WorldWideScience

Sample records for ulth ulk thlk

  1. Central Role of ULK1 in Type I Interferon Signaling

    Directory of Open Access Journals (Sweden)

    Diana Saleiro

    2015-04-01

    Full Text Available We provide evidence that the Unc-51-like kinase 1 (ULK1 is activated during engagement of the type I interferon (IFN receptor (IFNR. Our studies demonstrate that the function of ULK1 is required for gene transcription mediated via IFN-stimulated response elements (ISRE and IFNγ activation site (GAS elements and controls expression of key IFN-stimulated genes (ISGs. We identify ULK1 as an upstream regulator of p38α mitogen-activated protein kinase (MAPK and establish that the regulatory effects of ULK1 on ISG expression are mediated possibly by engagement of the p38 MAPK pathway. Importantly, we demonstrate that ULK1 is essential for antiproliferative responses and type I IFN-induced antineoplastic effects against malignant erythroid precursors from patients with myeloproliferative neoplasms. Together, these data reveal a role for ULK1 as a key mediator of type I IFNR-generated signals that control gene transcription and induction of antineoplastic responses.

  2. Human ULK1 Variation and Susceptibility to Mycobacterium tuberculosis Infection.

    Science.gov (United States)

    Horne, David J; Graustein, Andrew D; Shah, Javeed A; Peterson, Glenna; Savlov, Meg; Steele, Sergio; Narita, Masahiro; Hawn, Thomas R

    2016-10-15

    Unlike tuberculosis, few studies have evaluated a host genetic basis for variability in susceptibility to latent Mycobacterium tuberculosis infection (LTBI). We performed a candidate gene association study of autophagy-related genes and LTBI. We enrolled close contacts of individuals with pulmonary tuberculosis, assessed LTBI status, and determined clinical and sociodemographic risk factors for LTBI. In participants who self-identified as Asian or black, we compared haplotype-tagging single-nucleotide polymorphisms (SNPs) in ULK1 and GABARAP between cases (n = 143) and controls (n = 106). Using CRISPR/Cas9 in U937 monocytes, we investigated the effect of ULK1 deficiency on cytokine expression, autophagy, and M. tuberculosis replication. In Asian participants, we identified 2 ULK1 SNPs (rs12297124 and rs7300908) associated with LTBI. After adjustment for population admixture and clinical risk for LTBI, each rs12297124 minor allele conferred 80% reduction in LTBI risk (odds ratio, 0.18; 95% confidence interval, .07-.46). Compared with controls, ULK1-deficient cells exhibited decreased tumor necrosis factor secretion after stimulation with Toll-like receptor ligands and M. tuberculosis whole-cell lysate, increased M. tuberculosis replication, and decreased selective autophagy. These results demonstrate a strong association of rs12297124, a noncoding ULK1 SNP, with LTBI and a role for ULK1 regulation of TNF secretion, nonspecific and M. tuberculosis-induced autophagy, and M. tuberculosis replication in monocytes. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  3. ULK1: a promising biomarker in predicting poor prognosis and therapeutic response in human nasopharygeal carcinoma.

    Directory of Open Access Journals (Sweden)

    Miao Yun

    Full Text Available Plenty of studies have established that dysregulation of autophagy plays an essential role in cancer progression. The autophagy-related proteins have been reported to be closely associated with human cancer patients' prognosis. We explored the expression dynamics and prognostic value of autophagy-related protein ULK1 by immunochemistry (IHC method in two independent cohorts of nasopharygeal carcinoma (NPC cases. The X-tile program was applied to determine the optimal cut-off value in the training cohort. This derived cutoff value was then subjected to analysis the association of ULK1 expression with patients' clinical characteristics and survival outcome in the validation cohort and overall cases. High ULK1 expression was closely associated with aggressive clinical feature of NPC patients. Furthermore, high expression of ULK1 was observed more frequently in therapeutic resistant group than that in therapeutic effective group. Our univariate and multivariate analysis also showed that higher ULK1 expression predicted inferior disease-specific survival (DSS (P<0.05. Consequently, a new clinicopathologic prognostic model with 3 poor prognostic factors (ie, ULK1 expression, overall clinical stage and therapeutic response could significantly stratify risk (low, intermediate and high for DSS in NPC patients (P<0.001. These findings provide evidence that, the examination of ULK1 expression by IHC method, could serve as an effective additional tool for predicting therapeutic response and patients' survival outcome in NPC patients.

  4. miR-26a suppresses autophagy in swine Sertoli cells by targeting ULK2.

    Science.gov (United States)

    Ran, M; Li, Z; Cao, R; Weng, B; Peng, F; He, C; Chen, B

    2018-05-14

    A large number of microRNAs (miRNAs) have been detected from porcine testicular tissues thanks to the development of high-throughput sequencing technology. However, the regulatory roles of most identified miRNAs in swine testicular development or spermatogenesis are poorly understood. In our previous study, ULK2 (uncoordinated-51-like kinase 2) was predicted as a target gene of miR-26a. In this study, we aimed to investigate the role of miR-26a in swine Sertoli cell autophagy. The relative expression of miR-26a and ULK2 levels has a significant negative correlation (R 2  = .5964, p ≤ .01) in nine developmental stages of swine testicular tissue. Dual-luciferase reporter assay results show that miR-26a directly targets the 3'UTR of the ULK2 gene (position 618-624). In addition, both the mRNA and protein expression of ULK2 were downregulated by miR-26a in swine Sertoli cells. These results indicate that miR-26a targets the ULK2 gene and downregulates its expression in swine Sertoli cells. Based on the expression of marker genes (LC3, p62 and Beclin-1), overexpression of miR-26a or knock-down of ULK2 inhibits swine Sertoli cell autophagy. Taken together, these findings demonstrate that miR-26a suppresses autophagy in swine Sertoli cells by targeting ULK2. © 2018 Blackwell Verlag GmbH.

  5. Asymmetric inhibition of Ulk2 causes left-right differences in habenular neuropil formation.

    Science.gov (United States)

    Taylor, Robert W; Qi, Jenny Y; Talaga, Anna K; Ma, Taylur P; Pan, Luyuan; Bartholomew, Clinton R; Klionsky, Daniel J; Moens, Cecilia B; Gamse, Joshua T

    2011-07-06

    Studies of the zebrafish epithalamus have provided recent insights into the development of left-right brain asymmetry, which is crucial to normal human brain function. The habenular nuclei of zebrafish are robustly asymmetric, with dense elaboration of neuropil only in the left lateral subnucleus. Because this feature is tightly correlated with asymmetric expression of K(+) channel tetramerization domain-containing proteins 12.1 and 12.2 (Kctd12.1/12.2), we screened for Kctd12.1-interacting proteins to identify molecular mechanisms leading to neuropil asymmetry, and uncovered a novel interaction between Kctd12.1 and Unc-51-like kinase 2 (Ulk2). We show here that knockdown of Ulk2 or overexpression of Kctd12 proteins reduces asymmetric neuropil elaboration. Conversely, overexpression of Ulk2 or mutation of kctd12 genes causes excess neuropil elaboration. We conclude that Ulk2 activity promotes neuropil elaboration while Kctd12 proteins limit Ulk2 activity asymmetrically. This work describes a regulatory mechanism for neuronal process extension that may be conserved in other developmental contexts in addition to the epithalamus.

  6. Phosphorylation of ULK1 by AMPK is essential for mouse embryonic stem cell self-renewal and pluripotency.

    Science.gov (United States)

    Gong, Jiaqi; Gu, Haifeng; Zhao, Lin; Wang, Liang; Liu, Pinglei; Wang, Fuping; Xu, Haoyu; Zhao, Tongbiao

    2018-01-18

    Autophagy is a catabolic process to degrade both damaged organelles and aggregated proteins in somatic cells. We have recently identified that autophagy is an executor for mitochondrial homeostasis in embryonic stem cell (ESC), and thus contribute to stemness regulation. However, the regulatory and functional mechanisms of autophagy in ESC are still largely unknown. Here we have shown that activation of ULK1 by AMPK is essential for ESC self-renewal and pluripotency. Dysfunction of Ulk1 decreases the autophagic flux in ESC, leading to compromised self-renewal and pluripotency. These defects can be rescued by reacquisition of wild-type ULK1 and ULK1(S757A) mutant, but not ULK1(S317A, S555A and S777A) and kinase dead ULK1(K46I) mutant. These data indicate that phosphorylation of ULK1 by AMPK, but not mTOR, is essential for stemness regulation in ESC. The findings highlight a critical role for AMPK-dependent phosphorylation of ULK1 pathway to maintain ESC self-renewal and pluripotency.

  7. GABARAP activates ULK1 and traffics from the centrosome dependent on Golgi partners WAC and GOLGA2/GM130.

    Science.gov (United States)

    Joachim, Justin; Tooze, Sharon A

    2016-05-03

    WAC and GOLGA2/GM130 are 2 Golgi proteins that affect autophagy; however, their mechanism of action was unknown. We have shown that WAC binding to GOLGA2 at the Golgi displaces GABARAP from GOLGA2 to allow the maintenance of a nonlipidated centrosomal GABARAP pool. Centrosomal GABARAP can traffic to autophagic structures during starvation. In addition GABARAP specifically promotes ULK1 activation and this is independent of GABARAP lipidation but likely requires a LIR-mediated GABARAP-ULK1 interaction.

  8. CARMA2sh and ULK2 control pathogen-associated molecular patterns recognition in human keratinocytes: psoriasis-linked CARMA2sh mutants escape ULK2 censorship.

    Science.gov (United States)

    Scudiero, Ivan; Mazzone, Pellegrino; D'Andrea, Luca E; Ferravante, Angela; Zotti, Tiziana; Telesio, Gianluca; De Rubis, Gabriele; Reale, Carla; Pizzulo, Maddalena; Muralitharan, Shanmugakonar; Vito, Pasquale; Stilo, Romania

    2017-02-23

    The molecular complexes formed by specific members of the family of CARMA proteins, the CARD domain-containing adapter molecule BCL10 and MALT1 (CBM complex) represent a central hub in regulating activation of the pleiotropic transcription factor NF-κB. Recently, missense mutations in CARMA2sh have been shown to cause psoriasis in a dominant manner and with high penetrancy. Here, we demonstrate that in human keratinocytes CARMA2sh plays an essential role in the signal transduction pathway that connects pathogen-associated molecular patterns recognition to NF-κB activation. We also find that the serine/threonine kinase ULK2 binds to and phosphorylates CARMA2sh, thereby inhibiting its capacity to activate NF-κB by promoting lysosomal degradation of BCL10, which is essential for CARMA2sh-mediated NF-κB signaling. Remarkably, CARMA2sh mutants associated with psoriasis escape ULK2 inhibition. Finally, we show that a peptide blocking CARD-mediated BCL10 interactions reduces the capacity of psoriasis-linked CARMA2sh mutants to activate NF-κB. Our work elucidates a fundamental signaling mechanism operating in human keratinocytes and opens to novel potential tools for the therapeutical treatment of human skin disorders.

  9. Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy.

    Science.gov (United States)

    Laker, Rhianna C; Drake, Joshua C; Wilson, Rebecca J; Lira, Vitor A; Lewellen, Bevan M; Ryall, Karen A; Fisher, Carleigh C; Zhang, Mei; Saucerman, Jeffrey J; Goodyear, Laurie J; Kundu, Mondira; Yan, Zhen

    2017-09-15

    Mitochondrial health is critical for skeletal muscle function and is improved by exercise training through both mitochondrial biogenesis and removal of damaged/dysfunctional mitochondria via mitophagy. The mechanisms underlying exercise-induced mitophagy have not been fully elucidated. Here, we show that acute treadmill running in mice causes mitochondrial oxidative stress at 3-12 h and mitophagy at 6 h post-exercise in skeletal muscle. These changes were monitored using a novel fluorescent reporter gene, pMitoTimer, that allows assessment of mitochondrial oxidative stress and mitophagy in vivo, and were preceded by increased phosphorylation of AMP activated protein kinase (Ampk) at tyrosine 172 and of unc-51 like autophagy activating kinase 1 (Ulk1) at serine 555. Using mice expressing dominant negative and constitutively active Ampk in skeletal muscle, we demonstrate that Ulk1 activation is dependent on Ampk. Furthermore, exercise-induced metabolic adaptation requires Ulk1. These findings provide direct evidence of exercise-induced mitophagy and demonstrate the importance of Ampk-Ulk1 signaling in skeletal muscle.Exercise is associated with biogenesis and removal of dysfunctional mitochondria. Here the authors use a mitochondrial reporter gene to demonstrate the occurrence of mitophagy following exercise in mice, and show this is dependent on AMPK and ULK1 signaling.

  10. Computational analysis of an autophagy/translation switch based on mutual inhibition of MTORC1 and ULK1.

    Directory of Open Access Journals (Sweden)

    Paulina Szymańska

    Full Text Available We constructed a mechanistic, computational model for regulation of (macroautophagy and protein synthesis (at the level of translation. The model was formulated to study the system-level consequences of interactions among the following proteins: two key components of MTOR complex 1 (MTORC1, namely the protein kinase MTOR (mechanistic target of rapamycin and the scaffold protein RPTOR; the autophagy-initiating protein kinase ULK1; and the multimeric energy-sensing AMP-activated protein kinase (AMPK. Inputs of the model include intrinsic AMPK kinase activity, which is taken as an adjustable surrogate parameter for cellular energy level or AMP:ATP ratio, and rapamycin dose, which controls MTORC1 activity. Outputs of the model include the phosphorylation level of the translational repressor EIF4EBP1, a substrate of MTORC1, and the phosphorylation level of AMBRA1 (activating molecule in BECN1-regulated autophagy, a substrate of ULK1 critical for autophagosome formation. The model incorporates reciprocal regulation of mTORC1 and ULK1 by AMPK, mutual inhibition of MTORC1 and ULK1, and ULK1-mediated negative feedback regulation of AMPK. Through analysis of the model, we find that these processes may be responsible, depending on conditions, for graded responses to stress inputs, for bistable switching between autophagy and protein synthesis, or relaxation oscillations, comprising alternating periods of autophagy and protein synthesis. A sensitivity analysis indicates that the prediction of oscillatory behavior is robust to changes of the parameter values of the model. The model provides testable predictions about the behavior of the AMPK-MTORC1-ULK1 network, which plays a central role in maintaining cellular energy and nutrient homeostasis.

  11. Shear Stress Induces Phenotypic Modulation of Vascular Smooth Muscle Cells via AMPK/mTOR/ULK1-Mediated Autophagy.

    Science.gov (United States)

    Sun, Liqian; Zhao, Manman; Liu, Aihua; Lv, Ming; Zhang, Jingbo; Li, Youxiang; Yang, Xinjian; Wu, Zhongxue

    2018-03-01

    Phenotypic modulation of vascular smooth muscle cells (VSMCs) is involved in the pathophysiological processes of the intracranial aneurysms (IAs). Although shear stress has been implicated in the proliferation, migration, and phenotypic conversion of VSMCs, the molecular mechanisms underlying these events are currently unknown. In this study, we investigated whether shear stress(SS)-induced VSMC phenotypic modulation was mediated by autophagy involved in adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/Unc-51-like kinase 1 (ULK1) pathway. The results show that shear stress could inhibit the expression of key VSMC contractile genes and induce pro-inflammatory/matrix-remodeling genes levels, contributing to VSMCs phenotypic switching from a contractile to a synthetic phenotype. More importantly, Shear stress also markedly increased the levels of the autophagy marker microtubule-associated protein light chain 3-II (LC3II), Beclin-1, and p62 degradation. The autophagy inhibitor 3-methyladenine (3-MA) significantly blocked shear-induced phenotypic modulation of VSMCs. To further explore the molecular mechanism involved in shear-induced autophagy, we found that shear stress could activate AMPK/mTOR/ULK1 signaling pathway in VSMCs. Compound C, a pharmacological inhibitor of AMPK, significantly reduced the levels of p-AMPK and p-ULK, enhanced p-mTOR level, and finally decreased LC3II and Beclin-1 level, which suggested that activated AMPK/mTOR/ULK1 signaling was related to shear-mediated autophagy. These results indicate that shear stress promotes VSMC phenotypic modulation through the induction of autophagy involved in activating the AMPK/mTOR/ULK1 pathway.

  12. Ulk1-mediated autophagy plays an essential role in mitochondrial remodeling and functional regeneration of skeletal muscle.

    Science.gov (United States)

    Call, Jarrod A; Wilson, Rebecca J; Laker, Rhianna C; Zhang, Mei; Kundu, Mondira; Yan, Zhen

    2017-06-01

    Autophagy is a conserved cellular process for degrading aggregate proteins and dysfunctional organelle. It is still debatable if autophagy and mitophagy (a specific process of autophagy of mitochondria) play important roles in myogenic differentiation and functional regeneration of skeletal muscle. We tested the hypothesis that autophagy is critical for functional regeneration of skeletal muscle. We first observed time-dependent increases (3- to 6-fold) of autophagy-related proteins (Atgs), including Ulk1, Beclin1, and LC3, along with reduced p62 expression during C2C12 differentiation, suggesting increased autophagy capacity and flux during myogenic differentiation. We then used cardiotoxin (Ctx) or ischemia-reperfusion (I/R) to induce muscle injury and regeneration and observed increases in Atgs between days 2 and 7 in adult skeletal muscle followed by increased autophagy flux after day 7 Since Ulk1 has been shown to be essential for mitophagy, we asked if Ulk1 is critical for functional regeneration in skeletal muscle. We subjected skeletal muscle-specific Ulk1 knockout mice (MKO) to Ctx or I/R. MKO mice had significantly impaired recovery of muscle strength and mitochondrial protein content post-Ctx or I/R. Imaging analysis showed that MKO mice have significantly attenuated recovery of mitochondrial network at 7 and 14 days post-Ctx. These findings suggest that increased autophagy protein and flux occur during muscle regeneration and Ulk1-mediated mitophagy is critical for recovery for the mitochondrial network and hence functional regeneration. Copyright © 2017 the American Physiological Society.

