt nanodot arrays, their crystal structure and magnetic properties were controlled by controlling the diffusion state of metal ions from the initial deposition stage with the application of bath agitation. Following bath agitation, the composition gradient of the CoPt alloy with thickness was mitigated to have a near-ideal alloy composition of Co:Pt =80:20, which induces epitaxial-like growth from Ru substrate, thus resulting in the improvement of the crystal orientation of the hcp (002) structure from its initial deposition stages. Furthermore, the cross-sectional transmission electron microscope (TEM) analysis of the nanodots deposited with bath agitation showed CoPt growth along its c-axis oriented in the perpendicular direction, having uniform lattice fringes on the hcp (002) plane from the Ru underlayer interface, which is a significant factor to induce perpendicular magnetic anisotropy. Magnetic characterization of the CoPt nanodot arrays showed increase in the perpendicular coercivity and squareness of the hysteresis loops from 2.0 kOe and 0.64 (without agitation) to 4.0 kOe and 0.87 with bath agitation. Based on the detailed characterization of nanodot arrays, the precise crystal structure control of the nanodot arrays with ultra-high recording density by electrochemical process was successfully demonstrated. - Highlights: • Ultra-fine CoPt nanodot arrays were fabricated by electrodeposition. • Crystallinity of hcp (002) was improved with uniform composition formation. • Uniform formation of hcp lattices leads to an increase in the coercivity.

  1. New insights into the formation and resolution of ultra-fine anaphase bridges

    DEFF Research Database (Denmark)

    Chan, Kok Lung; Hickson, Ian D

    2011-01-01

    that are important for preventing Fanconi anemia (FA) in man. As part of an analysis of the roles of these proteins in mitosis, we identified a novel class of anaphase bridge structure, called an ultra-fine anaphase bridge (UFB). These UFBs are also defined by the presence of a SNF2 family protein called PICH...

  2. Preparation of Ultra-fine Calcium Carbonate by a Solvent-free ...

    African Journals Online (AJOL)

    The treatment of calcium chloride with sodium carbonate under solvent-free conditions with a supersonic airflow and at a low heating temperature leads to the synthesis of ultra-fine calcium carbonate. The reaction not only involves mild conditions, a simple operation, and high yields but also gives a high conversion rate.

  3. Photocatalytic/Magnetic Composite Particles

    Science.gov (United States)

    Wu, Chang-Yu; Goswami, Yogi; Garretson, Charles; Andino, Jean; Mazyck, David

    2007-01-01

    Photocatalytic/magnetic composite particles have been invented as improved means of exploiting established methods of photocatalysis for removal of chemical and biological pollutants from air and water. The photocatalytic components of the composite particles are formulated for high levels of photocatalytic activity, while the magnetic components make it possible to control the movements of the particles through the application of magnetic fields. The combination of photocatalytic and magnetic properties can be exploited in designing improved air- and water treatment reactors.

  4. Geochemistry of ultra-fine and nano-compounds in coal gasification ashes: A synoptic view

    Energy Technology Data Exchange (ETDEWEB)

    Kronbauer, Marcio A. [Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração, Victor Barreto, 2288 Centro, 92010-000 Canoas, RS (Brazil); Universidade Federal do Rio Grande do Sul, Escola de Engenharia, Departamento de Metalurgia, Centro de Tecnologia, Av. Bento Gonçalves, 9500, Bairro Agronomia, CEP: 91501-970, Porto Alegre, RS (Brazil); Izquierdo, Maria [School of Applied Sciences, Cranfield University, Bedfordshire MK43 0AL (United Kingdom); Dai, Shifeng [State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083 (China); Waanders, Frans B. [School of Chemical and Minerals Engineering, North West University (Potchefstroom campus), Potchefstroom 2531 (South Africa); Wagner, Nicola J. [School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg (South Africa); Mastalerz, Maria [Indiana Geological Survey, Indiana University, Bloomington, IN 47405-2208 (United States); Hower, James C. [University of Kentucky Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511 (United States); Oliveira, Marcos L.S. [Environmental Science and Nanotechnology Department, Catarinense Institute of Environmental Research and Human Development, IPADHC, Capivari de Baixo, Santa Catarina (Brazil); Taffarel, Silvio R.; Bizani, Delmar [Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração, Victor Barreto, 2288 Centro, 92010-000 Canoas, RS (Brazil); and others

    2013-07-01

    The nano-mineralogy, petrology, and chemistry of coal gasification products have not been studied as extensively as the products of the more widely used pulverized-coal combustion. The solid residues from the gasification of a low- to medium-sulfur, inertinite-rich, volatile A bituminous coal, and a high sulfur, vitrinite-rich, volatile C bituminous coal were investigated. Multifaceted chemical characterization by XRD, Raman spectroscopy, petrology, FE-SEM/EDS, and HR-TEM/SEAD/FFT/EDS provided an in-depth understanding of coal gasification ash-forming processes. The petrology of the residues generally reflected the rank and maceral composition of the feed coals, with the higher rank, high-inertinite coal having anisotropic carbons and inertinite in the residue, and the lower rank coal-derived residue containing isotropic carbons. The feed coal chemistry determines the mineralogy of the non-glass, non-carbon portions of the residues, with the proportions of CaCO{sub 3} versus Al{sub 2}O{sub 3} determining the tendency towards the neoformation of anorthite versus mullite, respectively. Electron beam studies showed the presence of a number of potentially hazardous elements in nanoparticles. Some of the neoformed ultra-fine/nano-minerals found in the coal ashes are the same as those commonly associated with oxidation/transformation of sulfides and sulfates. - Highlights: • Coal waste geochemisty can provide increased environmental information in coal-mining areas. • Oxidation is the major process for mineral transformation in coal ashes. • The electron bean methodology has been applied to investigate neoformed minerals.

  5. Pilot Demonstration of Technology for the Production of High Value Materials from the Ultra-Fine (PM2.5) Fraction of Coal Combustion Ash

    Energy Technology Data Exchange (ETDEWEB)

    T. L. Robl; J. G. Groppo; R. Rathbone; B. Marrs; R. Jewell

    2008-07-18

    The overall objective of this research was to determine the feasibility of recovering a very fine fraction of fly ash, that is 5 microns in diameter or less and examining the characteristics of these materials in new or at least less traditional applications. These applications included as a polymer filler or as a 'super' pozzolanic concrete additive. As part of the effort the ash from 6 power plants was investigated and characterized. This work included collection from ESP Hoppers and ponds. The ash was thoroughly characterized chemically and physically. Froth flotation was used to reduce the carbon and testing showed that flotation could effectively reduce carbon to acceptable levels (i.e. 0.5% LOI) for most of the substrates tested. in order to enable eventual use as fillers. Hydraulic classification was used in the separation of the fine ash from the coarse ash. Hydraulic classification requires the ash to be dispersed to be effective and a range of dispersants were tested for adsorption as well as sedimentation rate. A wide range of dosages were required (0.3 to 10 g/kg). In general the ponded ash required less dispersant. A model was developed for hydraulic classification. A pilot-scale hydraulic classifier was also designed and operated for the project. Product yields of up to 21% of feed solids were achieved with recoveries of <5 {micro}m particles as high as 64%. Mean particle sizes (D{sub 50}) of the ultra fine ash (UFA) products varied from 3.7 to 10 {micro}m. A patent was filed on the classifier design. A conceptual design of a Process Demonstration Unit (PDU) with a feed rate of 2 tons of raw ash feed per hour was also completed. Pozzolanic activity was determined for the UFA ashes in mortars. In general the overall strength index was excellent with values of 90% achieved in 3 days and {approx}100% in 7 days. Three types of thermoplastic polymers were evaluated with the UFA as a filler: high density polyethylene, thermoplastic elastomer and

  6. Study on ultra-fine w-EDM with on-machine measurement-assisted

    International Nuclear Information System (INIS)

    Chen Shuntong; Yang Hongye

    2011-01-01

    The purpose of this study was to develop the on-machine measurement techniques so as to precisely fabricate micro intricate part using ultra-fine w-EDM. The measurement-assisted approach which employs an automatic optical inspection (AOI) is incorporated to ultra-fine w-EDM process to on-machine detect the machining error for next re-machining. The AOI acquires the image through a high resolution CCD device from the contour of the workpiece after roughing in order to further process and recognize the image for determining the residual. This facilitates the on-machine error detection and compensation re-machining. The micro workpiece and electrode are not repositioned during machining. A fabrication for a micro probe of 30-μm diameter is rapidly machined and verified successfully. Based on the proposed technique, on-machine measurement with AOI has been realized satisfactorily.

  7. Preparation of ultra-fine powders from polysaccharide-coated solid lipid nanoparticles and nanostructured lipid carriers by innovative nano spray drying technology.

    Science.gov (United States)

    Wang, Taoran; Hu, Qiaobin; Zhou, Mingyong; Xue, Jingyi; Luo, Yangchao

    2016-09-10

    In this study, five polysaccharides were applied as natural polymeric coating materials to prepare solid lipid nanoparticles (SLN) and nanostructure lipid carriers (NLC), and then the obtained lipid colloidal particles were transformed to solid powders by the innovative nano spray drying technology. The feasibility and suitability of this new technology to generate ultra-fine lipid powder particles were evaluated and the formulation was optimized. The spray dried SLN powder exhibited the aggregated and irregular shape and dimension, but small, uniform, well-separated spherical powder particles of was obtained from NLC. The optimal formulation of NLC was prepared by a 20-30% oleic acid content with carrageenan or pectin as coating material. Therefore, nano spray drying technology has a potential application to produce uniform, spherical, and sub-microscale lipid powder particles when the formulation of lipid delivery system is appropriately designed. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Development and manufacture of ultra-fine NbTi filament wires at ALSTHOM

    International Nuclear Information System (INIS)

    Hoang, G.K.; Laumond, Y.; Sabrie, J.L.; Dubots, P.

    1986-01-01

    Ultra-fine NbTi filament wires have been developed and manufactured by ALSTHOM. It is now possible to produce industrial copper -copper-nickel matrix wires with 0.6 mu m NbTi filaments for use in 50 / 60 Hz machines. Smaller filaments with diameters down to 0.08 mu m have been obtained with 254 100 filament wire samples. Studies are now being carried out on copper matrix conductors to reduce the filament diameter. The first results show that it is possible to obtain submicron filaments even in copper matrix wires

  9. Amenability of some Witbank bituminous ultra fine coals to binderless briquetting

    CSIR Research Space (South Africa)

    Mangena, SJ

    2004-10-15

    Full Text Available and briquetting Each of the Witbank ultra fine coals was air-dried and subsequently split into five homogeneous portions of 5 kg, respectively. Four portions from each sample were physically wetted to ca. 5%, 10%, 15% and 20% H2O, automatically mixed for 15 min... and long-distance haulage in uncovered trucks during the rainy season. In terms of compressive strength, the SJM1 coal studied was amenable to conventional binderless briquetting. 3.1.2. SJM2 coal The effect of moisture on the compressive strength...

  10. Elastocaloric effects in ultra-fine grained NiTi microwires processed by cold-drawing

    Directory of Open Access Journals (Sweden)

    Xuexi Zhang

    2018-03-01

    Full Text Available Efficient elastocaloric cooling in shape memory alloys requires a stable superelastic behavior in which high yield strength is needed. Here Ni50.4Ti49.6 microwires with diameter 130 μm and ultra-fine grains ∼30 nm were prepared by multi-step cold-drawing and low-temperature annealing. Enhanced cyclic stability of the elastocaloric effects induced by the superelastic training was demonstrated. The pre-trained microwire showed a stable ΔSe 43 J/(kg K with a broad working temperature range ΔT ∼ 70 K. The superelastic trained microwire, with giant and stable ΔSe over a wide working temperature window, may act as a promising elastocaloric cooling material for minor-sized devices.

  11. Classical relativistic constituent particles and composite-particle scattering

    International Nuclear Information System (INIS)

    King, M.J.

    1984-01-01

    A nonlocal Lagrangian formalism is developed to describe a classical many-particle system. The nonstandard Lagrangian is a function of a single parameter s which is not, in general, associated with the physical clock. The particles are constrained to be constituents of composite systems, which in turn can decompose into asymptotic composite states representing free observable particles. To demonstrate this, explicit models of composite-composite particle scattering are constructed. Space-time conservation laws are not imposed separately on the system, but follow upon requiring the constituents to ''pair up'' into free composites at s = +infinity,-infinity. One model is characterized by the appearance of an ''external'' zero-mass composite particle which participates in the scattering process without affecting the space-time conservation laws of the two-composite system. Initial conditions on the two incoming composite particles and the zero-mass participant determine the scattering angle and the final states of the two outgoing composite particles. Although the formalism is classical, the model displays some features usually associated with quantum field theory, such as particle scattering by means of constituent exchange, creation and annihilation of particles, and restriction of values of angular momentum

  12. Preparation of ultra-fine calcium carbonate by a solvent-free reaction using supersonic airflow and low temperatures

    OpenAIRE

    Cai, Yan-Hua; Ma, Dong-Mei; Peng, Ru-Fang; Chu, Shi-Jin

    2008-01-01

    The treatment of calcium chloride with sodium carbonate under solvent-free conditions with a supersonic airflow and at a low heating temperature leads to the synthesis of ultra-fine calcium carbonate. The reaction not only involves mild conditions, a simple operation, and high yields but also gives a high conversion rate.

  13. On the scattering of composite particles

    International Nuclear Information System (INIS)

    Garsevanishvili, V.R.

    1975-01-01

    The ''light front'' form of the quasipotential approach is applied to the study of interactions of relativistic composite objects. The expression for the scattering amplitude of the composite particle on the elementary one is obtained and analysed

  14. Composite particles and symplectic (Semi-) groups

    International Nuclear Information System (INIS)

    Kramer, P.

    1978-01-01

    Nuclear composits particle dynamics is intimately related to the fermion character of nucleons. This property is implemented via the permutational structure of nuclear states, leading to the concept of exchange and to the quantum number of the orbital partition. We review Weyl operators and representations of linear canonical transformations in Bargmann Hilbert space. In section 4 we use canonical transformations to describe the general n-body dynamics. In section 5 we derive the composite particle dynamics and discuss an algorithm to obtain the interaction of composite particles whose constituents are assumed to be in harmonic oscillator states. As a first example we treat in section 6 composite particles with unexcited internal oscillator states. In section 7 we deal with composite particles of internal oscillator shell configurations. (orig.) [de

  15. Surface functionalized hollow silica particles and composites

    KAUST Repository

    Rodionov, Valentin; Khanh, Vu Bao

    2017-01-01

    Composition comprising hollow spherical silica particles having outside particle walls and inside particle walls, wherein the particles have an average particle size of about 10 nm to about 500 nm and an average wall thickness of about 10 nm to about 50 nm; and wherein the particles are functionalized with at least one organic functional group on the outside particle wall, on the inside particle wall, or on both the outside and inside particle walls, wherein the organic functional group is in a reacted or unreacted form. The organic functional group can be epoxy. The particles can be mixed with polymer precursor or a polymer material such as epoxy to form a prepreg or a nanocomposite. Lightweight but strong materials can be formed. Low loadings of hollow particles can be used.

  16. Surface functionalized hollow silica particles and composites

    KAUST Repository

    Rodionov, Valentin

    2017-05-26

    Composition comprising hollow spherical silica particles having outside particle walls and inside particle walls, wherein the particles have an average particle size of about 10 nm to about 500 nm and an average wall thickness of about 10 nm to about 50 nm; and wherein the particles are functionalized with at least one organic functional group on the outside particle wall, on the inside particle wall, or on both the outside and inside particle walls, wherein the organic functional group is in a reacted or unreacted form. The organic functional group can be epoxy. The particles can be mixed with polymer precursor or a polymer material such as epoxy to form a prepreg or a nanocomposite. Lightweight but strong materials can be formed. Low loadings of hollow particles can be used.

  17. 3D visualization of ultra-fine ICON climate simulation data

    Science.gov (United States)

    Röber, Niklas; Spickermann, Dela; Böttinger, Michael

    2016-04-01

    Advances in high performance computing and model development allow the simulation of finer and more detailed climate experiments. The new ICON model is based on an unstructured triangular grid and can be used for a wide range of applications, ranging from global coupled climate simulations down to very detailed and high resolution regional experiments. It consists of an atmospheric and an oceanic component and scales very well for high numbers of cores. This allows us to conduct very detailed climate experiments with ultra-fine resolutions. ICON is jointly developed in partnership with DKRZ by the Max Planck Institute for Meteorology and the German Weather Service. This presentation discusses our current workflow for analyzing and visualizing this high resolution data. The ICON model has been used for eddy resolving (developed specific plugins for the free available visualization software ParaView and Vapor, which allows us to read and handle that much data. Within ParaView, we can additionally compare prognostic variables with performance data side by side to investigate the performance and scalability of the model. With the simulation running in parallel on several hundred nodes, an equal load balance is imperative. In our presentation we show visualizations of high-resolution ICON oceanographic and HDCP2 atmospheric simulations that were created using ParaView and Vapor. Furthermore we discuss our current efforts to improve our visualization capabilities, thereby exploring the potential of regular in-situ visualization, as well as of in-situ compression / post visualization.

  18. Synthesis of ultra-fine porous tin oxide fibres and its process characterization

    International Nuclear Information System (INIS)

    Wang Yu; Ramos, Idalia; Santiago-Aviles, Jorge J

    2007-01-01

    Porous rutile-structured SnO 2 fibres, with their length of several millimetres, diameter from 100 nm to 40 μm and potentials for sensor applications, were synthesized from a precursor solution of poly(ethylene oxide) (PEO), chloroform (CHCl 3 ) and dimethyldineodecanoate tin (C 22 H 44 O 4 Sn) using electrospinning and metal-organic decomposition techniques. Fourier-transform infrared spectroscopy, thermogravimetric and differential thermal analysis and x-ray diffraction were used to characterize the synthesized fibres so as to reveal the series of physical and chemical changes occurring from the starting chemicals to the final product of ultra-fine SnO 2 fibres: the solvent CHCl 3 evaporates during the electrospinning; the organic groups in PEO and C 22 H 44 O 4 Sn decompose, with Sn-C bond in C 22 H 44 O 4 Sn replaced by Sn-O between 220 and 300 deg. C, and the atomic arrangement transforms into the genesis of a rutile-type lattice between 300 and 380 deg. C; the incipient lattice finally develops into the rutile structure during heat treatment at higher temperatures up to 600 deg. C

  19. Administration of Oxygen Ultra-Fine Bubbles Improves Nerve Dysfunction in a Rat Sciatic Nerve Crush Injury Model

    Directory of Open Access Journals (Sweden)

    Hozo Matsuoka

    2018-05-01

    Full Text Available Ultra-fine bubbles (<200 nm in diameter have several unique properties and have been tested in various medical fields. The purpose of this study was to investigate the effects of oxygen ultra-fine bubbles (OUBs on a sciatic nerve crush injury (SNC model rats. Rats were intraperitoneally injected with 1.5 mL saline, OUBs diluted in saline, or nitrogen ultra-fine bubbles (NUBs diluted in saline three times per week for 4 weeks in four groups: (1 control, (sham operation + saline; (2 SNC, (crush + saline; (3 SNC+OUB, (crush + OUB-saline; (4 SNC+NUB, (crush + NUB-saline. The effects of the OUBs on dorsal root ganglion (DRG neurons and Schwann cells (SCs were examined by serial dilution of OUB medium in vitro. Sciatic functional index, paw withdrawal thresholds, nerve conduction velocity, and myelinated axons were significantly decreased in the SNC group compared to the control group; these parameters were significantly improved in the SNC+OUB group, although NUB treatment did not affect these parameters. In vitro, OUBs significantly promoted neurite outgrowth in DRG neurons by activating AKT signaling and SC proliferation by activating ERK1/2 and JNK/c-JUN signaling. OUBs may improve nerve dysfunction in SNC rats by promoting neurite outgrowth in DRG neurons and SC proliferation.

  20. Development of Ultra-Fine-Grained Structure in AISI 321 Austenitic Stainless Steel

    Science.gov (United States)

    Tiamiyu, A. A.; Szpunar, J. A.; Odeshi, A. G.; Oguocha, I.; Eskandari, M.

    2017-12-01

    Ultra-fine-grained (UFG) structure was developed in AISI 321 austenitic stainless steel (ASS) using cryogenic rolling followed by annealing treatments at 923 K, 973 K, 1023 K, and 1073 K (650 °C, 700 °C, 750 °C, and 800 °C) for different lengths of time. The α'-martensite to γ-austenite reversion behavior and the associated texture development were analyzed in the cryo-rolled specimens after annealing. The activation energy, Q, required for the reversion of α'-martensite to γ-austenite in the steel was estimated to be 80 kJ mol-1. TiC precipitates and unreversed triple junction α'-martensite played major roles in the development of UFG structure through the Zener pinning of grain boundaries. The optimum annealing temperature and time for the development of UFG structure in the cryo-rolled AISI 321 steel are (a) 923 K (650 °C) for approximately 28800 seconds and (b) 1023 K (750 °C) for 600 seconds, with average grain sizes of 0.22 and 0.31 µm, respectively. Annealing at 1023 K (750 °C) is considered a better alternative since the volume fraction of precipitated carbides in specimens annealed at 1023 K (750 °C) are less than those annealed at 923 K (650 °C). More so, the energy consumption during prolonged annealing time to achieve an UFG structure at 923 K (650 °C) is higher due to low phase reversion rate. The hardness of the UFG specimens is 195 pct greater than that of the as-received steel. The higher volume fraction of TiC precipitates in the UFG structure may be an additional source of hardening. Micro and macrotexture analysis indicated {110}〈uvw〉 as the major texture component of the austenite grains in the UFG structure. Its intensity is stronger in the specimen annealed at low temperatures.

  1. Networks of ultra-fine Ag nanocrystals in a Teflon AF (registered) matrix by vapour phase e-beam-assisted deposition

    International Nuclear Information System (INIS)

    Biswas, A; Bayer, I S; Marken, B; Pounds, T D; Norton, M G

    2007-01-01

    We have fabricated nanocomposite thin films comprising silver (Ag) nanoparticles dispersed in a Teflon AF (registered) polymer matrix using electron-beam-assisted physical vapour deposition. Four different Ag nanoparticle volume fillings (20%, 35%, 70% and 75%) were achieved by varying the relative metal-polymer evaporation rates with the formation of highly crystalline Ag nanoparticles regardless of the filling ratio. The present fabrication technique allowed full control over dispersion uniformity of nanoparticles in the polymer network. At 20% and 35% metal volume fillings, the nanocomposite film morphology consists of a uniformly dispersed assembly of equiaxed isolated Ag nanoparticles. At higher metal volume fractions the nanocomposite structures displayed two different and unique Ag nanoparticle arrangements within the polymer matrix. In particular, at 70% metal filling, the formation of irregularly shaped clusters of individually assembled nanocrystals was observed. At a slightly higher volume filling (75%), larger irregularly shaped Ag nanocrystals that appeared to be the result of coalescence and grain growth were observed. Finally, a composite theory developed by Tandon and Weng was used to estimate various elastic properties of the nanocomposite films. At high metal filling, the reinforcing effect of the Ag nanoparticles was reflected as approximately a sixfold increase in the elastic modulus compared to the virgin polymer film. Possible applications of such ultra-fine metal nanoparticles networks are discussed

  2. Ultra-fine CuO Nanoparticles Embedded in Three-dimensional Graphene Network Nano-structure for High-performance Flexible Supercapacitors

    International Nuclear Information System (INIS)

    Li, Yanrong; Wang, Xue; Yang, Qi; Javed, Muhammad Sufyan; Liu, Qipeng; Xu, Weina; Hu, Chenguo; Wei, Dapeng

    2017-01-01

    High conductivity, large specific surface area and excellent performance redox materials are urgently desired for improving electrochemical energy storage. However, with single redox material it is hard to achieve these properties. Herein, we develop ultra-fine CuO nanoparticles embedded in three-dimensional graphene network grown on carbon cloth (CuO/3DGN/CC) to construct a novel electrode material with advantages of high conductivity, large specific area and excellent redox activity for supercapacitor application. The CuO/3DGN/CC with different CuO mass ratios are utilized to fabricate supercapacitors and the optimized mass loading achieves the high areal capacitance of 2787 mF cm"−"2 and specific capacitance of 1539.8 F g"−"1 at current density of 6 mA cm"−"2 with good stability. In addition, a high-flexible solid-state symmetric supercapacitor is also fabricated by using this CuO/3DGN/CC composite. The device shows excellent electrochemical performance even at various bending angles indicating a promising application for wearable electronic devices, and two devices with area 2 × 4 cm"2 in series can light nine light emitting diodes for more than 3 minutes.

  3. Ultra-fine SnO2 nanoparticles doubly embedded in amorphous carbon and reduced graphene oxide (rGO) for superior lithium storage

    International Nuclear Information System (INIS)

    Sher Shah, Md. Selim Arif; Lee, Jooyoung; Park, A. Reum; Choi, Youngjin; Kim, Woo-Jae; Park, Juhyun; Chung, Chan-Hwa; Kim, Jaeyun; Lim, Byungkwon; Yoo, Pil J.

    2017-01-01

    SnO 2 is a well-studied anode material for lithium ion batteries (LIBs). However, it undergoes severe capacity fading because of a large volume change (∼300%) during cycling. Composites of SnO 2 with electro-conductive graphene would deliver improved capacity and rate performance. Nevertheless, achieving the theoretical capacity of SnO 2 is still elusive, mainly because of disintegration of the active material from graphene and severe aggregation of SnO 2 , or Sn nanoparticles produced upon cycling. To surmount these limitations, in this work, nanocomposites containing ultra-fine sized SnO 2 nanoparticles (UFSN) with reduced graphene oxide and amorphous carbon were synthesized in a single step at low temperature and environmentally benign way, in which ascorbic acid was employed as the carbon source and reducing agent. UFSN could decrease the lithium ion diffusion path length. As a result of effective buffering effect afforded by the mesoporous structure against volume change and improved lithium ion diffusivity, the ternary nanocomposite achieves ultra-high capacity of 1245 mAh g −1 after 210 cycles at 100 mA g −1 and excellent cycling stability. Since the proposed approach is facile, straightforward, and highly reproducible, it is anticipated that this system would be a potential alternative to the conventional graphite anode for LIBs.

  4. Influence of high volumes of ultra-fine additions on self-compacting concrete[ACI SP-239

    Energy Technology Data Exchange (ETDEWEB)

    Cioffi, R. [Naples Univ., Naples (Italy). Faculty of Engineering; Colangelo, F. [Naples Univ., Naples (Italy). Dept. of Technologies; Caputo, D.; Liguori, B. [Naples Univ., Naples (Italy). Dept. of Materials and Production Engineering

    2006-07-01

    The addition of fine minerals can reduce water demand and increase the slump characteristics of concrete. This paper examined the influence of high volumes of ultra-fine fly ash, raw fly ash, silica fume and natural zeolites on the properties of self-compacting concrete (SCC). Three samples of SCC were prepared using various mineral additions to determine normal slump and J-ring slump flows of fresh concrete as well as the compressive strength and elastic modulus properties of hardened concrete. Cement and crushed limestone natural aggregates were used. The fly ash, silica fume and natural zeolites were subjected to wet high energy milling. The rotating speed, milling time, water-to-solid ratio, and size of milling media were optimized to obtain powders with varying qualities. Results of the study showed that values for the normal slump flow ranged between 604 and 785 mm, while the differences with the J-ring slump flow were less than 30 mm. The samples were then tested to evaluate the mechanical properties of the hardened concrete after 7 and 28 curing days. The modulus of elasticity and compressive strength showed improvements in the concretes containing the ultra-fine fly ash. No segregation phenomena were observed in the case of the cylindrical column specimens. It was concluded that all the specimens provided environmentally sustainable, high workability concretes which can be successfully prepared with the addition of high volumes of minerals. 17 refs., 5 tabs., 6 figs.

  5. Development of a fine and ultra-fine group cell calculation code SLAROM-UF for fast reactor analyses

    International Nuclear Information System (INIS)

    Hazama, Taira; Chiba, Go; Sugino, Kazuteru

    2006-01-01

    A cell calculation code SLAROM-UF has been developed for fast reactor analyses to produce effective cross sections with high accuracy in practical computing time, taking full advantage of fine and ultra-fine group calculation schemes. The fine group calculation covers the whole energy range in a maximum of 900-group structure. The structure is finer above 52.5 keV with a minimum lethargy width of 0.008. The ultra-fine group calculation solves the slowing down equation below 52.5 keV to treat resonance structures directly and precisely including resonance interference effects. Effective cross sections obtained in the two calculations are combined to produce effective cross sections over the entire energy range. Calculation accuracy and improvements from conventional 70-group cell calculation results were investigated through comparisons with reference values obtained with continuous energy Monte Carlo calculations. It was confirmed that SLAROM-UF reduces the difference in k-infinity from 0.15 to 0.01% for a JOYO MK-I fuel subassembly lattice cell calculation, and from - 0.21% to less than a statistical uncertainty of the reference calculation of 0.03% for a ZPPR-10A core criticality calculation. (author)

  6. Baseline composition of solar energetic particles

    International Nuclear Information System (INIS)

    Meyer, J.

    1985-01-01

    We analyze all existing spacecraft observations of the highly variable heavy element composition of solar energetic particles (SEP) during non- 3 He-rich events. All data show the imprint of an ever-present basic composition pattern (dubbed ''mass-unbiased baseline'' SEP composition) that differs from the photospheric composition by a simple bias related to first ionization potential (FIP). In each particular observation, this mass-unbiased baseline composition is being distorted by an additional bias, which is always a monotonic function of mass (or Z). This latter bias varies in amplitude and even sign from observation to observation. To first order, it seems related to differences in the A/Z* ratio between elements (Z* = mean effective charge)

  7. Negative permeability from random particle composites

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Shahid, E-mail: shussain2@qinetiq.com

    2017-04-15

    Artificial media, such as those composed of periodically-spaced wires for negative permittivity and split ring resonators for negative permeability have been extensively investigated for negative refractive index (NRI) applications (Smith et al., 2004; Pendry et al., 1999) [1,2]. This paper presents an alternative method for producing negative permeability: granular (or particulate) composites incorporating magnetic fillers. Artificial media, such as split-ring resonators, are designed to produce a magnetic resonance feature, which results in negative permeability over a narrow frequency range about the resonance frequency. The position of the feature is dependent upon the size of the inclusion. The material in this case is anisotropic, such that the feature is only observable when the materials are orientated in a specific direction relative to the applied field. A similar resonance can be generated in magnetic granular (particulate) materials: ferromagnetic resonance from the natural spin resonance of particles. Although the theoretical resonance profiles in granular composites shows the permeability dipping to negative values, this is rarely observed experimentally due to resonance damping effects. Results are presented for iron in spherical form and in flake form, dispersed in insulating host matrices. The two particle shapes show different permeability performance, with the magnetic flakes producing a negative contribution. This is attributed to the stronger coupling with the magnetic field resulting from the high aspect ratio of the flakes. The accompanying ferromagnetic resonance is strong enough to overcome the effects of damping and produce negative permeability. The size of random particle composites is not dictated by the wavelength of the applied field, so the materials are potentially much thinner than other, more traditional artificial composites at microwave frequencies. - Highlights: • Negative permeability from random particle composites is

  8. Relativistic Photon Induced Processes of Composite Particles

    International Nuclear Information System (INIS)

    Ribeiro-Silva, C.I; Curado, E. M. F.; Rego-Monteiro, M. A.

    2007-01-01

    We consider a complex quantum field theory based on a generalized Heisenberg[1] algebra, which describes at the space-time a spin less composite particle. We compute the perturbative series and the cross section of the scattering process 2 γ→φ - , φ + up to second order in the coupling constant and we find a further contribution due to the structure of the composite pion which is described here phenomenologically by the generalized algebra. We compare the results of this study with available experimental data. (Author)

  9. Performance assessment of river sand versus ceramic grinding media on the Fimiston Ultra-fine Grinding application

    International Nuclear Information System (INIS)

    Blake, Guillaume; Clermont, Benoit; Gianatti, Christopher

    2012-01-01

    Ultra-fine grinding increases the amenability of the refractory concentrate to direct cyanide leaching. Low cost media such as silica river sand gives very fine product grind sizes, however the sand media is quite angular and is often supplied with a broad size distribution. It is generally accepted that the use of a ceramic grinding media will result in a finer product size or allow an increase in the mill throughput. The capacity of a mill is known to increase with decreasing grinding media diameter, the mill wear can be decreased and efficiency of grinding increased. Magotteaux Keramax-MTX Ceramic grinding media was purchased for a plant trial, to assess its' performance.

  10. Optimation of particle size and composition in fabrication of granite particle composite floortiles

    International Nuclear Information System (INIS)

    Budiarto; Parikin; Mohammad-Dani

    2004-01-01

    Granite particle composite floortile materials, that have epoxy matrix, may be utilized as water resist and ductile materials. The utility of composite materials for industrial households is, however, very important and very promising indeed. Starting from powdering the granite refuges into particles of 100, 140 and 200 in mesh, the powder was mixed by epoxy containing versamid hardener and stirred till highly homogenized. Specimens were mould in glass frame and dried in ambient temperature for 48 hours. The specimens were prepared into certain dimensions, conformed to testing needs: hardness, density, compression and bending. The hardness and density data show clearly the value change of particulate composition (34, 40, 50 and 70) and matrix (66, 60, 50 and 30) as well. From bending and compression tests, the optimum grain size (μm) and composition (%) of granite particles reveal between the number of 120-123 and 55-61 respectively. The accurate point of the values can be determined by using differential method. As conclusion, for the better mechanical properties of granite particles composite floortiles, the grains should be 121 in μm and 57% composition of granite particles

  11. Solid particle erosion of polymers and composites

    Science.gov (United States)

    Friedrich, K.; Almajid, A. A.

    2014-05-01

    After a general introduction to the subject of solid particle erosion of polymers and composites, the presentation focusses more specifically on the behavior of unidirectional carbon fiber (CF) reinforced polyetheretherketone (PEEK) composites under such loadings, using different impact conditions and erodents. The data were analyzed on the basis of a newly defined specific erosive wear rate, allowing a better comparison of erosion data achieved under various testing conditions. Characteristic wear mechanisms of the CF/PEEK composites consisted of fiber fracture, matrix cutting and plastic matrix deformation, the relative contribution of which depended on the impingement angles and the CF orientation. The highest wear rates were measured for impingement angles between 45 and 60°. Using abrasion resistant neat polymer films (in this case PEEK or thermoplastic polyurethane (TPU) ones) on the surface of a harder substrate (e.g. a CF/PEEK composite plate) resulted in much lower specific erosive wear rates. The use of such polymeric films can be considered as a possible method to protect composite surfaces from damage caused by minor impacts and erosion. In fact, they are nowadays already successfully applied as protections for wind energy rotor blades.

  12. Elastic Property Simulation of Nano-particle Reinforced Composites

    Directory of Open Access Journals (Sweden)

    He Jiawei

    2016-01-01

    Full Text Available A series of numerical micro-mechanical models for two kinds of particle (cylindrical and discal particle reinforced composites are developed to investigate the effect of microstructural parameters on the elastic properties of composites. The effects of both the degree of particle clustering and particle’s shape on the elastic mechanical properties of composites are investigated. In addition, single particle unit cell approximation is good enough for the analysis of the effect of averaged parameters when only linear elastic response is considered without considering the particle clustering in particle-reinforced composites.

  13. Elemental composition of solar energetic particles

    International Nuclear Information System (INIS)

    Cook, W.R. III.

    1981-01-01

    The Low Energy Telescopes on the Voyager spacecraft are used to measure the elemental composition (2 less than or equal to Z less than or equal to 28) and energy spectra (5 to 15 MeV/nucleon) of solar energetic particles (SEPs) in seven large flare events. Four flare events are selected which have SEP abundance ratios approximately independent of energy/nucleon. The abundances for these events are compared from flare to flare and are compared to solar abundances from other sources - spectroscopy of the photosphere and corona, and solar wind measurements. The selected SEP composition results may be described by an average composition plus a systematic flare-to-flare deviation about the average. For each of the four events, the ratios of the SEP abundances to the four-flare average SEP abundances are approximately monotonic functions of nuclear charge Z in the range 6 less than or equal to Z less than or equal to 28. An exception to this Z-dependent trend occurs for He, whose abundance relative to Si is nearly the same in all four events. The four-flare average SEP composition is significantly different from the solar composition determined by photospheric spectroscopy: the elements C, N and O are depleted in SEPs by a factor of about five relative to the elements Na, Mg, Al, Si, Ca, Cr, Fe, and Ni. For some elemental abundance ratios (e.g. Mg/O), the difference between SEP and photospheric results is persistent from flare to flare and is apparently not due to a systematic difference in SEP energy/nucleon spectra between the elements, nor to propagation effects which would result in a time-dependent abundance ratio in individual flare events

  14. Ultra-fine Pt nanoparticles on graphene aerogel as a porous electrode with high stability for microfluidic methanol fuel cell

    Science.gov (United States)

    Kwok, Y. H.; Tsang, Alpha C. H.; Wang, Yifei; Leung, Dennis Y. C.

    2017-05-01

    Platinum-decorated graphene aerogel as a porous electrode for flow-through direct methanol microfluidic fuel cell is introduced. Ultra-fine platinum nanoparticles with size ranged from diameter 1.5 nm-3 nm are evenly anchored on the graphene nanosheets without agglomeration. The electrode is characterized by scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy. Catalytic activity is confirmed by cyclic voltammetry. The electroactive surface area and catalytic activity of platinum on graphene oxide (Pt/GO) are much larger than commercial platinum on carbon black (Pt/C). A counterflow microfluidic fuel cell is designed for contrasting the cell performance between flow-over type and flow-through type electrodes using Pt/C on carbon paper and Pt/GO, respectively. The Pt/GO electrode shows 358% increment in specific power compared with Pt/C anode. Apart from catalytic activity, the effect of porous electrode conductivity to cell performance is also studied. The conductivity of the porous electrode should be further enhanced to achieve higher cell performance.

  15. Fatigue properties of ultra-fine grain Cu–Cr alloy processed by equal-channel angular pressing

    International Nuclear Information System (INIS)

    Wang, Q.J.; Du, Z.Z.; Luo, L.; Wang, W.

    2012-01-01

    Highlights: ► The UFG Cu–Cr alloys processed by ECAP possess high strength and sufficient ductility. ► The ECAPed sample with UFG under strain controlled fatigue exhibited cyclic softening and lower fatigue limit compared to the unECAPed one. ► That cyclic softening of UFG Cu–Cr alloy is associated with some dislocation annihilation and the substructure recovery. ► Shear bands, microcracks and final fracture of UFG Cu–Cr fatigue samples occur predominantly along the shear plane corresponding to the last ECAP. - Abstract: A precipitation-hardening copper based alloy (Cu–0.6 wt.% Cr) was selected and the ultra-fine grain (UFG) microstructure was obtained by equal channel angular pressing (ECAP). The alloys tensile behaviors and fatigue properties were investigated experimentally, the results indicated that the Cu–Cr alloy processed by ECAP possessed high strength and sufficient ductility and the 12-passes ECAPed sample with UFG under strain controlled fatigue exhibited cyclic softening and lower fatigue limit compared to the unECAPed one. Moreover, the shear bands on the surface of cycled samples were also studied by scanning electron microscopy, the results showed that the oriented distribution of defects along the shear plane in the last ECAP processing was one of the major mechanisms of SBs formation.

  16. Optimization of operating variables for production of ultra-fine talc in a stirred mill. Specific surface area investigations

    Directory of Open Access Journals (Sweden)

    Toraman Oner Yusuf

    2016-01-01

    Full Text Available Due to its properties such as chemical inertness, softness, whiteness, high thermal conductivity, low electrical conductivity and adsorption properties talc has wide industrial applications in paper, cosmetics, paints, polymer, ceramics, refractory materials and pharmaceutical. The demand for ultra-fine talc is emerging which drives the mineral industry to produce value added products. In this study, it was investigated how certain grinding parameters such as mill speed, ball filling ratio, powder filling ratio and grinding time of dry stirred mill affect grindability of talc ore (d97=127 μm. A series of laboratory experiments using a 24 full factorial design was conducted to determine the optimal operational parameters of a stirred mill in order to minimize the specific surface area. The main and interaction effects on the volume specific surface area (SV, m2.cm−3 of the ground product were evaluated using the Yates analysis. Under the optimal conditions at the stirrer speed of 600 rpm, grinding time of 20 min, sample mass of 5% and ball ratio of 70%, the resulting talc powder had larger volume specific surface area (i.e., 3.48 m2.cm−3 than the starting material (i.e., 1.84 m2.cm−3.

  17. Current status of ultra-fine grained W-TiC development for use in irradiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Kurishita, H [International Research Center for Nuclear Materials Science, Institute for Materials Research (IMR), Tohoku University, Oarai-machi, Ibaraki-ken 311-1313 (Japan); Kobayashi, S [Department of Materials Science and Biotechnology, Ehime University, Matsuyama-shi 790-8577 (Japan); Nakai, K [Department of Materials Science and Biotechnology, Ehime University, Matsuyama-shi 790-8577 (Japan); Arakawa, H [International Research Center for Nuclear Materials Science, Institute for Materials Research (IMR), Tohoku University, Oarai-machi, Ibaraki-ken 311-1313 (Japan); Matsuo, S [International Research Center for Nuclear Materials Science, Institute for Materials Research (IMR), Tohoku University, Oarai-machi, Ibaraki-ken 311-1313 (Japan); Takida, T [ALMT. Corp., 2 Iwase-koshi-machi, Toyama 931-8371 (Japan); Takebe, K [ALMT. Corp., 2 Iwase-koshi-machi, Toyama 931-8371 (Japan); Kawai, M [Institute of Material Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba-shi, Ibaraki-ken 305-0801 (Japan)

    2007-03-15

    Ultra-fine grained (UFG) W-TiC with a high purity matrix of low dislocation density is expected to exhibit improve resistance to irradiation with neutrons and helium ions and the room temperature mechanical properties. Aiming at such UFG W-TiC with the desired microstructure, powders of W with 0.25-0.8 wt% TiC additions were subjected to mechanical alloying (MA) and hot isostatic pressing (HIP), where purified H{sub 2} and Ar were used as the MA atmosphere. Microstructural observations and room- and high-temperature mechanical tests were performed for UFG W-TiC before and after neutron irradiation to a fluence of 2x10{sup 24} n m{sup -2} at 873 K. It is shown that the MA atmosphere significantly affects grain refinement, room-temperature strength and high-temperature tensile plasticity of UFG W-TiC. W-0.5TiC with H{sub 2} in MA (W-0.5TiC-H{sub 2}) shows a larger strain rate sensitivity of flow stress, m, of 0.5{approx}0.6 at temperatures from 1673 to 1973 K, which is a feature of superplastic materials. Whereas W-0.5TiC-Ar shows a smaller m value of approximately 0.2. No radiation hardening is recognized in UFG W-0.5TiC-H{sub 2} and W-0.5TiC-Ar.

  18. Current status of ultra-fine grained W-TiC development for use in irradiation environments

    International Nuclear Information System (INIS)

    Kurishita, H; Kobayashi, S; Nakai, K; Arakawa, H; Matsuo, S; Takida, T; Takebe, K; Kawai, M

    2007-01-01

    Ultra-fine grained (UFG) W-TiC with a high purity matrix of low dislocation density is expected to exhibit improve resistance to irradiation with neutrons and helium ions and the room temperature mechanical properties. Aiming at such UFG W-TiC with the desired microstructure, powders of W with 0.25-0.8 wt% TiC additions were subjected to mechanical alloying (MA) and hot isostatic pressing (HIP), where purified H 2 and Ar were used as the MA atmosphere. Microstructural observations and room- and high-temperature mechanical tests were performed for UFG W-TiC before and after neutron irradiation to a fluence of 2x10 24 n m -2 at 873 K. It is shown that the MA atmosphere significantly affects grain refinement, room-temperature strength and high-temperature tensile plasticity of UFG W-TiC. W-0.5TiC with H 2 in MA (W-0.5TiC-H 2 ) shows a larger strain rate sensitivity of flow stress, m, of 0.5∼0.6 at temperatures from 1673 to 1973 K, which is a feature of superplastic materials. Whereas W-0.5TiC-Ar shows a smaller m value of approximately 0.2. No radiation hardening is recognized in UFG W-0.5TiC-H 2 and W-0.5TiC-Ar

  19. High temperature mechanical properties on multi stage blazed fin body with ultra fine off-set fin for compact heat exchanger

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro; Muto, Yasushi

    2003-01-01

    Three stage blazed plate fin body with ultra fine off-set fin (thickness x height x pitch x off-set pitch = 0.22 mm x 1.2 mm x 1.6 mm x 5 mm) for 600 MWt High Temperature Gas Cooled Reactor Gas Turbin (HTGR-GT) system was fabricated and tested on its high temperature mechanical properties and the following results were derived. (1) tested body shows almost the same strength an fatigue behavior of SUS 304 as main structural material at elevated temperatures up to 873 K, (2) static and fatigue fracture mainly occurred at ultra fine off-set and (3) high temperature strength and fatigue life are improved by blazing technique to double side walls of the fin by Ni blaze material. (author)

  20. Core-shell particle composition by liquid phase infrared spectroscopy

    International Nuclear Information System (INIS)

    Ribeiro, Luiz F.B.; Machado, Ricardo A.F.; Goncalves, Odinei H.; Bona, Evandro

    2011-01-01

    Polymeric particles with core-shell morphology can offer advantages over conventional particles improving properties like mechanical and chemical resistance. However, particle composition must be known due to its influence on the final properties. In this work liquid phase infrared spectroscopy was used to determine the overall composition of core-shell particles composed by polystyrene (core) and poly(methyl methacrylate) (shell). Results were in agreement with those obtained with H 1 Nuclear Magnetic Resonance data (Goncalves et al, 2008). (author)

  1. Electrochemical behavior of copper metal core/oxide shell ultra-fine particles on mercury electrodes in aqueous dispersions

    Czech Academy of Sciences Publication Activity Database

    Korshunov, A.; Heyrovský, Michael

    2009-01-01

    Roč. 629, 1-2 (2009), s. 23-29 ISSN 0022-0728 R&D Projects: GA ČR GA203/07/1195; GA AV ČR IAA400400806 Institutional research plan: CEZ:AV0Z40400503 Keywords : ultrafine copper powders * surface oxide layers * aqueous dispersions * voltammetry * Hg electrodes Subject RIV: CG - Electrochemistry Impact factor: 2.580, year: 2007

  2. Al based ultra-fine eutectic with high room temperature plasticity and elevated temperature strength

    Energy Technology Data Exchange (ETDEWEB)

    Tiwary, C.S., E-mail: cst311@gmail.com [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, Karnataka (India); Kashyap, S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, Karnataka (India); Kim, D.H. [Center for Non-Crystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Chattopadhyay, K. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, Karnataka (India)

    2015-07-15

    Developments of aluminum alloys that can retain strength at and above 250 °C present a significant challenge. In this paper we report an ultrafine scale Al–Fe–Ni eutectic alloy with less than 3.5 at% transition metals that exhibits room temperature ultimate tensile strength of ~400 MPa with a tensile ductility of 6–8%. The yield stress under compression at 300 °C was found to be 150 MPa. We attribute it to the refinement of the microstructure that is achieved by suction casting in copper mold. The characterization using scanning and transmission electron microscopy (SEM and TEM) reveals an unique composite structure that contains the Al–Al{sub 3}Ni rod eutectic with spacing of ~90 nm enveloped by a lamellar eutectic of Al–Al{sub 9}FeNi (~140 nm). Observation of subsurface deformation under Vickers indentation using bonded interface technique reveals the presence of extensive shear banding during deformation that is responsible for the origin of ductility. The dislocation configuration in Al–Al{sub 3}Ni eutectic colony indicates accommodation of plasticity in α-Al with dislocation accumulation at the α-Al/Al{sub 3}Ni interface boundaries. In contrast the dislocation activities in the intermetallic lamellae are limited and contain set of planner dislocations across the plates. We present a detailed analysis of the fracture surface to rationalize the origin of the high strength and ductility in this class of potentially promising cast alloy.

  3. Fatigue and creep–fatigue deformation of an ultra-fine precipitate strengthened advanced austenitic alloy

    International Nuclear Information System (INIS)

    Carroll, M.C.; Carroll, L.J.

    2012-01-01

    An advanced austenitic alloy, HT-UPS (high-temperature ultrafine-precipitation-strengthened), has been identified as an ideal candidate material for the structural components of fast reactors and energy-conversion systems. HT-UPS alloys demonstrate improved creep resistance relative to 316 stainless steel (SS) through additions of Ti and Nb, which precipitate to form a widespread dispersion of stable nanoscale metallic carbide (MC) particles in the austenitic matrix. To investigate the behavior in more representative conditions than are offered by uniaxial creep tests, the low-cycle continuous fatigue and combined creep–fatigue response of an HT-UPS alloy have been investigated at 650 °C and 1.0% total strain, with an R-ratio of −1 and hold times at peak tensile strain of up to 150 min. The cyclic deformation response of HT-UPS is directly compared to that of standard 316 SS. The measured values for total cycles to failure between the two alloys are similar, despite differences in peak stress profiles and in qualitative observations of the deformed microstructures. Crack propagation is primarily transgranular in both fatigue and creep–fatigue of each alloy at the investigated conditions. Internal grain boundary damage in the form of fine cracks resulting from the tensile hold is present following the application of hold times of 60 min and longer, and considerably more internal cracks are quantifiable in 316 SS than in HT-UPS. The dislocation substructures observed in the deformed material differ substantially; an equiaxed cellular structure is observed in the microstructure of 316 SS, whereas HT-UPS exhibits widespread and relatively homogenous tangles of dislocations pinned by the nanoscale MC precipitates. The significant effect of the fine distribution of precipitates on observed fatigue and creep–fatigue response is described in three distinct behavioral regions as the microstructure evolves with continued cycling.

  4. Fatigue and creep-fatigue deformation of an ultra-fine precipitate strengthened advanced austenitic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, M.C., E-mail: Mark.Carroll@INL.gov [Idaho National Laboratory, 1955 Fremont, PO Box 1625, Idaho Falls, ID 83415-2218 (United States); Carroll, L.J. [Idaho National Laboratory, 1955 Fremont, PO Box 1625, Idaho Falls, ID 83415-2218 (United States)

    2012-10-30

    An advanced austenitic alloy, HT-UPS (high-temperature ultrafine-precipitation-strengthened), has been identified as an ideal candidate material for the structural components of fast reactors and energy-conversion systems. HT-UPS alloys demonstrate improved creep resistance relative to 316 stainless steel (SS) through additions of Ti and Nb, which precipitate to form a widespread dispersion of stable nanoscale metallic carbide (MC) particles in the austenitic matrix. To investigate the behavior in more representative conditions than are offered by uniaxial creep tests, the low-cycle continuous fatigue and combined creep-fatigue response of an HT-UPS alloy have been investigated at 650 Degree-Sign C and 1.0% total strain, with an R-ratio of -1 and hold times at peak tensile strain of up to 150 min. The cyclic deformation response of HT-UPS is directly compared to that of standard 316 SS. The measured values for total cycles to failure between the two alloys are similar, despite differences in peak stress profiles and in qualitative observations of the deformed microstructures. Crack propagation is primarily transgranular in both fatigue and creep-fatigue of each alloy at the investigated conditions. Internal grain boundary damage in the form of fine cracks resulting from the tensile hold is present following the application of hold times of 60 min and longer, and considerably more internal cracks are quantifiable in 316 SS than in HT-UPS. The dislocation substructures observed in the deformed material differ substantially; an equiaxed cellular structure is observed in the microstructure of 316 SS, whereas HT-UPS exhibits widespread and relatively homogenous tangles of dislocations pinned by the nanoscale MC precipitates. The significant effect of the fine distribution of precipitates on observed fatigue and creep-fatigue response is described in three distinct behavioral regions as the microstructure evolves with continued cycling.

  5. The role of the bimodal distribution of ultra-fine silicon phase and nano-scale V-phase (AlSi2Sc2) on spark plasma sintered hypereutectic Al–Si–Sc alloys

    International Nuclear Information System (INIS)

    Raghukiran, Nadimpalli; Kumar, Ravi

    2016-01-01

    Hypereutectic Al–Si and Al–Si–Sc alloys were spark plasma sintered from corresponding gas-atomized powders. The microstructures of the Al–Si and Al–Si–Sc alloys possessed remarkably refined silicon particles in the size range of 0.38–3.5 µm and 0.35–1.16 µm respectively in contrast to the silicon particles of size greater than 100 µm typically found in conventionally cast alloys. All the sintered alloys exhibited significant ductility of as high as 85% compressive strain without failure even with the presence of relatively higher weight fraction of the brittle silicon phase. Moreover, the Al–Si–Sc alloys have shown appreciable improvement in the compressive strength over their binary counterparts due to the presence of intermetallic compound AlSi 2 Sc 2 of size 10–20 nm distributed uniformly in the matrix of those alloys. The dry sliding pin-on-disc wear tests showed improvement in the wear performance of the sintered alloys with increase in silicon content in the alloys. Further, the Al–Si–Sc ternary alloys with relatively lesser silicon content exhibited appreciable improvement in the wear resistance over their binary counterparts. The Al–Si–Sc alloys with bimodal distribution of the strengthening phases consisting of ultra-fine (sub-micron size) silicon particles and the nano-scale AlSi 2 Sc 2 improved the strength and wear properties of the alloys while retaining significant amount of ductility.

  6. Inelastic two composite particle systems scattering at high energy

    International Nuclear Information System (INIS)

    Zhang Yushun.

    1986-11-01

    In this paper, by using the collective coordinate of Bohr and phenomenological deformed optical potentials, the scattering amplitudes of two composite particle systems can be obtained and the collective excitation for two composite particle systems in the scattering process is discussed. (author). 10 refs, 6 figs, 2 tabs

  7. Flow Kinematics and Particle Orientations during Composite Processing

    International Nuclear Information System (INIS)

    Chiba, Kunji

    2007-01-01

    The mechanism of orientation of fibers or thin micro-particles in various flows involving the processing of composite materials has not been fully understood although it is much significant to obtain the knowledge of the processing operations of particle reinforced composites as well as to improve the properties of the advanced composites. The objective of this paper is to introduce and well understand the evolution of the particle orientation in a suspension flow and flow kinematics induced by suspended particles by means of our two research work

  8. [Ultra-Fine Pressed Powder Pellet Sample Preparation XRF Determination of Multi-Elements and Carbon Dioxide in Carbonate].

    Science.gov (United States)

    Li, Xiao-li; An, Shu-qing; Xu, Tie-min; Liu, Yi-bo; Zhang, Li-juan; Zeng, Jiang-ping; Wang, Na

    2015-06-01

    The main analysis error of pressed powder pellet of carbonate comes from particle-size effect and mineral effect. So in the article in order to eliminate the particle-size effect, the ultrafine pressed powder pellet sample preparation is used to the determination of multi-elements and carbon-dioxide in carbonate. To prepare the ultrafine powder the FRITSCH planetary Micro Mill machine and tungsten carbide media is utilized. To conquer the conglomeration during the process of grinding, the wet grinding is preferred. The surface morphology of the pellet is more smooth and neat, the Compton scatter effect is reduced with the decrease in particle size. The intensity of the spectral line is varied with the change of the particle size, generally the intensity of the spectral line is increased with the decrease in the particle size. But when the particle size of more than one component of the material is decreased, the intensity of the spectral line may increase for S, Si, Mg, or decrease for Ca, Al, Ti, K, which depend on the respective mass absorption coefficient . The change of the composition of the phase with milling is also researched. The incident depth of respective element is given from theoretical calculation. When the sample is grounded to the particle size of less than the penetration depth of all the analyte, the effect of the particle size on the intensity of the spectral line is much reduced. In the experiment, when grounded the sample to less than 8 μm(d95), the particle-size effect is much eliminated, with the correction method of theoretical α coefficient and the empirical coefficient, 14 major, minor and trace element in the carbonate can be determined accurately. And the precision of the method is much improved with RSD element, the fluorescence yield is low and the interference is serious. With the manual multi-layer crystal PX4, coarse collimator, empirical correction, X-ray spectrometer can be used to determine the carbon dioxide in the carbonate

  9. Investigations on the magnetization behavior of magnetic composite particles

    Energy Technology Data Exchange (ETDEWEB)

    Eichholz, Christian [Process Research and Chemical Engineering, BASF SE, Ludwigshafen (Germany); Knoll, Johannes, E-mail: johannes.knoll@kit.edu [Institute of Mechanical Engineering and Mechanics, Karlsruhe Institute of Technology, Karlsruhe (Germany); Lerche, Dietmar [L.U.M. GmbH, Berlin (Germany); Nirschl, Hermann [Institute of Mechanical Engineering and Mechanics, Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2014-11-15

    In life sciences the application of surface functionalized magnetic composite particles is establishing in diagnostics and in downstream processing of modern biotechnology. These magnetic composite particles consist of non-magnetic material, e.g. polystyrene, which serves as a matrix for the second magnetic component, usually colloidal magnetite. Because of the multitude of magnetic cores these magnetic beads show a complex magnetization behavior which cannot be described with the available approaches for homogeneous magnetic material. Therefore, in this work a new model for the magnetization behavior of magnetic composite particles is developed. By introducing an effective magnetization and considering an overall demagnetization factor the deviation of the demagnetization of homogeneously magnetized particles is taken into account. Calculated and experimental results show a good agreement which allows for the verification of the adapted model of particle magnetization. Besides, a newly developed magnetic analyzing centrifuge is used for the characterization of magnetic composite particle systems. The experimental results, also used for the model verification, give both, information about the magnetic properties and the interaction behavior of particle systems. By adding further components to the particle solution, such as salts or proteins, industrial relevant systems can be reconstructed. The analyzing tool can be used to adapt industrial processes without time-consuming preliminary tests with large samples in the process equipments. - Highlights: • New model for magnetizability calculation of magnetic composite particles. • New method for particle bulk characterization relating to their magnetizability. • Model verification due to experimental data.

  10. Investigations on the magnetization behavior of magnetic composite particles

    International Nuclear Information System (INIS)

    Eichholz, Christian; Knoll, Johannes; Lerche, Dietmar; Nirschl, Hermann

    2014-01-01

    In life sciences the application of surface functionalized magnetic composite particles is establishing in diagnostics and in downstream processing of modern biotechnology. These magnetic composite particles consist of non-magnetic material, e.g. polystyrene, which serves as a matrix for the second magnetic component, usually colloidal magnetite. Because of the multitude of magnetic cores these magnetic beads show a complex magnetization behavior which cannot be described with the available approaches for homogeneous magnetic material. Therefore, in this work a new model for the magnetization behavior of magnetic composite particles is developed. By introducing an effective magnetization and considering an overall demagnetization factor the deviation of the demagnetization of homogeneously magnetized particles is taken into account. Calculated and experimental results show a good agreement which allows for the verification of the adapted model of particle magnetization. Besides, a newly developed magnetic analyzing centrifuge is used for the characterization of magnetic composite particle systems. The experimental results, also used for the model verification, give both, information about the magnetic properties and the interaction behavior of particle systems. By adding further components to the particle solution, such as salts or proteins, industrial relevant systems can be reconstructed. The analyzing tool can be used to adapt industrial processes without time-consuming preliminary tests with large samples in the process equipments. - Highlights: • New model for magnetizability calculation of magnetic composite particles. • New method for particle bulk characterization relating to their magnetizability. • Model verification due to experimental data

  11. Particle compositions with a pre-selected cell internalization mode

    Science.gov (United States)

    Decuzzi, Paolo (Inventor); Ferrari, Mauro (Inventor)

    2012-01-01

    A method of formulating a particle composition having a pre-selected cell internalization mode involves selecting a target cell having surface receptors and obtaining particles that have i) surface moieties, that have an affinity for or are capable of binding to the surface receptors of the cell and ii) a preselected shape, where a surface distribution of the surface moieties on the particles and the shape of the particles are effective for the pre-selected cell internalization mode.

  12. Cancer-treating composition containing inductively-heatable particles

    International Nuclear Information System (INIS)

    Gordon, R.T.

    1978-01-01

    A cancer-treating composition including minute particles suspended in an aqueous solution in dosage form is described. This makes it possible to introduce into the interior of the cells of living tissue minute particles, with magnetic properties, which are inductively heated when subjected to a high frequency alternating electromagnetic field. Incorporating specific radioisotopes or tumor-specific antibodies bound to the particles increases selectivity and affinity of cancer cells for the particles. The particles may be used to deliver a chemotherapeutic agent primarily to the interior of the cancer cells by encapsulating the chemotherapeutic agent within the particles for release when the high frequency alternating electromagnetic field is applied. (author)

  13. Dynamics of the Wigner crystal of composite particles

    Science.gov (United States)

    Shi, Junren; Ji, Wencheng

    2018-03-01

    Conventional wisdom has long held that a composite particle behaves just like an ordinary Newtonian particle. In this paper, we derive the effective dynamics of a type-I Wigner crystal of composite particles directly from its microscopic wave function. It indicates that the composite particles are subjected to a Berry curvature in the momentum space as well as an emergent dissipationless viscosity. While the dissipationless viscosity is the Chern-Simons field counterpart for the Wigner crystal, the Berry curvature is a feature not presented in the conventional composite fermion theory. Hence, contrary to general belief, composite particles follow the more general Sundaram-Niu dynamics instead of the ordinary Newtonian one. We show that the presence of the Berry curvature is an inevitable feature for a dynamics conforming to the dipole picture of composite particles and Kohn's theorem. Based on the dynamics, we determine the dispersions of magnetophonon excitations numerically. We find an emergent magnetoroton mode which signifies the composite-particle nature of the Wigner crystal. It occurs at frequencies much lower than the magnetic cyclotron frequency and has a vanishing oscillator strength in the long-wavelength limit.

  14. Composite of ceramic-coated magnetic alloy particles

    Science.gov (United States)

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    2000-01-01

    A composite structure and method for manufacturing same, the composite structure being comprised of metal particles and an inorganic bonding media. The method comprises the steps of coating particles of a metal powder with a thin layer of an inorganic bonding media selected from the group of powders consisting of a ceramic, glass, and glass-ceramic. The particles are assembled in a cavity and heat, with or without the addition of pressure, is thereafter applied to the particles until the layer of inorganic bonding media forms a strong bond with the particles and with the layer of inorganic bonding media on adjacent particles. The resulting composite structure is strong and remains cohesive at high temperatures.

  15. In situ TEM study of the effect of M/A films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel

    International Nuclear Information System (INIS)

    Zhong Yong; Xiao Furen; Zhang Jingwu; Shan Yiyin; Wang Wei; Yang Ke

    2006-01-01

    Microstructural refinement of structural materials generally improves their tensile properties but deteriorates their fatigue properties. However, pipeline steels with ultra-fine acicular ferrite (UFAF) possess not only high strength and toughness, but also a low fatigue-crack-growth rate (FCGR) and long fatigue-propagation life. In this paper, the micro-fracture mechanisms of an UFAF pipeline steel are investigated by in situ tensile testing in a transmission electron microscope. The results indicate that a grain-boundary-film structure composed of martensite/austenite could significantly influence the crack propagating behavior in the UFAF steel, consequently lowering the FCGR by enhancing roughness-induced crack closure during cyclic loading

  16. The composition of corotating energetic particle streams

    International Nuclear Information System (INIS)

    McGuire, R.E.; von Rosenvinge, T.T.; McDonald, F.B.

    1978-01-01

    The relative abundances of 1.5--23 MeV per nucleon ions in corotating nucleon streams are compared with ion abundances in particle events associated with solar flares and with solar and solar wind abundances. He/O and C/O ratios are found to be a factor of the order 2--3 greater in corotating streams than in flare-associated events. The distribution of H/He ratios in corotating streams is found to be much narrower and of lower average value than in flare-associated events. H/He in corotating energetic particle streams compares favorably in both lack of variability and numerical value with H/He in high-speed solar wind plasma streams. The lack of variability suggests that the source population for the corotating energetic particles is the solar wind, a suggestion consistent with acceleration of the corotating particles in interplanetary space

  17. Unified composite model of all fundamental particles and forces

    International Nuclear Information System (INIS)

    Terazawa, H.

    2000-01-01

    The unified supersymmetric composite model of all fundamental particles (and forces) including not only the fundamental fermions (quarks and leptons) but also the fundamental bosons (gauge bosons and Higgs scalars) is reviewed in detail

  18. WOOD STOVE EMISSIONS: PARTICLE SIZE AND CHEMICAL COMPOSITION

    Science.gov (United States)

    The report summarizes wood stove particle size and chemical composition data gathered to date. [NOTE: In 1995, EPA estimated that residential wood combustion (RWC), including fireplaces, accounted for a significant fraction of national particulate matter with aerodynamic diameter...

