WorldWideScience

Sample records for ultra deep fields

  1. MOVING OBJECTS IN THE HUBBLE ULTRA DEEP FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Mukremin; Gianninas, Alexandros [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States); Von Hippel, Ted, E-mail: kilic@ou.edu, E-mail: alexg@nhn.ou.edu, E-mail: ted.vonhippel@erau.edu [Embry-Riddle Aeronautical University, 600 S. Clyde Morris Blvd., Daytona Beach, FL 32114 (United States)

    2013-09-01

    We identify proper motion objects in the Hubble Ultra Deep Field (UDF) using the optical data from the original UDF program in 2004 and the near-infrared data from the 128 orbit UDF 2012 campaign. There are 12 sources brighter than I = 27 mag that display >3{sigma} significant proper motions. We do not find any proper motion objects fainter than this magnitude limit. Combining optical and near-infrared photometry, we model the spectral energy distribution of each point-source using stellar templates and state-of-the-art white dwarf models. For I {<=} 27 mag, we identify 23 stars with K0-M6 spectral types and two faint blue objects that are clearly old, thick disk white dwarfs. We measure a thick disk white dwarf space density of 0.1-1.7 Multiplication-Sign 10{sup -3} pc{sup -3} from these two objects. There are no halo white dwarfs in the UDF down to I = 27 mag. Combining the Hubble Deep Field North, South, and the UDF data, we do not see any evidence for dark matter in the form of faint halo white dwarfs, and the observed population of white dwarfs can be explained with the standard Galactic models.

  2. THE 2012 HUBBLE ULTRA DEEP FIELD (UDF12): OBSERVATIONAL OVERVIEW

    Energy Technology Data Exchange (ETDEWEB)

    Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Ellis, Richard S.; Schenker, Matthew A. [Department of Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); McLure, Ross J.; Dunlop, James S.; Bowler, Rebecca A. A.; Rogers, Alexander B.; Curtis-Lake, Emma; Cirasuolo, Michele; Wild, V.; Targett, T. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Robertson, Brant E.; Schneider, Evan; Stark, Daniel P. [Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Ono, Yoshiaki; Ouchi, Masami [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa City, Chiba 277-8582 (Japan); Charlot, Stephane [UPMC-CNRS, UMR7095, Institut d' Astrophysique de Paris, F-75014, Paris (France); Furlanetto, Steven R. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)

    2013-11-01

    We present the 2012 Hubble Ultra Deep Field campaign (UDF12), a large 128 orbit Cycle 19 Hubble Space Telescope program aimed at extending previous Wide Field Camera 3 (WFC3)/IR observations of the UDF by quadrupling the exposure time in the F105W filter, imaging in an additional F140W filter, and extending the F160W exposure time by 50%, as well as adding an extremely deep parallel field with the Advanced Camera for Surveys (ACS) in the F814W filter with a total exposure time of 128 orbits. The principal scientific goal of this project is to determine whether galaxies reionized the universe; our observations are designed to provide a robust determination of the star formation density at z ∼> 8, improve measurements of the ultraviolet continuum slope at z ∼ 7-8, facilitate the construction of new samples of z ∼ 9-10 candidates, and enable the detection of sources up to z ∼ 12. For this project we committed to combining these and other WFC3/IR imaging observations of the UDF area into a single homogeneous dataset to provide the deepest near-infrared observations of the sky. In this paper we present the observational overview of the project and describe the procedures used in reducing the data as well as the final products that were produced. We present the details of several special procedures that we implemented to correct calibration issues in the data for both the WFC3/IR observations of the main UDF field and our deep 128 orbit ACS/WFC F814W parallel field image, including treatment for persistence, correction for time-variable sky backgrounds, and astrometric alignment to an accuracy of a few milliarcseconds. We release the full, combined mosaics comprising a single, unified set of mosaics of the UDF, providing the deepest near-infrared blank-field view of the universe currently achievable, reaching magnitudes as deep as AB ∼ 30 mag in the near-infrared, and yielding a legacy dataset on this field.

  3. THE 2012 HUBBLE ULTRA DEEP FIELD (UDF12): OBSERVATIONAL OVERVIEW

    International Nuclear Information System (INIS)

    Koekemoer, Anton M.; Ellis, Richard S.; Schenker, Matthew A.; McLure, Ross J.; Dunlop, James S.; Bowler, Rebecca A. A.; Rogers, Alexander B.; Curtis-Lake, Emma; Cirasuolo, Michele; Wild, V.; Targett, T.; Robertson, Brant E.; Schneider, Evan; Stark, Daniel P.; Ono, Yoshiaki; Ouchi, Masami; Charlot, Stephane; Furlanetto, Steven R.

    2013-01-01

    We present the 2012 Hubble Ultra Deep Field campaign (UDF12), a large 128 orbit Cycle 19 Hubble Space Telescope program aimed at extending previous Wide Field Camera 3 (WFC3)/IR observations of the UDF by quadrupling the exposure time in the F105W filter, imaging in an additional F140W filter, and extending the F160W exposure time by 50%, as well as adding an extremely deep parallel field with the Advanced Camera for Surveys (ACS) in the F814W filter with a total exposure time of 128 orbits. The principal scientific goal of this project is to determine whether galaxies reionized the universe; our observations are designed to provide a robust determination of the star formation density at z ∼> 8, improve measurements of the ultraviolet continuum slope at z ∼ 7-8, facilitate the construction of new samples of z ∼ 9-10 candidates, and enable the detection of sources up to z ∼ 12. For this project we committed to combining these and other WFC3/IR imaging observations of the UDF area into a single homogeneous dataset to provide the deepest near-infrared observations of the sky. In this paper we present the observational overview of the project and describe the procedures used in reducing the data as well as the final products that were produced. We present the details of several special procedures that we implemented to correct calibration issues in the data for both the WFC3/IR observations of the main UDF field and our deep 128 orbit ACS/WFC F814W parallel field image, including treatment for persistence, correction for time-variable sky backgrounds, and astrometric alignment to an accuracy of a few milliarcseconds. We release the full, combined mosaics comprising a single, unified set of mosaics of the UDF, providing the deepest near-infrared blank-field view of the universe currently achievable, reaching magnitudes as deep as AB ∼ 30 mag in the near-infrared, and yielding a legacy dataset on this field

  4. Discovery of z ~ 8 Galaxies in the Hubble Ultra Deep Field from Ultra-Deep WFC3/IR Observations

    Science.gov (United States)

    Bouwens, R. J.; Illingworth, G. D.; Oesch, P. A.; Stiavelli, M.; van Dokkum, P.; Trenti, M.; Magee, D.; Labbé, I.; Franx, M.; Carollo, C. M.; Gonzalez, V.

    2010-02-01

    We utilize the newly acquired, ultra-deep WFC3/IR observations over the Hubble Ultra Deep Field (HUDF) to search for star-forming galaxies at z ~ 8-8.5, only 600 million years from recombination, using a Y 105-dropout selection. The new 4.7 arcmin2 WFC3/IR observations reach to ~28.8 AB mag (5σ) in the Y 105 J 125 H 160 bands. These remarkable data reach ~1.5 AB mag deeper than the previous data over the HUDF, and now are an excellent match to the HUDF optical ACS data. For our search criteria, we use a two-color Lyman break selection technique to identify z ~ 8-8.5Y 105-dropouts. We find five likely z ~ 8-8.5 candidates. The sources have H 160-band magnitudes of ~28.3 AB mag and very blue UV-continuum slopes, with a median estimated β of lsim-2.5 (where f λ vprop λβ). This suggests that z ~ 8 galaxies are not only essentially dust free but also may have very young ages or low metallicities. The observed number of Y 105-dropout candidates is smaller than the 20 ± 6 sources expected assuming no evolution from z ~ 6, but is consistent with the five expected extrapolating the Bouwens et al. luminosity function (LF) results to z ~ 8. These results provide evidence that the evolution in the LF seen from z ~ 7 to z ~ 3 continues to z ~ 8. The remarkable improvement in the sensitivity of WFC3/IR has enabled Hubble Space Telescope to cross a threshold, revealing star-forming galaxies at z~ 8-9. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 11563, 9797.

  5. DISCOVERY OF z ∼ 8 GALAXIES IN THE HUBBLE ULTRA DEEP FIELD FROM ULTRA-DEEP WFC3/IR OBSERVATIONS

    International Nuclear Information System (INIS)

    Bouwens, R. J.; Illingworth, G. D.; Magee, D.; Gonzalez, V.; Oesch, P. A.; Carollo, C. M.; Stiavelli, M.; Van Dokkum, P.; Trenti, M.; Labbe, I.; Franx, M.

    2010-01-01

    We utilize the newly acquired, ultra-deep WFC3/IR observations over the Hubble Ultra Deep Field (HUDF) to search for star-forming galaxies at z ∼ 8-8.5, only 600 million years from recombination, using a Y 105 -dropout selection. The new 4.7 arcmin 2 WFC3/IR observations reach to ∼28.8 AB mag (5σ) in the Y 105 J 125 H 160 bands. These remarkable data reach ∼1.5 AB mag deeper than the previous data over the HUDF, and now are an excellent match to the HUDF optical ACS data. For our search criteria, we use a two-color Lyman break selection technique to identify z ∼ 8-8.5Y 105 -dropouts. We find five likely z ∼ 8-8.5 candidates. The sources have H 160 -band magnitudes of ∼28.3 AB mag and very blue UV-continuum slopes, with a median estimated β of ∼ λ ∝ λ β ). This suggests that z ∼ 8 galaxies are not only essentially dust free but also may have very young ages or low metallicities. The observed number of Y 105 -dropout candidates is smaller than the 20 ± 6 sources expected assuming no evolution from z ∼ 6, but is consistent with the five expected extrapolating the Bouwens et al. luminosity function (LF) results to z ∼ 8. These results provide evidence that the evolution in the LF seen from z ∼ 7 to z ∼ 3 continues to z ∼ 8. The remarkable improvement in the sensitivity of WFC3/IR has enabled Hubble Space Telescope to cross a threshold, revealing star-forming galaxies at z∼ 8-9.

  6. Lyman Break Galaxies in the Hubble Ultra Deep Field through Deep U-Band Imaging

    Science.gov (United States)

    Rafelski, Marc; Wolfe, A. M.; Cooke, J.; Chen, H. W.; Armandroff, T. E.; Wirth, G. D.

    2009-12-01

    We introduce an extremely deep U-band image taken of the Hubble Ultra Deep Field (HUDF), with a one sigma depth of 30.7 mag arcsec-2 and a detection limiting magnitude of 28 mag arcsec-2. The observations were carried out on the Keck I telescope using the LRIS-B detector. The U-band image substantially improves the accuracy of photometric redshift measurements of faint galaxies in the HUDF at z=[2.5,3.5]. The U-band for these galaxies is attenuated by lyman limit absorption, allowing for more reliable selections of candidate Lyman Break Galaxies (LBGs) than from photometric redshifts without U-band. We present a reliable sample of 300 LBGs at z=[2.5,3.5] in the HUDF. Accurate redshifts of faint galaxies at z=[2.5,3.5] are needed to obtain empirical constraints on the star formation efficiency of neutral gas at high redshift. Wolfe & Chen (2006) showed that the star formation rate (SFR) density in damped Ly-alpha absorption systems (DLAs) at z=[2.5,3.5] is significantly lower than predicted by the Kennicutt-Schmidt law for nearby galaxies. One caveat to this result that we wish to test is whether LBGs are embedded in DLAs. If in-situ star formation is occurring in DLAs, we would see it as extended low surface brightness emission around LBGs. We shall use the more accurate photometric redshifts to create a sample of LBGs around which we will look for extended emission in the more sensitive and higher resolution HUDF images. The absence of extended emission would put limits on the SFR density of DLAs associated with LBGs at high redshift. On the other hand, detection of faint emission on scales large compared to the bright LBG cores would indicate the presence of in situ star formation in those DLAs. Such gas would presumably fuel the higher star formation rates present in the LBG cores.

  7. UVUDF: Ultraviolet Imaging of the Hubble Ultra Deep Field with Wide-Field Camera 3

    Science.gov (United States)

    Teplitz, Harry I.; Rafelski, Marc; Kurczynski, Peter; Bond, Nicholas A.; Grogin, Norman; Koekemoer, Anton M.; Atek, Hakim; Brown, Thomas M.; Coe, Dan; Colbert, James W.; Ferguson, Henry C.; Finkelstein, Steven L.; Gardner, Jonathan P.; Gawiser, Eric; Giavalisco, Mauro; Gronwall, Caryl; Hanish, Daniel J.; Lee, Kyoung-Soo; de Mello, Duilia F.; Ravindranath, Swara; Ryan, Russell E.; Siana, Brian D.; Scarlata, Claudia; Soto, Emmaris; Voyer, Elysse N.; Wolfe, Arthur M.

    2013-12-01

    We present an overview of a 90 orbit Hubble Space Telescope treasury program to obtain near-ultraviolet imaging of the Hubble Ultra Deep Field using the Wide Field Camera 3 UVIS detector with the F225W, F275W, and F336W filters. This survey is designed to: (1) investigate the episode of peak star formation activity in galaxies at 1 dropouts at redshifts 1.7, 2.1, and 2.7 is largely consistent with the number predicted by published luminosity functions. We also confirm that the image mosaics have sufficient sensitivity and resolution to support the analysis of the evolution of star-forming clumps, reaching 28-29th magnitude depth at 5σ in a 0.''2 radius aperture depending on filter and observing epoch. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are #12534.

  8. UVUDF: Ultraviolet imaging of the Hubble ultra deep field with wide-field camera 3

    Energy Technology Data Exchange (ETDEWEB)

    Teplitz, Harry I.; Rafelski, Marc; Colbert, James W.; Hanish, Daniel J. [Infrared Processing and Analysis Center, MS 100-22, Caltech, Pasadena, CA 91125 (United States); Kurczynski, Peter; Gawiser, Eric [Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States); Bond, Nicholas A.; Gardner, Jonathan P.; De Mello, Duilia F. [Laboratory for Observational Cosmology, Astrophysics Science Division, Code 665, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Grogin, Norman; Koekemoer, Anton M.; Brown, Thomas M.; Coe, Dan; Ferguson, Henry C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Atek, Hakim [Laboratoire d' Astrophysique, École Polytechnique Fédérale de Lausanne (EPFL), Observatoire, CH-1290 Sauverny (Switzerland); Finkelstein, Steven L. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Giavalisco, Mauro [Astronomy Department, University of Massachusetts, Amherst, MA 01003 (United States); Gronwall, Caryl [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Lee, Kyoung-Soo [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States); Ravindranath, Swara, E-mail: hit@ipac.caltech.edu [Inter-University Centre for Astronomy and Astrophysics, Pune (India); and others

    2013-12-01

    We present an overview of a 90 orbit Hubble Space Telescope treasury program to obtain near-ultraviolet imaging of the Hubble Ultra Deep Field using the Wide Field Camera 3 UVIS detector with the F225W, F275W, and F336W filters. This survey is designed to: (1) investigate the episode of peak star formation activity in galaxies at 1 < z < 2.5; (2) probe the evolution of massive galaxies by resolving sub-galactic units (clumps); (3) examine the escape fraction of ionizing radiation from galaxies at z ∼ 2-3; (4) greatly improve the reliability of photometric redshift estimates; and (5) measure the star formation rate efficiency of neutral atomic-dominated hydrogen gas at z ∼ 1-3. In this overview paper, we describe the survey details and data reduction challenges, including both the necessity of specialized calibrations and the effects of charge transfer inefficiency. We provide a stark demonstration of the effects of charge transfer inefficiency on resultant data products, which when uncorrected, result in uncertain photometry, elongation of morphology in the readout direction, and loss of faint sources far from the readout. We agree with the STScI recommendation that future UVIS observations that require very sensitive measurements use the instrument's capability to add background light through a 'post-flash'. Preliminary results on number counts of UV-selected galaxies and morphology of galaxies at z ∼ 1 are presented. We find that the number density of UV dropouts at redshifts 1.7, 2.1, and 2.7 is largely consistent with the number predicted by published luminosity functions. We also confirm that the image mosaics have sufficient sensitivity and resolution to support the analysis of the evolution of star-forming clumps, reaching 28-29th magnitude depth at 5σ in a 0.''2 radius aperture depending on filter and observing epoch.

  9. A MULTIWAVELENGTH STUDY OF TADPOLE GALAXIES IN THE HUBBLE ULTRA DEEP FIELD

    International Nuclear Information System (INIS)

    Straughn, Amber N.; Eufrasio, Rafael T.; Gardner, Jonathan P.; Voyer, Elysse N.; Mello, Duilia de; Soto, Emmaris; Petty, Sara; Kassin, Susan; Ravindranath, Swara

    2015-01-01

    Multiwavelength data are essential in order to provide a complete picture of galaxy evolution and to inform studies of galaxies’ morphological properties across cosmic time. Here we present the results of a multiwavelength investigation of the morphologies of “tadpole” galaxies at intermediate redshift (0.314 < z < 3.175) in the Hubble Ultra Deep Field. These galaxies were previously selected from deep Hubble Space Telescope (HST) F775W data based on their distinct asymmetric knot-plus-tail morphologies. Here we use deep Wide Field Camera 3 near-infrared imaging in addition to the HST optical data in order to study the rest-frame UV/optical morphologies of these galaxies across the redshift range 0.3 < z < 3.2. This study reveals that the majority of these galaxies do retain their general asymmetric morphology in the rest-frame optical over this redshift range, if not the distinct “tadpole” shape. The average stellar mass of tadpole galaxies is lower than that of field galaxies, with the effect being slightly greater at higher redshift within the errors. Estimated from spectral energy distribution fits, the average age of tadpole galaxies is younger than that of field galaxies in the lower-redshift bin, and the average metallicity is lower (whereas the specific star formation rate for tadpoles is roughly the same as field galaxies across the redshift range probed here). These average effects combined support the conclusion that this subset of galaxies is in an active phase of assembly, either late-stage merging or cold gas accretion causing localized clumpy star formation

  10. A MULTIWAVELENGTH STUDY OF TADPOLE GALAXIES IN THE HUBBLE ULTRA DEEP FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Straughn, Amber N.; Eufrasio, Rafael T.; Gardner, Jonathan P. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Voyer, Elysse N. [Randstad at Google, 1129 San Antonio Road, Palo Alto, CA (United States); Mello, Duilia de; Soto, Emmaris [Department of Physics, The Catholic University of America, Washington, DC 20064 (United States); Petty, Sara [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Kassin, Susan; Ravindranath, Swara [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2015-12-01

    Multiwavelength data are essential in order to provide a complete picture of galaxy evolution and to inform studies of galaxies’ morphological properties across cosmic time. Here we present the results of a multiwavelength investigation of the morphologies of “tadpole” galaxies at intermediate redshift (0.314 < z < 3.175) in the Hubble Ultra Deep Field. These galaxies were previously selected from deep Hubble Space Telescope (HST) F775W data based on their distinct asymmetric knot-plus-tail morphologies. Here we use deep Wide Field Camera 3 near-infrared imaging in addition to the HST optical data in order to study the rest-frame UV/optical morphologies of these galaxies across the redshift range 0.3 < z < 3.2. This study reveals that the majority of these galaxies do retain their general asymmetric morphology in the rest-frame optical over this redshift range, if not the distinct “tadpole” shape. The average stellar mass of tadpole galaxies is lower than that of field galaxies, with the effect being slightly greater at higher redshift within the errors. Estimated from spectral energy distribution fits, the average age of tadpole galaxies is younger than that of field galaxies in the lower-redshift bin, and the average metallicity is lower (whereas the specific star formation rate for tadpoles is roughly the same as field galaxies across the redshift range probed here). These average effects combined support the conclusion that this subset of galaxies is in an active phase of assembly, either late-stage merging or cold gas accretion causing localized clumpy star formation.

  11. Deep Keck u-Band Imaging of the Hubble Ultra Deep Field: A Catalog of z ~ 3 Lyman Break Galaxies

    Science.gov (United States)

    Rafelski, Marc; Wolfe, Arthur M.; Cooke, Jeff; Chen, Hsiao-Wen; Armandroff, Taft E.; Wirth, Gregory D.

    2009-10-01

    We present a sample of 407 z ~ 3 Lyman break galaxies (LBGs) to a limiting isophotal u-band magnitude of 27.6 mag in the Hubble Ultra Deep Field. The LBGs are selected using a combination of photometric redshifts and the u-band drop-out technique enabled by the introduction of an extremely deep u-band image obtained with the Keck I telescope and the blue channel of the Low Resolution Imaging Spectrometer. The Keck u-band image, totaling 9 hr of integration time, has a 1σ depth of 30.7 mag arcsec-2, making it one of the most sensitive u-band images ever obtained. The u-band image also substantially improves the accuracy of photometric redshift measurements of ~50% of the z ~ 3 LBGs, significantly reducing the traditional degeneracy of colors between z ~ 3 and z ~ 0.2 galaxies. This sample provides the most sensitive, high-resolution multi-filter imaging of reliably identified z ~ 3 LBGs for morphological studies of galaxy formation and evolution and the star formation efficiency of gas at high redshift.

  12. Star Formation at z ~ 6: The Hubble Ultra Deep Parallel Fields

    Science.gov (United States)

    Bouwens, R. J.; Illingworth, G. D.; Thompson, R. I.; Blakeslee, J. P.; Dickinson, M. E.; Broadhurst, T. J.; Eisenstein, D. J.; Fan, X.; Franx, M.; Meurer, G.; van Dokkum, P.

    2004-05-01

    We report on the i-dropouts detected in two exceptionally deep Advanced Camera for Surveys fields (B435, V606, i775, and z850 with 10σ limits of 28.8, 29.0, 28.5, and 27.8, respectively) taken in parallel with the Ultra Deep Field Near-Infrared Camera and Multi-Object Spectrometer observations. Using an i-z>1.4 cut, we find 30 i-dropouts over 21 arcmin2 down to z850,AB=28.1, or 1.4 i-dropouts arcmin-2, with significant field-to-field variation (as expected from cosmic variance). This extends i-dropout searches some ~0.9 mag further down the luminosity function than was possible in the Great Observatories Origins Deep Survey (GOODS) fields, yielding a ~7 times increase in surface density. An estimate of the size evolution for UV-bright objects is obtained by comparing the composite radial flux profile of the bright i-dropouts (z850,ABdropouts. The best fit is found with a (1+z)-1.57+0.50-0.53 scaling in size (for fixed luminosity), extending lower redshift (1dropouts from both GOODS fields, we make incompleteness estimates and construct a z~6 luminosity function (LF) in the rest-frame continuum UV (~1350 Å) over a 3.5 mag baseline, finding a shape consistent with that found at lower redshift. To evaluate the evolution in the LF from z~3.8, we make comparisons against different scalings of a lower redshift B-dropout sample. Although a strong degeneracy is found between luminosity and density evolution, our best-fit model scales as (1+z)-2.8 in number and (1+z)0.1 in luminosity, suggesting a rest-frame continuum UV luminosity density at z~6 that is just 0.38+0.09-0.07 times that at z~3.8. Our inclusion of the size evolution makes the present estimate lower than previous z~6 estimates. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. These observations are associated with program 9803.

  13. SPECTROSCOPIC CONFIRMATION OF FAINT LYMAN BREAK GALAXIES NEAR REDSHIFT FIVE IN THE HUBBLE ULTRA DEEP FIELD

    International Nuclear Information System (INIS)

    Rhoads, James E.; Malhotra, Sangeeta; Cohen, Seth; Grogin, Norman; Hathi, Nimish; Ryan, Russell; Straughn, Amber; Windhorst, Rogier A.; Pirzkal, Norbert; Xu Chun; Koekemoer, Anton; Panagia, Nino; Dickinson, Mark; Ferreras, Ignacio; Gronwall, Caryl; Kuemmel, Martin; Walsh, Jeremy; Meurer, Gerhardt; Pasquali, Anna; Yan, H.-J.

    2009-01-01

    We present the faintest spectroscopically confirmed sample of z ∼ 5 Lyman break galaxies (LBGs) to date. The sample is based on slitless grism spectra of the Hubble Ultra Deep Field region from the Grism ACS Program for Extragalactic Science (GRAPES) and Probing Evolution and Reionization Spectroscopically (PEARS) projects, using the G800L grism on the Hubble Space Telescope Advanced Camera for Surveys. We report here confirmations of 39 galaxies, preselected as candidate LBGs using photometric selection criteria. We compare a 'traditional' V-dropout selection, based on the work of Giavalisco et al., to a more liberal one (with V - i > 0.9), and find that the traditional criteria are about 64% complete and 81% reliable. We also study the Lyα emission properties of our sample. We find that Lyα emission is detected in ∼1/4 of the sample, and that the liberal V-dropout color selection includes ∼55% of previously published line-selected Lyα sources. Finally, we examine our stacked two-dimensional spectra. We demonstrate that strong, spatially extended (∼1'') Lyα emission is not a generic property of these LBGs, but that a modest extension of the Lyα photosphere (compared to the starlight) may be present in those galaxies with prominent Lyα emission.

  14. Surface Brightness Profiles of Composite Images of Compact Galaxies at Z approximately equal 4-6 in the Hubble Ultra Deep Field

    National Research Council Canada - National Science Library

    Hathi, N. P; Jansen, R. A; Windhorst, R. A; Cohen, S. H; Keel, W. C; Corbin, M. R; Ryan, Jr, R. E

    2007-01-01

    The Hubble Ultra Deep Field (HUDF) contains a significant number of B-, V-, and iota'-band dropout objects, many of which were recently confirmed to be young star-forming galaxies at Z approximately equal 4-6...

  15. Galaxies at z~7-8: z850-Dropouts in the Hubble Ultra Deep Field

    Science.gov (United States)

    Bouwens, R. J.; Thompson, R. I.; Illingworth, G. D.; Franx, M.; van Dokkum, P. G.; Fan, X.; Dickinson, M. E.; Eisenstein, D. J.; Rieke, M. J.

    2004-12-01

    We have detected likely z~7-8 galaxies in the 144''×144'' Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) observations of the Hubble Ultra Deep Field. Objects are required to be >=3 σ detections in both NICMOS bands, J110 and H160. The selection criteria for this sample are (z850-J110)AB>0.8, (z850-J110)AB>0.66(J110-H160)AB+0.8, (J110-H160)ABdropout galaxies and are clustered within a 1 arcmin2 region. Because all five sources are near the limit of the NICMOS data, we have carefully evaluated their reality. Each of the candidates is visible in different splits of the data and a median stack. We analyzed several noise images and estimate the number of spurious sources to be 1+/-1. A search using an independent reduction of this same data set clearly revealed three of the five candidates and weakly detected a fourth candidate, suggesting that the contamination could be higher. For comparison with predictions from lower redshift samples, we take a conservative approach and adopt four z~7-8 galaxies as our sample. With the same detection criteria on simulated data sets, assuming no evolution from z~3.8, we predict 10 sources at z~7-8, or 14 if we use a more realistic (1+z)-1 size scaling. We estimate that the rest-frame continuum UV (~1800 Å) luminosity density at z~7.5 (integrated down to 0.3L*z=3) is just 0.20+0.12-0.08 times that found at z~3.8 (or 0.20+0.23-0.12 times this quantity including cosmic variance). Effectively this sets an upper limit on the luminosity density down to 0.3L*z=3 and is consistent with significant evolution at the bright end of the luminosity function from z~7.5 to 3.8. Even with the lower UV luminosity density at z~7.5, it appears that galaxies could still play an important role in reionization at these redshifts, although definitive measurements remain to be made. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under

  16. The MUSE Hubble Ultra Deep Field Survey. II. Spectroscopic redshifts and comparisons to color selections of high-redshift galaxies

    Science.gov (United States)

    Inami, H.; Bacon, R.; Brinchmann, J.; Richard, J.; Contini, T.; Conseil, S.; Hamer, S.; Akhlaghi, M.; Bouché, N.; Clément, B.; Desprez, G.; Drake, A. B.; Hashimoto, T.; Leclercq, F.; Maseda, M.; Michel-Dansac, L.; Paalvast, M.; Tresse, L.; Ventou, E.; Kollatschny, W.; Boogaard, L. A.; Finley, H.; Marino, R. A.; Schaye, J.; Wisotzki, L.

    2017-11-01

    We have conducted a two-layered spectroscopic survey (1' × 1' ultra deep and 3' × 3' deep regions) in the Hubble Ultra Deep Field (HUDF) with the Multi Unit Spectroscopic Explorer (MUSE). The combination of a large field of view, high sensitivity, and wide wavelength coverage provides an order of magnitude improvement in spectroscopically confirmed redshifts in the HUDF; i.e., 1206 secure spectroscopic redshifts for Hubble Space Telescope (HST) continuum selected objects, which corresponds to 15% of the total (7904). The redshift distribution extends well beyond z> 3 and to HST/F775W magnitudes as faint as ≈ 30 mag (AB, 1σ). In addition, 132 secure redshifts were obtained for sources with no HST counterparts that were discovered in the MUSE data cubes by a blind search for emission-line features. In total, we present 1338 high quality redshifts, which is a factor of eight increase compared with the previously known spectroscopic redshifts in the same field. We assessed redshifts mainly with the spectral features [O II] at zcolor selection (dropout) diagrams of high-z galaxies. The selection condition for F336W dropouts successfully captures ≈ 80% of the targeted z 2.7 galaxies. However, for higher redshift selections (F435W, F606W, and F775W dropouts), the success rates decrease to ≈ 20-40%. We empirically redefine the selection boundaries to make an attempt to improve them to ≈ 60%. The revised boundaries allow bluer colors that capture Lyα emitters with high Lyα equivalent widths falling in the broadbands used for the color-color selection. Along with this paper, we release the redshift and line flux catalog. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under program IDs 094.A-0289(B), 095.A-0010(A), 096.A-0045(A) and 096.A-0045(B).MUSE Ultra Deep Field redshift catalogs (Full Table A.1) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  17. Galaxy Size Evolution at High Redshift and Surface Brightness Selection Effects: Constraints from the Hubble Ultra Deep Field

    Science.gov (United States)

    Bouwens, R. J.; Illingworth, G. D.; Blakeslee, J. P.; Broadhurst, T. J.; Franx, M.

    2004-08-01

    We use the exceptional depth of the Ultra Deep Field (UDF) and UDF-parallel Advanced Camera for Surveys fields to study the sizes of high-redshift (z~2-6) galaxies and address long-standing questions about possible biases in the cosmic star formation rate due to surface brightness dimming. Contrasting B-, V-, and i-dropout samples culled from the deeper data with those obtained from the shallower Great Observatories Origins Deep Survey fields, we demonstrate that the shallower data are essentially complete at bright magnitudes to z~0.4", >~3 kpc) low surface brightness galaxies are rare. A simple comparison of the half-light radii of the Hubble Deep Field-North + Hubble Deep Field-South U-dropouts with B-, V-, and i-dropouts from the UDF shows that the sizes follow a (1+z)-1.05+/-0.21 scaling toward high redshift. A more rigorous measurement compares different scalings of our U-dropout sample with the mean profiles for a set of intermediate-magnitude (26.0dropouts from the UDF. The best fit is found with a (1+z)-0.94+0.19-0.25 size scaling (for fixed luminosity). This result is then verified by repeating this experiment with different size measures, low-redshift samples, and magnitude ranges. Very similar scalings are found for all comparisons. A robust measurement of size evolution is thereby demonstrated for galaxies from z~6 to 2.5 using data from the UDF. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  18. Galaxy formation in the reionization epoch as hinted by Wide Field Camera 3 observations of the Hubble Ultra Deep Field

    International Nuclear Information System (INIS)

    Yan Haojing; Windhorst, Rogier A.; Cohen, Seth H.; Hathi, Nimish P.; Ryan, Russell E.; O'Connell, Robert W.; McCarthy, Patrick J.

    2010-01-01

    We present a large sample of candidate galaxies at z ∼ 7-10, selected in the Hubble Ultra Deep Field using the new observations of the Wide Field Camera 3 that was recently installed on the Hubble Space Telescope. Our sample is composed of 20 z 850 -dropouts (four new discoveries), 15 Y 105 -dropouts (nine new discoveries) and 20 J 125 -dropouts (all new discoveries). The surface densities of the z 850 -dropouts are close to what was predicted by earlier studies, however, those of the Y 105 - and J 125 -dropouts are quite unexpected. While no Y 105 - or J 125 -dropouts have been found at AB ≤ 28.0 mag, their surface densities seem to increase sharply at fainter levels. While some of these candidates seem to be close to foreground galaxies and thus could possibly be gravitationally lensed, the overall surface densities after excluding such cases are still much higher than what would be expected if the luminosity function does not evolve from z ∼ 7 to 10. Motivated by such steep increases, we tentatively propose a set of Schechter function parameters to describe the luminosity functions at z ∼ 8 and 10. As compared to their counterpart at z ∼ 7, here L * decreases by a factor of ∼ 6.5 and φ * increases by a factor of 17-90. Although such parameters are not yet demanded by the existing observations, they are allowed and seem to agree with the data better than other alternatives. If these luminosity functions are still valid beyond our current detection limit, this would imply a sudden emergence of a large number of low-luminosity galaxies when looking back in time to z ∼ 10, which, while seemingly exotic, would naturally fit in the picture of the cosmic hydrogen reionization. These early galaxies could easily account for the ionizing photon budget required by the reionization, and they would imply that the global star formation rate density might start from a very high value at z ∼ 10, rapidly reach the minimum at z ∼ 7, and start to rise again

  19. The MUSE Hubble Ultra Deep Field Survey. IX. Evolution of galaxy merger fraction since z ≈ 6

    Science.gov (United States)

    Ventou, E.; Contini, T.; Bouché, N.; Epinat, B.; Brinchmann, J.; Bacon, R.; Inami, H.; Lam, D.; Drake, A.; Garel, T.; Michel-Dansac, L.; Pello, R.; Steinmetz, M.; Weilbacher, P. M.; Wisotzki, L.; Carollo, M.

    2017-11-01

    We provide, for the first time, robust observational constraints on the galaxy major merger fraction up to z ≈ 6 using spectroscopic close pair counts. Deep Multi Unit Spectroscopic Explorer (MUSE) observations in the Hubble Ultra Deep Field (HUDF) and Hubble Deep Field South (HDF-S) are used to identify 113 secure close pairs of galaxies among a parent sample of 1801 galaxies spread over a large redshift range (0.2 separation limit of 109.5 M⊙ or the median value of stellar mass computed in each redshift bin. Overall, the major close pair fraction for low-mass and massive galaxies follows the same trend. These new, homogeneous, and robust estimates of the major merger fraction since z ≈ 6 are in good agreement with recent predictions of cosmological numerical simulations. Based on observations made with ESO telescopes at the La Silla-Paranal Observatory under programmes 094.A-0289(B), 095.A-0010(A), 096.A-0045(A) and 096.A-0045(B).

  20. THE UDF05 FOLLOW-UP OF THE HUBBLE ULTRA DEEP FIELD. III. THE LUMINOSITY FUNCTION AT z ∼ 6

    International Nuclear Information System (INIS)

    Su Jian; Stiavelli, Massimo; Bergeron, Eddie; Bradley, Larry; Dahlen, Tomas; Ferguson, Henry C.; Koekemoer, Anton; Lucas, Ray A.; Panagia, Nino; Pavlovsky, Cheryl; Oesch, Pascal; Carollo, Marcella; Lilly, Simon; Trenti, Michele; Giavalisco, Mauro; Mobasher, Bahram

    2011-01-01

    In this paper, we present a derivation of the rest-frame 1400 A luminosity function (LF) at redshift six from a new application of the maximum likelihood method by exploring the five deepest Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS) fields, i.e., the Hubble Ultra Deep Field, two UDF05 fields, and two Great Observatories Origins Deep Survey fields. We work on the latest improved data products, which makes our results more robust than those of previous studies. We use unbinned data and thereby make optimal use of the information contained in the data set. We focus on the analysis to a magnitude limit where the completeness is larger than 50% to avoid possibly large errors in the faint end slope that are difficult to quantify. We also take into account scattering in and out of the dropout sample due to photometric errors by defining for each object a probability that it belongs to the dropout sample. We find the best-fit Schechter parameters to the z ∼ 6 LF are α = 1.87 ± 0.14, M * = -20.25 ± 0.23, and φ * = 1.77 +0.62 -0.49 x 10 -3 Mpc -3 . Such a steep slope suggests that galaxies, especially the faint ones, are possibly the main sources of ionizing photons in the universe at redshift six. We also combine results from all studies at z ∼ 6 to reach an agreement in the 95% confidence level that -20.45 * < -20.05 and -1.90 < α < -1.55. The luminosity density has been found not to evolve significantly between z ∼ 6 and z ∼ 5, but considerable evolution is detected from z ∼ 6 to z ∼ 3.

  1. The UDF05 Follow-up of the Hubble Ultra Deep Field. III. The Luminosity Function at z ~ 6

    Science.gov (United States)

    Su, Jian; Stiavelli, Massimo; Oesch, Pascal; Trenti, Michele; Bergeron, Eddie; Bradley, Larry; Carollo, Marcella; Dahlen, Tomas; Ferguson, Henry C.; Giavalisco, Mauro; Koekemoer, Anton; Lilly, Simon; Lucas, Ray A.; Mobasher, Bahram; Panagia, Nino; Pavlovsky, Cheryl

    2011-09-01

    In this paper, we present a derivation of the rest-frame 1400 Å luminosity function (LF) at redshift six from a new application of the maximum likelihood method by exploring the five deepest Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS) fields, i.e., the Hubble Ultra Deep Field, two UDF05 fields, and two Great Observatories Origins Deep Survey fields. We work on the latest improved data products, which makes our results more robust than those of previous studies. We use unbinned data and thereby make optimal use of the information contained in the data set. We focus on the analysis to a magnitude limit where the completeness is larger than 50% to avoid possibly large errors in the faint end slope that are difficult to quantify. We also take into account scattering in and out of the dropout sample due to photometric errors by defining for each object a probability that it belongs to the dropout sample. We find the best-fit Schechter parameters to the z ~ 6 LF are α = 1.87 ± 0.14, M * = -20.25 ± 0.23, and phi* = 1.77+0.62 -0.49 × 10-3 Mpc-3. Such a steep slope suggests that galaxies, especially the faint ones, are possibly the main sources of ionizing photons in the universe at redshift six. We also combine results from all studies at z ~ 6 to reach an agreement in the 95% confidence level that -20.45 Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 10632 and 11563.

  2. DEEP KECK u-BAND IMAGING OF THE HUBBLE ULTRA DEEP FIELD: A CATALOG OF z ∼ 3 LYMAN BREAK GALAXIES

    International Nuclear Information System (INIS)

    Rafelski, Marc; Wolfe, Arthur M.; Cooke, Jeff; Chen, H.-W.; Armandroff, Taft E.; Wirth, Gregory D.

    2009-01-01

    We present a sample of 407 z ∼ 3 Lyman break galaxies (LBGs) to a limiting isophotal u-band magnitude of 27.6 mag in the Hubble Ultra Deep Field. The LBGs are selected using a combination of photometric redshifts and the u-band drop-out technique enabled by the introduction of an extremely deep u-band image obtained with the Keck I telescope and the blue channel of the Low Resolution Imaging Spectrometer. The Keck u-band image, totaling 9 hr of integration time, has a 1σ depth of 30.7 mag arcsec -2 , making it one of the most sensitive u-band images ever obtained. The u-band image also substantially improves the accuracy of photometric redshift measurements of ∼50% of the z ∼ 3 LBGs, significantly reducing the traditional degeneracy of colors between z ∼ 3 and z ∼ 0.2 galaxies. This sample provides the most sensitive, high-resolution multi-filter imaging of reliably identified z ∼ 3 LBGs for morphological studies of galaxy formation and evolution and the star formation efficiency of gas at high redshift.

  3. EVOLUTION OF THE SIZES OF GALAXIES OVER 7 < z < 12 REVEALED BY THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Yoshiaki; Ouchi, Masami [Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa 277-8582 (Japan); Curtis-Lake, Emma; McLure, Ross J.; Dunlop, James S.; Bowler, Rebecca A. A.; Rogers, Alexander B.; Cirasuolo, Michele [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Schenker, Matthew A.; Ellis, Richard S. [Department of Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Robertson, Brant E.; Schneider, Evan; Stark, Daniel P. [Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Koekemoer, Anton M. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Charlot, Stephane [UPMC-CNRS, UMR7095, Institut d' Astrophysique, F-75014 Paris (France); Shimasaku, Kazuhiro [Department of Astronomy, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan); Furlanetto, Steven R., E-mail: ono@icrr.u-tokyo.ac.jp [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)

    2013-11-10

    We analyze the redshift- and luminosity-dependent sizes of dropout galaxy candidates in the redshift range z ∼ 7-12 using deep images from the 2012 Hubble Ultra Deep Field (UDF12) campaign, which offers two advantages over that used in earlier work. First, we utilize the increased signal-to-noise ratio offered by the UDF12 imaging to provide improved measurements for known galaxies at z ≅ 6.5-8 in the HUDF. Second, because the UDF12 data have allowed the construction of the first robust galaxy sample in the HUDF at z > 8, we have been able to extend the measurement of average galaxy size out to higher redshifts. Restricting our measurements to sources detected at >15σ, we confirm earlier indications that the average half-light radii of z ∼ 7-12 galaxies are extremely small, 0.3-0.4 kpc, comparable to the sizes of giant molecular associations in local star-forming galaxies. We also confirm that there is a clear trend of decreasing half-light radius with increasing redshift, and provide the first evidence that this trend continues beyond z ≅ 8. Modeling the evolution of the average half-light radius as a power law, ∝(1 + z) {sup s}, we obtain a best-fit index of s=-1.30{sup +0.12}{sub -0.14} over z ∼ 4-12. A clear size-luminosity relation is evident in our dropout samples. This relation can be interpreted in terms of a constant surface density of star formation over a range in luminosity of 0.05-1.0 L{sub z=3}. The average star formation surface density in dropout galaxies is 2-3 orders of magnitude lower than that found in extreme starburst galaxies, but is comparable to that seen today in the centers of normal disk galaxies.

  4. EVOLUTION OF THE SIZES OF GALAXIES OVER 7 < z < 12 REVEALED BY THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN

    International Nuclear Information System (INIS)

    Ono, Yoshiaki; Ouchi, Masami; Curtis-Lake, Emma; McLure, Ross J.; Dunlop, James S.; Bowler, Rebecca A. A.; Rogers, Alexander B.; Cirasuolo, Michele; Schenker, Matthew A.; Ellis, Richard S.; Robertson, Brant E.; Schneider, Evan; Stark, Daniel P.; Koekemoer, Anton M.; Charlot, Stephane; Shimasaku, Kazuhiro; Furlanetto, Steven R.

    2013-01-01

    We analyze the redshift- and luminosity-dependent sizes of dropout galaxy candidates in the redshift range z ∼ 7-12 using deep images from the 2012 Hubble Ultra Deep Field (UDF12) campaign, which offers two advantages over that used in earlier work. First, we utilize the increased signal-to-noise ratio offered by the UDF12 imaging to provide improved measurements for known galaxies at z ≅ 6.5-8 in the HUDF. Second, because the UDF12 data have allowed the construction of the first robust galaxy sample in the HUDF at z > 8, we have been able to extend the measurement of average galaxy size out to higher redshifts. Restricting our measurements to sources detected at >15σ, we confirm earlier indications that the average half-light radii of z ∼ 7-12 galaxies are extremely small, 0.3-0.4 kpc, comparable to the sizes of giant molecular associations in local star-forming galaxies. We also confirm that there is a clear trend of decreasing half-light radius with increasing redshift, and provide the first evidence that this trend continues beyond z ≅ 8. Modeling the evolution of the average half-light radius as a power law, ∝(1 + z) s , we obtain a best-fit index of s=-1.30 +0.12 -0.14 over z ∼ 4-12. A clear size-luminosity relation is evident in our dropout samples. This relation can be interpreted in terms of a constant surface density of star formation over a range in luminosity of 0.05-1.0 L z=3 . The average star formation surface density in dropout galaxies is 2-3 orders of magnitude lower than that found in extreme starburst galaxies, but is comparable to that seen today in the centers of normal disk galaxies

  5. Emission-Line Galaxies from the PEARS Hubble Ultra Deep Field: A 2-D Detection Method and First Results

    Science.gov (United States)

    Gardner, J. P.; Straughn, Amber N.; Meurer, Gerhardt R.; Pirzkal, Norbert; Cohen, Seth H.; Malhotra, Sangeeta; Rhoads, james; Windhorst, Rogier A.; Gardner, Jonathan P.; Hathi, Nimish P.; hide

    2007-01-01

    The Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) grism PEARS (Probing Evolution And Reionization Spectroscopically) survey provides a large dataset of low-resolution spectra from thousands of galaxies in the GOODS North and South fields. One important subset of objects in these data are emission-line galaxies (ELGs), and we have investigated several different methods aimed at systematically selecting these galaxies. Here we present a new methodology and results of a search for these ELGs in the PEARS observations of the Hubble Ultra Deep Field (HUDF) using a 2D detection method that utilizes the observation that many emission lines originate from clumpy knots within galaxies. This 2D line-finding method proves to be useful in detecting emission lines from compact knots within galaxies that might not otherwise be detected using more traditional 1D line-finding techniques. We find in total 96 emission lines in the HUDF, originating from 81 distinct "knots" within 63 individual galaxies. We find in general that [0 1111 emitters are the most common, comprising 44% of the sample, and on average have high equivalent widths (70% of [0 1111 emitters having rest-frame EW> 100A). There are 12 galaxies with multiple emitting knots; several show evidence of variations in H-alpha flux in the knots, suggesting that the differing star formation properties across a single galaxy can in general be probed at redshifts approximately greater than 0.2 - 0.4. The most prevalent morphologies are large face-on spirals and clumpy interacting systems, many being unique detections owing to the 2D method described here, thus highlighting the strength of this technique.

  6. THE TAIWAN ECDFS NEAR-INFRARED SURVEY: ULTRA-DEEP J AND K{sub S} IMAGING IN THE EXTENDED CHANDRA DEEP FIELD-SOUTH

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Bau-Ching; Wang, Wei-Hao; Hsieh, Chih-Chiang; Lin, Lihwai; Lim, Jeremy; Ho, Paul T. P. [Institute of Astrophysics and Astronomy, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China); Yan Haojing [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States)

    2012-12-15

    We present ultra-deep J and K{sub S} imaging observations covering a 30' Multiplication-Sign 30' area of the Extended Chandra Deep Field-South (ECDFS) carried out by our Taiwan ECDFS Near-Infrared Survey (TENIS). The median 5{sigma} limiting magnitudes for all detected objects in the ECDFS reach 24.5 and 23.9 mag (AB) for J and K{sub S} , respectively. In the inner 400 arcmin{sup 2} region where the sensitivity is more uniform, objects as faint as 25.6 and 25.0 mag are detected at 5{sigma}. Thus, this is by far the deepest J and K{sub S} data sets available for the ECDFS. To combine TENIS with the Spitzer IRAC data for obtaining better spectral energy distributions of high-redshift objects, we developed a novel deconvolution technique (IRACLEAN) to accurately estimate the IRAC fluxes. IRACLEAN can minimize the effect of blending in the IRAC images caused by the large point-spread functions and reduce the confusion noise. We applied IRACLEAN to the images from the Spitzer IRAC/MUSYC Public Legacy in the ECDFS survey (SIMPLE) and generated a J+K{sub S} -selected multi-wavelength catalog including the photometry of both the TENIS near-infrared and the SIMPLE IRAC data. We publicly release the data products derived from this work, including the J and K{sub S} images and the J+K{sub S} -selected multi-wavelength catalog.

  7. UV Luminosity Functions at z~4, 5, and 6 from the Hubble Ultra Deep Field and Other Deep Hubble Space Telescope ACS Fields: Evolution and Star Formation History

    Science.gov (United States)

    Bouwens, R. J.; Illingworth, G. D.; Franx, Marijn; Ford, Holland

    2007-12-01

    We use the ACS BViz data from the HUDF and all other deep HST ACS fields (including the GOODS fields) to find large samples of star-forming galaxies at z~4 and ~5 and to extend our previous z~6 sample. These samples contain 4671, 1416, and 627 B-, V-, and i-dropouts, respectively, and reach to extremely low luminosities [(0.01-0.04)L*z=3 or MUV~-16 to -17], allowing us to determine the rest-frame UV LF and faint-end slope α at z~4-6 to high accuracy. We find faint-end slopes α=-1.73+/-0.05, -1.66+/-0.09, and -1.74+/-0.16 at z~4, ~5, and ~6, respectively, suggesting that the faint-end slope is very steep and shows little evolution with cosmic time. We find that M*UV brightens considerably in the 0.7 Gyr from z~6 to ~4 (by ~0.7 mag from M*UV=-20.24+/-0.19 to -20.98+/-0.10). The observed increase in the characteristic luminosity over this range is almost identical to that expected for the halo mass function, suggesting that the observed evolution is likely due to the hierarchical coalescence and merging of galaxies. The evolution in φ* is not significant. The UV luminosity density at z~6 is modestly lower than (0.45+/-0.09 times) that at z~4 (integrated to -17.5 mag) although a larger change is seen in the dust-corrected SFR density. We thoroughly examine published LF results and assess the reasons for their wide dispersion. We argue that the results reported here are the most robust available. The extremely steep faint-end slopes α found here suggest that lower luminosity galaxies play a significant role in reionizing the universe. Finally, recent search results for galaxies at z~7-8 are used to extend our estimates of the evolution of M* from z~7-8 to z~4. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 9425, 9575, 9803, 9978, 10189, 10339, 10340, and 10632.

  8. Ultra Deep Wave Equation Imaging and Illumination

    Energy Technology Data Exchange (ETDEWEB)

    Alexander M. Popovici; Sergey Fomel; Paul Sava; Sean Crawley; Yining Li; Cristian Lupascu

    2006-09-30

    In this project we developed and tested a novel technology, designed to enhance seismic resolution and imaging of ultra-deep complex geologic structures by using state-of-the-art wave-equation depth migration and wave-equation velocity model building technology for deeper data penetration and recovery, steeper dip and ultra-deep structure imaging, accurate velocity estimation for imaging and pore pressure prediction and accurate illumination and amplitude processing for extending the AVO prediction window. Ultra-deep wave-equation imaging provides greater resolution and accuracy under complex geologic structures where energy multipathing occurs, than what can be accomplished today with standard imaging technology. The objective of the research effort was to examine the feasibility of imaging ultra-deep structures onshore and offshore, by using (1) wave-equation migration, (2) angle-gathers velocity model building, and (3) wave-equation illumination and amplitude compensation. The effort consisted of answering critical technical questions that determine the feasibility of the proposed methodology, testing the theory on synthetic data, and finally applying the technology for imaging ultra-deep real data. Some of the questions answered by this research addressed: (1) the handling of true amplitudes in the downward continuation and imaging algorithm and the preservation of the amplitude with offset or amplitude with angle information required for AVO studies, (2) the effect of several imaging conditions on amplitudes, (3) non-elastic attenuation and approaches for recovering the amplitude and frequency, (4) the effect of aperture and illumination on imaging steep dips and on discriminating the velocities in the ultra-deep structures. All these effects were incorporated in the final imaging step of a real data set acquired specifically to address ultra-deep imaging issues, with large offsets (12,500 m) and long recording time (20 s).

  9. Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment.

    Science.gov (United States)

    Ohsugi, Hideharu; Tabuchi, Hitoshi; Enno, Hiroki; Ishitobi, Naofumi

    2017-08-25

    Rhegmatogenous retinal detachment (RRD) is a serious condition that can lead to blindness; however, it is highly treatable with timely and appropriate treatment. Thus, early diagnosis and treatment of RRD is crucial. In this study, we applied deep learning, a machine-learning technology, to detect RRD using ultra-wide-field fundus images and investigated its performance. In total, 411 images (329 for training and 82 for grading) from 407 RRD patients and 420 images (336 for training and 84 for grading) from 238 non-RRD patients were used in this study. The deep learning model demonstrated a high sensitivity of 97.6% [95% confidence interval (CI), 94.2-100%] and a high specificity of 96.5% (95% CI, 90.2-100%), and the area under the curve was 0.988 (95% CI, 0.981-0.995). This model can improve medical care in remote areas where eye clinics are not available by using ultra-wide-field fundus ophthalmoscopy for the accurate diagnosis of RRD. Early diagnosis of RRD can prevent blindness.

  10. The Spectral Energy Distributions of z ~ 8 Galaxies from the IRAC Ultra Deep Fields: Emission Lines, Stellar Masses, and Specific Star Formation Rates at 650 Myr

    Science.gov (United States)

    Labbé, I.; Oesch, P. A.; Bouwens, R. J.; Illingworth, G. D.; Magee, D.; González, V.; Carollo, C. M.; Franx, M.; Trenti, M.; van Dokkum, P. G.; Stiavelli, M.

    2013-11-01

    Using new ultradeep Spitzer/InfraRed Array Camera (IRAC) photometry from the IRAC Ultra Deep Field program, we investigate the stellar populations of a sample of 63 Y-dropout galaxy candidates at z ~ 8, only 650 Myr after the big bang. The sources are selected from HST/ACS+WFC3/IR data over the Hubble Ultra Deep Field (HUDF), two HUDF parallel fields, and wide area data over the CANDELS/GOODS-South. The new Spitzer/IRAC data increase the coverage in [3.6] and [4.5] to ~120h over the HUDF reaching depths of ~28 (AB,1σ). The improved depth and inclusion of brighter candidates result in direct >=3σ InfraRed Array Camera (IRAC) detections of 20/63 sources, of which 11/63 are detected at >=5σ. The average [3.6]-[4.5] colors of IRAC detected galaxies at z ~ 8 are markedly redder than those at z ~ 7, observed only 130 Myr later. The simplest explanation is that we witness strong rest-frame optical emission lines (in particular [O III] λλ4959, 5007 + Hβ) moving through the IRAC bandpasses with redshift. Assuming that the average rest-frame spectrum is the same at both z ~ 7 and z ~ 8 we estimate a rest-frame equivalent width of {W}_{[O\\,\\scriptsize{III}]\\ \\lambda \\lambda 4959,5007+H\\beta }=670^{+260}_{-170} Å contributing 0.56^{+0.16}_{-0.11} mag to the [4.5] filter at z ~ 8. The corresponding {W}_{H\\alpha }=430^{+160}_{-110} Å implies an average specific star formation rate of sSFR=11_{-5}^{+11} Gyr-1 and a stellar population age of 100_{-50}^{+100} Myr. Correcting the spectral energy distribution for the contribution of emission lines lowers the average best-fit stellar masses and mass-to-light ratios by ~3 ×, decreasing the integrated stellar mass density to \\rho ^*(z=8,M_{\\rm{UV}}Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #11563, 9797. Based on observations with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of

  11. THE SPECTRAL ENERGY DISTRIBUTIONS OF z ∼ 8 GALAXIES FROM THE IRAC ULTRA DEEP FIELDS: EMISSION LINES, STELLAR MASSES, AND SPECIFIC STAR FORMATION RATES AT 650 MYR

    Energy Technology Data Exchange (ETDEWEB)

    Labbé, I.; Bouwens, R. J.; Franx, M. [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Oesch, P. A.; Illingworth, G. D.; Magee, D.; González, V. [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Carollo, C. M. [Institute for Astronomy, ETH Zurich, 8092 Zurich (Switzerland); Trenti, M. [Kavli Institute for Cosmology and Institute of Astronomy, University of Cambridge, Cambridge (United Kingdom); Van Dokkum, P. G. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Stiavelli, M. [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2013-11-10

    Using new ultradeep Spitzer/InfraRed Array Camera (IRAC) photometry from the IRAC Ultra Deep Field program, we investigate the stellar populations of a sample of 63 Y-dropout galaxy candidates at z ∼ 8, only 650 Myr after the big bang. The sources are selected from HST/ACS+WFC3/IR data over the Hubble Ultra Deep Field (HUDF), two HUDF parallel fields, and wide area data over the CANDELS/GOODS-South. The new Spitzer/IRAC data increase the coverage in [3.6] and [4.5] to ∼120h over the HUDF reaching depths of ∼28 (AB,1σ). The improved depth and inclusion of brighter candidates result in direct ≥3σ InfraRed Array Camera (IRAC) detections of 20/63 sources, of which 11/63 are detected at ≥5σ. The average [3.6]-[4.5] colors of IRAC detected galaxies at z ∼ 8 are markedly redder than those at z ∼ 7, observed only 130 Myr later. The simplest explanation is that we witness strong rest-frame optical emission lines (in particular [O III] λλ4959, 5007 + Hβ) moving through the IRAC bandpasses with redshift. Assuming that the average rest-frame spectrum is the same at both z ∼ 7 and z ∼ 8 we estimate a rest-frame equivalent width of contributing 0.56{sup +0.16}{sub -0.11} mag to the [4.5] filter at z ∼ 8. The corresponding W{sub Hα}=430{sup +160}{sub -110} Å implies an average specific star formation rate of sSFR=11{sub -5}{sup +11} Gyr{sup –1} and a stellar population age of 100{sub -50}{sup +100} Myr. Correcting the spectral energy distribution for the contribution of emission lines lowers the average best-fit stellar masses and mass-to-light ratios by ∼3 ×, decreasing the integrated stellar mass density to ρ{sup *}(z=8,M{sub UV}<-18)=0.6{sup +0.4}{sub -0.3}×10{sup 6} M{sub sun} Mpc{sup –3}.

  12. Accuracy of ultra-wide-field fundus ophthalmoscopy-assisted deep learning, a machine-learning technology, for detecting age-related macular degeneration.

    Science.gov (United States)

    Matsuba, Shinji; Tabuchi, Hitoshi; Ohsugi, Hideharu; Enno, Hiroki; Ishitobi, Naofumi; Masumoto, Hiroki; Kiuchi, Yoshiaki

    2018-05-09

    To predict exudative age-related macular degeneration (AMD), we combined a deep convolutional neural network (DCNN), a machine-learning algorithm, with Optos, an ultra-wide-field fundus imaging system. First, to evaluate the diagnostic accuracy of DCNN, 364 photographic images (AMD: 137) were amplified and the area under the curve (AUC), sensitivity and specificity were examined. Furthermore, in order to compare the diagnostic abilities between DCNN and six ophthalmologists, we prepared yield 84 sheets comprising 50% of normal and wet-AMD data each, and calculated the correct answer rate, specificity, sensitivity, and response times. DCNN exhibited 100% sensitivity and 97.31% specificity for wet-AMD images, with an average AUC of 99.76%. Moreover, comparing the diagnostic abilities of DCNN versus six ophthalmologists, the average accuracy of the DCNN was 100%. On the other hand, the accuracy of ophthalmologists, determined only by Optos images without a fundus examination, was 81.9%. A combination of DCNN with Optos images is not better than a medical examination; however, it can identify exudative AMD with a high level of accuracy. Our system is considered useful for screening and telemedicine.

  13. Spitzer IRAC Confirmation of z850-Dropout Galaxies in the Hubble Ultra Deep Field: Stellar Masses and Ages at z ~ 7

    Science.gov (United States)

    Labbé, Ivo; Bouwens, Rychard; Illingworth, G. D.; Franx, M.

    2006-10-01

    Using Spitzer IRAC mid-infrared imaging from the Great Observatories Origins Deep Survey, we study z850-dropout sources in the Hubble Ultra Deep Field. After carefully removing contaminating flux from foreground sources, we clearly detect two z850 dropouts at 3.6 and 4.5 μm, while two others are marginally detected. The mid-infrared fluxes strongly support their interpretation as galaxies at z~7, seen when the universe was only 750 Myr old. The IRAC observations allow us for the first time to constrain the rest-frame optical colors, stellar masses, and ages of the highest redshift galaxies. Fitting stellar population models to the spectral energy distributions, we find photometric redshifts in the range 6.7-7.4, rest-frame colors U-V=0.2-0.4, V-band luminosities LV=(0.6-3)×1010 Lsolar, stellar masses (1-10)×109 Msolar, stellar ages 50-200 Myr, star formation rates up to ~25 Msolar yr-1, and low reddening AV~8, during the era of cosmic reionization, but the star formation rate density derived from their stellar masses and ages is not nearly sufficient to reionize the universe. The simplest explanation for this deficiency is that lower mass galaxies beyond our detection limit reionized the universe. Based on observations with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA through contract 125790 issued by JPL/Caltech. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Based on service mode observations collected at the European Southern Observatory, Paranal, Chile (ESO program 073.A-0764A).

  14. Rapid and Deep Proteomes by Faster Sequencing on a Benchtop Quadrupole Ultra-High-Field Orbitrap Mass Spectrometer

    DEFF Research Database (Denmark)

    Kelstrup, Christian D; Jersie-Christensen, Rosa R; Batth, Tanveer Singh

    2014-01-01

    per second or up to 600 new peptides sequenced per gradient minute. We identify 4400 proteins from one microgram of HeLa digest using a one hour gradient, which is an approximately 30% improvement compared to previous instrumentation. In addition, we show very deep proteome coverage can be achieved...... in less than 24 hours of analysis time by offline high pH reversed-phase peptide fractionation from which we identify more than 140,000 unique peptide sequences. This is comparable to state-of-the-art multi-day, multi-enzyme efforts. Finally the acquisition methods are evaluated for single...

  15. THE UV LUMINOSITY FUNCTION OF STAR-FORMING GALAXIES VIA DROPOUT SELECTION AT REDSHIFTS z ∼ 7 AND 8 FROM THE 2012 ULTRA DEEP FIELD CAMPAIGN

    International Nuclear Information System (INIS)

    Schenker, Matthew A.; Ellis, Richard S.; Robertson, Brant E.; Schneider, Evan; Ono, Yoshiaki; Ouchi, Masami; Stark, Daniel P.; McLure, Ross J.; Dunlop, James S.; Bowler, Rebecca A. A.; Curtis-Lake, Emma; Rogers, Alexander B.; Cirasuolo, Michele; Koekemoer, Anton; Charlot, Stephane; Furlanetto, Steven R.

    2013-01-01

    We present a catalog of high-redshift star-forming galaxies selected to lie within the redshift range z ≅ 7-8 using the Ultra Deep Field 2012 (UDF12), the deepest near-infrared (near-IR) exposures yet taken with the Hubble Space Telescope (HST). As a result of the increased near-IR exposure time compared to previous HST imaging in this field, we probe ∼0.65 (0.25) mag fainter in absolute UV magnitude, at z ∼ 7 (8), which increases confidence in a measurement of the faint end slope of the galaxy luminosity function. Through a 0.7 mag deeper limit in the key F105W filter that encompasses or lies just longward of the Lyman break, we also achieve a much-refined color-color selection that balances high redshift completeness and a low expected contamination fraction. We improve the number of dropout-selected UDF sources to 47 at z ∼ 7 and 27 at z ∼ 8. Incorporating brighter archival and ground-based samples, we measure the z ≅ 7 UV luminosity function to an absolute magnitude limit of M UV = –17 and find a faint end Schechter slope of α=-1.87 +0.18 -0.17 . Using a similar color-color selection at z ≅ 8 that takes our newly added imaging in the F140W filter into account, and incorporating archival data from the HIPPIES and BoRG campaigns, we provide a robust estimate of the faint end slope at z ≅ 8, α=-1.94 +0.21 -0.24 . We briefly discuss our results in the context of earlier work and that derived using the same UDF12 data but with an independent photometric redshift technique.

  16. THE UV LUMINOSITY FUNCTION OF STAR-FORMING GALAXIES VIA DROPOUT SELECTION AT REDSHIFTS z {approx} 7 AND 8 FROM THE 2012 ULTRA DEEP FIELD CAMPAIGN

    Energy Technology Data Exchange (ETDEWEB)

    Schenker, Matthew A.; Ellis, Richard S. [Department of Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Robertson, Brant E.; Schneider, Evan [Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Ono, Yoshiaki; Ouchi, Masami; Stark, Daniel P. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa City, Chiba 277-8582 (Japan); McLure, Ross J.; Dunlop, James S.; Bowler, Rebecca A. A.; Curtis-Lake, Emma; Rogers, Alexander B.; Cirasuolo, Michele [Institute for Astronomy, University of Edinburgh, Edinburgh EH9 3HJ (United Kingdom); Koekemoer, Anton [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Charlot, Stephane [UPMC-CNRS, UMR7095, Institut d' Astrophysique de Paris, F-75014 Paris (France); Furlanetto, Steven R., E-mail: schenker@astro.caltech.edu [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States)

    2013-05-10

    We present a catalog of high-redshift star-forming galaxies selected to lie within the redshift range z {approx_equal} 7-8 using the Ultra Deep Field 2012 (UDF12), the deepest near-infrared (near-IR) exposures yet taken with the Hubble Space Telescope (HST). As a result of the increased near-IR exposure time compared to previous HST imaging in this field, we probe {approx}0.65 (0.25) mag fainter in absolute UV magnitude, at z {approx} 7 (8), which increases confidence in a measurement of the faint end slope of the galaxy luminosity function. Through a 0.7 mag deeper limit in the key F105W filter that encompasses or lies just longward of the Lyman break, we also achieve a much-refined color-color selection that balances high redshift completeness and a low expected contamination fraction. We improve the number of dropout-selected UDF sources to 47 at z {approx} 7 and 27 at z {approx} 8. Incorporating brighter archival and ground-based samples, we measure the z {approx_equal} 7 UV luminosity function to an absolute magnitude limit of M{sub UV} = -17 and find a faint end Schechter slope of {alpha}=-1.87{sup +0.18}{sub -0.17}. Using a similar color-color selection at z {approx_equal} 8 that takes our newly added imaging in the F140W filter into account, and incorporating archival data from the HIPPIES and BoRG campaigns, we provide a robust estimate of the faint end slope at z {approx_equal} 8, {alpha}=-1.94{sup +0.21}{sub -0.24}. We briefly discuss our results in the context of earlier work and that derived using the same UDF12 data but with an independent photometric redshift technique.

  17. ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: CO LUMINOSITY FUNCTIONS AND THE EVOLUTION OF THE COSMIC DENSITY OF MOLECULAR GAS

    Energy Technology Data Exchange (ETDEWEB)

    Decarli, Roberto; Walter, Fabian [Max-Planck Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Aravena, Manuel; Assef, Roberto J. [Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Carilli, Chris [National Radio Astronomy Observatory, Pete V. Domenici Array Science Center, P.O. Box O, Socorro, NM 87801 (United States); Bouwens, Rychard [Leiden Observatory, Leiden University, P.O. Box 9513, NL2300 RA Leiden (Netherlands); Da Cunha, Elisabete [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Daddi, Emanuele [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette cedex (France); Ivison, R. J.; Popping, Gergö [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748, Garching (Germany); Riechers, Dominik [Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States); Smail, Ian R. [6 Centre for Extragalactic Astronomy, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Swinbank, Mark [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-053121 Bonn (Germany); Weiss, Axel; Anguita, Timo, E-mail: decarli@mpia.de [Departamento de Ciencias Físicas, Universidad Andres Bello, Fernandez Concha 700, Las Condes, Santiago (Chile); and others

    2016-12-10

    In this paper we use ASPECS, the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field in band 3 and band 6, to place blind constraints on the CO luminosity function and the evolution of the cosmic molecular gas density as a function of redshift up to z  ∼ 4.5. This study is based on galaxies that have been selected solely through their CO emission and not through any other property. In all of the redshift bins the ASPECS measurements reach the predicted “knee” of the CO luminosity function (around 5 × 10{sup 9} K km s{sup −1} pc{sup 2}). We find clear evidence of an evolution in the CO luminosity function with respect to z  ∼ 0, with more CO-luminous galaxies present at z  ∼ 2. The observed galaxies at z  ∼ 2 also appear more gas-rich than predicted by recent semi-analytical models. The comoving cosmic molecular gas density within galaxies as a function of redshift shows a drop by a factor of 3–10 from z  ∼ 2 to z  ∼ 0 (with significant error bars), and possibly a decline at z  > 3. This trend is similar to the observed evolution of the cosmic star formation rate density. The latter therefore appears to be at least partly driven by the increased availability of molecular gas reservoirs at the peak of cosmic star formation ( z  ∼ 2).

  18. WFIRST: Science from Deep Field Surveys

    Science.gov (United States)

    Koekemoer, Anton; Foley, Ryan; WFIRST Deep Field Working Group

    2018-01-01

    WFIRST will enable deep field imaging across much larger areas than those previously obtained with Hubble, opening up completely new areas of parameter space for extragalactic deep fields including cosmology, supernova and galaxy evolution science. The instantaneous field of view of the Wide Field Instrument (WFI) is about 0.3 square degrees, which would for example yield an Ultra Deep Field (UDF) reaching similar depths at visible and near-infrared wavelengths to that obtained with Hubble, over an area about 100-200 times larger, for a comparable investment in time. Moreover, wider fields on scales of 10-20 square degrees could achieve depths comparable to large HST surveys at medium depths such as GOODS and CANDELS, and would enable multi-epoch supernova science that could be matched in area to LSST Deep Drilling fields or other large survey areas. Such fields may benefit from being placed on locations in the sky that have ancillary multi-band imaging or spectroscopy from other facilities, from the ground or in space. The WFIRST Deep Fields Working Group has been examining the science considerations for various types of deep fields that may be obtained with WFIRST, and present here a summary of the various properties of different locations in the sky that may be considered for future deep fields with WFIRST.

  19. The UDF05 Follow-Up of the Hubble Ultra Deep Field. II. Constraints on Reionization from Z-Dropout Galaxies

    Science.gov (United States)

    Oesch, P. A.; Carollo, C. M.; Stiavelli, M.; Trenti, M.; Bergeron, L. E.; Koekemoer, A. M.; Lucas, R. A.; Pavlovsky, C. M.; Beckwith, S. V. W.; Dahlen, T.; Ferguson, H. C.; Gardner, Jonathan P.; Lilly, S. J.; Mobasher, B.; Panagia, N.

    2009-01-01

    We detect three (plus one less certain) z 850-dropout sources in two separate fields (Hubble Ultra Deep Field and NICP34) of our UDF05 Hubble Space Telescope Near-Infrared Camera and Multi-Object Spectrometer images. These z ~ 7 Lyman-break Galaxy (LBG) candidates allow us to constrain the Luminosity Function (LF) of the star-forming galaxy population at those epochs. By assuming a change in only M * and adopting a linear evolution in redshift, anchored to the measured values at z ~ 6, the best-fit evolution coefficient is found to be 0.43 ± 0.19 mag per unit redshift (0.36 ± 0.18, if including all four candidates), which provides a value of M *(z = 7.2) = -19.7 ± 0.3. This implies a drop in the luminosity density in LBGs by a factor of ~2-2.5 over the ~ 170 Myr that separate z ~ 6 and z ~ 7, and a steady evolution for the LBG LF out to z ~ 7, at the same rate that is observed throughout the z ~ 3-6 period. This puts a strong constraint on the star-formation histories of z ~ 6 galaxies, whose ensemble star-formation rate (SFR) density must be lower by a factor of 2 at ~ 170 Myr before the epoch at which they are observed. In particular, a large fraction of stars in the z ~ 6 LBG population must form at redshifts well above z ~ 7. The rate of ionizing photons produced by the LBG population consistently decreases with the decrease in the cosmic SFR density. Extrapolating this steady evolution of the LF out to higher redshifts, we estimate that galaxies would be able to reionize the universe by z ~ 6, provided that the faint-end slope of the z > 7 LF steepens to α ~ -1.9 and that faint galaxies with luminosities below the current detection limits contribute a substantial fraction of the required ionizing photons. This scenario, however, gives an integrated optical depth to electron scattering that is ~2σ below the Wilkinson Microwave Anisotropy Probe-5 measurement. Therefore, altogether, our results indicate that, should galaxies be the primary contributors to

  20. Westerbork Ultra-Deep Survey of HI at z=0.2

    NARCIS (Netherlands)

    Verheijen, Marc; Deshev, Boris; van Gorkom, Jacqueline; Poggianti, Bianca; Chung, Aeree; Cybulski, Ryan; Dwarakanath, K. S.; Montero-Castano, Maria; Morrison, Glenn; Schiminovich, David; Szomoru, Arpad; Yun, Min

    2010-01-01

    In this contribution, we present some preliminary observational results from the completed ultra-deep survey of 21cm emission from neutral hydrogen at redshifts z=0.164-0.224 with the Westerbork Synthesis Radio Telescope. In two separate fields, a total of 160 individual galaxies has been detected

  1. BUDHIES: a Blind Ultra Deep HI Environmental Survey

    NARCIS (Netherlands)

    Jaffé, Y. L.; Verheijen, M. A.; Poggianti, B. M.; van Gorkom, J. H.; Deshev, B. Z.

    2014-01-01

    We present recent results from the Blind Ultra Deep HI Environmental Survey (BUDHIES), that has detected over 150 galaxies at z˜ 0.2 with the Westerbork Synthesis Radio Telescope (WSRT). Our multi-wavelength study is the first where optical properties and HI content are combined at a redshift where

  2. THE ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: IMPLICATIONS FOR SPECTRAL LINE INTENSITY MAPPING AT MILLIMETER WAVELENGTHS AND CMB SPECTRAL DISTORTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Carilli, C. L.; Walter, F. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States); Chluba, J. [Jodrell Bank Centre for Astrophysics, University of Manchester, Oxford Road, M13 9PL (United Kingdom); Decarli, R. [Max-Planck Institute for Astronomy, D-69117 Heidelberg (Germany); Aravena, M. [Nucleo de Astronomia, Facultad de Ingenieria, Universidad Diego Portales, Av. Ejercito 441, Santiago (Chile); Wagg, J. [Square Kilometre Array Organisation, Lower Withington, Cheshire (United Kingdom); Popping, G. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748, Garching (Germany); Cortes, P. [Joint ALMA Observatory—ESO, Av. Alonso de Cordova, 3104, Santiago (Chile); Hodge, J. [Leiden Observatory, Leiden University, Niels Bohrweg 2, NL2333 RA Leiden (Netherlands); Weiss, A. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Bertoldi, F. [Argelander Institute for Astronomy, University of Bonn, Auf dem Hügel 71, D-53121 Bonn (Germany); Riechers, D., E-mail: ccarilli@aoc.nrao.edu [Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States)

    2016-12-10

    We present direct estimates of the mean sky brightness temperature in observing bands around 99 and 242 GHz due to line emission from distant galaxies. These values are calculated from the summed line emission observed in a blind, deep survey for spectral line emission from high redshift galaxies using ALMA (the ALMA spectral deep field observations “ASPECS” survey). In the 99 GHz band, the mean brightness will be dominated by rotational transitions of CO from intermediate and high redshift galaxies. In the 242 GHz band, the emission could be a combination of higher order CO lines, and possibly [C ii] 158 μ m line emission from very high redshift galaxies ( z  ∼ 6–7). The mean line surface brightness is a quantity that is relevant to measurements of spectral distortions of the cosmic microwave background, and as a potential tool for studying large-scale structures in the early universe using intensity mapping. While the cosmic volume and the number of detections are admittedly small, this pilot survey provides a direct measure of the mean line surface brightness, independent of conversion factors, excitation, or other galaxy formation model assumptions. The mean surface brightness in the 99 GHZ band is: T{sub B}  = 0.94 ± 0.09 μ K. In the 242 GHz band, the mean brightness is: T{sub B}  = 0.55 ± 0.033 μ K. These should be interpreted as lower limits on the average sky signal, since we only include lines detected individually in the blind survey, while in a low resolution intensity mapping experiment, there will also be the summed contribution from lower luminosity galaxies that cannot be detected individually in the current blind survey.

  3. Girassol, Riser Towers for ultra deep water

    Energy Technology Data Exchange (ETDEWEB)

    Rougier, Regis

    1999-07-01

    This is a brief presentation of the technical concept developed by ALTO MAR GIRASSOL (AMG) for the Girassol umbilical and flowlines system. In 1998 AMG was awarded a contract by Elf Exploration Angola for the engineering, procurement, construction and installation (EPCI) of the umbilical and flowline system. The technical concept is based around the use of sealine bundles and self-supporting hybrid riser towers which carry the production, water injection, gas injection, gas lift and service lines. The items discussed are: (1) selected field layout, (2) seabed flowlines, hybrid riser system, umbilicals, export lines, installation plan and overall project schedule.

  4. Ultra high field magnetic resonance imaging

    International Nuclear Information System (INIS)

    Lethimonnier, F.; Vedrine, P.

