WorldWideScience

Sample records for uk infrared telescope

  1. Graphical User Interface for an Observing Control System for the UK Infrared Telescope

    Science.gov (United States)

    Tan, M.; Bridger, A.; Wright, G. S.; Adamson, A. J.; Currie, M. J.; Economou, F.

    A Graphical user interface for the observing control system of UK Infrared Telescope has been developed as a part of the ORAC (Observatory Reduction and Acquisition Control) Project. We analyzed and designed the system using the Unified Modelling Language (UML) with the CASE tool Rational Rose 98. The system has been implemented in a modular way with Java packages using Swing and RMI. This system is component-based with pluggability. Object orientation concepts and UML notations have been applied throughout the development.

  2. The UK Infrared Telescope M33 monitoring project - I. Variable red giant stars in the central square kiloparsec

    Science.gov (United States)

    Javadi, Atefeh; van Loon, Jacco Th.; Mirtorabi, Mohammad Taghi

    2011-02-01

    We have conducted a near-infrared monitoring campaign at the UK Infrared Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). The main aim was to identify stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. The most extensive data set was obtained in the K band with the UIST instrument for the central 4 × 4 arcmin2 (1 kpc2) - this contains the nuclear star cluster and inner disc. These data, taken during the period 2003-2007, were complemented by J- and H-band images. Photometry was obtained for 18 398 stars in this region; of these, 812 stars were found to be variable, most of which are asymptotic giant branch (AGB) stars. Our data were matched to optical catalogues of variable stars and carbon stars and to mid-infrared photometry from the Spitzer Space Telescope. In this first of a series of papers, we present the methodology of the variability survey and the photometric catalogue - which is made publicly available at the Centre de Données astronomiques de Strasbourg - and discuss the properties of the variable stars. The most dusty AGB stars had not been previously identified in optical variability surveys, and our survey is also more complete for these types of stars than the Spitzer survey.

  3. The UK Infrared Telescope M 33 monitoring project - V. The star formation history across the galactic disc

    Science.gov (United States)

    Javadi, Atefeh; van Loon, Jacco Th.; Khosroshahi, Habib G.; Tabatabaei, Fatemeh; Hamedani Golshan, Roya; Rashidi, Maryam

    2017-01-01

    We have conducted a near-infrared monitoring campaign at the UK Infrared Telescope of the Local Group spiral galaxy M 33 (Triangulum). On the basis of their variability, we have identified stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. In this fifth paper of the series, we construct the birth mass function and hence derive the star formation history across the galactic disc of M 33. The star formation rate has varied between ˜0.010 ± 0.001 (˜0.012 ± 0.007) and 0.060±0.005 (0.052±0.009) M⊙ yr-1 kpc-2 statistically (systematically) in the central square kiloparsec of M 33, comparable with the values derived previously with another camera. The total star formation rate in M 33 within a galactocentric radius of 14 kpc has varied between ˜0.110 ± 0.005 (˜0.174 ± 0.060) and ˜0.560 ± 0.028 (˜0.503 ± 0.100) M⊙ yr-1 statistically (systematically). We find evidence of two epochs during which the star formation rate was enhanced by a factor of a few - one that started ˜6 Gyr ago and lasted ˜3 Gyr and produced ≥71 per cent of the total mass in stars, and one ˜250 Myr ago that lasted ˜200 Myr and formed ≤13 per cent of the mass in stars. Radial star formation history profiles suggest that the inner disc of M 33 was formed in an inside-out formation scenario. The outskirts of the disc are dominated by the old population, which may be the result of dynamical effects over many Gyr. We find correspondence to spiral structure for all stars, but enhanced only for stars younger than ˜100 Myr; this suggests that the spiral arms are transient features and not a part of a global density wave potential.

  4. Infrared up-conversion telescope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented to an up-conversion infrared telescope (110) arranged for imaging an associated scene (130), wherein the up-conversion infrared telescope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein a first optical...

  5. Space Infrared Telescope Facility (SIRTF) science instruments

    International Nuclear Information System (INIS)

    Ramos, R.; Hing, S.M.; Leidich, C.A.; Fazio, G.; Houck, J.R.

    1989-01-01

    Concepts of scientific instruments designed to perform infrared astronomical tasks such as imaging, photometry, and spectroscopy are discussed as part of the Space Infrared Telescope Facility (SIRTF) project under definition study at NASA/Ames Research Center. The instruments are: the multiband imaging photometer, the infrared array camera, and the infrared spectograph. SIRTF, a cryogenically cooled infrared telescope in the 1-meter range and wavelengths as short as 2.5 microns carrying multiple instruments with high sensitivity and low background performance, provides the capability to carry out basic astronomical investigations such as deep search for very distant protogalaxies, quasi-stellar objects, and missing mass; infrared emission from galaxies; star formation and the interstellar medium; and the composition and structure of the atmospheres of the outer planets in the solar sytem. 8 refs

  6. The Space Infrared Interferometric Telescope (SPIRIT)

    Science.gov (United States)

    Leisawitz, David T.

    2014-01-01

    The far-infrared astrophysics community is eager to follow up Spitzer and Herschel observations with sensitive, high-resolution imaging and spectroscopy, for such measurements are needed to understand merger-driven star formation and chemical enrichment in galaxies, star and planetary system formation, and the development and prevalence of water-bearing planets. The Space Infrared Interferometric Telescope (SPIRIT) is a wide field-of-view space-based spatio-spectral interferometer designed to operate in the 25 to 400 micron wavelength range. This talk will summarize the SPIRIT mission concept, with a focus on the science that motivates it and the technology that enables it. Without mentioning SPIRIT by name, the astrophysics community through the NASA Astrophysics Roadmap Committee recently recommended this mission as the first in a series of space-based interferometers. Data from a laboratory testbed interferometer will be used to illustrate how the spatio-spectral interferometry technique works.

  7. GIRL: German Infrared Laboratory. Telescope study, phase B

    Science.gov (United States)

    Schlegelmilch, R.; Zeiss, C.

    1981-01-01

    The construction and mounting of mirrors for an infrared telescope are described. Tests conducted to determine the thermal and stress characteristics of various types of mounting for main and collection mirrors are also discussed.

  8. Infrared Astronomy Professional Development for K-12 Educators: WISE Telescope

    Science.gov (United States)

    Borders, Kareen; Mendez, B. M.

    2010-01-01

    K-12 educators need effective and relevant astronomy professional development. WISE Telescope (Wide-Field Infrared Survey Explorer) and Spitzer Space Telescope Education programs provided an immersive teacher professional development workshop at Arecibo Observatory in Puerto Rico during the summer of 2009. As many common misconceptions involve scale and distance, teachers worked with Moon/Earth scale, solar system scale, and distance of objects in the universe. Teachers built and used basic telescopes, learned about the history of telescopes, explored ground and satellite based telescopes, and explored and worked on models of WISE Telescope. An in-depth explanation of WISE and Spitzer telescopes gave participants background knowledge for infrared astronomy observations. We taught the electromagnetic spectrum through interactive stations. The stations included an overview via lecture and power point, the use of ultraviolet beads to determine ultraviolet exposure, the study of WISE lenticulars and diagramming of infrared data, listening to light by using speakers hooked up to photoreceptor cells, looking at visible light through diffraction glasses and diagramming the data, protocols for using astronomy based research in the classroom, and infrared thermometers to compare environmental conditions around the observatory. An overview of LIDAR physics was followed up by a simulated LIDAR mapping of the topography of Mars. We will outline specific steps for K-12 infrared astronomy professional development, provide data demonstrating the impact of the above professional development on educator understanding and classroom use, and detail future plans for additional K-12 professional development. Funding was provided by WISE Telescope, Spitzer Space Telescope, Starbucks, Arecibo Observatory, the American Institute of Aeronautics and Astronautics, and the Washington Space Grant Consortium.

  9. New infrared telescopic observation of Vesta

    Science.gov (United States)

    Palomba, E.; D'Aversa, E.; Sato, T.; Longobardo, A.; Aoki, S.; Sindoni, G.; Oliva, F.

    2017-09-01

    In this work we present new telescopic observations of the Vesta asteroid made at the Subaru Telescope by using the COMICS IR spectrometer. We were able to obtain 5 different observations in 5 day, at two different epochs. The obtained spectra do not exhibit Reststrahlen bands and show only weak features attributable to the Christiansen peak and to the transparency feature compatible with a fine grain size regolith.

  10. Stray radiation and the Infrared Astronomical Satellite /IRAS/ telescope

    Science.gov (United States)

    Noll, R. J.; Harned, R.; Breault, R. P.; Malugin, R.

    1981-01-01

    Stray light control is a major consideration in the design of infrared cryogenically cooled telescopes such as the Infrared Astronomical Satellite (IRAS). The basic design of the baffle system, and the placement, shape, and coating of the secondary support struts for the telescope subsystem are described. The intent of this paper is to highlight the stray light problems encountered while designing the system, and to illustrate how computer analysis can be a useful design aid. Scattering measurements of the primary mirror, and a full system level scatter measurement are presented. Comparisons of predicted performance with the measured results are also presented.

  11. Wide Field Infrared Survey Telescope [WFIRST]: telescope design and simulated performance

    Science.gov (United States)

    Goullioud, R.; Content, D. A.; Kuan, G. M.; Moore, J. D.; Chang, Z.; Sunada, E. T.; Villalvazo, J.; Hawk, J. P.; Armani, N. V.; Johnson, E. L.; Powell, C. A.

    2012-09-01

    The Wide Field Infrared Survey Telescope (WFIRST) mission concept was ranked first in new space astrophysics missions by the Astro2010 Decadal Survey, incorporating the Joint Dark Energy Mission payload concept and multiple science white papers. This mission is based on a space telescope at L2 studying exoplanets [via gravitational microlensing], probing dark energy, and surveying the near infrared sky. Since the release of the Astro2010 Decadal Survey, the team has been working with the WFIRST Science Definition Team to refine mission and payload concepts. We present the current interim reference mission point design of the payload, based on the use of a 1.3m unobscured aperture three mirror anastigmat form, with focal imaging and slit-less spectroscopy science channels. We also present the first results of Structural/Thermal/Optical performance modeling of the telescope point design.

  12. Infrared Testing of the Wide-field Infrared Survey Telescope Grism Using Computer Generated Holograms

    Science.gov (United States)

    Dominguez, Margaret Z.; Content, David A.; Gong, Qian; Griesmann, Ulf; Hagopian, John G.; Marx, Catherine T; Whipple, Arthur L.

    2017-01-01

    Infrared Computer Generated Holograms (CGHs) were designed, manufactured and used to measure the performance of the grism (grating prism) prototype which includes testing Diffractive Optical Elements (DOE). The grism in the Wide Field Infrared Survey Telescope (WFIRST) will allow the surveying of a large section of the sky to find bright galaxies.

  13. Origins Space Telescope: The Far Infrared Imager and Polarimeter FIP

    Science.gov (United States)

    Staguhn, Johannes G.; Chuss, David; Howard, Joseph; Meixner, Margaret; Vieira, Joaquin; Amatucci, Edward; Bradley, Damon; Carter, Ruth; Cooray, Asantha; Flores, Anel; Leisawitz, David; Moseley, Samuel Harvey; Wollack, Edward; Origins Space Telescope Study Team

    2018-01-01

    The Origins Space Telescope (OST)* is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey. The current "concept 1", which envisions a cold (4K) 9m space telescope, includes 5 instruments, providing a wavelength coverage ranging from 6um and 667um. The achievable sensitivity of the observatory will provide three to four orders of magnitude of improvement in sensitivity over current observational capabilities, allowing to address a wide range of new and so far inaccessible scientific questions, ranging from bio-signatures on exo-planets to mapping primordial H_2 from the "dark ages" before the universe went through the phase of re-ionization.Here we present the Far Infrared Imager and Polarimeter (FIP) for OST. The cameral will cover four bands, 40um, 80um, 120um, and 240um. It will allow for differential polarimetry in those bands with the ability to observe two colors in polarimtery mode simultaneously, while all four bands can be observed simultaneously in total power mode. While the confusion limit will be reached in only 32ms at 240um, at 40um the source density on the sky is so low, that at the angular resolution of 1" of OST at this wavelength there will be no source confusion, even for the longest integration times. Science topics that can be addressed by FIP include but are not limited to galactic and extragalactic magnetic field studies, Deep Galaxy Surveys, and Outer Solar System objects..*Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. We welcome you to contact the Science and Technology Definition Team (STDT) with your science needs and ideas by emailing us at ost_info@lists.ipac.caltech.edu

  14. The Infrared-Optical Telescope (IRT) of the Exist Observatory

    Science.gov (United States)

    Kutyrev, Alexander; Bloom, Joshua; Gehrels, Neil; Golisano, Craig; Gong, Quan; Grindlay, Jonathan; Moseley, Samuel; Woodgate, Bruce

    2010-01-01

    The IRT is a 1.1m visible and infrared passively cooled telescope, which can locate, identify and obtain spectra of GRB afterglows at redshifts up to z 20. It will also acquire optical-IR, imaging and spectroscopy of AGN and transients discovered by the EXIST (The Energetic X-ray Imaging Survey Telescope). The IRT imaging and spectroscopic capabilities cover a broad spectral range from 0.32.2m in four bands. The identical fields of view in the four instrument bands are each split in three subfields: imaging, objective prism slitless for the field and objective prism single object slit low resolution spectroscopy, and high resolution long slit on single object. This allows the instrument, to do simultaneous broadband photometry or spectroscopy of the same object over the full spectral range, thus greatly improving the efficiency of the observatory and its detection limits. A prompt follow up (within three minutes) of the transient discovered by the EXIST makes IRT a unique tool for detection and study of these events, which is particularly valuable at wavelengths unavailable to the ground based observatories.

  15. The space infrared telescope for cosmology and astrophysics : SPICA A joint mission between JAXA and ESA

    NARCIS (Netherlands)

    Swinyard, Bruce; Nakagawa, Takao; Wild, Wolfgang

    The Space Infrared telescope for Cosmology and Astrophysics (SPICA) is planned to be the next space astronomy mission observing in the infrared. The mission is planned to be launched in 2017 and will feature a 3.5 m telescope cooled to <5 K through the use of mechanical coolers. These coolers will

  16. THE INFRARED TELESCOPE FACILITY (IRTF) SPECTRAL LIBRARY: COOL STARS

    International Nuclear Information System (INIS)

    Rayner, John T.; Cushing, Michael C.; Vacca, William D.

    2009-01-01

    We present a 0.8-5 μm spectral library of 210 cool stars observed at a resolving power of R ≡ λ/Δλ ∼ 2000 with the medium-resolution infrared spectrograph, SpeX, at the 3.0 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The stars have well-established MK spectral classifications and are mostly restricted to near-solar metallicities. The sample not only contains the F, G, K, and M spectral types with luminosity classes between I and V, but also includes some AGB, carbon, and S stars. In contrast to some other spectral libraries, the continuum shape of the spectra is measured and preserved in the data reduction process. The spectra are absolutely flux calibrated using the Two Micron All Sky Survey photometry. Potential uses of the library include studying the physics of cool stars, classifying and studying embedded young clusters and optically obscured regions of the Galaxy, evolutionary population synthesis to study unresolved stellar populations in optically obscured regions of galaxies and synthetic photometry. The library is available in digital form from the IRTF Web site.

  17. The Infrared Telescope Facility (IRTF) Spectral Library: Cool Stars

    Science.gov (United States)

    Rayner, John T.; Cushing, Michael C.; Vacca, William D.

    2009-12-01

    We present a 0.8-5 μm spectral library of 210 cool stars observed at a resolving power of R ≡ λ/Δλ ~ 2000 with the medium-resolution infrared spectrograph, SpeX, at the 3.0 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The stars have well-established MK spectral classifications and are mostly restricted to near-solar metallicities. The sample not only contains the F, G, K, and M spectral types with luminosity classes between I and V, but also includes some AGB, carbon, and S stars. In contrast to some other spectral libraries, the continuum shape of the spectra is measured and preserved in the data reduction process. The spectra are absolutely flux calibrated using the Two Micron All Sky Survey photometry. Potential uses of the library include studying the physics of cool stars, classifying and studying embedded young clusters and optically obscured regions of the Galaxy, evolutionary population synthesis to study unresolved stellar populations in optically obscured regions of galaxies and synthetic photometry. The library is available in digital form from the IRTF Web site.

  18. James Webb Telescope's Near Infrared Camera: Making Models, Building Understanding

    Science.gov (United States)

    Lebofsky, Larry A.; McCarthy, D. W.; Higgins, M. L.; Lebofsky, N. R.

    2010-10-01

    The Astronomy Camp for Girl Scout Leaders is a science education program sponsored by NASA's next large space telescope: The James Webb Space Telescope (JWST). The E/PO team for JWST's Near Infrared Camera (NIRCam), in collaboration with the Sahuaro Girl Scout Council, has developed a long-term relationship with adult leaders from all GSUSA Councils that directly benefits troops of all ages, not only in general science education but also specifically in the astronomical and technology concepts relating to JWST. We have been training and equipping these leaders so they can in turn teach young women essential concepts in astronomy, i.e., the night sky environment. We model what astronomers do by engaging trainers in the process of scientific inquiry, and we equip them to host troop-level astronomy-related activities. It is GSUSA's goal to foster girls’ interest and creativity in Science, Technology, Engineering, and Math, creating an environment that encourages their interests early in their lives while creating a safe place for girls to try and fail, and then try again and succeed. To date, we have trained over 158 leaders in 13 camps. These leaders have come from 24 states, DC, Guam, and Japan. While many of the camp activities are related to the "First Light” theme, many of the background activities relate to two of the other JWST and NIRCam themes: "Birth of Stars and Protoplanetary Systems” and "Planetary Systems and the Origin of Life.” The latter includes our own Solar System. Our poster will highlight the Planetary Systems theme: 1. Earth and Moon: Day and Night; Rotation and Revolution. 2. Earth/Moon Comparisons. 3. Size Model: The Diameters of the Planets. 4. Macramé Planetary (Solar) Distance Model. 5.What is a Planet? 6. Planet Sorting Cards. 7. Human Orrery 8. Lookback Time in Our Daily Lives NIRCam E/PO website: http://zeus.as.arizona.edu/ dmccarthy/GSUSA

  19. Development of Infrared Phase Closure Capability in the Infrared-Optical Telescope Array (IOTA)

    Science.gov (United States)

    Traub, Wesley A.

    2002-01-01

    We completed all major fabrication and testing for the third telescope and phase-closure operation at the Infrared-Optical Telescope Array (IOTA) during this period. In particular we successfully tested the phase-closure operation, using a laboratory light source illuminating the full delay-line optical paths, and using an integrated-optic beam combiner coupled to our Picnic-detector camera. This demonstration is an important and near-final milestone achievement. As of this writing, however, several tasks yet remain, owing to development snags and weather, so the final proof of success, phase-closure observation of a star, is now expected to occur in early 2002, soon after this report has been submitted.

  20. Cryogenic implications of orbit selection of the Space Infrared Telescope Facility (SIRTF)

    International Nuclear Information System (INIS)

    Lee, J.H.; Brooke, W.F.; Maa, S.

    1986-01-01

    The Infrared Astronomical Satellite (IRAS) which completed the first all sky survey in the infrared demonstrated the tremendous advantage of space-based infrared astronomy. The ability to cool the telescope optics and focal plane to liquid helium temperatures and the absence of atmospheric disturbances which cause ''seeing'' effects resulted in the discovery of 250,000 IR sources and many interesting phenomena including dust clouds around Vega and the infrared ''cirrus'' at 100 μm. To realize the true benefit of space infrared astronomy, NASA is now studying the Space Infrared Telescope Facility, a long-life space-based observatory, to follow up on the survey results of IRAS. The choice of orbits is a critical program decision. The objective of this paper is to compare the performance of an all superfluid helium SIRTF system in the two possible orbit inclinations, polar orbit (99 0 ) and the low inclination orbit (28.5 0 )

  1. End-to-End Assessment of a Large Aperture Segmented Ultraviolet Optical Infrared (UVOIR) Telescope Architecture

    Science.gov (United States)

    Feinberg, Lee; Bolcar, Matt; Liu, Alice; Guyon, Olivier; Stark,Chris; Arenberg, Jon

    2016-01-01

    Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10-10 contrast measurements and sufficient throughput and sensitivity for high yield Exo-Earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an Exo-Earth yield assessment to evaluate potential performance.

  2. Design Evolution of the Wide Field Infrared Survey Telescope Using Astrophysics Focused Telescope Assets (WFIRST-AFTA) and Lessons Learned

    Science.gov (United States)

    Peabody, Hume L.; Peters, Carlton V.; Rodriguez-Ruiz, Juan E.; McDonald, Carson S.; Content, David A.; Jackson, Clifton E.

    2015-01-01

    The design of the Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA) continues to evolve as each design cycle is analyzed. In 2012, two Hubble sized (2.4 m diameter) telescopes were donated to NASA from elsewhere in the Federal Government. NASA began investigating potential uses for these telescopes and identified WFIRST as a mission to benefit from these assets. With an updated, deeper, and sharper field of view than previous design iterations with a smaller telescope, the optical designs of the WFIRST instruments were updated and the mechanical and thermal designs evolved around the new optical layout. Beginning with Design Cycle 3, significant analysis efforts yielded a design and model that could be evaluated for Structural-Thermal-Optical-Performance (STOP) purposes for the Wide Field Imager (WFI) and provided the basis for evaluating the high level observatory requirements. Development of the Cycle 3 thermal model provided some valuable analysis lessons learned and established best practices for future design cycles. However, the Cycle 3 design did include some major liens and evolving requirements which were addressed in the Cycle 4 Design. Some of the design changes are driven by requirements changes, while others are optimizations or solutions to liens from previous cycles. Again in Cycle 4, STOP analysis was performed and further insights into the overall design were gained leading to the Cycle 5 design effort currently underway. This paper seeks to capture the thermal design evolution, with focus on major design drivers, key decisions and their rationale, and lessons learned as the design evolved.

  3. Far-infared spectroscopic observations with a Balloon-Borne infrared telescope

    International Nuclear Information System (INIS)

    Maihara, Toshinori; Takami, Hideki; Mizutani, Kohei

    1986-01-01

    The first observations of far-infrared celestial objects using the 50-cm Balloon-Borne Infrared Telescope were made in Alice Springs, Australia. Far-infrared spectrophotometric data between 45 and 115 μm were taken for the Orion-KL region, Saturn and a southern H II region RCW 38. The data including high excitation transition lines of CO for Orion-KL, O III lines for RCW 38 and a PH 3 absorption feature of Saturn will be presented. (author)

  4. Wide Field Infra-Red Survey Telescope (WFIRST) 2.4-Meter Mission Study

    Science.gov (United States)

    Content, D.; Aaron, K.; Alplanalp, L.; Anderson, K.; Capps, R.; Chang, Z.; Dooley, J.; Egerman, R.; Goullioud, R.; Klein, D.; hide

    2013-01-01

    The most recent study of the Wide Field Infrared Survey Telescope (WFIRST) mission is based on reuse of an existing 2.4m telescope. This study was commissioned by NASA to examine the potential science return and cost effectiveness of WFIRST by using this significantly larger aperture telescope. We review the science program envisioned by the WFIRST 2012-2013 Science Definition Team (SDT), an overview of the mission concept, and the telescope design and status. Comparisons against the previous 1.3m and reduced cost 1.1m WFIRST design concepts are discussed. A significant departure from past point designs is the option for serviceability and the geostationary orbit location which enables servicing and replacement instrument insertion later during mission life. Other papers at this conference provide more in depth discussion of the wide field instrument and the optional exoplanet imaging coronagraph instrument.

  5. Mirror coatings for large aperture UV optical infrared telescope optics

    Science.gov (United States)

    Balasubramanian, Kunjithapatham; Hennessy, John; Raouf, Nasrat; Nikzad, Shouleh; Del Hoyo, Javier; Quijada, Manuel

    2017-09-01

    Large space telescope concepts such as LUVOIR and HabEx aiming for observations from far UV to near IR require advanced coating technologies to enable efficient gathering of light with important spectral signatures including those in far UV region down to 90nm. Typical Aluminum mirrors protected with MgF2 fall short of the requirements below 120nm. New and improved coatings are sought to protect aluminum from oxidizing readily in normal environment causing severe absorption and reduction of reflectance in the deep UV. Choice of materials and the process of applying coatings present challenges. Here we present the progress achieved to date with experimental investigations of coatings at JPL and at GSFC and discuss the path forward to achieve high reflectance in the spectral region from 90 to 300nm without degrading performance in the visible and NIR regions taking into account durability concerns when the mirrors are exposed to normal laboratory environment as well as high humidity conditions. Reflectivity uniformity required on these mirrors is also discussed.