  19. Survey of composite particle models of electroweak interaction

    International Nuclear Information System (INIS)

    Suzuki, Mahiko.

    1992-05-01

    Models of composite weak bosons, the top-condensate model of electroweak interaction and related models we surveyed. Composite weak bosons must be tightly bound with a high compositeness scale in order to generate approximate puge symmetry dynamically. However, naturalness argument suggests that the compositeness scale is low at least in toy models. In the top-condensate model, where a composite Higgs doublet is formed with a very high scale, the prediction of the model is insensitive to details of the model and almost model-independent Actually, the numerical prediction of the t-quark and Higgs boson masses does not test compositeness of the Higgs boson nor condensation of the t-quark field. To illustrate the point, a composite t R -quark model is discussed which leads to the same numerical prediction as the top-condensate model. However, different constraints an imposed on the structure of the Higgs sector, depending on which particles are composite. The attempt to account the large t-b mass splitting by the high compositeness scale of the top-condensate model is reinterpreted in terms of fine tuning of more than one vacuum expectation value. It is difficult to lower, without a fourth generation, the t-quark mass in the composite particle models in general because the Yukawa coupling of the i-quark to the Higgs boson, t2 /4π = 0.1 for m t = 200 GeV, is too small for a coupling of a composite particle

  20. Molecular Diversity of Sea Spray Aerosol Particles: Impact of Ocean Biology on Particle Composition and Hygroscopicity

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, Richard E.; Laskina, Olga; Trueblood, Jonathan; Estillore, Armando D.; Morris, Holly S.; Jayarathne, Thilina; Sultana, Camile M.; Lee, Christopher; Lin, Peng; Laskin, Julia; Laskin, Alexander; Dowling, Jackie; Qin, Zhen; Cappa, Christopher; Bertram, Timothy; Tivanski, Alexei V.; Stone, Elizabeth; Prather, Kimberly; Grassian, Vicki H.

    2017-05-01

    The impact of sea spray aerosol (SSA) on climate depends on the size and chemical composition of individual particles that make-up the total SSA ensemble. While the organic fraction of SSA has been characterized from a bulk perspective, there remains a lack of understanding as to the composition of individual particles within the SSA ensemble. To better understand the molecular components within SSA particles and how SSA composition changes with ocean biology, simultaneous measurements of seawater and SSA were made during a month-long mesocosm experiment performed in an ocean-atmosphere facility. Herein, we deconvolute the composition of freshly emitted SSA devoid of anthropogenic and terrestrial influences by characterizing classes of organic compounds as well as specific molecules within individual SSA particles. Analysis of SSA particles show that the diversity of molecules within the organic fraction varies between two size fractions (submicron and supermicron) with contributions from fatty acids, monosaccharides, polysaccharides and siliceous material. Significant changes in the distribution of these compounds within individual particles are observed to coincide with the rise and fall of phytoplankton and bacterial populations within the seawater. Furthermore, water uptake is impacted as shown by hygroscopicity measurements of model systems composed of representative organic compounds. Thus, the how changes in the hygroscopic growth of SSA evolves with composition can be elucidated. Overall, this study provides an important connection between biological processes that control the composition of seawater and changes in single particle composition which will enhances our ability to predict the impact of SSA on climate.

  1. General many-body formalism for composite quantum particles.

    Science.gov (United States)

    Combescot, M; Betbeder-Matibet, O

    2010-05-21

    This Letter provides a formalism capable of exactly treating Pauli blocking between n-fermion particles. This formalism is based on an operator algebra made of commutators and anticommutators which contrasts with the usual scalar formalism of Green functions developed half a century ago for elementary quantum particles. We also provide the diagrams which visualize the very specific many-body physics induced by fermion exchanges between composite quantum particles.

  2. Infrared processed Cu composites reinforced with WC particles

    International Nuclear Information System (INIS)

    Deshpande, P.K.; Li, J.H.; Lin, R.Y.

    2006-01-01

    Copper matrix composites with WC particle reinforcements have been prepared with an innovative infrared infiltration technique. The volume content of the reinforcement particles in the composite is about 53%. The relative composite density of as high as 99.9% has been obtained with this process. The electric conductivity of composites prepared in this study as determined by a four-point probe method, is similar to commercially available Cu/W composites containing 52 vol% tungsten. Microhardness, microstructure and wear resistance of the composites were also determined. The microstructure of Cu/WC composite reveals excellent wetting between the two constituent phases, WC and copper. The microhardness values of all completely infiltrated Cu/WC composites were in the range of 360-370 HV which is significantly higher than the microhardness of pure copper, 65 HV. Wear resistance of the composites was determined with a pin on disk wear test technique. The wear test results show that composites prepared in this study performed much better than those commercially available Cu/W composites by more than two-fold against silicon carbide abrasive disks

  3. Single particle composition measurements of artificial Calcium Carbonate aerosols

    Science.gov (United States)

    Zorn, S. R.; Mentel, T. F.; Schwinger, T.; Croteau, P. L.; Jayne, J.; Worsnop, D. R.; Trimborn, A.

    2012-12-01

    Mineral dust, with an estimated total source from natural and anthropogenic emissions of up to 2800 Tg/yr, is one of the two largest contributors to total aerosol mass, with only Sea salt having a similar source strength (up to 2600 Tg/yr). The composition of dust particles varies strongly depending on the production process and, most importantly, the source location. Therefore, the composition of single dust particles can be used both to trace source regions of air masses as well as to identify chemical aging processes. Here we present results of laboratory studies on generating artificial calcium carbonate (CaCO3) particles, a model compound for carbonaceous mineral dust particles. Particles were generated by atomizing an aqueous hydrogen carbonate solution. Water was removed using a silica diffusion dryer., then the particles were processed in an oven at temperatures up to 900°C, converting the hydrogen carbonate to its anhydrous form. The resulting aerosol was analyzed using an on-line single particle laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF). The results confirm the conversion to calcium carbonate, and validate that the produced particles indeed can be used as a model compound for carbonaceous dust aerosols.

  4. Weibull modeling of particle cracking in metal matrix composites

    International Nuclear Information System (INIS)

    Lewis, C.A.; Withers, P.J.

    1995-01-01

    An investigation into the occurrence of reinforcement cracking within a particulate ZrO 2 /2618 Al alloy metal matrix composite under tensile plastic straining has been carried out, special attention being paid to the dependence of fracture on particle size and shape. The probability of particle cracking has been modeled using a Weibull approach, giving good agreement with the experimental data. Values for the Weibull modulus and the stress required to crack the particles were found to be within the range expected for the cracking of ceramic particles. Additional information regarding the fracture behavior of the particles was provided by in-situ neutron diffraction monitoring of the internal strains, measurement of the variation in the composite Young's modulus with straining and by direct observation of the cracked particles. The values of the particle stress required for the initiation of particle cracking deduced from these supplementary experiments were found to be in good agreement with each other and with the results from the Weibull analysis. Further, it is shown that while both the current experiments, as well as the previous work of others, can be well described by the Weibull approach, the exact values of the Weibull parameters do deduced are very sensitive to the approximations and the assumptions made in constructing the model

  5. The influences of ambient particle composition and size on particle infiltration in Los Angeles, CA, residences.

    Science.gov (United States)

    Sarnat, Stefanie Ebelt; Coull, Brent A; Ruiz, Pablo A; Koutrakis, Petros; Suh, Helen H

    2006-02-01

    Particle infiltration is a key determinant of the indoor concentrations of ambient particles. Few studies have examined the influence of particle composition on infiltration, particularly in areas with high concentrations of volatile particles, such as ammonium nitrate (NH4NO3). A comprehensive indoor monitoring study was conducted in 17 Los Angeles-area homes. As part of this study, indoor/outdoor concentration ratios during overnight (nonindoor source) periods were used to estimate the fraction of ambient particles remaining airborne indoors, or the particle infiltration factor (FINF), for fine particles (PM2.5), its nonvolatile (i.e., black carbon [BC]) and volatile (i.e., nitrate [NO3-]) components, and particle sizes ranging between 0.02 and 10 microm. FINF was highest for BC (median = 0.84) and lowest for NO3- (median = 0.18). The low FINF for NO3- was likely because of volatilization of NO3- particles once indoors, in addition to depositional losses upon building entry. The FINF for PM2.5 (median = 0.48) fell between those for BC and NO3-, reflecting the contributions of both particle components to PM25. FINF varied with particle size, air-exchange rate, and outdoor NO3- concentrations. The FINF for particles between 0.7 and 2 microm in size was considerably lower during periods of high as compared with low outdoor NO3- concentrations, suggesting that outdoor NO3- particles were of this size. This study demonstrates that infiltration of PM2.5 varies by particle component and is lowest for volatile species, such as NH4NO3. Our results suggest that volatile particle components may influence the ability for outdoor PM concentrations to represent indoor and, thus, personal exposures to particles of ambient origin, because volatilization of these particles causes the composition of PM2.5 to differ indoors and outdoors. Consequently, particle composition likely influences observed epidemiologic relationships based on outdoor PM concentrations, especially in areas

  6. Evolution of particle composition in CLOUD nucleation experiments

    CERN Document Server

    Keskinen, H; Joutsensaari, J; Tsagkogeorgas, G; Duplissy, J; Schobesberger, S; Gysel, M; Riccobono, F; Bianchi, F; Yli-Juuti, T; Lehtipalo, K; Rondo, L; Breitenlechner, M; Kupc, A; Almeida, J; Amorim, A; Dunne, E M; Downard, A J; Ehrhart, S; Franchin, A; Kajos, M K; Kirkby, J; Kurten, A; Nieminen, T; Makhmutov, V; Mathot, S; Miettinen, P; Onnela, A; Petaja, T; Praplan, A; Santos, F D; Schallhart, S; Sipila, M; Stozhkov, Y; Tome, A; Vaattovaara, P; Wimmer, D; Prevot, A; Dommen, J; Donahue, N M; Flagan, R C; Weingartner, E; Viisanen, Y; Riipinen, I; Hansel, A; Curtius, J; Kulmala, M; Worsnop, D R; Baltensperger, U; Wex, H; Stratmann, F; Laaksonen, A; Slowik, J G

    2013-01-01

    Sulphuric acid, ammonia, amines, and oxidised organics play a crucial role in nanoparticle formation in the atmosphere. In this study, we investigate the composition of nucleated nanoparticles formed from these compounds in the CLOUD (Cosmics Leaving Outdoor Droplets) chamber experiments at CERN (Centre europ ́ een pour la recherche nucl ́ eaire). The investigation was carried out via analysis of the particle hygroscopicity, ethanol affinity, oxidation state, and ion composition. Hygroscopicity was studied by a hygroscopic tandem differential mobility analyser and a cloud condensation nuclei counter, ethanol affinity by an organic differential mobility analyser and particle oxidation level by a high-resolution time-of-flight aerosol mass spectrometer. The ion composition was studied by an atmospheric pressure interface time-of-flight mass spectrometer. The volume fraction of the organics in the particles during theirgrowth from sizes of a few nanometers to tens of nanometers was derived from measured hygros...

  7. Particle size dependence of biogenic secondary organic aerosol molecular composition

    Science.gov (United States)

    Tu, Peijun; Johnston, Murray V.

    2017-06-01

    Formation of secondary organic aerosol (SOA) is initiated by the oxidation of volatile organic compounds (VOCs) in the gas phase whose products subsequently partition to the particle phase. Non-volatile molecules have a negligible evaporation rate and grow particles at their condensation rate. Semi-volatile molecules have a significant evaporation rate and grow particles at a much slower rate than their condensation rate. Particle phase chemistry may enhance particle growth if it transforms partitioned semi-volatile molecules into non-volatile products. In principle, changes in molecular composition as a function of particle size allow non-volatile molecules that have condensed from the gas phase (a surface-limited process) to be distinguished from those produced by particle phase reaction (a volume-limited process). In this work, SOA was produced by β-pinene ozonolysis in a flow tube reactor. Aerosol exiting the reactor was size-selected with a differential mobility analyzer, and individual particle sizes between 35 and 110 nm in diameter were characterized by on- and offline mass spectrometry. Both the average oxygen-to-carbon (O / C) ratio and carbon oxidation state (OSc) were found to decrease with increasing particle size, while the relative signal intensity of oligomers increased with increasing particle size. These results are consistent with oligomer formation primarily in the particle phase (accretion reactions, which become more favored as the volume-to-surface-area ratio of the particle increases). Analysis of a series of polydisperse SOA samples showed similar dependencies: as the mass loading increased (and average volume-to-surface-area ratio increased), the average O / C ratio and OSc decreased, while the relative intensity of oligomer ions increased. The results illustrate the potential impact that particle phase chemistry can have on biogenic SOA formation and the particle size range where this chemistry becomes important.

  8. Particle size dependence of biogenic secondary organic aerosol molecular composition

    Directory of Open Access Journals (Sweden)

    P. Tu

    2017-06-01

    Full Text Available Formation of secondary organic aerosol (SOA is initiated by the oxidation of volatile organic compounds (VOCs in the gas phase whose products subsequently partition to the particle phase. Non-volatile molecules have a negligible evaporation rate and grow particles at their condensation rate. Semi-volatile molecules have a significant evaporation rate and grow particles at a much slower rate than their condensation rate. Particle phase chemistry may enhance particle growth if it transforms partitioned semi-volatile molecules into non-volatile products. In principle, changes in molecular composition as a function of particle size allow non-volatile molecules that have condensed from the gas phase (a surface-limited process to be distinguished from those produced by particle phase reaction (a volume-limited process. In this work, SOA was produced by β-pinene ozonolysis in a flow tube reactor. Aerosol exiting the reactor was size-selected with a differential mobility analyzer, and individual particle sizes between 35 and 110 nm in diameter were characterized by on- and offline mass spectrometry. Both the average oxygen-to-carbon (O ∕ C ratio and carbon oxidation state (OSc were found to decrease with increasing particle size, while the relative signal intensity of oligomers increased with increasing particle size. These results are consistent with oligomer formation primarily in the particle phase (accretion reactions, which become more favored as the volume-to-surface-area ratio of the particle increases. Analysis of a series of polydisperse SOA samples showed similar dependencies: as the mass loading increased (and average volume-to-surface-area ratio increased, the average O ∕ C ratio and OSc decreased, while the relative intensity of oligomer ions increased. The results illustrate the potential impact that particle phase chemistry can have on biogenic SOA formation and the particle size range where this chemistry becomes

  9. Silver matrix composites reinforced with galvanically silvered particles

    OpenAIRE

    J. Śleziona; J. Wieczorek,

    2007-01-01

    Purpose: The paper presents the possibility of the application of metalic layers drifted with the use of the galvanic methods on the ceramic particles surface. The application of the layers was aimed at obtaining the rewetting of the reinforcing particles with the liquid silver in the course of the producing of silver matrix composites with the use of mechanical stirring method. To enable introducing of the iron powder and glass carbon powder to liquid silver the solution of covering the powd...

  10. Evolution of particle composition in CLOUD nucleation experiments

    Directory of Open Access Journals (Sweden)

    H. Keskinen

    2013-06-01

    Full Text Available Sulphuric acid, ammonia, amines, and oxidised organics play a crucial role in nanoparticle formation in the atmosphere. In this study, we investigate the composition of nucleated nanoparticles formed from these compounds in the CLOUD (Cosmics Leaving Outdoor Droplets chamber experiments at CERN (Centre européen pour la recherche nucléaire. The investigation was carried out via analysis of the particle hygroscopicity, ethanol affinity, oxidation state, and ion composition. Hygroscopicity was studied by a hygroscopic tandem differential mobility analyser and a cloud condensation nuclei counter, ethanol affinity by an organic differential mobility analyser and particle oxidation level by a high-resolution time-of-flight aerosol mass spectrometer. The ion composition was studied by an atmospheric pressure interface time-of-flight mass spectrometer. The volume fraction of the organics in the particles during their growth from sizes of a few nanometers to tens of nanometers was derived from measured hygroscopicity assuming the Zdanovskii–Stokes–Robinson relationship, and compared to values gained from the spectrometers. The ZSR-relationship was also applied to obtain the measured ethanol affinities during the particle growth, which were used to derive the volume fractions of sulphuric acid and the other inorganics (e.g. ammonium salts. In the presence of sulphuric acid and ammonia, particles with a mobility diameter of 150 nm were chemically neutralised to ammonium sulphate. In the presence of oxidation products of pinanediol, the organic volume fraction of freshly nucleated particles increased from 0.4 to ~0.9, with an increase in diameter from 2 to 63 nm. Conversely, the sulphuric acid volume fraction decreased from 0.6 to 0.1 when the particle diameter increased from 2 to 50 nm. The results provide information on the composition of nucleated aerosol particles during their growth in the presence of various combinations of sulphuric acid

  11. Sources and composition of urban aerosol particles

    Science.gov (United States)

    Vogt, M.; Johansson, C.; Mårtensson, M.; Struthers, H.; Ahlm, L.; Nilsson, D.

    2011-09-01

    From May 2008 to March 2009 aerosol emissions were measured using the eddy covariance method covering the size range 0.25 to 2.5 μm diameter (Dp) from a 105 m tower, in central Stockholm, Sweden. Supporting chemical aerosol data were collected at roof and street level. Results show that the inorganic fraction of sulfate, nitrate, ammonium and sea salt accounts for approximately 15% of the total aerosol mass removed at 0.6 μm Dp. Further heating to 300 °C caused very little additional losses road traffic (as inferred from the ratio of the incremental concentrations of nitrogen oxides (NOx) and BC measured on a densely trafficked street) and the fluxes of non-volatile material at tower level are in close agreement, suggesting a traffic source of BC. We have estimated the emission factors (EFs) for non-volatile particles <0.6 μm Dp to be 2.4±1.4 mg veh-1 km-1 based on either CO2 fluxes or traffic activity data. Light (LDV) and heavy duty vehicle (HDV) EFs were estimated using multiple linear regression and reveal that for non-volatile particulate matter in the 0.25 to 0.6 μm Dp range, the EFHDV is approximately twice as high as the EFLDV, the difference not being statistically significant.

  12. MAGNOLOL ENTRAPPED ULTRA-FINE FIBROUS MATS ELECTROSPUN FROM POLY(ETHYLENE GLYCOL)-b-POLY(L-LACTIDE) AND IN VITRO RELEASE

    Institute of Scientific and Technical Information of China (English)

    Hao Wang; Hong-rui Song; Yong Cui; Ying-jie Deng; Xue-si Chen

    2011-01-01

    Ultra-fine fibrous mats with magnolol entrapped have been prepared by electrospinning biodegradable copolymer poly(ethylene glycol) blocked poly(L-lactide). Drug entrapment was perfect which was confirmed by scanning electron microscopy and differential scanning calorimetry. According to in vitro drug release investigation by high performance liquid chromatography, it was found that fibers with 10%, 20% and 30% drug entrapped respect to polymer (mass ratio) presented dramatically different drug release behavior and degradation behavior under the effect of proteinase K. The reason may be that fibers with 10% drug entrapped was more easily affected by enzyme while, to some degree, magnolol in fibers with 20% and 30% entrapped prevented polymer from being degraded by enzyme.

  13. Identification of ultra-fine Ti-rich precipitates in V-Cr-Ti alloys irradiated below 300 deg. C by using positron CDB technique

    International Nuclear Information System (INIS)

    Fukumoto, Ken-ichi; Matsui, Hideki; Ohkubo, Hideaki; Tang, Zheng; Nagai, Yasuyoshi; Hasegawa, Masayuki

    2008-01-01

    Irradiation-induced Ti-rich precipitates in V-Ti and V-4Cr-4Ti alloys are studied by TEM and positron annihilation methods (positron lifetime, and coincidence Doppler broadening (CDB)). The characteristics of small defect clusters formed in V alloys containing Ti at irradiation temperatures below 300 deg. C have not been identified by TEM techniques. Strong interaction between vacancy and Ti solute atoms for irradiated V alloys containing Ti at irradiation temperatures from 220 to 350 deg. C are observed by positron lifetime measurement. The vacancy-multi Ti solute complexes in V-alloys containing Ti are definitely identified by using CDB measurement. It is suggested that ultra-fine Ti-rich precipitates or Ti segregation at periphery of dislocation loops are formed in V alloys containing Ti at irradiation temperatures below 300 deg. C

  14. Influence of Al sub 2 O sub 3 nanoparticles on the thermal stability of ultra-fine grained copper prepared by high pressure torsion

    CERN Document Server

    Cizek, J; Kuzel, R; Islamgaliev, R K

    2002-01-01

    Ultra-fine grained (UFG) Cu (grain size 80 nm) containing 0.5 wt.% Al sub 2 O sub 3 nanoparticles (size 20 nm) was prepared by high pressure torsion (HPT). Positron lifetime spectroscopy was employed to characterize the microstructure of this material, especially with respect to types and concentration of lattice defects. The evolution of microstructure with increasing temperature was studied by positron lifetime spectroscopy and x-ray diffraction measurements. The thermal stability of the Cu + 0.5 wt.% Al sub 2 O sub 3 nanocomposite was compared with that of pure UFG Cu prepared by the same technique. The processes taking place during thermal recovery of the initial nanoscale structure in both studied materials are described. (author)

  15. Use of coir pith particles in composites with Portland cement.

    Science.gov (United States)

    Brasileiro, Gisela Azevedo Menezes; Vieira, Jhonatas Augusto Rocha; Barreto, Ledjane Silva

    2013-12-15

    Brazil is the fourth largest world's producer of coconut (Cocos nucifera L.). Coconut crops generate several wastes, including, coir pith. Coir pith and short fibers are the byproducts of extracting the long fibers and account for approximately 70% of the mature coconut husk. The main use of coir pith is as an agricultural substrate. Due to its shape and small size (0.075-1.2 mm), this material can be considered as a particulate material. The aim of this study was to evaluate the use of coir pith as an aggregate in cementitious composites and to evaluate the effect of the presence of sand in the performance of these composites. Some composites were produced exclusively with coir pith particles and other composites with coir pith partially substituting the natural sand. The cementitious composites developed were tested for their physical and mechanical properties and characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy to evaluate the effect of coir pith particles addition in cement paste and sand-cement-mortar. The statistical significance of the results was evaluated by one-way analysis of variance (ANOVA) test followed by multiple comparisons of the means by Tukey's test that showed that the composites with coir pith particles, with or without natural sand, had similar mechanical results, i.e., means were not statistically different at 5% significance level. There was a reduction in bulk density and an improved post-cracking behavior in the composites with coir pith particles compared to conventional mortar and to cement paste. These composites can be used for the production of lightweight, nonstructural building materials, according to the values of compressive strength (3.97-4.35 MPa) and low bulk density (0.99-1.26 g/cm(3)). Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Elemental compositions of suspended particles released in glass manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Mamuro, T; Mizohata, A; Kubota, T [Radiation Center of Osaka Prefecture, Sakai (Japan)

    1980-03-01

    Suspended particles released in glass manufacture were subjected to multielement analysis by means of instrumental neutron activation method and energy dispersive X-ray fluorescence spectrometry. Suspended particles emitted from glass manufacture generally consist of both particles emitted from glass fusion and those produced through fuel combustion (mainly oil combustion). Elemental compositions of suspended particles emitted from glass fusion were found to be strongly dependent on the kind and recipe of raw materials and additives. Of the various metallic elements involved in suspended particles emitted from glass fusion, the elements, As, Se, Cd, Sb, Pb and so on are regarded to produce the most serious air pollution. The amount of emission of these elements to the environment is, howerer, quite varied from manufacturer to manufacturer. The replacement of electric furnace by oil combustion in opal glass manufacture remarkably reduced the emission of metallic elements to the environment.

  17. Enhanced Inhibitory Effect of Ultra-Fine Granules of Red Ginseng on LPS-induced Cytokine Expression in the Monocyte-Derived Macrophage THP-1 Cells

    Directory of Open Access Journals (Sweden)

    Hong-Yeoul Kim

    2008-08-01

    Full Text Available Red ginseng is one of the most popular traditional medicines in Korea because its soluble hot-water extract is known to be very effective on enhancing immunity as well as inhibiting inflammation. Recently, we developed a new technique, called the HACgearshift system, which can pulverize red ginseng into the ultra-fine granules ranging from 0.2 to 7.0 μm in size. In this study, the soluble hot-water extract of those ultra-fine granules of red ginseng (URG was investigated and compared to that of the normal-sized granules of red ginseng (RG. The high pressure liquid chromatographic analyses of the soluble hot-water extracts of both URG and RG revealed that URG had about 2-fold higher amounts of the ginsenosides, the biologically active components in red ginseng, than RG did. Using quantitative RT-PCR, cytokine profiling against the Escherichia coli lipopolysaccharide (LPS in the monocyte-derived macrophage THP-1 cells demonstrated that the URG-treated cells showed a significant reduction in cytokine expression than the RG-treated ones. Transcription expression of the LPS-induced cytokines such as TNF-α, IL-1β, IL-6, IL-8, IL-10, and TGF-β was significantly inhibited by URG compared to RG. These results suggest that some biologically active and soluble components in red ginseng can be more effectively extracted from URG than RG by standard hot-water extraction.

  18. Analysis of particles loaded fiber composites for the evaluation of ...

    African Journals Online (AJOL)

    The effective material properties are predicted for composites with different shape and size of inclusions such as cylindrical fibers, spherical and elliptical particles and cylindrical fibers with hemispherical ends. The analysis is based on a numerical homogenization technique using finite element method in connection with ...

  19. Constitutional equations of thermal stresses of particle-reinforced composite

    International Nuclear Information System (INIS)

    Asakawa, Atsushi; Noda, Naotake; Tohgo, Keiichiro; Tsuji, Tomoaki.

    1994-01-01

    Functionally gradient materials (FGM) have been developed as ultrahigh-heat-resistant materials in aircraft, space engineering and nuclear fields. In the heat-resistant FGM which contain particles (ceramics) in the matrix (metal), the matrix will be subjected to plastic deformation, particles will be debonded, and finally cracks will be generated. The constitutive equations of FGM which take into account the damage process and change in temperature are necessary in order to solve these phenomena. In this paper, the constitutive equations of particle-reinforced composites with consideration of the damage process and change in temperature are estimated by the equivalent inclusion method in terms of elastoplasticity. The stress-strain relations and the coefficients of linear thermal expansion of the composites (Al-PSZ and Ti-PSZ) are calculated in ultrahigh temperature. (author)

  20. Composite Coatings of Chromium and Nanodiamond Particles on Steel

    Directory of Open Access Journals (Sweden)

    Gidikova N.

    2017-12-01

    Full Text Available Chrome plating is used to improve the properties of metal surfaces like hardness, corrosion resistance and wear resistance in machine building. To further improve these properties, an electrodeposited chromium coating on steel, modified with nanodiamond particles is proposed. The nanodiamond particles (average size 4 nm measured by TEM are produced by detonation synthesis (NDDS. The composite coating (Cr+NDDS has an increased thickness, about two times greater microhardness and finer micro-structure compared to that of unmodified chromium coating obtained under the same galvanization conditions. In the microstructure of specimen obtained from chrome electrolyte with concentration of NDDS 25 g/l or more, “minisections” with chromium shell were found. They were identified by metallographic microscope and X-ray analyser on etched section of chromium plated sample. The object of further research is the dependence of the presence of NDDS in the composite coating from the nanodiamond particles concentration in the chroming electrolyte.

  1. The Particle Shape of WC Governing the Fracture Mechanism of Particle Reinforced Iron Matrix Composites.

    Science.gov (United States)

    Li, Zulai; Wang, Pengfei; Shan, Quan; Jiang, Yehua; Wei, He; Tan, Jun

    2018-06-11

    In this work, tungsten carbide particles (WC p , spherical and irregular particles)-reinforced iron matrix composites were manufactured utilizing a liquid sintering technique. The mechanical properties and the fracture mechanism of WC p /iron matrix composites were investigated theoretically and experimentally. The crack schematic diagram and fracture simulation diagram of WC p /iron matrix composites were summarized, indicating that the micro-crack was initiated both from the interface for spherical and irregular WC p /iron matrix composites. However, irregular WC p had a tendency to form spherical WC p . The micro-cracks then expanded to a wide macro-crack at the interface, leading to a final failure of the composites. In comparison with the spherical WC p , the irregular WC p were prone to break due to the stress concentration resulting in being prone to generating brittle cracking. The study on the fracture mechanisms of WC p /iron matrix composites might provide a theoretical guidance for the design and engineering application of particle reinforced composites.

  2. Reinforced magnesium composites by metallic particles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Vahid, Alireza; Hodgson, Peter [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3217 (Australia); Li, Yuncang, E-mail: yuncang.li@rmit.edu.au [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3217 (Australia); School of Engineering, RMIT University, Melbourne, Victoria 3001 (Australia)

    2017-02-08

    Pure magnesium (Mg) implants have unsatisfactory mechanical properties, particularly in loadbearing applications. Particulate-reinforced Mg composites are known as promising materials to provide higher strength implants compared to unreinforced metals. In the current work biocompatible niobium (Nb) and tantalum (Ta) particles are selected as reinforcement, and Mg-Nb and Mg-Ta composites fabricated via a powder metallurgy process associated with the ball milling technique. The effect of Nb and Ta contents on the microstructure and mechanical properties of Mg matrix was investigated. There was a uniform distribution of reinforcements in the Mg matrix with reasonable integrity and no intermetallic formation. The compressive mechanical properties of composites vary with reinforcement contents. The optimal parameters to fabricate biocompatible Mg composites and the optimal composition with appropriate strength, hardness and ductility are recommended.

  3. Chemical compositions of subway particles in Seoul, Korea determined by a quantitative single particle analysis.

    Science.gov (United States)

    Kang, Sunni; Hwang, HeeJin; Park, YooMyung; Kim, HyeKyoung; Ro, Chul-Un

    2008-12-15

    A novel single particle analytical technique, low-Z particle electron probe X-ray microanalysis, was applied to characterize seasonal subway samples collected at a subway station in Seoul, Korea. For all 8 samples collected twice in each season, 4 major types of subway particles, based on their chemical compositions, are significantly encountered: Fe-containing; soil-derived; carbonaceous; and secondary nitrate and/or sulfate particles. Fe-containing particles are generated indoors from wear processes at rail-wheel-brake interfaces while the others may be introduced mostly from the outdoor urban atmosphere. Fe-containing particles are the most frequently encountered with relative abundances in the range of 61-79%. In this study, it is shown that Fe-containing subway particles almost always exist either as partially or fully oxidized forms in underground subway microenvironments. Their relative abundances of Fe-containing particles increase as particle sizes decrease. Relative abundances of Fe-containing particles are higher in morning samples than in afternoon samples because of heavier train traffic in the morning. In the summertime samples, Fe-containing particles are the most abundantly encountered, whereas soil-derived and nitrate/sulfate particles are the least encountered, indicating the air-exchange between indoor and outdoor environments is limited in the summer, owing to the air-conditioning in the subway system. In our work, it was observed that the relative abundances of the particles of outdoor origin vary somewhat among seasonal samples to a lesser degree, reflecting that indoor emission sources predominate.

  4. Hybrid Composite Material and Solid Particle Erosion Studies

    Science.gov (United States)

    Chellaganesh, D.; Khan, M. Adam; Ashif, A. Mohamed; Ragul Selvan, T.; Nachiappan, S.; Winowlin Jappes, J. T.

    2018-04-01

    Composite is one of the predominant material for most challenging engineering components. Most of the components are in the place of automobile structure, aircraft structures, and wind turbine blade and so on. At the same all the components are indulged to mechanical loading. Recent research on composite material are machinability, wear, tear and corrosion studies. One of the major issue on recent research was solid particle air jet erosion. In this paper hybrid composite material with and without filler. The fibre are in the combination of hemp – kevlar (60:40 wt.%) as reinforcement using epoxy as a matrix. The natural material palm and coconut shell are used as filler materials in the form of crushed powder. The process parameter involved are air jet velocity, volume of erodent and angle of impingement. Experiment performed are in eight different combinations followed from 2k (k = 3) factorial design. From the investigation surface morphology was studied using electron microscope. Mass change with respect to time are used to calculate wear rate and the influence of the process parameters. While solid particle erosion the hard particle impregnates in soft matrix material. Influence of filler material has reduced the wear and compared to plain natural composite material.

  5. Mechanical properties of epoxy/coconut shell filler particle composites

    International Nuclear Information System (INIS)

    Sapuan, S.M.; Harimi, M.; Maleque, M.A.

    2003-01-01

    This paper presents the tensile and flexural properties of composites made from coconut shell filler particles and epoxy resin. The tensile and flexural tests of composites based on coconut shell filler particles at three different filler contents viz., 5%, 0% and 15%were carried out using universal tensile testing machine according to ASTM D 3039/D M-95a and ASTM D790-90 tensile respectively and their results were presented. Experimental results showed that tensile and flexural properties of the composites increased with the increase of the filler particle content. The composite materials demonstrate somewhat linear behavior and sharp structure for tensile and slight nonlinear behavior and sharp fracture of flexural testing. The relation between stress and percentage of filler for tensile and flexural tests were found to b linear with correlation factors of 0.9929 and 0.9973 respectively. Concerning the relation between the modulus and percentage of filler for tensile and flexural tests, it was found to be a quadratic relation with the same correlation factor approximated to 1. The same behavior was observed for the strain versus percentage of filler tensile and flexural tests, with the same correlation factor. (author)

  6. Magnetic coupling mechanisms in particle/thin film composite systems

    Directory of Open Access Journals (Sweden)

    Giovanni A. Badini Confalonieri

    2010-12-01

    Full Text Available Magnetic γ-Fe2O3 nanoparticles with a mean diameter of 20 nm and size distribution of 7% were chemically synthesized and spin-coated on top of a Si-substrate. As a result, the particles self-assembled into a monolayer with hexagonal close-packed order. Subsequently, the nanoparticle array was coated with a Co layer of 20 nm thickness. The magnetic properties of this composite nanoparticle/thin film system were investigated by magnetometry and related to high-resolution transmission electron microscopy studies. Herein three systems were compared: i.e. a reference sample with only the particle monolayer, a composite system where the particle array was ion-milled prior to the deposition of a thin Co film on top, and a similar composite system but without ion-milling. The nanoparticle array showed a collective super-spin behavior due to dipolar interparticle coupling. In the composite system, we observed a decoupling into two nanoparticle subsystems. In the ion-milled system, the nanoparticle layer served as a magnetic flux guide as observed by magnetic force microscopy. Moreover, an exchange bias effect was found, which is likely to be due to oxygen exchange between the iron oxide and the Co layer, and thus forming of an antiferromagnetic CoO layer at the γ-Fe2O3/Co interface.

  7. Particle size distribution and physico-chemical composition of clay.

    African Journals Online (AJOL)

    HP USER

    <300µm, <106µm, <63µm and <44µm respectively. There was no remarkable difference in silica (SiO2) as particle fractions reduced from <. 300µm - < 106µm - < 63µm but an observed. Table 1.0 Chemical composition of crude clay. Component wt (%). SiO2. 38.48. Al2O3. 12.46. Fe2O3. 6.18. TiO2. 1.85. MgO. 14.67. CaO.

  8. Pulmonary Delivery of an Ultra-Fine Oxytocin Dry Powder Formulation: Potential for Treatment of Postpartum Haemorrhage in Developing Countries

    OpenAIRE

    Prankerd, Richard J.; Nguyen, Tri-Hung; Ibrahim, Jibriil P.; Bischof, Robert J.; Nassta, Gemma C.; Olerile, Livesey D.; Russell, Adrian S.; Meiser, Felix; Parkington, Helena C.; Coleman, Harold A.; Morton, David A. V.; McIntosh, Michelle P.

    2013-01-01

    Oxytocin is recommended by the World Health Organisation as the most effective uterotonic for the prevention and treatment of postpartum haemorrhage. The requirement for parenteral administration by trained healthcare providers and the need for the drug solution to be maintained under cold-chain storage limit the use of oxytocin in the developing world. In this study, a spray-dried ultrafine formulation of oxytocin was developed with an optimal particle size diameter (1-5 µm) to facilitate ae...

  9. Ultra-Fine Bubble Distributions in a Plant Factory Observed by Transmission Electron Microscope with a Freeze-Fracture Replica Technique

    Directory of Open Access Journals (Sweden)

    Tsutomu Uchida

    2018-03-01

    Full Text Available Water containing ultra-fine bubbles (UFB may promote plant growth. But, as UFBs are too small to distinguish from other impurities in a nutrient solution, it is not known if UFBs survive transport from the water source to the rhizosphere. Here we use the freeze-fracture replica method and a transmission electron microscope (TEM to observe UFBs in the nutrient solutions used in a crop-growing system known as a plant factory. In this factory, TEM images taken from various points in the supply line indicate that the concentration of UFBs in the nutrient solution is conserved, starting from their addition to the nutrient solution in the buffer tank, through the peat-moss layer, all the way to the rhizosphere. Measurements also show that a thin film formed on the surface of UFBs in the nutrient solution, with greater film thickness at the rhizosphere. This film is considered to be made from the accumulation of impurities coming from solute and the peat-moss layer.

  10. Fatigue behavior and damage characteristic of ultra-fine grain low-purity copper processed by equal-channel angular pressing (ECAP)

    Energy Technology Data Exchange (ETDEWEB)

    Xu Changzheng; Wang Qingjuan [School of Materials Science and Engineering, Xian Jiaotong University, Xian 710049 (China); Zheng Maosheng [Institute of Condensed Matter Physics and Materials, Northwest University, Xian 710069 (China)], E-mail: mszhengnw@sohu.com; Li Jindou; Huang Meiquan; Jia Qingming; Zhu Jiewu [School of Materials Science and Engineering, Xian Jiaotong University, Xian 710049 (China); Kunz, Ludvik; Buksa, Michal [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Brno 61662 (Czech Republic)

    2008-02-25

    The S-N and Coffin-Manson plot, cyclic stress-strain response, changes of microstructure, and the surface morphology of ultra-fine grain (UFG) low-purity copper processed by ECAP were tested and observed in present study. And the formation mechanism of shear bands was discussed in detail. The results show that the UFG Cu represents longer lifetime under stress-controlled fatigue, but lower fatigue resistance under strain-controlled fatigue when compared with the coarse grain counterpart. Cyclic stress-strain responses of UFG Cu under stress-controlled fatigue alter from cyclic softening to cyclic hardening as stress amplitude decreases. But the responses always show cyclic softening under strain-controlled fatigue in present testing. By electron back scattering diffraction and transmission electron microscope technique, the shear bands were discovered on the surface of all cycled samples and no grain coarsening was discovered near the shear bands, which indicated that there was no inevitable relationship between formation of SBs and cyclic softening/grain coarsening. The discovery should be related to impurities in copper. The oriented distribution of defects along the shear plane in the last ECAP processing is one of the major mechanisms of SBs formation.

  11. Fatigue behavior and damage characteristic of ultra-fine grain low-purity copper processed by equal-channel angular pressing (ECAP)

    International Nuclear Information System (INIS)

    Xu Changzheng; Wang Qingjuan; Zheng Maosheng; Li Jindou; Huang Meiquan; Jia Qingming; Zhu Jiewu; Kunz, Ludvik; Buksa, Michal

    2008-01-01

    The S-N and Coffin-Manson plot, cyclic stress-strain response, changes of microstructure, and the surface morphology of ultra-fine grain (UFG) low-purity copper processed by ECAP were tested and observed in present study. And the formation mechanism of shear bands was discussed in detail. The results show that the UFG Cu represents longer lifetime under stress-controlled fatigue, but lower fatigue resistance under strain-controlled fatigue when compared with the coarse grain counterpart. Cyclic stress-strain responses of UFG Cu under stress-controlled fatigue alter from cyclic softening to cyclic hardening as stress amplitude decreases. But the responses always show cyclic softening under strain-controlled fatigue in present testing. By electron back scattering diffraction and transmission electron microscope technique, the shear bands were discovered on the surface of all cycled samples and no grain coarsening was discovered near the shear bands, which indicated that there was no inevitable relationship between formation of SBs and cyclic softening/grain coarsening. The discovery should be related to impurities in copper. The oriented distribution of defects along the shear plane in the last ECAP processing is one of the major mechanisms of SBs formation

  12. High temperature tensile properties and their application to toughness enhancement in ultra-fine grained W-(0-1.5)wt% TiC

    Energy Technology Data Exchange (ETDEWEB)

    Kurishita, H. [International Research Center for Nuclear Materials Science, Institute for Materials Research (IMR), Tohoku University, Oarai, Ibaraki 311-1313 (Japan)], E-mail: kurishi@imr.tohoku.ac.jp; Matsuo, S.; Arakawa, H.; Narui, M.; Yamazaki, M. [International Research Center for Nuclear Materials Science, Institute for Materials Research (IMR), Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Sakamoto, T.; Kobayashi, S.; Nakai, K. [Department of Materials Science and Biotechnology, Ehime University, Matsuyama, Ehime 790-8577 (Japan); Takida, T.; Takebe, K. [A.L.M.T. Corp., 2 Iwase-koshi-machi, Toyama, Toyama 931-8543 (Japan); Kawai, M. [Institute of Material Structure Science, KEK, Tsukuba, Ibaraki 305-0801 (Japan); Yoshida, N. [Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2009-04-30

    Ultra-fine grained (UFG) W-TiC consolidates are very promising for use as divertors in fusion reactors, however, the assurance of room-temperature ductility of UFG W-TiC remains unsettled. The assurance requires a sufficient degree of plastic working for the consolidates and thus overcoming of poor plastic workability in UFG W-TiC by applying superplasticity. Therefore, the magnitudes of elongation to fracture and flow stress which are important measures for plastic working were examined for UFG W-(0-1.5)%TiC (in wt%) at 1673-1973 K where superplasticity occurs without appreciable grain growth. It is shown that the elongation and flow stress are strongly dependent on TiC addition and atmosphere (Ar, H{sub 2}) during mechanical alloying (MA). As the TiC addition increases, the elongation significantly increases without appreciable increase in the flow stress level. W-TiC fabricated with MA in H{sub 2} exhibits larger elongation and larger strain rate sensitivity of flow stress than W-TiC with MA in Ar. These results were applied to perform plastic working and the room-temperature bend test results for plastic worked W-1.0%TiC are shown.

  13. Antifouling paint particles: Sources, occurrence, composition and dynamics.

    Science.gov (United States)

    Soroldoni, Sanye; Castro, Ítalo Braga; Abreu, Fiamma; Duarte, Fabio Andrei; Choueri, Rodrigo Brasil; Möller, Osmar Olinto; Fillmann, Gilberto; Pinho, Grasiela Lopes Leães

    2018-06-15

    Sources, occurrence, composition and dynamics of antifouling paint particles (APPs) were assessed in Patos Lagoon estuary (PLE), Southern Brazil. Ten areas including boatyards, a marina and artisanal fishing harbors were identified in the estuarine system as potential sources of APPs. The APPs generated in these areas were highly heterogeneous considering the size, shape and composition. Based on an estimate of antifouling paint usage and amount of boats in each studied area, artisanal fishing harbors could be the main source of particles to PLE. However, relatively high amounts of APPs, which ranged from 130 to 40,300 μg g -1 , were detected in sediments collected in front of boatyards and a marina. The uneven distribution of APPs levels among the sediment samples were probably due to the presence of diffuse sources (fishing harbors) associated to "hotspots" (boatyards and marina) along the study area. Additionally, data of settling experiment indicate that size, shape and density of APPs, combined to local hydrodynamics, appears to contribute to the mobility of these residues within the estuary. In the main channel of PLE, smaller particles tend to be transported to adjacent coastal zone while particles tend to be deposited in the sediment surface of sheltered areas. Since different trace metals, and booster biocides were detected in APPs that were not correctly disposed, these particles can be considered as an important source of contamination to aquatic environments. The present data suggest that APPs represent an environmental problem for aquatic systems in Brazil, since the country lacks legislation in addition to inefficient control mechanisms. An improvement in boat maintenance processes are urgently needed to avoid this continuous release of APPs into the aquatic systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Production of Seamless Superconducting Radio Frequency Cavities from Ultra-fine Grained Niobium, Phase II Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Roy Crooks, Ph.D., P.E.

    2009-10-31

    particle accelerators for high-energy physics research, as well as for lower energy particle accelerators, and Free Electron Lasers. These machines have applications in the fields of basic science, industrial processing, medical diagnostics, pharmaceutical research and weapons systems. The scientific community and the general public will benefit from the implementation of this technology since lower production costs will increase the availability of SRF particle accelerators.

  15. Pulmonary delivery of an ultra-fine oxytocin dry powder formulation: potential for treatment of postpartum haemorrhage in developing countries.

    Science.gov (United States)

    Prankerd, Richard J; Nguyen, Tri-Hung; Ibrahim, Jibriil P; Bischof, Robert J; Nassta, Gemma C; Olerile, Livesey D; Russell, Adrian S; Meiser, Felix; Parkington, Helena C; Coleman, Harold A; Morton, David A V; McIntosh, Michelle P

    2013-01-01

    Oxytocin is recommended by the World Health Organisation as the most effective uterotonic for the prevention and treatment of postpartum haemorrhage. The requirement for parenteral administration by trained healthcare providers and the need for the drug solution to be maintained under cold-chain storage limit the use of oxytocin in the developing world. In this study, a spray-dried ultrafine formulation of oxytocin was developed with an optimal particle size diameter (1-5 µm) to facilitate aerosolised delivery via the lungs. A powder formulation of oxytocin, using mannitol, glycine and leucine as carriers, was prepared with a volume-based median particle diameter of 1.9 µm. Oxytocin content in the formulation was assayed using high-performance liquid chromatography-mass spectroscopy and was found to be unchanged after spray-drying. Ex vivo contractility studies utilising human and ovine uterine tissue indicated no difference in the bioactivity of oxytocin before and after spray-drying. Uterine electromyographic (EMG) activity in postpartum ewes following pulmonary (in vivo) administration of oxytocin closely mimicked that observed immediately postpartum (0-12 h following normal vaginal delivery of the lamb). In comparison to the intramuscular injection, pulmonary administration of an oxytocin dry powder formulation to postpartum ewes resulted in generally similar EMG responses, however a more rapid onset of uterine EMG activity was observed following pulmonary administration (129 ± 18 s) than intramuscular injection (275 ± 22 s). This is the first study to demonstrate the potential for oxytocin to elicit uterine activity after systemic absorption as an aerosolised powder from the lungs. Aerosolised oxytocin has the potential to provide a stable and easy to administer delivery system for effective prevention and treatment of postpartum haemorrhage in resource-poor settings in the developing world.

  16. Pulmonary delivery of an ultra-fine oxytocin dry powder formulation: potential for treatment of postpartum haemorrhage in developing countries.

    Directory of Open Access Journals (Sweden)

    Richard J Prankerd

    Full Text Available Oxytocin is recommended by the World Health Organisation as the most effective uterotonic for the prevention and treatment of postpartum haemorrhage. The requirement for parenteral administration by trained healthcare providers and the need for the drug solution to be maintained under cold-chain storage limit the use of oxytocin in the developing world. In this study, a spray-dried ultrafine formulation of oxytocin was developed with an optimal particle size diameter (1-5 µm to facilitate aerosolised delivery via the lungs. A powder formulation of oxytocin, using mannitol, glycine and leucine as carriers, was prepared with a volume-based median particle diameter of 1.9 µm. Oxytocin content in the formulation was assayed using high-performance liquid chromatography-mass spectroscopy and was found to be unchanged after spray-drying. Ex vivo contractility studies utilising human and ovine uterine tissue indicated no difference in the bioactivity of oxytocin before and after spray-drying. Uterine electromyographic (EMG activity in postpartum ewes following pulmonary (in vivo administration of oxytocin closely mimicked that observed immediately postpartum (0-12 h following normal vaginal delivery of the lamb. In comparison to the intramuscular injection, pulmonary administration of an oxytocin dry powder formulation to postpartum ewes resulted in generally similar EMG responses, however a more rapid onset of uterine EMG activity was observed following pulmonary administration (129 ± 18 s than intramuscular injection (275 ± 22 s. This is the first study to demonstrate the potential for oxytocin to elicit uterine activity after systemic absorption as an aerosolised powder from the lungs. Aerosolised oxytocin has the potential to provide a stable and easy to administer delivery system for effective prevention and treatment of postpartum haemorrhage in resource-poor settings in the developing world.

  17. Effect of particle shapes on effective strain gradient of SiC particle reinforced aluminum composites

    International Nuclear Information System (INIS)

    Liu, X; Cao, D F; Mei, H; Liu, L S; Lei, Z T

    2013-01-01

    The stress increments depend not only on the plastic strain but also on the gradient of plastic strain, when the characteristic length scale associated with non-uniform plastic deformation is on the order of microns. In the present research, the Taylor-based nonlocal theory of plasticity (TNT plasticity), with considering both geometrically necessary dislocations and statistically stored dislocations, is applied to investigated the effect of particle shapes on the strain gradient and mechanical properties of SiC particle reinforced aluminum composites (SiC/Al composites). Based on this theory, a two-dimensional axial symmetry cell model is built in the ABAQUS finite element code through its USER-ELEMENT (UEL) interface. Some comparisons with the classical plastic theory demonstrate that the effective stress predicted by TNT plasticity is obviously higher than that predicted by classical plastic theory. The results also demonstrate that the irregular particles cause higher effective gradient strain which is attributed to the fact that angular shape particles give more geometrically.

  18. Distorted wave method in reactions with composite particles

    International Nuclear Information System (INIS)

    Zelenskaya, N.S.; Teplov, I.B.

    1980-01-01

    The work deals with the distorbed wave method with a finite radius of interaction (DWBAFR) as applied to quantitative analysis of direct nuclear reactions with composite particles (including heavy ions) considering the reaction mechanisms other than the cluster stripping mechanism, in particular the exchange processes. The accurate equations of the distorbed-wave method in the three-body problem and the general formula dor calculating differential cross-sections of arbitrary binary reactions by DWBAFR are presented. Accurate and approximate methods allowing for finite interaction radius are discussed. Two main versions of exact account of recoil effects: separation of variables in wave functions of relative motion of particles and in interaction potentials and separation of variables in distorted waves are analysed. Given is a characteristic of the known calculated programs approximately and exactly taking account of recoil effects for direct and exchange processes [ru

  19. On airborne nano/micro-sized wear particles released from low-metallic automotive brakes

    International Nuclear Information System (INIS)

    Kukutschova, Jana; Moravec, Pavel; Tomasek, Vladimir; Matejka, Vlastimil; Smolik, Jiri; Schwarz, Jaroslav; Seidlerova, Jana; Safarova, Klara; Filip, Peter

    2011-01-01

    The paper addresses the wear particles released from commercially available 'low-metallic' automotive brake pads subjected to brake dynamometer tests. Particle size distribution was measured in situ and the generated particles were collected. The collected fractions and the original bulk material were analyzed using several chemical and microscopic techniques. The experiments demonstrated that airborne wear particles with sizes between 10 nm and 20 μm were released into the air. The numbers of nanoparticles (<100 nm) were by three orders of magnitude larger when compared to the microparticles. A significant release of nanoparticles was measured when the average temperature of the rotor reached 300 deg. C, the combustion initiation temperature of organics present in brakes. In contrast to particle size distribution data, the microscopic analysis revealed the presence of nanoparticles, mostly in the form of agglomerates, in all captured fractions. The majority of elements present in the bulk material were also detected in the ultra-fine fraction of the wear particles. - Research highlights: → Wear of low-metallic friction composite produces airborne nano-sized particles. → Nano-sized particles contain carbon black and metallic compounds. → Carbon black nano-sized particles are related to resin degradation. → Number of nanoparticles higher by three orders of magnitude than microparticles. - Braking of automobiles may contribute to nano-particulate air pollution caused by friction processes associated with wear of low-metallic brake pads.

  20. The pick-up mechanism in composite particle emission processes

    International Nuclear Information System (INIS)

    Zhang Jingshang; Yan Shiwei; Wang Cuilan

    1992-01-01

    The pick-up mechanism has been included in the exciton model for the light composite particle emissions. Based on the cluster phase space integration method the formation probabilities of α,d,t, 3 He are obtained. The calculation results of (n,t) cross sections indicate that this theoretical method can reproduce the experimental data nicely. For triton emissions in pre-equilibrium reaction processes, the semi-direct reactions are the dominant terms which are just omitted in the previous model calculation

  1. Production of nano-crystalline zirconia powders and fabrication of high strength ultra-fine-grained ceramics

    International Nuclear Information System (INIS)

    Rajendran, S.

    1993-01-01

    Hydrous zirconia containing 2 and 2.5 mol% Y 2 O 3 was prepared by a hydroxide co-precipitation method and portions were dispersed in ethanol before drying(P2), milled in ethanol after drying (P3) or after calcination at 550 deg C (P4) or milled in iso-propanal after calcination at 1000 deg C (P5). The crystallisation behaviour and sintering characteristics of the materials were investigated. The calcined as dried powder (P1) has strongly bonded hard aggregates and the material reached a density of only about 80% of theoretical after sintering at 1500 deg C. Powder characteristics and the sinterability of the alcohol treated materials depended on the conditions of processing and heat treatment. The sinter-activity of the powders decreased from P2 to P5. Powder P3 was composed of relatively weakly bonded crystallites and could be sintered at 1400 deg C, while the powders P4 and P5 contained hard agglomerates and required a sintering temperature of 1450 and 1550 deg C respectively to achieve similar density. Powder (P2) had zirconium alkoxide species on the particle surface which decomposed at about 300 deg C. The calcined powder had very weak agglomerates composed of fine, uniform zirconia crystals and/or aggregates and sintered to high density at 1150 deg C. The final ceramic had a very uniform microstructure with an average grain size of about 150nm and exhibited fracture strength as high as 1700 MPa. A detailed account of the formation of aggregates of strongly bonded crystallites during calcination of hydrous zirconia, influence of alcohol in producing soft agglomerates and the sintering characteristics of the powders is reported. 46 refs., 2 tabs., 15 figs

  2. Consistent microscopic and phenomenological analysis of composite particle opticle potential

    International Nuclear Information System (INIS)

    Mukhopadhyay, Sheela; Srivastava, D.K.; Ganguly, N.K.

    1976-01-01

    A microscopic calculation of composits particle optical potential has been done using a realistic nucleon-helion interaction and folding it with the density distribution of the targets. The second order effects were simulated by introducing a scaling factor which was searched on to reproduce the experimental scattering results. Composite particle optical potential was also derived from the nucleon-nucleus optical potential. The second order term was explicitly treated as a parameter. Elastic scattering of 20 MeV 3 H on targets ranging from 40 Ca to 208 Pb to 208 Pb have also been analysed using phenomenological optical model. Agreement of these results with the above calculations verified the consistency of the microscopic theory. But the equivalent sharp radius calculated with n-helion interaction was observed to be smaller than phenomenological value. This was attributed to the absence of saturation effects in the density-independent interaction used. Saturation has been introduced by a density dependent term of the form (1-c zetasup(2/3)), where zeta is the compound density of the target helion system. (author)

  3. Ultra-fine structures of Pd-Ag-HAp nanoparticle deposition on protruded TiO2 barrier layer for dental implant

    Science.gov (United States)

    Jang, Jae-Myung; Kim, Seung-Dai; Park, Tae-Eon; Choe, Han-Cheol

    2018-02-01

    The biocompatibility structure of an implant surface is of great importance to the formation of new bone tissue around the dental implant and also has a significant chemical reaction in the osseointegration process. Thus, ultra-fine Pd-Ag-HAp nanoparticles have been electrodeposited on protruded TiO2 barrier layer in mixed electrolyte solutions. Unusual protrusions patterns, which are assigned to Pd-Ag-HAp nanoparticles, can be clearly differentiated from a TiO2 nanotube oxide layer formed by an anodizing process. In the chemical bonding state, the surface characteristics of Pd/Ag/HAp compounds have been investigated by FE-SEM, EDS mapping analysis, and XPS analysis. The mapping dots of the elements including Ti, Ca, Pd, Ag, and P showed a homogeneous distribution throughout the entire surface when deposited onto the protruded TiO2 barrier layer. The XPS spectra of Ti-2p, O-1S, Pd-3d, and Ag-3d have been investigated, with the major XPS peak indicating Pd-3d. The Ag-3d level was clearly observed with further scanning of the Ca-2p region. Based on the results of the chemical states, the structural properties of the protrusion patterns were also examined after being deposited onto the barrier oxide film, resulting in the representative protrusion patterns being mainly composed of Pd-Ag-HAp compounds. The results of the soaking evaluation showed that the protrusion patterns and the protruded TiO2 barrier layer were all effective in regards to biocompatibility.

  4. Influence of spark plasma sintering conditions on the sintering and functional properties of an ultra-fine grained 316L stainless steel obtained from ball-milled powder

    Energy Technology Data Exchange (ETDEWEB)

    Keller, C., E-mail: clement.keller@insa-rouen.fr [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Tabalaiev, K.; Marnier, G. [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Noudem, J. [Laboratoire de Cristallographie des Matériaux, CNRS-UMR 6508, Université de Caen, ENSICAEN, 7 bd du Maréchal Juin, 14050 Caen (France); Sauvage, X. [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Hug, E. [Laboratoire de Cristallographie des Matériaux, CNRS-UMR 6508, Université de Caen, ENSICAEN, 7 bd du Maréchal Juin, 14050 Caen (France)

    2016-05-17

    In this work, 316L samples with submicrometric grain size were sintered by spark plasma sintering. To this aim, 316L powder was first ball-milled with different conditions to obtain nanostructured powder. The process control agent quantity and milling time were varied to check their influence on the crystallite size of milled powder. Samples were then sintered by spark plasma sintering using different sets of sintering parameters (temperature, dwell time and pressure). For each sample, grain size and density were systematically measured in order to investigate the influence of the sintering process on these two key microstructure parameters. Results show that suitable ball-milling and subsequent sintering can be employed to obtain austenitic stainless steel samples with grain sizes in the nanometer range with porosity lower than 3%. However, ball-milling and subsequent sintering enhance chromium carbides formation at the sample surface in addition to intragranular and intergranular oxides in the sample as revealed by X-ray diffraction and transmission electron microscopy. It has been shown that using Boron nitride together with graphite foils to protect the mold from powder welding prevent such carbide formation. For mechanical properties, results show that the grain size refinement strongly increases the hardness of the samples without deviation from Hall-Petch relationship despite the oxides formation. For corrosion resistance, grain sizes lower than a few micrometers involve a strong decrease in the pitting potential and a strong increase in passivation current. As a consequence, spark plasma sintering can be considered as a promising tool for ultra-fine grained austenitic stainless steel.

  5. Composition of heavy ions in solar energetic particle events

    International Nuclear Information System (INIS)

    Fan, C.Y.; Gloeckler, G.

    1983-01-01

    Recent advances in determining the elemental, charge state, and isotopic composition of approximatelt 1 to 20 MeV per nucleon ions in solar energetic particle (SEP) events and outline our current understanding of the nature of solar and interplanetary processes which may explain the observations. Average values of relative abundances measured in a large number of SEP events were found to be roughly energy independent in the approx. 1 to approx. 20 MeV per nucleon range, and showed a systematic deviation from photospheric abundances which seems to be organized in terms of the first ionization potential of the ion. Direct measurements of the charge states of SEPs revealed the surprisingly common presence of energetic He(+) along with heavy ion with typically coronal ionization states. High resolution measurements of isotopic abundance ratios in a small number of SEP events showed these to be consistent with the universal composition except for the puzzling overabundance of the SEP(22)Ne/(20)Ne relative to this isotopes ratio in the solar wind. The broad spectrum of observed elemental abundance variations, which in their extreme result in composition anomalies characteristic of (3)He rich, heavy ion rich and carbon poor SEP events, along with direct measurements of the ionization states of SEPs provided essential information on the physical characteristics of, and conditions in the source regions, as well as important constraints to possible models for SEP production

  6. Composition of heavy ions in solar energetic particle events

    International Nuclear Information System (INIS)

    Fan, C.Y.; Gloeckler, G.

    1983-01-01

    The elemental, charge state, and isotopic composition of approximately 1 to 20 MeV per nucleon ions in solar energetic particle (SEP) events was determined and current understanding of the nature of solar and interplanetary processes which may explain the observations are outlined. The composition within individual SEP events may vary both with time and energy, and will in general be different from that in other SEP events. Average values of relative abundances measured in a large number of SEP events, however are found to be roughly energy independent in the approximately 1 to approximately 20 MeV per nucleon range, and show a systematic deviation from photospheric abundances which seem to be organized in terms of the first ionization potential of the ion. Direct measurements of the charge states of SEPs have revealed the surprisingly common presence of energetic He(+) along with heavy ions with typical coronal ionization states. High resolution measurements of isotopic abundance ratios in a small number of SEP events show these to be consistent with the universal composition except for the puzzling overabundance of the SEP Ne-22 relative to this isotopes ratio in the solar wind

  7. Chemical characterization, nano-particle mineralogy and particle size distribution of basalt dust wastes

    Energy Technology Data Exchange (ETDEWEB)

    Dalmora, Adilson C. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração. Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Institute for Environmental Assessment and Water Studies (IDÆA), Spanish National Research Council (CSIC), C/Jordi Girona 18-26, 08034 Barcelona (Spain); Ramos, Claudete G.; Oliveira, Marcos L.S. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração. Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Teixeira, Elba C. [Fundação Estadual de Proteção Ambiental Henrique Luis Roessler, Porto Alegre, RS (Brazil); Kautzmann, Rubens M.; Taffarel, Silvio R. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração. Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Brum, Irineu A.S. de [Universidade Federal do Rio Grande do Sul, Escola de Engenharia, Departamento de Metalurgia, Centro de Tecnologia, Av. Bento Gonçalves, 9500. Bairro Agronomia. CEP: 91501-970 Porto Alegre, RS (Brazil); and others

    2016-01-01

    mineralogy and chemical composition in typical BDW samples highlights the need to develop cleaning procedures to minimize exposure to these natural fertilizing basalt dust wastes and is, thus, of direct relevance to both the industrial sector of basalt mining and to agriculture in the region. - Highlights: • Expansion in Brazilian basalt mining studies will increase human health information in this area. • Several samples were advanced nanoparticles techniques. • The compounds showed strong sorption ability to hazardous elements. • The advanced methodology has been applied to investigate elements occurrence and ultra-fine/nano-particles properties.

  8. Chemical characterization, nano-particle mineralogy and particle size distribution of basalt dust wastes

    International Nuclear Information System (INIS)

    Dalmora, Adilson C.; Ramos, Claudete G.; Oliveira, Marcos L.S.; Teixeira, Elba C.; Kautzmann, Rubens M.; Taffarel, Silvio R.; Brum, Irineu A.S. de

    2016-01-01

    composition in typical BDW samples highlights the need to develop cleaning procedures to minimize exposure to these natural fertilizing basalt dust wastes and is, thus, of direct relevance to both the industrial sector of basalt mining and to agriculture in the region. - Highlights: • Expansion in Brazilian basalt mining studies will increase human health information in this area. • Several samples were advanced nanoparticles techniques. • The compounds showed strong sorption ability to hazardous elements. • The advanced methodology has been applied to investigate elements occurrence and ultra-fine/nano-particles properties.

  9. Core–shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Chiemi; Ushimaru, Kazunori [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Horiishi, Nanao [Bengala Techno Laboratory, 9-5-1006, 1-1 Kodai, Miyamae-ku, Kawasaki 216-0007 (Japan); Tsuge, Takeharu [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Kitamoto, Yoshitaka, E-mail: kitamoto.y.aa@m.titech.ac.jp [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2015-05-01

    Core–shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core–shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body. - Highlights: • Core−shell composites with biodegradability and magnetism are prepared. • O/W emulsion stabilized by iron oxide nanoparticles is utilized for the preparation. • The nanoparticle's dispersibility is crucial for controlling the composite structure. • Composites loading a model drug are also prepared. • The model drug is released with decomposition of the composites.

  10. Localization of plastic yield and fracture mechanism in high-strength niobium alloy with ultra-fine particles of non-metallic phase

    International Nuclear Information System (INIS)

    Tyumentsev, A.N.; Gonchikov, V.Ch.; Korotaev, A.D.; Pinzhin, Yu.P.; Tyumentseva, S.F.