    2007-01-01

    Understanding human brain function, brain development and brain dysfunction is one of the great challenges of the twenty first century. Biomedical imaging has now run up against a number of technical constraints that are exposing limits to its potential. In order to overcome the current limits to high-field magnetic resonance cerebral imaging (MRI) and unleash its fullest potential, the Cea has built NeuroSpin, an ultra-high-field neuroimaging facility at its Saclay centre (in the Essonne). NeuroSpin already boasts three fully operational MRI systems. The first is a 3-tesla high-field system and the second is a very-high-field 7-tesla system, both of which are dedicated to clinical studies and investigations in humans, while the third is an ultra-high-field 17.65-tesla system designed for studies on small animals. In 2011, NeuroSpin will be commissioning an 11.7-tesla ultra-high-field system of unprecedented power that is designed for research on human subjects. The level of the magnetic field and the scale required will make this joint French-German project to build the magnet a breakthrough in the international arena. (authors)

  5. UltraVISTA : a new ultra-deep near-infrared survey in COSMOS

    NARCIS (Netherlands)

    McCracken, H. J.; Milvang-Jensen, B.; Dunlop, J.; Franx, M.; Fynbo, J. P. U.; Le Fevre, O.; Holt, J.; Caputi, K. I.; Goranova, Y.; Buitrago, F.; Emerson, J. P.; Freudling, W.; Hudelot, P.; Lopez-Sanjuan, C.; Magnard, F.; Mellier, Y.; Moller, P.; Nilsson, K. K.; Sutherland, W.; Tasca, L.; Zabl, J.

    In this paper we describe the first data release of the UltraVISTA near-infrared imaging survey of the COSMOS field. We summarise the key goals and design of the survey and provide a detailed description of our data reduction techniques. We provide stacked, sky-subtracted images in YJHK(s) and

  6. Hot carrier degradation and a new lifetime prediction model in ultra-deep sub-micron pMOSFET

    International Nuclear Information System (INIS)

    Lei Xiao-Yi; Liu Hong-Xia; Zhang Kai; Zhang Yue; Zheng Xue-Feng; Ma Xiao-Hua; Hao Yue

    2013-01-01

    The hot carrier effect (HCE) of an ultra-deep sub-micron p-channel metal—oxide semiconductor field-effect transistor (pMOSFET) is investigated in this paper. Experiments indicate that the generation of positively charged interface states is the predominant mechanism in the case of the ultra-deep sub-micron pMOSFET. The relation of the pMOSFET hot carrier degradation to stress time (t), channel width (W), channel length (L), and stress voltage (V d ) is then discussed. Based on the relation, a lifetime prediction model is proposed, which can predict the lifetime of the ultra-deep sub-micron pMOSFET accurately and reflect the influence of the factors on hot carrier degradation directly. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Model of hot-carrier induced degradation in ultra-deep sub-micrometer nMOSFET

    International Nuclear Information System (INIS)

    Lei Xiao-Yi; Liu Hong-Xia; Zhang Yue; Ma Xiao-Hua; Hao Yue

    2014-01-01

    The degradation produced by hot carrier (HC) in ultra-deep sub-micron n-channel metal oxide semiconductor field effect transistor (nMOSFET) has been analyzed in this paper. The generation of negatively charged interface states is the predominant mechanism for the ultra-deep sub-micron nMOSFET. According to our lifetime model of p-channel MOFET (pMOFET) that was reported in a previous publication, a lifetime prediction model for nMOSFET is presented and the parameters in the model are extracted. For the first time, the lifetime models of nMOFET and pMOSFET are unified. In addition, the model can precisely predict the lifetime of the ultra-deep sub-micron nMOSFET and pMOSFET. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. New optimized drill pipe size for deep-water, extended reach and ultra-deep drilling

    Energy Technology Data Exchange (ETDEWEB)

    Jellison, Michael J.; Delgado, Ivanni [Grant Prideco, Inc., Hoston, TX (United States); Falcao, Jose Luiz; Sato, Ademar Takashi [PETROBRAS, Rio de Janeiro, RJ (Brazil); Moura, Carlos Amsler [Comercial Perfuradora Delba Baiana Ltda., Rio de Janeiro, RJ (Brazil)

    2004-07-01

    A new drill pipe size, 5-7/8 in. OD, represents enabling technology for Extended Reach Drilling (ERD), deep water and other deep well applications. Most world-class ERD and deep water wells have traditionally been drilled with 5-1/2 in. drill pipe or a combination of 6-5/8 in. and 5-1/2 in. drill pipe. The hydraulic performance of 5-1/2 in. drill pipe can be a major limitation in substantial ERD and deep water wells resulting in poor cuttings removal, slower penetration rates, diminished control over well trajectory and more tendency for drill pipe sticking. The 5-7/8 in. drill pipe provides a significant improvement in hydraulic efficiency compared to 5-1/2 in. drill pipe and does not suffer from the disadvantages associated with use of 6-5/8 in. drill pipe. It represents a drill pipe assembly that is optimized dimensionally and on a performance basis for casing and bit programs that are commonly used for ERD, deep water and ultra-deep wells. The paper discusses the engineering philosophy behind 5-7/8 in. drill pipe, the design challenges associated with development of the product and reviews the features and capabilities of the second-generation double-shoulder connection. The paper provides drilling case history information on significant projects where the pipe has been used and details results achieved with the pipe. (author)

  9. 76 FR 66078 - Notice of Industry Workshop on Technical and Regulatory Challenges in Deep and Ultra-Deep Outer...

    Science.gov (United States)

    2011-10-25

    ...-0087] Notice of Industry Workshop on Technical and Regulatory Challenges in Deep and Ultra-Deep Outer... discussions expected to help identify Outer Continental Shelf (OCS) challenges and technologies associated... structured venue for consultation among offshore deepwater oil and gas industry and regulatory experts in...

  10. Practices and prospect of petroleum engineering technologies in ultra-deep sour gas reservoirs, Yuanba Gasfield, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Jin Xu

    2016-12-01

    Full Text Available Located in the Sichuan Basin, the Yuanba Gasfield is the deepest marine sour gas field among those developed in China so far. Its biohermal gas reservoir of the Upper Permian Changxing Fm is characterized by ultra depth, high content of hydrogen sulfide, medium–low porosity and permeability, and small reservoir thickness. Economic evaluation on it shows that horizontal well drilling is the only way to develop this gas reservoir efficiently and to reduce the total development investment. At present, the petroleum engineering technology for this type of ultra-deep sour gas reservoir is less applied in the world, so an ultra-deep horizontal well is subject to a series of petroleum engineering technology difficulties, such as safe and fast well drilling and completion, mud logging, well logging, downhole operation, safety and environmental protection. Based on the successful development experience of the Puguang Gasfield, therefore, Sinopec Southwest Petroleum Engineering Co., Ltd. took the advantage of integrated engineering geology method to carry out specific technical research and perform practice diligently for 7 years. As a result, 18 key items of technologies for ultra-deep sour gas reservoirs were developed, including horizontal-well drilling speed increasing technology, horizontal-well mud logging and well logging technology, downhole operation technology, and safety and environmental protection technology. These technologies were applied in 40 wells during the first and second phases of productivity construction of the Yuanba Gasfield. All the 40 wells have been built into commercial gas wells, and the productivity construction goal of 3.4 billion m3 purified gas has also been achieved. These petroleum engineering technologies for ultra-deep sour gas fields play a reference role in exploring and developing similar gas reservoirs at home and abroad.

  11. Key technologies for well drilling and completion in ultra-deep sour gas reservoirs, Yuanba Gasfield, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Jiaxiang Xia

    2016-12-01

    Full Text Available The Yuanba Gasfield is a large gas field discovered by Sinopec in the Sichuan Basin in recent years, and another main exploration area for natural gas reserves and production increase after the Puguang Gasfield. The ultra-deep sour gas reservoir in the Yuanba Gasfield is characterized by complicated geologic structure, deep reservoirs and complex drilled formation, especially in the continental deep strata which are highly abrasive with low ROP (rate of penetration and long drilling period. After many years of drilling practice and technical research, the following six key drilling and completion technologies for this type reservoir are established by introducing new tools and technologies, developing specialized drill bits and optimizing drilling design. They are: casing program optimization technology for ROP increasing and safe well completion; gas drilling technology for shallow continental strata and high-efficiency drilling technology for deep high-abrasion continental strata; drilling fluid support technologies of gas–liquid conversion, ultra-deep highly-deviated wells and horizontal-well lubrication and drag reduction, hole stability control and sour gas contamination prevention; well cementing technologies for gas medium, deep-well long cementing intervals and ultra-high pressure small space; horizontal-well trajectory control technologies for measuring instrument, downhole motor optimization and bottom hole assembly design; and liner completion modes and completion string optimization technologies suitable for this gas reservoir. Field application shows that these key technologies are contributive to ROP increase and efficiency improvement of 7000 m deep horizontal wells and to significant operational cycle shortening.

  12. Ultra-wide-field imaging in diabetic retinopathy.

    Science.gov (United States)

    Ghasemi Falavarjani, Khalil; Tsui, Irena; Sadda, Srinivas R

    2017-10-01

    Since 1991, 7-field images captured with 30-50 degree cameras in the Early Treatment Diabetic Retinopathy Study were the gold standard for fundus imaging to study diabetic retinopathy. Ultra-wide-field images cover significantly more area (up to 82%) of the fundus and with ocular steering can in many cases image 100% of the fundus ("panretinal"). Recent advances in image analysis of ultra-wide-field imaging allow for precise measurements of the peripheral retinal lesions. There is a growing consensus in the literature that ultra-wide-field imaging improves detection of peripheral lesions in diabetic retinopathy and leads to more accurate classification of the disease. There is discordance among studies, however, on the correlation between peripheral diabetic lesions and diabetic macular edema and optimal management strategies to treat diabetic retinopathy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Ultra high energy cosmic rays and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor; Engel, Ralph; Alvarez-Muniz, Jaime; Seckel, David

    2002-07-01

    We follow the propagation of ultra high energy protons in the presence of random and regular magnetic fields and discuss some of the changes in the angular and energy distributions of these particles introduced by the scattering in the magnetic fields.

  14. Ultra high energy cosmic rays and magnetic fields

    International Nuclear Information System (INIS)

    Stanev, Todor; Engel, Ralph; Alvarez-Muniz, Jaime; Seckel, David

    2002-01-01

    We follow the propagation of ultra high energy protons in the presence of random and regular magnetic fields and discuss some of the changes in the angular and energy distributions of these particles introduced by the scattering in the magnetic fields

  15. Deep and Ultra-deep Underground Observatory for In Situ Stress, Fluids, and Life

    Science.gov (United States)

    Boutt, D. F.; Wang, H.; Kieft, T. L.

    2008-12-01

    The question 'How deeply does life extend into the Earth?' forms a single, compelling vision for multidisciplinary science opportunities associated with physical and biological processes occurring naturally or in response to construction in the deep and ultra-deep subsurface environment of the Deep Underground Science and Engineering Laboratory (DUSEL) in the former Homestake mine. The scientific opportunity is to understand the interaction between the physical environment and microbial life, specifically, the coupling among (1) stress state and deformation; (2) flow and transport and origin of fluids; and (3) energy and nutrient sources for microbial life; and (4) microbial identity, diversity and activities. DUSEL-Homestake offers the environment in which these questions can be addressed unencumbered by competing human activities. Associated with the interaction among these variables are a number of questions that will be addressed at variety of depths and scales in the facility: What factors control the distribution of life as a function of depth and temperature? What patterns in microbial diversity, microbial activity and nutrients are found along this gradient? How do state variables (stress, strain, temperature, and pore pressure) and constitutive properties (permeability, porosity, modulus, etc.) vary with scale (space, depth, time) in a large 4D heterogeneous system: core - borehole - drift - whole mine - regional? How are fluid flow and stress coupled in a low-permeability, crystalline environment dominated by preferential flow paths? How does this interaction influence the distribution of fluids, solutes, gases, colloids, and biological resources (e.g. energy and nutritive substrates) in the deep continental subsurface? What is the interaction between geomechanics/geohydrology and microbiology (microbial abundance, diversity, distribution, and activities)? Can relationships elucidated within the mechanically and hydrologically altered subsurface habitat

  16. Deep ECGNet: An Optimal Deep Learning Framework for Monitoring Mental Stress Using Ultra Short-Term ECG Signals.

    Science.gov (United States)

    Hwang, Bosun; You, Jiwoo; Vaessen, Thomas; Myin-Germeys, Inez; Park, Cheolsoo; Zhang, Byoung-Tak

    2018-02-08

    Stress recognition using electrocardiogram (ECG) signals requires the intractable long-term heart rate variability (HRV) parameter extraction process. This study proposes a novel deep learning framework to recognize the stressful states, the Deep ECGNet, using ultra short-term raw ECG signals without any feature engineering methods. The Deep ECGNet was developed through various experiments and analysis of ECG waveforms. We proposed the optimal recurrent and convolutional neural networks architecture, and also the optimal convolution filter length (related to the P, Q, R, S, and T wave durations of ECG) and pooling length (related to the heart beat period) based on the optimization experiments and analysis on the waveform characteristics of ECG signals. The experiments were also conducted with conventional methods using HRV parameters and frequency features as a benchmark test. The data used in this study were obtained from Kwangwoon University in Korea (13 subjects, Case 1) and KU Leuven University in Belgium (9 subjects, Case 2). Experiments were designed according to various experimental protocols to elicit stressful conditions. The proposed framework to recognize stress conditions, the Deep ECGNet, outperformed the conventional approaches with the highest accuracy of 87.39% for Case 1 and 73.96% for Case 2, respectively, that is, 16.22% and 10.98% improvements compared with those of the conventional HRV method. We proposed an optimal deep learning architecture and its parameters for stress recognition, and the theoretical consideration on how to design the deep learning structure based on the periodic patterns of the raw ECG data. Experimental results in this study have proved that the proposed deep learning model, the Deep ECGNet, is an optimal structure to recognize the stress conditions using ultra short-term ECG data.

  17. Threats to ultra-high-field MRI

    Science.gov (United States)

    Le Bihan, Denis

    2009-08-01

    In 2004 the European Commission (EC) adopted a directive restricting occupational exposure to electromagnetic fields. This directive (2004/40/CE), which examines the possible health risks of the electromagnetic fields from mobile phones, Wi-Fi, Bluetooth and other devices, concluded that upper limits on radiation and applied electromagnetic fields are necessary to prevent workers from suffering any undue acute health effects. But although not initially intended, the biggest impact of the directive could be on magnetic resonance imaging (MRI), which is used in hospitals worldwide to produce images of unrivalled quality of the brain and other soft tissues.

  18. Ultra-high-field magnets for future hadron colliders

    International Nuclear Information System (INIS)

    McIntyre, P.M.; Shen, W.

    1997-01-01

    Several new concepts in magnetic design and coil fabrication are being incorporated into designs for ultra-high field collider magnets: a 16 Tesla block-coil dual dipole, also using Nb 3 Sn cable, featuring simple pancake coil construction and face-loaded prestress geometry; a 330 T/m block-coil quadrupole; and a ∼ 20 Tesla pipe-geometry dual dipole, using A15 or BSCCO tape. Field design and fabrication issues are discussed for each magnet

  19. Enabling Ultra Deep Hydrodesulfurization by Nanoscale Engineering of New Catalysts

    DEFF Research Database (Denmark)

    Christoffersen, Ann-Louise Nygård

    The HYDECAT project was initiated to make a targeted effort in the field of hydrodesulfurization (HDS), which is the process where sulfur is removed from crude oil by addition of hydrogen to form hydrocarbons and hydrogen sulfide. This PhD thesis represents my share in the project. Due to the adv......The HYDECAT project was initiated to make a targeted effort in the field of hydrodesulfurization (HDS), which is the process where sulfur is removed from crude oil by addition of hydrogen to form hydrocarbons and hydrogen sulfide. This PhD thesis represents my share in the project. Due...... the process of introducing them in their gaseous form into the µ-reactor at ambient pressure, and a specially designed flange with an incorporated ion source and internal heat tracing was implemented.  HDS of DBT and 4,6-DMDBT at 800 mbar on six mass-selected Pt samples were conducted. Two Pt samples of ∼3 nm...

  20. Deep GMRT 150 MHz Observations of the DEEP2 Fields

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... High red-shift radio galaxies are best searched at low radio frequencies, due to its steep radio spectra. Here we present preliminary results from our programme to search for high red-shift radio galaxies to ∼ 10 to 100 times fainter than the known population till date. We have extracted ultra-steep spectrum ...

  1. Functional magnetic resonance imaging with ultra-high fields

    International Nuclear Information System (INIS)

    Windischberger, C.; Schoepf, V.; Sladky, R.; Moser, E.; Fischmeister, F.P.S.

    2010-01-01

    Functional magnetic resonance imaging (fMRI) is currently the primary method for non-invasive functional localization in the brain. With the emergence of MR systems with field strengths of 4 Tesla and above, neuronal activation may be studied with unprecedented accuracy. In this article we present different approaches to use the improved sensitivity and specificity for expanding current fMRT resolution limits in space and time based on several 7 Tesla studies. In addition to the challenges that arise with ultra-high magnetic fields possible solutions will be discussed. (orig.) [de

  2. THE SPITZER DEEP, WIDE-FIELD SURVEY

    International Nuclear Information System (INIS)

    Ashby, M. L. N.; Brodwin, M.; Stern, D.; Griffith, R.; Eisenhardt, P.; Gorjian, V.; Kozlowski, S.; Kochanek, C. S.; Bock, J. J.; Borys, C.; Brand, K.; Grogin, N. A.; Brown, M. J. I.; Cool, R.; Cooray, A.; Croft, S.; Dey, A.; Eisenstein, D.; Gonzalez, A. H.; Ivison, R. J.

    2009-01-01

    The Spitzer Deep, Wide-Field Survey (SDWFS) is a four-epoch infrared survey of 10 deg. 2 in the Booetes field of the NOAO Deep Wide-Field Survey using the IRAC instrument on the Spitzer Space Telescope. SDWFS, a Spitzer Cycle 4 Legacy project, occupies a unique position in the area-depth survey space defined by other Spitzer surveys. The four epochs that make up SDWFS permit-for the first time-the selection of infrared-variable and high proper motion objects over a wide field on timescales of years. Because of its large survey volume, SDWFS is sensitive to galaxies out to z ∼ 3 with relatively little impact from cosmic variance for all but the richest systems. The SDWFS data sets will thus be especially useful for characterizing galaxy evolution beyond z ∼ 1.5. This paper explains the SDWFS observing strategy and data processing, presents the SDWFS mosaics and source catalogs, and discusses some early scientific findings. The publicly released, full-depth catalogs contain 6.78, 5.23, 1.20, and 0.96 x 10 5 distinct sources detected to the average 5σ, 4''-diameter, aperture-corrected limits of 19.77, 18.83, 16.50, and 15.82 Vega mag at 3.6, 4.5, 5.8, and 8.0 μm, respectively. The SDWFS number counts and color-color distribution are consistent with other, earlier Spitzer surveys. At the 6 minute integration time of the SDWFS IRAC imaging, >50% of isolated Faint Images of the Radio Sky at Twenty cm radio sources and >80% of on-axis XBooetes sources are detected out to 8.0 μm. Finally, we present the four highest proper motion IRAC-selected sources identified from the multi-epoch imaging, two of which are likely field brown dwarfs of mid-T spectral class.

  3. Deep Borehole Field Test Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-30

    This report documents conceptual design development for the Deep Borehole Field Test (DBFT), including test packages (simulated waste packages, not containing waste) and a system for demonstrating emplacement and retrieval of those packages in the planned Field Test Borehole (FTB). For the DBFT to have demonstration value, it must be based on conceptualization of a deep borehole disposal (DBD) system. This document therefore identifies key options for a DBD system, describes an updated reference DBD concept, and derives a recommended concept for the DBFT demonstration. The objective of the DBFT is to confirm the safety and feasibility of the DBD concept for long-term isolation of radioactive waste. The conceptual design described in this report will demonstrate equipment and operations for safe waste handling and downhole emplacement of test packages, while contributing to an evaluation of the overall safety and practicality of the DBD concept. The DBFT also includes drilling and downhole characterization investigations that are described elsewhere (see Section 1). Importantly, no radioactive waste will be used in the DBFT, nor will the DBFT site be used for disposal of any type of waste. The foremost performance objective for conduct of the DBFT is to demonstrate safe operations in all aspects of the test.

  4. Process strategies for ultra-deep x-ray lithography at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Mancini, D.C.; Moldovan, N.; Divan, R.; De Carlo, F.; Yaeger, J.

    2001-01-01

    For the past five years, we have been investigating and advancing processing capabilities for deep x-ray lithography (DXRL) using synchrotron radiation from a bending magnet at the Advanced Photon Source (APS), with an emphasis on ultra-deep structures (1mm to 1cm thick). The use of higher-energy x-rays has presented many challenges in developing optimal lithographic techniques for high-aspect ratio structures: mask requirements, resist preparation, exposure, development, and post-processing. Many problems are more severe for high-energy exposure of thicker films than for sub-millimeter structures and affect resolution, processing time, adhesion, damage, and residue. A number of strategies have been created to overcome the challenges and limitations of ultra-deep x-ray lithography (UDXRL), that have resulted in the current choices for mask, substrate, and process flow at the APS. We describe our current process strategies for UDXRL, how they address the challenges presented, and their current limitations. We note especially the importance of the process parameters for use of the positive tone resist PMMA for UDXRL, and compare to the use of negative tone resists such as SU-8 regarding throughput, resolution, adhesion, damage, and post-processing.

  5. Determining mutant spectra of three RNA viral samples using ultra-deep sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H

    2012-06-06

    RNA viruses have extremely high mutation rates that enable the virus to adapt to new host environments and even jump from one species to another. As part of a viral transmission study, three viral samples collected from naturally infected animals were sequenced using Illumina paired-end technology at ultra-deep coverage. In order to determine the mutant spectra within the viral quasispecies, it is critical to understand the sequencing error rates and control for false positive calls of viral variants (point mutantations). I will estimate the sequencing error rate from two control sequences and characterize the mutant spectra in the natural samples with this error rate.

  6. Magnetic resonance imaging and spectroscopy at ultra high fields

    International Nuclear Information System (INIS)

    Neuberger, Thomas

    2009-01-01

    The goal of the work presented in this thesis was to explore the possibilities and limitations of MRI / MRS using an ultra high field of 17.6 tesla. A broad range of specific applications and MR methods, from MRI to MRSI and MRS were investigated. The main foci were on sodium magnetic resonance spectroscopic imaging of rodents, magnetic resonance spectroscopy of the mouse brain, and the detection of small amounts of iron labeled stem cells in the rat brain using MRI Sodium spectroscopic imaging was explored since it benefits tremendously from the high magnetic field. Due to the intrinsically low signal in vivo, originating from the low concentrations and short transverse relaxation times, only limited results have been achieved by other researchers until now. Results in the literature include studies conducted on large animals such as dogs to animals as small as rats. No studies performed on mice have been reported, despite the fact that the mouse is the most important laboratory animal due to the ready availability of transgenic strains. Hence, this study concentrated on sodium MRSI of small rodents, mostly mice (brain, heart, and kidney), and in the case of the brain on young rats. The second part of this work concentrated on proton magnetic resonance spectroscopy of the rodent brain. Due to the high magnetic field strength not only the increasing signal but also the extended spectral resolution was advantageous for such kind of studies. The difficulties/limitations of ultra high field MRS were also investigated. In the last part of the presented work detection limits of iron labeled stem cells in vivo using magnetic resonance imaging were explored. The studies provided very useful benchmarks for future researchers in terms of the number of labeled stem cells that are required for high-field MRI studies. Overall this work has shown many of the benefits and the areas that need special attention of ultra high fields in MR. Three topics in MRI, MRS and MRSI were

  7. Magnetic resonance imaging and spectroscopy at ultra high fields

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, Thomas

    2009-06-23

    The goal of the work presented in this thesis was to explore the possibilities and limitations of MRI / MRS using an ultra high field of 17.6 tesla. A broad range of specific applications and MR methods, from MRI to MRSI and MRS were investigated. The main foci were on sodium magnetic resonance spectroscopic imaging of rodents, magnetic resonance spectroscopy of the mouse brain, and the detection of small amounts of iron labeled stem cells in the rat brain using MRI Sodium spectroscopic imaging was explored since it benefits tremendously from the high magnetic field. Due to the intrinsically low signal in vivo, originating from the low concentrations and short transverse relaxation times, only limited results have been achieved by other researchers until now. Results in the literature include studies conducted on large animals such as dogs to animals as small as rats. No studies performed on mice have been reported, despite the fact that the mouse is the most important laboratory animal due to the ready availability of transgenic strains. Hence, this study concentrated on sodium MRSI of small rodents, mostly mice (brain, heart, and kidney), and in the case of the brain on young rats. The second part of this work concentrated on proton magnetic resonance spectroscopy of the rodent brain. Due to the high magnetic field strength not only the increasing signal but also the extended spectral resolution was advantageous for such kind of studies. The difficulties/limitations of ultra high field MRS were also investigated. In the last part of the presented work detection limits of iron labeled stem cells in vivo using magnetic resonance imaging were explored. The studies provided very useful benchmarks for future researchers in terms of the number of labeled stem cells that are required for high-field MRI studies. Overall this work has shown many of the benefits and the areas that need special attention of ultra high fields in MR. Three topics in MRI, MRS and MRSI were

  8. High-Redshift Radio Galaxies from Deep Fields

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... High-Redshift Radio Galaxies from Deep Fields ... Here we present results from the deep 150 MHz observations of LBDS-Lynx field, which has been imaged at 327, ... Articles are also visible in Web of Science immediately.

  9. Ultra-high field MRI: Advancing systems neuroscience towards mesoscopic human brain function

    NARCIS (Netherlands)

    Dumoulin, Serge O; Fracasso, A.; Van der Zwaag, W.; Siero, Jeroen C W; Petridou, Natalia

    2018-01-01

    Human MRI scanners at ultra-high magnetic field strengths of 7 T and higher are increasingly available to the neuroscience community. A key advantage brought by ultra-high field MRI is the possibility to increase the spatial resolution at which data is acquired, with little reduction in image

  10. SCUBA-2 Ultra Deep Imaging EAO Survey (STUDIES): Faint-end Counts at 450 μm

    NARCIS (Netherlands)

    Wang, Wei-Hao; Lin, Wei-Ching; Lim, Chen-Fatt; Smail, Ian; Chapman, Scott C.; Zheng, Xian Zhong; Shim, Hyunjin; Kodama, Tadayuki; Almaini, Omar; Ao, Yiping; Blain, Andrew W.; Bourne, Nathan; Bunker, Andrew J.; Chang, Yu-Yen; Chao, Dani C.-Y.; Chen, Chian-Chou; Clements, David L.; Conselice, Christopher J.; Cowley, William I.; Dannerbauer, Helmut; Dunlop, James S.; Geach, James E.; Goto, Tomotsugu; Jiang, Linhua; Ivison, Rob J.; Jeong, Woong-Seob; Kohno, Kotaro; Kong, Xu; Lee, Chien-Hsu; Lee, Hyung Mok; Lee, Minju; Michałowski, Michał J.; Oteo, Iván; Sawicki, Marcin; Scott, Douglas; Shu, Xin Wen; Simpson, James M.; Tee, Wei-Leong; Toba, Yoshiki; Valiante, Elisabetta; Wang, Jun-Xian; Wang, Ran; Wardlow, Julie L.

    2017-01-01

    The SCUBA-2 Ultra Deep Imaging EAO Survey (STUDIES) is a three-year JCMT Large Program aiming to reach the 450 μm confusion limit in the COSMOS-CANDELS region to study a representative sample of the high-redshift far-infrared galaxy population that gives rise to the bulk of the far-infrared

  11. A Novel Leakage-tolerant Domino Logic Circuit With Feedback From Footer Transistor In Ultra Deep Submicron CMOS

    DEFF Research Database (Denmark)

    Moradi, Farshad; Peiravi, Ali; Mahmoodi, Hamid

    As the CMOS manufacturing process scales down into the ultra deep sub-micron regime, the leakage current becomes an increasingly more important consideration in VLSI circuit design. In this paper, a high speed and noise immune domino logic circuit is presented which uses the property of the footer...

  12. Position-specific automated processing of V3 env ultra-deep pyrosequencing data for predicting HIV-1 tropism.

    Science.gov (United States)

    Jeanne, Nicolas; Saliou, Adrien; Carcenac, Romain; Lefebvre, Caroline; Dubois, Martine; Cazabat, Michelle; Nicot, Florence; Loiseau, Claire; Raymond, Stéphanie; Izopet, Jacques; Delobel, Pierre

    2015-11-20

    HIV-1 coreceptor usage must be accurately determined before starting CCR5 antagonist-based treatment as the presence of undetected minor CXCR4-using variants can cause subsequent virological failure. Ultra-deep pyrosequencing of HIV-1 V3 env allows to detect low levels of CXCR4-using variants that current genotypic approaches miss. However, the computation of the mass of sequence data and the need to identify true minor variants while excluding artifactual sequences generated during amplification and ultra-deep pyrosequencing is rate-limiting. Arbitrary fixed cut-offs below which minor variants are discarded are currently used but the errors generated during ultra-deep pyrosequencing are sequence-dependant rather than random. We have developed an automated processing of HIV-1 V3 env ultra-deep pyrosequencing data that uses biological filters to discard artifactual or non-functional V3 sequences followed by statistical filters to determine position-specific sensitivity thresholds, rather than arbitrary fixed cut-offs. It allows to retain authentic sequences with point mutations at V3 positions of interest and discard artifactual ones with accurate sensitivity thresholds.

  13. Pressured drilling riser design for drilling in ultra deep water with surface bop

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Morrison, D.; Efthymiou, M.; Lo, K.H. [Shell Global Solutions, 78 - Velizy Villacoublay (France); Magne, E.; Leach, C. [Shell Internationale Exploration and Production (Netherlands)

    2002-12-01

    In conventional drilling with a semi-submersible rig valuable rig time is used to run and retrieve the BOP and its accessories on the seabed, and this time increases with water depth. Furthermore, use of the conventional sub-sea BOP requires a large-diameter riser, which requires substantial rig storage and deck load capacity prior to installation. It also requires high riser-tensioning capacity or additional buoyancy. Thus as the water depth increases, it leads to a need for heavy duty 4. and 5. generation rigs with escalation in costs. The high cost of deep-water drill rigs is leading to the development of Surface BOP technology. In this development, the BOP is placed above sea level and the riser is simply a continuation of the casing (typical diameter 13-3/8''). This eliminates the need for a heavy 21'' riser and for running the BOP to the sea bed and retrieving it. Moreover, the reduced tension requirement for the smaller riser extends the water depth capability of 3. generation drilling semi-submersibles, enabling them to drill in deeper waters. A critical success factor for this development is the ability to design the riser/casing to withstand high internal pressures due to well kicks, in addition to environmental loads, and to restrict vessel offsets within certain limits so as not to overload the riser under the prevailing weather conditions. This paper addresses the design considerations of a pressured drilling riser that can be used with a surface BOP in deep-water. Key design issues that are sensitive to ultra-deep-water applications are discussed. The technical aspects of using (disposable) standard casing with threaded connector for the drilling riser are discussed, with a particular emphasis on the connector fatigue-testing program to quantify the stress concentration factor for fatigue design. Emerging composite material offers some alternatives to the steel riser when drilling in ultra-deep water Design issues related to the

  14. DEEP 21 cm H I OBSERVATIONS AT z ∼ 0.1: THE PRECURSOR TO THE ARECIBO ULTRA DEEP SURVEY

    International Nuclear Information System (INIS)

    Freudling, Wolfram; Zwaan, Martin; Staveley-Smith, Lister; Meyer, Martin; Catinella, Barbara; Minchin, Robert; Calabretta, Mark; Momjian, Emmanuel; O'Neil, Karen

    2011-01-01

    The 'ALFA Ultra Deep Survey' (AUDS) is an ongoing 21 cm spectral survey with the Arecibo 305 m telescope. AUDS will be the most sensitive blind survey undertaken with Arecibo's 300 MHz Mock spectrometer. The survey searches for 21 cm H I line emission at redshifts between 0 and 0.16. The main goals of the survey are to investigate the H I content and probe the evolution of H I gas within that redshift region. In this paper, we report on a set of precursor observations with a total integration time of 53 hr. The survey detected a total of eighteen 21 cm emission lines at redshifts between 0.07 and 0.15 in a region centered around α 2000 ∼ 0 h , δ ∼ 15 0 42'. The rate of detection is consistent with the one expected from the local H I mass function. The derived relative H I density at the median redshift of the survey is ρ H I [z = 0.125] = (1.0 ± 0.3)ρ 0 , where ρ 0 is the H I density at zero redshift.

  15. System and method for magnetic current density imaging at ultra low magnetic fields

    Science.gov (United States)

    Espy, Michelle A.; George, John Stevens; Kraus, Robert Henry; Magnelind, Per; Matlashov, Andrei Nikolaevich; Tucker, Don; Turovets, Sergei; Volegov, Petr Lvovich

    2016-02-09

    Preferred systems can include an electrical impedance tomography apparatus electrically connectable to an object; an ultra low field magnetic resonance imaging apparatus including a plurality of field directions and disposable about the object; a controller connected to the ultra low field magnetic resonance imaging apparatus and configured to implement a sequencing of one or more ultra low magnetic fields substantially along one or more of the plurality of field directions; and a display connected to the controller, and wherein the controller is further configured to reconstruct a displayable image of an electrical current density in the object. Preferred methods, apparatuses, and computer program products are also disclosed.

  16. Parametric study on the behavior of an innovative subsurface tension leg platform in ultra-deep water

    Science.gov (United States)

    Zhen, Xing-wei; Huang, Yi

    2017-10-01

    This study focuses on a new technology of Subsurface Tension Leg Platform (STLP), which utilizes the shallowwater rated well completion equipment and technology for the development of large oil and gas fields in ultra-deep water (UDW). Thus, the STLP concept offers attractive advantages over conventional field development concepts. STLP is basically a pre-installed Subsurface Sea-star Platform (SSP), which supports rigid risers and shallow-water rated well completion equipment. The paper details the results of the parametric study on the behavior of STLP at a water depth of 3000 m. At first, a general description of the STLP configuration and working principle is introduced. Then, the numerical models for the global analysis of the STLP in waves and current are presented. After that, extensive parametric studies are carried out with regarding to SSP/tethers system analysis, global dynamic analysis and riser interference analysis. Critical points are addressed on the mooring pattern and riser arrangement under the influence of ocean current, to ensure that the requirements on SSP stability and riser interference are well satisfied. Finally, conclusions and discussions are made. The results indicate that STLP is a competitive well and riser solution in up to 3000 m water depth for offshore petroleum production.

  17. 30 CFR 203.31 - If I have a qualified phase 2 or qualified phase 3 ultra-deep well, what royalty relief would...

    Science.gov (United States)

    2010-07-01

    ... water less than 400 meters deep (see § 203.30(a)), has no existing deep or ultra-deep wells and that the... depths partly or entirely less than 200 meters and has not previously produced from a deep well (§ 203.30... which is 16,000 feet TVD SS and your lease is located in water 100 meters deep. Then in 2008, you drill...

  18. Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields.

    Science.gov (United States)

    Wang, Sheng; Peng, Jian; Ma, Jianzhu; Xu, Jinbo

    2016-01-11

    Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.

  19. Diffuse axonal injury at ultra-high field MRI.

    Directory of Open Access Journals (Sweden)

    Christoph Moenninghoff

    Full Text Available Diffuse axonal injury (DAI is a specific type of traumatic brain injury caused by shearing forces leading to widespread tearing of axons and small vessels. Traumatic microbleeds (TMBs are regarded as a radiological marker for DAI. This study aims to compare DAI-associated TMBs at 3 Tesla (T and 7 T susceptibility weighted imaging (SWI to evaluate possible diagnostic benefits of ultra-high field (UHF MRI.10 study participants (4 male, 6 female, age range 20-74 years with known DAI were included. All MR exams were performed with a 3 T MR system (Magnetom Skyra and a 7 T MR research system (Magnetom 7 T, Siemens AG, Healthcare Sector, Erlangen, Germany each in combination with a 32-channel-receive coil. The average time interval between trauma and imaging was 22 months. Location and count of TMBs were independently evaluated by two neuroradiologists on 3 T and 7 T SWI images with similar and additionally increased spatial resolution at 7 T. Inter- and intraobserver reliability was assessed using the interclass correlation coefficient (ICC. Count and diameter of TMB were evaluated with Wilcoxon signed rank test.Susceptibility weighted imaging revealed a total of 485 TMBs (range 1-190, median 25 at 3 T, 584 TMBs (plus 20%, range 1-262, median 30.5 at 7 T with similar spatial resolution, and 684 TMBs (plus 41%, range 1-288, median 39.5 at 7 T with 10-times higher spatial resolution. Hemorrhagic DAI appeared significantly larger at 7 T compared to 3 T (p = 0.005. Inter- and intraobserver correlation regarding the counted TMB was high and almost equal 3 T and 7 T.7 T SWI improves the depiction of small hemorrhagic DAI compared to 3 T and may be supplementary to lower field strengths for diagnostic in inconclusive or medicolegal cases.

  20. Hydrocarbon-Based Communities in the Ultra-Deep Gulf of Mexico: Protecting the Asphalt Ecosystem

    Science.gov (United States)

    MacDonald, I. R.; Sahling, H.

    2016-02-01

    The term `asphalt volcanism' was coined to describe marine sites where extrusions of highly degraded oil form large expanses of hard substratum, which is then colonized by chemosynthetic fauna and sessile invertebrates. A site named `Chapopote', a knoll at 3200m in the southern Gulf of Mexico, was described as the type specimen of asphalt volcanism in 2003. A joint German-Mexican-U.S. expedition on the German ship F/S METEOR returned to the region in February and March, 2015 to quantify the extent and characteristics of Chapopote and other asphalt-hosting knolls using the SEAL AUV, QUEST ROV, shipborne acoustics, and autonomous instrument landers. Preliminary findings have greatly expanded the number of confirmed asphalt volcanoes, as well as sites where seepage was detected as gas flares in the water column. The morphology of asphalt flows, which was investigated using large-scale photo-mosaicking techniques, indicated that they form with a complex interplay of gravity flows, buoyant uplift, and chemical weathering. An unexpected finding was the occurrence of gas hydrate mounds, some exceeding 1000 m2 in area and 10 m in relief. Gas hydrate forms almost instantly at ambient depths and temperatures and there was evidence that large plugs of hydrate that can rapidly breach the seafloor. Older mounds are colonized by massive tubeworm aggregations that may serve to stabilize the hydrate. Mexico recently announced the first energy production lease sales in their `ultra-deep' offshore. In contrast to the U.S. Gulf, where extensive safeguards for chemosynthetic communities have been in place for over 25 years, few existing protocols protect the Mexican deep-sea asphalt ecosystem. The combination of extensive asphalt pavements and exposed gas hydrate also pose unusual hazards for exploration piston coring or drilling operations. The time is ripe to consider what conservation model would best serve the region.

  1. Ultra-low field MRI food inspection system prototype

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, Satoshi, E-mail: s133413@edu.tut.ac.jp; Toyota, Hirotomo; Hatta, Junichi; Ariyoshi, Seiichiro; Tanaka, Saburo, E-mail: tanakas@ens.tut.ac.jp

    2016-11-15

    Highlights: • We have developed a ULF-MRI system using HTS-SQUID for food inspection. • We developed a compact magnetically shielded box to attenuate environmental noise. • The 2D-MR image was reconstructed from the grid processing data using 2D-FFT method. • The 2D-MR images of a disk-shaped and a multiple cell water sample were obtained. • The results showed the possibility of applying the ULF-MRI system to food inspection. - Abstract: We develop an ultra-low field (ULF) magnetic resonance imaging (MRI) system using a high-temperature superconducting quantum interference device (HTS-SQUID) for food inspection. A two-dimensional (2D)-MR image is reconstructed from the grid processing raw data using the 2D fast Fourier transform method. In a previous study, we combined an LC resonator with the ULF-MRI system to improve the detection area of the HTS-SQUID. The sensitivity was improved, but since the experiments were performed in a semi-open magnetically shielded room (MSR), external noise was a problem. In this study, we develop a compact magnetically shielded box (CMSB), which has a small open window for transfer of a pre-polarized sample. Experiments were performed in the CMSB and 2D-MR images were compared with images taken in the semi-open MSR. A clear image of a disk-shaped water sample is obtained, with an outer dimension closer to that of the real sample than in the image taken in the semi-open MSR. Furthermore, the 2D-MR image of a multiple cell water sample is clearly reconstructed. These results show the applicability of the ULF-MRI system in food inspection.

  2. ULTRA-DEEP GEMINI NEAR-INFRARED OBSERVATIONS OF THE BULGE GLOBULAR CLUSTER NGC 6624

    Energy Technology Data Exchange (ETDEWEB)

    Saracino, S.; Dalessandro, E.; Ferraro, F. R.; Lanzoni, B.; Miocchi, P. [Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Geisler, D.; Mauro, F.; Cohen, R. E.; Villanova, S. [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Origlia, L. [INAF—Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Bidin, C. Moni, E-mail: sara.saracino@unibo.it [Instituto de Astronomía, Universidad Católica del Norte, Av. Angamos 0610, Antofagasta (Chile)

    2016-11-20

    We used ultra-deep J and K {sub s} images secured with the near-infrared (NIR) GSAOI camera assisted by the multi-conjugate adaptive optics system GeMS at the GEMINI South Telescope in Chile, to obtain a ( K {sub s} , J - K {sub s} ) color–magnitude diagram (CMD) for the bulge globular cluster NGC 6624. We obtained the deepest and most accurate NIR CMD from the ground for this cluster, by reaching K {sub s} ∼ 21.5, approximately 8 mag below the horizontal branch level. The entire extension of the Main Sequence (MS) is nicely sampled and at K {sub s} ∼ 20 we detected the so-called MS “knee” in a purely NIR CMD. By taking advantage of the exquisite quality of the data, we estimated the absolute age of NGC 6624 ( t {sub age} = 12.0 ± 0.5 Gyr), which turns out to be in good agreement with previous studies in the literature. We also analyzed the luminosity and mass functions of MS stars down to M ∼ 0.45 M{sub ⊙}, finding evidence of a significant increase of low-mass stars at increasing distances from the cluster center. This is a clear signature of mass segregation, confirming that NGC 6624 is in an advanced stage of dynamical evolution.

  3. Deep Borehole Field Test Research Activities at LBNL

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, Patrick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tsang, Chin-Fu [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kneafsey, Timothy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Borglin, Sharon [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Piceno, Yvette [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Andersen, Gary [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nakagawa, Seiji [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nihei, Kurt [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Doughty, Christine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Reagan, Matthew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-08-19

    The goal of the U.S. Department of Energy Used Fuel Disposition’s (UFD) Deep Borehole Field Test is to drill two 5 km large-diameter boreholes: a characterization borehole with a bottom-hole diameter of 8.5 inches and a field test borehole with a bottom-hole diameter of 17 inches. These boreholes will be used to demonstrate the ability to drill such holes in crystalline rocks, effectively characterize the bedrock repository system using geophysical, geochemical, and hydrological techniques, and emplace and retrieve test waste packages. These studies will be used to test the deep borehole disposal concept, which requires a hydrologically isolated environment characterized by low permeability, stable fluid density, reducing fluid chemistry conditions, and an effective borehole seal. During FY16, Lawrence Berkeley National Laboratory scientists conducted a number of research studies to support the UFD Deep Borehole Field Test effort. This work included providing supporting data for the Los Alamos National Laboratory geologic framework model for the proposed deep borehole site, conducting an analog study using an extensive suite of geoscience data and samples from a deep (2.5 km) research borehole in Sweden, conducting laboratory experiments and coupled process modeling related to borehole seals, and developing a suite of potential techniques that could be applied to the characterization and monitoring of the deep borehole environment. The results of these studies are presented in this report.

  4. Deep Borehole Field Test Research Activities at LBNL

    International Nuclear Information System (INIS)

    Dobson, Patrick; Tsang, Chin-Fu; Kneafsey, Timothy; Borglin, Sharon; Piceno, Yvette; Andersen, Gary; Nakagawa, Seiji; Nihei, Kurt; Rutqvist, Jonny; Doughty, Christine; Reagan, Matthew

    2016-01-01

    The goal of the U.S. Department of Energy Used Fuel Disposition's (UFD) Deep Borehole Field Test is to drill two 5 km large-diameter boreholes: a characterization borehole with a bottom-hole diameter of 8.5 inches and a field test borehole with a bottom-hole diameter of 17 inches. These boreholes will be used to demonstrate the ability to drill such holes in crystalline rocks, effectively characterize the bedrock repository system using geophysical, geochemical, and hydrological techniques, and emplace and retrieve test waste packages. These studies will be used to test the deep borehole disposal concept, which requires a hydrologically isolated environment characterized by low permeability, stable fluid density, reducing fluid chemistry conditions, and an effective borehole seal. During FY16, Lawrence Berkeley National Laboratory scientists conducted a number of research studies to support the UFD Deep Borehole Field Test effort. This work included providing supporting data for the Los Alamos National Laboratory geologic framework model for the proposed deep borehole site, conducting an analog study using an extensive suite of geoscience data and samples from a deep (2.5 km) research borehole in Sweden, conducting laboratory experiments and coupled process modeling related to borehole seals, and developing a suite of potential techniques that could be applied to the characterization and monitoring of the deep borehole environment. The results of these studies are presented in this report.

  5. Ultra-deep GEMINI Near-infrared Observations of the Bulge Globular Cluster NGC 6624.

    Science.gov (United States)

    Saracino, S.; Dalessandro, E.; Ferraro, F. R.; Geisler, D.; Mauro, F.; Lanzoni, B.; Origlia, L.; Miocchi, P.; Cohen, R. E.; Villanova, S.; Moni Bidin, C.

    2016-11-01

    We used ultra-deep J and K s images secured with the near-infrared (NIR) GSAOI camera assisted by the multi-conjugate adaptive optics system GeMS at the GEMINI South Telescope in Chile, to obtain a (K s , J - K s ) color-magnitude diagram (CMD) for the bulge globular cluster NGC 6624. We obtained the deepest and most accurate NIR CMD from the ground for this cluster, by reaching K s ˜ 21.5, approximately 8 mag below the horizontal branch level. The entire extension of the Main Sequence (MS) is nicely sampled and at K s ˜ 20 we detected the so-called MS “knee” in a purely NIR CMD. By taking advantage of the exquisite quality of the data, we estimated the absolute age of NGC 6624 (t age = 12.0 ± 0.5 Gyr), which turns out to be in good agreement with previous studies in the literature. We also analyzed the luminosity and mass functions of MS stars down to M ˜ 0.45 M⊙, finding evidence of a significant increase of low-mass stars at increasing distances from the cluster center. This is a clear signature of mass segregation, confirming that NGC 6624 is in an advanced stage of dynamical evolution. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina). Based on observations gathered with ESO-VISTA telescope (program ID 179.B-2002).

  6. Ultra-deep sequencing of mouse mitochondrial DNA: mutational patterns and their origins.

    Directory of Open Access Journals (Sweden)

    Adam Ameur

    2011-03-01

    Full Text Available Somatic mutations of mtDNA are implicated in the aging process, but there is no universally accepted method for their accurate quantification. We have used ultra-deep sequencing to study genome-wide mtDNA mutation load in the liver of normally- and prematurely-aging mice. Mice that are homozygous for an allele expressing a proof-reading-deficient mtDNA polymerase (mtDNA mutator mice have 10-times-higher point mutation loads than their wildtype siblings. In addition, the mtDNA mutator mice have increased levels of a truncated linear mtDNA molecule, resulting in decreased sequence coverage in the deleted region. In contrast, circular mtDNA molecules with large deletions occur at extremely low frequencies in mtDNA mutator mice and can therefore not drive the premature aging phenotype. Sequence analysis shows that the main proportion of the mutation load in heterozygous mtDNA mutator mice and their wildtype siblings is inherited from their heterozygous mothers consistent with germline transmission. We found no increase in levels of point mutations or deletions in wildtype C57Bl/6N mice with increasing age, thus questioning the causative role of these changes in aging. In addition, there was no increased frequency of transversion mutations with time in any of the studied genotypes, arguing against oxidative damage as a major cause of mtDNA mutations. Our results from studies of mice thus indicate that most somatic mtDNA mutations occur as replication errors during development and do not result from damage accumulation in adult life.

  7. Deep Seawater Intrusion Enhanced by Geothermal Through Deep Faults in Xinzhou Geothermal Field in Guangdong, China

    Science.gov (United States)

    Lu, G.; Ou, H.; Hu, B. X.; Wang, X.

    2017-12-01

    This study investigates abnormal sea water intrusion from deep depth, riding an inland-ward deep groundwater flow, which is enhanced by deep faults and geothermal processes. The study site Xinzhou geothermal field is 20 km from the coast line. It is in southern China's Guangdong coast, a part of China's long coastal geothermal belt. The geothermal water is salty, having fueled an speculation that it was ancient sea water retained. However, the perpetual "pumping" of the self-flowing outflow of geothermal waters might alter the deep underground flow to favor large-scale or long distant sea water intrusion. We studied geochemical characteristics of the geothermal water and found it as a mixture of the sea water with rain water or pore water, with no indication of dilution involved. And we conducted numerical studies of the buoyancy-driven geothermal flow in the deep ground and find that deep down in thousand meters there is favorable hydraulic gradient favoring inland-ward groundwater flow, allowing seawater intrude inland for an unusually long tens of kilometers in a granitic groundwater flow system. This work formed the first in understanding geo-environment for deep ground water flow.

  8. Ultra-Low Field SQUID-NMR using LN2 Cooled Cu Polarizing Field coil

    Science.gov (United States)

    Demachi, K.; Kawagoe, S.; Ariyoshi, S.; Tanaka, S.

    2017-07-01

    We are developing an Ultra-Low Field (ULF) Magnetic Resonance Imaging (MRI) system using a High-Temperature Superconductor superconducting quantum interference device (HTS rf-SQUID) for food inspection. The advantages of the ULF-NMR (Nuclear Magnetic Resonance) / MRI as compared with a conventional high field MRI are that they are compact and of low cost. In this study, we developed a ULF SQUID-NMR system using a polarizing coil to measure fat of which relaxation time T1 is shorter. The handmade polarizing coil was cooled by liquid nitrogen to reduce the resistance and accordingly increase the allowable current. The measured decay time of the polarizing field was 40 ms. The measurement system consisted of the liquid nitrogen cooled polarizing coil, a SQUID, a Cu wound flux transformer, a measurement field coil for the field of 47 μT, and an AC pulse coil for a 90°pulse field. The NMR measurements were performed in a magnetically shielded room to reduce the environmental magnetic field. The size of the sample was ϕ35 mm × L80 mm. After applying a polarizing field and a 90°pulse, an NMR signal was detected by the SQUID through the flux transformer. As a result, the NMR spectra of fat samples were obtained at 2.0 kHz corresponding to the measurement field Bm of 47 μT. The T1 relaxation time of the mineral oil measured in Bm was 45 ms. These results suggested that the ULF-NMR/MRI system has potential for food inspection.

  9. Evaluation of persistence of resistant variants with ultra-deep pyrosequencing in chronic hepatitis C patients treated with telaprevir.

    Directory of Open Access Journals (Sweden)

    Xiomara V Thomas

    Full Text Available BACKGROUND & AIMS: Telaprevir, a hepatitis C virus NS3/4A protease inhibitor has significantly improved sustained viral response rates when given in combination with pegylated interferon alfa-2a and ribavirin, compared with current standard of care in hepatitis C virus genotype 1 infected patients. In patients with a failed sustained response, the emergence of drug-resistant variants during treatment has been reported. It is unclear to what extent these variants persist in untreated patients. The aim of this study was to assess using ultra-deep pyrosequencing, whether after 4 years follow-up, the frequency of resistant variants is increased compared to pre-treatment frequencies following 14 days of telaprevir treatment. METHODS: Fifteen patients from 2 previous telaprevir phase 1 clinical studies (VX04-950-101 and VX05-950-103 were included. These patients all received telaprevir monotherapy for 14 days, and 2 patients subsequently received standard of care. Variants at previously well-characterized NS3 protease positions V36, T54, R155 and A156 were assessed at baseline and after a follow-up of 4±1.2 years by ultra-deep pyrosequencing. The prevalence of resistant variants at follow-up was compared to baseline. RESULTS: Resistance associated mutations were detectable at low frequency at baseline. In general, prevalence of resistance mutations at follow-up was not increased compared to baseline. Only one patient had a small, but statistically significant, increase in the number of V36M and T54S variants 4 years after telaprevir-dosing. CONCLUSION: In patients treated for 14 days with telaprevir monotherapy, ultra-deep pyrosequencing indicates that long-term persistence of resistant variants is rare.

  10. Ultra-deep pyrosequencing (UDPS data treatment to study amplicon HCV minor variants.

    Directory of Open Access Journals (Sweden)

    Josep Gregori

    Full Text Available We have investigated the reliability and reproducibility of HCV viral quasispecies quantification by ultra-deep pyrosequencing (UDPS methods. Our study has been divided in two parts. First of all, by UDPS sequencing of clone mixes samples we have established the global noise level of UDPS and fine tuned a data treatment workflow previously optimized for HBV sequence analysis. Secondly, we have studied the reproducibility of the methodology by comparing 5 amplicons from two patient samples on three massive sequencing platforms (FLX+, FLX and Junior after applying the error filters developed from the clonal/control study. After noise filtering the UDPS results, the three replicates showed the same 12 polymorphic sites above 0.7%, with a mean CV of 4.86%. Two polymorphic sites below 0.6% were identified by two replicates and one replicate respectively. A total of 25, 23 and 26 haplotypes were detected by GS-Junior, GS-FLX and GS-FLX+. The observed CVs for the normalized Shannon entropy (Sn, the mutation frequency (Mf, and the nucleotidic diversity (Pi were 1.46%, 3.96% and 3.78%. The mean absolute difference in the two patients (5 amplicons each, in the GS-FLX and GS-FLX+, were 1.46%, 3.96% and 3.78% for Sn, Mf and Pi. No false polymorphic site was observed above 0.5%. Our results indicate that UDPS is an optimal alternative to molecular cloning for quantitative study of HCV viral quasispecies populations, both in complexity and composition. We propose an UDPS data treatment workflow for amplicons from the RNA viral quasispecies which, at a sequencing depth of at least 10,000 reads per strand, enables to obtain sequences and frequencies of consensus haplotypes above 0.5% abundance with no erroneous mutations, with high confidence, resistant mutants as minor variants at the level of 1%, with high confidence that variants are not missed, and highly confident measures of quasispecies complexity.

  11. The subclonal structure and genomic evolution of oral squamous cell carcinoma revealed by ultra-deep sequencing

    DEFF Research Database (Denmark)

    Tabatabaeifar, Siavosh; Thomassen, Mads; Larsen, Martin J

    2017-01-01

    Recent studies suggest that head and neck squamous cell carcinomas are very heterogeneous between patients; however the subclonal structure remains unexplored mainly due to studies using only a single biopsy per patient. To deconvolutethe clonal structure and describe the genomic cancer evolution......, we applied whole-exome sequencing combined with ultra-deep targeted sequencing on oral squamous cell carcinomas (OSCC). From each patient, a set of biopsies was sampled from distinct geographical sites in primary tumor and lymph node metastasis.We demonstrate that the included OSCCs show a high...

  12. Ultra thin metallic coatings to control near field radiative heat transfer

    Science.gov (United States)

    Esquivel-Sirvent, R.

    2016-09-01

    We present a theoretical calculation of the changes in the near field radiative heat transfer between two surfaces due to the presence of ultra thin metallic coatings on semiconductors. Depending on the substrates, the radiative heat transfer is modulated by the thickness of the ultra thin film. In particular we consider gold thin films with thicknesses varying from 4 to 20 nm. The ultra-thin film has an insulator-conductor transition close to a critical thickness of dc = 6.4 nm and there is an increase in the near field spectral heat transfer just before the percolation transition. Depending on the substrates (Si or SiC) and the thickness of the metallic coatings we show how the near field heat transfer can be increased or decreased as a function of the metallic coating thickness. The calculations are based on available experimental data for the optical properties of ultrathin coatings.

  13. Technical Note: Deep learning based MRAC using rapid ultra-short echo time imaging.

    Science.gov (United States)

    Jang, Hyungseok; Liu, Fang; Zhao, Gengyan; Bradshaw, Tyler; McMillan, Alan B

    2018-05-15

    In this study, we explore the feasibility of a novel framework for MR-based attenuation correction for PET/MR imaging based on deep learning via convolutional neural networks, which enables fully automated and robust estimation of a pseudo CT image based on ultrashort echo time (UTE), fat, and water images obtained by a rapid MR acquisition. MR images for MRAC are acquired using dual echo ramped hybrid encoding (dRHE), where both UTE and out-of-phase echo images are obtained within a short single acquisition (35 sec). Tissue labeling of air, soft tissue, and bone in the UTE image is accomplished via a deep learning network that was pre-trained with T1-weighted MR images. UTE images are used as input to the network, which was trained using labels derived from co-registered CT images. The tissue labels estimated by deep learning are refined by a conditional random field based correction. The soft tissue labels are further separated into fat and water components using the two-point Dixon method. The estimated bone, air, fat, and water images are then assigned appropriate Hounsfield units, resulting in a pseudo CT image for PET attenuation correction. To evaluate the proposed MRAC method, PET/MR imaging of the head was performed on 8 human subjects, where Dice similarity coefficients of the estimated tissue labels and relative PET errors were evaluated through comparison to a registered CT image. Dice coefficients for air (within the head), soft tissue, and bone labels were 0.76±0.03, 0.96±0.006, and 0.88±0.01. In PET quantification, the proposed MRAC method produced relative PET errors less than 1% within most brain regions. The proposed MRAC method utilizing deep learning with transfer learning and an efficient dRHE acquisition enables reliable PET quantification with accurate and rapid pseudo CT generation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Ultra fast imaging of a laser wake field accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saevert, Alexander; Schnell, Michael; Nicolai, Maria; Reuter, Maria; Schwab, Matthew B.; Moeller, Max [Friedrich-Schiller-Universitaet, Jena (Germany); Mangles, Stuart P.D.; Cole, Jason M.; Poder, Kristjan; Najmudin, Zulfikar [The John Adams Institute Imperial College, London (United Kingdom); Jaeckel, Oliver; Paulus, Gerhard G.; Spielmann, Christian; Kaluza, Malte C. [Friedrich-Schiller-Universitaet, Jena (Germany); Helmholtz Institut Jena, Jena (Germany)

    2014-07-01

    Ultra intense laser pulses are known to excite plasma waves with a relativistic phase velocity. By harnessing these waves it is possible to generate quasi-monoenergetic, ultra-short electron pulses with kinetic energies from 0.1 to 2 GeV by guiding the laser pulse over several Rayleigh lengths. To further improve the stability of these particle pulses and ultimately to be able to tailor the energy spectrum toward their suitability for various applications, the physics underlying the different acceleration scenarios need to be understood as completely as possible. To be able to resolve the acceleration process diagnostics well-suited for this plasma environment need to be designed and realized. By using sub-10 fs probe pulses we were able to freeze the transient accelerating structure in the plasma. We will present the first results of an experiment which was carried out with the 30 TW JETi Laser and a few cycle probe pulse at the Institute of Optics and Quantum Electronics Jena. The resulting snapshots show unprecedented details from the laser plasma interaction and allow a direct comparison to computer simulations.

  15. Ultra-Lightweight High Efficiency Nanostructured Materials and Coatings for Deep Space Mission Environments, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic has developed a nanostructured spray self-assembly manufacturing method that has resulted in ultra-lightweight ( 1000%), and multi-layer, high efficiency...

  16. Deep Borehole Field Test Requirements and Controlled Assumptions.

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This document presents design requirements and controlled assumptions intended for use in the engineering development and testing of: 1) prototype packages for radioactive waste disposal in deep boreholes; 2) a waste package surface handling system; and 3) a subsurface system for emplacing and retrieving packages in deep boreholes. Engineering development and testing is being performed as part of the Deep Borehole Field Test (DBFT; SNL 2014a). This document presents parallel sets of requirements for a waste disposal system and for the DBFT, showing the close relationship. In addition to design, it will also inform planning for drilling, construction, and scientific characterization activities for the DBFT. The information presented here follows typical preparations for engineering design. It includes functional and operating requirements for handling and emplacement/retrieval equipment, waste package design and emplacement requirements, borehole construction requirements, sealing requirements, and performance criteria. Assumptions are included where they could impact engineering design. Design solutions are avoided in the requirements discussion. Deep Borehole Field Test Requirements and Controlled Assumptions July 21, 2015 iv ACKNOWLEDGEMENTS This set of requirements and assumptions has benefited greatly from reviews by Gordon Appel, Geoff Freeze, Kris Kuhlman, Bob MacKinnon, Steve Pye, David Sassani, Dave Sevougian, and Jiann Su.

  17. Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy.

    Science.gov (United States)

    Wessel, Matthew M; Aaker, Grant D; Parlitsis, George; Cho, Minhee; D'Amico, Donald J; Kiss, Szilárd

    2012-04-01

    To evaluate patients with diabetic retinopathy using ultra-wide-field fluorescein angiography and to compare the visualized retinal pathology with that seen on an overly of conventional 7 standard field (7SF) imaging. Two hundred and eighteen eyes of 118 diabetic patients who underwent diagnostic fluorescein angiography using the Optos Optomap Panoramic 200A imaging system were included. The visualized area of the retina, retinal nonperfusion, retinal neovascularization, and panretinal photocoagulation were quantified by two independent masked graders. The respective areas identified on the ultra-wide-field fluorescein angiography image were compared with an overly of a modified 7SF image as outlined in the Early Treatment Diabetic Retinopathy Study. Ultra-wide-field fluorescein angiograms imaging, on average, demonstrated 3.2 times more total retinal surface area than 7SF. When compared with 7SF, ultra-wide-field fluorescein angiography showed 3.9 times more nonperfusion (P diabetic retinopathy. Improved retinal visualization may alter the classification of diabetic retinopathy and may therefore influence follow-up and treatment of these patients.

  18. EMPIRICAL PREDICTIONS FOR (SUB-)MILLIMETER LINE AND CONTINUUM DEEP FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Da Cunha, Elisabete; Walter, Fabian; Decarli, Roberto; Rix, Hans-Walter [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Bertoldi, Frank [Argelander Institute for Astronomy, University of Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany); Carilli, Chris [National Radio Astronomy Observatory, Pete V. Domenici Array Science Center, P.O. Box O, Socorro, NM 87801 (United States); Daddi, Emanuele; Elbaz, David; Sargent, Mark [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d' Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Ivison, Rob [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Maiolino, Roberto [Cavendish Laboratory, University of Cambridge, 19 J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Riechers, Dominik [Astronomy Department, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Smail, Ian [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Weiss, Axel, E-mail: cunha@mpia.de [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany)

    2013-03-01

    Modern (sub-)millimeter/radio interferometers such as ALMA, JVLA, and the PdBI successor NOEMA will enable us to measure the dust and molecular gas emission from galaxies that have luminosities lower than the Milky Way, out to high redshifts and with unprecedented spatial resolution and sensitivity. This will provide new constraints on the star formation properties and gas reservoir in galaxies throughout cosmic times through dedicated deep field campaigns targeting the CO/[C II] lines and dust continuum emission in the (sub-)millimeter regime. In this paper, we present empirical predictions for such line and continuum deep fields. We base these predictions on the deepest available optical/near-infrared Advanced Camera for Surveys and NICMOS data on the Hubble Ultra Deep Field (over an area of about 12 arcmin{sup 2}). Using a physically motivated spectral energy distribution model, we fit the observed optical/near-infrared emission of 13,099 galaxies with redshifts up to z = 5, and obtain median-likelihood estimates of their stellar mass, star formation rate, dust attenuation, and dust luminosity. We combine the attenuated stellar spectra with a library of infrared emission models spanning a wide range of dust temperatures to derive statistical constraints on the dust emission in the infrared and (sub-)millimeter which are consistent with the observed optical/near-infrared emission in terms of energy balance. This allows us to estimate, for each galaxy, the (sub-)millimeter continuum flux densities in several ALMA, PdBI/NOEMA, and JVLA bands. As a consistency check, we verify that the 850 {mu}m number counts and extragalactic background light derived using our predictions are consistent with previous observations. Using empirical relations between the observed CO/[C II] line luminosities and the infrared luminosity of star-forming galaxies, we infer the luminosity of the CO(1-0) and [C II] lines from the estimated infrared luminosity of each galaxy in our sample

  19. Longitudinal wake field for an electron beam accelerated through a ultra-high field gradient

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, G.; Saldin, E.; Schneidmiller, E.; Yurkov, M.

    2006-12-15

    Electron accelerators with higher and higher longitudinal field gradients are desirable, as they allow for the production of high energy beams by means of compact and cheap setups. The new laser-plasma acceleration technique appears to constitute the more promising breakthrough in this direction, delivering unprecedent field gradients up to TV/m. In this article we give a quantitative description of the impact of longitudinal wake fields on the electron beam. Our paper is based on the solution of Maxwell's equations for the longitudinal field. Our conclusions are valid when the acceleration distance is much smaller than the the overtaking length, that is the length that electrons travel as a light signal from the tail of the bunch overtakes the head of the bunch. This condition is well verified for laser-plasma devices. We calculate a closed expression for the impedance and the wake function that may be evaluated numerically. It is shown that the rate of energy loss in the bunch due to radiative interaction is equal to the energy emitted through coherent radiation in the far-zone. Furthermore, an expression is found for the asymptotic limit of a large distance of the electron beam from the accelerator compared with the overtaking length. Such expression allows us to calculate analytical solutions for a Gaussian transverse and longitudinal bunch shape. Finally, we study the feasibility of Table-Top Free-Electron Lasers in the Vacuum Ultra-Violet (TT-VUV FEL) and X-ray range (TT-XFEL), respectively based on 100 MeV and 1 GeV laser-plasma accelerator drivers. Numerical estimations presented in this paper indicate that the effects of the time-dependent energy change induced by the longitudinal wake pose a serious threat to the operation of these devices. (orig.)

  20. Ultra-High Field Magnets for X-Ray and Neutron Scattering using High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Winn, Barry L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Broholm, C. [Johns Hopkins Univ., Baltimore, MD (United States); Bird, M. [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab); Breneman, Bruce C. [General Atomics, San Diego, CA (United States); Coffey, Michael [Cryomagnetics, Oak Ridge, TN (United States); Cutler, Roy I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duckworth, Robert C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Erwin, R. [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Hahn, Seungyong [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab); Hernandez, Yamali [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Herwig, Kenneth W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holland, Leo D. [General Atomics, San Diego, CA (United States); Lonergan, Kevin M. [Oxford Instruments, Abingdon (United Kingdom); Melhem, Ziad [Oxford Instruments, Abingdon (United Kingdom); Minter, Stephen J. [Cryomagnetics, Oak Ridge, TN (United States); Nelson, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Paranthaman, M. Parans [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pierce, Josh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ruff, Jacob [Cornell Univ., Ithaca, NY (United States); Shen, Tengming [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherline, Todd E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smeibidl, Peter G. [Helmholtz-Zentrum Berlin (HZB), (Germany); Tennant, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); van der Laan, Danko [Advanced Conductor Technologies, LLC, Boulder, CO (United States); Wahle, Robert J. [Helmholtz-Zentrum Berlin (HZB), (Germany); Zhang, Yifei [SuperPower, Inc., Schenectady, NY (United States)

    2017-01-01

    X-ray and neutron scattering techniques are capable of acquiring information about the structure and dynamics of quantum matter. However, the high-field magnet systems currently available at x-ray and neutron scattering facilities in the United States are limited to fields of 16 tesla (T) at maximum, which precludes applications that require and/or study ultra-high field states of matter. This gap in capability—and the need to address it—is a central conclusion of the 2005 National Academy of Sciences report by the Committee on Opportunities in High Magnetic Field Science. To address this gap, we propose a magnet development program that would more than double the field range accessible to scattering experiments. With the development and use of new ultra-high field–magnets, the program would bring into view new worlds of quantum matter with profound impacts on our understanding of advanced electronic materials.

  1. Feasibility of using ultra-high field (7 T MRI for clinical surgical targeting.

    Directory of Open Access Journals (Sweden)

    Yuval Duchin

    Full Text Available The advantages of ultra-high magnetic field (7 Tesla MRI for basic science research and neuroscience applications have proven invaluable. Structural and functional MR images of the human brain acquired at 7 T exhibit rich information content with potential utility for clinical applications. However, (1 substantial increases in susceptibility artifacts, and (2 geometrical distortions at 7 T would be detrimental for stereotactic surgeries such as deep brain stimulation (DBS, which typically use 1.5 T images for surgical planning. Here, we explore whether these issues can be addressed, making feasible the use of 7 T MRI to guide surgical planning. Twelve patients with Parkinson's disease, candidates for DBS, were scanned on a standard clinical 1.5 T MRI and a 7 T MRI scanner. Qualitative and quantitative assessments of global and regional distortion were evaluated based on anatomical landmarks and transformation matrix values. Our analyses show that distances between identical landmarks on 1.5 T vs. 7 T, in the mid-brain region, were less than one voxel, indicating a successful co-registration between the 1.5 T and 7 T images under these specific imaging parameter sets. On regional analysis, the central part of the brain showed minimal distortion, while inferior and frontal areas exhibited larger distortion due to proximity to air-filled cavities. We conclude that 7 T MR images of the central brain regions have comparable distortions to that observed on a 1.5 T MRI, and that clinical applications targeting structures such as the STN, are feasible with information-rich 7 T imaging.

  2. Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection

    Science.gov (United States)

    Nan, Tianxiang; Hui, Yu; Rinaldi, Matteo; Sun, Nian X.

    2013-06-01

    High sensitivity magnetoelectric sensors with their electromechanical resonance frequencies electromechanical systems (NEMS) resonator with an electromechanical resonance frequency of 215 MHz based on an AlN/(FeGaB/Al2O3) × 10 magnetoelectric heterostructure for detecting DC magnetic fields. This magnetoelectric NEMS resonator showed a high quality factor of 735, and strong magnetoelectric coupling with a large voltage tunable sensitivity. The admittance of the magnetoelectric NEMS resonator was very sensitive to DC magnetic fields at its electromechanical resonance, which led to a new detection mechanism for ultra-sensitive self-biased RF NEMS magnetoelectric sensor with a low limit of detection of DC magnetic fields of ~300 picoTelsa. The magnetic/piezoelectric heterostructure based RF NEMS magnetoelectric sensor is compact, power efficient and readily integrated with CMOS technology, which represents a new class of ultra-sensitive magnetometers for DC and low frequency AC magnetic fields.

  3. DeepCNF-D: Predicting Protein Order/Disorder Regions by Weighted Deep Convolutional Neural Fields

    Directory of Open Access Journals (Sweden)

    Sheng Wang

    2015-07-01

    Full Text Available Intrinsically disordered proteins or protein regions are involved in key biological processes including regulation of transcription, signal transduction, and alternative splicing. Accurately predicting order/disorder regions ab initio from the protein sequence is a prerequisite step for further analysis of functions and mechanisms for these disordered regions. This work presents a learning method, weighted DeepCNF (Deep Convolutional Neural Fields, to improve the accuracy of order/disorder prediction by exploiting the long-range sequential information and the interdependency between adjacent order/disorder labels and by assigning different weights for each label during training and prediction to solve the label imbalance issue. Evaluated by the CASP9 and CASP10 targets, our method obtains 0.855 and 0.898 AUC values, which are higher than the state-of-the-art single ab initio predictors.

  4. Technologies in deep and ultra-deep well drilling: Present status, challenges and future trend in the 13th Five-Year Plan period (2016–2020

    Directory of Open Access Journals (Sweden)

    Haige Wang

    2017-09-01

    Full Text Available During the 12th Five-Year Plan period (2011–2015, CNPC independently developed a series of new drilling equipment, tools and chemical materials for deep and ultra-deep wells, including six packages of key drilling equipment: rigs for wells up to 8000 m deep, quadruple-joint-stand rigs, automatic pipe handling devices for rigs for wells being 5000/7000 m deep, managed pressure drilling systems & equipment, gas/fuel alternative combustion engine units, and air/gas/underbalanced drilling systems; seven sets of key drilling tools: automatic vertical well drilling tools, downhole turbine tools, high-performance PDC bits, hybrid bits, bit jet pulsation devices, no-drilling-surprise monitoring system, & casing running devices for top drive; and five kinds of drilling fluids and cementing slurries: high temperature and high density water-based drilling fluids, oil-based drilling fluids, high temperature and large temperature difference cementing slurry, and ductile cement slurry system. These new development technologies have played an important role in supporting China's oil and gas exploration and development business. During the following 13th Five-Year Plan period (2016–2020, there are still many challenges to the drilling of deep and ultra-deep wells, such as high temperatures, high pressures, narrow pressure window, wellbore integrity and so on, as well as the enormous pressure on cost reduction and efficiency improvement. Therefore, the future development trend will be focused on the development of efficient and mobile rigs, high-performance drill bits and auxiliary tools, techniques for wellbore integrity and downhole broadband telemetry, etc. In conclusion, this study will help improve the ability and level of drilling ultra-deep wells and provide support for oil and gas exploration and development services in China. Keywords: Deep well, Ultra-deep well, Drilling techniques, Progress, Challenge, Strategy, CNPC

  5. Passive shimming of the fringe field of a superconducting magnet for ultra-low field hyperpolarized noble gas MRI.

    Science.gov (United States)

    Parra-Robles, Juan; Cross, Albert R; Santyr, Giles E

    2005-05-01

    Hyperpolarized noble gases (HNGs) provide exciting possibilities for MR imaging at ultra-low magnetic field strengths (superconductive magnets used in clinical MR imaging can provide a stable magnetic field for this purpose. In addition to offering the benefit of HNG MR imaging alongside conventional high field proton MRI, this approach offers the other useful advantage of providing different field strengths at different distances from the magnet. However, the extremely strong field gradients associated with the fringe field present a major challenge for imaging since impractically high active shim currents would be required to achieve the necessary homogeneity. In this work, a simple passive shimming method based on the placement of a small number of ferromagnetic pieces is proposed to reduce the fringe field inhomogeneities to a level that can be corrected using standard active shims. The method explicitly takes into account the strong variations of the field over the volume of the ferromagnetic pieces used to shim. The method is used to obtain spectra in the fringe field of a high-field (1.89 T) superconducting magnet from hyperpolarized 129Xe gas samples at two different ultra-low field strengths (8.5 and 17 mT). The linewidths of spectra measured from imaging phantoms (30 Hz) indicate a homogeneity sufficient for MRI of the rat lung.

  6. Anomalous Capacitive Sheath with Deep Radio Frequency Electric Field Penetration

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.

    2002-01-01

    A novel nonlinear effect of anomalously deep penetration of an external radio-frequency electric field into a plasma is described. A self-consistent kinetic treatment reveals a transition region between the sheath and the plasma. Because of the electron velocity modulation in the sheath, bunches in the energetic electron density are formed in the transition region adjusted to the sheath. The width of the region is of order V(subscript T)/omega, where V(subscript T) is the electron thermal velocity, and w is frequency of the electric field. The presence of the electric field in the transition region results in a cooling of the energetic electrons and an additional heating of the cold electrons in comparison with the case when the transition region is neglected

  7. Sub-mm Scale Fiber Guided Deep/Vacuum Ultra-Violet Optical Source for Trapped Mercury Ion Clocks

    Science.gov (United States)

    Yi, Lin; Burt, Eric A.; Huang, Shouhua; Tjoelker, Robert L.

    2013-01-01

    We demonstrate the functionality of a mercury capillary lamp with a diameter in the sub-mm range and deep ultraviolet (DUV)/ vacuum ultraviolet (VUV) radiation delivery via an optical fiber integrated with the capillary. DUV spectrum control is observed by varying the fabrication parameters such as buffer gas type and pressure, capillary diameter, electrical resonator design, and temperature. We also show spectroscopic data of the 199Hg+ hyper-fine transition at 40.5GHz when applying the above fiber optical design. We present efforts toward micro-plasma generation in hollow-core photonic crystal fiber with related optical design and theoretical estimations. This new approach towards a more practical DUV optical interface could benefit trapped ion clock developments for future ultra-stable frequency reference and time-keeping applications.

  8. Marginal Shape Deep Learning: Applications to Pediatric Lung Field Segmentation.

    Science.gov (United States)

    Mansoor, Awais; Cerrolaza, Juan J; Perez, Geovanny; Biggs, Elijah; Nino, Gustavo; Linguraru, Marius George

    2017-02-11

    Representation learning through deep learning (DL) architecture has shown tremendous potential for identification, localization, and texture classification in various medical imaging modalities. However, DL applications to segmentation of objects especially to deformable objects are rather limited and mostly restricted to pixel classification. In this work, we propose marginal shape deep learning (MaShDL), a framework that extends the application of DL to deformable shape segmentation by using deep classifiers to estimate the shape parameters. MaShDL combines the strength of statistical shape models with the automated feature learning architecture of DL. Unlike the iterative shape parameters estimation approach of classical shape models that often leads to a local minima, the proposed framework is robust to local minima optimization and illumination changes. Furthermore, since the direct application of DL framework to a multi-parameter estimation problem results in a very high complexity, our framework provides an excellent run-time performance solution by independently learning shape parameter classifiers in marginal eigenspaces in the decreasing order of variation. We evaluated MaShDL for segmenting the lung field from 314 normal and abnormal pediatric chest radiographs and obtained a mean Dice similarity coefficient of 0.927 using only the four highest modes of variation (compared to 0.888 with classical ASM 1 (p-value=0.01) using same configuration). To the best of our knowledge this is the first demonstration of using DL framework for parametrized shape learning for the delineation of deformable objects.