  6. European agreement on James Webb Space Telescope's Mid-Infrared Instrument (MIRI) signed

    Science.gov (United States)

    2004-06-01

    Artist's impression of the JWST hi-res Size hi-res: 1601 kb Credits: ESA Artist's impression of the JWST An artist's impression of the selected design for the JWST spacecraft. Northrop Grumman and Ball Aerospace are the prime contractors for JWST. Artist's impression of the JWST Credits: ESA Artist's impression of the JWST An artist's impression of the selected design for the JWST spacecraft. Northrop Grumman and Ball Aerospace are the prime contractors for JWST. Observing the first light, the James Webb Space Telescope (JWST) will help to solve outstanding questions about our place in the evolving Universe. MIRI, the Mid-Infrared Instrument, is one of the four instruments on board the JWST, the mission scheduled to follow on the heritage of Hubble in 2011. MIRI will be built in cooperation between Europe and the United States (NASA), both equally contributing to its funding. MIRI’s optics, core of the instrument, will be provided by a consortium of European institutes. According to this formal agreement, ESA will manage and co-ordinate the whole development of the European part of MIRI and act as the sole interface with NASA, which is leading the JWST project. This marks a difference with respect to the previous ESA scientific missions. In the past the funding and the development of the scientific instruments was agreed by the participating ESA Member States on the basis of purely informal arrangements with ESA. In this case, the Member States involved in MIRI have agreed on formally guaranteeing the required level of funding on the basis of a multi-lateral international agreement, which still keeps scientists in key roles. Over the past years, missions have become more complex and demanding, and more costly within an ever tighter budget. They also require a more and more specific expertise which is spread throughout the vast European scientific community. As a result, a new management procedure for co-ordination of payload development has become a necessity to

  7. The optical system of the proposed Chinese 12-m optical/infrared telescope

    Science.gov (United States)

    Su, Ding-qiang; Liang, Ming; Yuan, Xiangyan; Bai, Hua; Cui, Xiangqun

    2017-08-01

    The lack of a large-aperture optical/infrared telescope has seriously affected the development of astronomy in China. In 2016, the authors published their concept study and suggestions for a 12-m telescope optical system. This article presents the authors' further research and some new results. Considering that this telescope should be a general-purpose telescope for a wide range of scientific goals and could be used for frontier scientific research in the future, the authors studied and designed a variety of 12-m telescope optical systems for comparison and final decision-making. In general, we still adopt our previous configuration, but the Nasmyth and prime-focus corrector systems have been greatly improved. In this article, the adaptive optics is given special attention. Ground-layer adaptive optics (GLAO) is adopted. It has a 14-arcmin field of view. The secondary mirror is used as the adaptive optical deformable mirror. Obviously, not all the optical systems in this telescope configuration will be used or constructed at the same stage. Some will be for the future and some are meant for research rather than for construction.

  8. End-to-End Assessment of a Large Aperture Segmented Ultraviolet Optical Infrared (UVOIR) Telescope Architecture

    Science.gov (United States)

    Feinberg, Lee; Rioux, Norman; Bolcar, Matthew; Liu, Alice; Guyon, Oliver; Stark, Chris; Arenberg, Jon

    2016-01-01

    Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10^-10 contrast measurements and sufficient throughput and sensitivity for high yield Exo-Earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an Exo-Earth yield assessment to evaluate potential performance. These efforts are combined through integrated modeling, coronagraph evaluations, and Exo-Earth yield calculations to assess the potential performance of the selected architecture. In addition, we discusses the scalability of this architecture to larger apertures and the technological tall poles to enabling it.

  9. Early GRB optical and infrared afterglow observations with the 2-m robotic Liverpool Telescope

    International Nuclear Information System (INIS)

    Gomboc, A.; Ljubljana Univ., Ljubljana; Mundell, C.G.; Guidorzi, C.

    2005-01-01

    We present the first optical observations of a Gamma Ray Burst IGRB) afterglow using the 2-m robotic Liverpool Telescope (LT), which is owned and operated by Liverpool John Moores University and situated on La Palma. We briefly discuss the capabilities of LT and its suitability for rapid follow-up observations of early optical and infrared GRB light curves. In particular, the combination of aperture, site, instrumentation and rapid response (robotic over-ride mode aided by telescope's rapid slew and fully-opening enclosure) makes the LT ideal for investigating the nature of short bursts, optically-dark bursts, and GRB blast-wave physics in general. We briefly describe the LT's key position in the RoboNet-1.0 network of robotic telescopes. We present the LT observations of GRB041006 and use its gamma-ray properties to predict the time of the break in optical light curve, a prediction consistent with the observations

  10. Long wavelength infrared camera (LWIRC): a 10 micron camera for the Keck Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Wishnow, E.H.; Danchi, W.C.; Tuthill, P.; Wurtz, R.; Jernigan, J.G.; Arens, J.F.

    1998-05-01

    The Long Wavelength Infrared Camera (LWIRC) is a facility instrument for the Keck Observatory designed to operate at the f/25 forward Cassegrain focus of the Keck I telescope. The camera operates over the wavelength band 7-13 {micro}m using ZnSe transmissive optics. A set of filters, a circular variable filter (CVF), and a mid-infrared polarizer are available, as are three plate scales: 0.05``, 0.10``, 0.21`` per pixel. The camera focal plane array and optics are cooled using liquid helium. The system has been refurbished with a 128 x 128 pixel Si:As detector array. The electronics readout system used to clock the array is compatible with both the hardware and software of the other Keck infrared instruments NIRC and LWS. A new pre-amplifier/A-D converter has been designed and constructed which decreases greatly the system susceptibility to noise.

  11. Near infrared multicolor photometry of late type stars with the balloon borne astronomical telescope BAT-1

    International Nuclear Information System (INIS)

    Kodaira, Keiichi; Tanaka, Wataru; Nakada, Yoshikazu; Watanabe, Tetsuya; Onaka, Takashi

    1979-01-01

    A new star follower has been developed for observing the near infrared emission of late type stars. The sensor of the follower consists of a semicircular rotating sector and a photomultiplier. The practical accuracy of the angle of tracing was about 1 minute. A photometer was installed at the focus point of the main telescope. The infrared photometer consists of a filter turret, a chopper, an infrared detector and a synchronous amplifier. Five flights of balloons were made since September 13, 1974. The height of the flights was about 25 km. The type of observed spectra ranges from A0 to M6. The results of analysis was compared with the atmospheric model by Tsuji. The physical parameters, such as effective temperature, logarithm of surface gravity and velocity of turbulent flow, of late type stars (K5 - M6) were determined. (Kato, T.)

  12. The Hubble Space Telescope: UV, Visible, and Near-Infrared Pursuits

    Science.gov (United States)

    Wiseman, Jennifer

    2010-01-01

    The Hubble Space Telescope continues to push the limits on world-class astrophysics. Cameras including the Advanced Camera for Surveys and the new panchromatic Wide Field Camera 3 which was installed nu last year's successful servicing mission S2N4,o{fer imaging from near-infrared through ultraviolet wavelengths. Spectroscopic studies of sources from black holes to exoplanet atmospheres are making great advances through the versatile use of STIS, the Space Telescope Imaging Spectrograph. The new Cosmic Origins Spectrograph, also installed last year, is the most sensitive UV spectrograph to fly io space and is uniquely suited to address particular scientific questions on galaxy halos, the intergalactic medium, and the cosmic web. With these outstanding capabilities on HST come complex needs for laboratory astrophysics support including atomic and line identification data. I will provide an overview of Hubble's current capabilities and the scientific programs and goals that particularly benefit from the studies of laboratory astrophysics.

  13. The James Webb Space Telescope's Near-Infrared Camera (NIRCam): Making Models, Building Understanding

    Science.gov (United States)

    McCarthy, D. W., Jr.; Lebofsky, L. A.; Higgins, M. L.; Lebofsky, N. R.

    2011-09-01

    Since 2003, the Near Infrared Camear (NIRCam) science team for the James Webb Space Telescope (JWST) has conducted "Train the Trainer" workshops for adult leaders of the Girl Scout of the USA (GSUSA), engaging them in the process of scientific inquiry and equipping them to host astronomy-related activities at the troop level. Training includes topics in basic astronomy (night sky, phases of the Moon, the scale of the Solar System and beyond, stars, galaxies, telescopes, etc.) as well as JWST-specific research areas in extra-solar planetary systems and cosmology, to pave the way for girls and women to understand the first images from JWST. Participants become part of our world-wide network of 160 trainers teaching young women essential STEM-related concepts using astronomy, the night sky environment, applied math, engineering, and critical thinking.

  14. The Mid-Infrared Instrument for the James Webb Space Telescope, I: Introduction

    DEFF Research Database (Denmark)

    Rieke, G. H.; Wright, G. S.; Böker, T.

    2015-01-01

    MIRI (the Mid-Infrared Instrument for the James Webb Space Telescope [JWST]) operates from 5 to 28: 5 μm and combines over this range: (1) unprecedented sensitivity levels; (2) subarcsecond angular resolution; (3) freedom from atmospheric interference; (4) the inherent stability of observing...... in space; and (5) a suite of versatile capabilities including imaging, low- and medium-resolution spectroscopy (with an integral field unit), and coronagraphy. We illustrate the potential uses of this unique combination of capabilities with various science examples: (1) imaging exoplanets; (2) transit...

  15. Origins Space Telescope: 3D infrared surveys of star formation and black hole growth in galaxies over cosmic time

    Science.gov (United States)

    Pope, Alexandra; Armus, Lee; bradford, charles; Origins Space Telescope STDT

    2018-01-01

    In the coming decade, new telescope facilities and surveys aim to provide a 3D map of the unobscured Universe over cosmic time. However, much of galaxy formation and evolution occurs behind dust, and is only observable through infrared observations. Previous extragalactic infrared surveys were fundamentally limited to a 2D mapping of the most extreme populations of galaxies due to spatial resolution and sensitivity. The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies sponsored by NASA to provide input to the 2020 Astronomy and Astrophysics Decadal survey. OST is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum, which will achieve spectral line sensitivities up to 1000 times deeper than previous infrared facilities. With powerful instruments such as the Medium Resolution Survey Spectrometer (MRSS), capable of simultaneous imaging and spectroscopy, the extragalactic infrared sky can finally be surveyed in 3D. In addition to spectroscopic redshifts, the rich suite of lines in the infrared provides unique diagnostics of the ongoing star formation (both obscured and unobscured) and the central supermassive black hole growth. In this poster, we present a simulated extragalactic survey with OST/MRSS which will detect millions of galaxies down to well below the knee of the infrared luminosity function. We demonstrate how this survey can map the coeval star formation and black hole growth in galaxies over cosmic time.

  16. TIFR Near Infrared Imaging Camera-II on the 3.6 m Devasthal Optical Telescope

    Science.gov (United States)

    Baug, T.; Ojha, D. K.; Ghosh, S. K.; Sharma, S.; Pandey, A. K.; Kumar, Brijesh; Ghosh, Arpan; Ninan, J. P.; Naik, M. B.; D’Costa, S. L. A.; Poojary, S. S.; Sandimani, P. R.; Shah, H.; Krishna Reddy, B.; Pandey, S. B.; Chand, H.

    Tata Institute of Fundamental Research (TIFR) Near Infrared Imaging Camera-II (TIRCAM2) is a closed-cycle Helium cryo-cooled imaging camera equipped with a Raytheon 512×512 pixels InSb Aladdin III Quadrant focal plane array (FPA) having sensitivity to photons in the 1-5μm wavelength band. In this paper, we present the performance of the camera on the newly installed 3.6m Devasthal Optical Telescope (DOT) based on the calibration observations carried out during 2017 May 11-14 and 2017 October 7-31. After the preliminary characterization, the camera has been released to the Indian and Belgian astronomical community for science observations since 2017 May. The camera offers a field-of-view (FoV) of ˜86.5‧‧×86.5‧‧ on the DOT with a pixel scale of 0.169‧‧. The seeing at the telescope site in the near-infrared (NIR) bands is typically sub-arcsecond with the best seeing of ˜0.45‧‧ realized in the NIR K-band on 2017 October 16. The camera is found to be capable of deep observations in the J, H and K bands comparable to other 4m class telescopes available world-wide. Another highlight of this camera is the observational capability for sources up to Wide-field Infrared Survey Explorer (WISE) W1-band (3.4μm) magnitudes of 9.2 in the narrow L-band (nbL; λcen˜ 3.59μm). Hence, the camera could be a good complementary instrument to observe the bright nbL-band sources that are saturated in the Spitzer-Infrared Array Camera (IRAC) ([3.6] ≲ 7.92 mag) and the WISE W1-band ([3.4] ≲ 8.1 mag). Sources with strong polycyclic aromatic hydrocarbon (PAH) emission at 3.3μm are also detected. Details of the observations and estimated parameters are presented in this paper.

  17. TALC, a new deployable concept for a 20 m far-infrared space telescope

    International Nuclear Information System (INIS)

    Durand, Gilles; Sauvage, Marc; Rodriguez, Louis; Ronayette, Samuel; Reveret, Vincent; Aussel, Herve; Pantin, Eric; Berthe, Michel; Martignac, Jerome; Motte, Frederique; Talvard, Michel; Minier, Vincent; Scola, Loris; Carty, Michael

    2014-01-01

    TALC, Thin Aperture Light Collector is a 20 m space observatory project exploring some unconventional optical solutions (between the single dish and the interferometer) allowing the resolving power of a classical 27 m telescope. With TALC, the principle is to remove the central part of the prime mirror dish, cut the remaining ring into 24 sectors and store them on top of one-another. The aim of this far infrared telescope is to explore the 600 μm to 100 μm region. With this approach we have shown that we can store a ring-telescope of outer diameter 20 m and ring thickness of 3 m inside the fairing of Ariane 5 or Ariane 6. The general structure is the one of a bicycle wheel, whereas the inner sides of the segments are in compression to each other and play the rule of a rim. The segments are linked to each other using a pantograph scissor system that let the segments extend from a pile of dishes to a parabolic ring keeping high stiffness at all time during the deployment. The inner corners of the segments are linked to a central axis using spokes as in a bicycle wheel. The secondary mirror and the instrument box are built as a solid unit fixed at the extremity of the main axis. The tensegrity analysis of this structure shows a very high stiffness to mass ratio, resulting into 3 Hz Eigen frequency. The segments will consist of two composite skins and honeycomb CFRP structure build by replica process. Solid segments will be compared to deformable segments using the controlled shear of the rear surface. The adjustment of the length of the spikes and the relative position of the side of neighbor segments let control the phasing of the entire primary mirror. The telescope is cooled by natural radiation. It is protected from sun radiation by a large inflatable solar screen, loosely linked to the telescope. The orientation is performed by inertia-wheels. This telescope carries a wide field bolometer camera using cryo-cooler at 0.3 K as one of the main instruments. This

  18. TALC: a new deployable concept for a 20m far-infrared space telescope

    Science.gov (United States)

    Durand, Gilles; Sauvage, Marc; Bonnet, Aymeric; Rodriguez, Louis; Ronayette, Samuel; Chanial, Pierre; Scola, Loris; Révéret, Vincent; Aussel, Hervé; Carty, Michael; Durand, Matthis; Durand, Lancelot; Tremblin, Pascal; Pantin, Eric; Berthe, Michel; Martignac, Jérôme; Motte, Frédérique; Talvard, Michel; Minier, Vincent; Bultel, Pascal

    2014-08-01

    TALC, Thin Aperture Light Collector is a 20 m space observatory project exploring some unconventional optical solutions (between the single dish and the interferometer) allowing the resolving power of a classical 27 m telescope. With TALC, the principle is to remove the central part of the prime mirror dish, cut the remaining ring into 24 sectors and store them on top of one-another. The aim of this far infrared telescope is to explore the 600 μm to 100 μm region. With this approach we have shown that we can store a ring-telescope of outer diameter 20m and ring thickness of 3m inside the fairing of Ariane 5 or Ariane 6. The general structure is the one of a bicycle wheel, whereas the inner sides of the segments are in compression to each other and play the rule of a rim. The segments are linked to each other using a pantograph scissor system that let the segments extend from a pile of dishes to a parabolic ring keeping high stiffness at all time during the deployment. The inner corners of the segments are linked to a central axis using spokes as in a bicycle wheel. The secondary mirror and the instrument box are built as a solid unit fixed at the extremity of the main axis. The tensegrity analysis of this structure shows a very high stiffness to mass ratio, resulting into 3 Hz Eigen frequency. The segments will consist of two composite skins and honeycomb CFRP structure build by replica process. Solid segments will be compared to deformable segments using the controlled shear of the rear surface. The adjustment of the length of the spikes and the relative position of the side of neighbor segments let control the phasing of the entire primary mirror. The telescope is cooled by natural radiation. It is protected from sun radiation by a large inflatable solar screen, loosely linked to the telescope. The orientation is performed by inertia-wheels. This telescope carries a wide field bolometer camera using cryocooler at 0.3K as one of the main instruments. This

  19. Cryogenic and thermal design for the Space Infrared Telescope Facility (SIRTF)

    Science.gov (United States)

    Lee, J. H.; Brooks, W. F.

    1984-01-01

    The 1-meter class cryogenically cooled Space Infrared Telescope Facility (SIRTF) planned by NASA, is scheduled for a 1992 launch. SIRTF would be deployed from the Shuttle, and placed into a sun synchronous polar orbit of 700 km. The facility has been defined for a mission with a minimum initial lifetime of one year in orbit with mission extension that could be made possible through in-orbit servicing of the superfluid helium cryogenic system, and use of a thermal control system. The superfluid dewar would use an orbital disconnect system for the tank supports, and vapor cooling of the barrel baffle. The transient analysis of the design shows that the superfluid helium tank with no active feedback comes within temperature requirements for the nominal orbital aperture heat load, quiescent instrument, and chopper conditions.

  20. Optics of Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): Delay Lines and Alignment

    Science.gov (United States)

    Dhabal, Arnab; Rinehart, Stephen A.; Rizzo, Maxime J.; Mundy, Lee; Fixsen, Dale; Sampler, Henry; Mentzell, Eric; Veach, Todd; Silverberg, Robert F.; Furst, Stephen; hide

    2016-01-01

    We present the optics of Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) as it gets ready for launch. BETTII is an 8-meter baseline far-infrared (30-90 microns) interferometer mission with capabilities of spatially resolved spectroscopy aimed at studying star formation and galaxy evolution. The instrument collects light from its two arms, makes them interfere, divides them into two science channels (30-50 microns and 60-90 microns), and focuses them onto the detectors. It also separates out the NIR light (1-2.5 microns) and uses it for tip-tilt corrections of the telescope pointing. Currently, all the optical elements have been fabricated, heat treated, coated appropriately and are mounted on their respective assemblies. We are presenting the optical design challenges for such a balloon borne spatio-spectral interferometer, and discuss how they have been mitigated. The warm and cold delay lines are an important part of this optics train. The warm delay line corrects for path length differences between the left and the right arm due to balloon pendulation, while the cold delay line is aimed at introducing a systematic path length difference, thereby generating our interferograms from where we can derive information about the spectra. The details of their design and the results of the testing of these opto-mechanical parts are also discussed. The sensitivities of different optical elements on the interferograms produced have been determined with the help of simulations using FRED software package. Accordingly, an alignment plan is drawn up which makes use of a laser tracker, a CMM, theodolites and a LUPI interferometer.

  1. Development of transition edge superconducting bolometers for the SAFARI Far-Infrared spectrometer on the SPICA space-borne telescope

    NARCIS (Netherlands)

    Mauskopf, P.; Morozov, D.; Glowacka, D.; Goldie, D.; Withington, S.; Bruijn, M.; De Korte, P.; Hoevers, H.; Ridder, M.; Van der Kuur, J.; Gao, J.R.

    2008-01-01

    We describe the optimization of transition edge superconducting (TES) detectors for use in a far-infrared (FIR) Fourier transform spectrometer (FTS) mounted on a cryogenically cooled space-borne telescope (e.g. SPICA). The required noise equivalent power (NEP) of the detectors is approximately 10?19

  2. HUBBLE SPACE TELESCOPE SPECTROSCOPY OF BROWN DWARFS DISCOVERED WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER

    International Nuclear Information System (INIS)

    Schneider, Adam C.; Cushing, Michael C.; Kirkpatrick, J. Davy; Gelino, Christopher R.; Mace, Gregory N.; Wright, Edward L.; Eisenhardt, Peter R.; Skrutskie, M. F.; Griffith, Roger L.; Marsh, Kenneth A.

    2015-01-01

    We present a sample of brown dwarfs identified with the Wide-field Infrared Survey Explorer (WISE) for which we have obtained Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) near-infrared grism spectroscopy. The sample (22 in total) was observed with the G141 grism covering 1.10–1.70 μm, while 15 were also observed with the G102 grism, which covers 0.90–1.10 μm. The additional wavelength coverage provided by the G102 grism allows us to (1) search for spectroscopic features predicted to emerge at low effective temperatures (e.g.,ammonia bands) and (2) construct a smooth spectral sequence across the T/Y boundary. We find no evidence of absorption due to ammonia in the G102 spectra. Six of these brown dwarfs are new discoveries, three of which are found to have spectral types of T8 or T9. The remaining three, WISE J082507.35+280548.5 (Y0.5), WISE J120604.38+840110.6 (Y0), and WISE J235402.77+024015.0 (Y1), are the 19th, 20th, and 21st spectroscopically confirmed Y dwarfs to date. We also present HST grism spectroscopy and reevaluate the spectral types of five brown dwarfs for which spectral types have been determined previously using other instruments

  3. HUBBLE SPACE TELESCOPE SPECTROSCOPY OF BROWN DWARFS DISCOVERED WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Adam C.; Cushing, Michael C. [Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606 (United States); Kirkpatrick, J. Davy; Gelino, Christopher R. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Mace, Gregory N.; Wright, Edward L. [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); Eisenhardt, Peter R. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Skrutskie, M. F. [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Griffith, Roger L. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Marsh, Kenneth A., E-mail: Adam.Schneider@Utoledo.edu [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom)

    2015-05-10

    We present a sample of brown dwarfs identified with the Wide-field Infrared Survey Explorer (WISE) for which we have obtained Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) near-infrared grism spectroscopy. The sample (22 in total) was observed with the G141 grism covering 1.10–1.70 μm, while 15 were also observed with the G102 grism, which covers 0.90–1.10 μm. The additional wavelength coverage provided by the G102 grism allows us to (1) search for spectroscopic features predicted to emerge at low effective temperatures (e.g.,ammonia bands) and (2) construct a smooth spectral sequence across the T/Y boundary. We find no evidence of absorption due to ammonia in the G102 spectra. Six of these brown dwarfs are new discoveries, three of which are found to have spectral types of T8 or T9. The remaining three, WISE J082507.35+280548.5 (Y0.5), WISE J120604.38+840110.6 (Y0), and WISE J235402.77+024015.0 (Y1), are the 19th, 20th, and 21st spectroscopically confirmed Y dwarfs to date. We also present HST grism spectroscopy and reevaluate the spectral types of five brown dwarfs for which spectral types have been determined previously using other instruments.

  4. A Study of Planetary Nebulae using the Faint Object Infrared Camera for the SOFIA Telescope

    Science.gov (United States)

    Davis, Jessica

    2012-01-01

    A planetary nebula is formed following an intermediate-mass (1-8 solar M) star's evolution off of the main sequence; it undergoes a phase of mass loss whereby the stellar envelope is ejected and the core is converted into a white dwarf. Planetary nebulae often display complex morphologies such as waists or torii, rings, collimated jet-like outflows, and bipolar symmetry, but exactly how these features form is unclear. To study how the distribution of dust in the interstellar medium affects their morphology, we utilize the Faint Object InfraRed CAmera for the SOFIA Telescope (FORCAST) to obtain well-resolved images of four planetary nebulae--NGC 7027, NGC 6543, M2-9, and the Frosty Leo Nebula--at wavelengths where they radiate most of their energy. We retrieve mid infrared images at wavelengths ranging from 6.3 to 37.1 micron for each of our targets. IDL (Interactive Data Language) is used to perform basic analysis. We select M2-9 to investigate further; analyzing cross sections of the southern lobe reveals a slight limb brightening effect. Modeling the dust distribution within the lobes reveals that the thickness of the lobe walls is higher than anticipated, or rather than surrounding a vacuum surrounds a low density region of tenuous dust. Further analysis of this and other planetary nebulae is needed before drawing more specific conclusions.