    1989-01-01

    The regularities of localization of plastic flow in high-strength dispersion-strengthened niobium alloy are studied. On the basis of investigations of the microstructure of strain localization zones the mechanism of stability losses of plastic flow including, the processes of diffusion of nonequilibrium vacancies in fields of nonuniform stresses, is proposed. The role of diffuse strain mechanisms during reorientation of the crystalline lattice is discussed. The regularities of fracture of high-strength alloy under conditions of rotational-shift instability of plastic flow are investigated

  11. An introduction to data analysis of airborne particle composition

    International Nuclear Information System (INIS)

    Hopke, P.K.

    1994-01-01

    A major problem facing air quality management personnel is the identification of sources of airborne particles and the quantitative apportionment of the aerosol mass to those sources. The ability to collect particle samples and analyze these samples for a suite of elements by such techniques as neutron activation analysis or x-ray fluorescence provides that data for the problem of resolving a series of complex mixtures into its components based on the profiles of the elements emitted by the various sources in the airshed. If all of the sources and their composition profiles are known, then the mass balance model becomes a multiple regression problem. If a series of samples have been analyzed without substantial information being available on the sources, factor analysis methods can be employed. In both situations, there are limits to the identification of specific sources or the location of the sources. Thus, other methods that combine chemical with meteorological data have been developed to assist in spatial identification of pollutant sources. There are also limitations to the ability of any statistical method to resolve sources in real world problems. The physical and statistical basis of these methods and their application to representative problems are reviewed in this report. (author). 42 refs, 5 figs, 5 tabs

  12. Preparation and characterization of temperature-responsive magnetic composite particles for multi-modal cancer therapy.

    Science.gov (United States)

    Yao, Aihua; Chen, Qi; Ai, Fanrong; Wang, Deping; Huang, Wenhai

    2011-10-01

    The temperature-responsive magnetic composite particles were synthesized by emulsion-free polymerization of N-isopropylacrylamide (NIPAAm) and acrylamide (Am) in the presence of oleic acid-modified Fe(3)O(4) nanoparticles. The magnetic properties and heat generation ability of the composite particles were characterized. Furthermore, temperature and alternating magnetic field (AMF) triggered drug release behaviors of vitamin B(12)-loaded composite particles were also examined. It was found that composite particles enabled drug release to be controlled through temperature changes in the neighborhood of lower critical solution temperature. Continuous application of AMF resulted in an accelerated release of the loaded drug. On the other hand, intermittent AMF application to the composite particles resulted in an "on-off", stepwise release pattern. Longer release duration and larger overall release could be achieved by intermittent application of AMF as compared to continuous magnetic field. Such composite particles may be used for magnetic drug targeting followed by simultaneous hyperthermia and drug release.

  13. Data Descriptor : Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition

    NARCIS (Netherlands)

    Schmale, Julia; Henning, Silvia; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Bougiatioti, Aikaterini; Kalivitis, Nikos; Stavroulas, Iasonas; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Kristensson, Adam; Iwamoto, Yoko; Pringle, Kirsty; Reddington, Carly; Aalto, Pasi; Äijälä, Mikko; Baltensperger, Urs; Bialek, Jakub; Birmili, Wolfram; Bukowiecki, Nicolas; Ehn, Mikael; Fjæraa, Ann Mari; Fiebig, Markus; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Furuya, Masaki; Hammer, Emanuel; Heikkinen, Liine; Herrmann, Erik; Holzinger, Rupert; Hyono, Hiroyuki; Kanakidou, Maria; Kiendler-Scharr, Astrid; Kinouchi, Kento; Kos, Gerard P A; Kulmala, Markku; Mihalopoulos, Nikolaos; Motos, Ghislain; Nenes, Athanasios; O'Dowd, Colin; Paramonov, Mikhail; Petäjä, Tuukka; Picard, David; Poulain, Laurent; Prévôt, André Stephan Henry; Slowik, Jay; Sonntag, Andre; Swietlicki, Erik; Svenningsson, Birgitta; Tsurumaru, Hiroshi; Wiedensohler, Alfred; Wittbom, Cerina; Ogren, John A.; Matsuki, Atsushi; Yum, Seong Soo; Myhre, Cathrine Lund; Carslaw, Ken; Stratmann, Frank; Gysel, Martin

    2017-01-01

    Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other

  14. Spherical composite particles of rice starch and microcrystalline cellulose: A new coprocessed excipient for direct compression

    OpenAIRE

    Limwong, Vasinee; Sutanthavibul, Narueporn; Kulvanich, Poj

    2004-01-01

    Composite particles of rice starch (RS) and microcrystalline cellulose were fabricated by spray-drying technique to be used as a directly compressible excipient. Two size fractions of microcry stalline cellulose, sieved (MCS) and jet milled (MCJ), having volumetric mean diameter (D50) of 13.61 and 40.51 μm, respectively, were used to form composite particles with RS in various mixing ratios. The composite particles produced were evaluated for their powder and compression properties. Although ...

  15. A microstructure-composition map of a ternary liquid/liquid/particle system with partially-wetting particles.

    Science.gov (United States)

    Yang, Junyi; Roell, David; Echavarria, Martin; Velankar, Sachin S

    2017-11-22

    We examine the effect of composition on the morphology of a ternary mixture comprising two molten polymeric liquid phases (polyisobutylene and polyethylene oxide) and micron-scale spherical silica particles. The silica particles were treated with silanes to make them partially wetted by both polymers. Particle loadings up to 30 vol% are examined while varying the fluid phase ratios across a wide range. Numerous effects of particle addition are catalogued, stabilization of Pickering emulsions and of interfacially-jammed co-continuous microstructures, meniscus-bridging of particles, particle-induced coalescence of the dispersed phase, and significant shifts in the phase inversion composition. Many of the effects are asymmetric, for example particle-induced coalescence is more severe and drop sizes are larger when polyisobutylene is the continuous phase, and particles promote phase continuity of the polyethylene oxide. These asymmetries are likely attributable to a slight preferential wettability of the particles towards the polyethylene oxide. A state map is constructed which classifies the various microstructures within a triangular composition diagram. Comparisons are made between this diagram vs. a previous one constructed for the case when particles are fully-wetted by polyethylene oxide.

  16. Investigation of the low-speed impact behavior of dual particle size metal matrix composites

    International Nuclear Information System (INIS)

    Cerit, Afşın Alper

    2014-01-01

    Highlights: • AA2124 matrix composites reinforced with SiC particles were manufactured. • Low-speed impact behaviors of composites were investigated. • Composites were manufactured with single (SPS) and dual particle sizes (DPS). • Impact behaviors of DPS composites are more favorable than the SPS composites. • Approximately 50–60% of input energy was absorbed by the composite samples. - Abstract: SiC-reinforced aluminum matrix composites were manufactured by powder metallurgy using either single or dual particle sized SiC powders and samples sintered under argon atmosphere. Quasi-static loading, low-speed impact tests and hardness tests were used to investigate mechanical behavior and found that dual particle size composites had improved hardness and impact performance compared to single particle size composites. Sample microstructure, particle distributions, plastic deformations and post-testing damages were examined by scanning electron microscopy and identified microstructure agglomerations in SPS composites. Impact traces were characterized by broken and missing SiC particles and plastically deformed composite areas

  17. Potential of using coconut shell particle fillers in eco-composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Sarki, J., E-mail: sarksj@yahoo.com [Department of Fire and Safety, Kaduna International Airport, Kaduna-State (Nigeria); Department of Metallurgical and Materials Engineering, Ahmadu Bello University, Samaru, Zaria (Nigeria); Hassan, S.B., E-mail: hassbolaji@yahoo.com [Department of Fire and Safety, Kaduna International Airport, Kaduna-State (Nigeria); Department of Metallurgical and Materials Engineering, Ahmadu Bello University, Samaru, Zaria (Nigeria); Aigbodion, V.S., E-mail: aigbodionv@yahoo.com [Department of Fire and Safety, Kaduna International Airport, Kaduna-State (Nigeria); Department of Metallurgical and Materials Engineering, Ahmadu Bello University, Samaru, Zaria (Nigeria); Oghenevweta, J.E. [Department of Fire and Safety, Kaduna International Airport, Kaduna-State (Nigeria); Department of Metallurgical and Materials Engineering, Ahmadu Bello University, Samaru, Zaria (Nigeria)

    2011-02-03

    Research highlights: > The production and characterization of the composites has been done. - Abstract: Morphology and mechanical properties of coconut shell particles reinforced epoxy composites were evaluated to assess the possibility of using it as a new material in engineering applications. Coconut shell filled composites were prepared from epoxy polymer matrix containing up to 30 wt% coconut shell fillers. The effects of coconut shell particle content on the mechanical properties of the composites were investigated. Scanning electron microscopy (SEM) of the composite surfaces indicates that there are fairly good interfacial interaction between coconut shell particles and epoxy matrix. It was shown that the value of tensile modulus and tensile strength values increases with the increase of coconut shell particles content, while the impact strength slightly decreased, compared to pure epoxy resin. This work has shown that coconut shell particles can be used to improve properties of epoxy polymer composite to be used in eco-buildings.

  18. Potential of using coconut shell particle fillers in eco-composite materials

    International Nuclear Information System (INIS)

    Sarki, J.; Hassan, S.B.; Aigbodion, V.S.; Oghenevweta, J.E.

    2011-01-01

    Research highlights: → The production and characterization of the composites has been done. - Abstract: Morphology and mechanical properties of coconut shell particles reinforced epoxy composites were evaluated to assess the possibility of using it as a new material in engineering applications. Coconut shell filled composites were prepared from epoxy polymer matrix containing up to 30 wt% coconut shell fillers. The effects of coconut shell particle content on the mechanical properties of the composites were investigated. Scanning electron microscopy (SEM) of the composite surfaces indicates that there are fairly good interfacial interaction between coconut shell particles and epoxy matrix. It was shown that the value of tensile modulus and tensile strength values increases with the increase of coconut shell particles content, while the impact strength slightly decreased, compared to pure epoxy resin. This work has shown that coconut shell particles can be used to improve properties of epoxy polymer composite to be used in eco-buildings.

  19. Single-particle Analyses of Compositions, Morphology, and Viscosity of Aerosol Particles Collected During GoAmazon2014

    Science.gov (United States)

    Adachi, K.; Gong, Z.; Bateman, A. P.; Martin, S. T.; Cirino, G. G.; Artaxo, P.; Sedlacek, A. J., III; Buseck, P. R.

    2014-12-01

    Single-particle analysis using transmission electron microscopy (TEM) shows composition and morphology of individual aerosol particles collected during the GoAmazon2014 campaign. These TEM results indicate aerosol types and mixing states, both of which are important for evaluating particle optical properties and cloud condensation nuclei activity. The samples were collected at the T3 site, which is located in the Amazon forest with influences from the urban pollution plume from Manaus. Samples were also collected from the T0 site, which is in the middle of the jungle with minimal to no influences of anthropogenic sources. The aerosol particles mainly originated from 1) anthropogenic pollution (e.g., nanosphere soot, sulfate), 2) biogenic emissions (e.g., primary biogenic particles, organic aerosols), and 3) long-range transport (e.g., sea salts). We found that the biogenic organic aerosol particles contain homogeneously distributed potassium. Particle viscosity is important for evaluating gas-particle interactions and atmospheric chemistry for the particles. Viscosity can be estimated from the rebounding behavior at controlled relative humidities, i.e., highly viscous particles display less rebound on a plate than low-viscosity particles. We collected 1) aerosol particles from a plate (non-rebounded), 2) those that had rebounded from the plate and were then captured onto an adjacent sampling plate, and 3) particles from ambient air using a separate impactor sampler. Preliminary results show that more than 90% of non-rebounded particles consisted of nanosphere soot with or without coatings. The coatings mostly consisted of organic matter. Although rebounded particles also contain nanosphere soot (number fraction 64-69%), they were mostly internally mixed with sulfate, organic matter, or their mixtures. TEM tilted images suggested that the rebounded particles were less deformed on the substrate, whereas the non-rebounded particles were more deformed, which could

  20. An effective strong-coupling theory of composite particles in UV-domain

    Science.gov (United States)

    Xue, She-Sheng

    2017-05-01

    We briefly review the effective field theory of massive composite particles, their gauge couplings and characteristic energy scale in the UV-domain of UV-stable fixed point of strong four-fermion coupling, then mainly focus the discussions on the decay channels of composite particles into the final states of the SM gauge bosons, leptons and quarks. We calculate the rates of composite bosons decaying into two gauge bosons γγ, γZ 0, W + W -, Z 0 Z 0 and give the ratios of decay rates of different channels depending on gauge couplings only. It is shown that a composite fermion decays into an elementary fermion and a composite boson, the latter being an intermediate state decays into two gauge bosons, leading to a peculiar kinematics of final states of a quark (or a lepton) and two gauge bosons. These provide experimental implications of such an effective theory of composite particles beyond the SM. We also present some speculative discussions on the channels of composite fermions decaying into W W , W Z and ZZ two boson-tagged jets with quark jets, or to four-quark jets. Moreover, at the same energy scale of composite particles produced in high-energy experiments, composite particles are also produced by high-energy sterile neutrino (dark matter) collisions, their decays lead to excesses of cosmic ray particles in space and signals of SM particles in underground laboratories.

  1. An effective strong-coupling theory of composite particles in UV-domain

    Energy Technology Data Exchange (ETDEWEB)

    Xue, She-Sheng [ICRANet,Piazzale della Repubblica 10, 10-65122, Pescara (Italy); Physics Department, Sapienza University of Rome,Piazzale Aldo Moro 5, 00185 Roma (Italy)

    2017-05-29

    We briefly review the effective field theory of massive composite particles, their gauge couplings and characteristic energy scale in the UV-domain of UV-stable fixed point of strong four-fermion coupling, then mainly focus the discussions on the decay channels of composite particles into the final states of the SM gauge bosons, leptons and quarks. We calculate the rates of composite bosons decaying into two gauge bosons γγ, γZ{sup 0}, W{sup +}W{sup −}, Z{sup 0}Z{sup 0} and give the ratios of decay rates of different channels depending on gauge couplings only. It is shown that a composite fermion decays into an elementary fermion and a composite boson, the latter being an intermediate state decays into two gauge bosons, leading to a peculiar kinematics of final states of a quark (or a lepton) and two gauge bosons. These provide experimental implications of such an effective theory of composite particles beyond the SM. We also present some speculative discussions on the channels of composite fermions decaying into WW, WZ and ZZ two boson-tagged jets with quark jets, or to four-quark jets. Moreover, at the same energy scale of composite particles produced in high-energy experiments, composite particles are also produced by high-energy sterile neutrino (dark matter) collisions, their decays lead to excesses of cosmic ray particles in space and signals of SM particles in underground laboratories.

  2. Composite material reinforced with atomized quasicrystalline particles and method of making same

    Science.gov (United States)

    Biner, S.B.; Sordelet, D.J.; Lograsso, B.K.; Anderson, I.E.

    1998-12-22

    A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by consolidating generally spherical, atomized quasicrystalline aluminum-transition metal alloy particles and aluminum or aluminum alloy particles to form a body that is cold and/or hot reduced to form composite products, such as composite plate or sheet, with interfacial bonding between the quasicrystalline particles and the aluminum or aluminum alloy matrix without damage (e.g. cracking or shape change) of the reinforcement particles. The cold and/or hot worked composite exhibits substantially improved yield strength, tensile strength, Young`s modulus (stiffness). 3 figs.

  3. Microstructural evolution by heating at 1673-2373 K in ultra-fine grained W-(0.25-1.5)%TiC consolidates

    International Nuclear Information System (INIS)

    Hidaka, M.; Sakamoto, T.; Kobayashi, S.; Nakai, K.; Kurishita, H.; Arakawa, H.

    2007-01-01

    Full text of publication follows: Ultra-fine grained (UFG) W-TiC consolidates with nearly full densification are expected to be very promising for their use as divertors and structural materials exposed to irradiation environments because they exhibit good resistance to irradiations with fast neutrons, helium-ions and hydrogen-ions. In view of exposure to high heat loading on divertors, it is necessary to examine microstructural evolution due to high temperature heating in UFG W-TiC consolidates, which is closely related to recrystallization embrittlement. The objective of this study is to clarify how the microstructures in UFG W-TiC consolidates change with annealing at 1673-2373 K, with emphasis on the effects of TiC additions and nano-sized Ar bubbles retained in UFG W-TiC consolidates fabricated by mechanical alloying (MA) in an Ar atmosphere. UFG W-(0.25, 0.5, 0.8, 1.1, 1.5)%TiC (in wt%) consolidates were fabricated by powder metallurgical methods utilizing MA with 3MPDA (three mutually perpendicular directions agitation) bail mill in an atmosphere of purified H 2 (MA-H 2 ) or Ar (MA-Ar), followed by hot isostatic pressing (HIP) at 1623 K. Thin foils for transmission electron microscopy (TEM) observations were prepared from each of the as-HIPed consolidates and subjected to annealing in vacuum at temperatures from 1673 to 2373 K for 3.6 ks by radio-frequency induction heating. TEM examinations and EDX analyses were made using a JEM-2000FX and JEM-4000FX operating at 200 and 400 kV, respectively. It is shown that the as-HIPed specimens exhibit equiaxed grain sizes of 40 to 200 nm which decrease with increasing TiC addition, but the grain size tends to saturate around 1 wt% TiC addition. The nano-sized Ar bubbles in W-TiC with MA-Ar are observed in approximately half of the grains and provide a significant grain refinement effect: The grain size in W-TiC with MA-Ar is approximately half of that with MA-H 2 . Such Ar bubbles are retained even after heating at

  4. Role of powder preparation route on microstructure and mechanical properties of Al-TiB2 composites fabricated by accumulative roll bonding (ARB)

    International Nuclear Information System (INIS)

    Askarpour, M.; Sadeghian, Z.; Reihanian, M.

    2016-01-01

    Accumulative roll bonding (ARB) was conducted up to seven cycles to fabricate Al-TiB 2 particulate metal matrix composites. The reinforcing particles were prepared and used in three different processing conditions: as-received TiB 2 , mixed TiB 2 -Al and in-situ synthesized TiB 2 -Al. The mixed TiB 2 -Al powder was produced by milling of TiB 2 with Al powder and in-situ synthesized TiB 2 -Al powder was prepared by mechanical alloying (MA) through inducing TiB 2 particles in the Al with various composition of 10, 20 and 30 wt% Al. Transmission electron microscope (TEM) and scanning electron microscope (SEM) were used to evaluate the microstructure of the produced composites. The composite obtained from the in-situ TiB 2 -Al powder showed the most uniform distribution of particles and exhibited the highest tensile strength of about 177 MPa in comparison with the composites reinforced with the as-received TiB 2 (156 MPa) and mixed TiB 2 -Al powder (160 MPa). After seven ARB cycles, an ultra-fine grained structure with the average size of about 300 nm was obtained in the composite reinforced with in-situ TiB 2 -Al powder. The appearance of dimples in tensile fracture surfaces revealed a ductile-type fracture in the produced composites.

  5. Role of powder preparation route on microstructure and mechanical properties of Al-TiB{sub 2} composites fabricated by accumulative roll bonding (ARB)

    Energy Technology Data Exchange (ETDEWEB)

    Askarpour, M.; Sadeghian, Z., E-mail: z.sadeghian@scu.ac.ir; Reihanian, M.

    2016-11-20

    Accumulative roll bonding (ARB) was conducted up to seven cycles to fabricate Al-TiB{sub 2} particulate metal matrix composites. The reinforcing particles were prepared and used in three different processing conditions: as-received TiB{sub 2}, mixed TiB{sub 2}-Al and in-situ synthesized TiB{sub 2}-Al. The mixed TiB{sub 2}-Al powder was produced by milling of TiB{sub 2} with Al powder and in-situ synthesized TiB{sub 2}-Al powder was prepared by mechanical alloying (MA) through inducing TiB{sub 2} particles in the Al with various composition of 10, 20 and 30 wt% Al. Transmission electron microscope (TEM) and scanning electron microscope (SEM) were used to evaluate the microstructure of the produced composites. The composite obtained from the in-situ TiB{sub 2}-Al powder showed the most uniform distribution of particles and exhibited the highest tensile strength of about 177 MPa in comparison with the composites reinforced with the as-received TiB{sub 2} (156 MPa) and mixed TiB{sub 2}-Al powder (160 MPa). After seven ARB cycles, an ultra-fine grained structure with the average size of about 300 nm was obtained in the composite reinforced with in-situ TiB{sub 2}-Al powder. The appearance of dimples in tensile fracture surfaces revealed a ductile-type fracture in the produced composites.

  6. Inter-particle Interactions in Composites of Antiferromagnetic Nanoparticles

    DEFF Research Database (Denmark)

    Frandsen, Cathrine; Mørup, Steen

    2003-01-01

    -Fe2O3 and Fe-57-doped NiO particles. The effect of NiO particles on alpha-FeA particles was a shorter relaxation time and an induced Morin transition, which usually is absent in alpha-Fe2O3 nanoparticles. Spectra of alpha-Fe2O3 particles, prepared by drying suspensions with added Co2+ and Ni2+ ions......We have prepared mixtures of alpha-Fe2O3, CoO, and NiO nanoparticles by drying aqueous suspensions of the particles. The magnetic properties were studied by Mossbauer spectroscopy. The measurements showed that interactions with CoO particles suppress the superparamagnetic relaxation of both alpha......, showed that the suspension medium can affect the magnetic properties of the alpha-FeA particles significantly, but not in the same way as the CoO or NiO nanoparticles. Therefore, a strong inter-particle exchange interaction between particles of different materials seems to be responsible for the magnetic...

  7. The impact of aerosol composition on the particle to gas partitioning of reactive mercury.

    Science.gov (United States)

    Rutter, Andrew P; Schauer, James J

    2007-06-01

    A laboratory system was developed to study the gas-particle partitioning of reactive mercury (RM) as a function of aerosol composition in synthetic atmospheric particulate matter. The collection of RM was achieved by filter- and sorbent-based methods. Analyses of the RM collected on the filters and sorbents were performed using thermal extraction combined with cold vapor atomic fluorescence spectroscopy (CVAFS), allowing direct measurement of the RM load on the substrates. Laboratory measurements of the gas-particle partitioning coefficients of RM to atmospheric aerosol particles revealed a strong dependence on aerosol composition, with partitioning coefficients that varied by orders of magnitude depending on the composition of the particles. Particles of sodium nitrate and the chlorides of potassium and sodium had high partitioning coefficients, shifting the RM partitioning toward the particle phase, while ammonium sulfate, levoglucosan, and adipic acid caused the RM to partition toward the gas phase and, therefore, had partitioning coefficients that were lower by orders of magnitude.

  8. Effect of particle size on microstructure and mechanical properties of composites produced by ARB process

    Energy Technology Data Exchange (ETDEWEB)

    Jamaati, Roohollah, E-mail: r.jamaatikenari@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Amirkhanlou, Sajjad; Toroghinejad, Mohammad Reza; Niroumand, Behzad [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2011-02-25

    Research highlights: {yields} Microstructure of MMC with larger particles becomes completely uniform, sooner. {yields} When the number of cycles increased, tensile strength for both samples improved. {yields} Up to the seventh cycle, tensile strength of MMC with larger particles was bigger. {yields} First, the tensile elongation of MMCs was decreased, and then it was improved. - Abstract: In the present work, Al/10 vol.% SiC metal matrix composite (MMC) was manufactured by accumulative roll bonding (ARB) process. The silicon carbide particles with two various particle sizes of 40 and 2 {mu}m were used. Effect of particle size on microstructure (by scanning electron microscopy) and mechanical properties (tensile strength and elongation) at various ARB cycles was investigated. It was found that the microstructural evolution in MMC with 40 {mu}m particle size was more salient compared to the MMCs with 2 {mu}m particle size. Also, the composite strip with 40 {mu}m particle size became uniform with high bonding quality and without any porosity sooner than the strip of 2 {mu}m particle size. Moreover, when the number of cycles was increased, the tensile strength for both samples was improved. The tensile strength of the composite strip with 40 {mu}m particle size was more than the composite strip with 2 {mu}m up to the seventh cycle. By increasing the number of cycles after the seventh cycle, the value of tensile strength of MMC with 40 {mu}m particle size became saturated and then decreased, and its tensile strength became less than that of the composite with 2 {mu}m particle size for the ninth and eleventh cycles. Up to the seventh cycle, when the number of ARB cycles was increased, the elongation of composite strips was decreased, but after the ninth cycle, the tensile elongation for both samples was improved.

  9. Effect of particle size on microstructure and mechanical properties of composites produced by ARB process

    International Nuclear Information System (INIS)

    Jamaati, Roohollah; Amirkhanlou, Sajjad; Toroghinejad, Mohammad Reza; Niroumand, Behzad

    2011-01-01

    Research highlights: → Microstructure of MMC with larger particles becomes completely uniform, sooner. → When the number of cycles increased, tensile strength for both samples improved. → Up to the seventh cycle, tensile strength of MMC with larger particles was bigger. → First, the tensile elongation of MMCs was decreased, and then it was improved. - Abstract: In the present work, Al/10 vol.% SiC metal matrix composite (MMC) was manufactured by accumulative roll bonding (ARB) process. The silicon carbide particles with two various particle sizes of 40 and 2 μm were used. Effect of particle size on microstructure (by scanning electron microscopy) and mechanical properties (tensile strength and elongation) at various ARB cycles was investigated. It was found that the microstructural evolution in MMC with 40 μm particle size was more salient compared to the MMCs with 2 μm particle size. Also, the composite strip with 40 μm particle size became uniform with high bonding quality and without any porosity sooner than the strip of 2 μm particle size. Moreover, when the number of cycles was increased, the tensile strength for both samples was improved. The tensile strength of the composite strip with 40 μm particle size was more than the composite strip with 2 μm up to the seventh cycle. By increasing the number of cycles after the seventh cycle, the value of tensile strength of MMC with 40 μm particle size became saturated and then decreased, and its tensile strength became less than that of the composite with 2 μm particle size for the ninth and eleventh cycles. Up to the seventh cycle, when the number of ARB cycles was increased, the elongation of composite strips was decreased, but after the ninth cycle, the tensile elongation for both samples was improved.

  10. Morphology, Mechanical Properties and Dimensional Stability of Biomass Particles/High Density Polyethylene Composites: Effect of Species and Composition

    Directory of Open Access Journals (Sweden)

    Binshan Mu

    2018-03-01

    Full Text Available The utilization of four types of biomass particles, including hardwood (poplar, softwood (radiata pine, crop (wheat straw and bamboo (moso bamboo, as reinforcing fillers in preparing high density polyethylene (HDPE based composites was studied. To improve interfacial compatibility, maleic anhydride grafted polyethylene (MAPE was applied as the coupling agent. The effects of the biomass species on the mechanical and water absorption properties of the resulting composites were evaluated based on chemical composition analysis. A creep-recovery test was conducted in single cantilever mode using a dynamic mechanical analyzer. Results show that the four types of biomass particles had similar chemical compositions but different composition contents. Poplar particles with high cellulose content loading in the HDPE matrix exhibited higher tensile and flexure properties and creep resistance. Fracture morphology analysis indicated a weak particle-matrix interface in wheat straw based composites. Given the high crystallinity and minimum hemicellulose content, the moso bamboo reinforced composite showed high impact strength and better water resistance.

  11. Determination of the area density and composition of alloy film using dual alpha particle energy loss

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiaojun, E-mail: maxj802@163.com [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Bo; Gao, Dangzhong [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Xu, Jiayun [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Tang, Yongjian [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)

    2017-02-01

    A novel method based on dual α-particles energy loss (DAEL) is proposed for measuring the area density and composition of binary alloy films. In order to obtain a dual-energy α-particles source, an ingenious design that utilizes the transmitted α-particles traveling the thin film as a new α-particles source is presented. Using the DAEL technique, the area density and composition of Au/Cu film are determined accurately with an uncertainty of better than 10%. Finally, some measures for improving the combined uncertainty are discussed.

  12. Influence of particle arrangement on the permittivity of an elastomeric composite

    Directory of Open Access Journals (Sweden)

    Peiying J. Tsai

    2017-01-01

    Full Text Available Elastomers are used as dielectric layers contained between the parallel conductive plates of capacitors. The introduction of filler particles into an elastomer changes its permittivity ε. When particle organization in a composite is intentionally varied, this alters its capacitance. Using numerical simulations, we examine how conductive particle chains introduced into polydimethylsiloxane (PDMS alter ε. The effects of filler volume fraction ψ, interparticle d and interchain spacing a, zigzag angle θ between adjacent particles and overall chain orientation, particle size r, and clearance h between particles and the conductive plates are characterized. When filler particles are organized into chainlike structures rather than being just randomly distributed in the elastomer matrix, ε increases by as much as 85%. When particles are organized into chainlike forms, ε increases with increasing ψ and a, but decreases with increasing d and θ. A composite containing smaller particles has a higher ε when ψ<9% while larger particles provide greater enhancement when ψ is larger than that value. To enhance ε, adjacent particles must be interconnected and the overall chain direction should be oriented perpendicular to the conductive plates. These results are useful for additive manufacturing on electrical applications of elastomeric composites.

  13. Influence of particle arrangement on the permittivity of an elastomeric composite

    Science.gov (United States)

    Tsai, Peiying J.; Nayak, Suchitra; Ghosh, Suvojit; Puri, Ishwar K.

    2017-01-01

    Elastomers are used as dielectric layers contained between the parallel conductive plates of capacitors. The introduction of filler particles into an elastomer changes its permittivity ɛ. When particle organization in a composite is intentionally varied, this alters its capacitance. Using numerical simulations, we examine how conductive particle chains introduced into polydimethylsiloxane (PDMS) alter ɛ. The effects of filler volume fraction ψ, interparticle d and interchain spacing a, zigzag angle θ between adjacent particles and overall chain orientation, particle size r, and clearance h between particles and the conductive plates are characterized. When filler particles are organized into chainlike structures rather than being just randomly distributed in the elastomer matrix, ɛ increases by as much as 85%. When particles are organized into chainlike forms, ɛ increases with increasing ψ and a, but decreases with increasing d and θ. A composite containing smaller particles has a higher ɛ when ψ <9 % while larger particles provide greater enhancement when ψ is larger than that value. To enhance ɛ, adjacent particles must be interconnected and the overall chain direction should be oriented perpendicular to the conductive plates. These results are useful for additive manufacturing on electrical applications of elastomeric composites.

  14. Spherical composite particles of rice starch and microcrystalline cellulose: a new coprocessed excipient for direct compression.

    Science.gov (United States)

    Limwong, Vasinee; Sutanthavibul, Narueporn; Kulvanich, Poj

    2004-03-12

    Composite particles of rice starch (RS) and microcrystalline cellulose were fabricated by spray-drying technique to be used as a directly compressible excipient. Two size fractions of microcrystalline cellulose, sieved (MCS) and jet milled (MCJ), having volumetric mean diameter (D50) of 13.61 and 40.51 microm, respectively, were used to form composite particles with RS in various mixing ratios. The composite particles produced were evaluated for their powder and compression properties. Although an increase in the microcrystalline cellulose proportion imparted greater compressibility of the composite particles, the shape of the particles was typically less spherical with rougher surface resulting in a decrease in the degree of flowability. Compressibility of composite particles made from different size fractions of microcrystalline cellulose was not different; however, using MCJ, which had a particle size range close to the size of RS (D50 = 13.57 microm), provided more spherical particles than using MCS. Spherical composite particles between RS and MCJ in the ratio of 7:3 (RS-MCJ-73) were then evaluated for powder properties and compressibility in comparison with some marketed directly compressible diluents. Compressibility of RS-MCJ-73 was greater than commercial spray-dried RS (Eratab), coprocessed lactose and microcrystalline cellulose (Cellactose), and agglomerated lactose (Tablettose), but, as expected, lower than microcrystalline cellulose (Vivapur 101). Flowability index of RS-MCJ-73 appeared to be slightly lower than Eratab but higher than Vivapur 101, Cellactose, and Tablettose. Tablets of RS-MCJ-73 exhibited low friability and good self-disintegrating property. It was concluded that these developed composite particles could be introduced as a new coprocessed direct compression excipient.

  15. Improvement in mechanical properties of high concentration particle doped thermoset composites

    International Nuclear Information System (INIS)

    Ahmed, N.

    2009-01-01

    The paper relates to high concentration particle doped composites based on thermosetting polymer systems in which the sequential addition of particles of certain size distribution is followed by curing and casting of the slurry to form a thermoset composite. Conventionally, at a threshold of beyond 90% of particles by weight of the polymer using triglyceride, the mechanical properties of the composite exhibit a sharp decline. The present research mitigates this behavior by incorporating a unique combination of cross-linking agents in the base polymer to impart exceptional mechanical properties to the composite. More specifically, the base polymer consists of butadiene, with triglyceride as cross-linking agent together with hydroxy-alkane as the chain extension precursors, when tune to the appropriate level of hard segment ratio in the polymer. An added advantage according to the present work resides in the analytical nature of butadiene pre-polymer as opposed to natural product; traditional composites based on natural sources are hampered by their inconsistent chemical composition and poor shelf life in the fabricated composite. The thermoset composite according the present research exhibits superior tensile strength (200-300 psi) properties using particle loading as high as 92% by weight of the fabricated composite as measured on a Tinius Olsen machine. Dynamic Mechanical Testing reveals interesting combination of storage and loss moduli in the fabricated specimens as a function of optimizing the thermal response of the viscoelastic composite to imposed vibration loading. (author)

  16. Microstructure and hardness of WC-Co particle reinforced iron matrix surface composite

    Directory of Open Access Journals (Sweden)

    Zhang Peng

    2013-11-01

    Full Text Available In this study, a high Cr cast iron surface composite material reinforced with WC-Co particles 2-6 mm in size was prepared using a pressureless sand mold infiltration casting technique. The composition, microstructure and hardness were determined by means of energy dispersive spectrometry (EDS, electron probe microanalysis (EPMA, scanning electron microscope (SEM and Rockwell hardness measurements. It is determined that the obtained composite layer is about 15 mm thick with a WC-Co particle volumetric fraction of ~38%. During solidification, interface reaction takes place between WC-Co particles and high chromium cast iron. Melting and dissolving of prefabricated particles are also found, suggesting that local Co melting and diffusion play an important role in promoting interface metallurgical bonding. The composite layer is composed of ferrite and a series of carbides, such as (Cr, W, Fe23C6, WC, W2C, M6C and M12C. The inhomogeneous hardness in the obtained composite material shows a gradient decrease from the particle reinforced metal matrix composite layer to the matrix layer. The maximum hardness of 86.3 HRA (69.5 HRC is obtained on the particle reinforced surface, strongly indicating that the composite can be used as wear resistant material.

  17. Influence of coal slurry particle composition on pipeline hydraulic transportation behavior

    Science.gov (United States)

    Li-an, Zhao; Ronghuan, Cai; Tieli, Wang

    2018-02-01

    Acting as a new type of energy transportation mode, the coal pipeline hydraulic transmission can reduce the energy transportation cost and the fly ash pollution of the conventional coal transportation. In this study, the effect of average velocity, particle size and pumping time on particle composition of coal particles during hydraulic conveying was investigated by ring tube test. Meanwhile, the effects of particle composition change on slurry viscosity, transmission resistance and critical sedimentation velocity were studied based on the experimental data. The experimental and theoretical analysis indicate that the alter of slurry particle composition can lead to the change of viscosity, resistance and critical velocity of slurry. Moreover, based on the previous studies, the critical velocity calculation model of coal slurry is proposed.

  18. Self-sensing piezoresistive cement composite loaded with carbon black particles

    KAUST Repository

    Monteiro, André O.; Cachim, Paulo B.; Da Costa, Pedro M. F. J.

    2017-01-01

    Strain sensors can be embedded in civil engineering infrastructures to perform real-time service life monitoring. Here, the sensing capability of piezoresistive cement-based composites loaded with carbon black (CB) particles is investigated. Several

  19. Hygroscopic Properties and Chemical Composition of Aerosol Particles at the High Alpine Site Jungfraujoch

    Energy Technology Data Exchange (ETDEWEB)

    Weingarter, E.; Gysel, M.; Sjoegren, S.; Baltesperger, U.; Alfarra, R.; Bower, K.; Coe, H.

    2004-03-01

    The hygroscopic properties of aerosols play a significant role in atmospheric phenomena such as acid deposition, visibility degradation and climate change. Due to the hygroscopic growth of the particles, water is often the dominant component of the ambient aerosol at high relative humidity (RH) conditions. The ability to absorb water depends on the particle chemical composition, dry size, and shape. The aim of this study is to link the chemical composition of the atmospheric aerosol to its hygroscopic properties. (author)

  20. Mechanical behaviour of aluminium matrix composites with particles in high temperature

    International Nuclear Information System (INIS)

    Amigo, V.; Salvador, M. D.; Ferrer, C.; Costa d, C. E.; Busquets, D.

    2001-01-01

    The aluminium matrix composites materials reinforced by ceramic particles can be elaborated by powder metallurgy techniques, with extrusion processes. These can provide new materials, with a better mechanical behaviour and moreover when we need those properties at higher temperatures. Aluminium alloy reinforced composites with silicon nitride particles by powder extrusion process was done. Their mechanical properties were characterised at room and elevated temperatures. (Author) 28 refs

  1. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles

    OpenAIRE

    Farzin Heravi; Mohammad Ramezani; Maryam Poosti; Mohsen Hosseini; Arezoo Shajiei; Farzaneh Ahrari

    2013-01-01

    Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco’s Modified Eagle’s Medium (DMEM). The extrac...

  2. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering.

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-11-30

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al 15 (Fe,Cr)₃Si₂ or α-Al 15 (Fe,Mn)₃Si₂ phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5.

  3. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-01-01

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al15(Fe,Cr)3Si2 or α-Al15(Fe,Mn)3Si2 phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5. PMID:28774094

  4. The effect of particles in different sizes on the mechanical properties of spray formed steel composites

    DEFF Research Database (Denmark)

    Petersen, Kenneth; Pedersen, A. S.; Pryds, N.

    2000-01-01

    particle size of 46 and 134 μm were carried out with respect to their mechanical properties e.g. wear resistance and tensile strength. It was found that the addition of Al2O3 particles to the steel improves its wear properties and reduces the elongation and tensile strength of the material......The main objective of the work was to investigate the effect of addition of ceramic particles with different size distributions on the mechanical properties, e.g. wear resistance and tensile strength, of spray formed materials. The experiments were carried out in a spray-forming unit at Risø...... National Laboratory, Denmark, where composites with a low alloyed boron steel (0.2 wt.% carbon) matrix containing alumina particles were produced. A comparison between cast hot-rolled material without particles, spray formed material without particles and the spray formed composites with an average ceramic...

  5. Bio-composites based on polypropylene reinforced with Almond Shells particles: Mechanical and thermal properties

    International Nuclear Information System (INIS)

    Essabir, H.; Nekhlaoui, S.; Malha, M.; Bensalah, M.O.; Arrakhiz, F.Z.; Qaiss, A.; Bouhfid, R.

    2013-01-01

    Highlights: • Almond Shells (ASs) particles have been used as reinforcement in polypropylene matrix. • The SEBS-g-MA has been used to improve the adhesion between matrix and particles. • The mechanical and thermal properties of the composite have been improved by the AS. - Abstract: In this work, Almond Shells (ASs) particles are used as reinforcement in a thermoplastic matrix as polypropylene (PP). Composites containing Almond Shells (ASs) particles with and without compatibilizer (maleic anhydride grafted polypropylene; SEBS-g-MA) for various particle content (5, 10, 15, 20, 25, 30 wt.%) was investigated by means of studying their mechanical, thermal and rheological properties. The composites were prepared in a twin-screw extruder and assessed by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), tensile testing and Dynamic Mechanical Analysis (DMA). Results show a clear improvement in mechanical and rheological properties from the use of Almond Shells particles in the matrix without and with maleic anhydride compatibilizer, corresponding to a gain in Young’s modulus of 56.2% and 35% respectively, at 30 wt.% particle loading. Thermal analysis revealed that incorporation of particle in the composites resulted in increase in the initial thermal decomposition temperatures

  6. Review on preparation techniques of particle reinforced metal matrix composites

    Directory of Open Access Journals (Sweden)

    HAO Bin

    2006-02-01

    Full Text Available This paper reviews the investigation status of the techniques for preparation of metal matrix composites and the research outcomes achieved recently. The mechanisms, characteristics, application ranges and levels of development of these preparation techniques are analyzed. The advantages and the disadvantages of each technique are synthetically evaluated. Lastly, the future directions of research and the prospects for the preparation techniques of metal matrix composites are forecasted.

  7. Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles

    Science.gov (United States)

    Linbo, GU; Yixi, CAI; Yunxi, SHI; Jing, WANG; Xiaoyu, PU; Jing, TIAN; Runlin, FAN

    2017-11-01

    To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter (PM), a test bench for diesel engine exhaust purification was constructed, using indirect non-thermal plasma technology. The effects of different gas source flow rates on the quantity concentration, composition, and apparent activation energy of PM were investigated, using an engine exhaust particle sizer and a thermo-gravimetric analyzer. The results show that when the gas source flow rate was large, not only the maximum peak quantity concentrations of particles had a large drop, but also the peak quantity concentrations shifted to smaller particle sizes from 100 nm to 80 nm. When the gas source flow rate was 10 L min-1, the total quantity concentration greatly decreased where the removal rate of particles was 79.2%, and the variation of the different mode particle proportion was obvious. Non-thermal plasma (NTP) improved the oxidation ability of volatile matter as well as that of solid carbon. However, the NTP gas source rate had little effects on oxidation activity of volatile matter, while it strongly influenced the oxidation activity of solid carbon. Considering the quantity concentration and oxidation activity of particles, a gas source flow rate of 10 L min-1 was more appropriate for the purification of particles.

  8. Role of particle size and composition in metal adsorption by solids deposited on urban road surfaces

    International Nuclear Information System (INIS)

    Gunawardana, Chandima; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2014-01-01

    Despite common knowledge that the metal content adsorbed by fine particles is relatively higher compared to coarser particles, the reasons for this phenomenon have gained little research attention. The research study discussed in the paper investigated the variations in metal content for different particle sizes of solids associated with pollutant build-up on urban road surfaces. Data analysis confirmed that parameters favourable for metal adsorption to solids such as specific surface area, organic carbon content, effective cation exchange capacity and clay forming minerals content decrease with the increase in particle size. Furthermore, the mineralogical composition of solids was found to be the governing factor influencing the specific surface area and effective cation exchange capacity. There is high quartz content in particles >150 μm compared to particles <150 μm. As particle size reduces below 150 μm, the clay forming minerals content increases, providing favourable physical and chemical properties that influence adsorption. -- Highlights: • Physico-chemical parameters investigated in build-up samples from 32 road surfaces. • Mineralogical composition primarily governs the physico-chemical characteristics. • High clay forming mineral content in fine solids increases SSA and ECEC. • Characteristics influenced by quartz and amorphous content with particle size. • High quartz content in coarse particles contributes reduced metal adsorption. -- The mineralogical composition of solids is the governing factor influencing metal adsorption to solids in pollutant build-up on urban surfaces

  9. Particle reinforced composites from acrylamide modified blend of styrene-butadiene and natural rubber

    Science.gov (United States)

    Blends of styrene-butadiene rubber and natural rubber that provide balanced properties were modified with acrylamide and reinforced with soy protein particles. The rubber composites show improved mechanical properties. Both modified rubber and composites showed a faster curing rate. The crosslinking...

  10. Passive Sampling to Capture the Spatial Variability of Coarse Particles by Composition in Cleveland, OH

    Science.gov (United States)

    Passive samplers deployed at 25 sites for three week-long intervals were used to characterize spatial variability in the mass and composition of coarse particulate matter (PM10-2.5) in Cleveland, OH in summer 2008. The size and composition of individual particles deter...

  11. Solution electrospinning of particle-polymer composite fibres

    DEFF Research Database (Denmark)

    Christiansen, Lasse; Fojan, Peter

    2016-01-01

    -scale, is produced. The maximum polymer-silica weight-ratio yielding stable fibres has also been determined. The morphology of the fibres at different weight ratios has been investigated by optical microscopy and scanning electron microscope (SEM). Low aerogel concentrations yield few particles located in polymer...

  12. Hybrid composites of monodisperse pi-conjugated rodlike organic compounds and semiconductor quantum particles

    DEFF Research Database (Denmark)

    Hensel, V.; Godt, A.; Popovitz-Biro, R.

    2002-01-01

    Composite materials of quantum particles (Q-particles) arranged in layers within crystalline powders of pi-conjugated, rodlike dicarboxylic acids are reported. The synthesis of the composites, either as three-dimensional crystals or as thin films at the air-water interface, comprises a two...... analysis of the solids and grazing incidence X-ray diffraction analysis of the films on water. 2) Topotactic solid/gas reaction of these salts with H2S to convert the metal ions into Q-particles of CdS or PbS embedded in the organic matrix that consists of the acids 6(H) and 8(H). These hybrid materials...

  13. Particle-hole symmetry for composite fermions: An emergent symmetry in the fractional quantum Hall effect

    DEFF Research Database (Denmark)

    Coimbatore Balram, Ajit; Jain, Jainendra

    2017-01-01

    The particle-hole (PH) symmetry of {\\em electrons} is an exact symmetry of the electronic Hamiltonian confined to a specific Landau level, and its interplay with the formation of composite fermions has attracted much attention of late. This article investigates an emergent symmetry...... in the fractional quantum Hall effect, namely the PH symmetry of {\\em composite fermions}, which relates states at composite fermion filling factors $\

  14. The influence of magnetostatic interactions in exchange-coupled composite particles

    DEFF Research Database (Denmark)

    Vokoun, D.; Beleggia, Marco; De Graef, M.

    2010-01-01

    Exchange-coupled composite (ECC) particles are the basic constituents of ECC magnetic recording media. We examine and compare two types of ECC particles: (i) core-shell structures, consisting of a hard-magnetic core and a coaxial soft-magnetic shell and (ii) conventional ECC particles, with a hard-magnetic...... core topped by a soft cylindrical element. The model we present describes the magnetic response of the two ECC particle types, taking into account all significant magnetic contributions to the energy landscape. Special emphasis is given to the magnetostatic (dipolar) interaction energy. We find...... that both the switching fields and the zero-field energy barrier depend strongly on the particle geometry. A comparison between the two types reveals that core-shell ECC particles are more effective in switching field reduction, while conventional ECC particles maintain a larger overall figure of merit....

  15. Core–corona PSt/P(BA–AA) composite particles by two-stage emulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Delong; Ren, Xiaolin; Zhang, Xinya, E-mail: cexyzh@scut.edu.cn; Liao, Shijun [South China University of Technology, School of Chemistry and Chemical Engineering (China)

    2016-03-15

    Raspberry-shaped composite particles with polystyrene (PSt) as core and poly(n-butyl acrylate-co-acrylic acid) (P(BA–AA)) as corona were synthesized via emulsion polymerization. The random copolymer, P(BA–AA), was pre-prepared and used as a polymeric surfactant, its emulsifying properties adjusted by changing the mass ratio of BA and AA. The morphology of the resulting core–corona composite particles, P(St/P(BA–AA)), could be regulated and controlled by varying the concentrations of P(BA–AA) or the mass ratio of BA:AA in P(BA–AA). The experimental results indicate that 3.0–6.0 wt% of P(BA–AA) is required to obtain stable composite emulsions, and P(BA–AA) with a mass ratio of BA:AA = 1:2 is able to generate distinct core–corona structures. A mechanism of composite particle formation is proposed based on the high affinity between the PSt core and the hydrophobic segments of P(BA–A). The regular morphology of the colloidal film is expected to facilitate potential application of core–corona particles in the field of light scattering. Furthermore, the diversity of core–corona particles can be expanded by replacing P(BA–AA) corona particles with other amphiphilic particles.

  16. Voltage-Induced Nonlinear Conduction Properties of Epoxy Resin/Micron-Silver Particles Composites

    Science.gov (United States)

    Qu, Zhaoming; Lu, Pin; Yuan, Yang; Wang, Qingguo

    2018-01-01

    The nonlinear conduction properties of epoxy resin (ER)/micron-silver particles (MP) composites were investigated. Under sufficient high intensity applied constant voltage, the obvious nonlinear conduction properties of the samples with volume fraction 25% were found. With increments in the voltage, the conductive switching effect was observed. The nonlinear conduction mechanism of the ER/MP composites under high applied voltages could be attributed to the electrical current conducted via discrete paths of conductive particles induced by the electric field. The test results show that the ER/MP composites with nonlinear conduction properties are of great potential application in electromagnetic protection of electron devices and systems.

  17. Modeling and characterization of dielectrophoretically structured piezoelectric composites using piezoceramic particle inclusions with high aspect ratios

    Science.gov (United States)

    van den Ende, D. A.; Maier, R. A.; van Neer, P. L. M. J.; van der Zwaag, S.; Randall, C. A.; Groen, W. A.

    2013-01-01

    In this work, the piezoelectric properties at high electric fields of dielectrophoretically aligned PZT—polymer composites containing high aspect ratio particles (such as short fibers) are presented. Polarization and strain as a function of electric field are evaluated. The properties of the composites are compared to those of PZT-polymer composites with equiaxed particles, continuous PZT fiber-polymer composites, and bulk PZT ceramics. From high-field polarization and strain measurements, the effective field dependent permittivity and piezoelectric charge constant in the poling direction are determined for dielectrophoresis structured PZT-polymer composites, continuous PZT fiber-polymer composites, and bulk PZT ceramics. The changes in dielectric properties of the inclusions and the matrix at high fields influence the dielectric and piezoelectric properties of the composites. It is found that the permittivity and piezoelectric charge constants increase towards a maximum at an applied field of around 2.5-5 kV/mm. The electric field at which the maximum occurs depends on the aspect ratio and degree of alignment of the inclusions. Experimental values of d33 at low and high applied fields are compared to a model describing the composites as a continuous polymer matrix containing PZT particles of various aspect ratios arranged into chains. Thickness mode coupling factors were determined from measured impedance data using fitted equivalent circuit model simulations. The relatively high piezoelectric strain constants, voltage constants, and thickness coupling factors indicate that such aligned short fiber composites could be useful as flexible large area transducers.

  18. Theories of extended objects and composite models of particles

    International Nuclear Information System (INIS)

    Barut, A.O.

    1992-05-01

    The goal of the relativistic theory of extended objects is to predict and correlate the experimentally observed mass spectra, form factors, inelastic transitions, polarizabilities, structure functions of particles from different probes (photons, neutrinos, electrons), and eventually, the break-up, pair production of the system, and scattering of extended objects among themselves. The internal structure may be classified by the nature and number of the internal variables: discrete (fundamental particles), finite number of continuous variables (bound systems), infinite number of continuous variables (p-membranes or localized fields). The algebraic group theoretical S-matrix approach allows us to formulate all the above properties in a unified manner. Different structures are then characterized by different specific parameters. (author). Refs, 4 figs, 1 tab

  19. Production of refractory chamotte particle-reinforced geopolymer composite

    Science.gov (United States)

    Kovářík, T.; Kullová, L.; Rieger, D.

    2016-04-01

    Geopolymer resins are obtained by alkaline activation of aluminosilicate sources where raw calcined clays are one of the suitable potentialities. Besides the fact that chemical composition has an essential effect on final properties of the geopolymer binder, the type of filler strongly affected resulting properties of such granular composite. However, very few comparative studies have been done on detail description of composite systems: binder - granular filler, in relation to aggregate gradation design and rheology properties of the mixture. The aim of this work is to develop and describe granular composite concerning workability of the mixture and kinetics of geopolymerization/polycondensation through flow behaviour. The rheological measurements indicated that initial viscosities of the mixtures and their evolution are different for various proportions of the filler. Moreover, it was demonstrated that increase in complex viscosity responds to the creation of chemical bonds and the formation of structural network. Finally, a correlation of the mechanism of geopolymer formation was carried out by differential scanning calorimetry (DSC).

  20. The effect of forming stresses on the sintering of ultra-fine Ce0.9Gd0.1O2-δ powders

    DEFF Research Database (Denmark)

    Glasscock, Julie; Esposito, Vincenzo; Foghmoes, Søren Preben Vagn

    2013-01-01

    good sinterability when there is a favourable particle packing. The effect of the applied stresses during forming (which produce different particle packing arrangements) was investigated by forging green bodies by different shaping techniques, including casting, and cold isostatic pressing. Samples...... formed with techniques that apply low levels of stress had a particle arrangement which significantly enhanced sintering at low temperature, compared to those prepared by high stress techniques. The sample geometry, heat treatment for organic removal and the initial density of the green body had...

  1. A field theory for composite particles (hadrons): Pt. 2

    International Nuclear Information System (INIS)

    Biswas, T.

    1986-01-01

    Interaction between composite units (hadrons) is introduced in a fashion similar to QED. Quark-quark interactions within hadrons are considered to be of direct-interaction nature. This provides a completely relativistic and self-consistent theory for strong interactions that can be used as a tool for phenomenology. Hadron scattering and bound states have a simple description and their computation is expected to be laborious but straightforward

  2. The composition of heavy ions in solar energetic particle events

    International Nuclear Information System (INIS)

    Fan, C.Y.

    1984-01-01

    The composition within individual SEP events may vary both with time and energy, and will in general be different from that in other SEP events. Average values of relative abundances measured in a large number of SEP events, however, are found to be roughly energy independent in the proportional1 to proportional20 MeV per nucleon range, and show a systematic deviation from photospheric abundances which seems to be organized in terms of the first ionization potential of the ion. Direct measurements of the charge states of SEPs have revealed the surprisingly common presence of energetic He + along with heavy ions with typically coronal ionization states. High-resolution measurements of isotopic abundance ratios in a small number of SEP events show these to be consistent with the universal composition except for the puzzling overabundance of the SEP 22 Ne/ 20 Ne relative to this isotopes ratio in the solar wind. The broad spectrum of observed elemental abundance variations, which in their extreme result in composition anomalies characteristic of 3 He-rich, heavy-ion rich and carbon-poor SEP events, along with direct measurements of the ionization states of SEPs provide essential information on the physical characteristics of, and conditions in the source regions, as well as important constraints to possible models for SEP production. (orig./HM)

  3. The elemental composition of airborne particle in the Bangkok area

    Energy Technology Data Exchange (ETDEWEB)

    Sirinuntavid, Alice [Chemistry Division, Office of Atomic Energy for Peace, Chatuchak, Bangkok (Thailand); Pentamwa, Prapat [Environmental Scientist, Pollution Control Department, Bangkok (Thailand)

    1999-10-01

    Neutron Activation Analysis (NAA) has been applied to analyze the total suspended particle (TSP) airborne matter from two selected sites in the Bangkok city area. High volume air samplers were operated to collect TSP matter on cellulose nitrate membrane filters once a month throughout 1997. 20 elements were analyzed and Zn, Br, As, Sb, Cu, Cl were found with high enrichment factor at both sites. The enrichment factor of 20 elements in TSP of both sites gave the same interesting pattern. To studying the validation of the NAA technique, the standard reference material 1648, urban particulate matter, was analyzed and presented also. (author)

  4. The elemental composition of airborne particle in the Bangkok area

    International Nuclear Information System (INIS)

    Sirinuntavid, Alice; Pentamwa, Prapat

    1999-01-01

    Neutron Activation Analysis (NAA) has been applied to analyze the total suspended particle (TSP) airborne matter from two selected sites in the Bangkok city area. High volume air samplers were operated to collect TSP matter on cellulose nitrate membrane filters once a month throughout 1997. 20 elements were analyzed and Zn, Br, As, Sb, Cu, Cl were found with high enrichment factor at both sites. The enrichment factor of 20 elements in TSP of both sites gave the same interesting pattern. To studying the validation of the NAA technique, the standard reference material 1648, urban particulate matter, was analyzed and presented also. (author)

  5. Microwave absorbing property of silicone rubber composites with added carbonyl iron particles and graphite platelet

    International Nuclear Information System (INIS)

    Xu, Yonggang; Zhang, Deyuan; Cai, Jun; Yuan, Liming; Zhang, Wenqiang

    2013-01-01

    Silicone rubber composites filled with carbonyl iron particles (CIPs) and graphite platelet (GP) were prepared using non-coating or coating processes. The complex permittivity and permeability of the composites were measured using a vector network analyzer in the frequency range of 1–18 GHz and dc electric conductivity was measured by the standard four-point contact method. The results showed that CIPs/GP composites fabricated in the coating process had the highest permittivity and permeability due to the particle orientation and interactions between the two absorbents. The coating process resulted in a decreased effective eccentricity of the absorbents, and the dc conductivity increased according to Neelakanta's equations. The reflection loss (RL) value showed that the composites had an excellent absorbing property in the L-band, minimum −11.85 dB at 1.5 mm and −15.02 dB at 2 mm. Thus, GP could be an effective additive in preparing thin absorbing composites in the L-band. - Highlights: ► The added GP increased the permittivity and permeability of composites filled with CIPs. ► The enhancement was owing to interactions of the two absorbents and the fabrication process. ► The coating process decreased the effective eccentricity of the particles, and increased the conductivity of the composites. ► The composites to which CIPs/GP were added in coating process had excellent absorbing properties in the L-band.

  6. Rice straw-wood particle composite for sound absorbing wooden construction materials.

    Science.gov (United States)

    Yang, Han-Seung; Kim, Dae-Jun; Kim, Hyun-Joong

    2003-01-01

    In this study, rice straw-wood particle composite boards were manufactured as insulation boards using the method used in the wood-based panel industry. The raw material, rice straw, was chosen because of its availability. The manufacturing parameters were: a specific gravity of 0.4, 0.6, and 0.8, and a rice straw content (10/90, 20/80, and 30/70 weight of rice straw/wood particle) of 10, 20, and 30 wt.%. A commercial urea-formaldehyde adhesive was used as the composite binder, to achieve 140-290 psi of bending modulus of rupture (MOR) with 0.4 specific gravity, 700-900 psi of bending MOR with 0.6 specific gravity, and 1400-2900 psi of bending MOR with a 0.8 specific gravity. All of the composite boards were superior to insulation board in strength. Width and length of the rice straw particle did not affect the bending MOR. The composite boards made from a random cutting of rice straw and wood particles were the best and recommended for manufacturing processes. Sound absorption coefficients of the 0.4 and 0.6 specific gravity boards were higher than the other wood-based materials. The recommended properties of the rice straw-wood particle composite boards are described, to absorb noises, preserve the temperature of indoor living spaces, and to be able to partially or completely substitute for wood particleboard and insulation board in wooden constructions.

  7. Processing, microstructure and mechanical properties of nickel particles embedded aluminium matrix composite

    International Nuclear Information System (INIS)

    Yadav, Devinder; Bauri, Ranjit

    2011-01-01

    Research highlights: → Al-Ni particle composite was successfully processed by FSP. → No harmful intermetallics formed. → The composite showed a 3 fold increase in yield strength with high ductility. → FSP also lead to a refined recrystallized grain structure. → A continuous type dynamic recrystallization process seems to be working during FSP. - Abstract: Nickel particles were embedded into an Al matrix by friction stir processing (FSP) to produce metal particle reinforced composite. FSP resulted in uniform dispersion of nickel particles with excellent interfacial bonding with the Al matrix and also lead to significant grain refinement of the matrix. The novelty of the process is that the composite was processed in one step without any pretreatment being given to the constituents and no harmful intermetallic formed. The novel feature of the composite is that it shows a three fold increase in the yield strength while appreciable amount of ductility is retained. The hardness also improved significantly. The fracture surface showed a ductile failure mode and also revealed the superior bonding between the particles and the matrix. Electron backscattered diffraction (EBSD) and transmission electron microscopy analysis revealed a dynamically recrystallized equiaxed microstructure. A gradual increase in misorientation from sub-grain to high-angle boundaries is observed from EBSD analysis pointing towards a continuous type dynamic recrystallization mechanism.

  8. Progressive biogeochemical transformation of placer gold particles drives compositional changes in associated biofilm communities.

    Science.gov (United States)

    Rea, Maria Angelica; Standish, Christopher D; Shuster, Jeremiah; Bissett, Andrew; Reith, Frank

    2018-05-03

    Biofilms on placer gold (Au)-particle surfaces drive Au solubilization and re-concentration thereby progressively transforming the particles. Gold solubilization induces Au-toxicity; however, Au-detoxifying community members ameliorates Au-toxicity by precipitating soluble Au to metallic Au. We hypothesize that Au-dissolution and re-concentration (precipitation) places selective pressures on associated microbial communities, leading to compositional changes and subsequent Au-particle transformation. We analyzed Au-particles from eight United Kingdom sites using next generation sequencing, electron microscopy and micro-analyses. Gold particles contained biofilms composed of prokaryotic cells and extracellular polymeric substances intermixed with (bio)minerals. Across all sites communities were dominated by Proteobacteria (689, 97% Operational Taxonomic Units, 59.3% of total reads), with β-Proteobacteria being the most abundant. A wide range of Au-morphotypes including nanoparticles, micro-crystals, sheet-like Au and secondary rims, indicated that dissolution and re-precipitation occurred, and from this transformation indices were calculated. Multivariate statistical analyses showed a significant relationship between the extent of Au-particle transformation and biofilm community composition, with putative metal-resistant Au-cycling taxa linked to progressive Au transformation. These included the genera Pseudomonas, Leptothrix and Acinetobacter. Additionally, putative exoelectrogenic genera Rhodoferax and Geobacter were highly abundant. In conclusion, biogeochemical Au-cycling and Au-particle transformation occurred at all sites and exerted a strong influence on biofilm community composition.

  9. Surface modification and particles size distribution control in nano-CdS/polystyrene composite film

    International Nuclear Information System (INIS)

    Min Zhirong; Ming Qiuzhang; Hai Chunliang; Han Minzeng

    2003-01-01

    Preparation of nano-CdS particles with surface thiol modification by microemulsion method and their influences on the particle size distribution in highly filled polystyrene-based composites were studied. The modified nano-CdS was characterized by X-ray photoelectron spectroscopy (XPS), light absorption and emission measurements to reveal the morphologies of the surface modifier, which are consistent with the surface molecules packing calculation. The morphologies of the surface modifier exerted a great influence not only on the optical performance of the particles themselves, but also on the size distribution of the particle in polystyrene matrix. A monolayer coverage with tightly packed thiol molecules was believed to be most effective in promoting a uniform particle size distribution and eliminating the surface defects that cause radiationless recombination. Control of the particles size distribution in polystyrene can be attained by adjusting surface coverage status of the thiol molecules based on the strong interaction between the surface modifier and the matrix

  10. Thermal Protection of Carbon Fiber-Reinforced Composites by Ceramic Particles

    Directory of Open Access Journals (Sweden)

    Baljinder Kandola

    2016-06-01

    Full Text Available The thermal barrier efficiency of two types of ceramic particle, glass flakes and aluminum titanate, dispersed on the surface of carbon-fiber epoxy composites, has been evaluated using a cone calorimeter at 35 and 50 kW/m2, in addition to temperature gradients through the samples’ thicknesses, measured by inserting thermocouples on the exposed and back surfaces during the cone tests. Two techniques of dispersing ceramic particles on the surface have been employed, one where particles were dispersed on semi-cured laminate and the other where their dispersion in a phenolic resin was applied on the laminate surface, using the same method as used previously for glass fiber composites. The morphology and durability of the coatings to water absorption, peeling, impact and flexural tension were also studied and compared with those previously reported for glass-fiber epoxy composites. With both methods, uniform coatings could be achieved, which were durable to peeling or water absorption with a minimal adverse effect on the mechanical properties of composites. While all these properties were comparable to those previously observed for glass fiber composites, the ceramic particles have seen to be more effective on this less flammable, carbon fiber composite substrate.

  11. Analysis of Physical and Mechanical Properties of Marble Particles Floor-Tile Composite

    International Nuclear Information System (INIS)

    Parikin; Arslan, A.; Ismoyo, A.H.; Jodi, H.E.; Nurhasanah, S.