  9. Deep recurrent conditional random field network for protein secondary prediction

    DEFF Research Database (Denmark)

    Johansen, Alexander Rosenberg; Sønderby, Søren Kaae; Sønderby, Casper Kaae

    2017-01-01

    Deep learning has become the state-of-the-art method for predicting protein secondary structure from only its amino acid residues and sequence profile. Building upon these results, we propose to combine a bi-directional recurrent neural network (biRNN) with a conditional random field (CRF), which...... of the labels for all time-steps. We condition the CRF on the output of biRNN, which learns a distributed representation based on the entire sequence. The biRNN-CRF is therefore close to ideally suited for the secondary structure task because a high degree of cross-talk between neighboring elements can...

  10. Evolution of simeprevir-resistant variants over time by ultra-deep sequencing in HCV genotype 1b.

    Science.gov (United States)

    Akuta, Norio; Suzuki, Fumitaka; Sezaki, Hitomi; Suzuki, Yoshiyuki; Hosaka, Tetsuya; Kobayashi, Masahiro; Kobayashi, Mariko; Saitoh, Satoshi; Ikeda, Kenji; Kumada, Hiromitsu

    2014-08-01

    Using ultra-deep sequencing technology, the present study was designed to investigate the evolution of simeprevir-resistant variants (amino acid substitutions of aa80, aa155, aa156, and aa168 positions in HCV NS3 region) over time. In Toranomon Hospital, 18 Japanese patients infected with HCV genotype 1b, received triple therapy of simeprevir/PEG-IFN/ribavirin (DRAGON or CONCERT study). Sustained virological response rate was 67%, and that was significantly higher in patients with IL28B rs8099917 TT than in those with non-TT. Six patients, who did not achieve sustained virological response, were tested for resistant variants by ultra-deep sequencing, at the baseline, at the time of re-elevation of viral loads, and at 96 weeks after the completion of treatment. Twelve of 18 resistant variants, detected at re-elevation of viral load, were de novo resistant variants. Ten of 12 de novo resistant variants become undetectable over time, and that five of seven resistant variants, detected at baseline, persisted over time. In one patient, variants of Q80R at baseline (0.3%) increased at 96-week after the cessation of treatment (10.2%), and de novo resistant variants of D168E (0.3%) also increased at 96-week after the cessation of treatment (9.7%). In conclusion, the present study indicates that the emergence of simeprevir-resistant variants after the start of treatment could not be predicted at baseline, and the majority of de novo resistant variants become undetectable over time. Further large-scale prospective studies should be performed to investigate the clinical utility in detecting simeprevir-resistant variants. © 2014 Wiley Periodicals, Inc.

  11. Damage evaluation on oil-based drill-in fluids for ultra-deep fractured tight sandstone gas reservoirs

    Directory of Open Access Journals (Sweden)

    Jinzhi Zhu

    2017-07-01

    Full Text Available In order to explore the damage mechanisms and improve the method to evaluate and optimize the performance of formation damage control of oil-based drill-in fluids, this paper took an ultra-deep fractured tight gas reservoir in piedmont configuration, located in the Cretaceous Bashijiqike Fm of the Tarim Basin, as an example. First, evaluation experiments were conducted on the filtrate invasion, the dynamic damage of oil-based drill-in fluids and the loading capacity of filter cakes. Meanwhile, the evaluating methods were optimized for the formation damage control effect of oil-based drill-in fluids in laboratory: pre-processing drill-in fluids before grading analysis; using the dynamic damage method to simulate the damage process for evaluating the percentage of regained permeability; and evaluating the loading capacity of filter cakes. The experimental results show that (1 oil phase trapping damage and solid phase invasion are the main formation damage types; (2 the damage degree of filtrate is the strongest on the matrix; and (3 the dynamic damage degree of oil-based drill-in fluids reaches medium strong to strong on fractures and filter cakes show a good sealing capacity for the fractures less than 100 μm. In conclusion, the filter cakes' loading capacity should be first guaranteed, and both percentage of regained permeability and liquid trapping damage degree should be both considered in the oil-based drill-in fluids prepared for those ultra-deep fractured tight sandstone gas reservoirs.

  12. Deep underground disposal of radioactive wastes: Near field effects

    International Nuclear Information System (INIS)

    1985-01-01

    This report reviews the important near-field effects of the disposal of wastes in deep rock formations. The basic characteristics of waste form, container and package, buffer and backfill materials and potential host-rock types are discussed from the perspective of the performance requirements of the total repository system. Effects of waste emplacement on the separate system components and on the system as a whole are discussed. The effects include interactions between groundwater and brines and the other system components, thermal and thermo-mechanical effects, and chemical and geochemical reactions. Special consideration is given to the radiation field that exists in proximity to the waste containers and also to the coupled effects of different phenomena

  13. Manipulating beams of ultra-cold atoms with a static magnetic field

    International Nuclear Information System (INIS)

    Rowlands, W.J.; Lau, D.C.; Opat, G.I.; Sidorov, A.I.; McLean, R.J.; Hannaford, P.

    1996-01-01

    The preliminary results on the deflection of a beam of ultra-cold atoms by a static magnetic field are presented. Caesium atoms trapped in a magneto-optical trap (MOT) are cooled using optical molasses, and then fall freely under gravity to form a beam of ultra-cold atoms. The atoms pass through a static inhomogeneous magnetic field produced by a single current-carrying wire, and are deflected by a force dependent on the magnetic substate of the atom. A schematical diagram of the experimental layout for laser trapping and cooling of cesium atom is given. The population of atoms in various magnetic substates can be altered by using resonant laser radiation to optically pump the atoms. The single-wire deflection experiment described can be considered as atomic reflexion from a cylindrical magnetic mirror; the underlying principles and techniques being relevant to the production of atomic mirrors and diffraction gratings. 16 refs., 10 figs

  14. Features of the galactic magnetic field regarding deflections of ultra-high-energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Wirtz, Marcus; Erdmann, Martin; Mueller, Gero; Urban, Martin [III. Physikalisches Institut A, RWTH Aachen University (Germany)

    2016-07-01

    Most recent models of the galactic magnetic field have been derived from Faraday rotation measurements and imply strong deflections even for ultra-high energy cosmic rays. We investigate the characteristics of the different field parametrizations and point out similarities and interesting features. Among them are extragalactic regions which are invisible for an Earth bound observation and the transition from diffuse to ballistic behaviour in the 1 EeV energy regime. Applying this knowledge to a directional analysis, there are indications for deflection patterns by the galactic magnetic field in cosmic ray arrival directions measured by the Pierre Auger Observatory.

  15. The spheromak as a prototype for ultra-high-field superconducting magnets

    International Nuclear Information System (INIS)

    Furth, H.P.; Jardin, S.C.

    1987-08-01

    In view of current progress in the development of superconductor materials, the ultimate high-field limit of superconducting magnets is likely to be set by mechanical stress problems. Maximum field strength should be attainable by means of approximately force-free magnet windings having favorable ''MHD'' stability properties (so that small winding errors will not grow). Since a low-beta finite-flux-hole spheromak configuration qualifies as a suitable prototype, the theoretical and experimental spheromak research effort of the past decade has served to create a substantial technical basis for the design of ultra-high-field superconducting coils. 11 refs

  16. Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials

    Science.gov (United States)

    Matlashov, Andrei Nikolaevich; Urbaitis, Algis V.; Savukov, Igor Mykhaylovich; Espy, Michelle A.; Volegov, Petr Lvovich; Kraus, Jr., Robert Henry

    2013-03-05

    Method comprising obtaining an NMR measurement from a sample wherein an ultra-low field NMR system probes the sample and produces the NMR measurement and wherein a sampling temperature, prepolarizing field, and measurement field are known; detecting the NMR measurement by means of inductive coils; analyzing the NMR measurement to obtain at least one measurement feature wherein the measurement feature comprises T1, T2, T1.rho., or the frequency dependence thereof; and, searching for the at least one measurement feature within a database comprising NMR reference data for at least one material to determine if the sample comprises a material of interest.

  17. Ultrastructural Study on Ultra-Low Frequency Electromagnetic Fields and Transfer Factor Effects on Skin Ulcers

    International Nuclear Information System (INIS)

    Cadena, M. S. Reyes; Chapul, L. Sanchez; Perez, Javier; Garcia, M. N. Jimenez; Lopez, M. A. Jimenez; Espindola, M. E. Sanchez; Perez, R. Paniagua; Hernandez, N. A.; Paniagua, G.; Uribe, F.; Nava, J. J. Godina; Segura, M. A. Rodriguez

    2008-01-01

    We determined the effect of 120Hz ultra low frequency electromagnetic field (ELF) on the healing process of skin in 20 Wistar rats distributed in four groups in which chronic dermal ulcers had been produced. The first two groups received a dose of the transfer factor and interferon-beta (IFN-β) every 24 h during 12 days. The third group (positive control) received only electromagnetic field (ELF) sessions, and in the fourth group (negative control), no treatment was applied. The electromagnetic field was applied through a Helmholtz coils; 30 Gauss of intensity. Results shown histological changes that improve the healing process in animals subjected to ELF together with the transfer factor

  18. THE HST EXTREME DEEP FIELD (XDF): COMBINING ALL ACS AND WFC3/IR DATA ON THE HUDF REGION INTO THE DEEPEST FIELD EVER

    International Nuclear Information System (INIS)

    Illingworth, G. D.; Magee, D.; Oesch, P. A.; Bouwens, R. J.; Labbé, I.; Franx, M.; Stiavelli, M.; Van Dokkum, P. G.; Trenti, M.; Carollo, C. M.; Gonzalez, V.

    2013-01-01

    The eXtreme Deep Field (XDF) combines data from 10 years of observations with the Hubble Space Telescope Advanced Camera for Surveys (ACS) and the Wide-Field Camera 3 Infra-Red (WFC3/IR) into the deepest image of the sky ever in the optical/near-IR. Since the initial observations of the Hubble Ultra-Deep Field (HUDF) in 2003, numerous surveys and programs, including supernovae follow-up, HUDF09, CANDELS, and HUDF12, have contributed additional imaging data across this region. However, these images have never been combined and made available as one complete ultra-deep image dataset. We combine them now with the XDF program. Our new and improved processing techniques provide higher quality reductions of the total dataset. All WFC3/IR and optical ACS data sets have been fully combined and accurately matched, resulting in the deepest imaging ever taken at these wavelengths, ranging from 29.1 to 30.3 AB mag (5σ in a 0.''35 diameter aperture) in 9 filters. The combined image therefore reaches to 31.2 AB mag 5σ (32.9 at 1σ) for a flat f ν source. The gains in the optical for the four filters done in the original ACS HUDF correspond to a typical improvement of 0.15 mag, with gains of 0.25 mag in the deepest areas. Such gains are equivalent to adding ∼130 to ∼240 orbits of ACS data to the HUDF. Improved processing alone results in a typical gain of ∼0.1 mag. Our 5σ (optical+near-IR) SExtractor catalogs reveal about 14,140 sources in the full field and about 7121 galaxies in the deepest part of the XDF

  19. Deep Borehole Field Test Laboratory and Borehole Testing Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); MacKinnon, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Heath, Jason E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Herrick, Courtney G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jensen, Richard P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gardner, W. Payton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sevougian, S. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bryan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jang, Je-Hun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stein, Emily R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bauer, Stephen J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Daley, Tom [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Freifeld, Barry M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Spane, Frank A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-19

    Deep Borehole Disposal (DBD) of high-level radioactive wastes has been considered an option for geological isolation for many years (Hess et al. 1957). Recent advances in drilling technology have decreased costs and increased reliability for large-diameter (i.e., ≥50 cm [19.7”]) boreholes to depths of several kilometers (Beswick 2008; Beswick et al. 2014). These advances have therefore also increased the feasibility of the DBD concept (Brady et al. 2009; Cornwall 2015), and the current field test design will demonstrate the DBD concept and these advances. The US Department of Energy (DOE) Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013) specifically recommended developing a research and development plan for DBD. DOE sought input or expression of interest from States, local communities, individuals, private groups, academia, or any other stakeholders willing to host a Deep Borehole Field Test (DBFT). The DBFT includes drilling two boreholes nominally 200m [656’] apart to approximately 5 km [16,400’] total depth, in a region where crystalline basement is expected to begin at less than 2 km depth [6,560’]. The characterization borehole (CB) is the smaller-diameter borehole (i.e., 21.6 cm [8.5”] diameter at total depth), and will be drilled first. The geologic, hydrogeologic, geochemical, geomechanical and thermal testing will take place in the CB. The field test borehole (FTB) is the larger-diameter borehole (i.e., 43.2 cm [17”] diameter at total depth). Surface handling and borehole emplacement of test package will be demonstrated using the FTB to evaluate engineering feasibility and safety of disposal operations (SNL 2016).

  20. Observations of the Hubble Deep Field with the Infrared Space Observatory .4. Association of sources with Hubble Deep Field galaxies

    DEFF Research Database (Denmark)

    Mann, R.G.; Oliver, S.J.; Serjeant, S.B.G.

    1997-01-01

    We discuss the identification of sources detected by the Infrared Space Observatory (ISO) at 6.7 and 15 mu m in the Hubble Deep Field (HDF) region. We conservatively associate ISO sources with objects in existing optical and near-infrared HDF catalogues using the likelihood ratio method, confirming...... these results (and, in one case, clarifying them) with independent visual searches, We find 15 ISO sources to be reliably associated with bright [I-814(AB) HDF, and one with an I-814(AB)=19.9 star, while a further 11 are associated with objects in the Hubble Flanking Fields (10 galaxies...... and one star), Amongst optically bright HDF galaxies, ISO tends to detect luminous, star-forming galaxies at fairly high redshift and with disturbed morphologies, in preference to nearby ellipticals....

  1. Field development. Concept selection in deep water environment offshore Angola

    Energy Technology Data Exchange (ETDEWEB)

    Guenot, A.; Berger, J.C.; Limet, N. [TotalFinaElf, la Defense 6, Rosa-Lirio Project Group, 92 - Courbevoie (France)

    2002-10-01

    The significant oil discoveries made at the end of the 90's in the deep water environment offshore the coast of Angola, has led to a considerable amount of development activities. The first field in production was the turnkey development of the Kuito field on the Block 14 operated by Chevron. More recently the Girassol field has been put successfully in production on the Block 17, operated by TotalFinaElf. Both developments are making use of sub-sea wells connected to a moored dedicated FPSO. On the western side of the Girassol field, several discoveries have been made. They are known as the Rosa Lirio pole, from the names of two of the main channels. Values for water depth are in the same range than on Girassol (1300- 1400 m). A project group has been established in 1999 to evaluate the development of these discoveries. The purpose of this paper is to present the conceptual work which as been carried out, and in particular to show that even if many different concepts have been evaluated, the final choice has been also to make use of sub-sea trees. (authors)

  2. Deep Vadose Zone–Applied Field Research Initiative Fiscal Year 2012 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wellman, Dawn M.; Truex, Michael J.; Johnson, Timothy C.; Bunn, Amoret L.; Golovich, Elizabeth C.

    2013-03-14

    This annual report describes the background of the Deep Vadose Zone-Applied Field Research Initiative, and some of the programmatic approaches and transformational technologies in groundwater and deep vadose zone remediation developed during fiscal year 2012.

  3. DeepCotton: in-field cotton segmentation using deep fully convolutional network

    Science.gov (United States)

    Li, Yanan; Cao, Zhiguo; Xiao, Yang; Cremers, Armin B.

    2017-09-01

    Automatic ground-based in-field cotton (IFC) segmentation is a challenging task in precision agriculture, which has not been well addressed. Nearly all the existing methods rely on hand-crafted features. Their limited discriminative power results in unsatisfactory performance. To address this, a coarse-to-fine cotton segmentation method termed "DeepCotton" is proposed. It contains two modules, fully convolutional network (FCN) stream and interference region removal stream. First, FCN is employed to predict initially coarse map in an end-to-end manner. The convolutional networks involved in FCN guarantee powerful feature description capability, simultaneously, the regression analysis ability of neural network assures segmentation accuracy. To our knowledge, we are the first to introduce deep learning to IFC segmentation. Second, our proposed "UP" algorithm composed of unary brightness transformation and pairwise region comparison is used for obtaining interference map, which is executed to refine the coarse map. The experiments on constructed IFC dataset demonstrate that our method outperforms other state-of-the-art approaches, either in different common scenarios or single/multiple plants. More remarkable, the "UP" algorithm greatly improves the property of the coarse result, with the average amplifications of 2.6%, 2.4% on accuracy and 8.1%, 5.5% on intersection over union for common scenarios and multiple plants, separately.

  4. Horizontal-Longitudinal Correlations of Acoustic Field in Deep Water

    International Nuclear Information System (INIS)

    Li Jun; Li Zheng-Lin; Ren Yun; Li Wen; Zhang Ren-He

    2015-01-01

    The horizontal-longitudinal correlations of the acoustic field in deep water are investigated based on the experimental data obtained in the South China Sea. It is shown that the horizontal-longitudinal correlation coefficients in the convergence zone are high, and the correlation length is consistent with the convergence zone width, which depends on the receiver depth and range. The horizontal-longitudinal correlation coefficients in the convergence zone also have a division structure for the deeper receiver. The signals from the second part of the convergence zone are still correlated with the reference signal in the first part. The horizontal-longitudinal correlation coefficients in the shadow zone are lower than that in the convergence zone, and the correlation length in the shadow zone is also much shorter than that in the convergence zone. The numerical simulation results by using the normal modes theory are qualitatively consistent with the experimental results. (paper)

  5. Field emission mechanism from a single-layer ultra-thin semiconductor film cathode

    International Nuclear Information System (INIS)

    Duan Zhiqiang; Wang Ruzhi; Yuan Ruiyang; Yang Wei; Wang Bo; Yan Hui

    2007-01-01

    Field emission (FE) from a single-layer ultra-thin semiconductor film cathode (SUSC) on a metal substrate has been investigated theoretically. The self-consistent quantum FE model is developed by synthetically considering the energy band bending and electron scattering. As a typical example, we calculate the FE properties of ultra-thin AlN film with an adjustable film thickness from 1 to 10 nm. The calculated results show that the FE characteristic is evidently modulated by varying the film thickness, and there is an optimum thickness of about 3 nm. Furthermore, a four-step FE mechanism is suggested such that the distinct FE current of a SUSC is rooted in the thickness sensitivity of its quantum structure, and the optimum FE properties of the SUSC should be attributed to the change in the effective potential combined with the attenuation of electron scattering

  6. Direct imaging of neural currents using ultra-low field magnetic resonance techniques

    Science.gov (United States)

    Volegov, Petr L [Los Alamos, NM; Matlashov, Andrei N [Los Alamos, NM; Mosher, John C [Los Alamos, NM; Espy, Michelle A [Los Alamos, NM; Kraus, Jr., Robert H.

    2009-08-11

    Using resonant interactions to directly and tomographically image neural activity in the human brain using magnetic resonance imaging (MRI) techniques at ultra-low field (ULF), the present inventors have established an approach that is sensitive to magnetic field distributions local to the spin population in cortex at the Larmor frequency of the measurement field. Because the Larmor frequency can be readily manipulated (through varying B.sub.m), one can also envision using ULF-DNI to image the frequency distribution of the local fields in cortex. Such information, taken together with simultaneous acquisition of MEG and ULF-NMR signals, enables non-invasive exploration of the correlation between local fields induced by neural activity in cortex and more `distant` measures of brain activity such as MEG and EEG.

  7. Ultra-deep sequencing of intra-host rabies virus populations during cross-species transmission.

    Directory of Open Access Journals (Sweden)

    Monica K Borucki

    2013-11-01

    Full Text Available One of the hurdles to understanding the role of viral quasispecies in RNA virus cross-species transmission (CST events is the need to analyze a densely sampled outbreak using deep sequencing in order to measure the amount of mutation occurring on a small time scale. In 2009, the California Department of Public Health reported a dramatic increase (350 in the number of gray foxes infected with a rabies virus variant for which striped skunks serve as a reservoir host in Humboldt County. To better understand the evolution of rabies, deep-sequencing was applied to 40 unpassaged rabies virus samples from the Humboldt outbreak. For each sample, approximately 11 kb of the 12 kb genome was amplified and sequenced using the Illumina platform. Average coverage was 17,448 and this allowed characterization of the rabies virus population present in each sample at unprecedented depths. Phylogenetic analysis of the consensus sequence data demonstrated that samples clustered according to date (1995 vs. 2009 and geographic location (northern vs. southern. A single amino acid change in the G protein distinguished a subset of northern foxes from a haplotype present in both foxes and skunks, suggesting this mutation may have played a role in the observed increased transmission among foxes in this region. Deep-sequencing data indicated that many genetic changes associated with the CST event occurred prior to 2009 since several nonsynonymous mutations that were present in the consensus sequences of skunk and fox rabies samples obtained from 20032010 were present at the sub-consensus level (as rare variants in the viral population in skunk and fox samples from 1995. These results suggest that analysis of rare variants within a viral population may yield clues to ancestral genomes and identify rare variants that have the potential to be selected for if environment conditions change.

  8. Catwell and Sherdaps for deep-water production fields

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, H.P.; Rey, R. [Cameron, 34 - Beziers (France)

    2000-07-01

    The names Catwell and SherDaps are derived from: - Catenary Well - Subsea Horizontal Extended Reach Drilling And Production System. Both systems use the technique of being able to drill a well in deep-water either through a platform catenary carrier pipe or a catenary drilling riser. They also offer, in addition, significant advantages when drilling into shallow reservoirs and the ability to enhance production using platform artificial lift systems or easily serviceable pumps either in the well or at the mud-line. Catwell is a platform system with surface wellheads/trees whereas SherDaps uses a group of subsea wellheads/trees/BOP's that are accessible from one permanent catenary drilling riser. Both systems allow drilling/completing and future well intervention from a central location that otherwise would have required several drilling centres (i.e. platforms or subsea) if the conventional approach was followed. It is envisaged that well targets close to a platform will use well conductors possibly with mud-line wellheads, then Catwell to reach the medium range well targets and SherDaps for long range wells. It is considered that this arrangement would allow a single surface drilling/ production centre to have access to well targets giving a foot print range of up to a 20 km diameter. The total Capex savings on a Deep-water Field Development could be in the region of $200 m on a $1 billion development. Opex will be lower with the ability from the drilling center to quickly access any problem well and rectify any faults, minimising lost production. (authors)

  9. Physical and Numerical Modeling of the Stability of Deep Caverns in Tahe Oil Field in China

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2017-06-01

    Full Text Available Cave collapses emerge during the process of oil reservoir development, seriously affecting oil production. To reveal the collapse and failure mechanism of the carbonate cavern with a buried depth of 5600 m in Tahe Oil Field, using a self-developed ultra-high pressure model test system with the intelligent numerical control function, the model simulation material of carbonate rocks developed to carry out the 3D geo-mechanical model test. The model test and numerical results indicate that: (1 collapse and failure mechanism of the deep-buried caves mainly involve the failure mode of tensile shear. The rupture plane on the side wall is approximately parallel to the direction of maximum principal compressive stress. The V-type tension and split rupture plane then emerges. (2 In the process of forming holes in the model caverns, micro cracks are generated at the foot of the left and right side walls of the caverns, and the roof panels are constantly moving downward. The shorter the distance to the cave wall, the severer the destructiveness of the surrounding rocks will be. (3 The displacement of the top of the model cavern is relatively large and uniform, indicating that the cave roof moves downward as a whole. The area of the cavity suffering damage is 2.3 times as large as the cave span. The research results in this paper lay a solid test basis for revealing the cave collapse and failure mechanism in super depth.

  10. Effect of feedstock end boiling point on product sulphur during ultra deep diesel hydrodesulphurization

    Energy Technology Data Exchange (ETDEWEB)

    Stratiev, D.; Ivanov, A.; Jelyaskova, M. [Lukoil Neftochim Bourgas AD, Bourgas (Bulgaria)

    2004-12-01

    An investigation was carried out to test the feasibility of producing 50 and 10 ppm sulphur diesel in a conventional hydrotreating unit operating at low pressure conditions by varying the feedstock end boiling point. Middle distillate fractions distilled from a mixture of Ural crude oil, reduced crude, vacuum gas oil, naphtha and low sulphur crude oils with 95% vol. points of 274, 359, 343, 333, and 322 C (ASTM D-86 method) and sulphur contents of 0.36, 0.63, 0.99, 0.57, and 0.47%, respectively, were hydrotreated using the Akzo Nobel Stars family Co-Mo KF-757 catalyst in a trickle bed pilot plant at following conditions: reactor inlet temperature range of 320-360 C; liquid hourly space velocity (LHSV) range of 1-2 h{sup -1}; total reactor pressure of 3.5 MPa; treating gas: feedstock ratio of 250 Nm{sup 3}/m{sup 3}. It was found that the determinant factor for the attainment of ultra low sulphur levels during middle distillate hydrodesulphurization was not the total sulphur content in the feed but the content of the material boiling above 340 C (according to TBP). For all LHSVs and reactor inlet temperatures studied the product sulphur dependence on the feed 340 C+ fraction content was approximated by second order power law. The specification of 50 ppm sulphur was achieved with all studied feedstocks. However the 10ppm sulphur limit could be met only by feedstocks with 95% vol. points below 333 C, which is accompanied by about 10% reduction of the diesel potential. The hydrotreatment tests on a blend 80% straight run gas oil (ASTM D-86 95% vol. of 274 C)/20%FCC LCO (ASTM D-86 95% vol. of 284 C) showed product sulphur levels which were not higher than those obtained by hydrotreatment of the straight run gas oil, indicating that undercutting the FCC LCO gives the refiner the opportunity to increase the potential for the production of 10 ppm sulphur diesel at the conditions of the conventional hydrotreating unit operating at low pressure. The product cetane index was

  11. Development of sensors for the acoustic detection of ultra high energy neutrinos in the deep sea

    International Nuclear Information System (INIS)

    Naumann, C.L.

    2007-01-01

    In addition to the optical detection system used by the ANTARES detector, a proposal was made to include an acoustic system consisting of several modified ANTARES storeys to investigate the feasibility of building and operating an acoustic particle detection system in the deep sea and at the same time perform an extensive study of the acoustic properties of the deep sea environment. The directional characteristics of the sensors and their placement within the ANTARES detector had to be optimised for the study of the correlation properties of the acoustic noise at different length scales - from below a metre to above 100 metres. The so-called ''equivalent circuit diagram (=ECD) model'' - was applied to predict the acoustic properties of piezo elements, such as sensitivity and intrinsic noise, and was extended by including effects resulting from the geometrical shape of the sensors. A procedure was devised to gain the relevant ECD parameters from electrical impedance measurements of the piezo elements, both free and coupled to a surrounding medium. Based on the findings of this ECD model, intensive design studies were performed with prototype hydrophones using piezo elements as active sensors. The design best suited for the construction of acoustic sensors for ANTARES was determined, and a total of twelve hydrophones were built with a sensitivity of -145 to -140 dB re 1V/μPa between 5 and 50 kHz and an intrinsic noise power density around -90 dB re 1 V/√(Hz), giving a total noise rms of 7 mV in this frequency range. The hydrophones were pressure tested and calibrated for integration into the ANTARES acoustic system. In addition, three so-called Acoustic Modules, sensors in pressure resistant glass spheres with a sensitive bandwidth of about 80 kHz, were developed and built. The calibration procedure employed during the sensor design studies as well as for the final sensors to be installed in the ANTARES framework is presented, together with exemplary results for

  12. Development of sensors for the acoustic detection of ultra high energy neutrinos in the deep sea

    Energy Technology Data Exchange (ETDEWEB)

    Naumann, C.L.

    2007-09-17

    In addition to the optical detection system used by the ANTARES detector, a proposal was made to include an acoustic system consisting of several modified ANTARES storeys to investigate the feasibility of building and operating an acoustic particle detection system in the deep sea and at the same time perform an extensive study of the acoustic properties of the deep sea environment. The directional characteristics of the sensors and their placement within the ANTARES detector had to be optimised for the study of the correlation properties of the acoustic noise at different length scales - from below a metre to above 100 metres. The so-called 'equivalent circuit diagram (=ECD) model' - was applied to predict the acoustic properties of piezo elements, such as sensitivity and intrinsic noise, and was extended by including effects resulting from the geometrical shape of the sensors. A procedure was devised to gain the relevant ECD parameters from electrical impedance measurements of the piezo elements, both free and coupled to a surrounding medium. Based on the findings of this ECD model, intensive design studies were performed with prototype hydrophones using piezo elements as active sensors. The design best suited for the construction of acoustic sensors for ANTARES was determined, and a total of twelve hydrophones were built with a sensitivity of -145 to -140 dB re 1V/{mu}Pa between 5 and 50 kHz and an intrinsic noise power density around -90 dB re 1 V/{radical}(Hz), giving a total noise rms of 7 mV in this frequency range. The hydrophones were pressure tested and calibrated for integration into the ANTARES acoustic system. In addition, three so-called Acoustic Modules, sensors in pressure resistant glass spheres with a sensitive bandwidth of about 80 kHz, were developed and built. The calibration procedure employed during the sensor design studies as well as for the final sensors to be installed in the ANTARES framework is presented, together with

  13. Ultra-low field NMR for detection and characterization of 235 UF6

    Energy Technology Data Exchange (ETDEWEB)

    Espy, Michelle A [Los Alamos National Laboratory; Magnelind, Per E [Los Alamos National Laboratory; Matlashov, Andrei N [Los Alamos National Laboratory; Urbaitis, Algis V [Los Alamos National Laboratory; Volegov, Petr L [Los Alamos National Laboratory

    2009-01-01

    We have demonstrated the first ultra-low field (ULF) nuclear magnetic resonance measurements of uranium hexafluoride (UF{sub 6}), both depleted and 70% enriched, which is used in the uranium enrichment process. A sensitive non-invasive detection system would have an important role in non-proliferation surveillance. A two-frequency technique was employed to remove the transients induced by rapidly switching off the 50 mT pre-polarization field. A mean transverse relaxation time T{sub 2} of 24 ms was estimated for the un-enriched UF{sub 6} sample measured at a mean temperature of 80 C. Nuclear magnetic resonance at ULF has several advantages including the ability to measure through metal, such as pipes, and simple magnetic field generation hardware. We present here recent data and discuss the potential for non-proliferation monitoring of enrichment and flow velocity.

  14. Self-generated magnetic fields and energy transport by ultra-intense laser-plasma interaction

    International Nuclear Information System (INIS)

    Abudurexiti, A.; Tuniyazi, P.; Wang Qian

    2011-01-01

    The electromagnetic instability (Weibel instability) and its mechanism in ultra-intense laser-plasma interactions are studied by using three-dimensional particle-in-cell simulations. The transport of energy in electron thermal conduction is analyzed by the Spitzer-Harm theory, and the election's vertical pyrogenation phenomenon that resulted from anisotropic heating of laser is observed. The results indicate that the strong magnetic field excited by Weibel instability makes the electron beam deposit its energy within a very short distance, and it restrains the electron thermal flux formed when the laser ponderomotive force bursts through the electron. With the increase of the self-generated magnetic field, the electron will be seized by the wave of magnetic field, and the transport of heat will be restricted. (authors)

  15. Ultra Deep Sequencing of a Baculovirus Population Reveals Widespread Genomic Variations

    Directory of Open Access Journals (Sweden)

    Aurélien Chateigner

    2015-07-01

    Full Text Available Viruses rely on widespread genetic variation and large population size for adaptation. Large DNA virus populations are thought to harbor little variation though natural populations may be polymorphic. To measure the genetic variation present in a dsDNA virus population, we deep sequenced a natural strain of the baculovirus Autographa californica multiple nucleopolyhedrovirus. With 124,221X average genome coverage of our 133,926 bp long consensus, we could detect low frequency mutations (0.025%. K-means clustering was used to classify the mutations in four categories according to their frequency in the population. We found 60 high frequency non-synonymous mutations under balancing selection distributed in all functional classes. These mutants could alter viral adaptation dynamics, either through competitive or synergistic processes. Lastly, we developed a technique for the delimitation of large deletions in next generation sequencing data. We found that large deletions occur along the entire viral genome, with hotspots located in homologous repeat regions (hrs. Present in 25.4% of the genomes, these deletion mutants presumably require functional complementation to complete their infection cycle. They might thus have a large impact on the fitness of the baculovirus population. Altogether, we found a wide breadth of genomic variation in the baculovirus population, suggesting it has high adaptive potential.

  16. Geomechanical Considerations for the Deep Borehole Field Test

    Science.gov (United States)

    Park, B. Y.

    2015-12-01

    Deep borehole disposal of high-level radioactive waste is under consideration as a potential alternative to shallower mined repositories. The disposal concept consists of drilling a borehole into crystalline basement rocks to a depth of 5 km, emplacement of canisters containing solid waste in the lower 2 km, and plugging and sealing the upper 3 km of the borehole. Crystalline rocks such as granites are particularly attractive for borehole emplacement because of their low permeability and porosity at depth, and high mechanical strength to resist borehole deformation. In addition, high overburden pressures contribute to sealing of some of the fractures that provide transport pathways. We present geomechanical considerations during construction (e.g., borehole breakouts, disturbed rock zone development, and creep closure), relevant to both the smaller-diameter characterization borehole (8.5") and the larger-diameter field test borehole (17"). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. Effects of anesthetic agents on brain blood oxygenation level revealed with ultra-high field MRI.

    Directory of Open Access Journals (Sweden)

    Luisa Ciobanu

    Full Text Available During general anesthesia it is crucial to control systemic hemodynamics and oxygenation levels. However, anesthetic agents can affect cerebral hemodynamics and metabolism in a drug-dependent manner, while systemic hemodynamics is stable. Brain-wide monitoring of this effect remains highly challenging. Because T(2*-weighted imaging at ultra-high magnetic field strengths benefits from a dramatic increase in contrast to noise ratio, we hypothesized that it could monitor anesthesia effects on brain blood oxygenation. We scanned rat brains at 7T and 17.2T under general anesthesia using different anesthetics (isoflurane, ketamine-xylazine, medetomidine. We showed that the brain/vessels contrast in T(2*-weighted images at 17.2T varied directly according to the applied pharmacological anesthetic agent, a phenomenon that was visible, but to a much smaller extent at 7T. This variation is in agreement with the mechanism of action of these agents. These data demonstrate that preclinical ultra-high field MRI can monitor the effects of a given drug on brain blood oxygenation level in the absence of systemic blood oxygenation changes and of any neural stimulation.

  18. Scattering Fields Control by Metamaterial Device Based on Ultra-Broadband Polarization Converters

    Directory of Open Access Journals (Sweden)

    Si-Jia Li

    2016-12-01

    Full Text Available We proposed a novel ultra-broadband meta¬material screen with controlling the electromagnetic scat¬tering fields based on the three layers wideband polariza¬tion converter (TLW-PC. The unit cell of TLW-PC was composed of a three layers substrate loaded with double metallic split-rings structure and a metal ground plane. We observed that the polarization converter primarily per¬formed ultra-broadband cross polarization conversion from 5.71 GHz to 14.91 GHz. Furthermore, a metamaterial screen, which contributed to the low scattering charac¬teristics, had been exploited with the orthogonal array based on TLW-PC. The near scattering electronic fields are controlled due to the change of phase and amplitude for incident wave. The metamaterial screen significantly exhibited low scattering characteristics from 5.81 GHz to 15.06 GHz. To demonstrate design, a metamaterial device easily implemented by the common printed circuit board method has been fabricated and measured. Experimental results agreed well with the simulated results.

  19. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    Energy Technology Data Exchange (ETDEWEB)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2015-12-15

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  20. Effects of anesthetic agents on brain blood oxygenation level revealed with ultra-high field MRI

    International Nuclear Information System (INIS)

    Ciobanu, Luisa; Reynaud, Olivier; Le Bihan, Denis; Uhrig, Lynn; Jarraya, Bechir

    2012-01-01

    During general anesthesia it is crucial to control systemic hemodynamics and oxygenation levels. However, anesthetic agents can affect cerebral hemodynamics and metabolism in a drug-dependent manner, while systemic hemodynamics is stable. Brain-wide monitoring of this effect remains highly challenging. Because T2'*-weighted imaging at ultra-high magnetic field strengths benefits from a dramatic increase in contrast to noise ratio, we hypothesized that it could monitor anesthesia effects on brain blood oxygenation. We scanned rat brains at 7 T and 17.2 T under general anesthesia using different anesthetics (isoflurane, ketamine-xylazine, medetomidine). We showed that the brain/vessels contrast in T2'*- weighted images at 17.2 T varied directly according to the applied pharmacological anesthetic agent, a phenomenon that was visible, but to a much smaller extent at 7 T. This variation is in agreement with the mechanism of action of these agents. These data demonstrate that preclinical ultra-high field MRI can monitor the effects of a given drug on brain blood oxygenation level in the absence of systemic blood oxygenation changes and of any neural stimulation. (authors)

  1. Encoding methods for B1+ mapping in parallel transmit systems at ultra high field

    Science.gov (United States)

    Tse, Desmond H. Y.; Poole, Michael S.; Magill, Arthur W.; Felder, Jörg; Brenner, Daniel; Jon Shah, N.

    2014-08-01

    Parallel radiofrequency (RF) transmission, either in the form of RF shimming or pulse design, has been proposed as a solution to the B1+ inhomogeneity problem in ultra high field magnetic resonance imaging. As a prerequisite, accurate B1+ maps from each of the available transmit channels are required. In this work, four different encoding methods for B1+ mapping, namely 1-channel-on, all-channels-on-except-1, all-channels-on-1-inverted and Fourier phase encoding, were evaluated using dual refocusing acquisition mode (DREAM) at 9.4 T. Fourier phase encoding was demonstrated in both phantom and in vivo to be the least susceptible to artefacts caused by destructive RF interference at 9.4 T. Unlike the other two interferometric encoding schemes, Fourier phase encoding showed negligible dependency on the initial RF phase setting and therefore no prior B1+ knowledge is required. Fourier phase encoding also provides a flexible way to increase the number of measurements to increase SNR, and to allow further reduction of artefacts by weighted decoding. These advantages of Fourier phase encoding suggest that it is a good choice for B1+ mapping in parallel transmit systems at ultra high field.

  2. The CHPM2030 H2020 Project: Combined Heat, Power and Metal extraction from ultra-deep ore bodies

    Science.gov (United States)

    Miklovicz, Tamas; Bodo, Balazs; Cseko, Adrienn; Hartai, Eva; Madarasz, Tamas

    2017-04-01

    The CHPM2030 project consortium is working on a novel technology solution that can provide both geothermal energy and minerals, in a single interlinked process. The CHPM technology involves an integrated approach to cross fertilize between two yet separated research areas: unconventional geothermal energy and mineral extraction. This places the project's research agenda onto the frontiers of geothermal resources development, mineral extraction and electro-metallurgy with the objectives of converting ultra-deep metallic mineral formations into an "orebody-enhanced geothermal system". In the envisioned facility, an EGS is established on a 3-4 km deep ore mineralisation. Metal content from the ore body is mobilised using mild leaching and/or nanoparticles, then metals are recovered by high-temperature, high-pressure geothermal fluid electrolysis and gas-diffusion electroprecipitation and electrocrystallisation. Salinity gradient power from pre-treated geothermal fluids will also be used. In the project, all these will be carried out at laboratory scale (technology readiness level of 4-5), providing data for the conceptual framework, process optimisation and simulations. Integrated sustainability assessment will also be carried out on the economic feasibility, social impact, policy considerations, environmental impact and ethics concerns. During the last stage of the research agenda, the work will focus on mapping converging technological areas, setting a background for pilot implementation and developing research roadmaps for 2030 and 2050. Pilot study areas include South West England, the Iberian Pyrite Belt in Portugal, the Banatitic Magmatic and Metallogenic Belt in Romania, and three mining districts in Sweden. The project started in January 2016 and lasts for 42 months. In the first phase, the metallogenesis of Europe was investigated and the potential ore formations have been identified. The rock-mechanical characteristics of orebodies have also been examined

  3. Analysis of hepatitis C NS5A resistance associated polymorphisms using ultra deep single molecule real time (SMRT) sequencing.

    Science.gov (United States)

    Bergfors, Assar; Leenheer, Daniël; Bergqvist, Anders; Ameur, Adam; Lennerstrand, Johan

    2016-02-01

    Development of Hepatitis C virus (HCV) resistance against direct-acting antivirals (DAAs), including NS5A inhibitors, is an obstacle to successful treatment of HCV when DAAs are used in sub-optimal combinations. Furthermore, it has been shown that baseline (pre-existing) resistance against DAAs is present in treatment naïve-patients and this will potentially complicate future treatment strategies in different HCV genotypes (GTs). Thus the aim was to detect low levels of NS5A resistant associated variants (RAVs) in a limited sample set of treatment-naïve patients of HCV GT1a and 3a, since such polymorphisms can display in vitro resistance as high as 60000 fold. Ultra-deep single molecule real time (SMRT) sequencing with the Pacific Biosciences (PacBio) RSII instrument was used to detect these RAVs. The SMRT sequencing was conducted on ten samples; three of them positive with Sanger sequencing (GT1a Q30H and Y93N, and GT3a Y93H), five GT1a samples, and two GT3a non-positive samples. The same methods were applied to the HCV GT1a H77-plasmid in a dilution series, in order to determine the error rates of replication, which in turn was used to determine the limit of detection (LOD), as defined by mean + 3SD, of minority variants down to 0.24%. We found important baseline NS5A RAVs at levels between 0.24 and 0.5%, which could potentially have clinical relevance. This new method with low level detection of baseline RAVs could be useful in predicting the most cost-efficient combination of DAA treatment, and reduce the treatment duration for an HCV infected individual. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Application of AMT in detecting deep geological structures in Lejia district of Xiangshan uranium ore field

    International Nuclear Information System (INIS)

    Duan Shuxin; Liu Hu

    2014-01-01

    In recent years, exploration in Xiangshan uranium ore field shows that the intersection of faults and the interface of different rock formation and the basement is an important sign of deep ore- prospecting. In order to evaluate deep uranium resource in Lejia district, audio magnetotelluric method (AMT) was undertaken to carry out profile investigation. With that method, we discerned the interface of different rock formation and the basement successfully, and faults in the deep, which provides a good basis for the prediction of deep uranium resource. Drilling results show that AMT method has an obvious advantage in detecting deep geological structures in Xiangshan. (authors)

  5. [Electric traction magnetic fields of ultra-low frequency as an occupational risk factor of ischemic heart disease].

    Science.gov (United States)

    Ptitsyna, N G; Kudrin, V A; Villorezi, D; Kopytenko, Iu A; Tiasto, M I; Kopytenko, E A; Bochko, V A; Iuchchi, N

    1996-01-01

    The study was inspired by earlier results that displayed influence of variable natural geomagnetic field (0.005-10 Hz range-ultra-low frequencies) on circulatory system, indicated possible correlation between industrial ultra-low frequency fields and prevalence of myocardial infarction. The authors conducted unique measurements of ultra-low frequency fields produced by electric engines. The results were compared with data on morbidity among railway transport workers. The findings are that level of magnetic variations in electric locomotive cabin can exceed 280 micro Tesla, whereas that in car sections reaches 50 micro Tesla. Occurrence of coronary heart disease among the locomotive operators appeared to be 2.0 + 0.2 times higher than that among the car section operators. Higher risk of coronary heart disease in the locomotive operators is associated with their increased occupational magnetic load.

  6. Conceptual Design and Requirements for Characterization and Field Test Boreholes: Deep Borehole Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); MacKinnon, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Heath, Jason E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Herrick, Courtney G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jensen, Richard P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sevougian, S. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Freifeld, Barry M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Daley, Tom [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-09-24

    Deep Borehole Disposal (DBD) of high-level radioactive wastes has been considered an option for geological isolation for many years (Hess et al. 1957). Recent advances in drilling technology have decreased costs and increased reliability for large-diameter (i.e., ≥50 cm [19.7”]) boreholes to depths of several kilometers (Beswick 2008; Beswick et al. 2014). These advances have therefore also increased the feasibility of the DBD concept (Brady et al. 2009; Cornwall 2015), and the current field test, introduced herein, is a demonstration of the DBD concept and these advances.

  7. Magnetic structures in ultra-thin Holmium films: Influence of external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, L.J. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59600-900, RN (Brazil); Departamento de Física, Universidade do Estado do Rio Grande do Norte, Mossoró 59625-620, RN (Brazil); Mello, V.D. [Departamento de Física, Universidade do Estado do Rio Grande do Norte, Mossoró 59625-620, RN (Brazil); Anselmo, D.H.A.L. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59600-900, RN (Brazil); Vasconcelos, M.S., E-mail: mvasconcelos@ect.ufrn.br [Escola de Ciência e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil)

    2015-03-01

    We address the magnetic phases in very thin Ho films at the temperature interval between 20 K and 132 K. We show that slab size, surface effects and magnetic field due to spin ordering impact significantly the magnetic phase diagram. Also we report that there is a relevant reduction of the external field strength required to saturate the magnetization and for ultra-thin films the helical state does not form. We explore the specific heat and the susceptibility as auxiliary tools to discuss the nature of the phase transitions, when in the presence of an external magnetic field and temperature effects. The presence of an external field gives rise to the magnetic phase Fan and the spin-slip structures. - Highlights: • We analyze the magnetic phases of very thin Ho films in the temperature interval 20–132 K. • We show that slab size, etc. due to spin ordering may impact the magnetic phase diagram. • All magnetic phase transitions, for strong magnetic fields, are marked by the specific heat. • The presence of an external field gives rise to the magnetic phase Fan and the spin-slip one.

  8. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    Science.gov (United States)

    Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C

    2016-01-01

    We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  9. New subsea X tree generation brings innovative features providing efficiency for ultra deep waters

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Gustavo Bellot de Almeida; Labes, Alan Zaragoza [FMC Technologies, Houston, TX (United States)

    2008-07-01

    The EVDT has been developed for global applications. Based upon the widely field proven 10 K Vertical Tree and 15 K HPHT Tree, the system has incorporated the latest technological advancements. The Tubing Hanger System and installation tooling are available up to a 7 inch bore for 10,000 psi applications and a 5 inch bore for 15,000 psi applications. The Tubing Hanger can be installed using a Tubing Head when flexibility for sequencing of events is required during offshore installations. Or it can simply land into the wellhead, eliminating the Tubing Head. This allows for a more efficient installation when completion and drilling operations are conducted without retrieving the Sub sea Blow Out Preventer (BOP) and Riser. The EVDT incorporates a retrievable Flow Module downstream of the wing valve that can be configured to project specific variances such as production, gas injection and water injection service. The Flow Module can also be configured to include Multi-Phase Flow Meters, sensors, and gauges. This allows an upgrade sub sea without having to pull and re-run the entire Tree system. These features allowed the system to hit the mark regarding what the industry needs today and also allowed to accommodate technologies that will arise in the years to come. (author)

  10. Advanced MR methods at ultra-high field (7 Tesla) for clinical musculoskeletal applications

    Energy Technology Data Exchange (ETDEWEB)

    Trattnig, Siegfried [Medical University of Vienna/Vienna General Hospital, MR Centre - High Field MR, Department of Radiology, Vienna (Austria); Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Vienna (Austria); Zbyn, Stefan; Schmitt, Benjamin; Friedrich, Klaus; Bogner, Wolfgang [Medical University of Vienna/Vienna General Hospital, MR Centre - High Field MR, Department of Radiology, Vienna (Austria); Juras, Vladimir; Szomolanyi, Pavol [Medical University of Vienna/Vienna General Hospital, MR Centre - High Field MR, Department of Radiology, Vienna (Austria); Slovak Academy of Sciences, Department of Imaging Methods, Institute of Measurement Science, Bratislava (Slovakia)

    2012-11-15

    This article provides an overview of the initial clinical results of musculoskeletal studies performed at 7 Tesla, with special focus on sodium imaging, new techniques such as chemical exchange saturation transfer (CEST) and T2* imaging, and multinuclear MR spectroscopy. Sodium imaging was clinically used at 7 T in the evaluation of patients after cartilage repair procedures because it enables the GAG content to be monitored over time. Sodium imaging and T2* mapping allow insights into the ultra-structural composition of the Achilles tendon and help detect early disease. Chemical exchange saturation transfer was, for the first time, successfully applied in the clinical set-up at 7 T in patients after cartilage repair surgery. The potential of phosphorus MR spectroscopy in muscle was demonstrated in a comparison study between 3 and 7 T, with higher spectral resolution and significantly shorter data acquisition times at 7 T. These initial clinical studies demonstrate the potential of ultra-high field MR at 7 T, with the advantage of significantly improved sensitivity for other nuclei, such as {sup 23}Na (sodium) and {sup 31}P (phosphorus). The application of non-proton imaging and spectroscopy provides new insights into normal and abnormal physiology of musculoskeletal tissues, particularly cartilage, tendons, and muscles. (orig.)

  11. Usefulness of intraoperative ultra low-field magnetic resonance imaging in glioma surgery.

    Science.gov (United States)

    Senft, Christian; Seifert, Volker; Hermann, Elvis; Franz, Kea; Gasser, Thomas

    2008-10-01

    The aim of this study was to demonstrate the usefulness of a mobile, intraoperative 0.15-T magnetic resonance imaging (MRI) scanner in glioma surgery. We analyzed our prospectively collected database of patients with glial tumors who underwent tumor resection with the use of an intraoperative ultra low-field MRI scanner (PoleStar N-20; Odin Medical Technologies, Yokneam, Israel/Medtronic, Louisville, CO). Sixty-three patients with World Health Organization Grade II to IV tumors were included in the study. All patients were subjected to postoperative 1.5-T imaging to confirm the extent of resection. Intraoperative image quality was sufficient for navigation and resection control in both high- and low-grade tumors. Primarily enhancing tumors were best detected on T1-weighted imaging, whereas fluid-attenuated inversion recovery sequences proved best for nonenhancing tumors. Intraoperative resection control led to further tumor resection in 12 (28.6%) of 42 patients with contrast-enhancing tumors and in 10 (47.6%) of 21 patients with noncontrast-enhancing tumors. In contrast-enhancing tumors, further resection led to an increased rate of complete tumor resection (71.2 versus 52.4%), and the surgical goal of gross total removal or subtotal resection was achieved in all cases (100.0%). In patients with noncontrast-enhancing tumors, the surgical goal was achieved in 19 (90.5%) of 21 cases, as intraoperative MRI findings were inconsistent with postoperative high-field imaging in 2 cases. The use of the PoleStar N-20 intraoperative ultra low-field MRI scanner helps to evaluate the extent of resection in glioma surgery. Further tumor resection after intraoperative scanning leads to an increased rate of complete tumor resection, especially in patients with contrast-enhancing tumors. However, in noncontrast- enhancing tumors, the intraoperative visualization of a complete resection seems less specific, when compared with postoperative 1.5-T MRI.

  12. Impact on the deep biosphere of CO2 geological sequestration in (ultra)mafic rocks and retroactive consequences on its fate

    Science.gov (United States)

    Ménez, Bénédicte; Gérard, Emmanuelle; Rommevaux-Jestin, Céline; Dupraz, Sébastien; Guyot, François; Arnar Alfreősson, Helgi; Reynir Gíslason, Sigurőur; Sigurőardóttir, Hólmfríiur

    2010-05-01

    Due to their reactivity and high potential of carbonation, mafic and ultramafic rocks constitute targets of great interest to safely and permanently sequestrate anthropogenic CO2 and thus, limit the potential major environmental consequences of its increasing atmospheric level. In addition, subsurface (ultra)mafic environments are recognized to harbor diverse and active microbial populations that may be stimulated or decimated following CO2 injection (± impurities) and subsequent acidification. However, the nature and amplitude of the involved biogeochemical pathways are still unknown. To avoid unforeseen consequences at all time scales (e.g. reservoir souring and clogging, bioproduction of H2S and CH4), the impact of CO2 injection on deep biota with unknown ecology, and their retroactive effects on the capacity and long-term stability of CO2 storage sites, have to be determined. We present here combined field and experimental investigations focused on the Icelandic pilot site, implemented in the Hengill area (SW Iceland) at the Hellisheidi geothermal power plant (thanks to the CarbFix program, a consortium between the University of Iceland, Reykjavik Energy, the French CNRS of Toulouse and Columbia University in N.Y., U.S.A. and to the companion French ANR-CO2FIX project). This field scale injection of CO2 charged water is here designed to study the feasibility of storing permanently CO2 in basaltic rocks and to optimize industrial methods. Prior to the injection, the microbiological initial state was characterized through regular sampling at various seasons (i.e., October '08, July '09, February '10). DNA was extracted and amplified from the deep and shallow observatory wells, after filtration of 20 to 30 liters of groundwater collected in the depth interval 400-980 m using a specifically developed sampling protocol aiming at reducing contamination risks. An inventory of living indigenous bacteria and archaea was then done using molecular methods based on the

  13. DeepAnomaly: Combining Background Subtraction and Deep Learning for Detecting Obstacles and Anomalies in an Agricultural Field

    Directory of Open Access Journals (Sweden)

    Peter Christiansen

    2016-11-01

    Full Text Available Convolutional neural network (CNN-based systems are increasingly used in autonomous vehicles for detecting obstacles. CNN-based object detection and per-pixel classification (semantic segmentation algorithms are trained for detecting and classifying a predefined set of object types. These algorithms have difficulties in detecting distant and heavily occluded objects and are, by definition, not capable of detecting unknown object types or unusual scenarios. The visual characteristics of an agriculture field is homogeneous, and obstacles, like people, animals and other obstacles, occur rarely and are of distinct appearance compared to the field. This paper introduces DeepAnomaly, an algorithm combining deep learning and anomaly detection to exploit the homogenous characteristics of a field to perform anomaly detection. We demonstrate DeepAnomaly as a fast state-of-the-art detector for obstacles that are distant, heavily occluded and unknown. DeepAnomaly is compared to state-of-the-art obstacle detectors including “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks” (RCNN. In a human detector test case, we demonstrate that DeepAnomaly detects humans at longer ranges (45–90 m than RCNN. RCNN has a similar performance at a short range (0–30 m. However, DeepAnomaly has much fewer model parameters and (182 ms/25 ms = a 7.28-times faster processing time per image. Unlike most CNN-based methods, the high accuracy, the low computation time and the low memory footprint make it suitable for a real-time system running on a embedded GPU (Graphics Processing Unit.

  14. Electromagnetic and Thermal Aspects of Radiofrequency Field Propagation in Ultra-High Field MRI

    NARCIS (Netherlands)

    van Lier, A.L.H.M.W.

    2012-01-01

    In MRI, a radiofrequency (RF) pulse is used to generate a signal from the spins that are polarized by a strong magnetic field. For higher magnetic field strengths, a higher frequency of the RF pulse is required in order to match the Larmor frequency. A higher frequency, in turn, leads to a shorter

  15. The VIMOS Ultra Deep Survey first data release: Spectra and spectroscopic redshifts of 698 objects up to zspec 6 in CANDELS

    Science.gov (United States)

    Tasca, L. A. M.; Le Fèvre, O.; Ribeiro, B.; Thomas, R.; Moreau, C.; Cassata, P.; Garilli, B.; Le Brun, V.; Lemaux, B. C.; Maccagni, D.; Pentericci, L.; Schaerer, D.; Vanzella, E.; Zamorani, G.; Zucca, E.; Amorin, R.; Bardelli, S.; Cassarà, L. P.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Ilbert, O.; Paltani, S.; Pforr, J.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; Guaita, L.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.

    2017-04-01

    This paper describes the first data release (DR1) of the VIMOS Ultra Deep Survey (VUDS). The VUDS-DR1 is the release of all low-resolution spectroscopic data obtained in 276.9 arcmin2 of the CANDELS-COSMOS and CANDELS-ECDFS survey areas, including accurate spectroscopic redshifts zspec and individual spectra obtained with VIMOS on the ESO-VLT. A total of 698 objects have a measured redshift, with 677 galaxies, two type-I AGN, and a small number of 19 contaminating stars. The targets of the spectroscopic survey are selected primarily on the basis of their photometric redshifts to ensure a broad population coverage. About 500 galaxies have zspec > 2, 48of which have zspec > 4; the highest reliable redshifts reach beyond zspec = 6. This data set approximately doubles the number of galaxies with spectroscopic redshifts at z > 3 in these fields. We discuss the general properties of the VUDS-DR1 sample in terms of the spectroscopic redshift distribution, the distribution of Lyman-α equivalent widths, and physical properties including stellar masses M⋆ and star formation rates derived from spectral energy distribution fitting with the knowledge of zspec. We highlight the properties of the most massive star-forming galaxies, noting the wide range in spectral properties, with Lyman-α in emission or in absorption, and in imaging properties with compact, multi-component, or pair morphologies. We present the catalogue database and data products. All VUDS-DR1 data are publicly available and can be retrieved from a dedicated query-based database. Future VUDS data releases will follow this VUDS-DR1 to give access to the spectra and associated measurement of 8000 objects in the full 1 square degree of the VUDS survey. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791. http://cesam.lam.fr/vuds

  16. Development of contaminant detection system based on ultra-low field SQUID-NMR/MRI

    International Nuclear Information System (INIS)

    Tsunaki, S; Yamamoto, M; Hatta, J; Hatsukade, Y; Tanaka, S

    2014-01-01

    We have developed an ultra-low field (ULF) NMR/MRI system using an HTS-rf-SQUID and evaluated performance of the system as a contaminant detection system for foods and drinks. In this work, we measured 1D MRIs from water samples with or without various contaminants, such as aluminum and glass balls using the system. In the 1D MRIs, changes of the MRI spectra were detected, corresponding to positions of the contaminants. We measured 2D MRIs from food samples with and without a hole. In the 2D MRIs, the hole position in the sample was well visualized. These results show that the feasibility of the system to detect and localize contaminants in foods and drinks.

  17. Ultra low field MR imaging of cervical spine involvement in rheumatoid arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Fagerlund, M.; Bjoernebrink, J.; Ekelund, L.; Toolanen, G. (Umeaa Univ. Hospital (Sweden). Depts. of Diagnostic Radiology and Orthopedic Surgery)

    1992-03-01

    In a study of 30 patients with longstanding rheumatoid arthritis the diagnostic usefulness of ultra low field MR equipment was analyzed in assessing lesions of the craniocervical junction. It was found that at 0.04 T all the examinations were diagnostic and that in combination with plain radiography the diagnostic information obtained was valuable in further planning of the treatment strategies. The neurologic findings were related to the degree and severity of atlantoaxial luxation, either horizontal or vertical, and to the periodontoid pannus formation. The correlation between the degree of cord compression shown with MR imaging and the clinical symptoms, especially long tract symptoms, was poor. The only correlating factor was the duration of the disease. (orig.).

  18. The multiple gas-liquid subsea separation system: development and qualification of a novel solution for deep water field production

    Energy Technology Data Exchange (ETDEWEB)

    Abrand, Stephanie; Butin, Nicolas; Shaiek, Sadia; Hallot, Raymond [Saipem S.p.A., Milano (Italy)

    2012-07-01

    Subsea processing is more and more considered as a viable solution for the development of deep and ultra deep water fields. SAIPEM has developed a deep water gas separation and liquid boosting system, based on its proprietary 'Multi pipe' separator concept, providing a good flexibility in handling a wide range of steady and un-steady multiphase input streams using a relatively simple mechanical arrangement. The Multi pipe Concept features an array of vertical pipes for gas/liquid separation by gravity and adequate liquid hold up volumes. The operating principle is the same as standard gravity vessels. Specific inlet pipe arrangements have been worked out to enhance the separation efficiency and internals can be implemented to further optimize the performances. The limited diameter and wall thickness of the vertical pipes make the Multi pipe Concept particularly suited for deep and ultra-deep water applications and/or high pressure conditions where the selection of a single separator vessel could lead to unpractical wall thicknesses. In most cases, standard API or ASME pipes can be utilized for the Multi pipe Separator, thus enabling conventional fabrication methods, and in turn reducing cost and delivery time and opening opportunities for local content. The qualification testing program has seen two subsequent phases. The first qualification phase aimed at the confirmation of the hydrodynamic behavior of the system. In particular, the homogeneous distribution of the multiphase stream into the pipes and the stability of the liquid levels under un-steady inlet conditions were continuously assessed during the tests. This first qualification phase gave confidence in the viability of the Multi pipe and in its good hydrodynamic behavior under the different inlet conditions that can be encountered during field production. It proved that, having the same liquid level in all the separator pipes, whatever the inlet conditions are, the Multi pipe separator can be

  19. Reversed-field-pinch and ultra-low-q discharges in REPUTE-2

    International Nuclear Information System (INIS)

    Inoue, N.; Yoshida, Z.; Kamada, Y.; Saito, M.; Miyamoto, K.

    1987-01-01

    Ultra-low q (ULQ) and very-low q (VLQ) discharge experiments have been done using the REPUTE-1 RFP. It was found that in these q regime, the plasma density and beta are fairly high, and the confinement property is less sensitive to the error field compared to the RFP. However, since the temperature of the REPUTE-1 discharge is limited in low value because of the small plasma current due to the small toroidal field, its magnetic Reynolds number is too small to simulate the reactor plasma behavior. The radiation barrier has not been overcome yet, and consequently the energy confinement time is very short. In order to improve these aspects of the REPUTE-1 experiment, the REPUTE-2 is designed to produce higher toroidal field of 2T. The toroidal field increases slowly to the final value as in the case of the ramp-up mode of the RFP operation. The first stage of the REPUTE-2 project will be devoted to study the confinement physics of RFP, ULQ, and VLQ. In the second stage, innovation of these configurations, such as resistive shell RFP, neutral beam current drive, and higher current density, is planned. 8 refs., 1 fig., 2 tabs

  20. Conclusion: probable and possible futures. MRI with ultra high magnetic field

    International Nuclear Information System (INIS)

    Le Bihan, D.

    2009-01-01

    MR neuroimaging does not interfere with brain function. Because it is safe, it can be used to study the brains of both patients and healthy volunteers. The tasks performed by neurons depend largely on their precise location, and high-field magnets have the potential to provide a 5- to 10-fold increase in spatio-temporal resolution. This should allow brain function to be studied on a scale of only a few thousand neurons, possibly at the intermediate scale of the 'neural code'. NeuroSpin, a new CEA research center, is dedicated to neuro-MRI at high magnetic field strengths. As a forum for dialogue between those developing and those using these instruments, it brings together researchers and engineers, technicians and medical doctors. NeuroSpin is one of the few institutions in Europe, if not the world, where these experts can come together in one place to design, construct and use machines equipped with ultra-strong magnets. The strongest 'routine' MR device currently operates at 3 Tesla (60 000 times the earth's magnetic field), whereas a first French system operating at 7 Tesla (140 000 times the earth's field) is now available for human studies, and another system operating at 11.7 Tesla (world record) should be delivered in 2011. Preclinical studies are also being conducted with magnets operating at 7 Tesla and, soon, 17.6 Tesla. (author)

  1. Integration of ultra-high field MRI and histology for connectome based research of brain disorders

    Directory of Open Access Journals (Sweden)

    Shan eYang

    2013-09-01

    Full Text Available Ultra-high field magnetic resonance imaging (MRI became increasingly relevant for in vivo neuroscientific research because of improved spatial resolutions. However, this is still the unchallenged domain of histological studies, which long played an important role in the investigation of neuropsychiatric disorders. While the field of biological psychiatry strongly advanced on macroscopic levels, current developments are rediscovering the richness of immunohistological information when attempting a multi-level systematic approach to brain function and dysfunction. For most studies, histology sections lost information on three-dimensional reconstructions. Translating histological sections to 3D-volumes would thus not only allow for multi-stain and multi-subject alignment in post mortem data, but also provide a crucial step in big data initiatives involving the network analyses currently performed with in vivo MRI. We therefore investigated potential pitfalls during integration of MR and histological information where no additional blockface information is available. We demonstrated that strengths and requirements from both methods seem to be ideally merged at a spatial resolution of 200 μm. However, the success of this approach is heavily dependent on choices of hardware, sequence and reconstruction. We provide a fully automated pipeline that optimizes histological 3D reconstructions, providing a potentially powerful solution not only for primary human post mortem research institutions in neuropsychiatric research, but also to help alleviate the massive workloads in neuroanatomical atlas initiatives. We further demonstrate (for the first time the feasibility and quality of ultra-high spatial resolution (150 µm isotopic imaging of the entire human brain MRI at 7T, offering new opportunities for analyses on MR-derived information.

  2. Analysis of Hepatitis C Virus NS5A Region in Patients with Cirrhosis Using an Ultra-Deep Pyrosequencing Method.

    Science.gov (United States)

    Keskin, Fahriye; Ciftci, Sevgi; Akyuz, Filiz; Abaci, Neslihan; Cakiris, Aris; Akyuz, Umit; Demir, Kadir; Besisik, Fatih; Ustek, Duran; Kaymakoglu, Sabahattin

    2017-09-01

    HCV (Hepatitis C Virus) is genetically more diverse than HBV and HIV (Human Immunodeficiency Virus) and exists as quasispecies within infected individuals. This is due to the lack of efficient proofreading of the viral RNA-dependent RNA polymerase. Consequently, quasispecies emerge depending on the mutation rate of the viral polymerase, which may display a high level of genetic variability in a population. In infected individuals, HCV replicates and circulates as quasispecies composed of a complex mixture of different but closely related genomes that undergoes continuous change due to competitive selection and cooperation between arising mutants. The aim of this study is to investigate mutations in the NS5A region as a whole, including ISDR, PKRBD, IRRDR, and V3 of HCV genotype 1b cirrhosis patients being naive and nonresponders, treated with IFN (interferon) + ribavirin (RBN) by using an ultra-deep pyrosequencing method (UDPS). During the study, five patients (four females, and one male, mean age 59.8 ± 11 years) with HCV related cirrhosis were analyzed. Three patients received IFN + RBN for six months, but two patients did not receive any therapy. HCV-RNA concentrations in patients' sera were determined using a COBAS AMPLICOR HCV MONITOR Test, Version 2.0. Genotyping was performed by using a commercial reverse hybridization method, Line Probe Assay. The quasispecies for the NS5A region were investigated using UDPS. All five patients were HCV genotype 1b (Mean Child-Pugh score 7.2 ± 1.9, 2 pts Child A, 2 pts Child B, and one pt Child C) but only one patient had hepatocellular carcinoma (HCC). A total of 19 different mutations were detected in each of the five patients (ranging from 3 to 6 mutations per patient). In all five patients, several mutations in the ISDR and PKR-BD regions were detected. On the other hand, mutations in the V3 and IRRDR regions were only detected in one patient. UDPS is a new sequencing technology and a very sensitive method in detection

  3. Field evaluation of indoor thermal fog and ultra-low volume applications for control of Aedes aegypti, in Thailand

    Science.gov (United States)

    Efficacies of a hand-held thermal fogger (PatriotTM) and hand-held Ultra-low volume (ULV) sprayer (TwisterTM) with combinations of two different adulticides and an insect growth regulator (pyriproxyfen) were field assessed and compared for their impact on reducing dengue vector populations in Thaila...

  4. [Deep learning and neuronal networks in ophthalmology : Applications in the field of optical coherence tomography].

    Science.gov (United States)

    Treder, M; Eter, N

    2018-04-19

    Deep learning is increasingly becoming the focus of various imaging methods in medicine. Due to the large number of different imaging modalities, ophthalmology is particularly suitable for this field of application. This article gives a general overview on the topic of deep learning and its current applications in the field of optical coherence tomography. For the benefit of the reader it focuses on the clinical rather than the technical aspects.

  5. Field-reversed bubble in deep plasma channels for high quality electron acceleration

    CERN Document Server

    Pukhov, A; Tueckmantel, T; Thomas, J; Yu, I; Kostyukov, Yu

    2014-01-01

    We study hollow plasma channels with smooth boundaries for laser-driven electron acceleration in the bubble regime. Contrary to the uniform plasma case, the laser forms no optical shock and no etching at the front. This increases the effective bubble phase velocity and energy gain. The longitudinal field has a plateau that allows for mono-energetic acceleration. We observe as low as 10−3 r.m.s. relative witness beam energy uncertainty in each cross-section and 0.3% total energy spread. By varying plasma density profile inside a deep channel, the bubble fields can be adjusted to balance the laser depletion and dephasing lengths. Bubble scaling laws for the deep channel are derived. Ultra-short pancake-like laser pulses lead to the highest energies of accelerated electrons per Joule of laser pulse energy.

  6. Harding - a field case study: Sand control strategy for ultra-high productivity and injectivity wells

    Energy Technology Data Exchange (ETDEWEB)

    McKay, G.; Bennett, C.; Price-Smith, C.; Dowell, S.; McLellan, W. [British Petroleum (United Kingdom)

    1998-12-31

    The strategy adopted and the factors considered in the development of the sandface completion design for Phase One of the Harding Field in the unconsolidated Balder Massive Sand in the U.K. Sector of the North Sea is described. The field development utilizes a TPG 500 Jack-up Drilling and Production Unit in conjunction with a concrete gravity base tank (GBT). The first phase of the development involved drilling and completing horizontal wells sand-free, ultra-high production (over 30,000 BOPD/well, with PI in excess of 1,000 bbl/day/psi). The experiences showed that pre-packed screens can be successfully utilized to provide lasting sand control with high rate of production in clean homogenous sandstones, and that testing for fluid compatibility, formation damage, screen plugging, corrosion and erosion potential are essential pre-requisites in determining the optimal solution in any well with sand production potential.The experiences gained in Phase One have contributed to design enhancements for Phase Two of the project which include extended reach horizontal wells to neighbouring satellite pools. 3 refs., 1 tab., 8 figs.

  7. Functional magnetic resonance imaging with ultra-high fields; Funktionelle Magnetresonanztomographie bei ultrahohen Feldern

    Energy Technology Data Exchange (ETDEWEB)

    Windischberger, C.; Schoepf, V.; Sladky, R.; Moser, E. [Medizinische Universitaet Wien, Exzellenzzentrum Hochfeld-MR, Wien (Austria); Medizinische Universitaet Wien, Zentrum fuer Medizinische Physik und Biomedizinische Technik, Wien (Austria); Fischmeister, F.P.S. [Medizinische Universitaet Wien, Exzellenzzentrum Hochfeld-MR, Wien (Austria); Universitaet Wien, Fakultaet fuer Psychologie, Wien (Austria)

    2010-02-15

    Functional magnetic resonance imaging (fMRI) is currently the primary method for non-invasive functional localization in the brain. With the emergence of MR systems with field strengths of 4 Tesla and above, neuronal activation may be studied with unprecedented accuracy. In this article we present different approaches to use the improved sensitivity and specificity for expanding current fMRT resolution limits in space and time based on several 7 Tesla studies. In addition to the challenges that arise with ultra-high magnetic fields possible solutions will be discussed. (orig.) [German] Die funktionelle Magnetresonanztomographie (fMRT) stellt zurzeit die wichtigste Methode zur nichtinvasiven Funktionslokalisation im Gehirn dar. Mit der Verfuegbarkeit von MRT-Geraeten mit Magnetfeldstaerken von 4 Tesla (T) und darueber ergeben sich neue Moeglichkeiten, mittels fMRT die neuronale Aktivitaet in bislang unerreichter Genauigkeit zu untersuchen. In diesem Artikel zeigen wir anhand mehrerer Studien bei 7 T, in wieweit die Zugewinne an Sensitivitaet und Spezifitaet verwendet werden koennen, um die bisherigen Grenzen der fMRT-Aufloesung in raeumlicher und zeitlicher Hinsicht auszuweiten. Die neuen Herausforderungen, die mit dem Schritt zu ultrahohen Magnetfeldern einhergehen, werden dabei ebenso diskutiert wie moegliche Ansaetze zu deren Loesung. (orig.)

  8. PSF Estimation of Space-Variant Ultra-Wide Field of View Imaging Systems

    Directory of Open Access Journals (Sweden)

    Petr Janout

    2017-02-01

    Full Text Available Ultra-wide-field of view (UWFOV imaging systems are affected by various aberrations, most of which are highly angle-dependent. A description of UWFOV imaging systems, such as microscopy optics, security camera systems and other special space-variant imaging systems, is a difficult task that can be achieved by estimating the Point Spread Function (PSF of the system. This paper proposes a novel method for modeling the space-variant PSF of an imaging system using the Zernike polynomials wavefront description. The PSF estimation algorithm is based on obtaining field-dependent expansion coefficients of the Zernike polynomials by fitting real image data of the analyzed imaging system using an iterative approach in an initial estimate of the fitting parameters to ensure convergence robustness. The method is promising as an alternative to the standard approach based on Shack–Hartmann interferometry, since the estimate of the aberration coefficients is processed directly in the image plane. This approach is tested on simulated and laboratory-acquired image data that generally show good agreement. The resulting data are compared with the results of other modeling methods. The proposed PSF estimation method provides around 5% accuracy of the optical system model.

  9. Prevalence of Hepatitis C Virus Subgenotypes 1a and 1b in Japanese Patients: Ultra-Deep Sequencing Analysis of HCV NS5B Genotype-Specific Region

    Science.gov (United States)

    Wu, Shuang; Kanda, Tatsuo; Nakamoto, Shingo; Jiang, Xia; Miyamura, Tatsuo; Nakatani, Sueli M.; Ono, Suzane Kioko; Takahashi-Nakaguchi, Azusa; Gonoi, Tohru; Yokosuka, Osamu

    2013-01-01

    Background Hepatitis C virus (HCV) subgenotypes 1a and 1b have different impacts on the treatment response to peginterferon plus ribavirin with direct-acting antivirals (DAAs) against patients infected with HCV genotype 1, as the emergence rates of resistance mutations are different between these two subgenotypes. In Japan, almost all of HCV genotype 1 belongs to subgenotype 1b. Methods and Findings To determine HCV subgenotype 1a or 1b in Japanese patients infected with HCV genotype 1, real-time PCR-based method and Sanger method were used for the HCV NS5B region. HCV subgenotypes were determined in 90% by real-time PCR-based method. We also analyzed the specific probe regions for HCV subgenotypes 1a and 1b using ultra-deep sequencing, and uncovered mutations that could not be revealed using direct-sequencing by Sanger method. We estimated the prevalence of HCV subgenotype 1a as 1.2-2.5% of HCV genotype 1 patients in Japan. Conclusions Although real-time PCR-based HCV subgenotyping method seems fair for differentiating HCV subgenotypes 1a and 1b, it may not be sufficient for clinical practice. Ultra-deep sequencing is useful for revealing the resistant strain(s) of HCV before DAA treatment as well as mixed infection with different genotypes or subgenotypes of HCV. PMID:24069214

  10. Genomic variation in macrophage-cultured European porcine reproductive and respiratory syndrome virus Olot/91 revealed using ultra-deep next generation sequencing.

    Science.gov (United States)

    Lu, Zen H; Brown, Alexander; Wilson, Alison D; Calvert, Jay G; Balasch, Monica; Fuentes-Utrilla, Pablo; Loecherbach, Julia; Turner, Frances; Talbot, Richard; Archibald, Alan L; Ait-Ali, Tahar

    2014-03-04

    Porcine Reproductive and Respiratory Syndrome (PRRS) is a disease of major economic impact worldwide. The etiologic agent of this disease is the PRRS virus (PRRSV). Increasing evidence suggest that microevolution within a coexisting quasispecies population can give rise to high sequence heterogeneity in PRRSV. We developed a pipeline based on the ultra-deep next generation sequencing approach to first construct the complete genome of a European PRRSV, strain Olot/9, cultured on macrophages and then capture the rare variants representative of the mixed quasispecies population. Olot/91 differs from the reference Lelystad strain by about 5% and a total of 88 variants, with frequencies as low as 1%, were detected in the mixed population. These variants included 16 non-synonymous variants concentrated in the genes encoding structural and nonstructural proteins; including Glycoprotein 2a and 5. Using an ultra-deep sequencing methodology, the complete genome of Olot/91 was constructed without any prior knowledge of the sequence. Rare variants that constitute minor fractions of the heterogeneous PRRSV population could successfully be detected to allow further exploration of microevolutionary events.