  13. Proteotoxic stress induces phosphorylation of p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein aggregates.

    Directory of Open Access Journals (Sweden)

    Junghyun Lim

    Full Text Available Disruption of proteostasis, or protein homeostasis, is often associated with aberrant accumulation of misfolded proteins or protein aggregates. Autophagy offers protection to cells by removing toxic protein aggregates and injured organelles in response to proteotoxic stress. However, the exact mechanism whereby autophagy recognizes and degrades misfolded or aggregated proteins has yet to be elucidated. Mounting evidence demonstrates the selectivity of autophagy, which is mediated through autophagy receptor proteins (e.g. p62/SQSTM1 linking autophagy cargos and autophagosomes. Here we report that proteotoxic stress imposed by the proteasome inhibition or expression of polyglutamine expanded huntingtin (polyQ-Htt induces p62 phosphorylation at its ubiquitin-association (UBA domain that regulates its binding to ubiquitinated proteins. We find that autophagy-related kinase ULK1 phosphorylates p62 at a novel phosphorylation site S409 in UBA domain. Interestingly, phosphorylation of p62 by ULK1 does not occur upon nutrient starvation, in spite of its role in canonical autophagy signaling. ULK1 also phosphorylates S405, while S409 phosphorylation critically regulates S405 phosphorylation. We find that S409 phosphorylation destabilizes the UBA dimer interface, and increases binding affinity of p62 to ubiquitin. Furthermore, lack of S409 phosphorylation causes accumulation of p62, aberrant localization of autophagy proteins and inhibition of the clearance of ubiquitinated proteins or polyQ-Htt. Therefore, our data provide mechanistic insights into the regulation of selective autophagy by ULK1 and p62 upon proteotoxic stress. Our study suggests a potential novel drug target in developing autophagy-based therapeutics for the treatment of proteinopathies including Huntington's disease.

  14. GABARAP activates ULK1 and traffics from the centrosome dependent on Golgi partners WAC and GOLGA2/GM130

    OpenAIRE

    Joachim, Justin; Tooze, Sharon A.

    2016-01-01

    ABSTRACT WAC and GOLGA2/GM130 are 2 Golgi proteins that affect autophagy; however, their mechanism of action was unknown. We have shown that WAC binding to GOLGA2 at the Golgi displaces GABARAP from GOLGA2 to allow the maintenance of a nonlipidated centrosomal GABARAP pool. Centrosomal GABARAP can traffic to autophagic structures during starvation. In addition GABARAP specifically promotes ULK1 activation and this is independent of GABARAP lipidation but likely requires a LIR-mediated GABARAP...

  15. Caspase-3 controls AML1-ETO-driven leukemogenesis via autophagy modulation in a ULK1-dependent manner.

    Science.gov (United States)

    Man, Na; Tan, Yurong; Sun, Xiao-Jian; Liu, Fan; Cheng, Guoyan; Greenblatt, Sarah M; Martinez, Camilo; Karl, Daniel L; Ando, Koji; Sun, Ming; Hou, Dan; Chen, Bingyi; Xu, Mingjiang; Yang, Feng-Chun; Chen, Zhu; Chen, Saijuan; Nimer, Stephen D; Wang, Lan

    2017-05-18

    AML1-ETO (AE), a fusion oncoprotein generated by t(8;21), can trigger acute myeloid leukemia (AML) in collaboration with mutations including c-Kit, ASXL1/2, FLT3, N-RAS, and K-RAS. Caspase-3, a key executor among its family, plays multiple roles in cellular processes, including hematopoietic development and leukemia progression. Caspase-3 was revealed to directly cleave AE in vitro, suggesting that AE may accumulate in a Caspase-3-compromised background and thereby accelerate leukemogenesis. Therefore, we developed a Caspase-3 knockout genetic mouse model of AML and found that loss of Caspase-3 actually delayed AML1-ETO9a (AE9a)-driven leukemogenesis, indicating that Caspase-3 may play distinct roles in the initiation and/or progression of AML. We report here that loss of Caspase-3 triggers a conserved, adaptive mechanism, namely autophagy (or macroautophagy), which acts to limit AE9a-driven leukemia. Furthermore, we identify ULK1 as a novel substrate of Caspase-3 and show that upregulation of ULK1 drives autophagy initiation in leukemia cells and that inhibition of ULK1 can rescue the phenotype induced by Caspase-3 deletion in vitro and in vivo. Collectively, these data highlight Caspase-3 as an important regulator of autophagy in AML and demonstrate that the balance and selectivity between its substrates can dictate the pace of disease. © 2017 by The American Society of Hematology.

  16. Structure of the Human Atg13-Atg101 HORMA Heterodimer: an Interaction Hub within the ULK1 Complex.

    Science.gov (United States)

    Qi, Shiqian; Kim, Do Jin; Stjepanovic, Goran; Hurley, James H

    2015-10-06

    The ULK1 complex, consisting of the ULK1 protein kinase itself, FIP200, Atg13, and Atg101, controls the initiation of autophagy in animals. We determined the structure of the complex of the human Atg13 HORMA (Hop1, Rev7, Mad2) domain in complex with the full-length HORMA domain-only protein Atg101. The two HORMA domains assemble with an architecture conserved in the Mad2 conformational heterodimer and the S. pombe Atg13-Atg101 HORMA complex. The WF finger motif that is essential for function in human Atg101 is sequestered in a hydrophobic pocket, suggesting that the exposure of this motif is regulated. Benzamidine molecules from the crystallization solution mark two hydrophobic pockets that are conserved in, and unique to, animals, and are suggestive of sites that could interact with other proteins. These features suggest that the activity of the animal Atg13-Atg101 subcomplex is regulated and that it is an interaction hub for multiple partners. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Exome sequence analysis and follow up genotyping implicates rare ULK1 variants to be involved in susceptibility to schizophrenia

    Science.gov (United States)

    Al Eissa, Mariam M.; Fiorentino, Alessia; Sharp, Sally I.; O'Brien, Niamh L.; Wolfe, Kate; Giaroli, Giovanni; Curtis, David; Bass, Nicholas J.

    2017-01-01

    Summary Schizophrenia (SCZ) is a severe, highly heritable psychiatric disorder. Elucidation of the genetic architecture of the disorder will facilitate greater understanding of the altered underlying neurobiological mechanisms. The aim of this study was to identify likely aetiological variants in subjects affected with SCZ. Exome sequence data from a SCZ cas–control sample from Sweden was analysed for likely aetiological variants using a weighted burden test. Suggestive evidence implicated the UNC‐51‐like kinase (ULK1) gene, and it was observed that four rare variants that were more common in the Swedish SCZ cases were also more common in UK10K SCZ cases, as compared to obesity cases. These three missense variants and one intronic variant were genotyped in the University College London cohort of 1304 SCZ cases and 1348 ethnically matched controls. All four variants were more common in the SCZ cases than controls and combining them produced a result significant at P = 0.02. The results presented here demonstrate the importance of following up exome sequencing studies using additional datasets. The roles of ULK1 in autophagy and mTOR signalling strengthen the case that these pathways may be important in the pathophysiology of SCZ. The findings reported here await independent replication. PMID:29148569

  18. Influences of different dietary energy level on sheep testicular development associated with AMPK/ULK1/autophagy pathway.

    Science.gov (United States)

    Pang, Jing; Li, Fengzhe; Feng, Xu; Yang, Hua; Han, Le; Fan, Yixuan; Nie, Haitao; Wang, Zhen; Wang, Feng; Zhang, Yanli

    2018-03-01

    Energy balance is an important feature for spermatozoa production in the testis. The 5'-AMP-activated protein kinase (AMPK) is a sensor of cell energy, has been implicated as a mediator between gonadal function and energy balance. Herein, we intended to determine the physiological effects of AMPK on testicular development in feed energy restricted and compensated pre-pubertal rams. Lambs had restricted feeding for 2 months and then provided compensatory feeding for another 3 months. Feed levels were 100%(control), 15% and 30% of energy restriction (ER) diets, respectively. The results showed that lambs fed the 30% ER diet had significantly lower testicular weight (P energy requirement after restriction. Taken together, dietary energy levels influence testicular development through autophagy and apoptosis interplay mediated by AMPK-ULK1 signal pathway, which also indicates the important role of the actions of AMPK in the testis homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Fluoxetine induces autophagic cell death via eEF2K-AMPK-mTOR-ULK complex axis in triple negative breast cancer.

    Science.gov (United States)

    Sun, Dejuan; Zhu, Lingjuan; Zhao, Yuqian; Jiang, Yingnan; Chen, Lixia; Yu, Yang; Ouyang, Liang

    2018-04-01

    Triple negative breast cancer (TNBC) is a complex and intrinsically aggressive tumour with poor prognosis, and the discovery of targeted small-molecule drugs for TNBC treatment still remains in its infancy. In this study, we aimed to discover a small-molecule agent for TNBC treatment and illuminate its potential mechanisms. Cell viability was detected by using methylthiazoltetrazolium (MTT) assay. Electron microscopy, GFP-LC3 transfection, monodansylcadaverine staining and apoptosis assay were performed to determine Fluoxetine-induced autophagy and apoptosis. Western blotting and siRNA transfection were carried out to investigate the mechanisms of Fluoxetine-induced autophagy. iTRAQ-based proteomics analysis was used to explore the underlying mechanisms. We have demonstrated that Fluoxetine had remarkable anti-proliferative activities and induced autophagic cell death in MDA-MB-231 and MDA-MB-436 cells. The mechanism for Fluoxetine-induced autophagic cell death was associated with inhibition of eEF2K and activation of AMPK-mTOR-ULK complex axis. Further iTRAQ-based proteomics and network analyses revealed that Fluoxetine-induced mechanism was involved in BIRC6, BNIP1, SNAP29 and Bif-1. These results demonstrate that Fluoxetine induces apoptosis and autophagic cell death in TNBC, which will hold a promise for the future TNBC therapy. © 2017 John Wiley & Sons Ltd.

  20. Moderate Autophagy Inhibits Vascular Smooth Muscle Cell Senescence to Stabilize Progressed Atherosclerotic Plaque via the mTORC1/ULK1/ATG13 Signal Pathway

    Directory of Open Access Journals (Sweden)

    Zhenli Luo

    2017-01-01

    Full Text Available In order to investigate the effects of autophagy induced by rapamycin in the development of atherosclerosis plaque we established murine atherosclerosis model which was induced in ApoE−/− mice by high fat and cholesterol diet (HFD for 16 weeks. Rapamycin and 3-Methyladenine (MA were used as autophagy inducer and inhibitor respectively. The plaque areas in aortic artery were detected with HE and Oil Red O staining. Immunohistochemical staining were applied to investigate content of plaque respectively. In contrast to control and 3-MA groups, rapamycin could inhibit atherosclerosis progression. Rapamycin was able to increase collagen content and a-SMA distribution relatively, as well as decrease necrotic core area. Then we used MOVAS and culture with ox-LDL for 72 h to induce smooth muscle-derived foam cell model in vitro. Rapamycin and 3-MA were cultured together respectively. Flow cytometry assay and SA-β-Gal staining experiments were performed to detect survival and senescence of VSMCs. Western blot analysis were utilized to analyze the levels of protein expression. We found that rapamycin could promote ox-LDL-induced VSMCs autophagy survival and alleviate cellular senescence, in comparison to control and 3-MA groups. Western blot analysis showed that rapamycin could upregulate ULK1, ATG13 and downregulate mTORC1 and p53 protein expression.

  1. Effects of Growth Environment and Ulking Rate on Cyanogenic Potential of Cassava Tuerous Roots

    International Nuclear Information System (INIS)

    Githunguri, C.M

    2002-01-01

    Various abiotic factors affect the pattern of growth and accumulation of cyanogenic glucosides in cassava plants. Five cassava genotypes were planted in a wet and a dry agro-ecological zone and analyzed at 4, 6, 8, 10 and 12 months after planting for tuberous root bulking rate and cyanogenic potential. Cassava plants at Ibadan (the wetter zone) had higher tuberous roots bulking rate and lower cynogenic potential than those planted at Minjibir (the drier zone). Root bulking rate at Ibadan increased from 4 to 6 months after planting, fell to 10 months, and then levelled off thereafter. At Majorana, bulking rate increased from 4 to 6 months, levelling off u pto 8 months after planting, and then falling slightly u pto to 10 months, and rising gradually u pto 12 months after planting. At Minijibir, the 6-8 months after planting period coincided with drought and the highest root bulking rate but increasing cyanogenic potential. Similarly, at Ibadan the 6-8 months after planting period coincided with drought and the highest root bulking rate but increasing cyanogenic potential. Despite the onset of drought, bulking continued up to 8 months after planting, falling u pto 10 months and levelling off thereafter at both agro-ecological zones. However, whereas cyanogenic potential rose rapidly after 8 months to peak at 10 months, and levelling off up to 12 months at Minjibir, cyanogenic potential levelled of after 8 u pto 12 months at Ibadan. Correlation and regression analysis suggested that root bulking rate and cyanogenic potential were negatively associated, meaning that an increase in root bulking rate would lead to corresponding decrease in it's cyanogenic potential which is highly desirable. This study has demonstrated that whereas the plant age and genotypic effects are not important factors in determining tuberous roots bulking rate and cyanogenic potential of cassava, the agro-ecological zone effect is an important factor in determining them

  2. Defining the Role of Autophagy Kinase ULK1 Signaling in Therapeutic Response of Tuberous Sclerosis Complex to mTOR Inhibitors

    Science.gov (United States)

    2016-07-01

    assayed using 10-mM MBP in the presence of 30-mM radiolabeled g-32P-ATP. 6965 was tested in triplicate in a ten-dose IC50 mode with 3-fold serial ...content imaging. The siRNAs pools containing 48 non-targeting siRNAs (Dharmacon) were used as a negative control. Killer siRNA (EIF4A3 siRNA, Ambion

  3. Ultra low-K shrinkage behavior when under electron beam in a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Lorut, F.; Imbert, G. [ST Microelectronics, 850 rue Jean Monnet, 38926 Crolles Cedex (France); Roggero, A. [Centre National d' Etudes Spatiales, 18 Avenue Edouard Belin, 31400 Toulouse (France)

    2013-08-28

    In this paper, we investigate the tendency of porous low-K dielectrics (also named Ultra Low-K, ULK) behavior to shrink when exposed to the electron beam of a scanning electron microscope. Various experimental electron beam conditions have been used for irradiating ULK thin films, and the resulting shrinkage has been measured through use of an atomic force microscope tool. We report the shrinkage to be a fast, cumulative, and dose dependent effect. Correlation of the shrinkage with incident electron beam energy loss has also been evidenced. The chemical modification of the ULK films within the interaction volume has been demonstrated, with a densification of the layer and a loss of carbon and hydrogen elements being observed.

  4. ATG13: just a companion, or an executor of the autophagic program?

    Science.gov (United States)

    Alers, Sebastian; Wesselborg, Sebastian; Stork, Björn

    2014-06-01

    During the past 20 years, autophagy signaling has entered the main stage of the cell biological theater. Autophagy represents an intracellular degradation process that is involved in both the bulk recycling of cytoplasmic components and the selective removal of organelles, protein aggregates, or intracellular pathogens. The understanding of autophagy has been greatly facilitated by the characterization of the molecular machinery governing this process. In yeast, initiation of autophagy is controlled by the Atg1 kinase complex, which is composed of the Ser/Thr kinase Atg1, the adaptor protein Atg13, and the ternary complex of Atg17-Atg31-Atg29. In vertebrates, the orthologous ULK1 kinase complex contains the Ser/Thr kinase ULK1 and the accessory proteins ATG13, RB1CC1, and ATG101. Among these components, Atg1/ULK1 have gained major attention in the past, i.e., for the identification of upstream regulatory kinases, the characterization of downstream substrates controlling the autophagic flux, or as a druggable target for the modulation of autophagy. However, accumulating data indicate that the function of Atg13/ATG13 has been likely underestimated so far. In addition to ensuring proper Atg1/ULK1 recruitment and activity, this adaptor molecule has been implicated in ULK1-independent autophagy processes. Furthermore, recent data have identified additional binding partners of Atg13/ATG13 besides the components of the Atg1/ULK1 complex, e.g., Atg8 family proteins or acidic phospholipids. Therefore, in this review we will center the spotlight on Atg13/ATG13 and summarize the role that Atg13/ATG13 assumes in the autophagy stage play.

  5. Tumedad tulevikunägemused kinolinal / Marianne Kõrver

    Index Scriptorium Estoniae

    Kõrver, Marianne, 1980-

    2007-01-01

    Sõpruse kinos 13. aprillil linastunud kahest filmist - eesti uus lühimängufilm, Sass Henno jutustuse põhjal, režissöör Mihkel Ulk "Südameasjad" ja norra režissööri Jens Lieni film "Tüütu mees" ("Den Brysomme mannen")

  6. PT-1 selectively activates AMPK-γ1 complexes in mouse skeletal muscle, but activates all three γ subunit complexes in cultured human cells by inhibiting the respiratory chain

    DEFF Research Database (Denmark)

    Jensen, Thomas Elbenhardt; Ross, Fiona A; Kleinert, Maximilian

    2015-01-01

    strategy to combat diseases such as cancer and type 2 diabetes. We report that the AMPK activator PT-1 selectively increased the activity of γ1- but not γ3-containing complexes in incubated mouse muscle. PT-1 increased the AMPK-dependent phosphorylation of the autophagy-regulating kinase ULK1 on Ser555...