    2002-01-01

    Two criteria that very predictable to quality products of marble particles composite floor-tile are physical and mechanical properties. Simple manufacturing was conducted from powdering refuges of marble to molding and drying the specimens at ambient atmosphere. The characterization, to observe; density, crystal structure, microstructure, hardness and compressive/bending strength of the material, was performed in Serpong and IPB-Bogor. The analysis shows that polymeric crystallization was occurred by HEXA and the density and the hardness generally rise up with the improvements in mesh and composition of marble particles. But it is not always followed by the real improvements of compressive and bending strength, which related to the material stiffness. The curves figured that these two strengths give the maximum values at 60% composition of marble particles. It can be concluded that density and hardness are dependent on mesh and composition, whereas the stiffness (modulus) is only correlation with composition of particulate. The theoretical modulus of marble particles composite floor-tile has been evaluated at about 56.19 GPa. (author)

  12. Elemental composition of suspended particles released in refuse incineration

    International Nuclear Information System (INIS)

    Mamuro, Tetsuo; Mizohata, Akira

    1979-01-01

    Suspended particles released in refuse incineration were subjected to multielement analysis by means of instrumental neutron activation method and energy dispersive X-ray fluorescence spectrometry. The analytical results were compared with the elemental concentrations observed in the urban atmosphere, and the contribution of the refuse incineration to the urban atmosphere was roughly estimated. Greenberg et al. pointed out on the basis of their analyses that the refuse incineration can account for major portions of the Zn, Cd and Sb observed on urban aerosols. According to our results, the contribution of the refuse incineration for Zn, Cd and Sb is not negligible, but not so serious as in U.S.A. big cities. In Japan big cities there must be other more important sources of these elements. (author)

  13. Toughening and healing of composites by CNTs reinforced copolymer nylon micro-particles

    Science.gov (United States)

    Kostopoulos, V.; Kotrotsos, A.; Tsokanas, P.; Tsantzalis, S.

    2018-02-01

    In this work, nylon micro-particles, both undoped and doped with multiwall carbon nanotubes played the role of the self-healing agent into carbon fibre/epoxy composites (CFRPs). These micro-particles were blended with epoxy matrix and the resulting mixture was used for the composites fabrication. Three types of composites were manufactured; the reference CFRP and the modified CFRPs with undoped and doped nylon micro-particles. After manufacturing, these composites were tested under mode I and II fracture loading conditions and it was shown that the interlaminar fracture toughness characteristics of both nylon modified composites were significantly increased. After first fracture, healing process was activated for the tested nylon modified samples and revealed high fracture toughness characteristics recovery. Morphology examinations supported the results and elucidated the involved toughening and failure mechanisms. Finally, the in-plane mechanical and thermo-mechanical properties of all the composites were characterized for identifying possible knock-down effects due to the nylon modification of composites.

  14. Solid Particle Erosion Behaviors of Carbon-Fiber Epoxy Composite and Pure Titanium

    Science.gov (United States)

    Cai, Feng; Gao, Feng; Pant, Shashank; Huang, Xiao; Yang, Qi

    2016-01-01

    Rotor blades of Bell CH-146 Griffon helicopter experience excessive solid particle erosion at low altitudes in desert environment. The rotor blade is made of an advanced light-weight composite which, however, has a low resistance to solid particle erosion. Coatings have been developed and applied to protect the composite blade. However, due to the influence of coating process on composite material, the compatibility between coating and composite base, and the challenges of repairing damaged coatings as well as the inconsistency between the old and new coatings, replaceable thin metal shielding is an alternative approach; and titanium, due to its high-specific strength and better formability, is an ideal candidate. This work investigates solid particle erosion behaviors of carbon-fiber epoxy composite and titanium in order to assess the feasibility of titanium as a viable candidate for erosion shielding. Experiment results showed that carbon-fiber epoxy composite showed a brittle erosion behavior, whereas titanium showed a ductile erosion mode. The erosion rate on composite was 1.5 times of that on titanium at impingement angle 15° and increased to 5 times at impact angle 90°.

  15. Source apportionment of aerosol particles at a European air pollution hot spot using particle number size distributions and chemical composition.

    Science.gov (United States)

    Leoni, Cecilia; Pokorná, Petra; Hovorka, Jan; Masiol, Mauro; Topinka, Jan; Zhao, Yongjing; Křůmal, Kamil; Cliff, Steven; Mikuška, Pavel; Hopke, Philip K

    2018-03-01

    Ostrava in the Moravian-Silesian region (Czech Republic) is a European air pollution hot spot for airborne particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and ultrafine particles (UFPs). Air pollution source apportionment is essential for implementation of successful abatement strategies. UFPs or nanoparticles of diameter hot-spot including nanoparticles, Positive Matrix Factorization (PMF) was applied to highly time resolved particle number size distributions (NSD, 14 nm-10 μm) and PM 0.09-1.15 chemical composition. Diurnal patterns, meteorological variables, gaseous pollutants, organic markers, and associations between the NSD factors and chemical composition factors were used to identify the pollution sources. The PMF on the NSD reveals two factors in the ultrafine size range: industrial UFPs (28%, number mode diameter - NMD 45 nm), industrial/fresh road traffic nanoparticles (26%, NMD 26 nm); three factors in the accumulation size range: urban background (24%, NMD 93 nm), coal burning (14%, volume mode diameter - VMD 0.5 μm), regional pollution (3%, VMD 0.8 μm) and one factor in the coarse size range: industrial coarse particles/road dust (2%, VMD 5 μm). The PMF analysis of PM 0.09-1.15 revealed four factors: SIA/CC/BB (52%), road dust (18%), sinter/steel (16%), iron production (16%). The factors in the ultrafine size range resolved with NSD have a positive correlation with sinter/steel production and iron production factors resolved with chemical composition. Coal combustion factor resolved with NSD has moderate correlation with SIA/CC/BB factor. The organic markers homohopanes correlate with coal combustion and the levoglucosan correlates with urban background. The PMF applications to NSD and chemical composition datasets are complementary. PAHs in PM 1 were found to be associated with coal combustion factor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. 25th Anniversary Article: Polymer-Particle Composites: Phase Stability and Applications in Electrochemical Energy Storage

    KAUST Repository

    Srivastava, Samanvaya

    2013-12-09

    Polymer-particle composites are used in virtually every field of technology. When the particles approach nanometer dimensions, large interfacial regions are created. In favorable situations, the spatial distribution of these interfaces can be controlled to create new hybrid materials with physical and transport properties inaccessible in their constituents or poorly prepared mixtures. This review surveys progress in the last decade in understanding phase behavior, structure, and properties of nanoparticle-polymer composites. The review takes a decidedly polymers perspective and explores how physical and chemical approaches may be employed to create hybrids with controlled distribution of particles. Applications are studied in two contexts of contemporary interest: battery electrolytes and electrodes. In the former, the role of dispersed and aggregated particles on ion-transport is considered. In the latter, the polymer is employed in such small quantities that it has been historically given titles such as binder and carbon precursor that underscore its perceived secondary role. Considering the myriad functions the binder plays in an electrode, it is surprising that highly filled composites have not received more attention. Opportunities in this and related areas are highlighted where recent advances in synthesis and polymer science are inspiring new approaches, and where newcomers to the field could make important contributions. Polymer-particle composites are used in virtually every field of technology. When the particles approach nanometer dimensions, large interfacial regions are created that can be exploited for applications. The fundamental approaches and bottom-up synthesis strategies for understanding and controlling nanoparticle dispersion in polymers are reviewed. Applications of these approaches for creating polymer-particle composite electrolytes and electrodes for energy storage are also considered. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles

    Directory of Open Access Journals (Sweden)

    Farzin Heravi

    2013-12-01

    Full Text Available Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2 nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco’s Modified Eagle’s Medium (DMEM. The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P0.05. There was a significant reduction in cell toxicity with increasing pre-incubation time (P<0.001. L929 cells showed similar toxicity trends, but lower sensitivity to detect cytotoxicity of dental composites. Conclusion. The orthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive.

  18. Effect of SiC particles on microarc oxidation process of magnesium matrix composites

    International Nuclear Information System (INIS)

    Wang, Y.Q.; Wang, X.J.; Gong, W.X.; Wu, K.; Wang, F.H.

    2013-01-01

    SiC particles are an important reinforced phase in metal matrix composites. Their effect on the microarc oxidation (MAO, also named plasma electrolytic oxidation-PEO) process of SiC p /AZ91 Mg matrix composites (MMCs) was studied and the mechanism was revealed. The corrosion resistance of MAO coating was also investigated. Voltage–time curves during MAO were recorded to study the barrier film status on the composites. Scanning electron microscopy was used to characterize the existing state of SiC particles in MAO. Energy dispersive X-ray spectrometry and X-ray photoelectron spectroscopy were used to analyze the chemical composition of the coating. Corrosion resistance of the bare and coated composites was evaluated by potentiodynamic polarization curves in 3.5% NaCl solution. Results showed that the integrality and electrical insulation properties of the barrier film on the composites were destroyed by the SiC particles. Consequently, the sparking discharge at the early stage of MAO was inhibited, and the growth efficiency of the MAO coating decreased with the increase in the volume fraction of SiC particles. SiC particles did not exist stably during MAO; they were oxidized or partially oxidized into SiO 2 before the overall sparking discharge. The transformation from semi-conductive SiC to insulating SiO 2 by oxidation restrained the current leakage at the original SiC positions and then promoted sparking discharge and coating growth. The corrosion current density of SiC p /AZ91 MMCs was reduced by two orders of magnitude after MAO treatment. However, the corrosion resistances of the coated composites were lower than that of the coated alloy.

  19. Elastohydrodynamic lubrication in point contact on the surfaces of particle-reinforced composite

    Science.gov (United States)

    Chen, Keying; Zeng, Liangcai; Wu, Zhenpeng; Zheng, Feilong

    2018-04-01

    Appreciable friction and serious wear are common challenges in the operation of advanced manufacturing equipment, and friction pairs may be susceptible to damage even with oil lubrication when point contact exists. In this study, a type of particle-reinforced composite material is introduced for one of the components of a heavy-load contact pair, and the performance improvement of elastohydrodynamic lubrication (EHL) is analyzed considering the rheological properties of non-Newtonian fluids. The Ree-Eyring EHL model is used considering the surface of the particle-reinforced composite, in which the film thickness includes the particle-induced elastic deformation. The problem of inclusions with different eigenstrains is solved by using Galerkin vectors. The influences of particle properties, size, burial depth, and interparticle distance on point-contact EHL are investigated. Furthermore, using several cases, the structural parameters of the particles in the composites are optimized, and an appropriate parameter range is obtained with the goal of reducing friction. Finally, the results for the EHL traction coefficient demonstrate that appropriate particle properties, size, burial depth, and interparticle distance can effectively reduce the traction coefficient in heavy-load contact.

  20. Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE

    Science.gov (United States)

    Cziczo, D. J.; Murphy, D. M.; Hudson, P. K.; Thomson, D. S.

    2004-02-01

    The first real-time, in situ, investigation of the chemical composition of the residue of cirrus ice crystals was performed during July 2002. This study was undertaken on a NASA WB-57F high-altitude research aircraft as part of CRYSTAL-FACE, a field campaign which sought to further our understanding of the relation of clouds, water vapor, and climate by characterizing, among other parameters, anvil cirrus formed about the Florida peninsula. A counter flow virtual impactor (CVI) was used to separate cirrus ice from the unactivated interstitial aerosol particles and evaporate condensed-phase water. Residual material, on a crystal-by-crystal basis, was subsequently analyzed using the NOAA Aeronomy Laboratory's Particle Analysis by Laser Mass Spectrometry (PALMS) instrument. Sampling was performed from 5 to 15 km altitude and from 12° to 28° north latitude within cirrus originating over land and ocean. Chemical composition measurements provided several important results. Sea salt was often incorporated into cirrus, consistent with homogeneous ice formation by aerosol particles from the marine boundary layer. Size measurements showed that large particles preferentially froze over smaller ones. Meteoritic material was found within ice crystals, indicative of a relation between stratospheric aerosol particles and tropospheric clouds. Mineral dust was the dominant residue observed in clouds formed during a dust transport event from the Sahara, consistent with a heterogeneous freezing mechanism. These results show that chemical composition and size are important determinants of which aerosol particles form cirrus ice crystals.

  1. Solid Particle Erosion of Date Palm Leaf Fiber Reinforced Polyvinyl Alcohol Composites

    Directory of Open Access Journals (Sweden)

    Jyoti R. Mohanty

    2014-01-01

    Full Text Available Solid particle erosion behavior of short date palm leaf (DPL fiber reinforced polyvinyl alcohol (PVA composite has been studied using silica sand particles (200 ± 50 μm as an erodent at different impingement angles (15–90° and impact velocities (48–109 m/s. The influence of fiber content (wt% of DPL fiber on erosion rate of PVA/DPL composite has also been investigated. The neat PVA shows maximum erosion rate at 30° impingement angle whereas PVA/DPL composites exhibit maximum erosion rate at 45° impingement angle irrespective of fiber loading showing semiductile behavior. The erosion efficiency of PVA and its composites varies from 0.735 to 16.289% for different impact velocities studied. The eroded surfaces were observed under scanning electron microscope (SEM to understand the erosion mechanism.

  2. Polydopamine Particle-Filled Shape-Memory Polyurethane Composites with Fast Near-Infrared Light Responsibility.

    Science.gov (United States)

    Yang, Li; Tong, Rui; Wang, Zhanhua; Xia, Hesheng

    2018-03-25

    A new kind of fast near-infrared (NIR) light-responsive shape-memory polymer composites was prepared by introducing polydopamine particles (PDAPs) into commercial shape-memory polyurethane (SMPU). The toughness and strength of the polydopamine-particle-filled polyurethane composites (SMPU-PDAPs) were significantly enhanced with the addition of PDAPs due to the strong interface interaction between PDAPs and polyurethane segments. Owing to the outstanding photothermal effect of PDAPs, the composites exhibit a rapid light-responsive shape-memory process in 60 s with a PDAPs content of 0.01 wt%. Due to the excellent dispersion and convenient preparation method, PDAPs have great potential to be used as high-efficiency and environmentally friendly fillers to obtain novel photoactive functional polymer composites. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. THE STRUCTURE AND PROPERTIES OF COMPOSITE LASER CLAD COATINGS WITH Ni BASED MATRIX WITH WC PARTICLES

    Directory of Open Access Journals (Sweden)

    Zita Iždinská

    2010-09-01

    Full Text Available In this work, the influence of the processing conditions on the microstructure and abrasive wear behavior of composite laser clad coatings with Ni based matrix reinforced with 50% WC particles is analyzed. Composite powder was applied in the form of coatings onto a mild steel substrate (Fe–0.17% C by different laser powers and cladding speeds. The microstructure of the coatings was analyzed by scanning electron microscopy (SEM. Tribological properties of coatings were evaluated by pin-on-disc wear test. It appeared that the hardness of the matrix of composite coatings decreases with increasing cladding speed. However, wear resistance of composite coatings with decreasing hardness of Ni based matrix increases. Significantly enhanced wear resistance of WC composite coatings in comparison with Ni based coatings is attributed to the hard phase structures in composite coatings.

  4. Optical properties, morphology and elemental composition of atmospheric particles at T1 supersite on MILAGRO campaign

    Science.gov (United States)

    Carabali, G.; Mamani-Paco, R.; Castro, T.; Peralta, O.; Herrera, E.; Trujillo, B.

    2012-03-01

    Atmospheric particles were sampled at T1 supersite during MILAGRO campaign, in March 2006. T1 was located at the north of Mexico City (MC). Aerosol sampling was done by placing copper grids for Transmission Electron Microscope (TEM) on the last five of an 8-stage MOUDI cascade impactor. Samples were obtained at different periods to observe possible variations on morphology. Absorption and scattering coefficients, as well as particle concentrations (0.01-3 μm aerodynamic diameter) were measured simultaneously using a PSAP absorption photometer, a portable integrating nephelometer, and a CPC particle counter. Particle images were acquired at different magnifications using a CM 200 Phillips TEM-EDAX system, and then calculated the border-based fractal dimension. Also, Energy Dispersive X-Ray Spectroscopy (EDS) was used to determine the elemental composition of particles. The morphology of atmospheric particles for two aerodynamic diameters (0.18 and 1.8 μm) was compared using border-based fractal dimension to relate it to the other particle properties, because T1-generated particles have optical, morphological and chemical properties different from those transported by the MC plume. Particles sampled under MC pollution influence showed not much variability, suggesting that more spherical particles (border-based fractal dimension close to 1.0) are more common in larger sizes (d50 = 1.8 μm), which may be attributed to aerosol aging and secondary aerosol formation. Between 06:00 and 09:00 a.m., smaller particles (d50 = 0.18 μm) had more irregular shapes resulting in higher border-based fractal dimensions (1.2-1.3) for samples with more local influence. EDS analysis in d50 = 0.18 μm particles showed high contents of carbonaceous material, Si, Fe, K, and Co. Perhaps, this indicates an impact from industrial and vehicle emissions on atmospheric particles at T1.

  5. Mechanical properties of dental resin composites by co-filling diatomite and nanosized silica particles

    International Nuclear Information System (INIS)

    Wang Hua; Zhu Meifang; Li Yaogang; Zhang Qinghong; Wang Hongzhi

    2011-01-01

    The aim of this study was to investigate the mechanical property effects of co-filling dental resin composites with porous diatomite and nanosized silica particles (OX-50). The purification of raw diatomite by acid-leaching was conducted in a hot 5 M HCl solution at 80 deg. C for 12 h. Both diatomite and nanosized SiO 2 were silanized with 3-methacryloxypropyltrimethoxysilane. The silanized inorganic particles were mixed into a dimethacrylate resin. Purified diatomite was characterized by X-ray diffraction, UV-vis diffuse reflectance spectroscopy and an N 2 adsorption-desorption isotherm. Silanized inorganic particles were characterized using Fourier transform infrared spectroscopy and a thermogravimetric analysis. The mechanical properties of the composites were tested by three-point bending, compression and Vicker's microhardness. Scanning electron microscopy was used to show the cross-section morphologies of the composites. Silanization of diatomite and nanosized silica positively reinforced interactions between the resin matrix and the inorganic particles. The mechanical properties of the resin composites gradually increased with the addition of modified diatomite (m-diatomite). The fracture surfaces of the composites exhibited large fracture steps with the addition of m-diatomite. However, when the mass fraction of m-diatomite was greater than 21 wt.% with respect to modified nanosized silica (mOX-50) and constituted 70% of the resin composite by weight, the mechanical properties of the resin composites started to decline. Thus, the porous structure of diatomite appears to be a crucial factor to improve mechanical properties of resin composites.

  6. Thermoplastic starch composites with TiO2 particles: preparation, morphology, rheology and mechanical properties

    Czech Academy of Sciences Publication Activity Database

    Ostafinska, Aleksandra; Mikešová, Jana; Krejčíková, Sabina; Nevoralová, Martina; Šturcová, Adriana; Zhigunov, Alexander; Michálková, Danuše; Šlouf, Miroslav

    2017-01-01

    Roč. 101, August (2017), s. 273-282 ISSN 0141-8130 R&D Projects: GA ČR(CZ) GA14-17921S Institutional support: RVO:61389013 Keywords : thermoplastic starch * titanium dioxide particles * morphology Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 3.671, year: 2016

  7. Mechanical properties of dental resin composites by co-filling diatomite and nanosized silica particles

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hua; Zhu Meifang [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); Li Yaogang [Engineering Research Center of Advanced Glasses Manufacturing Technology, MOE, Donghua University, Shanghai 201620 (China); Zhang Qinghong, E-mail: zhangqh@dhu.edu.cn [Engineering Research Center of Advanced Glasses Manufacturing Technology, MOE, Donghua University, Shanghai 201620 (China); Wang Hongzhi, E-mail: wanghz@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China)

    2011-04-08

    The aim of this study was to investigate the mechanical property effects of co-filling dental resin composites with porous diatomite and nanosized silica particles (OX-50). The purification of raw diatomite by acid-leaching was conducted in a hot 5 M HCl solution at 80 deg. C for 12 h. Both diatomite and nanosized SiO{sub 2} were silanized with 3-methacryloxypropyltrimethoxysilane. The silanized inorganic particles were mixed into a dimethacrylate resin. Purified diatomite was characterized by X-ray diffraction, UV-vis diffuse reflectance spectroscopy and an N{sub 2} adsorption-desorption isotherm. Silanized inorganic particles were characterized using Fourier transform infrared spectroscopy and a thermogravimetric analysis. The mechanical properties of the composites were tested by three-point bending, compression and Vicker's microhardness. Scanning electron microscopy was used to show the cross-section morphologies of the composites. Silanization of diatomite and nanosized silica positively reinforced interactions between the resin matrix and the inorganic particles. The mechanical properties of the resin composites gradually increased with the addition of modified diatomite (m-diatomite). The fracture surfaces of the composites exhibited large fracture steps with the addition of m-diatomite. However, when the mass fraction of m-diatomite was greater than 21 wt.% with respect to modified nanosized silica (mOX-50) and constituted 70% of the resin composite by weight, the mechanical properties of the resin composites started to decline. Thus, the porous structure of diatomite appears to be a crucial factor to improve mechanical properties of resin composites.

  8. Laser cladding of Inconel 625-based composite coatings reinforced by porous chromium carbide particles

    Science.gov (United States)

    Janicki, Damian

    2017-09-01

    Inconel 625/Cr3C2 composite coatings were produced via a laser cladding process using Cr3C2 reinforcing particles presenting an open porosity of about 60%. A laser cladding system used consisted of a direct diode laser with a rectangular beam spot and the top-hat beam profile, and an off-axis powder injection nozzle. The microstructural characteristics of the coatings was investigated with the use of scanning electron microscopy and X-ray diffraction. A complete infiltration of the porous structure of Cr3C2 reinforcing particles and low degree of their dissolution have been achieved in a very narrow range of processing parameters. Crack-free composite coatings having a uniform distribution of the Cr3C2 particles and their fraction up to 36 vol% were produced. Comparative erosion tests between the Inconel 625/Cr3C2 composite coatings and the metallic Inconel 625 coatings were performed following the ASTM G 76 standard test method. It was found that the composite coatings have a significantly higher erosion resistance to that of metallic coatings for both 30° and 90° impingement angles. Additionally, the erosion performances of composite coatings were similar for both the normal and oblique impact conditions. The erosive wear behaviour of composite coatings is discussed and related to the unique microstructure of these coatings.

  9. Preparation and Characterization of Pyrotechnics Binder-Coated Nano-Aluminum Composite Particles

    Science.gov (United States)

    Ye, Mingquan; Zhang, Shuting; Liu, Songsong; Han, Aijun; Chen, Xin

    2017-07-01

    The aim of this article is to protect the activity of nano-aluminum (Al) particles in solid rocket propellants and pyrotechnics. The morphology, structure, active aluminum content, and thermal and catalytic properties of the coated samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetry-differential scanning calorimetry (TG-DSC), and oxidation-reduction titration methods. The results indicated that nano-Al particles could be effectively coated with phenolic resin (PF), fluororubber (Viton B), and shellac through a solvent/nonsolvent method. The energetic composite particles have core-shell structures and the thickness of the coating film is about 5-15 nm. Analysis of the active Al content revealed that Viton B coating had a much better protective effect. The TG-DSC results showed that the energy amount and energy release rate of PF-, Viton B-, and shellac-coated Al particles were larger than those of the raw nano-Al particles. The catalytic effects of coated Al particles on the thermal decomposition of ammonium perchlorate (AP) were better than those of raw nano-Al particles, and the effect of shellac-coated Al particles was significantly better than that of Viton B-coated Al particles.

  10. Radionuclide composition in the surface layer of particles in the troposphere and stratosphere falls

    International Nuclear Information System (INIS)

    Prokof'ev, O.N.

    1977-01-01

    Radionuclide content in troposphere and stratosphere fall-outs as well as radionuclide washing-off from fall-out particle; are important to determine internal irradiation doses received by separate critical organs of human body. In surface-contaminated products (floury products of grain contaminated while in ears, vegetables, fruits, berries, noncovered or insufficiently covered products during fall-outs) radionuclides initially (in an initial state) are connected with fall-out particles. Radionuclides in biologically contaminated products (milk, meat etc.) are not connected with the particles and have the assimilable form. However, the degree of radionuclide transition from forage (grasses, hay etc.) surface-contaminated as a results of fall-outs into animal produce (milk, meat etc.) also depends on radionuclide washing-off from fall-out particles, which in the latter results from the formation nature and a kind of particles of the main substance. Radionuclide washing-off degree (and, consequently, biological availability) by glazed silicate particles is caused by radionuclide distribution between particle volume and surface in an appropriate sample. According to Israel Yu.A. method calculated were the shares of surface-bound atoms for all the particle totality in an explosion cloud for mass chains, which composition includes biologically important radionuclides. Particle solidification time is taken to equal 7 and 40s. Independent yields of chain radionuclides and its total yield are taken for 228 U fission under 14 MeV neutron effect. The calculation results are presented in the tables

  11. Chemical composition modulates the adverse effects of particles on the mucociliary epithelium

    Directory of Open Access Journals (Sweden)

    Regiani Carvalho-Oliveira

    2015-10-01

    Full Text Available OBJECTIVE:We compared the adverse effects of two types of real ambient particles; i.e., total suspended particles from an electrostatic precipitator of a steel mill and fine air particles from an urban ambient particulate matter of 2.5 µm, on mucociliary clearance.METHOD:Mucociliary function was quantified by mucociliary transport, ciliary beating frequency and the amount of acid and neutral mucous in epithelial cells through morphometry of frog palate preparations. The palates were immersed in one of the following solutions: total suspended particles (0.1 mg/mL, particulate matter 2.5 µm 0.1 mg/mL (PM0.1 or 3.0 mg/mL (PM3.0 and amphibian Ringer’s solution (control. Particle chemical compositions were determined by X-ray fluorescence and gas chromatography/mass spectrometry.RESULTS:Exposure to total suspended particles and PM3.0 decreased mucociliary transport. Ciliary beating frequency was diminished by total suspended particles at all times during exposure, while particulate matter of 2.5 µm did not elicit changes. Particulate matter of 2.5 µm reduced epithelial mucous and epithelium thickness, while total suspended particles behaved similarly to the control group. Total suspended particles exhibited a predominance of Fe and no organic compounds, while the particulate matter 2.5 µm contained predominant amounts of S, Fe, Si and, to a lesser extent, Cu, Ni, V, Zn and organic compounds.CONCLUSION:Our results showed that different compositions of particles induced different airway epithelial responses, emphasizing that knowledge of their individual characteristics may help to establish policies aimed at controlling air pollution.

  12. Lifetime of (e+e-) puzzle's composite particle: No valid limits yet

    International Nuclear Information System (INIS)

    Griffin, J.J.

    1993-01-01

    Several recent articles assert that the increasingly precise null results of Bhabha scattering imply ''model-independent'' increasing lower bounds upon the lifetime of any neutral particle whose decay is hypothesized to yield the sharp lines of the GSI ''(e + e-) puzzle.'' We discuss here reasons why such conclusions must be considered as artifacts of the assumptions made in the analysis, and not as valid scientific deductions from the data alone. Furthermore, we show that when such data are combined with additional assumptions sufficient to allow an inference about the lifetime, then the conclusion is inevitably dependent explicitly or implicitly upon the model assumed for the particle decay. In addition, we discuss why the limits asserted upon the lifetime of such a particle from the high precision agreement for g e -2 between experiment and theoretical quantum electrodynamics apply only to an elementary particle, but not to a composite particle, and especially not to a leptonic composite. In the end, no valid limits upon the composite particle lifetime seems to exist at present. We also consider, in the context of the general partial width data problem, the additional experimental data which could suffice to sustain a purely empirical limit upon the lifetime, and observe that all of the present data are consistent with a composite particle with a significant amplitude in the four lepton (e + e+e-e-) ''quadronium'' sector. Finally, it is shown that recent preliminary Bhabha inelastic (e + e+γ) data, if confirmed, would imply the crude but genuinely empirical upper bound upon the resonance lifetime of about τ max ∼2x10 -11 sec≥τ

  13. Fracture of a Brittle-Particle Ductile Matrix Composite with Applications to a Coating System

    Science.gov (United States)

    Bianculli, Steven J.

    In material systems consisting of hard second phase particles in a ductile matrix, failure initiating from cracking of the second phase particles is an important failure mechanism. This dissertation applies the principles of fracture mechanics to consider this problem, first from the standpoint of fracture of the particles, and then the onset of crack propagation from fractured particles. This research was inspired by the observation of the failure mechanism of a commercial zinc-based anti-corrosion coating and the analysis was initially approached as coatings problem. As the work progressed it became evident that failure mechanism was relevant to a broad range of composite material systems and research approach was generalized to consider failure of a system consisting of ellipsoidal second phase particles in a ductile matrix. The starting point for the analysis is the classical Eshelby Problem, which considered stress transfer from the matrix to an ellipsoidal inclusion. The particle fracture problem is approached by considering cracks within particles and how they are affected by the particle/matrix interface, the difference in properties between the particle and matrix, and by particle shape. These effects are mapped out for a wide range of material combinations. The trends developed show that, although the particle fracture problem is very complex, the potential for fracture among a range of particle shapes can, for certain ranges in particle shape, be considered easily on the basis of the Eshelby Stress alone. Additionally, the evaluation of cracks near the curved particle/matrix interface adds to the existing body of work of cracks approaching bi-material interfaces in layered material systems. The onset of crack propagation from fractured particles is then considered as a function of particle shape and mismatch in material properties between the particle and matrix. This behavior is mapped out for a wide range of material combinations. The final section of

  14. Thermal Conductivity of Epoxy Resin Composites Filled with Combustion Synthesized h-BN Particles

    Directory of Open Access Journals (Sweden)

    Shyan-Lung Chung

    2016-05-01

    Full Text Available The thermal conductivity of epoxy resin composites filled with combustion-synthesized hexagonal boron nitride (h-BN particles was investigated. The mixing of the composite constituents was carried out by either a dry method (involving no use of solvent for low filler loadings or a solvent method (using acetone as solvent for higher filler loadings. It was found that surface treatment of the h-BN particles using the silane 3-glycidoxypropyltrimethoxysilane (GPTMS increases the thermal conductivity of the resultant composites in a lesser amount compared to the values reported by other studies. This was explained by the fact that the combustion synthesized h-BN particles contain less –OH or active sites on the surface, thus adsorbing less amounts of GPTMS. However, the thermal conductivity of the composites filled with the combustion synthesized h-BN was found to be comparable to that with commercially available h-BN reported in other studies. The thermal conductivity of the composites was found to be higher when larger h-BN particles were used. The thermal conductivity was also found to increase with increasing filler content to a maximum and then begin to decrease with further increases in this content. In addition to the effect of higher porosity at higher filler contents, more horizontally oriented h-BN particles formed at higher filler loadings (perhaps due to pressing during formation of the composites were suggested to be a factor causing this decrease of the thermal conductivity. The measured thermal conductivities were compared to theoretical predictions based on the Nielsen and Lewis theory. The theoretical predictions were found to be lower than the experimental values at low filler contents (< 60 vol % and became increasing higher than the experimental values at high filler contents (> 60 vol %.

  15. Thermal Conductivity of Epoxy Resin Composites Filled with Combustion Synthesized h-BN Particles.

    Science.gov (United States)

    Chung, Shyan-Lung; Lin, Jeng-Shung

    2016-05-20

    The thermal conductivity of epoxy resin composites filled with combustion-synthesized hexagonal boron nitride (h-BN) particles was investigated. The mixing of the composite constituents was carried out by either a dry method (involving no use of solvent) for low filler loadings or a solvent method (using acetone as solvent) for higher filler loadings. It was found that surface treatment of the h-BN particles using the silane 3-glycidoxypropyltrimethoxysilane (GPTMS) increases the thermal conductivity of the resultant composites in a lesser amount compared to the values reported by other studies. This was explained by the fact that the combustion synthesized h-BN particles contain less -OH or active sites on the surface, thus adsorbing less amounts of GPTMS. However, the thermal conductivity of the composites filled with the combustion synthesized h-BN was found to be comparable to that with commercially available h-BN reported in other studies. The thermal conductivity of the composites was found to be higher when larger h-BN particles were used. The thermal conductivity was also found to increase with increasing filler content to a maximum and then begin to decrease with further increases in this content. In addition to the effect of higher porosity at higher filler contents, more horizontally oriented h-BN particles formed at higher filler loadings (perhaps due to pressing during formation of the composites) were suggested to be a factor causing this decrease of the thermal conductivity. The measured thermal conductivities were compared to theoretical predictions based on the Nielsen and Lewis theory. The theoretical predictions were found to be lower than the experimental values at low filler contents ( 60 vol %).

  16. Single particle analysis of eastern Mediterranean aerosol particles: Influence of the source region on the chemical composition

    Science.gov (United States)

    Clemen, Hans-Christian; Schneider, Johannes; Köllner, Franziska; Klimach, Thomas; Pikridas, Michael; Stavroulas, Iasonas; Sciare, Jean; Borrmann, Stephan

    2017-04-01

    The Mediterranean region is one of the most climatically sensitive areas and is influenced by air masses of different origin. Aerosol particles are one important factor contributing to the Earth's radiative forcing, but knowledge about their composition and sources is still limited. Here, we report on results from the INUIT-BACCHUS-ACTRIS campaign, which was conducted at the Cyprus Atmospheric Observatory (CAO, Agia Marina Xyliatou) in Cyprus in April 2016. Our results show that the chemical composition of the aerosol particles in the eastern Mediterranean is strongly dependent on their source region. The composition of particles in a size range between 150 nm and 3 μm was measured using the Aircraft-based Laser ABlation Aerosol MAss spectrometer (ALABAMA), which is a single particle laser ablation instrument using a bipolar time-of-flight mass spectrometer. The mass spectral information on cations and anions allow for the analysis of different molecular fragments. The information about the source regions results from backward trajectories using HYSPLIT Trajectory Model (Trajectory Ensemble) on hourly basis. To assess the influence of certain source regions on the air masses arriving at CAO, we consider the number of trajectories that crossed the respective source region within defined time steps. For a more detailed picture also the height and the velocity of the air masses during their overpass above the source regions will be considered. During the campaign at CAO in April 2016 three main air mass source regions were observed: 1) Northern Central Europe, likely with an enhanced anthropogenic influence (e.g. sulfate and black carbon from combustion processes, fly ash particles from power plants, characterized by Sr and Ba), 2) Southwest Europe, with a higher influence of the Mediterranean Sea including sea salt particles (characterized by, e.g., NaxCly, NaClxNOy), 3) Northern Africa/Sahara, with air masses that are expected to have a higher load of mineral dust

  17. Electromagnetic wave absorption properties of composites with micro-sized magnetic particles dispersed in amorphous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin Peng [Research Center of Carbon Fiber, Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Tianjin Binhai New Area Finance Bureau, Tianjin 300450 (China); Wang, Cheng Guo, E-mail: sduwangchg@gmail.com [Research Center of Carbon Fiber, Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Wang, Wen [Norinco Group China North Material Science and Engineering Technology Group Corporation, Jinan 250031 (China); Yu, Mei Jie; Gao, Rui; Chen, Yang; Xiang Wang, Yan [Research Center of Carbon Fiber, Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China)

    2014-09-01

    Composites with micro-sized magnetic particles dispersed in amorphous carbon were fabricated conveniently and economically by carbonizing polyacrylonitrile (PAN) fibers mixed with micro-sized iron particles under different temperatures. The composites were characterized by X-ray diffraction (XRD) and scanning electric microscope (SEM). The electromagnetic (EM) properties were measured by a vector network analyzer in the frequency range of 2–18 GHz based on which analog computations of EM wave absorption properties were carried out. The influences of temperature on phase composition and EM wave absorption properties were also investigated, indicating that the composites had good electromagnetic absorption properties with both electrical loss and magnetic loss. Effective reflection loss (RL<−10 dB) was observed in a large frequency range of 7.5–18 GHz with the absorber thickness of 2.0–3.0 mm for the paraffin samples with composite powders heated up to 750 °C and the minimum absorption peak around −40 dB appeared at approximately 10 GHz with matching thickness of 2.0 mm for the paraffin sample with composite powders heated up to 800 °C. - Highlights: • High-performance electromagnetic wave absorption materials were fabricated conveniently and economically. • The materials are composites with micro-sized magnetic particles dispersed in porous amorphous carbon. • The influences of temperature on phase composition and electromagnetic wave absorption properties were investigated. • The composites heated up to 750 °C and 800 °C had good electromagnetic wave absorption property.

  18. The influence of powder particle size on properties of Cu-Al2O3 composites

    Directory of Open Access Journals (Sweden)

    Rajković V.

    2009-01-01

    Full Text Available Inert gas atomized prealloyed copper powder containing 2 wt.% Al (average particle size ≈ 30 μm and a mixture consisting of copper (average particle sizes ≈ 15 μm and 30 μm and 4 wt.% of commercial Al2O3 powder particles (average particle size ≈ 0.75 μm were milled separately in a high-energy planetary ball mill up to 20 h in air. Milling was performed in order to strengthen the copper matrix by grain size refinement and Al2O3 particles. Milling in air of prealloyed copper powder promoted formation of finely dispersed nano-sized Al2O3 particles by internal oxidation. On the other side, composite powders with commercial micro-sized Al2O3 particles were obtained by mechanical alloying. Following milling, powders were treated in hydrogen at 400 0C for 1h in order to eliminate copper oxides formed on their surface during milling. Hot-pressing (800 0C for 3 h in argon at pressure of 35 MPa was used for compaction of milled powders. Hot-pressed composite compacts processed from 5 and 20 h milled powders were additionally subjected to high temperature exposure (800°C for 1 and 5h in argon in order to examine their thermal stability. The results were discussed in terms of the effects of different size of starting powders, the grain size refinement and different size of Al2O3 particles on strengthening, thermal stability and electrical conductivity of copper-based composites.

  19. Electrical percolation threshold of magnetostrictive inclusions in a piezoelectric matrix composite as a function of relative particle size

    Science.gov (United States)

    Barbero, Ever J.; Bedard, Antoine Joseph

    2018-04-01

    Magnetoelectric composites can be produced by embedding magnetostrictive particles in a piezoelectric matrix derived from a piezoelectric powder precursor. Ferrite magnetostrictive particles, if allowed to percolate, can short the potential difference generated in the piezoelectric phase. Modeling a magnetoelectric composite as an aggregate of bi-disperse hard shells, molecular dynamics was used to explore relationships among relative particle size, particle affinity, and electrical percolation with the goal of maximizing the percolation threshold. It is found that two factors raise the percolation threshold, namely the relative size of magnetostrictive to piezoelectric particles, and the affinity between the magnetostrictive and piezoelectric particles.

  20. Size-resolved chemical composition, effective density, and optical properties of biomass burning particles

    Science.gov (United States)

    Zhai, Jinghao; Lu, Xiaohui; Li, Ling; Zhang, Qi; Zhang, Ci; Chen, Hong; Yang, Xin; Chen, Jianmin

    2017-06-01

    Biomass burning aerosol has an important impact on the global radiative budget. A better understanding of the correlations between the mixing states of biomass burning particles and their optical properties is the goal of a number of current studies. In this work, the effective density, chemical composition, and optical properties of rice straw burning particles in the size range of 50-400 nm were measured using a suite of online methods. We found that the major components of particles produced by burning rice straw included black carbon (BC), organic carbon (OC), and potassium salts, but the mixing states of particles were strongly size dependent. Particles of 50 nm had the smallest effective density (1.16 g cm-3) due to a relatively large proportion of aggregate BC. The average effective densities of 100-400 nm particles ranged from 1.35 to 1.51 g cm-3 with OC and inorganic salts as dominant components. Both density distribution and single-particle mass spectrometry showed more complex mixing states in larger particles. Upon heating, the separation of the effective density distribution modes confirmed the external mixing state of less-volatile BC or soot and potassium salts. The size-resolved optical properties of biomass burning particles were investigated at two wavelengths (λ = 450 and 530 nm). The single-scattering albedo (SSA) showed the lowest value for 50 nm particles (0.741 ± 0.007 and 0.889 ± 0.006) because of the larger proportion of BC content. Brown carbon played an important role for the SSA of 100-400 nm particles. The Ångström absorption exponent (AAE) values for all particles were above 1.6, indicating the significant presence of brown carbon in all sizes. Concurrent measurements in our work provide a basis for discussing the physicochemical properties of biomass burning aerosol and its effects on the global climate and atmospheric environment.

  1. On two-particle N=1 supersymmetric composite grand unified models

    International Nuclear Information System (INIS)

    Pirogov, Yu.F.

    1984-01-01

    A class of two-particle N=1 supersymmetric composite grand unified models, satisfying the anomaly matching and cancellation conditions, n-independence and survival hypothesis is considered. A unique admissible set of the light states, containing spectator states on a par with the composite ones is found. At low mass scales this set contains exactly four families of ordinary fermions without any additional exotics. The interactions of the light states at distances greater than the compositeness radius are described by the N=1 sypersymmetric chiral grand unified model [SU(6)] 2 (or [SU(8)] 2 with a fixed set of four second-rank tensors as matter fields

  2. Mechanical characterization and ion release of bioactive dental composites containing calcium phosphate particles.

    Science.gov (United States)

    Natale, Livia C; Rodrigues, Marcela C; Alania, Yvette; Chiari, Marina D S; Boaro, Leticia C C; Cotrim, Marycel; Vega, Oscar; Braga, Roberto R

    2018-08-01

    to verify the effect of the addition of dicalcium phosphate dihydrate (DCPD) particles functionalized with di- or triethylene glycol dimethacrylate (DEGDMA or TEGDMA) on the degree of conversion (DC), post-gel shrinkage (PS), mechanical properties, and ion release of experimental composites. Four composites were prepared containing a BisGMA/TEGDMA matrix and 60 vol% of fillers. The positive control contained only barium glass fillers, while in the other composites 15 vol% of the barium was replaced by DCPD. Besides the functionalized particles, non-functionalized DCPD was also tested. DC after 24 h (n = 3) was determined by FTIR spectroscopy. The strain gage method was used to obtain PS 5 min after photoactivation (n = 5). Flexural strength and modulus (n = 10) were calculated based on the biaxial flexural test results, after specimen storage for 24 h or 60 days in water. The same storage times were used for fracture toughness testing (FT, n = 10). Calcium and phosphate release up to 60 days was quantified by ICP-OES (n = 3). Data were analyzed by ANOVA/Tukey test (alpha: 5%). Composites containing functionalized DCPD presented higher DC than the control (p composites (p composite with DEGDMA-functionalized DCPD presented fracture strength similar to the control, while for flexural modulus only the composite with TEGDMA-functionalized particles was lower than the control (p composites containing DCPD was higher than the control after 60 days (p composite with non-functionalized DCPD at 15 days and no significant reductions were observed for composites with functionalized DCPD during the observation period (p composites, phosphate release was higher at 15 days than in the subsequent periods, and no difference among them was recorded at 45 and 60 days (p composite with DEGDMA-functionalized particles was the only material with strength similar to the control after 60 days in water; however, it also presented the highest

  3. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles.

    Science.gov (United States)

    Heravi, Farzin; Ramezani, Mohammad; Poosti, Maryam; Hosseini, Mohsen; Shajiei, Arezoo; Ahrari, Farzaneh

    2013-01-01

    Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco's Modified Eagle's Medium (DMEM). The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF) and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P0.05). There was a significant reduction in cell toxicity with increasing pre-incubation time (Porthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive.

  4. Wear and friction behaviour of soft particles filled random direction short GFRP composites

    International Nuclear Information System (INIS)

    Srivastava, V.K.; Wahne, S.

    2007-01-01

    The random direction short E-glass fibre reinforced epoxy resin composites filled with the particles of mica and tricalcium phosphate (TCP) were prepared by hand lay-up method. The wear and friction behaviour of random direction short E-glass fibre reinforced epoxy resin (GFRP) composites sliding against AISI-1045 steel in a pin-on-disc configuration were evaluated on a TR-20LE wear and friction tester. The microhardness, density, tensile strength and compressive strength of the filled and unfilled mica as well as TCP particles were determined. The morphology of the worn surfaces of the unfilled and filled random E-glass fibre composites and the transfer films were analyzed with the scanning electron microscope. It was found that the particles as the fillers contributed significantly to improve the mechanical properties and wear resistance of the E-glass fibre. This was because the particulates as the fillers contributed to enhance the bonding strength between the fibre and the epoxy resin. Moreover, the wear and friction properties of the random E-glass fibre composites were reduced by increasing filler weight of particles

  5. Electrodeposition, characterization, and antibacterial activity of zinc/silver particle composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Vidal, Y.; Suarez-Rojas, R.; Ruiz, C.; Torres, J. [Center of Research and Technological Development in Electrochemistry (CIDETEQ), Parque Tecnológico Sanfandila, Pedro Escobedo, Querétaro, A.P.064, C.P.76703, Querétaro (Mexico); Ţălu, Ştefan [Technical University of Cluj-Napoca, Faculty of Mechanical Engineering, Department of AET, Discipline of Descriptive Geometry and Engineering Graphics, 103-105 B-dul Muncii St., Cluj-Napoca 400641 Cluj (Romania); Méndez, Alia [Centro de Química-ICUAP Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria Puebla, 72530 Puebla (Mexico); Trejo, G., E-mail: gtrejo@cideteq.mx [Center of Research and Technological Development in Electrochemistry (CIDETEQ), Parque Tecnológico Sanfandila, Pedro Escobedo, Querétaro, A.P.064, C.P.76703, Querétaro (Mexico)

    2015-07-01

    Highlights: • Zn/AgPs composites coatings were formed for electrodeposition. • CTAB promotes occlusion of silver particles in the coating. • Zn/AgPs coatings present very good antibacterial activity. - Abstract: Composite coatings consisting of zinc and silver particles (Zn/AgPs) with antibacterial activity were prepared using an electrodeposition technique. The morphology, composition, and structure of the Zn/AgPs composite coatings were analyzed using scanning electron microscopy (SEM) coupled with energy-dispersive spectroscopy (EDS), inductively coupled plasma (ICP) spectrometry, and X-ray diffraction (XRD). The antibacterial properties of the coatings against the microorganisms Escherichia coli as a model Gram-negative bacterium and Staphylococcus aureus as a model Gram-positive bacterium were studied quantitatively and qualitatively. The results revealed that the dispersant cetyltrimethylammonium bromide (CTAB) assisted in the formation of a stable suspension of Ag particles in the electrolytic bath for 24 h. Likewise, a high concentration of CTAB in the electrolytic bath promoted an increase in the number of Ag particles occluded in the Zn/AgPs coatings. The Zn/AgPs coatings that were obtained were compact, smooth, and shiny materials. Antimicrobial tests performed on the Zn/AgPs coatings revealed that the inhibition of bacterial growth after 30 min of contact time was between 91% and 98% when the AgPs content ranged from 4.3 to 14.0 mg cm{sup −3}.

  6. Composite biomaterials with chemical bonding between hydroxyapatite filler particles and PEG/PBT copolymer matrix

    NARCIS (Netherlands)

    Liu, Qing; de Wijn, J.R.; van Blitterswijk, Clemens

    1998-01-01

    In an effort to make composites from hydroxyapatite and a PEG/PBT copolymer (PolyactiveTM 70/30), chemical linkages were introduced between the filler particles and polymer matrix using hexamethylene diisocyanate as a coupling agent. Infrared spectra (IR) and thermal gravimetric analysis (TGA)

  7. Al-matrix composite materials reinforced by Al-Cu-Fe particles

    International Nuclear Information System (INIS)

    Bonneville, J; Laplanche, G; Joulain, A; Gauthier-Brunet, V; Dubois, S

    2010-01-01

    Al-matrix material composites were produced using hot isostatic pressing technique, starting with pure Al and icosahedral (i) Al-Cu-Fe powders. Depending on the processing temperature, the final reinforcement particles are either still of the initial i-phase or transformed into the tetragonal ω-Al0 0.70 Cu 0.20 Fe 0.10 crystalline phase. Compression tests performed in the temperature range 293K - 823K on the two types of composite, i.e. Al/i and Al/ω, indicate that the flow stress of both composites is strongly temperature dependent and exhibit distinct regimes with increasing temperature. Differences exist between the two composites, in particular in yield stress values. In the low temperature regime (T ≤ 570K), the yield stress of the Al/ω composite is nearly 75% higher than that of the Al/i composite, while for T > 570K both composites exhibit similar yield stress values. The results are interpreted in terms of load transfer contribution between the matrix and the reinforcement particles and elementary dislocation mechanisms in the Al matrix.

  8. Effect of sintering temperatures on titanium matrix composites reinforced by ceramic particles

    Energy Technology Data Exchange (ETDEWEB)

    Romero, F.; Amigo, V.; Busquets, D.; Klyatskina, E. [Mechanical and Materials Engineering Department. Polytechnical University of Valencia, Valencia (Spain)

    2005-07-01

    Titanium and titanium composites have a potential use in aerospace and biotechnology industries, and nowadays in others like sports and fashion ones. In this work composite materials, based on titanium matrix reinforced with ceramic particles, have been developed. PM route is used to obtain compact and sintered samples. TiN and TiAl powders, are milled with Ti powder in different volumetric percentages in a ball mill. These mixtures are pressed in a uniaxial press and sintered in a vacuum furnace at different temperatures between 1180 to 1220 deg. C. Porosity of samples is analysed, before and after the sintering process, by Archimedes technique and by image analysis. Mechanical properties and the reinforcement particles influence in the titanium matrix are studied by flexion test in green and sintered states, and by hardness and microhardness tests. Complimentarily, a microstructural analysis is carried out by optical and electron microscopy, and the reactivity between the reinforce particles and titanium matrix are studied. (authors)

  9. Heterogeneous Oxidation of Laboratory-generated Mixed Composition and Biomass Burning Particles

    Science.gov (United States)

    Lim, C. Y.; Sugrue, R. A.; Hagan, D. H.; Cappa, C. D.; Kroll, J. H.; Browne, E. C.

    2016-12-01

    Heterogeneous oxidation of organic aerosol (OA) can significantly transform the chemical and physical properties of particulate matter in the atmosphere, leading to changes to the chemical composition of OA and potential volatilization of organic compounds. It has become increasingly apparent that the heterogeneous oxidation kinetics of OA depend on the phase and morphology of the particles. However, most laboratory experiments to date have been performed on single-component, purely organic precursors, which may exhibit fundamentally different behavior than more complex particles in the atmosphere. Here we present laboratory studies of the heterogeneous oxidation of two more complex chemical systems: thin, organic coatings on inorganic seed particles and biomass burning OA. In the first system, squalane (C30H62), a model compound for reduced OA, is coated onto dry ammonium sulfate particles at various thicknesses (10-20 nm) and exposed to hydroxyl radical (OH) in a flow tube reactor. In the second, we use a semi-batch reactor to study the heterogeneous OH-initiated oxidation of biomass burning particles as a part of the 2016 FIREX campaign in Missoula, MT. The resulting changes in chemical composition are monitored with an Aerodyne High Resolution Time-of-flight Aerosol Mass Spectrometer (AMS) and a soot-particle AMS for the non-refractory and refractory systems, respectively. We show that the heterogeneous oxidation kinetics of these multicomponent particles are substantially different than that of the single-component particles. The oxidation of organic coatings is rapid, undergoing dramatic changes to carbon oxidation state and losing a significant amount of organic mass after relatively low OH exposures (equivalent to several days of atmospheric processing). In the case of biomass burning particles, the kinetics are complex, with different components (inferred by aerosol mass spectrometry) undergoing oxidation at different rates.

  10. Morphology, Composition, and Mixing State of Individual Aerosol Particles in Northeast China during Wintertime

    Directory of Open Access Journals (Sweden)

    Liang Xu

    2017-02-01

    Full Text Available Northeast China is located in a high latitude area of the world and undergoes a cold season that lasts six months each year. Recently, regional haze episodes with high concentrations of fine particles (PM2.5 have frequently been occurring in Northeast China during the heating period, but little information has been available. Aerosol particles were collected in winter at a site in a suburban county town (T1 and a site in a background rural area (T2. Morphology, size, elemental composition, and mixing state of individual aerosol particles were characterized by transmission electron microscopy (TEM. Aerosol particles were mainly composed of organic matter (OM and S-rich and certain amounts of soot and K-rich. OM represented the most abundant particles, accounting for 60.7% and 53.5% at the T1 and T2 sites, respectively. Abundant spherical OM particles were likely emitted directly from coal-burning stoves. Soot decreased from 16.9% at the T1 site to 4.6% at the T2 site and sulfate particles decrease from 35.9% at the T2 site to 15.7% at the T1 site, suggesting that long-range transport air masses experienced more aging processes and produced more secondary particles. Based on our investigations, we proposed that emissions from coal-burning stoves in most rural areas of the west part of Northeast China can induce regional haze episodes.

  11. Self-sensing piezoresistive cement composite loaded with carbon black particles

    KAUST Repository

    Monteiro, André O.

    2017-04-27

    Strain sensors can be embedded in civil engineering infrastructures to perform real-time service life monitoring. Here, the sensing capability of piezoresistive cement-based composites loaded with carbon black (CB) particles is investigated. Several composite mixtures, with a CB filler loading up to 10% of binder mass, were mechanically tested under cyclic uniaxial compression, registering variations in electrical resistance as a function of deformation. The results show a reversible piezoresistive behaviour and a quasi-linear relation between the fractional change in resistivity and the compressive strain, in particular for those compositions with higher amount of CB. Gage factors of 30 and 24 were found for compositions containing 7 and 10% of binder mass, respectively. These findings suggest that the CB-cement composites may be a promising active material to monitor compressive strain in civil infrastructures such as concrete bridges and roadways.

  12. Molecular and structural properties of polymer composites filled with activated charcoal particles

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, Dahlang, E-mail: dtahir@fmipa.unhas.ac.id; Bakri, Fahrul [Department of Physics, Hasanuddin University, Makassar 90245 Indonesia (Indonesia); Liong, Syarifuddin [Department of Chemistry, Hasanuddin University, Makassar 90245 Indonesia (Indonesia)

    2016-03-11

    We have studied the molecular properties, structural properties, and chemical composition of composites by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectroscopy, and X-ray fluorescence (XRF) spectroscopy, respectively. FTIR spectra shows absorption band of hydroxyl group (-OH), methyl group (-CH{sub 3}) and aromatic group (C-C). The absorption band for aromatic group (C-C) shows the formation of carbonaceous in composites. XRF shows chemical composition of composites, which the main chemicals are SO{sub 3}, Cl, and ZnO. The loss on ignition value (LOI) of activated charcoal indicates high carbonaceous matter. The crystallite size for diffraction pattern from hydrogel polymer is about 17 nm and for activated charcoal are about 19 nm. The crystallite size of the polymer is lower than that of activated charcoal, which make possible of the particle from filler in contact with each other to form continuous conducting polymer through polymer matrix.

  13. Microscopic composition measurements of organic individual particles collected in the Southern Great Plains

    Science.gov (United States)

    Bonanno, D.; China, S.; Fraund, M. W.; Pham, D.; Kulkarni, G.; Laskin, A.; Gilles, M. K.; Moffet, R.

    2016-12-01

    The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Campaign was carried out to gain a better understanding of the lifecycle of shallow clouds. The HISCALE experiment was designed to contrast two seasons, wet and dry, and determine their effect on atmospheric cloud and aerosol processes. The spring component to HISCALE was selected to characterize mixing state for particles collected onto substrates. Sampling was performed before and after rain events to obtain airborne soil organic particles (ASOP), which are ejected after rain events. The unique composition of the ASOP may affect optical properties and/or hygroscopic properties. The collection of particles took place at the Atmospheric Radiation Measurement Southern Great Plains (ARM SGP) field site. The Scanning Transmission X-Ray Microscope (STXM) was used to image the samples collected during the first HI-SCALE Campaign to determine the carbonaceous mixing state. Scanning Electron Microscopy Energy-dispersive X-ray (SEM/EDX) analysis is more sensitive to the inorganic makeup of particles, while STXM renders a more comprehensive analysis of the organics. Measurements such as nephelometry, Particle Soot Absorption Photometry (PSAP), and Aerosol Mass Spectrometry (AMS) from the ARM archive will be correlated with microscopy measurements. The primary focus is the relation between composition and morphology of ASOP with hygroscopicity and optical properties. Further investigation of these organic particles will be performed to provide a mixing state parameterization and aid in the advancement of current climate models.

  14. Elucidating determinants of aerosol composition through particle-type-based receptor modeling

    Science.gov (United States)

    McGuire, M. L.; Jeong, C.-H.; Slowik, J. G.; Chang, R. Y.-W.; Corbin, J. C.; Lu, G.; Mihele, C.; Rehbein, P. J. G.; Sills, D. M. L.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.

    2011-08-01

    An aerosol time-of-flight mass spectrometer (ATOFMS) was deployed at a semi-rural site in southern Ontario to characterize the size and chemical composition of individual particles. Particle-type-based receptor modelling of these data was used to investigate the determinants of aerosol chemical composition in this region. Individual particles were classified into particle-types and positive matrix factorization (PMF) was applied to their temporal trends to separate and cross-apportion particle-types to factors. The extent of chemical processing for each factor was assessed by evaluating the internal and external mixing state of the characteristic particle-types. The nine factors identified helped to elucidate the coupled interactions of these determinants. Nitrate-laden dust was found to be the dominant type of locally emitted particles measured by ATOFMS. Several factors associated with aerosol transported to the site from intermediate local-to-regional distances were identified: the Organic factor was associated with a combustion source to the north-west; the ECOC Day factor was characterized by nearby local-to-regional carbonaceous emissions transported from the south-west during the daytime; and the Fireworks factor consisted of pyrotechnic particles from the Detroit region following holiday fireworks displays. Regional aerosol from farther emissions sources was reflected through three factors: two Biomass Burning factors and a highly chemically processed Long Range Transport factor. The Biomass Burning factors were separated by PMF due to differences in chemical processing which were in part elucidated by the passage of two thunderstorm gust fronts with different air mass histories. The remaining two factors, ECOC Night and Nitrate Background, represented the night-time partitioning of nitrate to pre-existing particles of different origins. The distinct meteorological conditions observed during this month-long study in the summer of 2007 provided a unique

  15. Vacuum brazing of high volume fraction SiC particles reinforced aluminum matrix composites

    Science.gov (United States)

    Cheng, Dongfeng; Niu, Jitai; Gao, Zeng; Wang, Peng

    2015-03-01

    This experiment chooses A356 aluminum matrix composites containing 55% SiC particle reinforcing phase as the parent metal and Al-Si-Cu-Zn-Ni alloy metal as the filler metal. The brazing process is carried out in vacuum brazing furnace at the temperature of 550°C and 560°C for 3 min, respectively. The interfacial microstructures and fracture surfaces are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy spectrum analysis (EDS). The result shows that adequacy of element diffusion are superior when brazing at 560°C, because of higher activity and liquidity. Dislocations and twins are observed at the interface between filler and composite due to the different expansion coefficient of the aluminum alloy matrix and SiC particles. The fracture analysis shows that the brittle fracture mainly located at interface of filler and composites.

  16. Tight coupling of particle size, number and composition in atmospheric cloud droplet activation

    Directory of Open Access Journals (Sweden)

    D. O. Topping

    2012-04-01

    Full Text Available The substantial uncertainty in the indirect effect of aerosol particles on radiative forcing in large part arises from the influences of atmospheric aerosol particles on (i the brightness of clouds, exerting significant shortwave cooling with no appreciable compensation in the long wave, and on (ii their ability to precipitate, with implications for cloud cover and lifetime.

    Predicting the ambient conditions at which aerosol particles may become cloud droplets is largely reliant on an equilibrium relationship derived by Köhler (1936. However, the theoretical basis of the relationship restricts its application to particles solely comprising involatile compounds and water, whereas a substantial fraction of particles in the real atmosphere will contain potentially thousands of semi-volatile organic compounds in addition to containing semi-volatile inorganic components such as ammonium nitrate.

    We show that equilibration of atmospherically reasonable concentrations of organic compounds with a growing particle as the ambient humidity increases has potentially larger implications on cloud droplet formation than any other equilibrium compositional dependence, owing to inextricable linkage between the aerosol composition, a particles size and concentration under ambient conditions.

    Whilst previous attempts to account for co-condensation of gases other than water vapour have been restricted to one inorganic condensate, our method demonstrates that accounting for the co-condensation of any number of organic compounds substantially decreases the saturation ratio of water vapour required for droplet activation. This effect is far greater than any other compositional dependence; more so even than the unphysical effect of surface tension reduction in aqueous organic mixtures, ignoring differences in bulk and surface surfactant concentrations.

  17. Synthesis of Silver Particle onto Bamboo Charcoal by Tripropylene Glycol and the Composites Characterization

    Directory of Open Access Journals (Sweden)

    Tzu Hsuan Chiang

    2014-01-01

    Full Text Available In this study, tripropylene glycol was used as a reducting agent in the polyol process to reduce silver nitrate to the form of silver particles deposited onto the surface of bamboo charcoal (BC. The reduction temperature and time were critical parameters as they control the size of the silver particles formed as well as their distribution onto the surface of the BC. The reduction of silver nitrate by the tripropylene glycol occurred at a temperature of 120 °C for 3 h, and the silver particles, which had a face-centered cubic lattice structure, were distributed onto the surface of the BC. These synthesis conditions should work well with tripropylene glycol as reducing agent that can be helpful in the convenient preparation of Ag/BC particles. When Ag/BC powders were manufactured using 3 g of silver nitrate content, the prepared composites had the largest thermal conductivity at 0.2490 W/(m·K.

  18. Effect of carbonyl iron particles composition on the physical characteristics of MR grease

    Energy Technology Data Exchange (ETDEWEB)

    Mohamad, Norzilawati, E-mail: mnorzilawati@gmail.com; Mazlan, Saiful Amri, E-mail: amri.kl@utm.my [Vehicle System Engineering, Malaysia – Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra (Jalan Semarak), Kuala Lumpur, 54000 (Malaysia); Ubaidillah, E-mail: ubaidillah@uns.ac.id [Vehicle System Engineering, Malaysia – Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra (Jalan Semarak), Kuala Lumpur, 54000 (Malaysia); Mechanical Engineering Department, Faculty of Engineering, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Kentingan, Surakarta, 57126, Central Java, Surakarta (Indonesia)

    2016-03-29

    Magnetorheological (MR) grease is an extension of the study of magnetorheological materials. The MR grease can help to reduce the particles sedimentation problem occurred in the MR fluids. Within this study, an effort has been taken to investigate the effect of different weight compositions of carbonyl iron particles on the physical and chemical characteristics of the MR grease under off-state condition (no magnetic field). The MR grease is prepared by mixing carbonyl iron particles having a size range of 1 to 10 µm with commercial NPC Highrex HD-3 grease. Characterizations of MR grease are investigated using Vibrating Sample Magnetometer (VSM), Environmental Scanning Electron Microscopy (ESEM), Differential Scanning Calorimeter (DSC) and rheometer. The dependency of carbonyl iron particles weight towards the magnetic properties of MR grease and other characterizations are investigated.

  19. Characterization of molybdenum particles reinforced Al6082 aluminum matrix composites with improved ductility produced using friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Selvakumar, S., E-mail: lathaselvam1963@gmail.com [Department of Mechanical Engineering, Nehru Institute of Technology, Coimbatore 641105, Tamil Nadu (India); Department of Mechanical Engineering, Anna University, Chennai 600025, Tamil Nadu (India); Dinaharan, I., E-mail: dinaweld2009@gmail.com [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006 (South Africa); Palanivel, R., E-mail: rpalanivelme@gmail.com [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006 (South Africa); Ganesh Babu, B., E-mail: profbgb@gmail.com [Department of Mechanical Engineering, Roever College of Engineering and Technology, Perambalur 621212, Tamil Nadu (India)

    2017-03-15

    Aluminum matrix composites (AMCs) reinforced with various ceramic particles suffer a loss in ductility. Hard metallic particles can be used as reinforcement to improve ductility. The present investigation focuses on using molybdenum (Mo) as potential reinforcement for Mo(0,6,12 and 18 vol.%)/6082Al AMCs produced using friction stir processing (FSP). Mo particles were successfully retained in the aluminum matrix in its elemental form without any interfacial reaction. A homogenous distribution of Mo particles in the composite was achieved. The distribution was independent upon the region within the stir zone. The grains in the composites were refined considerably due to dynamic recrystallization and pinning effect. The tensile test results showed that Mo particles improved the strength of the composite without compromising on ductility. The fracture surfaces of the composites were characterized with deeply developed dimples confirming appreciable ductility. - Highlights: •Molybdenum particles used as reinforcement for aluminum composites to improve ductility. •Molybdenum particles were retained in elemental form without interfacial reaction. •Homogeneous dispersion of molybdenum particles were observed in the composite. •Molybdenum particles improved tensile strength without major loss in ductility. •Deeply developed dimples on the fracture surfaces confirmed improved ductility.

  20. Characterization of molybdenum particles reinforced Al6082 aluminum matrix composites with improved ductility produced using friction stir processing

    International Nuclear Information System (INIS)

    Selvakumar, S.; Dinaharan, I.; Palanivel, R.; Ganesh Babu, B.