  11. Lesion detection in ultra-wide field retinal images for diabetic retinopathy diagnosis

    Science.gov (United States)

    Levenkova, Anastasia; Sowmya, Arcot; Kalloniatis, Michael; Ly, Angelica; Ho, Arthur

    2018-02-01

    Diabetic retinopathy (DR) leads to irreversible vision loss. Diagnosis and staging of DR is usually based on the presence, number, location and type of retinal lesions. Ultra-wide field (UWF) digital scanning laser technology provides an opportunity for computer-aided DR lesion detection. High-resolution UWF images (3078×2702 pixels) may allow detection of more clinically relevant retinopathy in comparison with conventional retinal images as UWF imaging covers a 200° retinal area, versus 45° by conventional cameras. Current approaches to DR diagnosis that analyze 7-field Early Treatment Diabetic Retinopathy Study (ETDRS) retinal images provide similar results to UWF imaging. However, in 40% of cases, more retinopathy was found outside the 7- field ETDRS fields by UWF and in 10% of cases, retinopathy was reclassified as more severe. The reason is that UWF images examine both the central retina and more peripheral regions. We propose an algorithm for automatic detection and classification of DR lesions such as cotton wool spots, exudates, microaneurysms and haemorrhages in UWF images. The algorithm uses convolutional neural network (CNN) as a feature extractor and classifies the feature vectors extracted from colour-composite UWF images using a support vector machine (SVM). The main contribution includes detection of four types of DR lesions in the peripheral retina for diagnostic purposes. The evaluation dataset contains 146 UWF images. The proposed method for detection of DR lesion subtypes in UWF images using two scenarios for transfer learning achieved AUC ≈ 80%. Data was split at the patient level to validate the proposed algorithm.

  12. Automatic detection of diabetic retinopathy features in ultra-wide field retinal images

    Science.gov (United States)

    Levenkova, Anastasia; Sowmya, Arcot; Kalloniatis, Michael; Ly, Angelica; Ho, Arthur

    2017-03-01

    Diabetic retinopathy (DR) is a major cause of irreversible vision loss. DR screening relies on retinal clinical signs (features). Opportunities for computer-aided DR feature detection have emerged with the development of Ultra-WideField (UWF) digital scanning laser technology. UWF imaging covers 82% greater retinal area (200°), against 45° in conventional cameras3 , allowing more clinically relevant retinopathy to be detected4 . UWF images also provide a high resolution of 3078 x 2702 pixels. Currently DR screening uses 7 overlapping conventional fundus images, and the UWF images provide similar results1,4. However, in 40% of cases, more retinopathy was found outside the 7-field ETDRS) fields by UWF and in 10% of cases, retinopathy was reclassified as more severe4 . This is because UWF imaging allows examination of both the central retina and more peripheral regions, with the latter implicated in DR6 . We have developed an algorithm for automatic recognition of DR features, including bright (cotton wool spots and exudates) and dark lesions (microaneurysms and blot, dot and flame haemorrhages) in UWF images. The algorithm extracts features from grayscale (green "red-free" laser light) and colour-composite UWF images, including intensity, Histogram-of-Gradient and Local binary patterns. Pixel-based classification is performed with three different classifiers. The main contribution is the automatic detection of DR features in the peripheral retina. The method is evaluated by leave-one-out cross-validation on 25 UWF retinal images with 167 bright lesions, and 61 other images with 1089 dark lesions. The SVM classifier performs best with AUC of 94.4% / 95.31% for bright / dark lesions.

  13. 30 CFR 203.41 - If I have a qualified deep well or a qualified phase 1 ultra-deep well, what royalty relief would...

    Science.gov (United States)

    2010-07-01

    ... 200 meters but entirely less than 400 meters deep that: (1) Occurs before December 18, 2008; and (2... § 203.31(b) applies. In both situations, your lease must be partly or entirely in less than 200 meters...

  14. Comptonization in Ultra-Strong Magnetic Fields: Numerical Solution to the Radiative Transfer Problem

    Science.gov (United States)

    Ceccobello, C.; Farinelli, R.; Titarchuk, L.

    2014-01-01

    We consider the radiative transfer problem in a plane-parallel slab of thermal electrons in the presence of an ultra-strong magnetic field (B approximately greater than B(sub c) approx. = 4.4 x 10(exp 13) G). Under these conditions, the magnetic field behaves like a birefringent medium for the propagating photons, and the electromagnetic radiation is split into two polarization modes, ordinary and extraordinary, that have different cross-sections. When the optical depth of the slab is large, the ordinary-mode photons are strongly Comptonized and the photon field is dominated by an isotropic component. Aims. The radiative transfer problem in strong magnetic fields presents many mathematical issues and analytical or numerical solutions can be obtained only under some given approximations. We investigate this problem both from the analytical and numerical point of view, provide a test of the previous analytical estimates, and extend these results with numerical techniques. Methods. We consider here the case of low temperature black-body photons propagating in a sub-relativistic temperature plasma, which allows us to deal with a semi-Fokker-Planck approximation of the radiative transfer equation. The problem can then be treated with the variable separation method, and we use a numerical technique to find solutions to the eigenvalue problem in the case of a singular kernel of the space operator. The singularity of the space kernel is the result of the strong angular dependence of the electron cross-section in the presence of a strong magnetic field. Results. We provide the numerical solution obtained for eigenvalues and eigenfunctions of the space operator, and the emerging Comptonization spectrum of the ordinary-mode photons for any eigenvalue of the space equation and for energies significantly lesser than the cyclotron energy, which is on the order of MeV for the intensity of the magnetic field here considered. Conclusions. We derived the specific intensity of the

  15. Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields.

    Science.gov (United States)

    Grossman, Nir; Bono, David; Dedic, Nina; Kodandaramaiah, Suhasa B; Rudenko, Andrii; Suk, Ho-Jun; Cassara, Antonino M; Neufeld, Esra; Kuster, Niels; Tsai, Li-Huei; Pascual-Leone, Alvaro; Boyden, Edward S

    2017-06-01

    We report a noninvasive strategy for electrically stimulating neurons at depth. By delivering to the brain multiple electric fields at frequencies too high to recruit neural firing, but which differ by a frequency within the dynamic range of neural firing, we can electrically stimulate neurons throughout a region where interference between the multiple fields results in a prominent electric field envelope modulated at the difference frequency. We validated this temporal interference (TI) concept via modeling and physics experiments, and verified that neurons in the living mouse brain could follow the electric field envelope. We demonstrate the utility of TI stimulation by stimulating neurons in the hippocampus of living mice without recruiting neurons of the overlying cortex. Finally, we show that by altering the currents delivered to a set of immobile electrodes, we can steerably evoke different motor patterns in living mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Dust attenuation in 2 < z < 3 star-forming galaxies from deep ALMA observations of the Hubble Ultra Deep Field

    Science.gov (United States)

    McLure, R. J.; Dunlop, J. S.; Cullen, F.; Bourne, N.; Best, P. N.; Khochfar, S.; Bowler, R. A. A.; Biggs, A. D.; Geach, J. E.; Scott, D.; Michałowski, M. J.; Rujopakarn, W.; van Kampen, E.; Kirkpatrick, A.; Pope, A.

    2018-05-01

    We present the results of a new study of the relationship between infrared excess (IRX ≡ LIR/LUV), ultraviolet (UV) spectral slope (β) and stellar mass at redshifts 2 grey attenuation curve, similar to the commonly adopted Calzetti law. Based on a large, mass-complete sample of 2 ≤ z ≤ 3 star-forming galaxies drawn from multiple surveys, we proceed to derive a new empirical relationship between β and stellar mass, making it possible to predict UV attenuation (A1600) and IRX as a function of stellar mass, for any assumed attenuation law. Once again, we find that z ≃ 2.5 star-forming galaxies follow A1600-M* and IRX-M* relations consistent with a relatively grey attenuation law, and find no compelling evidence that star-forming galaxies at this epoch follow a reddening law as steep as the Small Magellanic Cloud (SMC) extinction curve. In fact, we use a simple simulation to demonstrate that previous determinations of the IRX-β relation may have been biased towards low values of IRX at red values of β, mimicking the signature expected for an SMC-like dust law. We show that this provides a plausible mechanism for reconciling apparently contradictory results in the literature and that, based on typical measurement uncertainties, stellar mass provides a cleaner prediction of UV attenuation than β. Although the situation at lower stellar masses remains uncertain, we conclude that for 2 < z < 3 star-forming galaxies with log (M_{\\ast }/M_{⊙}) ≥ 9.75, both the IRX-β and IRX-M* relations are well described by a Calzetti-like attenuation law.

  17. ULTRA-WIDE-FIELD FUNDUS AUTOFLUORESCENCE FINDINGS IN PATIENTS WITH ACUTE ZONAL OCCULT OUTER RETINOPATHY.

    Science.gov (United States)

    Shifera, Amde Selassie; Pennesi, Mark E; Yang, Paul; Lin, Phoebe

    2017-06-01

    To determine whether ultra-wide-field fundus autofluorescence (UWFFAF) findings in acute zonal occult outer retinopathy correlated well with perimetry, optical coherence tomography, and electroretinography findings. Retrospective observational study on 16 eyes of 10 subjects with AZOOR seen at a single referral center from October 2012 to March 2015 who had UWFFAF performed. Chi-square analysis was performed to compare categorical variables, and Mann-Whitney U test used for comparisons of nonparametric continuous variables. All eyes examined within 3 months of symptom onset (five of the five eyes) had diffusely hyperautofluorescent areas on UWFFAF. The remaining eyes contained hypoautofluorescent lesions with hyperautofluorescent borders. In 11/16 (68.8%) eyes, UWFFAF showed the full extent of lesions that would not have been possible with standard fundus autofluorescence centered on the fovea. There were 3 patterns of spread: centrifugal spread (7/16, 43.8%), centripetal spread (5/16, 31.3%), and centrifugal + centripetal spread (4/16, 25.0%). The UWFFAF lesions corresponded well with perimetric, optical coherence tomography, and electroretinography abnormalities. The UWFFAF along with optical coherence tomography can be useful in the evaluation and monitoring of acute zonal occult outer retinopathy patients.

  18. An intra-neural microstimulation system for ultra-high field magnetic resonance imaging and magnetoencephalography.

    Science.gov (United States)

    Glover, Paul M; Watkins, Roger H; O'Neill, George C; Ackerley, Rochelle; Sanchez-Panchuelo, Rosa; McGlone, Francis; Brookes, Matthew J; Wessberg, Johan; Francis, Susan T

    2017-10-01

    Intra-neural microstimulation (INMS) is a technique that allows the precise delivery of low-current electrical pulses into human peripheral nerves. Single unit INMS can be used to stimulate individual afferent nerve fibres during microneurography. Combining this with neuroimaging allows the unique monitoring of central nervous system activation in response to unitary, controlled tactile input, with functional magnetic resonance imaging (fMRI) providing exquisite spatial localisation of brain activity and magnetoencephalography (MEG) high temporal resolution. INMS systems suitable for use within electrophysiology laboratories have been available for many years. We describe an INMS system specifically designed to provide compatibility with both ultra-high field (7T) fMRI and MEG. Numerous technical and safety issues are addressed. The system is fully analogue, allowing for arbitrary frequency and amplitude INMS stimulation. Unitary recordings obtained within both the MRI and MEG screened-room environments are comparable with those obtained in 'clean' electrophysiology recording environments. Single unit INMS (current met. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  19. THE FIRST ULTRA-COOL BROWN DWARF DISCOVERED BY THE WIDE-FIELD INFRARED SURVEY EXPLORER

    International Nuclear Information System (INIS)

    Mainzer, A.; Cushing, Michael C.; Eisenhardt, P.; Skrutskie, M.; Beaton, R.; Gelino, C. R.; Kirkpatrick, J. Davy; Jarrett, T.; Masci, F.; Marsh, K.; Padgett, D.; Marley, Mark S.; Saumon, D.; Wright, E.; McLean, I.; Dietrich, M.; Garnavich, P.; Rueff, K.; Kuhn, O.; Leisawitz, D.

    2011-01-01

    We report the discovery of the first new ultra-cool brown dwarf (BDs) found with the Wide-field Infrared Survey Explorer (WISE). The object's preliminary designation is WISEPC J045853.90+643451.9. Follow-up spectroscopy with the LUCIFER instrument on the Large Binocular Telescope indicates that it is a very late-type T dwarf with a spectral type approximately equal to T9. Fits to an IRTF/SpeX 0.8-2.5 μm spectrum to the model atmospheres of Marley and Saumon indicate an effective temperature of approximately 600 K as well as the presence of vertical mixing in its atmosphere. The new BD is easily detected by WISE, with a signal-to-noise ratio of ∼36 at 4.6 μm. Current estimates place it at a distance of 6-10 pc. This object represents the first in what will likely be hundreds of nearby BDs found by WISE that will be suitable for follow-up observations, including those with the James Webb Space Telescope. One of the two primary scientific goals of the WISE mission is to find the coolest, closest stars to our Sun; the discovery of this new BD proves that WISE is capable of fulfilling this objective.

  20. Transducer project and optimization of the ultra low magnetic field NMR tomograph reception system system

    International Nuclear Information System (INIS)

    Vidoto, Edson Luiz Gea

    1995-01-01

    The aim of the present work was to optimize the signal to noise ratio in our NMR imaging system (TORM 005) by improving transducer's reception quality through better designed coils, balanced tuning circuit for this coils and power decoupling circuits and by reducing interference from the electromagnetic environment. For this purpose, we had to modify the internal electromagnetic shielding and incorporate line filters in the more critical signals paths. Also, new types of coils were developed, improving the signal to noise ratio, and allowing us to make clinical exams with superior quality for several anatomies. Balanced circuits for tuning and matching of the coil were studied and built, allowing a reduction of the coil losses because patient's load. This produced a more reliable coil tuning after positioning each new patient. Circuits to avoid the receiver input overload and decoupling circuits for the isolation of receiver coils from excitation coil were designed and incorporated to the TORM 005. All these alterations of our imaging system (TORM 005) contributed to a significant improvement in the signal to noise ratio, reliability and reproducibility of the system. This permitted to operate the system routinely for clinical applications, research and development in the area of ultra low magnetic field tomography. (author)

  1. Ultra-high field upper extremity peripheral nerve and non-contrast enhanced vascular imaging.

    Directory of Open Access Journals (Sweden)

    Shailesh B Raval

    Full Text Available The purpose of this study was to explore the efficacy of Ultra-high field [UHF] 7 Tesla [T] MRI as compared to 3T MRI in non-contrast enhanced [nCE] imaging of structural anatomy in the elbow, forearm, and hand [upper extremity].A wide range of sequences including T1 weighted [T1] volumetric interpolate breath-hold exam [VIBE], T2 weighted [T2] double-echo steady state [DESS], susceptibility weighted imaging [SWI], time-of-flight [TOF], diffusion tensor imaging [DTI], and diffusion spectrum imaging [DSI] were optimized and incorporated with a radiofrequency [RF] coil system composed of a transverse electromagnetic [TEM] transmit coil combined with an 8-channel receive-only array for 7T upper extremity [UE] imaging. In addition, Siemens optimized protocol/sequences were used on a 3T scanner and the resulting images from T1 VIBE and T2 DESS were compared to that obtained at 7T qualitatively and quantitatively [SWI was only qualitatively compared]. DSI studio was utilized to identify nerves based on analysis of diffusion weighted derived fractional anisotropy images. Images of forearm vasculature were extracted using a paint grow manual segmentation method based on MIPAV [Medical Image Processing, Analysis, and Visualization].High resolution and high quality signal-to-noise ratio [SNR] and contrast-to-noise ratio [CNR]-images of the hand, forearm, and elbow were acquired with nearly homogeneous 7T excitation. Measured [performed on the T1 VIBE and T2 DESS sequences] SNR and CNR values were almost doubled at 7T vs. 3T. Cartilage, synovial fluid and tendon structures could be seen with higher clarity in the 7T T1 and T2 weighted images. SWI allowed high resolution and better quality imaging of large and medium sized arteries and veins, capillary networks and arteriovenous anastomoses at 7T when compared to 3T. 7T diffusion weighted sequence [not performed at 3T] demonstrates that the forearm nerves are clearly delineated by fiber tractography. The

  2. The VIMOS Ultra Deep Survey: Nature, ISM properties, and ionizing spectra of CIII]λ1909 emitters at z = 2-4

    Science.gov (United States)

    Nakajima, K.; Schaerer, D.; Le Fèvre, O.; Amorín, R.; Talia, M.; Lemaux, B. C.; Tasca, L. A. M.; Vanzella, E.; Zamorani, G.; Bardelli, S.; Grazian, A.; Guaita, L.; Hathi, N. P.; Pentericci, L.; Zucca, E.

    2018-05-01

    Context. Ultraviolet (UV) emission-line spectra are used to spectroscopically confirm high-z galaxies and increasingly also to determine their physical properties. Aims: We construct photoionization models to interpret the observed UV spectra of distant galaxies in terms of the dominant radiation field and the physical condition of the interstellar medium (ISM). These models are applied to new spectroscopic observations from the VIMOS Ultra Deep Survey (VUDS). Methods: We construct a large grid of photoionization models, which use several incident radiation fields (stellar populations, active galactic nuclei (AGNs), mix of stars and AGNs, blackbodies, and others), and cover a wide range of metallicities and ionization parameters. From these models we derive new spectral UV line diagnostics using equivalent widths (EWs) of [CIII]λ1909 doublet, CIVλ1549 doublet and the line ratios of [CIII], CIV, and He IIλ1640 recombination lines. We apply these diagnostics to a sample of 450 [CIII]-emitting galaxies at redshifts z = 2-4 previously identified in VUDS. Results: We demonstrate that our photoionization models successfully reproduce observations of nearby and high-redshift sources with known radiation field and/or metallicity. For star-forming galaxies our models predict that [CIII] EW peaks at sub-solar metallicities, whereas CIV EW peaks at even lower metallicity. Using the UV diagnostics, we show that the average star-forming galaxy (EW([CIII]) 2 Å) based on the composite of the 450 UV-selected galaxies' spectra The inferred metallicity and ionization parameter is typically Z = 0.3-0.5 Z⊙ and logU = -2.7 to - 3, in agreement with earlier works at similar redshifts. The models also indicate an average age of 50-200 Myr since the beginning of the current star-formation, and an ionizing photon production rate, ξion, of logξion/erg-1 Hz = 25.3-25.4. Among the sources with EW([CIII]) >= 10 Å, approximately 30% are likely dominated by AGNs. The metallicity derived

  3. AUC-Maximized Deep Convolutional Neural Fields for Protein Sequence Labeling.

    Science.gov (United States)

    Wang, Sheng; Sun, Siqi; Xu, Jinbo

    2016-09-01

    Deep Convolutional Neural Networks (DCNN) has shown excellent performance in a variety of machine learning tasks. This paper presents Deep Convolutional Neural Fields (DeepCNF), an integration of DCNN with Conditional Random Field (CRF), for sequence labeling with an imbalanced label distribution. The widely-used training methods, such as maximum-likelihood and maximum labelwise accuracy, do not work well on imbalanced data. To handle this, we present a new training algorithm called maximum-AUC for DeepCNF. That is, we train DeepCNF by directly maximizing the empirical Area Under the ROC Curve (AUC), which is an unbiased measurement for imbalanced data. To fulfill this, we formulate AUC in a pairwise ranking framework, approximate it by a polynomial function and then apply a gradient-based procedure to optimize it. Our experimental results confirm that maximum-AUC greatly outperforms the other two training methods on 8-state secondary structure prediction and disorder prediction since their label distributions are highly imbalanced and also has similar performance as the other two training methods on solvent accessibility prediction, which has three equally-distributed labels. Furthermore, our experimental results show that our AUC-trained DeepCNF models greatly outperform existing popular predictors of these three tasks. The data and software related to this paper are available at https://github.com/realbigws/DeepCNF_AUC.

  4. Deep geothermal processes acting on faults and solid tides in coastal Xinzhou geothermal field, Guangdong, China

    Science.gov (United States)

    Lu, Guoping; Wang, Xiao; Li, Fusi; Xu, Fangyiming; Wang, Yanxin; Qi, Shihua; Yuen, David

    2017-03-01

    This paper investigated the deep fault thermal flow processes in the Xinzhou geothermal field in the Yangjiang region of Guangdong Province. Deep faults channel geothermal energy to the shallow ground, which makes it difficult to study due to the hidden nature. We conducted numerical experiments in order to investigate the physical states of the geothermal water inside the fault zone. We view the deep fault as a fast flow path for the thermal water from the deep crust driven up by the buoyancy. Temperature measurements at the springs or wells constrain the upper boundary, and the temperature inferred from the Currie temperature interface bounds the bottom. The deepened boundary allows the thermal reservoir to revolve rather than to be at a fixed temperature. The results detail the concept of a thermal reservoir in terms of its formation and heat distribution. The concept also reconciles the discrepancy in reservoir temperatures predicted from both quartz and Na-K-Mg. The downward displacement of the crust increases the pressure at the deep ground and leads to an elevated temperature and a lighter water density. Ultimately, our results are a first step in implementing numerical studies of deep faults through geothermal water flows; future works need to extend to cases of supercritical states. This approach is applicable to general deep-fault thermal flows and dissipation paths for the seismic energy from the deep crust.

  5. MESSENGER Magnetic Field Observations of Upstream Ultra-Low Frequency Waves at Mercury

    Science.gov (United States)

    Le, G.; Chi, P. J.; Boardsen, S.; Blanco-Cano, X.; Anderosn, B. J.; Korth, H.

    2012-01-01

    The region upstream from a planetary bow shock is a natural plasma laboratory containing a variety of wave particle phenomena. The study of foreshocks other than the Earth's is important for extending our understanding of collisionless shocks and foreshock physics since the bow shock strength varies with heliocentric distance from the Sun, and the sizes of the bow shocks are different at different planets. The Mercury's bow shock is unique in our solar system as it is produced by low Mach number solar wind blowing over a small magnetized body with a predominately radial interplanetary magnetic field. Previous observations of Mercury upstream ultra-low frequency (ULF) waves came exclusively from two Mercury flybys of Mariner 10. The MESSENGER orbiter data enable us to study of upstream waves in the Mercury's foreshock in depth. This paper reports an overview of upstream ULF waves in the Mercury's foreshock using high-time resolution magnetic field data, 20 samples per second, from the MESSENGER spacecraft. The most common foreshock waves have frequencies near 2 Hz, with properties similar to the I-Hz waves in the Earth's foreshock. They are present in both the flyby data and in every orbit of the orbital data we have surveyed. The most common wave phenomenon in the Earth's foreshock is the large-amplitude 30-s waves, but similar waves at Mercury have frequencies at near 0.1 Hz and occur only sporadically with short durations (a few wave cycles). Superposed on the "30-s" waves, there are spectral peaks at near 0.6 Hz, not reported previously in Mariner 10 data. We will discuss wave properties and their occurrence characteristics in this paper.

  6. The Deep Physics Hidden within the Field Expressions of the Radiation Fields of Lightning Return Strokes

    Directory of Open Access Journals (Sweden)

    Vernon Cooray

    2016-01-01

    Full Text Available Based on the electromagnetic fields generated by a current pulse propagating from one point in space to another, a scenario that is frequently used to simulate return strokes in lightning flashes, it is shown that there is a deep physical connection between the electromagnetic energy dissipated by the system, the time over which this energy is dissipated and the charge associated with the current. For a given current pulse, the product of the energy dissipated and the time over which this energy is dissipated, defined as action in this paper, depends on the length of the channel, or the path, through which the current pulse is propagating. As the length of the channel varies, the action plotted against the length of the channel exhibits a maximum value. The location of the maximum value depends on the ratio of the length of the channel to the characteristic length of the current pulse. The latter is defined as the product of the duration of the current pulse and the speed of propagation of the current pulse. The magnitude of this maximum depends on the charge associated with the current pulse. The results show that when the charge associated with the current pulse approaches the electronic charge, the value of this maximum reaches a value close to h/8π where h is the Plank constant. From this result, one can deduce that the time-energy uncertainty principle is the reason for the fact that the smallest charge that can be detected from the electromagnetic radiation is equal to the electronic charge. Since any system that generates electromagnetic radiation can be represented by a current pulse propagating from one point in space to another, the result is deemed valid for electromagnetic radiation fields in general.

  7. Discriminative deep inelastic tests of strong interaction field theories

    International Nuclear Information System (INIS)

    Glueck, M.; Reya, E.

    1979-02-01

    It is demonstrated that recent measurements of ∫ 0 1 F 2 (x, Q 2 )dx eliminate already all strong interaction field theories except QCD. A detailed study of scaling violations of F 2 (x, Q 2 ) in QCD shows their insensitivity to the gluon content of the hadron at presently measured values of Q 2 . (orig.) [de

  8. Quantum state engineering with ultra-short-period (AlN)m/(GaN)n superlattices for narrowband deep-ultraviolet detection.

    Science.gov (United States)

    Gao, Na; Lin, Wei; Chen, Xue; Huang, Kai; Li, Shuping; Li, Jinchai; Chen, Hangyang; Yang, Xu; Ji, Li; Yu, Edward T; Kang, Junyong

    2014-12-21

    Ultra-short-period (AlN)m/(GaN)n superlattices with tunable well and barrier atomic layer numbers were grown by metal-organic vapour phase epitaxy, and employed to demonstrate narrowband deep ultraviolet photodetection. High-resolution transmission electron microscopy and X-ray reciprocal space mapping confirm that superlattices containing well-defined, coherently strained GaN and AlN layers as thin as two atomic layers (∼ 0.5 nm) were grown. Theoretical and experimental results demonstrate that an optical absorption band as narrow as 9 nm (210 meV) at deep-ultraviolet wavelengths can be produced, and is attributable to interband transitions between quantum states along the [0001] direction in ultrathin GaN atomic layers isolated by AlN barriers. The absorption wavelength can be precisely engineered by adjusting the thickness of the GaN atomic layers because of the quantum confinement effect. These results represent a major advance towards the realization of wavelength selectable and narrowband photodetectors in the deep-ultraviolet region without any additional optical filters.

  9. Simulation of ultra-high energy photon propagation in the geomagnetic field

    Science.gov (United States)

    Homola, P.; Góra, D.; Heck, D.; Klages, H.; PeĶala, J.; Risse, M.; Wilczyńska, B.; Wilczyński, H.

    2005-12-01

    The identification of primary photons or specifying stringent limits on the photon flux is of major importance for understanding the origin of ultra-high energy (UHE) cosmic rays. UHE photons can initiate particle cascades in the geomagnetic field, which leads to significant changes in the subsequent atmospheric shower development. We present a Monte Carlo program allowing detailed studies of conversion and cascading of UHE photons in the geomagnetic field. The program named PRESHOWER can be used both as an independent tool or together with a shower simulation code. With the stand-alone version of the code it is possible to investigate various properties of the particle cascade induced by UHE photons interacting in the Earth's magnetic field before entering the Earth's atmosphere. Combining this program with an extensive air shower simulation code such as CORSIKA offers the possibility of investigating signatures of photon-initiated showers. In particular, features can be studied that help to discern such showers from the ones induced by hadrons. As an illustration, calculations for the conditions of the southern part of the Pierre Auger Observatory are presented. Catalogue identifier:ADWG Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWG Program obtainable: CPC Program Library, Quen's University of Belfast, N. Ireland Computer on which the program has been thoroughly tested:Intel-Pentium based PC Operating system:Linux, DEC-Unix Programming language used:C, FORTRAN 77 Memory required to execute with typical data:Recipes, http://www.nr.com]. Nature of the physical problem:Simulation of a cascade of particles initiated by UHE photon passing through the geomagnetic field above the Earth's atmosphere. Method of solution: The primary photon is tracked until its conversion into ee pair or until it reaches the upper atmosphere. If conversion occurred each individual particle in the resultant preshower is checked for either bremsstrahlung radiation (electrons) or

  10. Near-field effects of asteroid impacts in deep water

    Energy Technology Data Exchange (ETDEWEB)

    Gisler, Galen R [Los Alamos National Laboratory; Weaver, Robert P [Los Alamos National Laboratory; Gittings, Michael L [Los Alamos National Laboratory

    2009-06-11

    Our previous work has shown that ocean impacts of asteroids below 500 m in diameter do not produce devastating long-distance tsunamis. Nevertheless, a significant portion of the ocean lies close enough to land that near-field effects may prove to be the greatest danger from asteroid impacts in the ocean. Crown splashes and central jets that rise up many kilometres into the atmosphere can produce, upon their collapse, highly non-linear breaking waves that could devastate shorelines within a hundred kilometres of the impact site. We present illustrative calculations, in two and three dimensions, of such impacts for a range of asteroid sizes and impact angles. We find that, as for land impacts, the greatest dangers from oceanic impacts are the short-term near-field, and long-term atmospheric effects.

  11. The deep thermal field of the Upper Rhine Graben

    Science.gov (United States)

    Freymark, Jessica; Sippel, Judith; Scheck-Wenderoth, Magdalena; Bär, Kristian; Stiller, Manfred; Fritsche, Johann-Gerhard; Kracht, Matthias

    2017-01-01

    The Upper Rhine Graben has a significant socioeconomic relevance as it provides a great potential for geothermal energy production. The key for the utilisation of this energy resource is to understand the controlling factors of the thermal field in this area. We have therefore built a data-based lithospheric-scale 3D structural model of the Upper Rhine Graben and its adjacent areas. In addition, 3D gravity modelling was performed to constrain the internal structure of the crystalline crust consistent with seismic information. Based on this lithosphere scale 3D structural model the present-day conductive thermal field was calculated and compared to measured temperatures. Our results show that the regional thermal field is mainly controlled by the configuration of the upper crust, which has different thermal properties characteristic for the Variscan and Alpine domains. Temperature maxima are predicted for the Upper Rhine Graben where thick insulating Cenozoic sediments cause a thermal blanketing effect and where the underlying crustal units are characterised by high radiogenic heat production. The comparison of calculated and measured temperatures overall shows a reasonable fit, while locally occuring model deviations indicate where a larger influence of groundwater flow may be expected.

  12. A PILOT FOR A VERY LARGE ARRAY H I DEEP FIELD

    International Nuclear Information System (INIS)

    Fernández, Ximena; Van Gorkom, J. H.; Schiminovich, David; Hess, Kelley M.; Pisano, D. J.; Kreckel, Kathryn; Momjian, Emmanuel; Popping, Attila; Oosterloo, Tom; Chomiuk, Laura; Verheijen, M. A. W.; Henning, Patricia A.; Bershady, Matthew A.; Wilcots, Eric M.; Scoville, Nick

    2013-01-01

    High-resolution 21 cm H I deep fields provide spatially and kinematically resolved images of neutral hydrogen at different redshifts, which are key to understanding galaxy evolution across cosmic time and testing predictions of cosmological simulations. Here we present results from a pilot for an H I deep field done with the Karl G. Jansky Very Large Array (VLA). We take advantage of the newly expanded capabilities of the telescope to probe the redshift interval 0 < z < 0.193 in one observation. We observe the COSMOS field for 50 hr, which contains 413 galaxies with optical spectroscopic redshifts in the imaged field of 34' × 34' and the observed redshift interval. We have detected neutral hydrogen gas in 33 galaxies in different environments spanning the probed redshift range, including three without a previously known spectroscopic redshift. The detections have a range of H I and stellar masses, indicating the diversity of galaxies we are probing. We discuss the observations, data reduction, results, and highlight interesting detections. We find that the VLA's B-array is the ideal configuration for H I deep fields since its long spacings mitigate radio frequency interference. This pilot shows that the VLA is ready to carry out such a survey, and serves as a test for future H I deep fields planned with other Square Kilometer Array pathfinders.

  13. A PILOT FOR A VERY LARGE ARRAY H I DEEP FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Ximena; Van Gorkom, J. H.; Schiminovich, David [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Hess, Kelley M. [Department of Astronomy, Astrophysics, Cosmology and Gravity Centre, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Pisano, D. J. [Department of Physics, West Virginia University, P.O. Box 6315, Morgantown, WV 26506 (United States); Kreckel, Kathryn [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Momjian, Emmanuel [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Popping, Attila [International Centre for Radio Astronomy Research (ICRAR), The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 (Australia); Oosterloo, Tom [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, NL-7990 AA Dwingeloo (Netherlands); Chomiuk, Laura [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Verheijen, M. A. W. [Kapteyn Astronomical Institute, University of Groningen, Postbus 800, NL-9700 AV Groningen (Netherlands); Henning, Patricia A. [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Bershady, Matthew A.; Wilcots, Eric M. [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States); Scoville, Nick, E-mail: ximena@astro.columbia.edu [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States)

    2013-06-20

    High-resolution 21 cm H I deep fields provide spatially and kinematically resolved images of neutral hydrogen at different redshifts, which are key to understanding galaxy evolution across cosmic time and testing predictions of cosmological simulations. Here we present results from a pilot for an H I deep field done with the Karl G. Jansky Very Large Array (VLA). We take advantage of the newly expanded capabilities of the telescope to probe the redshift interval 0 < z < 0.193 in one observation. We observe the COSMOS field for 50 hr, which contains 413 galaxies with optical spectroscopic redshifts in the imaged field of 34' Multiplication-Sign 34' and the observed redshift interval. We have detected neutral hydrogen gas in 33 galaxies in different environments spanning the probed redshift range, including three without a previously known spectroscopic redshift. The detections have a range of H I and stellar masses, indicating the diversity of galaxies we are probing. We discuss the observations, data reduction, results, and highlight interesting detections. We find that the VLA's B-array is the ideal configuration for H I deep fields since its long spacings mitigate radio frequency interference. This pilot shows that the VLA is ready to carry out such a survey, and serves as a test for future H I deep fields planned with other Square Kilometer Array pathfinders.

  14. Discriminative deep inelastic tests of strong interaction field theories

    International Nuclear Information System (INIS)

    Glueck, M.; Reya, E.

    1979-02-01

    It is demonstrated that recent measurements of F 2 (x,Q 2 ) dx eliminate already all strong interaction field theories which do not include colored quarks as well as colored vector gluons. Detailed studies of scaling violations in F 2 (x,Q 2 ) cannot discriminate between a local gauge invariant theory (QCD) and one which has no local color gauge invariance, i.e. no triple-gluon coupling. This implies that all calculations on scaling violations done so far are insensitive to the gluon self-coupling, the latter might perhaps be delineated with future ep colliding beam facilities. (orig.) [de

  15. A VLT Large Programme to Study Galaxies at z ~ 2: GMASS — the Galaxy Mass Assembly Ultra-deep Spectroscopic Survey

    Science.gov (United States)

    Kurk, Jaron; Cimatti, Andrea; Daddi, Emanuele; Mignoli, Marco; Bolzonella, Micol; Pozzetti, Lucia; Cassata, Paolo; Halliday, Claire; Zamorani, Gianni; Berta, Stefano; Brusa, Marcella; Dickinson, Mark; Franceschini, Alberto; Rodighiero, Guilia; Rosati, Piero; Renzini, Alvio

    2009-03-01

    We report on the motivation, sample selection and first results of our VLT FORS2 Large Programme (173.A-0687), which has obtained the longest targeted spectra of distant galaxies obtained so far with the VLT. These long exposures, up to 77 hours for objects included in three masks, were required to detect spectral features of extremely faint galaxies, such as absorption lines of passive galaxies at z > 1.4, a population that had previously escaped attention due to its faintness in the optical wavelength regime, but which represents a critical phase in the evolution of massive galaxies. The ultra-deep spectroscopy allowed us to estimate the stellar metallicity of star-forming galaxies at z ~ 2, to trace colour bimodality up to z = 2 and to characterise a galaxy cluster progenitor at z = 1.6. The approximately 200 spectra produced by GMASS constitute a lasting legacy, populating the “redshift desert” in GOODS-S.

  16. Sterilization of liquid foods by pulsed electric fields-an innovative ultra-high temperature process.

    Science.gov (United States)

    Reineke, Kai; Schottroff, Felix; Meneses, Nicolas; Knorr, Dietrich

    2015-01-01

    The intention of this study was to investigate the inactivation of endospores by a combined thermal and pulsed electric field (PEF) treatment. Therefore, self-cultivated spores of Bacillus subtilis and commercial Geobacillus stearothermophilus spores with certified heat resistance were utilized. Spores of both strains were suspended in saline water (5.3 mS cm(-1)), skim milk (0.3% fat; 5.3 mS cm(-1)) and fresh prepared carrot juice (7.73 mS cm(-1)). The combination of moderate preheating (70-90°C) and an insulated PEF-chamber, combined with a holding tube (65 cm) and a heat exchanger for cooling, enabled a rapid heat up to 105-140°C (measured above the PEF chamber) within 92.2-368.9 μs. To compare the PEF process with a pure thermal inactivation, each spore suspension was heat treated in thin glass capillaries and D-values from 90 to 130°C and its corresponding z-values were calculated. For a comparison of the inactivation data, F-values for the temperature fields of both processes were calculated by using computational fluid dynamics (CFD). A preheating of saline water to 70°C with a flow rate of 5 l h(-1), a frequency of 150 Hz and an energy input of 226.5 kJ kg(-1), resulted in a measured outlet temperature of 117°C and a 4.67 log10 inactivation of B. subtilis. The thermal process with identical F-value caused only a 3.71 log10 inactivation. This synergism of moderate preheating and PEF was even more pronounced for G. stearothermophilus spores in saline water. A preheating to 95°C and an energy input of 144 kJ kg(-1) resulted in an outlet temperature of 126°C and a 3.28 log10 inactivation, whereas nearly no inactivation (0.2 log10) was achieved during the thermal treatment. Hence, the PEF technology was evaluated as an alternative ultra-high temperature process. However, for an industrial scale application of this process for sterilization, optimization of the treatment chamber design is needed to reduce the occurring inhomogeneous temperature fields.

  17. Physical properties of distant red galaxies in the COSMOS/UltraVISTA field

    Science.gov (United States)

    Ma, Zhongyang; Fang, Guanwen; Kong, Xu; Fan, Lulu

    2015-10-01

    We present a study on physical properties for a large distant red galaxy (DRG) sample, using the K-selected multi-band photometry catalog of the COSMOS/UltraVISTA field and the CANDELS near-infrared data. Our sample includes 4485 DRGs with (J - K)AB > 1.16 and KAB DRG morphology are consistent with our rest-frame UVJ color classification; quiescent DRGs are generally compact while star-forming DRGs tend to have extended structures. We find the star formation rate (SFR) and the stellar mass of star-forming DRGs present tight "main sequence" relations in all redshift bins. Moreover, the specific SFR (sSFR) of DRGs increases with redshift in all stellar mass bins and DRGs with higher stellar masses generally have lower sSFRs, which indicates that galaxies were much more active on average in the past, and star formation contributes more to the mass growth of low-mass galaxies than to high-mass galaxies. The infrared-derived SFR dominates the total SFR of DRGs which occupy the high-mass range, implying that the J - K color criterion effectively selects massive and dusty galaxies. DRGs with higher M* generally have redder (U - V)rest colors, and the (U - V)rest colors of DRGs become bluer at higher redshifts, suggesting high-mass galaxies have higher internal dust extinctions or older stellar ages and they evolve with time. Finally, we find that DRGs have different overlap among extremely red objects, BzK galaxies, IRAC-selected extremely red objects, and high-z ultraluminous infrared galaxies, indicating that DRGs are not a special population and they can also be selected by other color criteria.

  18. Ultra-deep sequencing reveals high prevalence and broad structural diversity of hepatitis B surface antigen mutations in a global population.

    Science.gov (United States)

    Gencay, Mikael; Hübner, Kirsten; Gohl, Peter; Seffner, Anja; Weizenegger, Michael; Neofytos, Dionysios; Batrla, Richard; Woeste, Andreas; Kim, Hyon-Suk; Westergaard, Gaston; Reinsch, Christine; Brill, Eva; Thu Thuy, Pham Thi; Hoang, Bui Huu; Sonderup, Mark; Spearman, C Wendy; Pabinger, Stephan; Gautier, Jérémie; Brancaccio, Giuseppina; Fasano, Massimo; Santantonio, Teresa; Gaeta, Giovanni B; Nauck, Markus; Kaminski, Wolfgang E

    2017-01-01

    The diversity of the hepatitis B surface antigen (HBsAg) has a significant impact on the performance of diagnostic screening tests and the clinical outcome of hepatitis B infection. Neutralizing or diagnostic antibodies against the HBsAg are directed towards its highly conserved major hydrophilic region (MHR), in particular towards its "a" determinant subdomain. Here, we explored, on a global scale, the genetic diversity of the HBsAg MHR in a large, multi-ethnic cohort of randomly selected subjects with HBV infection from four continents. A total of 1553 HBsAg positive blood samples of subjects originating from 20 different countries across Africa, America, Asia and central Europe were characterized for amino acid variation in the MHR. Using highly sensitive ultra-deep sequencing, we found 72.8% of the successfully sequenced subjects (n = 1391) demonstrated amino acid sequence variation in the HBsAg MHR. This indicates that the global variation frequency in the HBsAg MHR is threefold higher than previously reported. The majority of the amino acid mutations were found in the HBV genotypes B (28.9%) and C (25.4%). Collectively, we identified 345 distinct amino acid mutations in the MHR. Among these, we report 62 previously unknown mutations, which extends the worldwide pool of currently known HBsAg MHR mutations by 22%. Importantly, topological analysis identified the "a" determinant upstream flanking region as the structurally most diverse subdomain of the HBsAg MHR. The highest prevalence of "a" determinant region mutations was observed in subjects from Asia, followed by the African, American and European cohorts, respectively. Finally, we found that more than half (59.3%) of all HBV subjects investigated carried multiple MHR mutations. Together, this worldwide ultra-deep sequencing based genotyping study reveals that the global prevalence and structural complexity of variation in the hepatitis B surface antigen have, to date, been significantly underappreciated.

  19. Survey of risks related to static magnetic fields in ultra high field MRI; Bestandsaufnahme zu Risiken durch statische Magnetfelder im Zusammenhang mit der Ultrahochfeld-MRT

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, H.E. [Max-Planck-Inst. fuer Kognitions- und Neurowissenschaften, Leipzig (Germany); Cramon, D.Y. von [Max-Planck-Inst. fuer Kognitions- und Neurowissenschaften, Leipzig (Germany); Max-Planck-Inst. fuer Neurologische Forschung, Koeln (Germany)

    2008-04-15

    In magnetic resonance imaging (MRI), substantial improvements with respect to sensitivity are expected due to the development of so-called ultra high field scanners, i.e., whole-body scanners with a magnetic field strength of 7 T or above. Users of this technology need to evaluate this benefit for potential risks since commercially available systems are not certified as a medical device for human use. This review provides a detailed survey of static field bioeffects related to the exposure of subjects being scanned, to occupational exposure, and to exposure of the general public under consideration of current standards and directives. According to present knowledge, it is not expected that exposure of human subjects to static magnetic fields of 7 T implies a specific risk of damage or disease provided that known contraindications are observed. The available database does not permit definition of exact thresholds for harmful effects. However, experience from previous application of ultra high field MRI indicates that transient phenomena, such as vertigo, nausea, metallic taste, or magnetophosphenes, are more frequently observed. In particular, movements in the field or the gradient of the fringe field seem to lead to detectable effects. Besides such observations, there is a strong demand for systematic investigation of potential interaction mechanisms related to static field exposure during MRI examinations. (orig.)

  20. Sterilization of liquid foods by pulsed electric fields – an innovative ultra-high temperature process

    Directory of Open Access Journals (Sweden)

    Kai eReineke

    2015-05-01

    Full Text Available The intention of this study was to investigate the inactivation of endospores by a combined thermal and pulsed electric field (PEF treatment. Therefore, self-cultivated spores of Bacillus subtilis and commercial Geobacillus stearothermophilus spores with certified heat resistance were utilized. Spores of both strains were suspended in saline water (5.3 mS cm-1, skim milk (0.3% fat; 5.3 mS cm-1 and fresh prepared carrot juice (7.73 mS cm-1. The combination of moderate preheating (70-90 °C and an insulated PEF-chamber, combined with a holding tube (65 cm and a heat exchanger for cooling, enabled a rapid heat up to 105-140 °C (measured above the PEF chamber within 92.2-368.9 µs. To compare the PEF process with a pure thermal inactivation, each spore suspension was heat treated in thin glass capillaries and D-values from 90 to 130°C and its corresponding z-values were calculated. For a comparison of the inactivation data, F-values for the temperature fields of both processes were calculated by using Comsol Multiphysics combined with a Matlab routine.A preheating of saline water to 70 °C with a flow rate of 5 l h-1, a frequency of 150 Hz and an energy input of 226.5 kJ kg-1, resulted in a measured outlet temperature of 117 °C and a 4.67 log10 inactivation of Bacillus subtilis. The thermal process with identical F-value caused only a 3.71 log10 inactivation. This synergism of moderate preheating and PEF was even more pronounced for Geobacillus stearothermophilus spores in saline water. A preheating to 95 °C and an energy input of 144 kJ kg-1 resulted in an outlet temperature of 126 °C and a 3.28 log10 inactivation, whereas nearly no inactivation (0.2 log10 was achieved during the thermal treatment.Hence, the PEF technology was evaluated as an alternative ultra-high temperature process. However, for an industrial scale application of this process for sterilization, optimization of the treatment chamber design is needed to reduce the occurring

  1. Techniques for Field Operation of Straddle-packer System in Deep Borehole

    International Nuclear Information System (INIS)

    Kim, Kyung Su; Park, Kyung Woo; Kim, Geon Young; Ji, Sung Hoon; Koh, Yong Kwon; Choi, Jong Won

    2010-05-01

    It is necessary to establish an appropriate hydro-testing tool for the qualified characterization of deep geological environments, especially for the hydraulic properties of rock formation. This research project had been initiated for the purpose of establishment of advanced infra-structures in KURT. The straddle packer system was developed for hydraulic characterization of geological formation using deep borehole. This technical report consists of design concept, basic requirements, function of each part, field operation procedures and techniques, detail design drawings, and specifications. The qualified hydro-testing tool, which is suitable for medium to low permeable formation, using large and deep borehole, has been developed. This tool will be applied for the research project on development of HLW disposal technologies and the site characterization activities of LILW disposal project. Prior to field operation using this hydro-testing equipment, every researchers should be well acquainted with this technical report

  2. Deep inelastic lepton-nucleus scattering from the light-cone quantum field theory

    International Nuclear Information System (INIS)

    Boqiang Ma; Ji Sun

    1990-01-01

    We show that for deep inelastic lepton-nucleus scattering, the conditions which validate the impulse approximation are hardly satisfied when using ordinary instant form dynamics in the rest frame of the nucleus, whereas they are well satisfied when using instant form dynamics in the infinite-momentum frame, or using light-front form dynamics in an ordinary frame. Therefore a reliable theoretical treatment of deep inelastic lepton-nucleus scattering should be performed in the time-ordered perturbation theory in the infinite-momentum frame, or its equivalent, the light-cone perturbation theory in an ordinary frame. To this end, we extend the light-cone quantum field theory to the baryon-meson field to establish a relativistic composite model of nuclei. We then apply the impulse approximation to deep inelastic lepton-nucleus scattering in this model.(author)

  3. Deep 20-GHz survey of the Chandra Deep Field South and SDSS Stripe 82: source catalogue and spectral properties

    Science.gov (United States)

    Franzen, Thomas M. O.; Sadler, Elaine M.; Chhetri, Rajan; Ekers, Ronald D.; Mahony, Elizabeth K.; Murphy, Tara; Norris, Ray P.; Waldram, Elizabeth M.; Whittam, Imogen H.

    2014-04-01

    We present a source catalogue and first results from a deep, blind radio survey carried out at 20 GHz with the Australia Telescope Compact Array, with follow-up observations at 5.5, 9 and 18 GHz. The Australia Telescope 20 GHz (AT20G) deep pilot survey covers a total area of 5 deg2 in the Chandra Deep Field South and in Stripe 82 of the Sloan Digital Sky Survey. We estimate the survey to be 90 per cent complete above 2.5 mJy. Of the 85 sources detected, 55 per cent have steep spectra (α _{1.4}^{20} law spectra between 1.4 and 18 GHz, while the spectral indices of the flat- or inverted-spectrum sources tend to steepen with frequency. Among the 18 inverted-spectrum (α _{1.4}^{20} ≥ 0.0) sources, 10 have clearly defined peaks in their spectra with α _{1.4}^{5.5} > 0.15 and α 9^{18} Cambridge and Tenth Cambridge surveys: there is a shift towards a steeper-spectrum population when going from ˜1 Jy to ˜5 mJy, which is followed by a shift back towards a flatter-spectrum population below ˜5 mJy. The 5-GHz source-count model by Jackson & Wall, which only includes contributions from FRI and FRII sources, and star-forming galaxies, does not reproduce the observed flattening of the flat-spectrum counts below ˜5 mJy. It is therefore possible that another population of sources is contributing to this effect.

  4. Topography characterization of a deep grating using near-field imaging

    DEFF Research Database (Denmark)

    Gregersen, Niels; Tromborg, Bjarne; Volkov, Valentyn S.

    2006-01-01

    Using near-field optical microscopy at the wavelength of 633 nm, we image light intensity distributions at several distances above an ~2-mm deep and a 1-mm-period glass grating illuminated from below under the condition of total internal reflection. The intensity distributions are numerically mod...

  5. Observations of the Hubble Deep Field with the Infrared Space Observatory .2. Source detection and photometry

    DEFF Research Database (Denmark)

    Goldschmidt, P.; Oliver, S.J.; Serjeant, S.B.G.

    1997-01-01

    We present positions and fluxes of point sources found in the Infrared Space Observatory (ISO) images of the Hubble Deep Field (HDF) at 6.7 and 15 mu m. We have constructed algorithmically selected 'complete' flux-limited samples of 19 sources in the 15-mu m image, and seven sources in the 6.7-mu m...

  6. Making Data Mobile: The Hubble Deep Field Academy iPad app

    Science.gov (United States)

    Eisenhamer, Bonnie; Cordes, K.; Davis, S.; Eisenhamer, J.

    2013-01-01

    Many school districts are purchasing iPads for educators and students to use as learning tools in the classroom. Educators often prefer these devices to desktop and laptop computers because they offer portability and an intuitive design, while having a larger screen size when compared to smart phones. As a result, we began investigating the potential of adapting online activities for use on Apple’s iPad to enhance the dissemination and usage of these activities in instructional settings while continuing to meet educators’ needs. As a pilot effort, we are developing an iPad app for the “Hubble Deep Field Academy” - an activity that is currently available online and commonly used by middle school educators. The Hubble Deep Field Academy app features the HDF-North image while centering on the theme of how scientists use light to explore and study the universe. It also includes features such as embedded links to vocabulary, images and videos, teacher background materials, and readings about Hubble’s other deep field surveys. It is our goal is to impact students’ engagement in STEM-related activities, while enhancing educators’ usage of NASA data via new and innovative mediums. We also hope to develop and share lessons learned with the E/PO community that can be used to support similar projects. We plan to test the Hubble Deep Field Academy app during the school year to determine if this new activity format is beneficial to the education community.

  7. Data to Support Development of Geologic Framework Models for the Deep Borehole Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Frank Vinton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kelley, Richard E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-14

    This report summarizes work conducted in FY2017 to identify and document publically available data for developing a Geologic Framework Model (GFM) for the Deep Borehole Field Test (DBFT). Data was collected for all four of the sites being considered in 2017 for a DBFT site.

  8. Simulations of ultra-high energy cosmic rays in the local Universe and the origin of cosmic magnetic fields

    Science.gov (United States)

    Hackstein, S.; Vazza, F.; Brüggen, M.; Sorce, J. G.; Gottlöber, S.

    2018-04-01

    We simulate the propagation of cosmic rays at ultra-high energies, ≳1018 eV, in models of extragalactic magnetic fields in constrained simulations of the local Universe. We use constrained initial conditions with the cosmological magnetohydrodynamics code ENZO. The resulting models of the distribution of magnetic fields in the local Universe are used in the CRPROPA code to simulate the propagation of ultra-high energy cosmic rays. We investigate the impact of six different magneto-genesis scenarios, both primordial and astrophysical, on the propagation of cosmic rays over cosmological distances. Moreover, we study the influence of different source distributions around the Milky Way. Our study shows that different scenarios of magneto-genesis do not have a large impact on the anisotropy measurements of ultra-high energy cosmic rays. However, at high energies above the Greisen-Zatsepin-Kuzmin (GZK)-limit, there is anisotropy caused by the distribution of nearby sources, independent of the magnetic field model. This provides a chance to identify cosmic ray sources with future full-sky measurements and high number statistics at the highest energies. Finally, we compare our results to the dipole signal measured by the Pierre Auger Observatory. All our source models and magnetic field models could reproduce the observed dipole amplitude with a pure iron injection composition. Our results indicate that the dipole is observed due to clustering of secondary nuclei in direction of nearby sources of heavy nuclei. A light injection composition is disfavoured, since the increase in dipole angular power from 4 to 8 EeV is too slow compared to observation by the Pierre Auger Observatory.

  9. Dynamics of ultra-short electromagnetic pulses in the system of chiral carbon nanotube waveguides in the presence of external alternating electric field

    Energy Technology Data Exchange (ETDEWEB)

    Konobeeva, N.N., E-mail: yana_nn@inbox.ru [Volgograd State University, University Avenue 100, Volgograd 400062 (Russian Federation); Belonenko, M.B. [Volgograd Institute of Business, Uzhno-ukrainskaya str., Volgograd 400048 (Russian Federation)

    2014-04-01

    The paper addresses the propagation of ultra-short optical pulses in chiral carbon nanotubes in the presence of external alternating electric field. Following the assumption that the considered optical pulses are represented in the form of discrete solitons, we analyze the wave equation for the electromagnetic field and consider the dynamics of pulses in external field, their initial amplitudes and frequencies.

  10. AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2

    International Nuclear Information System (INIS)

    Kriek, Mariska; Van Dokkum, Pieter G.; Marchesini, Danilo; Labbe, Ivo; Franx, Marijn; Quadri, Ryan F.; Illingworth, Garth D.

    2009-01-01

    Several recent studies have shown that about half of the massive galaxies at z ∼ 2 are in a quiescent phase. Moreover, these galaxies are commonly found to be ultra-compact with half-light radii of ∼1 kpc. We have obtained a ∼29 hr spectrum of a typical quiescent, ultra-dense galaxy at z = 2.1865 with the Gemini Near-Infrared Spectrograph. The spectrum exhibits a strong optical break and several absorption features, which have not previously been detected in z > 2 quiescent galaxies. Comparison of the spectral energy distribution with stellar population synthesis models implies a low star formation rate (SFR) of 1-3 M sun yr -1 , an age of 1.3-2.2 Gyr, and a stellar mass of ∼2 x 10 11 M sun . We detect several faint emission lines, with emission-line ratios of [N II]/Hα, [S II]/Hα, and [O II]/[O III] typical of low-ionization nuclear emission-line regions. Thus, neither the stellar continuum nor the nebular emission implies active star formation. The current SFR is <1% of the past average SFR. If this galaxy is representative of compact quiescent galaxies beyond z = 2, it implies that quenching of star formation is extremely efficient and also indicates that low luminosity active galactic nuclei (AGNs) could be common in these objects. Nuclear emission is a potential concern for the size measurement. However, we show that the AGN contributes ∼<8% to the rest-frame optical emission. A possible post-starburst population may affect size measurements more strongly; although a 0.5 Gyr old stellar population can make up ∼<10% of the total stellar mass, it could account for up to ∼40% of the optical light. Nevertheless, this spectrum shows that this compact galaxy is dominated by an evolved stellar population.

  11. Foldover, quasi-periodicity, spin-wave instabilities in ultra-thin films subject to RF fields

    Energy Technology Data Exchange (ETDEWEB)

    D' Aquino, M. [Department of Electrical Engineering, University of Napoli ' Federico II' , Naples I-80125 (Italy)]. E-mail: mdaquino@unina.it; Bertotti, G. [Istituto Nazionale di Ricerca Metrologica (INRIM), I-10135 Turin (Italy); Serpico, C. [Department of Electrical Engineering, University of Napoli ' Federico II' , Naples I-80125 (Italy); Mayergoyz, I.D. [ECE Department and UMIACS, University of Maryland, College Park, MD 20742 (United States); Bonin, R. [Istituto Nazionale di Ricerca Metrologica (INRIM), I-10135 Turin (Italy); Guida, G. [Department of Electrical Engineering, University of Napoli ' Federico II' , Naples I-80125 (Italy)

    2007-09-15

    We study magnetization dynamics in a uniaxial ultra-thin ferromagnetic disk subject to spatially uniform microwave external fields. The rotational invariance of the system is such that the only admissible spatially uniform steady states are periodic (P-modes) and quasi-periodic (Q-modes) modes. The stability of P-modes versus spatially uniform and nonuniform perturbations is studied by using spin-wave analysis and the instability diagram for all possible P-modes is computed. The predictions of the spin-wave analysis are compared with micromagnetic simulations.

  12. Free induction decay MR signal measurements toward ultra-low field MRI with an optically pumped atomic magnetometer.

    Science.gov (United States)

    Oida, Takenori; Kobayashi, Tetsuo

    2013-01-01

    Ultra-low field magnetic resonance imaging (ULF-MRI) has attracted attention because of its low running costs and minimum patient exposure. An optically pumped atomic magnetometer (OPAM) is a magnetic sensor with high sensitivity in the low frequency range, which does not require a cryogenic cooling system. In an effort to develop a ULF-MRI, we attempted to measure the free induction decay MR signals with an OPAM. We successfully detected the MR signals by combining an OPAM and a flux transformer, demonstrating the feasibility of the proposed system.

  13. Dro1, a major QTL involved in deep rooting of rice under upland field conditions.

    Science.gov (United States)

    Uga, Yusaku; Okuno, Kazutoshi; Yano, Masahiro

    2011-05-01

    Developing a deep root system is an important strategy for avoiding drought stress in rice. Using the 'basket' method, the ratio of deep rooting (RDR; the proportion of total roots that elongated through the basket bottom) was calculated to evaluate deep rooting. A new major quantitative trait locus (QTL) controlling RDR was detected on chromosome 9 by using 117 recombinant inbred lines (RILs) derived from a cross between the lowland cultivar IR64, with shallow rooting, and the upland cultivar Kinandang Patong (KP), with deep rooting. This QTL explained 66.6% of the total phenotypic variance in RDR in the RILs. A BC(2)F(3) line homozygous for the KP allele of the QTL had an RDR of 40.4%, compared with 2.6% for the homozygous IR64 allele. Fine mapping of this QTL was undertaken using eight BC(2)F(3) recombinant lines. The RDR QTL Dro1 (Deeper rooting 1) was mapped between the markers RM24393 and RM7424, which delimit a 608.4 kb interval in the reference cultivar Nipponbare. To clarify the influence of Dro1 in an upland field, the root distribution in different soil layers was quantified by means of core sampling. A line homozygous for the KP allele of Dro1 (Dro1-KP) and IR64 did not differ in root dry weight in the shallow soil layers (0-25 cm), but root dry weight of Dro1-KP in deep soil layers (25-50 cm) was significantly greater than that of IR64, suggesting that Dro1 plays a crucial role in increased deep rooting under upland field conditions.

  14. Flow Field Dynamics in a High-g Ultra-Compact Combustor

    Science.gov (United States)

    2016-12-01

    Aeronautics and Astronautics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and...exceeded 10%, more than double the accepted state -of-the- art value of 5%. By way of a 2D CFD optimization, the ID of the centerbody was modified to create... States . 14. ABSTRACT The Ultra Compact Combustor (UCC) presents a novel solution to the advancement of aircraft gas turbine engine performance. A

  15. ULTRA-LIGHTWEIGHT CEMENT

    International Nuclear Information System (INIS)

    Fred Sabins

    2001-01-01

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Issues, Task 2: Review Russian Ultra-Lightweight Cement Literature, Task 3: Test Ultra-Lightweight Cements, and Task 8: Develop Field ULHS Cement Blending and Mixing Techniques. Results reported this quarter include: preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; summary of pertinent information from Russian ultra-lightweight cement literature review; laboratory tests comparing ULHS slurries to foamed slurries and sodium silicate slurries for two different applications; and initial laboratory studies with ULHS in preparation for a field job

  16. The GISMO two-millimeter deep field in GOODS-N

    Energy Technology Data Exchange (ETDEWEB)

    Staguhn, Johannes G. [The Henry A. Rowland Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Kovács, Attila [California Institute of Technology 301-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Arendt, Richard G.; Benford, Dominic J.; Dwek, Eli; Fixsen, Dale J.; Jhabvala, Christine A.; Maher, Stephen F.; Miller, Timothy M.; Moseley, S. Harvey; Sharp, Elmer H.; Wollack, Edward J. [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Decarli, Roberto; Walter, Fabian [Max-Planck-Institute für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Hilton, Gene C.; Irwin, Kent D. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); Karim, Alexander [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Leclercq, Samuel [Institut de Radio Astronomie Millimétrique, 300 Rue de la Piscine, F-38406 Saint Martin d' Heres (France)

    2014-07-20

    We present deep continuum observations using the GISMO camera at a wavelength of 2 mm centered on the Hubble Deep Field in the GOODS-N field. These are the first deep field observations ever obtained at this wavelength. The 1σ sensitivity in the innermost ∼4' of the 7' diameter map is ∼135 μJy beam{sup –1}, a factor of three higher in flux/beam sensitivity than the deepest available SCUBA 850 μm observations, and almost a factor of four higher in flux/beam sensitivity than the combined MAMBO/AzTEC 1.2 mm observations of this region. Our source extraction algorithm identifies 12 sources directly, and another 3 through correlation with known sources at 1.2 mm and 850 μm. Five of the directly detected GISMO sources have counterparts in the MAMBO/AzTEC catalog, and four of those also have SCUBA counterparts. HDF850.1, one of the first blank-field detected submillimeter galaxies, is now detected at 2 mm. The median redshift of all sources with counterparts of known redshifts is z-tilde =2.91±0.94. Statistically, the detections are most likely real for five of the seven 2 mm sources without shorter wavelength counterparts, while the probability for none of them being real is negligible.

  17. Ultra-thin films of polysilsesquioxanes possessing 3-methacryloxypropyl groups as gate insulator for organic field-effect transistors

    International Nuclear Information System (INIS)

    Nakahara, Yoshio; Kawa, Haruna; Yoshiki, Jun; Kumei, Maki; Yamamoto, Hiroyuki; Oi, Fumio; Yamakado, Hideo; Fukuda, Hisashi; Kimura, Keiichi

    2012-01-01

    Polysilsesquioxanes (PSQs) possessing 3-methacryloxypropyl groups as an organic moiety of the side chain were synthesized by sol–gel condensation copolymerization of the corresponding trialkoxysilanes. The ultra-thin PSQ film with a radical initiator and a cross-linking agent was prepared by a spin-coating method, and the film was cured integrally at low temperatures of less than 120 °C through two different kinds of polymeric reactions, which were radical polymerization of vinyl groups and sol–gel condensation polymerization of terminated silanol and alkoxy groups. The obtained PSQ film showed the almost perfect solubilization resistance to acetone, which is a good solvent of PSQ before polymerization. It became clear by atomic force microscopy observation that the surface of the PSQ film was very smooth at a nano-meter level. Furthermore, pentacene-based organic field-effect transistor (OFET) with the PSQ film as a gate insulator showed typical p-channel enhancement mode operation characteristics and therefore the ultra-thin PSQ film has the potential to be applicable for solution-processed OFET systems. - Highlights: ► Polysilsesquioxanes (PSQs) possessing 3-methacryloxypropyl groups were synthesized. ► The ultra-thin PSQ film could be cured at low temperatures of less than 120 °C. ► The PSQ film showed the almost perfect solubilization resistance to organic solvent. ► The surface of the PSQ film was very smooth at a nano-meter level. ► Pentacene-based organic field-effect transistor with the PSQ film was fabricated.

  18. Ultra-thin films of polysilsesquioxanes possessing 3-methacryloxypropyl groups as gate insulator for organic field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, Yoshio; Kawa, Haruna [Department of Applied Chemistry, Faculty of Systems Engineering, Wakayama University, 930 Sakae-dani, Wakayama 640-8510 (Japan); Yoshiki, Jun [Division of Information and Electronic Engineering, Faculty of Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran 050-8585 (Japan); Kumei, Maki; Yamamoto, Hiroyuki; Oi, Fumio [Konishi Chemical IND. Co., LTD., 3-4-77 Kozaika, Wakayama 641-0007 (Japan); Yamakado, Hideo [Department of Applied Chemistry, Faculty of Systems Engineering, Wakayama University, 930 Sakae-dani, Wakayama 640-8510 (Japan); Fukuda, Hisashi [Division of Engineering for Composite Functions, Faculty of Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran 050-8585 (Japan); Kimura, Keiichi, E-mail: kkimura@center.wakayama-u.ac.jp [Department of Applied Chemistry, Faculty of Systems Engineering, Wakayama University, 930 Sakae-dani, Wakayama 640-8510 (Japan)

    2012-10-01

    Polysilsesquioxanes (PSQs) possessing 3-methacryloxypropyl groups as an organic moiety of the side chain were synthesized by sol-gel condensation copolymerization of the corresponding trialkoxysilanes. The ultra-thin PSQ film with a radical initiator and a cross-linking agent was prepared by a spin-coating method, and the film was cured integrally at low temperatures of less than 120 Degree-Sign C through two different kinds of polymeric reactions, which were radical polymerization of vinyl groups and sol-gel condensation polymerization of terminated silanol and alkoxy groups. The obtained PSQ film showed the almost perfect solubilization resistance to acetone, which is a good solvent of PSQ before polymerization. It became clear by atomic force microscopy observation that the surface of the PSQ film was very smooth at a nano-meter level. Furthermore, pentacene-based organic field-effect transistor (OFET) with the PSQ film as a gate insulator showed typical p-channel enhancement mode operation characteristics and therefore the ultra-thin PSQ film has the potential to be applicable for solution-processed OFET systems. - Highlights: Black-Right-Pointing-Pointer Polysilsesquioxanes (PSQs) possessing 3-methacryloxypropyl groups were synthesized. Black-Right-Pointing-Pointer The ultra-thin PSQ film could be cured at low temperatures of less than 120 Degree-Sign C. Black-Right-Pointing-Pointer The PSQ film showed the almost perfect solubilization resistance to organic solvent. Black-Right-Pointing-Pointer The surface of the PSQ film was very smooth at a nano-meter level. Black-Right-Pointing-Pointer Pentacene-based organic field-effect transistor with the PSQ film was fabricated.

  19. Ultra high field magnetic resonance imaging; L'imagerie par resonance magnetique a ultra-haut champ. L'aimant, piece maitresse de l'imageur. Memo C: les principales techniques d'imagerie medicale

    Energy Technology Data Exchange (ETDEWEB)

    Lethimonnier, F. [CEA Saclay, Institut d' Imagerie Biomedicale - NeuroSpin, Dir. des Sciences du Vivant, 91 - Gif-sur-Yvette (France); Vedrine, P. [CEA Saclay, Direction des Sciences de la Matiere, 91 - Gif-sur-Yvette (France)

    2008-07-01

    Understanding human brain function, brain development and brain dysfunction is one of the great challenges of the twenty first century. Biomedical imaging has now run up against a number of technical constraints that are exposing limits to its potential. In order to overcome the current limits to high-field magnetic resonance cerebral imaging (MRI) and unleash its fullest potential, the Cea has built NeuroSpin, an ultra-high-field neuroimaging facility at its Saclay centre (in the Essonne). NeuroSpin already boasts three fully operational MRI systems. The first is a 3-tesla high-field system and the second is a very-high-field 7-tesla system, both of which are dedicated to clinical studies and investigations in humans, while the third is an ultra-high-field 17.65-tesla system designed for studies on small animals. In 2011, NeuroSpin will be commissioning an 11.7-tesla ultra-high-field system of unprecedented power that is designed for research on human subjects. The level of the magnetic field and the scale required will make this joint French-German project to build the magnet a breakthrough in the international arena. (authors)

  20. Spontaneous and Widespread Electricity Generation in Natural Deep-Sea Hydrothermal Fields.

    Science.gov (United States)

    Yamamoto, Masahiro; Nakamura, Ryuhei; Kasaya, Takafumi; Kumagai, Hidenori; Suzuki, Katsuhiko; Takai, Ken

    2017-05-15

    Deep-sea hydrothermal vents discharge abundant reductive energy into oxidative seawater. Herein, we demonstrated that in situ measurements of redox potentials on the surfaces of active hydrothermal mineral deposits were more negative than the surrounding seawater potential, driving electrical current generation. We also demonstrated that negative potentials in the surface of minerals were widespread in the hydrothermal fields, regardless of the proximity to hydrothermal fluid discharges. Lab experiments verified that the negative potential of the mineral surface was induced by a distant electron transfer from the hydrothermal fluid through the metallic and catalytic properties of minerals. These results indicate that electric current is spontaneously and widely generated in natural mineral deposits in deep-sea hydrothermal fields. Our discovery provides important insights into the microbial communities that are supported by extracellular electron transfer and the prebiotic chemical and metabolic evolution of the ocean hydrothermal systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Comparison of the induced fields using different coil configurations during deep transcranial magnetic stimulation.

    Directory of Open Access Journals (Sweden)

    Mai Lu

    Full Text Available Stimulation of deeper brain structures by transcranial magnetic stimulation (TMS plays a role in the study of reward and motivation mechanisms, which may be beneficial in the treatment of several neurological and psychiatric disorders. However, electric field distributions induced in the brain by deep transcranial magnetic stimulation (dTMS are still unknown. In this paper, the double cone coil, H-coil and Halo-circular assembly (HCA coil which have been proposed for dTMS have been numerically designed. The distributions of magnetic flux density, induced electric field in an anatomically based realistic head model by applying the dTMS coils were numerically calculated by the impedance method. Results were compared with that of standard figure-of-eight (Fo8 coil. Simulation results show that double cone, H- and HCA coils have significantly deep field penetration compared to the conventional Fo8 coil, at the expense of induced higher and wider spread electrical fields in superficial cortical regions. Double cone and HCA coils have better ability to stimulate deep brain subregions compared to that of the H-coil. In the mean time, both double cone and HCA coils increase risk for optical nerve excitation. Our results suggest although the dTMS coils offer new tool with potential for both research and clinical applications for psychiatric and neurological disorders associated with dysfunctions of deep brain regions, the selection of the most suitable coil settings for a specific clinical application should be based on a balanced evaluation between stimulation depth and focality.

  2. Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields.

    Science.gov (United States)

    Arai-Sanoh, Yumiko; Takai, Toshiyuki; Yoshinaga, Satoshi; Nakano, Hiroshi; Kojima, Mikiko; Sakakibara, Hitoshi; Kondo, Motohiko; Uga, Yusaku

    2014-07-03

    To clarify the effect of deep rooting on grain yield in rice (Oryza sativa L.) in an irrigated paddy field with or without fertilizer, we used the shallow-rooting IR64 and the deep-rooting Dro1-NIL (a near-isogenic line homozygous for the Kinandang Patong allele of DEEPER ROOTING 1 (DRO1) in the IR64 genetic background). Although total root length was similar in both lines, more roots were distributed within the lower soil layer of the paddy field in Dro1-NIL than in IR64, irrespective of fertilizer treatment. At maturity, Dro1-NIL showed approximately 10% higher grain yield than IR64, irrespective of fertilizer treatment. Higher grain yield of Dro1-NIL was mainly due to the increased 1000-kernel weight and increased percentage of ripened grains, which resulted in a higher harvest index. After heading, the uptake of nitrogen from soil and leaf nitrogen concentration were higher in Dro1-NIL than in IR64. At the mid-grain-filling stage, Dro1-NIL maintained higher cytokinin fluxes from roots to shoots than IR64. These results suggest that deep rooting by DRO1 enhances nitrogen uptake and cytokinin fluxes at late stages, resulting in better grain filling in Dro1-NIL in a paddy field in this study.

  3. Aspects of ultra-cold neutron production in radiation fields at the FRM II

    Energy Technology Data Exchange (ETDEWEB)

    Wlokka, Stephan Albrecht

    2016-08-17

    Neutrons are called ''ultra-cold'', if they are reflected by a material surface under all angles of incident. They can then be stored for long times (ca. 1000s). In the new UCN source at the FRM II, Deuterium will be used to produce the UCN. Its behaviour under irradiation was investigated. Additionally the transport properties of new UCN guides were tested. Also, the helium-3 content of purified helium samples was examined, because using this type of helium greatly reduces the tritium production when used at the reactor.

  4. Confinement of ultra-cold neutron in a multiple cusp magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Nobumichi; Inoue, Nobuyuki; Nihei, Hitoshi; Kinosita, Ken-ichi [Tokyo Univ. (Japan). Faculty of Engineering

    1996-08-01

    A new confinement system of ultra-cold neutrons is proposed. The neutron bottle is made of a rectangular vacuum chamber with the size of 40 cm x 40 cm x 30 cm covered with arrays of bar type permanent magnets. The operation of bottle requires neither cooling system nor high electric power supply, and thereby the bottle is appropriate to use in the room which is located in controlled area. The maximum kinetic energy of neutrons confined is 20 neV. Experimental scheme to test the performance of the bottle is described. (author)

  5. Characterization of the Drug Resistance Profiles of Patients Infected with CRF07_BC Using Phenotypic Assay and Ultra-Deep Pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Szu-Wei Huang

    Full Text Available The usefulness of ultra-deep pyrosequencing (UDPS for the diagnosis of HIV-1 drug resistance (DR remains to be determined. Previously, we reported an explosive outbreak of HIV-1 circulating recombinant form (CRF 07_BC among injection drug users (IDUs in Taiwan in 2004. The goal of this study was to characterize the DR of CRF07_BC strains using different assays including UDPS. Seven CRF07_BC isolates including 4 from early epidemic (collected in 2004-2005 and 3 from late epidemic (collected in 2008 were obtained from treatment-naïve patient's peripheral blood mononuclear cells. Viral RNA was extracted directly from patient's plasma or from cultural supernatant and the pol sequences were determined using RT-PCR sequencing or UDPS. For comparison, phenotypic drug susceptibility assay using MAGIC-5 cells (in-house phenotypic assay and Antivirogram were performed. In-house phenotypic assay showed that all the early epidemic and none of the late epidemic CRF07_BC isolates were resistant to most protease inhibitors (PIs (4.4-47.3 fold. Neither genotypic assay nor Antivirogram detected any DR mutations. UDPS showed that early epidemic isolates contained 0.01-0.08% of PI DR major mutations. Furthermore, the combinations of major and accessory PI DR mutations significantly correlated with the phenotypic DR. The in-house phenotypic assay is superior to other conventional phenotypic assays in the detection of DR variants with a frequency as low as 0.01%.

  6. Proton and multinuclear magnetic resonance spectroscopy in the human brain at ultra-high field strength: A review.

    Science.gov (United States)

    Henning, Anke

    2018-03-01

    Magnetic Resonance Spectroscopy (MRS) allows for a non-invasive and non-ionizing determination of in vivo tissue concentrations and metabolic turn-over rates of more than 20 metabolites and compounds in the central nervous system of humans. The aim of this review is to give a comprehensive overview about the advantages, challenges and advances of ultra-high field MRS with regard to methodological development, discoveries and applications from its beginnings around 15 years ago up to the current state. The review is limited to human brain and spinal cord application at field strength of 7T and 9.4T and includes all relevant nuclei ( 1 H, 31 P, 13 C). Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Natural time analysis on the ultra-low frequency magnetic field variations prior to the 2016 Kumamoto (Japan) earthquakes

    Science.gov (United States)

    Potirakis, Stelios M.; Schekotov, Alexander; Asano, Tomokazu; Hayakawa, Masashi

    2018-04-01

    On 15 April 2016 a very strong and shallow earthquake (EQ) (MW = 7.0 , depth ∼ 10 km) occurred in Southwest Japan under the city of Kumamoto, while two very strong foreshocks (MW = 6.2 and MW = 6.0) preceded by about one day. The Kumamoto EQs being very catastrophic, have already attracted much attention among the scientific community in a quest for understanding the generation mechanism, as well as for reporting any preseismic anomalies in various observables and assessing the effectivity of the current early warning systems. In the present article we report precursory behavior of the ground-based observed ultra-low frequency (ULF) magnetic field variations before the Kumamoto EQs. By analyzing specific ULF magnetic field characteristics in terms of the recently introduced natural time (NT) analysis method, we identified that ULF magnetic field variations presented critical features from 2 weeks up to 1 month before the Kumamoto EQs. Specifically, the ULF magnetic field characteristics Fh , Fz , Dh and δDep were analyzed. The first two represent variations of the horizontal and vertical components of the geomagnetic field. The third and fourth characteristics correspond to the depression (decrease) and a relative depression of the horizontal magnetic field variations, respectively. The latter depends on the degree of ionospheric disturbance. All of them were found to reach criticality before the Kumamoto EQs; however, in different time periods for each characteristic.

  8. Ultra-high field magnetic resonance imaging of the basal ganglia and related structures

    NARCIS (Netherlands)

    Plantinga, B.R.; Temel, Y.; Roebroeck, A.; Uludag, K.; Ivanov, D.; Kuijf, M.L.; ter Haar Romeny, B.M.