  5. Infrared spectro-polarimeter on the Solar Flare Telescope at NAOJ/Mitaka

    Science.gov (United States)

    Sakurai, Takashi; Hanaoka, Yoichiro; Arai, Takehiko; Hagino, Masaoki; Kawate, Tomoko; Kitagawa, Naomasa; Kobiki, Toshihiko; Miyashita, Masakuni; Morita, Satoshi; Otsuji, Ken'ichi; Shinoda, Kazuya; Suzuki, Isao; Yaji, Kentaro; Yamasaki, Takayuki; Fukuda, Takeo; Noguchi, Motokazu; Takeyama, Norihide; Kanai, Yoshikazu; Yamamuro, Tomoyasu

    2018-05-01

    An infrared spectro-polarimeter installed on the Solar Flare Telescope at the Mitaka headquarters of the National Astronomical Observatory of Japan is described. The new spectro-polarimeter observes the full Sun via slit scans performed at two wavelength bands, one near 1565 nm for a Zeeman-sensitive spectral line of Fe I and the other near 1083 nm for He I and Si I lines. The full Stokes profiles are recorded; the Fe I and Si I lines give information on photospheric vector magnetic fields, and the helium line is suitable for deriving chromospheric magnetic fields. The infrared detector we are using is an InGaAs camera with 640 × 512 pixels and a read-out speed of 90 frames s-1. The solar disk is covered by two swaths (the northern and southern hemispheres) of 640 pixels each. The final magnetic maps are made of 1200 × 1200 pixels with a pixel size of 1{^''.}8. We have been carrying out regular observations since 2010 April, and have provided full-disk, full-Stokes maps, at the rate of a few maps per day, on the internet.

  6. Addressing Thermal Model Run Time Concerns of the Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA)

    Science.gov (United States)

    Peabody, Hume; Guerrero, Sergio; Hawk, John; Rodriguez, Juan; McDonald, Carson; Jackson, Cliff

    2016-01-01

    The Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA) utilizes an existing 2.4 m diameter Hubble sized telescope donated from elsewhere in the federal government for near-infrared sky surveys and Exoplanet searches to answer crucial questions about the universe and dark energy. The WFIRST design continues to increase in maturity, detail, and complexity with each design cycle leading to a Mission Concept Review and entrance to the Mission Formulation Phase. Each cycle has required a Structural-Thermal-Optical-Performance (STOP) analysis to ensure the design can meet the stringent pointing and stability requirements. As such, the models have also grown in size and complexity leading to increased model run time. This paper addresses efforts to reduce the run time while still maintaining sufficient accuracy for STOP analyses. A technique was developed to identify slews between observing orientations that were sufficiently different to warrant recalculation of the environmental fluxes to reduce the total number of radiation calculation points. The inclusion of a cryocooler fluid loop in the model also forced smaller time-steps than desired, which greatly increases the overall run time. The analysis of this fluid model required mitigation to drive the run time down by solving portions of the model at different time scales. Lastly, investigations were made into the impact of the removal of small radiation couplings on run time and accuracy. Use of these techniques allowed the models to produce meaningful results within reasonable run times to meet project schedule deadlines.

  7. The cloud monitor by an infrared camera at the Telescope Array experiment

    International Nuclear Information System (INIS)

    Shibata, F.

    2011-01-01

    The mesurement of the extensive air shower using the fluorescence detectors (FDs) is affected by the condition of the atmosphere. In particular, FD aperture is limited by cloudiness. If cloud exists on the light path from extensive air shower to FDs, fluorescence photons will be absorbed drastically. Therefore cloudiness of FD's field of view (FOV) is one of important quality cut condition in FD analysis. In the Telescope Array (TA), an infrared (IR) camera with 320x236 pixels and a filed of view of 25.8 deg. x19.5 deg. has been installed at an observation site for cloud monitoring during FD observations. This IR camera measures temperature of the sky every 30 min during FD observation. IR camera is mounted on steering table, which can be changed in elevation and azimuthal direction. Clouds can be seen at a higher temperature than areas of cloudless sky from these temperature maps. In this paper, we discuss the quality of the cloud monitoring data, the analysis method, and current quality cut condition of cloudiness in FD analysis.

  8. Hubble space telescope servicing mission joint ESA/BAE UK technical press briefing Wednesday 10 March 1993

    Science.gov (United States)

    1993-02-01

    On Wednesday 10 March 1993 astronauts from ESA and NASA will be at British Aerospace Space Systems Limited, Filton, Bristol, UK, training on the replacement set of solar arrays which they are scheduled to fit to the Hubble Space Telescope at year end. You are invited to attend a technical briefing on that day, which will be given by senior representatives of the European Space Agency and British Aerospace. The briefing will include details of the design modifications and status of the solar arrays, together with a brief overview of the scientific results already achieved by the teams of astronomers using the telescope. There will be an opportunity for interviews with the mission specialists in the crew of NASA's Space Shuttle flight STS-61, who will be carrying out the servicing mission for the Hubble Space Telescope in a series of "Extra-Vehicular Activities - EVA' (space-walks). Five astronauts are expected : Story Musgrave, Colonel Tom Akers, Jeffrey A. Hoffman, Kathryn C. Thornton from NASA and Claude Nicollier from ESA. There will also be a chance to view the solar arrays in the British Aerospace clean room area where the astronauts are working on their familiarisation programme. The briefing will take place on Wednesday 10 March 1993 at British Aerospace Space Systems, Filton, Bristol, UK (on the northern outskirts of the city of Bristol). The event will begin at 10h30 a.m. and end with a buffet lunch running from approximately 01h30 p.m. to 02h30 p.m. In order to assists with arrangements for travel to and from bristol, British Aerospace proposes to run a free coach from and to London Victoria Coach Station - if there proves to be sufficient press interest. This coach would depart from London at approximately 07h50 a.m. and arrive back at around 05h30 p.m. Further details will be available on request when numbers are known. In order to gain access to the site and the briefing it is essential that all attendees are expected and their names are provided in

  9. Liverpool Telescope and Liverpool Telescope 2

    Science.gov (United States)

    Copperwheat, C. M.; Steele, I. A.; Barnsley, R. M.; Bates, S. D.; Clay, N. R.; Jermak, H.; Marchant, J. M.; Mottram, C. J.; Piascik, A.; Smith, R. J.

    2016-12-01

    The Liverpool Telescope is a fully robotic optical/near-infrared telescope with a 2-metre clear aperture, located at the Observatorio del Roque de los Muchachos on the Canary Island of La Palma. The telescope is owned and operated by Liverpool John Moores University, with financial support from the UK's Science and Technology Facilities Council. The telescope began routine science operations in 2004 and is a common-user facility with time available through a variety of committees via an open, peer reviewed process. Seven simultaneously mounted instruments support a broad science programme, with a focus on transient follow-up and other time domain topics well suited to the characteristics of robotic observing. Development has also begun on a successor facility, with the working title `Liverpool Telescope 2', to capitalise on the new era of time domain astronomy which will be brought about by the next generation of survey facilities such as LSST. The fully robotic Liverpool Telescope 2 will have a 4-metre aperture and an improved response time. In this paper we provide an overview of the current status of both facilities.

  10. Development of infrared Echelle spectrograph and mid-infrared heterodyne spectrometer on a small telescope at Haleakala, Hawaii for planetary observation

    Science.gov (United States)

    Sakanoi, Takeshi; Kasaba, Yasumasa; Kagitani, Masato; Nakagawa, Hiromu; Kuhn, Jeff; Okano, Shoichi

    2014-08-01

    We report the development of infrared Echelle spectrograph covering 1 - 4 micron and mid-infrared heterodyne spectrometer around 10 micron installed on the 60-cm telescope at the summit of Haleakala, Hawaii (alt.=3000m). It is essential to carry out continuous measurement of planetary atmosphere, such as the Jovian infrared aurora and the volcanoes on Jovian satellite Io, to understand its time and spatial variations. A compact and easy-to-use high resolution infrared spectrometer provide the good opportunity to investigate these objects continuously. We are developing an Echelle spectrograph called ESPRIT: Echelle Spectrograph for Planetary Research In Tohoku university. The main target of ESPRIT is to measure the Jovian H3+ fundamental line at 3.9 micron, and H2 nu=1 at 2.1 micron. The 256x256 pixel CRC463 InSb array is used. An appropriate Echelle grating is selected to optimize at 3.9 micron and 2.1 micron for the Jovian infrared auroral observations. The pixel scale corresponds to the atmospheric seeing (0.3 arcsec/pixel). This spectrograph is characterized by a long slit field-of-view of ~ 50 arcsec with a spectral resolution is over 20,000. In addition, we recently developed a heterodyne spectrometer called MILAHI on the 60 cm telescope. MILAHI is characterized by super high-resolving power (more than 1,500,000) covering from 7 - 13 microns. Its sensitivity is 2400 K at 9.6 micron with a MCT photo diode detector of which bandwidth of 3000 MHz. ESPRIT and MILAHI is planned to be installed on 60 cm telescope is planned in 2014.

  11. HUBBLE SPACE TELESCOPE WFC3 EARLY RELEASE SCIENCE: EMISSION-LINE GALAXIES FROM INFRARED GRISM OBSERVATIONS

    International Nuclear Information System (INIS)

    Straughn, Amber N.; Gardner, Jonathan P.; Kuntschner, Harald; Kuemmel, Martin; Walsh, Jeremy R.; Cohen, Seth H.; Windhorst, Rogier A.; Malhotra, Sangeeta; Rhoads, James; O'Connell, Robert W.; Pirzkal, Norbert; Bond, Howard E.; Meurer, Gerhardt; McCarthy, Patrick J.; Hathi, Nimish P.; Balick, Bruce; Calzetti, Daniela; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.

    2011-01-01

    We present grism spectra of emission-line galaxies (ELGs) from 0.6 to 1.6 μm from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope. These new infrared grism data augment previous optical Advanced Camera for Surveys G800L 0.6-0.95 μm grism data in GOODS-South from the PEARS program, extending the wavelength coverage well past the G800L red cutoff. The Early Release Science (ERS) grism field was observed at a depth of two orbits per grism, yielding spectra of hundreds of faint objects, a subset of which is presented here. ELGs are studied via the Hα, [O III], and [O II] emission lines detected in the redshift ranges 0.2 ∼ B(F098M) ≅ 25 mag. Seventeen GOODS-South galaxies that previously only had photometric redshifts now have new grism-spectroscopic redshifts, in some cases with large corrections to the photometric redshifts (Δz ≅ 0.3-0.5). Additionally, one galaxy had no previously measured redshift but now has a secure grism-spectroscopic redshift, for a total of 18 new GOODS-South spectroscopic redshifts. The faintest source in our sample has a magnitude m AB(F098M) = 26.9 mag. The ERS grism data also reflect the expected trend of lower specific star formation rates for the highest mass galaxies in the sample as a function of redshift, consistent with downsizing and discovered previously from large surveys. These results demonstrate the remarkable efficiency and capability of the WFC3 NIR grisms for measuring galaxy properties to faint magnitudes and redshifts to z ∼> 2.

  12. THE TYPE Ia SUPERNOVA RATE IN RADIO AND INFRARED GALAXIES FROM THE CANADA-FRANCE-HAWAII TELESCOPE SUPERNOVA LEGACY SURVEY

    International Nuclear Information System (INIS)

    Graham, M. L.; Pritchet, C. J.; Balam, D.; Fabbro, S.; Sullivan, M.; Hook, I. M.; Howell, D. A.; Gwyn, S. D. J.; Astier, P.; Balland, C.; Guy, J.; Hardin, D.; Pain, R.; Regnault, N.; Basa, S.; Carlberg, R. G.; Perrett, K.; Conley, A.; Fouchez, D.; Rich, J.

    2010-01-01

    We have combined the large SN Ia database of the Canada-France-Hawaii Telescope Supernova Legacy Survey and catalogs of galaxies with photometric redshifts, Very Large Array 1.4 GHz radio sources, and Spitzer infrared sources. We present eight SNe Ia in early-type host galaxies which have counterparts in the radio and infrared source catalogs. We find the SN Ia rate in subsets of radio and infrared early-type galaxies is ∼1-5 times the rate in all early-type galaxies, and that any enhancement is always ∼<2σ. Rates in these subsets are consistent with predictions of the two-component 'A+B' SN Ia rate model. Since infrared properties of radio SN Ia hosts indicate dust-obscured star formation, we incorporate infrared star formation rates into the 'A+B' model. We also show the properties of SNe Ia in radio and infrared galaxies suggest the hosts contain dust and support a continuum of delay time distributions (DTDs) for SNe Ia, although other DTDs cannot be ruled out based on our data.

  13. Dual-Telescope Multi-Channel Thermal-Infrared Radiometer for Outer Planet Fly-By Missions

    Science.gov (United States)

    Aslam, Shahid; Amato, Michael; Bowles, Neil; Calcutt, Simon; Hewagama, Tilak; Howard, Joseph; Howett, Carly; Hsieh, Wen-Ting; Hurford, Terry; Hurley, Jane; hide

    2016-01-01

    The design of a versatile dual-telescope thermal-infrared radiometer spanning the spectral wavelength range 8-200 microns, in five spectral pass bands, for outer planet fly-by missions is described. The dual- telescope design switches between a narrow-field-of-view and a wide-field-of-view to provide optimal spatial resolution images within a range of spacecraft encounters to the target. The switchable dual-field- of-view system uses an optical configuration based on the axial rotation of a source-select mirror along the optical axis. The optical design, spectral performance, radiometric accuracy, and retrieval estimates of the instrument are discussed. This is followed by an assessment of the surface coverage performance at various spatial resolutions by using the planned NASA Europa Mission 13-F7 fly-by trajectories as a case study.

  14. BETTII: The Balloon Experimental Twin Telescope for Infrared Interferometry (Phase 2a)- High Angular Resolution Astronomy at Far-Infrared Wavelengths

    Science.gov (United States)

    Rinehart, Stephen

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an eight-meter baseline far-infrared interferometer to fly on a high altitude balloon. The combination of the long baseline with a double-Fourier instrument allows BETTII to simultaneously gain both spatial and spectral information; BETTII is designed for spatially-resolved spectroscopy. The unique data obtained with BETTII will be valuable for understanding how stars form within dense clusters, by isolating individual objects that are unresolved by previous space telescopes and my measuring their spectral energy distributions. BETTII will be also used in future flights to understand the processes in the cores of Active Galactic Nuclei. In addition to these scientific goals, BETTII serves as a major step towards achieving the vision of space-based interferometry. BETTII was first funded through the 2010 APRA program; last year, the proposal also fared well in the APRA review, but for programmatic reasons was only awarded one year of funding. With the current funding, we will complete the BETTII experiment and conduct a Commissioning Flight in August/September 2016. The effort proposed includes full analysis of data from the Commissioning Flight, which will help us determine the technical and scientific capabilities of the experiment. It also includes two science flights, one in each 2017 and 2018, with full data analysis being completed in 2019.

  15. STRAY - An interactive program for the computation of stray radiation in infrared telescopes

    Science.gov (United States)

    St. Clair Dinger, Ann

    1987-01-01

    The STRAY program to model the amount of stray radiation reaching the focal plane of a well-baffled telescope is described. The STRAY telescope model is addressed, including the aperture shade, barrel baffle, optics, mirror sectioning and chopping, and off-axis points in focal plane. The possible illumination paths are shown, and calculation options using STRAY are discussed. The stored data and computational aspects of STRAY are addressed. STRAY is compared to the MINI-APART model, and applications of STRAY are described.

  16. Harnessing solar pressure to slew and point large infrared space telescopes

    Science.gov (United States)

    Errico, Simona; Angel, Roger P.; Calvert, Paul D.; Woof, Neville

    2003-03-01

    Large astronomical Gossamer telescopes in space will need to employ large solar shields to safeguard the optics from solar radiation. These types of telescopes demand accurate controls to maintain telescope pointing over long integration periods. We propose an active solar shield system that harnesses radiation pressure to accurately slew and acquire new targets without the need for reaction wheels or thrusters. To provide the required torques, the solar shield is configured as an inverted, 4-sided pyramidal roof. The sloped roof interior surfaces are covered with hinged “tiles” made from piezoelectric film bimorphs with specular metallized surfaces. Nominally, the tiles lie flat against the roof and the sunlight is reflected outward equally from all sloped surfaces. However, when the tiles on one roof pitch are raised, the pressure balance is upset and the sunshade is pushed to one side. By judicious selection of the tiles and control of their lift angle, the solar pressure can be harvested to stabilize the spacecraft orientation or to change its angular momentum. A first order conceptual design performance analysis and the results from the experimental design, fabrication and testing of piezoelectric bimorph hinge elements will be presented. Next phase challenges in engineering design, materials technology, and systems testing will be discussed.

  17. Infrared-faint radio sources are at high redshifts. Spectroscopic redshift determination of infrared-faint radio sources using the Very Large Telescope

    Science.gov (United States)

    Herzog, A.; Middelberg, E.; Norris, R. P.; Sharp, R.; Spitler, L. R.; Parker, Q. A.

    2014-07-01

    Context. Infrared-faint radio sources (IFRS) are characterised by relatively high radio flux densities and associated faint or even absent infrared and optical counterparts. The resulting extremely high radio-to-infrared flux density ratios up to several thousands were previously known only for high-redshift radio galaxies (HzRGs), suggesting a link between the two classes of object. However, the optical and infrared faintness of IFRS makes their study difficult. Prior to this work, no redshift was known for any IFRS in the Australia Telescope Large Area Survey (ATLAS) fields which would help to put IFRS in the context of other classes of object, especially of HzRGs. Aims: This work aims at measuring the first redshifts of IFRS in the ATLAS fields. Furthermore, we test the hypothesis that IFRS are similar to HzRGs, that they are higher-redshift or dust-obscured versions of these massive galaxies. Methods: A sample of IFRS was spectroscopically observed using the Focal Reducer and Low Dispersion Spectrograph 2 (FORS2) at the Very Large Telescope (VLT). The data were calibrated based on the Image Reduction and Analysis Facility (IRAF) and redshifts extracted from the final spectra, where possible. This information was then used to calculate rest-frame luminosities, and to perform the first spectral energy distribution modelling of IFRS based on redshifts. Results: We found redshifts of 1.84, 2.13, and 2.76, for three IFRS, confirming the suggested high-redshift character of this class of object. These redshifts and the resulting luminosities show IFRS to be similar to HzRGs, supporting our hypothesis. We found further evidence that fainter IFRS are at even higher redshifts. Conclusions: Considering the similarities between IFRS and HzRGs substantiated in this work, the detection of IFRS, which have a significantly higher sky density than HzRGs, increases the number of active galactic nuclei in the early universe and adds to the problems of explaining the formation of

  18. The Mid-Infrared Instrument for the James Webb Space Telescope, II: Design and Build

    DEFF Research Database (Denmark)

    Wright, G. S.; Wright, David; Goodson, G. B.

    2015-01-01

    The Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST) provides measurements over the wavelength range 5 to 28: 5 µm. MIRI has, within a single "package," four key scientific functions: photometric imaging, coronagraphy, single-source low-spectral resolving power (R similar...... in terms of the "as-built" instrument. It also describes the test program that led to delivery of the tested and calibrated Flight Model to NASA in 2012, and the confirmation after delivery of the key interface requirements....

  19. Design of visible and IR infrared dual-band common-path telescope system

    Science.gov (United States)

    Guo, YuLin; Yu, Xun; Tao, Yu; Jiang, Xu

    2018-01-01

    The use of visible and IR infrared dual-band combination can effectively improve the performance of photoelectric detection system,TV and IR system were designed with the common path by the common reflection optical system.A TV/IR infrared common-caliber and common-path system is designed,which can realize the Remote and all-day information.For the 640×512 cooled focal plane array,an infrared middle wave system was presented with a focal length of 600mm F number of 4 field of view(FOV) of 0.38°×0.43°, the system uses optical passive thermal design, has o compact structure and can meet 100% cold shield efficiency,meanwhile it meets the design requirements of lightweight and athermalization. For the 1920×1080 pixels CCD,a visible (TV) system ,which had 500mm focal length, 4F number,was completed.The final optical design along with their modulation transfer function is presented,showing excellent imaging performance in dual-band at the temperature range between -40° and 60°.

  20. CANDELS : THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY-THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS

    NARCIS (Netherlands)

    Koekemoer, Anton M.; Faber, S. M.; Ferguson, Henry C.; Grogin, Norman A.; Kocevski, Dale D.; Koo, David C.; Lai, Kamson; Lotz, Jennifer M.; Lucas, Ray A.; McGrath, Elizabeth J.; Ogaz, Sara; Rajan, Abhijith; Riess, Adam G.; Rodney, Steve A.; Strolger, Louis; Casertano, Stefano; Castellano, Marco; Dahlen, Tomas; Dickinson, Mark; Dolch, Timothy; Fontana, Adriano; Giavalisco, Mauro; Grazian, Andrea; Guo, Yicheng; Hathi, Nimish P.; Huang, Kuang-Han; van der Wel, Arjen; Yan, Hao-Jing; Acquaviva, Viviana; Alexander, David M.; Almaini, Omar; Ashby, Matthew L. N.; Barden, Marco; Bell, Eric F.; Bournaud, Frederic; Brown, Thomas M.; Caputi, Karina I.; Cassata, Paolo; Challis, Peter J.; Chary, Ranga-Ram; Cheung, Edmond; Cirasuolo, Michele; Conselice, Christopher J.; Cooray, Asantha Roshan; Croton, Darren J.; Daddi, Emanuele; Dave, Romeel; de Mello, Duilia F.; de Ravel, Loic; Dekel, Avishai; Donley, Jennifer L.; Dunlop, James S.; Dutton, Aaron A.; Elbaz, David; Fazio, Giovanni G.; Filippenko, Alexei V.; Finkelstein, Steven L.; Frazer, Chris; Gardner, Jonathan P.; Garnavich, Peter M.; Gawiser, Eric; Gruetzbauch, Ruth; Hartley, Will G.; Haeussler, Boris; Herrington, Jessica; Hopkins, Philip F.; Huang, Jia-Sheng; Jha, Saurabh W.; Johnson, Andrew; Kartaltepe, Jeyhan S.; Khostovan, Ali A.; Kirshner, Robert P.; Lani, Caterina; Lee, Kyoung-Soo; Li, Weidong; Madau, Piero; McCarthy, Patrick J.; McIntosh, Daniel H.; McLure, Ross J.; McPartland, Conor; Mobasher, Bahram; Moreira, Heidi; Mortlock, Alice; Moustakas, Leonidas A.; Mozena, Mark; Nandra, Kirpal; Newman, Jeffrey A.; Nielsen, Jennifer L.; Niemi, Sami; Noeske, Kai G.; Papovich, Casey J.; Pentericci, Laura; Pope, Alexandra; Primack, Joel R.; Ravindranath, Swara; Reddy, Naveen A.; Renzini, Alvio; Rix, Hans-Walter; Robaina, Aday R.; Rosario, David J.; Rosati, Piero; Salimbeni, Sara; Scarlata, Claudia; Siana, Brian; Simard, Luc; Smidt, Joseph; Snyder, Diana; Somerville, Rachel S.; Spinrad, Hyron; Straughn, Amber N.; Telford, Olivia; Teplitz, Harry I.; Trump, Jonathan R.; Vargas, Carlos; Villforth, Carolin; Wagner, Cory R.; Wandro, Pat; Wechsler, Risa H.; Weiner, Benjamin J.; Wiklind, Tommy; Wild, Vivienne; Wilson, Grant; Wuyts, Stijn; Yun, Min S.

    2011-01-01

    This paper describes the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). This survey is designed to document the evolution of galaxies and black holes at z approximate to 1.5-8, and to study

  1. A TYPE Ia SUPERNOVA AT REDSHIFT 1.55 IN HUBBLE SPACE TELESCOPE INFRARED OBSERVATIONS FROM CANDELS

    International Nuclear Information System (INIS)

    Rodney, Steven A.; Riess, Adam G.; Jones, David O.; Dahlen, Tomas; Ferguson, Henry C.; Casertano, Stefano; Grogin, Norman A.; Strolger, Louis-Gregory; Hjorth, Jens; Frederiksen, Teddy F.; Weiner, Benjamin J.; Mobasher, Bahram; Challis, Peter; Kirshner, Robert P.; Faber, S. M.; Filippenko, Alexei V.; Garnavich, Peter; Hayden, Brian; Graur, Or; Jha, Saurabh W.

    2012-01-01

    We report the discovery of a Type Ia supernova (SN Ia) at redshift z = 1.55 with the infrared detector of the Wide Field Camera 3 (WFC3-IR) on the Hubble Space Telescope (HST). This object was discovered in CANDELS imaging data of the Hubble Ultra Deep Field and followed as part of the CANDELS+CLASH Supernova project, comprising the SN search components from those two HST multi-cycle treasury programs. This is the highest redshift SN Ia with direct spectroscopic evidence for classification. It is also the first SN Ia at z > 1 found and followed in the infrared, providing a full light curve in rest-frame optical bands. The classification and redshift are securely defined from a combination of multi-band and multi-epoch photometry of the SN, ground-based spectroscopy of the host galaxy, and WFC3-IR grism spectroscopy of both the SN and host. This object is the first of a projected sample at z > 1.5 that will be discovered by the CANDELS and CLASH programs. The full CANDELS+CLASH SN Ia sample will enable unique tests for evolutionary effects that could arise due to differences in SN Ia progenitor systems as a function of redshift. This high-z sample will also allow measurement of the SN Ia rate out to z ≈ 2, providing a complementary constraint on SN Ia progenitor models.