    2017-01-01

    Aluminum matrix composites (AMCs) reinforced with various ceramic particles suffer a loss in ductility. Hard metallic particles can be used as reinforcement to improve ductility. The present investigation focuses on using molybdenum (Mo) as potential reinforcement for Mo(0,6,12 and 18 vol.%)/6082Al AMCs produced using friction stir processing (FSP). Mo particles were successfully retained in the aluminum matrix in its elemental form without any interfacial reaction. A homogenous distribution of Mo particles in the composite was achieved. The distribution was independent upon the region within the stir zone. The grains in the composites were refined considerably due to dynamic recrystallization and pinning effect. The tensile test results showed that Mo particles improved the strength of the composite without compromising on ductility. The fracture surfaces of the composites were characterized with deeply developed dimples confirming appreciable ductility. - Highlights: •Molybdenum particles used as reinforcement for aluminum composites to improve ductility. •Molybdenum particles were retained in elemental form without interfacial reaction. •Homogeneous dispersion of molybdenum particles were observed in the composite. •Molybdenum particles improved tensile strength without major loss in ductility. •Deeply developed dimples on the fracture surfaces confirmed improved ductility.

  1. The effect of SiC particle size on the properties of Cu–SiC composites

    International Nuclear Information System (INIS)

    Celebi Efe, G.; Zeytin, S.; Bindal, C.

    2012-01-01

    Graphical abstract: The relative densities of Cu–SiC composites sintered at 700 °C for 2 h are ranged from 97.3% to 91.8% for SiC with 1 μm particle size and 97.5% to 95.2% for SiC with 5 μm particle size, microhardness of composites ranged from 143 to 167 HV for SiC having 1 μm particle size and 156–182 HVN for SiC having 5 μm particle size and the electrical conductivity of composites changed between 85.9% IACS and 55.7% IACS for SiC with 1 μm particle size, 87.9% IACS and 65.2%IACS for SiC with 5 μm particle size. It was found that electrical conductivity of composites containing SiC with 5 μm particle size is better than that of Cu–SiC composites containing SiC with particle size of 1 μm. Highlights: ► In this research, the effect of SiC particle size on some properties of Cu–SiC composites were investigated. ► The mechanical properties were improved. ► The electrical properties were obtained at desirable level. -- Abstract: SiC particulate-reinforced copper composites were prepared by powder metallurgy (PM) method and conventional atmospheric sintering. Scanning electron microscope (SEM), X-ray diffraction (XRD) techniques were used to characterize the sintered composites. The effect of SiC content and particle size on the relative density, hardness and electrical conductivity of composites were investigated. The relative densities of Cu–SiC composites sintered at 700 °C for 2 h are ranged from 97.3% to 91.8% for SiC with 1 μm particle size and from 97.5% to 95.2% for SiC with 5 μm particle size. Microhardness of composites ranged from 143 to 167 HV for SiC having 1 μm particle size and from 156 to 182 HV for SiC having 5 μm particle size. The electrical conductivity of composites changed between 85.9% IACS and 55.7% IACS for SiC with 1 μm particle size, between 87.9% IACS and 65.2% IACS for SiC with 5 μm particle size.

  2. Development of novel Mg–Ni60Nb40 amorphous particle reinforced composites with enhanced hardness and compressive response

    International Nuclear Information System (INIS)

    Jayalakshmi, S.; Sahu, Shreyasi; Sankaranarayanan, S.; Gupta, Sujasha; Gupta, M.

    2014-01-01

    Development of amorphous alloy/glassy particle reinforced light metal composites is an emerging research field. In this investigation, we have synthesized and characterized Ni 60 Nb 40 amorphous alloy particle reinforced Mg-composites with varying volume fractions. Microwave-assisted two-directional rapid sintering technique followed by hot extrusion was used to produce these pure Mg-based composites. The structural and mechanical properties of the developed composites were investigated, and are discussed using structure–property relationship. Structural analysis indicated the retention of amorphous structure of the reinforcement in all the composites. It was found that the distribution of the reinforcement was strongly dependent on the volume fraction (V f ). The addition of Ni 60 Nb 40 amorphous alloy particles modified the preferred crystal orientation of Mg, as was observed from X-ray diffraction (XRD) analysis. The composites showed significant improvement in hardness (increment up to 120%) and compressive strength (∼85% increase at 5% V f ). Comparison of mechanical properties of the developed composites with those of conventional Mg-composites having ceramic/metallic reinforcements, highlight the effectiveness of using amorphous particles as promising reinforcement materials. - Highlights: • Novel Mg-composites reinforced with Ni 60 Nb 40 amorphous particles were developed . • Microwave sintering and hot extrusion were used to synthesize the composites. • Reinforcements retained the amorphous structure, and changed Mg-crystal orientation. • Composites showed significant enhancement in hardness and compressive properties. • Performance of developed composites are superior/competitive to conventional MMCs

  3. Compositions of airborne plutonium-bearing particles from a plutonium finishing operation

    International Nuclear Information System (INIS)

    Sanders, S.M. Jr.

    1976-11-01

    The elemental composition of 111 plutonium-bearing particles was determined (using an electron microprobe) as part of a program to investigate the origin and behavior of the long-lived transuranic radionuclides released from fuel reprocessing facilities at the Savannah River Plant. These particles, collected from wet-cabinet and room-air exhausts from the plutonium finishing operation (JB-Line), were between 0.4 and 36 μm in diameter. Ninety-nine of the particles were found to be aggregates of various minerals and metals, six were quartz, and six were small (less than 2-μm-diameter) pieces of iron oxide. Collectively, these particles contained less minerals and more metals than natural dusts contain. The metallic constituents included elements normally not found in dusts, e.g., chromium, nickel, copper, and zinc. Concentrations of aluminum and iron exceeded those normally found in minerals. Elemental concentrations in individual particles covered a wide range: one 2-μm-diameter particle contained 97 percent NiO, a 9-μm-diameter particle contained 72 percent Cr 2 O 3 . Although the particles were selected because they produced plutonium fission tracks, the plutonium concentration was too low to be estimated by microprobe analysis in all but a 1-μm-diameter particle. This plutonium-bearing particle contained 73 percent PuO 2 by weight in combination with Fe 2 O 3 and mica; its activity was estimated at 0.17 pCi of 239 Pu

  4. A new method for soldering particle-reinforced aluminum metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jinbin; Mu, Yunchao [Zhongyuan University of Technology, Zhengzhou 450007 (China); Luo, Xiangwei [Zhengzhou University, Zhengzhou 450002 (China); Niu, Jitai, E-mail: niujitai@163.com [Zhongyuan University of Technology, Zhengzhou 450007 (China)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer Soldering of 55% SiCp/Al composite and Kovar is first achieved in the world. Black-Right-Pointing-Pointer The nickel plating is required on the surface of the composites before soldering. Black-Right-Pointing-Pointer Low welding temperature is set to avoid overheating of the matrix. Black-Right-Pointing-Pointer Chemical and metallurgical bonding of composites and Kovar is carried out. Black-Right-Pointing-Pointer High tension strength of 225 MPa in soldering seam has been obtained. - Abstract: Soldering of aluminum metal matrix composites (Al-SiC) to other structural materials, or even to themselves, has proved unsuccessful mainly due to the poor wetting of these composites by conventional soldering alloys. This paper reports a new approach, which improves the wetting properties of these composites by molting solder alloys to promote stronger bonds. The new approach relies on nickel-plating of the composite's faying surface prior to application of a solder alloy. Based on this approach, an aluminum metal matrix composite containing 55 vol.% SiC particles is successfully soldered to a Fe-Ni-Co alloy (commercially known as Kovar 4J29). The solder material is a zinc-based alloy (Zn-Cd-Ag-Cu) with a melting point of about 400 Degree-Sign C. Microscopic examinations of the aluminum metal matrix composites (Al-MMCs)-Kovar interfaces show that the nickel-plating, prior to soldering, could noticeably enhance the reaction between the molten solder and composites. The fractography of the shear-tested samples revealed that fracture occurs within the composite (i.e. cohesive failure), indicating a good adhesion between the solder alloy and the Al-SiC composite.

  5. A new method for soldering particle-reinforced aluminum metal matrix composites

    International Nuclear Information System (INIS)

    Lu, Jinbin; Mu, Yunchao; Luo, Xiangwei; Niu, Jitai

    2012-01-01

    Highlights: ► Soldering of 55% SiCp/Al composite and Kovar is first achieved in the world. ► The nickel plating is required on the surface of the composites before soldering. ► Low welding temperature is set to avoid overheating of the matrix. ► Chemical and metallurgical bonding of composites and Kovar is carried out. ► High tension strength of 225 MPa in soldering seam has been obtained. - Abstract: Soldering of aluminum metal matrix composites (Al–SiC) to other structural materials, or even to themselves, has proved unsuccessful mainly due to the poor wetting of these composites by conventional soldering alloys. This paper reports a new approach, which improves the wetting properties of these composites by molting solder alloys to promote stronger bonds. The new approach relies on nickel-plating of the composite's faying surface prior to application of a solder alloy. Based on this approach, an aluminum metal matrix composite containing 55 vol.% SiC particles is successfully soldered to a Fe–Ni–Co alloy (commercially known as Kovar 4J29). The solder material is a zinc-based alloy (Zn–Cd–Ag–Cu) with a melting point of about 400 °C. Microscopic examinations of the aluminum metal matrix composites (Al-MMCs)–Kovar interfaces show that the nickel-plating, prior to soldering, could noticeably enhance the reaction between the molten solder and composites. The fractography of the shear-tested samples revealed that fracture occurs within the composite (i.e. cohesive failure), indicating a good adhesion between the solder alloy and the Al–SiC composite.

  6. Characterizing the composition and evolution of and urban particles in Chongqing (China) during summertime

    Science.gov (United States)

    Chen, Yang; Yang, Fumo; Mi, Tian; Cao, Junji; Shi, Guangming; Huang, Rujin; Wang, Huanbo; Chen, Jun; Lou, Shengrong; Wang, Qiyuan

    2017-05-01

    Urban particles were investigated using a single particle aerosol mass spectrometer (SPAMS) in Chongqing during the summertime (from 07/05/2014 to 08/06/2014). Chemical composition, mixing state, and atmospheric behavior of urban particles were studied. The major particle types include ECOC (Elemental-Carbon-Organic-Carbon 20.6%), OC (20.1%), KSec (K-Secondary) (13.3%), BB (Biomass burning, 11.9%), NaK (sodium-potassium-rich, 7.3%), Al-rich (4.0%), Fe-rich (3.2%), Ca-rich (1.4%), Ca-EC (1.6%), and NaKPb (0.5%). EC, ECOC, OC, and Ca-EC were prevalent in the condensation mode (Case studies suggested that wet scavenging (rain) rates of different single particle types followed an order of NaKPb > Fe-rich > EC > Ca-EC > Ca-rich > KSec > OC > NaK > ECOC > Al-rich > BB. Increased number fraction of EC and KSec were correlated with the increase of odd oxygen (Ox = O3 + NO2). EC, OC, and ECOC were enriched at higher relative humidity. The findings of this study on the mixing state, temporal variation, processing, and evolution of single particles provide new insight into the atmospheric behavior and impacts of urban particles.

  7. Nanosized-Particle Dispersion-Strengthened Al Matrix Composites Fabricated by the Double Mechanical Alloying Process.

    Science.gov (United States)

    Kim, Chungseok

    2018-03-01

    The objective of this study was to fabricate an Al metal matrix composite strengthened by nanosized Al3Ti particles via double mechanical alloying process. Several Al-xTi alloys were fabricated, including Al-12%Ti, Al-15%Ti, and Al-12%Ti-1%Y2O3. The lattice parameter of as-milled state was calculated to be 4.0485 Å; after a milling time of 540 min, it was 4.0401 Å. This decrease was induced by Ti solutionizing into the Al matrix. The equivalent size of a coarse Al3Ti particle was 200-500 nm after the heat treatment; however, the particles were uniformly distributed and were refined through the MA2 process. The particle size of a Al3Ti phase was 30 nm or less, and the particles were uniformly distributed. These particles remained in a fine state in the matrix without growth and coarsening, even after the hot extrusion process. The microstructure of hot extruded alloys consisted of a uniform distribution of Al3Ti particles and other dispersoids in the Al matrix.

  8. Investigation of Composition of Particle Size in Sediments of Stormwater Sedimentation Tank

    Directory of Open Access Journals (Sweden)

    Daiva Laučytė

    2011-04-01

    Full Text Available The main object for the storm water runoff treatment is to remove suspended solids before the storm water runoff is discharged into surface waters. Therefore the sedimentation tank is the most often used treatment facility. In order to optimise the sedimentation, the tendency of particle size distribution in bottom sediments must be known. Two similar size storm water runoff sedimentation tanks in Vilnius city were selected for the analysis of the particle size distribution in sediments. The composite samples of drained storm water runoff sediments were collected at the sedimentation tanks located in the districts of Verkiai and Karoliniskes on the 2nd of June, 2008. The analyses of grain size distribution were performed according the standard ISO/TS 17892-4:2004. The results showed that the particles with the particle size of 1–2 mm were obtained up to 10 m from the inlet and the particles with the size of 0,01–0,05 mm mainly were obtained close to the outlet of sedimentation tank. It is recommended to divide the sedimentation tank in two parts in order to get proper management of sediments: the particles that size is 1–10 mm could be managed as waste from grit chambers and particles of smaller size could be managed as primary sludge.Article in Lithuanian

  9. Elemental composition of aerosol particles from two atmospheric monitoring stations in the Amazon Basin

    International Nuclear Information System (INIS)

    Artaxo, P.; Gerab, F.; Rabello, M.L.C.

    1993-01-01

    One key region for the study of processes that are changing the composition of the global atmosphere is the Amazon Basin tropical rain forest. The high rate of deforestation and biomass burning is emitting large amounts of gases and fine-mode aerosol particles to the global atmosphere. Two background monitoring stations are operating continuously measuring aerosol composition, at Cuiaba, and Serra do Navio. Fine- and coarse-mode aerosol particles are being collected using stacked filter units. Particle induced X-ray emission (PIXE) was used to measure concentrations of up to 21 elements: Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br, Rb, Sr, Zr, and Pb. The elemental composition was measured at the new PIXE facility from the University of Sao Paulo, using a dedicated 5SDH tandem Pelletron nuclear accelerator. Absolute principal factor analysis (APFA) has derived absolute elemental source profiles. At the Serra do Navio sampling site a very clean background aerosol is being observed. Biogenic aerosol dominates the fine-mode mass concentration, with the presence of K, P, S, Cl, Zn, Br, and FPM. Three components dominate the aerosol composition: Soil dust particles, the natural biogenic release by the forest, and a marine aerosol component. At the Cuiaba site, during the dry season, a strong component of biomass burning is observed. An aerosol mass concentration up to 120 μg/m 3 was measured. APFA showed three components: Soil dust (Al, Ca, Ti, Mn, Fe), biomass burning (soot, FPM, K, Cl) and natural biogenic particles (K, S, Ca, Mn, Zn). The fine-mode biogenic component of both sites shows remarkable similarities, although the two sampling sites are 3000 km apart. Several essential plant nutrients like P, K, S, Ca, Ni and others are transported in the atmosphere as a result of biomass burning processes. (orig.)

  10. Alteration of biomass composition in response to changing substrate particle size and the consequences for enzymatic hydrolysis of corn bran

    DEFF Research Database (Denmark)

    Agger, Jane; Meyer, Anne S.

    2012-01-01

    Corn bran is a by-product from corn starch processing. This work examined the effects of changing substrate particle size on enzymatic hydrolysis of both raw and pretreated destarched corn bran. The biomass composition of the corn bran varied between particle size fractions: The largest particles...

  11. Speaker box made of composite particle board based on mushroom growing media waste

    Science.gov (United States)

    Tjahjanti, P. H.; Sutarman, Widodo, E.; Kurniawan, A. R.; Winarno, A. T.; Yani, A.

    2017-06-01

    This research aimed to use mushroom growing media waste (MGMW) that was added by urea, starch and polyvinyl chloride (PVC) glue as a composite particle board to be used as the material of speaker box manufacture. Physical and mechanical testing of particle board including density, moisture content, thickness swelling after immersion in water, strength in water absorption, internal bonding, modulus of elasticity, modulus of rupture and screw holding power, were carried out in accordance with the Stándar Nasional Indonesia (SNI) 03-2105-2006 and Japanese International Standard (JIS) A 5908-2003. The optimum composition of composite particle boards was 60% MGMW + 39% (50% urea +50% starch) + 1% PVC glue. Furthermore, the optimum composition to create speaker box with hardness values of 14.9 Brinnel Hardness Number and results of vibration test obtained amplitude values of the Z-axis, minimum of 0.032007 and maximum of 0.151575. For the acoustic test, results showed good sound absorption coefficients at frequencies of 500 Hz and it has better damping absorption.

  12. Selected mechanical properties of aluminum composite materials reinforced with SiC particles

    Directory of Open Access Journals (Sweden)

    A. Kurzawa

    2008-07-01

    Full Text Available This work presents the results of research concerning influence of ceramic particles’ content of silicon carbide on selected mechanical properties of type AW-AlCu4Mg2Mn - SiC composite materials. Composites produced of SiC particles with pressure infiltration method of porous preform and subject to hot plastic forming in the form of open die forging were investigated. The experimental samples contained from 5% up to 45% of reinforcing SiC particles of 8÷10μm diameter. Studies of strength properties demonstrated that the best results, in case of tensile strength as well as offset yield strength, might be obtained while applying reinforcement in the amount of 20-25% vol. of SiC. Application of higher than 25% vol. contents of reinforcing particles leads to gradual strength loss. The investigated composites were characterized by very high functional properties, such as hardness and abrasive wear resistance, whose values increase strongly with the increase of reinforcement amount. The presented results of the experiments shall allow for a more precise component selection of composite materials at the stage of planning and design of their properties.

  13. Investigating on Effect of Particle Form and Mixing Method on applied Properties Green Composite

    Directory of Open Access Journals (Sweden)

    Sahar Daii

    2014-05-01

    Full Text Available Nowadays Paulownia as the fast growing species has noticed for wood industry in the world. In this research, Paulownia fortuni planted in Shaskolateh forest of Gorgan were studied. Two particle form, flour (60 mesh size and fiber (RMP, L/D= 21/54 were prepared. 60 percent of this material with 37% of HDPE , 3% of MAPE were blended separately. Part from this material by internal mixer and other part by extruder blended. Output was prepared like pellets. Samples were prepared in dimensions of 30cm×30cm×1cm, and nominal density 1 g/cm3 by hot press. The mechanical testing of the panels (flexural, hardness, unnotched impact strength and the physical testing of the panels (thickness swelling and water absorption after 2 & 24 hours immersion in water were measured. The result showed that modulus of rupture, hardness, unnotched impact strength of composite made of fiber-PE were lower than composite made of flour-PE. Flexural elastic modulus of composite made of fiber-PE were higher than flour-PE. Water absorption and thickness swelling of composite made of fiber-PE were higher than flour-PE. Also physical and mechanical properties of composites blended by internal mixer improved in compared composites blended by extruder. Physical and mechanical properties of composite made of fiber-PE blended by internal mixer improved in compared composite made of fiber-PE blended by extruder.

  14. Egg Component-Composited Inverse Opal Particles for Synergistic Drug Delivery.

    Science.gov (United States)

    Liu, Yuxiao; Shao, Changmin; Bian, Feika; Yu, Yunru; Wang, Huan; Zhao, Yuanjin

    2018-05-23

    Microparticles have a demonstrated value in drug delivery systems. The attempts to develop this technology focus on the generation of functional microparticles by using innovative but accessible materials. Here, we present egg component-composited microparticles with a hybrid inverse opal structure for synergistic drug delivery. The egg component inverse opal particles were produced by using egg yolk to negatively replicate colloid crystal bead templates. Because of their huge specific surface areas, abundant nanopores, and complex nanochannels of the inverse opal structure, the resultant egg yolk particles could be loaded with different kinds of drugs, such as hydrophobic camptothecin (CPT), by simply immersing them into the corresponding drug solutions. Attractively, additional drugs, such as the hydrophilic doxorubicin (DOX), could also be encapsulated into the particles through the secondary filling of the drug-doped egg white hydrogel into the egg yolk inverse opal scaffolds, which realized the synergistic drug delivery for the particles. It was demonstrated that the egg-derived inverse opal particles were with large quantity and lasting releasing for the CPT and DOX codelivery, and thus could significantly reduce cell viability, and enhance therapeutic efficacy in treating cancer cells. These features of the egg component-composited inverse opal microparticles indicated that they are ideal microcarriers for drug delivery.

  15. [Influences of composition on brush wear of composite resins. Influences of particle size and content of filler].

    Science.gov (United States)

    Yuasa, S

    1990-07-01

    The influences of the composition on abrasion resistance of composite resins were examined using various experimental composite resins which had various matrix resin, filler size and content. The abrasion test was conducted by the experimental toothbrush abrasion testing machine developed in our laboratory. Three series of heat-curing composite resins were tested. One series was made from a Bis-MPEPP or UDMA monomer, and a silica filler with an average particle size of 0.04, 1.9, 3.8, 4.3, 7.5, 13.8 and 14.1 microns. The filler content of this series was constant at 45 wt%. The second series contained a silica filler of 4.3 microns in a content ranging from 35 to 75 wt%. The third series contained a microfiller (0.04 microns) and macrofiller (4.3 microns) in total content of 45 wt%. In this series, the microfiller was gradually replaced by 5, 15, 25 and 45 wt% of the macrofiller. The results obtained for these three series indicated that the abrasion resistance of composite resins was controlled by the inorganic filler, mainly filler size and content. The abrasion loss did not vary with the difference of matrix resin. When the particle size of the filler was below about 5 microns, the abrasion resistance decreased markedly with the decrease in filler size. The composite resin which contained a 0.04 or 1.9 micron filler was less resistant to toothbrush wear than the unfilled matrix resin. However, the microfiller also contributed to abrasion resistance when used in combination with the macrofiller, although abrasion resistance decreased with the increase in the microfiller concentration. The increase of filler content clearly improved the abrasion resistance when used the macrofiller. The analysis of these results and SEM observations of the brushed surfaces of samples suggested that the toothbrush abrasion was three-body abrasion caused by the abrasive in the toothpaste, and affected by the difference in the particle size between abrasive and filler, and between

  16. Effect of MgCl2 addition on the sintering behavior of MgAl2O4 spinel and formation of nano-particles

    Directory of Open Access Journals (Sweden)

    Mohammadi F.

    2014-01-01

    Full Text Available In this paper, the effect of MgCl2 addition on the sintering behavior of MgAl2O4 spinel produced via oxide mixture method was investigated. For this reason, the stoichiometric mixture of magnesite and calcined alumina as raw materials was calcined at 1100°C. The calcined mixture was milled, pressed and then, fired at 1300 and 1500°C after addition of various amounts of MgCl2. Besides, the physical properties, phase composition and microstructure of fired samples were investigated. The results showed that MgCl2 addition has great effect on the densification and particle size of spinel. Besides, MgCl2 addition increases the amount of spinel phase at all firing temperatures. Due to the decomposition of MgCl2 and then formation of ultra-fine MgO particles, the nano-sized spinel is formed on the surface of the larger spinel particles.

  17. Control of particle size by feed composition in the nanolatexes produced via monomer-starved semicontinuous emulsion copolymerization.

    Science.gov (United States)

    Sajjadi, Shahriar

    2015-05-01

    Conventional batch and semicontinuous emulsion copolymerizations often produce large particles whose size cannot be easily correlated with the comonomer feed compositions, and are to some degree susceptible to composition drift. In contrast, we found that copolymer nanolatexes made via semicontinuous monomer-starved emulsion copolymerizations are featured with an average nanoparticle size being controlled by the feed composition, a high conversion achieved, and a high degree of particle composition uniformity. This was achieved because the rate of particle growth, during nucleation, was controlled by the rate of comonomer addition, and the copolymer composition, surfactant parking area on the particles, and nucleation efficiency determined by the comonomer feed composition. Two model systems, methyl methacrylate/styrene and vinyl acetate/butyl acrylate, with significant differences in water solubility were studied. Monomers were added to the aqueous solution of sodium dodecylsulfate and potassium persulfate at a low rate to achieve high instantaneous conversions. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Friction and wear behavior of TiC particle reinforced ZA43 matrix composites

    Institute of Scientific and Technical Information of China (English)

    谢贤清; 张荻; 刘金水; 吴人洁

    2001-01-01

    TiC/ZA43 composites were fabricated by XDTM and stirring-casting techniques. The tribology properties of the unreinforced ZA43 alloy and the composites were studied by using a block-on-ring apparatus. Experimental results show that the incorporation of TiC particles improves the microstructure of ZA43 matrix alloy. The coefficient of friction μ and the width of worn groove decrease with the increase of TiC volume fraction φ(TiC). The width of worn groove and μ of the composite during wear testing increase with increasing the applied load. Metallographic examinations reveal that unreinforced ZA43 alloy has deep ploughing grooves with obvious adhesion phenomenon, whereas TiC/ZA43 composites have smooth worn surface. Delamination formation is related to the fatigue cracks and the shear cracks on the surface.

  19. Application of carbon fiber composite materials for the collision sections of particle accelerators

    International Nuclear Information System (INIS)

    Betzold, H.; Lippmann, G.

    1991-01-01

    Components made of carbon fiber composite material (CFCM) with Epoxy or BMI matrix were designed for various applications such as vacuum tubes, vertex chambers or support structures. The outstanding properties of CFCM which in many aspects are superior to metal structures especially qualify CFCM components for use in the collision sections of particle accelerators. A total of some 50 m of CFCM beam-tubes and of around 20 different CFCM structures and support elements of various configurations were produced following the specific needs and requirements of high energy particle physics at CERN, DESY and several other research institutes

  20. Xanes and SR-XRF Study of Skin as a Barrier to Ultra-Fine Nanocrystals of TiO2

    International Nuclear Information System (INIS)

    Kwiatek, W.M.; Lekki, J.; Stachura, Z.; Hanson, A.; Ablett, J.

    2007-01-01

    Nanocrystalline TiO 2 is commonly used in cosmetic industry as a photoprotective agent. With recent advances in nanomaterial processing, the size of TiO 2 crystals decreased into the nanometre regime. There is no satisfactory evidence that crystals of such small size are harmless to the human population. An EU project NANODERM has been launched where several techniques have been applied to investigate the possibility of particle penetration through the protective horny layer into vital skin regions. Skin biopsies of the animal and human skin have been collected after exposition to formulations containing TiO 2 nanocrystals. The Ti depth distributions were measured by electron and ion microscopy. The microscopy studies did not detect penetration into vital tissue of healthy skin what does not exclude a possibility that TiO 2 could penetrate pathological skin with lowered barrier efficiency. Due to literature the physical effect of the UV irradiation of the TiO 2 nanoparticle is the shift from 4 th to 3 rd oxidation state of the Ti. Titanium at 3 rd oxidation state interact with environment producing free radicals and Reactive Oxygen Species. In order to quantify the oxidation state shift, XANES experiments were carried out with commercially available TiO 2 nanocrystals (6 - 100 nm size), both in anatase and rutile phase. The samples were irradiated with X-rays with, and without accompanying UV illumination at the NSLS X27A beam line. The corresponding XANES spectra were registered and the absorption edge was compared in UV - illuminated and not illuminated spectra. A shift of about 1 eV in the absorption edge position of the rutile sample exposed to UVA light (365 nm, 20 mW/cm 2 ) has been measured and attributed to the changed electron configuration. However, the direction of the shift detected in measured samples was opposite to the expected. (author)

  1. Effect of carbide particles on the ablation properties of tungsten composites

    International Nuclear Information System (INIS)

    Song Guiming; Zhou Yu; Wang Yujin

    2003-01-01

    The high temperature ablation behavior of tungsten composites containing carbides produced by vacuum hot pressing is studied as a function of reinforcement chemistry (ZrC and TiC) and content using a self-made oxyacetylene ablation equipment. A dynamic responding multiwavelength pyrometer was employed to measure the temperature of the ablation surface, and a thermocouple was employed to measure the temperature of the back surface during the time that a specimen was being ablated. The mass and linear ablation rates are lower in composites containing ZrC, decreasing with increasing particle content in both composites system. The values of the mass and linear ablation rates were in the order from high to low: W>30TiC/W>40TiC/W>30ZrC/W>40ZrC/W (30TiC/W stands for 30 vol.% TiC particle content in the W matrix, the same below). The important temperature curves of the ablation surfaces of specimens were successfully detected online. Ablated surfaces and vertical sections of the specimens were investigated using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Thermochemical oxidation of tungsten, TiC, and ZrC was the main ablation mechanism of ZrC/W and TiC/W composites. These ablation behaviors are discussed based on the thermophysical and chemical properties of both the composite systems

  2. Characterizations of Polystyrene-Based Hybrid Particles Containing Hydrophobic Mg(OH2 Powder and Composites Fabricated by Employing Resultant Hybrid Particles

    Directory of Open Access Journals (Sweden)

    Shuichi Kimura

    2007-01-01

    unchanged, even when the ST-1 powder content increased from 10 to 50 phr. Furthermore, a composite fabricated by employing the hybrid particles achieved homogenous distribution of ST-1 powder and showed a higher oxygen index than that of a composite fabricated by directly mixing of PS pellets and ST-1 powder.

  3. Particle number concentration, size distribution and chemical composition during haze and photochemical smog episodes in Shanghai.

    Science.gov (United States)

    Wang, Xuemei; Chen, Jianmin; Cheng, Tiantao; Zhang, Renyi; Wang, Xinming

    2014-09-01

    The aerosol number concentration and size distribution as well as size-resolved particle chemical composition were measured during haze and photochemical smog episodes in Shanghai in 2009. The number of haze days accounted for 43%, of which 30% was severe (visibilitysmog episodes, about 5.89 times and 4.29 times those of clean days. The particle volume concentration and surface concentration in haze, photochemical smog and clean days were 102, 49, 15μm(3)/cm(3) and 949, 649, 206μm(2)/cm(3), respectively. As haze events got more severe, the number concentration of particles smaller than 50nm decreased, but the particles of 50-200nm and 0.5-1μm increased. The diurnal variation of particle number concentration showed a bimodal pattern in haze days. All soluble ions were increased during haze events, of which NH4(+), SO4(2-) and NO3(-) increased greatly, followed by Na(+), K(+), Ca(2+) and Cl(-). These ions were very different in size-resolved particles during haze and photochemical smog episodes. Copyright © 2014. Published by Elsevier B.V.

  4. Influence of clay particles on microfluidic-based preparation of hydrogel composite microsphere

    Science.gov (United States)

    Hong, Joung Sook

    2016-05-01

    For the successful fabrication of a hydrogel composite microsphere, this study aimed to investigate the influence of clay particles on microsphere formation in a microfluidic device which has flow focusing and a 4.5:1 contraction channel. A poly alginic acid solution (2.0 wt.%) with clay particles was used as the dispersed phase to generate drops in an oil medium, which then merged with drops of a CaCl2 solution for gelation. Drop generations were observed with different flow rates and particles types. When the flow rate increased, drop generation was enhanced and drop size decreased by the build-up of more favorable hydrodynamic flow conditions to detach the droplets. The addition of a small amount of particles insignificantly changed the drop generation behavior even though it reduced interfacial tension and increased the viscosity of the solution. Instead, clays particles significantly affected hydro-gelation depending on the hydrophobicity of particles, which produced further heterogeneity in the shape and size of microsphere.

  5. Induced wettability and surface-volume correlation of composition for bovine bone derived hydroxyapatite particles

    Science.gov (United States)

    Maidaniuc, Andreea; Miculescu, Florin; Voicu, Stefan Ioan; Andronescu, Corina; Miculescu, Marian; Matei, Ecaterina; Mocanu, Aura Catalina; Pencea, Ion; Csaki, Ioana; Machedon-Pisu, Teodor; Ciocan, Lucian Toma

    2018-04-01

    Hydroxyapatite powders characteristics need to be determined both for quality control purposes and for a proper control of microstructural features of bone reconstruction products. This study combines bulk morphological and compositional analysis methods (XRF, SEM-EDS, FT-IR) with surface-related methods (XPS, contact angle measurements) in order to correlate the characteristics of hydroxyapatite powders derived from bovine bone for its use in medical applications. An experimental approach for correlating the surface and volume composition was designed based on the analysis depth of each spectral method involved in the study. Next, the influences of powder particle size and forming method on the contact angle between water drops and ceramic surface were evaluated for identifying suitable strategies of tuning hydroxyapatite's wettability. The results revealed a preferential arrangement of chemical elements at the surface of hydroxyapatite particles which could induce a favourable material behaviour in terms of sinterability and biological performance.

  6. Composition and particle size of electrolytic copper powders prepared in water-containing dimethyl sulfoxide electrolytes

    Science.gov (United States)

    Mamyrbekova, Aigul'; Abzhalov, B. S.; Mamyrbekova, Aizhan

    2017-07-01

    The possibility of the electroprecipitation of copper powder via the cathodic reduction of an electrolyte solution containing copper(II) nitrate trihydrate and dimethyl sulfoxide (DMSO) is shown. The effect electrolysis conditions (current density, concentration and temperature of electrolyte) have on the dimensional characteristics of copper powder is studied. The size and shape of the particles of the powders were determined by means of electron microscopy; the qualitative composition of the powders, with X-ray diffraction.

  7. Radionuclide fluxes in the Arabian Sea: The role of particle composition

    Digital Repository Service at National Institute of Oceanography (India)

    Scholten, J.C.; Fietzke, J.; Mangini, A.; Stoffers, P.; Rixen, T.; Gaye-Haake, B.; Blanz, T.; Ramaswamy, V.; Sirocko, F.; Schulz, H.; Ittekkot, V.

    scavenging. 2. Methods Sediment trap samples were obtained from loca- tions WAST, CAST and EAST. Details on the locations, sampling intervals and average composition of the sediment trap material are given in Table 1. investigated Collection interruptions Ca... as they sink through the water column [11]. One of the basic methods when applying radio- high ratios are expected at continental margins (high particle flux), and such a boundary scavenging was observed in the surface sediments of the Pacific Ocean [13...

  8. Physical and mechanical properties of bio-composites from wood particles and liquefied wood resin

    Science.gov (United States)

    Hui Pan; Todd F. Shupe; Chung-Yun Hse

    2009-01-01

    Compression molded composites were made from wood particles and a liquefied wood/phenol/formaldehyde co-condensed resin. Based on our previous research, a phenol to wood (P/W) ratio of 2/1 was chosen for this study. The two experimental variables selected were: 1) liquefaction temperature (150o and 180oC) and 2) cooking method (atmospheric and sealed). Panels were...

  9. Development of Bioadhesive Chitosan Superporous Hydrogel Composite Particles Based Intestinal Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Hitesh Chavda

    2013-01-01

    Full Text Available Bioadhesive superporous hydrogel composite (SPHC particles were developed for an intestinal delivery of metoprolol succinate and characterized for density, porosity, swelling, morphology, and bioadhesion studies. Chitosan and HPMC were used as bioadhesive and release retardant polymers, respectively. A 32 full factorial design was applied to optimize the concentration of chitosan and HPMC. The drug loaded bioadhesive SPHC particles were filled in capsule, and the capsule was coated with cellulose acetate phthalate and evaluated for drug content, in vitro drug release, and stability studies. To ascertain the drug release kinetics, the drug release profiles were fitted for mathematical models. The prepared system remains bioadhesive up to eight hours in intestine and showed Hixson-Crowell release with anomalous nonfickian type of drug transport. The application of SPHC polymer particles as a biomaterial carrier opens a new insight into bioadhesive drug delivery system and could be a future platform for other molecules for intestinal delivery.

  10. Particle-hole symmetry and composite fermions in fractional quantum Hall states

    Science.gov (United States)

    Nguyen, Dung Xuan; Golkar, Siavash; Roberts, Matthew M.; Son, Dam Thanh

    2018-05-01

    We study fractional quantum Hall states at filling fractions in the Jain sequences using the framework of composite Dirac fermions. Synthesizing previous work, we write an effective field theory consistent with all symmetry requirements, including Galilean invariance and particle-hole symmetry. Employing a Fermi-liquid description, we demonstrate the appearance of the Girvin-Macdonald-Platzman algebra and compute the dispersion relation of neutral excitations and various response functions. Our results satisfy requirements of particle-hole symmetry. We show that while the dispersion relation obtained from the modified random-phase approximation (MRPA) of the Halperin-Lee-Read (HLR) theory is particle-hole symmetric, correlation functions obtained from this scheme are not. The results of the Dirac theory are shown to be consistent with the Haldane bound on the projected structure factor, while those of the MPRA of the HLR theory violate it.

  11. Method for calculating the characteristics of nuclear reactions with composite particle

    International Nuclear Information System (INIS)

    Zelenskaya, N.S.

    1978-01-01

    The purpose of the lectures is to attempt to give a brief review of the present status of the theory of nuclear reactions involving composite particles (heavy ions, 6 Li, 7 Li, and 9 Be ions, α-particles). In order to analyze such reactions, one should employ and ''exact'' method of distorted waves with a finite radius of interaction. Since the zero radius approximation is valid only at low momentum transfer, its rejection immediately includes all possible transferred momenta and consequently, the reaction mechanisms different from the usual cluster stripping we shall discuss a sufficiently general formalism of the distorted waves method, which does not use additional assumptions about the smaliness of the region of interaction between particles and about the possible reaction mechanisms. We shall also discuss all physical simplifications introduced in specific particular codes and the ranges of their applicability will be established. (author)

  12. Nonlocality and particle-clustering effects on the optical response of composite materials with metallic nanoparticles

    Science.gov (United States)

    Chen, C. W.; Chung, H. Y.; Chiang, H.-P.; Lu, J. Y.; Chang, R.; Tsai, D. P.; Leung, P. T.

    2010-10-01

    The optical properties of composites with metallic nanoparticles are studied, taking into account the effects due to the nonlocal dielectric response of the metal and the coalescing of the particles to form clusters. An approach based on various effective medium theories is followed, and the modeling results are compared with those from the cases with local response and particles randomly distributed through the host medium. Possible observations of our modeling results are illustrated via a calculation of the transmission of light through a thin film made of these materials. It is found that the nonlocal effects are particularly significant when the particles coalesce, leading to blue-shifted resonances and slightly lower values in the dielectric functions. The dependence of these effects on the volume fraction and fractal dimension of the metal clusters is studied in detail.

  13. Characterisation of glass matrix composites reinforced with lead zirconate titanate particles

    International Nuclear Information System (INIS)

    Cannillo, Valeria; Manfredini, Tiziano; Montorsi, Monia; Tavoni, Francesca; Minay, Emma J.; Boccaccini, Aldo R.

    2005-01-01

    A new type of glass matrix composite reinforced with ferroelectric particulate secondary phase was investigated. Samples containing lead zirconate titanate (PZT) particles in a silicate lead glass were fabricated. Various sintering strategies were tested in order to optimise the processing route. The densest samples were obtained by hot-pressing. The composites were characterized by means of SEM observations, X-ray diffraction, differential thermal analysis and Vickers indentations. In order to get a deeper insight into the thermo-mechanical behaviour of the material, a FEM based numerical model was prepared and applied. In particular, the crack-particle interaction was assessed and thus possible toughening mechanisms were investigated. By means of the numerical modelling supported by SEM observations, traditional toughening mechanisms (e.g. crack deflection, particle debonding) were ruled out. Since the experimentally measured indentation fracture toughness of the composite is significantly higher than that of the unreinforced glass, the findings suggest that a new toughening mechanism may be active, based on the piezoelectric effect

  14. Wintertime water-soluble aerosol composition and particle water content in Fresno, California

    Science.gov (United States)

    Parworth, Caroline L.; Young, Dominique E.; Kim, Hwajin; Zhang, Xiaolu; Cappa, Christopher D.; Collier, Sonya; Zhang, Qi

    2017-03-01

    The composition and concentrations of water-soluble gases and ionic aerosol components were measured from January to February 2013 in Fresno, CA, with a particle-into-liquid sampler with ion chromatography and annular denuders. The average (±1σ) ionic aerosol mass concentration was 15.0 (±9.4) µg m-3, and dominated by nitrate (61%), followed by ammonium, sulfate, chloride, potassium, nitrite, and sodium. Aerosol-phase organic acids, including formate and glycolate, and amines including methylaminium, triethanolaminium, ethanolaminium, dimethylaminium, and ethylaminium were also detected. Although the dominant species all came from secondary aerosol formation, there were primary sources of ionic aerosols as well, including biomass burning for potassium and glycolate, sea spray for sodium, chloride, and dimethylamine, and vehicles for formate. Particulate methanesulfonic acid was also detected and mainly associated with terrestrial sources. On average, the molar concentration of ammonia was 49 times greater than nitric acid, indicating that ammonium nitrate formation was limited by nitric acid availability. Particle water was calculated based on the Extended Aerosol Inorganics Model (E-AIM) thermodynamic prediction of inorganic particle water and κ-Köhler theory approximation of organic particle water. The average (±1σ) particle water concentration was 19.2 (±18.6) µg m-3, of which 90% was attributed to inorganic species. The fractional contribution of particle water to total fine particle mass averaged at 36% during this study and was greatest during early morning and night and least during the day. Based on aqueous-phase concentrations of ions calculated by using E-AIM, the average (±1σ) pH of particles in Fresno during the winter was estimated to be 4.2 (±0.2).

  15. Microstructure and property of WC particles ceramic-metal composite coatings by laser surface cladding

    International Nuclear Information System (INIS)

    Zeng Xiaoyan; Zhu Beidi; Tao Zengyi; Yang Shuguo; Cui Kun

    1993-01-01

    Ceramic-metal is widely used as a kind of good hardfacing material. The coarse WC particles ceramic-metal composite coatings with WC density of 67% it weight and the thickness of 1.6-2.0 mm have been cladded on 20Ni 4 Mo steel surface by a 2kw CO 2 laser. The sintered WC particles with the size of 600-1,000 μm are chosen as the main strengthening phase, Ni-base self-flux alloy as the binder in the composite coatings. The microstructure and micro-hardness of both WC particles and binder are analyzed. The rigid ball indention with acoustic emission technique is used to evaluate the brittleness of the coating. Finally, the abrasive wear resistance of the coatings are tested, Besides, the coatings with the same ratio and size of WC particles within low carbon steel tube were cladded on 20Ni 4 Mo steel by atomic hydrogen welding technique and analyzed by the same ways their result are compared

  16. Black Carbon Absorption at the Global Scale Is Affected by Particle-Scale Diversity in Composition

    Science.gov (United States)

    Fierce, Laura; Bond, Tami C.; Bauer, Susanne E.; Mena, Francisco; Riemer, Nicole

    2016-01-01

    Atmospheric black carbon (BC) exerts a strong, but uncertain, warming effect on the climate. BC that is coated with non-absorbing material absorbs more strongly than the same amount of BC in an uncoated particle, but the magnitude of this absorption enhancement (E(sub abs)) is not well constrained. Modelling studies and laboratory measurements have found stronger absorption enhancement than has been observed in the atmosphere. Here, using a particle-resolved aerosol model to simulate diverse BC populations, we show that absorption is overestimated by as much as a factor of two if diversity is neglected and population-averaged composition is assumed across all BC-containing particles. If, instead, composition diversity is resolved, we find E(sub abs) = 1 - 1.5 at low relative humidity, consistent with ambient observations. This study offers not only an explanation for the discrepancy between modelled and observed absorption enhancement, but also demonstrates how particle-scale simulations can be used to develop relationships for global-scale models.

  17. Effect of particle size of mineral fillers on polymer-matrix composite shielding materials against ionizing electromagnetic radiation

    International Nuclear Information System (INIS)

    Belgin, E.E.; Aycik, G.A.

    2017-01-01

    Filler particle size is an important particle that effects radiation attenuation performance of a composite shielding material but the effects of it have not been exploited so far. In this study, two mineral (hematite-ilmenite) with different particle sizes were used as fillers in a polymer-matrix composite and effects of particle size on shielding performance was investigated within a widerange of radiation energy (0-2000 keV). The thermal and structural properties of the composites were also examined. The results showed that as the filler particle size decreased the shielding performance increased. The highest shielding performance reached was 23% with particle sizes being between <7 and <74 µm. (author)

  18. Effect of Particle Size on Microstructure and Mechanical Properties of Al-Based Composite Reinforced with 10 Vol.% Mechanically Alloyed Mg-7.4%Al Particles

    Directory of Open Access Journals (Sweden)

    Anil K. Chaubey

    2016-11-01

    Full Text Available The effect of Mg-7.4%Al reinforcement particle size on the microstructure and mechanical properties in pure Al matrix composites was investigated. The samples were prepared by hot consolidation using 10 vol.% reinforcement in different size ranges, D, 0 < D < 20 µm (0–20 µm, 20 ≤ D < 40 µm (20–40 µm, 40 ≤ D < 80 µm (40–80 µm and 80 ≤ D < 100 µm (80–100 µm. The result reveals that particle size has a strong influence on the yield strength, ultimate tensile strength and percentage elongation. As the particle size decreases from 80 ≤ D < 100 µm to 0 < D < 20 µm, both tensile strength and ductility increases from 195 MPa to 295 MPa and 3% to 4% respectively, due to the reduced ligament size and particle fracturing. Wear test results also corroborate the size effect, where accelerated wear is observed in the composite samples reinforced with coarse particles.

  19. Ambient black carbon particle hygroscopic properties controlled by mixing state and composition

    Directory of Open Access Journals (Sweden)

    D. Liu

    2013-02-01

    Full Text Available The wet removal of black carbon aerosol (BC in the atmosphere is a crucial factor in determining its atmospheric lifetime and thereby the vertical and horizontal distributions, dispersion on local and regional scales, and the direct, semi-direct and indirect radiative forcing effects. The in-cloud scavenging and wet deposition rate of freshly emitted hydrophobic BC will be increased on acquisition of more-hydrophilic components by coagulation or coating processes. The lifetime of BC is still subject to considerable uncertainty for most of the model inputs, which is largely due to the insufficient constraints on the BC hydrophobic-to-hydrophilic conversion process from observational field data. This study was conducted at a site along UK North Norfolk coastline, where the BC particles were transported from different regions within Western Europe. A hygroscopicity tandem differential mobility analyser (HTDMA was coupled with a single particle soot photometer (SP2 to measure the hygroscopic properties of BC particles and associated mixing state in real time. In addition, a Soot Particle AMS (SP-AMS measured the chemical compositions of additional material associated with BC particles. The ensemble of BC particles persistently contained a less-hygroscopic mode at a growth factor (gf of around 1.05 at 90% RH (dry diameter 163 nm. Importantly, a more-hygroscopic mode of BC particles was observed throughout the experiment, the gf of these BC particles extended up to ~1.4–1.6 with the minimum between this and the less hygroscopic mode at a gf ~1.25, or equivalent effective hygroscopicity parameter κ ~0.1. The gf of BC particles (gfBC was highly influenced by the composition of associated soluble material: increases of gfBC were associated with secondary inorganic components, and these increases were more pronounced when ammonium nitrate was in the BC particles; however the presence of secondary organic matter suppressed

  20. Linking variations in sea spray aerosol particle hygroscopicity to composition during two microcosm experiments

    Directory of Open Access Journals (Sweden)

    S. D. Forestieri

    2016-07-01

    Full Text Available The extent to which water uptake influences the light scattering ability of marine sea spray aerosol (SSA particles depends critically on SSA chemical composition. The organic fraction of SSA can increase during phytoplankton blooms, decreasing the salt content and therefore the hygroscopicity of the particles. In this study, subsaturated hygroscopic growth factors at 85 % relative humidity (GF(85 % of predominately submicron SSA particles were quantified during two induced phytoplankton blooms in marine aerosol reference tanks (MARTs. One MART was illuminated with fluorescent lights and the other was illuminated with sunlight, referred to as the "indoor" and "outdoor" MARTs, respectively. Optically weighted GF(85 % values for SSA particles were derived from measurements of light scattering and particle size distributions. The mean optically weighted SSA diameters were 530 and 570 nm for the indoor and outdoor MARTs, respectively. The GF(85 % measurements were made concurrently with online particle composition measurements, including bulk composition (using an Aerodyne high-resolution aerosol mass spectrometer and single particle (using an aerosol time-of-flight mass spectrometer measurement, and a variety of water-composition measurements. During both microcosm experiments, the observed optically weighted GF(85 % values were depressed substantially relative to pure inorganic sea salt by 5 to 15 %. There was also a time lag between GF(85 % depression and the peak chlorophyll a (Chl a concentrations by either 1 (indoor MART or 3-to-6 (outdoor MART days. The fraction of organic matter in the SSA particles generally increased after the Chl a peaked, also with a time lag, and ranged from about 0.25 to 0.5 by volume. The observed depression in the GF(85 % values (relative to pure sea salt is consistent with the large observed volume fractions of non-refractory organic matter (NR-OM comprising the SSA. The GF(85 % values

  1. Effect of Particle Size on Mechanical Properties of Sawdust-High Density Polyethylene Composites under Various Strain Rates

    Directory of Open Access Journals (Sweden)

    Haliza Jaya

    2016-06-01

    Full Text Available There is a need to understand the effect of wood particle size, as it affects the characteristics of wood-based composites. This study considers the effect of wood particle size relative to the dynamic behavior of wood composites. The compression Split Hopkinson Pressure Bar (SHPB was introduced to execute dynamic compression testing at the strain rate of 650 s-1, 900 s-1, and 1100 s-1, whereas a conventional universal testing machine (UTM was used to perform static compression testing at the strain rate of 0.1 s-1, 0.01 s-1, and 0.001 s-1 for four different particle sizes (63 µm, 125 µm, 250 µm, and 500 µm. The results showed that mechanical properties of composites were positively affected by the particle sizes, where the smallest particle size gave the highest values compared to the others. Moreover, the particle size also affected the rate sensitivity and the thermal activation volume of sawdust/HDPE, where smaller particles resulted in lower rate sensitivity. For the post-damage analysis, the applied strain rates influenced deformation behavior differently for all particle sizes of the specimens. In a fractographic analysis under dynamic loading, the composites with large particles experienced severe catastrophic deformation and damages compared to the smaller particles.

  2. Health effects of exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Pihlava, T.; Uuppo, M.; Niemi, S.

    2013-11-01

    This report introduces general information about diesel particles and their health effects. The purpose of this report is to introduce particulate matter pollution and present some recent studies made regarding the health effects of particulate matter. The aim is not to go very deeply into the science, but instead to keep the text understandable for the average layman. Particulate matter is a complex mixture of extremely small particles and liquid droplets. These small particles are made up of a number of components that include for example acids, such as nitrates and sulphates, as well as organic chemicals, metals and dust particles from the soil. Particulate matter comes from several sources, such as transportation emissions, industrial emissions, forest fires, cigarette smoke, volcanic ash and climate variations. Particles are divided into coarse particles with diameters less than 10 ..m, fine particles with diameters smaller than 2.5 ..m and ultra-fine particles with diameters less than 0.1 ..m. The particulate matter in diesel exhaust gas is a highly complex mixture of organic, inorganic, solid, volatile and partly volatile compounds. Many of these particles do not form until they reach the air. Many carcinogenic compounds have been found in diesel exhaust gas and it is considered carcinogenic to humans. Particulate matter can cause several health effects, such as premature death in persons with heart or lung disease, cancer, nonfatal heart attacks, irregular heartbeat, aggravated asthma, decreased lung function and an increase in respiratory symptoms, such as irritation of the airways, coughing or difficulty breathing. It is estimated that in Finland about 1300 people die prematurely due to particles and the economic loss in the EU due to the health effects of particles can be calculated in the billions. Ultra-fine particles are considered to be the most harmful to human health. Ultrafine particles usually make the most of their quantity and surface area

  3. Facile synthesis of silver immobilized-poly(methyl methacrylate)/polyethyleneimine core-shell particle composites

    Energy Technology Data Exchange (ETDEWEB)

    Jenjob, Somkieath [Department of Chemistry, Faculty of Science, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170 (Thailand); Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Ratchathewi, Bangkok 10400 (Thailand); Tharawut, Teeralak [Department of Chemistry, Faculty of Science, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170 (Thailand); Sunintaboon, Panya, E-mail: panya.sun@mahidol.ac.th [Department of Chemistry, Faculty of Science, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170 (Thailand); Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Ratchathewi, Bangkok 10400 (Thailand); Center for Alternative Energy, Faculty of Science, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170 (Thailand)

    2012-10-01

    A facile route to synthesize silver-embedded-poly(methyl methacrylate)/polyethyleneimine (PMMA/PEI-Ag) core-shell particle composites was illustrated in this present work. PMMA/PEI core-shell particle templates were first prepared by a surfactant-free emulsion polymerization. PEI on the templates' surface was further used to complex and reduce Ag{sup +} ions (from silver nitrate solution) to silver nanoparticles (AgNPs) at ambient temperature, resulting in the PMMA/PEI-Ag particle composites. The formation of AgNPs was affected by the pHs of the reaction medium. The pH of reaction medium at 6.5 was optimal for the formation of PMMA/PEI-Ag with good colloidal stability, which was confirmed by size and size distribution, FTIR spectroscopy, UV-vis spectroscopy and X-ray diffraction. Moreover, the amount of AgNO{sub 3} solution (4.17-12.50 g) was found to affect the formation of AgNPs. Transmission electron microscopy (TEM) indicated that the AgNPs were incorporated in the PMMA/PEI core-shell matrix, and had 6-10 nm in diameter. AgNPs immobilized on PMMA/PEI core-shell particles were also investigated by energy dispersive X-ray spectroscopy analysis mode extended from scanning electron microscopy (SEM/EDS). Furthermore, the presence of AgNPs was found to influence the thermal degradation behavior of PMMA/PEI particle composites as observed through thermogravimetric analysis (TGA). Highlights: Black-Right-Pointing-Pointer A 2-step synthesis of Ag immobilized-PMMA/PEI particle composites was shown. Black-Right-Pointing-Pointer PMMA/PEI core-shell templates were first formed and PEI assisted AgNP formation. Black-Right-Pointing-Pointer Formation of PMMA/PEI-Ag was affected by pH of medium and amount of AgNO{sub 3}. Black-Right-Pointing-Pointer PMMA/PEI-Ag can be confirmed by color change, UV-vis, TEM, SEM with EDS, and X-ray. Black-Right-Pointing-Pointer Effect of AgNPs on thermal degradation of PMMA/PEI-Ag can be observed through TGA.

  4. Enhancement of Dielectric Constant of Graphene-Epoxy Composite by Inclusion of Nanodiamond Particles

    Science.gov (United States)

    Khurram, A. A.; ul-Haq, Izhar; Khan, Ajmal; Hussain, Rizwan; Gul, I. H.

    2018-02-01

    The dielectric properties of a graphene-epoxy composite have been enhanced by filling with nanodiamond particles (NDPs) as secondary filler along with graphene nanoplatelets (GNPs). The epoxy composite filled with only NDPs or GNPs to 0.1 wt.%, 0.3 wt.%, and 0.5 wt.% exhibited smaller dielectric constant compared with when filled with both. Hybrid epoxy composites were prepared with inclusion of both fillers to 0.05 + 0.05 = 0.1 wt.%, 0.15 + 0.15 = 0.3 wt.%, and 0.25 + 0.25 = 0.5 wt.%. Inclusion of NDPs in addition to GNPs also improved the dispersion of the latter in solution, which is attributable to kinetic energy transfer to GNPs and screening of van der Waals forces between GNPs. The enhanced dielectric constant after inclusion of NDPs is due to improved dispersion of GNPs in the epoxy matrix, which may increase the interfacial polarization.

  5. Analysis of Particle-Dispersed Composites Accounting Stochastically for Interfacial Damage

    International Nuclear Information System (INIS)

    Huajian Chang; Michihiko Nakagaki

    2002-01-01

    More and more composite materials have been being utilized in nuclear facilities. While the external loading applied, the stress in composite is concentrated, which is harmful and may cause interfacial damage. The de-bonding and sliding at the interface between matrix and particles are the most common phenomena. In this paper, a statistically elastoplastic constitutive model for particle-dispersed composites is developed by accounting stochastically for both interfacial damage and localized plasticity. The effects of damaged interface on the strain field in composite are considered in two ways. First, the damaged interface between the matrix and the particles makes the strain field inside inclusions is different from that of the particles with perfectly bonded interface. Second, it contributes an additional strain, which is due to the displacement jump at the matrix-inclusion interface. This additional is defined as an integration of displacement jumps between the matrix and the particles over their interface. In present paper, the first part is considered by using a modified Eshelby's S-tensor. After deriving the local relative displacement distributions between matrix and inclusion at the interface, the second contribution of damaged interface to the average strain can be expressed in terms of the corresponding Eigen-strain or the uniform external loading, by introducing the damage-relevant tensors, which are transformation tensors and tends to zero if interfacial damage does not take place. Both the tangential and normal discontinuities at the interface are independently modeled. The model uses statistic scheme with distribution functions in the stress/strain space, so that the meso-local effects of plastic deformation, interfacial damage and their interactions are accounted for. In order to verify the feasibility and performance of the proposed constitutive model, numerical calculations are carried out. It is found that the damaged interface conditions of de

  6. Mechanical and thermal properties of bio-composites based on polypropylene reinforced with Nut-shells of Argan particles

    International Nuclear Information System (INIS)

    Essabir, H.; Hilali, E.; Elgharad, A.; El Minor, H.; Imad, A.; Elamraoui, A.; Al Gaoudi, O.

    2013-01-01

    Highlights: ► Nuts-shells of Argan particles are used as reinforcement in thermoplastic matrix. ► Particles are homogeneously dispersed and distributed within PP matrix. ► Mechanical and thermal characterization of the composite are applied. ► Particles–matrix adhesion was assured by the use of a SBS compatibilizer. - Abstract: This study treats the combined effects of both particle sizes and particle loading on the mechanical and thermal properties of polypropylene (PP) composites reinforced with Nut-shells of Argan (NA) particles. Three range sizes of particles were used in the presence of a polypropylene matrix grafted with 8 wt.% of a linear block copolymer based on styrene and butadiene coupling agent, to improve adhesion between the particles and the matrix. The composites were prepared through melt-blending using an internal mixer and the tensile specimens were prepared using a hot press molding machine. Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), Thermo Gravimetric Analysis (TGA), Differential Thermal Analysis (DTA) and tensile tests were employed to characterize the composites at 10, 15, 20 and 25 wt.% particle contents. Results show a clear improvement in Young’s modulus from the use of particles when compared to the neat PP, a gain of 42.65%, 26.7% and 2.9% at 20 wt.% particle loading, for particle range 1, 2 and 3, respectively. In addition a notable increase in the Young’s modulus was observed when decrease the particle size. The thermal stability of composites exhibits a slight decrease (256–230 °C) with particles loading from 10 to 25 wt.%, against neat PP (258 °C)

  7. Particle Morphology and Elemental Composition of Smoke Generated by Overheating Common Spacecraft Materials

    Science.gov (United States)

    Meyer, Marit E.

    2015-01-01

    Fire safety in the indoor spacecraft environment is concerned with a unique set of fuels which are designed to not combust. Unlike terrestrial flaming fires, which often can consume an abundance of wood, paper and cloth, spacecraft fires are expected to be generated from overheating electronics consisting of flame resistant materials. Therefore, NASA prioritizes fire characterization research for these fuels undergoing oxidative pyrolysis in order to improve spacecraft fire detector design. A thermal precipitator designed and built for spacecraft fire safety test campaigns at the NASA White Sands Test Facility (WSTF) successfully collected an abundance of smoke particles from oxidative pyrolysis. A thorough microscopic characterization has been performed for ten types of smoke from common spacecraft materials or mixed materials heated at multiple temperatures using the following techniques: SEM, TEM, high resolution TEM, high resolution STEM and EDS. Resulting smoke particle morphologies and elemental compositions have been observed which are consistent with known thermal decomposition mechanisms in the literature and chemical make-up of the spacecraft fuels. Some conclusions about particle formation mechanisms are explored based on images of the microstructure of Teflon smoke particles and tar ball-like particles from Nomex fabric smoke.

  8. A Hybrid Multiobjective Discrete Particle Swarm Optimization Algorithm for a SLA-Aware Service Composition Problem

    Directory of Open Access Journals (Sweden)

    Hao Yin

    2014-01-01

    Full Text Available For SLA-aware service composition problem (SSC, an optimization model for this algorithm is built, and a hybrid multiobjective discrete particle swarm optimization algorithm (HMDPSO is also proposed in this paper. According to the characteristic of this problem, a particle updating strategy is designed by introducing crossover operator. In order to restrain particle swarm’s premature convergence and increase its global search capacity, the swarm diversity indicator is introduced and a particle mutation strategy is proposed to increase the swarm diversity. To accelerate the process of obtaining the feasible particle position, a local search strategy based on constraint domination is proposed and incorporated into the proposed algorithm. At last, some parameters in the algorithm HMDPSO are analyzed and set with relative proper values, and then the algorithm HMDPSO and the algorithm HMDPSO+ incorporated by local search strategy are compared with the recently proposed related algorithms on different scale cases. The results show that algorithm HMDPSO+ can solve the SSC problem more effectively.

  9. Measurements of size and composition of particles in polar stratospheric clouds from infrared solar absorption spectra

    International Nuclear Information System (INIS)

    Kinne, S.; Toon, O.B.; Toon, G.C.; Farmer, C.B.; Browell, E.V.; McCormick, M.P.

    1989-01-01

    The attenuation of solar radiation between 1.8- and 15-μm wavelength was measured with the airborne Jet Propulsion Laboratory Mark IV interferometer during the Airborne Antarctic Ozone Expedition in 1987. The measurements not only provide information about the abundance of stratospheric gases, but also about the optical depths of polar stratospheric clouds (PSCs) at wavelengths of negligible gas absorption. The spectral dependence of the PSC optical depth contains information about PSC particle size and particle composition. Thirty-three PSC cases were analyzed and categorized into two types. Type I clouds contain particles with radii of about 0.5 μm and nitric acid concentrations greater than 40%. Type II clouds contain particles composed of water ice with radii of 6 μm and larger. Cloud altitudes were determined from 1.064-μm backscattering observations of the airborne Langley DIAL lidar system. Based on the PSC geometrical thickness, both mass and particle density were estimated. Type I clouds typically had visible wavelength optical depths of about 0.008, mass densities of about 20 ppb, and about 2 particles/cm 3 . The observed type II clouds had optical depths of about 0.03, mass densities of about 400 ppb mass, and about 0.03 particles/cm 3 . The detected PSC type I clouds extended to altitudes of 21 km and were nearly in the ozone-depleted region of the polar stratosphere. The observed type II cases during September were predominantly found at altitudes below 15 km

  10. Size effect of added LaB6 particles on optical properties of LaB6/Polymer composites

    International Nuclear Information System (INIS)

    Yuan Yifei; Zhang Lin; Hu Lijie; Wang Wei; Min Guanghui

    2011-01-01

    Modified LaB 6 particles with sizes ranging from 50 nm to 400 nm were added into polymethyl methacrylate (PMMA) matrix in order to investigate the effect of added LaB 6 particles on optical properties of LaB 6 /PMMA composites. Method of in-situ polymerization was applied to prepare PMMA from raw material—methyl methacrylate (MMA), a process during which LaB 6 particles were dispersed in MMA. Ultraviolet–visible–near infrared (UV–vis–NIR) absorption spectrum was used to study optical properties of the as-prepared materials. The difference in particle size could apparently affect the composites' absorption of visible light around wavelength of 600 nm. Added LaB 6 particles with size of about 70 nm resulted in the best optical properties among these groups of composites. - Graphical abstract: 70 nm LaB 6 particles resulted in the best performance on absorption of VIS and NIR, which could not be apparently achieved by LaB 6 particles beyond nano-scale. Highlights: ► LaB 6 /PMMA composites were prepared using the method of in-situ polymerization. ► LaB 6 particles added in MMA prolonged the time needed for its pre-polymerization. ► Nanosized LaB 6 particles could obviously absorb much NIR but little VIS.