  7. Investigation of plasma etch damage to porous oxycarbosilane ultra low-k dielectric

    International Nuclear Information System (INIS)

    Bruce, R L; Engelmann, S; Purushothaman, S; Volksen, W; Frot, T J; Magbitang, T; Dubois, G; Darnon, M

    2013-01-01

    There has been much interest recently in porous oxycarbosilane (POCS)-based materials as the ultra-low k dielectric (ULK) in back-end-of-line (BEOL) applications due to their superior mechanical properties compared to traditional organosilicate-based ULK materials at equivalent porosity and dielectric constant. While it is well known that plasma etching and strip processes can cause significant damage to ULK materials in general, little has been reported about the effect of plasma damage to POCS as the ULK material. We investigated the effect of changing the gas discharge chemistry and substrate bias in the dielectric trench etch and also the subsequent effect of the cap-open etch on plasma damage to POCS during BEOL integration. Large differences in surface roughness and damage behaviour were observed by changing the fluorocarbon depositing conditions. These damage behaviour trends will be discussed and potential rationalizations offered based on the formation of pits and craters at the etch front that lead to surface roughness and microtrenching. (paper)

  8. Risk assessment with current deployment strategies for fusiform rust-resistant loblolly and slash pines

    Science.gov (United States)

    Floyd Bridgwater; Tom Kubisiak; Tom Byram; Steve Mckeand

    2004-01-01

    In the southeastern USA, fusiform rust resistant loblolly and slash pines may be deployed as 1) ulked seed orchard mixes. 2) half-sibling (sib) family mixtures. 3) single half-sib families. 4) full-sib cross seeds or as 6) clones of individual genotypes. These deployment types are respectively greater genetic gains from higher selection intensity. Currently, bulked...

  9. Activation of Host IRE1α-Dependent Signaling Axis Contributes the Intracellular Parasitism of Brucella melitensis

    Directory of Open Access Journals (Sweden)

    Aseem Pandey

    2018-04-01

    Full Text Available Brucella spp. are intracellular vacuolar pathogens that causes brucellosis, a worldwide zoonosis of profound importance. We previously demonstrated that the activity of host unfolded protein response (UPR sensor IRE1α (inositol-requiring enzyme 1 and ER-associated autophagy confer susceptibility to Brucella melitensis and Brucella abortus intracellular replication. However, the mechanism by which host IRE1α regulates the pathogen intracellular lifestyle remains elusive. In this study, by employing a diverse array of molecular approaches, including biochemical analyses, fluorescence microscopy imaging, and infection assays using primary cells derived from Ern1 (encoding IRE1 conditional knockout mice, we address this gap in our understanding by demonstrating that a novel IRE1α to ULK1, an important component for autophagy initiation, signaling axis confers susceptibility to Brucella intracellular parasitism. Importantly, deletion or inactivation of key signaling components along this axis, including IRE1α, BAK/BAX, ASK1, and JNK as well as components of the host autophagy system ULK1, Atg9a, and Beclin 1, resulted in striking disruption of Brucella intracellular trafficking and replication. Host kinases in the IRE1α-ULK1 axis, including IRE1α, ASK1, JNK1, and/or AMPKα as well as ULK1, were also coordinately phosphorylated in an IRE1α-dependent fashion upon the pathogen infection. Taken together, our findings demonstrate that the IRE1α-ULK1 signaling axis is subverted by the bacterium to promote intracellular parasitism, and provide new insight into our understanding of the molecular mechanisms of intracellular lifestyle of Brucella.

  10. High mobility group A1 protein modulates autophagy in cancer cells.

    Science.gov (United States)

    Conte, Andrea; Paladino, Simona; Bianco, Gaia; Fasano, Dominga; Gerlini, Raffaele; Tornincasa, Mara; Renna, Maurizio; Fusco, Alfredo; Tramontano, Donatella; Pierantoni, Giovanna Maria

    2017-11-01

    High Mobility Group A1 (HMGA1) is an architectural chromatin protein whose overexpression is a feature of malignant neoplasias with a causal role in cancer initiation and progression. HMGA1 promotes tumor growth by several mechanisms, including increase of cell proliferation and survival, impairment of DNA repair and induction of chromosome instability. Autophagy is a self-degradative process that, by providing energy sources and removing damaged organelles and misfolded proteins, allows cell survival under stress conditions. On the other hand, hyper-activated autophagy can lead to non-apoptotic programmed cell death. Autophagy deregulation is a common feature of cancer cells in which has a complex role, showing either an oncogenic or tumor suppressor activity, depending on cellular context and tumor stage. Here, we report that depletion of HMGA1 perturbs autophagy by different mechanisms. HMGA1-knockdown increases autophagosome formation by constraining the activity of the mTOR pathway, a major regulator of autophagy, and transcriptionally upregulating the autophagy-initiating kinase Unc-51-like kinase 1 (ULK1). Consistently, functional experiments demonstrate that HMGA1 binds ULK1 promoter region and negatively regulates its transcription. On the other hand, the increase in autophagosomes is not associated to a proportionate increase in their maturation. Overall, the effects of HMGA1 depletion on autophagy are associated to a decrease in cell proliferation and ultimately impact on cancer cells viability. Importantly, silencing of ULK1 prevents the effects of HMGA1-knockdown on cellular proliferation, viability and autophagic activity, highlighting how these effects are, at least in part, mediated by ULK1. Interestingly, this phenomenon is not restricted to skin cancer cells, as similar results have been observed also in HeLa cells silenced for HMGA1. Taken together, these results clearly indicate HMGA1 as a key regulator of the autophagic pathway in cancer cells

  11. Geochemistry of the continental margin sediments of the central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, Ch.M.; Murty, P.S.N.

    organic carbonI~ntent{< I%J and organic carbon rich (upto 12%) carbonate sediments in the slope regionl The b'ulk and partition geocfiemistry of the surface sediments renect the complex intermixture of several sedimentary components (lithogenic. authigenic.... The elements Fe, Mn, Ni, Cu, Zn and Sr :ue determined using a Hilger and Watts Model M 1550 atomic absorption spectrophotometer. Titanium and Phosphorus are detennined on all samples by colorimeter (Riley, 1958; Strickland and Parsons, 1971). Following bulk...

  12. Resveratrol induces autophagy by directly inhibiting mTOR through ATP competition

    Science.gov (United States)

    Park, Dohyun; Jeong, Heeyoon; Lee, Mi Nam; Koh, Ara; Kwon, Ohman; Yang, Yong Ryoul; Noh, Jungeun; Suh, Pann-Ghill; Park, Hwangseo; Ryu, Sung Ho

    2016-01-01

    Resveratrol (RSV) is a natural polyphenol that has a beneficial effect on health, and resveratrol-induced autophagy has been suggested to be a key process in mediating many beneficial effects of resveratrol, such as reduction of inflammation and induction of cancer cell death. Although various resveratrol targets have been suggested, the molecule that mediates resveratrol-induced autophagy remains unknown. Here, we demonstrate that resveratrol induces autophagy by directly inhibiting the mTOR-ULK1 pathway. We found that inhibition of mTOR activity and presence of ULK1 are required for autophagy induction by resveratrol. In line with this mTOR dependency, we found that resveratrol suppresses the viability of MCF7 cells but not of SW620 cells, which are mTOR inhibitor sensitive and insensitive cancer cells, respectively. We also found that resveratrol-induced cancer cell suppression occurred ULK1 dependently. For the mechanism of action of resveratrol on mTOR inhibition, we demonstrate that resveratrol directly inhibits mTOR. We found that resveratrol inhibits mTOR by docking onto the ATP-binding pocket of mTOR (i.e., it competes with ATP). We propose mTOR as a novel direct target of resveratrol, and inhibition of mTOR is necessary for autophagy induction. PMID:26902888

  13. Structural characterization of amorphous materials applied to low-k organosilicate materials

    Energy Technology Data Exchange (ETDEWEB)

    Raymunt, Alexandra Cooper, E-mail: amc442@cornell.edu; Clancy, Paulette

    2014-07-01

    We present a methodology to create computational atomistic-level models of porous amorphous materials, in particular, an organosilicate structure for ultra-low dielectric constant (ULK) materials known as “SiCOH.” The method combines the ability to satisfy geometric and chemical constraints with subsequent molecular dynamics (MD) techniques as a way to capture the complexities of the porous and amorphous nature of these materials. The motivation for studying ULK materials arises from a desire to understand the origin of the material's weak mechanical properties. The first step towards understanding how these materials might behave under processing conditions that are intended to improve their mechanical properties is to develop a suitable computational model of the material and hence is the focus of this paper. We define the atomic-scale topology of ULK materials that have been produced by chemical vapor deposition-like experimental techniques. Specifically, we have developed a method of defining the initial atom configurations and interactions, as well as a method to rearrange these starting configurations into relaxed structures. The main advantage of our described approach is the ability of our structure generation method to maintain a random distribution of relevant structural motifs throughout the structure, without relying on large unit cells and periodic boundaries to approximate the behavior of this complex material. The minimization of the different models was accomplished using replica exchange molecular dynamics (REMD). Following the generation of the ‘equilibrium’ configurations that result from REMD for a ULK material of a pre-specified composition, we demonstrate that its structural properties, including bonding topology, porosity and pore size distribution are similar to experimentally used ULK materials. - Highlights: • Method for creating a model of a low dielectric constant organosilicate material • Method of defining porosity in

  14. The measurement of TSH-receptor autoantibodies in human serum by radioreceptor assay

    International Nuclear Information System (INIS)

    Truong, T.X.

    2002-01-01

    182U/l(SD= 193.6U/l). Max of Graves' disease is 398.1U/l. Min of Grave's disease is 2.03U/l . The TRAB levels greater than 2.6 U/l are considered positive. The sensitivity of diagnosis is 90%, specificity is 96%, likelihood is 27, accuracy is 93%, prevalence is 50%, positive predictive value is 96%, negative predictive value is 90%. The study on 20 subject of Grave's disease after thyroidectomy, the range of TRAB concentration in serum are from 1.08 U/l to 37 U/l.The mean is 5.9 +/-1.25U/l. On 25 subjects of Grave's disease after antithyroid drugs treatment, the range of TRAB concentration in serum are from 0,42 U/l to 25 U/l.The mean is 5.28+/- 1.42U/l. Base on these results we could use that in the clinic for diagnosis, evaluation of treatment response and follow up after treatment of Grave's disease

  15. Computer-aided method of airborne uranium in working areas

    International Nuclear Information System (INIS)

    Dagen, E.; Ringel, V.; Rossbach, H.

    1981-09-01

    The described procedure allows the routine determination of uranium aerosols with low personnel and technical efforts. The activity deposited on the filters is measured automatically twice a night. The computerized evaluation, including the elimination of radon and thoron daughter products, is made off-line with the aid of the code ULK1. The results are available at the beginning of the following working day and can be used for radiation protection planning. The sensitivity of the method of eliminating the airborne natural activity is 4 times less than that of measurements after its complete decay. This, however, is not of significance for radiation protection purposes

  16. Rheumatoid Factor Positivity Is Associated with Increased Joint Destruction and Upregulation of Matrix Metalloproteinase 9 and Cathepsin K Gene Expression in the Peripheral Blood in Rheumatoid Arthritic Patients Treated with Methotrexate

    Directory of Open Access Journals (Sweden)

    Elena V. Tchetina

    2013-01-01

    Full Text Available We evaluated changes in gene expression of mTOR, p21, caspase-3, ULK1, TNFα, matrix metalloproteinase (MMP-9, and cathepsin K in the whole blood of rheumatoid arthritic (RA patients treated with methotrexate (MTX in relation to their rheumatoid factor status, clinical, immunological, and radiological parameters, and therapeutic response after a 24-month follow-up. The study group consisted of 35 control subjects and 33 RA patients without previous history of MTX treatment. Gene expression was measured using real-time RT-PCR. Decreased disease activity in patients at the end of the study was associated with significant downregulation of TNFα expression. Downregulation of mTOR was observed in seronegative patients, while no significant changes in the expression of p21, ULK1, or caspase-3 were noted in any RA patients at the end of the study. The increase in erosion numbers observed in the seropositive patients at the end of the follow-up was accompanied by upregulation of MMP-9 and cathepsin K, while seronegative patients demonstrated an absence of significant changes in MMP-9 and cathepsin K expression and no increase in the erosion score. Our results suggest that increased expression of MMP-9 and cathepsin K genes in the peripheral blood might indicate higher bone tissue destruction activity in RA patients treated with methotrexate. The clinical study registration number is 0120.0810610.

  17. Autophagy and the nutritional signaling pathway

    Directory of Open Access Journals (Sweden)

    Long HE,Shabnam ESLAMFAM,Xi MA,Defa LI

    2016-09-01

    Full Text Available During their growth and development, animals adapt to tremendous changes in order to survive. These include responses to both environmental and physiological changes and autophagy is one of most important adaptive and regulatory mechanisms. Autophagy is defined as an autolytic process to clear damaged cellular organelles and recycle the nutrients via lysosomic degradation. The process of autophagy responds to special conditions such as nutrient withdrawal. Once autophagy is induced, phagophores form and then elongate and curve to form autophagosomes. Autophagosomes then engulf cargo, fuse with endosomes, and finally fuse with lysosomes for maturation. During the initiation process, the ATG1/ULK1 (unc-51-like kinase 1 and VPS34 (which encodes a class III phosphatidylinositol (PtdIns 3-kinase complexes are critical in recruitment and assembly of other complexes required for autophagy. The process of autophagy is regulated by autophagy related genes (ATGs. Amino acid and energy starvation mediate autophagy by activating mTORC1 (mammalian target of rapamycin and AMP-activated protein kinase (AMPK. AMPK is the energy status sensor, the core nutrient signaling component and the metabolic kinase of cells. This review mainly focuses on the mechanism of autophagy regulated by nutrient signaling especially for the two important complexes, ULK1 and VPS34.

  18. Performance of an Optimized Paper-Based Test for Rapid Visual Measurement of Alanine Aminotransferase (ALT in Fingerstick and Venipuncture Samples.

    Directory of Open Access Journals (Sweden)

    Sidhartha Jain

    Full Text Available A paper-based, multiplexed, microfluidic assay has been developed to visually measure alanine aminotransferase (ALT in a fingerstick sample, generating rapid, semi-quantitative results. Prior studies indicated a need for improved accuracy; the device was subsequently optimized using an FDA-approved automated platform (Abaxis Piccolo Xpress as a comparator. Here, we evaluated the performance of the optimized paper test for measurement of ALT in fingerstick blood and serum, as compared to Abaxis and Roche/Hitachi platforms. To evaluate feasibility of remote results interpretation, we also compared reading cell phone camera images of completed tests to reading the device in real time.96 ambulatory patients with varied baseline ALT concentration underwent fingerstick testing using the paper device; cell phone images of completed devices were taken and texted to a blinded off-site reader. Venipuncture serum was obtained from 93/96 participants for routine clinical testing (Roche/Hitachi; subsequently, 88/93 serum samples were captured and applied to paper and Abaxis platforms. Paper test and reference standard results were compared by Bland-Altman analysis.For serum, there was excellent agreement between paper test and Abaxis results, with negligible bias (+4.5 U/L. Abaxis results were systematically 8.6% lower than Roche/Hitachi results. ALT values in fingerstick samples tested on paper were systematically lower than values in paired serum tested on paper (bias -23.6 U/L or Abaxis (bias -18.4 U/L; a correction factor was developed for the paper device to match fingerstick blood to serum. Visual reads of cell phone images closely matched reads made in real time (bias +5.5 U/L.The paper ALT test is highly accurate for serum testing, matching the reference method against which it was optimized better than the reference methods matched each other. A systematic difference exists between ALT values in fingerstick and paired serum samples, and can be

  19. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    Science.gov (United States)

    Fritzen, Andreas M.; Madsen, Agnete B.; Kleinert, Maximilian; Treebak, Jonas T.; Lundsgaard, Anne‐Marie; Jensen, Thomas E.; Richter, Erik A.; Wojtaszewski, Jørgen; Kiens, Bente

    2016-01-01

    Key points Regulation of autophagy in human muscle in many aspects differs from the majority of previous reports based on studies in cell systems and rodent muscle.An acute bout of exercise and insulin stimulation reduce human muscle autophagosome content.An acute bout of exercise regulates autophagy by a local contraction‐induced mechanism.Exercise training increases the capacity for formation of autophagosomes in human muscle.AMPK activation during exercise seems insufficient to regulate autophagosome content in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy‐inhibiting effect of insulin. Abstract Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one‐legged exercise, one‐legged exercise training and subsequent insulin stimulation in exercised and non‐exercised human muscle. Acute one‐legged exercise decreased (Pexercise in human muscle. The decrease in LC3‐II/LC3‐I ratio did not correlate with activation of 5′AMP activated protein kinase (AMPK) trimer complexes in human muscle. Consistently, pharmacological AMPK activation with 5‐aminoimidazole‐4‐carboxamide riboside (AICAR) in mouse muscle did not affect the LC3‐II/LC3‐I ratio. Four hours after exercise, insulin further reduced (Pexercised and non‐exercised leg in humans. This coincided with increased Ser‐757 phosphorylation of Unc51 like kinase 1 (ULK1), which is suggested as a mammalian target of rapamycin complex 1 (mTORC1) target. Accordingly, inhibition of mTOR signalling in mouse muscle prevented the ability of insulin to reduce the LC3‐II/LC3‐I ratio. In response to 3 weeks of one‐legged exercise training, the LC3‐II/LC3‐I ratio decreased (Pexercise and insulin stimulation reduce muscle autophagosome content, while exercise

  20. Plasma ash processing solutions for advanced interconnect technology

    International Nuclear Information System (INIS)

    Fuller, N.C.M.; Worsley, M.A.; Tai, L.; Bent, S.; Labelle, C.; Arnold, J.; Dalton, T.

    2008-01-01

    A mechanism for the modification of porous ultra low-k (ULK) and extreme ultra low-k (EULK) SiCOH-based materials is proposed. This is achieved by correlating film damage on a patterned structure measured by angular resolved x-ray photoelectron spectroscopy (ARXPS) with corresponding changes in reactive species radical density and ion current in the plasma measured by optical emission spectroscopy (OES), rare gas actinometry, and modeling. Line-to-line electrical leakage and capacitance data of nested line structures exposed to downstream ash plasmas suggest that other etching steps during back-end-of-the-line (BEOL) dual damascene processing are also critical for the overall modification induced to these materials

  1. Autophagy activation is involved in 3,4-methylenedioxymethamphetamine ('ecstasy'--induced neurotoxicity in cultured cortical neurons.