  2. Space Infrared Telescope Facility (SIRTF) - Operations concept. [decreasing development and operations cost

    Science.gov (United States)

    Miller, Richard B.

    1992-01-01

    The development and operations costs of the Space IR Telescope Facility (SIRTF) are discussed in the light of minimizing total outlays and optimizing efficiency. The development phase cannot extend into the post-launch segment which is planned to only support system verification and calibration followed by operations with a 70-percent efficiency goal. The importance of reducing the ground-support staff is demonstrated, and the value of the highly sensitive observations to the general astronomical community is described. The Failure Protection Algorithm for the SIRTF is designed for the 5-yr lifetime and the continuous venting of cryogen, and a science driven ground/operations system is described. Attention is given to balancing cost and performance, prototyping during the development phase, incremental development, the utilization of standards, and the integration of ground system/operations with flight system integration and test.

  3. News UK public libraries offer walk-in access to research Atoms for Peace? The Atomic Weapons Establishment and UK universities Students present their research to academics: CERN@school Science in a suitcase: Marvin and Milo visit Ethiopia Inspiring telescopes A day for everyone teaching physics 2014 Forthcoming Events

    Science.gov (United States)

    2014-05-01

    UK public libraries offer walk-in access to research Atoms for Peace? The Atomic Weapons Establishment and UK universities Students present their research to academics: CERN@school Science in a suitcase: Marvin and Milo visit Ethiopia Inspiring telescopes A day for everyone teaching physics 2014 Forthcoming Events

  4. Quantitative Measurements of Daytime Near Infrared Sky Brightness at the AEOS 3.6 m Telescope

    Science.gov (United States)

    2014-09-01

    photometric filters. In the case of the 1250 nm filter, the quoted results reflect the brightness that would be seen through a standard 2MASS J filter [9...brightness per unit wavelength through the broader 2MASS filter with 162 nm bandpass. Given the known colors of the star, we estimate this error to be...Megeath, S. T. “Spectral irradiance calibration in the infrared. XIV. The absolute calibration of 2MASS ,” Astron. J., 126, 1090–1096 (2003) [10] Jim

  5. NASA Infrared Telescope Facility Comet Halley monitoring program 2: Post-perihelion results

    International Nuclear Information System (INIS)

    Tokunaga, A.T.; Golisch, W.F.; Griep, D.M.; Kaminski, C.D.; Hanner, M.S.

    1988-01-01

    The post perihelion results of a 1 to 20 micrometer infrared monitoring program of Comet Halley are presented. These results complement previous observations of the pre-perihelion passages of Halley. The observations cover the time period of Mar. 1986 to the present time. During the time the comet was observable, two or more observations were obtained per month. The most interesting results were: (1) a detectable change in the J-H and H-K colors of Halley, and (2) a search for a nucleus rotation at J during 20 Feb. to 10 Mar. was unsuccessful. The perihelion J-H and K-K colors were constant at 0.48 + or - 0.01 and 0.17, respectively. A preliminary reduction of the data is given. It is concluded that the colors were at first similar to pre-perihelion and then changed from July onward to be bluer and more similar to the solar colors. This suggests that a change may have occurred in the composition of the dust coma of Halley in July 1986

  6. HUBBLE SPACE TELESCOPE/NEAR-INFRARED CAMERA AND MULTI-OBJECT SPECTROMETER OBSERVATIONS OF THE GLIMPSE9 STELLAR CLUSTER

    International Nuclear Information System (INIS)

    Messineo, Maria; Figer, Donald F.; Davies, Ben; Trombley, Christine; Kudritzki, R. P.; Rich, R. Michael; MacKenty, John

    2010-01-01

    We present Hubble Space Telescope/Near-Infrared Camera and Multi-Object Spectrometer photometry, and low-resolution K-band spectra of the GLIMPSE9 stellar cluster. The newly obtained color-magnitude diagram shows a cluster sequence with H - K S = ∼1 mag, indicating an interstellar extinction A K s = 1.6 ± 0.2 mag. The spectra of the three brightest stars show deep CO band heads, which indicate red supergiants with spectral type M1-M2. Two 09-B2 supergiants are also identified, which yield a spectrophotometric distance of 4.2 ± 0.4 kpc. Presuming that the population is coeval, we derive an age between 15 and 27 Myr, and a total cluster mass of 1600 ± 400 M sun , integrated down to 1 M sun . In the vicinity of GLIMPSE9 are several H II regions and supernova remnants, all of which (including GLIMPSE9) are probably associated with a giant molecular cloud (GMC) in the inner galaxy. GLIMPSE9 probably represents one episode of massive star formation in this GMC. We have identified several other candidate stellar clusters of the same complex.

  7. Detector Control and Data Acquisition for the Wide-Field Infrared Survey Telescope (WFIRST) with a Custom ASIC

    Science.gov (United States)

    Smith, Brian S.; Loose, Markus; Alkire, Greg; Joshi, Atul; Kelly, Daniel; Siskind, Eric; Rossetti, Dino; Mah, Jonathan; Cheng, Edward; Miko, Laddawan; hide

    2016-01-01

    The Wide-Field Infrared Survey Telescope (WFIRST) will have the largest near-IR focal plane ever flown by NASA, a total of 18 4K x 4K devices. The project has adopted a system-level approach to detector control and data acquisition where 1) control and processing intelligence is pushed into components closer to the detector to maximize signal integrity, 2) functions are performed at the highest allowable temperatures, and 3) the electronics are designed to ensure that the intrinsic detector noise is the limiting factor for system performance. For WFIRST, the detector arrays operate at 90 to 100 K, the detector control and data acquisition functions are performed by a custom ASIC at 150 to 180 K, and the main data processing electronics are at the ambient temperature of the spacecraft, notionally approx.300 K. The new ASIC is the main interface between the cryogenic detectors and the warm instrument electronics. Its single-chip design provides basic clocking for most types of hybrid detectors with CMOS ROICs. It includes a flexible but simple-to-program sequencer, with the option of microprocessor control for more elaborate readout schemes that may be data-dependent. All analog biases, digital clocks, and analog-to-digital conversion functions are incorporated and are connected to the nearby detectors with a short cable that can provide thermal isolation. The interface to the warm electronics is simple and robust through multiple LVDS channels. It also includes features that support parallel operation of multiple ASICs to control detectors that may have more capability or requirements than can be supported by a single chip.

  8. Thirty Meter Telescope (TMT) Narrow Field Infrared Adaptive Optics System (NFIRAOS) real-time controller preliminary architecture

    Science.gov (United States)

    Kerley, Dan; Smith, Malcolm; Dunn, Jennifer; Herriot, Glen; Véran, Jean-Pierre; Boyer, Corinne; Ellerbroek, Brent; Gilles, Luc; Wang, Lianqi

    2016-08-01

    The Narrow Field Infrared Adaptive Optics System (NFIRAOS) is the first light Adaptive Optics (AO) system for the Thirty Meter Telescope (TMT). A critical component of NFIRAOS is the Real-Time Controller (RTC) subsystem which provides real-time wavefront correction by processing wavefront information to compute Deformable Mirror (DM) and Tip/Tilt Stage (TTS) commands. The National Research Council of Canada - Herzberg (NRC-H), in conjunction with TMT, has developed a preliminary design for the NFIRAOS RTC. The preliminary architecture for the RTC is comprised of several Linux-based servers. These servers are assigned various roles including: the High-Order Processing (HOP) servers, the Wavefront Corrector Controller (WCC) server, the Telemetry Engineering Display (TED) server, the Persistent Telemetry Storage (PTS) server, and additional testing and spare servers. There are up to six HOP servers that accept high-order wavefront pixels, and perform parallelized pixel processing and wavefront reconstruction to produce wavefront corrector error vectors. The WCC server performs low-order mode processing, and synchronizes and aggregates the high-order wavefront corrector error vectors from the HOP servers to generate wavefront corrector commands. The Telemetry Engineering Display (TED) server is the RTC interface to TMT and other subsystems. The TED server receives all external commands and dispatches them to the rest of the RTC servers and is responsible for aggregating several offloading and telemetry values that are reported to other subsystems within NFIRAOS and TMT. The TED server also provides the engineering GUIs and real-time displays. The Persistent Telemetry Storage (PTS) server contains fault tolerant data storage that receives and stores telemetry data, including data for Point-Spread Function Reconstruction (PSFR).

  9. Brown dwarf photospheres are patchy: A Hubble space telescope near-infrared spectroscopic survey finds frequent low-level variability

    International Nuclear Information System (INIS)

    Buenzli, Esther; Apai, Dániel; Radigan, Jacqueline; Reid, I. Neill; Flateau, Davin

    2014-01-01

    Condensate clouds strongly impact the spectra of brown dwarfs and exoplanets. Recent discoveries of variable L/T transition dwarfs argued for patchy clouds in at least some ultracool atmospheres. This study aims to measure the frequency and level of spectral variability in brown dwarfs and to search for correlations with spectral type. We used Hubble Space Telescope/Wide Field Camera 3 to obtain spectroscopic time series for 22 brown dwarfs of spectral types ranging from L5 to T6 at 1.1-1.7 μm for ≈40 minutes per object. Using Bayesian analysis, we find six brown dwarfs with confident (p > 95%) variability in the relative flux in at least one wavelength region at sub-percent precision, and five brown dwarfs with tentative (p > 68%) variability. We derive a minimum variability fraction f min =27 −7 +11 % over all covered spectral types. The fraction of variables is equal within errors for mid-L, late-L, and mid-T spectral types; for early-T dwarfs we do not find any confident variable but the sample is too small to derive meaningful limits. For some objects, the variability occurs primarily in the flux peak in the J or H band, others are variable throughout the spectrum or only in specific absorption regions. Four sources may have broadband peak-to-peak amplitudes exceeding 1%. Our measurements are not sensitive to very long periods, inclinations near pole-on and rotationally symmetric heterogeneity. The detection statistics are consistent with most brown dwarf photospheres being patchy. While multiple-percent near-infrared variability may be rare and confined to the L/T transition, low-level heterogeneities are a frequent characteristic of brown dwarf atmospheres.

  10. The science case and data processing strategy for the Thinned Aperture Light Collector (TALC): a project for a 20 m far-infrared space telescope

    International Nuclear Information System (INIS)

    Sauvage, Marc; Durand, Gilles A.; Rodriguez, Louis R.; Starck, Jean-Luc; Ronayette, Samuel; Aussel, Herve; Minier, Vincent; Motte, Frederique; Pantin, Eric J.; Sureau, Florent

    2014-01-01

    The future of far-infrared observations rests on our capacity to reach sub-arc-second angular resolution around 100 μm, in order to achieve a significant advance with respect to our current capabilities. Furthermore, by reaching this angular resolution we can bridge the gap between capacities offered by the JWST in the near infrared and those allowed by ALMA in the submillimeter, and thus benefit from similar resolving capacities over the whole wavelength range where interstellar dust radiates and where key atomic and molecular transitions are found. In an accompanying paper, we present a concept of a deployable annular telescope, named TALC for Thinned Aperture Light Collector, reaching 20 m in diameter. Being annular, this telescope features a main beam width equivalent to that of a 27 m telescope, i.e. an angular resolution of 0.92'' at 100 μm. In this paper we focus on the science case of such a telescope as well on the aspects of unconventional data processing that come with this unconventional optical configuration. The principal science cases of TALC revolve around its imaging capacities, that allow resolving the Kuiper belt in extra-solar planetary systems, or the filamentary scale in star forming clouds all the way to the Galactic Center, or the Narrow Line Region in Active Galactic Nuclei of the Local Group, or breaking the confusion limit to resolve the Cosmic Infrared Background. Equipping this telescope with detectors capable of imaging polarimetry offers as well the extremely interesting perspective to study the influence of the magnetic field in structuring the interstellar medium. We will then present simulations of the optical performance of such a telescope. The main feature of an annular telescope is the small amount of energy contained in the main beam, around 30% for the studied configuration, and the presence of bright diffraction rings. Using simulated point spread functions for realistic broad-band filters, we study the observing

  11. Orbit and geometry constraints on the design and operation of a long-life SIRTF mission. [Shuttle Infrared Telescope Facility

    Science.gov (United States)

    Jackson, R. W.

    1984-01-01

    For a long-life SIRTF mission, the ability of the telescope to observe targets everywhere in the sky is an important requirement. For low-inclination orbits, a telescope aperture shade must be designed for Sun and Earth Limb avoidance angles of 50 deg to 60 deg to prevent unwanted radiation from entering the telescope. The minimum orbit inclination depends on the Earth Limb avoidance angle. About 30 percent of the sky will be prohibited for observations during any day in orbit, with about 100 days in orbit required to observe the entire sky.

  12. A New Observing Tool for the James Clerk Maxwell Telescope

    Science.gov (United States)

    Folger, Martin; Bridger, Alan; Dent, Bill; Kelly, Dennis; Adamson, Andy; Economou, Frossie; Hirst, Paul; Jenness, Tim

    A new Observing Tool (OT) has been developed at the UK Astronomy Technology Centre, Edinburgh, UK and the Joint Astronomy Centre, Hilo, Hawaii, USA. It is based on the Gemini Observing Tool and provides the first graphical observation preparation tool for the James Clerk Maxwell Telescope (JCMT) as well as being the first use of the OT for a non-optical/IR telescope. The OT allows the observer to assemble high level Science Programs using graphical representations of observation components such as instrument, target, and filter. This is later translated into low level control sequences for telescope and instruments. The new OT is designed to work on multiple telescopes: currently the UK Infrared Telescope (UKIRT) and JCMT. Object-oriented design makes the inclusion of telescope and instrument specific packages easy. The OT is written in Java using GUI packages such as Swing and JSky. A new component for the JCMT OT is the graphical Frequency Editor for Heterodyne instruments. It can be used to specify parameters such as frequencies, bandwidths, and sidebands of multiple subsystems, while graphically displaying the front-end frequency, emission lines and atmospheric transmission. In addition, Flexible Scheduling support has been added to the OT. The observer can define scheduling constraints by arranging observations graphically. Science Programs can be saved as XML or sent directly from the OT to a database (via SOAP).

  13. The Mechanical Design of a Kinematic Mount for the Mid Infrared Instrument Focal Plane Module on the James Webb Space Telescope

    Science.gov (United States)

    Thelen, Michael P.; Moore, Donald M.

    2009-01-01

    The detector assembly for the Mid Infrared Instrument (MIRI) of the James Webb Space Telescope (JWST) is mechanically supported in the Focal Plane Module (FPM) Assembly with an efficient hexapod design. The kinematic mount design allows for precision adjustment of the detector boresight to assembly alignment fiducials and maintains optical alignment requirements during flight conditions of launch and cryogenic operations below 7 Kelvin. This kinematic mounting technique is able to be implemented in a variety of optical-mechanical designs and is capable of micron level adjustment control and stability over wide dynamic and temperature ranges.

  14. Technology development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a candidate large UV-Optical-Infrared (LUVOIR) surveyor

    Science.gov (United States)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley

    2015-09-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10-10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing and control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 μm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (~290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  15. MID-INFRARED PROPERTIES OF THE SWIFT BURST ALERT TELESCOPE ACTIVE GALACTIC NUCLEI SAMPLE OF THE LOCAL UNIVERSE. I. EMISSION-LINE DIAGNOSTICS

    International Nuclear Information System (INIS)

    Weaver, K. A.; Melendez, M.; Mushotzky, R. F.; Kraemer, S.; Engle, K.; Malumuth, E.; Tueller, J.; Markwardt, C.; Berghea, C. T.; Dudik, R. P.; Winter, L. M.; Armus, L.

    2010-01-01

    We compare mid-infrared emission-line properties from high-resolution Spitzer spectra of a hard X-ray (14-195 keV) selected sample of nearby (z < 0.05) active galactic nuclei (AGNs) detected by the Burst Alert Telescope (BAT) aboard Swift. The luminosity distribution for the mid-infrared emission lines, [O IV] 25.89 μm, [Ne II] 12.81 μm, [Ne III] 15.56 μm, and [Ne V] 14.32/24.32 μm, and hard X-ray continuum show no differences between Seyfert 1 and Seyfert 2 populations; however, six newly discovered BAT AGNs are under-luminous in [O IV], most likely the result of dust extinction in the host galaxy. The overall tightness of the mid-infrared correlations and BAT fluxes and luminosities suggests that the emission lines primarily arise in gas ionized by the AGNs. We also compare the mid-infrared emission lines in the BAT AGNs with those from published studies of ULIRGs, Palomar-Green quasars, star-forming galaxies, and LINERs. We find that the BAT AGN sample falls into a distinctive region when comparing the [Ne III]/[Ne II] and the [O IV]/[Ne III] ratios. These line ratios are lower in sources that have been previously classified in the mid-infrared/optical as AGNs than those found for the BAT AGNs, suggesting that, in our X-ray selected sample, the AGNs represent the main contribution to the observed line emission. These ratios represent a new emission line diagnostic for distinguishing between AGNs and star-forming galaxies.

  16. Large Deployable Reflector (LDR) - A concept for an orbiting submillimeter-infrared telescope for the 1990s

    Science.gov (United States)

    Swanson, P. N.; Gulkis, S.; Kulper, T. B. H.; Kiya, M.

    1983-01-01

    The history and background of the Large Deployable Reflector (LDR) are reviewed. The results of the June 1982 Asilomar (CA) workshop are incorporated into the LDR science objectives and telescope concept. The areas where the LDR may have the greatest scientific impact are in the study of star formation and planetary systems in the own and nearby galaxies and in cosmological studies of the structure and evolution of the early universe. The observational requirements for these and other scientific studies give rise to a set of telescope functional requirements. These, in turn, are satisfied by an LDR configuration which is a Cassegrain design with a 20 m diameter, actively controlled, segmented, primary reflector, diffraction limited at a wavelength of 30 to 50 microns. Technical challenges in the LDR development include construction of high tolerance mirror segments, surface figure measurement, figure control, vibration control, pointing, cryogenics, and coherent detectors. Project status and future plans for the LDR are discussed.

  17. Design and control of one precise tracking simulation bed for Chinese 20/30 meter optic/infrared telescope

    Science.gov (United States)

    Ren, Changzhi; Li, Xiaoyan; Song, Xiaoli; Niu, Yong; Li, Aihua; Zhang, Zhenchao

    2012-09-01

    Direct drive technology is the key to solute future 30-m and larger telescope motion system to guarantee a very high tracking accuracy, in spite of unbalanced and sudden loads such as wind gusts and in spite of a structure that, because of its size, can not be infinitely stiff. However, this requires the design and realization of unusually large torque motor that the torque slew rate must be extremely steep too. A conventional torque motor design appears inadequate. This paper explores one redundant unit permanent magnet synchronous motor and its simulation bed for 30-m class telescope. Because its drive system is one high integrated electromechanical system, one complexly electromechanical design method is adopted to improve the efficiency, reliability and quality of the system during the design and manufacture circle. This paper discusses the design and control of the precise tracking simulation bed in detail.

  18. Photon-Counting Kinetic Inductance Detectors (KID) for Far/Mid-Infrared Space Spectroscopy with the Origins Space Telescope (OST)

    Science.gov (United States)

    Noroozian, Omid; Barrentine, Emily M.; Stevenson, Thomas R.; Brown, Ari D.; Moseley, Samuel Harvey; Wollack, Edward; Pontoppidan, Klaus Martin; U-Yen, Konpop; Mikula, Vilem

    2018-01-01

    Photon-counting detectors are highly desirable for reaching the ~ 10-20 W/√Hz power sensitivity permitted by the Origins Space Telescope (OST). We are developing unique Kinetic Inductance Detectors (KIDs) with photon counting capability in the far/mid-IR. Combined with an on-chip far-IR spectrometer onboard OST these detectors will enable a new data set for exploring galaxy evolution and the growth of structure in the Universe. Mid-IR spectroscopic surveys using these detectors will enable mapping the composition of key volatiles in planet-forming material around protoplanetary disks and their evolution into solar systems. While these OST science objectives represent a well-organized community agreement they are impossible to reach without a significant leap forward in detector technology, and the OST is likely not to be recommended if a path to suitable detectors does not exist.To reach the required sensitivity we are experimenting with superconducting resonators made from thin aluminum films on single-crystal silicon substrates. Under the right conditions, small-volume inductors made from these films can become ultra-sensitive to single photons >90 GHz. Understanding the physics of these superconductor-dielectric systems is critical to performance. We achieved a very high quality factor of 0.5 x 106 for a 10-nm Al resonator at n ~ 1 microwave photon drive power, by far the highest value for such thin films in the literature. We measured a residual electron density of detector when illuminated with randomly arriving photon events. Our results show that photon counting with >95% efficiency at 0.5 - 1.0 THz is achievable.We report on these developments and discuss plans to test in our facility through funding from our recently awarded ROSES-APRA grant and Roman Technology Fellowship award.

  19. Infrared

    Science.gov (United States)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  20. CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS

    International Nuclear Information System (INIS)

    Koekemoer, Anton M.; Ferguson, Henry C.; Grogin, Norman A.; Lotz, Jennifer M.; Lucas, Ray A.; Ogaz, Sara; Rajan, Abhijith; Casertano, Stefano; Dahlen, Tomas; Faber, S. M.; Kocevski, Dale D.; Koo, David C.; Lai, Kamson; McGrath, Elizabeth J.; Riess, Adam G.; Rodney, Steve A.; Dolch, Timothy; Strolger, Louis; Castellano, Marco; Dickinson, Mark

    2011-01-01

    This paper describes the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). This survey is designed to document the evolution of galaxies and black holes at z ≈ 1.5-8, and to study Type Ia supernovae at z > 1.5. Five premier multi-wavelength sky regions are selected, each with extensive multi-wavelength observations. The primary CANDELS data consist of imaging obtained in the Wide Field Camera 3 infrared channel (WFC3/IR) and the WFC3 ultraviolet/optical channel, along with the Advanced Camera for Surveys (ACS). The CANDELS/Deep survey covers ∼125 arcmin 2 within GOODS-N and GOODS-S, while the remainder consists of the CANDELS/Wide survey, achieving a total of ∼800 arcmin 2 across GOODS and three additional fields (Extended Groth Strip, COSMOS, and Ultra-Deep Survey). We summarize the observational aspects of the survey as motivated by the scientific goals and present a detailed description of the data reduction procedures and products from the survey. Our data reduction methods utilize the most up-to-date calibration files and image combination procedures. We have paid special attention to correcting a range of instrumental effects, including charge transfer efficiency degradation for ACS, removal of electronic bias-striping present in ACS data after Servicing Mission 4, and persistence effects and other artifacts in WFC3/IR. For each field, we release mosaics for individual epochs and eventual mosaics containing data from all epochs combined, to facilitate photometric variability studies and the deepest possible photometry. A more detailed overview of the science goals and observational design of the survey are presented in a companion paper.