  11. Data Compilation for AGR-1 Baseline Coated Particle Composite LEU01-46T

    International Nuclear Information System (INIS)

    Hunn, John D.; Lowden, Richard Andrew

    2006-01-01

    This document is a compilation of characterization data for the AGR-1 baseline coated particle composite LEU01-46T, a composite of four batches of TRISO-coated 350 (micro)m 19.7% low enrichment uranium oxide/uranium carbide kernels (LEUCO). The AGR-1 TRISO-coated particles consist of a spherical kernel coated with a ∼ 50% dense carbon buffer layer (100 (micro)m nominal thickness) followed by a dense inner pyrocarbonlayer (40 (micro)m nominal thickness) followed by a SiC layer (35 (micro)m nominal thickness) followed by another dense outer pyrocarbon layer (40 (micro)m nominal thickness). The coated particles, were produced by ORNL for the Advanced Gas Reactor Fuel Development and Qualification (AGR) program to be put into compacts for insertion in the first irradiation test capsule, AGR-1. The kernels were obtained from BWXT and identified as composite (G73D-20-69302). The BWXT kernel lot G73D-20-69302 was riffled into sublots for characterization and coating by ORNL and identified as LEU01-?? (where ?? is a series of integers beginning with 01). Additional particle batches were coated with only buffer or buffer plus inner pyrocarbon (IPyC) layers using similar process conditions as used for the full TRISO batches comprising the LEU01-46T composite. These batches were fabricated in order to qualify that the process conditions used for buffer and IPyC would produce acceptable densities, as described in sections 8 and 9. These qualifying batches used 350 (micro)m natural uranium oxide/uranium carbide kernels (NUCO). The kernels were obtained from BWXT and identified as composite G73B-NU-69300. The use of NUCO surrogate kernels is not expected to significantly effect the densities of the buffer and IPyC coatings. Confirmatory batches using LEUCO kernels from G73D-20-69302 were coated and characterized to verify this assumption. The AGR-1 Fuel Product Specification and Characterization Guidance (INL EDF-4380, Rev. 6) provides the requirements necessary for acceptance

  12. The Effect of Pollution on Newly-Formed Particle Composition in Boreal Forest

    Science.gov (United States)

    Vaattovaara, Petri

    2010-05-01

    Petri Vaattovaara (1), Tuukka Petäjä (2), Jorma Joutsensaari (1), Pasi Miettinen (1), Boris Zaprudin (1,6), Aki Kortelainen (1), Juha Heijari (3,7), Pasi Yli-Pirilä (3), Pasi Aalto (2), Doug R. Worsnop (4), and Ari Laaksonen(1,5) (1) University of Eastern Finland, Finland (2) University of Helsinki, Finland (3) University of Eastern Finland, Finland (4) Aerodyne Research Inc., USA (5) Finnish Meteorological Institute, Finland (6) Currently at University of Turku, Finland (7) Currently at Maritime Research Centre, Finland Email address of the Corresponding author: Petri.Vaattovaara@uef.fi The geographical extent of the tropical, temperate and boreal forests is about 30% of the Earth's land surface. Those forests are located around the world in different climate zones effecting widely on atmospheric composition via new particle formation. The Boreal forests solely cover one third of the forests extent and are one of the largest vegetation environments, forming a circumpolar band throughout the northern hemisphere continents, with a high potential to affect climate processes [1]. In order to more fully understand the possible climatic effects of the forests, the properties of secondary organic aerosols (SOA) in varying conditions (e.g. a change in meteorological parameters or in the concentrations of biogenic and antropogenic trace gases) need to be better known. In this study, we applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer [2]) and the UFH-TDMA (ultrafine hygroscopicity tandem differential mobility analyzer [3]) methods parallel to shed light on the evolution of the nucleation and Aitken mode particle compositions (via physic-chemical properties) at a virgin boreal forest site in varying conditions. The measurements were carried out at Hyytiälä forest station in Northern Europe (Finland) during 15 spring nucleation events. We also carried out a statistical analysis using linear correlations in order to explain the variability in

  13. Probabilistic homogenization of random composite with ellipsoidal particle reinforcement by the iterative stochastic finite element method

    Science.gov (United States)

    Sokołowski, Damian; Kamiński, Marcin

    2018-01-01

    This study proposes a framework for determination of basic probabilistic characteristics of the orthotropic homogenized elastic properties of the periodic composite reinforced with ellipsoidal particles and a high stiffness contrast between the reinforcement and the matrix. Homogenization problem, solved by the Iterative Stochastic Finite Element Method (ISFEM) is implemented according to the stochastic perturbation, Monte Carlo simulation and semi-analytical techniques with the use of cubic Representative Volume Element (RVE) of this composite containing single particle. The given input Gaussian random variable is Young modulus of the matrix, while 3D homogenization scheme is based on numerical determination of the strain energy of the RVE under uniform unit stretches carried out in the FEM system ABAQUS. The entire series of several deterministic solutions with varying Young modulus of the matrix serves for the Weighted Least Squares Method (WLSM) recovery of polynomial response functions finally used in stochastic Taylor expansions inherent for the ISFEM. A numerical example consists of the High Density Polyurethane (HDPU) reinforced with the Carbon Black particle. It is numerically investigated (1) if the resulting homogenized characteristics are also Gaussian and (2) how the uncertainty in matrix Young modulus affects the effective stiffness tensor components and their PDF (Probability Density Function).

  14. Influence of thermal residual stress on behaviour of metal matrix composites reinforced with particles

    Science.gov (United States)

    Guzmán, R. E.; Hernández Arroyo, E.

    2016-02-01

    The properties of a metallic matrix composites materials (MMC's) reinforced with particles can be affected by different events occurring within the material in a manufacturing process. The existence of residual stresses resulting from the manufacturing process of these materials (MMC's) can markedly differentiate the curves obtained in tensile tests obtained from compression tests. One of the themes developed in this work is the influence of residual stresses on the mechanical behaviour of these materials. The objective of this research work presented is numerically estimate the thermal residual stresses using a unit cell model for the Mg ZC71 alloy reinforced with SiC particles with volume fraction of 12% (hot-forging technology). The MMC's microstructure is represented as a three dimensional prismatic cube-shaped with a cylindrical reinforcing particle located in the centre of the prism. These cell models are widely used in predicting stress/strain behaviour of MMC's materials, in this analysis the uniaxial stress/strain response of the composite can be obtained through the calculation using the commercial finite-element code.

  15. Effect of sorghum flour composition and particle size on quality properties of gluten-free bread.

    Science.gov (United States)

    Trappey, Emily Frederick; Khouryieh, Hanna; Aramouni, Fadi; Herald, Thomas

    2015-04-01

    White, food-grade sorghum was milled to flour of varying extraction rates (60%, 80%, and 100%) and pin-milled at different speeds (no pin-milling, low-speed, and high-speed) to create flours of both variable composition and particle size. Flours were characterized for flour composition, total starch content, particle size distribution, color, damaged starch, and water absorption. Bread was characterized for specific volume, crumb structure properties, and crumb firmness. Significant differences were found (P Breads produced from 60% extraction flour had significantly higher specific volumes, better crumb properties, and lower crumb firmness when compared with all other extractions and flour types. The specific volume of bread slices ranged from 2.01 mL/g (100% extraction, no pin-milling) to 2.54 mL/g (60% extraction, low-speed pin-milling), whereas the firmness ranged from 553.28 g (60% extraction, high-speed pin-milling) to 1096.26 g (commercial flour, no pin-milling). The bread characteristics were significantly impacted by flour properties, specifically particle size, starch damage, and fiber content (P < 0.05). © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. Alterations in welding process voltage affect the generation of ultrafine particles, fume composition, and pulmonary toxicity.

    Science.gov (United States)

    Antonini, James M; Keane, Michael; Chen, Bean T; Stone, Samuel; Roberts, Jenny R; Schwegler-Berry, Diane; Andrews, Ronnee N; Frazer, David G; Sriram, Krishnan

    2011-12-01

    The goal was to determine if increasing welding voltage changes the physico-chemical properties of the fume and influences lung responses. Rats inhaled 40 mg/m³ (3 h/day × 3 days) of stainless steel (SS) welding fume generated at a standard voltage setting of 25 V (regular SS) or at a higher voltage (high voltage SS) of 30 V. Particle morphology, size and composition were characterized. Bronchoalveolar lavage was performed at different times after exposures to assess lung injury. Fumes collected from either of the welding conditions appeared as chain-like agglomerates of nanometer-sized primary particles. High voltage SS welding produced a greater number of ultrafine-sized particles. Fume generated by high voltage SS welding was higher in manganese. Pulmonary toxicity was more substantial and persisted longer after exposure to the regular SS fume. In summary, a modest raise in welding voltage affected fume size and elemental composition and altered the temporal lung toxicity profile.

  17. The mechanical properties of nanofilled resin-based composites: characterizing discrete filler particles and agglomerates using a micromanipulation technique.

    LENUS (Irish Health Repository)

    Curtis, Andrew R

    2009-02-01

    To assess the mechanical properties of discrete filler particles representative of several inorganic fillers in modern dental resin-based composites (RBCs) and to assess the validity of a novel micromanipulation technique.

  18. Compressive Strength of EN AC-44200 Based Composite Materials Strengthened with α-Al2O3 Particles

    Directory of Open Access Journals (Sweden)

    Kurzawa A.

    2017-06-01

    Full Text Available The paper presents results of compressive strength investigations of EN AC-44200 based aluminum alloy composite materials reinforced with aluminum oxide particles at ambient and at temperatures of 100, 200 and 250°C. They were manufactured by squeeze casting of the porous preforms made of α-Al2O3 particles with liquid aluminum alloy EN AC-44200. The composite materials were reinforced with preforms characterized by the porosities of 90, 80, 70 and 60 vol. %, thus the alumina content in the composite materials was 10, 20, 30 and 40 vol.%. The results of the compressive strength of manufactured materials were presented and basing on the microscopic observations the effect of the volume content of strengthening alumina particles on the cracking mechanisms during compression at indicated temperatures were shown and discussed. The highest compressive strength of 470 MPa at ambient temperature showed composite materials strengthened with 40 vol.% of α-Al2O3 particles.

  19. Investigation of protein adsorption performance of Ni2+-attached diatomite particles embedded in composite monolithic cryogels.

    Science.gov (United States)

    Ünlü, Nuri; Ceylan, Şeyda; Erzengin, Mahmut; Odabaşı, Mehmet

    2011-08-01

    As a low-cost natural adsorbent, diatomite (DA) (2 μm) has several advantages including high surface area, chemical reactivity, hydrophilicity and lack of toxicity. In this study, the protein adsorption performance of supermacroporous composite cryogels embedded with Ni(2+)-attached DA particles (Ni(2+)-ADAPs) was investigated. Supermacroporous poly(2-hydroxyethyl methacrylate) (PHEMA)-based monolithic composite cryogel column embedded with Ni(2+)-ADAPs was prepared by radical cryo-copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N,N'-methylene-bis-acrylamide (MBAAm) as cross-linker directly in a plastic syringe for affinity purification of human serum albumin (HSA) both from aqueous solutions and human serum. The chemical composition and surface area of DA was determined by XRF and BET method, respectively. The characterization of composite cryogel was investigated by SEM. The effect of pH, and embedded Ni(2+)-ADAPs amount, initial HSA concentration, temperature and flow rate on adsorption were studied. The maximum amount of HSA adsorption from aqueous solution at pH 8.0 phosphate buffer was very high (485.15 mg/g DA). It was observed that HSA could be repeatedly adsorbed and desorbed to the embedded Ni(2+)-ADAPs in poly(2-hydroxyethyl methacrylate) composite cryogel without significant loss of adsorption capacity. The efficiency of albumin adsorption from human serum before and after albumin adsorption was also investigated with SDS-PAGE analyses. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Release of particles by abrasion of CNT composites using a belt sander

    International Nuclear Information System (INIS)

    Matsui, Yasuto; Nobuyuki, Kato; Ishibashi, Tomonori; Nagaya, Taiki; Yoneda, Minoru

    2017-01-01

    There have been many reports on the effect of exposure to nanomaterials such as titanium dioxide, silver, and carbon nanotube (CNT) on human health. Several experiments have examined the abrasion of CNT composites, in which CNT nanoparticles are embedded within a resin or rubber matrix, yielding varying results. Separate study of free CNTs and CNT nanoparticles in relation to health is important due to the different physicochemical characteristics of the two types of material. This study investigated the abrasion of CNT composites using a belt sander inside an enclosed chamber, with variation in the applied load and belt sander speed. At lower speeds, the population of particles with diameters of ∼100 nm was observed to increase (cf. mode values of ∼10 nm), and we found a relationship between the amount of the raising dust and the abrasion conditions. From these results, we propose a robust and widely applicable method to create particles of nanomaterial-containing composite materials of various types in order to conduct accelerated exposure assessment studies. (paper)

  1. Liouvillian propagator technique for perturbed wave functions, level shifts and broadenings of composite particles in a many-body medium

    International Nuclear Information System (INIS)

    Girardeau, M.D.; Oregon Univ., Eugene

    1981-01-01

    Many problems in several areas of physics and chemistry involve many-body systems of interacting composite particles, in regimes where their internal transitions and/or reactive collisions (breakup, recombination, rearrangement) are important. Standard many-body Green's function and quantum field theoretic techniques are not well adapted to such situations. I discuss generalized representations which allow application of standard techniques to more complicated systems of interacting composite particles and their constituents. (orig./HSI)

  2. Sources and composition of submicron organic mass in marine aerosol particles

    Science.gov (United States)

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.; Elliott, Scott M.; Bates, Timothy S.; Quinn, Patricia K.

    2014-11-01

    The sources and composition of atmospheric marine aerosol particles (aMA) have been investigated with a range of physical and chemical measurements from open-ocean research cruises. This study uses the characteristic functional group composition (from Fourier transform infrared spectroscopy) of aMA from five ocean regions to show the following: (i) The organic functional group composition of aMA that can be identified as mainly atmospheric primary marine (ocean derived) aerosol particles (aPMA) is 65 ± 12% hydroxyl, 21 ± 9% alkane, 6 ± 6% amine, and 7 ± 8% carboxylic acid functional groups. Contributions from photochemical reactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal or continental emissions mix in alkane and carboxylic acid groups. (ii) The organic composition of aPMA is nearly identical to model-generated primary marine aerosol particles from bubbled seawater (gPMA, which has 55 ± 14% hydroxyl, 32 ± 14% alkane, and 13 ± 3% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied and the ratio of organic carbon to sodium (OC/Na+) in the gPMA remained nearly constant over a broad range of chlorophyll a concentrations, the gPMA alkane group fraction appeared to increase with chlorophyll a concentrations (r = 0.66). gPMA from productive seawater had a larger fraction of alkane functional groups (42 ± 9%) compared to gPMA from nonproductive seawater (22 ± 10%), perhaps due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of

  3. The origin, composition and distribution of 'hot particles' derived from the nuclear industry and dispersed in the environment

    International Nuclear Information System (INIS)

    Hamilton, E.I.; Clifton, R.J.

    1987-10-01

    Today, recent sediments of the Esk estuary, Cumbria, contain few hot particles derived from BNF compared with those deposited during peak releases of 1972-74. Overall the hot particles account for about 10% of the total alpha particle activity of the sediments. At some horizons, in buried sediments, concentrations of hot particles probably represent rapid transport on the sea surface under conditions of minimum erosion. Similar particles, usually less well defined, occur in accreting sediments but are corroded. Representative types of the most radioactive particles have been isolated and contain Pu, Am and Cm but only trace amounts of naturally occuring alpha emitters. Microprobe analysis of these particles often shows the presence of fairly pure uranium as the major element. On the basis of radioactivity and elemental composition many of these particles appear to be irradiated nuclear fuel debris. (author)

  4. Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite

    Energy Technology Data Exchange (ETDEWEB)

    Arun Prakash, V.R., E-mail: vinprakash101@gmail.com; Rajadurai, A., E-mail: rajadurai@annauniv.edu.in

    2016-10-30

    Highlights: • Particles dimension have reduced using Ball milling process. • Importance of surface modification was explored. • Surface modification has been done to improve adhesion of fiber/particles with epoxy. • Mechanical properties has been increased by adding modified fiber and particles. • Thermal properties have been increased. - Abstract: In this present work hybrid polymer (epoxy) matrix composite has been strengthened with surface modified E-glass fiber and iron(III) oxide particles with varying size. The particle sizes of 200 nm and <100 nm has been prepared by high energy ball milling and sol-gel methods respectively. To enhance better dispersion of particles and improve adhesion of fibers and fillers with epoxy matrix surface modification process has been done on both fiber and filler by an amino functional silane 3-Aminopropyltrimethoxysilane (APTMS). Crystalline and functional groups of siliconized iron(III) oxide particles were characterized by XRD and FTIR spectroscopy analysis. Fixed quantity of surface treated 15 vol% E-glass fiber was laid along with 0.5 and 1.0 vol% of iron(III) oxide particles into the matrix to fabricate hybrid composites. The composites were cured by an aliphatic hardener Triethylenetetramine (TETA). Effectiveness of surface modified particles and fibers addition into the resin matrix were revealed by mechanical testing like tensile testing, flexural testing, impact testing, inter laminar shear strength and hardness. Thermal behavior of composites was evaluated by TGA, DSC and thermal conductivity (Lee’s disc). The scanning electron microscopy was employed to found shape and size of iron(III) oxide particles adhesion quality of fiber with epoxy matrix. Good dispersion of fillers in matrix was achieved with surface modifier APTMS. Tensile, flexural, impact and inter laminar shear strength of composites was improved by reinforcing surface modified fiber and filler. Thermal stability of epoxy resin was improved

  5. The influence of some factors on the electrical conductivity and particle size of core/shell polystyrene/polyaniline composites

    Directory of Open Access Journals (Sweden)

    GORDANA D. NESTOROVIC

    2005-11-01

    Full Text Available The electrically conductive, micron-sized, core/shell polystyrene (PS/polyaniline (PANI composite particles were synthesized by chemical oxidative polymerization of aniline in the presence of micron-sized PS particles in 1 M HCl. The conditions of the dispersion polymerization of styrene were optimized. The influence of the initiator type employed for the chemical oxidative polymerization of aniline and the aniline (ANI concentration on the PS/PANI particle size and size distribution and their conductivity was investigated. The obtained results show that the conductivity of the samples increased with increasing ANI concentration. The conductivity of the PS/PANI composite particles obtained with the highest ANI concentration was of the same order of magnitude as that for PANI powder. The particle size did not depend on the concentration of ANI, while the particle size distribution was narrower at higher concentrations of ANI.

  6. Chemical composition and sources of particle pollution in affluent and poor neighborhoods of Accra, Ghana

    International Nuclear Information System (INIS)

    Zhou, Zheng; Dionisio, Kathie L; Verissimo, Thiago G; Kerr, Americo S; Coull, Brent; Arku, Raphael E; Koutrakis, Petros; Spengler, John D; Vallarino, Jose; Hughes, Allison F; Agyei-Mensah, Samuel; Ezzati, Majid

    2013-01-01

    The highest levels of air pollution in the world now occur in developing country cities, where air pollution sources differ from high-income countries. We analyzed particulate matter (PM) chemical composition and estimated the contributions of various sources to particle pollution in poor and affluent neighborhoods of Accra, Ghana. Elements from earth’s crust were most abundant during the seasonal Harmattan period between late December and late January when Saharan dust is carried to coastal West Africa. During Harmattan, crustal particles accounted for 55 μg m −3 (37%) of fine particle (PM 2.5 ) mass and 128 μg m −3 (42%) of PM 10 mass. Outside Harmattan, biomass combustion, which was associated with higher black carbon, potassium, and sulfur, accounted for between 10.6 and 21.3 μg m −3 of fine particle mass in different neighborhoods, with its contribution largest in the poorest neighborhood. Other sources were sea salt, vehicle emissions, tire and brake wear, road dust, and solid waste burning. Reducing air pollution in African cities requires policies related to energy, transportation and urban planning, and forestry and agriculture, with explicit attention to impacts of each strategy in poor communities. Such cross-sectoral integration requires emphasis on urban environment and urban poverty in the post-2015 Development Agenda. (letter)

  7. On the composition and optical extinction of particles in the tropopause region

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Solomon, S. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Aeronomy Lab.

    1999-06-01

    Liquid aerosol particles and ice crystals in subvisible cirrus clouds in the tropopause region are characterized in terms of size distributions, chemical composition, and optical extinction. These particle properties are studied by means of simple models and are related to satellite extinction measurements, particularly for midlatitudes. Sulfuric acid aerosols can take up nitric acid near the ice frost point, just before ice nucleation. Aerosols in the tropopause region may show a larger spread of extinction and extinction ratios at different wavelengths than background stratospheric aerosols. The high surface areas and low extinction ratios of subvisible cirrus deduced from satellite observations are unlikely to be due purely to aerosols, except for high sulfate loadings. It is shown that mixtures of liquid aerosols and ice particles can more readily explain these data with only small cloud fractions along the line of sight of the optical sensors. The efficiency of heterogeneous chlorine activation in aerosol/cloud mixtures, the availability of water vapor, sulfate, and nitrate, and the effects of temperature, ammonium, ice nuclei and aircraft emissions on the properties of particles in the tropopause region are explored. (orig.)

  8. Tungsten particle reinforced Al 5083 composite with high strength and ductility

    Energy Technology Data Exchange (ETDEWEB)

    Bauri, Ranjit, E-mail: rbauri@iitm.acin; Yadav, Devinder; Shyam Kumar, C.N.; Balaji, B.

    2015-01-03

    Tungsten particles were incorporated into an Al 5083 matrix by friction stir processing (FSP). FSP resulted in uniform dispersion of the tungsten particles with excellent interfacial bonding and more importantly without the formation of any harmful intermetallics. For the first time, the particles penetrated to a depth equal to the full pin length of the tool. A novel aspect of the 5083 Al–W composite is that it showed an improvement of more than 100 MPa in the UTS and at the same time exhibited a high ductility (30%). The ductility was also evident from the well defined dimples in the fracture surface which also revealed the superior bonding between the particles and the matrix. FSP also resulted in substantial grain refinement of the Al matrix. Electron backscatter diffraction (EBSD) and transmission electron microscopy analysis revealed that the fine grains formed by dynamic recrystallization. A gradual transformation from sub-grain to high-angle grain boundaries was observed from EBSD analysis pointing towards the occurrence of a continuous type of dynamic recrystallization process.

  9. Probing the degrees of freedom in hot composite nuclei. Systematics of charged particle evaporation

    International Nuclear Information System (INIS)

    Kaplan, M.; Downer, J.B.; Whitfield, J.P.; Brown, C.M.; Milosevich, Z.; Karol, P.J.; Vardaci, E.; Copi, C.; De Young, P.

    1995-01-01

    The study of evaporative particle emission offers a number of experimental observables whose measurement can provide insight into the behavior of highly excited composite nuclei. Simultaneous observations of multiple degrees of freedom in such hot systems allows stringent testing of theoretical models by insisting that the calculations reproduce the several measured characteristics with a single set of model input parameters. Such comparisons are presented for two data sets, one involving a relatively light (low Z) system and the other referring to a relatively heavy (high Z) system. In the latter case, reasonably good agreement has been found between statistical model calculations (with empirical barriers) and the experimental data, while for the former situation, the parameters required to reproduce the energy spectra lead to significant inconsistencies in predicted particle multiplicities and angular anisotropies. (authors). 12 refs., 7 figs., 2 tabs

  10. Quantification of oxide particle composition in model oxide dispersion strengthened steel alloys

    Energy Technology Data Exchange (ETDEWEB)

    London, A.J., E-mail: andrew.london@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Lozano-Perez, S.; Moody, M.P. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Amirthapandian, S.; Panigrahi, B.K.; Sundar, C.S. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN (India); Grovenor, C.R.M. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2015-12-15

    Oxide dispersion strengthened ferritic steels (ODS) are being considered for structural components of future designs of fission and fusion reactors because of their impressive high-temperature mechanical properties and resistance to radiation damage, both of which arise from the nanoscale oxide particles they contain. Because of the critical importance of these nanoscale phases, significant research activity has been dedicated to analysing their precise size, shape and composition (Odette et al., Annu. Rev. Mater. Res. 38 (2008) 471–503 [1]; Miller et al., Mater. Sci. Technol. 29(10) (2013) 1174–1178 [2]). As part of a project to develop new fuel cladding alloys in India, model ODS alloys have been produced with the compositions, Fe–0.3Y{sub 2}O{sub 3}, Fe–0.2Ti–0.3Y{sub 2}O{sub 3} and Fe–14Cr–0.2Ti–0.3Y{sub 2}O{sub 3}. The oxide particles in these three model alloys have been studied by APT in their as-received state and following ion irradiation (as a proxy for neutron irradiation) at various temperatures. In order to adequately quantify the composition of the oxide clusters, several difficulties must be managed, including issues relating to the chemical identification (ranging and variable peak-overlaps); trajectory aberrations and chemical structure; and particle sizing. This paper presents how these issues can be addressed by the application of bespoke data analysis tools and correlative microscopy. A discussion follows concerning the achievable precision in these measurements, with reference to the fundamental limiting factors.

  11. Quantification of oxide particle composition in model oxide dispersion strengthened steel alloys.

    Science.gov (United States)

    London, A J; Lozano-Perez, S; Moody, M P; Amirthapandian, S; Panigrahi, B K; Sundar, C S; Grovenor, C R M

    2015-12-01

    Oxide dispersion strengthened ferritic steels (ODS) are being considered for structural components of future designs of fission and fusion reactors because of their impressive high-temperature mechanical properties and resistance to radiation damage, both of which arise from the nanoscale oxide particles they contain. Because of the critical importance of these nanoscale phases, significant research activity has been dedicated to analysing their precise size, shape and composition (Odette et al., Annu. Rev. Mater. Res. 38 (2008) 471-503 [1]; Miller et al., Mater. Sci. Technol. 29(10) (2013) 1174-1178 [2]). As part of a project to develop new fuel cladding alloys in India, model ODS alloys have been produced with the compositions, Fe-0.3Y2O3, Fe-0.2Ti-0.3Y2O3 and Fe-14Cr-0.2Ti-0.3Y2O3. The oxide particles in these three model alloys have been studied by APT in their as-received state and following ion irradiation (as a proxy for neutron irradiation) at various temperatures. In order to adequately quantify the composition of the oxide clusters, several difficulties must be managed, including issues relating to the chemical identification (ranging and variable peak-overlaps); trajectory aberrations and chemical structure; and particle sizing. This paper presents how these issues can be addressed by the application of bespoke data analysis tools and correlative microscopy. A discussion follows concerning the achievable precision in these measurements, with reference to the fundamental limiting factors. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Controllable dielectric and electrical performance of polymer composites with novel core/shell-structured conductive particles through biomimetic method

    International Nuclear Information System (INIS)

    Yang, Dan; Tian, Ming; Wang, Wencai; Li, Dongdong; Li, Runyuan; Liu, Haoliang; Zhang, Liqun

    2013-01-01

    Highlights: ► Conductive core/shell-structured particles were synthesized by biomimetic method. ► These particles with silica/poly(dopamine)/silver core and poly(dopamine) shell. ► Dielectric composites were prepared with resulted particles and silicone elastomer. ► The dielectric properties of the composites can be controlled by shell thickness. ► This biomimetic method is simple, nontoxic, efficient and easy to control. - Abstract: Novel silica/poly(dopamine)/silver (from inner to outer) (denoted as SiO 2 /PDA/Ag) conductive micro-particles were first synthesized by biomimetic poly(dopamine) coating. These micro-particles were then coated with a poly(dopamine) layer to form core/shell-structured particles, with silica/poly(dopamine)/silver core and poly(dopamine) shell (denoted as SiO 2 /PDA/Ag/PDA). This multilayer core/shell micro-particles were confirmed by scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and transmission electron microscope. Polymer composites were then prepared by mechanical blending of poly(dimethyl siloxane) and the core/shell-structured particles. It was found that the silver layer and the poly(dopamine) shell had good adhesion with substrate and they kept intact even under violent shearing stress during mechanical mixing. The effect of the thickness of outermost poly(dopamine) shell as well as the loading amount of this filler on the dielectric and electrical properties of the composites was further studied. The results showed that the dielectric constant, dielectric loss, and conductivity of the composites decreased with increasing shell thickness (10–53 nm) at the same loading level. And the maximal dielectric constant of composites was achieved in the composites filled with SiO 2 /PDA/Ag/PDA (with 10–15 nm PDA shell) particles, which was much larger than that of the composite filled with SiO 2 /PDA/Ag particles without insulative PDA shell. At the same time, the composites can change

  13. Morphology, composition, and mixing state of primary particles from combustion sources ? crop residue, wood, and solid waste

    OpenAIRE

    Liu, Lei; Kong, Shaofei; Zhang, Yinxiao; Wang, Yuanyuan; Xu, Liang; Yan, Qin; Lingaswamy, A. P.; Shi, Zongbo; Lv, Senlin; Niu, Hongya; Shao, Longyi; Hu, Min; Zhang, Daizhou; Chen, Jianmin; Zhang, Xiaoye

    2017-01-01

    Morphology, composition, and mixing state of individual particles emitted from crop residue, wood, and solid waste combustion in a residential stove were analyzed using transmission electron microscopy (TEM). Our study showed that particles from crop residue and apple wood combustion were mainly organic matter (OM) in smoldering phase, whereas soot-OM internally mixed with K in flaming phase. Wild grass combustion in flaming phase released some Cl-rich-OM/soot particles and cardboard combusti...

  14. Electrical conductivity of Ni–YSZ composites: Degradation due to Ni particle growth

    DEFF Research Database (Denmark)

    Pihlatie, Mikko; Kaiser, Andreas; Mogensen, Mogens Bjerg

    2011-01-01

    The short-term changes in the electrical conductivity of Ni–YSZ composites (cermets) suitable for use in Solid Oxide Fuel Cells (SOFC) were measured by an in-situ 4-point DC technique. The isothermal reduction was carried out in dry, humidified or wet hydrogen at temperatures from 600 to 1000°C...... modelled using two different semi-empirical approaches. Thermodynamic calculations were carried out to assess the vaporisation of Ni in the conditions tested. The rate and mechanisms of conductivity degradation due to Ni particle growth are discussed in light of the measurements, modelling and literature...

  15. Integral equations for composite-particle scattering taking the Pauli principle into account

    International Nuclear Information System (INIS)

    Kukulin, V.I.; Neudatchin, V.G.; Pomerantsev, V.N.

    1978-01-01

    An approximate description of a system of three composite particles in terms of the Saito (Prog. Theor. Phys.; 41:705 (1969)) orthogonality condition model is proposed. The orthogonalising pseudopotential technique is used to derive a modified set of Fadde'ev equations where the two- and three-body exchanges due to the Pauli principle are included by orthogonalising to two-and three-body forbidden states. The scope of applicability of and the method for solving the derived equations are discussed briefly. (author)

  16. Effect of particle size ratio on the conducting percolation threshold of granular conductive-insulating composites

    International Nuclear Information System (INIS)

    He Da; Ekere, N N

    2004-01-01

    In this paper, we apply Monte Carlo simulation to investigate the conductive percolation threshold of granular composite of conductive and insulating powders with amorphous structure. We focus on the effect of insulating to conductive particle size ratio λ = d i /d c on the conducting percolation threshold p c (the volume fraction of the conductive powder). Simulation results show that, for λ = 1, the percolation threshold p c lies between simple cubic and body centred cubic site percolation thresholds, and that as λ increases the percolation threshold decreases. We also use the structural information obtained by the simulation to study the nonlinear current-voltage characteristics of composite with solid volume fraction of conductive powder below p c in terms of electron tunnelling for nanoscale powders, dielectric breakdown for microscale or larger powders, and pressing induced conduction for non-rigid insulating powders

  17. Preparation of SnO_2-Glass Composite Containing Cu Particles Reduced from Copper Ions in Glass Matrix : Effect of Glass Particle Size on Microstructure and Electrical Property

    OpenAIRE

    Haruhisa, SHIOMI; Kaori, UMEHARA; Faculty of Engineering and Design, Kyoto Institute of Technology; Faculty of Engineering and Design, Kyoto Institute of Technology

    2000-01-01

    An attempt was made to improve the electrical properties of SnO_2-glass composites by dispersing Cu particles with low resistivity and positive temperature coefficient of resistance(TCR)in the glass matrix. Cu metal particles were precipitated by reducing Cu_2O previously dissolved into the matrix glass by adding LaB_6 as a reducing agent. The effect of the glass particle size, which influences the homogeneity of LaB_6 dispersion in the powder mixture before firing, on the Cu precipitation in...

  18. Multi-scale modeling of the thermo-mechanical behavior of particle-based composites

    International Nuclear Information System (INIS)

    Di Paola, F.

    2010-01-01

    The aim of this work was to perform numerical simulations of the thermal and mechanical behavior of a particle-based nuclear fuel. This is a refractory composite material made of UO 2 spherical particles which are coated with two layers of pyrocarbon and embedded in a graphite matrix at a high volume fraction (45%). The objective was to develop a multi-scale modeling of this composite material which can estimate its mean behavior as well as the heterogeneity of the local mechanical variables. The first part of this work was dedicated to the modeling of the microstructure in 3D. To do this, we developed tools to generate random distributions of spheres, meshes and to characterize the morphology of the microstructure towards the finite element code Cast3M. A hundred of numerical samples of the composite were created. The second part was devoted to the characterization of the thermo-elastic behavior by the finite element modeling of the samples. We studied the influence of different modeling parameters, one of them is the boundary conditions. We proposed a method to vanish the boundary conditions effects from the computed solution by analyzing it on an internal sub-volume of the sample obtained by erosion. Then, we determined the effective properties (elastic moduli, thermal conductivity and thermal expansion) and the stress distribution within the matrix. Finally, in the third part we proposed a multi-scale modeling to determine the mean values and the variance and covariance of the local mechanical variables for any macroscopic load. This statistical approach have been used to estimate the intra-phase distribution of these variables in the composite material. (author) [fr

  19. Multi-scale modeling of the thermo-mechanical behavior of particle-based composites

    International Nuclear Information System (INIS)

    Di Paola, F.

    2010-11-01

    The aim of this work was to perform numerical simulations of the thermal and mechanical behavior of a particle-based nuclear fuel. This is a refractory composite material made of UO 2 spherical particles which are coated with two layers of pyrocarbon and embedded in a graphite matrix at a high volume fraction (45 %). The objective was to develop a multi-scale modeling of this composite material which can estimate its mean behavior as well as the heterogeneity of the local mechanical variables. The first part of this work was dedicated to the modeling of the microstructure in 3D. To do this, we developed tools to generate random distributions of spheres, meshes and to characterize the morphology of the microstructure towards the finite element code Cast3M. A hundred of numerical samples of the composite were created. The second part was devoted to the characterization of the thermo-elastic behavior by the finite element modeling of the samples. We studied the influence of different modeling parameters, one of them is the boundary conditions. We proposed a method to vanish the boundary conditions effects from the computed solution by analyzing it on an internal sub-volume of the sample obtained by erosion. Then, we determined the effective properties (elastic moduli, thermal conductivity and thermal expansion) and the stress distribution within the matrix. Finally, in the third part we proposed a multi-scale modeling to determine the mean values and the variance and covariance of the local mechanical variables for any macroscopic load. This statistical approach have been used to estimate the intra-phase distribution of these variables in the composite material. (author)

  20. Surface modification of BMN particles with silane coupling agent for composites with PTFE

    Science.gov (United States)

    Qi, Yanyuan; Luo, Qing; Shen, Jie; Zheng, Liu; Zhou, Jing; Chen, Wen

    2017-08-01

    Polymer-ceramic dielectric composites, which possess better dielectric properties, flexibility, ease in processing and shaping since they combine the advantages of polymers and dielectric ceramics, are widely used in microwave substrate applications. In order to optimize the properties of the composites, it is necessary to enhance the compatibility between the polymer matrix and ceramic filler because of their tremendous difference. In this paper, the vinyltrimethoxysilane (VTMS) is used to modify the Ba(Mg1/3Nb2/3)O3 (BMN) ceramic particles which can improve the compatibility between BMN ceramics and PTFE and the distribution of BMN in polytetrafluoroethylene (PTFE). The modification of VTMS has no influence on the crystal structure of BMN ceramics and the compact VTMS modified BMN/PTFE composites with satisfactory uniformity and less cavities are obtained. The relative permittivity (εr) of VTMS modified BMN/PTFE composite substrate is 5.84 while the loss tangent reaches 1.5 × 10-3 at microwave frequencies (around 10 GHz).

  1. Refractive Index Tuning of Hybrid Materials for Highly Transmissive Luminescent Lanthanide Particle-Polymer Composites.

    Science.gov (United States)

    Kim, Paul; Li, Cheng; Riman, Richard E; Watkins, James

    2018-03-14

    High-refractive-index ZrO 2 nanoparticles were used to tailor the refractive index of a polymer matrix to match that of luminescent lanthanide-ion-doped (La 0.92 Yb 0.075 Er 0.005 F 3 ) light-emitting particles, thereby reducing scattering losses to yield highly transparent emissive composites. Photopolymerization of blends of an amine-modified poly(ether acrylate) oligomer and tailored quantities of ZrO 2 nanoparticles yielded optically transparent composites with tailored refractive indices between 1.49 and 1.69. By matching the refractive index of the matrix to that of La 0.92 Yb 0.075 Er 0.005 F 3 , composites with high transmittance (>85%) and low haze from the visible to infrared regions, bright 1530 nm optical emissions were achieved at solids loadings of La 0.92 Yb 0.075 Er 0.005 F 3 , ranging from 5 to 30 vol %. These optical results suggest that a hybrid matrix approach is a versatile strategy for the fabrication of functional luminescent optical composites of high transparency.

  2. Novel fabrication techniques for low-mass composite structures in silicon particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Neal, E-mail: neal.hartman@cern.ch; Silber, Joseph; Anderssen, Eric; Garcia-Sciveres, Maurice; Gilchriese, Murdock; Johnson, Thomas; Cepeda, Mario

    2013-12-21

    The structural design of silicon-based particle detectors is governed by competing demands of reducing mass while maximizing stability and accuracy. These demands can only be met by fiber reinforced composite laminates (CFRP). As detecting sensors and electronics become lower mass, the motivation to reduce structure as a proportion of overall mass pushes modern detector structures to the lower limits of composite ply thickness, while demanding maximum stiffness. However, classical approaches to composite laminate design require symmetric laminates and flat structures, in order to minimize warping during fabrication. This constraint of symmetry in laminate design, and a “flat plate” approach to fabrication, results in more massive structures. This study presents an approach to fabricating stable and accurate, geometrically complex composite structures by bonding warped, asymmetric, but ultra-thin component laminates together in an accurate tool, achieving final overall precision normally associated with planar structures. This technique has been used to fabricate a prototype “I-beam” that supports two layers of detecting elements, while being up to 20 times stiffer and up to 30% lower mass than comparable, independent planar structures (typically known as “staves”)

  3. Local fields and effective conductivity tensor of ellipsoidal particle composite with anisotropic constituents

    Science.gov (United States)

    Kushch, Volodymyr I.; Sevostianov, Igor; Giraud, Albert

    2017-11-01

    An accurate semi-analytical solution of the conductivity problem for a composite with anisotropic matrix and arbitrarily oriented anisotropic ellipsoidal inhomogeneities has been obtained. The developed approach combines the superposition principle with the multipole expansion of perturbation fields of inhomogeneities in terms of ellipsoidal harmonics and reduces the boundary value problem to an infinite system of linear algebraic equations for the induced multipole moments of inhomogeneities. A complete full-field solution is obtained for the multi-particle models comprising inhomogeneities of diverse shape, size, orientation and properties which enables an adequate account for the microstructure parameters. The solution is valid for the general-type anisotropy of constituents and arbitrary orientation of the orthotropy axes. The effective conductivity tensor of the particulate composite with anisotropic constituents is evaluated in the framework of the generalized Maxwell homogenization scheme. Application of the developed method to composites with imperfect ellipsoidal interfaces is straightforward. Their incorporation yields probably the most general model of a composite that may be considered in the framework of analytical approach.

  4. Thermoplastic starch composites with TiO2 particles: Preparation, morphology, rheology and mechanical properties.

    Science.gov (United States)

    Ostafińska, A; Mikešová, J; Krejčíková, S; Nevoralová, M; Šturcová, A; Zhigunov, A; Michálková, D; Šlouf, M

    2017-08-01

    Composites of thermoplastic starch (TPS) with titanium dioxide particles (mTiO 2 ; average size 0.1μm) with very homogeneous matrix and well-dispersed filler were prepared by a two-step method, including solution casting (SC) followed by melt mixing (MM). Light and scanning electron microscopy confirmed that only the two-step procedure (SC+MM) resulted in ideally homogeneous TPS/mTiO 2 systems. The composites prepared by single-step MM contained non-plasticized starch granules and the composites prepared by single-step SC suffered from mTiO 2 agglomeration. Dynamic mechanical measurements showed an increase modulus with increasing filler concentration. In TPS containing 3wt.% of mTiO 2 the stiffness was enhanced by >40%. Further experiments revealed that the recommended addition of chitosan or the exchange of mTiO 2 for anisometric titanate nanotubes with high aspect ratio did not improve the properties of the composites. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effect of Home Bleaching on Microleakage of Fiber-reinforced and Particle-filled Composite Resins

    Directory of Open Access Journals (Sweden)

    Farahnaz Sharafeddin

    2013-12-01

    Full Text Available Background and aims. Bleaching may exert some negative effects on existing composite resin restorations. The aim of this study was to evaluate the effect of home bleaching on microleakage of fiber-reinforced and particle-filled composite resins. Materials and methods. Ninety class V cavities (1.5×2×3 mm were prepared on the buccal surfaces of 90 bovine teeth. The teeth were randomly divided into 6 groups (n=15 and restored as follows: Groups 1 and 2 with Z100, groups 3 and 4 with Z250, and groups 5 and 6 with Nulite F composite resins. All the specimens were thermocycled. Groups 1, 3 and 5 were selected as control groups (without bleaching and the experimental groups 2, 4 and 6 were bleached with 22% carbamide peroxide gel. All the samples were immersed in 2% basic fuchsin dye for 24 hours and then sectioned longitudinally. Dye penetration was evaluated under a stereomicroscope (×25, at both the gingival and incisal margins. Data were analyzed using Kruskal-Wallis, Mann-Whitney and Wilcoxon tests (α=0.05. Results. Statistical analyses revealed that bleaching gel increased microleakage only at gingival margins with Z250 (P=0.007. Moreover, the control groups showed a statistically significant difference in microleakage at their gingival margins. Nulite F had the maximum microleakage while Z250 showed the minimum (P=0.006. Conclusion. Microleakage of home-bleached restorations might be related to the type of composite resin used.

  6. Impact Strength of Composite Materials Based on EN AC-44200 Matrix Reinforced with Al2O3 Particles

    OpenAIRE

    Kurzawa A.; Kaczmar J.W.

    2017-01-01

    The paper presents the results of research of impact strength of aluminum alloy EN AC-44200 based composite materials reinforced with alumina particles. The research was carried out applying the materials produced by the pressure infiltration method of ceramic preforms made of Al2O3 particles of 3-6μm with the liquid EN AC-44200 Al alloy. The research was aimed at determining the composite resistance to dynamic loads, taking into account the volume of reinforcing particles (from 10 to 40% by ...

  7. Controlling the size and morphology of precipitated calcite particles by the selection of solvent composition

    Science.gov (United States)

    Konopacka-Łyskawa, Donata; Kościelska, Barbara; Karczewski, Jakub

    2017-11-01

    Precipitated calcium carbonate is used as an additive in the manufacture of many products. Particles with specific characteristics can be obtained by the selection of precipitation conditions, including temperature and the composition of solvent. In this work, calcium carbonate particles were obtained in the reaction of calcium hydroxide with carbon dioxide at 65 °C. Initial Ca(OH)2 suspensions were prepared in pure water and aqueous solutions of ethylene glycol or glycerol of the concentration range up to 20% (vol.). The course of reaction was monitored by conductivity measurements. Precipitated solids were analyzed by FTIR, XRD, SEM and the particles size distribution was determined by a laser diffraction method. The adsorption of ethylene glycol or glycerol on the surface of scalenohedral and rhombohedral calcite was testes by a normal-phase high-performance liquid chromatography. The addition of organic solvents changed the viscosity of reaction mixtures, the rate of carbon dioxide absorption and the solubility of inorganic components and therefore influence calcium carbonate precipitation conditions. All synthesized calcium carbonate products were in a calcite form. Scalenohedral calcite crystals were produced when water was a liquid phase, whereas addition of organic solvents resulted in the formation of rhombo-scalenohedral particles. The increase in organic compounds concentration resulted in the decrease of mean particles size from 2.4 μm to 1.7 μm in ethylene glycol solutions and to 1.4 μm in glycerol solutions. On the basis of adsorption tests, it was confirm that calcite surface interact stronger with glycerol than ethylene glycol. The interaction between scalenohedral calcite and used organic additives was higher in comparison to the pure rhombohedral form applied as a stationary phase.

  8. Wear Characteristics of Hybrid Composites Based on Za27 Alloy Reinforced With Silicon Carbide and Graphite Particles

    Directory of Open Access Journals (Sweden)

    S. Mitrović

    2014-06-01

    Full Text Available The paper presents the wear characteristics of a hybrid composite based on zinc-aluminium ZA27 alloy, reinforced with silicon-carbide and graphite particles. The tested sample contains 5 vol.% of SiC and 3 vol.% Gr particles. Compocasting technique has been used to prepare the samples. The experiments were performed on a “block-on-disc” tribometer under conditions of dry sliding. The wear volumes of the alloy and the composite were determined by varying the normal loads and sliding speeds. The paper contains the procedure for preparation of sample composites and microstructure of the composite material and the base ZA27 alloy. The wear surface of the composite material was examined using the scanning electronic microscope (SEM and energy dispersive spectrometry (EDS. Conclusions were obtained based on the observed impact of the sliding speed, normal load and sliding distance on tribological behaviour of the observed composite.

  9. Size-segregated compositional analysis of aerosol particles collected in the European Arctic during the ACCACIA campaign

    Directory of Open Access Journals (Sweden)

    G. Young

    2016-03-01

    Full Text Available Single-particle compositional analysis of filter samples collected on board the Facility for Airborne Atmospheric Measurements (FAAM BAe-146 aircraft is presented for six flights during the springtime Aerosol–Cloud Coupling and Climate Interactions in the Arctic (ACCACIA campaign (March–April 2013. Scanning electron microscopy was utilised to derive size-segregated particle compositions and size distributions, and these were compared to corresponding data from wing-mounted optical particle counters. Reasonable agreement between the calculated number size distributions was found. Significant variability in composition was observed, with differing external and internal mixing identified, between air mass trajectory cases based on HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT analyses. Dominant particle classes were silicate-based dusts and sea salts, with particles notably rich in K and Ca detected in one case. Source regions varied from the Arctic Ocean and Greenland through to northern Russia and the European continent. Good agreement between the back trajectories was mirrored by comparable compositional trends between samples. Silicate dusts were identified in all cases, and the elemental composition of the dust was consistent for all samples except one. It is hypothesised that long-range, high-altitude transport was primarily responsible for this dust, with likely sources including the Asian arid regions.

  10. Microstructures and properties of ceramic particle-reinforced metal matrix composite layers produced by laser cladding

    Science.gov (United States)

    Zhang, Qingmao; He, Jingjiang; Liu, Wenjin; Zhong, Minlin

    2005-01-01

    Different weight ratio of titanium, zirconium, WC and Fe-based alloy powders were mixed, and cladded onto a medium carbon steel substrate using a 3kW continuous wave CO2 laser, aiming at producing Ceramic particles- reinforced metal matrix composites (MMCs) layers. The microstructures of the layers are typical hypoeutectic, and the major phases are Ni3Si2, TiSi2, Fe3C, FeNi, MC, Fe7Mo3, Fe3B, γ(residual austenite) and M(martensite). The microstructure morphologies of MMCs layers are dendrites/cells. The MC-type reinforcements are in situ synthesis Carbides which main compositions consist of transition elements Zr, Ti, W. The MC-type particles distributed within dendrite and interdendritic regions with different volume fractions for single and overlapping clad layers. The MMCs layers are dense and free of cracks with a good metallurgical bonding between the layer and substrate. The addition ratio of WC in the mixtures has the remarkable effect on the microhardness of clad layers.

  11. Composition variations of low energy heavy ions during large solar energetic particle events

    Energy Technology Data Exchange (ETDEWEB)

    Ho, George C., E-mail: George.Ho@jhuapl.edu; Mason, Glenn M., E-mail: Glenn.Mason@jhuapl.edu [Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2016-03-25

    The time-intensity profile of large solar energetic particle (SEP) event is well organized by solar longitude as observed at Earth orbit. This is mostly due to different magnetic connection to the shock that is associated with large SEP event propagates from the Sun to the heliosphere. Earlier studies have shown event averaged heavy ion abundance ratios can also vary as a function of solar longitude. It was found that the Fe/O ratio for high energy particle (>10 MeV/nucleon) is higher for those western magnetically well connected events compare to the eastern events as observed at L1 by the Advanced Composition Explorer (ACE) spacecraft. In this paper, we examined the low energy (∼1 MeV/nucleon) heavy ions in 110 isolated SEP events from 2009 to the end of 2014. In addition, the optical and radio signatures for all of our events are identified and when data are available we also located the associated coronal mass ejection (CME) data. Our survey shows a higher Fe/O ratio at events in the well-connected region, while there are no corrections between the event averaged elemental composition with the associated coronal mass ejection speed. This is inconsistent with the higher energy results, but inline with other recent low-energy measurements.

  12. Aluminium EN AW-2124 alloy matrix composites reinforced with Ti(C,N), BN and Al2O3 particles

    International Nuclear Information System (INIS)

    Dobrzanski, L.A.; Wlodarczyk, A.; Adamiak, M.

    2003-01-01

    Investigation results of the aluminium alloy EN AW-2124 matrix composite materials with particles of the powders Ti(C,N), BN and Al 2 O 3 (15 wt.%) are presented in the paper. In order to obtain uniform distribution of reinforcement particles in aluminium alloy matrix powders of composite components have been milled in the rotary ball-bearing pulverizer. The composites have been pressed in laboratory vertical press at room temperature under the pressure of 500 kN. Obtained die samplings have been heated to the temperature 520-550 o C and extruded. Bars of diameter 8 mm have been received as a final product. Metallographic examination of the composites materials' structure shows non-uniform distribution of reinforced powders in the aluminium alloy matrix banding of reinforcements particles corresponds to the extrusion direction. Particles of reinforcement distribution in aluminium alloy matrix is irregular, some agglomerations of powder of aluminium oxide and porosity of different size have been noticed. Investigations of hardness and ultimate compressive strength show that the particles of reinforcement improve mechanical properties of composite materials. Investigations of compressive strength, carried out at room temperature, enable to compare mechanical properties of matrix and composite. (author)

  13. Surface modification of silica particles and its effects on cure and mechanical properties of the natural rubber composites

    Energy Technology Data Exchange (ETDEWEB)

    Theppradit, Thawinan [Program in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Prasassarakich, Pattarapan [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Poompradub, Sirilux, E-mail: sirilux.p@chula.ac.th [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)

    2014-12-15

    The efficiency of modified silica (SiO{sub 2}) particles in the reinforcement of natural rubber (NR) vulcanizates was evaluated. The SiO{sub 2} particles were synthesized via a sol–gel reaction using tetraethyl orthosilicate as the precursor, and then the formed SiO{sub 2} particles were modified with methyl, vinyl or aminopropyl groups using methyltriethoxysilane, vinyltriethoxysilane or aminopropyltrimethoxysilane, respectively. Fourier transform infrared spectroscopy and elemental analysis confirmed the successful modification of the surface of the silica particles. The water contact angle measurement revealed the greater hydrophobicity of the three modified silica preparations compared to the unmodified SiO{sub 2}. NR vulcanizates filled with modified SiO{sub 2} particles were prepared and the mechanical, thermal and dynamic mechanical properties of composites were investigated. The morphology of composite materials was also investigated by scanning electron microscopy. The modified SiO{sub 2} particles were well dispersed in the NR matrix leading to the good compatibility between the rubber and filler, and so an improved cure, mechanical, thermal and dynamic mechanical properties of the composite vulcanizate materials. - Highlights: • Modification of SiO{sub 2} particles by MTES, VTES and APTES. • Improvement of hydrophobicity of SiO{sub 2} particle and compatibility between SiO{sub 2} and rubbery matrix. • Improvement of cure, mechanical, thermal, dynamic mechanical properties of NR vulcanizates.

  14. Effect of particle size and concentration on the mechanical properties of polyester/date palm seed particulate composites

    Directory of Open Access Journals (Sweden)

    Alewo Opuada AMEH

    2015-05-01

    Full Text Available The use of cellulosic materials as reinforcement in composites can greatly enhance their properties. The thrust of this study was to investigate the effect of date palm seed particle on the properties of reinforced polyester. Unsaturated polyester resin was reinforced with date palm seed particles of 0.5, 2.0 and 2.8mm particle sizes using variable particle loadings of 5, 10, 15, 20 and 25wt%. The composites obtained were subjected to various types of mechanical and physical tests in order to assess their performance. The optimum tensile strength of 16.7619N/mm2 and elastic modulus of 343.8N/mm2 were attained at 15wt% and 10wt% loading (using 0.5mm particles respectively and percent water absorption was found to be least for 0.5mm particle size. The hardness was enhanced to the maximum of 74 HRF (Rockwell Hardness Factor by 2mm particle size at 25wt% loading. Pure unsaturated polyester resin recorded tensile strength of 17.5959N/mm2, elastic modulus of 316.7N/mm2 and hardness of 33.5 HRF. The results indicated that the use of date palm seed particles as reinforcement can enhance the properties of polyester composites.

  15. Improving the particle distribution and mechanical properties of friction-stir-welded composites by using a smooth pin tool

    Science.gov (United States)

    Liu, Huijie; Hu, Yanying; Zhao, Yunqiang; Fujii, Hidetoshi

    2017-09-01

    Friction stir welding (FSW) is a very promising technique for joining particle-reinforced aluminum-matrix composites (PRAMCs), but with increase in the volume fraction of reinforcing particles, their distribution in welds becomes inhomogeneous. This leads to an inconsistent deformation of welds and their destruction at low stresses. In order to improve the weld microstructure, a smooth pin tool was used for the friction stir welding of AC4A + 30 vol.% SiC particle-reinforced aluminum-matrix composites. The present work describes the effect of welding parameters on the characteristics of particle distribution and the mechanical properties of welds. The ultimate strength of weld reached, 309 MPa, was almost 190% of that of the basic material. The mechanism of SiC particle conglomeration is clearly illustrated by means of schematic illustrations.

  16. Two-step milling on the carbonyl iron particles and optimizing on the composite absorption

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yonggang, E-mail: xuyonggang221@163.com [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai 200438 (China); Yuan, Liming; Wang, Xiaobing [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai 200438 (China); Zhang, Deyuan [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)

    2016-08-15

    The flaky carbonyl iron particles (CIPs) were prepared using a two-step milling process. The surface morphology was characterized by the scanning electron microscopy, the static magnetic property was evaluated on a vibrating sample magnetometer and X-ray diffraction (XRD) patterns were done to analyze the particle crystal grain structure. The complex permittivity and permeability were measured using a vector network analyzer in the frequency range of 2–18 GHz. Then Hermite interpolation based on the calculated scattering parameters of the tested composite was used to derive the permittivity and permeability of the composite with random volume content. The results showed that the saturation magnetization value of the flaky CIPs decreased as the CIPs was changed to the flakes by high and low speeding milling. The diffraction peaks of the single α-Fe existed in the XRD pattern of CIPs, and the characteristic peaks was broad and the intensity of the diffraction pattern was lower as the high-speeding milling time increased. The sample H2L20 had the largest particle size, the average diameter was 8.64 μm, the thickness was 0.59 μm according to the fitted aspect ratio 14.65. The derived permittivity and permeability using the Hermite interpolation was accurate compared with the tested result, the deviation was about 0.39 + j0.45 and 2.5 + j0.51. Finally, the genetic algorithm was used to optimize the thickness of the CIPs composite of a wide absorbing band of 8–18 GHz. The optimized reflection loss (RL) result showed that the absorbing composites with thickness 1.47 mm had an excellent absorbing property (RL < −10 dB) in 8–18 GHz. - Graphical abstract: The property of absorber added two speeding milling CIPs could be enhanced using the genetic algorithm. - Highlights: • Flaky CIPs were prepared using a two-step milling process. • The permeability increased during the low speeding milling. • The aspect ratio of flaky CIPs increased in the optimized process

  17. Mechanical properties study of particles reinforced aluminum matrix composites by micro-indentation experiments

    Directory of Open Access Journals (Sweden)

    Yuan Zhanwei

    2014-04-01

    Full Text Available By using instrumental micro-indentation technique, the microhardness and Young’s modulus of SiC particles reinforced aluminum matrix composites were investigated with micro-compression-tester (MCT. The micro-indentation experiments were performed with different maximum loads, and with three loading speeds of 2.231, 4.462 and 19.368 mN/s respectively. During the investigation, matrix, particle and interface were tested by micro-indentation experiments. The results exhibit that the variations of Young’s modulus and microhardness at particle, matrix and interface were highly dependent on the loading conditions (maximum load and loading speed and the locations of indentation. Micro-indentation hardness experiments of matrix show the indentation size effects, i.e. the indentation hardness decreased with the indentation depth increasing. During the analysis, the effect of loading conditions on Young’s modulus and microhardness were explained. Besides, the elastic–plastic properties of matrix were analyzed. The validity of calculated results was identified by finite element simulation. And the simulation results had been preliminarily analyzed from statistical aspect.

  18. submitter On the composition of ammonia–sulfuric-acid ion clusters during aerosol particle formation

    CERN Document Server

    Schobesberger, S; Bianchi, F; Rondo, L; Duplissy, J; Kürten, A; Ortega, I K; Metzger, A; Schnitzhofer, R; Almeida, J; Amorim, A; Dommen, J; Dunne, E M; Ehn, M; Gagné, S; Ickes, L; Junninen, H; Hansel, A; Kerminen, V -M; Kirkby, J; Kupc, A; Laaksonen, A; Lehtipalo, K; Mathot, S; Onnela, A; Petäjä, T; Riccobono, F; Santos, F D; Sipilä, M; Tomé, A; Tsagkogeorgas, G; Viisanen, Y; Wagner, P E; Wimmer, D; Curtius, J; Donahue, N M; Baltensperger, U; Kulmala, M; Worsnop, D R

    2015-01-01

    The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new-particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia $(NH_3)$ and sulfuric acid $(H-2SO_4)$. Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small $NH_3–H_2SO_4$ clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from 10. Positively charged clusters grew on average by Δm/Δn = 1.05 and were only observed at sufficiently high $[NH_3]$ / $[H_2SO_4]$. The $H_2SO_4$ molecules of these clusters are partially neutralized by $NH_3$, in close resemblance...

  19. Counterpropagating wave acoustic particle manipulation device for the effective manufacture of composite materials.

    Science.gov (United States)

    Scholz, Marc-S; Drinkwater, Bruce W; Llewellyn-Jones, Thomas M; Trask, Richard S

    2015-10-01

    An ultrasonic assembly device exhibiting broadband behavior and a sacrificial plastic frame is described. This device is used to assemble a variety of microscopic particles differing in size, shape, and material into simple patterns within several host fluids. When the host fluid is epoxy, the assembled materials can be cured and the composite sample extracted from the sacrificial frame. The wideband performance means that within a single device, the wavelength can be varied, leading to control of the length scale of the acoustic radiation force field. We show that glass fibers of 50 μm length and 14 μm diameter can be assembled into a series of stripes separated by hundreds of microns in a time of 0.3 s. Finite element analysis is used to understand the attributes of the device which control its wideband characteristics. The bandwidth is shown to be governed by the damping produced by a combination of the plastic frame and the relatively large volume of the fluid particle mixture. The model also reveals that the acoustic radiation forces are a maximum near the substrate of the device, which is in agreement with experimental observations. The device is extended to 8-transducers and used to assemble more complex particle distributions.

  20. Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation

    Directory of Open Access Journals (Sweden)

    E. Asmi

    2010-05-01

    Full Text Available The Antarctic near-coastal sub-micrometre aerosol particle features in summer were characterised based on measured data on aerosol hygroscopicity, size distributions, volatility and chemical ion and organic carbon mass concentrations. Hysplit model was used to calculate the history of the air masses to predict the particle origin. Additional measurements of meteorological parameters were utilised. The hygroscopic properties of particles mostly resembled those of marine aerosols. The measurements took place at 130 km from the Southern Ocean, which was the most significant factor affecting the particle properties. This is explained by the lack of additional sources on the continent of Antarctica. The Southern Ocean was thus a likely source of the particles and nucleating and condensing vapours. The particles were very hygroscopic (HGF 1.75 at 90 nm and very volatile. Most of the sub-100 nm particle volume volatilised below 100 °C. Based on chemical data, particle hygroscopic and volatile properties were explained by a large fraction of non-neutralised sulphuric acid together with organic material. The hygroscopic growth factors assessed from chemical data were similar to measured. Hygroscopicity was higher in dry continental air masses compared with the moist marine air masses. This was explained by the aging of the marine organic species and lower methanesulphonic acid volume fraction together with the changes in the inorganic aerosol chemistry as the aerosol had travelled long time over the continental Antarctica. Special focus was directed in detailed examination of the observed new particle formation events. Indications of the preference of negative over positive ions in nucleation could be detected. However, in a detailed case study, the neutral particles dominated the particle formation process. Freshly nucleated particles had the smallest hygroscopic growth factors, which increased subsequent to particle aging.

  1. The Diurnal Cycle of Particle Sizes, Compositions, and Densities observed in Sacramento, CA during CARES Field Campaign

    Science.gov (United States)

    Beránek, J.; Vaden, T.; Imre, D. G.; Zelenyuk, A.

    2010-12-01

    A central objective of the Carbonaceous Aerosol and Radiative Effects Study (CARES) was to characterize unequivocally all aspects related to organics in aerosols. To this end, a range of instruments measured loadings, size distributions, compositions, densities, CCN activities, and optical properties of aerosol sampled in Sacramento, CA over the month of June 2010. We present the results of measurements conducted by our single particle mass spectrometer, SPLAT. SPLAT was used to measure the size, composition, and density of individual particles with diameters between 50 to 2000 nm. SPLAT measured the vacuum aerodynamic diameters (dva) of more than 2 million particles and the compositions of ~350,000 particles, each day. In addition, SPLAT was used in combination with a differential mobility analyzer to measure the density, or effective density of individual particles. These measurements were typically conducted twice per day: in the morning, and mid-afternoon. Preliminary analysis of the data shows that under most conditions, the particles were relatively small (below 200 nm), and the vast majority of them were composed of oxygenated organics mixed with various amounts of sulfates. Analysis of the mass spectra shows that the oxygenated organics in these particles are the oxidized products of biogenic volatile organic precursors. In addition to particles composed of SOA mixed with sulfates, we detected and characterized fresh and processed soot particles, biomass burning aerosol, organic amines, sea salt - fresh and processed - and a small number of dust and other inorganic particles, commonly found in urban environment. SOA mixed with sulfates were the vast majority of particles at all times, while the other particle types exhibited episodic behavior. The data shows a reproducible diurnal pattern in SOA size distributions, number concentrations, and compositions. Early in the morning the particle number concentrations are relatively low, and the particle size

  2. Preparation and characterization of reduced graphene oxide/copper composites incorporated with nano-SiO2 particles

    International Nuclear Information System (INIS)

    Zhang, Xinjiang; Dong, Pengyu; Zhang, Benguo; Tang, Shengyang; Yang, Zirun; Chen, Yong; Yang, Wenchao

    2016-01-01

    Reduced graphene oxide/copper (rGO/Cu) composites incorporated with nano-SiO 2 particles were successfully fabricated using the raw materials of GO dispersion, hydrophilic nano-SiO 2 and electrolytic Cu powder. The as-prepared composites were characterized by X-ray diffraction, field-emission scanning electron microscope and energy dispersive spectroscopy. Microstructural observation of the composite powders indicated that the graphene oxide (GO) was effectively reduced by N 2 H 4 ·H 2 O addition in the composite slurry, and the nano-SiO 2 particles and rGO sheets were randomly and completely mixed with Cu particles. The as-sintered composites exhibited the small rGO agglomerations in the Cu matrix, and the more nano-SiO 2 additions led to the agglomerations increase. The mechanical property testing revealed that rGO/Cu composites with nano-SiO 2 incorporation exhibited the higher hardness and strength, compared with the rGO/Cu composite and as-cast pure Cu. However, the strengthening in the composites with higher SiO 2 content accompanied with the expense of compressive ductility. Microstructural formation and strengthening mechanism of the composites are also discussed in details. - Highlights: • Nano-SiO 2 incorporated rGO/Cu composites were successfully fabricated. • The more nano-SiO 2 additions led to the agglomerations increase in the composites. • The nano-SiO 2 incorporated composites exhibited the better hardness and strength. • The formation and strengthening mechanism of the composite was discussed in detail.