    2014-01-01

    Deep brain stimulation is a treatment for Parkinson's disease and other related disorders, involving the surgical placement of electrodes in the deeply situated basal ganglia or thalamic structures. Good clinical outcome requires accurate targeting. However, due to limited visibility of the target

  9. Deep Brain Stimulation of the H Fields of Forel Alleviates Tics in Tourette Syndrome

    Directory of Open Access Journals (Sweden)

    Clemens Neudorfer

    2017-06-01

    Full Text Available The current rationale for target selection in Tourette syndrome revolves around the notion of cortico-basal ganglia circuit involvement in the pathophysiology of the disease. However, despite extensive research, the ideal target for deep brain stimulation (DBS is still under debate, with many structures being neglected and underexplored. Based on clinical observations and taking into account the prevailing hypotheses of network processing in Tourette syndrome, we chose the fields of Forel, namely field H1, as a target for DBS. The fields of Forel constitute the main link between the striatopallidal system and the thalamocortical network, relaying pallidothalamic projections from core anatomical structures to the thalamic ventral nuclear group. In a retrospective study we investigated two patients suffering from chronic, medically intractable Tourette syndrome who underwent bilateral lead implantation in field H1 of Forel. Clinical scales revealed significant alleviation of tics and comorbid symptoms, namely depression and anxiety, in the postoperative course in both patients.

  10. Deciphering KRAS and NRAS mutated clone dynamics in MLL-AF4 paediatric leukaemia by ultra deep sequencing analysis.

    Science.gov (United States)

    Trentin, Luca; Bresolin, Silvia; Giarin, Emanuela; Bardini, Michela; Serafin, Valentina; Accordi, Benedetta; Fais, Franco; Tenca, Claudya; De Lorenzo, Paola; Valsecchi, Maria Grazia; Cazzaniga, Giovanni; Kronnie, Geertruy Te; Basso, Giuseppe

    2016-10-04

    To induce and sustain the leukaemogenic process, MLL-AF4+ leukaemia seems to require very few genetic alterations in addition to the fusion gene itself. Studies of infant and paediatric patients with MLL-AF4+ B cell precursor acute lymphoblastic leukaemia (BCP-ALL) have reported mutations in KRAS and NRAS with incidences ranging from 25 to 50%. Whereas previous studies employed Sanger sequencing, here we used next generation amplicon deep sequencing for in depth evaluation of RAS mutations in 36 paediatric patients at diagnosis of MLL-AF4+ leukaemia. RAS mutations including those in small sub-clones were detected in 63.9% of patients. Furthermore, the mutational analysis of 17 paired samples at diagnosis and relapse revealed complex RAS clone dynamics and showed that the mutated clones present at relapse were almost all originated from clones that were already detectable at diagnosis and survived to the initial therapy. Finally, we showed that mutated patients were indeed characterized by a RAS related signature at both transcriptional and protein levels and that the targeting of the RAS pathway could be of beneficial for treatment of MLL-AF4+ BCP-ALL clones carrying somatic RAS mutations.

  11. Photoionization spectroscopy of deep defects responsible for current collapse in nitride-based field effect transistors

    International Nuclear Information System (INIS)

    Klein, P B; Binari, S C

    2003-01-01

    This review is concerned with the characterization and identification of the deep centres that cause current collapse in nitride-based field effect transistors. Photoionization spectroscopy is an optical technique that has been developed to probe the characteristics of these defects. Measured spectral dependences provide information on trap depth, lattice coupling and on the location of the defects in the device structure. The spectrum of an individual trap may also be regarded as a 'fingerprint' of the defect, allowing the trap to be followed in response to the variation of external parameters. The basis for these measurements is derived through a modelling procedure that accounts quantitatively for the light-induced drain current increase in the collapsed device. Applying the model to fit the measured variation of drain current increase with light illumination provides an estimate of the concentrations and photoionization cross-sections of the deep defects. The results of photoionization studies of GaN metal-semiconductor field effect transistors and AlGaN/GaN high electron mobility transistors (HEMTs) grown by metal-organic chemical vapour deposition (MOCVD) are presented and the conclusions regarding the nature of the deep traps responsible are discussed. Finally, recent photoionization studies of current collapse induced by short-term (several hours) bias stress in AlGaN/GaN HEMTs are described and analysed for devices grown by both MOCVD and molecular beam epitaxy. (topical review)

  12. Deep Vadose Zone-Applied Field Research Initiative Fiscal Year 2011 Annual Report

    International Nuclear Information System (INIS)

    Wellman, Dawn M.; Johnson, Timothy C.; Smith, Ronald M.; Truex, Michael J.; Matthews, Hope E.

    2011-01-01

    This annual report describes the background of the Deep Vadose Zone-Applied Field Research Initiative, and some of the programmatic approaches and transformational technologies in groundwater and deep vadose zone remediation developed during fiscal year 2011. The Department of Energy (DOE) Office of Technology Innovation and Development's (OTID) mission is to transform science into viable solutions for environmental cleanup. In 2010, OTID developed the Impact Plan, Science and Technology to Reduce the Life Cycle Cost of Closure to outline the benefits of research and development of the lifecycle cost of cleanup across the DOE complex. This plan outlines OTID's ability to reduce by $50 billion, the $200 billion life-cycle cost in waste processing, groundwater and soil, nuclear materials, and deactivation and decommissioning. The projected life-cycle costs and return on investment are based on actual savings realized from technology innovation, development, and insertion into remedial strategies and schedules at the Fernald, Mound, and Ashtabula sites. To achieve our goals, OTID developed Applied Field Research Initiatives to facilitate and accelerate collaborative development and implementation of new tools and approaches that reduce risk, cost and time for site closure. The primary mission of the Deep Vadose Zone-Applied Field Research Initiative (DVZ-AFRI) is to protect our nation's water resources, keeping them clean and safe for future generations. The DVZ-AFRI was established for the DOE to develop effective, science-based solutions for remediating, characterizing, monitoring, and predicting the behavior and fate of deep vadose zone contamination. Subsurface contaminants include radionuclides, metals, organics, and liquid waste that originated from various sources, including legacy waste from the nation's nuclear weapons complexes. The DVZ-AFRI project team is translating strategy into action by working to solve these complex challenges in a collaborative

  13. Precision Near-Field Reconstruction in the Time Domain via Minimum Entropy for Ultra-High Resolution Radar Imaging

    Directory of Open Access Journals (Sweden)

    Jiwoong Yu

    2017-05-01

    Full Text Available Ultra-high resolution (UHR radar imaging is used to analyze the internal structure of objects and to identify and classify their shapes based on ultra-wideband (UWB signals using a vector network analyzer (VNA. However, radar-based imaging is limited by microwave propagation effects, wave scattering, and transmit power, thus the received signals are inevitably weak and noisy. To overcome this problem, the radar may be operated in the near-field. The focusing of UHR radar signals over a close distance requires precise geometry in order to accommodate the spherical waves. In this paper, a geometric estimation and compensation method that is based on the minimum entropy of radar images with sub-centimeter resolution is proposed and implemented. Inverse synthetic aperture radar (ISAR imaging is used because it is applicable to several fields, including medical- and security-related applications, and high quality images of various targets have been produced to verify the proposed method. For ISAR in the near-field, the compensation for the time delay depends on the distance from the center of rotation and the internal RF circuits and cables. Required parameters for the delay compensation algorithm that can be used to minimize the entropy of the radar images are determined so that acceptable results can be achieved. The processing speed can be enhanced by performing the calculations in the time domain without the phase values, which are removed after upsampling. For comparison, the parameters are also estimated by performing random sampling in the data set. Although the reduced data set contained only 5% of the observed angles, the parameter optimization method is shown to operate correctly.

  14. Magnetic field induced superconductor-insulator transitions for ultra-thin Bi films on the different underlayers

    International Nuclear Information System (INIS)

    Makise, K; Kawaguti, T; Shinozaki, B

    2009-01-01

    This work shows the experimental results of the superconductor-insulator (S-I) transition for ultra-thin Bi films in magnetic fields. The quench-condensed (q-c) Bi film onto insulating underlayers have been interpreted to be homogeneous. In contrast, the Bi film without underlayers has been regarded as a granular film. The electrical transport properties of ultra-thin metal films near the S-I transition depend on the structure of the film. In order to confirm the effect of the underlayer to the homogeneity of the superconducting films, we investigate the characteristics of S-I transitions of q-c nominally homogeneous Bi films on underlayers of two insulating materials, SiO, and Sb. Under almost the same deposition condition except for the material of underlayer, we prepared the Bi films by repeating the additional deposition and performed in-situ electrical measurement. It is found that the transport properties near the S-I transitions show the remarkable difference between two films on different underlayers. As for Bi films on SiO, it turned out that the temperature dependence of resistance per square R sq (T) of the field-tuned transition and the thickness-tuned transition shows similar behavior; it was a thermally activated form. On the other hand, the R sq (T) of Bi films on Sb for thickness-tuned S-I transition showed logarithmic temperature dependence, but that for field-tuned S-I transition showed a thermally activated form.

  15. Metagenomic Signatures of Microbial Communities in Deep-Sea Hydrothermal Sediments of Azores Vent Fields.

    Science.gov (United States)

    Cerqueira, Teresa; Barroso, Cristina; Froufe, Hugo; Egas, Conceição; Bettencourt, Raul

    2018-01-21

    The organisms inhabiting the deep-seafloor are known to play a crucial role in global biogeochemical cycles. Chemolithoautotrophic prokaryotes, which produce biomass from single carbon molecules, constitute the primary source of nutrition for the higher organisms, being critical for the sustainability of food webs and overall life in the deep-sea hydrothermal ecosystems. The present study investigates the metabolic profiles of chemolithoautotrophs inhabiting the sediments of Menez Gwen and Rainbow deep-sea vent fields, in the Mid-Atlantic Ridge. Differences in the microbial community structure might be reflecting the distinct depth, geology, and distance from vent of the studied sediments. A metagenomic sequencing approach was conducted to characterize the microbiome of the deep-sea hydrothermal sediments and the relevant metabolic pathways used by microbes. Both Menez Gwen and Rainbow metagenomes contained a significant number of genes involved in carbon fixation, revealing the largely autotrophic communities thriving in both sites. Carbon fixation at Menez Gwen site was predicted to occur mainly via the reductive tricarboxylic acid cycle, likely reflecting the dominance of sulfur-oxidizing Epsilonproteobacteria at this site, while different autotrophic pathways were identified at Rainbow site, in particular the Calvin-Benson-Bassham cycle. Chemolithotrophy appeared to be primarily driven by the oxidation of reduced sulfur compounds, whether through the SOX-dependent pathway at Menez Gwen site or through reverse sulfate reduction at Rainbow site. Other energy-yielding processes, such as methane, nitrite, or ammonia oxidation, were also detected but presumably contributing less to chemolithoautotrophy. This work furthers our knowledge of the microbial ecology of deep-sea hydrothermal sediments and represents an important repository of novel genes with potential biotechnological interest.

  16. Industrial automation in floating production vessels for deep water oil and gas fields

    International Nuclear Information System (INIS)

    de Garcia, A.L.; Ferrante, A.J.

    1990-01-01

    The process supervision in offshore platforms was performed in the past through the use of local pneumatic instrumentation, based on relays, semi-graphic panels and button operated control panels. Considering the advanced technology used in the new floating production projects for deep water, it became mandatory to develop supervision systems capable of integrating different control panels, increasing the level of monitorization and reducing the number of operators and control rooms. From the point of view of field integration, a standardized architecture makes the communication between different production platforms and the regional headquarters, where all the equipment and support infrastructure for the computerized network is installed, possible. This test paper describes the characteristics of the initial systems, the main problems observed, the studies performed and the results obtained in relation to the design and implementation of computational systems with open architecture for automation of process control in floating production systems for deep water in Brazil

  17. HFF-DeepSpace Photometric Catalogs of the 12 Hubble Frontier Fields, Clusters, and Parallels: Photometry, Photometric Redshifts, and Stellar Masses

    Science.gov (United States)

    Shipley, Heath V.; Lange-Vagle, Daniel; Marchesini, Danilo; Brammer, Gabriel B.; Ferrarese, Laura; Stefanon, Mauro; Kado-Fong, Erin; Whitaker, Katherine E.; Oesch, Pascal A.; Feinstein, Adina D.; Labbé, Ivo; Lundgren, Britt; Martis, Nicholas; Muzzin, Adam; Nedkova, Kalina; Skelton, Rosalind; van der Wel, Arjen

    2018-03-01

    We present Hubble multi-wavelength photometric catalogs, including (up to) 17 filters with the Advanced Camera for Surveys and Wide Field Camera 3 from the ultra-violet to near-infrared for the Hubble Frontier Fields and associated parallels. We have constructed homogeneous photometric catalogs for all six clusters and their parallels. To further expand these data catalogs, we have added ultra-deep K S -band imaging at 2.2 μm from the Very Large Telescope HAWK-I and Keck-I MOSFIRE instruments. We also add post-cryogenic Spitzer imaging at 3.6 and 4.5 μm with the Infrared Array Camera (IRAC), as well as archival IRAC 5.8 and 8.0 μm imaging when available. We introduce the public release of the multi-wavelength (0.2–8 μm) photometric catalogs, and we describe the unique steps applied for the construction of these catalogs. Particular emphasis is given to the source detection band, the contamination of light from the bright cluster galaxies (bCGs), and intra-cluster light (ICL). In addition to the photometric catalogs, we provide catalogs of photometric redshifts and stellar population properties. Furthermore, this includes all the images used in the construction of the catalogs, including the combined models of bCGs and ICL, the residual images, segmentation maps, and more. These catalogs are a robust data set of the Hubble Frontier Fields and will be an important aid in designing future surveys, as well as planning follow-up programs with current and future observatories to answer key questions remaining about first light, reionization, the assembly of galaxies, and many more topics, most notably by identifying high-redshift sources to target.

  18. Ultra-long pulse operation using lower hybrid waves on the superconducting high field tokamak TRIAM-1M

    International Nuclear Information System (INIS)

    Moriyama, S.; Nakamura, Y.; Nagao, A.; Jotaki, E.; Nakamura, K.; Hiraki, N.; Itoh, S.

    1990-01-01

    Ultra-long pulse operation (>3 min) was achieved on the superconducting high field tokamak TRIAM-1M. In this operation, the plasma current was maintained with a relatively peaked current distribution by the 2.45 GHz radiofrequency power (P RF ≤ 35 kW) alone. A stationary plasma with a driven current of up to 35 kA and a line averaged electron density of up to 3x10 12 cm -3 was produced by precise plasma position and gas feed control. The extremely long discharge showed the interesting characteristics that the high temperatures of about 1 keV for the electrons and about 0.5 keV for the ions were kept almost constant during steady state current drive and that there was no impurity accumulation which could have a fatally adverse effect on steady state tokamak operation. (author). 16 refs, 17 figs

  19. Ultra-thin graphene edges at the nanowire tips: a cascade cold cathode with two-stage field amplification

    International Nuclear Information System (INIS)

    Maiti, Uday N; Majumder, Tapas Pal; Maiti, Soumen; Chattopadhyay, Kalyan K

    2011-01-01

    A multistage field emitter based on graphene-linked ZnO nanowire array is realized by means of spin-coating a graphene dispersion (reduced graphene oxide) over a nanostructured platform followed by plasma modification. Spin-coating leads to interlinking of graphene sheets between the neighboring nanowires whereas plasma etching in the subsequent step generates numerous ultra-sharp graphene edges at the nanowire tips. The inherent tendency of graphene to lay flat over a plane substrate can easily be bypassed through the currently presented nanostructure platform based technique. The turn-on and threshold field significantly downshifted compared to the individual components in the cascade emitter. Through the facile electron transfer from nanowires to graphene due to band bending at the ZnO–graphene interface together with multistage geometrical field enhancement at both the nanowire and graphene edges remain behind this enriched field emission from the composite cold cathode. This strategy will open up a new direction to integrate the functionalities of both the graphene array and several other inorganic nanostructure array for practical electronic devices.

  20. Comparative study between fundus autofluorescence and red reflectance imaging of choroidal nevi using ultra-wide-field scanning laser ophthalmoscopy.

    Science.gov (United States)

    Zapata, Miguel Angel; Leila, Mahmoud; Teixidor, Teresa; Garcia-Arumi, Jose

    2015-06-01

    To explore the utility of fundus autofluorescence (FAF) and red reflectance (RR) imaging using ultra-wide-field scanning laser ophthalmoscope in choroidal nevi. Retrospective observational case study reviewing clinical data, color, FAF, and RR images of patients with choroidal nevi and comparing the findings. The ultra-wide-field scanning laser ophthalmoscope uses green laser 532 nm and red laser 633 nm that enabled FAF and RR imaging, respectively in separate channels. Superimposition of both images yielded a composite color image. The study included 46 eyes of 45 patients. Nevi were unilateral in 44 patients (98%). Forty-one nevi (89.1%) were located temporally between the macula and the equator. All nevi (100%) were deeply pigmented. The most frequent surface changes were lipofuscin pigments, zones of retinal pigment epithelium atrophy, and retinal pigment epithelium pigment clumps in 31 (67.3%), 18 (39.1%), and 8 eyes (17.3%), respectively. Color photographs were superior to FAF in detecting nevus boundaries and surface changes. Red reflectance correlated strongly with color images, although the nevus boundaries and surface changes were better delineated in RR mode. Red reflectance was superior to FAF in delineating the boundaries and surface changes of the nevus; clear visibility (3+) for RR versus no or poor visibility (0/1+) for FAF. Nevertheless, the areas of retinal pigment epithelium atrophy were better delineated in FAF mode; clear visibility (3+) for FAF versus poor visibility (1+) for FAF. Red reflectance imaging is more sensitive than conventional photography for follow-up of choroidal nevi. Fundus autofluorescence should be considered only as a complementary tool to RR imaging.

  1. Ultra-Deepwater Production Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ken L. Smith; Marc E. Leveque

    2005-05-31

    The report herein is a summary of the work performed on three projects to demonstrate hydrocarbon drilling and production methods applicable to deep and ultra deepwater field developments in the Gulf of Mexico and other like applications around the world. This work advances technology that could lead to more economic development and exploitation of reserves in ultra-deep water or remote areas. The first project is Subsea Processing. Its scope includes a review of the ''state of the art'' in subsea components to enable primary production process functions such as first stage liquids and gas separation, flow boosting, chemical treatment, flow metering, etc. These components are then combined to allow for the elimination of costly surface production facilities at the well site. A number of studies were then performed on proposed field development projects to validate the economic potential of this technology. The second project involved the design and testing of a light weight production riser made of composite material. The proposed design was to meet an actual Gulf of Mexico deepwater development project. The various engineering and testing work is reviewed, including test results. The third project described in this report encompasses the development and testing of a close tolerance liner drilling system, a new technology aimed at reducing deepwater drilling costs. The design and prototype testing in a test well are described in detail.

  2. The Chandra Deep Field South as a test case for Global Multi Conjugate Adaptive Optics

    Science.gov (United States)

    Portaluri, E.; Viotto, V.; Ragazzoni, R.; Gullieuszik, M.; Bergomi, M.; Greggio, D.; Biondi, F.; Dima, M.; Magrin, D.; Farinato, J.

    2017-04-01

    The era of the next generation of giant telescopes requires not only the advent of new technologies but also the development of novel methods, in order to exploit fully the extraordinary potential they are built for. Global Multi Conjugate Adaptive Optics (GMCAO) pursues this approach, with the goal of achieving good performance over a field of view of a few arcmin and an increase in sky coverage. In this article, we show the gain offered by this technique to an astrophysical application, such as the photometric survey strategy applied to the Chandra Deep Field South as a case study. We simulated a close-to-real observation of a 500 × 500 arcsec2 extragalactic deep field with a 40-m class telescope that implements GMCAO. We analysed mock K-band images of 6000 high-redshift (up to z = 2.75) galaxies therein as if they were real to recover the initial input parameters. We attained 94.5 per cent completeness for source detection with SEXTRACTOR. We also measured the morphological parameters of all the sources with the two-dimensional fitting tools GALFIT. The agreement we found between recovered and intrinsic parameters demonstrates GMCAO as a reliable approach to assist extremely large telescope (ELT) observations of extragalactic interest.

  3. Field testing of stiffened deep cement mixing piles under lateral cyclic loading

    Science.gov (United States)

    Raongjant, Werasak; Jing, Meng

    2013-06-01

    Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity.

  4. SOLAR WAVE-FIELD SIMULATION FOR TESTING PROSPECTS OF HELIOSEISMIC MEASUREMENTS OF DEEP MERIDIONAL FLOWS

    International Nuclear Information System (INIS)

    Hartlep, T.; Zhao, J.; Kosovichev, A. G.; Mansour, N. N.

    2013-01-01

    The meridional flow in the Sun is an axisymmetric flow that is generally directed poleward at the surface, and is presumed to be of fundamental importance in the generation and transport of magnetic fields. Its true shape and strength, however, are debated. We present a numerical simulation of helioseismic wave propagation in the whole solar interior in the presence of a prescribed, stationary, single-cell, deep meridional circulation serving as synthetic data for helioseismic measurement techniques. A deep-focusing time-distance helioseismology technique is applied to the synthetic data, showing that it can in fact be used to measure the effects of the meridional flow very deep in the solar convection zone. It is shown that the ray approximation that is commonly used for interpretation of helioseismology measurements remains a reasonable approximation even for very long distances between 12° and 42° corresponding to depths between 52 and 195 Mm. From the measurement noise, we extrapolate that time-resolved observations on the order of a full solar cycle may be needed to probe the flow all the way to the base of the convection zone.

  5. Deep Vadose Zone Applied Field Research Center: Transformational Technology Development For Environmental Remediation

    International Nuclear Information System (INIS)

    Wellman, Dawn M.; Triplett, Mark B.; Freshley, Mark D.; Truex, Michael J.; Gephart, Roy E.; Johnson, Timothy C.; Chronister, Glen B.; Gerdes, Kurt D.; Chamberlain, Skip; Marble, Justin; Ramirez, Rosa

    2011-01-01

    DOE-EM, Office of Groundwater and Soil Remediation and DOE Richland, in collaboration with the Hanford site and Pacific Northwest National Laboratory, have established the Deep Vadose Zone Applied Field Research Center (DVZ-AFRC). The DVZ-AFRC leverages DOE investments in basic science from the Office of Science, applied research from DOE EM Office of Technology Innovation and Development, and site operation (e.g., site contractors [CH2M HILL Plateau Remediation Contractor and Washington River Protection Solutions], DOE-EM RL and ORP) in a collaborative effort to address the complex region of the deep vadose zone. Although the aim, goal, motivation, and contractual obligation of each organization is different, the integration of these activities into the framework of the DVZ-AFRC brings the resources and creativity of many to provide sites with viable alternative remedial strategies to current baseline approaches for persistent contaminants and deep vadose zone contamination. This cooperative strategy removes stove pipes, prevents duplication of efforts, maximizes resources, and facilitates development of the scientific foundation needed to make sound and defensible remedial decisions that will successfully meet the target cleanup goals for one of DOE EM's most intractable problems, in a manner that is acceptable by regulators.

  6. Dwarf Galaxies with Gentle Star Formation and the Counts of Galaxies in the Hubble Deep Field

    OpenAIRE

    Campos, Ana

    1997-01-01

    In this paper the counts and colors of the faint galaxies observed in the Hubble Deep Field are fitted by means of simple luminosity evolution models that incorporate a numerous population of fading dwarfs. The observed color distribution of the very faint galaxies now allows us to put constraints on the star formation history in dwarfs. It is shown that the star-forming activity in these small systems has to proceed in a gentle way, i.e., through episodes where each one lasts much longer tha...

  7. Infrared Faint Radio Sources in the Extended Chandra Deep Field South

    Science.gov (United States)

    Huynh, Minh T.

    2009-01-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey (ATLAS) which have no observable counterpart in the Spitzer Wide-area Infrared Extragalactic Survey (SWIRE). The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6 to 70 micron) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the SED of these objects shows that they are consistent with high redshift AGN (z > 2).

  8. Testing genotyping strategies for ultra-deep sequencing of a co-amplifying gene family: MHC class I in a passerine bird.

    Science.gov (United States)

    Biedrzycka, Aleksandra; Sebastian, Alvaro; Migalska, Magdalena; Westerdahl, Helena; Radwan, Jacek

    2017-07-01

    Characterization of highly duplicated genes, such as genes of the major histocompatibility complex (MHC), where multiple loci often co-amplify, has until recently been hindered by insufficient read depths per amplicon. Here, we used ultra-deep Illumina sequencing to resolve genotypes at exon 3 of MHC class I genes in the sedge warbler (Acrocephalus schoenobaenus). We sequenced 24 individuals in two replicates and used this data, as well as a simulated data set, to test the effect of amplicon coverage (range: 500-20 000 reads per amplicon) on the repeatability of genotyping using four different genotyping approaches. A third replicate employed unique barcoding to assess the extent of tag jumping, that is swapping of individual tag identifiers, which may confound genotyping. The reliability of MHC genotyping increased with coverage and approached or exceeded 90% within-method repeatability of allele calling at coverages of >5000 reads per amplicon. We found generally high agreement between genotyping methods, especially at high coverages. High reliability of the tested genotyping approaches was further supported by our analysis of the simulated data set, although the genotyping approach relying primarily on replication of variants in independent amplicons proved sensitive to repeatable errors. According to the most repeatable genotyping method, the number of co-amplifying variants per individual ranged from 19 to 42. Tag jumping was detectable, but at such low frequencies that it did not affect the reliability of genotyping. We thus demonstrate that gene families with many co-amplifying genes can be reliably genotyped using HTS, provided that there is sufficient per amplicon coverage. © 2016 John Wiley & Sons Ltd.

  9. A translational study of resistance emergence using sequential direct-acting antiviral agents for hepatitis C using ultra-deep sequencing.

    Science.gov (United States)

    Abe, Hiromi; Hayes, C Nelson; Hiraga, Nobuhiko; Imamura, Michio; Tsuge, Masataka; Miki, Daiki; Takahashi, Shoichi; Ochi, Hidenori; Chayama, Kazuaki

    2013-09-01

    Direct-acting antiviral agents (DAAs) against hepatitis C virus (HCV) have recently been developed and are ultimately hoped to replace interferon-based therapy. However, DAA monotherapy results in rapid emergence of resistant strains and DAAs must be used in combinations that present a high genetic barrier to resistance, although viral kinetics of multidrug-resistant strains remain poorly characterized. The aim of this study is to track the emergence and fitness of resistance using combinations of telaprevir and NS5A or NS5B inhibitors with genotype 1b clones. HCV-infected chimeric mice were treated with DAAs, and resistance was monitored using direct and ultra-deep sequencing. Combination therapy with telaprevir and BMS-788329 (NS5A inhibitor) reduced serum HCV RNA to undetectable levels. The presence of an NS3-V36A telaprevir resistance mutation resulted in poor response to telaprevir monotherapy but showed significant HCV reduction when telaprevir was combined with BMS-788329. However, a BMS-788329-resistant strain emerged at low frequency. Infection with a BMS-788329-resistant NS5A-L31V mutation rapidly resulted in gain of an additional NS5A-Y93A mutation that conferred telaprevir resistance during combination therapy. Infection with dual NS5AL31V/NS5AY93H mutations resulted in poor response to combination therapy and development of telaprevir resistance. Although HCV RNA became undetectable soon after the beginning of combination therapy with BMS-788329 and BMS-821095 (NS5B inhibitor), rebound with emergence of resistance against all three drugs occurred. Triple resistance also occurred following infection with the NS3V36A/NS5AL31V/NS5AY93H triple mutation. Resistant strains easily develop from cloned virus strains. Sequential use of DAAs should be avoided to prevent emergence of multidrug-resistant strains.

  10. Prevalence and evolution of low frequency HIV drug resistance mutations detected by ultra deep sequencing in patients experiencing first line antiretroviral therapy failure.

    Science.gov (United States)

    Vandenhende, Marie-Anne; Bellecave, Pantxika; Recordon-Pinson, Patricia; Reigadas, Sandrine; Bidet, Yannick; Bruyand, Mathias; Bonnet, Fabrice; Lazaro, Estibaliz; Neau, Didier; Fleury, Hervé; Dabis, François; Morlat, Philippe; Masquelier, Bernard

    2014-01-01

    Clinical relevance of low-frequency HIV-1 variants carrying drug resistance associated mutations (DRMs) is still unclear. We aimed to study the prevalence of low-frequency DRMs, detected by Ultra-Deep Sequencing (UDS) before antiretroviral therapy (ART) and at virological failure (VF), in HIV-1 infected patients experiencing VF on first-line ART. Twenty-nine ART-naive patients followed up in the ANRS-CO3 Aquitaine Cohort, having initiated ART between 2000 and 2009 and experiencing VF (2 plasma viral loads (VL) >500 copies/ml or one VL >1000 copies/ml) were included. Reverse transcriptase and protease DRMs were identified using Sanger sequencing (SS) and UDS at baseline (before ART initiation) and VF. Additional low-frequency variants with PI-, NNRTI- and NRTI-DRMs were found by UDS at baseline and VF, significantly increasing the number of detected DRMs by 1.35 fold (plow-frequency DRMs modified ARV susceptibility predictions to the prescribed treatment for 1 patient at baseline, in whom low-frequency DRM was found at high frequency at VF, and 6 patients at VF. DRMs found at VF were rarely detected as low-frequency DRMs prior to treatment. The rare low-frequency NNRTI- and NRTI-DRMs detected at baseline that correlated with the prescribed treatment were most often found at high-frequency at VF. Low frequency DRMs detected before ART initiation and at VF in patients experiencing VF on first-line ART can increase the overall burden of resistance to PI, NRTI and NNRTI.

  11. Ultra-Deep Adsorptive Desulfurization of Light-Irradiated Diesel Fuel over Supported TiO2-CeO2 Adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jing; Wang, Xiaoxing; Chen, Yongsheng; Fujii, Mamoru; Song, Chunshan [SCUT-China; (Penn)

    2014-02-13

    This study investigates ultra-deep adsorptive desulfurization (ADS) from light-irradiated diesel fuel over supported TiO2–CeO2 adsorbents. A 30-fold higher desulfurization capacity of 95 mL of fuel per gram of adsorbent (mL-F/g-sorb) or 1.143 mg of sulfur per gram of adsorbent (mg-S/g-sorb) was achieved from light-irradiated fuel over the original low-sulfur fuel containing about 15 ppm by weight (ppmw) of sulfur. The sulfur species on spent TiO2–CeO2/MCM-48 adsorbent was identified by sulfur K-edge XANES as sulfones and the adsorption selectivity to different compounds tested in a model fuel decreases in the order of indole > dibenzothiophenesulfone → dibenzothiophene > 4-methyldibenzothiophene > benzothiophene > 4,6-dimethyldibenzothiophene > phenanthrene > 2-methylnaphthalene ~ fluorene > naphthalene. The results suggest that during ADS of light-irradiated fuel, the original sulfur species were chemically transformed to sulfones, resulting in the significant increase in desulfurization capacity. For different supports for TiO2–CeO2 oxides, the ADS capacity increases with a decrease in the point of zero charge (PZC) value; for silica-supported TiO2–CeO2 oxides (the lowest PZC value of 2–4) with different surface areas, the ADS capacity increases monotonically with increasing surface area. The supported TiO2–CeO2/MCM-48 adsorbent can be regenerated using oxidative air treatment. The present study provides an attractive new path to achieve ultraclean fuel more effectively.

  12. Mutations Related to Antiretroviral Resistance Identified by Ultra-Deep Sequencing in HIV-1 Infected Children under Structured Interruptions of HAART.

    Directory of Open Access Journals (Sweden)

    Jose Manuel Vazquez-Guillen

    Full Text Available Although Structured Treatment Interruptions (STI are currently not considered an alternative strategy for antiretroviral treatment, their true benefits and limitations have not been fully established. Some studies suggest the possibility of improving the quality of life of patients with this strategy; however, the information that has been obtained corresponds mostly to studies conducted in adults, with a lack of knowledge about its impact on children. Furthermore, mutations associated with antiretroviral resistance could be selected due to sub-therapeutic levels of HAART at each interruption period. Genotyping methods to determine the resistance profiles of the infecting viruses have become increasingly important for the management of patients under STI, thus low-abundance antiretroviral drug-resistant mutations (DRM's at levels under limit of detection of conventional genotyping (<20% of quasispecies could increase the risk of virologic failure. In this work, we analyzed the protease and reverse transcriptase regions of the pol gene by ultra-deep sequencing in pediatric patients under STI with the aim of determining the presence of high- and low-abundance DRM's in the viral rebounds generated by the STI. High-abundance mutations in protease and high- and low-abundance mutations in reverse transcriptase were detected but no one of these are directly associated with resistance to antiretroviral drugs. The results could suggest that the evaluated STI program is virologically safe, but strict and carefully planned studies, with greater numbers of patients and interruption/restart cycles, are still needed to evaluate the selection of DRM's during STI.

  13. Meeting the flow assurance challenges of deep water developments - from CAPEX development to field start up

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, M.M.; Feasey, N.D. [National Aluminium Company Ltd. (Nalco), Cheshire (United Kingdom); Afonso, M.; Silva, D. [NALCO Brasil Ltda., Sao Paulo, SP (Brazil)

    2008-07-01

    As oil accumulations in easily accessible locations around the world become less available developments in deeper water become a more common target for field development. Deep water projects, particularly sub sea development, present a host of challenges in terms of flow assurance and integrity. In this paper the focus will be on the chemical control of flow assurance challenges in hydrate control, scale control and wax/asphaltene control within deep water (>750 meter) developments. The opportunities for kinetic hydrate control vs. conventional thermodynamic hydrate control will be outlined with examples of where these technologies have been applied and the limitations that still exist. The development of scale control chemical formulations specifically for sub sea application and the challenges of monitoring such control programs will be highlighted with developments in real time and near real time monitoring. Organic deposit control (wax/asphaltene) will focus on the development of new chemicals that have higher activity but lower viscosity than currently used chemicals hence allowing deployment at colder temperatures and over longer distances. The factors that need to be taken into account when selecting chemicals for deep water application will be highlighted. Fluid viscosity, impact of hydrostatic head on injectivity, product stability at low temperature and interaction with other production chemicals will be reviewed as they pertain to effective flow assurance. This paper brings learning from other deep water basins with examples from the Gulf of Mexico, West Africa and Brazil, which will be used to highlight these challenges and some of the solutions currently available along with the technology gaps that exist. (author)

  14. Ultra-high vacuum target assembly for charged particle irradiations in the materials research field

    International Nuclear Information System (INIS)

    Bressers, J.; Cassanelli, G.; Cat, R. de; Kohnen, H.; Gherardi, G.

    1978-01-01

    A target assembly designed for ion irradiation and ion implantation experiments on different particle accelerators is described. It consists of a target chamber separated from the beam line by a thin metal window, thus allowing implantations to be carried out under ultra-high vacuum conditions. Homogeneous in-depth distribution of the implanted ion species is realized by rotating the target about an axis perpendicular to the ion beam (rocking). The target holder is driven by means of a stepping motor with a constant step angle and a rocking device controller containing the required rocking angle-dwell time relation. Ion beam homogeneity over a sufficiently large target area is arrived at by transforming the Gaussian beam intensity profile into a flat beam intensity distribution by means of an electrostatic ring lens. The beam intensity profile is monitored by means of a specially designed ion beam monitor based on the Nipkov disc principle. A toroidal beam current monitoring transformer continuously measures the total beam current. Beam scanners and current measuring collimators complete the beam analysing equipment

  15. Dynamical cancellation of pulse-induced transients in a metallic shielded room for ultra-low-field magnetic resonance imaging

    International Nuclear Information System (INIS)

    Zevenhoven, Koos C. J.; Ilmoniemi, Risto J.; Dong, Hui; Clarke, John

    2015-01-01

    Pulse-induced transients such as eddy currents can cause problems in measurement techniques where a signal is acquired after an applied preparatory pulse. In ultra-low-field magnetic resonance imaging, performed in magnetic fields typically of the order of 100 μT, the signal-to-noise ratio is enhanced in part by prepolarizing the proton spins with a pulse of much larger magnetic field and in part by detecting the signal with a Superconducting QUantum Interference Device (SQUID). The pulse turn-off, however, can induce large eddy currents in the shielded room, producing an inhomogeneous magnetic-field transient that both seriously distorts the spin dynamics and exceeds the range of the SQUID readout. It is essential to reduce this transient substantially before image acquisition. We introduce dynamical cancellation (DynaCan), a technique in which a precisely designed current waveform is applied to a separate coil during the later part and turn off of the polarizing pulse. This waveform, which bears no resemblance to the polarizing pulse, is designed to drive the eddy currents to zero at the precise moment that the polarizing field becomes zero. We present the theory used to optimize the waveform using a detailed computational model with corrections from measured magnetic-field transients. SQUID-based measurements with DynaCan demonstrate a cancellation of 99%. Dynamical cancellation has the great advantage that, for a given system, the cancellation accuracy can be optimized in software. This technique can be applied to both metal and high-permeability alloy shielded rooms, and even to transients other than eddy currents

  16. Assessment of diabetic retinopathy using nonmydriatic ultra-widefield scanning laser ophthalmoscopy (Optomap) compared with ETDRS 7-field stereo photography.

    Science.gov (United States)

    Kernt, Marcus; Hadi, Indrawati; Pinter, Florian; Seidensticker, Florian; Hirneiss, Christoph; Haritoglou, Christos; Kampik, Anselm; Ulbig, Michael W; Neubauer, Aljoscha S

    2012-12-01

    To compare the diagnostic properties of a nonmydriatic 200° ultra-widefield scanning laser ophthalmoscope (SLO) versus mydriatic Early Treatment of Diabetic Retinopathy Study (ETDRS) 7-field photography for diabetic retinopathy (DR) screening. A consecutive series of 212 eyes of 141 patients with different levels of DR were examined. Grading of DR and clinically significant macular edema (CSME) from mydriatic ETDRS 7-field stereo photography was compared with grading obtained by Optomap Panoramic 200 SLO images. All SLO scans were performed through an undilated pupil, and no additional clinical information was used for evaluation of all images by the two independent, masked, expert graders. Twenty-two eyes from ETDRS 7-field photography and 12 eyes from Optomap were not gradable by at least one grader because of poor image quality. A total of 144 eyes were analyzed regarding DR level and 155 eyes regarding CSME. For ETDRS 7-field photography, 22 eyes (18 for grader 2) had no or mild DR (ETDRS levels ≤ 20) and 117 eyes (111 for grader 2) had no CSME. A highly substantial agreement between both Optomap DR and CSME grading and ETDRS 7-field photography existed with κ = 0.79 for DR and 0.73 for CSME for grader 1, and κ = 0.77 (DR) and 0.77 (CSME) for grader 2. Determination of CSME and grading of DR level from Optomap Panoramic 200 nonmydriatic images show a positive correlation with mydriatic ETDRS 7-field stereo photography. Both techniques are of sufficient quality to assess DR and CSME. Optomap Panoramic 200 images cover a larger retinal area and therefore may offer additional diagnostic properties.

  17. Deep Ly alpha imaging of two z=2.04 GRB host galaxy fields

    DEFF Research Database (Denmark)

    Fynbo, J.P.U.; Møller, Per; Thomsen, Bente

    2002-01-01

    We report on the results of deep narrow-band Lyalpha and broad-band U and I imaging of the fields of two Gamma-Ray bursts at redshift z = 2.04 (GRB 000301C and GRB 000926). We find that the host galaxy of GRB 000926 is an extended (more than 2 arcsec), strong Lyalpha emitter with a rest-frame equ......We report on the results of deep narrow-band Lyalpha and broad-band U and I imaging of the fields of two Gamma-Ray bursts at redshift z = 2.04 (GRB 000301C and GRB 000926). We find that the host galaxy of GRB 000926 is an extended (more than 2 arcsec), strong Lyalpha emitter with a rest...... - I colour than the eastern component, suggesting the presence of at least some dust. We do not detect the host galaxy of GRB 000301C in neither Lyalpha emission nor in U and I broad-band images. The strongest limit comes from combining the narrow and U-band imaging where we infer a limit of U...

  18. Microchip capillary gel electrophoresis using programmed field strength gradients for the ultra-fast analysis of genetically modified organisms in soybeans.

    Science.gov (United States)

    Kim, Yun-Jeong; Chae, Joon-Seok; Chang, Jun Keun; Kang, Seong Ho

    2005-08-12

    We have developed a novel method for the ultra-fast analysis of genetically modified organisms (GMOs) in soybeans by microchip capillary gel electrophoresis (MCGE) using programmed field strength gradients (PFSG) in a conventional glass double-T microchip. Under the programmed electric field strength and 0.3% poly(ethylene oxide) sieving matrix, the GMO in soybeans was analyzed within only 11 s of the microchip. The MCGE-PFSG method was a program that changes the electric field strength during GMO analysis, and was also applied to the ultra-fast analysis of PCR products. Compared to MCGE using a conventional and constantly applied electric field, the MCGE-PFSG analysis generated faster results without the loss of resolving power and reproducibility for specific DNA fragments (100- and 250-bp DNA) of GM-soybeans. The MCGE-PFSG technique may prove to be a new tool in the GMO analysis due to its speed, simplicity, and high efficiency.

  19. Improvement of spin-exchange optical pumping of xenon-129 using in situ NMR measurement in ultra-low magnetic field

    Science.gov (United States)

    Takeda, Shun; Kumagai, Hiroshi

    2018-02-01

    Hyperpolarized (HP) noble gas has attracted attention in NMR / MRI. In an ultra-low magnetic field, the effectiveness of signal enhancement by HP noble gas should be required because reduction of the signal intensity is serious. One method of generating HP noble gas is spin exchange optical pumping which uses selective excitation of electrons of alkali metal vapor and spin transfer to nuclear spin by collision to noble gas. Although SEOP does not require extreme cooling or strong magnetic field, generally it required large-scale equipment including high power light source to generate HP noble gas with high efficiency. In this study, we construct a simply generation system of HP xenon-129 by SEOP with an ultralow magnetic field (up to 1 mT) and small-scale light source (about 1W). In addition, we measure in situ NMR signal at the same time, and then examine efficient conditions for SEOP in ultra-low magnetic fields.

  20. Z a Fast Pulsed Power Generator for Ultra-High Magnetic Field Generation

    Science.gov (United States)

    Spielman, R. B.; Stygar, W. A.; Struve, K. W.; Asay, J. R.; Hall, C. A.; Bernard, M. A.; Bailey, J. E.; McDaniel, D. H.

    2004-11-01

    Advances in fast, pulsed-power technologies have resulted in the development of very high current drivers that have current rise times ~100 ns. The largest such pulsed power driver today is the new Z accelerator located at Sandia National Laboratories in Albuquerque, New Mexico. Z can deliver more than 20 MA with a time-to-peak of 105 ns to low inductance (~1 nH) loads. Such large drivers are capable of directly generating magnetic fields approaching 3 kT in small, 1 cm3 volumes. In addition to direct field generation, Z can be used to compress an applied, axial seed field with a plasma. Flux compression schemes are not new and are, in fact, the basis of all explosive flux-compression generators, but we propose the use of plasma armatures rather than solid, conducting armatures. We present experimental results from the Z accelerator in which magnetic fields of ~2 kT are generated and measured with several diagnostics. Issues such as energy loss in solid conductors and dynamic response of current-carrying conductors to very large magnetic fields are reviewed in context with Z experiments. We describe planned flux-compression experiments that are expected to create the highest-magnitude uniform-field volumes yet attained in the laboratory.

  1. Thin layer activation and ultra thin layer activation: two complementary techniques for wear and corrosion studies in various fields

    International Nuclear Information System (INIS)

    Sauvage, T.; Vincent, L.; Blondiaux, G.

    2002-01-01

    Thin layer activation (TLA) is widely used since more than 25 years to study surface wear or corrosion. This well known technique uses most of the time charged particles activation, which gives sensitivity in the range of the micrometer, except when the fluid mode of detection is utilized. In this case application of the method is limited to phenomena where we have transport of radioactive fragments to detection point. The main disadvantage of this procedure is the error due to trapping phenomena between the wear or corrosion point and detection setup. So the ultra thin layer activation (UTLA) has been developed to get nanometric sensitivity without using any fluid for radioactivity transportation, which is the main source of error of the TLA technique. In this paper we shall briefly describe the TLA technique and the most important fields of application. Then we shall emphasise on UTLA with a presentation of the principle of the method and actual running of application. The main problem concerning UTLA is calibration which requires the use of thin films (usually 10 to 100 nanometers) deposited on substrate. This process is time consuming and we shall demonstrate how running software developed in the lab can solve it. We shall finish the presentation by giving some potential application of the technique in various fields. (authors)

  2. Brain-heart interactions: challenges and opportunities with functional magnetic resonance imaging at ultra-high field.

    Science.gov (United States)

    Chang, Catie; Raven, Erika P; Duyn, Jeff H

    2016-05-13

    Magnetic resonance imaging (MRI) at ultra-high field (UHF) strengths (7 T and above) offers unique opportunities for studying the human brain with increased spatial resolution, contrast and sensitivity. However, its reliability can be compromised by factors such as head motion, image distortion and non-neural fluctuations of the functional MRI signal. The objective of this review is to provide a critical discussion of the advantages and trade-offs associated with UHF imaging, focusing on the application to studying brain-heart interactions. We describe how UHF MRI may provide contrast and resolution benefits for measuring neural activity of regions involved in the control and mediation of autonomic processes, and in delineating such regions based on anatomical MRI contrast. Limitations arising from confounding signals are discussed, including challenges with distinguishing non-neural physiological effects from the neural signals of interest that reflect cardiorespiratory function. We also consider how recently developed data analysis techniques may be applied to high-field imaging data to uncover novel information about brain-heart interactions. © 2016 The Author(s).

  3. The final optical identification content of the Einstein deep x-ray field in Pavo.

    Science.gov (United States)

    Danziger, J. I.; Gilmozzi, R.

    1997-07-01

    The optical identification of all sources revealed in the final analysis of the Einstein deep field observations in Pavo has been completed to the viable limits accessible to spectroscopy. This work combined with previously published data results in the identification of 16 AGN's with the real possibility of 3 further such identifications, while a further 2 probably are spurious. Another AGN is identified in an IPC exposure just outside the boundary of the four HRI exposures. One elliptical galaxy (or cluster) and one dMe star complete the tally. In a log N-log S plot the point represented by these 16-19 AGN's falls precisely on the extension of the line defined by the EMSS data, and somewhat below the line defined by the more recent deep field ROSAT data. It extends to fainter sensitivities than the previously published work from the Einstein observations of the same field. It is consistent with the more recently published data for Pavo obtained with ROSAT even though this latter reaches a slightly fainter sensitivity. This identification work therefore sets a firm lower limit to the AGN content of the X-ray identifications in Pavo. By virtue of having selected in this survey intrinsically fainter-than-average AGN's it has been possible to show, by combination with data for higher luminosity quasars, that a correlation exists between the luminosities and (B-V) colours extending over a luminosity range of 6 magnitudes. This sequence coincides with the sequence obtained by plotting data for all AGN's in the same redshift range taken from the Veron and Veron catalogue. It is argued that the magnitude of this effect cannot be explained by the translation of various strong emission lines through the band-passes of the relevant filters. It may be explained by the influence of host galaxies.

  4. Ionization, photoelectron dynamics and elastic scattering in relativistic, ultra-strong field

    Science.gov (United States)

    Luo, Sui

    Ultrastrong laser-matter interaction has direct bearing to next generation technologies including plasma acceleration, laser fusion and attosecond X-ray generation. The commonly known physics in strong field becomes different as one progress to ultrastrong field. The works presented in this dissertation theoretically study the influence of relativistic effect and magnetic component of the laser field on the ionization, photoelectron dynamics and elastic scattering processes. The influence of magnetic component (B laser) of circularly polarized (CP) ultrastrong fields (up to3 x 1022 W/cm2) on atomic bound state dynamics is investigated. The Poincare plots are used to find the changes in trajectory energies are on the order of a few percent for intensities up to1 x 1022 W/cm2. It is found that at intensities where ionization approaches 50% for the bound state, the small changes from Blaser of the circular polarized light can actually result in a several-fold decrease in ionization probability. The force on the bound electron exerted by the Lorentz force from B laser is perpendicular to the rotating plane of the circular polarized light, and this nature makes those trajectories which are aligned away from the minimum in the potential barrier stabilized against tunneling ionization. Our results provide a classical understanding for ionization in ultrastrong fields and indicate that relativistic effects in ultrastrong field ionization may most easily be seen with CP fields. The photoelectron energy spectra from elastic rescattering in ultrastrong laser fields (up to 2x1019 W/cm2) is studied by using a relativistic adaption of a semi-classical three-step recollision model. The Hartree-Fock scattering potentials are used in calculating the elastic rescattering for both hydrogenlike and noble gas species. It is found that there is a reduction in elastic rescattering for intensities beyond 6 x 1016 W/cm2 when the laser Lorentz deflection of the photoelectron exceeds its

  5. Ultra-capacitor flexible films with tailored dielectric constants using electric field assisted assembly of nanoparticles.

    Science.gov (United States)

    Batra, Saurabh; Cakmak, Miko

    2015-12-28

    In this study, the chaining and preferential alignment of barium titanate nanoparticles (100 nm) through the thickness direction of a polymer matrix in the presence of an electric field is shown. Application of an AC electric field in a well-dispersed solution leads to the formation of chains of nanoparticles in discrete rows oriented with their primary axis in the E-field direction due to dielectrophoresis. The change in the orientation of these chains was quantified through statistical analysis of SEM images and was found to be dependent on E-field, frequency and viscosity. When a DC field is applied a distinct layer consisting of dense particles was observed with micro-computed tomography. These studies show that the increase in DC voltage leads to increase in the thickness of the particle rich layer along with the packing density also increasing. Increasing the mutual interactions between particles due to the formation of particle chains in the "Z"-direction decreases the critical percolation concentration above which substantial enhancement of properties occurs. This manufacturing method therefore shows promise to lower the cost of the products for a range of applications including capacitors by either enhancing the dielectric properties for a given concentration or reduces the concentration of nanoparticles needed for a given property.

  6. Propulsion Utilizing Laser-Driven Ponderomotive Fields for Deep-Space Missions

    International Nuclear Information System (INIS)

    Williams, George J.; Gilland, James H.

    2009-01-01

    The generation of large amplitude electric fields in plasmas by high-power lasers has been studied for several years in the context of high-energy particle acceleration. Fields on the order of GeV/m are generated in the plasma wake of the laser by non-linear ponderomotive forces. The laser fields generate longitudinal and translational electron plasma waves with phase velocities close to the speed of light. These fields and velocities offer the potential to revolutionize spacecraft propulsion, leading to extended deep space robotic probes. Based on these initial calculations, plasma acceleration by means of laser-induced ponderomotive forces appears to offer significant potential for spacecraft propulsion. Relatively high-efficiencies appear possible with proper beam conditioning, resulting in an order of magnitude more thrust than alternative concepts for high I SP (>10 5 s) and elimination of the primary life-limiting erosion phenomena associated with conventional electric propulsion systems. Ponderomotive propulsion readily lends itself to beamed power which might overcome some of the constraints of power-limited propulsion concepts. A preliminary assessment of the impact of these propulsion systems for several promising configurations on mission architectures has been conducted. Emphasizing interstellar and interstellar-precursor applications, performance and technical requirements are identified for a number of missions. The use of in-situ plasma and gas for propellant is evaluated as well.

  7. Dynamic Neural State Identification in Deep Brain Local Field Potentials of Neuropathic Pain.

    Science.gov (United States)

    Luo, Huichun; Huang, Yongzhi; Du, Xueying; Zhang, Yunpeng; Green, Alexander L; Aziz, Tipu Z; Wang, Shouyan

    2018-01-01

    In neuropathic pain, the neurophysiological and neuropathological function of the ventro-posterolateral nucleus of the thalamus (VPL) and the periventricular gray/periaqueductal gray area (PVAG) involves multiple frequency oscillations. Moreover, oscillations related to pain perception and modulation change dynamically over time. Fluctuations in these neural oscillations reflect the dynamic neural states of the nucleus. In this study, an approach to classifying the synchronization level was developed to dynamically identify the neural states. An oscillation extraction model based on windowed wavelet packet transform was designed to characterize the activity level of oscillations. The wavelet packet coefficients sparsely represented the activity level of theta and alpha oscillations in local field potentials (LFPs). Then, a state discrimination model was designed to calculate an adaptive threshold to determine the activity level of oscillations. Finally, the neural state was represented by the activity levels of both theta and alpha oscillations. The relationship between neural states and pain relief was further evaluated. The performance of the state identification approach achieved sensitivity and specificity beyond 80% in simulation signals. Neural states of the PVAG and VPL were dynamically identified from LFPs of neuropathic pain patients. The occurrence of neural states based on theta and alpha oscillations were correlated to the degree of pain relief by deep brain stimulation. In the PVAG LFPs, the occurrence of the state with high activity levels of theta oscillations independent of alpha and the state with low-level alpha and high-level theta oscillations were significantly correlated with pain relief by deep brain stimulation. This study provides a reliable approach to identifying the dynamic neural states in LFPs with a low signal-to-noise ratio by using sparse representation based on wavelet packet transform. Furthermore, it may advance closed-loop deep

  8. Realisation of a ultra-high vacuum system and technique development of microscopical emitters preparation in silicium. First measurements of field emission current and field photoemission

    International Nuclear Information System (INIS)

    El Manouni, A.

    1990-12-01

    The development of research in the domain of photocathode (electron sources) illuminated by laser light to produce intense multiple bunches of electrons in short time is needed by many applications as linear collider e + e - , free electron laser, lasertron, etc... In this way, after a study of field emission, of photoemission and of photofield emission, we prepared microscopical emitters in silicium heavy and weakly doped a boron using a technique of microlithography. Then, we realized a system of ultra-high vacuum of studying property of emission from photocathodes realized. The experiment results obtained in field emission and photofield emission have shown that a behaviour unexpected for P-silicium tips array compared to P + -silicon tips array. With P-type silicon, a quantum yield of 21 percent has been measured for laser power of 140 mW and for applied field of 1.125 x 10 7 V/m and an instantaneous response to laser light beam has been observed. It has been noted that presence of oxyde at the surface of photocathode limits extensively the emission current. The fluctuations of emission current are due to quality of vacuum [fr

  9. Clusters, groups, and filaments in the Chandra deep field-south up to redshift 1

    International Nuclear Information System (INIS)

    Dehghan, S.; Johnston-Hollitt, M.

    2014-01-01

    We present a comprehensive structure detection analysis of the 0.3 deg 2 area of the MUSYC-ACES field, which covers the Chandra Deep Field-South (CDFS). Using a density-based clustering algorithm on the MUSYC and ACES photometric and spectroscopic catalogs, we find 62 overdense regions up to redshifts of 1, including clusters, groups, and filaments. We also present the detection of a relatively small void of ∼10 Mpc 2 at z ∼ 0.53. All structures are confirmed using the DBSCAN method, including the detection of nine structures previously reported in the literature. We present a catalog of all structures present, including their central position, mean redshift, velocity dispersions, and classification based on their morphological and spectroscopic distributions. In particular, we find 13 galaxy clusters and 6 large groups/small clusters. Comparison of these massive structures with published XMM-Newton imaging (where available) shows that 80% of these structures are associated with diffuse, soft-band (0.4-1 keV) X-ray emission, including 90% of all objects classified as clusters. The presence of soft-band X-ray emission in these massive structures (M 200 ≥ 4.9 × 10 13 M ☉ ) provides a strong independent confirmation of our methodology and classification scheme. In the closest two clusters identified (z < 0.13) high-quality optical imaging from the Deep2c field of the Garching-Bonn Deep Survey reveals the cD galaxies and demonstrates that they sit at the center of the detected X-ray emission. Nearly 60% of the clusters, groups, and filaments are detected in the known enhanced density regions of the CDFS at z ≅ 0.13, 0.52, 0.68, and 0.73. Additionally, all of the clusters, bar the most distant, are found in these overdense redshift regions. Many of the clusters and groups exhibit signs of ongoing formation seen in their velocity distributions, position within the detected cosmic web, and in one case through the presence of tidally disrupted central galaxies

  10. XMM-Newton 13H deep field - I. X-ray sources

    Science.gov (United States)

    Loaring, N. S.; Dwelly, T.; Page, M. J.; Mason, K.; McHardy, I.; Gunn, K.; Moss, D.; Seymour, N.; Newsam, A. M.; Takata, T.; Sekguchi, K.; Sasseen, T.; Cordova, F.

    2005-10-01

    We present the results of a deep X-ray survey conducted with XMM-Newton, centred on the UK ROSAT13H deep field area. This region covers 0.18 deg2, and is the first of the two areas covered with XMM-Newton as part of an extensive multiwavelength survey designed to study the nature and evolution of the faint X-ray source population. We have produced detailed Monte Carlo simulations to obtain a quantitative characterization of the source detection procedure and to assess the reliability of the resultant sourcelist. We use the simulations to establish a likelihood threshold, above which we expect less than seven (3 per cent) of our sources to be spurious. We present the final catalogue of 225 sources. Within the central 9 arcmin, 68 per cent of source positions are accurate to 2 arcsec, making optical follow-up relatively straightforward. We construct the N(>S) relation in four energy bands: 0.2-0.5, 0.5-2, 2-5 and 5-10 keV. In all but our highest energy band we find that the source counts can be represented by a double power law with a bright-end slope consistent with the Euclidean case and a break around 10-14yergcm-2s-1. Below this flux, the counts exhibit a flattening. Our source counts reach densities of 700, 1300, 900 and 300 deg-2 at fluxes of 4.1 × 10-16,4.5 × 10-16,1.1 × 10-15 and 5.3 × 10-15ergcm-2s-1 in the 0.2-0.5, 0.5-2, 2-5 and 5-10 keV energy bands, respectively. We have compared our source counts with those in the two Chandra deep fields and Lockman hole, and found our source counts to be amongst the highest of these fields in all energy bands. We resolve >51 per cent (>50 per cent) of the X-ray background emission in the 1-2 keV (2-5 keV) energy bands.

  11. Clusters, groups, and filaments in the Chandra deep field-south up to redshift 1

    Energy Technology Data Exchange (ETDEWEB)

    Dehghan, S.; Johnston-Hollitt, M., E-mail: siamak.dehghan@vuw.ac.nz [School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140 (New Zealand)

    2014-03-01

    We present a comprehensive structure detection analysis of the 0.3 deg{sup 2} area of the MUSYC-ACES field, which covers the Chandra Deep Field-South (CDFS). Using a density-based clustering algorithm on the MUSYC and ACES photometric and spectroscopic catalogs, we find 62 overdense regions up to redshifts of 1, including clusters, groups, and filaments. We also present the detection of a relatively small void of ∼10 Mpc{sup 2} at z ∼ 0.53. All structures are confirmed using the DBSCAN method, including the detection of nine structures previously reported in the literature. We present a catalog of all structures present, including their central position, mean redshift, velocity dispersions, and classification based on their morphological and spectroscopic distributions. In particular, we find 13 galaxy clusters and 6 large groups/small clusters. Comparison of these massive structures with published XMM-Newton imaging (where available) shows that 80% of these structures are associated with diffuse, soft-band (0.4-1 keV) X-ray emission, including 90% of all objects classified as clusters. The presence of soft-band X-ray emission in these massive structures (M {sub 200} ≥ 4.9 × 10{sup 13} M {sub ☉}) provides a strong independent confirmation of our methodology and classification scheme. In the closest two clusters identified (z < 0.13) high-quality optical imaging from the Deep2c field of the Garching-Bonn Deep Survey reveals the cD galaxies and demonstrates that they sit at the center of the detected X-ray emission. Nearly 60% of the clusters, groups, and filaments are detected in the known enhanced density regions of the CDFS at z ≅ 0.13, 0.52, 0.68, and 0.73. Additionally, all of the clusters, bar the most distant, are found in these overdense redshift regions. Many of the clusters and groups exhibit signs of ongoing formation seen in their velocity distributions, position within the detected cosmic web, and in one case through the presence of tidally

  12. HIV-1 transmission patterns in antiretroviral therapy-naive, HIV-infected North Americans based on phylogenetic analysis by population level and ultra-deep DNA sequencing.

    Directory of Open Access Journals (Sweden)

    Lisa L Ross

    Full Text Available Factors that contribute to the transmission of human immunodeficiency virus type 1 (HIV-1, especially drug-resistant HIV-1 variants remain a significant public health concern. In-depth phylogenetic analyses of viral sequences obtained in the screening phase from antiretroviral-naïve HIV-infected patients seeking enrollment in EPZ108859, a large open-label study in the USA, Canada and Puerto Rico (ClinicalTrials.gov NCT00440947 were examined for insights into the roles of drug resistance and epidemiological factors that could impact disease dissemination. Viral transmission clusters (VTCs were initially predicted from a phylogenetic analysis of population level HIV-1 pol sequences obtained from 690 antiretroviral-naïve subjects in 2007. Subsequently, the predicted VTCs were tested for robustness by ultra deep sequencing (UDS using pyrosequencing technology and further phylogenetic analyses. The demographic characteristics of clustered and non-clustered subjects were then compared. From 690 subjects, 69 were assigned to 1 of 30 VTCs, each containing 2 to 5 subjects. Race composition of VTCs were significantly more likely to be white (72% vs. 60%; p = 0.04. VTCs had fewer reverse transcriptase and major PI resistance mutations (9% vs. 24%; p = 0.002 than non-clustered sequences. Both men-who-have-sex-with-men (MSM (68% vs. 48%; p = 0.001 and Canadians (29% vs. 14%; p = 0.03 were significantly more frequent in VTCs than non-clustered sequences. Of the 515 subjects who initiated antiretroviral therapy, 33 experienced confirmed virologic failure through 144 weeks while only 3/33 were from VTCs. Fewer VTCs subjects (as compared to those with non-clustering virus had HIV-1 with resistance-associated mutations or experienced virologic failure during the course of the study. Our analysis shows specific geographical and drug resistance trends that correlate well with transmission clusters defined by HIV sequences of similarity

  13. Microsurgical robotic system for the deep surgical field: development of a prototype and feasibility studies in animal and cadaveric models.

    Science.gov (United States)

    Morita, Akio; Sora, Shigeo; Mitsuishi, Mamoru; Warisawa, Shinichi; Suruman, Katopo; Asai, Daisuke; Arata, Junpei; Baba, Shoichi; Takahashi, Hidechika; Mochizuki, Ryo; Kirino, Takaaki

    2005-08-01

    To enhance the surgeon's dexterity and maneuverability in the deep surgical field, the authors developed a master-slave microsurgical robotic system. This concept and the results of preliminary experiments are reported in this paper. The system has a master control unit, which conveys motion commands in six degrees of freedom (X, Y, and Z directions; rotation; tip flexion; and grasping) to two arms. The slave manipulator has a hanging base with an additional six degrees of freedom; it holds a motorized operating unit with two manipulators (5 mm in diameter, 18 cm in length). The accuracy of the prototype in both shallow and deep surgical fields was compared with routine freehand microsurgery. Closure of a partial arteriotomy and complete end-to-end anastomosis of the carotid artery (CA) in the deep operative field were performed in 20 Wistar rats. Three routine surgical procedures were also performed in cadavers. The accuracy of pointing with the nondominant hand in the deep surgical field was significantly improved through the use of robotics. The authors successfully closed the partial arteriotomy and completely anastomosed the rat CAs in the deep surgical field. The time needed for stitching was significantly shortened over the course of the first 10 rat experiments. The robotic instruments also moved satisfactorily in cadavers, but the manipulators still need to be smaller to fit into the narrow intracranial space. Computer-controlled surgical manipulation will be an important tool for neurosurgery, and preliminary experiments involving this robotic system demonstrate its promising maneuverability.

  14. UNUSUAL LONG AND LUMINOUS OPTICAL TRANSIENT IN THE SUBARU DEEP FIELD

    International Nuclear Information System (INIS)

    Urata, Yuji; Tsai, Patrick P.; Huang, Kuiyun; Morokuma, Tomoki; Motohara, Kentaro; Yasuda, Naoki; Tanaka, Masaomi; Hayashi, Masao; Kashikawa, Nobunari; Ly, Chun; Malkan, Matthew A.

    2012-01-01

    We present observations of SDF-05M05, an unusual optical transient discovered in the Subaru Deep Field (SDF). The duration of the transient is > ∼ 800 days in the observer frame, and the maximum brightness during observation reached approximately 23 mag in the i' and z' bands. The faint host galaxy is clearly identified in all five optical bands of the deep SDF images. The photometric redshift of the host yields z ∼ 0.6 and the corresponding absolute magnitude at maximum is ∼ – 20. This implies that this event shone with an absolute magnitude brighter than –19 mag for approximately 300 days in the rest frame, which is significantly longer than a typical supernova and ultraluminous supernova. The total radiated energy during our observation was 1 × 10 51 erg. The light curves and color evolution are marginally consistent with some luminous IIn supernovae. We suggest that the transient may be a unique and peculiar supernova at intermediate redshift.

  15. UNUSUAL LONG AND LUMINOUS OPTICAL TRANSIENT IN THE SUBARU DEEP FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Yuji; Tsai, Patrick P. [Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Huang, Kuiyun [Academia Sinica Institute of Astronomy and Astrophysics, Taipei 106, Taiwan (China); Morokuma, Tomoki; Motohara, Kentaro [Institute of Astronomy, Graduate School of Science, University of Tokyo, Mitaka, Tokyo 181-0015 (Japan); Yasuda, Naoki [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8568 (Japan); Tanaka, Masaomi; Hayashi, Masao; Kashikawa, Nobunari [Optical and Infrared Astronomy Division, National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Ly, Chun [Space Telescope Science Institute, Baltimore, MD (United States); Malkan, Matthew A., E-mail: urata@astro.ncu.edu.tw [Department of Physics and Astronomy, UCLA, Box 951547, Los Angeles, CA (United States)

    2012-11-20

    We present observations of SDF-05M05, an unusual optical transient discovered in the Subaru Deep Field (SDF). The duration of the transient is > {approx} 800 days in the observer frame, and the maximum brightness during observation reached approximately 23 mag in the i' and z' bands. The faint host galaxy is clearly identified in all five optical bands of the deep SDF images. The photometric redshift of the host yields z {approx} 0.6 and the corresponding absolute magnitude at maximum is {approx} - 20. This implies that this event shone with an absolute magnitude brighter than -19 mag for approximately 300 days in the rest frame, which is significantly longer than a typical supernova and ultraluminous supernova. The total radiated energy during our observation was 1 Multiplication-Sign 10{sup 51} erg. The light curves and color evolution are marginally consistent with some luminous IIn supernovae. We suggest that the transient may be a unique and peculiar supernova at intermediate redshift.

  16. Decoding of Human Movements Based on Deep Brain Local Field Potentials Using Ensemble Neural Networks

    Directory of Open Access Journals (Sweden)

    Mohammad S. Islam

    2017-01-01

    Full Text Available Decoding neural activities related to voluntary and involuntary movements is fundamental to understanding human brain motor circuits and neuromotor disorders and can lead to the development of neuromotor prosthetic devices for neurorehabilitation. This study explores using recorded deep brain local field potentials (LFPs for robust movement decoding of Parkinson’s disease (PD and Dystonia patients. The LFP data from voluntary movement activities such as left and right hand index finger clicking were recorded from patients who underwent surgeries for implantation of deep brain stimulation electrodes. Movement-related LFP signal features were extracted by computing instantaneous power related to motor response in different neural frequency bands. An innovative neural network ensemble classifier has been proposed and developed for accurate prediction of finger movement and its forthcoming laterality. The ensemble classifier contains three base neural network classifiers, namely, feedforward, radial basis, and probabilistic neural networks. The majority voting rule is used to fuse the decisions of the three base classifiers to generate the final decision of the ensemble classifier. The overall decoding performance reaches a level of agreement (kappa value at about 0.729±0.16 for decoding movement from the resting state and about 0.671±0.14 for decoding left and right visually cued movements.

  17. A Deep-Structured Conditional Random Field Model for Object Silhouette Tracking.

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Shafiee

    Full Text Available In this work, we introduce a deep-structured conditional random field (DS-CRF model for the purpose of state-based object silhouette tracking. The proposed DS-CRF model consists of a series of state layers, where each state layer spatially characterizes the object silhouette at a particular point in time. The interactions between adjacent state layers are established by inter-layer connectivity dynamically determined based on inter-frame optical flow. By incorporate both spatial and temporal context in a dynamic fashion within such a deep-structured probabilistic graphical model, the proposed DS-CRF model allows us to develop a framework that can accurately and efficiently track object silhouettes that can change greatly over time, as well as under different situations such as occlusion and multiple targets within the scene. Experiment results using video surveillance datasets containing different scenarios such as occlusion and multiple targets showed that the proposed DS-CRF approach provides strong object silhouette tracking performance when compared to baseline methods such as mean-shift tracking, as well as state-of-the-art methods such as context tracking and boosted particle filtering.

  18. High resolution NMR spectroscopy of nanocrystalline proteins at ultra-high magnetic field

    International Nuclear Information System (INIS)

    Sperling, Lindsay J.; Nieuwkoop, Andrew J.; Lipton, Andrew S.; Berthold, Deborah A.; Rienstra, Chad M.

    2010-01-01

    Magic-angle spinning (MAS) solid-state NMR (SSNMR) spectroscopy of uniformly- 13 C, 15 N labeled protein samples provides insight into atomic-resolution chemistry and structure. Data collection efficiency has advanced remarkably in the last decade; however, the study of larger proteins is still challenged by relatively low resolution in comparison to solution NMR. In this study, we present a systematic analysis of SSNMR protein spectra acquired at 11.7, 17.6 and 21.1 Tesla ( 1 H frequencies of 500, 750, and 900 MHz). For two protein systems-GB1, a 6 kDa nanocrystalline protein and DsbA, a 21 kDa nanocrystalline protein-line narrowing is demonstrated in all spectral regions with increasing field. Resolution enhancement is greatest in the aliphatic region, including methine, methylene and methyl sites. The resolution for GB1 increases markedly as a function of field, and for DsbA, resolution in the C-C region increases by 42%, according to the number of peaks that can be uniquely picked and integrated in the 900 MHz spectra when compared to the 500 MHz spectra. Additionally, chemical exchange is uniquely observed in the highest field spectra for at least two isoleucine Cδ1 sites in DsbA. These results further illustrate the benefits of high-field MAS SSNMR spectroscopy for protein structural studies.

  19. EMBRACE@Nançay: an ultra wide field of view prototype for the SKA

    International Nuclear Information System (INIS)

    Torchinsky, S.A.; Censier, B.; Serylak, M.; Renaud, P.; Taffoureau, C.; Olofsson, A.O.H.; Karastergiou, A.

    2015-01-01

    A revolution in radio receiving technology is underway with the development of densely packed phased arrays for radio astronomy. This technology can provide an exceptionally large field of view, while at the same time sampling the sky with high angular resolution. Such an instrument, with a field of view of over 100 square degrees, is ideal for performing fast, all-sky, surveys, such as the ''intensity mapping'' experiment to measure the signature of Baryonic Acoustic Oscillations in the HI mass distribution at cosmological redshifts. The SKA, built with this technology, will be able to do a billion galaxy survey. I will present a very brief introduction to radio interferometry, as well as an overview of the Square Kilometre Array project. This will be followed by a description of the EMBRACE prototype and a discussion of results and future plans

  20. Techniques for Ultra-high Magnetic Field Gradient NMR Diffusion Measurements

    Science.gov (United States)

    Sigmund, Eric E.; Mitrovic, Vesna F.; Calder, Edward S.; Will Thomas, G.; Halperin, William P.; Reyes, Arneil P.; Kuhns, Philip L.; Moulton, William G.

    2001-03-01

    We report on development and application of techniques for ultraslow diffusion coefficient measurements through nuclear magnetic resonance (NMR) in high magnetic field gradients. We have performed NMR experiments in a steady fringe field gradient of 175 T/m from a 23 T resistive Bitter magnet, as well as in a gradient of 42 T/m from an 8 T superconducting magnet. New techniques to provide optimum sensitivity in these experiments are described. To eliminate parasitic effects of the temporal instability of the resistive magnet, we have introduced a passive filter: a highly conductive cryogen-cooled inductive shield. We show experimental demonstration of such a shield’s effect on NMR performed in the Bitter magnet. For enhanced efficiency, we have employed “frequency jumping” in our spectrometer system. Application of these methods has made possible measurements of diffusion coefficients as low as 10-10 cm^2/s, probing motion on a 250 nm length scale.

  1. A method to detect ultra high energy electrons using earth's magnetic field as a radiator

    Science.gov (United States)

    Stephens, S. A.; Balasubrahmanyan, V. K.

    1983-01-01

    It is pointed out that the detection of electrons with energies exceeding a few TeV, which lose energy rapidly through synchrotron and inverse Compton processes, would provide valuable information on the distribution of sources and on the propagation of cosmic rays in the solar neighborhood. However, it would not be possible to measure the energy spectrum beyond a few TeV with any of the existing experimental techniques. The present investigation is, therefore concerned with the possibility of detecting electrons with energies exceeding a few TeV on the basis of the photons emitted through synchrotron radiation in the earth's magnetic field. Attention is given to the synchrotron radiation of electrons in the earth's magnetic field, detector response and energy estimation, and the characteristics of an ideal detector, capable of detecting photons with energies equal to or greater than 20 keV.

  2. Germanium-Source Tunnel Field Effect Transistors for Ultra-Low Power Digital Logic

    Science.gov (United States)

    2012-05-10

    CMOS) technology. In this work, Tunnel Field Effect Transistor (TFET) based on Band-to-Band Tunneling ( BTBT ) will be proposed and investigated as an...Band Tunneling ( BTBT ) will be proposed and investigated as an alternative logic switch which can achieve steeper switching characteristics than the...11 2.3.2 Calculation of the Imaginary Dispersion Relation ……………………… 12 2.3.3 Calculation of the BTBT Current and Generation Rate

  3. External electric field driving the ultra-low thermal conductivity of silicene.

    Science.gov (United States)

    Qin, Guangzhao; Qin, Zhenzhen; Yue, Sheng-Ying; Yan, Qing-Bo; Hu, Ming

    2017-06-01

    The manipulation of thermal transport is in increasing demand as heat transfer plays a critical role in a wide range of practical applications, such as efficient heat dissipation in nanoelectronics and heat conduction hindering in solid-state thermoelectrics. It is well established that the thermal transport in semiconductors and insulators (phonons) can be effectively modulated by structure engineering or materials processing. However, almost all the existing approaches involve altering the original atomic structure of materials, which would be hindered due to either irreversible structure change or limited tunability of thermal conductivity. Motivated by the inherent relationship between phonon behavior and interatomic electrostatic interaction, we comprehensively investigate the effect of external electric field, a widely used gating technique in modern electronics, on the lattice thermal conductivity (κ). Taking two-dimensional silicon (silicene) as a model, we demonstrate that by applying an electric field (E z = 0.5 V Å -1 ) the κ of silicene can be reduced to a record low value of 0.091 W m -1 K -1 , which is more than two orders of magnitude lower than that without an electric field (19.21 W m -1 K -1 ) and is even comparable to that of the best thermal insulation materials. Fundamental insights are gained from observing the electronic structures. With an electric field applied, due to the screened potential resulting from the redistributed charge density, the interactions between silicon atoms are renormalized, leading to phonon renormalization and the modulation of phonon anharmonicity through electron-phonon coupling. Our study paves the way for robustly tuning phonon transport in materials without altering the atomic structure, and would have significant impact on emerging applications, such as thermal management, nanoelectronics and thermoelectrics.

  4. STAR FORMATION IN THE CHANDRA DEEP FIELD SOUTH: OBSERVATIONS CONFRONT SIMULATIONS

    International Nuclear Information System (INIS)

    Damen, Maaike; Franx, Marijn; Foerster Schreiber, Natascha M.; Labbe, Ivo; Toft, Sune; Van Dokkum, Pieter G.; Wuyts, Stijn

    2009-01-01

    We investigate the star formation history of the universe using FIREWORKS, a multiwavelength survey of the Chandra Deep Field South. We study the evolution of the specific star formation rate (sSFR) with redshift in different mass bins from z = 0 to z ∼ 3. We find that the sSFR increases with redshift for all masses. The logarithmic increase of the sSFR with redshift is nearly independent of mass, but this cannot yet be verified at the lowest-mass bins at z>0.8, due to incompleteness. We convert the sSFRs to a dimensionless growth rate to facilitate a comparison with a semianalytic galaxy formation model that was implemented on the Millennium Simulation. The model predicts that the growth rates and sSFRs increase similarly with redshift for all masses, consistent with the observations. However, we find that for all masses, the inferred observed growth rates increase more rapidly with redshift than the model predictions. We discuss several possible causes for this discrepancy, ranging from field-to-field variance, conversions to SFR, and shape of the initial mass function. We find that none of these can solve the discrepancy completely. We conclude that the models need to be adapted to produce the steep increase in growth rate between redshift z = 0 and z = 1.