  1. UK Announces Intention to Join ESO

    Science.gov (United States)

    2000-11-01

    Summary The Particle Physics and Astronomy Research Council (PPARC) , the UK's strategic science investment agency, today announced that the government of the United Kingdom is making funds available that provide a baseline for this country to join the European Southern Observatory (ESO) . The ESO Director General, Dr. Catherine Cesarsky , and the ESO Community warmly welcome this move towards fuller integration in European astronomy. "With the UK as a potential member country of ESO, our joint opportunities for front-line research and technology will grow significantly", she said. "This announcement is a clear sign of confidence in ESO's abilities, most recently demonstrated with the construction and operation of the unique Very Large Telescope (VLT) on Paranal. Together we will look forward with confidence towards new, exciting projects in ground-based astronomy." It was decided earlier this year to place the 4-m UK Visible and Infrared Survey Telescope (VISTA) at Paranal, cf. ESO Press Release 03/00. Following negotiations between ESO and PPARC, a detailed proposal for the associated UK/ESO Agreement with the various entry modalities will now be presented to the ESO Council for approval. Before this Agreement can enter into force, the ESO Convention and associated protocols must also be ratified by the UK Parliament. Research and key technologies According to the PPARC press release, increased funding for science, announced by the UK government today, will enable UK astronomers to prepare for the next generation of telescopes and expand their current telescope portfolio through membership of the European Southern Observatory (ESO). The uplift to its baseline budget will enable PPARC to enter into final negotiations for UK membership of the ESO. This will ensure that UK astronomers, together with their colleagues in the ESO member states, are actively involved in global scale preparations for the next generation of astronomy facilities. among these are ALMA

  2. Discovery of a z = 7.452 High Equivalent Width Lyα Emitter from the Hubble Space Telescope  Faint Infrared Grism Survey

    Science.gov (United States)

    Larson, Rebecca L.; Finkelstein, Steven L.; Pirzkal, Norbert; Ryan, Russell; Tilvi, Vithal; Malhotra, Sangeeta; Rhoads, James; Finkelstein, Keely; Jung, Intae; Christensen, Lise; Cimatti, Andrea; Ferreras, Ignacio; Grogin, Norman; Koekemoer, Anton M.; Hathi, Nimish; O’Connell, Robert; Östlin, Göran; Pasquali, Anna; Pharo, John; Rothberg, Barry; Windhorst, Rogier A.; The FIGS Team

    2018-05-01

    We present the results of an unbiased search for Lyα emission from continuum-selected 5.6 data set consists of 160 orbits of G102 slitless grism spectroscopy obtained with the Hubble Space Telescope(HST)/WFC3 as part of the Faint Infrared Grism Survey (FIGS; PI: Malhotra), which obtains deep slitless spectra of all sources in four fields, and was designed to minimize contamination in observations of previously identified high-redshift galaxy candidates. The FIGS data can potentially spectroscopically confirm the redshifts of galaxies, and as Lyα emission is resonantly scattered by neutral gas, FIGS can also constrain the ionization state of the intergalactic medium during the epoch of reionization. These data have sufficient depth to detect Lyα emission in this epoch, as Tilvi et al. have published the FIGS detection of previously known Lyα emission at z = 7.51. The FIGS data use five separate roll angles of HST to mitigate the contamination by nearby galaxies. We created a method that accounts for and removes the contamination from surrounding galaxies and also removes any dispersed continuum light from each individual spectrum. We searched for significant (>4σ) emission lines using two different automated detection methods, free of any visual inspection biases. Applying these methods on photometrically selected high-redshift candidates between 5.6 7 (140.3 ± 19.0 Å).

  3. Mapping bare soil in South West Wales, UK, using high resolution colour infra-red aerial photography for water quality and flood risk management applications

    Science.gov (United States)

    Sykes, Helena; Neale, Simon; Coe, Sarah

    2016-04-01

    Natural Resources Wales is a UK government body responsible for environmental regulation, among other areas. River walks in Water Framework Directive (WFD) priority catchments in South West Wales, UK, identified soil entering water courses due to poaching and bank erosion, leading to deterioration in the water quality and jeopardising the water quality meeting legal minimum standards. Bare soil has also been shown to cause quicker and higher hydrograph peaks in rural catchments than if those areas were vegetated, which can lead to flooding of domestic properties during peak storm flows. The aim was to target farm visits by operational staff to advise on practices likely to improve water quality and to identify areas where soft engineering solutions such as revegetation could alleviate flood risk in rural areas. High resolution colour-infrared aerial photography, 25cm in the three colour bands and 50cm in the near infrared band, was used to map bare soil in seven catchments using supervised classification of a five band stack including the Normalised Difference Vegetation Index (NDVI). Mapping was combined with agricultural land use and field boundary data to filter out arable fields, which are supposed to bare soil for part of their cycle, and was very successful when compared to ground truthing, with the exception of silage fields which contained sparse, no or unproductive vegetation at the time the imagery was acquired leading to spectral similarity to bare soil. A raindrop trace model was used to show the path sediment from bare soil areas would take when moving through the catchment to a watercourse, with hedgerows inserted as barriers following our observations from ground truthing. The findings have been used to help farmers gain funding for improvements such as fencing to keep animals away from vulnerable river banks. These efficient and automated methods can be rolled out to more catchments in Wales and updated using aerial imagery acquired more recently to

  4. Large-scale CO J = 1-0 observations of the giant molecular cloud associated with the infrared ring N35 with the Nobeyama 45 m telescope

    Science.gov (United States)

    Torii, Kazufumi; Fujita, Shinji; Matsuo, Mitsuhiro; Nishimura, Atsushi; Kohno, Mikito; Kuriki, Mika; Tsuda, Yuya; Minamidani, Tetsuhiro; Umemoto, Tomofumi; Kuno, Nario; Hattori, Yusuke; Yoshiike, Satoshi; Ohama, Akio; Tachihara, Kengo; Shima, Kazuhiro; Habe, Asao; Fukui, Yasuo

    2018-05-01

    We report an observational study of the giant molecular cloud (GMC) associated with the Galactic infrared ring-like structure N35 and two nearby H II regions G024.392+00.072 (H II region A) and G024.510-00.060 (H II region B), using the new CO J = 1-0 data obtained as a part of the FOREST Unbiased Galactic Plane Imaging survey with the Nobeyama 45 m telescope (FUGIN) project at a spatial resolution of 21″. Our CO data reveals that the GMC, with a total molecular mass of 2.1 × 106 M⊙, has two velocity components of over ˜10-15 km s-1. The majority of molecular gas in the GMC is included in the lower-velocity component (LVC) at ˜110-114 km s-1, while the higher-velocity components (HVCs) at ˜118-126 km s-1 consist of three smaller molecular clouds which are located near the three H II regions. The LVC and HVCs show spatially complementary distributions along the line-of-sight, despite large velocity separations of ˜5-15 km s-1, and are connected in velocity by the CO emission with intermediate intensities. By comparing the observations with simulations, we discuss a scenario where collisions of the three HVCs with the LVC at velocities of ˜10-15 km s-1 can provide an interpretation of these two observational signatures. The intermediate-velocity features between the LVC and HVCs can be understood as broad bridge features, which indicate the turbulent motion of the gas at the collision interfaces, while the spatially complementary distributions represent the cavities created in the LVC by the HVCs through the collisions. Our model indicates that the three H II regions were formed after the onset of the collisions, and it is therefore suggested that the high-mass star formation in the GMC was triggered by the collisions.

  5. INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Deming, Drake; Wilkins, Ashlee [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); McCullough, Peter; Crouzet, Nicolas [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544-1001 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Agol, Eric; Dobbs-Dixon, Ian [NASA Astrobiology Institute' s Virtual Planetary Laboratory (United States); Madhusudhan, Nikku [Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06511 (United States); Desert, Jean-Michel; Knutson, Heather A.; Line, Michael [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Gilliland, Ronald L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); Haynes, Korey [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030 (United States); Magic, Zazralt [Max-Planck-Institut fuer Astrophysik, D-85741 Garching (Germany); Mandell, Avi M.; Clampin, Mark [NASA' s Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ranjan, Sukrit; Charbonneau, David [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Seager, Sara, E-mail: ddeming@astro.umd.edu [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); and others

    2013-09-10

    Exoplanetary transmission spectroscopy in the near-infrared using the Hubble Space Telescope (HST) NICMOS is currently ambiguous because different observational groups claim different results from the same data, depending on their analysis methodologies. Spatial scanning with HST/WFC3 provides an opportunity to resolve this ambiguity. We here report WFC3 spectroscopy of the giant planets HD 209458b and XO-1b in transit, using spatial scanning mode for maximum photon-collecting efficiency. We introduce an analysis technique that derives the exoplanetary transmission spectrum without the necessity of explicitly decorrelating instrumental effects, and achieves nearly photon-limited precision even at the high flux levels collected in spatial scan mode. Our errors are within 6% (XO-1) and 26% (HD 209458b) of the photon-limit at a resolving power of {lambda}/{delta}{lambda} {approx} 70, and are better than 0.01% per spectral channel. Both planets exhibit water absorption of approximately 200 ppm at the water peak near 1.38 {mu}m. Our result for XO-1b contradicts the much larger absorption derived from NICMOS spectroscopy. The weak water absorption we measure for HD 209458b is reminiscent of the weakness of sodium absorption in the first transmission spectroscopy of an exoplanet atmosphere by Charbonneau et al. Model atmospheres having uniformly distributed extra opacity of 0.012 cm{sup 2} g{sup -1} account approximately for both our water measurement and the sodium absorption. Our results for HD 209458b support the picture advocated by Pont et al. in which weak molecular absorptions are superposed on a transmission spectrum that is dominated by continuous opacity due to haze and/or dust. However, the extra opacity needed for HD 209458b is grayer than for HD 189733b, with a weaker Rayleigh component.

  6. History of British infrared astronomy since the Second World War

    International Nuclear Information System (INIS)

    Jennings, R.E.

    1986-01-01

    In this review, the author describes the development of British infrared astronomy, from its beginnings around 1960 to the present time. The paper outlines the various techniques available and the different wavelength ranges which can be covered by these techniques e.g. balloons, mountain-based telescopes, the AAT in Australia, the 60-inch flux-collector on Tenerife, and the UKIRT telescope on Hawaii, and finally the IRAS satellite. The main groups involved in the British infrared work are UCL, Imperial College, and QMC, together with cooperative programmes with the Netherlands and the USA. The scientific results which have been obtained with these installations include studies of the relict radiation, HII regions, thermal radiation from dust and grains, and a dust shell around the star Vega, to mention but a few, interferometry, photometry and spectroscopy are also discussed, as in the long awaited development of infrared detector arrays. (UK)

  7. A comparison of telescopic and Phobos-2 ISM spectra of Mars in the short-wave near-infrared (0.76-1.02 microns)

    Science.gov (United States)

    Bell, James F., III; Mustard, John F.

    1993-01-01

    Recent analyses of near-IR (0.76-3.16 microns) Mars surface reflectance spectra obtained by the Phobos-2 ISM instrument during early 1989 have revealed the presence of substantial variability in surface spectral properties. Strong absorption features seen in the 0.85-1.05 micron region are up to 10-15 percent deep relative to the local continuum and have been interpreted as evidence of Fe(2+) and Fe(3+) bearing minerals (pyroxenes and iron oxides, respectively). Though these observed band depths are comparable to those seen in laboratory reflectance spectra, they are up to three times larger than most previously reported band depths for Mars spectra at these wavelengths. Six regions of variable albedo and geologic setting were identified where ISM and 1988 opposition telescopic coverage either overlapped physically or sampled the same surface geologic unit. The areal sizes and positions of the regions measured telescopically were compiled by Bell et al. ISM pixels falling within these spots were averaged to produce a spatially convolved spectrum that simulates what would have been seen telescopically. To facilitate comparisons of absorption band positions and relative strengths, the convolved ISM data and the 1988 telescopic spectra were scaled to unity at 0.81 microns and are presented. The data have also been convolved to equivalent band pass normalized reflectances in the region of spectral overlap. A scatter diagram of telescopic vs. ISM reflectances is shown. The results from the investigation are discussed.

  8. The South Pole Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ruhl, J.E.; Ade, P.A.R.; Carlstrom, J.E.; Cho, H.M.; Crawford,T.; Dobbs, M.; Greer, C.H.; Halverson, N.W.; Holzapfel, W.L.; Lanting,T.M.; Lee, A.T.; Leitch, E.M.; Leong, J.; Lu, W.; Lueker, M.; Mehl, J.; Meyer, S.S.; Mohr, J.J.; Padin, S.; Plagge, T.; Pryke, C.; Runyan, M.C.; Schwan, D.; Sharp, M.K.; Spieler, H.; Staniszewski, Z.; Stark, A.A.

    2004-11-04

    A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10 m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over 4000 degrees for galaxy clusters using the Sunyaev-Zeldovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.

  9. NASA 3D Models: James Webb Space Telescope

    Data.gov (United States)

    National Aeronautics and Space Administration — The James Webb Space Telescope (JWST) will be a large infrared telescope with a 6.5-meter primary mirror. The project is working to a 2018 launch date. The JWST will...

  10. Britain Approaches ESO about Installation of Major New Telescope at Paranal

    Science.gov (United States)

    2000-02-01

    The Executive Board of the UK Visible and Infrared Survey Telescope (VISTA) project announced today [1] that it is aiming at the installation of a new and powerful astronomical telescope at the ESO Paranal Observatory (Chile). This 4-metre telescope is a specialised wide-angle facility equipped with powerful cameras and efficient detectors that will enable it to obtain deep images of large sky areas in short time. These survey observations will be made in several wavebands in the optical and, in particular, the near-infrared region of the electromagnetic spectrum. VISTA will become the largest and most effective telescope of its type when it enters into operation in 2004. It is a project of a consortium of 18 UK universities [2]. Construction is expected to start in spring 2000. Funding of the project was announced in May 1999, as one of the first allocations from the "Joint Infrastructure Fund (JIF)", an initiative of the UK Government's Department of Trade and Industry, the Wellcome Trust, and the Higher Education Funding Council for England. ESO's Director General, Dr. Catherine Cesarsky , is very pleased with this decision. She received a mandate from the ESO Council in December 1999 to negotiate a contract with the UK Particle Physics and Astronomy Research Council (PPARC) , acting on behalf of the VISTA Executive Board, for the installation of VISTA at Paranal and now looks forward to settle the associated legal and operational details with her British counterparts at good pace. "The installation of VISTA at Paranal will be of great benefit to all European astronomers", she says. "The placement of a survey telescope of this size next to ESO's VLT, the world's largest optical telescope, opens a plethora of exciting opportunities for joint research projects. Deep observations with VISTA, especially in infrared wavebands, will provide a most valuable, first census of large regions of space. This will most certainly lead to the discoveries of many new and

  11. Extragalactic infrared astronomy

    International Nuclear Information System (INIS)

    Gondhalekar, P.M.

    1985-05-01

    The paper concerns the field of Extragalactic Infrared Astronomy, discussed at the Fourth RAL Workshop on Astronomy and Astrophysics. Fifteen papers were presented on infrared emission from extragalactic objects. Both ground-(and aircraft-) based and IRAS infrared data were reviewed. The topics covered star formation in galaxies, active galactic nuclei and cosmology. (U.K.)

  12. Hubble Space Telescope: The Telescope, the Observations & the Servicing Mission

    Science.gov (United States)

    1999-11-01

    replaced by COSTAR. During the second Servicing Mission instruments and other equipment were repaired and updated. The Space Telescope Imaging Spectrograph (STIS) replaced the Goddard High Resolution Spectrograph (GHRS) and the Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) replaced the Faint Object Spectrograph (FOS). Servicing mission 3A The original Servicing Mission 3 (initially planned for June 2000) has been split into two missions - SM3A and SM3B - due in part to its complexity, and in part to the urgent need to replace the failed gyroscopes on board. Three gyroscopes must function to meet the telescope's very precise pointing requirements. With only two new operational, observations have had to be suspended, but the telescope will remain safely in orbit until the servicing crew arrives. During this servicing mission * all six gyroscopes will be replaced, * a Fine Guidance Sensor will be replaced, * the spacecraft's computer will be replaced by a new one which will reduce the burden of flight software maintenance and significantly lower costs, * six voltage/temperature kits will be installed to protect spacecraft batteries from overcharging and overheating if the spacecraft enters safe mode, * a new S-Band Single Access Transmitter will replace a failed spare currently aboard the spacecraft, * a solid-state recorder will be installed to replace the tape recorder, * degraded telescope thermal insulation will be replaced if time allows; this insulation is necessary to control the internal temperature on HST. For the mission to be fully successful the gyroscopes, the Fine Guidance Sensor, the computer and the voltage/temperature kits must be installed. The minimum mission success criterion is that HST will have 5 operational gyros after the mission, 4 of them newly installed. The Future During SM3B (presently scheduled for 2001) the astronauts will replace the Faint Object Camera with the Advanced Camera for Surveys (ACS), install a cooling system for

  13. Origins Space Telescope

    Science.gov (United States)

    Cooray, Asantha; Origins Space Telescope Study Team

    2018-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. This presentation will provide a summary of the OST STDT, our completed first mission concept and an introduction to the second concept that will be studied at the study center in 2018. This presentation will also summarize key science drivers and the key study milestones between 2018 and 2020.

  14. European Extremely Large Telescope: progress report

    Science.gov (United States)

    Tamai, R.; Spyromilio, J.

    2014-07-01

    The European Extremely Large Telescope is a project of the European Southern Observatory to build and operate a 40-m class optical near-infrared telescope. The telescope design effort is largely concluded and construction contracts are being placed with industry and academic/research institutes for the various components. The siting of the telescope in Northern Chile close to the Paranal site allows for an integrated operation of the facility providing significant economies. The progress of the project in various areas is presented in this paper and references to other papers at this SPIE meeting are made.

  15. Comparison of wavefront control algorithms and first results on the high-contrast imager for complex aperture telescopes (hicat) testbed

    Science.gov (United States)

    Leboulleux, L.; N'Diaye, M.; Mazoyer, J.; Pueyo, L.; Perrin, M.; Egron, S.; Choquet, E.; Sauvage, J.-F.; Fusco, T.; Soummer, R.

    2017-09-01

    The next generation of space telescopes for direct imaging and spectroscopy of exoplanets includes telescopes with a monolithic mirror, such as the Wide Field Infrared Survey Telescope (WFIRST) [1] and Large Ultra-Violet Optical Infrared (LUVOIR) telescopes with segmented primary mirror, like ATLAST [2, 3] or HDST [4].

  16. The mass-metallicity and fundamental metallicity relations at z > 2 using very large telescope and Subaru near-infrared spectroscopy of zCOSMOS galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Maier, C.; Ziegler, B. L. [Department of Astrophysics, University of Vienna, Türkenschanzstrasse 17, A-1180 Vienna (Austria); Lilly, S. J.; Peng, Y. [Institute of Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Contini, T. [Institut de Recherche en Astrophysique et Planétologie, CNRS, 14 avenue Édouard Belin, F-31400 Toulouse (France); Pérez Montero, E. [Instituto de Astrofísica de Andalucia, CSIC, Apartado de Correos 3004, E-18080 Granada (Spain); Balestra, I., E-mail: christian.maier@univie.ac.at [Max-Planck-Institut für Extraterrestrische Physik, Postfach 1312, Giessenbachstrasse, D-85741 Garching b. München (Germany)

    2014-09-01

    In the local universe, there is good evidence that, at a given stellar mass M, the gas-phase metallicity Z is anti-correlated with the star formation rate (SFR) of the galaxies. It has also been claimed that the resulting Z(M, SFR) relation is invariant with redshift—the so-called 'fundamental metallicity relation' (FMR). Given a number of difficulties in determining metallicities, especially at higher redshifts, the form of the Z(M, SFR) relation and whether it is really independent of redshift is still very controversial. To explore this issue at z > 2, we used VLT-SINFONI and Subaru-MOIRCS near-infrared spectroscopy of 20 zCOSMOS-deep galaxies at 2.1 < z < 2.5 to measure the strengths of up to five emission lines: [O II] λ3727, Hβ, [O III] λ5007, Hα, and [N II] λ6584. This near-infrared spectroscopy enables us to derive O/H metallicities, and also SFRs from extinction corrected Hα measurements. We find that the mass-metallicity relation (MZR) of these star-forming galaxies at z ≈ 2.3 is lower than the local Sloan Digital Sky Survey (SDSS) MZR by a factor of three to five, a larger change than found by Erb et al. using [N II]/Hα-based metallicities from stacked spectra. We discuss how the different selections of the samples and metallicity calibrations used may be responsible for this discrepancy. The galaxies show direct evidence that the SFR is still a second parameter in the MZR at these redshifts. However, determining whether the Z(M, SFR) relation is invariant with epoch depends on the choice of extrapolation used from local samples, because z > 2 galaxies of a given mass have much higher SFRs than the local SDSS galaxies. We find that the zCOSMOS galaxies are consistent with a non-evolving FMR if we use the physically motivated formulation of the Z(M, SFR) relation from Lilly et al., but not if we use the empirical formulation of Mannucci et al.

  17. The NASA Spitzer Space Telescope.

    Science.gov (United States)

    Gehrz, R D; Roellig, T L; Werner, M W; Fazio, G G; Houck, J R; Low, F J; Rieke, G H; Soifer, B T; Levine, D A; Romana, E A

    2007-01-01

    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991-2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/.

  18. Neutrino Telescope

    International Nuclear Information System (INIS)

    Coelin Baldo, Milla

    2009-01-01

    The present volume contains the proceedings of the 13. International Workshop on 'Neutrino Telescope', 17. of the series 'Un altro modo di guardare il cielo', held in Venice at the 'Istituto Veneto di Scienze, Lettere ed Arti' from March 10 to March 13, 2009. This series started in Venice 21 years ago, in 1988, motivated by the growing interest in the exciting field of the neutrino physics and astrophysics, with the aim to bring together experimentalists and theorists and encourage discussion on the most recent results and to chart the direction of future researchers.

  19. Violent Adolescent Planet Caught Infrared Handed

    Science.gov (United States)

    Trang, D.; Gaidos, E.

    2010-01-01

    The prevailing view of planet formation depicts accumulation of progressively larger objects, culminating in accretionary impacts between Moon- to Mars-sized protoplanets. Cosmochemists have found evidence in chondritic meteorites for such violent events, and the Moon is thought to have involved a huge impact between a Mars-sized object and the still-growing proto-Earth. Now we may have evidence for a large impact during planet formation around another star. Carey Lisse (Applied Physics Lab of the Johns Hopkins University, Baltimore) and colleagues from the Space Telescope Science Institute (Baltimore), the University of Cambridge (UK), the Open University (Milton Keyes, UK), the University of Georgia (Athens, GA), Jet Propulsion Lab (Pasadena, CA), and the University of Rochester (New York) analyzed infrared spectra obtained by the Spitzer Space Telescope. They found a prominent peak in the spectrum at 9.3 micrometers, and two smaller ones at slightly lower and higher wavelengths. These peaks are consistent with the presence of SiO gas, a product expected to be produced by a highly energetic impact. The spectral measurements also allowed Lisse and his colleagues to estimate the size of the dust and they found that there is an abundance of micrometer-sized dust grains. This argues for a fresh source of fine material during the past 0.1 million years. That source may have been an impact between two protoplanets surrounding this young star.

  20. Recent advances in infrared astronomy

    International Nuclear Information System (INIS)

    Robson, E.I.

    1980-01-01

    A background survey is given of developments in infrared astronomy during the last decade. Advantages obtained in using infrared wavelengths to penetrate the Earth's atmosphere and the detectors used for this work are considered. Infrared studies of, among other subjects, the stars, dust clouds, the centre of our galaxy and the 3k cosmic background radiation, are discussed. (UK)

  1. Infrared emission and extragalactic starbursts

    International Nuclear Information System (INIS)

    Telesco, C.M.

    1985-01-01

    The paper examines the belief that recent star formation plays a significant role in determining many of the infrared properties of galaxies. Pertinent types of infrared observations and the infrared properties of starbursts are briefly summarized. Recently developed models which describe the evolution of starbursts are also considered. (U.K.)

  2. The ARC (Astrophysical Research Consortium) telescope project.

    Science.gov (United States)

    Anderson, K. S.

    A consortium of universities intends to construct a 3.5 meter optical-infrared telescope at a site in south-central New Mexico. The use of innovative mirror technology, a fast primary, and an alt-azimuth mounting results in a compact and lightweight instrument. This telescope will be uniquely well-suited for addressing certain observational programs by virtue of its capability for fully remote operation and rapid instrument changes.

  3. DUST EXTINCTION FROM BALMER DECREMENTS OF STAR-FORMING GALAXIES AT 0.75 {<=} z {<=} 1.5 WITH HUBBLE SPACE TELESCOPE/WIDE-FIELD-CAMERA 3 SPECTROSCOPY FROM THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, A.; Siana, B.; Masters, D. [Department of Physics and Astronomy, University of California Riverside, Riverside, CA 92521 (United States); Henry, A. L.; Martin, C. L. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Scarlata, C.; Bedregal, A. G. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Malkan, M.; Ross, N. R. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Atek, H.; Colbert, J. W. [Spitzer Science Center, Caltech, Pasadena, CA 91125 (United States); Teplitz, H. I.; Rafelski, M. [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States); McCarthy, P.; Hathi, N. P.; Dressler, A. [Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Bunker, A., E-mail: albertod@ucr.edu [Department of Physics, Oxford University, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom)

    2013-02-15

    Spectroscopic observations of H{alpha} and H{beta} emission lines of 128 star-forming galaxies in the redshift range 0.75 {<=} z {<=} 1.5 are presented. These data were taken with slitless spectroscopy using the G102 and G141 grisms of the Wide-Field-Camera 3 (WFC3) on board the Hubble Space Telescope as part of the WFC3 Infrared Spectroscopic Parallel survey. Interstellar dust extinction is measured from stacked spectra that cover the Balmer decrement (H{alpha}/H{beta}). We present dust extinction as a function of H{alpha} luminosity (down to 3 Multiplication-Sign 10{sup 41} erg s{sup -1}), galaxy stellar mass (reaching 4 Multiplication-Sign 10{sup 8} M {sub Sun }), and rest-frame H{alpha} equivalent width. The faintest galaxies are two times fainter in H{alpha} luminosity than galaxies previously studied at z {approx} 1.5. An evolution is observed where galaxies of the same H{alpha} luminosity have lower extinction at higher redshifts, whereas no evolution is found within our error bars with stellar mass. The lower H{alpha} luminosity galaxies in our sample are found to be consistent with no dust extinction. We find an anti-correlation of the [O III] {lambda}5007/H{alpha} flux ratio as a function of luminosity where galaxies with L {sub H{alpha}} < 5 Multiplication-Sign 10{sup 41} erg s{sup -1} are brighter in [O III] {lambda}5007 than H{alpha}. This trend is evident even after extinction correction, suggesting that the increased [O III] {lambda}5007/H{alpha} ratio in low-luminosity galaxies is likely due to lower metallicity and/or higher ionization parameters.