    Directory of Open Access Journals (Sweden)

    I-Hsun Li

    Full Text Available Autophagic (type II cell death, characterized by the massive accumulation of autophagic vacuoles in the cytoplasm of cells, has been suggested to play pathogenetic roles in cerebral ischemia, brain trauma, and neurodegenerative disorders. 3,4-Methylenedioxymethamphetamine (MDMA or ecstasy is an illicit drug causing long-term neurotoxicity in the brain. Apoptotic (type I and necrotic (type III cell death have been implicated in MDMA-induced neurotoxicity, while the role of autophagy in MDMA-elicited neurotoxicity has not been investigated. The present study aimed to evaluate the occurrence and contribution of autophagy to neurotoxicity in cultured rat cortical neurons challenged with MDMA. Autophagy activation was monitored by expression of microtubule-associated protein 1 light chain 3 (LC3; an autophagic marker using immunofluorescence and western blot analysis. Here, we demonstrate that MDMA exposure induced monodansylcadaverine (MDC- and LC3B-densely stained autophagosome formation and increased conversion of LC3B-I to LC3B-II, coinciding with the neurodegenerative phase of MDMA challenge. Autophagy inhibitor 3-methyladenine (3-MA pretreatment significantly attenuated MDMA-induced autophagosome accumulation, LC3B-II expression, and ameliorated MDMA-triggered neurite damage and neuronal death. In contrast, enhanced autophagy flux by rapamycin or impaired autophagosome clearance by bafilomycin A1 led to more autophagosome accumulation in neurons and aggravated neurite degeneration, indicating that excessive autophagosome accumulation contributes to MDMA-induced neurotoxicity. Furthermore, MDMA induced phosphorylation of AMP-activated protein kinase (AMPK and its downstream unc-51-like kinase 1 (ULK1, suggesting the AMPK/ULK1 signaling pathway might be involved in MDMA-induced autophagy activation.

  2. Increased baseline RUNX2, caspase 3 and p21 gene expressions in the peripheral blood of disease-modifying anti-rheumatic drug-naïve rheumatoid arthritis patients are associated with improved clinical response to methotrexate therapy.

    Science.gov (United States)

    Tchetina, Elena V; Demidova, Natalia V; Markova, Galina A; Taskina, Elena A; Glukhova, Svetlana I; Karateev, Dmitry E

    2017-10-01

    To investigate the potential of the baseline gene expression in the whole blood of disease-modifying anti-rheumatic drug-naïve rheumatoid arthritis (RA) patients for predicting the response to methotrexate (MTX) treatment. Twenty-six control subjects and 40 RA patients were examined. Clinical, immunological and radiographic parameters were assessed before and after 24 months of follow-up. The gene expressions in the whole blood were measured using real-time reverse transcription polymerase chain reaction. The protein concentrations in peripheral blood mononuclear cells were quantified using enzyme-linked immunosorbent assay. Receiver operating characteristic curve analyses were used to suggest thresholds that were associated with the prediction of the response. Decreases in the disease activity at the end of the study were accompanied by significant increases in joint space narrowing score (JSN). Positive correlations between the expressions of the Unc-51-like kinase 1 (ULK1) and matrix metalloproteinase 9 (MMP-9) genes with the level of C-reactive protein and MMP-9 expression with Disease Activity Score of 28 joints (DAS28) and swollen joint count were noted at baseline. The baseline tumor necrosis factor (TNF)α gene expression was positively correlated with JSN at the end of the follow-up, whereas p21, caspase 3, and runt-related transcription factor (RUNX)2 were correlated with the ΔDAS28 values. Our results suggest that the expressions of MMP-9 and ULK1 might be associated with disease activity. Increased baseline gene expressions of RUNX2, p21 and caspase 3 in the peripheral blood might predict better responses to MTX therapy. © 2017 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  3. Fasting Increases Human Skeletal Muscle Net Phenylalanine Release and This Is Associated with Decreased mTOR Signaling

    Science.gov (United States)

    Vendelbo, Mikkel Holm; Møller, Andreas Buch; Christensen, Britt; Nellemann, Birgitte; Clasen, Berthil Frederik Forrest; Nair, K. Sreekumaran; Jørgensen, Jens Otto Lunde; Jessen, Niels; Møller, Niels

    2014-01-01

    Aim Fasting is characterised by profound changes in energy metabolism including progressive loss of body proteins. The underlying mechanisms are however unknown and we therefore determined the effects of a 72-hour-fast on human skeletal muscle protein metabolism and activation of mammalian target of rapamycin (mTOR), a key regulator of cell growth. Methods Eight healthy male volunteers were studied twice: in the postabsorptive state and following 72 hours of fasting. Regional muscle amino acid kinetics was measured in the forearm using amino acid tracers. Signaling to protein synthesis and breakdown were assessed in skeletal muscle biopsies obtained during non-insulin and insulin stimulated conditions on both examination days. Results Fasting significantly increased forearm net phenylalanine release and tended to decrease phenylalanine rate of disappearance. mTOR phosphorylation was decreased by ∼50% following fasting, together with reduced downstream phosphorylation of 4EBP1, ULK1 and rpS6. In addition, the insulin stimulated increase in mTOR and rpS6 phosphorylation was significantly reduced after fasting indicating insulin resistance in this part of the signaling pathway. Autophagy initiation is in part regulated by mTOR through ULK1 and fasting increased expression of the autophagic marker LC3B-II by ∼30%. p62 is degraded during autophagy but was increased by ∼10% during fasting making interpretation of autophagic flux problematic. MAFbx and MURF1 ubiquitin ligases remained unaltered after fasting indicating no change in protesomal protein degradation. Conclusions Our results show that during fasting increased net phenylalanine release in skeletal muscle is associated to reduced mTOR activation and concomitant decreased downstream signaling to cell growth. PMID:25020061

  4. Fasting increases human skeletal muscle net phenylalanine release and this is associated with decreased mTOR signaling.

    Directory of Open Access Journals (Sweden)

    Mikkel Holm Vendelbo

    Full Text Available Fasting is characterised by profound changes in energy metabolism including progressive loss of body proteins. The underlying mechanisms are however unknown and we therefore determined the effects of a 72-hour-fast on human skeletal muscle protein metabolism and activation of mammalian target of rapamycin (mTOR, a key regulator of cell growth.Eight healthy male volunteers were studied twice: in the postabsorptive state and following 72 hours of fasting. Regional muscle amino acid kinetics was measured in the forearm using amino acid tracers. Signaling to protein synthesis and breakdown were assessed in skeletal muscle biopsies obtained during non-insulin and insulin stimulated conditions on both examination days.Fasting significantly increased forearm net phenylalanine release and tended to decrease phenylalanine rate of disappearance. mTOR phosphorylation was decreased by ∼50% following fasting, together with reduced downstream phosphorylation of 4EBP1, ULK1 and rpS6. In addition, the insulin stimulated increase in mTOR and rpS6 phosphorylation was significantly reduced after fasting indicating insulin resistance in this part of the signaling pathway. Autophagy initiation is in part regulated by mTOR through ULK1 and fasting increased expression of the autophagic marker LC3B-II by ∼30%. p62 is degraded during autophagy but was increased by ∼10% during fasting making interpretation of autophagic flux problematic. MAFbx and MURF1 ubiquitin ligases remained unaltered after fasting indicating no change in protesomal protein degradation.Our results show that during fasting increased net phenylalanine release in skeletal muscle is associated to reduced mTOR activation and concomitant decreased downstream signaling to cell growth.

  5. WNK1 is an unexpected autophagy inhibitor

    Science.gov (United States)

    Gallolu Kankanamalage, Sachith; Lee, A-Young; Wichaidit, Chonlarat; Lorente-Rodriguez, Andres; Shah, Akansha M.; Stippec, Steve; Whitehurst, Angelique W.; Cobb, Melanie H.

    2017-01-01

    ABSTRACT Autophagy is a cellular degradation pathway that is essential to maintain cellular physiology, and deregulation of autophagy leads to multiple diseases in humans. In a recent study, we discovered that the protein kinase WNK1 (WNK lysine deficient protein kinase 1) is an inhibitor of autophagy. The loss of WNK1 increases both basal and starvation-induced autophagy. In addition, the depletion of WNK1 increases the activation of the class III phosphatidylinositol 3-kinase (PtdIns3K) complex, which is required to induce autophagy. Moreover, the loss of WNK1 increases the expression of ULK1 (unc-51 like kinase 1), which is upstream of the PtdIns3K complex. It also increases the pro-autophagic phosphorylation of ULK1 at Ser555 and the activation of AMPK (AMP-activated protein kinase), which is responsible for that phosphorylation. The inhibition of AMPK by compound C decreases the magnitude of autophagy induction following WNK1 loss; however, it does not prevent autophagy induction. We found that the UVRAG (UV radiation resistance associated gene), which is a component of the PtdIns3K, binds to the N-terminal region of WNK1. Moreover, WNK1 partially colocalizes with UVRAG and this colocalization decreases when autophagy is stimulated in cells. The loss of WNK1 also alters the cellular distribution of UVRAG. The depletion of the downstream target of WNK1, OXSR1/OSR1 (oxidative-stress responsive 1) has no effect on autophagy, whereas the depletion of its relative STK39/SPAK (serine/threonine kinase 39) induces autophagy under nutrient-rich and starved conditions. PMID:28282258

  6. Preparation of Ultra Low-κ Porous SiOCH Films from Ring-Type Siloxane with Unsaturated Hydrocarbon Side Chains by Spin-On Deposition

    International Nuclear Information System (INIS)

    Chun-Xiao, Yang; Chi, Zhang; Qing-Qing, Sun; Sai-Sheng, Xu; Li-Feng, Zhang; Yu, Shi; Shi-Jin, Ding; Wei, Zhang

    2010-01-01

    An ultra-low-dielectric-constant (ultra low-k, or ULK) porous SiOCH film is prepared using a single ring-type siloxane precursor of the 2,4,6,8-tetravinyl-2,4,6,8-tetramethylcyclotetrasiloxane by means of spin-on deposition, followed by crosslinking reactions between the precursor monomers under UV irradiation. The as-prepared film has an ultra low k of 2.41 at 1 MHz due to incorporation of pores and hydrocarbon crosslinkages, a leakage current density of 9.86 × 10 −7 A/cm 2 at 1 MV/cm, as well as a breakdown field strength of ∼1.5 MV/cm. Further, annealing at 300°C results in lower k (i.e., 1.94 at 1 MHz), smaller leakage current density (2.96 × 10 −7 A/cm 2 at 1 MV/cm) and higher breakdown field strength (about 3.5 MV/cm), which are likely caused by the short-ranged structural rearrangement and reduction of defects in the film. Finally, the mechanical properties and surface morphology of films are also evaluated after different temperature annealing. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Is reactivation of autophagy a possible therapeutic solution for obesity and metabolic syndrome?

    Science.gov (United States)

    Sciarretta, Sebastiano; Volpe, Massimo; Sadoshima, Junichi

    2012-08-01

    The molecular mechanism regulating the cardiomyocyte response to energy stress has been a hot topic in cardiac research in recent years, since this mechanism could be targeted for treatment of patients with ischemic heart disease. We have shown recently that the activity of RAS homolog enriched in brain (RHEB), a small GTP binding protein, is inhibited in response to glucose deprivation (GD) in cardiomyocytes and ischemia in the mouse heart. This is a physiological adaptation, since it inhibits complex 1 of the mechanistic target of rapamycin (MTORC1) and activates autophagy, thereby promoting cell survival during GD and prolonged ischemia. Importantly, the physiological inhibition of RHEB-MTORC1 signaling during myocardial ischemia is impaired in the presence of obesity and metabolic syndrome caused by high-fat diet (HFD) feeding, leading to a dramatic increase in ischemic injury. Although MTORC1 and autophagy can be regulated through RHEB-independent mechanisms, such as the AMPK-dependent phosphorylation of RPTOR and ULK1, RHEB appears to be critical in the regulation of MTORC1 and autophagy during ischemia in cardiomyocytes, and its dysregulation is relevant to human disease. Here we discuss the biological relevance of the dysregulation of RHEB-MTORC1 signaling and the suppression of autophagy in obesity and metabolic syndrome.

  8. Epigallocatechin-3-Gallate (EGCG Promotes Autophagy-Dependent Survival via Influencing the Balance of mTOR-AMPK Pathways upon Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Marianna Holczer

    2018-01-01

    Full Text Available The maintenance of cellular homeostasis is largely dependent on the ability of cells to give an adequate response to various internal and external stimuli. We have recently proposed that the life-and-death decision in endoplasmic reticulum (ER stress response is defined by a crosstalk between autophagy, apoptosis, and mTOR-AMPK pathways, where the transient switch from autophagy-dependent survival to apoptotic cell death is controlled by GADD34. The aim of the present study was to investigate the role of epigallocatechin-3-gallate (EGCG, the major polyphenol of green tea, in promoting autophagy-dependent survival and to verify the key role in connecting GADD34 with mTOR-AMPK pathways upon prolonged ER stress. Our findings, obtained by using HEK293T cells, revealed that EGCG treatment is able to extend cell viability by inducing autophagy. We confirmed that EGCG-induced autophagy is mTOR-dependent and PKA-independent; furthermore, it also required ULK1. We show that pretreatment of cells with EGCG diminishes the negative effect of GADD34 inhibition (by guanabenz or siGADD34 treatment on autophagy. EGCG was able to delay apoptotic cell death by upregulating autophagy-dependent survival even in the absence of GADD34. Our data suggest a novel role for EGCG in promoting cell survival via shifting the balance of mTOR-AMPK pathways in ER stress.

  9. Chromosome 12q24.31-q24.33 deletion causes multiple dysmorphic features and developmental delay: First mosaic patient and overview of the phenotype related to 12q24qter defects

    Directory of Open Access Journals (Sweden)

    Sakati Nadia

    2011-04-01

    Full Text Available Abstract Background Genomic imbalances of the 12q telomere are rare; only a few patients having 12q24.31-q24.33 deletions were reported. Interestingly none of these were mosaic. Although some attempts have been made to establish phenotype/genotype interaction for the deletions in this region, no clear relationship has been established to date. Results We have clinically screened more than 100 patients with dysmorphic features, mental retardation and normal karyotype using high density oligo array-CGH (aCGH and identified a ~9.2 Mb hemizygous interstitial deletion at the 12q telomere (Chromosome 12: 46,XY,del(12(q24.31q24.33 in a severely developmentally retarded patient having dysmorphic features such as low set ears, microcephaly, undescended testicles, bent elbow, kyphoscoliosis, and micropenis. Parents were found to be not carriers. MLPA experiments confirmed the aCGH result. Interphase FISH revealed mosaicism in cultured peripheral blood lymphocytes. Conclusions Since conventional G-Banding technique missed the abnormality; this work re-confirms that any child with unexplained developmental delay and systemic involvement should be studied by aCGH techniques. The FISH technique, however, would still be useful to further delineate the research work and identify such rare mosaicism. Among the 52 deleted genes, P2RX2, ULK1, FZD10, RAN, NCOR2 STX2, TESC, FBXW8, and TBX3 are noteworthy since they may have a role in observed phenotype.

  10. IL-34 and CSF-1 display an equivalent macrophage differentiation ability but a different polarization potential.

    Science.gov (United States)

    Boulakirba, Sonia; Pfeifer, Anja; Mhaidly, Rana; Obba, Sandrine; Goulard, Michael; Schmitt, Thomas; Chaintreuil, Paul; Calleja, Anne; Furstoss, Nathan; Orange, François; Lacas-Gervais, Sandra; Boyer, Laurent; Marchetti, Sandrine; Verhoeyen, Els; Luciano, Frederic; Robert, Guillaume; Auberger, Patrick; Jacquel, Arnaud

    2018-01-10

    CSF-1 and IL-34 share the CSF-1 receptor and no differences have been reported in the signaling pathways triggered by both ligands in human monocytes. IL-34 promotes the differentiation and survival of monocytes, macrophages and osteoclasts, as CSF-1 does. However, IL-34 binds other receptors, suggesting that differences exist in the effect of both cytokines. In the present study, we compared the differentiation and polarization abilities of human primary monocytes in response to CSF-1 or IL-34. CSF-1R engagement by one or the other ligands leads to AKT and caspase activation and autophagy induction through expression and activation of AMPK and ULK1. As no differences were detected on monocyte differentiation, we investigated the effect of CSF-1 and IL-34 on macrophage polarization into the M1 or M2 phenotype. We highlighted a striking increase in IL-10 and CCL17 secretion in M1 and M2 macrophages derived from IL-34 stimulated monocytes, respectively, compared to CSF-1 stimulated monocytes. Variations in the secretome induced by CSF-1 or IL-34 may account for their different ability to polarize naïve T cells into Th1 cells. In conclusion, our findings indicate that CSF-1 and IL-34 exhibit the same ability to induce human monocyte differentiation but may have a different ability to polarize macrophages.

  11. 20-hydroxyecdysone upregulates Atg genes to induce autophagy in the Bombyx fat body

    Science.gov (United States)

    Tian, Ling; Ma, Li; Guo, Enen; Deng, Xiaojuan; Ma, Sanyuan; Xia, Qingyou; Cao, Yang; Li, Sheng

    2013-01-01

    Autophagy is finely regulated at multiple levels and plays crucial roles in development and disease. In the fat body of the silkworm, Bombyx mori, autophagy occurs and Atg gene expression peaks during the nonfeeding molting and pupation stages when the steroid hormone (20-hydroxyecdysone; 20E) is high. Injection of 20E into the feeding larvae upregulated Atg genes and reduced TORC1 activity resulting in autophagy induction in the fat body. Conversely, RNAi knockdown of the 20E receptor partner (USP) or targeted overexpression of a dominant negative mutant of the 20E receptor (EcRDN) in the larval fat body reduced autophagy and downregulated the Atg genes, confirming the importance of 20E-induction of Atg gene expression during pupation. Moreover, in vitro treatments of the larval fat body with 20E upregulated the Atg genes. Five Atg genes were potentially 20E primary-responsive, and a 20E response element was identified in the Atg1 (ortholog of human ULK1) promoter region. Furthermore, RNAi knockdown of 4 key genes (namely Br-C, E74, HR3 and βftz-F1) in the 20E-triggered transcriptional cascade reduced autophagy and downregulated Atg genes to different levels. Taken together, we conclude that in addition to blocking TORC1 activity for autophagosome initiation, 20E upregulates Atg genes to induce autophagy in the Bombyx fat body. PMID:23674061

  12. Kaempferol induces autophagic cell death of hepatocellular carcinoma cells via activating AMPK signaling.

    Science.gov (United States)

    Han, Bing; Yu, Yi-Qun; Yang, Qi-Lian; Shen, Chun-Ying; Wang, Xiao-Juan

    2017-10-17

    In the present study, we demonstrate that Kaempferol inhibited survival and proliferation of established human hepatocellular carcinoma (HCC) cell lines (HepG2, Huh-7, BEL7402, and SMMC) and primary human HCC cells. Kaempferol treatment in HCC cells induced profound AMP-activated protein kinase (AMPK) activation, which led to Ulk1 phosphorylation, mTOR complex 1 inhibition and cell autophagy. Autophagy induction was reflected by Beclin-1/autophagy gene 5 upregulation and p62 degradation as well as light chain 3B (LC3B)-I to LC3B-II conversion and LC3B puncta formation. Inhibition of AMPK, via AMPKα1 shRNA or dominant negative mutation, reversed above signaling changes. AMPK inhibition also largely inhibited Kaempferol-induced cytotoxicity in HCC cells. Autophagy inhibition, by 3-methyaldenine or Beclin-1 shRNA, also protected HCC cells from Kaempferol. Kaempferol downregulated melanoma antigen 6, the AMPK ubiquitin ligase, causing AMPKα1 stabilization and accumulation. We conclude that Kaempferol inhibits human HCC cells via activating AMPK signaling.