  3. Desulfurization and oxidation behavior of ultra-fine CaO particles prepared from brown coal; Kattan wo mochiite choseishita CaO chobiryushi no datsuryu tokusei to sanka tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, G.; Roman, M.; Yamazaki, Y.; Abe, H.; Harano, Y.; Takarada, Y. [Gunma University, Gunma (Japan). Faculty of Engineering

    1996-10-28

    The effect of reaction temperature and oxygen concentration on the desulfurization and oxidation behavior of ion-exchanged brown coal by Ca as new desulfurizing agent was studied. In experiment, Yallourn coal was used for ion- exchange, and limestone produced in Tochigi prefecture was also used for comparative study. Ca-exchanged brown coal was prepared by agitating coal in Ca(OH)2 slurry for 24 hours. The desulfurization behavior of a desulfurizing agent was obtained by measuring H2S and sulfur compounds in outlet gas of a reactor, and the oxidation behavior by measuring SO2 emission in outlet gas after oxidation reaction. As the experimental result, CaO produced from Ca-exchanged brown coal offered the extremely high activity to desulfurization reaction in a temperature range of 850-950{degree}C as compared with limestone. Although the oxidation behavior was dependent on oxidation temperature and oxygen concentration, CaS obtained from Ca-exchanged brown coal was more rapidly converted to CaSO4 than limestone. 3 refs., 8 figs., 2 tabs.

  4. Tailoring particle size and morphology of colloidal Ag particles via chemical precipitation for Ag-BSCCO composites

    International Nuclear Information System (INIS)

    Medendorp, N.W. Jr.; Bowman, K.J.; Trumble, K.P.

    1996-01-01

    The chemical precipitation of silver particles is an effective method for tailoring the particle size and morphology. This article investigates a chemical precipitation method for producing silver colloids, and how processing parameters affected particle size, morphology and adherence. Decreasing the silver nitrate concentration during precipitation with sodium borohydride decreased the colloidal silver particle size. Decreasing the addition rate of the reducing agent produced faceted particles. Reversing the reactant addition order also changed the particle size and the morphology. Precipitated colloids demonstrated a difference between the growth-dominated and the equilibrium structures. Co-dispersing Bi-based superconducting platelets during precipitation allowed Ag colloids to preferentially nucleate on the platelets and to remain adhered even after the additional processing. (orig.)

  5. Composition of Renaissance paint layers: simultaneous particle induced X-ray emission and backscattering spectrometry.

    Science.gov (United States)

    de Viguerie, L; Beck, L; Salomon, J; Pichon, L; Walter, Ph

    2009-10-01

    Particle induced X-ray emission spectroscopy (PIXE) is now routinely used in the field of cultural heritage. Various setups have been developed to investigate the elemental composition of wood/canvas paintings or of cross-section samples. However, it is not possible to obtain information concerning the quantity of organic binder. Backscattering spectrometry (BS) can be a useful complementary method to overcome this limitation. In the case of paint layers, PIXE brings the elemental composition (major elements to traces) and the BS spectrum can give access to the proportion of pigment and binder. With the use of 3 MeV protons for PIXE and BS simultaneously, it was possible to perform quantitative analysis including C and O for which the non-Rutherford cross sections are intense. Furthermore, with the use of the same conditions for PIXE and BS, the experiment time and the potential damage by the ion beam were reduced. The results obtained with the external beam of the Accélérateur Grand Louvre pour l'Analyse Elementaire (AGLAE) facility on various test painting samples and on cross sections from Italian Renaissance masterpieces are shown. Simultaneous combination of PIXE and BS leads to a complete characterization of the paint layers: elemental composition and proportion of the organic binder have been determined and thus provide useful information about ancient oil painting recipes.

  6. Compression Molding of Composite of Recycled HDPE and Recycled Tire Particles

    Science.gov (United States)

    Liu, Ping; Waskom, Tommy L.; Chen, Zhengyu; Li, Yanze; Peng, Linda

    1996-01-01

    Plastic and rubber recycling is an effective means of reducing solid waste to the environment and preserving natural resources. A project aimed at developing a new composite material from recycled high density polyethylene (HDPE) and recycled rubber is currently being conducted at Eastern Illinois University. The recycled plastic pellets with recycled rubber particles are extruded into some HDPE/rubber composite strands. The strand can be further cut into pellets that can be used to fabricate other material forms or products. This experiment was inspired by the above-mentioned research activity. In order to measure Durometer hardness of the extruded composite, a specimen with relatively large dimensions was needed. Thus, compression molding was used to form a cylindrical specimen of 1 in. diameter and 1 in. thickness. The initial poor quality of the molded specimen prompted a need to optimize the processing parameters such as temperature, holding time, and pressure. Design of experiment (DOE) was used to obtain optimum combination of the parameters.

  7. Attachment of composite porous supra-particles to air-water and oil-water interfaces: theory and experiment.

    Science.gov (United States)

    Paunov, Vesselin N; Al-Shehri, Hamza; Horozov, Tommy S

    2016-09-29

    We developed and tested a theoretical model for the attachment of fluid-infused porous supra-particles to a fluid-liquid interface. We considered the wetting behaviour of agglomerated clusters of particles, typical of powdered materials dispersed in a liquid, as well as of the adsorption of liquid-infused colloidosomes at the liquid-fluid interface. The free energy of attachment of a composite spherical porous supra-particle made from much smaller aggregated spherical particles to the oil-water interface was calculated. Two cases were considered: (i) a water-filled porous supra-particle adsorbed at the oil-water interface from the water phase, and, (ii) an oil-filled porous supra-particle adsorbed at the oil-water interface from the oil-phase. We derived equations relating the three-phase contact angle of the smaller "building block" particles and the contact angle of the liquid-infused porous supra-particles. The theory predicts that the porous supra-particle contact angle attached at the liquid interface strongly depends on the type of fluid infused in the particle pores and the fluid phase from which it approaches the liquid interface. We tested the theory by using millimetre-sized porous supra-particles fabricated by evaporation of droplets of polystyrene latex suspension on a pre-heated super-hydrophobic surface, followed by thermal annealing at the glass transition temperature. Such porous particles were initially infused with water or oil and approached to the oil-water interface from the infusing phase. The experiment showed that when attaching at the hexadecane-water interface, the porous supra-particles behaved as hydrophilic when they were pre-filled with water and hydrophobic when they were pre-filled with hexadecane. The results agree with the theoretically predicted contact angles for the porous composite supra-particles based on the values of the contact angles of their building block latex particles measured with the Gel Trapping Technique. The

  8. Evaluating a simple blending approach to prepare magnetic and stimuli-responsive composite hydrogel particles for application in biomedical field

    Directory of Open Access Journals (Sweden)

    H. Ahmad

    2016-08-01

    Full Text Available The inclusion of super paramagnetic iron oxide (Fe3O4 nanoparticles in stimuli-responsive hydrogel is expected to enhance the application potential for cellular therapy in cell labeling, separation and purification, protein immobilization, contrasting enhancement in magnetic resonance imaging (MRI, localized therapeutic hyperthermia, biosensors etc. in biomedical field. In this investigation two different magnetic and stimuli-responsive composite hydrogel particles with variable surface property were prepared by simply blending Fe3O4/SiO2 nanocomposite particles with stimuli-responsive hydrogel particles. Of the hydrogel particles prepared by free-radical precipitation polymerization poly(styrene-N-isopropylacrylamide-methyl methacrylate-polyethylene glycol methacrylate or P(S-NIPAM-MMA-PEGMA was temperature-sensitive and poly(S-NIPAM-methacrylic acid-PEGMA or P(S-NIPAM-MAA-PEGMA was both temperature- and pH-responsive. The morphological structure, size distributions and volume phase transitions of magnetic and stimuli-responsive composite hydrogel particles were analyzed. Temperature-responsive absorptions of biomolecules were observed on both magnetic and stimuli-responsive Fe3O4/SiO2/P(S-NIPAM-MMA-PEGMA and Fe3O4/SiO2/P(S-NIPAM-MAA-PEGMA composite hydrogel particles and separation of particles from the dispersion media could be achieved by applying magnetic field without time consuming centrifugation or decantation method.

  9. Laboratory investigations of Titan haze formation: In situ measurement of gas and particle composition

    Science.gov (United States)

    Hörst, Sarah M.; Yoon, Y. Heidi; Ugelow, Melissa S.; Parker, Alex H.; Li, Rui; de Gouw, Joost A.; Tolbert, Margaret A.

    2018-02-01

    Prior to the arrival of the Cassini-Huygens spacecraft, aerosol production in Titan's atmosphere was believed to begin in the stratosphere where chemical processes are predominantly initiated by far ultraviolet (FUV) radiation. However, measurements taken by the Cassini Ultraviolet Imaging Spectrograph (UVIS) and Cassini Plasma Spectrometer (CAPS) indicate that haze formation initiates in the thermosphere where there is a greater flux of extreme ultraviolet (EUV) photons and energetic particles available to initiate chemical reactions, including the destruction of N2. The discovery of previously unpredicted nitrogen species in measurements of Titan's atmosphere by the Cassini Ion and Neutral Mass Spectrometer (INMS) indicates that nitrogen participates in the chemistry to a much greater extent than was appreciated before Cassini. The degree of nitrogen incorporation in the haze particles is important for understanding the diversity of molecules that may be present in Titan's atmosphere and on its surface. We have conducted a series of Titan atmosphere simulation experiments using either spark discharge (Tesla coil) or FUV photons (deuterium lamp) to initiate chemistry in CH4/N2 gas mixtures ranging from 0.01% CH4/99.99% N2 to 10% CH4/90% N2. We obtained in situ real-time measurements using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) to measure the particle composition as a function of particle size and a proton-transfer ion-trap mass spectrometer (PIT-MS) to measure the composition of gas phase products. These two techniques allow us to investigate the effect of energy source and initial CH4 concentration on the degree of nitrogen incorporation in both the gas and solid phase products. The results presented here confirm that FUV photons produce not only solid phase nitrogen bearing products but also gas phase nitrogen species. We find that in both the gas and solid phase, nitrogen is found in nitriles rather than amines and that both the

  10. Systematic Investigation of Magnetostriction in Composite Magnetorheological Elastomers: the Effect of Particle Shape, Alignment, and Volume Fraction

    Science.gov (United States)

    Kassner, Christopher; Rieger, William; von Lockette, Paris; Lofland, Samuel

    2013-03-01

    We have completed a study of the magnetoelastic properties of several types of magnetorheological elastomers (MREs), composites consisting of magnetic particles cured in an elastic matrix. We have made a number of samples with different particle arrangements (pseudo-random and aligned), volume fraction, and particle shape (rods, spheres, and disks) and measured the field dependent strain in order to determine the magnetostriction. We found that the magnetostriction in these samples is highly dependent on the sample particle shape (aspect ratio) and volume fraction and ordering to a lesser extent. While much of the past work has focused on spherical particles, our results indicate that both rods and disks can yield enhanced results. We discuss our findings in terms of magnetic energy of the particles and elastic energy of the matrix. We then consider the issue of optimization. This work was supported in part by NSF Grant CMMI - 0927326.

  11. Rural measurements of the chemical composition of airborne particles in the Eastern United States

    International Nuclear Information System (INIS)

    Wolff, G.T.; Kelly, N.A.; Ferman, M.A.; Morrissey, M.L.

    1983-01-01

    Quantitative measurements of particulate composition was made at three rural sites: in central South Dakota, on the Louisiana Gulf Coastal, and in the Blue Ridge Mountains of Virginia. The first two sites were selected to determine background concentrations in continental polar and maritime tropical air masses, respectively, which affect the eastern United State during the summer. The Virginia site was selected as a receptor site, downwind of the midwestern source area. The South Dakota data established the background concentrations. These concentrations were similar to the levels in Louisiana when air parcels arrived from the Gulf of Mexico, without recently passing over the United States. Levels of fine particles (diameters less than 2.5 μm) were highest in Virginia and were due chiefly to sulfate. Using trajectory and statistical analyses, it is shown that the residence time of an air parcel over the midwestern source area was the most important variable in determining the sulface levels in the Blue Ridge Mountains

  12. Nano-sized particles, processes of making, compositions and uses thereof

    Science.gov (United States)

    O'Brien, Stephen [New York, NY; Yin, Ming [Los Alamos, NM

    2012-05-22

    The present invention describes methods for preparing high quality nanoparticles, i.e., metal oxide based nanoparticles of uniform size and monodispersity. The nanoparticles advantageously comprise organic alkyl chain capping groups and are stable in air and in nonpolar solvents. The methods of the invention provide a simple and reproducible procedure for forming transition metal oxide nanocrystals, with yields over 80%. The highly crystalline and monodisperse nanocrystals are obtained directly without further size selection; particle size can be easily and fractionally increased by the methods. The resulting nanoparticles can exhibit magnetic and/or optical properties. These properties result from the methods used to prepare them. Also advantageously, the nanoparticles of this invention are well suited for use in a variety of industrial applications, including cosmetic and pharmaceutical formulations and compositions.

  13. OPTIMIZATION OF PLY STACKING SEQUENCE OF COMPOSITE DRIVE SHAFT USING PARTICLE SWARM ALGORITHM

    Directory of Open Access Journals (Sweden)

    CHANNAKESHAVA K. R.

    2011-06-01

    Full Text Available In this paper an attempt has been made to optimize ply stacking sequence of single piece E-Glass/Epoxy and Boron /Epoxy composite drive shafts using Particle swarm algorithm (PSA. PSA is a population based evolutionary stochastic optimization technique which is a resent heuristic search method, where mechanics are inspired by swarming or collaborative behavior of biological population. PSA programme is developed to optimize the ply stacking sequence with an objective of weight minimization by considering design constraints as torque transmission capacity, fundamental natural frequency, lateral vibration and torsional buckling strength having number of laminates, ply thickness and stacking sequence as design variables. The weight savings of the E-Glass/epoxy and Boron /Epoxy shaft from PAS were 51% and 85 % of the steel shaft respectively. The optimum results of PSA obtained are compared with results of genetic algorithm (GA results and found that PSA yields better results than GA.

  14. Chemical composition of anthropogenic particles on needles collected close to the Estonian oil-shale power plants

    International Nuclear Information System (INIS)

    Meinander, O.

    1995-01-01

    Within the countries surrounding the Baltic Sea, north-eastern Estonia is among the most polluted areas. Emissions from the oil-shale power plants produce air pollution problems both locally and on a larger scale. In the atmosphere, pollutants mix and convert. Consequently, the particles deposited due to the use of oil-shale can have various chemical compositions. From the point of view of air chemistry, ecological effects and air pollution modelling, knowledge of the chemical composition of the deposited particles can be of great value. The aim of this work was to study the chemical composition of single anthropogenic particles occurring on needle surfaces in north-eastern Estonia and Southern Finland close to the Estonian oil-shale power plants. For the purpose, scanning electron microscopical microanalysis was used

  15. Erosion wear response of epoxy composites filled with steel industry slag and sludge particles: A comparative study

    Science.gov (United States)

    Purohit, Abhilash; Satapathy, Alok

    2018-03-01

    In the field of composite research, use of industrial wastes such as slag and sludge particles as filler in wear resistant polymer composites has not been very common. Owing to the very high cost of conventional filler materials in polymer composites, exploring the possibility of using low cost minerals and industrial wastes for this purpose has become the need of the hour. In this context this work explores the possibility of such polymer composites filled with low cost industrial wastes and presents a comparison of mechanical characteristics among three types of epoxy based composites filled with Linz - Donawitz sludge (LD sludge), blast furnace slag (BF slag) and Linz - Donawitz slag (LD slag) respectively. A comparative study in regard to their solid particle erosion wear characteristics under similar test conditions is also included. Composites with different weight proportions (0, 5, 10, 15 and 20 wt. %) of LD sludge are fabricated by solution casting technique. Mechanical properties such as micro- hardness, tensile strength and flexural strength of three types of composites have been evaluated as per ASTM test standards and solid particle erosion wear test is performed following a design of experiment approach based on Taguchi’s orthogonal array. Five control factors (impact velocity, erodent size, filler content, impingement angle and erodent temperature) each at five levels are considered to conduct erosion wear tests. The test results for epoxy-LD sludge composites are compared with those of epoxy-BF slag and epoxy-LD slag composites reported by previous investigators. The comparison reveals that epoxy filled with LD sludge exhibits superior mechanical and erosion wear characteristics among the three types of composites considered in this study. This work also opens up a new avenue for value added utilization of an abundant industrial waste in the making of epoxy based functional composites.

  16. α-Pinene secondary organic aerosol at low temperature: chemical composition and implications for particle viscosity

    Science.gov (United States)

    Huang, Wei; Saathoff, Harald; Pajunoja, Aki; Shen, Xiaoli; Naumann, Karl-Heinz; Wagner, Robert; Virtanen, Annele; Leisner, Thomas; Mohr, Claudia

    2018-02-01

    Chemical composition, size distributions, and degree of oligomerization of secondary organic aerosol (SOA) from α-pinene (C10H16) ozonolysis were investigated for low-temperature conditions (223 K). Two types of experiments were performed using two simulation chambers at the Karlsruhe Institute of Technology: the Aerosol Preparation and Characterization (APC) chamber, and the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) chamber. Experiment type 1 simulated SOA formation at upper tropospheric conditions: SOA was generated in the AIDA chamber directly at 223 K at 61 % relative humidity (RH; experiment termed cold humid, CH) and for comparison at 6 % RH (experiment termed cold dry, CD) conditions. Experiment type 2 simulated SOA uplifting: SOA was formed in the APC chamber at room temperature (296 K) and warm dry, WD) or 21 % RH (experiment termed warm humid, WH) conditions, and then partially transferred to the AIDA chamber kept at 223 K, and 61 % RH (WDtoCH) or 30 % RH (WHtoCH), respectively. Precursor concentrations varied between 0.7 and 2.2 ppm α-pinene, and between 2.3 and 1.8 ppm ozone for type 1 and type 2 experiments, respectively. Among other instrumentation, a chemical ionization mass spectrometer (CIMS) coupled to a filter inlet for gases and aerosols (FIGAERO), deploying I- as reagent ion, was used for SOA chemical composition analysis. For type 1 experiments with lower α-pinene concentrations and cold SOA formation temperature (223 K), smaller particles of 100-300 nm vacuum aerodynamic diameter (dva) and higher mass fractions (> 40 %) of adducts (molecules with more than 10 carbon atoms) of α-pinene oxidation products were observed. For type 2 experiments with higher α-pinene concentrations and warm SOA formation temperature (296 K), larger particles ( ˜ 500 nm dva) with smaller mass fractions of adducts (models.

  17. Characteristics of Cu–Al2O3 composites of various starting particle size obtained by high-energy milling

    Directory of Open Access Journals (Sweden)

    VIŠESLAVA RAJKOVIĆ

    2009-05-01

    Full Text Available The powder Cu– Al2O3 composites were produced by high-energy milling. Various combinations of particle size and mixtures and approximately constant amount of Al2O3 were used as the starting materials. These powders were separately milled in air for up to 20 h in a planetary ball mill. The copper matrix was reinforced by internal oxidation and mechanical alloying. During the milling, internal oxidation of pre-alloyed Cu-2 mass %-Al powder generated 3.7 mass % Al2O3 nano-sized particles finely dispersed in the copper matrix. The effect of different size of the starting copper and Al2O3 powder particles on the lattice parameter, lattice distortion and grain size, as well as on the size, morphology and microstructure of the Cu– Al2O3 composite powder particles was studied.

  18. Effect of Volume Fraction of Particle on Wear Resistance of Al2O3/Steel Composites at Elevated Temperature

    Institute of Scientific and Technical Information of China (English)

    BAO Chong-gao; WANG En-ze; GAO Yi-min; XING Jian-dong

    2005-01-01

    Based on previous work,abrasive wear resistance of Al2 O3/steel composites with different Al2 O3 parti cle volume fraction (VOF) at 900 C was investigated.The experimental results showed that a suitable particle VOF is important to protect the metal matrix from wear at elevated temperature.Both too high and too low particle VOF lead to a poor abrasive wear because a bulk matrix is easily worn off by grits when it exceeds the suitable VOF and also because when VOF is low,the Al2O3 particles are easily dug out by grits during wearing as well.When the particle VOF is 39%,the wear resistance of tested composites is excellent.

  19. Influence of Boron on the Creep Behavior and the Microstructure of Particle Reinforced Aluminum Matrix Composites

    Directory of Open Access Journals (Sweden)

    Steve Siebeck

    2018-02-01

    Full Text Available The reinforcement of aluminum alloys with particles leads to the enhancement of their mechanical properties at room temperature. However, the creep behavior at elevated temperatures is often negatively influenced. This raises the question of how it is possible to influence the creep behavior of this type of material. Within this paper, selected creep and tensile tests demonstrate the beneficial effects of boron on the properties of precipitation-hardenable aluminum matrix composites (AMCs. The focus is on the underlying microstructure behind this effect. For this purpose, boron was added to AMCs by means of mechanical alloying. Comparatively higher boron contents than in steel are investigated in order to be able to record their influence on the microstructure including the formation of potential new phases as well as possible. While the newly formed phase Al3BC can be reliably detected by X-ray diffraction (XRD, it is difficult to obtain information about the phase distribution by means of scanning electron microscopy (SEM and scanning transmission electron microscopy (STEM investigations. An important contribution to this is finally provided by the investigation using Raman microscopy. Thus, the homogeneous distribution of finely scaled Al3BC particles is detectable, which allows conclusions about the microstructure/property relationship.

  20. The Advanced Composition Explorer Shock Database and Application to Particle Acceleration Theory

    Science.gov (United States)

    Parker, L. Neergaard; Zank, G. P.

    2015-01-01

    The theory of particle acceleration via diffusive shock acceleration (DSA) has been studied in depth by Gosling et al. (1981), van Nes et al. (1984), Mason (2000), Desai et al. (2003), Zank et al. (2006), among many others. Recently, Parker and Zank (2012, 2014) and Parker et al. (2014) using the Advanced Composition Explorer (ACE) shock database at 1 AU explored two questions: does the upstream distribution alone have enough particles to account for the accelerated downstream distribution and can the slope of the downstream accelerated spectrum be explained using DSA? As was shown in this research, diffusive shock acceleration can account for a large population of the shocks. However, Parker and Zank (2012, 2014) and Parker et al. (2014) used a subset of the larger ACE database. Recently, work has successfully been completed that allows for the entire ACE database to be considered in a larger statistical analysis. We explain DSA as it applies to single and multiple shocks and the shock criteria used in this statistical analysis. We calculate the expected injection energy via diffusive shock acceleration given upstream parameters defined from the ACE Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM) data to construct the theoretical upstream distribution. We show the comparison of shock strength derived from diffusive shock acceleration theory to observations in the 50 keV to 5 MeV range from an instrument on ACE. Parameters such as shock velocity, shock obliquity, particle number, and time between shocks are considered. This study is further divided into single and multiple shock categories, with an additional emphasis on forward-forward multiple shock pairs. Finally with regard to forward-forward shock pairs, results comparing injection energies of the first shock, second shock, and second shock with previous energetic population will be given.

  1. Element composition of solid airborne particles deposited in snow in the vicinity of gas-fired heating plant

    OpenAIRE

    Talovskaya, Anna Valerievna; Yazikov, Yegor (Egor) Grigoryevich; Filimonenko, Ekaterina Anatolievna; Samokhina, Nataljya Pavlovna; Shakhova, Tatiana Sergeevna; Parygina, Irina Alekseevna

    2016-01-01

    Local heating plants are the main pollution source of rural areas. Currently, there are few studies on the composition of local heating plants emissions. The article deals with the research results of air pollution level with solid airborne particles in the vicinity of local gas-fired heating plants of some districts of Tomsk region. The snow sampling was conducted for the purpose of solid airborne particles extraction from snow cover. The content of 28 chemical elements (heavy metals, rare e...

  2. Replacement of quartz in cementitious composites using PET particles:A statistical analysis of the physical and mechanical properties

    OpenAIRE

    Detomi, Anine Cristina; Filho, Sergio Luiz Moni Ribeiro; Panzera, Túlio H C; Schiavon, Marco Antonio; Silva, Vania R V; Scarpa, Fabrizio

    2016-01-01

    This work investigates the mechanical behavior of cementitious composites (mortar) when quartz inclusions are totally or partially replaced with polyethylene terephthalate (PET) particles. A full factorial design is performed to identify the effect of the water/cement ratio and the range of quartz particles size used in the replacement on the different mechanical and physical parameters (bulk density, apparent porosity, water absorption, oxygen permeability, compressive strength, and modulus ...

  3. The electrochemical reduction rate of colloidal particles of silver halides as a function of the electrolyte composition

    International Nuclear Information System (INIS)

    Selivanov, V.N.

    1997-01-01

    Influence of silver halide colloid particles concentration (AgI), electrolyte composition and signs of the electrode and colloids charges on their reduction threshold current densities has been studied. It has been discovered that reduction threshold current densities of positively charged colloid particles exceed by a factor of 3-4 the threshold densities of silver ions diffusion current. It is shown that the threshold density of colloids reduction current is limited by the rates of their electrophoretic transfer and diffusion

  4. The analysis of composite properties reinforced with particles from palm oil industry waste produced by casting methods

    Science.gov (United States)

    Tugiman; Ariani, F.; Taher, F.; Hasibuan, M. S.; Suprianto

    2017-12-01

    Palm oil processing industries are very attractive because they offer plenty products with high economic value. The CPO factory processes not only produces crude palm oil but also generates fly ash (FA) particles waste in its final process. The purpose of this investigation to analyze and increase the benefits of particles as reinforcement materials for fabricating aluminum matrix composites (AMC’s) by different casting route. Stirring, centrifugal and squeeze casting method was conducted in this study. Further, the chemical composition of FA particles, densities and mechanical properties have been analyzed. The characteristics of composite material were investigated using an Optical microscope, scanning electron microscope (SEM), hardness (Brinell), impact strength (Charpy). The pin on disc method was used to measure the wear rate. The results show that SiO2, Fe2O3, and Al2O3 are the main compounds of fly ash particles. These particles enhanced the hardness and reduce wear resistance of aluminum matrix composites. The squeeze method gives better results than stir and centrifugal casting.

  5. Compressive Strength of EN AC-44200 Based Composite Materials Strengthened with α-Al2O3 Particles

    OpenAIRE

    Kurzawa A.; Kaczmar J. W.

    2017-01-01

    The paper presents results of compressive strength investigations of EN AC-44200 based aluminum alloy composite materials reinforced with aluminum oxide particles at ambient and at temperatures of 100, 200 and 250°C. They were manufactured by squeeze casting of the porous preforms made of α-Al2O3 particles with liquid aluminum alloy EN AC-44200. The composite materials were reinforced with preforms characterized by the porosities of 90, 80, 70 and 60 vol. %, thus the alumina content in the co...

  6. Particle-particle correlations and lifetimes of composite nuclei: New tests for the evaporation model and for statistical equilibration

    International Nuclear Information System (INIS)

    DeYoung, P.A.; Gelderloos, C.J.; Kortering, D.; Sarafa, J.; Zienert, K.; Gordon, M.S.; Fineman, B.J.; Gilfoyle, G.P.; Lu, X.; McGrath, R.L.; de Castro Rizzo, D.M.; Alexander, J.M.; Auger, G.; Kox, S.; Vaz, L.C.; Beck, C.; Henderson, D.J.; Kovar, D.G.; Vineyard, M.F.; Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794; Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794; Argonne National Laboratory, Argonne, Illinois 60439)

    1990-01-01

    We present data for small-angle particle-particle correlations from the reactions 80, 140, 215, and 250 MeV 16 O+ 27 Al→p-p or p-d. The main features of these data are anticorrelations for small relative momenta (≤25 MeV/c) that strengthen with increasing bombarding energy. Statistical model calculations have been performed to predict the mean lifetimes for each step of evaporative decay, and then simulate the trajectories of the particle pairs and the resulting particle correlations. This simulation accounts very well for the trends of the data and can provide an important new test for the hypothesis of equilibration on which the model is built

  7. PCE and BNS admixture adsorption in sands with different composition and particle size distribution

    International Nuclear Information System (INIS)

    Alonso, M.M.; Martínez-Gaitero, R.; Gismera-Diez, S.; Puertas, F.

    2017-01-01

    The choice of a superplasticiser (SP) for concrete is of great complexity, as it is well known that properties of the end product are related to admixture and its compatibility with concrete components. Very few studies have been conducted on the compatibility between SPs and the sand of mortars and concretes, however. Practical experience has shown that sand fineness and mineralogical composition affect water demand and admixture consumption. Clay-containing sand has been found also to adsorb SPs, reducing the amount available in solution for adsorption by the cement. This study analysed the isotherms for PCE and BNS superplasticiser adsorption on four sands with different fineness and compositions commonly used to prepare mortars and concretes. BNS-based SP did not adsorb on sands, while PCE-based admixtures exhibited variable adsorption depending on different factors. The adsorption curves obtained revealed that the higher the sand fineness, the finer the particle size distribution and the higher the clay material, the greater was PCE admixture adsorption/ consumption. [es

  8. PCE and BNS admixture adsorption in sands with different composition and particle size distribution

    Directory of Open Access Journals (Sweden)

    M. M. Alonso

    2017-02-01

    Full Text Available The choice of a superplasticiser (SP for concrete is of great complexity, as it is well known that properties of the end product are related to admixture and its compatibility with concrete components. Very few studies have been conducted on the compatibility between SPs and the sand of mortars and concretes, however. Practical experience has shown that sand fineness and mineralogical composition affect water demand and admixture consumption. Clay-containing sand has been found also to adsorb SPs, reducing the amount available in solution for adsorption by the cement. This study analysed the isotherms for PCE and BNS superplasticiser adsorption on four sands with different fineness and compositions commonly used to prepare mortars and concretes. BNS-based SP did not adsorb on sands, while PCE-based admixtures exhibited variable adsorption depending on different factors. The adsorption curves obtained revealed that the higher the sand fineness, the finer the particle size distribution and the higher the clay material, the greater was PCE admixture adsorption/ consumption.

  9. Effects of Particle Size and Surface Chemistry on the Dispersion of Graphite Nanoplates in Polypropylene Composites

    Directory of Open Access Journals (Sweden)

    Raquel M. Santos

    2018-02-01

    Full Text Available Carbon nanoparticles tend to form agglomerates with considerable cohesive strength, depending on particle morphology and chemistry, thus presenting different dispersion challenges. The present work studies the dispersion of three types of graphite nanoplates (GnP with different flake sizes and bulk densities in a polypropylene melt, using a prototype extensional mixer under comparable hydrodynamic stresses. The nanoparticles were also chemically functionalized by covalent bonding polymer molecules to their surface, and the dispersion of the functionalized GnP was studied. The effects of stress relaxation on dispersion were also analyzed. Samples were removed along the mixer length, and characterized by microscopy and dielectric spectroscopy. A lower dispersion rate was observed for GnP with larger surface area and higher bulk density. Significant re-agglomeration was observed for all materials when the deformation rate was reduced. The polypropylene-functionalized GnP, characterized by increased compatibility with the polymer matrix, showed similar dispersion effects, albeit presenting slightly higher dispersion levels. All the composites exhibit dielectric behavior, however, the alternate current (AC conductivity is systematically higher for the composites with larger flake GnP.

  10. Surface-biofunctionalized multicore/shell CdTe@SiO2 composite particles for immunofluorescence assay

    Science.gov (United States)

    Jing, Lihong; Li, Yilin; Ding, Ke; Qiao, Ruirui; Rogach, Andrey L.; Gao, Mingyuan

    2011-12-01

    Strongly fluorescent multicore/shell structured CdTe@SiO2 composite particles of ~ 50 nm were synthesized via the reverse microemulsion method by using CdTe quantum dots co-stabilized by thioglycolic acid and thioglycerol. The optical stability of the CdTe@SiO2 composite particles in a wide pH range, under prolonged UV irradiation in pure water, or in different types of physiological buffers was systematically investigated. Towards immunofluorescence assay, both poly(ethylene glycol) (PEG) and carboxyl residues were simultaneously grafted on the surface of the silanol-terminated CdTe@SiO2 composite particles upon further reactions with silane reagents bearing a PEG segment and carboxyl group, respectively, in order to suppress the nonspecific interactions of the silica particles with proteins and meanwhile introduce reactive moieties to the fluorescent particles. Agarose gel electrophoresis, dynamic light scattering and conventional optical spectroscopy were combined to investigate the effectiveness of the surface modifications. Via the surface carboxyl residue, various antibodies were covalently conjugated to the fluorescent particles and the resultant fluorescent probes were used in detecting cancer cells through both direct fluorescent antibody and indirect fluorescent antibody assays, respectively.

  11. Toxic assessment of urban atmospheric particle-bound PAHs: Relevance of composition and particle size in Barcelona (Spain)

    International Nuclear Information System (INIS)

    Mesquita, Sofia Raquel; Drooge, Barend L. van; Reche, Cristina; Guimarães, Laura; Grimalt, Joan O.; Barata, Carlos; Piña, Benjamin

    2014-01-01

    Zebrafish embryotoxicity and dioxin-like activity levels were tested for particulate air samples from an urban background site in Barcelona (Spain). Samples were collected during 14 months, and maximal values for both biological activities corresponded to samples collected during late autumn months, correlating with elevated PAH levels. Vehicle and combustion emissions appeared as the potentially most toxic sources, whereas total PM mass and mineral content appeared to be poor predictors of the biological activity of the samples. Samples simultaneously collected at different particle size cut-offs (10, 2.5, and 1 μm) did not differ significantly in dioxin-like PAH levels and biological activity, indicating that the sub-micron particle fraction (PM 1 ) concentrated essentially all observed toxicity. Our results support the need for a tighter control on sub-micron particle emissions and show that total PM mass and, particularly, PM 10 , may not fully characterize the toxic potential of air samples. Highlights: • Dioxin-like activity was found in all air particle samples collected in Barcelona. • 50% of the samples showed different levels of fish embryotoxicity. • Toxic effects associated to PAHs and linked to vehicle and combustion emissions. • The toxicity was not correlated to PM mass or mineral content. • The sub-micron particle fraction PM 1 concentrated essentially all observed toxicity. -- In vivo toxic effects associated to sub-micron urban air particles from combustion and vehicle emissions

  12. In situ chemical composition measurement of individual cloud residue particles at a mountain site, southern China

    Directory of Open Access Journals (Sweden)

    Q. Lin

    2017-07-01

    Full Text Available To investigate how atmospheric aerosol particles interact with chemical composition of cloud droplets, a ground-based counterflow virtual impactor (GCVI coupled with a real-time single-particle aerosol mass spectrometer (SPAMS was used to assess the chemical composition and mixing state of individual cloud residue particles in the Nanling Mountains (1690 m a. s. l. , southern China, in January 2016. The cloud residues were classified into nine particle types: aged elemental carbon (EC, potassium-rich (K-rich, amine, dust, Pb, Fe, organic carbon (OC, sodium-rich (Na-rich and Other. The largest fraction of the total cloud residues was the aged EC type (49.3 %, followed by the K-rich type (33.9 %. Abundant aged EC cloud residues that mixed internally with inorganic salts were found in air masses from northerly polluted areas. The number fraction (NF of the K-rich cloud residues increased within southwesterly air masses from fire activities in Southeast Asia. When air masses changed from northerly polluted areas to southwesterly ocean and livestock areas, the amine particles increased from 0.2 to 15.1 % of the total cloud residues. The dust, Fe, Pb, Na-rich and OC particle types had a low contribution (0.5–4.1 % to the total cloud residues. Higher fraction of nitrate (88–89 % was found in the dust and Na-rich cloud residues relative to sulfate (41–42 % and ammonium (15–23 %. Higher intensity of nitrate was found in the cloud residues relative to the ambient particles. Compared with nonactivated particles, nitrate intensity decreased in all cloud residues except for dust type. To our knowledge, this study is the first report on in situ observation of the chemical composition and mixing state of individual cloud residue particles in China.

  13. Fabrication of BaTiO3/Ni composite particles and their electro-magneto responsive properties

    International Nuclear Information System (INIS)

    Lu, Yaping; Gao, Lingxiang; Wang, Lijuan; Xie, Zunyuan; Gao, Meixiang; Zhang, Weiqiang

    2017-01-01

    Graphical abstract: The spherical BaTiO 3 /Ni particles with excellent structure were made by one-step method through fixing the metal Ni(0) reduced by a specific reducing agent (N 2 H 4 ·H 2 O) on the surface of the BaTiO 3 particles with grain diameter of ∼500 nm. BaTiO 3 /Ni particle has double responses of electric and magnetic field simultaneously. Consequentially, coating magnetic metal on BT particle is proposed an effective method to prepare novel electro-magneto responsive particles and one basis of electro-magneto responsive elastomers. - Highlights: • The BaTiO 3 /Ni composite particles were fabricated. • The content of Ni(0) in nickel sheath is 70.2%. • The BaTiO 3 /Ni particles have double responses of electric and magnetic field. - Abstract: BaTiO 3 (BT)/Ni composite particles were made by one-step method through agglomerating the metal Ni(0) nanoparticles reduced by a specific reducing agent (N 2 H 4 ·H 2 O) on the surface of BT sphere with diameter of ∼500 nm. The BT/Ni composite particles were characterized by the means of scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS). In BT/Ni particles, pure BT spherical particle was coated with Ni nanoparticles agglomerated on its surface. The average thickness of the Ni sheath was ∼30 nm and the content of Ni(0) and Ni (II) in the sheath were 70.2% and 29.8%, respectively. The responsive effects of BT/Ni particles filled in hydrogel elastomer were investigated by the viscoelastic properties. The results indicate that the BT/Ni particles exhibit electro and magneto coordinated responsive properties (E = 1 kV/mm, H = 0.1 T/mm), which is superior to BT particles with individual electro response.

  14. Fabrication of BaTiO{sub 3}/Ni composite particles and their electro-magneto responsive properties

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yaping [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China); Gao, Lingxiang, E-mail: gaolx@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China); Wang, Lijuan [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China); Xie, Zunyuan, E-mail: zyxie123@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China); Gao, Meixiang [Yulin Vocational and Technical College, Yulin 719000 (China); Zhang, Weiqiang [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China)

    2017-07-15

    Graphical abstract: The spherical BaTiO{sub 3}/Ni particles with excellent structure were made by one-step method through fixing the metal Ni(0) reduced by a specific reducing agent (N{sub 2}H{sub 4}·H{sub 2}O) on the surface of the BaTiO{sub 3} particles with grain diameter of ∼500 nm. BaTiO{sub 3}/Ni particle has double responses of electric and magnetic field simultaneously. Consequentially, coating magnetic metal on BT particle is proposed an effective method to prepare novel electro-magneto responsive particles and one basis of electro-magneto responsive elastomers. - Highlights: • The BaTiO{sub 3}/Ni composite particles were fabricated. • The content of Ni(0) in nickel sheath is 70.2%. • The BaTiO{sub 3}/Ni particles have double responses of electric and magnetic field. - Abstract: BaTiO{sub 3} (BT)/Ni composite particles were made by one-step method through agglomerating the metal Ni(0) nanoparticles reduced by a specific reducing agent (N{sub 2}H{sub 4}·H{sub 2}O) on the surface of BT sphere with diameter of ∼500 nm. The BT/Ni composite particles were characterized by the means of scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS). In BT/Ni particles, pure BT spherical particle was coated with Ni nanoparticles agglomerated on its surface. The average thickness of the Ni sheath was ∼30 nm and the content of Ni(0) and Ni (II) in the sheath were 70.2% and 29.8%, respectively. The responsive effects of BT/Ni particles filled in hydrogel elastomer were investigated by the viscoelastic properties. The results indicate that the BT/Ni particles exhibit electro and magneto coordinated responsive properties (E = 1 kV/mm, H = 0.1 T/mm), which is superior to BT particles with individual electro response.

  15. Mapping soil particle-size fractions: A comparison of compositional kriging and log-ratio kriging

    Science.gov (United States)

    Wang, Zong; Shi, Wenjiao

    2017-03-01

    Soil particle-size fractions (psf) as basic physical variables need to be accurately predicted for regional hydrological, ecological, geological, agricultural and environmental studies frequently. Some methods had been proposed to interpolate the spatial distributions of soil psf, but the performance of compositional kriging and different log-ratio kriging methods is still unclear. Four log-ratio transformations, including additive log-ratio (alr), centered log-ratio (clr), isometric log-ratio (ilr), and symmetry log-ratio (slr), combined with ordinary kriging (log-ratio kriging: alr_OK, clr_OK, ilr_OK and slr_OK) were selected to be compared with compositional kriging (CK) for the spatial prediction of soil psf in Tianlaochi of Heihe River Basin, China. Root mean squared error (RMSE), Aitchison's distance (AD), standardized residual sum of squares (STRESS) and right ratio of the predicted soil texture types (RR) were chosen to evaluate the accuracy for different interpolators. The results showed that CK had a better accuracy than the four log-ratio kriging methods. The RMSE (sand, 9.27%; silt, 7.67%; clay, 4.17%), AD (0.45), STRESS (0.60) of CK were the lowest and the RR (58.65%) was the highest in the five interpolators. The clr_OK achieved relatively better performance than the other log-ratio kriging methods. In addition, CK presented reasonable and smooth transition on mapping soil psf according to the environmental factors. The study gives insights for mapping soil psf accurately by comparing different methods for compositional data interpolation. Further researches of methods combined with ancillary variables are needed to be implemented to improve the interpolation performance.

  16. Particle hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing, China, during summertime

    Directory of Open Access Journals (Sweden)

    Z. J. Wu

    2016-02-01

    Full Text Available Simultaneous measurements of particle number size distribution, particle hygroscopic properties, and size-resolved chemical composition were made during the summer of 2014 in Beijing, China. During the measurement period, the mean hygroscopicity parameters (κs of 50, 100, 150, 200, and 250 nm particles were respectively 0.16  ±  0.07, 0.19  ±  0.06, 0.22  ±  0.06, 0.26  ±  0.07, and 0.28  ±  0.10, showing an increasing trend with increasing particle size. Such size dependency of particle hygroscopicity was similar to that of the inorganic mass fraction in PM1. The hydrophilic mode (hygroscopic growth factor, HGF  >  1.2 was more prominent in growth factor probability density distributions and its dominance of hydrophilic mode became more pronounced with increasing particle size. When PM2.5 mass concentration was greater than 50 μg m−3, the fractions of the hydrophilic mode for 150, 250, and 350 nm particles increased towards 1 as PM2.5 mass concentration increased. This indicates that aged particles dominated during severe pollution periods in the atmosphere of Beijing. Particle hygroscopic growth can be well predicted using high-time-resolution size-resolved chemical composition derived from aerosol mass spectrometer (AMS measurements using the Zdanovskii–Stokes–Robinson (ZSR mixing rule. The organic hygroscopicity parameter (κorg showed a positive correlation with the oxygen to carbon ratio. During the new particle formation event associated with strongly active photochemistry, the hygroscopic growth factor or κ of newly formed particles is greater than for particles with the same sizes not during new particle formation (NPF periods. A quick transformation from external mixture to internal mixture for pre-existing particles (for example, 250 nm particles was observed. Such transformations may modify the state of the mixture of pre-existing particles and thus modify properties such

  17. The effect of α-alumina particles on the properties of EN AC-44200 Al alloy based composite materials

    OpenAIRE

    J.W. Kaczmar; A. Kurzawa

    2012-01-01

    Purpose: The unreinforced EN AC-44200 aluminium alloy is characterized by the medium mechanical properties and the purpose of performed investigations was improvement of mechanical properties of this alloy by introducing stable ceramic α-alumina particles.Design/methodology/approach: The composite materials were manufactured by squeeze casting of porous ceramic preforms characterized by the open porosities of 90%, 80%, 70% and 60% with the liquid EN AC- 44200 aluminum alloy. The composite mat...

  18. The mechanical properties of magnesium matrix composites reinforced with 10 wt.% W14Al86 alloy particles

    International Nuclear Information System (INIS)

    Tang, H.G.; Ma, X.F.; Zhao, W.; Cai, S.G.; Zhao, B.; Qiao, Z.H.

    2007-01-01

    The Mg-based metal matrix composite reinforced by 10 wt.% W 14 Al 86 alloy particles has been prepared by mechanical alloying and press-forming process. X-ray diffraction studies confirm the formation of the composite. Microstructure characterization of the samples reveals the uniform distribution of fine W 14 Al 86 alloy. Mechanical properties characterization revealed that the reinforcement of W 14 Al 86 alloy lead to a significant increase in hardness and tensile strength of Mg and AZ91

  19. Electrical resistivity of carbon black-filled high-density polyethylene (HDPE) composite containing radiation crosslinked HDPE particles

    International Nuclear Information System (INIS)

    Lee, M.-G.; Nho, Y.C.

    2001-01-01

    The room-temperature volume resistivity of high-density polyethylene (HDPE)-carbon black (CB) blends containing previously radiation crosslinked HDPE powder was studied. The results showed that the room-temperature volume resistivity decreases with increasing concentration of crosslinked HDPE powder. It is considered that the crosslinked HDPE particles act as a filler that increases the CB volume fraction in the HDPE matrix. The results of an optical microscope observation indicated that the crosslinked polymer particles are dispersed in the HDPE/CB composite. This effect of the crosslinked particles is attributed to the fact that the crosslinked mesh size of the HDPE particles is so small that the CB particles cannot go inside them. The effect of 60 Co γ-ray and electron beam (EB) irradiation on the positive temperature coefficient, negative temperature coefficient and electrical resistivity behavior of the blends were studied

  20. Effects of metallic Ti particles on the aging behavior and the influenced mechanical properties of squeeze-cast (SiCp+Ti)/7075Al hybrid composites

    International Nuclear Information System (INIS)

    Liu, Yixiong; Chen, Weiping; Yang, Chao; Zhu, Dezhi; Li, Yuanyuan

    2015-01-01

    The effects of metallic Ti particles on the aging behavior of squeeze-cast (SiC p +Ti)/7075Al hybrid composites and the mechanical properties of the aging treated composites were investigated. Results shown that the precipitation hardening of the hybrid composites during aging processes was delayed due to the segregation of solute Mg atoms in the vicinity of the Ti particles even though the activation energy of the η′ precipitates in the hybrid composites was reduced when compared with the Ti particle-free composites. The segregation of the solute Mg atoms was facilitated as a result of the high diffusivity paths formed by the generated dislocations in the matrix induced by the thermal misfit between the SiC particle and the matrix. The smaller activation energy for the hybrid composite may attribute to a significant reduction in the nucleation rate of the dislocation nucleated η′ precipitates compared with the Ti particle-free composite. After aging treated under the optimum aging conditions, the tensile strength of both composites was improved because of the precipitation hardening of the matrix alloy. In contrast with the reduced ductility of the traditional Ti particle-free composites after aging treatment, the ductility of the Ti particle-containing composites was improved as a result of the strengthened interfaces between the Ti particles and the matrix alloy

  1. Chemical composition, mixing state, size and morphology of Ice nucleating particles at the Jungfraujoch research station, Switzerland

    Science.gov (United States)

    Ebert, Martin; Worringen, Annette; Kandler, Konrad; Weinbruch, Stephan; Schenk, Ludwig; Mertes, Stephan; Schmidt, Susan; Schneider, Johannes; Frank, Fabian; Nilius, Björn; Danielczok, Anja; Bingemer, Heinz

    2014-05-01

    An intense field campaign from the Ice Nuclei Research Unit (INUIT) was performed in January and February of 2013 at the High-Alpine Research Station Jungfraujoch (3580 m a.s.l., Switzerland). Main goal was the assessment of microphysical and chemical properties of free-tropospheric ice-nucelating particles. The ice-nucleating particles were discriminated from the total aerosol with the 'Fast Ice Nucleation CHamber' (FINCH; University Frankfurt) and the 'Ice-Selective Inlet' (ISI, Paul Scherer Institute) followed by a pumped counter-stream virtual impactor. The separated ice-nucleating particles were then collected with a nozzle-type impactor. With the 'FRankfurt Ice nuclei Deposition freezinG Experiment' (FRIDGE), aerosol particles are sampled on a silicon wafer, which is than exposed to ice-activating conditions in a static diffusion chamber. The locations of the growing ice crystals are recorded for later analysis. Finally, with the ICE Counter-stream Virtual Impactor (ICE-CVI) atmospheric ice crystals are separated from the total aerosol and their water content is evaporated to retain the ice residual particles, which are then collected also by impactor sampling. All samples were analyzed in a high-resolution scanning electron microscope. By this method, for each particle its size, morphology, mixing-state and chemical composition is obtained. In total approximately 1700 ice nucleating particles were analyzed. Based on their chemical composition, the particles were classified into seven groups: silicates, metal oxides, Ca-rich particles, (aged) sea-salt, soot, sulphates and carbonaceous matter. Sea-salt is considered as artifact and is not regarded as ice nuclei here. The most frequent ice nucleating particles/ice residuals at the Jungfraujoch station are silicates > carbonaceous particles > metal oxides. Calcium-rich particles and soot play a minor role. Similar results are obtained by quasi-parallel measurements with an online single particle laser ablation

  2. Formation of the texture of fermented milk and cereal product by varying the particle size distribution of cereal compositions

    Directory of Open Access Journals (Sweden)

    Pas'ko O. V.

    2016-09-01

    Full Text Available Combining animal and plant components is a promising direction of creating specialized foods of high biological and nutritional value. In this regard, research aimed at developing a fermented product technology based on combination of raw milk and grain products is relevant. In researches a set of generally accepted standard methods including physical-chemical, microbiological, biochemical, rheological, and mathematical methods of statistical processing of research results and development of mathematical models has been applied. The paper presents the results of research aimed at developing the technology of fermented milk – cereal product. In the first phase of research to substantiate product composition the systematic approach has been applied considering components of the product, changes of their status and properties as the current biotechnological systems (BPS. Selection of the grains' optimum ratio in the composition has been carried out on the basis of a set of indicators: the chemical composition and energy value, the content of B vitamins and dietary fibers, the indicator of biological value, organoleptic characteristics. Analysis of the combined results allows choose cereal flakes composition ratio of 1 : 1 : 1 (Oatmeal : Barley : Rye for further studies. As the main source of carbohydrate honey is used, it also improves the organoleptic properties of the product. Nutritional supplement glycine is used as a modifier of taste and smell. It has been found that introduction of glycine at 0.1 % in the BPS "milk – cereal composition" naturally decreases the intensity of taste and smell of cereal composition. The effect of particle size distribution of cereal composition on properties of the biotechnological system of milky cereal product has been established as well. For technology of the developed product the fraction selected cereal composition (Oatmeal : Barley : Rye as a 1 : 1 : 1 with a particle size of 670–1 000 microns has

  3. Comprehensive Characterization Of Ultrafine Particulate Emission From 2007 Diesel Engines: PM Size Distribution, Loading And Indidividual Particle Size And Composition.

    Science.gov (United States)

    Zelenyuk, A.; Cuadra-Rodriguez, L. A.; Imre, D.; Shimpi, S.; Warey, A.

    2006-12-01

    The strong absorption of solar radiation by black carbon (BC) impacts the atmospheric radiative balance in a complex and significant manner. One of the most important sources of BC is vehicular emissions, of which diesel represents a significant fraction. To address this issue the EPA has issues new stringent regulations that will be in effect in 2007, limiting the amount of particulate mass that can be emitted by diesel engines. The new engines are equipped with aftertreatments that reduce PM emissions to the point, where filter measurements are subject to significant artifacts and characterization by other techniques presents new challenges. We will present the results of the multidisciplinary study conducted at the Cummins Technical Center in which a suite of instruments was deployed to yield comprehensive, temporally resolved information on the diesel exhaust particle loadings and properties in real-time: Particle size distributions were measured by Engine Exhaust Particle Sizer (EEPS) and Scanning Mobility Particle Sizer (SMPS). Total particle diameter concentration was obtained using Electrical Aerosol Detector (EAD). Laser Induced Incandescence and photoacoustic techniques were used to monitor the PM soot content. Single Particle Laser Ablation Time-of- flight Mass Spectrometer (SPLAT) provided the aerodynamic diameter and chemical composition of individual diesel exhaust particles. Measurements were conducted on a number of heavy duty diesel engines operated under variety of operating conditions, including FTP transient cycles, ramped-modal cycles and steady states runs. We have also characterized PM emissions during diesel particulate filter regeneration cycles. We will present a comparison of PM characteristics observed during identical cycles, but with and without the use of aftertreatment. A total of approximately 100,000 individual particles were sized and their composition characterized by SPLAT. The aerodynamic size distributions of the characterized

  4. Modified resistivity-strain behavior through the incorporation of metallic particles in conductive polymer composite fibers containing carbon nanotubes

    NARCIS (Netherlands)

    Lin, L.; Deng, H.; Gao, X.; Zhang, S.M.; Bilotti, E.; Peijs, A.A.J.M.; Fu, Q.

    2013-01-01

    Eutectic metal particles and carbon nanotubes are incorporated into a thermoplastic polyurethane matrix through a simple but efficient method, melt compounding, to tune the resistivity-strain behavior of conductive polymer composite (CPC) fibers. Such a combination of conductive fillers is rarely

  5. Effects of particle size and porosity on in vivo remodeling of settable allograft bone/polymer composites.

    Science.gov (United States)

    Prieto, Edna M; Talley, Anne D; Gould, Nicholas R; Zienkiewicz, Katarzyna J; Drapeau, Susan J; Kalpakci, Kerem N; Guelcher, Scott A

    2015-11-01

    Established clinical approaches to treat bone voids include the implantation of autograft or allograft bone, ceramics, and other bone void fillers (BVFs). Composites prepared from lysine-derived polyurethanes and allograft bone can be injected as a reactive liquid and set to yield BVFs with mechanical strength comparable to trabecular bone. In this study, we investigated the effects of porosity, allograft particle size, and matrix mineralization on remodeling of injectable and settable allograft/polymer composites in a rabbit femoral condyle plug defect model. Both low viscosity and high viscosity grafts incorporating small (<105 μm) particles only partially healed at 12 weeks, and the addition of 10% demineralized bone matrix did not enhance healing. In contrast, composite grafts with large (105-500 μm) allograft particles healed at 12 weeks postimplantation, as evidenced by radial μCT and histomorphometric analysis. This study highlights particle size and surface connectivity as influential parameters regulating the remodeling of composite bone scaffolds. © 2015 Wiley Periodicals, Inc.

  6. Effect of re-melting on particle distribution and interface formation in SiC reinforced 2124Al matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Durbadal, E-mail: durbadal73@yahoo.co.in [MEF Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Viswanathan, Srinath [Dept of Metallurgical and Materials Engineering, University of Alabama, Tuscaloosa, AL (United States)

    2013-12-15

    The interface between metal matrix and ceramic reinforcement particles plays an important role in improving properties of the metal matrix composites. Hence, it is important to find out the interface structure of composite after re-melting. In the present investigation, the 2124Al matrix with 10 wt.% SiC particle reinforced composite was re-melted at 800 °C and 900 °C for 10 min followed by pouring into a permanent mould. The microstructures reveal that the SiC particles are distributed throughout the Al-matrix. The volume fraction of SiC particles varies from top to bottom of the composite plate and the difference increases with the decrease of re-melting temperature. The interfacial structure of re-melted 2124Al–10 wt.%SiC composite was investigated using scanning electron microscopy, an electron probe micro-analyzer, a scanning transmission electron detector fitted with scanning electron microscopy and an X-ray energy dispersive spectrometer. It is found that a thick layer of reaction product is formed at the interface of composite after re-melting. The experimental results show that the reaction products at the interface are associated with high concentration of Cu, Mg, Si and C. At re-melting temperature, liquid Al reacts with SiC to form Al{sub 4}C{sub 3} and Al–Si eutectic phase or elemental Si at the interface. High concentration of Si at the interface indicates that SiC is dissociated during re-melting. The X-ray energy dispersive spectrometer analyses confirm that Mg- and Cu-enrich phases are formed at the interface region. The Mg is segregated at the interface region and formed MgAl{sub 2}O{sub 4} in the presence of oxygen. The several elements identified at the interface region indicate that different types of interfaces are formed in between Al matrix and SiC particles. The Al–Si eutectic phase is formed around SiC particles during re-melting which restricts the SiC dissolution. - Highlights: • Re-melted composite shows homogeneous particle

  7. A size-composition resolved aerosol model for simulating the dynamics of externally mixed particles: SCRAM (v 1.0)

    Science.gov (United States)

    Zhu, S.; Sartelet, K. N.; Seigneur, C.

    2015-06-01

    The Size-Composition Resolved Aerosol Model (SCRAM) for simulating the dynamics of externally mixed atmospheric particles is presented. This new model classifies aerosols by both composition and size, based on a comprehensive combination of all chemical species and their mass-fraction sections. All three main processes involved in aerosol dynamics (coagulation, condensation/evaporation and nucleation) are included. The model is first validated by comparison with a reference solution and with results of simulations using internally mixed particles. The degree of mixing of particles is investigated in a box model simulation using data representative of air pollution in Greater Paris. The relative influence on the mixing state of the different aerosol processes (condensation/evaporation, coagulation) and of the algorithm used to model condensation/evaporation (bulk equilibrium, dynamic) is studied.

  8. Environmental Particle Emissions due to Automated Drilling of Polypropylene Composites and Nanocomposites Reinforced with Talc, Montmorillonite and Wollastonite

    Science.gov (United States)

    Starost, K.; Frijns, E.; Laer, J. V.; Faisal, N.; Egizabal, A.; Elizextea, C.; Nelissen, I.; Blazquez, M.; Njuguna, J.

    2017-05-01

    In this study, the effect on nanoparticle emissions due to drilling on Polypropylene (PP) reinforced with 20% talc, 5% montmorillonite (MMT) and 5% Wollastonite (WO) is investigated. The study is the first to explore the nanoparticle release from WO and talc reinforced composites and compares the results to previously researched MMT. With 5% WO, equivalent tensile properties with a 10 % weight reduction were obtained relative to the reference 20% talc sample. The materials were fabricated through injection moulding. The nanorelease studies were undertaken using the controlled drilling methodology for nanoparticle exposure assessment developed within the European Commission funded SIRENA Life 11 ENV/ES/506 project. Measurements were taken using CPC and DMS50 equipment for real-time characterization and measurements. The particle number concentration (of particles <1000nm) and particle size distribution (4.87nm - 562.34nm) of the particles emitted during drilling were evaluated to investigate the effect of the silicate fillers on the particles released. The nano-filled samples exhibited a 33% decrease (MMT sample) or a 30% increase (WO sample) on the average particle number concentration released in comparison to the neat polypropylene sample. The size distribution data displayed a substantial percentage of the particles released from the PP, PP/WO and PP/MMT samples to be between 5-20nm, whereas the PP/talc sample emitted larger particle diameters.

  9. Effect of heat treatment on microstructure and interface of SiC particle reinforced 2124 Al matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Durbadal, E-mail: durbadal73@yahoo.co.in [MEF Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Viswanathan, Srinath [Dept of Metallurgical and Materials Engineering, University of Alabama, Tuscaloosa, AL (United States)

    2013-11-15

    The microstructure and interface between metal matrix and ceramic reinforcement of a composite play an important role in improving its properties. In the present investigation, the interface and intermetallic compound present in the samples were characterized to understand structural stability at an elevated temperature. Aluminum based 2124 alloy with 10 wt.% silicon carbide (SiC) particle reinforced composite was prepared through vortex method and the solid ingot was deformed by hot rolling for better particle distribution. Heat treatment of the composite was carried out at 575 °C with varying holding time from 1 to 48 h followed by water quenching. In this study, the microstructure and interface of the SiC particle reinforced Al based composites have been studied using optical microscopy, scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS), electron probe micro-analyzer (EPMA) associated with wavelength dispersive spectroscopy (WDS) and transmission electron microscopy (TEM) to identify the precipitate and intermetallic phases that are formed during heat treatment. The SiC particles are uniformly distributed in the aluminum matrix. The microstructure analyses of Al–SiC composite after heat treatment reveal that a wide range of dispersed phases are formed at grain boundary and surrounding the SiC particles. The energy dispersive X-ray spectroscopy and wavelength dispersive spectroscopy analyses confirm that finely dispersed phases are CuAl{sub 2} and CuMgAl{sub 2} intermetallic and large spherical phases are Fe{sub 2}SiAl{sub 8} or Al{sub 15}(Fe,Mn){sub 3}Si. It is also observed that a continuous layer enriched with Cu and Mg of thickness 50–80 nm is formed at the interface in between Al and SiC particles. EDS analysis also confirms that Cu and Mg are segregated at the interface of the composite while no carbide is identified at the interface. - Highlights: • The composite was successfully heat treated at 575°C for 1

  10. Switching and memory effects in composite films of semiconducting polymers with particles of graphene and graphene oxide

    Science.gov (United States)

    Krylov, P. S.; Berestennikov, A. S.; Aleshin, A. N.; Komolov, A. S.; Shcherbakov, I. P.; Petrov, V. N.; Trapeznikova, I. N.

    2015-08-01

    The effects of switching were investigated in composite films based on multifunctional polymers. i.e., derivatives of carbazole (PVK) and fluorene (PFD), as well as based on particles of graphene (Gr) and graphene oxide (GO). The concentration of Gr and GO particles in the PVK(PFD) matrix was varied in the range of 2-3 wt %, which corresponded to the percolation threshold in these systems. The atomic composition of the composite films PVK: GO was examined using X-ray photoelectron spectroscopy. It was found that the effect of switching in structures of the form Al/PVK(PFD): GO(Gr)/ITO/PET manifests itself in a sharp change of the electrical resistance of the composite film from a low-conducting state to a relatively high-conducting state when applying a bias to Al-ITO electrodes of ˜0.1-0.3 V ( E ˜ 3-5 × 104 V/cm), which is below the threshold switching voltages for similar composites. The mechanism of resistance switching, which is associated with the processes of capture and accumulation of charge carriers by Gr (GO) particles introduced into the matrices of the high-molecular-weight (PVK) and relatively low-molecular-weight (PFD) polymers, was discussed.

  11. Nitrogen isotopic composition of macromolecular organic matter in interplanetary dust particles

    Science.gov (United States)

    Aléon, Jérôme; Robert, François; Chaussidon, Marc; Marty, Bernard

    2003-10-01

    Nitrogen concentrations and isotopic compositions were measured by ion microprobe scanning imaging in two interplanetary dust particles L2021 K1 and L2036 E22, in which imaging of D/H and C/H ratios has previously evidenced the presence of D-rich macromolecular organic components. High nitrogen concentrations of 10-20 wt% and δ 15N values up to +400‰ are observed in these D-rich macromolecular components. The previous study of D/H and C/H ratios has revealed three different D-rich macromolecular phases. The one previously ascribed to macromolecular organic matter akin the insoluble organic matter (IOM) from carbonaceous chondrites is enriched in nitrogen by one order of magnitude compared to the carbonaceous chondrite IOM, although its isotopic composition is still similar to what is known from Renazzo (δ 15N = +208‰). The correlation observed in macromolecular organic material between the D- and 15N-excesses suggests that the latter originate probably from chemical reactions typical of the cold interstellar medium. These interstellar materials preserved to some extent in IDPs are therefore macromolecular organic components with various aliphaticity and aromaticity. They are heavily N-heterosubstituted as shown by their high nitrogen concentrations >10 wt%. They have high D/H ratios >10 -3 and δ 15N values ≥ +400‰. In L2021 K1 a mixture is observed at the micron scale between interstellar and chondritic-like organic phases. This indicates that some IDPs contain organic materials processed at various heliocentric distances in a turbulent nebula. Comparison with observation in comets suggests that these molecules may be cometary macromolecules. A correlation is observed between the D/H ratios and δ 15N values of macromolecular organic matter from IDPs, meteorites, the Earth and of major nebular reservoirs. This suggests that most macromolecular organic matter in the inner solar system was probably issued from interstellar precursors and further processed

  12. Weak second-order splitting schemes for Lagrangian Monte Carlo particle methods for the composition PDF/FDF transport equations

    International Nuclear Information System (INIS)

    Wang Haifeng; Popov, Pavel P.; Pope, Stephen B.

    2010-01-01

    We study a class of methods for the numerical solution of the system of stochastic differential equations (SDEs) that arises in the modeling of turbulent combustion, specifically in the Monte Carlo particle method for the solution of the model equations for the composition probability density function (PDF) and the filtered density function (FDF). This system consists of an SDE for particle position and a random differential equation for particle composition. The numerical methods considered advance the solution in time with (weak) second-order accuracy with respect to the time step size. The four primary contributions of the paper are: (i) establishing that the coefficients in the particle equations can be frozen at the mid-time (while preserving second-order accuracy), (ii) examining the performance of three existing schemes for integrating the SDEs, (iii) developing and evaluating different splitting schemes (which treat particle motion, reaction and mixing on different sub-steps), and (iv) developing the method of manufactured solutions (MMS) to assess the convergence of Monte Carlo particle methods. Tests using MMS confirm the second-order accuracy of the schemes. In general, the use of frozen coefficients reduces the numerical errors. Otherwise no significant differences are observed in the performance of the different SDE schemes and splitting schemes.