  4. The Origins Space Telescope (OST)

    Science.gov (United States)

    Staguhn, Johannes

    2018-01-01

    The Origins Space Telescope is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies to be submitted by NASA Headquarters to the 2020 Astronomy and Astrophysics Decadal survey. The observatory will provide orders of magnitude improvements in sensitivity over prior missions, in particular for spectroscopy, enabling breakthrough science across astrophysics. The observatory will cover a wavelength range between 5 μm and 600 μm in order to enable the study of the formation of proto-planetary disks, detection of bio-signatures from extra-solar planet's atmospheres, characterization of the first galaxies in the universe, and many more. The five instruments that are currently studied are two imaging far-infrared spectrometers using incoherent detectors, providing up to R 10^5 spectral resolution, one far-infrared infrared heterodyne instrument for even higher spectral resolving powers, one far-infrared continuum imager and polarimeter, plus a mid-infrared coronagraph with imaging and spectroscopy mode. I will describe the scientific and technical capabilities of the observatory with focus on the expected synergies with AtLAST.

  5. STEP flight experiments Large Deployable Reflector (LDR) telescope

    Science.gov (United States)

    Runge, F. C.

    1984-01-01

    Flight testing plans for a large deployable infrared reflector telescope to be tested on a space platform are discussed. Subsystem parts, subassemblies, and whole assemblies are discussed. Assurance of operational deployability, rigidization, alignment, and serviceability will be sought.

  6. Prospects for γ-ray imaging telescopes

    International Nuclear Information System (INIS)

    Carter, J.N.; Dean, A.J.; Ramsden, D.

    1981-01-01

    Apart from the requirement for a new, high angular-resolution gamma-ray telescope for the more precise location of known COS-B gamma-ray sources, there is also a need for another instrument that can be used in a search for the gamma-ray emission from specific X-ray-emitting objects. If there is to be any hope of relating gamma ray emission to specific candidate X-ray objects, then an angular resolution of typically a few minutes of arc is required to resolve adjacent sources in crowded regions of the sky such as the galactic centre. Efforts to improve the angular resolution of track-chamber telescopes are compared. For energies close to 1 MeV telescopes have either used collimators to restrict the field of view or have made use of the kinematics of the Compton scattering process to determine the direction of the incident photon. The use of coded aperture techniques in high angular resolution X-ray astronomy telescopes is reviewed. A practical telescope for astronomy at high energies described by Carter is mentioned. At low energies an imaging telescope could be constructed by making use of position-sensitive detectors initially developed for use in medical physics. Such a telescope is outlined in general terms and its benefits and uses given. (U.K.)

  7. The DAG project, a 4m class telescope: the telescope main structure performances

    Science.gov (United States)

    Marchiori, G.; Busatta, A.; Ghedin, L.; Marcuzzi, E.; Manfrin, C.; Battistel, C.; Pirnay, O.; Flebus, Carlo; Yeşilyaprak, C.; Keskin, O.; Yerli, S.

    2016-07-01

    Dogu Anatolu Gözlemevi (DAG-Eastern Anatolia Observatory) Project is a 4m class optical, near-infrared Telescope and suitable enclosure which will be located at an altitude of 3.170m in Erzurum, Turkey. The DAG telescope is a project fully funded by Turkish Ministry of Development and the Atatürk University of Astrophysics Research Telescope - ATASAM. The Project is being developed by the Belgian company AMOS (project leader), which is also the optics supplier and EIE GROUP, the Telescope Main Structure supplier and responsible for the final site integration. The design of the Telescope Main Structure fits in the EIE TBO Program which aims at developing a Dome/Telescope systemic optimization process for both performances and competitive costs based on previous project commitments like NTT, VLT, VST and ASTRI. The optical Configuration of the DAG Telescope is a Ritchey-Chretien with two Nasmyth foci and a 4m primary thin mirror controlled in shape and position by an Active Optic System. The main characteristics of the Telescope Main Structure are an Altitude-Azimuth light and rigid structure system with Direct Drive Systems for both axis, AZ Hydrostatic Bearing System and Altitude standard bearing system; both axes are equipped with Tape Encoder System. An innovative Control System characterizes the telescope performance.

  8. Infrared Astronomy Satellite

    Science.gov (United States)

    Ferrera, G. A.

    1981-09-01

    In 1982, the Infrared Astronomy Satellite (IRAS) will be launched into a 900-km sun-synchronous (twilight) orbit to perform an unbiased, all-sky survey of the far-infrared spectrum from 8 to 120 microns. Observations telemetered to ground stations will be compiled into an IR astronomy catalog. Attention is given the cryogenically cooled, 60-cm Ritchey-Chretien telescope carried by the satellite, whose primary and secondary mirrors are fabricated from beryllium by means of 'Cryo-Null Figuring'. This technique anticipates the mirror distortions that will result from cryogenic cooling of the telescope and introduces dimensional compensations for them during machining and polishing. Consideration is also given to the interferometric characterization of telescope performance and Cryo/Thermal/Vacuum simulated space environment testing.

  9. Virtual Telescope Alignment System

    Data.gov (United States)

    National Aeronautics and Space Administration — Next-generation space telescopes require two spacecraft to fly in a coordinated fashion in space forming a virtual telescope. Achieving and maintaining this precise...

  10. ATST telescope mount: telescope of machine tool

    Science.gov (United States)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  11. HUBBLE SPACE TELESCOPE ACS IMAGING OF THE GOALS SAMPLE: QUANTITATIVE STRUCTURAL PROPERTIES OF NEARBY LUMINOUS INFRARED GALAXIES WITH L{sub IR} > 10{sup 11.4} L{sub Sun}

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.-C.; Evans, A. S.; Privon, G. C., E-mail: dkim@nrao.edu, E-mail: aevans@virginia.edu, E-mail: gcp8y@virginia.edu [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); and others

    2013-05-10

    A Hubble Space Telescope/Advanced Camera for Surveys study of the structural properties of 85 luminous and ultraluminous (L{sub IR} > 10{sup 11.4} L{sub Sun }) infrared galaxies (LIRGs and ULIRGs) in the Great Observatories All-sky LIRG Survey (GOALS) sample is presented. Two-dimensional GALFIT analysis has been performed on F814W ''I-band'' images to decompose each galaxy, as appropriate, into bulge, disk, central point-spread function (PSF) and stellar bar components. The fraction of bulge-less disk systems is observed to be higher in LIRGs (35%) than in ULIRGs (20%), with the disk+bulge systems making up the dominant fraction of both LIRGs (55%) and ULIRGs (45%). Further, bulge+disk systems are the dominant late-stage merger galaxy type and are the dominant type for LIRGs and ULIRGs at almost every stage of galaxy-galaxy nuclear separation. The mean I-band host absolute magnitude of the GOALS galaxies is -22.64 {+-} 0.62 mag (1.8{sup +1.4}{sub -0.4} L{sup *}{sub I}), and the mean bulge absolute magnitude in GOALS galaxies is about 1.1 mag fainter than the mean host magnitude. Almost all ULIRGs have bulge magnitudes at the high end (-20.6 to -23.5 mag) of the GOALS bulge magnitude range. Mass ratios in the GOALS binary systems are consistent with most of the galaxies being the result of major mergers, and an examination of the residual-to-host intensity ratios in GOALS binary systems suggests that smaller companions suffer more tidal distortion than the larger companions. We find approximately twice as many bars in GOALS disk+bulge systems (32.8%) than in pure-disk mergers (15.9%) but most of the disk+bulge systems that contain bars are disk-dominated with small bulges. The bar-to-host intensity ratio, bar half-light radius, and bar ellipticity in GOALS galaxies are similar to those found in nearby spiral galaxies. The fraction of stellar bars decreases toward later merger stages and smaller nuclear separations, indicating that bars are

  12. Origins Space Telescope: Study Plan

    Science.gov (United States)

    Nayyeri, Hooshang; Cooray, Asantha; Origins Space Telescope Study Team

    2018-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. This presentation will provide a summary of the OST STDT, the OST Study Team based at NASA Goddard Space Flight Center, study partners, and the advisory panel to the study. This presentation will also summarize recent activities, including the process used to reach a decision on the mission architecture, the identification of key science drivers, and the key study milestones between 2017 and 2020.

  13. DESTINY, The Dark Energy Space Telescope

    Science.gov (United States)

    Pasquale, Bert A.; Woodruff, Robert A.; Benford, Dominic J.; Lauer, Tod

    2007-01-01

    We have proposed the development of a low-cost space telescope, Destiny, as a concept for the NASA/DOE Joint Dark Energy Mission. Destiny is a 1.65m space telescope, featuring a near-infrared (0.85-1.7m) survey camera/spectrometer with a moderate flat-field field of view (FOV). Destiny will probe the properties of dark energy by obtaining a Hubble diagram based on Type Ia supernovae and a large-scale mass power spectrum derived from weak lensing distortions of field galaxies as a function of redshift.

  14. Infrared Astronomy and Education: Linking Infrared Whole Sky Mapping with Teacher and Student Research

    Science.gov (United States)

    Borders, Kareen; Mendez, Bryan; Thaller, Michelle; Gorjian, Varoujan; Borders, Kyla; Pitman, Peter; Pereira, Vincent; Sepulveda, Babs; Stark, Ron; Knisely, Cindy; Dandrea, Amy; Winglee, Robert; Plecki, Marge; Goebel, Jeri; Condit, Matt; Kelly, Susan

    The Spitzer Space Telescope and the recently launched WISE (Wide Field Infrared Survey Explorer) observe the sky in infrared light. Among the objects WISE will study are asteroids, the coolest and dimmest stars, and the most luminous galaxies. Secondary students can do authentic research using infrared data. For example, students will use WISE data to mea-sure physical properties of asteroids. In order to prepare students and teachers at this level with a high level of rigor and scientific understanding, the WISE and the Spitzer Space Tele-scope Education programs provided an immersive teacher professional development workshop in infrared astronomy.The lessons learned from the Spitzer and WISE teacher and student pro-grams can be applied to other programs engaging them in authentic research experiences using data from space-borne observatories such as Herschel and Planck. Recently, WISE Educator Ambassadors and NASA Explorer School teachers developed and led an infrared astronomy workshop at Arecibo Observatory in PuertoRico. As many common misconceptions involve scale and distance, teachers worked with Moon/Earth scale, solar system scale, and distance and age of objects in the Universe. Teachers built and used basic telescopes, learned about the history of telescopes, explored ground and satellite based telescopes, and explored and worked on models of WISE Telescope. An in-depth explanation of WISE and the Spitzer telescopes gave participants background knowledge for infrared astronomy observations. We taught the electromagnetic spectrum through interactive stations. We will outline specific steps for sec-ondary astronomy professional development, detail student involvement in infrared telescope data analysis, provide data demonstrating the impact of the above professional development on educator understanding and classroom use, and detail future plans for additional secondary professional development and student involvement in infrared astronomy. Funding was

  15. The great Melbourne telescope

    CERN Document Server

    Gillespie, Richard

    2011-01-01

    Erected at Melbourne Observatory in 1869, the telescope was the second largest in the world, designed to explore the nature of the nebulae in the southern skies. Richard Gillespie, head of the History and Technology department at the Melbourne museum has written an entertaining account of the telescope's extraordinary history and tells the story through an amazing cast of characters whose lives intersected with the telescope.

  16. Funding bombshell hits UK physics

    Science.gov (United States)

    Banks, Michael; Durrani, Matin

    2008-01-01

    Physicists and astronomers in the UK are coming to terms with a massive funding crisis that engulfed one of the country's main funding agencies last month. As a result of an £80m black hole in the budget of the Science and Technology Facilities Council (STFC), it has decided to stop funding research into the International Linear Collider (ILC), withdraw from the Gemini telescopes in Hawaii and Chile, and cease all support for high-energy gamma-ray astronomy and ground-based solar-terrestrial physics. Research grants in particle physics and astronomy could also be cut by up to 25%, which may lead to job losses at university departments.

  17. Infrared emission from supernova condensates

    International Nuclear Information System (INIS)

    Dwek, E.; Werner, M.W.

    1981-01-01

    We examine the possibility of detecting grains formed in supernovae by observations of their emission in the infrared. The basic processes determining the temperature and infrared radiation of grains in supernovae environments are analyzed, and the results are used to estimate the infrared emission from the highly metal enriched ''fast moving knots'' in Cas A. The predicted fluxes lie within the reach of current ground-based facilities at 10 μm, and their emission should be detectable throughout the infrared band with cryogenic space telescopes

  18. Infrared Astronomy and Star Formation

    International Nuclear Information System (INIS)

    Evans, N.J.

    1985-01-01

    Infrared astronomy is a natural tool to use in studying star formation because infrared light penetrates the surrounding dust and because protostars are expected to emit infrared light. Infrared mapping and photometry have revealed many compact sources, often embedded in more extensive warm dust associated with a molecular cloud core. More detailed study of these objects is now beginning, and traditional interpretations are being questioned. Some compact sources are now thought to be density enhancements which are not self-luminous. Infrared excesses around young stars may not always be caused by circumstellar dust; speckle measurements have shown that at least some of the excess toward T Tauri is caused by an infrared companion. Spectroscopic studies of the dense, star-forming cores and of the compact objects themselves have uncovered a wealth of new phenomena, including the widespread occurence of energetic outflows. New discoveries with IRAS and with other planned infrared telescopes will continue to advance this field. (author)

  19. Construction of the Advanced Technology Solar Telescope

    Science.gov (United States)

    Rimmele, T. R.; Keil, S.; McMullin, J.; Knölker, M.; Kuhn, J. R.; Goode, P. R.; Rosner, R.; Casini, R.; Lin, H.; Tritschler, A.; Wöger, F.; ATST Team

    2012-12-01

    The 4m Advance Technology Solar Telescope (ATST) will be the most powerful solar telescope and the world's leading ground-based resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun's output. The project has entered its construction phase. Major subsystems have been contracted. As its highest priority science driver ATST shall provide high resolution and high sensitivity observations of the dynamic solar magnetic fields throughout the solar atmosphere, including the corona at infrared wavelengths. With its 4m aperture, ATST will resolve features at 0.″03 at visible wavelengths and obtain 0.″1 resolution at the magnetically highly sensitive near infrared wavelengths. A high order adaptive optics system delivers a corrected beam to the initial set of state-of-the-art, facility class instrumentation located in the Coudé laboratory facility. The initial set of first generation instruments consists of five facility class instruments, including imagers and spectro-polarimeters. The high polarimetric sensitivity and accuracy required for measurements of the illusive solar magnetic fields place strong constraints on the polarization analysis and calibration. Development and construction of a four-meter solar telescope presents many technical challenges, including thermal control of the enclosure, telescope structure and optics and wavefront control. A brief overview of the science goals and observational requirements of the ATST will be given, followed by a summary of the design status of the telescope and its instrumentation, including design status of major subsystems, such as the telescope mount assembly, enclosure, mirror assemblies, and wavefront correction

  20. Observing the Sun with Coronado telescopes telescopes

    CERN Document Server

    Pugh, Philip

    2007-01-01

    The Sun provides amateur astronomers with one of the few opportunities for daytime astronomy. In order to see the major features of our nearest star, special telescopes that have a very narrow visible bandwidth are essential. The bandwidth has to be as narrow as 1 A- 10-10 m (1 Angstrom) and centred on the absorption line of neutral hydrogen. This makes many major features of the Suna (TM)s chromosphere visible to the observer. Such narrow-band "Fabry-Perot etalon filters" are high technology, and until the introduction of the Coronado range of solar telescopes, were too expensive for amateur use. The entry-level Coronado telescope, the PST (Personal Solar Telescope) costs under 500. Solar prominences (vast columns of plasma, best seen at the edge of the solar disk), filaments, flares, sunspots, plage and active regions are all visible and can be imaged to produce spectacular solar photographs. Philip Pugh has assembled a team of contributors who show just how much solar work can be done with Coronado telesco...

  1. Ghost telescope and ghost Fourier telescope with thermal light

    International Nuclear Information System (INIS)

    Gong Wenlin; Han Shensheng

    2011-01-01

    As important observation tools, telescopes are very useful in remote observations. We report a proof-of-principle experimental demonstration of ghost telescope scheme and show that, by measuring the intensity correlation of two light fields and only changing the position of the detector in the reference path, ghost telescope and ghost Fourier telescope can be obtained even if a single-pixel detector is fixed in Fresnel region of the object. Differences between conventional telescope and ghost telescope are also discussed.

  2. Life through a lens: visitors to the space centre can see a giant telescope

    CERN Multimedia

    Dawson, A

    2002-01-01

    The Particle Physics and Astronomy Research Council, Great Britain, decided in a meeting in December to join the European Southern Observatory. Membership will give UK astronomers access to the four 8.2-metre and several 1.8-metre telescopes which comprise the Very Large Telescope at Atacama in Chile.

  3. The large binocular telescope.

    Science.gov (United States)

    Hill, John M

    2010-06-01

    The Large Binocular Telescope (LBT) Observatory is a collaboration among institutions in Arizona, Germany, Italy, Indiana, Minnesota, Ohio, and Virginia. The telescope on Mount Graham in Southeastern Arizona uses two 8.4 m diameter primary mirrors mounted side by side. A unique feature of the LBT is that the light from the two Gregorian telescope sides can be combined to produce phased-array imaging of an extended field. This cophased imaging along with adaptive optics gives the telescope the diffraction-limited resolution of a 22.65 m aperture and a collecting area equivalent to an 11.8 m circular aperture. This paper describes the design, construction, and commissioning of this unique telescope. We report some sample astronomical results with the prime focus cameras. We comment on some of the technical challenges and solutions. The telescope uses two F/15 adaptive secondaries to correct atmospheric turbulence. The first of these adaptive mirrors has completed final system testing in Firenze, Italy, and is planned to be at the telescope by Spring 2010.

  4. Infrared profile of Milky Way at 2.4 μm

    International Nuclear Information System (INIS)

    Hayakawa, S.; Ito, K.; Matsumoto, T.; Ono, T.; Uyama, K.

    1976-01-01

    A balloon observation was made of infrared radiation from the Milky Way at wavelength 2.4 μm, with a band width of 0.1 μm, avoiding intense OH airglow. The telescope employed is described. The optical system was cooled by liquid N 2 to reduce the background thermal radiation and improve the detector sensitivity. An array of three PbS detectors was employed. An isophoto of the infrared surface brightness is shown. It appeared that some infrared sources are associated with objects in the spiral arms, but a considerable fraction of these sources is distributed over the galaxy in a similar manner to normal stars. An analysis of the results suggests that the infrared radiation observed at 2.4 μm is emitted mainly from the region inside the solar circle. A comparison was made with the intensity of 100 MeV γ-rays, produced by collisions of cosmic rays with interstellar matter. The longitude dependences observed for the 2.4 μm radiation, the 2.6 mm CO line, HII regions, the 21 cm H line, and the 100 MeV γ-rays correlated with one another. It is concluded that infrared emission provides a further means of investigating galactic structure. (U.K.)

  5. Scientific Performance Analysis of the SYZ Telescope Design versus the RC Telescope Design

    Science.gov (United States)

    Ma, Donglin; Cai, Zheng

    2018-02-01

    Recently, Su et al. propose an innovative design, referred as the “SYZ” design, for China’s new project of a 12 m optical-infrared telescope. The SYZ telescope design consists of three aspheric mirrors with non-zero power, including a relay mirror below the primary mirror. SYZ design yields a good imaging quality and has a relatively flat field curvature at Nasmyth focus. To evaluate the science-compatibility of this three-mirror telescope, in this paper, we thoroughly compare the performance of SYZ design with that of Ritchey–Chrétien (RC) design, a conventional two-mirror telescope design. Further, we propose the Observing Information Throughput (OIT) as a metric for quantitatively evaluating the telescopes’ science performance. We find that although a SYZ telescope yields a superb imaging quality over a large field of view, a two-mirror (RC) telescope design holds a higher overall throughput, a better diffraction-limited imaging quality in the central field of view (FOV < 5‧) which is better for the performance of extreme Adaptive Optics (AO), and a generally better scientific performance with a higher OIT value. D. Ma & Z. Cai contributed equally to this paper.

  6. Space telescopes capturing the rays of the electromagnetic spectrum

    CERN Document Server

    English, Neil

    2017-01-01

    Space telescopes are among humankind’s greatest scientific achievements of the last fifty years. This book describes the instruments themselves and what they were designed to discover about the Solar System and distant stars. Exactly how these telescopes were built and launched and the data they provided is explored. Only certain kinds of radiation can penetrate our planet's atmosphere, which limits what we can observe. But with space telescopes all this changed. We now have the means to "see" beyond Earth using ultraviolet, microwave, and infrared rays, X-rays and gamma rays. In this book we meet the pioneers and the telescopes that were built around their ideas. This book looks at space telescopes not simply chronologically but also in order of the electromagnetic spectrum, making it possible to understand better why they were made.

  7. Goddard Robotic Telescope (GRT)

    Data.gov (United States)

    National Aeronautics and Space Administration — Since it is not possible to predict when a Gamma-Ray Burst (GRB) occurs, the follow-up ground telescopes must be distributed as uniform as possible all over the...

  8. Automatic Photoelectric Telescope Service

    International Nuclear Information System (INIS)

    Genet, R.M.; Boyd, L.J.; Kissell, K.E.; Crawford, D.L.; Hall, D.S.; BDM Corp., McLean, VA; Kitt Peak National Observatory, Tucson, AZ; Dyer Observatory, Nashville, TN)

    1987-01-01

    Automatic observatories have the potential of gathering sizable amounts of high-quality astronomical data at low cost. The Automatic Photoelectric Telescope Service (APT Service) has realized this potential and is routinely making photometric observations of a large number of variable stars. However, without observers to provide on-site monitoring, it was necessary to incorporate special quality checks into the operation of the APT Service at its multiple automatic telescope installation on Mount Hopkins. 18 references

  9. The Liverpool Telescope: rapid follow-up observation of targets of opportunity with a 2 m robotic telescope

    International Nuclear Information System (INIS)

    Gomboc, Andreja; Bode, Michael F.; Carter, David; Mundell, Carol G.; Newsam, Andrew; Smith, Robert J.; Steele, Iain A.