  5. A 10 mK scanning tunneling microscope operating in ultra high vacuum and high magnetic fields.

    Science.gov (United States)

    Assig, Maximilian; Etzkorn, Markus; Enders, Axel; Stiepany, Wolfgang; Ast, Christian R; Kern, Klaus

    2013-03-01

    We present design and performance of a scanning tunneling microscope (STM) that operates at temperatures down to 10 mK providing ultimate energy resolution on the atomic scale. The STM is attached to a dilution refrigerator with direct access to an ultra high vacuum chamber allowing in situ sample preparation. High magnetic fields of up to 14 T perpendicular and up to 0.5 T parallel to the sample surface can be applied. Temperature sensors mounted directly at the tip and sample position verified the base temperature within a small error margin. Using a superconducting Al tip and a metallic Cu(111) sample, we determined an effective temperature of 38 ± 1 mK from the thermal broadening observed in the tunneling spectra. This results in an upper limit for the energy resolution of ΔE = 3.5 kBT = 11.4 ± 0.3 μeV. The stability between tip and sample is 4 pm at a temperature of 15 mK as demonstrated by topography measurements on a Cu(111) surface.

  6. Recently Quenched Galaxies at z = 0.2–4.8 in the COSMOS UltraVISTA Field

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Akie; Matsuoka, Yoshiki, E-mail: ichikawa@cosmos.phys.sci.ehime-u.ac.jp [Research Center for Space and Cosmic Evolution, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577 (Japan)

    2017-07-01

    We present a new analysis of the stellar mass function and morphology of recently quenched galaxies (RQGs), whose star formation has been recently quenched for some reason. The COSMOS2015 catalog was exploited to select those galaxies at 0.2 < z < 4.8, over 1.5 deg{sup 2} of the Cosmic Evolution Survey (COSMOS) UltraVISTA field. This is the first time that RQGs are consistently selected and studied in such a wide range of redshift. We find increasing number density of RQGs with time in a broad mass range at z > 1, while low-mass RQGs start to grow very rapidly at z < 1. We also demonstrate that the migration of RQGs may largely drive the evolution of the stellar mass function of passive galaxies. Moreover, we find that the morphological type distribution of RQGs are intermediate between those of star-forming and passive galaxies. These results indicate that RQGs represent a major transitional phase of galaxy evolution, in which star-forming galaxies turn into passive galaxies, accompanied by the build up of spheroidal component.

  7. Bridging the gap between system and cell: The role of ultra-high field MRI in human neuroscience.

    Science.gov (United States)

    Turner, Robert; De Haan, Daniel

    2017-01-01

    The volume of published research at the levels of systems and cellular neuroscience continues to increase at an accelerating rate. At the same time, progress in psychiatric medicine has stagnated and scientific confidence in cognitive psychology research is under threat due to careless analysis methods and underpowered experiments. With the advent of ultra-high field MRI, with submillimeter image voxels, imaging neuroscience holds the potential to bridge the cellular and systems levels. Use of these accurate and precisely localized quantitative measures of brain activity may go far in providing more secure foundations for psychology, and hence for more appropriate treatment and management of psychiatric illness. However, fundamental issues regarding the construction of testable mechanistic models using imaging data require careful consideration. This chapter summarizes the characteristics of acceptable models of brain function and provides concise descriptions of the relevant types of neuroimaging data that have recently become available. Approaches to data-driven experiments and analyses are described that may lead to more realistic conceptions of the competences of neural assemblages, as they vary across the brain's complex neuroanatomy. © 2017 Elsevier B.V. All rights reserved.

  8. Design and implementation of a simple multinuclear MRI system for ultra high-field imaging of animals

    Science.gov (United States)

    Choi, Chang-Hoon; Ha, YongHyun; Veeraiah, Pandichelvam; Felder, Jörg; Möllenhoff, Klaus; Shah, N. Jon

    2016-12-01

    Non-proton MRI has recently garnered gathering interest with the increased availability of ultra high-field MRI system. Assuming the availability of a broadband RF amplifier, performing multinuclear MR experiments essentially requires additional hardware, such as an RF resonator and a T/R switch for each nucleus. A double- or triple-resonant RF probe is typically constructed using traps or PIN-diode circuits, but this approach degrades the signal-to-noise ratio (SNR) and image quality compared to a single-resonant coil and this is a limiting factor. In this work, we have designed the required hardware for multinuclear MR imaging experiments employing six single-resonant coil sets and a purpose-built animal bed; these have been implemented into a home-integrated 9.4 T preclinical MRI scanner. System capabilities are demonstrated by distinguishing concentration differences and sensitivity of X-nuclei imaging and spectroscopy without SNR penalty for any nuclei, no subject interruption and no degradation of the static shim conditions.

  9. Ultra-large field-of-view two-photon microscopy

    OpenAIRE

    Tsai, Philbert S.; Mateo, Celine; Field, Jeffrey J.; Schaffer, Chris B.; Anderson, Matthew E.; Kleinfeld, David

    2015-01-01

    We present a two-photon microscope that images the full extent of murine cortex with an objective-limited spatial resolution across an 8 mm by 10 mm field. The lateral resolution is approximately 1 µm and the maximum scan speed is 5 mm/ms. The scan pathway employs large diameter compound lenses to minimize aberrations and performs near theoretical limits. We demonstrate the special utility of the microscope by recording resting-state vasomotion across both hemispheres of the murine brain thro...

  10. Sterilization of liquid foods by pulsed electric fields?an innovative ultra-high temperature process

    OpenAIRE

    Reineke, Kai; Schottroff, Felix; Meneses, Nicolas; Knorr, Dietrich

    2015-01-01

    The intention of this study was to investigate the inactivation of endospores by a combined thermal and pulsed electric field (PEF) treatment. Therefore, self-cultivated spores of Bacillus subtilis and commercial Geobacillus stearothermophilus spores with certified heat resistance were utilized. Spores of both strains were suspended in saline water (5.3 mS cm−1), skim milk (0.3% fat; 5.3 mS cm−1) and fresh prepared carrot juice (7.73 mS cm−1). The combination of moderate preheating (70–90°C) ...

  11. Ultra low frequency magnetic field measurements during earthquake activity in Italy (September-October 1997)

    Energy Technology Data Exchange (ETDEWEB)

    Villante, U.; Vellante, M.; Piancatelli, A. [L' Aquila Univ., L' Aquila (Italy). Dipt. di Fisica e Astrogeofisica

    2001-04-01

    Different methods with different results have been proposed in the scientific literature to identify the possible occurrence of weak seismo-magnetic ULF emissions. In September-October, 1997 Central Italy was struck by repeated seismic activity (M{sub L} < 5.8). A simple amplitude analysis of the geomagnetic field variations (horizontal components, in the frequency range 4-100 mHz) at a geomagnetic facility located = 65-85 km from epicenters of major earthquakes does not reveal in this case any clear evidence for possible ULF emissions.

  12. Sterilization of liquid foods by pulsed electric fields – an innovative ultra-high temperature process

    OpenAIRE

    Kai eReineke; Kai eReineke; Felix eSchottroff; Nicolas eMeneses; Nicolas eMeneses; Dietrich eKnorr

    2015-01-01

    The intention of this study was to investigate the inactivation of endospores by a combined thermal and pulsed electric field (PEF) treatment. Therefore, self-cultivated spores of Bacillus subtilis and commercial Geobacillus stearothermophilus spores with certified heat resistance were utilized. Spores of both strains were suspended in saline water (5.3 mS cm-1), skim milk (0.3% fat; 5.3 mS cm-1) and fresh prepared carrot juice (7.73 mS cm-1). The combination of moderate preheating (70-90 °C)...

  13. New photon science and extreme field physics: volumetric interaction of ultra-intense laser pulses with over-dense targets

    Energy Technology Data Exchange (ETDEWEB)

    Hegelich, Bjorn M [Los Alamos National Laboratory

    2010-11-24

    The constantly improving capabilities of ultra-high power lasers are enabling interactions of matter with ever extremer fields. As both the on target intensity and the laser contrast are increasing, new physics regimes are becoming accessible and new effects materialize, which in turn enable a host of applications. A first example is the realization of interactions in the transparent-overdense regime (TOR), which is reached by interacting a highly relativistic (a{sub 0} > 10), ultra high contrast laser pulse with a solid density, nanometer target. Here, a still overdense target is turned transparent to the laser by the relativistic mass increase of the electrons, increasing the skin depth beyond the target thickness and thus enabling volumetric interaction of the laser with the entire target instead of only a small interaction region at the critical density surface. This increases the energy coupling, enabling a range of effects, including relativistic optics and pulse shaping, mono-energetic electron acceleration, highly efficient ion acceleration in the break-out afterburner regime, the generation of relativistic and forward directed surface harmonics. In this talk we will show the theoretical framework for this regime, explored by multi-D, high resolution and high density PIC simulations as well as analytic theory and present measurements and experimental demonstrations of direct relativistic optics, relativistic HHG, electron acceleration, and BOA ion acceleration in the transparent overdense regime. These effects can in turn be used in a host of applications including laser pulse shaping, ICF diagnostics, coherent x-ray sources, and ion sources for fast ignition (IFI), homeland security applications and medical therapy. This host of applications already makes transparent-overdense regime one of general interest, a situation reinforced by the fact that the TOR target undergoes an extremely wide HEDP parameter space during interaction ranging from WDM conditions

  14. Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects

    Science.gov (United States)

    Chen, Xucai; Wang, Jianjun; Versluis, Michel; de Jong, Nico; Villanueva, Flordeliza S.

    2013-06-01

    High speed imaging has application in a wide area of industry and scientific research. In medical research, high speed imaging has the potential to reveal insight into mechanisms of action of various therapeutic interventions. Examples include ultrasound assisted thrombolysis, drug delivery, and gene therapy. Visual observation of the ultrasound, microbubble, and biological cell interaction may help the understanding of the dynamic behavior of microbubbles and may eventually lead to better design of such delivery systems. We present the development of a high speed bright field and fluorescence imaging system that incorporates external mechanical waves such as ultrasound. Through collaborative design and contract manufacturing, a high speed imaging system has been successfully developed at the University of Pittsburgh Medical Center. We named the system "UPMC Cam," to refer to the integrated imaging system that includes the multi-frame camera and its unique software control, the customized modular microscope, the customized laser delivery system, its auxiliary ultrasound generator, and the combined ultrasound and optical imaging chamber for in vitro and in vivo observations. This system is capable of imaging microscopic bright field and fluorescence movies at 25 × 106 frames per second for 128 frames, with a frame size of 920 × 616 pixels. Example images of microbubble under ultrasound are shown to demonstrate the potential application of the system.

  15. Ultra-portable field transfer radiometer for vicarious calibration of earth imaging sensors

    Science.gov (United States)

    Thome, Kurtis; Wenny, Brian; Anderson, Nikolaus; McCorkel, Joel; Czapla-Myers, Jeffrey; Biggar, Stuart

    2018-06-01

    A small portable transfer radiometer has been developed as part of an effort to ensure the quality of upwelling radiance from test sites used for vicarious calibration in the solar reflective. The test sites are used to predict top-of-atmosphere reflectance relying on ground-based measurements of the atmosphere and surface. The portable transfer radiometer is designed for one-person operation for on-site field calibration of instrumentation used to determine ground-leaving radiance. The current work describes the detector- and source-based radiometric calibration of the transfer radiometer highlighting the expected accuracy and SI-traceability. The results indicate differences between the detector-based and source-based results greater than the combined uncertainties of the approaches. Results from recent field deployments of the transfer radiometer using a solar radiation based calibration agree with the source-based laboratory calibration within the combined uncertainties of the methods. The detector-based results show a significant difference to the solar-based calibration. The source-based calibration is used as the basis for a radiance-based calibration of the Landsat-8 Operational Land Imager that agrees with the OLI calibration to within the uncertainties of the methods.

  16. Post-mortem inference of the human hippocampal connectivity and microstructure using ultra-high field diffusion MRI at 11.7 T.

    Science.gov (United States)

    Beaujoin, Justine; Palomero-Gallagher, Nicola; Boumezbeur, Fawzi; Axer, Markus; Bernard, Jeremy; Poupon, Fabrice; Schmitz, Daniel; Mangin, Jean-François; Poupon, Cyril

    2018-06-01

    The human hippocampus plays a key role in memory management and is one of the first structures affected by Alzheimer's disease. Ultra-high magnetic resonance imaging provides access to its inner structure in vivo. However, gradient limitations on clinical systems hinder access to its inner connectivity and microstructure. A major target of this paper is the demonstration of diffusion MRI potential, using ultra-high field (11.7 T) and strong gradients (750 mT/m), to reveal the extra- and intra-hippocampal connectivity in addition to its microstructure. To this purpose, a multiple-shell diffusion-weighted acquisition protocol was developed to reach an ultra-high spatio-angular resolution with a good signal-to-noise ratio. The MRI data set was analyzed using analytical Q-Ball Imaging, Diffusion Tensor Imaging (DTI), and Neurite Orientation Dispersion and Density Imaging models. High Angular Resolution Diffusion Imaging estimates allowed us to obtain an accurate tractography resolving more complex fiber architecture than DTI models, and subsequently provided a map of the cross-regional connectivity. The neurite density was akin to that found in the histological literature, revealing the three hippocampal layers. Moreover, a gradient of connectivity and neurite density was observed between the anterior and the posterior part of the hippocampus. These results demonstrate that ex vivo ultra-high field/ultra-high gradients diffusion-weighted MRI allows the mapping of the inner connectivity of the human hippocampus, its microstructure, and to accurately reconstruct elements of the polysynaptic intra-hippocampal pathway using fiber tractography techniques at very high spatial/angular resolutions.

  17. Observations of the Hubble Deep Field with the Infrared Space Observatory .1. Data reduction, maps and sky coverage

    DEFF Research Database (Denmark)

    Serjeant, S.B.G.; Eaton, N.; Oliver, S.J.

    1997-01-01

    We present deep imaging at 6.7 and 15 mu m from the CAM instrument on the Infrared Space Observatory (ISO), centred on the Hubble Deep Field (HDF). These are the deepest integrations published to date at these wavelengths in any region of sky. We discuss the observational strategy and the data...... reduction. The observed source density appears to approach the CAM confusion limit at 15 mu m, and fluctuations in the 6.7-mu m sky background may be identifiable with similar spatial fluctuations in the HDF galaxy counts. ISO appears to be detecting comparable field galaxy populations to the HDF, and our...

  18. Ultra-wide field imaging system and traditional retinal examinations for screening fundus changes after cataract surgery.

    Science.gov (United States)

    Peng, Jie; Zhang, Qi; Jin, Hai-Ying; Lu, Wu-Yi; Zhao, Pei-Quan

    2016-01-01

    To compare the results of non-mydriatic ultra-wide field imaging system, mydriatic slit-lamp lens (Volk +90 D) and mydriatic Goldmann three-mirror contact lens examinations in screening fundus lesions among patients after cataract surgery. Non-mydriatic images were obtained with an Optomap panoramic 200Tx (Optomap 200Tx) 3d after surgery and graded by a blinded ophthalmologist. A mydriatic slit-lamp lens examination was performed by another blinded retinal specialist on the same day. A third blinded retinal specialist examined patients two weeks after surgery using a Goldmann three-mirror contact lens. In total, 160 patients (184 eyes) were examined, and 66, 69, and 75 cases of retinal lesion(s) were identified using the Optomap 200Tx, slit-lamp lens, and Goldmann three-mirror contact lens, respectively. In 13 cases, fundus changes were sight-threatening. The results obtained by Optomap 200Tx examination and by mydriatic slit-lamp lens examination have good consistency (P=0.375, Kappa=0.942). The mydriatic Goldmann three-mirror lens examination revealed more fundus lesions but are consistent with Optomap 200Tx (P=0.004, Kappa=0.897) and mydriatic slit-lamp lens examination (P=0.031, Kappa=0.932). Early post-operative fundus screening in cataract patients is extremely important and necessary to prevent further vision loss. Wide-field imaging is a feasible and convenient tool for fundus examination that can be used as a primary screening method among patients after cataract surgery.

  19. Bridging the gap between the deep Earth and lithospheric gravity field

    Science.gov (United States)

    Root, B. C.; Ebbing, J.; Martinec, Z.; van der Wal, W.

    2017-12-01

    Global gravity field data obtained by dedicated satellite missions can be used to study the density distribution of the lithosphere. The gravitational signal from the deep Earth is usually removed by high-pass filtering of the data. However, this will also remove any long-wavelength signal of the lithosphere. Furthermore, it is still unclear what value for the truncation limit is best suited. An alternative is to forward model the deep situated mass anomalies and subtract the gravitational signal from the observed data. This requires knowledge of the mantle mass anomalies, dynamic topography, and CMB topography. Global tomography provides the VS distribution in the mantle, which is related to the density distribution in the mantle. There are difficulties in constructing a density model from this data. Tomography relies on regularisation which smoothens the mantle anomalies. Also, the VS anomalies need to be converted to density anomalies with uncertain conversion factors. We study the observed reduction in magnitude of the density anomalies due to the regularisation of the global tomography models. The reduced magnitude of the anomalies cannot be recovered by increasing the conversion factor from VS-to-density transformation. The reduction of the tomographic results seems to resemble the effect of a spatial Gaussian filter. By determining the spectral difference between tomographic and gravimetric models a reverse filter can be constructed to reproduce correct density variations in the complete mantle. The long-wavelengths of the global tomography models are less affected by the regularisation and can fix the value of the conversion factor. However, the low degree gravity signals are also dominated by the D" region. Therefore, different approaches are used to determine the effect of this region on the gravity field. The density anomalies in the mantle, as well as the effect of CMB undulations, are forward modelled into their gravitational potential field, such that

  20. Non-Planar Nanotube and Wavy Architecture Based Ultra-High Performance Field Effect Transistors

    KAUST Repository

    Hanna, Amir

    2016-11-01

    This dissertation presents a unique concept for a device architecture named the nanotube (NT) architecture, which is capable of higher drive current compared to the Gate-All-Around Nanowire architecture when applied to heterostructure Tunnel Field Effect Transistors. Through the use of inner/outer core-shell gates, heterostructure NT TFET leverages physically larger tunneling area thus achieving higher driver current (ION) and saving real estates by eliminating arraying requirement. We discuss the physics of p-type (Silicon/Indium Arsenide) and n-type (Silicon/Germanium hetero-structure) based TFETs. Numerical TCAD simulations have shown that NT TFETs have 5x and 1.6 x higher normalized ION when compared to GAA NW TFET for p and n-type TFETs, respectively. This is due to the availability of larger tunneling junction cross sectional area, and lower Shockley-Reed-Hall recombination, while achieving sub 60 mV/dec performance for more than 5 orders of magnitude of drain current, thus enabling scaling down of Vdd to 0.5 V. This dissertation also introduces a novel thin-film-transistors architecture that is named the Wavy Channel (WC) architecture, which allows for extending device width by integrating vertical fin-like substrate corrugations giving rise to up to 50% larger device width, without occupying extra chip area. The novel architecture shows 2x higher output drive current per unit chip area when compared to conventional planar architecture. The current increase is attributed to both the extra device width and 50% enhancement in field effect mobility due to electrostatic gating effects. Digital circuits are fabricated to demonstrate the potential of integrating WC TFT based circuits. WC inverters have shown 2× the peak-to-peak output voltage for the same input, and ~2× the operation frequency of the planar inverters for the same peak-to-peak output voltage. WC NAND circuits have shown 2× higher peak-to-peak output voltage, and 3× lower high-to-low propagation

  1. Magnetotelluric images of deep crustal structure of the Rehai geothermal field near Tengchong, southern China

    Science.gov (United States)

    Bai, Denghai; Meju, Maxwell A.; Liao, Zhijie

    2001-12-01

    Broadband (0.004-4096s) magnetotelluric (MT) soundings have been applied to the determination of the deep structure across the Rehai geothermal field in a Quaternary volcanic area near the Indo-Eurasian collisional margin. Tensorial analysis of the data show evidence of weak to strong 3-D effects but for approximate 2-D imaging, we obtained dual-mode MT responses for an assumed strike direction coincident with the trend of the regional-scale faults and with the principal impedance azimuth at long periods. The data were subsequently inverted using different approaches. The rapid relaxation inversion models are comparable to the sections constructed from depth-converted invariant impedance phase data. The results from full-domain 2-D conjugate-gradient inversion with different initial models are concordant and evoke a picture of a dome-like structure consisting of a conductive (50-1000 Ωm) cap which is about 5-6km thick in the central part of the known geothermal field and thickens outwards to about 15-20km. The anomalous structure rests on a mid-crustal zone of 20-30 Ωm resistivity extending down to about 25km depth where there appears to be a moderately resistive (>30 Ωm) substratum. The MT images are shown to be in accord with published geological, isotopic and geochemical results that suggested the presence of a magma body underneath the area of study.

  2. Modelling of far-field gas migration from a deep radioactive waste repository

    International Nuclear Information System (INIS)

    Rodwell, W.R.; Nash, P.J.

    1992-01-01

    In assessing the post-closure safety of a deep radioactive waste repository, it is necessary to show that gas generated within the repository can migrate away, through the far-field geology, without affecting repository safety. This paper discusses the contribution of various mechanisms to gas migration through the far field; for example, diffusion of dissolved gas versus gas-phase movement, and bubble flow versus formation of a connected gas stream. It outlines different approaches to modelling gas movement from a repository, with simple semi-analytical models furnishing physical insights into the factors controlling gas migration in the absence of directly applicable experimental data, and more comprehensive numerical computations allowing the exploration of more detailed behaviour when appropriate data is obtained. If gas can induce groundwater movement, this could accelerate the transport of water-borne contaminants. Processes by which this could occur are noted, and the current status of work on possible effects of gas migration on groundwater movement in fractured hard rocks is indicated. 14 refs., 4 figs

  3. Localization and Classification of Paddy Field Pests using a Saliency Map and Deep Convolutional Neural Network

    Science.gov (United States)

    Liu, Ziyi; Gao, Junfeng; Yang, Guoguo; Zhang, Huan; He, Yong

    2016-01-01

    We present a pipeline for the visual localization and classification of agricultural pest insects by computing a saliency map and applying deep convolutional neural network (DCNN) learning. First, we used a global contrast region-based approach to compute a saliency map for localizing pest insect objects. Bounding squares containing targets were then extracted, resized to a fixed size, and used to construct a large standard database called Pest ID. This database was then utilized for self-learning of local image features which were, in turn, used for classification by DCNN. DCNN learning optimized the critical parameters, including size, number and convolutional stride of local receptive fields, dropout ratio and the final loss function. To demonstrate the practical utility of using DCNN, we explored different architectures by shrinking depth and width, and found effective sizes that can act as alternatives for practical applications. On the test set of paddy field images, our architectures achieved a mean Accuracy Precision (mAP) of 0.951, a significant improvement over previous methods. PMID:26864172

  4. A tripolar current-steering stimulator ASIC for field shaping in deep brain stimulation.

    Science.gov (United States)

    Valente, Virgilio; Demosthenous, Andreas; Bayford, Richard

    2012-06-01

    A significant problem with clinical deep brain stimulation (DBS) is the high variability of its efficacy and the frequency of side effects, related to the spreading of current beyond the anatomical target area. This is the result of the lack of control that current DBS systems offer on the shaping of the electric potential distribution around the electrode. This paper presents a stimulator ASIC with a tripolar current-steering output stage, aiming at achieving more selectivity and field shaping than current DBS systems. The ASIC was fabricated in a 0.35-μ m CMOS technology occupying a core area of 0.71 mm(2). It consists of three current sourcing/sinking channels. It is capable of generating square and exponential-decay biphasic current pulses with five different time constants up to 28 ms and delivering up to 1.85 mA of cathodic current, in steps of 4 μA, from a 12 V power supply. Field shaping was validated by mapping the potential distribution when injecting current pulses through a multicontact DBS electrode in saline.

  5. Geophysical Properties of Hard Rock for Investigation of Stress Fields in Deep Mines

    Science.gov (United States)

    Tibbo, M.; Young, R. P.; Schmitt, D. R.; Milkereit, B.

    2014-12-01

    A complication in geophysical monitoring of deep mines is the high-stress dependency of the physical properties of hard rocks. In-mine observations show anisotropic variability of the in situ P- and S-wave velocities and resistivity of the hard rocks that are likely related to stress field changes. As part of a comprehensive study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, data from in situ monitoring of the seismicity, conductivity, stress, and stress dependent physical properties has been obtain. In-laboratory experiments are also being performed on borehole cores from the Sudbury mines. These experiments will measure the Norite borehole core's properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. Hydraulic fracturing has been successfully implemented in industries such as oil and gas and enhanced geothermal systems, and is currently being investigated as a potential method for preconditioning in mining. However, further research is required to quantify how hydraulic fractures propagate through hard, unfractured rock as well as naturally fractured rock typically found in mines. These in laboratory experiments will contribute to a hydraulic fracturing project evaluating the feasibility and effectiveness of hydraulic fracturing as a method of de-stressing hard rock mines. A tri-axial deformation cell equipped with 18 Acoustic Emission (AE) sensors will be used to bring the borehole cores to a tri-axial state of stress. The cores will then be injected with fluid until the the hydraulic fracture has propagated to the edge of the core, while AE waveforms will be digitized continuously at 10 MHz and 12-bit resolution for the duration of each experiment. These laboratory hydraulic fracture experiments will contribute to understanding how parameters including stress ratio, fluid injection rate, and viscosity, affect the fracturing process.

  6. North-south asymmetry of ultra-low-frequency oscillations of Earth's electromagnetic field

    Science.gov (United States)

    Guglielmi, Anatol; Klain, Boris; Potapov, Alexander

    2017-12-01

    In the paper, we present the result of an experimental study of north-south asymmetry of ultralow-frequency electromagnetic oscillations IPCL. This study is based on observations made at Mirny Observatory (Antarctica). IPCLs are excited in the dayside sector of the auroral oval in the range 3-10 min periods and represent one of the most powerful types of oscillations of Earth's magnetosphere. These oscillations were discovered in the 1970s during IPhE AS USSR polar expeditions organized by Prof. V.A. Troitskaya. We have shown that IPCL activity in Mirny depends on the inclination (north-south asymmetry) of interplanetary magnetic field (IMF) lines to the plane of the geomagnetic equator before the front of the magnetosphere. The result suggests a controlling exposure of IMF on the magnetospheric oscillations and gives rise to the hypothesis that IPCLs are forced oscillations of a nonlinear dynamical system whose major structural elements are dayside polar cusps. The paper is dedicated to the memory of Professor V.A. Troitskaya (1917-2010).

  7. A SYSTEMATIC SURVEY OF PROTOCLUSTERS AT z ∼ 3–6 IN THE CFHTLS DEEP FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Toshikawa, Jun; Kashikawa, Nobunari; Furusawa, Hisanori; Tanaka, Masayuki; Niino, Yuu [Optical and Infrared Astronomy Division, National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Overzier, Roderik [Observatório Nacional, Rua José Cristino, 77. CEP 20921-400, São Cristóvão, Rio de Janeiro-RJ (Brazil); Malkan, Matthew A. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Ishikawa, Shogo; Onoue, Masafusa; Uchiyama, Hisakazu [Department of Astronomy, School of Science, Graduate University for Advanced Studies, Mitaka, Tokyo 181-8588 (Japan); Ota, Kazuaki, E-mail: jun.toshikawa@nao.ac.jp [Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2016-08-01

    We present the discovery of three protoclusters at z ∼ 3–4 with spectroscopic confirmation in the Canada–France–Hawaii Telescope Legacy Survey Deep Fields. In these fields, we investigate the large-scale projected sky distribution of z ∼ 3–6 Lyman-break galaxies and identify 21 protocluster candidates from regions that are overdense at more than 4 σ overdensity significance. Based on cosmological simulations, it is expected that more than 76% of these candidates will evolve into a galaxy cluster of at least a halo mass of 10{sup 14} M {sub ⊙} at z = 0. We perform follow-up spectroscopy for eight of the candidates using Subaru/FOCAS, Keck II/DEIMOS, and Gemini-N/GMOS. In total we target 462 dropout candidates and obtain 138 spectroscopic redshifts. We confirm three real protoclusters at z = 3–4 with more than five members spectroscopically identified and find one to be an incidental overdense region by mere chance alignment. The other four candidate regions at z ∼ 5–6 require more spectroscopic follow-up in order to be conclusive. A z = 3.67 protocluster, which has 11 spectroscopically confirmed members, shows a remarkable core-like structure composed of a central small region (<0.5 physical Mpc) and an outskirts region (∼1.0 physical Mpc). The Ly α equivalent widths of members of the protocluster are significantly smaller than those of field galaxies at the same redshift, while there is no difference in the UV luminosity distributions. These results imply that some environmental effects start operating as early as at z ∼ 4 along with the growth of the protocluster structure. This study provides an important benchmark for our analysis of protoclusters in the upcoming Subaru/HSC imaging survey and its spectroscopic follow-up with the Subaru/PFS that will detect thousands of protoclusters up to z ∼ 6.

  8. Basement-involved faults and deep structures in the West Philippine Basin: constrains from gravity field

    Science.gov (United States)

    Wang, Gang; Jiang, Suhua; Li, Sanzhong; Zhang, Huixuan; Lei, Jianping; Gao, Song; Zhao, Feiyu

    2017-06-01

    To reveal the basement-involved faults and deep structures of the West Philippine Basin (WPB), the gravitational responses caused by these faults are observed and analyzed based on the latest spherical gravity model: WGM2012 Model. By mapping the free-air and Bouguer gravity anomalies, several main faults and some other linear structures are located and observed in the WPB. Then, by conducting a 2D discrete multi-scale wavelet decomposition, the Bouguer anomalies are decomposed into the first- to eighth-order detail and approximation fields (the first- to eighth-order Details and Approximations). The first- to third-order Details reflect detailed and localized geological information of the crust at different depths, and of which the higher-order reflects gravity field of the deeper depth. The first- to fourth-order Approximations represent the regional gravity fields at different depths of the crust, respectively. The fourth-order Approximation represents the regional gravity fluctuation caused by the density inhomogeneity of Moho interface. Therefore, taking the fourth-order Approximation as input, and adopting Parker-Oldenburg interactive inversion, We calculated the depth of Moho interface in the WPB. Results show that the Moho interface depth in the WPB ranges approximately from 8 to 12 km, indicating that there is typical oceanic crust in the basin. In the Urdaneta Plateau and the Benham Rise, the Moho interface depths are about 14 and 16 km, respectively, which provides a piece of evidence to support that the Banham Rise could be a transitional crust caused by a large igneous province. The second-order vertical derivative and the horizontal derivatives in direction 0° and 90° are computed based on the data of the third-order Detail, and most of the basement-involved faults and structures in the WPB, such as the Central Basin Fault Zone, the Gagua Ridge, the Luzon-Okinawa Fault Zone, and the Mindanao Fault Zone are interpreted by the gravity derivatives.

  9. The extended epoch of galaxy formation: Age dating of 3600 galaxies with 2 < z < 6.5 in the VIMOS Ultra-Deep Survey

    Science.gov (United States)

    Thomas, R.; Le Fèvre, O.; Scodeggio, M.; Cassata, P.; Garilli, B.; Le Brun, V.; Lemaux, B. C.; Maccagni, D.; Pforr, J.; Tasca, L. A. M.; Zamorani, G.; Bardelli, S.; Hathi, N. P.; Tresse, L.; Zucca, E.; Koekemoer, A. M.

    2017-06-01

    In this paper we aim at improving constraints on the epoch of galaxy formation by measuring the ages of 3597 galaxies with reliable spectroscopic redshifts 2 ≤ z ≤ 6.5 in the VIMOS Ultra Deep Survey (VUDS). We derive ages and other physical parameters from the simultaneous fitting with the GOSSIP+ software of observed UV rest-frame spectra and photometric data from the u band up to 4.5 μm using model spectra from composite stellar populations. We perform extensive simulations and conclude that at z ≥ 2 the joint analysis of spectroscopy and photometry, combined with restricted age possibilities when taking the age of the Universe into account, substantially reduces systematic uncertainties and degeneracies in the age derivation; we find that age measurements from this process are reliable. We find that galaxy ages range from very young with a few tens of million years to substantially evolved with ages up to 1.5 Gyr or more. This large age spread is similar for different age definitions including ages corresponding to the last major star formation event, stellar mass-weighted ages, and ages corresponding to the time since the formation of 25% of the stellar mass. We derive the formation redshift zf from the measured ages and find galaxies that may have started forming stars as early as zf 15. We produce the formation redshift function (FzF), the number of galaxies per unit volume formed at a redshift zf, and compare the FzF in increasing observed redshift bins finding a remarkably constant FzF. The FzF is parametrized with (1 + z)ζ, where ζ ≃ 0.58 ± 0.06, indicating a smooth increase of about 2 dex from the earliest redshifts, z 15, to the lowest redshifts of our sample at z 2. Remarkably, this observed increase in the number of forming galaxies is of the same order as the observed rise in the star formation rate density (SFRD). The ratio of the comoving SFRD with the FzF gives an average SFR per galaxy of 7-17M⊙/yr at z 4-6, in agreement with the

  10. Effects of truck-mounted, ultra low volume mosquito adulticides on honey bees (Apis mellifera) in a suburban field setting

    Science.gov (United States)

    DeLisi, Nicholas A.; Danka, Robert G.; Walker, Todd W.; Ottea, James A.; Healy, Kristen B.

    2018-01-01

    Few studies have examined the impact of mosquito adulticides on honey bees under conditions that reflect actual field exposure. Whereas several studies have evaluated the toxicity of mosquito control products on honey bees, most have been laboratory based and have focused solely on acute mortality as a measure of impact. The goal of this study was to determine effects of routine applications of truck-based ultra-low volume (ULV) mosquito adulticides (i.e., Scourge, Duet, and Deltagard) on honey bees in a suburban setting. The mosquito adulticides used in this study were pyrethroids with active ingredients resmethrin (Scourge), prallethrin and sumithrin (Duet), and deltamethrin (Deltagard), in which resmethrin, prallethrin, and sumithrin were synergized with piperonyl butoxide. We measured and compared mortality and detoxification enzyme activities (esterase and glutathione S-transferase) from sentinel beehives within and outside of mosquito control areas. Concurrently, colony health (i.e., number of adult bees, brood quantity and brood quality) was compared throughout the study period. No significant differences were observed in honey bee mortality, colony health or detoxification enzyme activities between treated (five sprayed areas each received one to three insecticide treatment) and control sites (four unsprayed areas that did not receive insecticide treatment) over the seven week study period. However, our laboratory study showed that exposure to resmethrin, the active ingredient in Scourge, caused significant inhibition of esterase activity compared with the control group. Our findings suggest that proper application of truck based insecticides for mosquito control results in little or no exposure and therefore minimal effects on domestic honey bees. PMID:29494661

  11. Irreversible magnetization deep in the vortex-liquid state of a 2D superconductor at high magnetic fields

    International Nuclear Information System (INIS)

    Maniv, T; Zhuravlev, V; Wosnitza, J; Hagel, J

    2004-01-01

    The remarkable phenomenon of weak magnetization hysteresis loops, observed recently deep in the vortex-liquid state of a nearly two-dimensional (2D) superconductor at low temperatures and high magnetic fields, is shown to reflect the existence of an unusual vortex-liquid state, consisting of collectively pinned crystallites of easily sliding vortex chains. (letter to the editor)

  12. Sub-mm emission line deep fields: CO and [C II] luminosity functions out to z = 6

    NARCIS (Netherlands)

    Popping, Gergö; van Kampen, Eelco; Decarli, Roberto; Spaans, Marco; Somerville, Rachel S.; Trager, Scott C.

    2016-01-01

    Now that Atacama Large (Sub)Millimeter Array is reaching its full capabilities, observations of sub-mm emission line deep fields become feasible. We couple a semi-analytic model of galaxy formation with a radiative transfer code to make predictions for the luminosity function of CO J =1-0 out to CO

  13. IDENTIFICATIONS AND PHOTOMETRIC REDSHIFTS OF THE 2 Ms CHANDRA DEEP FIELD-SOUTH SOURCES

    International Nuclear Information System (INIS)

    Luo, B.; Brandt, W. N.; Xue, Y. Q.; Rafferty, D. A.; Schneider, D. P.; Brusa, M.; Alexander, D. M.; Lehmer, B. D.; Bauer, F. E.; Comastri, A.; Koekemoer, A.; Mainieri, V.; Silverman, J. D.; Vignali, C.

    2010-01-01

    We present reliable multiwavelength identifications and high-quality photometric redshifts for the 462 X-ray sources in the ∼2 Ms Chandra Deep Field-South (CDF-S) survey. Source identifications are carried out using deep optical-to-radio multiwavelength catalogs, and are then combined to create lists of primary and secondary counterparts for the X-ray sources. We identified reliable counterparts for 442 (95.7%) of the X-ray sources, with an expected false-match probability of ∼ 6.2%; we also selected four additional likely counterparts. The majority of the other 16 X-ray sources appear to be off-nuclear sources, sources associated with galaxy groups and clusters, high-redshift active galactic nuclei (AGNs), or spurious X-ray sources. A likelihood-ratio method is used for source matching, which effectively reduces the false-match probability at faint magnitudes compared to a simple error-circle matching method. We construct a master photometric catalog for the identified X-ray sources including up to 42 bands of UV-to-infrared data, and then calculate their photometric redshifts (photo-z's). High accuracy in the derived photo-z's is accomplished owing to (1) the up-to-date photometric data covering the full spectral energy distributions (SEDs) of the X-ray sources, (2) more accurate photometric data as a result of source deblending for ∼10% of the sources in the infrared bands and a few percent in the optical and near-infrared bands, (3) a set of 265 galaxy, AGN, and galaxy/AGN hybrid templates carefully constructed to best represent all possible SEDs, (4) the Zurich Extragalactic Bayesian Redshift Analyzer used to derive the photo-z's, which corrects the SED templates to best represent the SEDs of real sources at different redshifts and thus improves the photo-z quality. The reliability of the photo-z's is evaluated using the subsample of 220 sources with secure spectroscopic redshifts. We achieve an accuracy of |Δz|/(1 + z) ∼ 1% and an outlier [with |

  14. Identifications and Photometric Redshifts of the 2 Ms Chandra Deep Field-South Sources

    Science.gov (United States)

    Luo, B.; Brandt, W. N.; Xue, Y. Q.; Brusa, M.; Alexander, D. M.; Bauer, F. E.; Comastri, A.; Koekemoer, A.; Lehmer, B. D.; Mainieri, V.; Rafferty, D. A.; Schneider, D. P.; Silverman, J. D.; Vignali, C.

    2010-04-01

    We present reliable multiwavelength identifications and high-quality photometric redshifts for the 462 X-ray sources in the ≈2 Ms Chandra Deep Field-South (CDF-S) survey. Source identifications are carried out using deep optical-to-radio multiwavelength catalogs, and are then combined to create lists of primary and secondary counterparts for the X-ray sources. We identified reliable counterparts for 442 (95.7%) of the X-ray sources, with an expected false-match probability of ≈ 6.2%; we also selected four additional likely counterparts. The majority of the other 16 X-ray sources appear to be off-nuclear sources, sources associated with galaxy groups and clusters, high-redshift active galactic nuclei (AGNs), or spurious X-ray sources. A likelihood-ratio method is used for source matching, which effectively reduces the false-match probability at faint magnitudes compared to a simple error-circle matching method. We construct a master photometric catalog for the identified X-ray sources including up to 42 bands of UV-to-infrared data, and then calculate their photometric redshifts (photo-z's). High accuracy in the derived photo-z's is accomplished owing to (1) the up-to-date photometric data covering the full spectral energy distributions (SEDs) of the X-ray sources, (2) more accurate photometric data as a result of source deblending for ≈10% of the sources in the infrared bands and a few percent in the optical and near-infrared bands, (3) a set of 265 galaxy, AGN, and galaxy/AGN hybrid templates carefully constructed to best represent all possible SEDs, (4) the Zurich Extragalactic Bayesian Redshift Analyzer used to derive the photo-z's, which corrects the SED templates to best represent the SEDs of real sources at different redshifts and thus improves the photo-z quality. The reliability of the photo-z's is evaluated using the subsample of 220 sources with secure spectroscopic redshifts. We achieve an accuracy of |Δz|/(1 + z) ≈ 1% and an outlier [with |

  15. PHOTOMETRY AND PHOTOMETRIC REDSHIFT CATALOGS FOR THE LOCKMAN HOLE DEEP FIELD

    International Nuclear Information System (INIS)

    Fotopoulou, S.; Salvato, M.; Hasinger, G.; Rovilos, E.; Brusa, M.; Lutz, D.; Burwitz, V.; Egami, E.; Henry, J. P.; Huang, J. H.; Rigopoulou, D.; Vaccari, M.

    2012-01-01

    We present broadband photometry and photometric redshifts for 187,611 sources located in ∼0.5 deg 2 in the Lockman Hole area. The catalog includes 388 X-ray-detected sources identified with the very deep XMM-Newton observations available for an area of 0.2 deg 2 . The source detection was performed on the R c -, z'-, and B-band images and the available photometry is spanning from the far-ultraviolet to the mid-infrared, reaching in the best-case scenario 21 bands. Astrometry corrections and photometric cross-calibrations over the entire data set allowed the computation of accurate photometric redshifts. Special treatment is undertaken for the X-ray sources, the majority of which are active galactic nuclei (AGNs). For normal galaxies, comparing the photometric redshifts to the 253 available spectroscopic redshifts, we achieve an accuracy of σ Δz/(1+z) = 0.036, with 12.6% outliers. For the X-ray-detected sources, compared to 115 spectroscopic redshifts, the accuracy is σ Δz/(1+z) = 0.069, with 18.3% outliers, where the outliers are defined as sources with |z phot – z spec | > 0.15 × (1 + z spec ). These results are a significant improvement over the previously available photometric redshifts for normal galaxies in the Lockman Hole, while it is the first time that photometric redshifts are computed and made public for AGNs for this field.

  16. A field strategy to monitor radioactivity associated with investigation derived wastes returned from deep drilling sites

    International Nuclear Information System (INIS)

    Rego, J.H.; Smith, D.K.; Friensehner, A.V.

    1995-01-01

    The U.S. Department of Energy, Nevada Operations Office, Underground Test Area Operable Unit (UGTA) is drilling deep (>1500m) monitoring wells that penetrate both unsaturated (vadose) and saturated zones potentially contaminated by sub-surface nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. Drill site radiological monitoring returns data on drilling effluents to make informed management decisions concerning fluid management. Because of rapid turn-around required for on-site monitoring, a representative sample will be analyzed simultaneously for α, β and γ emitters by instrumentation deployed on-site. For the purposes of field survey, accurate and precise data is returned, in many cases, with minimal sample treatment. A 30% efficient high purity germanium detector and a discriminating liquid scintillation detector are being evaluated for γ and α/β monitoring respectively. Implementation of these detector systems complements a successful on-site tritium monitoring program. Residual radioactivity associated with underground nuclear tests include tritium, activation products, fission products and actinides. Pulse shape discrimination (PSD) is used in α/β liquid scintillation counting and is a function of the time distribution of photon emission. In particular, we hope to measure 241 Am produced from 241 Pu by β decay. Because 241 Pu is depleted in fissile bomb fuels, maximum PSD resolution will be required. The high purity germanium detector employs a multichannel analyzer to count gamma emitting radionuclides; we will designate specific window configurations to selectively monitor diagnostic fission product radionuclides (i.e., 137 Cs)

  17. Dalia integrated production bundle (IPB): an innovative riser solution for deep water fields

    Energy Technology Data Exchange (ETDEWEB)

    Reals, Th Boscals de; Gloaguen, M.; Roche, F. [Total E and P (Angola); Marion, A.; Poincheval, A. [Technip, Paris (France)

    2008-07-01

    The Dalia field is located 210 km north west of Luanda (Angola), about 140 km from shore in 1400 meter water-depth. It was the second major discovery out of 15 made in the block 17 operated by Total. The Dalia Umbilical, Flow lines and Risers EPCI Contract was awarded in 2003. The sea-line network to connect and control the 71 wells and 9 manifolds consist of the following: 40 km of insulated pipe in pipe (12 inches into 17 inches) production flow lines; 45 km of 12 inches water and gas injection lines; 6 off 1.7 km flexible water and gas injection risers; 8 off 1.65 km flexible Integrated Production Bundle (IPB) risers; 75 km of control umbilicals. The flow assurance and associated insulation requirement of the production transport system was one of the main challenges of the project. With a crude temperature of 45 deg C at the wellhead and the required minimum temperature of 35 deg C on arrival at the FPSO, this problem was complex. Understanding that, due to the Joule Thompson effect of the riser gas lift, a 'built in' loss of about 5 deg C is induced and together with further losses through the sub sea pipelines, some up to 6 km long, the agreed solution was 'pipe in pipe' for the production flow lines. The innovative flexible IPB riser, incorporating gas lift and heating to keep the fluid temperature above hydrate formation zone, was the selected riser solution. The IPB is new technology for deep water, developed by Technip for Dalia, and consists of a 12 inches nominal central flexible, surrounded by layers of heat tracing cables, small bore gas lift lines, optical fibres and many insulation layers with an Overall Heat Transfer Coefficient of approximately 3,4 W/m{sup 2}K. After an earlier research and development programme, a further extensive qualification programme was conducted during the course of the project, culminating with the deep water testing phase offshore Brazil. The IPB was then approved for fabrication and installation

  18. Task Order 22 – Engineering and Technical Support, Deep Borehole Field Test. AREVA Summary Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Denton, Mark A. [AREVA Federal Services, Charlotte, NC (United States)

    2016-01-19

    Under Task Order 22 of the industry Advisory and Assistance Services (A&AS) Contract to the Department of Energy (DOE) DE-NE0000291, AREVA has been tasked with providing assistance with engineering, analysis, cost estimating, and design support of a system for disposal of radioactive wastes in deep boreholes (without the use of radioactive waste). As part of this task order, AREVA was requested, through a letter of technical direction, to evaluate Sandia National Laboratory’s (SNL’s) waste package borehole emplacement system concept recommendation using input from DOE and SNL. This summary review report (SRR) documents this evaluation, with its focus on the primary input document titled: “Deep Borehole Field Test Specifications/M2FT-15SN0817091” Rev. 1 [1], hereafter referred to as the “M2 report.” The M2 report focuses on the conceptual design development for the Deep Borehole Field Test (DBFT), mainly the test waste packages (WPs) and the system for demonstrating emplacement and retrieval of those packages in the Field Test Borehole (FTB). This SRR follows the same outline as the M2 report, which allows for easy correlation between AREVA’s review comments, discussion, potential proposed alternatives, and path forward with information established in the M2 report. AREVA’s assessment focused on three primary elements of the M2 report: the conceptual design of the WPs proposed for deep borehole disposal (DBD), the mode of emplacement of the WP into DBD, and the conceptual design of the DBFT. AREVA concurs with the M2 report’s selection of the wireline emplacement mode specifically over the drill-string emplacement mode and generically over alternative emplacement modes. Table 5-1 of this SRR compares the pros and cons of each emplacement mode considered viable for DBD. The primary positive characteristics of the wireline emplacement mode include: (1) considered a mature technology; (2) operations are relatively simple; (3) probability of a

  19. Metamaterial-based transmit and receive system for whole-body magnetic resonance imaging at ultra-high magnetic fields.

    Science.gov (United States)

    Herrmann, Tim; Liebig, Thorsten; Mallow, Johannes; Bruns, Christian; Stadler, Jörg; Mylius, Judith; Brosch, Michael; Svedja, Jan Taro; Chen, Zhichao; Rennings, Andreas; Scheich, Henning; Plaumann, Markus; Hauser, Marcus J B; Bernarding, Johannes; Erni, Daniel

    2018-01-01

    Magnetic resonance imaging (MRI) at ultra-high fields (UHF), such as 7 T, provides an enhanced signal-to-noise ratio and has led to unprecedented high-resolution anatomic images and brain activation maps. Although a variety of radio frequency (RF) coil architectures have been developed for imaging at UHF conditions, they usually are specialized for small volumes of interests (VoI). So far, whole-body coil resonators are not available for commercial UHF human whole-body MRI systems. The goal of the present study was the development and validation of a transmit and receive system for large VoIs that operates at a 7 T human whole-body MRI system. A Metamaterial Ring Antenna System (MRAS) consisting of several ring antennas was developed, since it allows for the imaging of extended VoIs. Furthermore, the MRAS not only requires lower intensities of the irradiated RF energy, but also provides a more confined and focused injection of excitation energy on selected body parts. The MRAS consisted of several antennas with 50 cm inner diameter, 10 cm width and 0.5 cm depth. The position of the rings was freely adjustable. Conformal resonant right-/left-handed metamaterial was used for each ring antenna with two quadrature feeding ports for RF power. The system was successfully implemented and demonstrated with both a silicone oil and a water-NaCl-isopropanol phantom as well as in vivo by acquiring whole-body images of a crab-eating macaque. The potential for future neuroimaging applications was demonstrated by the acquired high-resolution anatomic images of the macaque's head. Phantom and in vivo measurements of crab-eating macaques provided high-resolution images with large VoIs up to 40 cm in xy-direction and 45 cm in z-direction. The results of this work demonstrate the feasibility of the MRAS system for UHF MRI as proof of principle. The MRAS shows a substantial potential for MR imaging of larger volumes at 7 T UHF. This new technique may provide new diagnostic potential

  20. Sensitivity and specificity considerations for fMRI encoding, decoding, and mapping of auditory cortex at ultra-high field.

    Science.gov (United States)

    Moerel, Michelle; De Martino, Federico; Kemper, Valentin G; Schmitter, Sebastian; Vu, An T; Uğurbil, Kâmil; Formisano, Elia; Yacoub, Essa

    2018-01-01

    Following rapid technological advances, ultra-high field functional MRI (fMRI) enables exploring correlates of neuronal population activity at an increasing spatial resolution. However, as the fMRI blood-oxygenation-level-dependent (BOLD) contrast is a vascular signal, the spatial specificity of fMRI data is ultimately determined by the characteristics of the underlying vasculature. At 7T, fMRI measurement parameters determine the relative contribution of the macro- and microvasculature to the acquired signal. Here we investigate how these parameters affect relevant high-end fMRI analyses such as encoding, decoding, and submillimeter mapping of voxel preferences in the human auditory cortex. Specifically, we compare a T 2 * weighted fMRI dataset, obtained with 2D gradient echo (GE) EPI, to a predominantly T 2 weighted dataset obtained with 3D GRASE. We first investigated the decoding accuracy based on two encoding models that represented different hypotheses about auditory cortical processing. This encoding/decoding analysis profited from the large spatial coverage and sensitivity of the T 2 * weighted acquisitions, as evidenced by a significantly higher prediction accuracy in the GE-EPI dataset compared to the 3D GRASE dataset for both encoding models. The main disadvantage of the T 2 * weighted GE-EPI dataset for encoding/decoding analyses was that the prediction accuracy exhibited cortical depth dependent vascular biases. However, we propose that the comparison of prediction accuracy across the different encoding models may be used as a post processing technique to salvage the spatial interpretability of the GE-EPI cortical depth-dependent prediction accuracy. Second, we explored the mapping of voxel preferences. Large-scale maps of frequency preference (i.e., tonotopy) were similar across datasets, yet the GE-EPI dataset was preferable due to its larger spatial coverage and sensitivity. However, submillimeter tonotopy maps revealed biases in assigned frequency

  1. An Ultra-High Field Study of Cerebellar Pathology in Early Relapsing-Remitting Multiple Sclerosis Using MP2RAGE.

    Science.gov (United States)

    Fartaria, Mário João; OʼBrien, Kieran; Şorega, Alexandra; Bonnier, Guillaume; Roche, Alexis; Falkovskiy, Pavel; Krueger, Gunnar; Kober, Tobias; Bach Cuadra, Meritxell; Granziera, Cristina

    2017-05-01

    The aim of this study was to study focal cerebellar pathology in early stages of multiple sclerosis (MS) using ultra-high-field magnetization-prepared 2 inversion-contrast rapid gradient-echo (7T MP2RAGE). Twenty early-stage relapsing-remitting MS patients underwent an MP2RAGE acquisition at 7 T magnetic resonance imaging (MRI) (images acquired at 2 different resolutions: 0.58 × 0.58 × 0.58 mm, 7T_0.58, and 0.75 × 0.75 × 0.90 mm, 7T_0.75) and 3 T MRI (1.0 × 1.0 × 1.2 mm, 3T_1.0). Total cerebellar lesion load and volume and mean cerebellar lesion volume were compared across images using a Wilcoxon signed-rank test. Mean T1 relaxation times in lesions and normal-appearing tissue as well as contrast-to-noise ratio (CNR) measurements were also compared using a Wilcoxon signed-rank test. A multivariate analysis was applied to assess the contribution of MRI metrics to clinical performance in MS patients. Both 7T_0.58 and 7T_0.75 MP2RAGE showed significantly higher lesion load compared with 3T_1.0 MP2RAGE (P < 0.001). Plaques that were judged as leukocortical in 7T_0.75 and 3T_1.0 MP2RAGEs were instead identified as WM lesions in 7T_0.58 MP2RAGE. Cortical lesion CNR was significantly higher in MP2RAGEs at 7 T than at 3 T. Total lesion load as well as total and mean lesion volume obtained at both 7 T and 3 T MP2RAGE significantly predicted attention (P < 0.05, adjusted R = 0.5), verbal fluency (P < 0.01, adjusted R = 0.6), and motor performance (P = 0.01, adjusted R = 0.7). This study demonstrates the value of 7 T MP2RAGE to study the cerebellum in early MS patients. 7T_0.58 MP2RAGE provides a more accurate anatomical description of white and gray matter pathology compared with 7T_0.75 and 3T_1.0 MP2RAGE, likely due to the improved spatial resolution, lower partial volume effects, and higher CNR.

  2. Ultra-sensitive speciation analysis of mercury by CE-ICP-MS together with field-amplified sample stacking injection and dispersive solid-phase extraction.

    Science.gov (United States)

    Chen, YiQuan; Cheng, Xian; Mo, Fan; Huang, LiMei; Wu, Zujian; Wu, Yongning; Xu, LiangJun; Fu, FengFu

    2016-04-01

    A simple dispersive solid-phase extraction (DSPE) used to extract and preconcentrate ultra-trace MeHg, EtHg and Hg(2+) from water sample, and a sensitive method for the simultaneous analysis of MeHg, EtHg and Hg(2+) by using capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS) with field-amplified sample stacking injection (FASI) were first reported in this study. The DSPE used thiol cotton particles as adsorbent, and is simple and effective. It can be used to extract and preconcentrate ultra-trace mercury compounds in water samples within 30 min with a satisfied recovery and no mercury species alteration during the process. The FASI enhanced the sensitivity of CE-ICP-MS with 25-fold, 29-fold and 27-fold for MeHg, EtHg and Hg(2+) , respectively. Using FASI-CE-ICP-MS together with DSPE, we have successfully determined ultra-trace MeHg, EtHg and Hg(2+) in tap water with a limits of quantification (LOQs) of 0.26-0.45 pg/mL, an RSD (n = 3) mercury. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Theoretical analysis of the local field potential in deep brain stimulation applications.

    Directory of Open Access Journals (Sweden)

    Scott F Lempka

    Full Text Available Deep brain stimulation (DBS is a common therapy for treating movement disorders, such as Parkinson's disease (PD, and provides a unique opportunity to study the neural activity of various subcortical structures in human patients. Local field potential (LFP recordings are often performed with either intraoperative microelectrodes or DBS leads and reflect oscillatory activity within nuclei of the basal ganglia. These LFP recordings have numerous clinical implications and might someday be used to optimize DBS outcomes in closed-loop systems. However, the origin of the recorded LFP is poorly understood. Therefore, the goal of this study was to theoretically analyze LFP recordings within the context of clinical DBS applications. This goal was achieved with a detailed recording model of beta oscillations (∼20 Hz in the subthalamic nucleus. The recording model consisted of finite element models of intraoperative microelectrodes and DBS macroelectrodes implanted in the brain along with multi-compartment cable models of STN projection neurons. Model analysis permitted systematic investigation into a number of variables that can affect the composition of the recorded LFP (e.g. electrode size, electrode impedance, recording configuration, and filtering effects of the brain, electrode-electrolyte interface, and recording electronics. The results of the study suggest that the spatial reach of the LFP can extend several millimeters. Model analysis also showed that variables such as electrode geometry and recording configuration can have a significant effect on LFP amplitude and spatial reach, while the effects of other variables, such as electrode impedance, are often negligible. The results of this study provide insight into the origin of the LFP and identify variables that need to be considered when analyzing LFP recordings in clinical DBS applications.

  4. Solar wind charge exchange emission in the Chandra deep field north

    Energy Technology Data Exchange (ETDEWEB)

    Slavin, Jonathan D.; Wargelin, Bradford J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Koutroumpa, Dimitra [LATMOS/IPSL, CNRS, Université Versailles Saint Quentin, 11 Boulevard d' Alembert, F-78280, Guyancourt (France)

    2013-12-10

    The diffuse soft X-ray background comes from distant galaxies, from hot Galactic gas, and from within the solar system. The latter emission arises from charge exchange between highly charged solar wind ions and neutral gas. This so-called solar wind charge exchange (SWCX) emission is spatially and temporally variable and interferes with our measurements of more distant cosmic emission while also providing important information on the nature of the solar wind-interstellar medium interaction. We present the results of our analysis of eight Chandra observations of the Chandra Deep Field North (CDFN) with the goal of measuring the cosmic and SWCX contributions to the X-ray background. Our modeling of both geocoronal and heliospheric SWCX emission is the most detailed for any observation to date. After allowing for ∼30% uncertainty in the SWCX emission and subtracting it from the observational data, we estimate that the flux of cosmic background for the CDFN in the O VII Kα, Kβ, and O VIII Lyα lines totals 5.8 ± 1.1 photons s{sup –1} cm{sup –2} sr{sup –1} (or LU). Heliospheric SWCX emission varied for each observation due to differences in solar wind conditions and the line of sight through the solar system, but was typically about half as strong as the cosmic background (i.e., one-third of the total) in those lines. The modeled geocoronal emission was 0.82 LU in one observation but averaged only 0.15 LU in the others. Our measurement of the cosmic background is lower than but marginally consistent with previous estimates based on XMM-Newton data.

  5. Solar wind charge exchange emission in the Chandra deep field north

    International Nuclear Information System (INIS)

    Slavin, Jonathan D.; Wargelin, Bradford J.; Koutroumpa, Dimitra

    2013-01-01

    The diffuse soft X-ray background comes from distant galaxies, from hot Galactic gas, and from within the solar system. The latter emission arises from charge exchange between highly charged solar wind ions and neutral gas. This so-called solar wind charge exchange (SWCX) emission is spatially and temporally variable and interferes with our measurements of more distant cosmic emission while also providing important information on the nature of the solar wind-interstellar medium interaction. We present the results of our analysis of eight Chandra observations of the Chandra Deep Field North (CDFN) with the goal of measuring the cosmic and SWCX contributions to the X-ray background. Our modeling of both geocoronal and heliospheric SWCX emission is the most detailed for any observation to date. After allowing for ∼30% uncertainty in the SWCX emission and subtracting it from the observational data, we estimate that the flux of cosmic background for the CDFN in the O VII Kα, Kβ, and O VIII Lyα lines totals 5.8 ± 1.1 photons s –1 cm –2 sr –1 (or LU). Heliospheric SWCX emission varied for each observation due to differences in solar wind conditions and the line of sight through the solar system, but was typically about half as strong as the cosmic background (i.e., one-third of the total) in those lines. The modeled geocoronal emission was 0.82 LU in one observation but averaged only 0.15 LU in the others. Our measurement of the cosmic background is lower than but marginally consistent with previous estimates based on XMM-Newton data.

  6. Time and frequency-dependent modulation of local field potential synchronization by deep brain stimulation.

    Directory of Open Access Journals (Sweden)

    Clinton B McCracken

    Full Text Available High-frequency electrical stimulation of specific brain structures, known as deep brain stimulation (DBS, is an effective treatment for movement disorders, but mechanisms of action remain unclear. We examined the time-dependent effects of DBS applied to the entopeduncular nucleus (EP, the rat homolog of the internal globus pallidus, a target used for treatment of both dystonia and Parkinson's disease (PD. We performed simultaneous multi-site local field potential (LFP recordings in urethane-anesthetized rats to assess the effects of high-frequency (HF, 130 Hz; clinically effective, low-frequency (LF, 15 Hz; ineffective and sham DBS delivered to EP. LFP activity was recorded from dorsal striatum (STR, ventroanterior thalamus (VA, primary motor cortex (M1, and the stimulation site in EP. Spontaneous and acute stimulation-induced LFP oscillation power and functional connectivity were assessed at baseline, and after 30, 60, and 90 minutes of stimulation. HF EP DBS produced widespread alterations in spontaneous and stimulus-induced LFP oscillations, with some effects similar across regions and others occurring in a region- and frequency band-specific manner. Many of these changes evolved over time. HF EP DBS produced an initial transient reduction in power in the low beta band in M1 and STR; however, phase synchronization between these regions in the low beta band was markedly suppressed at all time points. DBS also enhanced low gamma synchronization throughout the circuit. With sustained stimulation, there were significant reductions in low beta synchronization between M1-VA and STR-VA, and increases in power within regions in the faster frequency bands. HF DBS also suppressed the ability of acute EP stimulation to induce beta oscillations in all regions along the circuit. This dynamic pattern of synchronizing and desynchronizing effects of EP DBS suggests a complex modulation of activity along cortico-BG-thalamic circuits underlying the therapeutic

  7. Observations of the Hubble Deep Field with the Infrared Space Observatory .3. Source counts and P(D) analysis

    DEFF Research Database (Denmark)

    Oliver, S.J.; Goldschmidt, P.; Franceschini, A.

    1997-01-01

    We present source counts at 6.7 and 15 mu m from our maps of the Hubble Deep Field (HDF) region, reaching 38.6 mu Jy at 6.7 mu m and 255 mu Jy at 15 mu m. These are the first ever extragalactic number counts to be presented at 6.7 mu m, and are three decades fainter than IRAS at 12 mu m. Both...

  8. Optical colours of AGN in the Extended Chandra Deep Field South: Obscured black holes in early type galaxies

    OpenAIRE

    Rovilos, E.; Georgantopoulos, I.

    2007-01-01

    We investigate the optical colours of X-ray sources from the Extended Chandra Deep Field South (ECDFS) using photometry from the COMBO-17 survey, aiming to explore AGN - galaxy feedback models. The X-ray sources populate both the ``blue'' and the ``red sequence'' on the colour-magnitude diagram. However, sources in the ``red sequence'' appear systematically more obscured. HST imaging from the GEMS survey demonstrates that the nucleus does not affect significantly the observed colours, and the...

  9. High resolution separations of charge variants and disulfide isomers of monoclonal antibodies and antibody drug conjugates using ultra-high voltage capillary electrophoresis with high electric field strength.

    Science.gov (United States)

    Henley, W Hampton; He, Yan; Mellors, J Scott; Batz, Nicholas G; Ramsey, J Michael; Jorgenson, James W

    2017-11-10

    Ultra-high voltage capillary electrophoresis with high electric field strength has been applied to the separation of the charge variants, drug conjugates, and disulfide isomers of monoclonal antibodies. Samples composed of many closely related species are difficult to resolve and quantify using traditional analytical instrumentation. High performance instrumentation can often save considerable time and effort otherwise spent on extensive method development. Ideally, the resolution obtained for a given CE buffer system scales with the square root of the applied voltage. Currently available commercial CE instrumentation is limited to an applied voltage of approximately 30kV and a maximum electric field strength of 1kV/cm due to design limitations. The instrumentation described here is capable of safely applying potentials of at least 120kV with electric field strengths over 2000V/cm, potentially doubling the resolution of the best conventional CE buffer/capillary systems while decreasing analysis time in some applications. Separations of these complex mixtures using this new instrumentation demonstrate the potential of ultra-high voltage CE to identify the presence of previously unresolved components and to reduce analysis time for complex mixtures of antibody variants and drug conjugates. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. An increased fluid intake leads to feet swelling in 100-km ultra-marathoners - an observational field study

    Directory of Open Access Journals (Sweden)

    Cejka Caroline

    2012-04-01

    Full Text Available Abstract Background An association between fluid intake and changes in volumes of the upper and lower limb has been described in 100-km ultra-marathoners. The purpose of the present study was (i to investigate the association between fluid intake and a potential development of peripheral oedemas leading to an increase of the feet volume in 100-km ultra-marathoners and (ii to evaluate a possible association between the changes in plasma sodium concentration ([Na+] and changes in feet volume. Methods In seventy-six 100-km ultra-marathoners, body mass, plasma [Na+], haematocrit and urine specific gravity were determined pre- and post-race. Fluid intake and the changes of volume of the feet were measured where the changes of volume of the feet were estimated using plethysmography. Results Body mass decreased by 1.8 kg (2.4% (p +] increased by 1.2% (p p = 0.0005. The volume of the feet remained unchanged (p > 0.05. Plasma volume and urine specific gravity increased (p r = 0.54, p +] (r = -0.28, p = 0.0142. Running speed was negatively related to both fluid intake (r = -0.33, p = 0.0036 and the change in feet volume (r = -0.23, p = 0.0236. The change in the volume of the feet was negatively related to the change in plasma [Na+] (r = -0.26, p = 0.0227. The change in body mass was negatively related to both post-race plasma [Na+] (r = -0.28, p = 0.0129 and running speed (r = -0.34, p = 0.0028. Conclusions An increase in feet volume after a 100-km ultra-marathon was due to an increased fluid intake.

  11. Stability of deep features across CT scanners and field of view using a physical phantom

    Science.gov (United States)

    Paul, Rahul; Shafiq-ul-Hassan, Muhammad; Moros, Eduardo G.; Gillies, Robert J.; Hall, Lawrence O.; Goldgof, Dmitry B.

    2018-02-01

    Radiomics is the process of analyzing radiological images by extracting quantitative features for monitoring and diagnosis of various cancers. Analyzing images acquired from different medical centers is confounded by many choices in acquisition, reconstruction parameters and differences among device manufacturers. Consequently, scanning the same patient or phantom using various acquisition/reconstruction parameters as well as different scanners may result in different feature values. To further evaluate this issue, in this study, CT images from a physical radiomic phantom were used. Recent studies showed that some quantitative features were dependent on voxel size and that this dependency could be reduced or removed by the appropriate normalization factor. Deep features extracted from a convolutional neural network, may also provide additional features for image analysis. Using a transfer learning approach, we obtained deep features from three convolutional neural networks pre-trained on color camera images. An we examination of the dependency of deep features on image pixel size was done. We found that some deep features were pixel size dependent, and to remove this dependency we proposed two effective normalization approaches. For analyzing the effects of normalization, a threshold has been used based on the calculated standard deviation and average distance from a best fit horizontal line among the features' underlying pixel size before and after normalization. The inter and intra scanner dependency of deep features has also been evaluated.

  12. A deep redshift survey of field galaxies. Comments on the reality of the Butcher-Oemler effect

    Science.gov (United States)

    Koo, David C.; Kron, Richard G.

    1987-01-01

    A spectroscopic survey of over 400 field galaxies has been completed in three fields for which we have deep UBVI photographic photometry. The galaxies typically range from B=20 to 22 and possess redshifts z from 0.1 to 0.5 that are often quite spiky in distribution. Little, if any, luminosity evolution is observed up to redshifts z approx 0.5. By such redshifts, however, an unexpectedly large fraction of luminous galaxies has very blue intrinsic colors that suggest extensive star formation; in contrast, the reddest galaxies still have colors that match those of present-day ellipticals.

  13. Coaxial nuclear radiation detector with deep junction and radial field gradient

    International Nuclear Information System (INIS)

    Hall, R.N.

    1979-01-01

    Germanium radiation detectors are manufactured by diffusion lithium into high purity p-type germanium. The diffusion is most readily accomplished from a lithium-lead-bismuth alloy at approximately 430 0 and is monitored by a quartz half cell containing a standard composition of this alloy. Detectors having n-type cores may be constructed by converting high purity p-type germanium to n-type by a lithium diffusion and subsequently diffusing some of the lithium back out through the surface to create a deep p-n junction. Coaxial germanium detectors comprising deep p-n junctions are produced by the lithium diffusion process

  14. Deep diving odontocetes foraging strategies and their prey field as determined by acoustic techniques

    Science.gov (United States)

    Giorli, Giacomo

    Deep diving odontocetes, like sperm whales, beaked whales, Risso's dolphins, and pilot whales are known to forage at deep depths in the ocean on squid and fish. These marine mammal species are top predators and for this reason are very important for the ecosystems they live in, since they can affect prey populations and control food web dynamics through top-down effects. The studies presented in this thesis investigate deep diving odontocetes. foraging strategies, and the density and size of their potential prey in the deep ocean using passive and active acoustic techniques. Ecological Acoustic Recorders (EAR) were used to monitor the foraging activity of deep diving odontocetes at three locations around the world: the Josephine Seamount High Sea Marine Protected Area (JHSMPA), the Ligurian Sea, and along the Kona coast of the island of Hawaii. In the JHSMPA, sperm whales. and beaked whales. foraging rates do not differ between night-time and day-time. However, in the Ligurian Sea, sperm whales switch to night-time foraging as the winter approaches, while beaked whales alternate between hunting mainly at night, and both at night and at day. Spatial differences were found in deep diving odontocetes. foraging activity in Hawaii where they forage most in areas with higher chlorophyll concentrations. Pilot whales (and false killer whales, clustered together in the category "blackfishes") and Risso's dolphins forage mainly at night at all locations. These two species adjust their foraging activity with the length of the night. The density and size of animals living in deep sea scattering layers was studied using a DIDSON imaging sonar at multiple stations along the Kona coast of Hawaii. The density of animals was affected by location, depth, month, and the time of day. The size of animals was influenced by station and month. The DIDSON proved to be a successful, non-invasive technique to study density and size of animals in the deep sea. Densities were found to be an

  15. Influence of Surface Passivation on AlN Barrier Stress and Scattering Mechanism in Ultra-thin AlN/GaN Heterostructure Field-Effect Transistors.

    Science.gov (United States)

    Lv, Y J; Song, X B; Wang, Y G; Fang, Y L; Feng, Z H

    2016-12-01

    Ultra-thin AlN/GaN heterostructure field-effect transistors (HFETs) with, and without, SiN passivation were fabricated by the same growth and device processes. Based on the measured DC characteristics, including the capacitance-voltage (C-V) and output current-voltage (I-V) curves, the variation of electron mobility with gate bias was found to be quite different for devices with, and without, SiN passivation. Although the AlN barrier layer is ultra thin (c. 3 nm), it was proved that SiN passivation induces no additional tensile stress and has no significant influence on the piezoelectric polarization of the AlN layer using Hall and Raman measurements. The SiN passivation was found to affect the surface properties, thereby increasing the electron density of the two-dimensional electron gas (2DEG) under the access region. The higher electron density in the access region after SiN passivation enhanced the electrostatic screening for the non-uniform distributed polarization charges, meaning that the polarization Coulomb field scattering has a weaker effect on the electron drift mobility in AlN/GaN-based devices.

  16. Impact of built-in fields and contact configuration on the characteristics of ultra-thin GaAs solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Aeberhard, Urs, E-mail: u.aeberhard@fz-juelich.de [IEK-5 Photovoltaik, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2016-07-18

    We discuss the effects of built-in fields and contact configuration on the photovoltaic characteristics of ultra-thin GaAs solar cells. The investigation is based on advanced quantum-kinetic simulations reaching beyond the standard semi-classical bulk picture concerning the consideration of charge carrier states and dynamics in complex potential profiles. The thickness dependence of dark and photocurrent in the ultra-scaled regime is related to the corresponding variation of both, the built-in electric fields and associated modification of the density of states, and the optical intensity in the films. Losses in open-circuit voltage and short-circuit current due to the leakage of electronically and optically injected carriers at minority carrier contacts are investigated for different contact configurations including electron and hole blocking barrier layers. The microscopic picture of leakage currents is connected to the effect of finite surface recombination velocities in the semi-classical description, and the impact of these non-classical contact regions on carrier generation and extraction is analyzed.

  17. An ultra­high field Magnetic Resonance Spectroscopy study of post exercise brain lactate, glutamate and glutamine change in the human brain.

    Directory of Open Access Journals (Sweden)

    Andrea eDennis

    2015-12-01

    Full Text Available During strenuous exercise there is a progressive increase in lactate uptake and metabolism into the brain as workload and plasma lactate levels increase. Although it is now widely accepted that the brain can metabolise lactate, few studies have directly measured brain lactate following vigorous exercise. Here, we used ultra-high field Magnetic Resonance Spectroscopy of the brain to obtain static measures of brain lactate, as well as brain glutamate and glutamine after vigorous exercise. The aims of our experiment were to (a track the changes in brain lactate following recovery from exercise and, (b to simultaneously measure the signals from brain glutamate and glutamine. The results of our experiment showed that vigorous exercise resulted in a significant increase in brain lactate. Furthermore, both glutamate and glutamine were successfully resolved, and as expected, although contrary to some previous reports, we did not observe any significant change in either amino acid after exercise. We did however observe a negative correlation between glutamate and a measure of fitness. These results support the hypothesis that peripherally-derived lactate is taken up by the brain when available. Our data additionally highlight the potential of ultra-high field magnetic resonance spectroscopy as a non-invasive way of measuring multiple brain metabolite changes with exercise.

  18. A Comparison between Deep and Shallow Stress Fields in Korea Using Earthquake Focal Mechanism Inversions and Hydraulic Fracturing Stress Measurements

    Science.gov (United States)

    Lee, Rayeon; Chang, Chandong; Hong, Tae-kyung; Lee, Junhyung; Bae, Seong-Ho; Park, Eui-Seob; Park, Chan

    2016-04-01

    We are characterizing stress fields in Korea using two types of stress data: earthquake focal mechanism inversions (FMF) and hydraulic fracturing stress measurements (HF). The earthquake focal mechanism inversion data represent stress conditions at 2-20 km depths, whereas the hydraulic fracturing stress measurements, mostly conducted for geotechnical purposes, have been carried out at depths shallower than 1 km. We classified individual stress data based on the World Stress Map quality ranking scheme. A total of 20 FMF data were classified into A-B quality, possibly representing tectonic stress fields. A total of 83 HF data out of compiled 226 data were classified into B-C quality, which we use for shallow stress field characterization. The tectonic stress, revealed from the FMF data, is characterized by a remarkable consistency in its maximum stress (σ1) directions in and around Korea (N79±2° E), indicating a quite uniform deep stress field throughout. On the other hand, the shallow stress field, represented by HF data, exhibits local variations in σ1 directions, possibly due to effects of topography and geologic structures such as faults. Nonetheless, there is a general similarity in σ1 directions between deep and shallow stress fields. To investigate the shallow stress field statistically, we follow 'the mean orientation and wavelength analysis' suggested by Reiter et al. (2014). After the stress pattern analysis, the resulting stress points distribute sporadically over the country, not covering the entire region evenly. In the western part of Korea, the shallow σ1directions are generally uniform with their search radius reaching 100 km, where the average stress direction agrees well with those of the deep tectonic stress. We note two noticeable differences between shallow and deep stresses in the eastern part of Korea. First, the shallow σ1 orientations are markedly non-uniform in the southeastern part of Korea with their search radius less than 25 km

  19. Magnetic field fluctuations analysis for the ion trap implementation of the quantum Rabi model in the deep strong coupling regime

    Science.gov (United States)

    Puebla, Ricardo; Casanova, Jorge; Plenio, Martin B.

    2018-03-01

    The dynamics of the quantum Rabi model (QRM) in the deep strong coupling regime is theoretically analyzed in a trapped-ion set-up. Recognizably, the main hallmark of this regime is the emergence of collapses and revivals, whose faithful observation is hindered under realistic magnetic dephasing noise. Here, we discuss how to attain a faithful implementation of the QRM in the deep strong coupling regime which is robust against magnetic field fluctuations and at the same time provides a large tunability of the simulated parameters. This is achieved by combining standing wave laser configuration with continuous dynamical decoupling. In addition, we study the role that amplitude fluctuations play to correctly attain the QRM using the proposed method. In this manner, the present work further supports the suitability of continuous dynamical decoupling techniques in trapped-ion settings to faithfully realize different interacting dynamics.