  13. The peiminine stimulating autophagy in human colorectal carcinoma cells via AMPK pathway by SQSTM1

    Directory of Open Access Journals (Sweden)

    Zheng Zhi

    2016-01-01

    Full Text Available Autophagy is a conserved catabolic process, which functions in maintenance of cellular homeostasis in eukaryotic cells. The self-eating process engulfs cellular long-lived proteins and organelles with double-membrane vesicles, and forms a so-called autophagosome. Degradation of contents via fusion with lysosome provides recycled building blocks for synthesis of new molecules during stress, e.g. starvation. Peiminine is a steroidal alkaloid extracted from Fritillaria thunbergii which is widely used in Traditional Chinese Medicine. Previously, peiminine has been identified to induce autophagy in human colorectal carcinoma cells. In this study, we further investigated whether peiminine could induce autophagic cell death via activating autophagy-related signaling pathway AMPK-mTOR-ULK by promoting SQSTM1(P62. Xenograft tumor growth in vivo suggested that both peiminine and starvation inhibit the growth of tumor size and weight, which was prominently enhanced when peiminine and starvation combined. The therapeutical effect of peiminine in cancer treatment is to be expected.

  14. Endothelial ErbB4 deficit induces alterations in exploratory behavior and brain energy metabolism in mice.

    Science.gov (United States)

    Wu, Gang; Liu, Xiu-Xiu; Lu, Nan-Nan; Liu, Qi-Bing; Tian, Yun; Ye, Wei-Feng; Jiang, Guo-Jun; Tao, Rong-Rong; Han, Feng; Lu, Ying-Mei

    2017-06-01

    The receptor tyrosine kinase ErbB4 is present throughout the primate brain and has a distinct functional profile. In this study, we investigate the potential role of endothelial ErbB4 receptor signaling in the brain. Here, we show that the endothelial cell-specific deletion of ErbB4 induces decreased exploratory behavior in adult mice. However, the water maze task for spatial memory and the memory reconsolidation test reveal no changes; additionally, we observe no impairment in CaMKII phosphorylation in Cdh5Cre;ErbB4 f/f mice, which indicates that the endothelial ErbB4 deficit leads to decreased exploratory activity rather than direct memory deficits. Furthermore, decreased brain metabolism, which was measured using micro-positron emission tomography, is observed in the Cdh5Cre;ErbB4 f/f mice. Consistently, the immunoblot data demonstrate the downregulation of brain Glut1, phospho-ULK1 (Ser555), and TIGAR in the endothelial ErbB4 conditional knockout mice. Collectively, our findings suggest that endothelial ErbB4 plays a critical role in regulating brain function, at least in part, through maintaining normal brain energy homeostasis. Targeting ErbB4 or the modulation of endothelial ErbB4 signaling may represent a rational pharmacological approach to treat neurological disorders. © 2017 John Wiley & Sons Ltd.

  15. Control of GABARAP-mediated autophagy by the Golgi complex, centrosome and centriolar satellites.

    Science.gov (United States)

    Joachim, Justin; Tooze, Sharon A

    2018-01-01

    Within minutes of induction of autophagy by amino-acid starvation in mammalian cells, multiple autophagosomes form throughout the cell cytoplasm. During their formation, the autophagosomes sequester cytoplasmic material and deliver it to lysosomes for degradation. How these organelles can be so rapidly formed and how their formation is acutely regulated are major questions in the autophagy field. Protein and lipid trafficking from diverse cell compartments contribute membrane to, or regulate the formation of the autophagosome. In addition, recruitment of Atg8 (in yeast), and the ATG8-family members (in mammalian cells) to autophagosomes is required for efficient autophagy. Recently, it was discovered that the centrosome and centriolar satellites regulate autophagosome formation by delivery of an ATG8-family member, GABARAP, to the forming autophagosome membrane, the phagophore. We propose that GABARAP regulates phagophore expansion by activating the ULK complex, the amino-acid controlled initiator complex. This finding reveals a previously unknown link between the centrosome, centriolar satellites and autophagy. © 2017 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  16. Autophagy in DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Piotr Czarny

    2015-01-01

    Full Text Available DNA damage response (DDR involves DNA repair, cell cycle regulation and apoptosis, but autophagy is also suggested to play a role in DDR. Autophagy can be activated in response to DNA-damaging agents, but the exact mechanism underlying this activation is not fully understood, although it is suggested that it involves the inhibition of mammalian target of rapamycin complex 1 (mTORC1. mTORC1 represses autophagy via phosphorylation of the ULK1/2–Atg13–FIP200 complex thus preventing maturation of pre-autophagosomal structures. When DNA damage occurs, it is recognized by some proteins or their complexes, such as poly(ADPribose polymerase 1 (PARP-1, Mre11–Rad50–Nbs1 (MRN complex or FOXO3, which activate repressors of mTORC1. SQSTM1/p62 is one of the proteins whose levels are regulated via autophagic degradation. Inhibition of autophagy by knockout of FIP200 results in upregulation of SQSTM1/p62, enhanced DNA damage and less efficient damage repair. Mitophagy, one form of autophagy involved in the selective degradation of mitochondria, may also play role in DDR. It degrades abnormal mitochondria and can either repress or activate apoptosis, but the exact mechanism remains unknown. There is a need to clarify the role of autophagy in DDR, as this process may possess several important biomedical applications, involving also cancer therapy.

  17. Cucurbitacin B inhibits proliferation, induces G2/M cycle arrest and autophagy without affecting apoptosis but enhances MTT reduction in PC12 cells

    Directory of Open Access Journals (Sweden)

    Chuanhong Wu

    2016-03-01

    Full Text Available In the present study, the effect of cucurbitacin B (a natural product with anti-cancer effect was studied on PC12 cells. It significantly reduced the cell number, changed cell morphology and inhibited colony formation while MTT results showed increased cell viability. Cucurbitacin B treatment increased activity of succinode hydrogenase. No alteration in the integrity of mem-brane, the release of lactic dehydrogenase, the mitochondrial membrane potential, and the expression of apoptotic proteins suggested that cucurbitacin B did not induce apoptosis. The cell cycle was remarkably arrested at G2/M phase. Furthermore, cucurbitacin B induced autophagy as evidence by accumulation of autophagic vacuoles and the increase of LC3II. In addition, cucurbitacin B up-regulated the expression of p-beclin-1, p-ULK1, p-Wee1, p21 and down-regulated p-mTOR, p-p70S6K, CDC25C, CDK1, Cyclin B1. In conclusion, cucurbitacin B inhibited PC12 proliferation but caused MTT pitfall. Cucurbitacin B induced G2/M cell cycle arrest, autophagy, but not the apoptosis in PC12 cells.

  18. Depletion of gamma-glutamylcyclotransferase in cancer cells induces autophagy followed by cellular senescence.

    Science.gov (United States)

    Taniguchi, Keiko; Matsumura, Kengo; Ii, Hiromi; Kageyama, Susumu; Ashihara, Eishi; Chano, Tokuhiro; Kawauchi, Akihiro; Yoshiki, Tatsuhiro; Nakata, Susumu

    2018-01-01

    Gamma-glutamylcyclotransferase (GGCT) was originally identified as a protein highly expressed in bladder cancer tissues by proteomic analysis, and its higher expression in a variety of cancers compared to normal tissues have been shown. Depletion of GGCT in various cancer cells results in antiproliferative effects both in vitro and in vivo ; thus it is considered a promising therapeutic target. Although it has been shown that knockdown of GGCT induces cellular senescence and non-apoptotic cell death, associated with upregulation of cyclin-dependent kinase inhibitors (CDKIs) including p21 WAF1/CIP1 , the cellular events that follow GGCT depletion are not fully understood. Here, we show that GGCT depletion induced autophagy in MCF7 breast and PC3 prostate cancer cells. Conversely, overexpression of GGCT in NIH3T3 fibroblast under conditions of serum deprivation inhibited autophagy and increased proliferation. Simultaneous knockdown of autophagy related-protein 5, a critical effector of autophagy, along with GGCT in MCF7 and PC3 cells led to significant attenuation of the multiple cellular responses, including upregulation of CDKIs, increased numbers of senescence-associated β-galactosidase positive senescent cells, and growth inhibition. Furthermore, we show that autophagy-promoting signaling cascades including activation of the AMPK-ULK1 pathway and/or inactivation of the mTORC2-Akt pathway were triggered in GGCT-depleted cells. These results indicate that autophagy plays an important role in the growth inhibition of cancer cells caused by GGCT depletion.

  19. C9orf72’s interaction with Rab GTPases - modulation of membrane traffic and autophagy

    Directory of Open Access Journals (Sweden)

    Bor Luen Tang

    2016-10-01

    Full Text Available Hexanucleotide repeat expansion in an intron of Chromosome 9 open reading frame 72 (C9orf72 is the most common genetic cause of Amyotrophic Lateral Sclerosis (ALS and Frontotemporal Dementia (FTD. While functional haploinsufficiency of C9orf72 resulting from the mutation may play a role in ALS/FTD, the actual cellular role of the protein has been unclear. Recent findings have now shown that C9orf72 physically and functionally interacts with multiple members of the Rab small GTPases family, consequently exerting important influences on cellular membrane traffic and the process of autophagy. Loss of C9orf72 impairs endocytosis in neuronal cell lines, and attenuated autophagosome formation. Interestingly, C9orf72 could influence autophagy both as part of a Guanine nucleotide exchange factor (GEF complex, or as a Rab effector that facilitates transport of the Unc-51-like Autophagy Activating Kinase 1 (Ulk1 autophagy initiation complex. The cellular function of C9orf72 is discussed in the light of these recent findings

  20. Inhibition of autophagy initiation potentiates chemosensitivity in mesothelioma.

    Science.gov (United States)

    Follo, Carlo; Cheng, Yao; Richards, William G; Bueno, Raphael; Broaddus, Virginia Courtney

    2018-03-01

    The benefits of inhibiting autophagy in cancer are still controversial, with differences in outcome based on the type of tumor, the context and the particular stage of inhibition. Here, we investigated the impact of inhibiting autophagy at different stages on chemosensitivity using 3-dimensional (3D) models of mesothelioma, including ex vivo human tumor fragment spheroids. As shown by LC3B accumulation, we successfully inhibited autophagy using either an early stage ULK1/2 inhibitor (MRT 68921) or a late stage inhibitor (hydroxychloroquine). We found that inhibition of autophagy at the early stage, but not at late stage, potentiated chemosensitivity. This effect was seen only in those spheroids with high autophagy and active initiation at steady state. Inhibition of autophagy alone, at either early or late stage, did not cause cell death, showing that the inhibitors were non-toxic and that mesothelioma did not depend on autophagy at baseline, at least over 24 h. Using ATG13 puncta analysis, we found that autophagy initiation identified tumors that are more chemosensitive at baseline and after autophagy inhibition. Our results highlight a potential role of autophagy initiation in supporting mesothelioma cells during chemotherapy. Our work also highlights the importance of testing the inhibition of different stages in order to uncover the role of autophagy and the potential of its modulation in the treatment of cancer. © 2017 Wiley Periodicals, Inc.

  1. 结核性脑膜炎与其他脑膜炎的鉴别诊断%Differential diagnosis of tuberculous meningitis and other meningitis

    Institute of Scientific and Technical Information of China (English)

    任泽泽; 戴伊宁; 杨丹红; 黄海军; 童永喜; 潘红英

    2017-01-01

    sub-acute and chronic symptoms [26 cases (57.8%)and 11 cases (24.4%)].The main early symptoms of tuberculosis meningitis were fever (45 cases,100%),headache (29 cases,64.4%),nausea and vomiting (27 cases,60.0%),followed by the damage of central nerve system with the disease progress.The cerebrospinal fluid had characteristic changes with an increased adenosine deaminase (ADA) of (6.67±5.32) U/L.The cerebral parenchyma damage was the most common feature by neuroimaging (16 cases,35.6%).Conclusions Early diagnosis of tuberculosis meningitis should be combined with clinical evaluation,cerebrospinal fluid laboratory test and graphic assessment,in which cerebrospinal fluid,head CT or MRI are of great value.

  2. Resistensi dan Sensitivitas Bakteri terhadap Antibiotik di RSU dr. Soedarso Pontianak Tahun 2011-2013

    Directory of Open Access Journals (Sweden)

    Nurmala Nurmala

    2015-09-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Salah satu upaya untuk mengurangi resistensi, pemberian antibiotik harus berdasarkan pola bakteri penyebab infeksi dan kepekaan bakteri terhadap antibiotik. Tujuan penelitian ini untukmengetahui pola bakteri, resistensi dan sensitivitasnya terhadap antibiotik di RSU dr. SoedarsoPontianak tahun 2011-2013. Penelitian deskriptif dengan pendekatan retrospektif dilakukan RSU dr. Soedarso, Pontianak. Sampel penelitian adalah hasil pemeriksaan kultur dan uji kepekaan spesimen pus pasien yang diperiksa di Bagian Mikrobiologi Unit Labolatorium Kesehatan (ULK. Dari 111 sampel,terdapat 21 jenis bakteri. Bakteri gram-negatif lebih banyak dari gram-positif, yaitu 70,7% dan 29,3%.Tiga bakteri terbanyak adalah Citrobacter freundii (18%, P. aeruginosa (17,1% dan Staphylococcusepidermidis (15,3%. Resistensi tertinggi bakteri adalah terhadap metronidazol (96,4%, sefaleksin(95,8%, sefuroksim (92,2%, oksasilin (91,7% dan sefadroksil (91,5% dan sensitivitas tertinggibakteri terhadap piperasilin/tozobaktam (89,7%, meropenem (82,9%, imepenem (78,1%, amikasin(76,3%, fosfomisin/trometamol (59,5% dan levofloksasin (56,1%. Kata kunci: bakteri, antibiotik, resistensi, sensitivitas, pus. Resistance and Sensitivity of Bacteria to Antibioticsat dr. Soedarso Hospital Pontianak 2011-2013 Abstract An effort to reduce resistance, antibiotics prescription should be based on information about pattern of bacteria and  sensitivity to antibiotics. The aim of the study is to  determine the patternof bacteria, resistance and sensitivity to antibiotics at dr. Soedarso Hospital Pontianak 2011-2013. This research is a descriptive study with retrospective approach. Samples were culture and sensitivity test result in pus specimen of dr. Soedarso Hospital patient’s examined at ULK. Thenumber of samples in this study were 111 samples. There were 21 type of bacterias. Gram-negativebacterias were found more than gram

  3. Low shear stress induces vascular eNOS uncoupling via autophagy-mediated eNOS phosphorylation.

    Science.gov (United States)

    Zhang, Jun-Xia; Qu, Xin-Liang; Chu, Peng; Xie, Du-Jiang; Zhu, Lin-Lin; Chao, Yue-Lin; Li, Li; Zhang, Jun-Jie; Chen, Shao-Liang

    2018-05-01

    Uncoupled endothelial nitric oxide synthase (eNOS) produces O 2 - instead of nitric oxide (NO). Earlier, we reported rapamycin, an autophagy inducer and inhibitor of cellular proliferation, attenuated low shear stress (SS) induced O 2 - production. Nevertheless, it is unclear whether autophagy plays a critical role in the regulation of eNOS uncoupling. Therefore, this study aimed to investigate the modulation of autophagy on eNOS uncoupling induced by low SS exposure. We found that low SS induced endothelial O 2 - burst, which was accompanied by reduced NO release. Furthermore, inhibition of eNOS by L-NAME conspicuously attenuated low SS-induced O 2 - releasing, indicating eNOS uncoupling. Autophagy markers such as LC3 II/I ratio, amount of Beclin1, as well as ULK1/Atg1 were increased during low SS exposure, whereas autophagic degradation of p62/SQSTM1 was markedly reduced, implying impaired autophagic flux. Interestingly, low SS-induced NO reduction could be reversed by rapamycin, WYE-354 or ATG5 overexpression vector via restoration of autophagic flux, but not by N-acetylcysteine or apocynin. eNOS uncoupling might be ascribed to autophagic flux blockade because phosphorylation of eNOS Thr495 by low SS or PMA stimulation was also regulated by autophagy. In contrast, eNOS acetylation was not found to be regulated by low SS and autophagy. Notably, although low SS had no influence on eNOS Ser1177 phosphorylation, whereas boosted eNOS Ser1177 phosphorylation by rapamycin were in favor of the eNOS recoupling through restoration of autophagic flux. Taken together, we reported a novel mechanism for regulation of eNOS uncoupling by low SS via autophagy-mediated eNOS phosphorylation, which is implicated in geometrical nature of atherogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The autophagosome: current understanding of formation and maturation

    Directory of Open Access Journals (Sweden)