  13. Laser surface forming of AlCoCrCuFeNi particle reinforced AZ91D matrix composites

    Science.gov (United States)

    Meng, Guanghui; Yue, T. M.; Lin, Xin; Yang, Haiou; Xie, Hui; Ding, Xu

    2015-07-01

    Traditionally, the laser melt injection (LMI) technique can only be used for forming ceramic particles reinforced metal matrix composites (MMCs) for enhancing surface properties of lightweight engineering materials. In this research, the LMI method was employed to form metal particles reinforced MMCs on AZ91D instead. This was viable because of the unique properties of the AlCoCrCuFeNi high-entropy alloy (HEA) metal particles used. The large difference in melting point between the HEA and the substrate material (AZ91D), and the limited reaction and the lack of fusion between the HEA and Mg have made it possible that a metal particles reinforced AZ91D composite material was produced. The reason of limited reaction was considered mainly due to the relatively high mixing enthalpy between the HEA constituent elements and Mg. Although there was some melting occurred at the particles surface with some solute segregation found in the vicinity close to the surface, intermetallic compounds were not observed. With regard to the wear resistance of the MMCs, it was found that when the volume fraction of the reinforcement phase, i.e. the HEA particles, reached about 0.4, the wear volume loss of the coating was only one-seventh of that of the substrate material.

  14. Spatiotemporal Variation in Composition of Submicron Particles in Santiago Metropolitan Region, Chile

    Directory of Open Access Journals (Sweden)

    Matías Tagle

    2018-05-01

    Full Text Available The chemical composition of submicron particles (aerodynamic diameter Da < 1.0 μm was investigated at three locations in the Santiago Metropolitan Region (SMR, Chile. Measurements campaigns were conducted in winter and spring 2016, at representative sites of a rural, urban, and urban receptor environment. Instrumentation consisted of an optical analyzer to determine Black Carbon (BC and the Aerosol Chemical Speciation Monitor (ACSM to measure concentrations of particulate chloride (Cl−, nitrate (NO3-, sulfate (SO42-, ammonium (NH4+, and non-refractory carbonaceous species (organics. Complementary data, such as ozone concentration and meteorological parameters were obtained from the public air quality network. Results showed that in both the winter and spring seasons the organics predominated in the mass of submicron particles. This fraction was followed in decreasing order by NO3-, NH4+, BC, SO42-, and Cl−. The highest average organics concentrations were measured in winter at the urban (32.2 μg m−3 and urban receptor sites (20.1 μg m−3. In winter, average concentrations of both NO3- and NH4+ were higher at the urban receptor site (12.3 and 4.5 μg m−3, respectively when compared to the urban site (6.4 and 3.1 μg m−3, respectively. In general, all the measured species were present in higher concentrations during winter, excepting SO42-, which was the only one that increased during spring. The transition toward spring was also associated with an acidification of the aerosol at the rural and urban receptor site, while at the urban site the aerosol was observed alkaline. The highest average ozone concentration during both the winter and spring seasons were recorded at the urban receptor site (7.2 and 24.0 ppb, respectively. The study reports data showing that the atmosphere in the SMR has a considerable load of particulate organic compounds, NO3- and NH4+, which are in higher concentrations at urban sites during the winter season

  15. Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles.

    Science.gov (United States)

    Fan, Fang-Li; Qin, Zhi; Bai, Jing; Rong, Wei-Dong; Fan, Fu-You; Tian, Wei; Wu, Xiao-Lei; Wang, Yang; Zhao, Liang

    2012-04-01

    Rapid removal of U(VI) from aqueous solutions was investigated using magnetic Fe(3)O(4)@SiO(2) composite particles as the novel adsorbent. Batch experiments were conducted to study the effects of initial pH, amount of adsorbent, shaking time and initial U(VI) concentrations on uranium sorption efficiency as well as the desorbing of U(VI). The sorption of uranium on Fe(3)O(4)@SiO(2) composite particles was pH-dependent, and the optimal pH was 6.0. In kinetics studies, the sorption equilibrium can be reached within 180 min, and the experimental data were well fitted by the pseudo-second-order model, and the equilibrium sorption capacities calculated by the model were almost the same as those determined by experiments. The Langmuir sorption isotherm model correlates well with the uranium sorption equilibrium data for the concentration range of 20-200 mg/L. The maximum uranium sorption capacity onto magnetic Fe(3)O(4)@SiO(2) composite particles was estimated to be about 52 mg/g at 25 °C. The highest values of uranium desorption (98%) was achieved using 0.01 M HCl as the desorbing agent. Fe(3)O(4)@SiO(2) composite particles showed a good selectivity for uranium from aqueous solution with other interfering cation ions. Present study suggested that magnetic Fe(3)O(4)@SiO(2) composite particles can be used as a potential adsorbent for sorption uranium and also provided a simple, fast separation method for removal of heavy metal ion from aqueous solution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Novel Composite Powders with Uniform TiB2 Nano-Particle Distribution for 3D Printing

    Directory of Open Access Journals (Sweden)

    Mengxing Chen

    2017-03-01

    Full Text Available It is reported that the ductility and strength of a metal matrix composite could be concurrently improved if the reinforcing particles were of the size of nanometers and distributed uniformly. In this paper, we revealed that gas atomization solidification could effectively disperse TiB2 nanoparticles in the Al alloy matrix due to its fast cooling rate and the coherent orientation relationship between TiB2 particles and α-Al. Besides, nano-TiB2 led to refined equiaxed grain structures. Furthermore, the composite powders with uniformly embedded nano-TiB2 showed improved laser absorptivity. The novel composite powders are well suited for selective laser melting.

  17. Individual particles of cryoconite deposited on the mountain glaciers of the Tibetan Plateau: Insights into chemical composition and sources

    Science.gov (United States)

    Dong, Zhiwen; Qin, Dahe; Kang, Shichang; Liu, Yajun; Li, Yang; Huang, Jie; Qin, Xiang

    2016-08-01

    Cryoconite deposited on mountain glacier surfaces is significant for understanding regional atmospheric environments, which could influence the albedo and energy balance of the glacier basins, and maintain the glacial microbiology system. Field observations were conducted on the glaciers of western China, including Laohugou Glacier No.12 (LHG), Tanggula Dongkemadi Glacier (TGL), Zhadang Glacier (ZD), and Baishui Glacier No.1 in the Yulong Mountains (YL), as well as Urumqi Glacier No.1 in the Tianshan Mountains (TS) for comparison with locations in the Tibetan Plateau, in addition to laboratory TEM-EDX analysis of the individual cryoconite particles filtered on lacey carbon (LC) and calcium-coated carbon (Ca-C) TEM grids. This work provided information on the morphology and chemical composition, as well as a unique record of the particle's physical state, of cryoconite deposition on the Tibetan Plateau. The result showed that there is a large difference in the cryoconite particle composition between various locations on the Tibetan Plateau. In total, mineral dust particles were dominant (>50%) in the cryoconite at all locations. However, more anthropogenic particles (e.g., black carbon (BC) and fly ash) were found in YL (38%) and ZD (22%) in the Ca-C grids in the southern locations. In TGL, many NaCl and MCS particles (>10%), as well as few BC and biological particles (<5%), were found in cryoconite in addition to mineral dust. In TS, the cryoconite is composed primarily of mineral dust, as well as BC (<5%). Compared with other sites, the LHG cryoconite shows a more complex composition of atmospheric deposition with sufficient NaCl, BC, fly ash and biological particles (6% in LC grid). The higher ratio of anthropogenic particles in the southern Tibetan Plateau is likely caused by atmospheric pollutant transport from the south Asia to the Tibetan Plateau. Cryoconite in the northern locations (e.g., TGL, LHG, and TS) with higher dust and salt particle ratio are

  18. Effects of particle/matrix interfaces on the mechanical properties for SiCp or YAl2p reinforced Mg–Li composites

    International Nuclear Information System (INIS)

    Zhang, Q.Q.; Wu, G.Q.; Huang, Z.; Tao, Y.

    2014-01-01

    Highlights: • The particle/matrix interfaces in Mg–Li matrix composites are characterized. • The different reinforcement types with intermetallics and ceramics are considered. • The failure behaviors for the composites are successfully studied. • The effect of particle/matrix interface on the mechanical properties is discussed. -- Abstract: YAl 2p or SiC P reinforced Mg–14Li–3Al (LA143) matrix composites were prepared by stir-casting. The composites were subjected to fracture toughness and tensile tests. The particle/matrix interfaces were investigated by nanoindentation combined with scanning electron microscopy (SEM). The effects of the particle/matrix interfaces on the mechanical properties of the composites were discussed through a unit cell model with a transition interface layer. The results show that a transition interface layer with smoother hardness and modulus gradient is developed in the YAl 2 /LA143 composite. Both the fracture toughness and ductility for the YAl 2 /LA143 composite are higher than those for the SiC/LA143 composite. The failure behavior is determined by particle breakage with little interfacial breakage for the YAl 2 /LA143 composite, while being due to interfacial breakage for the SiC/LA143 composite. The superiority of the mechanical properties for the YAl 2 /LA143 composite may result from the failure behavior of particle breakage, which are correlated to the better physical compatibility between the YAl 2 intermetallics and LA143 matrix

  19. Production of bone cement composites: effect of fillers, co-monomer and particles properties

    Energy Technology Data Exchange (ETDEWEB)

    Santos Junior, J.G.F.; Melo, P.A.; Pinto, J.C., E-mail: jjunior@peq.coppe.ufrj.b, E-mail: melo@peq.coppe.ufrj.b, E-mail: pinto@peq.coppe.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia. (PEQ/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Quimica; Pita, V.J.R.R., E-mail: vjpita@ima.ufrj.b [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Eloisa Mano; Nele, M. [Universidade Federal do Rio de Janeiro (EQ/UFRJ), RJ (Brazil). Escola de Quimica

    2011-04-15

    Artificial bone cements (BCs) based on poly(methyl methacrylate) (PMMA) powders and methyl methacrylate (MMA) liquid monomer also present in their formulation small amounts of other substances, including a chemical initiator compound and radiopaque agents. Because inadequate mixing of the recipe components during the manufacture of the bone cement may compromise the mechanical properties of the final pieces, new techniques to incorporate the fillers into the BC and their effect upon the mechanical properties of BC pieces were investigated in the present study. PMMA powder composites were produced in situ in the reaction vessel by addition of X-ray contrasts to the reacting MMA mixture. It is shown that this can lead to much better mechanical properties of test pieces, when compared to standard bone cement formulations, because enhanced dispersion of the radiopaque agents can be achieved. Moreover, it is shown that the addition of hydroxyapatite (HA) and acrylic acid (AA) to the bone cement recipe can be beneficial for the mechanical performance of the final material. It is also shown that particle morphology can exert a tremendous effect upon the performance of test pieces, indicating that the suspension polymerization step should be carefully controlled when optimization of the bone cement formulation is desired. (author)

  20. Production of bone cement composites: effect of fillers, co-monomer and particles properties

    Directory of Open Access Journals (Sweden)

    J. G. F. Santos Jr.

    2011-06-01

    Full Text Available Artificial bone cements (BCs based on poly(methyl methacrylate (PMMA powders and methyl methacrylate (MMA liquid monomer also present in their formulation small amounts of other substances, including a chemical initiator compound and radiopaque agents. Because inadequate mixing of the recipe components during the manufacture of the bone cement may compromise the mechanical properties of the final pieces, new techniques to incorporate the fillers into the BC and their effect upon the mechanical properties of BC pieces were investigated in the present study. PMMA powder composites were produced in-situ in the reaction vessel by addition of X-ray contrasts to the reacting MMA mixture. It is shown that this can lead to much better mechanical properties of test pieces, when compared to standard bone cement formulations, because enhanced dispersion of the radiopaque agents can be achieved. Moreover, it is shown that the addition of hydroxyapatite (HA and acrylic acid (AA to the bone cement recipe can be beneficial for the mechanical performance of the final material. It is also shown that particle morphology can exert a tremendous effect upon the performance of test pieces, indicating that the suspension polymerization step should be carefully controlled when optimization of the bone cement formulation is desired.

  1. Evaluation of the Technical-Economic Potential of Particle- Reinforced Aluminum Matrix Composites and Electrochemical Machining

    International Nuclear Information System (INIS)

    Schubert, A; Hackert-Oschätzchen, M; Lehnert, N; Götze, U; Herold, F; Schmidt, A; Meichsner, G

    2016-01-01

    Compared to conventional cutting, the processing of materials by electrochemical machining offers some technical advantages like high surface quality, no thermal or mechanical impact on the work piece and preservation of the microstructure of the work piece material. From the economic point of view, the possibility of process parallelization and the absence of any process-related tool wear are mentionable advantages of electrochemical machining. In this study, based on experimental results, it will be evaluated to what extent the electrochemical machining is technically and economically suitable for the finish-machining of particle- reinforced aluminum matrix composites (AMCs). Initial studies showed that electrochemical machining - in contrast to other machining processes - has the potential to fulfil demanding requirements regarding precision and surface quality of products or components especially when applied to AMCs. In addition, the investigations show that processing of AMCs by electrochemical machining requires less energy than the electrochemical machining of stainless steel. Therefore, an evaluation of electrochemically machined AMCs - compared to stainless steel - from a technical and an economic perspective will be presented in this paper. The results show the potential of electro-chemically machined AMCs and contribute to the enhancement of instruments for technical-economic evaluations as well as a comprehensive innovation control. (paper)

  2. Effect of weak nonsphericity on linear and nonlinear optical properties of small particle composites

    International Nuclear Information System (INIS)

    Goncharenko, A.V.; Popelnukh, V.V.; Venger, E.F.

    2002-01-01

    A small particle composite in which the inclusions are slightly nonspherical and distributed in shape is considered. Within the framework of the mean-field approximation, the functions of linear and nonlinear optical responses are calculated in terms of a nonsphericity parameter specifying the width of the distribution function in shape. To estimate the effect of weak nonsphericity on the functions, their second derivatives with respect to the nonsphericity parameter are computed. The derivatives are shown to be complexly structured surfaces in the coordinates (Re(ε i /ε m ), Im(ε i /ε m )), where ε i and ε m are the inclusion and matrix permittivity, respectively. Based on the results obtained, applicability area of the classical Maxwell Garnett theory is discussed. The main conclusion is that weak nonsphericity is significant only in the close vicinity of a dipole resonance of a single ball made of inclusion material. At the same time, the role of nonsphericity increases with decreasing the imaginary part of inclusion permittivity. (author)

  3. Development of Biopolymer Composite Films Using a Microfluidization Technique for Carboxymethylcellulose and Apple Skin Particles

    Directory of Open Access Journals (Sweden)

    Inyoung Choi

    2017-06-01

    Full Text Available Biopolymer films based on apple skin powder (ASP and carboxymethylcellulose (CMC were developed with the addition of apple skin extract (ASE and tartaric acid (TA. ASP/CMC composite films were prepared by mixing CMC with ASP solution using a microfluidization technique to reduce particle size. Then, various concentrations of ASE and TA were incorporated into the film solution as an antioxidant and an antimicrobial agent, respectively. Fourier transform infrared (FTIR, optical, mechanical, water barrier, and solubility properties of the developed films were then evaluated to determine the effects of ASE and TA on physicochemical properties. The films were also analyzed for antioxidant effect on 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and antimicrobial activities against Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica, and Shigella flexneri. From the results, the ASP/CMC film containing ASE and TA was revealed to enhance the mechanical, water barrier, and solubility properties. Moreover, it showed the additional antioxidant and antimicrobial properties for application as an active packaging film.

  4. Nuclear composition and energy spectra in the 1969 April 12 solar-particle event.

    Science.gov (United States)

    Bertsch, D. L.; Fichtel, C. E.; Reames, D. V.

    1972-01-01

    Measurement of the charge composition for several of the multicharged nuclei and the energy spectra for hydrogen, helium, and medium (6 less than or equal to Z less than or equal to 9) nuclei in the Apr. 12, 1969, solar-particle event. The energy/nucleon spectral shape of the medium nuclei was again the same as that of the helium nuclei, and the ratio of these two species was consistent with the present best average of 58 plus or minus 5. By combining the results obtained here with previous work, improved estimates of the Ne/O and Mg/O values of 0.16 plus or minus 0.03 and 0.056 plus or minus 0.014, respectively, were obtained. Silicon and sulfur abundances relative to O were determined to be 0.208 plus or minus 0.008 plus or minus 0.006, respectively, and 85% confidence upper limits for Ar and Ca relative to O of 0.017 and 0.010 were obtained. Previously, these last four nuclei had only been listed as a group.

  5. Effect of Recycled Rubber Particles and Silica on Tensile and Tear Properties of Natural Rubber Composites

    Directory of Open Access Journals (Sweden)

    Velu CHANDRAN

    2016-05-01

    Full Text Available Application of scrap rubber and worn out tires in natural rubber compounds has been studied. The scrap rubber can, however, be recycled and compounded with natural rubber and thus can be generated as a rubber composite. In this work, recycled rubber particles (RRP were prepared using pulverization process. Then, RRP was blended with natural rubber and silica compounds, and it was synthesized by two- roll mill and hydraulic press at specified operating conditions. The samples ranging from 0 to 40 phr of RRP loaded with silica were used as constant filler. The mechanical properties and morphological analysis were carried out. The results showed that tensile strength and elongation at break gradually decreased with increasing RRP loading in natural rubber and silica compounds. Tensile modulus went down at 10 phr of RRP and then showed an increasing trend. Hardness increased up to 30 phr of RRP and tear strength increased up to 20 phr of RRP. A comparative study was also carried out with virgin natural rubber vulcanizates. The incorporation of RRP and silica up to 20 phr in natural rubber did not lower the performance of rubber articles. Morphological studies revealed that better filler dispersion, interfacial adhesion, and cross link density could increase the tensile and tear strengths.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.7330

  6. Asymptotic behavior of composite-particle form factors and the renormalization group

    International Nuclear Information System (INIS)

    Duncan, A.; Mueller, A.H.

    1980-01-01

    Composite-particle form factors are studied in the limit of large momentum transfer Q. It is shown that in models with spinor constituents and either scalar or gauge vector gluons, the meson electromagnetic form factor factorizes at large Q 2 and is given by independent light-cone expansions on the initial and final meson legs. The coefficient functions are shown to satisfy a Callan-Symanzik equation. When specialized to quantum chromodynamics, this equation leads to the asymptotic formula of Brodsky and Lepage for the pion electromagnetic form factor. The nucleon form factors G/sub M/(Q 2 ), G/sub E/(Q 2 ) are also considered. It is shown that momentum flows which contribute to subdominant logarithms in G/sub M/(Q 2 ) vitiate a conventional renormalization-group interpretation for this form factor. For large Q 2 , the electric form factor G/sub E/(Q 2 ) fails to factorize, so that a renormalization-group treatment seems even more unlikely in this case

  7. Canine distemper virus matrix protein influences particle infectivity, particle composition, and envelope distribution in polarized epithelial cells and modulates virulence.

    Science.gov (United States)

    Dietzel, Erik; Anderson, Danielle E; Castan, Alexandre; von Messling, Veronika; Maisner, Andrea

    2011-07-01

    In paramyxoviruses, the matrix (M) protein mediates the interaction between the envelope and internal proteins during particle assembly and egress. In measles virus (MeV), M mutations, such as those found in subacute sclerosing panencephalitis (SSPE) strains, and differences in vaccine and wild-type M proteins can affect the strength of interaction with the envelope glycoproteins, assembly efficiency, and spread. However, the contribution of the M protein to the replication and pathogenesis of the closely related canine distemper virus (CDV) has not been characterized. To this end this, we generated a recombinant wild-type CDV carrying a vaccine strain M protein. The recombinant virus retained the parental growth phenotype in VerodogSLAMtag cells, but displayed an increased particle-to-infectivity ratio very similar to that of the vaccine strain, likely due to inefficient H protein incorporation. Even though infectious virus was released only from the apical surface, consistent with the release polarity of the wild-type CDV strain, envelope protein distribution in polarized epithelial cells reproduced the bipolar pattern seen in vaccine strain-infected cells. Most notably, the chimeric virus was completely attenuated in ferrets and caused only a mild and transient leukopenia, indicating that the differences in particle infectivity and envelope protein sorting mediated by the vaccine M protein contribute importantly to vaccine strain attenuation.

  8. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    Directory of Open Access Journals (Sweden)

    A. T. Lambe

    2015-03-01

    This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.

  9. Enhanced Mechanical Properties of MgZnCa Bulk Metallic Glass Composites with Ti-Particle Dispersion

    Directory of Open Access Journals (Sweden)

    Pei Chun Wong

    2016-05-01

    Full Text Available Rod samples of Mg60Zn35Ca5 bulk metallic glass composites (BMGCs dispersed with Ti particles have been successfully fabricated via injection casting. The glass forming ability (GFA and the mechanical properties of these Mg-based BMGCs have been systematically investigated as a function of the volume fraction (Vf of Ti particles. The results showed that the compressive ductility increased with Vf. The mechanical performance of these BMGCs, with up to 5.4% compressive failure strain and 1187 MPa fracture strength at room temperature, can be obtained for the Mg-based BMGCs with 50 vol % Ti particles, suggesting that these dispersed Ti particles can absorb the energy of the crack propagations and can induce branches of the primary shear band into multiple secondary shear bands. It follows that further propagation of the shear band is blocked, enhancing the overall plasticity.

  10. Composition and properties of atmospheric particles in the eastern Atlantic and impacts on gas phase uptake rates

    Directory of Open Access Journals (Sweden)

    G. McFiggans

    2009-12-01

    Full Text Available Marine aerosol composition continues to represent a large source of uncertainty in the study of climate and atmospheric chemistry. In addition to their physical size and chemical composition, hygroscopicity plays a significant role, increasing the particles' surface areas and scattering potential. Simultaneous aerosol measurements were performed on board the RRS Discovery and at the Cape Verde atmospheric observatory during the Aerosol Composition and Modelling in the Marine Environment (ACMME and Reactive Halogens in the Marine Boundary Layer (RHAMBLE experiments. These included online measurements of number and dry size and bulk collection for offline analysis of aqueous ions. In addition, the measurements on board the Discovery included online measurements of composition using an Aerodyne Aerosol Mass Spectrometer, optical absorption using a Multi Angle Absorption Photometer, ambient humidity size distribution measurements using a humidified differential mobility particle sizer (DMPS and optical particle counter (OPC and hygroscopicity measurements with a hygroscopicity tandem differential mobility analyser (HTDMA.

    Good agreement between platforms in terms of the sea salt (ss and non sea salt (nss modes was found during the period when the Discovery was in close proximity to Cape Verde and showed a composition consistent with remote marine air. As the Discovery approached the African coast, the aerosol showed signs of continental influence such as an increase in particle number, optical absorption, enhancement of the nss mode and dust particles. The Cape Verde site was free of this influence during this period. Chloride and bromide showed concentrations with significant deviations from seawater relative to sodium, indicating that atmospheric halogen processing (and/or acid displacement for chloride had taken place. The time dependent ambient size distribution was synthesised using humidified DMPS and OPC data, corrected to ambient

  11. Particle-Based Geometric and Mechanical Modelling of Woven Technical Textiles and Reinforcements for Composites

    Science.gov (United States)

    Samadi, Reza

    Technical textiles are increasingly being engineered and used in challenging applications, in areas such as safety, biomedical devices, architecture and others, where they must meet stringent demands including excellent and predictable load bearing capabilities. They also form the bases for one of the most widespread group of composite materials, fibre reinforced polymer-matrix composites (PMCs), which comprise materials made of stiff and strong fibres generally available in textile form and selected for their structural potential, combined with a polymer matrix that gives parts their shape. Manufacturing processes for PMCs and technical textiles, as well as parts and advanced textile structures must be engineered, ideally through simulation, and therefore diverse properties of the textiles, textile reinforcements and PMC materials must be available for predictive simulation. Knowing the detailed geometry of technical textiles is essential to predicting accurately the processing and performance properties of textiles and PMC parts. In turn, the geometry taken by a textile or a reinforcement textile is linked in an intricate manner to its constitutive behaviour. This thesis proposes, investigates and validates a general numerical tool for the integrated and comprehensive analysis of textile geometry and constitutive behaviour as required toward engineering applications featuring technical textiles and textile reinforcements. The tool shall be general with regards to the textiles modelled and the loading cases applied. Specifically, the work aims at fulfilling the following objectives: 1) developing and implementing dedicated simulation software for modelling textiles subjected to various load cases; 2) providing, through simulation, geometric descriptions for different textiles subjected to different load cases namely compaction, relaxation and shear; 3) predicting the constitutive behaviour of the textiles undergoing said load cases; 4) identifying parameters

  12. Temperature dependence of the electromagnetic properties and microwave absorption of carbonyl iron particles/silicone resin composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yingying; Zhou, Wancheng; Qing, Yuchang; Luo, Fa; Zhu, Dongmei

    2015-01-15

    Microwave absorbing composites with thin thickness and wideband absorption were successfully prepared by a spraying method using carbonyl iron particles (CIPs) as absorbers and silicone resin as the matrix. The value of reflection loss (RL) below −5 dB can be obtained in the frequency range of 5.76–18 GHz for the composite with 0.8 mm thickness. The temperature dependence of electromagnetic properties and RL of the composites were investigated. The RL of the composite showed a slight variation when the temperature reached up to 200 °C while decreased at 300 °C. The room temperature RL of the composite did not display significant difference before and after the heat treatment at 300 °C for 10 h; the mechanism was also discussed. - Highlights: • Carbonyl iron particles/silicone resin composites are prepared by a spraying method. • Reflection loss values exceed −5 dB at 5.76–18 GHz for an absorber of 0.8 mm thickness. • The variation of reflection loss was studied from room temperature to 300 °C.

  13. Mechanical, thermal and friction properties of rice bran carbon/nitrile rubber composites: Influence of particle size and loading

    International Nuclear Information System (INIS)

    Li, Mei-Chun; Zhang, Yinhang; Cho, Ur Ryong

    2014-01-01

    Highlights: • A novel rice bran carbon (RBC) is used to reinforce nitrile rubber. • We study the effect of RBC particle size on the performances of nitrile rubber. • We study the effect of RBC loading on the performances of nitrile rubber. • The addition of RBC improves the mechanical properties of nitrile rubber. • The addition of RBC improves the anti-skid properties of nitrile rubber. - Abstract: Four types of rice bran carbon (RBC) with different particle sizes were compounded with nitrile rubber (NBR) in a laboratory size two-roll miller. The obtained RBC/NBR composites were characterized using Field Emission Scanning Electron Microscopy (FE-SEM) and tensile tests. Experimental results showed the RBC with lowest particle size exhibited best dispersion state and superior reinforcement ability. Then, we investigated the influence of RBC loading on the morphology, vulcanization characteristics, mechanical, thermal and friction properties of NBR composites. Experimental results indicated that the incorporation of RBC resulted in higher torque values, longer curing time, but shorter scorch time. The addition of RBC remarkably improved the mechanical properties of NBR composites. However, when the RBC loading exceeded 60 phr, the improvement in the tensile strength was not significant due to the poor dispersion state and weak interfacial bonding between RBC and NBR matrix, which were confirmed by Mooney–Rivlin stress–strain curves and FE-SEM observations. The thermal stabilities of RBC/NBR composites were largely improved as the loading of RBC increased. Friction tests revealed that under a certain concentration, the presence of RBC increased the static friction coefficient of NBR composites, suggesting the anti-skid role of RBC in the NBR composites. The overall results demonstrated that RBC could act as ideal filler for NBR composites providing both economic and environmental advantages

  14. Study on the friction and wear properties of carbon fabric composites reinforced with micro- and nano-particles

    International Nuclear Information System (INIS)

    Zhang Zhaozhu; Su Fenghua; Wang Kun; Jiang Wei; Men Xuehu; Liu Weimin

    2005-01-01

    The carbon fabric composites filled with the particulates of polyfluo-150 wax (PFW), nano-particles of ZnO (nano-ZnO), and nano-particles of SiC (nano-SiC), respectively, were prepared by dip-coating of the carbon fabric in a phenolic resin containing the particulates to be incorporated and the successive curing. The friction and wear behaviors of the carbon fabric composites sliding against AISI-1045 steel in a pin-on-disk configuration are evaluated on a Xuanwu-III high-temperature friction and wear tester. The morphologies of the worn surfaces of the filled carbon fabric composites and the counterpart steel pins are analyzed by means of scanning electron microscopy. The effect of the fillers on the adhesion strength of the adhesive is evaluated using a DY35 universal materials tester. It is found that the fillers PFW, nano-ZnO, and nano-SiC contribute to significantly increasing anti-wear abilities of the carbon fabric composites, however, nano-SiC increase the friction coefficient of the carbon fabric composites. The wear rates of the composites at elevated temperature above 180 deg. C are much larger than that below 180 deg. C, which attribute to the degradation and decomposition of the adhesive resin at an excessively elevated temperature. That the interface bonding strength among the carbon fabric, the adhesive, and the particles is significantly increased after solidification and with the transferred film of the varied features largely account for the increased wear-resistance of the filled carbon fabric composites as compared with the unfilled one

  15. Morphology, composition, and mixing state of primary particles from combustion sources - crop residue, wood, and solid waste.

    Science.gov (United States)

    Liu, Lei; Kong, Shaofei; Zhang, Yinxiao; Wang, Yuanyuan; Xu, Liang; Yan, Qin; Lingaswamy, A P; Shi, Zongbo; Lv, Senlin; Niu, Hongya; Shao, Longyi; Hu, Min; Zhang, Daizhou; Chen, Jianmin; Zhang, Xiaoye; Li, Weijun

    2017-07-11

    Morphology, composition, and mixing state of individual particles emitted from crop residue, wood, and solid waste combustion in a residential stove were analyzed using transmission electron microscopy (TEM). Our study showed that particles from crop residue and apple wood combustion were mainly organic matter (OM) in smoldering phase, whereas soot-OM internally mixed with K in flaming phase. Wild grass combustion in flaming phase released some Cl-rich-OM/soot particles and cardboard combustion released OM and S-rich particles. Interestingly, particles from hardwood (pear wood and bamboo) and softwood (cypress and pine wood) combustion were mainly soot and OM in the flaming phase, respectively. The combustion of foam boxes, rubber tires, and plastic bottles/bags in the flaming phase released large amounts of soot internally mixed with a small amount of OM, whereas the combustion of printed circuit boards and copper-core cables emitted large amounts of OM with Br-rich inclusions. In addition, the printed circuit board combustion released toxic metals containing Pb, Zn, Sn, and Sb. The results are important to document properties of primary particles from combustion sources, which can be used to trace the sources of ambient particles and to know their potential impacts in human health and radiative forcing in the air.

  16. Acid hydrolysis and molecular density of phytoglycogen and liver glycogen helps understand the bonding in glycogen α (composite particles.

    Directory of Open Access Journals (Sweden)

    Prudence O Powell

    Full Text Available Phytoglycogen (from certain mutant plants and animal glycogen are highly branched glucose polymers with similarities in structural features and molecular size range. Both appear to form composite α particles from smaller β particles. The molecular size distribution of liver glycogen is bimodal, with distinct α and β components, while that of phytoglycogen is monomodal. This study aims to enhance our understanding of the nature of the link between liver-glycogen β particles resulting in the formation of large α particles. It examines the time evolution of the size distribution of these molecules during acid hydrolysis, and the size dependence of the molecular density of both glucans. The monomodal distribution of phytoglycogen decreases uniformly in time with hydrolysis, while with glycogen, the large particles degrade significantly more quickly. The size dependence of the molecular density shows qualitatively different shapes for these two types of molecules. The data, combined with a quantitative model for the evolution of the distribution during degradation, suggest that the bonding between β into α particles is different between phytoglycogen and liver glycogen, with the formation of a glycosidic linkage for phytoglycogen and a covalent or strong non-covalent linkage, most probably involving a protein, for glycogen as most likely. This finding is of importance for diabetes, where α-particle structure is impaired.

  17. Acid Hydrolysis and Molecular Density of Phytoglycogen and Liver Glycogen Helps Understand the Bonding in Glycogen α (Composite) Particles

    Science.gov (United States)

    Powell, Prudence O.; Sullivan, Mitchell A.; Sheehy, Joshua J.; Schulz, Benjamin L.; Warren, Frederick J.; Gilbert, Robert G.

    2015-01-01

    Phytoglycogen (from certain mutant plants) and animal glycogen are highly branched glucose polymers with similarities in structural features and molecular size range. Both appear to form composite α particles from smaller β particles. The molecular size distribution of liver glycogen is bimodal, with distinct α and β components, while that of phytoglycogen is monomodal. This study aims to enhance our understanding of the nature of the link between liver-glycogen β particles resulting in the formation of large α particles. It examines the time evolution of the size distribution of these molecules during acid hydrolysis, and the size dependence of the molecular density of both glucans. The monomodal distribution of phytoglycogen decreases uniformly in time with hydrolysis, while with glycogen, the large particles degrade significantly more quickly. The size dependence of the molecular density shows qualitatively different shapes for these two types of molecules. The data, combined with a quantitative model for the evolution of the distribution during degradation, suggest that the bonding between β into α particles is different between phytoglycogen and liver glycogen, with the formation of a glycosidic linkage for phytoglycogen and a covalent or strong non-covalent linkage, most probably involving a protein, for glycogen as most likely. This finding is of importance for diabetes, where α-particle structure is impaired. PMID:25799321

  18. Autogenous bone particle/titanium fiber composites for bone regeneration in a rabbit radius critical-size defect model.

    Science.gov (United States)

    Xie, Huanxin; Ji, Ye; Tian, Qi; Wang, Xintao; Zhang, Nan; Zhang, Yicai; Xu, Jun; Wang, Nanxiang; Yan, Jinglong

    2017-11-01

    To explore the effects of autogenous bone particle/titanium fiber composites on repairing segmental bone defects in rabbits. A model of bilateral radial bone defect was established in 36 New Zealand white rabbits which were randomly divided into 3 groups according to filling materials used for bilaterally defect treatment: in group C, 9 animal bone defect areas were prepared into simple bilateral radius bone defect (empty sham) as the control group; 27 rabbits were used in groups ABP and ABP-Ti. In group ABP, left defects were simply implanted with autogenous bone particles; meanwhile, group ABP-Ti animals had right defects implanted with autogenous bone particle/titanium fiber composites. Animals were sacrificed at 4, 8, and 12 weeks, respectively, after operation. Micro-CT showed that group C could not complete bone regeneration. Bone volume to tissue volume values in group ABP-Ti were better than group ABP. From histology and histomorphometry Groups ABP and ABP-Ti achieved bone repair, the bone formation of group ABP-Ti was better. The mechanical strength of group ABP-Ti was superior to that of other groups. These results confirmed the effectiveness of autologous bone particle/titanium fiber composites for promoting bone regeneration and mechanical strength.

  19. Fabrication and characterization of SiC and ZrC composite coating on TRISO coated particle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. G.; Lee, S. H.; Kim, D. J.; Park, J. Y.; Kim, W. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    SiC coating is widely suggested as structural materials for nuclear application due to its excellent high irradiation resistance properties and high temperature mechanical properties. SiC coating on TRistructural-ISOtropic (TRISO) coated fuel particles plays an important role as a protective layer from radioactive fission gas and a mechanical structural layer. TRISO coating layer was deposited on a spherical particle by a FBCVD method. The ZrO{sub 2} spherical particles were used as a simulant kernel. TRISO coating layers consisting of a porous buffer layer, an inner PyC layer were sequentially deposited before depositing SiC or ZrC coating layer. In order investigate the phase of each composite coating layer, Raman analysis was conducted. SiC, ZrC coating and SiC/ZrC composite coating on spherical particle were successfully deposited via FBCVD method by adjusting source gas flow rate. In the SiC and ZrC composite coating, SiC phase and ZrC phase were observed by XRD and SEM analysis. In the condition of 100 sccm of ZrCl{sub 4}, 25 sccm of CH{sub 4}, and 30 sccm of MTS, only two phases of SiC and ZrC were observed and two phases are located with clean grain boundary.

  20. Joining of hybrid AA6063-6SiCp-3Grp composite and AISI 1030 steel by friction welding

    Directory of Open Access Journals (Sweden)

    N. Rajesh Jesudoss Hynes

    2017-10-01

    Full Text Available Joining of metals and aluminium hybrid metal matrix composites has significant applications in aviation, ship building and automotive industries. In the present work, investigation is carried out on Friction Welding of AISI 1030 steel and hybrid AA6063-6SiCp-3Grpcomposite, that are difficult to weld by fusion welding technique. Silicon carbide and graphite particle reinforced AA6063 matrix hybrid composite was developed successfully using stir casting method and the joining feasibility of AISI1030 steel with AA6063-6SiCp-3Grp hybrid composite was tried out by friction stud welding technique. During friction stage of welding process, the particulates (SiC & Graphite used for reinforcement, tend to increase the viscosity and lead to improper mixing of matrix and reinforcement. This eventually results in lower strength in dissimilar joints. To overcome this difficulty AA1100 interlayer is used while joining hybrid composite to AISI 1030 steel. Experimentation was carried out using Taguchi based design of experiments (DOE technique. Multiple regression methods were applied to understand the relationship between process parameters of the friction stud welding process. Micro structural examination reveals three separate zones namely fully plasticized zone, partially deformed zone and unaffected base material zone. Ultra fine dynamically recrystallized grains of about 341 nm were observed at the fully plasticized zone. EDX analysis confirms the presence of intermetallic compound Fe2Al5 at the joint interface. According to the experimental analysis using DOE, rotational speed and interlayer sheet thickness contribute about 39% and 36% respectively in determining the impact strength of the welded joints. It is found that joining with 0.5 mm interlayer sheet provides efficient joints. Developed regression model could be used to predict the axial shortening distance and impact strength of the welded joint with reasonable accuracy.

  1. Filtration efficiency of an electrostatic fibrous filter: Studying filtration dependency on ultrafine particle exposure and composition

    DEFF Research Database (Denmark)

    Ardkapan, Siamak Rahimi; Johnson, Matthew S.; Yazdi, Sadegh

    2014-01-01

    The objective of the present study is to investigate the relationship between ultrafine particle concentrations and removal efficiencies for an electrostatic fibrous filter in a laboratory environment. Electrostatic fibrous filters capture particles efficiently, with a low pressure drop. Therefor...

  2. Impact of particle morphology on structure, crystallization kinetics, and properties of PCL composites with TiO2-based particles

    Czech Academy of Sciences Publication Activity Database

    Vacková, Taťana; Kratochvíl, Jaroslav; Ostafinska, Aleksandra; Krejčíková, Sabina; Nevoralová, Martina; Šlouf, Miroslav

    2017-01-01

    Roč. 74, č. 2 (2017), s. 445-464 ISSN 0170-0839 R&D Projects: GA ČR(CZ) GA14-17921S; GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : polycaprolactone composites * crystallization kinetics * matrix degradation Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.430, year: 2016

  3. Cyclodextrin-based metal-organic frameworks particles as efficient carriers for lansoprazole: Study of morphology and chemical composition of individual particles.

    Science.gov (United States)

    Li, Xue; Guo, Tao; Lachmanski, Laurent; Manoli, Francesco; Menendez-Miranda, Mario; Manet, Ilse; Guo, Zhen; Wu, Li; Zhang, Jiwen; Gref, Ruxandra

    2017-10-15

    Cyclodextrin-based metal-organic frameworks (CD-MOFs) represent an environment-friendly and biocompatible class of MOFs drawing increasing attention in drug delivery. Lansoprazole (LPZ) is a proton-pump inhibitor used to reduce the production of acid in the stomach and recently identified as an antitubercular prodrug. Herein, LPZ loaded CD-MOFs were successfully synthesized upon the assembly with γ-CD in the presence of K + ions using an optimized co-crystallization method. They were characterized in terms of morphology, size and crystallinity, showing almost perfect cubic morphologies with monodispersed size distributions. The crystalline particles, loaded or not with LPZ, have mean diameters of around 6μm. The payloads reached 23.2±2.1% (wt) which corresponds to a molar ratio of 1:1 between LPZ and γ-CD. It was demonstrated that even after two years storage, the incorporated drug inside the CD-MOFs maintained its spectroscopic characteristics. Molecular modelling provided a deeper insight into the interaction between the LPZ and CD-MOFs. Raman spectra of individual particles were recorded, confirming the formation of inclusion complexes within the tridimensional CD-MOF structures. Of note, it was found that each individual particle had the same chemical composition. The LPZ-loaded particles had remarkable homogeneity in terms of both drug loading and size. These results pave the way towards the use of CD-MOFs for drug delivery purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Development of Antibacterial Composite Films Based on Isotactic Polypropylene and Coated ZnO Particles for Active Food Packaging

    Directory of Open Access Journals (Sweden)

    Clara Silvestre

    2016-01-01

    Full Text Available This study was aimed at developing new films based on isotactic polypropylene (iPP for food packaging applications using zinc oxide (ZnO with submicron dimension particles obtained by spray pyrolysis. To improve compatibility with iPP, the ZnO particles were coated with stearic acid (ZnOc. Composites based on iPP with 2 wt % and 5 wt % of ZnOc were prepared in a twin-screw extruder and then filmed by a calender. The effect of ZnOc on the properties of iPP were assessed and compared with those obtained in previous study on iPP/ZnO and iPP/iPPgMA/ZnO. For all composites, a homogeneous distribution and dispersion of ZnOc was obtained indicating that the coating with stearic acid of the ZnO particles reduces the surface polarity mismatch between iPP and ZnO. The iPP/ZnOc composite films have relevant zinc oxide with respect to E. coli, higher thermal stability and improved mechanical and impact properties than the pure polymer and the composites iPP/ZnO and iPP/iPPgMA/ZnO. This study demonstrated that iPP/ZnOc films are suitable materials for potential application in the active packaging field.

  5. The application of scanning electron microscopy to the determination of elemental and isotopic composition in individual actinide particles

    International Nuclear Information System (INIS)

    Vatter, I.; Cattle, G.; Tushingham, J.

    2000-01-01

    Techniques for the determination of both elemental and isotopic composition of actinides within single particles are required by the IAEA in support of their environmental safeguards programme. SEM and SIMS are valuable techniques for the measurement of elemental and isotopic composition, respectively, on the particle scale. The potential for effective combination of SEM and SIMS has been investigated at Harwell Laboratory. In trials, copper finder grids have been successfully used to enable re-identification of particles between SEM and SIMS instruments. Use of the grids enables rapid relocation of particles pre-selected by SEM for SIMS measurement. The work has highlighted a possible matrix effect in plutonium measurement that results in variable sensitivity dependent on the presence of other elements (including uranium). This effect would limit the use of SIMS to obtain elemental ratios, and highlights the requirement to use both SEM and SIMS to gain full and accurate information. The possible use of autoradiography as an adjunct to SEM has been investigated. In principle, autoradiography could be used to identify higher enrichments of uranium and enable pre-selection of particles for SIMS measurement. During trials, practical problems have been encountered which have demonstrated this particular approach to be unsuitable. (author)

  6. The effect of particle addition and fibrous reinforcement on epoxy-matrix composites for severe sliding conditions

    DEFF Research Database (Denmark)

    Larsen, Thomas Ricco Ølholm; Løgstrup Andersen, Tom; Thorning, Bent

    2008-01-01

    This paper reports production and tribological testing of epoxy-matrix composites for dry-sliding conditions. The examined composites are produced using the following components: epoxy resin (EP), glass fiber weave (G), carbon/aramid hybrid weave (CA), PTFE particles and nano-scale CuO particles...... are seen when the fibers are parallel and anti-parallel (P-AP) to the sliding direction compared to normal and parallel (N-P). Experiments with incorporating micro-scale PTFE particles and nano-scale CuO particles, respectively, into the epoxy resin along with the carbon/aramid weave shows no difference...... in friction but minor improvements in wear. When micro-scale PTFE particles are incorporated into the neat epoxy resin, i.e. without fibers, an increase in and a decrease in A are measured. When the same is done with nano-CuO a deterioration of both friction and wear properties are seen. At the three roughest...

  7. SEM Evaluation of Surrounding Enamel after Finishing of Composite Restorations- Preliminary Results

    Science.gov (United States)

    Iovan, G.; Stoleriu, S.; Solomon, S.; Ghiorghe, A.; Sandu, A. V.; Andrian, S.

    2017-06-01

    The purpose of this study was to analyze the surface characteristics of the enamel adjacent to composite resin after finishing the restoration with different diamond and tungsten carbide burs. The topography of enamel was observed by using a scanning electron microscope. Finishing with extra-/ultra-fine carbide burs, and extra-fine diamond burs resulted in smooth surfaces. In few areas some superficial scratches with no clinical relevance were observed. Deep grooves were observed on the surface of enamel when fine diamond burs were used. Finishing of composite restorations with coarse burs should be avoided when there is a high risk of touching and scratching adjacent enamel during the procedure.

  8. Omega-3 PUFA concentration by a novel PVDF nano-composite membrane filled with nano-porous silica particles.

    Science.gov (United States)

    Ghasemian, Samaneh; Sahari, Mohammad Ali; Barzegar, Mohsen; Ahmadi Gavlighi, Hasan

    2017-09-01

    In this study, polyvinylidene fluoride (PVDF) and nano-porous silica particle were used to fabricate an asymmetric nano-composite membrane. Silica particles enhanced the thermal stability of PVDF/SiO 2 membranes; increasing the decomposition temperature from 371°C to 408°C. Cross sectional morphology showed that silica particles were dispersed in polymer matrix uniformly. However, particle agglomeration was found at higher loading of silica (i.e., 20 by weight%). The separation performance of nano-composite membranes was also evaluated using the omega-3 polyunsaturated fatty acids (PUFA) concentration at a temperature and pressure of 30°C and 4bar, respectively. Silica particle increased the omega-3PUFA concentration from 34.8 by weight% in neat PVDF to 53.9 by weight% in PVDF with 15 by weight% of silica. Moreover, PVDF/SiO 2 nano-composite membranes exhibited enhanced anti-fouling property compared to neat PVDF membrane. Fouling mechanism analysis revealed that complete pore blocking was the predominant mechanism occurring in oil filtration. The concentration of omega-3 polyunsaturated fatty acids (PUFA) is important in the oil industries. While the current methods demand high energy consumptions in concentrating the omega-3, membrane separation technology offers noticeable advantages in producing pure omega-3 PUFA. Moreover, concentrating omega-3 via membrane separation produces products in the triacylglycerol form which possess better oxidative stability. In this work, the detailed mechanisms of fouling which limits the performance of membrane separation were investigated. Incorporating silica particles to polymeric membrane resulted in the formation of mixed matrix membrane with improved anti-fouling behaviour compared to the neat polymeric membrane. Hence, the industrial potential of membrane processing to concentrate omega-3 fatty acids is enhanced. Copyright © 2017. Published by Elsevier Ltd.

  9. Bio-mineralisation on the composites of silicon-based polymer and nanodiamond particles by a species of Serratia Bacteria

    International Nuclear Information System (INIS)

    Sammon, R.; Mitev, D.; Pramatarova, L.; Hikov, T.; Radeva, E.; Presker, R.

    2014-01-01

    Serratia sp. NCIMB 40259 is a non-pathogenic Gram-negative bacterium that is able to produce hydroxyapatite by a mechanism involving enzymic cleavage of organic phosphates. Serratia bacteria can attach and form a biofilm on glass, plastics, ceramics and metals and the method can be used to form three dimensional porous scaffolds and for coating 3D structures with hydroxyapatite. The production of calcium phosphate is driven by an acid phosphatase enzyme located in the bacterial cell wall, on fimbriae and within the bacterial extracellular polymeric matrix. Calcium phosphate ceramic may be obtained by two methods: In the first, crystals of calcium phosphate are formed extracellularly within the pre-formed bacterial biofilm grown on the substrata. In the second method, planktonic bacteria catalyse the formation of CaP in suspension and on solid substrata placed in the same container. Composite thin layer of silicon-based polymer and detonated nanodiamond (DND) particles was used as substrate for the process of biomineralization by a species of Serratia. The plasma polymerization (PP) method was chosen to obtain composites of silicon-based polymer, in which DND particles were incorporated. Over the past decades carbon-based nanostructures have been the focus of intense research due to their unique chemical and physical properties. Recently it was shown that the incorporation of the DND particles in a polymer matrix (an organosilicon polymer) changes their physico-chemical properties. The composite films are homogeneous, chemically resistant, thermally and mechanically stable, thus allowing a large amount of biological components to be loaded onto their surface and to be used in tissue engineering, regenerative medicine, implants, stents, biosensors and other medical and biological devices. The aim of this study was to investigate the process of biomineralisation by Serratia bacteria on various composites of silicon-based polymer and detonated nanodiamond particles

  10. Synthesis of eccentric titania-silica core-shell and composite particles

    NARCIS (Netherlands)

    Demirors, A.F.; van Blaaderen, A.; Imhof, A.

    2009-01-01

    We describe a novel method to synthesize colloidal particles with an eccentric core-shell structure. Titania-silica core-shell particles were synthesized by silica coating of porous titania particles under Sto¨ber (Sto¨ber et al. J. Colloid Interface Sci. 1968, 26, 62) conditions. We can control

  11. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt

    2002-08-15

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). Tradeoffs between CO2 control, NOx control, and inorganic fine particle and toxic metal emissions will be determined. Previous research has yielded data on trace metal partitioning for MSS by itself, with natural gas assist, for coal plus MSS combustion together, and for coal alone. We have re-evaluated the inhalation health effects of ash aerosol from combustion of MSS both by itself and also together with coal. We have concluded that ash from the co-combustion of MSS and coal is very much worse from an inhalation health point of view, than ash from either MSS by itself or coal by itself. The reason is that ZnO is not the ''bad actor'' as had been suspected before, but the culprit is, rather, sulfated Zn. The MSS supplies the Zn and the coal supplies the sulfur, and so it is the combination of coal and MSS that makes that process environmentally bad. If MSS is to be burned, it should be burned without coal, in the absence of sulfur.

  12. Laser cladding in-situ carbide particle reinforced Fe-based composite coatings with rare earth oxide addition

    Institute of Scientific and Technical Information of China (English)

    吴朝锋; 马明星; 刘文今; 钟敏霖; 张红军; 张伟明

    2009-01-01

    Particulate reinforced metal matrix composite(PR-MMC) has excellent properties such as good wear resistance,corrosion resistance and high temperature properties.Laser cladding is usually used to form PR-MMC on metal surface with various volume fractions of ceramic particles.Recent literatures showed that laser melting of powder mixture containing carbon and carbide-forming elements,was favorable for the formation of in-situ synthesized carbide particles.In this paper,rare earth oxide(RE2O3) was added into t...

  13. Seasonal variations in aerosol particle composition at the puy-de-Dôme research station in France

    Directory of Open Access Journals (Sweden)

    E. J. Freney

    2011-12-01

    Full Text Available Detailed investigations of the chemical and microphysical properties of atmospheric aerosol particles were performed at the puy-de-Dôme (pdD research station (1465 m in autumn (September and October 2008, winter (February and March 2009, and summer (June 2010 using a compact Time-of-Flight Aerosol Mass Spectrometer (cToF-AMS. Over the three campaigns, the average mass concentrations of the non-refractory submicron particles ranged from 10 μg m−3 up to 27 μg m−3. Highest nitrate and ammonium mass concentrations were measured during the winter and during periods when marine modified airmasses were arriving at the site, whereas highest concentrations of organic particles were measured during the summer and during periods when continental airmasses arrived at the site. The measurements reported in this paper show that atmospheric particle composition is strongly influenced by both the season and the origin of the airmass. The total organic mass spectra were analysed using positive matrix factorisation to separate individual organic components contributing to the overall organic particle mass concentrations. These organic components include a low volatility oxygenated organic aerosol particle (LV-OOA and a semi-volatile organic aerosol particle (SV-OOA. Correlations of the LV-OOA components with fragments of m/z 60 and m/z 73 (mass spectral markers of wood burning during the winter campaign suggest that wintertime LV-OOA are related to aged biomass burning emissions, whereas organic aerosol particles measured during the summer are likely linked to biogenic sources. Equivalent potential temperature calculations, gas-phase, and LIDAR measurements define whether the research site is in the planetary boundary layer (PBL or in the free troposphere (FT/residual layer (RL. We observe that SV-OOA and nitrate particles are associated with air masses arriving from the PBL where as particle composition measured from RL

  14. The composition of nucleation and Aitken modes particles during coastal nucleation events: evidence for marine secondary organic contribution

    Directory of Open Access Journals (Sweden)

    P. Vaattovaara

    2006-01-01

    Full Text Available Newly-formed nanometer-sized particles have been observed at coastal and marine environments world wide. Organic species have so far not been detected in those newly-formed nucleation mode particles. In this study, we applied the ultrafine organic tandem differential mobility analyzer method to study the possible existence of an organic fraction in recently formed coastal nucleation mode particles (d<20 nm at the Mace Head research station. Furthermore, effects of those nucleation events on potential cloud condensation nuclei were studied. The coastal events were typical for the Mace Head region and they occurred at low tide conditions during efficient solar radiation and enhanced biological activity in spring 2002. Additionally, a pulse height analyzer ultrafine condensation particle counter technique was used to study the composition of newly-formed particles formed in low tide conditions during a lower biological activity in October 2002. The overall results of the ultrafine organic tandem differential mobility analyzer and the pulse height analyzer ultrafine condensation particle counter measurements indicate that those coastally/marinely formed nucleation mode particles include a remarkable fraction of secondary organic products, beside iodine oxides, which are likely to be responsible for the nucleation. During clean marine air mass conditions, the origin of those secondary organic oxidation compounds can be related to marine coast and open ocean biota and thus a major fraction of the organics may originate from biosynthetic production of alkenes such as isoprene and their oxidation driven by iodine radicals, hydroxyl radicals, acid catalysis, and ozone during efficient solar radiation. During modified marine conditions, also anthropogenic secondary organic compounds may contribute to the nucleation mode organic mass, in addition to biogenic secondary organic compounds. Thus, the ultrafine organic tandem differential mobility analyzer

  15. Bubbles and Dust: Dissolution Rates of Unhydrated Volcanic Ash as a Function of Morphology, Composition, and Particle Size

    Science.gov (United States)

    Wygel, C. M.; Sahagian, D. L.

    2017-12-01

    Volcanic eruptions are natural hazards due to their explosive nature and widespread transportation and deposition of ash particles. After deposition and subsequent leaching in soils or water bodies, ash deposition positively (nutrients) and negatively (contaminants) impacts the health of flora and fauna, including humans. The effects of ash leachates have been difficult to replicate in field and laboratory studies due to the many complexities and differences between ash particles. Ash morphology is characteristic for each eruption, dependent upon eruption energy, and should play a critical role in determining leaching rates. Morphology reflects overall particle surface area, which is strongly influenced by the presence of surface dust. In addition, ash composition, which in part controls morphology and particle size, may also affect leaching rates. This study determines the extent to which ash morphology, surface area, composition, and particle size control ash dissolution rates. Further, it is necessary to determine whether compound vesicular ash particles permit water into their interior structures to understand if both the internal and external surface areas are available for leaching. To address this, six fresh, unhydrated ash samples from diverse volcanic environments and a large range in morphology, from Pele's spheres to vesicular compound ash, are tested in the laboratory. Ash morphology was characterized on the Scanning Electron Microscope (SEM) before and after leaching and surface area was quantified by Brunauer Emmett Teller (BET) analysis and with geometric calculations. Column Leachate Tests (CLT) were conducted to compare leaching rates over a range of basaltic to silicic ashes as a function of time and surface area, to recreate the effects of ash deposition in diverse volcanic environments. After the CLT, post-leaching water analyses were conducted by Ion Coupled Plasma-Mass Spectrometry (ICP-MS) and Ion Chromatography (IC). We find that leaching

  16. The erosion performance of particle reinforced metal matrix composite coatings produced by co-deposition cold gas dynamic spraying

    Science.gov (United States)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This work reports on the erosion performance of three particle reinforced metal matrix composite coatings, co-deposited with an aluminium binder via cold-gas dynamic spraying. The deposition of ceramic particles is difficult to achieve with typical cold spray techniques due to the absence of particle deformation. This issue has been overcome in the present study by simultaneously spraying the reinforcing particles with a ductile metallic binder which has led to an increased level of ceramic/cermet particles deposited on the substrate with thick (>400 μm) coatings produced. The aim of this investigation was to evaluate the erosion performance of the co-deposited coatings within a slurry environment. The study also incorporated standard metallographic characterisation techniques to evaluate the distribution of reinforcing particles within the aluminium matrix. All coatings exhibited poorer erosion performance than the uncoated material, both in terms of volume loss and mass loss. The Al2O3 reinforced coating sustained the greatest amount of damage following exposure to the slurry and recorded the greatest volume loss (approx. 2.8 mm3) out of all of the examined coatings. Despite the poor erosion performance, the WC-CoCr reinforced coating demonstrated a considerable hardness increase over the as-received AA5083 (approx. 400%) and also exhibited the smallest free space length between adjacent particles. The findings of this study reveal that the removal of the AA5083 matrix by the impinging silicon carbide particles acts as the primary wear mechanism leading to the degradation of the coating. Analysis of the wear scar has demonstrated that the damage to the soft matrix alloy takes the form of ploughing and scoring which subsequently exposes carbide/oxide particles to the impinging slurry.

  17. Influence of Nickel Particle Reinforcement on Cyclic Fatigue and Final Fracture Behavior of a Magnesium Alloy Composite

    Directory of Open Access Journals (Sweden)

    Manoj Gupta

    2012-06-01

    Full Text Available The microstructure, tensile properties, cyclic stress amplitude fatigue response and final fracture behavior of a magnesium alloy, denoted as AZ31, discontinuously reinforced with nano-particulates of aluminum oxide and micron size nickel particles is presented and discussed. The tensile properties, high cycle fatigue and final fracture behavior of the discontinuously reinforced magnesium alloy are compared with the unreinforced counterpart (AZ31. The elastic modulus and yield strength of the dual particle reinforced magnesium alloy is marginally higher than of the unreinforced counterpart. However, the tensile strength of the composite is lower than the monolithic counterpart. The ductility quantified by elongation to failure over 0.5 inch (12.7 mm gage length of the test specimen showed minimal difference while the reduction in specimen cross-section area of the composite is higher than that of the monolithic counterpart. At the microscopic level, cyclic fatigue fractures of both the composite and the monolithic alloy clearly revealed features indicative of the occurrence of locally ductile and brittle mechanisms. Over the range of maximum stress and at two different load ratios the cyclic fatigue resistance of the magnesium alloy composite is superior to the monolithic counterpart. The mechanisms responsible for improved cyclic fatigue life and resultant fracture behavior of the composite microstructure are highlighted.

  18. 3-dimensional free standing micro-structures by proton beam writing of Su 8-silver nanoParticle polymeric composite

    Science.gov (United States)

    Igbenehi, H.; Jiguet, S.

    2012-09-01

    Proton beam lithography a maskless direct-write lithographic technique (well suited for producing 3-Dimensional microstructures in a range of resist and semiconductor materials) is demonstrated as an effective tool in the creation of electrically conductive freestanding micro-structures in an Su 8 + Nano Silver polymer composite. The structures produced show non-ohmic conductivity and fit the percolation theory conduction model of tunneling of separated nanoparticles. Measurements show threshold switching and a change in conductivity of at least 4 orders of magnitude. The predictable range of protons in materials at a given energy is exploited in the creation of high aspect ratio, free standing micro-structures, made from a commercially available SU8 Silver nano-composite (GMC3060 form Gersteltec Inc. a negative tone photo-epoxy with added metallic nano-particles(Silver)) to create films with enhanced electrical properties when exposed and cured. Nano-composite films are directly written on with a finely focused MeV accelerated Proton particle beam. The energy loss of the incident proton beams in the target polymer nano- composite film is concentrated at the end of its range, where damage occurs; changing the chemistry of the nano-composite film via an acid initiated polymerization - creating conduction paths. Changing the energy of the incident beams provide exposed regions with different penetration and damage depth - exploited in the demonstrated cantilever microstructure.

  19. The fracture toughness and DBTT of MoB particle-reinforced MoSi2 composites

    International Nuclear Information System (INIS)

    Xiong Zhi; Wang Gang; Jiang Wan

    2005-01-01

    The room temperature fracture toughness and the high temperature DBTT of MoB particle-reinforced MoSi 2 composites were investigated using Vickers indentation technique and MSP testing method, respectively. Modified small punch (MSP) test is a method for evaluation of mechanical properties using very small specimens, and it's appropriate for the determination of strength and DBTT. It was found that the approximate fracture toughness of the composite is 1.3 times that of monolithic MoSi 2 , and its DBTT is 100 C higher than that of monolithic MoSi 2 materials. Cracks deflection is a probable mechanism responsible for this behavior. (orig.)

  20. Evaluation of dry sliding wear behavior of silicon particles reinforced aluminum matrix composites

    International Nuclear Information System (INIS)

    Sun Zhiqiang; Zhang Di; Li Guobin

    2005-01-01

    This paper reports a study on the wear property of powder metallurgy aluminum matrix composites 9Si/Al-Cu-Mg. A on rock wear-testing machine is used to evaluate the wear property of the composites, in which a GCrl5 steel ring is used as the counter face material. The wear behavior of the composites under different conditions is studied. The optical microscope and scanning electron microscope are used to analyze the worn surfaces and the subsurface of the composites in order to research the wear mechanism of the composites. Results indicate that the weight loss of the composite were lower than that of the matrix alloy

  1. Changes in background aerosol composition in Finland during polluted and clean periods studied by TEM/EDX individual particle analysis

    Directory of Open Access Journals (Sweden)

    J. V. Niemi

    2006-01-01

    Full Text Available Aerosol samples were collected at a rural background site in southern Finland in May 2004 during pollution episode (PM1~16 µg m−3, backward air mass trajectories from south-east, intermediate period (PM1~5 µg m−3, backtrajectories from north-east and clean period (PM1~2 µg m−3, backtrajectories from north-west/north. The elemental composition, morphology and mixing state of individual aerosol particles in three size fractions were studied using transmission electron microscopy (TEM coupled with energy dispersive X-ray (EDX microanalyses. The TEM/EDX results were complemented with the size-segregated bulk chemical measurements of selected ions and organic and elemental carbon. Many of the particles in PM0.2–1 and PM1–3.3 size fractions were strongly internally mixed with S, C and/or N. The major particle types in PM0.2–1 samples were 1 soot and 2 (ammoniumsulphates and their mixtures with variable amounts of C, K, soot and/or other inclusions. Number proportions of those two particle groups in PM0.2–1 samples were 0–12% and 83–97%, respectively. During the pollution episode, the proportion of Ca-rich particles was very high (26–48% in the PM1–3.3 and PM3.3–11 samples, while the PM0.2–1 and PM1–3.3 samples contained elevated proportions of silicates (22–33%, metal oxides/hydroxides (1–9% and tar balls (1–4%. These aerosols originated mainly from polluted areas of Eastern Europe, and some open biomass burning smoke was also brought by long-range transport. During the clean period, when air masses arrived from the Arctic Ocean, PM1–3.3 samples contained mainly sea salt particles (67–89% with a variable rate of Cl substitution (mainly by NO3−. During the intermediate period, the PM1–3.3 sample contained porous (sponge-like Na-rich particles (35% with abundant S, K and O. They might originate from the burning of wood pulp wastes of paper industry. The proportion of biological particles and C-rich fragments

  2. Iron isotope composition of particles produced by UV-femtosecond laser ablation of natural oxides, sulfides, and carbonates.

    Science.gov (United States)

    d'Abzac, Francois-Xavier; Beard, Brian L; Czaja, Andrew D; Konishi, Hiromi; Schauer, James J; Johnson, Clark M

    2013-12-17

    The need for femtosecond laser ablation (fs-LA) systems coupled to MC-ICP-MS to accurately perform in situ stable isotope analyses remains an open question, because of the lack of knowledge concerning ablation-related isotopic fractionation in this regime. We report the first iron isotope analysis of size-resolved, laser-induced particles of natural magnetite, siderite, pyrrhotite, and pyrite, collected through cascade impaction, followed by analysis by solution nebulization MC-ICP-MS, as well as im