    2004-01-01

    The Liverpool Telescope, situated at Roque de los Muchachos Observatory, La Palma, Canaries, is the first 2-m, fully instrumented robotic telescope. It recently began observations. Among Liverpool Telescope's primary scientific goals is to monitor variable objects on all timescales from seconds to years. An additional benefit of its robotic operation is rapid reaction to unpredictable phenomena and their systematic follow up, simultaneous or coordinated with other facilities. The Target of Opportunity Programme of the Liverpool Telescope includes the prompt search for and observation of GRB and XRF counterparts. A special over-ride mode implemented for GRB/XRF follow-up enables observations commencing less than a minute after the alert, including optical and near infrared imaging and spectroscopy. In particular, the moderate aperture and rapid automated response make the Liverpool Telescope excellently suited to help solving the mystery of optically dark GRBs and for the investigation of currently unstudied short bursts and XRFs

  10. The infrared astronomical mission AKARI

    NARCIS (Netherlands)

    Murakami, Hiroshi; Baba, Hajime; Barthel, Peter; Clements, David L.; Cohen, Martin; Doi, Yasuo; Enya, Keigo; Figueredo, Elysandra; Fujishiro, Naofumi; Fujiwara, Hideaki; Fujiwara, Mikio; Garcia-Lario, Pedro; Goto, Tomotsugu; Hasegawa, Sunao; Hibi, Yasunori; Hirao, Takanori; Hiromoto, Norihisa; Hong, Seung Soo; Imai, Koji; Ishigaki, Miho; Ishiguro, Masateru; Ishihara, Daisuke; Ita, Yoshifusa; Jeong, Woong-Seob; Jeong, Kyung Sook; Kaneda, Hidehiro; Kataza, Hirokazu; Kawada, Mitsunobu; Kawai, Toshihide; Kawamura, Akiko; Kessler, Martin F.; Kester, Do; Kii, Tsuneo; Kim, Dong Chan; Kim, Wjung; Kobayashi, Hisato; Koo, Bon Chul; Kwon, Suk Minn; Lee, Hyung Mok; Lorente, Rosario; Makiuti, Sin'itirou; Matsuhara, Hideo; Matsumoto, Toshio; Matsuo, Hiroshi; Matsuura, Shuji; Mueller, Thomas G.; Murakami, Noriko; Nagata, Hirohisa; Nakagawa, Takao; Naoi, Takahiro; Narita, Masanao; Noda, Manabu; Oh, Sang Hoon; Ohnishi, Akira; Ohyama, Youichi; Okada, Yoko; Okuda, Haruyuki; Oliver, Sebastian; Onaka, Takashi; Ootsubo, Takafumi; Oyabu, Shinki; Pak, Sojong; Park, Yong-Sun; Pearson, Chris P.; Rowan-Robinson, Michael; Saito, Toshinobu; Sakon, Itsuki; Salama, Alberto; Sato, Shinji; Savage, Richard S.; Serjeant, Stephen; Shibai, Hiroshi; Shirahata, Mai; Sohn, Jungjoo; Suzuki, Toyoaki; Takagi, Toshinobu; Takahashi, Hidenori; Tanabe, Toshihiko; Takeuchi, Tsutomu T.; Takita, Satoshi; Thomson, Matthew; Uemizu, Kazunori; Ueno, Munetaka; Usui, Fumihiko; Verdugo, Eva; Wada, Takehiko; Wang, Lingyu; Watabe, Toyoki; Watarai, Hidenori; White, Glenn J.; Yamamura, Issei; Yamauchi, Chisato; Yasuda, Akiko

    2007-01-01

    AKARI, the first Japanese satellite dedicated to infrared astronomy, was launched on 2006 February 21, and started observations in May of the same year. AKARI has a 68.5 cm cooled telescope, together with two focal-plane instruments, which survey the sky in six wavelength bands from mid- to

  11. The first GCT camera for the Cherenkov Telescope Array

    CERN Document Server

    De Franco, A.; Allan, D.; Armstrong, T.; Ashton, T.; Balzer, A.; Berge, D.; Bose, R.; Brown, A.M.; Buckley, J.; Chadwick, P.M.; Cooke, P.; Cotter, G.; Daniel, M.K.; Funk, S.; Greenshaw, T.; Hinton, J.; Kraus, M.; Lapington, J.; Molyneux, P.; Moore, P.; Nolan, S.; Okumura, A.; Ross, D.; Rulten, C.; Schmoll, J.; Schoorlemmer, H.; Stephan, M.; Sutcliffe, P.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Varner, G.; Watson, J.; Zink, A.

    2015-01-01

    The Gamma Cherenkov Telescope (GCT) is proposed to be part of the Small Size Telescope (SST) array of the Cherenkov Telescope Array (CTA). The GCT dual-mirror optical design allows the use of a compact camera of diameter roughly 0.4 m. The curved focal plane is equipped with 2048 pixels of ~0.2{\\deg} angular size, resulting in a field of view of ~9{\\deg}. The GCT camera is designed to record the flashes of Cherenkov light from electromagnetic cascades, which last only a few tens of nanoseconds. Modules based on custom ASICs provide the required fast electronics, facilitating sampling and digitisation as well as first level of triggering. The first GCT camera prototype is currently being commissioned in the UK. On-telescope tests are planned later this year. Here we give a detailed description of the camera prototype and present recent progress with testing and commissioning.

  12. Robotic and Survey Telescopes

    Science.gov (United States)

    Woźniak, Przemysław

    Robotic telescopes are revolutionizing the way astronomers collect their dataand conduct sky surveys. This chapter begins with a discussion of principles thatguide the process of designing, constructing, and operating telescopes andobservatories that offer a varying degree of automation, from instruments remotelycontrolled by observers to fully autonomous systems requiring no humansupervision during their normal operations. Emphasis is placed on designtrade-offs involved in building end-to-end systems intended for a wide range ofscience applications. The second part of the chapter contains descriptions ofseveral projects and instruments, both existing and currently under development.It is an attempt to provide a representative selection of actual systems thatillustrates state of the art in technology, as well as important ideas and milestonesin the development of the field. The list of presented instruments spans the fullrange in size starting from small all-sky monitors, through midrange robotic andsurvey telescopes, and finishing with large robotic instruments and surveys.Explosive growth of telescope networking is enabling entirely new modesof interaction between the survey and follow-up observing. Increasingimportance of standardized communication protocols and software is stressed.These developments are driven by the fusion of robotic telescope hardware,massive storage and databases, real-time knowledge extraction, and datacross-correlation on a global scale. The chapter concludes with examplesof major science results enabled by these new technologies and futureprospects.

  13. Search for infrared counterparts of gamma-ray bursters

    International Nuclear Information System (INIS)

    Schaefer, B.E.; Cline, T.L.

    1985-01-01

    The result of two searches for infrared counterparts of Gamma-ray Bursters (GRB's) is reported. The first search was made using data from the Infrared Astronomy Satellite and covered 23 positions. The second search was made with the Kitt Peak 1.5 m telescope and covered 3 positions. In neither of these two searches was any infrared candidate detected

  14. Telescopes and Techniques

    CERN Document Server

    Kitchin, C R

    2013-01-01

    Telescopes and Techniques has proved itself in its first two editions, having become probably one of the most widely used astronomy texts, both for amateur astronomers and astronomy and astrophysics undergraduates. Both earlier editions of the book were widely used for introductory practical astronomy courses in many universities. In this Third Edition the author guides the reader through the mathematics, physics and practical techniques needed to use today's telescopes (from the smaller models to the larger instruments installed in many colleges) and how to find objects in the sky. Most of the physics and engineering involved is described fully and requires little prior knowledge or experience. Both visual and electronic imaging techniques are covered, together with an introduction to how data (measurements) should be processed and analyzed. A simple introduction to radio telescopes is also included. Brief coverage of the more advanced topics of photometry and spectroscopy are included, but mainly to enable ...

  15. Amateur Telescope Making

    Science.gov (United States)

    Tonkin, Stephen

    Many amateur astronomers make their own instruments, either because of financial considerations or because they are just interested. Amateur Telescope Making offers a variety of designs for telescopes, mounts and drives which are suitable for the home-constructor. The designs range from simple to advanced, but all are within the range of a moderately well-equipped home workshop. The book not only tells the reader what he can construct, but also what it is sensible to construct given what time is available commercially. Thus each chapter begins with reasons for undertaking the project, then looks at theoretical consideration before finishing with practical instructions and advice. An indication is given as to the skills required for the various projects. Appendices list reputable sources of (mail order) materials and components. The telescopes and mounts range from "shoestring" (very cheap) instruments to specialist devices that are unavailable commercially.

  16. A Status Report on the Thirty Meter Telescope Adaptive Optics

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We provide an update on the recent development of the adaptive optics (AO) systems for the Thirty Meter Telescope (TMT) since mid-2011. The first light AO facility for TMT consists of the Narrow Field Infra-Red AO System (NFIRAOS) and the associated Laser Guide Star Facility (LGSF). This order 60 × 60 ...

  17. Exploring Galileo's Telescope

    Science.gov (United States)

    Straulino, Samuele; Terzuoli, Alessandra

    2010-01-01

    In the first months of 2009, the International Year of Astronomy, the authors developed an educational project for middle-level students connected with the first astronomical discoveries that Galileo Galilei (1564-1642) made 400 years ago. The project included the construction of a basic telescope and the observation of the Moon. The project, if…

  18. Taiwan Automated Telescope Network

    Directory of Open Access Journals (Sweden)

    Dean-Yi Chou

    2010-01-01

    can be operated either interactively or fully automatically. In the interactive mode, it can be controlled through the Internet. In the fully automatic mode, the telescope operates with preset parameters without any human care, including taking dark frames and flat frames. The network can also be used for studies that require continuous observations for selected objects.

  19. The Falcon Telescope Network

    Science.gov (United States)

    Chun, F.; Tippets, R.; Dearborn, M.; Gresham, K.; Freckleton, R.; Douglas, M.

    2014-09-01

    The Falcon Telescope Network (FTN) is a global network of small aperture telescopes developed by the Center for Space Situational Awareness Research in the Department of Physics at the United States Air Force Academy (USAFA). Consisting of commercially available equipment, the FTN is a collaborative effort between USAFA and other educational institutions ranging from two- and four-year colleges to major research universities. USAFA provides the equipment (e.g. telescope, mount, camera, filter wheel, dome, weather station, computers and storage devices) while the educational partners provide the building and infrastructure to support an observatory. The user base includes USAFA along with K-12 and higher education faculty and students. Since the FTN has a general use purpose, objects of interest include satellites, astronomical research, and STEM support images. The raw imagery, all in the public domain, will be accessible to FTN partners and will be archived at USAFA in the Cadet Space Operations Center. FTN users will be able to submit observational requests via a web interface. The requests will then be prioritized based on the type of user, the object of interest, and a user-defined priority. A network wide schedule will be developed every 24 hours and each FTN site will autonomously execute its portion of the schedule. After an observational request is completed, the FTN user will receive notification of collection and a link to the data. The Falcon Telescope Network is an ambitious endeavor, but demonstrates the cooperation that can be achieved by multiple educational institutions.

  20. The big data telescope

    International Nuclear Information System (INIS)

    Finkel, Elizabeth

    2017-01-01

    On a flat, red mulga plain in the outback of Western Australia, preparations are under way to build the most audacious telescope astronomers have ever dreamed of - the Square Kilometre Array (SKA). Next-generation telescopes usually aim to double the performance of their predecessors. The Australian arm of SKA will deliver a 168-fold leap on the best technology available today, to show us the universe as never before. It will tune into signals emitted just a million years after the Big Bang, when the universe was a sea of hydrogen gas, slowly percolating with the first galaxies. Their starlight illuminated the fledgling universe in what is referred to as the “cosmic dawn”.

  1. Radio telescope control

    CERN Document Server

    Schraml, J

    1972-01-01

    An on-line computer control process developed for the 100-m radio telescope of the Max-Planck-Institut fur Radioastronomie in Bonn is described. The instrument is the largest fully steerable antenna in the world. Its operation started on May 31st 1972. It is controlled by a Ferranti Argus 500 on-line computer. The first part of the paper deals with the process itself, the radio telescope and its operation, and the demands resulting for the control program. The second part briefly describes the computer and its hardware. The final part introduces the architecture of the executive program in general, which has been tailored to meet the demands of the process and the hardware. The communication between the observer and the system, the format of data on magnetic tape and an on-line reduction of position measurements are considered. (0 refs).

  2. [Galileo and his telescope].

    Science.gov (United States)

    Strebel, Christoph

    2006-01-01

    Galileo's publication of observations made with his newly reinvented telescope provoked a fierce debate. In April 1610 Martinus Horky, a young Bohemian astronomer, had an opportunity to make his own observations with Galileo's telescope in the presence of Antonio Magini and other astronomers. Horky and the other witnesses denied the adequacy of Galileo's telescope and therefore the bona fides of his discoveries. Kepler conjectured Horky as well as all his witnesses to be myopic. But Kepler's objection could not stop the publication of Horky's Peregrinatio contra nuncium sidereum (Modena, 1610), the first printed refutation of Galileo's Sidereus nuncius. In his treatise, Horky adresses four questions: 1) Do the four newly observed heavenly bodies actually exist? Horky denies their existence on various grounds: a) God, as every astronomer teaches, has created only seven moveable heavenly bodies and astronomical knowledge originates in God, too. b) Heavenly bodies are either stars or planets. Galileo's moveable heavenly bodies fit into neither category. c) If they do exist, why have they not already been observed by other scholars? Horky concludes that there are no such heavenly bodies. 2) What are these phenomena? They are purely artefactual, and produced by Galileo's telescope. 3) How are they like? Galileo's "stars" are so small as to be almost invisible. Galileo claims that he has measured their distances from each other. This however is impossible due to their diminutive size and other observational problems. Hence, Galileo's claim is a further proof that he is a fraud. 4) Why are they? For Galileo they are a chance to earn money but for astronomers like Horky they are a reason to offer thanks and honour to God. Horky's treatise was favourably received by the enemies of Galileo. But Kepler's critique was devastating. After calling on Kepler in Prague, Horky had to revoke the contents of his book.

  3. Workshop: Neutrino telescopes

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Despite being the most elusive of the known particles, neutrinos provide vital new physics insights. Most neutrino knowledge so far has come from studies using beams from reactors and accelerators, but in recent years important new contributions have resulted from investigation of natural neutrinos from cosmic rays, nearby stars (the sun), or distant sources, such as the 1987 supernova. The supernova observations marked the start of a new era in neutrino astronomy, but neutrino telescopes were anyway assured of an important ongoing role

  4. Workshop: Neutrino telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-05-15

    Despite being the most elusive of the known particles, neutrinos provide vital new physics insights. Most neutrino knowledge so far has come from studies using beams from reactors and accelerators, but in recent years important new contributions have resulted from investigation of natural neutrinos from cosmic rays, nearby stars (the sun), or distant sources, such as the 1987 supernova. The supernova observations marked the start of a new era in neutrino astronomy, but neutrino telescopes were anyway assured of an important ongoing role.

  5. Fast Fourier transform telescope

    International Nuclear Information System (INIS)

    Tegmark, Max; Zaldarriaga, Matias

    2009-01-01

    We propose an all-digital telescope for 21 cm tomography, which combines key advantages of both single dishes and interferometers. The electric field is digitized by antennas on a rectangular grid, after which a series of fast Fourier transforms recovers simultaneous multifrequency images of up to half the sky. Thanks to Moore's law, the bandwidth up to which this is feasible has now reached about 1 GHz, and will likely continue doubling every couple of years. The main advantages over a single dish telescope are cost and orders of magnitude larger field-of-view, translating into dramatically better sensitivity for large-area surveys. The key advantages over traditional interferometers are cost (the correlator computational cost for an N-element array scales as Nlog 2 N rather than N 2 ) and a compact synthesized beam. We argue that 21 cm tomography could be an ideal first application of a very large fast Fourier transform telescope, which would provide both massive sensitivity improvements per dollar and mitigate the off-beam point source foreground problem with its clean beam. Another potentially interesting application is cosmic microwave background polarization.

  6. MID-INFRARED PHOTOMETRY OF COLD BROWN DWARFS: DIVERSITY IN AGE, MASS, AND METALLICITY

    International Nuclear Information System (INIS)

    Leggett, S. K.; Burningham, Ben; Jones, H. R. A.; Lucas, P. W.; Pinfield, D. J.; Saumon, D.; Marley, M. S.; Warren, S. J.; Smart, R. L.; Tamura, Motohide

    2010-01-01

    We present new Spitzer Infrared Array Camera (IRAC) photometry of 12 very late-type T dwarfs: nine have [3.6], [4.5], [5.8], and [8.0] photometry and three have [3.6] and [4.5] photometry only. Combining this with previously published photometry, we investigate trends with type and color that are useful for both the planning and interpretation of infrared surveys designed to discover the coldest T or Y dwarfs. The online appendix provides a collation of MKO-system YJHKL'M' and IRAC photometry for a sample of M, L, and T dwarfs. Brown dwarfs with effective temperature (T eff ) below 700 K emit more than half their flux at wavelengths longer than 3 μm, and the ratio of the mid-infrared flux to the near-infrared flux becomes very sensitive to T eff at these low temperatures. We confirm that the color H (1.6 μm) - [4.5] is a good indicator of T eff with a relatively weak dependence on metallicity and gravity. Conversely, the colors H - K (2.2 μm) and [4.5] - [5.8] are sensitive to metallicity and gravity. Thus, near- and mid-infrared photometry provide useful indicators of the fundamental properties of brown dwarfs, and if temperature and gravity are known, then mass and age can be reliably determined from evolutionary models. There are 12 dwarfs currently known with H- [4.5] >3.0, and 500 K ∼ eff ∼<800 K, which we examine in detail. The ages of the dwarfs in the sample range from very young (0.1-1.0 Gyr) to relatively old (3-12 Gyr). The mass range is possibly as low as 5 Jupiter masses to up to 70 Jupiter masses, i.e., near the hydrogen burning limit. The metallicities also span a large range, from [m/H] = -0.3 to [m/H] = +0.3. The small number of T8-T9 dwarfs found in the UK Infrared Telescope Infrared Deep Sky Survey to date appear to be predominantly young low-mass dwarfs. Accurate mid-infrared photometry of cold brown dwarfs is essentially impossible from the ground, and extensions to the mid-infrared space missions, warm-Spitzer and Wide-Field Infrared

  7. The James Webb Space Telescope Mission

    Science.gov (United States)

    Sonneborn, George

    2010-01-01

    The James Webb Space Telescope (JWST) is a large aperture, cryogenic, infrared-optimized space observatory under development by NASA for launch in 2014. The European and Canadian Space Agencies are mission partners. JWST will find and study the first galaxies that formed in the early universe, peer through dusty clouds to see AGN environments and stars forming planetary systems at high spatial resolution. The breakthrough capabilities of JWST will enable new studies of star formation and evolution in the Milky Way, including the Galactic Center, nearby galaxies, and the early universe. JWST's instruments are designed to work primarily in the infrared range of 1 - 28 microns, with some capability in the visible. JWST will have a segmented primary mirror, approximately 6.5 meters in diameter, and will be diffraction-limited at wavelength of 2 microns (0.1 arcsec resolution). The JWST observatory will be placed in a L2 orbit by an Ariane 5 launch vehicle provided by ESA. The observatory is designed for a 5-year prime science mission, with propellant for 10 years of science operations. The instruments will provide broad- and narrow-band imaging, coronography, and multi-object and integral-field spectroscopy (spectral resolution of 100 to 3,000) across the 1 - 28 micron wavelength range. Science and mission operations will be conducted from the Space Telescope Science Institute in Baltimore, Maryland.

  8. The next-generation infrared astronomy mission SPICA under the new framework

    NARCIS (Netherlands)

    Nakagawa, Takao; Shibai, Hiroshi; Onaka, Takashi; Matsuhara, Hideo; Kaneda, Hidehiro; Kawakatsu, Yasuhiro; Roelfsema, Peter

    We present the current status of SPICA (Space Infrared Telescope for Cosmology and Astrophysics), which is a mission optimized for mid- and far-infrared astronomy with a cryogenically cooled 3.2 m telescope. SPICA is expected to achieve high spatial resolution and unprecedented sensitivity in the

  9. ARNICA, the Arcetri near-infrared camera: Astronomical performance assessment.

    Science.gov (United States)

    Hunt, L. K.; Lisi, F.; Testi, L.; Baffa, C.; Borelli, S.; Maiolino, R.; Moriondo, G.; Stanga, R. M.

    1996-01-01

    The Arcetri near-infrared camera ARNICA was built as a users' instrument for the Infrared Telescope at Gornergrat (TIRGO), and is based on a 256x256 NICMOS 3 detector. In this paper, we discuss ARNICA's optical and astronomical performance at the TIRGO and at the William Herschel Telescope on La Palma. Optical performance is evaluated in terms of plate scale, distortion, point spread function, and ghosting. Astronomical performance is characterized by camera efficiency, sensitivity, and spatial uniformity of the photometry.

  10. Atmospheric Monitoring at the Site of the MAGIC Telescopes

    Directory of Open Access Journals (Sweden)

    Will Martin

    2017-01-01

    Full Text Available The MAGIC telescopes in La Palma, Canary Islands, measure the Cherenkov light emitted by gamma ray-induced extended air showers in the atmosphere. The good knowledge of the atmospheric parameters is important, both for the correct and safe operations of the telescopes, but also for subsequent data analysis. A weather station measures the state variables of the atmosphere, temperature, humidity and wind, an elastic Lidar system and an infrared pyrometer determine the optical transmission of the atmosphere. Using an AllSky camera, the cloud cover can be estimated. The measured values are completed by data from global atmospheric models based on numeric weather forecasts.

  11. Infrared spectral observation of stars

    International Nuclear Information System (INIS)

    Komaki, Kazuo; Kodaira, Keiichi; Tanaka, W.; Suemoto, Zenzaburo

    1976-01-01

    The atmosphere of fixed stars must be studied in a supplementary way with both observation and theory. In case of low-temperature stars, however, there are difficulties in both two aspects. Under the situation, the multi-color measurement of the near infrared region was performed with a balloon telescope BAT-1 (the aperture of 15 cm) on June 17 and 18, 1975. For the red supergiant αSco, the data of light measurement was able to be obtained. (mori, K.)

  12. The Planck Telescope reflectors

    Science.gov (United States)

    Stute, Thomas

    2004-09-01

    The mechanical division of EADS-Astrium GmbH, Friedrichshafen is currently engaged with the development, manufacturing and testing of the advanced dimensionally stable composite reflectors for the ESA satellite borne telescope Planck. The objective of the ESA mission Planck is to analyse the first light that filled the universe, the cosmic microwave background radiation. Under contract of the Danish Space Research Institute and ESA EADS-Astrium GmbH is developing the all CFRP primary and secondary reflectors for the 1.5-metre telescope which is the main instrument of the Planck satellite. The operational frequency ranges from to 25 GHz to 1000 GHz. The demanding high contour accuracy and surface roughness requirements are met. The design provides the extreme dimensional stability required by the cryogenic operational environment at around 40 K. The elliptical off-axis reflectors display a classical lightweight sandwich design with CFRP core and facesheets. Isostatic mounts provide the interfaces to the telescope structure. Protected VDA provides the reflecting surface. The manufacturing is performed at the Friedrichshafen premises of EADS-Space Transportation GmbH, the former Dornier composite workshops. Advanced manufacturing technologies like true angle lay-up by CNC fibre placement and filament winding are utilized. The protected coating is applied at the CAHA facilities at the Calar Alto Observatory, Spain. The exhaustive environmental testing is performed at the facilities of IABG, Munich (mechanical testing) and for the cryo-optical tests at CSL Liege. The project is in advanced state with both Qualification Models being under environmental testing. The flight models will be delivered in 2004. The paper gives an overview over the requirements and the main structural features how these requirements are met. Special production aspects and available test results are reported.

  13. Origins Space Telescope: Cosmology and Reionization

    Science.gov (United States)

    Vieira, Joaquin Daniel; Origins Space Telescope

    2018-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.A core science goal of the OST mission is to study the the cosmological history of star, galaxy, and structure formation into the epoch of reionization (EoR). OST will probe the birth of galaxies through warm molecular hydrogen emission during the cosmic dark ages. Utilizing the unique power of the infrared fine-structure emission lines, OST will trace the rise of metals from the first galaxies until today. It will quantify the dust enrichment history of the Universe, uncover its composition and physical conditions, reveal the first cosmic sources of dust, and probe the properties of the earliest star formation. OST will provide a detailed astrophysical probe into the condition of the intergalactic medium at z > 6 and the galaxies which dominate the epoch of reionization.

  14. Deep space telescopes

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    The short series of seminars will address results and aims of current and future space astrophysics as the cultural framework for the development of deep space telescopes. It will then present such new tools, as they are currently available to, or imagined by, the scientific community, in the context of the science plans of ESA and of all major world space agencies. Ground-based astronomy, in the 400 years since Galileo’s telescope, has given us a profound phenomenological comprehension of our Universe, but has traditionally been limited to the narrow band(s) to which our terrestrial atmosphere is transparent. Celestial objects, however, do not care about our limitations, and distribute most of the information about their physics throughout the complete electromagnetic spectrum. Such information is there for the taking, from millimiter wavelengths to gamma rays. Forty years astronomy from space, covering now most of the e.m. spectrum, have thus given us a better understanding of our physical Universe then t...

  15. Antares Reference Telescope System

    International Nuclear Information System (INIS)

    Viswanathan, V.K.; Kaprelian, E.; Swann, T.; Parker, J.; Wolfe, P.; Woodfin, G.; Knight, D.

    1983-01-01

    Antares is a 24-beam, 40-TW carbon-dioxide laser-fusion system currently nearing completion at the Los Alamos National Laboratory. The 24 beams will be focused onto a tiny target (typically 300 to 1000 μm in diameter) located approximately at the center of a 7.3-m-diameter by 9.3-m-long vacuum (10 - 6 torr) chamber. The design goal is to position the targets to within 10 μm of a selected nominal position, which may be anywhere within a fixed spherical region 1 cm in diameter. The Antares Reference Telescope System is intended to help achieve this goal for alignment and viewing of the various targets used in the laser system. The Antares Reference Telescope System consists of two similar electro-optical systems positioned in a near orthogonal manner in the target chamber area of the laser. Each of these consists of four subsystems: (1) a fixed 9X optical imaging subsystem which produces an image of the target at the vidicon; (2) a reticle projection subsystem which superimposes an image of the reticle pattern at the vidicon; (3) an adjustable front-lighting subsystem which illuminates the target; and (4) an adjustable back-lighting subsystem which also can be used to illuminate the target. The various optical, mechanical, and vidicon design considerations and trade-offs are discussed. The final system chosen (which is being built) and its current status are described in detail

  16. SNAP Telescope Latest Developments

    Science.gov (United States)

    Lampton, M.; SNAP Collaboration

    2004-12-01

    The coming era of precision cosmology imposes new demands on space telescopes with regard to spectrophotometric accuracy and image stability. To meet these requirements for SNAP we have developed an all reflecting two-meter-class space telescope of the three-mirror anastigmat type. Our design features a large flat annular field (1.5 degrees = 580mm diameter) and a telephoto advantage of 6, delivering a 22m focal length within an optical package length of only 3.5 meters. The use of highly stable materials (Corning ULE glass and carbon-fiber reinforced cyanate ester resin for the metering structure) combined with agressive distributed thermal control and an L2 orbit location will lead to unmatched figure stability. Owing to our choice of rigid structure with nondeployable solar panels, finite-element models show no structural resonances below 10Hz. An exhaustive stray light study has been completed. Beginning in 2005, two industry studies will develop plans for fabrication, integration and test, bringing SNAP to a highly realistic level of definition. SNAP is supported by the Office of Science, US DoE, under contract DE-AC03-76SF00098.