    Mannack LVJC

    2015-02-01

    Full Text Available Lilith VJC Mannack, Jon D Lane Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK Abstract: Autophagy is an important and highly conserved catabolic process with roles in development, homeostasis, and cellular stress responses. It describes various distinct pathways for the delivery of cytoplasmic materials (including misfolded protein aggregates and some organelles to the lysosome for degradation and component recycling. The best understood form of autophagy (macroautophagy describes the de novo assembly, maturation, and trafficking of a unique double membrane-bound organelle – the autophagosomes – that sequesters cytoplasmic materials and ultimately merges with the lysosomal compartment to form a degradative autolysosome. To rapidly assemble such a structure in response to stimuli, cells express a family of dedicated autophagy-related (ATG gene products that act sequentially to control membrane events leading first to the nucleation of an isolation membrane or phagophore, followed by phagophore expansion, and sealing to form an autophagosome that traffics to – and ultimately fuses with – the lysosome. These molecules are activated in response to upstream signaling pathways (notably, the mechanistic target of rapamycin [mTOR] pathway, and comprise protein and lipid kinases, putative membrane coats, and unique ubiquitin-like conjugation systems. In concert, a barrage of accessory proteins involved in various membrane trafficking pathways focused on the endosomal compartment are co-opted at the assembly site to facilitate autophagosome biogenesis. Understanding the integrated pathways that coordinate autophagosome assembly at the molecular level will be crucial if we are to realize the potential for autophagy manipulation in future disease therapies. Keywords: autophagy, ATG proteins, lysosome, phagophore, omegasome, autolysosome, membrane trafficking, ULK1, mTOR, PI(3 kinase, PI3P, LIR motif

  5. Killing effect of EGFR-TKI combined with 125I seed implantation therapy on ⅢB-Ⅳ stage lung cancer tissue

    Directory of Open Access Journals (Sweden)

    Ai-Sheng Xiang

    2016-12-01

    Full Text Available Objective: To analyze the killing effect of EGFR-TKI combined with 125I seed implantation therapy on ⅢB-Ⅳ stage lung cancer tissue. Methods: A total of 78 patients with ⅢB-Ⅳ stage lung cancer were randomly divided into observation group and control group (n=39, control group received EGFR-TKI treatment and observation group received EGFR-TKI combined with 125I seed implantation therapy. Differences in apoptosis gene, invasion gene and autophagy gene expression in lung tissue were compared between two groups after 1 month of treatment. Results: Apoptosis genes PDCD5, bax and bcl-xS mRNA expression levels in lung tissue of observation group after 1 month of treatment were higher than those of control group while Bag-1, survivin and bcl-xL mRNA expression levels were lower than those of control group; invasion genes CD147, EGFR and DDX17 mRNA expression levels were lower than those of control group while Bin1, E-cadherin and Ovol2 mRNA expression levels were higher than those of control group; autophagy genes ARHI, Beclin1, Atg5, LC3B, pULK and PI3KC3 mRNA expression levels were higher than those of control group. Conclusions: EGFR-TKI combined with 125I seed implantation therapy can enhance the tumor killing effect on patients with ⅢB-Ⅳ stage lung cancer, and contribute to the optimization of overall condition and the extension of survival time.

  6. A role for autophagy in long-term spatial memory formation in male rodents.

    Science.gov (United States)

    Hylin, Michael J; Zhao, Jing; Tangavelou, Karthikeyan; Rozas, Natalia S; Hood, Kimberly N; MacGowan, Jacalyn S; Moore, Anthony N; Dash, Pramod K

    2018-03-01

    A hallmark of long-term memory formation is the requirement for protein synthesis. Administration of protein synthesis inhibitors impairs long-term memory formation without influencing short-term memory. Rapamycin is a specific inhibitor of target of rapamycin complex 1 (TORC1) that has been shown to block protein synthesis and impair long-term memory. In addition to regulating protein synthesis, TORC1 also phosphorylates Unc-51-like autophagy activating kinase-1 (Ulk-1) to suppress autophagy. As autophagy can be activated by rapamycin (and rapamycin inhibits long-term memory), our aim was to test the hypothesis that autophagy inhibitors would enhance long-term memory. To examine if learning alters autophagosome number, we used male reporter mice carrying the GFP-LC3 transgene. Using these mice, we observed that training in the Morris water maze task increases the number of autophagosomes, a finding contrary to our expectations. For learning and memory studies, male Long Evans rats were used due to their relatively larger size (compared to mice), making it easier to perform intrahippocampal infusions in awake, moving animals. When the autophagy inhibitors 3-methyladenine (3-MA) or Spautin-1 were administered bilaterally into the hippocampii prior to training in the Morris water maze task, the drugs did not alter learning. In contrast, when memory was tested 24 hours later by a probe trial, significant impairments were observed. In addition, intrahippocampal infusion of an autophagy activator peptide (TAT-Beclin-1) improved long-term memory. These results indicate that autophagy is not necessary for learning, but is required for long-term memory formation. © 2017 Wiley Periodicals, Inc.

  7. The irreversible ERBB1/2/4 inhibitor neratinib interacts with the BCL-2 inhibitor venetoclax to kill mammary cancer cells.

    Science.gov (United States)

    Booth, Laurence; Roberts, Jane L; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Poklepovic, Andrew; Dent, Paul

    2018-03-04

    The irreversible ERBB1/2/4 inhibitor, neratinib, down-regulates the expression of ERBB1/2/4 as well as the levels of MCL-1 and BCL-XL. Venetoclax (ABT199) is a BCL-2 inhibitor. At physiologic concentrations neratinib interacted in a synergistic fashion with venetoclax to kill HER2 + and TNBC mammary carcinoma cells. This was associated with the drug-combination: reducing the expression and phosphorylation of ERBB1/2/3; in an eIF2α-dependent fashion reducing the expression of MCL-1 and BCL-XL and increasing the expression of Beclin1 and ATG5; and increasing the activity of the ATM-AMPKα-ULK1 S317 pathway which was causal in the formation of toxic autophagosomes. Although knock down of BAX or BAK reduced drug combination lethality, knock down of BAX and BAK did not prevent the drug combination from increasing autophagosome and autolysosome formation. Knock down of ATM, AMPKα, Beclin1 or over-expression of activated mTOR prevented the induction of autophagy and in parallel suppressed tumor cell killing. Knock down of ATM, AMPKα, Beclin1 or cathepsin B prevented the drug-induced activation of BAX and BAK whereas knock down of BID was only partially inhibitory. A 3-day transient exposure of established estrogen-independent HER2 + BT474 mammary tumors to neratinib or venetoclax did not significantly alter tumor growth whereas exposure to [neratinib + venetoclax] caused a significant 7-day suppression of growth by day 19. The drug combination neither altered animal body mass nor behavior. We conclude that venetoclax enhances neratinib lethality by facilitating toxic BH3 domain protein activation via autophagy which enhances the efficacy of neratinib to promote greater levels of cell killing.

  8. The irreversible ERBB1/2/4 inhibitor neratinib interacts with the PARP1 inhibitor niraparib to kill ovarian cancer cells.

    Science.gov (United States)

    Booth, Laurence; Roberts, Jane L; Samuel, Peter; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Poklepovic, Andrew; Dent, Paul

    2018-06-03

    The irreversible ERBB1/2/4 inhibitor neratinib has been shown to rapidly down-regulate the expression of ERBB1/2/4 as well as the levels of c-MET, PDGFRα and mutant RAS proteins via autophagic degradation. Neratinib interacted in an additive to synergistic fashion with the approved PARP1 inhibitor niraparib to kill ovarian cancer cells. Neratinib and niraparib caused the ATM-dependent activation of AMPK which in turn was required to cause mTOR inactivation, ULK-1 activation and ATG13 phosphorylation. The drug combination initially increased autophagosome levels followed later by autolysosome levels. Preventing autophagosome formation by expressing activated mTOR or knocking down of Beclin1, or knock down of the autolysosome protein cathepsin B, reduced drug combination lethality. The drug combination caused an endoplasmic reticulum stress response as judged by enhanced eIF2α phosphorylation that was responsible for reducing MCL-1 and BCL-XL levels and increasing ATG5 and Beclin1 expression. Knock down of BIM, but not of BAX or BAK, reduced cell killing. Expression of activated MEK1 prevented the drug combination increasing BIM expression and reduced cell killing. Downstream of the mitochondrion, drug lethality was partially reduced by knock down of AIF, but expression of dominant negative caspase 9 was not protective. Our data demonstrate that neratinib and niraparib interact to kill ovarian cancer cells through convergent DNA damage and endoplasmic reticulum stress signaling. Cell killing required the induction of autophagy and was cathepsin B and AIF -dependent, and effector caspase independent.

  9. Sorafenib-induced defective autophagy promotes cell death by necroptosis.

    Science.gov (United States)

    Kharaziha, Pedram; Chioureas, Dimitris; Baltatzis, George; Fonseca, Pedro; Rodriguez, Patricia; Gogvadze, Vladimir; Lennartsson, Lena; Björklund, Ann-Charlotte; Zhivotovsky, Boris; Grandér, Dan; Egevad, Lars; Nilsson, Sten; Panaretakis, Theocharis

    2015-11-10

    Autophagy is one of the main cytoprotective mechanisms that cancer cells deploy to withstand the cytotoxic stress and survive the lethal damage induced by anti-cancer drugs. However, under specific conditions, autophagy may, directly or indirectly, induce cell death. In our study, treatment of the Atg5-deficient DU145 prostate cancer cells, with the multi-tyrosine kinase inhibitor, sorafenib, induces mitochondrial damage, autophagy and cell death. Molecular inhibition of autophagy by silencing ULK1 and Beclin1 rescues DU145 cells from cell death indicating that, in this setting, autophagy promotes cell death. Re-expression of Atg5 restores the lipidation of LC3 and rescues DU145 and MEF atg5-/- cells from sorafenib-induced cell death. Despite the lack of Atg5 expression and LC3 lipidation, DU145 cells form autophagosomes as demonstrated by transmission and immuno-electron microscopy, and the formation of LC3 positive foci. However, the lack of cellular content in the autophagosomes, the accumulation of long-lived proteins, the presence of GFP-RFP-LC3 positive foci and the accumulated p62 protein levels indicate that these autophagosomes may not be fully functional. DU145 cells treated with sorafenib undergo a caspase-independent cell death that is inhibited by the RIPK1 inhibitor, necrostatin-1. Furthermore, treatment with sorafenib induces the interaction of RIPK1 with p62, as demonstrated by immunoprecipitation and a proximity ligation assay. Silencing of p62 decreases the RIPK1 protein levels and renders necrostatin-1 ineffective in blocking sorafenib-induced cell death. In summary, the formation of Atg5-deficient autophagosomes in response to sorafenib promotes the interaction of p62 with RIPK leading to cell death by necroptosis.

  10. Genome-wide association analysis of coffee drinking suggests association with CYP1A1/CYP1A2 and NRCAM.

    Science.gov (United States)

    Amin, N; Byrne, E; Johnson, J; Chenevix-Trench, G; Walter, S; Nolte, I M; Vink, J M; Rawal, R; Mangino, M; Teumer, A; Keers, J C; Verwoert, G; Baumeister, S; Biffar, R; Petersmann, A; Dahmen, N; Doering, A; Isaacs, A; Broer, L; Wray, N R; Montgomery, G W; Levy, D; Psaty, B M; Gudnason, V; Chakravarti, A; Sulem, P; Gudbjartsson, D F; Kiemeney, L A; Thorsteinsdottir, U; Stefansson, K; van Rooij, F J A; Aulchenko, Y S; Hottenga, J J; Rivadeneira, F R; Hofman, A; Uitterlinden, A G; Hammond, C J; Shin, S-Y; Ikram, A; Witteman, J C M; Janssens, A C J W; Snieder, H; Tiemeier, H; Wolfenbuttel, B H R; Oostra, B A; Heath, A C; Wichmann, E; Spector, T D; Grabe, H J; Boomsma, D I; Martin, N G; van Duijn, C M

    2012-11-01

    Coffee consumption is a model for addictive behavior. We performed a meta-analysis of genome-wide association studies (GWASs) on coffee intake from 8 Caucasian cohorts (N=18 176) and sought replication of our top findings in a further 7929 individuals. We also performed a gene expression analysis treating different cell lines with caffeine. Genome-wide significant association was observed for two single-nucleotide polymorphisms (SNPs) in the 15q24 region. The two SNPs rs2470893 and rs2472297 (P-values=1.6 × 10(-11) and 2.7 × 10(-11)), which were also in strong linkage disequilibrium (r(2)=0.7) with each other, lie in the 23-kb long commonly shared 5' flanking region between CYP1A1 and CYP1A2 genes. CYP1A1 was found to be downregulated in lymphoblastoid cell lines treated with caffeine. CYP1A1 is known to metabolize polycyclic aromatic hydrocarbons, which are important constituents of coffee, whereas CYP1A2 is involved in the primary metabolism of caffeine. Significant evidence of association was also detected at rs382140 (P-value=3.9 × 10(-09)) near NRCAM-a gene implicated in vulnerability to addiction, and at another independent hit rs6495122 (P-value=7.1 × 10(-09))-an SNP associated with blood pressure-in the 15q24 region near the gene ULK3, in the meta-analysis of discovery and replication cohorts. Our results from GWASs and expression analysis also strongly implicate CAB39L in coffee drinking. Pathway analysis of differentially expressed genes revealed significantly enriched ubiquitin proteasome (P-value=2.2 × 10(-05)) and Parkinson's disease pathways (P-value=3.6 × 10(-05)).

  11. AMDE-1 is a dual function chemical for autophagy activation and inhibition.

    Directory of Open Access Journals (Sweden)

    Min Li

    Full Text Available Autophagy is the process by which cytosolic components and organelles are delivered to the lysosome for degradation. Autophagy plays important roles in cellular homeostasis and disease pathogenesis. Small chemical molecules that can modulate autophagy activity may have pharmacological value for treating diseases. Using a GFP-LC3-based high content screening assay we identified a novel chemical that is able to modulate autophagy at both initiation and degradation levels. This molecule, termed as Autophagy Modulator with Dual Effect-1 (AMDE-1, triggered autophagy in an Atg5-dependent manner, recruiting Atg16 to the pre-autophagosomal site and causing LC3 lipidation. AMDE-1 induced autophagy through the activation of AMPK, which inactivated mTORC1 and activated ULK1. AMDE-1did not affect MAP kinase, JNK or oxidative stress signaling for autophagy induction. Surprisingly, treatment with AMDE-1 resulted in impairment in autophagic flux and inhibition of long-lived protein degradation. This inhibition was correlated with a reduction in lysosomal degradation capacity but not with autophagosome-lysosome fusion. Further analysis indicated that AMDE-1 caused a reduction in lysosome acidity and lysosomal proteolytic activity, suggesting that it suppressed general lysosome function. AMDE-1 thus also impaired endocytosis-mediated EGF receptor degradation. The dual effects of AMDE-1 on autophagy induction and lysosomal degradation suggested that its net effect would likely lead to autophagic stress and lysosome dysfunction, and therefore cell death. Indeed, AMDE-1 triggered necroptosis and was preferentially cytotoxic to cancer cells. In conclusion, this study identified a new class of autophagy modulators with dual effects, which can be explored for potential uses in cancer therapy.

  12. Identifying novel targets of oncogenic EGF receptor signaling in lung cancer through global phosphoproteomics.

    Science.gov (United States)

    Zhang, Xu; Belkina, Natalya; Jacob, Harrys Kishore Charles; Maity, Tapan; Biswas, Romi; Venugopalan, Abhilash; Shaw, Patrick G; Kim, Min-Sik; Chaerkady, Raghothama; Pandey, Akhilesh; Guha, Udayan

    2015-01-01

    Mutations in the epidermal growth factor receptor (EGFR) kinase domain occur in 10-30% of lung adenocarcinoma and are associated with tyrosine kinase inhibitor (TKI) sensitivity. We sought to identify the immediate direct and indirect phosphorylation targets of mutant EGFRs in lung adenocarcinoma. We undertook SILAC strategy, phosphopeptide enrichment, and quantitative MS to identify dynamic changes of phosphorylation downstream of mutant EGFRs in lung adenocarcinoma cells harboring EGFR(L858R) and EGFR(L858R/T790M) , the TKI-sensitive, and TKI-resistant mutations, respectively. Top canonical pathways that were inhibited upon erlotinib treatment in sensitive cells, but not in the resistant cells include EGFR, insulin receptor, hepatocyte growth factor, mitogen-activated protein kinase, mechanistic target of rapamycin, ribosomal protein S6 kinase beta 1, and Janus kinase/signal transducer and activator of transcription signaling. We identified phosphosites in proteins of the autophagy network, such as ULK1 (S623) that is constitutively phosphorylated in these lung adenocarcinoma cells; phosphorylation is inhibited upon erlotinib treatment in sensitive cells, but not in resistant cells. Finally, kinase-substrate prediction analysis from our data indicated that substrates of basophilic kinases from, AGC and Calcium and calmodulin-dependent kinase groups, as well as STE group kinases were significantly enriched and those of proline-directed kinases from, CMGC and Casein kinase groups were significantly depleted among substrates that exhibited increased phosphorylation upon EGF stimulation and reduced phosphorylation upon TKI inhibition. This is the first study to date to examine global phosphorylation changes upon erlotinib treatment of lung adenocarcinoma cells and results from this study provide new insights into signaling downstream of mutant EGFRs in lung adenocarcinoma. All MS data have been deposited in the ProteomeXchange with identifier PXD001101 (http

  13. Tissue-specific expression of aryl hydrocarbon receptor and putative developmental regulatory modules in Baltic salmon yolk-sac fry

    Energy Technology Data Exchange (ETDEWEB)

    Vuori, Kristiina A. [Centre of Excellence in Evolutionary Genetics and Physiology, Department of Biology, University of Turku, FI-20014 Turku (Finland)], E-mail: kristiina.vuori@utu.fi; Nordlund, Eija [Department of Information Technology, University of Turku, and Turku Centre for Computer Science (TUCS), FI-20014 Turku (Finland); Kallio, Jenny [Centre of Excellence in Evolutionary Genetics and Physiology, Department of Biology, University of Turku, FI-20014 Turku (Finland); Salakoski, Tapio [Department of Information Technology, University of Turku, and Turku Centre for Computer Science (TUCS), FI-20014 Turku (Finland); Nikinmaa, Mikko [Centre of Excellence in Evolutionary Genetics and Physiology, Department of Biology, University of Turku, FI-20014 Turku (Finland)

    2008-04-08

    The aryl hydrocarbon receptor (AhR) is an ancient protein that is conserved in vertebrates and invertebrates, indicating its important function throughout evolution. AhR has been studied largely because of its role in toxicology-gene expression via AhR is induced by many aromatic hydrocarbons in mammals. Recently, however, it has become clear that AhR is involved in various aspects of development such as cell proliferation and differentiation, and cell motility and migration. The mechanisms by which AhR regulates these various functions remain poorly understood. Across-species comparative studies of AhR in invertebrates, non-mammalian vertebrates and mammals may help to reveal the multiple functions of AhR. Here, we have studied AhR during larval development of Baltic salmon (Salmon salar). Our results indicate that AhR protein is expressed in nervous system, liver and muscle tissues. We also present putative regulatory modules and module-matching genes, produced by chromatin immunoprecipitation (ChIP) cloning and in silico analysis, which may be associated with evolutionarily conserved functions of AhR during development. For example, the module NFKB-AHRR-CREB found from salmon ChIP sequences is present in human ULK3 (regulating formation of granule cell axons in mouse and axon outgrowth in Caernohabditis elegans) and SRGAP1 (GTPase-activating protein involved in the Slit/Robo pathway) promoters. We suggest that AhR may have an evolutionarily conserved role in neuronal development and nerve cell targeting, and in Wnt signaling pathway.