  20. A Study on the Improvement Effect and Field Applicability of the Deep Soft Ground by Ground Heating Method

    Directory of Open Access Journals (Sweden)

    Mincheol Park

    2018-05-01

    Full Text Available The soft ground in coastal areas should be treated when it needs to be used for the sustainably developed of urban or industrial complex constructions. The ground heating method for soft ground improvement was applied in Eastern Europe in the 1960s, but it was not widely used due to economic and environmental problems. The author developed a device for improving soft ground using an electric heating pipe. This paper investigates the improvement effect and field application of deep soft ground by the ground heating method using the electric heating pipe. Ground heating increases the temperature of the deep soft ground and increases the tip resistance of the static electronic piezo-cone penetration test. Additionally, the pressure of the pore water decreases because the pore water is evaporated due to the ground heating. As a result of the experiment, it was verified that there was an improvement in the effect of deep soft ground by the ground heating method. With ground heating for 96 h, the tip resistance was increased by 61% at a point 0.35 m horizontally away from the electric heat pipe, 22% at 0.97 m, and 2% at 1.31 m. As a result of the field test, it was found that there were no problems in the power supply of the diesel generator and the control panel. It was easy to install the electric heating pipes in the deep soft ground. However, due to boring, the ground was disturbed and water vapor was discharged through this gap. To minimize the discharge of water vapor, it is necessary to drive the electric heating pipe.

  1. Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction

    International Nuclear Information System (INIS)

    Yamane, Keisaku; Yang, Zhili; Toda, Yasunori; Morita, Ryuji

    2014-01-01

    We propose a high-precision method for measuring the orbital angular momentum (OAM) spectrum of ultra-broadband optical-vortex (OV) pulses from fork-like interferograms between OV pulses and a reference plane-wave pulse. It is based on spatial reconstruction of the electric fields of the pulses to be measured from the frequency-resolved interference pattern. Our method is demonstrated experimentally by obtaining the OAM spectra for different spectral components of the OV pulses, enabling us to characterize the frequency dispersion of the topological charge of the OAM spectrum by a simple experimental setup. Retrieval is carried out in quasi-real time, allowing us to investigate OAM spectra dynamically. Furthermore, we determine the relative phases (including the sign) of the topological-charge-resolved electric-field amplitudes, which are significant for evaluating OVs or OV pulses with arbitrarily superposed modes. (paper)

  2. Subsea innovative boosting technologies on deep water scenarios -- Impacts and demands

    International Nuclear Information System (INIS)

    Caetano, E.F.; Mendonca, J.E.; Pagot, P.R.; Cotrim, M.L.; Camargo, R.M.T.; Assayag, M.I.

    1995-01-01

    This paper presents the importance of deep water scenario for Brazil, the PETROBRAS Deep and Ultra-Deep Water R and D Program (PROCAP-2000) and the candidate fields for the deployment of subsea innovative boosting technologies (ESPS -- electrical submersible pump in subsea wells, SSS -- subsea separation systems and SBMS -- subsea multiphase flow pumping system) as well as the problems associated with the flow assurance in such conditions. The impact of those innovative systems, their technological stage and remaining demands to make them available for deployment in offshore subsea areas, mainly in giant deepwater fields, are discussed and predicted

  3. Development and application of multiple-quantum coherence techniques for in vivo sodium MRI at high and ultra-high field strengths

    International Nuclear Information System (INIS)

    Fiege, Daniel Pascal

    2014-01-01

    Sodium magnetic resonance imaging (MRI) can quantify directly and non-invasively tissue sodium concentration levels in vivo. Tissue sodium concentration levels are tightly regulated and have been shown to be directly linked to cell viability. The intracellular sodium concentration is an even more specific parameter. The triple-quantum filtering (TQF) technique for sodium MRI has been suggested to detect the intracellular sodium only. Despite their huge potential, only few studies with sodium MRI have been carried out because of the long acquisition times of sodium MRI techniques, their susceptibility to static field inhomogeneities and their limited signal-to-noise ratio compared to proton MRI. Three novel techniques that address these limitations are presented in this thesis: (a) a sodium MRI sequence that acquires simultaneously both tissue sodium concentration maps and TQF images, (b) a phase-rotation scheme that allows for the acquisition of static field inhomogeneity insensitive TQF images, and (c) the combination of the two aforementioned techniques with optimised parameters at the ultra-high fi eld strength of 9.4 T in vivo. The SISTINA sequence - simultaneous single-quantum and triple-quantum filtered imaging of 23 Na - is presented. The sequence is based on a TQF acquisition with a Cartesian readout and a three-pulse preparation. The delay between the first two pulses is used for an additional ultra-short echo time 3D radial readout. The method was implemented on a 4T scanner. It is validated in phantoms and in healthy volunteers that this additional readout does not interfere with the TQ preparation. The method is applied to three cases of brain tumours. The tissue sodium concentration maps and TQF images are presented and compared to 1 H MR and positron emission tomography images. The three-pulse TQF preparation is sensitive to static field inhomogeneities. This problem is caused by destructive interference of different coherence pathways. To address

  4. Tic related local field potentials in the thalamus and the effect of deep brain stimulation in Tourette syndrome : Report of three cases

    NARCIS (Netherlands)

    Bour, L. J.; Ackermans, L.; Foncke, E. M. J.; Cath, D.; van der Linden, C.; Vandewalle, V. Visser; Tijssen, M. A.

    Objective: Three patients with intractable Tourette syndrome (TS) underwent thalamic deep brain stimulation (DBS). To investigate the role of thalamic electrical activity in tic generation, local field potentials (LFP), EEG and EMG simultaneously were recorded. Methods: Event related potentials and

  5. Stimulation of deep gas wells using HCl/formic acid system : lab studies and field application

    Energy Technology Data Exchange (ETDEWEB)

    Nasr-El-Din, H.A.; Al-Mutairi, S.; Al-Malki, B. [Saudi Aramco (Saudi Arabia); Metcalf, S.; Walters, W. [BJ Services Co USA, Houston, TX (United States)

    2002-06-01

    Well stimulation in the deep carbonate Khuff reservoirs in eastern Saudi Arabia is needed to remove drilling mud filter cakes and to enhance reservoir permeability. A non associated gas is being produced from the reservoirs. This gas is associated with the hydrogen sulfide content that varies from 0 to 10-mol per cent. The average reservoir temperature is 275 degrees F and initial reservoir pressure is 7,000 psi. A special system is needed to stimulate the carbonate reservoir because of this high bottomhole temperature and the corrosive nature of hydrochloric acid (HCl) at high temperature. A rotating disk method was used to determine the reaction rate of an HCl/formic acid system with reservoir rocks. Results from coreflood tests showed that the acid system creates deep wormholes in tight reservoir cores. Corrosion tests showed that the well tubulars could tolerate the acid system. A gelled 15-wt per cent HCl/9-wt per cent formic acid system successfully fractured 3 vertical wells in deep sour gas reservoirs without any operational problems. The treatment resulted in significant increases in gas production and flowing wellhead pressures. In addition, overflush of the treatment successfully eliminated the return of live acid after the treatment. 37 refs., 10 tabs., 17 figs.

  6. An ultra-high vacuum scanning tunneling microscope operating at sub-Kelvin temperatures and high magnetic fields for spin-resolved measurements

    Science.gov (United States)

    Salazar, C.; Baumann, D.; Hänke, T.; Scheffler, M.; Kühne, T.; Kaiser, M.; Voigtländer, R.; Lindackers, D.; Büchner, B.; Hess, C.

    2018-06-01

    We present the construction and performance of an ultra-low-temperature scanning tunneling microscope (STM), working in ultra-high vacuum (UHV) conditions and in high magnetic fields up to 9 T. The cryogenic environment of the STM is generated by a single-shot 3He magnet cryostat in combination with a 4He dewar system. At a base temperature (300 mK), the cryostat has an operation time of approximately 80 h. The special design of the microscope allows the transfer of the STM head from the cryostat to a UHV chamber system, where samples and STM tips can be easily exchanged. The UHV chambers are equipped with specific surface science treatment tools for the functionalization of samples and tips, including high-temperature treatments and thin film deposition. This, in particular, enables spin-resolved tunneling measurements. We present test measurements using well-known samples and tips based on superconductors and metallic materials such as LiFeAs, Nb, Fe, and W. The measurements demonstrate the outstanding performance of the STM with high spatial and energy resolution as well as the spin-resolved capability.

  7. Ground States of Ultracold Spin-1 Atoms in a Deep Double-Well Optical Superlattice in a Weak Magnetic Field

    International Nuclear Information System (INIS)

    Zheng Gong-Ping; Qin Shuai-Feng; Wang Shou-Yang; Jian Wen-Tian

    2013-01-01

    The ground states of the ultracold spin-1 atoms trapped in a deep one-dimensional double-well optical superlattice in a weak magnetic field are obtained. It is shown that the ground-state diagrams of the reduced double-well model are remarkably different for the antiferromagnetic and ferromagnetic condensates. The transition between the singlet state and nematic state is observed for the antiferromagnetic interaction atoms, which can be realized by modulating the tunneling parameter or the quadratic Zeeman energy. An experiment to distinguish the different spin states is suggested. (general)

  8. Anomalous enhancement of the lower critical field deep in the superconducting state of LaRu4As12

    Science.gov (United States)

    Juraszek, J.; Bochenek, Ł.; Wawryk, R.; Henkie, Z.; Konczykowski, M.; Cichorek, T.

    2018-05-01

    LaRu4As12 with the critical temperature Tc = 10.4 K displays several features which point at a non-singlet superconducting order parameter, although the bcc crystal structure of the filled skutterudites does not favour the emergence of multiple energy gaps. LaRu4As12 displays an unexpected enhancement of the lower critical field deep in superconducting state which can be attributed to the existence of two superconducting gaps. At T = 0.4 K, the local magnetization measurements were performed utilizing miniaturized Hall sensors.

  9. Quasar Host Galaxies/Neptune Rotation/Galaxy Building Blocks/Hubble Deep Field/Saturn Storm

    Science.gov (United States)

    2001-01-01

    Computerized animations simulate a quasar erupting in the core of a normal spiral galaxy, the collision of two interacting galaxies, and the evolution of the universe. Hubble Space Telescope (HST) images show six quasars' host galaxies (including spirals, ellipticals, and colliding galaxies) and six clumps of galaxies approximately 11 billion light years away. A false color time lapse movie of Neptune displays the planet's 16-hour rotation, and the evolution of a storm on Saturn is seen though a video of the planet's rotation. A zoom sequence starts with a ground-based image of the constellation Ursa major and ends with the Hubble Deep Field through progressively narrower and deeper views.

  10. Silicon on ferroelectic insulator field effect transistor (SOF-FET) a new device for the next generation ultra low power circuits

    Science.gov (United States)

    Es-Sakhi, Azzedin D.

    Field effect transistors (FETs) are the foundation for all electronic circuits and processors. These devices have progressed massively to touch its final steps in sub-nanometer level. Left and right proposals are coming to rescue this progress. Emerging nano-electronic devices (resonant tunneling devices, single-atom transistors, spin devices, Heterojunction Transistors rapid flux quantum devices, carbon nanotubes, and nanowire devices) took a vast share of current scientific research. Non-Si electronic materials like III-V heterostructure, ferroelectric, carbon nanotubes (CNTs), and other nanowire based designs are in developing stage to become the core technology of non-classical CMOS structures. FinFET present the current feasible commercial nanotechnology. The scalability and low power dissipation of this device allowed for an extension of silicon based devices. High short channel effect (SCE) immunity presents its major advantage. Multi-gate structure comes to light to improve the gate electrostatic over the channel. The new structure shows a higher performance that made it the first candidate to substitute the conventional MOSFET. The device also shows a future scalability to continue Moor's Law. Furthermore, the device is compatible with silicon fabrication process. Moreover, the ultra-low-power (ULP) design required a subthreshold slope lower than the thermionic-emission limit of 60mV/ decade (KT/q). This value was unbreakable by the new structure (SOI-FinFET). On the other hand most of the previews proposals show the ability to go beyond this limit. However, those pre-mentioned schemes have publicized a very complicated physics, design difficulties, and process non-compatibility. The objective of this research is to discuss various emerging nano-devices proposed for ultra-low-power designs and their possibilities to replace the silicon devices as the core technology in the future integrated circuit. This thesis proposes a novel design that exploits the

  11. Study on the drain bias effect on negative bias temperature instability degradation of an ultra-short p-channel metal-oxide-semiconductor field-effect transistor

    International Nuclear Information System (INIS)

    Yan-Rong, Cao; Xiao-Hua, Ma; Yue, Hao; Shi-Gang, Hu

    2010-01-01

    This paper studies the effect of drain bias on ultra-short p-channel metal-oxide-semiconductor field-effect transistor (PMOSFET) degradation during negative bias temperature (NBT) stress. When a relatively large gate voltage is applied, the degradation magnitude is much more than the drain voltage which is the same as the gate voltage supplied, and the time exponent gets larger than that of the NBT instability (NBTI). With decreasing drain voltage, the degradation magnitude and the time exponent all get smaller. At some values of the drain voltage, the degradation magnitude is even smaller than that of NBTI, and when the drain voltage gets small enough, the exhibition of degradation becomes very similar to the NBTI degradation. When a relatively large drain voltage is applied, with decreasing gate voltage, the degradation magnitude gets smaller. However, the time exponent becomes larger. With the help of electric field simulation, this paper concludes that the degradation magnitude is determined by the vertical electric field of the oxide, the amount of hot holes generated by the strong channel lateral electric field at the gate/drain overlap region, and the time exponent is mainly controlled by localized damage caused by the lateral electric field of the oxide in the gate/drain overlap region where hot carriers are produced. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Some problems in exploitation of deep-pumping wells in Tatarian oil fields

    Energy Technology Data Exchange (ETDEWEB)

    Ishemguzhin, S B

    1970-01-01

    Difficulty has been experienced in pumping paraffinic oil with rod pumps. The rods have scrapers to remove paraffin from tubing walls, however this method does not work well. In an effort to improve pumping efficiency, gas anchors of various types were tried. Best results were obtained when the pumps, equipped with gas anchors, were placed about 300 m under the dynamic liquid level, and separated gas was steadily removed through the annulus. With this arrangement, more complete filling of the pump was achieved. Experience has shown that with separate production of gas from wells, the useful stroke of the pump plunger is increased as well as productivity of deep-pumping equipment.

  13. Transducer project and optimization of the ultra low magnetic field NMR tomograph reception system system; Projeto de transdutores e otimizacao do sistema de recepcao do tomografo de RMN de campo magnetico ultra baixo

    Energy Technology Data Exchange (ETDEWEB)

    Vidoto, Edson Luiz Gea

    1995-12-31

    The aim of the present work was to optimize the signal to noise ratio in our NMR imaging system (TORM 005) by improving transducer`s reception quality through better designed coils, balanced tuning circuit for this coils and power decoupling circuits and by reducing interference from the electromagnetic environment. For this purpose, we had to modify the internal electromagnetic shielding and incorporate line filters in the more critical signals paths. Also, new types of coils were developed, improving the signal to noise ratio, and allowing us to make clinical exams with superior quality for several anatomies. Balanced circuits for tuning and matching of the coil were studied and built, allowing a reduction of the coil losses because patient`s load. This produced a more reliable coil tuning after positioning each new patient. Circuits to avoid the receiver input overload and decoupling circuits for the isolation of receiver coils from excitation coil were designed and incorporated to the TORM 005. All these alterations of our imaging system (TORM 005) contributed to a significant improvement in the signal to noise ratio, reliability and reproducibility of the system. This permitted to operate the system routinely for clinical applications, research and development in the area of ultra low magnetic field tomography. (author) 46 refs., 66 figs., 11 tabs.

  14. Transducer project and optimization of the ultra low magnetic field NMR tomograph reception system system; Projeto de transdutores e otimizacao do sistema de recepcao do tomografo de RMN de campo magnetico ultra baixo

    Energy Technology Data Exchange (ETDEWEB)

    Vidoto, Edson Luiz Gea

    1996-12-31

    The aim of the present work was to optimize the signal to noise ratio in our NMR imaging system (TORM 005) by improving transducer`s reception quality through better designed coils, balanced tuning circuit for this coils and power decoupling circuits and by reducing interference from the electromagnetic environment. For this purpose, we had to modify the internal electromagnetic shielding and incorporate line filters in the more critical signals paths. Also, new types of coils were developed, improving the signal to noise ratio, and allowing us to make clinical exams with superior quality for several anatomies. Balanced circuits for tuning and matching of the coil were studied and built, allowing a reduction of the coil losses because patient`s load. This produced a more reliable coil tuning after positioning each new patient. Circuits to avoid the receiver input overload and decoupling circuits for the isolation of receiver coils from excitation coil were designed and incorporated to the TORM 005. All these alterations of our imaging system (TORM 005) contributed to a significant improvement in the signal to noise ratio, reliability and reproducibility of the system. This permitted to operate the system routinely for clinical applications, research and development in the area of ultra low magnetic field tomography. (author) 46 refs., 66 figs., 11 tabs.

  15. Ultradeep Near-Infrared ISAAC Observations of the Hubble Deep Field South: Observations, Reduction, Multicolor Catalog, and Photometric Redshifts

    Science.gov (United States)

    Labbé, Ivo; Franx, Marijn; Rudnick, Gregory; Schreiber, Natascha M. Förster; Rix, Hans-Walter; Moorwood, Alan; van Dokkum, Pieter G.; van der Werf, Paul; Röttgering, Huub; van Starkenburg, Lottie; van der Wel, Arjen; Kuijken, Konrad; Daddi, Emanuele

    2003-03-01

    We present deep near-infrared (NIR) Js-, H-, and Ks-band ISAAC imaging of the Wide Field Planetary Camera 2 (WFPC2) field of the Hubble Deep Field South (HDF-S). The 2.5‧×2.5‧ high Galactic latitude field was observed with the Very Large Telescope under the best seeing conditions, with integration times amounting to 33.6 hr in Js, 32.3 hr in H, and 35.6 hr in Ks. We reach total AB magnitudes for point sources of 26.8, 26.2, and 26.2, respectively (3 σ), which make it the deepest ground-based NIR observation to date and the deepest Ks-band data in any field. The effective seeing of the co-added images is ~0.45" in Js, ~0.48" in H, and ~0.46" in Ks. Using published WFPC2 optical data, we constructed a Ks-limited multicolor catalog containing 833 sources down to Ktots,AB2.3 (in Johnson magnitudes). Because they are extremely faint in the observed optical, they would be missed by ultraviolet-optical selection techniques, such as the U-dropout method. Based on service mode observations collected at the European Southern Observatory, Paranal, Chile (ESO Program 164.O-0612). Also based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555.

  16. Ultra-low switching energy and scaling in electric-field-controlled nanoscale magnetic tunnel junctions with high resistance-area product

    Energy Technology Data Exchange (ETDEWEB)

    Grezes, C.; Alzate, J. G.; Cai, X.; Wang, K. L. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Ebrahimi, F.; Khalili Amiri, P. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Inston, Inc., Los Angeles, California 90024 (United States); Katine, J. A. [HGST, Inc., San Jose, California 95135 (United States); Langer, J.; Ocker, B. [Singulus Technologies AG, Kahl am Main 63796 (Germany)

    2016-01-04

    We report electric-field-induced switching with write energies down to 6 fJ/bit for switching times of 0.5 ns, in nanoscale perpendicular magnetic tunnel junctions (MTJs) with high resistance-area product and diameters down to 50 nm. The ultra-low switching energy is made possible by a thick MgO barrier that ensures negligible spin-transfer torque contributions, along with a reduction of the Ohmic dissipation. We find that the switching voltage and time are insensitive to the junction diameter for high-resistance MTJs, a result accounted for by a macrospin model of purely voltage-induced switching. The measured performance enables integration with same-size CMOS transistors in compact memory and logic integrated circuits.

  17. Quantitative imaging of brain energy metabolisms and neuroenergetics using in vivo X-nuclear 2H, 17O and 31P MRS at ultra-high field.

    Science.gov (United States)

    Zhu, Xiao-Hong; Lu, Ming; Chen, Wei

    2018-07-01

    Brain energy metabolism relies predominantly on glucose and oxygen utilization to generate biochemical energy in the form of adenosine triphosphate (ATP). ATP is essential for maintaining basal electrophysiological activities in a resting brain and supporting evoked neuronal activity under an activated state. Studying complex neuroenergetic processes in the brain requires sophisticated neuroimaging techniques enabling noninvasive and quantitative assessment of cerebral energy metabolisms and quantification of metabolic rates. Recent state-of-the-art in vivo X-nuclear MRS techniques, including 2 H, 17 O and 31 P MRS have shown promise, especially at ultra-high fields, in the quest for understanding neuroenergetics and brain function using preclinical models and in human subjects under healthy and diseased conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. High performance organic field-effect transistors with ultra-thin HfO2 gate insulator deposited directly onto the organic semiconductor

    International Nuclear Information System (INIS)

    Ono, S.; Häusermann, R.; Chiba, D.; Shimamura, K.; Ono, T.; Batlogg, B.

    2014-01-01

    We have produced stable organic field-effect transistors (OFETs) with an ultra-thin HfO 2 gate insulator deposited directly on top of rubrene single crystals by atomic layer deposition (ALD). We find that ALD is a gentle deposition process to grow thin films without damaging rubrene single crystals, as results these devices have a negligibly small threshold voltage and are very stable against gate-bias-stress, and the mobility exceeds 1 cm 2 /V s. Moreover, the devices show very little degradation even when kept in air for more than 2 months. These results demonstrate thin HfO 2 layers deposited by ALD to be well suited as high capacitance gate dielectrics in OFETs operating at small gate voltage. In addition, the dielectric layer acts as an effective passivation layer to protect the organic semiconductor

  19. Special features in choosing a development procedure for deep gas condensate fields with small reserves

    Energy Technology Data Exchange (ETDEWEB)

    Rassokhin, G V; Soshnin, N M

    1971-01-01

    In planning the development and production schedule for fields with small gas-condensate reserves, the following factors need to be considered: capital investment per unit of production, value of produced gas, ultimate recovered reserves, geological structure of the field, depth of well, heterogeneity of producing sands, etc. The importance of such factors is discussed and it is shown that for small fields, the parameter of minimum net expense cannot be used as a planning tool. Both geological and economic factors must be included in field development.

  20. Evaluation of the liver in normal subjects and cases of hepatic diseases by ultra-low field (0.02 T) magnetic resonance imaging

    International Nuclear Information System (INIS)

    Iwasaki, Yoshie

    1988-01-01

    A total of 123 cases (45 controls, 14 liver cirrhoses, 6 fatty livers, 22 cavernous hemangiomas, 14 hepatomas, 9 metastases, 10 cysts, and 3 hemorrhagic cysts) were studied by ultra-low field magnetic resonance imaging. On T1-weighted images, the means of the intesity ratio in controls were 0.703±0.074 (liver to spleen), 0.658±0.073 (liver to kidney) and 0.932±0.058 (spleen to kidney). On T2-weighted images, the means of the intensity ratios in controls were 0.449±0.083 (liver to spleen), 0.363±0.069 (liver to kidney) and 0.822±0.115 (spleen to kidney). In liver cirrhosis, on T2-weighted images, the intensity ratio of liver to kidney and spleen to kidney. In liver cirrhosis were significantly higher than those in controls. In fatty liver, the intensity ratio of liver to spleen on T1-weighted image, and those of liver to spleen and liver to kidney on T2-weighted image were higher than those in controls. On T2-weighted images, the intensity ratio of tumor to liver in hepatic cavernous hemangioma were significantly higher than those in hepatocellular carcinoma and metastatic liver tumor. Ultra-low field magnetic resonance imaging with the intensity ratio of tumor to liver was valuable in distinguishing between hepatic cavernous hemangioma and hepatic malignancies and it was also possible to distinguish hemorrhagic liver cyst from non-hemorrhagic liver cyst. (author)

  1. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2001-10-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

  2. Criticality features in ultra-low frequency magnetic fields prior to the 2013 M6.3 Kobe earthquake

    Directory of Open Access Journals (Sweden)

    Stelios M. Potirakis

    2016-07-01

    Full Text Available The nonlinear criticality of ultra-low frequency (ULF magnetic variations is investigated before a particular earthquake (EQ occurred in Kobe on April 12, 2013, by applying the “natural time” analysis on a few ULF parameters: Fh, Fz and Dh. The first two refer to radiation from the lithosphere, and the last parameter corresponds to depression of horizontal component as a signature of ionospheric perturbation. A recent paper of our team has indicated, using the same data as in this paper but by means of conventional statistical analysis, a clear effect of depression in the horizontal component as an ionospheric signature. But there seems to be no convincing signature of lithospheric ULF radiation according to the specific analysis, so this paper aims at extending our study on the electromagnetic data recorded prior to the specific EQ by trying to find any significant phenomenon in ULF effects (both lithospheric radiation and the depression of horizontal component using the critical, natural time analysis. The natural time analysis has yielded that criticality at Shigaraki (SGA, as the station closest to the EQ epicenter, is reached on March 27-29 for Fh and March 27 to April 1 for Fz (about two weeks before the EQ. But, the criticality for Dh was not observed at SGA probably due to high noise, on the other hand such criticality was observed at Kanoya (KNY because of its known property of a wider range of detection of ULF depression.

  3. Modelling the effects of the radiation reaction force on the interaction of thin foils with ultra-intense laser fields

    Science.gov (United States)

    Duff, M. J.; Capdessus, R.; Del Sorbo, D.; Ridgers, C. P.; King, M.; McKenna, P.

    2018-06-01

    The effects of the radiation reaction (RR) force on thin foils undergoing radiation pressure acceleration (RPA) are investigated. Using QED-particle-in-cell simulations, the influence of the RR force on the collective electron dynamics within the target can be examined. The magnitude of the RR force is found to be strongly dependent on the target thickness, leading to effects which can be observed on a macroscopic scale, such as changes to the distribution of the emitted radiation and the target dynamics. This suggests that such parameters may be controlled in experiments at multi-PW laser facilities. In addition, the effects of the RR force are characterized in terms of an average radiation emission angle. We present an analytical model which, for the first time, describes the effect of the RR force on the collective electron dynamics within the ‘light-sail’ regime of RPA. The predictions of this model can be tested in future experiments with ultra-high intensity lasers interacting with solid targets.

  4. Central limit theorem in quantum field theory, generalized partons and application to deep-inelastic scattering

    International Nuclear Information System (INIS)

    Manoukian, E.B.

    1986-01-01

    We prove the following elementary theorem. If diameter 1 ,...,diametersub(N) is a sequence of fields having identical, though arbitrary, interactions but not interacting with each other and =0, i=1,...,N, then the generating functional of the ''average'' field diametersup((N))=(diameter 1 +...+diametersub((N))/√N, for N->infinite, may be explicitly obtained and may be written in terms of the two-point function of any of the fields diametersub(i). The theorem is then applied to define generalized parton fields PSIsub(j)=Σsup(N)sub(i)=1 PSIij/√N as ''averages'' of basic fields PSIsub(ij) having arbitrary interactions but not interacting with each other. We show that in the limit N->infinite Bjorken scaling, as observed at energies not too high, may be obtained if only quanta associated with generalized parton fields are excited in the hadron by the virtual photon with no reference to the details of the underlying dynamics. For N< infinite, and the excitation of other quanta as well lead to a systematic breaking of scale invariance and the details of the dynamics are necessarily recovered which are expected to be applicable at higher energy regimes. (orig.)

  5. Diffusion Properties and 3D Architecture of Human Lower Leg Muscles Assessed with Ultra-High-Field-Strength Diffusion-Tensor MR Imaging and Tractography: Reproducibility and Sensitivity to Sex Difference and Intramuscular Variability.

    Science.gov (United States)

    Fouré, Alexandre; Ogier, Augustin C; Le Troter, Arnaud; Vilmen, Christophe; Feiweier, Thorsten; Guye, Maxime; Gondin, Julien; Besson, Pierre; Bendahan, David

    2018-05-01

    Purpose To demonstrate the reproducibility of the diffusion properties and three-dimensional structural organization measurements of the lower leg muscles by using diffusion-tensor imaging (DTI) assessed with ultra-high-field-strength (7.0-T) magnetic resonance (MR) imaging and tractography of skeletal muscle fibers. On the basis of robust statistical mapping analyses, this study also aimed at determining the sensitivity of the measurements to sex difference and intramuscular variability. Materials and Methods All examinations were performed with ethical review board approval; written informed consent was obtained from all volunteers. Reproducibility of diffusion tensor indexes assessment including eigenvalues, mean diffusivity, and fractional anisotropy (FA) as well as muscle volume and architecture (ie, fiber length and pennation angle) were characterized in lower leg muscles (n = 8). Intramuscular variability and sex differences were characterized in young healthy men and women (n = 10 in each group). Student t test, statistical parametric mapping, correlation coefficients (Spearman rho and Pearson product-moment) and coefficient of variation (CV) were used for statistical data analysis. Results High reproducibility of measurements (mean CV ± standard deviation, 4.6% ± 3.8) was determined in diffusion properties and architectural parameters. Significant sex differences were detected in FA (4.2% in women for the entire lower leg; P = .001) and muscle volume (21.7% in men for the entire lower leg; P = .008), whereas architecture parameters were almost identical across sex. Additional differences were found independently of sex in diffusion properties and architecture along several muscles of the lower leg. Conclusion The high-spatial-resolution DTI assessed with 7.0-T MR imaging allows a reproducible assessment of structural organization of superficial and deep muscles, giving indirect information on muscle function. © RSNA, 2018 Online supplemental material is

  6. Design and performance of an ultra-high vacuum spin-polarized scanning tunneling microscope operating at 30 mK and in a vector magnetic field.

    Science.gov (United States)

    von Allwörden, Henning; Eich, Andreas; Knol, Elze J; Hermenau, Jan; Sonntag, Andreas; Gerritsen, Jan W; Wegner, Daniel; Khajetoorians, Alexander A

    2018-03-01

    We describe the design and performance of a scanning tunneling microscope (STM) that operates at a base temperature of 30 mK in a vector magnetic field. The cryogenics is based on an ultra-high vacuum (UHV) top-loading wet dilution refrigerator that contains a vector magnet allowing for fields up to 9 T perpendicular and 4 T parallel to the sample. The STM is placed in a multi-chamber UHV system, which allows in situ preparation and exchange of samples and tips. The entire system rests on a 150-ton concrete block suspended by pneumatic isolators, which is housed in an acoustically isolated and electromagnetically shielded laboratory optimized for extremely low noise scanning probe measurements. We demonstrate the overall performance by illustrating atomic resolution and quasiparticle interference imaging and detail the vibrational noise of both the laboratory and microscope. We also determine the electron temperature via measurement of the superconducting gap of Re(0001) and illustrate magnetic field-dependent measurements of the spin excitations of individual Fe atoms on Pt(111). Finally, we demonstrate spin resolution by imaging the magnetic structure of the Fe double layer on W(110).

  7. Design and performance of an ultra-high vacuum scanning tunneling microscope operating at dilution refrigerator temperatures and high magnetic fields.

    Science.gov (United States)

    Misra, S; Zhou, B B; Drozdov, I K; Seo, J; Urban, L; Gyenis, A; Kingsley, S C J; Jones, H; Yazdani, A

    2013-10-01

    We describe the construction and performance of a scanning tunneling microscope capable of taking maps of the tunneling density of states with sub-atomic spatial resolution at dilution refrigerator temperatures and high (14 T) magnetic fields. The fully ultra-high vacuum system features visual access to a two-sample microscope stage at the end of a bottom-loading dilution refrigerator, which facilitates the transfer of in situ prepared tips and samples. The two-sample stage enables location of the best area of the sample under study and extends the experiment lifetime. The successful thermal anchoring of the microscope, described in detail, is confirmed through a base temperature reading of 20 mK, along with a measured electron temperature of 250 mK. Atomically resolved images, along with complementary vibration measurements, are presented to confirm the effectiveness of the vibration isolation scheme in this instrument. Finally, we demonstrate that the microscope is capable of the same level of performance as typical machines with more modest refrigeration by measuring spectroscopic maps at base temperature both at zero field and in an applied magnetic field.

  8. Design and performance of an ultra-high vacuum spin-polarized scanning tunneling microscope operating at 30 mK and in a vector magnetic field

    Science.gov (United States)

    von Allwörden, Henning; Eich, Andreas; Knol, Elze J.; Hermenau, Jan; Sonntag, Andreas; Gerritsen, Jan W.; Wegner, Daniel; Khajetoorians, Alexander A.

    2018-03-01

    We describe the design and performance of a scanning tunneling microscope (STM) that operates at a base temperature of 30 mK in a vector magnetic field. The cryogenics is based on an ultra-high vacuum (UHV) top-loading wet dilution refrigerator that contains a vector magnet allowing for fields up to 9 T perpendicular and 4 T parallel to the sample. The STM is placed in a multi-chamber UHV system, which allows in situ preparation and exchange of samples and tips. The entire system rests on a 150-ton concrete block suspended by pneumatic isolators, which is housed in an acoustically isolated and electromagnetically shielded laboratory optimized for extremely low noise scanning probe measurements. We demonstrate the overall performance by illustrating atomic resolution and quasiparticle interference imaging and detail the vibrational noise of both the laboratory and microscope. We also determine the electron temperature via measurement of the superconducting gap of Re(0001) and illustrate magnetic field-dependent measurements of the spin excitations of individual Fe atoms on Pt(111). Finally, we demonstrate spin resolution by imaging the magnetic structure of the Fe double layer on W(110).

  9. FIRST RESULTS FROM Pan-STARRS1: FAINT, HIGH PROPER MOTION WHITE DWARFS IN THE MEDIUM-DEEP FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Tonry, J. L.; Flewelling, H. A.; Deacon, N. R.; Burgett, W. S.; Chambers, K. C.; Kaiser, N.; Kudritzki, R.-P.; Hodapp, K. W.; Magnier, E. A.; Morgan, J. S.; Wainscoat, R. J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Stubbs, C. W.; Kilic, M.; Chornock, R.; Berger, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Price, P. A. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2012-01-20

    The Pan-STARRS1 survey has obtained multi-epoch imaging in five bands (Pan-STARRS1 g{sub P1}, r{sub P1}, i{sub P1}, z{sub P1}, and y{sub P1}) on 12 'Medium-Deep fields', each of which spans a 3.{sup 0}3 circle. For the period between 2009 April and 2011 April these fields were observed 50-200 times. Using a reduced proper motion diagram, we have extracted a list of 47 white dwarf (WD) candidates whose Pan-STARRS1 astrometry indicates a non-zero proper motion at the 6{sigma} level, with a typical 1{sigma} proper motion uncertainty of 10 mas yr{sup -1}. We also used astrometry from the Sloan Digital Sky Survey (when available) and USNO-B to assess our proper motion fits. None of the WD candidates exhibits evidence of statistically significant parallaxes, with a typical 1{sigma} uncertainty of 8 mas. Twelve of these candidates are known WDs, including the high proper motion (1.''7 yr{sup -1}) WD LHS 291. We confirm seven more objects as WDs through optical spectroscopy. Based on the Pan-STARRS1 colors, ten of the stars are likely to be cool WDs with 4170 K Deep Field Survey and the 3{pi} survey, Pan-STARRS1 should find many more high proper motion WDs that are part of the old thick disk and halo.

  10. Characteristic of the radiation field in low earth orbit and in deep space

    International Nuclear Information System (INIS)

    Reitz, Guenther

    2008-01-01

    The radiation exposure in space by cosmic radiation can be reduced through careful mission planning and constructive measures as example the provision of a radiation shelter, but it cannot be completely avoided. The reason for that are the extreme high energies of particles in this field and the herewith connected high penetration depth in matter. For missions outside the magnetosphere ionizing radiation is recognized as the key factor through its impact on crew health and performance. In absence of sporadic solar particle events the radiation exposure in Low Earth orbit (LEO) inside Spacecraft is determined by the galactic cosmic radiation (protons and heavier ions) and by the protons inside the South Atlantic Anomaly (SAA), an area where the radiation belt comes closer to the earth surface due to a displacement of the magnetic dipole axes from the Earth's center. In addition there is an albedo source of neutrons produced as interaction products of the primary galactic particles with the atoms of the earth atmosphere. Outside the spacecraft the dose is dominated by the electrons of the horns of the radiation belt located at about 60 latitude in Polar Regions. The radiation field has spatial and temporal variations in dependence of the Earth magnetic field and the solar cycle. The complexity of the radiation field inside a spacecraft is further increased through the interaction of the high energy components with the spacecraft shielding material and with the body of the astronauts. In interplanetary missions the radiation belt will be crossed in a couple of minutes and therefore its contribution to their radiation exposure is quite small, but subsequently the protection by the Earth magnetic field is lost, leaving only shielding measures as exposure reduction means. The report intends to describe the radiation field in space, the interaction of the particles with the magnetic field and shielding material and give some numbers on the radiation exposure in low earth

  11. Characteristic of the radiation field in low Earth orbit and in deep space.

    Science.gov (United States)

    Reitz, Guenther

    2008-01-01

    The radiation exposure in space by cosmic radiation can be reduced through careful mission planning and constructive measures as example the provision of a radiation shelter, but it cannot be completely avoided. The reason for that are the extreme high energies of particles in this field and the herewith connected high penetration depth in matter. For missions outside the magnetosphere ionizing radiation is recognized as the key factor through its impact on crew health and performance. In absence of sporadic solar particle events the radiation exposure in Low Earth orbit (LEO) inside Spacecraft is determined by the galactic cosmic radiation (protons and heavier ions) and by the protons inside the South Atlantic Anomaly (SAA), an area where the radiation belt comes closer to the earth surface due to a displacement of the magnetic dipole axes from the Earth's center. In addition there is an albedo source of neutrons produced as interaction products of the primary galactic particles with the atoms of the earth atmosphere. Outside the spacecraft the dose is dominated by the electrons of the horns of the radiation belt located at about 60" latitude in Polar Regions. The radiation field has spatial and temporal variations in dependence of the Earth magnetic field and the solar cycle. The complexity of the radiation field inside a spacecraft is further increased through the interaction of the high energy components with the spacecraft shielding material and with the body of the astronauts. In interplanetary missions the radiation belt will be crossed in a couple of minutes and therefore its contribution to their radiation exposure is quite small, but subsequently the protection by the Earth magnetic field is lost, leaving only shielding measures as exposure reduction means. The report intends to describe the radiation field in space, the interaction of the particles with the magnetic field and shielding material and give some numbers on the radiation exposure in low earth

  12. A Visual Astronomer's Photographic Guide to the Deep Sky A Pocket Field Guide

    CERN Document Server

    Rumistrzewicz, Stefan

    2010-01-01

    How many times have you ‘found’ a deep sky object (DSO), ticked it off the list, and moved on, or used the ‘Tour’ function on your GO-TO ‘scope and said, ‘Oh that’s a just a smudge’ or ‘Can’t see it – I’ll move on to the next one.’ If this has happened to you, then this book is for you. It will challenge you to go back to the ‘smudge’ and really look. Can you see the faint wisp or the detail in the southeastern corner? Can you see the small cluster within the cluster? Try to classify the open cluster for yourself. Compare it to the ‘accepted’ Trumpler classification. Whether you have a GO-TO ‘scope or not, this book gets you to rediscover one of the great things that got you into this hobby in the first place – looking through the eyepiece of a telescope. So pack away the DSLR, CCD camera, the guide ‘scope, and laptop and open your pencil case! You’re in for some fun!

  13. The long term behaviour of the near-field barrier surrounding a deep underground repository

    International Nuclear Information System (INIS)

    1992-02-01

    This report describes research to identify the factors which govern or influence the long-term behaviour of the near-field of a nuclear waste repository. The near-field components include the engineered barriers and the natural rock mass although the behaviour of the rock mass is of greater significance over the long-term. The factors which govern the near-field behaviour consist of the processes which operate, and the properties or parameters of the rock mass which might be modified by them. The methods which are available for the prediction of the near-field behaviour have been identified, and the emphasis on computer based methods is noted. Summary details of generic computer techniques are provided for different process modelling requirements. An attempt is made to indicate how different processes will be important at various stages during the life of the repository and how the evaluation of performance assessment process modelling requires input from empirical models and the results of other process predictions. (Author)

  14. Review of excavation methods and their implications for the near-field barrier of a deep underground repository

    International Nuclear Information System (INIS)

    Young, D.K.

    1993-01-01

    The report reviews excavation techniques for use in the construction of deep underground radioactive waste repositories, gives a summary of responses of the host rock to excavation and the means of measuring that response and discusses techniques for predicting that response. The review of excavation techniques included technical developments and current practice. To this end an extensive database was developed reviewing major excavations in rock types relevant to disposal and the techniques employed. Creation of an underground opening alters the properties of the rock mass around it. This study identifies stress, displacement, rock mass deformability and permeability as key parameters and reviews how they may be determined. Finally the report discusses the techniques available for predicting the behaviour of the near-field host rock. This concentrates on methods of numerical analysis since existing empirical or analytical methods are not considered suitable. (author)

  15. Automated Morphological Classification in Deep Hubble Space Telescope UBVI Fields: Rapidly and Passively Evolving Faint Galaxy Populations

    Science.gov (United States)

    Odewahn, Stephen C.; Windhorst, Rogier A.; Driver, Simon P.; Keel, William C.

    1996-11-01

    We analyze deep Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) images in U, B, V, I using artificial neural network (ANN) classifiers, which are based on galaxy surface brightness and light profile (but not on color nor on scale length, rhl). The ANN distinguishes quite well between E/S0, Sabc, and Sd/Irr+M galaxies (M for merging systems) for BJ ~ 24 mag. The faint blue galaxy counts in the B band are dominated by Sd/Irr+M galaxies and can be explained by a moderately steep local luminosity function (LF) undergoing strong luminosity evolution. We suggest that these faint late-type objects (24 mag <~ BJ <~ 28 mag) are a combination of low-luminosity lower redshift dwarf galaxies, plus compact star-forming galaxies and merging systems at z ~= 1--3, possibly the building blocks of the luminous early-type galaxies seen today.

  16. A search for planetary eclipses of white dwarfs in the Pan-STARRS1 medium-deep fields

    Energy Technology Data Exchange (ETDEWEB)

    Fulton, B. J.; Tonry, J. L.; Flewelling, H.; Burgett, W. S.; Chambers, K. C.; Hodapp, K. W.; Huber, M. E.; Kaiser, N.; Wainscoat, R. J.; Waters, C. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2014-12-01

    We present a search for eclipses of ∼1700 white dwarfs (WDs) in the Pan-STARRS1 medium-deep fields. Candidate eclipse events are selected by identifying low outliers in over 4.3 million light curve measurements. We find no short-duration eclipses consistent with being caused by a planetary size companion. This large data set enables us to place strong constraints on the close-in planet occurrence rates around WDs for planets as small as 2 R {sub ⊕}. Our results indicate that gas giant planets orbiting just outside the Roche limit are rare, occurring around less than 0.5% of WDs. Habitable-zone super-Earths and hot super-Earths are less abundant than similar classes of planets around main-sequence stars. These constraints provide important insight into the ultimate fate of the large population of exoplanets orbiting main-sequence stars.

  17. The NuSTAR Extragalactic Surveys: Initial Results and Catalog from the Extended Chandra Deep Field South

    DEFF Research Database (Denmark)

    Mullaney, J. R.; Del-Moro, A.; Aird, J.

    2015-01-01

    We present the initial results and the source catalog from the Nuclear Spectroscopic Telescope Array (NuSTAR) survey of the Extended Chandra Deep Field South (hereafter, ECDFS)—currently the deepest contiguous component of the NuSTAR extragalactic survey program. The survey covers the full ≈30......V fluxes) span the range L10 40 keV (0.7 300) 10 erg s» - ´ 43 1 -- ,sampling below the “knee” of the X-ray luminosity function out to z ~ 0.8-1. Finally, we identify oneNuSTAR source that has neither a Chandra nor an XMM-Newton counterpart, but that shows evidence of nuclearactivity at infrared...

  18. Field Performance of ISFET based Deep Ocean pH Sensors

    Science.gov (United States)

    Branham, C. W.; Murphy, D. J.

    2017-12-01

    Historically, ocean pH time series data was acquired from infrequent shipboard grab samples and measured using labor intensive spectrophotometry methods. However, with the introduction of robust and stable ISFET pH sensors for use in ocean applications a paradigm shift in the methods used to acquire long-term pH time series data has occurred. Sea-Bird Scientific played a critical role in the adoption this new technology by commercializing the SeaFET pH sensor and float pH Sensor developed by the MBARI chemical sensor group. Sea-Bird Scientific continues to advance this technology through a concerted effort to improve pH sensor accuracy and reliability by characterizing their performance in the laboratory and field. This presentation will focus on calibration of the ISFET pH sensor, evaluate its analytical performance, and validate performance using recent field data.

  19. A modular designed ultra-high-vacuum spin-polarized scanning tunneling microscope with controllable magnetic fields for investigating epitaxial thin films.

    Science.gov (United States)

    Wang, Kangkang; Lin, Wenzhi; Chinchore, Abhijit V; Liu, Yinghao; Smith, Arthur R

    2011-05-01

    A room-temperature ultra-high-vacuum scanning tunneling microscope for in situ scanning freshly grown epitaxial films has been developed. The core unit of the microscope, which consists of critical components including scanner and approach motors, is modular designed. This enables easy adaptation of the same microscope units to new growth systems with different sample-transfer geometries. Furthermore the core unit is designed to be fully compatible with cryogenic temperatures and high magnetic field operations. A double-stage spring suspension system with eddy current damping has been implemented to achieve ≤5 pm z stability in a noisy environment and in the presence of an interconnected growth chamber. Both tips and samples can be quickly exchanged in situ; also a tunable external magnetic field can be introduced using a transferable permanent magnet shuttle. This allows spin-polarized tunneling with magnetically coated tips. The performance of this microscope is demonstrated by atomic-resolution imaging of surface reconstructions on wide band-gap GaN surfaces and spin-resolved experiments on antiferromagnetic Mn(3)N(2)(010) surfaces.

  20. A STRONGLY LENSED MASSIVE ULTRACOMPACT QUIESCENT GALAXY AT z ∼ 2.4 IN THE COSMOS/UltraVISTA FIELD

    International Nuclear Information System (INIS)

    Muzzin, Adam; Labbé, Ivo; Franx, Marijn; Holt, J.; Szomoru, Daniel; Van de Sande, Jesse; Van Dokkum, Pieter; Brammer, Gabriel; Marchesini, Danilo; Stefanon, Mauro; Buitrago, F.; Dunlop, James; Caputi, K. I.; Fynbo, J. P. U.; Milvang-Jensen, Bo; Le Févre, Olivier; McCracken, Henry J.

    2012-01-01

    We report the discovery of a massive ultracompact quiescent galaxy that has been strongly lensed into multiple images by a foreground galaxy at z 0.960. This system was serendipitously discovered as a set of extremely K s -bright high-redshift galaxies with red J – K s colors using new data from the UltraVISTA YJHK s near-infrared survey. The system was also previously identified as an optically faint lens/source system using the COSMOS Advanced Camera for Surveys (ACS) imaging by Faure et al. Photometric redshifts for the three brightest images of the source galaxy determined from 27-band photometry place the source at z = 2.4 ± 0.1. We provide an updated lens model for the system that is a good fit to the positions and morphologies of the galaxies in the ACS image. The lens model implies that the magnification of the three brightest images is a factor of 4-5. We use the lens model, combined with the K s -band image, to constrain the size and Sérsic profile of the galaxy. The best-fit model is an ultracompact galaxy (R e = 0.64 +0.08 –0.18 kpc, lensing-corrected), with a Sérsic profile that is intermediate between a disk and a bulge profile (n 2.2 +2.3 – 0 .9 ), albeit with considerable uncertainties on the Sérsic profile. We present aperture photometry for the source galaxy images that have been corrected for flux contamination from the central lens. The best-fit stellar population model is a massive galaxy (log(M star /M ☉ ) = 10.8 +0.1 –0.1 , lensing-corrected) with an age of 1.0 +1.0 –0.4 Gyr, moderate dust extinction (A v = 0.8 +0.5 –0.6 ), and a low specific star formation rate (log(SSFR) –1 ). This is typical of massive ''red-and-dead'' galaxies at this redshift and confirms that this source is the first bona fide strongly lensed massive ultracompact quiescent galaxy to be discovered. We conclude with a discussion of the prospects of finding a larger sample of these galaxies.

  1. SEDS: THE SPITZER EXTENDED DEEP SURVEY. SURVEY DESIGN, PHOTOMETRY, AND DEEP IRAC SOURCE COUNTS

    International Nuclear Information System (INIS)

    Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Huang, J.-S.; Hernquist, L.; Hora, J. L.; Arendt, R.; Barmby, P.; Barro, G.; Faber, S.; Guhathakurta, P.; Bell, E. F.; Bouwens, R.; Cattaneo, A.; Croton, D.; Davé, R.; Dunlop, J. S.; Egami, E.; Finlator, K.; Grogin, N. A.

    2013-01-01

    The Spitzer Extended Deep Survey (SEDS) is a very deep infrared survey within five well-known extragalactic science fields: the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS, the Hubble Deep Field North, and the Extended Groth Strip. SEDS covers a total area of 1.46 deg 2 to a depth of 26 AB mag (3σ) in both of the warm Infrared Array Camera (IRAC) bands at 3.6 and 4.5 μm. Because of its uniform depth of coverage in so many widely-separated fields, SEDS is subject to roughly 25% smaller errors due to cosmic variance than a single-field survey of the same size. SEDS was designed to detect and characterize galaxies from intermediate to high redshifts (z = 2-7) with a built-in means of assessing the impact of cosmic variance on the individual fields. Because the full SEDS depth was accumulated in at least three separate visits to each field, typically with six-month intervals between visits, SEDS also furnishes an opportunity to assess the infrared variability of faint objects. This paper describes the SEDS survey design, processing, and publicly-available data products. Deep IRAC counts for the more than 300,000 galaxies detected by SEDS are consistent with models based on known galaxy populations. Discrete IRAC sources contribute 5.6 ± 1.0 and 4.4 ± 0.8 nW m –2 sr –1 at 3.6 and 4.5 μm to the diffuse cosmic infrared background (CIB). IRAC sources cannot contribute more than half of the total CIB flux estimated from DIRBE data. Barring an unexpected error in the DIRBE flux estimates, half the CIB flux must therefore come from a diffuse component.

  2. Ultra-low q and reversed field pinch experiments in Extrap T1 with a resistive shell

    International Nuclear Information System (INIS)

    Brunsell, P.; Drake, J.R.; Mazur, S.; Nordlund, P.

    1991-02-01

    The Extrap T1 device is a high aspect ratio toroidal pinch with the dimensions R/a = 0.5 m/0.057 m. In the experiments described here, the stainless steel bellows vacuum vessels was surrounded by a resistive shell with a perpendicular field penetration time of 75 μs. The ULQ discharges, with toroidal currents in the range 20-50 kA and pulse lengths up to 2 ms, showed the typical step-wise decay of the plasma current. The current steps corresponded to transitions of the edge q-value across rational values 1/4, 1/3, 1/2, and 1. During a step through a rational q value, there was an increase in the fluctuation activity and a corresponding increase in the plasma resistance. As part of the ULQ studies, discharges with four poloidal field nulls were produced by applying an octupole magnetic field, thus demonstrating that it is possible to sustain ULQ equilibria with poloidal field x-points and a magnetic separatix. In another study, the transition from ULQ discharges to relaxed state discharges was investigated. When the initial bias toroidal field was reduced so that q was less than about 1/6, which corresponded to a pinch parameter of about 0.6, a change in the discharge character was observed. The loop voltage required to sustain a given current increased and stochastic fluctuations were seen. Toroidal flux was generated and relaxed state equilibira developed. For higher pinch parameter, in the range of 1.5 to 2.0, a reversed field pinch could be set up if the toroidal field power supply provided a reversed current in the coils. The plasma resistivity was again lower and the pulse lengths in the RFP mode were up to 1 ms, corresponding to over 10 shell penetration times. (au)

  3. Multi-frequency ESR studies on a Haldane magnet in a field-induced phase at ultra-low temperatures

    International Nuclear Information System (INIS)

    Hagiwara, Masayuki; Kashiwagi, Takanari; Idutsu, Yuichi; Honda, Zentaro; Miyazaki, Hiroshi; Harada, Isao

    2010-01-01

    We report the results of multi-frequency electron spin resonance (ESR) measurements on single crystals of Ni(C 5 H 14 N 2 ) 2 N 3 (PF 6 ) which is regarded as the one-dimensional Heisenberg antiferromagnet with spin one, namely the Haldane magnet, at very low temperatures down to about 100 mK. We observed the lowest resonance branch below about 500 mK for the field along the chain direction (H||c), which was observed previously only in an inelastic neutron scattering experiment at 30 mK. We compare the resonance branch with that calculated by a phenomenological field theory, and discuss the field dependence and the temperature sensitivity of this ESR branch.

  4. Danish Ultras

    DEFF Research Database (Denmark)

    Havelund, Jonas; Joern, Lise; Rasmussen, Kristian

    2012-01-01

    It is well documented that knowledge of supporter culture is crucial when assessing the risk of disorder at football matches and thereby ensuring a balanced approach by police and stewards (Stott & Pearson 2007). Both within Denmark and internationally, there is a weak understanding of risk suppo....... The article aims to create knowledge concerning ultra supporter culture with the purpose of gaining the information necessary for building differentiated and balanced action on the part of the police and security services....

  5. Enhanced Field Emission from Argon Plasma-Treated Ultra-sharp α-Fe2O3Nanoflakes

    Directory of Open Access Journals (Sweden)

    Zhang JX

    2009-01-01

    Full Text Available Abstract Hematite nanoflakes have been synthesized by a simple heat oxide method and further treated by Argon plasmas. The effects of Argon plasma on the morphology and crystal structures of nanoflakes were investigated. Significant enhancement of field-induced electron emission from the plasma-treated nanoflakes was observed. The transmission electron microscopy investigation shows that the plasma treatment effectively removes amorphous coating and creates plenty of sub-tips at the surface of the nanoflakes, which are believed to contribute the enhancement of emission. This work suggests that plasma treatment technique could be a direct means to improve field-emission properties of nanostructures.

  6. Seismic Response of Deep Hydrocarbon Bearing Reservoirs: examples from Oso Field and implications for Future Opportunities

    International Nuclear Information System (INIS)

    Oluwasusi, A. B.; Hussey, V.; Goulding, F. J.

    2002-01-01

    The Oso Field (OML 70) produces approximately 100 TBD of condensate from Miocene age shelfal sand reservoirs at approximately 10,000 feet below sea level. The field was discovered in 1967 while testing a deeply buried fault closure. Reservoirs are normally pressured, exceed 1 Darcy in permeability and range from 50 to 600 feet in thickness.There are seismic amplitudes associated with the shallower reservoirs on the existing conventional 3D dataset; however there are no anomalies associated with the deeper, condensate accumulations.The paper explores the physical rock and fluid properties associated with the Oso reservoirs and the resulting seismic responses. Modelled results have been calibrated with the actual seismic signatures for the water and hydrocarbon bearing zones. Results indicate that the deeper reservoirs exhibit a classic Class II AVG seismic response and that the use of longer offset and angle stack data can help predict the occurrence of these types of reservoirs. Examples of similar accumulations will be shared.Mobil Producing Nigeria is conducting a full reprocessing effort of the existing 3D dataset over the Joint Venture acreage with a goal of identifying and exploiting additional accumulations with Class II AVG seismic response. Preliminary results of the reprocessing over known accumulations will be presented

  7. Automated Identification of Northern Leaf Blight-Infected Maize Plants from Field Imagery Using Deep Learning.

    Science.gov (United States)

    DeChant, Chad; Wiesner-Hanks, Tyr; Chen, Siyuan; Stewart, Ethan L; Yosinski, Jason; Gore, Michael A; Nelson, Rebecca J; Lipson, Hod

    2017-11-01

    Northern leaf blight (NLB) can cause severe yield loss in maize; however, scouting large areas to accurately diagnose the disease is time consuming and difficult. We demonstrate a system capable of automatically identifying NLB lesions in field-acquired images of maize plants with high reliability. This approach uses a computational pipeline of convolutional neural networks (CNNs) that addresses the challenges of limited data and the myriad irregularities that appear in images of field-grown plants. Several CNNs were trained to classify small regions of images as containing NLB lesions or not; their predictions were combined into separate heat maps, then fed into a final CNN trained to classify the entire image as containing diseased plants or not. The system achieved 96.7% accuracy on test set images not used in training. We suggest that such systems mounted on aerial- or ground-based vehicles can help in automated high-throughput plant phenotyping, precision breeding for disease resistance, and reduced pesticide use through targeted application across a variety of plant and disease categories.

  8. Programmable set-up for electrochemical preparation of STM tips and ultra-sharp field emission cathodes

    Czech Academy of Sciences Publication Activity Database

    Knápek, Alexandr; Sýkora, Jiří; Chlumská, Jana; Sobola, D.

    2017-01-01

    Roč. 173, APR 5 (2017), s. 42-47 ISSN 0167-9317 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : field emission cathode * STM tip * electrochemical etching Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Chemical process engineering Impact factor: 1.806, year: 2016

  9. Application of SQUIDs to low temperature and high magnetic field measurements—Ultra low noise torque magnetometry

    Science.gov (United States)

    Arnold, F.; Naumann, M.; Lühmann, Th.; Mackenzie, A. P.; Hassinger, E.

    2018-02-01

    Torque magnetometry is a key method to measure the magnetic anisotropy and quantum oscillations in metals. In order to resolve quantum oscillations in sub-millimeter sized samples, piezo-electric micro-cantilevers were introduced. In the case of strongly correlated metals with large Fermi surfaces and high cyclotron masses, magnetic torque resolving powers in excess of 104 are required at temperatures well below 1 K and magnetic fields beyond 10 T. Here, we present a new broadband read-out scheme for piezo-electric micro-cantilevers via Wheatstone-type resistance measurements in magnetic fields up to 15 T and temperatures down to 200 mK. By using a two-stage superconducting-quantum interference device as a null detector of a cold Wheatstone bridge, we were able to achieve a magnetic moment resolution of Δm = 4 × 10-15 J/T at maximal field and 700 mK, outperforming conventional magnetometers by at least one order of magnitude in this temperature and magnetic field range. Exemplary de Haas-van Alphen measurement of a newly grown delafossite, PdRhO2, was used to show the superior performance of our setup.

  10. Temperature dependence of coercive field and fatigue in poly(vinylidene fluoride-trifluoroethylene) copolymer ultra-thin films

    International Nuclear Information System (INIS)

    Zhang Xiuli; Xu Haisheng; Zhang Yanni

    2011-01-01

    The experimental intrinsic coercive field of ferroelectric poly(vinylidene fluoride-trifluoethylene) copolymer films, with both bottom and top gold electrodes is measured at a wide temperature range. In the lower temperature region from -20 to 25 deg. C, the temperature dependence of coercive field shows good agreement with the prediction by the Landau-Ginzburg (LG) mean-field theory. In the higher temperature region from 25 to 80 deg. C, the coercive field shows a slow decrease with the increased temperature, where the LG theory is not applicable any more. The temperature-dependent changes in the polymer chains have been analysed. A reversible 'inherent fatigue' is observed from the partially recovered remanent polarization after re-annealing a fatigued P(VDF-TrFE) film. FTIR spectra indicate that the interchain spacing does not change from 10 to 10 7 switching cycles while the degree of all-trans ferroelectric phase decreases gradually with applied switching cycles. After a re-annealing treatment, ferroelectric phase recovers and dipoles at the boundary of crystallites acquire much higher energy.

  11. Ultra-modular 500m2 heliostat field for high flux/high temperature solar-driven processes

    Science.gov (United States)

    Romero, Manuel; González-Aguilar, José; Luque, Salvador

    2017-06-01

    The main objective of the European Project SUN-to-LIQUID is the scale-up and experimental demonstration of the complete process chain to solar liquid fuels from H2O and CO2. This implies moving from a 4 kW laboratory setup to a pre-commercial plant including a heliostat field. The small power and high irradiance onto the focal spot is forcing the optical design to behave half way between a large solar furnace and an extremely small central receiver system. The customized heliostat field makes use of the most recent developments on small size heliostats and a tower with reduced optical height (15 m) to minimize visual impact. A heliostat field of 250kWth (500 m2 reflective surface) has been built adjacent to IMDEA Energy premises at the Technology Park of Móstoles, Spain, and consists of 169 small size heliostats (1.9 m × 1.6 m). In spite of the small size and compactness of the field, when all heliostats are aligned, it is possible to fulfil the specified flux above 2500 kW/m2 for at least 50 kW and an aperture of 16 cm, with a peak flux of 3000 kW/m2.

  12. Ultra-High Field NMR and MRI—The Role of Magnet Technology to Increase Sensitivity and Specificity

    Directory of Open Access Journals (Sweden)

    Ewald Moser

    2017-08-01

    Full Text Available “History, of course, is difficult to write, if for no other reason, than that it has so many players and so many authors.” – P. J. Keating (former Australian Prime MinisterStarting with post-war developments in nuclear magnetic resonance (NMR a race for stronger and stronger magnetic fields has begun in the 1950s to overcome the inherently low sensitivity of this promising method. Further challenges were larger magnet bores to accommodate small animals and eventually humans. Initially, resistive electromagnets with small pole distances, or sample volumes, and field strengths up to 2.35 T (or 100 MHz 1H frequency were used in applications in physics, chemistry, and material science. This was followed by stronger and more stable (Nb-Ti based superconducting magnet technology typically implemented first for small-bore systems in analytical chemistry, biochemistry and structural biology, and eventually allowing larger horizontal-bore magnets with diameters large enough to fit small laboratory animals. By the end of the 1970s, first low-field resistive magnets big enough to accommodate humans were developed and superconducting whole-body systems followed. Currently, cutting-edge analytical NMR systems are available at proton frequencies up to 1 GHz (23.5 T based on Nb3Sn at 1.9 K. A new 1.2 GHz system (28 T at 1.9 K, operating in persistent mode but using a combination of low and high temperature multi-filament superconductors is to be released. Preclinical instruments range from small-bore animal systems with typically 600–800 MHz (14.1–18.8 T up to 900 MHz (21 T at 1.9 K. Human whole-body MRI systems currently operate up to 10.5 T. Hybrid combined superconducting and resistive electromagnets with even higher field strength of 45 T dc and 100 T pulsed, are available for material research, of course with smaller free bore diameters. This rather costly development toward higher and higher field strength is a consequence of the inherently low

  13. A DEEP, WIDE-FIELD Hα SURVEY OF NEARBY CLUSTERS OF GALAXIES: DATA

    International Nuclear Information System (INIS)

    Sakai, Shoko; Kennicutt, Robert C. Jr.; Moss, Chris

    2012-01-01

    We present the results of a wide-field Hα imaging survey of eight nearby (z = 0.02-0.03) Abell clusters. We have measured Hα fluxes and equivalent widths for 465 galaxies, of which 360 are new detections. The survey was designed to obtain complete emission-line-selected inventories of star-forming galaxies in the inner regions of these clusters, extending to star formation rates below 0.1 M ☉ yr –1 . This paper describes the observations, data processing, and source identification procedures, and presents an Hα and R-band catalog of detected cluster members and other candidates. Future papers in the series will use these data to study the completeness of spectroscopically based star formation surveys, and to quantify the effects of cluster environment on the present-day populations of star-forming galaxies. The data will also provide a valuable foundation for imaging surveys of redshifted Hα emission in more distant clusters.

  14. Infrared-faint radio sources in the SERVS deep fields. Pinpointing AGNs at high redshift

    Science.gov (United States)

    Maini, A.; Prandoni, I.; Norris, R. P.; Spitler, L. R.; Mignano, A.; Lacy, M.; Morganti, R.

    2016-12-01

    Context. Infrared-faint radio sources (IFRS) represent an unexpected class of objects which are relatively bright at radio wavelength, but unusually faint at infrared (IR) and optical wavelengths. A recent and extensive campaign on the radio-brightest IFRSs (S1.4 GHz≳ 10 mJy) has provided evidence that most of them (if not all) contain an active galactic nuclei (AGN). Still uncertain is the nature of the radio-faintest IFRSs (S1.4 GHz≲ 1 mJy). Aims: The scope of this paper is to assess the nature of the radio-faintest IFRSs, testing their classification and improving the knowledge of their IR properties by making use of the most sensitive IR survey available so far: the Spitzer Extragalactic Representative Volume Survey (SERVS). We also explore how the criteria of IFRSs can be fine-tuned to pinpoint radio-loud AGNs at very high redshift (z > 4). Methods: We analysed a number of IFRS samples identified in SERVS fields, including a new sample (21 sources) extracted from the Lockman Hole. 3.6 and 4.5 μm IR counterparts of the 64 sources located in the SERVS fields were searched for and, when detected, their IR properties were studied. Results: We compared the radio/IR properties of the IR-detected IFRSs with those expected for a number of known classes of objects. We found that IR-detected IFRSs are mostly consistent with a mixture of high-redshift (z ≳ 3) radio-loud AGNs. The faintest ones (S1.4 GHz 100 μJy), however, could be also associated with nearer (z 2) dust-enshrouded star-burst galaxies. We also argue that, while IFRSs with radio-to-IR ratios >500 can very efficiently pinpoint radio-loud AGNs at redshift 2 < z < 4, lower radio-to-IR ratios ( 100-200) are expected for higher redshift radio-loud AGNs.

  15. Ultra-high field NMR and MRI - the role of magnet technology to increase sensitivity and specificity

    Science.gov (United States)

    Moser, Ewald; Laistler, Elmar; Schmitt, Franz; Kontaxis, Georg

    2017-08-01

    "History, of course, is difficult to write, if for no other reason, than that it has so many players and so many authors." - P. J. Keating (former Australian Prime Minister) Starting with post-war developments in nuclear magnetic resonance (NMR) a race for stronger and stronger magnetic fields has begun in the 1950s to overcome the inherently low sensitivity of this promising method. Further challenges were larger magnet bores to accommodate small animals and eventually humans. Initially, resistive electromagnets with small pole distances, or sample volumes, and field strengths up to 2.35 T (or 100 MHz 1H frequency) were used in applications in physics, chemistry, and material science. This was followed by stronger and more stable (NbTi based) superconducting magnet technology typically implemented first for small-bore systems in analytical chemistry, biochemistry and structural biology, and eventually allowing larger horizontal-bore magnets with diameters large enough to fit small laboratory animals. By the end of the 1970s, first low-field resistive magnets big enough to accommodate humans were developed and superconducting whole-body systems followed. Currently, cutting-edge analytical NMR systems are available at proton frequencies up to 1 GHz (23.5 T) based on Nb3Sn at 1.9 K. A new 1.2 GHz system (28 T) at 1.9 K, operating in persistent mode but using a combination of low and high temperature multi-filament superconductors is to be released. Preclinical instruments range from small-bore animal systems with typically 600 - 800 MHz (14.1 - 18.8 T) up to 900 MHz (21 T) at 1.9 K. Human whole-body MRI systems currently operate up to 10.5 T. Hybrid combined superconducting and resistive electromagnets with even higher field strength of 45 T dc and 100 T pulsed, are available for material research, of course with smaller free bore diameters. This rather costly development towards higher and higher field strength is a consequence of the inherently low and, thus

  16. The Travelling-Wave Primate System: A New Solution for Magnetic Resonance Imaging of Macaque Monkeys at 7 Tesla Ultra-High Field.

    Science.gov (United States)

    Herrmann, Tim; Mallow, Johannes; Plaumann, Markus; Luchtmann, Michael; Stadler, Jörg; Mylius, Judith; Brosch, Michael; Bernarding, Johannes

    2015-01-01

    Neuroimaging of macaques at ultra-high field (UHF) is usually conducted by combining a volume coil for transmit (Tx) and a phased array coil for receive (Rx) tightly enclosing the monkey's head. Good results have been achieved using vertical or horizontal magnets with implanted or near-surface coils. An alternative and less costly approach, the travelling-wave (TW) excitation concept, may offer more flexible experimental setups on human whole-body UHF magnetic resonance imaging (MRI) systems, which are now more widely available. Goal of the study was developing and validating the TW concept for in vivo primate MRI. The TW Primate System (TWPS) uses the radio frequency shield of the gradient system of a human whole-body 7 T MRI system as a waveguide to propagate a circularly polarized B1 field represented by the TE11 mode. This mode is excited by a specifically designed 2-port patch antenna. For receive, a customized neuroimaging monkey head receive-only coil was designed. Field simulation was used for development and evaluation. Signal-to-noise ratio (SNR) was compared with data acquired with a conventional monkey volume head coil consisting of a homogeneous transmit coil and a 12-element receive coil. The TWPS offered good image homogeneity in the volume-of-interest Turbo spin echo images exhibited a high contrast, allowing a clear depiction of the cerebral anatomy. As a prerequisite for functional MRI, whole brain ultrafast echo planar images were successfully acquired. The TWPS presents a promising new approach to fMRI of macaques for research groups with access to a horizontal UHF MRI system.

  17. The Travelling-Wave Primate System: A New Solution for Magnetic Resonance Imaging of Macaque Monkeys at 7 Tesla Ultra-High Field.

    Directory of Open Access Journals (Sweden)

    Tim Herrmann

    Full Text Available Neuroimaging of macaques at ultra-high field (UHF is usually conducted by combining a volume coil for transmit (Tx and a phased array coil for receive (Rx tightly enclosing the monkey's head. Good results have been achieved using vertical or horizontal magnets with implanted or near-surface coils. An alternative and less costly approach, the travelling-wave (TW excitation concept, may offer more flexible experimental setups on human whole-body UHF magnetic resonance imaging (MRI systems, which are now more widely available. Goal of the study was developing and validating the TW concept for in vivo primate MRI.The TW Primate System (TWPS uses the radio frequency shield of the gradient system of a human whole-body 7 T MRI system as a waveguide to propagate a circularly polarized B1 field represented by the TE11 mode. This mode is excited by a specifically designed 2-port patch antenna. For receive, a customized neuroimaging monkey head receive-only coil was designed. Field simulation was used for development and evaluation. Signal-to-noise ratio (SNR was compared with data acquired with a conventional monkey volume head coil consisting of a homogeneous transmit coil and a 12-element receive coil.The TWPS offered good image homogeneity in the volume-of-interest Turbo spin echo images exhibited a high contrast, allowing a clear depiction of the cerebral anatomy. As a prerequisite for functional MRI, whole brain ultrafast echo planar images were successfully acquired.The TWPS presents a promising new approach to fMRI of macaques for research groups with access to a horizontal UHF MRI system.

  18. The Canada-France deep fields survey-II: Lyman-break galaxies and galaxy clustering at z ~ 3

    Science.gov (United States)

    Foucaud, S.; McCracken, H. J.; Le Fèvre, O.; Arnouts, S.; Brodwin, M.; Lilly, S. J.; Crampton, D.; Mellier, Y.

    2003-10-01

    We present a large sample of z ~ 3 U-band dropout galaxies extracted from the Canada-France deep fields survey (CFDF). Our catalogue covers an effective area of ~ 1700 arcmin2 divided between three large, contiguous fields separated widely on the sky. To IAB=24.5, the survey contains 1294 Lyman-break candidates, in agreement with previous measurements by other authors, after appropriate incompleteness corrections have been applied to our data. Based on comparisons with spectroscopic observations and simulations, we estimate that our sample of Lyman-break galaxies is contaminated by stars and interlopers (lower-redshift galaxies) at no more than { ~ } 30%. We find that omega (theta ) is well fitted by a power-law of fixed slope, gamma =1.8, even at small (theta University of Hawaii, and at the Cerro Tololo Inter-American Observatory and Mayall 4-meter Telescopes, divisions of the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc. under cooperative agreement with the National Science Foundation.

  19. VizieR Online Data Catalog: z~3-6 protoclusters in the CFHTLS deep fields (Toshikawa+, 2016)

    Science.gov (United States)

    Toshikawa, J.; Kashikawa, N.; Overzier, R.; Malkan, M. A.; Furusawa, H.; Ishikawa, S.; Onoue, M.; Ota, K.; Tanaka, M.; Niino, Y.; Uchiyama, H.

    2018-03-01

    We made use of publicly available data from the CFHTLS (T0007: Gwyn 2012AJ....143...38G; Hudelot et al. 2012, Cat. II/317), which was obtained with MegaCam mounted at the prime focus of the CFHT. The Deep Fields of the CFHTLS were used in this study, which consist of four independent fields of about 1 deg2 area each (~4 deg2 area in total) observed in the u*, g', r', i', and z' bands. We selected z~3-6 galaxy candidates using the Lyman-break technique (u-, g-, r-, and i-dropout galaxies). We carried out spectroscopic observations using Subaru/FOCAS (Kashikawa et al. 2002PASJ...54..819K), Keck II/DEIMOS (Faber et al. 2003SPIE.4841.1657F), and Gemini-N/GMOS (Hook et al. 2004PASP..116..425H). In these observations, eight protocluster candidates from z~3 to z~6 were observed in total (two at each redshift). All these observations were conducted with Multi-Object Spectroscopy (MOS) mode. (2 data files).

  20. LYMAN BREAK GALAXIES AT z ∼ 1.8-2.8: GALEX/NUV IMAGING OF THE SUBARU DEEP FIELD

    International Nuclear Information System (INIS)

    Ly, Chun; Malkan, Matthew A.; Woo, Jong-Hak; Treu, Tommaso; Currie, Thayne; Hayashi, Masao; Shimasaku, Kazuhiro; Yoshida, Makiko; Kashikawa, Nobunari; Motohara, Kentaro

    2009-01-01

    A photometric sample of ∼8000 V C i'z' optical data with deep GALEX/NUV imaging of the Subaru Deep Field. Follow-up spectroscopy confirmed 24 LBGs at 1.5 ∼< z ∼< 2.7. Among the optical spectra, 12 have Lyα emission with rest-frame equivalent widths of ∼5-60 A. The success rate for identifying LBGs as NUV-dropouts at 1.5 < z < 2.7 is 86%. The rest-frame UV (1700 A) luminosity function (LF) is constructed from the photometric sample with corrections for stellar contamination and z < 1.5 interlopers (lower limits). The LF is 1.7 ± 0.1 (1.4 ± 0.1 with a hard upper limit on stellar contamination) times higher than those of z ∼ 2 BXs and z ∼ 3 LBGs. Three explanations were considered, and it is argued that significantly underestimating low-z contamination or effective comoving volume is unlikely: the former would be inconsistent with the spectroscopic sample at 93% confidence, and the second explanation would not resolve the discrepancy. The third scenario is that different photometric selection of the samples yields nonidentical galaxy populations, such that some BX galaxies are LBGs and vice versa. This argument is supported by a higher surface density of LBGs at all magnitudes while the redshift distribution of the two populations is nearly identical. This study, when combined with other star formation rate (SFR) density UV measurements from LBG surveys, indicates that there is a rise in the SFR density: a factor of 3-6 (3-10) increase from z ∼ 5 (z ∼ 6) to z ∼ 2, followed by a decrease to z ∼ 0. This result, along with past sub-mm studies that find a peak at z ∼ 2 in their redshift distribution, suggests that z ∼ 2 is the epoch of peak star formation.

  1. Substrate-free ultra-flexible organic field-effect transistors and five-stage ring oscillators.

    Science.gov (United States)

    Zhang, Lei; Wang, Hanlin; Zhao, Yan; Guo, Yunlong; Hu, Wenping; Yu, Gui; Liu, Yunqi

    2013-10-11

    Freestanding, substrate-free organic field-effect transistors and organic circuits with a nominal thickness of 320 nm are demonstrated by using a simple water-floatation method. The devices work well in freestanding status, attached on banknotes, or bent over the blade of a knife. The ultralight devices with extreme bending stability indicate a bright future for organic electronics. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Novel aluminum near field transducer and highly integrated micro-nano-optics design for heat-assisted ultra-high-density magnetic recording

    International Nuclear Information System (INIS)

    Miao, Lingyun; Hsiang, Thomas Y; Stoddart, Paul R

    2014-01-01

    Heat-assisted magnetic recording (HAMR) has attracted increasing attention as one of the most promising future techniques for ultra-high-density magnetic recording beyond the current limit of 1 Tb in −2 . Localized surface plasmon resonance plays an important role in HAMR by providing a highly focused optical spot for heating the recording medium within a small volume. In this work, we report an aluminum near-field transducer (NFT) based on a novel bow-tie design. At an operating wavelength of 450 nm, the proposed transducer can generate a 35 nm spot size inside the magnetic recording medium, corresponding to a recording density of up to 2 Tb in −2 . A highly integrated micro-nano-optics design is also proposed to ensure process compatibility and corrosion-resistance of the aluminum NFT. Our work has demonstrated the feasibility of using aluminum as a plasmonic material for HAMR, with advantages of reduced cost and improved efficiency compared to traditional noble metals. (paper)

  3. Imaging observations of nighttime mid-latitude F-region field-aligned irregularities by an MU radar ultra-multi-channel system

    Directory of Open Access Journals (Sweden)

    S. Saito

    2008-08-01

    Full Text Available Mid-latitude F-region field-aligned irregularities (FAIs were studied by using the middle-and-upper atmosphere (MU radar ultra-multi-channel system with the radar imaging technique. On 12 June 2006, F-region FAI echoes with a period of about one hour were observed intermittently. These echoes were found to be embedded in medium-scale traveling ionospheric disturbances (MSTIDs observed as variations of total electron content (TEC. The echoes drifting away from (toward the radar were observed in the depletion (enhancement phase of the MSTID. The Doppler velocity of the echoes is consistent with the range rates in the the range-time-intensity (RTI maps. Fine scale structures with a spatial scale of 10 km or less were found by the radar imaging analysis. Those structures with positive Doppler velocities (moving away from the radar appeared to drift north- (up- westward, and those with negative Doppler velocities south- (down- eastward approximately along the wavefronts of the MSTID. FAIs with positive Doppler velocities filling TEC depletion regions were observed.

  4. Ultra-low specific on-resistance high-voltage vertical double diffusion metal–oxide–semiconductor field-effect transistor with continuous electron accumulation layer

    International Nuclear Information System (INIS)

    Ma Da; Luo Xiao-Rong; Wei Jie; Tan Qiao; Zhou Kun; Wu Jun-Feng

    2016-01-01

    A new ultra-low specific on-resistance (R on,sp ) vertical double diffusion metal–oxide–semiconductor field-effect transistor (VDMOS) with continuous electron accumulation (CEA) layer, denoted as CEA-VDMOS, is proposed and its new current transport mechanism is investigated. It features a trench gate directly extended to the drain, which includes two PN junctions. In on-state, the electron accumulation layers are formed along the sides of the extended gate and introduce two continuous low-resistance current paths from the source to the drain in a cell pitch. This mechanism not only dramatically reduces the R on,sp but also makes the R on,sp almost independent of the n-pillar doping concentration (N n ). In off-state, the depletion between the n-pillar and p-pillar within the extended trench gate increases the N n , and further reduces the R on,sp . Especially, the two PN junctions within the trench gate support a high gate–drain voltage in the off-state and on-state, respectively. However, the extended gate increases the gate capacitance and thus weakens the dynamic performance to some extent. Therefore, the CEA-VDMOS is more suitable for low and medium frequencies application. Simulation indicates that the CEA-VDMOS reduces the R on,sp by 80% compared with the conventional super-junction VDMOS (CSJ-VDMOS) at the same high breakdown voltage (BV). (paper)

  5. Injection grout for deep repositories - Low-pH cementitious grout for larger fractures. Field testing in Finland, Pilot tests

    International Nuclear Information System (INIS)

    Sievaeen, U.; Syrjaenen, P.; Ranta-aho, S.

    2005-10-01

    Posiva, SKB and NUMO have cooperated for developing a low pH injection grout for sealing of the deep repositories for spent nuclear fuel. A project 'Injection grout for deep repositories' was divided into four subprojects. The development of low pH cementitious grout for > 100 μm fractures was carried out in Finland. The development of non-cementitious low pH grout for < 100 μm fractures was carried out in Sweden. This report concerns the cementitious grout. Requirements for pH and penetration ability were set for the grouts to be developed. Besides these, the grouts were desired to fulfil certain targets set for viscosity, bleeding, shear strength, yield value, compressive strength and open time. Also durability, availability of the components and known history in practical engineering were given as requirements. The object of the work presented here was to test if the grout properties developed in laboratory can be met in field conditions. Only the most promising binder material combinations, which have fulfilled the main requirements in laboratory, were tested in field. Evaluations of environmental aspects are included in this report. In the pilot test 1, carried out in a multi-purpose tunnel in Helsinki, Portland cement-cilicasystem and blast furnace slag-based system were chosen to be tested. In field conditions, mixed with ordinary mixer, all grout properties achieved in laboratory, were not verified. Penetration ability was typically good, but fluidity and strength development were not satisfying. The main conclusion was that water to dry material ratio should be diminished. In order to get better rheological properties at the same time, superplastizicer was needed in further development of the mixes. Also accurate dosing and mixing seemed to be very important. Blast furnace slag - system was after this pilot test ruled out due to high leaching of sulphide from the product, not due to the bad technical properties. The development work continued with

  6. Laser cooling of a magnetically guided ultra cold atom beam

    Energy Technology Data Exchange (ETDEWEB)

    Aghajani-Talesh, Anoush

    2014-07-01

    This thesis examines two complimentary methods for the laser cooling of a magnetically guided ultra-cold atom beam. If combined, these methods could serve as a starting point for high-through put and possibly even continuous production of Bose-Einstein condensates. First, a mechanism is outlined to harvest ultra cold atoms from a magnetically guided atom beam into an optical dipole trap. A continuous loading scheme is described that dissipates the directed kinetic energy of a captured atom via deceleration by a magnetic potential barrier followed by optical pumping to the energetically lowest Zeeman sublevel. The application of this scheme to the transfer of ultra cold chromium atoms from a magnetically guided atom beam into a deep optical dipole trap is investigated via numerical simulations of the loading process. Based on the results of the theoretical studies the feasibility and the efficiency of our loading scheme, including the realisation of a suitable magnetic field configuration, are analysed. Second, experiments were conducted on the transverse laser cooling of a magnetically guided beam of ultra cold chromium atoms. Radial compression by a tapering of the guide is employed to adiabatically heat the beam. Inside the tapered section heat is extracted from the atom beam by a two-dimensional optical molasses perpendicular to it, resulting in a significant increase of atomic phase space density. A magnetic offset field is applied to prevent optical pumping to untrapped states. Our results demonstrate that by a suitable choice of the magnetic offset field, the cooling beam intensity and detuning, atom losses and longitudinal heating can be avoided. Final temperatures below 65 μK have been achieved, corresponding to an increase of phase space density in the guided beam by more than a factor of 30.

  7. Laser cooling of a magnetically guided ultra cold atom beam

    International Nuclear Information System (INIS)

    Aghajani-Talesh, Anoush

    2014-01-01

    This thesis examines two complimentary methods for the laser cooling of a magnetically guided ultra-cold atom beam. If combined, these methods could serve as a starting point for high-through put and possibly even continuous production of Bose-Einstein condensates. First, a mechanism is outlined to harvest ultra cold atoms from a magnetically guided atom beam into an optical dipole trap. A continuous loading scheme is described that dissipates the directed kinetic energy of a captured atom via deceleration by a magnetic potential barrier followed by optical pumping to the energetically lowest Zeeman sublevel. The application of this scheme to the transfer of ultra cold chromium atoms from a magnetically guided atom beam into a deep optical dipole trap is investigated via numerical simulations of the loading process. Based on the results of the theoretical studies the feasibility and the efficiency of our loading scheme, including the realisation of a suitable magnetic field configuration, are analysed. Second, experiments were conducted on the transverse laser cooling of a magnetically guided beam of ultra cold chromium atoms. Radial compression by a tapering of the guide is employed to adiabatically heat the beam. Inside the tapered section heat is extracted from the atom beam by a two-dimensional optical molasses perpendicular to it, resulting in a significant increase of atomic phase space density. A magnetic offset field is applied to prevent optical pumping to untrapped states. Our results demonstrate that by a suitable choice of the magnetic offset field, the cooling beam intensity and detuning, atom losses and longitudinal heating can be avoided. Final temperatures below 65 μK have been achieved, corresponding to an increase of phase space density in the guided beam by more than a factor of 30.

  8. Large sensitivity enhancement in semiconducting organic field effect transistor sensors through incorporation of ultra-fine platinum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Haisheng; Ramalingam, Balavinayagam; Korampally, Venumadhav; Gangopadhyay, Shubhra, E-mail: gangopadhyays@missouri.edu [Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri 65201 (United States)

    2013-11-04

    We report remarkable improvement in sensitivity of pentacene-based field effect transistor devices towards trace nitro-aromatic explosive vapors through the incorporation of high density, sub-2 nm platinum nanoparticles (NPs) within these structures. Exploiting the unique electronic properties of these NPs, we have demonstrated a detection limit of 56.6 parts per billion of 2,4-dinitrotoluene (DNT) vapor while control samples without any embedded NPs showed no observable sensitivity to DNT vapor. We attribute this remarkable enhancement in sensitivity to the ability of these NPs to function as discrete nodes, participating in the charge transfer with adsorbed nitro-aromatic molecules.

  9. Geologic Sequestration of CO2 in Deep, Unmineable Coalbeds: An Integrated Researdh and Commercial-Scale Field Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Scott Reeves; George Koperna

    2008-09-30

    The Coal-Seq consortium is a government-industry collaborative consortium with the objective of advancing industry's understanding of complex coalbed methane and gas shale reservoir behavior in the presence of multi-component gases via laboratory experiments, theoretical model development and field validation studies. This will allow primary recovery, enhanced recovery and CO{sub 2} sequestration operations to be commercially enhanced and/or economically deployed. The project was initially launched in 2000 as a U.S. Department of Energy sponsored investigation into CO{sub 2} sequestration in deep, unmineable coalseams. The initial project accomplished a number of important objectives, which mainly revolved around performing baseline experimental studies, documenting and analyzing existing field projects, and establishing a global network for technology exchange. The results from that Phase have been documented in a series of reports which are publicly available. An important outcome of the initial phase was that serious limitations were uncovered in our knowledge of reservoir behavior when CO{sub 2} is injected into coal. To address these limitations, the project was extended in 2005 as a government-industry collaborative consortium. Selected accomplishments from this phase have included the identification and/or development of new models for multi-component sorption and diffusion, laboratory studies of coal geomechanical and permeability behavior with CO{sub 2} injection, additional field validation studies, and continued global technology exchange. Further continuation of the consortium is currently being considered. Some of the topics that have been identified for investigation include further model development/refinement related to multicomponent equations-of-state, sorption and diffusion behavior, geomechanical and permeability studies, technical and economic feasibility studies for major international coal basins, the extension of the work to gas shale

  10. Water and sodium intake habits and status of ultra-endurance runners during a multi-stage ultra-marathon conducted in a hot ambient environment: an observational field based study

    Directory of Open Access Journals (Sweden)

    Costa Ricardo JS

    2013-01-01

    Full Text Available Abstract Background Anecdotal evidence suggests ultra-runners may not be consuming sufficient water through foods and fluids to maintenance euhydration, and present sub-optimal sodium intakes, throughout multi-stage ultra-marathon (MSUM competitions in the heat. Subsequently, the aims were primarily to assess water and sodium intake habits of recreational ultra-runners during a five stage 225 km semi self-sufficient MSUM conducted in a hot ambient environment (Tmax range: 32°C to 40°C; simultaneously to monitor serum sodium concentration, and hydration status using multiple hydration assessment techniques. Methods Total daily, pre-stage, during running, and post-stage water and sodium ingestion of ultra-endurance runners (UER, n = 74 and control (CON, n = 12 through foods and fluids were recorded on Stages 1 to 4 by trained dietetic researchers using dietary recall interview technique, and analysed through dietary analysis software. Body mass (BM, hydration status, and serum sodium concentration were determined pre- and post-Stages 1 to 5. Results Water (overall mean (SD: total daily 7.7 (1.5 L/day, during running 732 (183 ml/h and sodium (total daily 3.9 (1.3 g/day, during running 270 (151 mg/L ingestion did not differ between stages in UER (p vs. CON. Exercise-induced BM loss was 2.4 (1.2% (p p > 0.05 vs. CON pre-stage. Asymptomatic hyponatraemia (n = 8 UER, corresponding to 42% of sampled participants. Pre- and post-stage urine colour, urine osmolality and urine/plasma osmolality ratio increased (p p  Conclusion Water intake habits of ultra-runners during MSUM conducted in hot ambient conditions appear to be sufficient to maintain baseline euhydration levels. However, fluid over-consumption behaviours were evident along competition, irrespective of running speed and gender. Normonatraemia was observed in the majority of ultra-runners throughout MSUM, despite sodium ingestion under benchmark recommendations.

  11. Feasibility of full-field optical coherence microscopy in ultra-structural imaging of human colon tissues

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun Seo [Chosun University, Gwangju (Korea, Republic of); Choi, Woo June; Ryu, Seon Young; Lee, Byeong Ha [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Lee, Jae Hyuk; Bom, Hee Seung; Lee, Byeong Il [Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2010-06-15

    We demonstrated the imaging feasibility of full-field optical coherence microscopy (FF-OCM) in pathological diagnosis of human colon tissues. FF-OCM images with high transverse resolution were obtained at different depths of the samples without any dye staining or physical slicing, and detailed microstructures of human colon tissues were visualized. Morphological differences in normal tissues, cancer tissues, and tissues under transition were observed and matched with results seen in conventional optical microscope images. The optical biopsy based on FF-OCM could overcome the limitations on the number of physical cuttings of tissues and could perform high-throughput mass diagnosis of diseased tissues. The proved utility of FF-OCM as a comprehensive and efficient imaging modality of human tissues showed it to be a good alternative to conventional biopsy.

  12. Feasibility of full-field optical coherence microscopy in ultra-structural imaging of human colon tissues

    International Nuclear Information System (INIS)

    Choi, Eun Seo; Choi, Woo June; Ryu, Seon Young; Lee, Byeong Ha; Lee, Jae Hyuk; Bom, Hee Seung; Lee, Byeong Il

    2010-01-01

    We demonstrated the imaging feasibility of full-field optical coherence microscopy (FF-OCM) in pathological diagnosis of human colon tissues. FF-OCM images with high transverse resolution were obtained at different depths of the samples without any dye staining or physical slicing, and detailed microstructures of human colon tissues were visualized. Morphological differences in normal tissues, cancer tissues, and tissues under transition were observed and matched with results seen in conventional optical microscope images. The optical biopsy based on FF-OCM could overcome the limitations on the number of physical cuttings of tissues and could perform high-throughput mass diagnosis of diseased tissues. The proved utility of FF-OCM as a comprehensive and efficient imaging modality of human tissues showed it to be a good alternative to conventional biopsy.

  13. Effects of applying an external magnetic field during the deep cryogenic heat treatment on the corrosion resistance and wear behavior of 1.2080 tool steel

    International Nuclear Information System (INIS)

    Akhbarizadeh, Amin; Amini, Kamran; Javadpour, Sirus

    2012-01-01

    Highlights: ► Deep cryogenic increases the carbide percentage and make a more homogenous distribution. ► Deep cryogenic improve the wear resistance and corrosion behavior of 1.2080 tool steel. ► Applying the magnetic field weaker the carbide distribution and decreases the carbides percentage. ► Magnetized samples showed weaker corrosion and wear behavior. -- Abstract: This work concerns with the effect of applying an external magnetic field on the corrosion behavior, wear resistance and microstructure of 1.2080 (D2) tool steel during the deep cryogenic heat treatment. These analyses were performed via scanning electron microscope (SEM), optical microscope (OM), transmission electron microscope (TEM) and X-ay diffraction (XRD) to study the microstructure, a pin-on-disk wear testing machine to study the wear behavior, and linear sweep voltammetry to study the corrosion behavior of the samples. It was shown that the deep cryogenic heat treatment eliminates retained austenite and makes a more uniform carbide distribution with higher percentage. It was also observed that the deep cryogenic heat treatment improves the wear behavior and corrosion resistance of 1.2080 tool steel. In comparison between the magnetized and non-magnetized samples, the carbide percentage decreases and the carbide distribution weakened in the magnetized samples; subsequently, the wear behavior and corrosion resistance attenuated compared in the magnetized samples.

  14. The Atlantic Multidecadal Variability in surface and deep ocean temperature and salinity fields from unperturbed climate simulations

    Science.gov (United States)

    Zanchettin, D.; Jungclaus, J. H.

    2013-12-01

    Large multidecadal fluctuations in basin-average sea-surface temperature (SST) are a known feature of observed, reconstructed and simulated variability in the North Atlantic Ocean. This phenomenon is often referred to as Multidecadal Atlantic Variability or AMV. Historical AMV fluctuations are associated with analog basin-scale changes in sea-surface salinity, so that warming corresponds to salinification and cooling to freshening [Polyakov et al., 2005]. The surface imprint of the AMV further corresponds to same-sign fluctuations in the shallow ocean and with opposite-sign fluctuations in the deep ocean for both temperature and salinity [Polyakov et al., 2005]. This out-of-phase behavior reflects the thermohaline overturning circulation shaping North Atlantic's low-frequency variability. Several processes contribute to the AMV, involving both ocean-atmosphere coupled processes and deep ocean circulation [e.g., Grossmann and Klotzbach, 2009]. In particular, recirculation in the North Atlantic subpolar gyre region of salinity anomalies from Arctic freshwater export may trigger multidecadal variability in the Atlantic meridional overturning circulation, and therefore may be part of the AMV [Jungclaus et al., 2005; Dima and Lohmann, 2007]. With this contribution, we aim to improve the physical interpretation of the AMV by investigating spatial and temporal patterns of temperature and salinity fields in the shallow and deep ocean. We focus on two unperturbed millennial-scale simulations performed with the Max Planck Institute Earth system model in its paleo (MPI-ESM-P) and low-resolution (MPI-ESM-LR) configurations, which provide reference control climates for assessments of pre-industrial and historical climate simulations. The two model configurations only differ for the presence, in MPI-ESM-LR, of an active module for dynamical vegetation. We use spatial-average indices and empirical orthogonal functions/principal components to track the horizontal and vertical

  15. Importância da ultra-sonografia anorretal tridimensional na decisão terapêutica da endometriose profunda Importance of the three-dimensional anorectal ultrasonography in deep endometriosis

    Directory of Open Access Journals (Sweden)

    Univaldo Etsuo Sagae

    2009-12-01

    Full Text Available OBJETIVO: Este estudo visa demonstrar a importância da ultra-sonografia anorretal tridimensional (US 3D no diagnóstico da endometriose profunda e o grau de acometimento do trato intestinal na decisão terapêutica da endometriose do septo retovaginal. MÉTODOS: Estudo prospectivo realizado entre março de 2007 e julho de 2009. Sessenta e cinco mulheres com endometriose pélvica e com queixas gastrointestinais foram avaliadas e submetidas a US 3D. Vinte pacientes, média de idade 33,7anos, com suspeita de foco endometriótico intestinal foram submetidas ao procedimento laparoscópico para a realização de inventário da cavidade abdominal e tratamento cirúrgico. RESULTADOS: Em dezenove mulheres (95%, os achados laparoscópicos confirmaram a presença do foco endometriótico retal. O procedimento realizado à laparoscopia foi: exérese de foco peritoneais (n= 1; ressecção parcial do retossigmóide (n= 9; exérese de nódulo de reto (n= 10. O tempo operatório médio por procedimento foi de 120 minutos. O tempo médio de alta foi 1,7 dias. Duas pacientes apresentaram como complicação o aparecimento de fistula retovaginal. CONCLUSÃO: Conclui-se que a ultra-sonografia anorretal tridimensional é exame específico na avaliação do segmento anorretal, decisivo na detecção de focos endometrióticos do septo retovaginal e avalia eventuais doenças associadas nesse segmento, determinando a estratégica terapêutico-cirúrgica adequada.OBJECTIVE: This study aims to demonstrate the importance of three-dimensional anorectal ultrasonography (US 3D in the diagnosis of deep endometriosis and level of intestinal involvement in the decision of the therapy of endometriosis of rectovaginal septum. METHODS: A prospective study between March 2007 and July 2009. Sixty-five women with pelvic endometriosis and gastrointestinal complaints were evaluated and submitted to 3D U.S.. Twenty patients, mean age 33.7 years, with suspected of intestinal endometriosis

  16. {sup 1}H-NMR and charge transport in metallic polypyrrole at ultra-low temperatures and high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Jugeshwar Singh, K; Ramesh, K P; Menon, Reghu [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Clark, W G [Department of Physics and Astronomy, University of California at Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095 (United States)], E-mail: jshwar@physics.iisc.ernet.in

    2008-11-19

    The temperature dependence of conductivity, proton spin relaxation time (T{sub 1}) and magnetoconductance (MC) in metallic polypyrrole (PPy) doped with PF{sub 6}{sup -} have been carried out at mK temperatures and high magnetic fields. At T<1 K both electron-electron interaction (EEI) and hopping contributes to conductivity. The temperature dependence of a proton T{sub 1} is classified in three regimes: (a) for T<6 K-relaxation mechanism follows a modified Korringa relation due to EEI and disorder, (b) for 6 K50 K-relaxation is due to the dipolar interaction modulated by the reorientation of the symmetric PF{sub 6} groups following the Bloembergen, Purcell and Pound (BPP) model. The data analysis shows that the Korringa ratio is enhanced by an order of magnitude. The positive and negative MC at T<250 mK is due to the contributions from weak localization and Coulomb-correlated hopping transport, respectively. The role of EEI is observed to be consistent in conductivity, T{sub 1} and MC data, especially at T<1 K.

  17. Towards an ultra-thin medical endoscope: multimode fibre as a wide-field image transferring medium

    Science.gov (United States)

    Duriš, Miroslav; Bradu, Adrian; Podoleanu, Adrian; Hughes, Michael

    2018-03-01

    Multimode optical fibres are attractive for biomedical and industrial applications such as endoscopes because of the small cross section and imaging resolution they can provide in comparison to widely-used fibre bundles. However, the image is randomly scrambled by propagation through a multimode fibre. Even though the scrambling is unpredictable, it is deterministic, and therefore the scrambling can be reversed. To unscramble the image, we treat the multimode fibre as a linear, disordered scattering medium. To calibrate, we scan a focused beam of coherent light over thousands of different beam positions at the distal end and record complex fields at the proximal end of the fibre. This way, the inputoutput response of the system is determined, which then allows computational reconstruction of reflection-mode images. However, there remains the problem of illuminating the tissue via the fibre while avoiding back reflections from the proximal face. To avoid this drawback, we provide here the first preliminary confirmation that an image can be transferred through a 2x2 fibre coupler, with the sample at its distal port interrogated in reflection. Light is injected into one port for illumination and then collected from a second port for imaging.

  18. FRONTIER FIELDS CLUSTERS: DEEP CHANDRA OBSERVATIONS OF THE COMPLEX MERGER MACS J1149.6+2223

    Energy Technology Data Exchange (ETDEWEB)

    Ogrean, G. A.; Weeren, R. J. van; Jones, C.; Forman, W.; Andrade-Santos, F.; Murray, S. S.; Nulsen, P.; Bulbul, E.; Kraft, R.; Randall, S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Dawson, W. A. [Lawrence Livermore National Lab, 7000 East Avenue, Livermore, CA 94550 (United States); Golovich, N. [University of California, One Shields Avenue, Davis, CA 95616 (United States); Roediger, E. [Astronomy and Astrophysics Section, Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Zitrin, A.; Sayers, J. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Goulding, A. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Umetsu, K. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Mroczkowski, T. [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Bonafede, A. [Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg (Germany); Churazov, E., E-mail: gogrean@cfa.harvard.edu [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741, Garching (Germany); and others

    2016-03-10

    The Hubble Space Telescope Frontier Fields cluster MACS J1149.6+2223 is one of the most complex merging clusters, believed to consist of four dark matter halos. We present results from deep (365 ks) Chandra observations of the cluster, which reveal the most distant cold front (z  =  0.544) discovered to date. In the cluster outskirts, we also detect hints of a surface brightness edge that could be the bow shock preceding the cold front. The substructure analysis of the cluster identified several components with large relative radial velocities, thus indicating that at least some collisions occur almost along the line of sight. The inclination of the mergers with respect to the plane of the sky poses significant observational challenges at X-ray wavelengths. MACS J1149.6+2223 possibly hosts a steep-spectrum radio halo. If the steepness of the radio halo is confirmed, then the radio spectrum, combined with the relatively regular ICM morphology, could indicate that MACS J1149.6+2223 is an old merging cluster.

  19. Field-Assisted Splitting of Pure Water Based on Deep-Sub-Debye-Length Nanogap Electrochemical Cells.

    Science.gov (United States)

    Wang, Yifei; Narayanan, S R; Wu, Wei

    2017-08-22

    Owing to the low conductivity of pure water, using an electrolyte is common for achieving efficient water electrolysis. In this paper, we have fundamentally broken through this common sense by using deep-sub-Debye-length nanogap electrochemical cells to achieve efficient electrolysis of pure water (without any added electrolyte) at room temperature. A field-assisted effect resulted from overlapped electrical double layers can greatly enhance water molecules ionization and mass transport, leading to electron-transfer limited reactions. We have named this process "virtual breakdown mechanism" (which is completely different from traditional mechanisms) that couples the two half-reactions together, greatly reducing the energy losses arising from ion transport. This fundamental discovery has been theoretically discussed in this paper and experimentally demonstrated in a group of electrochemical cells with nanogaps between two electrodes down to 37 nm. On the basis of our nanogap electrochemical cells, the electrolysis current density from pure water can be significantly larger than that from 1 mol/L sodium hydroxide solution, indicating the much better performance of pure water splitting as a potential for on-demand clean hydrogen production.

  20. Road Segmentation of Remotely-Sensed Images Using Deep Convolutional Neural Networks with Landscape Metrics and Conditional Random Fields

    Directory of Open Access Journals (Sweden)

    Teerapong Panboonyuen

    2017-07-01

    Full Text Available Object segmentation of remotely-sensed aerial (or very-high resolution, VHS images and satellite (or high-resolution, HR images, has been applied to many application domains, especially in road extraction in which the segmented objects are served as a mandatory layer in geospatial databases. Several attempts at applying the deep convolutional neural network (DCNN to extract roads from remote sensing images have been made; however, the accuracy is still limited. In this paper, we present an enhanced DCNN framework specifically tailored for road extraction of remote sensing images by applying landscape metrics (LMs and conditional random fields (CRFs. To improve the DCNN, a modern activation function called the exponential linear unit (ELU, is employed in our network, resulting in a higher number of, and yet more accurate, extracted roads. To further reduce falsely classified road objects, a solution based on an adoption of LMs is proposed. Finally, to sharpen the extracted roads, a CRF method is added to our framework. The experiments were conducted on Massachusetts road aerial imagery as well as the Thailand Earth Observation System (THEOS satellite imagery data sets. The results showed that our proposed framework outperformed Segnet, a state-of-the-art object segmentation technique, on any kinds of remote sensing imagery, in most of the cases in terms of precision, recall, and F 1 .

  1. The Anisotropy of the Microwave Background to l = 3500: Deep Field Observations with the Cosmic Background Imager

    Science.gov (United States)

    Mason, B. S.; Pearson, T. J.; Readhead, A. C. S.; Shepherd, M. C.; Sievers, J.; Udomprasert, P. S.; Cartwright, J. K.; Farmer, A. J.; Padin, S.; Myers, S. T.; hide

    2002-01-01

    We report measurements of anisotropy in the cosmic microwave background radiation over the multipole range l approximately 200 (right arrow) 3500 with the Cosmic Background Imager based on deep observations of three fields. These results confirm the drop in power with increasing l first reported in earlier measurements with this instrument, and extend the observations of this decline in power out to l approximately 2000. The decline in power is consistent with the predicted damping of primary anisotropies. At larger multipoles, l = 2000-3500, the power is 3.1 sigma greater than standard models for intrinsic microwave background anisotropy in this multipole range, and 3.5 sigma greater than zero. This excess power is not consistent with expected levels of residual radio source contamination but, for sigma 8 is approximately greater than 1, is consistent with predicted levels due to a secondary Sunyaev-Zeldovich anisotropy. Further observations are necessary to confirm the level of this excess and, if confirmed, determine its origin.

  2. Rhythms and community dynamics of a hydrothermal tubeworm assemblage at main endeavour field - a multidisciplinary deep-sea observatory approach.

    Directory of Open Access Journals (Sweden)

    Daphne Cuvelier

    Full Text Available The NEPTUNE cabled observatory network hosts an ecological module called TEMPO-mini that focuses on hydrothermal vent ecology and time series, granting us real-time access to data originating from the deep sea. In 2011-2012, during TEMPO-mini's first deployment on the NEPTUNE network, the module recorded high-resolution imagery, temperature, iron (Fe and oxygen on a hydrothermal assemblage at 2186 m depth at Main Endeavour Field (North East Pacific. 23 days of continuous imagery were analysed with an hourly frequency. Community dynamics were analysed in detail for Ridgeia piscesae tubeworms, Polynoidae, Pycnogonida and Buccinidae, documenting faunal variations, natural change and biotic interactions in the filmed tubeworm assemblage as well as links with the local environment. Semi-diurnal and diurnal periods were identified both in fauna and environment, revealing the influence of tidal cycles. Species interactions were described and distribution patterns were indicative of possible microhabitat preference. The importance of high-resolution frequencies (<1 h to fully comprehend rhythms in fauna and environment was emphasised, as well as the need for the development of automated or semi-automated imagery analysis tools.

  3. Ultra-thin chip technology and applications

    CERN Document Server

    2010-01-01

    Ultra-thin chips are the "smart skin" of a conventional silicon chip. This book shows how very thin and flexible chips can be fabricated and used in many new applications in microelectronics, microsystems, biomedical and other fields. It provides a comprehensive reference to the fabrication technology, post processing, characterization and the applications of ultra-thin chips.

  4. High-Resolution Seafloor Mapping at A Deep-Sea Methane Seep Field with an Autonomous Underwater Vehicle

    Science.gov (United States)

    Skarke, A. D.

    2017-12-01

    A growing body of research indicates that points of seafloor gas emission, known as cold-seeps, are a common feature along many continental margins. Results from recent exploration efforts show that benthic environments at cold-seeps are characterized by extensive authigenic carbonate crusts and complex chemosynthetic communities. The seafloor morphology and geophysical properties of these locations are heterogeneous and relatively complex due to the three-dimensional structure created by carbonate buildups and dense bivalve beds. Seeps are often found clustered and the spatial extent of associated seafloor crusts and beds can reach multiple square kilometers. Here, the results of a 1.25 km2 autonomous underwater vehicle (AUV) survey of a deep-sea methane seep field with 13 vents, at a nominal depth of 1400 m, located near Veatch Canyon on the US Atlantic margin are presented. Multibeam sonar, sidescan sonar, and a sub bottom profiler on the AUV were used to make high-resolution observations of seafloor bathymetry (resolution 1m2) as well as water column, seafloor, and subsurface acoustic backscatter intensity. Additionally, a downward oriented camera was used to collect seafloor imagery coincident with acoustic observations at select locations. Acoustic results indicated the location of discrete gas plumes as well as a continuous area of elevated seafloor roughness and backscatter intensity consistent with the presence of large scale authigenic rock outcrops and extensive mussel beds, which were visually confirmed with camera imagery. Additionally, a linear area of particularly elevated seafloor roughness and acoustic backscatter intensity that lies sub-parallel to an adjacent ridge was interpreted to be controlled by underlying geologic processes such as soft sediment faulting. Automated analysis of camera imagery and coincident acoustic backscatter and bathymetry data as well as derivative metrics (e.g. slope and rugosity) was used to segment and classify bed

  5. Electric field estimation of deep transcranial magnetic stimulation clinically used for the treatment of neuropsychiatric disorders in anatomical head models.

    Science.gov (United States)

    Parazzini, Marta; Fiocchi, Serena; Chiaramello, Emma; Roth, Yiftach; Zangen, Abraham; Ravazzani, Paolo

    2017-05-01

    Literature studies showed the ability to treat neuropsychiatric disorders using H1 coil, developed for the deep Transcranial Magnetic Stimulation (dTMS). Despite the positive results of the clinical studies, the electric field (E) distributions inside the brain induced by this coil when it is positioned on the scalp according to the clinical studies themselves are not yet precisely estimated. This study aims to characterize the E distributions due to the H1 coil in the brain of two realistic human models by computational electromagnetic techniques and to compare them with the ones due to the figure-of-8 coil, traditionally used in TMS and positioned as such to simulate the clinical experiments. Despite inter-individual differences, our results show that the dorsolateral prefrontal cortex is the region preferentially stimulated by both H1 and figure-of-8 coil when they are placed in the position on the scalp according to the clinical studies, with a more broad and non-focal distribution in the case of H1 coil. Moreover, the H1 coil spreads more than the figure-of-8 coil both in the prefrontal cortex and medial prefrontal cortex and towards some deeper brain structures and it is characterized by a higher penetration depth in the frontal lobe. This work highlights the importance of the knowledge of the electric field distribution in the brain tissues to interpret the outcomes of the experimental studies and to optimize the treatments. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Searching for the 3.5 keV Line in the Deep Fields with Chandra: The 10 Ms Observations

    Science.gov (United States)

    Cappelluti, Nico; Bulbul, Esra; Foster, Adam; Natarajan, Priyamvada; Urry, Megan C.; Bautz, Mark W.; Civano, Francesca; Miller, Eric; Smith, Randall K.

    2018-02-01

    We report a systematic search for an emission line around 3.5 keV in the spectrum of the cosmic X-ray background using a total of ∼10 Ms Chandra observations toward the COSMOS Legacy and Extended Chandra Deep Field South survey fields. We find marginal evidence of a feature at an energy of ∼3.51 keV with a significance of 2.5–3σ, depending on the choice of statistical treatment. The line intensity is best fit at (8.8 ± 2.9) × 10‑7 ph cm‑2 s‑1 when using a simple Δχ 2 or {10.2}-0.4+0.2× {10}-7 ph cm‑2 s‑1 when Markov chain Monte Carlo is used. Based on our knowledge of Chandra and the reported detection of the line by other instruments, an instrumental origin for the line remains unlikely. We cannot, however, rule out a statistical fluctuation, and in that case our results provide a 3σ upper limit at 1.85 × 10‑6 ph cm‑2 s‑1. We discuss the interpretation of this observed line in terms of the iron line background, S XVI charge exchange, as well as potentially being from sterile neutrino decay. We note that our detection is consistent with previous measurements of this line toward the Galactic center and can be modeled as the result of sterile neutrino decay from the Milky Way for the dark matter distribution modeled as a Navarro–Frenk–White profile. For this case, we estimate a mass m ν ∼ 7.01 keV and a mixing angle sin2(2θ) = (0.83–2.75) × 10‑10. These derived values are in agreement with independent estimates from galaxy clusters, the Galactic center, and M31.

  7. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    Energy Technology Data Exchange (ETDEWEB)

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations

  8. Comparison of 454 Ultra-Deep Sequencing and Allele-Specific Real-Time PCR with Regard to the Detection of Emerging Drug-Resistant Minor HIV-1 Variants after Antiretroviral Prophylaxis for Vertical Transmission.

    Directory of Open Access Journals (Sweden)

    Andrea Hauser

    Full Text Available Pregnant HIV-infected women were screened for the development of HIV-1 drug resistance after implementation of a triple-antiretroviral transmission prophylaxis as recommended by the WHO in 2006. The study offered the opportunity to compare amplicon-based 454 ultra-deep sequencing (UDS and allele-specific real-time PCR (ASPCR for the detection of drug-resistant minor variants in the HIV-1 reverse transcriptase (RT.Plasma samples from 34 Tanzanian women were previously analysed by ASPCR for key resistance mutations in the viral RT selected by AZT, 3TC, and NVP (K70R, K103N, Y181C, M184V, T215Y/F. In this study, the RT region of the same samples was investigated by amplicon-based UDS for resistance mutations using the 454 GS FLX System.Drug-resistant HIV-variants were identified in 69% (20/29 of women by UDS and in 45% (13/29 by ASPCR. The absolute number of resistance mutations identified by UDS was twice that identified by ASPCR (45 vs 24. By UDS 14 of 24 ASPCR-detected resistance mutations were identified at the same position. The overall concordance between UDS and ASPCR was 61.0% (25/41. The proportions of variants quantified by UDS were approximately 2-3 times lower than by ASPCR. Amplicon generation from samples with viral loads below 20,000 copies/ml failed more frequently by UDS compared to ASPCR (limit of detection = 650 copies/ml, resulting in missing or insufficient sequence coverage.Both methods can provide useful information about drug-resistant minor HIV-1 variants. ASPCR has a higher sensitivity than UDS, but is restricted to single resistance mutations. In contrast, UDS is limited by its requirement for high viral loads to achieve sufficient sequence coverage, but the sequence information reveals the complete resistance patterns within the genomic region analysed. Improvements to the UDS limit of detection are in progress, and UDS could then facilitate monitoring of drug-resistant minor variants in the HIV-1 quasispecies.

  9. Chemical composition of deep hydrothermal fluids in the Ribeira Grande geothermal field (São Miguel, Azores)

    Science.gov (United States)

    Carvalho, M. R.; Forjaz, V. H.; Almeida, C.

    2006-08-01

    The Ribeira Grande geothermal field is a water-dominated geothermal system, located within Água de Pau/Fogo Volcano in the central part of the São Miguel Island. This geothermal system is exploited for energy production by wells sustaining two power plants. The wells produce from a formation of pillow lavas divided into different aquifers, with a fairly isothermal zone from 800 to 1300 m in depth, where reservoir temperature reaches 230 to 245 °C. Below the depth of 1300 m there is a slight temperature reversal. The fluid produced has excess enthalpy and, separated at atmospheric pressure, is characterized by mineralization of sodium-chloride type up to 6-7 g/l, the concentration of dissolved silica varies between 450 and 650 mg/l and the pH ranges between 8 and 8.6. The gas phase is dominantly CO 2, at a concentration of 98% of NCG. The composition of the deep geothermal fluid was obtained by computer simulation, using the WATCH program, and was compared with the composition of the bottom-hole samples. The approximations, in this simulation, were considered the single- and multi-step steam separation. The reference temperatures were based on: (i) the measured temperature in wells; (ii) the Na/K geothermometric temperature and (iii) the enthalpy-saturation temperature. According to both the measured and geothermometric temperatures, the deep fluid of the wells has two phases with a steam fraction up to 0.34, at higher well discharges. The measured enthalpy is always greater than the calculated enthalpy. The calcite equilibrium indicates scaling, since the fluid is flashing, around 2.28 mg/l CaCO 3 at the maximum discharge. The geothermal wells exploit three different aquifers, the lower of which is liquid and slightly colder than the upper ones. The intermediate is a two-phase aquifer with a steam fraction up to 0.081. The upper aquifer is probably of steam phase. The main differences between the aquifers are the temperature and boiling; both enthalpy and

  10. Are Ultra-faint Galaxies at z = 6-8 Responsible for Cosmic Reionization? Combined Constraints from the Hubble Frontier Fields Clusters and Parallels

    Science.gov (United States)

    Atek, Hakim; Richard, Johan; Jauzac, Mathilde; Kneib, Jean-Paul; Natarajan, Priyamvada; Limousin, Marceau; Schaerer, Daniel; Jullo, Eric; Ebeling, Harald; Egami, Eiichi; Clement, Benjamin

    2015-11-01

    We use deep Hubble Space Telescope imaging of the Frontier Fields to accurately measure the galaxy rest-frame ultraviolet luminosity function (UV LF) in the redshift range z ˜ 6-8. We combine observations in three lensing clusters, A2744, MACS 0416, and MACS 0717, and their associated parallel fields to select high-redshift dropout candidates. We use the latest lensing models to estimate the flux magnification and the effective survey volume in combination with completeness simulations performed in the source plane. We report the detection of 227 galaxy candidates at z = 6-7 and 25 candidates at z ˜ 8. While the total survey area is about 4 arcmin2 in each parallel field, it drops to about 0.6-1 arcmin2 in the cluster core fields because of the strong lensing. We compute the UV LF at z ˜ 7 using the combined galaxy sample and perform Monte Carlo simulations to determine the best-fit Schechter parameters. We are able to reliably constrain the LF down to an absolute magnitude of MUV = -15.25, which corresponds to 0.005 L⋆. More importantly, we find that the faint-end slope remains steep down to this magnitude limit with α =-{2.04}-0.17+0.13. We find a characteristic magnitude of {M}\\star =-{20.89}-0.72+0.60 and log(ϕ⋆) = -{3.54}-0.45+0.48. Our results confirm the most recent results in deep blank fields but extend the LF measurements more than two magnitudes deeper. The UV LF at z ˜ 8 is not very well constrained below MUV = -18 owing to the small number statistics and incompleteness uncertainties. To assess the contribution of galaxies to cosmic reionization, we derive the UV luminosity density at z ˜ 7 by integrating the UV LF down to an observational limit of MUV = -15. We show that our determination of log(ρUV) = 26.2 ± 0.13 (erg s-1 Hz-1 Mpc-3) can be sufficient to maintain reionization with an escape fraction of ionizing radiation of fesc = 10%-15%. Future Hubble Frontier Fields observations will certainly improve the constraints on the UV LF at

  11. [Determination of 11 mycotoxins in baked foods and raw materials by ultra performance liquid chromatography-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry].

    Science.gov (United States)

    Li, Rong; He, Chunmei; Yang, Luqi; Wang, Yong; Zhang, Pengjie; Gao, Yongqing

    2017-08-08

    A method for the determination of 11 mycotoxins in baked foods and raw materials by ultra-high performance liquid chromatography-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry (UPLC-HRMS) is reported in this paper. The samples were extracted with 20 mL 90% (v/v) acetonitrile aqueous solution containing 1% (v/v) formic acid, and the extracts were salted out by 2.0 g MgSO 4 and 0.5 g NaCl, cleaned up by 300 mg C18. The analytes were carried out on a CORTECS C18 column (100 mm×2.1 mm, 1.6 μ m) by gradient elution with 2 mmol/L ammonium acetate with 0.1% (v/v) formic acid aqueous solution and 2 mmol/L ammonium acetate methanol with 0.1% (v/v) formic acid. The results showed that the 11 mycotoxins had good linear relationships in their respective mass concentration ranges. The correlation coefficients were not less than 0.9960 and the limits of quantitation (LOQs) were from 0.15 to 20.00 μ g/kg. The recoveries of the 11 mycotoxins in bread ranged from 64.38% to 122.61% with the relative standard deviations (RSDs) from 1.52% to 12.99% at three spiked levels ( n =6). The method is demonstrated to be simple, fast, highly sensitive, reliable and it is effective to detect common mycotoxins in baked foods and raw materials.

  12. Ultra-precision bearings

    CERN Document Server

    Wardle, F

    2015-01-01

    Ultra-precision bearings can achieve extreme accuracy of rotation, making them ideal for use in numerous applications across a variety of fields, including hard disk drives, roundness measuring machines and optical scanners. Ultraprecision Bearings provides a detailed review of the different types of bearing and their properties, as well as an analysis of the factors that influence motion error, stiffness and damping. Following an introduction to basic principles of motion error, each chapter of the book is then devoted to the basic principles and properties of a specific type of bearin

  13. Lessons from Suiyo Seamount studies, for understanding extreme (ancient?) microbial ecosystems in the deep-sea hydrothermal fields

    Science.gov (United States)

    Maruyama, A.; Higashi, Y.; Sunamura, M.; Urabe, T.

    2004-12-01

    Deep-sea hydrothermal ecosystems are driven with various geo-thermally modified, mainly reduced, compounds delivered from extremely hot subsurface environments. To date, several unique microbes including thermophilic archaeons have been isolated from/around vent chimneys. However, there is little information about microbes in over-vent and sub-vent fields. Here, we report several new findings on microbial diversity and ecology of the Suiyo Seamount that locates on the Izu-Bonin Arc in the northwest Pacific Ocean, as a result of the Japanese Archaean Park project, with special concern to the sub-vent biosphere. At first, we succeeded to reveal a very unique microbial ecosystem in hydrothermal plume reserved within the outer rim of the seamount crater, that is, it consisted of almost all metabolically active microbes belonged to only two Bacteria phylotypes, probably of sulfur oxidizers. In the center of the caldera seafloor (ca. 1,388-m deep) consisted mainly of whitish sands and pumices, we found many small chimneys (ca. 5-10 cm) and bivalve colonies distributed looking like gray to black patches. These geo/ecological features of the seafloor were supposed to be from a complex mixing of hydrothermal venting and strong water current near the seafloor. Through quantitative FISH analysis for various environmental samples, one of the two representative groups in the plume was assessed to be from some of the bivalve colonies. Using the Benthic Multi-coring System (BMS), total 10 points were drilled and 6 boreholes were maintained with stainless or titanium casing pipes. In the following submersible surveys, newly developed catheter- and column-type in situ growth chambers were deployed in and on the boreholes, respectively, for collecting indigenous sub-vent microbes. Finally, we succeeded to detect several new phylotypes of microbes in these chamber samples, e.g., within epsilon-Proteobacteria, a photosynthetic group of alpha-Proteobacteria, and hyperthermophile

  14. Experimental demonstration on the ultra-low source/drain resistance by metal-insulator-semiconductor contact structure in In0.53Ga0.47As field-effect transistors

    Directory of Open Access Journals (Sweden)

    M.-H. Liao

    2013-09-01

    Full Text Available In this work, we demonstrate the ultra-low contact resistivity of 6.7 × 10−9 Ω/cm2 by inserting 0.6-nm-ZnO between Al and InGaAs(Si: 1.5 × 1019 cm−3. The metal-insulator-semiconductor tunneling diode with 0.6-nm-ZnO exhibits nearly zero (0.03 eV barrier height. We apply this contact structure on the source/drain of implant-free In0.53Ga0.47As quantum-well metal-oxide-semiconductor field- effect transistors. The excellent on-state performance such as saturation drain current of 3 × 10−4 A/μm and peak transconductance of 1250 μS/μm is obtained which is attributed to the ultra-low source/drain resistance of 190 Ω-μm.

  15. A COMPTON-THICK ACTIVE GALACTIC NUCLEUS AT z ∼ 5 IN THE 4 Ms CHANDRA DEEP FIELD SOUTH

    International Nuclear Information System (INIS)

    Gilli, R.; Comastri, A.; Su, J.; Norman, C.; Vignali, C.; Tozzi, P.; Rosati, P.; Mainieri, V.; Stiavelli, M.; Brandt, W. N.; Xue, Y. Q.; Luo, B.; Castellano, M.; Fontana, A.; Fiore, F.; Ptak, A.

    2011-01-01

    We report the discovery of a Compton-thick active galactic nucleus (AGN) at z = 4.76 in the 4 Ms Chandra Deep Field South. This object was selected as a V-band dropout in HST/ACS images and previously recognized as an AGN from optical spectroscopy. The 4 Ms Chandra observations show a significant (∼4.2σ) X-ray detection at the V-band dropout position. The X-ray source displays a hardness ratio of HR = 0.23 ± 0.24, which, for a source at z ∼ 5, is highly suggestive of Compton-thick absorption. The source X-ray spectrum is seen above the background level in the energy range of ∼0.9-4 keV, i.e., in the rest-frame energy range of ∼5-23 keV. When fixing the photon index to Γ = 1.8, the measured column density is N H = 1.4 +0.9 -0.5 x 10 24 cm -2 , which is Compton thick. To our knowledge, this is the most distant heavily obscured AGN, confirmed by X-ray spectral analysis, discovered so far. The intrinsic (de-absorbed), rest-frame luminosity in the 2-10 keV band is ∼2.5 x 10 44 erg s -1 , which places this object among type-2 quasars. The spectral energy distribution shows that massive star formation is associated with obscured black hole (BH) accretion. This system may have then been caught during a major coeval episode of BH and stellar mass assembly at early times. The measure of the number density of heavily obscured AGN at high redshifts will be crucial to reconstructing the BH/galaxy evolution history from the beginning.

  16. Luciola Hypertelescope Space Observatory. Versatile, Upgradable High-Resolution Imaging,from Stars to Deep-Field Cosmology

    Science.gov (United States)

    Labeyrie, Antoine; Le Coroller, Herve; Dejonghe, Julien; Lardiere, Olivier; Aime, Claude; Dohlen, Kjetil; Mourard, Denis; Lyon, Richard; Carpenter, Kenneth G.

    2008-01-01

    missions, the spectral coverage can be extended from 120nm to 20 microns, using four detectors carried by two to four focal spacecraft. The number of collector mirrors in the flotilla can also be increased from 12 to 100 and possibly 1,000. The imaging and spectroscopy of habitable exoplanets in the mid infra-red then becomes feasible once the collecting area reaches 6m2 , using a specialized mid infra-red focal spacecraft. Calculations ( Boccaletti et al., 2000) have shown that hypertelescope coronagraphy has unequalled sensitivity for detecting, at mid infra-red wavelengths, faint exoplanets within the exo-zodiacal glare. Later upgrades will enable the more difficult imaging and spectroscopy of these faint objects at visible wavelengths, using refined techniques of adaptive coronagraphy (Labeyrie. & Le Coroller, 2004). Together, the infra-red and visible spectral data carry rich information on the possible presence of life. The close environment of the central black-hole in the Milky Way will be imageable with unprecedented detail in the near infra-red . Cosmological imaging of remote galaxies at the limit of the known universe is also expected, from the ultra-violet to the near infra-red, following the first upgrade, and with greatly increasing sensitivity through successive upgrades. These areas will indeed greatly benefit from the upgrades, in terms of dynamic range, limiting complexity of the objects to be imaged, size of the elementary Direct Imaging Field , and limiting magnitude, approaching that of an 8-meter space telescope when 1000 apertures of 25cm are installed. Similar gains will occur for addressing fundamental problems in physics and cosmology, particularly when observing neutron stars and black holes, single or binary, including the giant black holes, with accretion disks and jets, in active galactic nuclei beyond the Milky Way. Gravitational lensing and micro-lensing patterns, including time-variable patterns and perhaps millisecond lensing flasheshich

  17. Validation of a field filtration technique for characterization of suspended particulate matter from freshwater. Part II. Minor, trace and ultra trace elements

    International Nuclear Information System (INIS)

    Odman, Fredrik; Ruth, Thomas; Rodushkin, Ilia; Ponter, Christer

    2006-01-01

    A field filtration method for the concentration and separation of suspended particulate matter (SPM) from freshwater systems and the subsequent determination of minor, trace and ultra trace elements (As, Ba, Be, Cd, Co, Cr, Cs, Cu, Ga, Hf, Mo, Nb, Ni, Pb, Rb, Sb, Sc, Sn, Sr, Ta, Th, Tl, U, V, W, Zn and Zr) is validated with respect to detection limits, precision and bias. The validation comprises the whole procedure including filtration, sample digestion and instrumental analysis. The method includes two digestion procedures (microwave acid digestion and alkali fusion) in combination with inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma quadrupole mass spectrometry (ICP-QMS). Total concentrations of these 27 trace and minor elements have been determined in suspended particulate matter (SPM) from lake and river water with low levels of suspended solids ( -1 DW), and a wide range of element concentrations. The precision of the method including filtration, digestion and instrumental determination ranges between 8% and 18% RSD for most elements on a dry weight basis. Higher recovery after acid digestion is found for some elements, probably because of volatilization or retention losses in the fusion procedure. Other elements show higher recovery after fusion, which is explained by more efficient decomposition of refractory mineral phases relative to the non-total acid digestion. Non-detectable concentrations of some elements are reported due to small differences between blank filter levels and the amounts of elements present on the filters after sampling. The method limits of detection range between 0.7 ng and 2.65 μg, as estimated from the blank filter samples. These detection limits are 10-550 times higher compared to the corresponding instrumental limits of detection. The accuracy and bias of the overall analytical procedure was assessed from replicate analysis of certified reference materials. A critical evaluation of

  18. Observation of Deep Traps Responsible for Current Collapse in GaN Metal-Semiconductor Field-Effect Transistors

    National Research Council Canada - National Science Library

    Klein, P. B; Freitas, Jr., J. A; Binari, S. C; Wickenden, A. E

    1999-01-01

    ... of current collapse to determine the photoionization spectra of the traps involved. In the n-channel device investigated, the two electron traps observed were found to be very deep and strongly coupled to the lattice...

  19. AN ALMA SURVEY OF SUBMILLIMETER GALAXIES IN THE EXTENDED CHANDRA DEEP FIELD SOUTH: NEAR-INFRARED MORPHOLOGIES AND STELLAR SIZES

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chian-Chou; Smail, Ian; Swinbank, A. M.; Simpson, J. M.; Ma, Cheng-Jiun; Alexander, D. M.; Danielson, A. L. R.; Edge, A. C. [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Biggs, A. D.; Ivison, R. J. [European Southern Observatory, Karl Schwarzschild Strasse 2, D-85748 Garching (Germany); Brandt, W. N. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Chapman, S. C. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 3J5 (Canada); Coppin, K. E. K. [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Dannerbauer, H. [Institut für Astrophysik, Universität Wien, Türkenschanzstraße 17, A-1180 Wien (Austria); Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Karim, A. [Argelander-Institute for Astronomy, Bonn University, Auf dem Hügel 71, D-53121 Bonn (Germany); Menten, Karl M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Schinnerer, E.; Walter, F. [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Wardlow, J. L. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark); and others

    2015-02-01

    We analyze Hubble Space Telescope WFC3/H {sub 160}-band observations of a sample of 48 Atacama Large Millimeter/submillimeter Array detected submillimeter galaxies (SMGs) in the Extended Chandra Deep Field South field, to study their stellar morphologies and sizes. We detect 79% ± 17% of the SMGs in the H {sub 160}-band imaging with a median sensitivity of 27.8 mag, and most (80%) of the nondetections are SMGs with 870 μm fluxes of S {sub 870} < 3 mJy. With a surface brightness limit of μ {sub H} ∼ 26 mag arcsec{sup –2}, we find that 82% ± 9% of the H {sub 160}-band-detected SMGs at z = 1-3 appear to have disturbed morphologies, meaning they are visually classified as either irregulars or interacting systems, or both. By determining a Sérsic fit to the H {sub 160} surface brightness profiles, we derive a median Sérsic index of n = 1.2 ± 0.3 and a median half-light radius of r{sub e} = 4.4{sub −0.5}{sup +1.1} kpc for our SMGs at z = 1-3. We also find significant displacements between the positions of the H {sub 160} component and 870 μm emission in these systems, suggesting that the dusty starburst regions and less-obscured stellar distribution are not colocated. We find significant differences in the sizes and the Sérsic index between our z = 2-3 SMGs and z ∼ 2 quiescent galaxies, suggesting that a major transformation of the stellar light profile is needed in the quenching processes if SMGs are progenitors of the red-and-dead z ∼ 2 galaxies. Given the short-lived nature of SMGs, we postulate that the majority of the z = 2-3 SMGs with S {sub 870} ≳ 2 mJy are early/mid-stage major mergers.

  20. The SCUBA-2 Cosmology Legacy Survey: the EGS deep field - I. Deep number counts and the redshift distribution of the recovered cosmic infrared background at 450 and 850 μ m

    Science.gov (United States)

    Zavala, J. A.; Aretxaga, I.; Geach, J. E.; Hughes, D. H.; Birkinshaw, M.; Chapin, E.; Chapman, S.; Chen, Chian-Chou; Clements, D. L.; Dunlop, J. S.; Farrah, D.; Ivison, R. J.; Jenness, T.; Michałowski, M. J.; Robson, E. I.; Scott, Douglas; Simpson, J.; Spaans, M.; van der Werf, P.

    2017-01-01

    We present deep observations at 450 and 850 μm in the Extended Groth Strip field taken with the SCUBA-2 camera mounted on the James Clerk Maxwell Telescope as part of the deep SCUBA-2 Cosmology Legacy Survey (S2CLS), achieving a central instrumental depth of σ450 = 1.2 mJy beam-1 and σ850 = 0.2 mJy beam-1. We detect 57 sources at 450 μm and 90 at 850 μm with signal-to-noise ratio >3.5 over ˜70 arcmin2. From these detections, we derive the number counts at flux densities S450 > 4.0 mJy and S850 > 0.9 mJy, which represent the deepest number counts at these wavelengths derived using directly extracted sources from only blank-field observations with a single-dish telescope. Our measurements smoothly connect the gap between previous shallower blank-field single-dish observations and deep interferometric ALMA results. We estimate the contribution of our SCUBA-2 detected galaxies to the cosmic infrared background (CIB), as well as the contribution of 24 μm-selected galaxies through a stacking technique, which add a total of 0.26 ± 0.03 and 0.07 ± 0.01 MJy sr-1, at 450 and 850 μm, respectively. These surface brightnesses correspond to 60 ± 20 and 50 ± 20 per cent of the total CIB measurements, where the errors are dominated by those of the total CIB. Using the photometric redshifts of the 24 μm-selected sample and the redshift distributions of the submillimetre galaxies, we find that the redshift distribution of the recovered CIB is different at each wavelength, with a peak at z ˜ 1 for 450 μm and at z ˜ 2 for 850 μm, consistent with previous observations and theoretical models.

  1. Uranium-thorium series radionuclides in brines and reservoir rocks from two deep geothermal boreholes in the Salton Sea geothermal field, southeastern California

    International Nuclear Information System (INIS)

    Zukin, J.G.; Hammond, D.E.; Ku, Tehlung; Elders, W.A.

    1987-01-01

    Naturally occurring U and Th series radionuclides have been analyzed in high temperature brines (∼ 300 degree C, 25 wt% dissolved solids) and associated rocks from two deep geothermal wells located on the northeastern margin of the Salton Sea Geothermal Field (SSGF). These data are part of a study of the SSGF as a natural analog of possible radionuclide behavior near a nuclear waste repository constructed in salt beds, and permit evaluation of some characteristics of water-rock interaction in the SSGF

  2. Long Range Effect of The M7.8 April 2015 Nepal Earth Quake on the Deep Groudwater Outflow in a Thousand-Mile-Away Geothermal Field in Southern China's Guangdong

    Science.gov (United States)

    Lu, G.; Yu, S.; Xu, F.; Wang, X.; Yan, K.; Yuen, D. A.

    2015-12-01

    Deep ground waters sustain high temperature and pressure and are susceptible to impact from an earthquake. How an earthquake would have been associated with long-range effect on geological environment of deep groundwater is a question of interest to the scientific community and general public. The massive Richter 8.1 Nepal Earthquake (on April 25, 2015) provided a rare opportunity to test the response of deep groundwater systems. Deep ground waters at elevated temperature would naturally flow to ground surface along preferential flow path such as a deep fault, forming geothermal water flows. Geothermal water flows are susceptible to stress variation and can reflect the physical conditions of supercritical hot water kilometers deep down inside the crust. This paper introduces the monitoring work on the outflow in Xijiang Geothermal Field of Xinyi City, Guangdong Province in southern China. The geothermal field is one of typical geothermal fields with deep faults in Guangdong. The geothermal spring has characteristic daily variation of up to 72% in flow rate, which results from being associated with a north-south run deep fault susceptible to earthquake event. We use year-long monitoring data to illustrate how the Nepal earthquake would have affected the flows at the field site over 2.5 thousand kilometers away. The irregularity of flow is judged by deviation from otherwise good correlation of geothermal spring flow with solid earth tidal waves. This work could potentially provide the basis for further study of deep groundwater systems and insight to earthquake prediction.

  3. Distinction between the Poole-Frenkel and tunneling models of electric-field-stimulated carrier emission from deep levels in semiconductors

    International Nuclear Information System (INIS)

    Ganichev, S. D.; Ziemann, E.; Prettl, W.; Yassievich, I. N.; Istratov, A. A.; Weber, E. R.

    2000-01-01

    The enhancement of the emission rate of charge carriers from deep-level defects in electric field is routinely used to determine the charge state of the defects. However, only a limited number of defects can be satisfactorily described by the Poole-Frenkel theory. An electric field dependence different from that expected from the Poole-Frenkel theory has been repeatedly reported in the literature, and no unambiguous identification of the charge state of the defect could be made. In this article, the electric field dependencies of emission of carriers from DX centers in Al x Ga 1-x As:Te, Cu pairs in silicon, and Ge:Hg have been studied applying static and terahertz electric fields, and analyzed by using the models of Poole-Frenkel and phonon assisted tunneling. It is shown that phonon assisted tunneling and Poole-Frenkel emission are two competitive mechanisms of enhancement of emission of carriers, and their relative contribution is determined by the charge state of the defect and by the electric-field strength. At high-electric field strengths carrier emission is dominated by tunneling independently of the charge state of the impurity. For neutral impurities, where Poole-Frenkel lowering of the emission barrier does not occur, the phonon assisted tunneling model describes well the experimental data also in the low-field region. For charged impurities the transition from phonon assisted tunneling at high fields to Poole-Frenkel effect at low fields can be traced back. It is suggested that the Poole-Frenkel and tunneling models can be distinguished by plotting logarithm of the emission rate against the square root or against the square of the electric field, respectively. This analysis enables one to unambiguously determine the charge state of a deep-level defect. (c) 2000 The American Physical Society

  4. fields

    Directory of Open Access Journals (Sweden)

    Brad J. Arnold

    2014-07-01

    Full Text Available Surface irrigation, such as flood or furrow, is the predominant form of irrigation in California for agronomic crops. Compared to other irrigation methods, however, it is inefficient in terms of water use; large quantities of water, instead of being used for crop production, are lost to excess deep percolation and tail runoff. In surface-irrigated fields, irrigators commonly cut off the inflow of water when the water advance reaches a familiar or convenient location downfield, but this experience-based strategy has not been very successful in reducing the tail runoff water. Our study compared conventional cutoff practices to a retroactively applied model-based cutoff method in four commercially producing alfalfa fields in Northern California, and evaluated the model using a simple sensor system for practical application in typical alfalfa fields. These field tests illustrated that the model can be used to reduce tail runoff in typical surface-irrigated fields, and using it with a wireless sensor system saves time and labor as well as water.

  5. Numerical simulation of a TLD pulsed laser-heating scheme for determination of shallow dose and deep dose in low-LET radiation fields

    International Nuclear Information System (INIS)

    Kearfott, K.J.; Han, S.; Wagner, E.C.; Samei, E.; Wang, C.-K.C.

    2000-01-01

    A new method is described to determine the depth-dose distribution in low-LET radiation fields using a thick thermoluminescent dosimeter (TLD) with a pulsed laser-heating scheme to obtain TL glow output. The computational simulation entails heat conduction and glow curve production processes. An iterative algorithm is used to obtain the dose distribution in the detector. The simulation results indicate that the method can predict the shallow and deep dose in various radiation fields with relative errors less than 20%

  6. Arsenic bioaccumulation and biotransformation in deep-sea hydrothermal vent organisms from the PACMANUS hydrothermal field, Manus Basin, PNG

    Science.gov (United States)

    Price, Roy E.; Breuer, Christian; Reeves, Eoghan; Bach, Wolfgang; Pichler, Thomas

    2016-11-01

    Hydrothermal vents are often enriched in arsenic, and organisms living in these environments may accumulate high concentrations of this and other trace elements. However, very little research to date has focused on understanding arsenic bioaccumulation and biotransformation in marine organisms at deep-sea vent areas; none to date have focused organisms from back-arc spreading centers. We present for the first time concentration and speciation data for As in vent biota from several hydrothermal vent fields in the eastern Manus basin, a back-arc basin vent field located in the Bismark Sea, western Pacific Ocean. The gastropods Alviniconcha hessleri and Ifremeria nautilei, and the mussel Bathymodiolus manusensis were collected from diffuse venting areas where pH was slightly lower (6.2-6.8), and temperature (26.8-10.5 °C) and arsenic concentrations (169.5-44.0 nM) were higher than seawater. In the tissues of these organisms, the highest total measured As concentrations were in the gills of A. hessleri (5580 mg kg-1), with 721 mg kg-1 and 43 mg kg-1 in digestive gland and muscle, respectively. I. nautilei contained 118 mg kg-1 in the gill, 108 mg kg-1 in the digestive gland and 22 mg kg-1 in the muscle. B. manusensis contained 15.7 mg kg-1 in the digestive gland, followed by 9.8 mg kg-1 and 4.5 mg kg-1 in its gill and muscle tissue, respectively. We interpret the decreasing overall total concentrations in each organism as a function of distance from the source of hydrothermally derived As. The high concentration of arsenic in A. hessleri gills may be associated with elemental sulfur known to occur in this organism as a result of symbiotic microorganisms. Arsenic extracted from freeze-dried A. hessleri tissue was dominated by AsIII and AsV in the digestive gland (82% and 16%, respectively) and gills (97% AsIII, 2.3% AsV), with only 1.8% and 0.2% arsenobetaine (As-Bet) in the digestive gland and gills, respectively. However, the muscle contained substantial amounts of

  7. Field estimates of groundwater circulation depths in two mountainous watersheds in the western U.S. and the effect of deep circulation on solute concentrations in streamflow

    Science.gov (United States)

    Frisbee, Marty D.; Tolley, Douglas G.; Wilson, John L.

    2017-04-01

    Estimates of groundwater circulation depths based on field data are lacking. These data are critical to inform and refine hydrogeologic models of mountainous watersheds, and to quantify depth and time dependencies of weathering processes in watersheds. Here we test two competing hypotheses on the role of geology and geologic setting in deep groundwater circulation and the role of deep groundwater in the geochemical evolution of streams and springs. We test these hypotheses in two mountainous watersheds that have distinctly different geologic settings (one crystalline, metamorphic bedrock and the other volcanic bedrock). Estimated circulation depths for springs in both watersheds range from 0.6 to 1.6 km and may be as great as 2.5 km. These estimated groundwater circulation depths are much deeper than commonly modeled depths suggesting that we may be forcing groundwater flow paths too shallow in models. In addition, the spatial relationships of groundwater circulation depths are different between the two watersheds. Groundwater circulation depths in the crystalline bedrock watershed increase with decreasing elevation indicative of topography-driven groundwater flow. This relationship is not present in the volcanic bedrock watershed suggesting that both the source of fracturing (tectonic versus volcanic) and increased primary porosity in the volcanic bedrock play a role in deep groundwater circulation. The results from the crystalline bedrock watershed also indicate that relatively deep groundwater circulation can occur at local scales in headwater drainages less than 9.0 km2 and at larger fractions than commonly perceived. Deep groundwater is a primary control on streamflow processes and solute concentrations in both watersheds.

  8. Sun Ultra 5

    CERN Multimedia

    1998-01-01

    The Sun Ultra 5 is a 64-bit personal computer based on the UltraSPARC microprocessor line at a low price. The Ultra 5 has been declined in several variants: thus, some models have a processor with less cache memory to further decrease the price of the computer.

  9. Deep learning in breast cancer risk assessment: evaluation of convolutional neural networks on a clinical dataset of full-field digital mammograms.

    Science.gov (United States)

    Li, Hui; Giger, Maryellen L; Huynh, Benjamin Q; Antropova, Natalia O

    2017-10-01

    To evaluate deep learning in the assessment of breast cancer risk in which convolutional neural networks (CNNs) with transfer learning are used to extract parenchymal characteristics directly from full-field digital mammographic (FFDM) images instead of using computerized radiographic texture analysis (RTA), 456 clinical FFDM cases were included: a "high-risk" BRCA1/2 gene-mutation carriers dataset (53 cases), a "high-risk" unilateral cancer patients dataset (75 cases), and a "low-risk dataset" (328 cases). Deep learning was compared to the use of features from RTA, as well as to a combination of both in the task of distinguishing between high- and low-risk subjects. Similar classification performances were obtained using CNN [area under the curve [Formula: see text]; standard error [Formula: see text

  10. Deep Extragalactic VIsible Legacy Survey (DEVILS): Motivation, Design and Target Catalogue

    Science.gov (United States)

    Davies, L. J. M.; Robotham, A. S. G.; Driver, S. P.; Lagos, C. P.; Cortese, L.; Mannering, E.; Foster, C.; Lidman, C.; Hashemizadeh, A.; Koushan, S.; O'Toole, S.; Baldry, I. K.; Bilicki, M.; Bland-Hawthorn, J.; Bremer, M. N.; Brown, M. J. I.; Bryant, J. J.; Catinella, B.; Croom, S. M.; Grootes, M. W.; Holwerda, B. W.; Jarvis, M. J.; Maddox, N.; Meyer, M.; Moffett, A. J.; Phillipps, S.; Taylor, E. N.; Windhorst, R. A.; Wolf, C.

    2018-06-01

    The Deep Extragalactic VIsible Legacy Survey (DEVILS) is a large spectroscopic campaign at the Anglo-Australian Telescope (AAT) aimed at bridging the near and distant Universe by producing the highest completeness survey of galaxies and groups at intermediate redshifts (0.3 < z < 1.0). Our sample consists of ˜60,000 galaxies to Y<21.2 mag, over ˜6 deg2 in three well-studied deep extragalactic fields (Cosmic Origins Survey field, COSMOS, Extended Chandra Deep Field South, ECDFS and the X-ray Multi-Mirror Mission Large-Scale Structure region, XMM-LSS - all Large Synoptic Survey Telescope deep-drill fields). This paper presents the broad experimental design of DEVILS. Our target sample has been selected from deep Visible and Infrared Survey Telescope for Astronomy (VISTA) Y-band imaging (VISTA Deep Extragalactic Observations, VIDEO and UltraVISTA), with photometry measured by PROFOUND. Photometric star/galaxy separation is done on the basis of NIR colours, and has been validated by visual inspection. To maximise our observing efficiency for faint targets we employ a redshift feedback strategy, which continually updates our target lists, feeding back the results from the previous night's observations. We also present an overview of the initial spectroscopic observations undertaken in late 2017 and early 2018.

  11. An ultra-high field strength MR image-guided robotic needle delivery system for in-bore small animal interventions.

    Science.gov (United States)

    Gravett, Matthew; Cepek, Jeremy; Fenster, Aaron

    2017-11-01

    The purpose of this study was to develop and validate an image-guided robotic needle delivery system for accurate and repeatable needle targeting procedures in mouse brains inside the 12 cm inner diameter gradient coil insert of a 9.4 T MR scanner. Many preclinical research techniques require the use of accurate needle deliveries to soft tissues, including brain tissue. Soft tissues are optimally visualized in MR images, which offer high-soft tissue contrast, as well as a range of unique imaging techniques, including functional, spectroscopy and thermal imaging, however, there are currently no solutions for delivering needles to small animal brains inside the bore of an ultra-high field MR scanner. This paper describes the mechatronic design, evaluation of MR compatibility, registration technique, mechanical calibration, the quantitative validation of the in-bore image-guided needle targeting accuracy and repeatability, and demonstrated the system's ability to deliver needles in situ. Our six degree-of-freedom, MR compatible, mechatronic system was designed to fit inside the bore of a 9.4 T MR scanner and is actuated using a combination of piezoelectric and hydraulic mechanisms. The MR compatibility and targeting accuracy of the needle delivery system are evaluated to ensure that the system is precisely calibrated to perform the needle targeting procedures. A semi-automated image registration is performed to link the robot coordinates to the MR coordinate system. Soft tissue targets can be accurately localized in MR images, followed by automatic alignment of the needle trajectory to the target. Intra-procedure visualization of the needle target location and the needle were confirmed through MR images after needle insertion. The effects of geometric distortions and signal noise were found to be below threshold that would have an impact on the accuracy of the system. The system was found to have negligible effect on the MR image signal noise and geometric distortion

  12. Deep geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The hot-dry-rocks located at 3-4 km of depth correspond to low permeable rocks carrying a large amount of heat. The extraction of this heat usually requires artificial hydraulic fracturing of the rock to increase its permeability before water injection. Hot-dry-rocks geothermics or deep geothermics is not today a commercial channel but only a scientific and technological research field. The Soultz-sous-Forets site (Northern Alsace, France) is characterized by a 6 degrees per meter geothermal gradient and is used as a natural laboratory for deep geothermal and geological studies in the framework of a European research program. Two boreholes have been drilled up to 3600 m of depth in the highly-fractured granite massif beneath the site. The aim is to create a deep heat exchanger using only the natural fracturing for water transfer. A consortium of german, french and italian industrial companies (Pfalzwerke, Badenwerk, EdF and Enel) has been created for a more active participation to the pilot phase. (J.S.). 1 fig., 2 photos

  13. Evaluating lysimeter drainage against soil deep percolation modeled with profile soil moisture, field tracer propagation, and lab measured soil hydraulic properties

    DEFF Research Database (Denmark)

    Vasquez, Vicente; Thomsen, Anton Gårde; Iversen, Bo Vangsø

    them have been reported. To compare among methods, one year of four large-scale lysimeters drainage (D) was evaluated against modeled soil deep percolation using either profile soil moisture, bromide breakthrough curves from suction cups, or measured soil hydraulic properties in the laboratory....... Measured volumetric soil water content (q) was 3-4% higher inside lysimeters than in the field probably due to a zero tension lower boundary condition inside lysimeters. D from soil hydraulic properties measured in the laboratory resulted in a 15% higher evapotranspiration and 12% lower drainage...... predictions than the model calibrated with field measured q. Bromide (Br) breakthrough curves indicated high variability between lysimeters and field suction cups with mean Br velocities at first arrival time of 110 and 33 mm/d, respectively. D was 520 mm/yr with lysimeters, 613 mm/yr with the calibrated...

  14. A LABOCA SURVEY OF THE EXTENDED CHANDRA DEEP FIELD SOUTH-SUBMILLIMETER PROPERTIES OF NEAR-INFRARED SELECTED GALAXIES

    International Nuclear Information System (INIS)

    Greve, T. R.; Walter, F.; Bell, E. F.; Dannerbauer, H.; Rix, H.-W.; Schinnerer, E.; Weiss, A.; Kovacs, A.; Smail, I.; Coppin, K. E. K.; Alexander, D.; Zheng, X. Z.; Knudsen, K. K.; Bertoldi, F.; De Breuck, C.; Dickinson, M.; Gawiser, E.; Lutz, D.; Brandt, N.; Chapman, S. C.

    2010-01-01

    Using the 330 hr ESO-MPG 870 μm survey of the Extended Chandra Deep Field South (ECDF-S) obtained with the Large Apex BOlometer CAmera (LABOCA) on the Atacama Pathfinder EXperiment (APEX), we have carried out a stacking analysis at submillimeter (submm) wavelengths of a sample of 8266 near-infra-red (near-IR) selected (K vega ≤ 20) galaxies, including 893 BzK galaxies, 1253 extremely red objects (EROs), and 737 distant red galaxies (DRGs), selected from the Multi-wavelength Survey by Yale-Chile (MUSYC). We measure average 870 μm fluxes of 0.22 ± 0.01 mJy (22.0σ), 0.48 ± 0.04 mJy (12.0σ), 0.39 ± 0.03 mJy (13.0σ), and 0.43 ± 0.04 mJy (10.8σ) for the K vega ≤ 20, BzK, ERO, and DRG samples, respectively. For the BzK, ERO, and DRG sub-samples, which overlap to some degree and are likely to be at z ≅ 1-2, this implies an average far-IR luminosity of ∼(1-5) x 10 11 L sun and star formation rate (SFR) of ∼20-90 M sun . Splitting the BzK galaxies into star-forming (sBzK) and passive (pBzK) galaxies, the former is significantly detected (0.50 ± 0.04 mJy, 12.5σ) while the latter is only marginally detected (0.34 ± 0.10 mJy, 3.4σ), thus confirming that the sBzK and pBzK criteria to some extent select obscured, star-forming, and truly passive galaxies, respectively. The K vega ≤ 20 galaxies are found to contribute 7.27 ± 0.34 Jy deg -2 (16.5% ± 5.7%) to the 870 μm extragalactic background light (EBL). sBzK and pBzK galaxies contribute 1.49 ± 0.22 Jy deg -2 (3.4% ± 1.3%) and 0.20 ± 0.14 Jy deg -2 (0.5% ± 0.3%) to the EBL. We present the first delineation of the average submm signal from the K vega ≤ 20 selected galaxies and their contribution to the submm EBL as a function of (photometric) redshift, and find a decline in the average submm signal (and therefore IR luminosity and SFR) by a factor ∼2-3 from z ∼ 2 to z ∼ 0. This is in line with a cosmic star formation history in which the star formation activity in galaxies increases

  15. Ion acceleration in electrostatic field of charged cavity created by ultra-short laser pulses of 1020-1021 W/cm2

    Science.gov (United States)

    Bychenkov, V. Yu.; Singh, P. K.; Ahmed, H.; Kakolee, K. F.; Scullion, C.; Jeong, T. W.; Hadjisolomou, P.; Alejo, A.; Kar, S.; Borghesi, M.; Ter-Avetisyan, S.

    2017-01-01

    Ion acceleration resulting from the interaction of ultra-high intensity and ultra-high contrast (˜10-10) laser pulses with thin A l foil targets at 30° angle of laser incidence is studied. Proton maximum energies of 30 and 18 MeV are measured along the target normal rear and front sides, respectively, showing intensity scaling as Ib . For the target front bf r o n t= 0.5-0.6 and for the target rear br e a r= 0.7-0.8 is observed in the intensity range 1020-1021 W/cm2. The fast scaling from the target rear ˜I0.75 can be attributed enhancement of laser energy absorption as already observed at relatively low intensities. The backward acceleration of the front side protons with intensity scaling as ˜I0.5 can be attributed to the to the formation of a positively charged cavity at the target front via ponderomotive displacement of the target electrons at the interaction of relativistic intense laser pulses with a solid target. The experimental results are in a good agreement with theoretical predictions.