  14. Tissue-specific expression of aryl hydrocarbon receptor and putative developmental regulatory modules in Baltic salmon yolk-sac fry

    International Nuclear Information System (INIS)

    Vuori, Kristiina A.; Nordlund, Eija; Kallio, Jenny; Salakoski, Tapio; Nikinmaa, Mikko

    2008-01-01

    The aryl hydrocarbon receptor (AhR) is an ancient protein that is conserved in vertebrates and invertebrates, indicating its important function throughout evolution. AhR has been studied largely because of its role in toxicology-gene expression via AhR is induced by many aromatic hydrocarbons in mammals. Recently, however, it has become clear that AhR is involved in various aspects of development such as cell proliferation and differentiation, and cell motility and migration. The mechanisms by which AhR regulates these various functions remain poorly understood. Across-species comparative studies of AhR in invertebrates, non-mammalian vertebrates and mammals may help to reveal the multiple functions of AhR. Here, we have studied AhR during larval development of Baltic salmon (Salmon salar). Our results indicate that AhR protein is expressed in nervous system, liver and muscle tissues. We also present putative regulatory modules and module-matching genes, produced by chromatin immunoprecipitation (ChIP) cloning and in silico analysis, which may be associated with evolutionarily conserved functions of AhR during development. For example, the module NFKB-AHRR-CREB found from salmon ChIP sequences is present in human ULK3 (regulating formation of granule cell axons in mouse and axon outgrowth in Caernohabditis elegans) and SRGAP1 (GTPase-activating protein involved in the Slit/Robo pathway) promoters. We suggest that AhR may have an evolutionarily conserved role in neuronal development and nerve cell targeting, and in Wnt signaling pathway

  15. Distinct roles of autophagy-dependent and -independent functions of FIP200 revealed by generation and analysis of a mutant knock-in mouse model

    Science.gov (United States)

    Chen, Song; Wang, Chenran; Yeo, Syn; Liang, Chun-Chi; Okamoto, Takako; Sun, Shaogang; Wen, Jian; Guan, Jun-Lin

    2016-01-01

    Autophagy is an evolutionarily conserved cellular process controlled through a set of essential autophagy genes (Atgs). However, there is increasing evidence that most, if not all, Atgs also possess functions independent of their requirement in canonical autophagy, making it difficult to distinguish the contributions of autophagy-dependent or -independent functions of a particular Atg to various biological processes. To distinguish these functions for FIP200 (FAK family-interacting protein of 200 kDa), an Atg in autophagy induction, we examined FIP200 interaction with its autophagy partner, Atg13. We found that residues 582–585 (LQFL) in FIP200 are required for interaction with Atg13, and mutation of these residues to AAAA (designated the FIP200-4A mutant) abolished its canonical autophagy function in vitro. Furthermore, we created a FIP200-4A mutant knock-in mouse model and found that specifically blocking FIP200 interaction with Atg13 abolishes autophagy in vivo, providing direct support for the essential role of the ULK1/Atg13/FIP200/Atg101 complex in the process beyond previous studies relying on the complete knockout of individual components. Analysis of the new mouse model showed that nonautophagic functions of FIP200 are sufficient to fully support embryogenesis by maintaining a protective role in TNFα-induced apoptosis. However, FIP200-mediated canonical autophagy is required to support neonatal survival and tumor cell growth. These studies provide the first genetic evidence linking an Atg's autophagy and nonautophagic functions to different biological processes in vivo. PMID:27013233

  16. Differential regulation of lipid and protein metabolism in obese vs. lean subjects before and after a 72-h fast.

    Science.gov (United States)

    Bak, Ann Mosegaard; Møller, Andreas Buch; Vendelbo, Mikkel Holm; Nielsen, Thomas Svava; Viggers, Rikke; Rungby, Jørgen; Pedersen, Steen Bønløkke; Jørgensen, Jens Otto Lunde; Jessen, Niels; Møller, Niels

    2016-07-01

    Increased availability of lipids may conserve muscle protein during catabolic stress. Our study was designed to define 1) intracellular mechanisms leading to increased lipolysis and 2) whether this scenario is associated with decreased amino acid and urea fluxes, and decreased muscle amino acid release in obese subjects under basal and fasting conditions. We therefore studied nine lean and nine obese subjects twice, after 12 and 72 h of fasting, using measurements of mRNA and protein expression and phosphorylation of lipolytic and protein metabolic signaling molecules in fat and muscle together with whole body and forearm tracer techniques. Obese subjects displayed increased whole body lipolysis, decreased urea production rates, and decreased forearm muscle protein breakdown per 100 ml of forearm tissue, differences that persisted after 72 h of fasting. Lipolysis per fat mass unit was reduced in obese subjects and, correspondingly, adipose tissue hormone-sensitive lipase (HSL) phosphorylation and mRNA and protein levels of the adipose triglyceride lipase (ATGL) coactivator CGI58 were decreased. Fasting resulted in higher HSL phosphorylations and lower protein levels of the ATGL inhibitor G0S2. Muscle protein expressions of mammalian target of rapamycin (mTOR) and 4EBP1 were lower in obese subjects, and MuRf1 mRNA was higher with fasting in lean but not obese subjects. Phosphorylation and signaling of mTOR decreased with fasting in both groups, whereas ULK1 protein and mRNA levels increased. In summary, obese subjects exhibit increased lipolysis due to a large fat mass with blunted prolipolytic signaling, together with decreased urea and amino acid fluxes both in the basal and 72-h fasted state; this is compatible with preservation of muscle and whole body protein. Copyright © 2016 the American Physiological Society.

  17. Sec16 in conventional and unconventional exocytosis: Working at the interface of membrane traffic and secretory autophagy?

    Science.gov (United States)

    Tang, Bor Luen

    2017-12-01

    Sec16 is classically perceived to be a scaffolding protein localized to the transitional endoplasmic reticulum (tER) or the ER exit sites (ERES), and has a conserved function in facilitating coat protein II (COPII) complex-mediated ER exit. Recent findings have, however, pointed toward a role for Sec16 in unconventional exocytosis of certain membrane proteins, such as the Cystic fibrosis transmembrane conductance regulator (CFTR) in mammalian cells, and possibly also α-integrin in certain contexts of Drosophila development. In this regard, Sec16 interacts with components of a recently deciphered pathway of stress-induced unconventional exocytosis, which is dependent on the tether protein Golgi reassembly stacking proteins (GRASPs) and the autophagy pathway. Intriguingly, Sec16 also appears to be post-translationally modified by autophagy-related signaling processes. Sec16 is known to be phosphorylated by the atypical extracellular signal regulated kinase 7 (Erk7) upon serum and amino acid starvation, both represent conditions that trigger autophagy. Recent work has also shown that Sec16 is phosphorylated, and thus regulated by the prominent autophagy-initiating Unc-51-like autophagy activating kinase 1 (Ulk1), as well as another autophagy modulator Leucine-rich repeat kinase 2 (Lrrk2). The picture emerging from Sec16's network of physical and functional interactors allows the speculation that Sec16 is situated (and may in yet undefined ways function) at the interface between COPII-mediated exocytosis of conventional vesicular traffic and the GRASP/autophagy-dependent mode of unconventional exocytosis. © 2017 Wiley Periodicals, Inc.

  18. ANALYSIS OF GENE EXPRESSION IN BLOOD AS AN ADDITIONAL TOOL TO MONITOR METHOTREXATE THERAPY IN PATIENTS WITH RHEUMATOID ARTHRITIS

    Directory of Open Access Journals (Sweden)

    Elena Vasilyevna Chetina

    2013-01-01

    Full Text Available Objective. To assess the changes in clinical, immunological, X-ray indicators and expression of the mTOR (mammalian target of rapamycin genes, the key regulator of cell growth and proliferation; ULK1 (autophagy marker; р21 (cyclindependent kinase inhibitor; caspase 3 (indicator of apoptotic activity; MMP9 (matrix metalloproteinase 9 and cathepsin K, which participate in joint destruction, and proinflammatory cytokine TNFα (tumor necrosis factor α in blood of patients with rheumatoid arthritis (RA receiving methotrexate (MT therapy.Materials and Methods. Thirty-three RA patients (21 with positive and 12 with negative rheumatoid factor (RF, respectively; median age, 47.1 years and 28 healthy volunteers (median age, 45.1 years were examined. All patients have been receiving MT for 2 years. The clinical response was assessed according to the DAS28 score. ESR and the serum levels of anti-cyclic citrullinated peptide antibodies (ACPA, C-reactive protein (CRP, and RF were also determined. Degenerative changes in the joints were evaluated by X-ray examination. Gene expression was measured in peripheral blood cells using reverse transcriptase reaction and real-time polymerase chain reaction.Results. MT therapy considerably reduced the disease severity according to DAS28 score, as well as the number of swollen and painful joints both in seropositive (RF+ and seronegative (RF- RA patients. Ten patients reached remission by the end of the study. In (RF- RA patients, the absence of progression of joint destruction was accompanied by the absence of any significant changes in expression of MMP9 and cathepsin K, as well as a stronger suppression of TGFα (its expression became comparable to that in the control group. Patients who achieved remission showed a significant decrease in the expression level of the cathepsin K gene as compared to that at the start of the study. In (RF+ RA patients, MT therapy significantly reduced the clinical and

  19. A Meta-analysis of Multiple Myeloma Risk Regions in African and European Ancestry Populations Identifies Putatively Functional Loci.

    Science.gov (United States)

    Rand, Kristin A; Song, Chi; Dean, Eric; Serie, Daniel J; Curtin, Karen; Sheng, Xin; Hu, Donglei; Huff, Carol Ann; Bernal-Mizrachi, Leon; Tomasson, Michael H; Ailawadhi, Sikander; Singhal, Seema; Pawlish, Karen; Peters, Edward S; Bock, Cathryn H; Stram, Alex; Van Den Berg, David J; Edlund, Christopher K; Conti, David V; Zimmerman, Todd; Hwang, Amie E; Huntsman, Scott; Graff, John; Nooka, Ajay; Kong, Yinfei; Pregja, Silvana L; Berndt, Sonja I; Blot, William J; Carpten, John; Casey, Graham; Chu, Lisa; Diver, W Ryan; Stevens, Victoria L; Lieber, Michael R; Goodman, Phyllis J; Hennis, Anselm J M; Hsing, Ann W; Mehta, Jayesh; Kittles, Rick A; Kolb, Suzanne; Klein, Eric A; Leske, Cristina; Murphy, Adam B; Nemesure, Barbara; Neslund-Dudas, Christine; Strom, Sara S; Vij, Ravi; Rybicki, Benjamin A; Stanford, Janet L; Signorello, Lisa B; Witte, John S; Ambrosone, Christine B; Bhatti, Parveen; John, Esther M; Bernstein, Leslie; Zheng, Wei; Olshan, Andrew F; Hu, Jennifer J; Ziegler, Regina G; Nyante, Sarah J; Bandera, Elisa V; Birmann, Brenda M; Ingles, Sue A; Press, Michael F; Atanackovic, Djordje; Glenn, Martha J; Cannon-Albright, Lisa A; Jones, Brandt; Tricot, Guido; Martin, Thomas G; Kumar, Shaji K; Wolf, Jeffrey L; Deming Halverson, Sandra L; Rothman, Nathaniel; Brooks-Wilson, Angela R; Rajkumar, S Vincent; Kolonel, Laurence N; Chanock, Stephen J; Slager, Susan L; Severson, Richard K; Janakiraman, Nalini; Terebelo, Howard R; Brown, Elizabeth E; De Roos, Anneclaire J; Mohrbacher, Ann F; Colditz, Graham A; Giles, Graham G; Spinelli, John J; Chiu, Brian C; Munshi, Nikhil C; Anderson, Kenneth C; Levy, Joan; Zonder, Jeffrey A; Orlowski, Robert Z; Lonial, Sagar; Camp, Nicola J; Vachon, Celine M; Ziv, Elad; Stram, Daniel O; Hazelett, Dennis J; Haiman, Christopher A; Cozen, Wendy

    2016-12-01

    Genome-wide association studies (GWAS) in European populations have identified genetic risk variants associated with multiple myeloma. We performed association testing of common variation in eight regions in 1,318 patients with multiple myeloma and 1,480 controls of European ancestry and 1,305 patients with multiple myeloma and 7,078 controls of African ancestry and conducted a meta-analysis to localize the signals, with epigenetic annotation used to predict functionality. We found that variants in 7p15.3, 17p11.2, 22q13.1 were statistically significantly (P ancestry and persons of European ancestry, and the variant in 3p22.1 was associated in European ancestry only. In a combined African ancestry-European ancestry meta-analysis, variation in five regions (2p23.3, 3p22.1, 7p15.3, 17p11.2, 22q13.1) was statistically significantly associated with multiple myeloma risk. In 3p22.1, the correlated variants clustered within the gene body of ULK4 Correlated variants in 7p15.3 clustered around an enhancer at the 3' end of the CDCA7L transcription termination site. A missense variant at 17p11.2 (rs34562254, Pro251Leu, OR, 1.32; P = 2.93 × 10 -7 ) in TNFRSF13B encodes a lymphocyte-specific protein in the TNF receptor family that interacts with the NF-κB pathway. SNPs correlated with the index signal in 22q13.1 cluster around the promoter and enhancer regions of CBX7 CONCLUSIONS: We found that reported multiple myeloma susceptibility regions contain risk variants important across populations, supporting the use of multiple racial/ethnic groups with different underlying genetic architecture to enhance the localization and identification of putatively functional alleles. A subset of reported risk loci for multiple myeloma has consistent effects across populations and is likely to be functional. Cancer Epidemiol Biomarkers Prev; 25(12); 1609-18. ©2016 AACR. ©2016 American Association for Cancer Research.

  20. Activation of AMPKα2 is not crucial for mitochondrial uncoupling-induced metabolic effects but required to maintain skeletal muscle integrity.

    Directory of Open Access Journals (Sweden)

    Mario Ost

    Full Text Available Transgenic (UCP1-TG mice with ectopic expression of UCP1 in skeletal muscle (SM show a phenotype of increased energy expenditure, improved glucose tolerance and increase substrate metabolism in SM. To investigate the potential role of skeletal muscle AMPKα2 activation in the metabolic phenotype of UCP1-TG mice we generated double transgenic (DTG mice, by crossing of UCP1-TG mice with DN-AMPKα2 mice overexpressing a dominant negative α2 subunit of AMPK in SM which resulted in an impaired AMPKα2 activity by 90±9% in SM of DTG mice. Biometric analysis of young male mice showed decreased body weight, lean and fat mass for both UCP1-TG and DTG compared to WT and DN-AMPKα2 mice. Energy intake and weight-specific total energy expenditure were increased, both in UCP1-TG and DTG mice. Moreover, glucose tolerance, insulin sensitivity and fatty acid oxidation were not altered in DTG compared to UCP1-TG. Also uncoupling induced induction and secretion of fibroblast growth factor 21 (FGF21 from SM was preserved in DTG mice. However, voluntary physical cage activity as well as ad libitum running wheel access during night uncovered a severe activity intolerance of DTG mice. Histological analysis showed a progressive degenerative morphology in SM of DTG mice which was not observed in SM of UCP1-TG mice. Moreover, ATP-depletion related cellular stress response via heat shock protein 70 was highly induced, whereas capillarization regulator VEGF was suppressed in DTG muscle. In addition, AMPKα2-mediated induction of mitophagy regulator ULK1 was suppressed in DTG mice, as well as mitochondrial respiratory capacity and content. In conclusion, we demonstrate that AMPKα2 is dispensable for SM mitochondrial uncoupling induced metabolic effects on whole body energy balance, glucose homeostasis and insulin sensitivity. But strikingly, activation of AMPKα2 seems crucial for maintaining SM function, integrity and the ability to compensate chronic metabolic stress

  1. Resistance Training with Co-ingestion of Anti-inflammatory Drugs Attenuates Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Daniele A. Cardinale

    2017-12-01

    Full Text Available Aim: The current study aimed to examine the effects of resistance exercise with concomitant consumption of high vs. low daily doses of non-steroidal anti-inflammatory drugs (NSAIDs on mitochondrial oxidative phosphorylation in skeletal muscle. As a secondary aim, we compared the effects of eccentric overload with conventional training.Methods: Twenty participants were randomized to either a group taking high doses (3 × 400 mg/day of ibuprofen (IBU; 27 ± 5 year; n = 11 or a group ingesting a low dose (1 × 75 mg/day of acetylsalicylic acid (ASA; 26 ± 4 year; n = 9 during 8 weeks of supervised knee extensor resistance training. Each of the subject's legs were randomized to complete the training program using either a flywheel (FW device emphasizing eccentric overload, or a traditional weight stack machine (WS. Maximal mitochondrial oxidative phosphorylation (CI+IIP from permeabilized skeletal muscle bundles was assessed using high-resolution respirometry. Citrate synthase (CS activity was assessed using spectrophotometric techniques and mitochondrial protein content using western blotting.Results: After training, CI+IIP decreased (P < 0.05 in both IBU (23% and ASA (29% with no difference across medical treatments. Although CI+IIP decreased in both legs, the decrease was greater (interaction p = 0.015 in WS (33%, p = 0.001 compared with FW (19%, p = 0.078. CS activity increased (p = 0.027 with resistance training, with no interactions with medical treatment or training modality. Protein expression of ULK1 increased with training in both groups (p < 0.001. The increase in quadriceps muscle volume was not correlated with changes in CI+IIP (R = 0.16.Conclusion: These results suggest that 8 weeks of resistance training with co-ingestion of anti-inflammatory drugs reduces mitochondrial function but increases mitochondrial content. The observed changes were not affected by higher doses of NSAIDs consumption, suggesting that the resistance training

  2. Positive regulation of prostate cancer cell growth by lipid droplet forming and processing enzymes DGAT1 and ABHD5.

    Science.gov (United States)

    Mitra, Ranjana; Le, Thuc T; Gorjala, Priyatham; Goodman, Oscar B

    2017-09-06

    Neoplastic cells proliferate rapidly and obtain requisite building blocks by reprogramming metabolic pathways that favor growth. Previously, we observed that prostate cancer cells uptake and store lipids in the form of lipid droplets, providing building blocks for membrane synthesis, to facilitate proliferation and growth. Mechanisms of lipid uptake, lipid droplet dynamics and their contribution to cancer growth have yet to be defined. This work is focused on elucidating the prostate cancer-specific modifications in lipid storage pathways so that these modified gene products can be identified and therapeutically targeted. To identify genes that promote lipid droplet formation and storage, the expression profiles of candidate genes were assessed and compared between peripheral blood mononuclear cells and prostate cancer cells. Subsequently, differentially expressed genes were inhibited and growth assays performed to elucidate their role in the growth of the cancer cells. Cell cycle, apoptosis and autophagy assays were performed to ascertain the mechanism of growth inhibition. Our results indicate that DGAT1, ABHD5, ACAT1 and ATGL are overexpressed in prostate cancer cells compared to PBMCs and of these overexpressed genes, DGAT1 and ABHD5 aid in the growth of the prostate cancer cells. Blocking the expression of both DGAT1 and ABHD5 results in inhibition of growth, cell cycle block and cell death. DGAT1 siRNA treatment inhibits lipid droplet formation and leads to autophagy where as ABHD5 siRNA treatment promotes accumulation of lipid droplets and leads to apoptosis. Both the siRNA treatments reduce AMPK phosphorylation, a key regulator of lipid metabolism. While DGAT1 siRNA reduces phosphorylation of ACC, the rate limiting enzyme in de novo fat synthesis and triggers phosphorylation of raptor and ULK-1 inducing autophagy and cell death, ABHD5 siRNA decreases P70S6 phosphorylation, leading to PARP cleavage, apoptosis and cell death. Interestingly, DGAT-1 is involved

  3. A polymorphism in miR-1262 regulatory region confers the risk of lung cancer in Chinese population.

    Science.gov (United States)

    Xie, Kaipeng; Chen, Mengxi; Zhu, Meng; Wang, Cheng; Qin, Na; Liang, Cheng; Song, Ci; Dai, Juncheng; Jin, Guangfu; Shen, Hongbing; Lin, Dongxin; Ma, Hongxia; Hu, Zhibin

    2017-09-01

    It has been proposed that the majority of disease-associated loci identified by genome-wide association studies (GWAS) are enriched in non-coding regions, such as the promoter, enhancer or non-coding RNA genes. Thus, we performed a two-stage case-control study to systematically evaluate the association of genetic variants in miRNA regulatory regions (promoter and enhancer) with lung cancer risk in 7,763 subjects (discovery stage: 2,331 cases and 3,077 controls; validation stage: 1,065 cases and 1,290 controls). As a result, we identified that rs12740674 (C > T) in miR-1262 enhancer was significantly associated with the increased risk of lung cancer (additive model in discovery stage: adjusted OR = 1.31, 95%CI = 1.13-1.53, p = 3.846 × 10 -4 in Nanjing GWAS; adjusted OR = 1.20, 95%CI = 1.00-1.44, p = 0.041 in Beijing GWAS; validation stage: adjusted OR = 1.20, 95%CI = 1.03-1.41, p = 0.024). In meta-analysis, the p value for the association between rs12740674 and lung cancer risk reached 6.204 × 10 -6 (adjusted OR = 1.24, 95%CI = 1.13-1.36). Using 3DSNP database, The Cancer Genome Atlas (TCGA) data and functional assays, we observed that the risk T allele of rs12740674 reduced the expression level of miR-1262 in lung tissue through chromosomal looping, and overexpression of miR-1262 inhibited lung cancer cell proliferation probably through targeting the expression levels of ULK1 and RAB3D. Our findings confirmed the important role that genetic variants of noncoding sequence play in lung cancer susceptibility and indicated that rs12740674 in miR-1262 may be biologically relevant to lung carcinogenesis. © 2017 UICC.

  4. Low-k films modification under EUV and VUV radiation

    International Nuclear Information System (INIS)

    Rakhimova, T V; Rakhimov, A T; Mankelevich, Yu A; Lopaev, D V; Kovalev, A S; Vasil'eva, A N; Zyryanov, S M; Kurchikov, K; Proshina, O V; Voloshin, D G; Novikova, N N; Krishtab, M B; Baklanov, M R

    2014-01-01

    Modification of ultra-low-k films by extreme ultraviolet (EUV) and vacuum ultraviolet (VUV) emission with 13.5, 58.4, 106, 147 and 193 nm wavelengths and fluences up to 6 × 10 18  photons cm −2 is studied experimentally and theoretically to reveal the damage mechanism and the most ‘damaging’ spectral region. Organosilicate glass (OSG) and organic low-k films with k-values of 1.8–2.5 and porosity of 24–51% are used in these experiments. The Si–CH 3 bonds depletion is used as a criterion of VUV damage of OSG low-k films. It is shown that the low-k damage is described by two fundamental parameters: photoabsorption (PA) cross-section σ PA and effective quantum yield φ of Si–CH 3 photodissociation. The obtained σ PA and φ values demonstrate that the effect of wavelength is defined by light absorption spectra, which in OSG materials is similar to fused silica. This is the reason why VUV light in the range of ∼58–106 nm having the highest PA cross-sections causes strong Si–CH 3 depletion only in the top part of the films (∼50–100 nm). The deepest damage is observed after exposure to 147 nm VUV light since this emission is located at the edge of Si–O absorption, has the smallest PA cross-section and provides extensive Si–CH 3 depletion over the whole film thickness. The effective quantum yield slowly increases with the increasing porosity but starts to grow quickly when the porosity exceeds the critical threshold located close to a porosity of ∼50%. The high degree of pore interconnectivity of these films allows easy movement of the detached methyl radicals. The obtained results have a fundamental character and can be used for prediction of ULK material damage under VUV light with different wavelengths. (paper)

  5. Glucose Metabolism and AMPK Signaling Regulate Dopaminergic Cell Death Induced by Gene (α-Synuclein)-Environment (Paraquat) Interactions.

    Science.gov (United States)

    Anandhan, Annadurai; Lei, Shulei; Levytskyy, Roman; Pappa, Aglaia; Panayiotidis, Mihalis I; Cerny, Ronald L; Khalimonchuk, Oleh; Powers, Robert; Franco, Rodrigo

    2017-07-01

    While environmental exposures are not the single cause of Parkinson's disease (PD), their interaction with genetic alterations is thought to contribute to neuronal dopaminergic degeneration. However, the mechanisms involved in dopaminergic cell death induced by gene-environment interactions remain unclear. In this work, we have revealed for the first time the role of central carbon metabolism and metabolic dysfunction in dopaminergic cell death induced by the paraquat (PQ)-α-synuclein interaction. The toxicity of PQ in dopaminergic N27 cells was significantly reduced by glucose deprivation, inhibition of hexokinase with 2-deoxy-D-glucose (2-DG), or equimolar substitution of glucose with galactose, which evidenced the contribution of glucose metabolism to PQ-induced cell death. PQ also stimulated an increase in glucose uptake, and in the levels of glucose transporter type 4 (GLUT4) and Na + -glucose transporters isoform 1 (SGLT1) proteins, but only inhibition of GLUT-like transport with STF-31 or ascorbic acid reduced PQ-induced cell death. Importantly, while autophagy protein 5 (ATG5)/unc-51 like autophagy activating kinase 1 (ULK1)-dependent autophagy protected against PQ toxicity, the inhibitory effect of glucose deprivation on cell death progression was largely independent of autophagy or mammalian target of rapamycin (mTOR) signaling. PQ selectively induced metabolomic alterations and adenosine monophosphate-activated protein kinase (AMPK) activation in the midbrain and striatum of mice chronically treated with PQ. Inhibition of AMPK signaling led to metabolic dysfunction and an enhanced sensitivity of dopaminergic cells to PQ. In addition, activation of AMPK by PQ was prevented by inhibition of the inducible nitric oxide syntase (iNOS) with 1400W, but PQ had no effect on iNOS levels. Overexpression of wild type or A53T mutant α-synuclein stimulated glucose accumulation and PQ toxicity, and this toxic synergism was reduced by inhibition of glucose metabolism

  6. Early LC3 lipidation induced by d-limonene does not rely on mTOR inhibition, ERK activation and ROS production and it is associated with reduced clonogenic capacity of SH-SY5Y neuroblastoma cells.

    Science.gov (United States)

    Berliocchi, Laura; Chiappini, Carlotta; Adornetto, Annagrazia; Gentile, Debora; Cerri, Silvia; Russo, Rossella; Bagetta, Giacinto; Corasaniti, Maria Tiziana

    2018-02-01

    d-Limonene is a natural monoterpene abundant in Citrus essential oils. It is endowed with several biological activities, including inhibition of carcinogenesis and promotion of tumour regression. Recently, d-limonene has been shown to modulate autophagic markers in vitro at concentrations found in vivo, in clinical pharmacokinetic studies. Autophagy is an intracellular catabolic process serving as both an adaptive metabolic response and a quality control mechanism. Because autophagy defects have been linked to a wide range of human pathologies, including neurodegeneration and cancer, there is a need for new pharmacological tools to control deregulated autophagy. To better understand the effects of d-limonene on autophagy, to identify the molecular mechanisms through which this monoterpene rapidly triggers LC3 lipidation and to evaluate the role for autophagy in long-term effects of d-limonene. Human SH-SY5Y neuroblastoma, HepG2 hepatocellular carcinoma and MCF7 breast cancer cells were used. Endogenous LC3-II levels were evaluated by western blotting. Autophagic flux assay was performed using bafilomycin A1 and chloroquine. Intracellular distribution of LC3 protein was studied by confocal microscopy analysis of LC3B-GFP transduced cells. Expression of lysosomal-membrane protein LAMP-1 was assessed by immunofluorescence analysis. Phosphorylated levels of downstream substrates of mTOR kinase (p70S6 kinase, 4E-BP1, and ULK1) and ERK were analyzed by western blotting. Production of reactive oxygen species (ROS) was assessed by live confocal microscopy of cells loaded with CellROX ® Green Reagent. Clonogenic assay was used to evaluate the ability of treated cells to proliferate and form colonies. LC3 lipidation promoted by d-limonene correlates with autophagosome formation and stimulation of basal autophagy. LC3 lipidation does not rely on inhibition of mTOR kinase, which instead appears to be transiently activated. In addition, d-limonene rapidly activates ERK and

  7. Role of D-Limonene in Autophagy Induced by Bergamot Essential Oil in SH-SY5Y Neuroblastoma Cells

    Science.gov (United States)

    Russo, Rossella; Cassiano, Maria Gilda Valentina; Ciociaro, Antonella; Adornetto, Annagrazia; Varano, Giuseppe Pasquale; Chiappini, Carlotta; Berliocchi, Laura; Tassorelli, Cristina; Bagetta, Giacinto; Corasaniti, Maria Tiziana

    2014-01-01

    Bergamot (Citrus bergamia, Risso et Poiteau) essential oil (BEO) is a well characterized, widely used plant extract. BEO exerts anxiolytic, analgesic and neuroprotective activities in rodents through mechanisms that are only partly known and need to be further investigated. To gain more insight into the biological effects of this essential oil, we tested the ability of BEO (0.005–0.03%) to modulate autophagic pathways in human SH-SY5Y neuroblastoma cells. BEO-treated cells show increased LC3II levels and appearance of dot-like formations of endogenous LC3 protein that colocalize with the lysosome marker LAMP-1. Autophagic flux assay using bafilomycin A1 and degradation of the specific autophagy substrate p62 confirmed that the observed increase of LC3II levels in BEO-exposed cells is due to autophagy induction rather than to a decreased autophagosomal turnover. Induction of autophagy is an early and not cell-line specific response to BEO. Beside basal autophagy, BEO also enhanced autophagy triggered by serum starvation and rapamycin indicating that the underlying mechanism is mTOR independent. Accordingly, BEO did not affect the phosphorylation of ULK1 (Ser757) and p70S6K (Thr389), two downstream targets of mTOR. Furthermore, induction of autophagy by BEO is beclin-1 independent, occurs in a concentration-dependent manner and is unrelated to the ability of BEO to induce cell death. In order to identify the active constituents responsible for these effects, the two most abundant monoterpenes found in the essential oil, d-limonene (125–750 µM) and linalyl acetate (62.5–375 µM), were individually tested at concentrations comparable to those found in 0.005–0.03% BEO. The same features of stimulated autophagy elicited by BEO were reproduced by d-limonene, which rapidly increases LC3II and reduces p62 levels in a concentration-dependent manner. Linalyl acetate was ineffective in replicating BEO effects; however, it greatly enhanced LC3 lipidation triggered by d

  8. Study of PECVD films containing flourine and carbon and diamond like carbon films for ultra low dielectric constant interlayer dielectric applications

    Science.gov (United States)

    Sundaram, Nandini Ganapathy

    Lowering the capacitance of Back-end-of-line (BEOL) structures by decreasing the dielectric permittivity of the interlayer dielectric material in integrated circuits (ICs) lowers device delay times, power consumption and parasitic capacitance. a:C-F films that are thermally stable at 400°C were deposited using tetrafluorocarbon and disilane (5% by volume in Helium) as precursors. The bulk dielectric constant (k) of the film was optimized from 2.0 / 2.2 to 1.8 / 1.91 as-deposited and after heat treatment. Films, with highly promising k-values but discarded for failing to meet shrinkage rate requirements were salvaged by utilizing a novel extended heat treatment scheme. Film properties including chemical bond structure, F/C ratio, refractive index, surface planarity, contact angle, dielectric constant, flatband voltage shift, breakdown field potential and optical energy gap were evaluated by varying process pressure, power, substrate temperature and flow rate ratio (FRR) of processing gases. Both XPS and FTIR results confirmed that the stoichiometry of the ultra-low k (ULK) film is close to that of CF2 with no oxygen. C-V characteristics indicated the presence of negative charges that are either interface trapped charges or bulk charges. Average breakdown field strength was in the range of 2-8 MV/cm while optical energy gap varied between 2.2 eV and 3.4 eV. Irradiation or plasma damage significantly impacts the ability to integrate the film in VSLI circuits. The film was evaluated after exposure to oxygen plasma and HMDS vapors and no change in the FTIR spectra or refractive index was observed. Film is resistant to attack by developers CD 26 and KOH. While the film dissolves in UVN-30 negative resist, it is impermeable to PGDMA. A 12% increase in dielectric constant and a decrease in contact angle from 65° to 47° was observed post e-beam exposure. The modified Gaseous Electronics Conference (mGEC) reference cell was used to deposit DLC films using CH4 and Argon as

  9. Diet-induced obesity impairs endometrial stromal cell decidualization: a potential role for impaired autophagy.

    Science.gov (United States)

    Rhee, Julie S; Saben, Jessica L; Mayer, Allyson L; Schulte, Maureen B; Asghar, Zeenat; Stephens, Claire; Chi, Maggie M-Y; Moley, Kelle H

    2016-06-01

    What effect does diet-induced obesity have on endometrial stromal cell (ESC) decidualization? Diet-induced obesity impairs ESC decidualization. Decidualization is important for successful implantation and subsequent health of the pregnancy. Compared with normal-weight women, obese women have lower pregnancy rates (both spontaneous and by assisted reproductive technology), higher rates of early pregnancy loss and poorer oocyte quality. Beginning at 6 weeks of age, female C57Bl/6J mice were fed either a high-fat/high-sugar diet (HF/HS; 58% Fat Energy/Sucrose) or a diet of standard mouse chow (CON; 13% Fat) for 12 weeks. At this point, metabolic parameters were measured. Some of the mice (n = 9 HF/HS and 9 CON) were mated with reproductively competent males, and implantation sites were assessed. Other mice (n = 11 HF/HS and 10 CON) were mated with vasectomized males, and artificial decidualization was induced. For in vitro human studies of primary ESCs, endometrial tissue was obtained via biopsy from normo-ovulatory patients without history of infertility (obese = BMI > 30 kg/m(2), n = 11 and lean = BMI treatment with cAMP and medroxyprogesterone. The level of expression of decidualization markers was assessed by RT-qPCR (mRNA) and western blotting (protein). ATP content of ESCs was measured, and levels of autophagy were assessed by western blotting of the autophagy regulators acetyl coa carboxylase (ACC) and ULK1 (Ser 317). Autophagic flux was measured by western blot of the marker LC3b-II. Mice exposed to an HF/HS diet became obese and metabolically impaired. HF/HS-exposed mice mated to reproductively competent males had smaller implantation sites in early pregnancy (P obese women than in those of normal-weight women (Ptreatment abrogated this increase. Many aspects of obesity and metabolic impairment could contribute to the decidualization defects observed in the HF/HS-exposed mice. Although our findings suggest that both autophagy and decidualization are impaired