  17. GTC/OSIRIS SPECTROSCOPIC IDENTIFICATION OF A FAINT L SUBDWARF IN THE UKIRT INFRARED DEEP SKY SURVEY

    International Nuclear Information System (INIS)

    Lodieu, N.; Osorio, M. R. Zapatero; MartIn, E. L.; Solano, E.; Aberasturi, M.

    2010-01-01

    We present the discovery of an L subdwarf in 234 deg 2 common to the UK InfraRed Telescope (UKIRT) Infrared Deep Sky Survey Large Area Survey Data Release 2 and the Sloan Digital Sky Survey Data Release 3. This is the fifth L subdwarf announced to date, the first one identified in the UKIRT Infrared Deep Sky Survey, and the faintest known. The blue optical and near-infrared colors of ULAS J135058.86+081506.8 and its overall spectra energy distribution are similar to the known mid-L subdwarfs. Low-resolution optical (700-1000 nm) spectroscopy with the Optical System for Imaging and low Resolution Integrated Spectroscopy spectrograph on the 10.4 m Gran Telescopio de Canarias reveals that ULAS J135058.86+081506.8 exhibits a strong K I pressure-broadened line at 770 nm and a red slope longward of 800 nm, features characteristics of L-type dwarfs. From direct comparison with the four known L subdwarfs, we estimate its spectral type to be sdL4-sdL6 and derive a distance in the interval 94-170 pc. We provide a rough estimate of the space density for mid-L subdwarfs of 1.5 x 10 -4 pc -3 .

  18. Cost Modeling for Space Telescope

    Science.gov (United States)

    Stahl, H. Philip

    2011-01-01

    Parametric cost models are an important tool for planning missions, compare concepts and justify technology investments. This paper presents on-going efforts to develop single variable and multi-variable cost models for space telescope optical telescope assembly (OTA). These models are based on data collected from historical space telescope missions. Standard statistical methods are used to derive CERs for OTA cost versus aperture diameter and mass. The results are compared with previously published models.

  19. Status of the MAGIC telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Colin, Pierre; Carmona, Emiliano; Schweizer, Thomas; Sitarek, Julian [Max-Planck-Institut fuer Physik, Werner-Heisenberg Institut, Muenchen (Germany)

    2010-07-01

    MAGIC is a system of two 17-m Cherenkov telescopes located on La Palma (Canary islands),sensitive to gamma-rays above 30 GeV. It has been recently upgraded by a second telescope which strongly improves the sensitivity, particularly at low energy. Here we present the status of the MAGIC telescopes and an overview of the recent results obtained in single or stereoscopic mode. We also discuss the real performance of the new stereoscopic system based on Crab Nebula observations.

  20. Infrared astronomy

    International Nuclear Information System (INIS)

    Setti, G.; Fazio, G.

    1978-01-01

    This volume contains lectures describing the important achievements in infrared astronomy. The topics included are galactic infrared sources and their role in star formation, the nature of the interstellar medium and galactic structure, the interpretation of infrared, optical and radio observations of extra-galactic sources and their role in the origin and structure of the universe, instrumental techniques and a review of future space observations. (C.F.)

  1. ALMA Telescope Reaches New Heights

    Science.gov (United States)

    2009-09-01

    ball at a distance of nine miles, and to keep their smooth reflecting surfaces accurate to less than the thickness of a human hair. Once the transporter reached the high plateau it carried the antenna to a concrete pad -- a docking station with connections for power and fiber optics -- and positioned it with an accuracy of a small fraction of an inch. The transporter is guided by a laser steering system and, just like some cars, also has ultrasonic collision detectors. These sensors ensure the safety of the state-of-the-art antennas as the transporter drives them across what will soon be a rather crowded plateau. Ultimately, ALMA will have at least 66 antennas distributed over about 200 pads, spread over distances of up to 11.5 miles and operating as a single, giant telescope. Even when ALMA is fully operational, the transporters will be used to move the antennas between pads to reconfigure the telescope for different kinds of observations. This first ALMA antenna at the high site will soon be joined by others, and the ALMA team looks forward to making their first observations from the Chajnantor plateau. They plan to link three antennas by early 2010, and to make the first scientific observations with ALMA in the second half of 2011. ALMA will help astronomers answer important questions about our cosmic origins. The telescope will observe the Universe using light with millimeter and submillimeter wavelengths, between infrared light and radio waves in the electromagnetic spectrum. Light at these wavelengths comes from some of the coldest, and from some of the most distant objects in the cosmos. These include cold clouds of gas and dust where new stars are being born, or remote galaxies towards the edge of the observable universe. The Universe is relatively unexplored at submillimeter wavelengths, as the telescopes need extremely dry atmospheric conditions, such as those at Chajnantor, and advanced detector technology. The Atacama Large Millimeter/submillimeter Array

  2. Mobile Tracking Systems Using Meter Class Reflective Telescopes

    Science.gov (United States)

    Sturzenbecher, K.; Ehrhorn, B.

    This paper is a discussion on the use of large reflective telescopes on mobile tracking systems with modern instrument control systems. Large optics can be defined as reflective telescopes with an aperture of at least 20 inches in diameter. New carbon composite construction techniques allow for larger, stronger, and lighter telescopes ranging from 240 pounds for a 20 inch, to 800 pounds for a 32 inch, making them ideal for mobile tracking systems. These telescopes have better light gathering capability and produce larger images with greater detail at a longer range than conventional refractive lenses. In a mobile configuration these systems provide the ability to move the observation platform to the optimal location anywhere in the world. Mounting and systems integration - We will discuss how large telescopes can be physically fit to the mobile tracking system and the integration with the tracking systems' digital control system. We will highlight the remote control capabilities. We will discuss special calibration techniques available in a modern instrument control system such as star calibration, calibration of sensors. Tracking Performance - We will discuss the impact of using large telescopes on the performance of the mobile tracking system. We will highlight the capabilities for auto-tracking and sidereal rate tracking in a mobile mount. Large optics performance - We will discuss the advantages of two-mirror Ritchey-Chrétien reflective optics which offer in-focus imaging across the spectrum, from visible to Long Wave Infrared. These zero expansion optics won't lose figure or focus during temperature changes. And the carbon composite telescope tube is thermally inert. The primary mirror is a modern lightweight "dish" mirror for low thermal mass and is center supported/self balancing. Applications - We will discuss Visible - IR Imaging requirements, Optical Rangefinders, and capabilities for special filters to increase resolution in difficult conditions such as

  3. The UK biomass industry

    International Nuclear Information System (INIS)

    Billins, P.

    1998-01-01

    A brief review is given of the development of the biomass industry in the UK. Topics covered include poultry litter generation of electricity, gasification plants fuelled by short-rotation coppice, on-farm anaerobic digestion and specialized combustion systems, e.g. straw, wood and other agricultural wastes. (UK)

  4. Southern Fireworks above ESO Telescopes

    Science.gov (United States)

    1999-05-01

    telescope at La Silla on May 11, 1999, at 08:42 UT, under inferior observing conditions (seeing = 1.9 arcsec). The exposure time was 450 sec in a B(lue) filter. The optical image of the afterglow of GRB 990510 is indicated with an arrow in the upper part of the field that measures about 8 x 16 arcmin 2. The original scale is 0.24 pix/arcsec and there are 2k x 4k pixels in the original frame. North is up and East is left. Caption to PR Photo 22b/99 : This is a (false-)colour composite of the area around the optical image of the afterglow of GRB 990510, based on three near-infrared exposures with the SOFI multi-mode instrument at the 3.6-m ESO New Technology Telescope (NTT) at La Silla, obtained on May 10, 1999, between 23:15 and 23:45 UT. The exposure times were 10 min each in the J- (1.2 µm; here rendered in blue), H- (1.6 µm; green) and K-bands (2.2 µm; red); the image quality is excellent (0.6 arcsec). The field measures about 5 x 5 arcmin 2 ; the original pixel size is 0.29 arcsec. North is up and East is left. ESO PR Photo 22c/99 ESO PR Photo 22c/99 [Preview - JPEG: 400 x 235 pix - 81k] [Normal - JPEG: 800 x 469 pix - 244k] [High-Res - JPEG: 2732 x 1603 pix - 2.6M] ESO PR Photo 22d/99 ESO PR Photo 22d/99 [Preview - JPEG: 400 x 441 pix - 154k] [Normal - JPEG: 800 x 887 pix - 561k] [High-Res - JPEG: 2300 x 2537 pix - 2.3M] Caption to PR Photo 22c/99 : To the left is a reproduction of a short (30 sec) centering exposure in the V-band (green-yellow light), obtained with VLT ANTU and the multi-mode FORS1 instrument on May 11, 1999, at 03:48 UT under mediocre observing conditions (image quality 1.0 arcsec).The optical image of the afterglow of GRB 990510 is easily seen in the box, by comparison with an exposure of the same sky field before the explosion, made with the ESO Schmidt Telescope in 1986 (right).The exposure time was 120 min on IIIa-F emulsion behind a R(ed) filter. The field shown measures about 6.2 x 6.2 arcmin 2. North is up and East is left. Caption to PR

  5. Silicon Telescope Detectors

    CERN Document Server

    Gurov, Yu B; Sandukovsky, V G; Yurkovski, J

    2005-01-01

    The results of research and development of special silicon detectors with a large active area ($> 8 cm^{2}$) for multilayer telescope spectrometers (fulfilled in the Laboratory of Nuclear Problems, JINR) are reviewed. The detector parameters are listed. The production of totally depleted surface barrier detectors (identifiers) operating under bias voltage two to three times higher than depletion voltage is described. The possibility of fabrication of lithium drifted counters with a very thin entrance window on the diffusion side of the detector (about 10--20 $\\mu$m) is shown. The detector fabrication technique has allowed minimizing detector dead regions without degradation of their spectroscopic characteristics and reliability during long time operation in charge particle beams.

  6. Solar System Observations with the James Webb Space Telescope

    OpenAIRE

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; Ferruit, Pierre

    2014-01-01

    The James Webb Space Telescope will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar...

  7. Infrared thermography

    CERN Document Server

    Meola, Carosena

    2012-01-01

    This e-book conveys information about basic IRT theory, infrared detectors, signal digitalization and applications of infrared thermography in many fields such as medicine, foodstuff conservation, fluid-dynamics, architecture, anthropology, condition monitoring, non destructive testing and evaluation of materials and structures.

  8. San Pedro Martir Telescope: Mexican design endeavor

    Science.gov (United States)

    Toledo-Ramirez, Gengis K.; Bringas-Rico, Vicente; Reyes, Noe; Uribe, Jorge; Lopez, Aldo; Tovar, Carlos; Caballero, Xochitl; Del-Llano, Luis; Martinez, Cesar; Macias, Eduardo; Lee, William; Carramiñana, Alberto; Richer, Michael; González, Jesús; Sanchez, Beatriz; Lucero, Diana; Manuel, Rogelio; Segura, Jose; Rubio, Saul; Gonzalez, German; Hernandez, Obed; García, Mary; Lazaro, Jose; Rosales-Ortega, Fabian; Herrera, Joel; Sierra, Gerardo; Serrano, Hazael

    2016-08-01

    The Telescopio San Pedro Martir (TSPM) is a new ground-based optical telescope project, with a 6.5 meters honeycomb primary mirror, to be built in the Observatorio Astronomico Nacional on the Sierra San Pedro Martir (OAN-SPM) located in Baja California, Mexico. The OAN-SPM has an altitude of 2830 meters above sea level; it is among the best location for astronomical observation in the world. It is located 1830 m higher than the atmospheric inversion layer with 70% of photometric nights, 80% of spectroscopic nights and a sky brightness up to 22 mag/arcsec2. The TSPM will be suitable for general science projects intended to improve the knowledge of the universe established on the Official Mexican Program for Science, Technology and Innovation 2014-2018. The telescope efforts are headed by two Mexican institutions in name of the Mexican astronomical community: the Universidad Nacional Autonoma de Mexico and the Instituto Nacional de Astrofisica, Optica y Electronica. The telescope has been financially supported mainly by the Consejo Nacional de Ciencia y Tecnologia (CONACYT). It is under development by Mexican scientists and engineers from the Center for Engineering and Industrial Development. This development is supported by a Mexican-American scientific cooperation, through a partnership with the University of Arizona (UA), and the Smithsonian Astrophysical Observatory (SAO). M3 Engineering and Technology Corporation in charge of enclosure and building design. The TSPM will be designed to allow flexibility and possible upgrades in order to maximize resources. Its optical and mechanical designs are based upon those of the Magellan and MMT telescopes. The TSPM primary mirror and its cell will be provided by the INAOE and UA. The telescope will be optimized from the near ultraviolet to the near infrared wavelength range (0.35-2.5 m), but will allow observations up to 26μm. The TSPM will initially offer a f/5 Cassegrain focal station. Later, four folded Cassegrain and

  9. Single particle detecting telescope system

    International Nuclear Information System (INIS)

    Yamamoto, I.; Tomiyama, T.; Iga, Y.; Komatsubara, T.; Kanada, M.; Yamashita, Y.; Wada, T.; Furukawa, S.

    1981-01-01

    We constructed the single particle detecting telescope system for detecting a fractionally charged particle. The telescope consists of position detecting counters, wall-less multi-cell chambers, single detecting circuits and microcomputer system as data I/0 processor. Especially, a frequency of double particle is compared the case of the single particle detecting with the case of an ordinary measurement

  10. Building the Hubble Space Telescope

    International Nuclear Information System (INIS)

    O'dell, C.R.

    1989-01-01

    The development of the design for the Hubble Space Telescope (HST) is discussed. The HST optical system is described and illustrated. The financial and policy issues related to the development of the HST are considered. The actual construction of the HST optical telescope is examined. Also, consideration is given to the plans for the HST launch

  11. Stray light field dependence for large astronomical space telescopes

    Science.gov (United States)

    Lightsey, Paul A.; Bowers, Charles W.

    2017-09-01

    aspect ratio of the tubular baffle length to PM diameter. Additional analysis has been done to examine the stray light implications for the fields near the image of a bright source. This near field stray light is shown to be dependent on the Bidirectional Reflectance Distribution Function (BRDF) characteristics of the mirrors in the optical train. The near field stray light contribution is dominated by those mirrors closer to the focal plane compared to the contributions from the PM and SM. Hence the near field stray light is independent of the exterior telescope baffle geometry. Contributions from self-emission from the telescope have been compared to natural background for telescopes operating at infrared wavelengths.

  12. Far infrared polarimetry of W51A and M42

    Energy Technology Data Exchange (ETDEWEB)

    Cudlip, W; Furniss, I; King, K J; Jennings, R E [University Coll., London (UK). Dept. of Physics and Astronomy

    1982-09-01

    A far infrared polarimeter has been designed for use with a balloon-borne telescope. It uses a rapidly rotating wire grid polarizer with the chopping secondary mirror of the telescope synchronized to the rate of rotation. Observations of M42 using this system show a far infrared polarization of 2.2 +- 0.4 per cent, nearly orthogonal to the near infrared polarization which is usually attributed to dust absorption. Observations of W51A show a much smaller value of the polarization of 0.8 +- 0.5 per cent.

  13. UK ignores treaty obligations

    International Nuclear Information System (INIS)

    Roche, P.

    1995-01-01

    A detailed critique is offered of United Kingdom (UK) political policy with respect to the Non-Proliferation Treaty, an interim agreement valid while nuclear disarmament was supposed to occur, by a representative of Greenpeace, the anti-nuclear campaigning group. The author argues that the civil and military nuclear programmes are still firmly linked, and emphasises his opinions by quoting examples of how UK politicians have broken treaty obligations in order to pursue their own political, and in some cases financial, goals. It is argued that the treaty has failed to force nuclear countries to disarm because of its promoted civil nuclear power programmes. (U.K.)

  14. Seismic Imager Space Telescope

    Science.gov (United States)

    Sidick, Erkin; Coste, Keith; Cunningham, J.; Sievers,Michael W.; Agnes, Gregory S.; Polanco, Otto R.; Green, Joseph J.; Cameron, Bruce A.; Redding, David C.; Avouac, Jean Philippe; hide

    2012-01-01

    A concept has been developed for a geostationary seismic imager (GSI), a space telescope in geostationary orbit above the Pacific coast of the Americas that would provide movies of many large earthquakes occurring in the area from Southern Chile to Southern Alaska. The GSI movies would cover a field of view as long as 300 km, at a spatial resolution of 3 to 15 m and a temporal resolution of 1 to 2 Hz, which is sufficient for accurate measurement of surface displacements and photometric changes induced by seismic waves. Computer processing of the movie images would exploit these dynamic changes to accurately measure the rapidly evolving surface waves and surface ruptures as they happen. These measurements would provide key information to advance the understanding of the mechanisms governing earthquake ruptures, and the propagation and arrest of damaging seismic waves. GSI operational strategy is to react to earthquakes detected by ground seismometers, slewing the satellite to point at the epicenters of earthquakes above a certain magnitude. Some of these earthquakes will be foreshocks of larger earthquakes; these will be observed, as the spacecraft would have been pointed in the right direction. This strategy was tested against the historical record for the Pacific coast of the Americas, from 1973 until the present. Based on the seismicity recorded during this time period, a GSI mission with a lifetime of 10 years could have been in position to observe at least 13 (22 on average) earthquakes of magnitude larger than 6, and at least one (2 on average) earthquake of magnitude larger than 7. A GSI would provide data unprecedented in its extent and temporal and spatial resolution. It would provide this data for some of the world's most seismically active regions, and do so better and at a lower cost than could be done with ground-based instrumentation. A GSI would revolutionize the understanding of earthquake dynamics, perhaps leading ultimately to effective warning

  15. Origins Space Telescope: Breaking the Confusion Limit

    Science.gov (United States)

    Wright, Edward L.; Origins Space Telescope Science and Technology Definition Team

    2018-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s.OST will have a background-limited sensitivity for a background 27,000 times lower than the Herschel background caused by thermal emission from Herschel's warm telescope. For continuum observations the confusion limit in a diffraction-limited survey can be reached in very short integration times at longer far-infrared wavelengths. But the confusion limit can be pierced for both the nearest and the farthest objects to be observed by OST. For outer the Solar System the targets' motion across the sky will provide a clear signature in surveys repeated after an interval of days to months. This will provide a size-frequency distribution of TNOs that is not biased toward high albedo objects.For the distant Universe the first galaxies and the first metals will provide a third dimension of spectral information that can be measured with a long-slit, medium resolution spectrograph. This will allow 3Dmapping to measure source densities as a function of redshift. The continuum shape associated with sourcesat different redshifts can be derived from correlation analyses of these 3D maps.Fairly large sky areas can be scanned by moving the spacecraft at a constant angular rate perpendicular to the orientation of the long slit of the spectrograph, avoiding the high overhead of step-and-stare surveying with a large space observatory.We welcome you to contact the Science and Technology Definition Team (STDT) with your science needs and ideas by emailing us at ost_info@lists.ipac.caltech.edu

  16. The "Very Cool" James Webb Space Telescope!

    Science.gov (United States)

    Teague, Peter J. B.

    2018-01-01

    For over twenty years, scientists, engineers, technicians, and other personnel have been working on the next generation space telescope. As a partnership between NASA (National Aeronautics and Space Administration), CSA (Canadian Space Agency), and ESA (European Space Angency), the James Webb Space Telescope will complement the previous research performed by the Hubble by utilizing a larger primary mirror, which will also be optimized for infrared wavelengths. This combination will allow JWST to collect data and take images of light having traveled over 13.7 billion light years. This presentation will focus on the mission, as well as the contamination control challenges during the integration and testing in the NASA Goddard Spacecraft Systems Development and Integration Facility (SSDIF), one of the largest cleanrooms in the world. Additional information will be presented regarding space simulation testing down to a cool 20 degrees Kelvin [-424 degrees Fahrenheit] that will occur at Johnson Space Center in Houston, TX, and more testing and integration to happen at Northrop Grumman Corp., in Redondo Beach, CA. Launch of the JWST is currently scheduled for the spring of 2019 at Ariane Spaceport in French Guiana, South America.

  17. Toward Adaptive X-Ray Telescopes

    Science.gov (United States)

    O'Dell, Stephen L.; Atkins, Carolyn; Button, Tim W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peer; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffrey J.; hide

    2011-01-01

    Future x-ray observatories will require high-resolution (less than 1 inch) optics with very-large-aperture (greater than 25 square meter) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the surface areal density of the grazing-incidence mirrors to about 1 kilogram per square meter or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve adaptive (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, adaptive optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Generation-X (Gen-X) concept studies in the United States, and the Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom. This paper discusses relevant technological issues and summarizes progress toward adaptive x-ray telescopes.

  18. UK nuclear installations

    International Nuclear Information System (INIS)

    Gronow, W.S.

    Regulations and conditions for the commissioning of nuclear power plants in the UK, their siting, licence conditions, design safety assessment, inspection during construction and conditions for safety in operation are listed. (J.P.)

  19. UK victims of trafficking

    Directory of Open Access Journals (Sweden)

    Bob Burgoyne

    2006-05-01

    Full Text Available Analysis of court cases shows how hard it is forvictims of trafficking to win the right to remain in the UK. Case law is inconsistent and more research and data collection are urgently needed.

  20. Infrared reflection nebulae in Orion Molecular Cloud

    International Nuclear Information System (INIS)

    Pendleton, Y.; Werner, M.W.; Capps, R.; Lester, D.; Hawaii Univ., Honolulu; Texas Univ., Austin)

    1986-01-01

    New observations of Orion Molecular Cloud 2 have been made from 1 to 100 microns using the NASA Infrared Telescope Facility and the Kuiper Airborne Observatory. An extensive program of polarimetry, photometry, and spectrophotometry has shown that the extended emission regions associated with two of the previously known near-infrared sources, IRS 1 and IRS 4, are infrared reflection nebulae, and that the compact sources IRS 1 and IRS 4 are the main luminosity sources in the cloud. The constraints from the far-infrared observations and an analysis of the scattered light from the IRS 1 nebula show that OMC-2/IRS 1 can be characterized by L of 500 solar luminosities or less and T of roughly 1000 K. The near-infrared albedo of the grains in the IRS 1 nebula is greater than 0.08. 27 references

  1. Lightweighted ZERODUR for telescopes

    Science.gov (United States)

    Westerhoff, T.; Davis, M.; Hartmann, P.; Hull, T.; Jedamzik, R.

    2014-07-01

    The glass ceramic ZERODUR® from SCHOTT has an excellent reputation as mirror blank material for earthbound and space telescope applications. It is known for its extremely low coefficient of thermal expansion (CTE) at room temperature and its excellent CTE homogeneity. Recent improvements in CNC machining at SCHOTT allow achieving extremely light weighted substrates up to 90% incorporating very thin ribs and face sheets. In 2012 new ZERODUR® grades EXPANSION CLASS 0 SPECIAL and EXTREME have been released that offer the tightest CTE grades ever. With ZERODUR® TAILORED it is even possible to offer ZERODUR® optimized for customer application temperature profiles. In 2013 SCHOTT started the development of a new dilatometer setup with the target to drive the industrial standard of high accuracy thermal expansion metrology to its limit. In recent years SCHOTT published several paper on improved bending strength of ZERODUR® and lifetime evaluation based on threshold values derived from 3 parameter Weibull distribution fitted to a multitude of stress data. ZERODUR® has been and is still being successfully used as mirror substrates for a large number of space missions. ZERODUR® was used for the secondary mirror in HST and for the Wolter mirrors in CHANDRA without any reported degradation of the optical image quality during the lifetime of the missions. Some years ago early studies on the compaction effects of electron radiation on ZERODUR® were re analyzed. Using a more relevant physical model based on a simplified bimetallic equation the expected deformation of samples exposed in laboratory and space could be predicted in a much more accurate way. The relevant ingredients for light weighted mirror substrates are discussed in this paper: substrate material with excellent homogeneity in its properties, sufficient bending strengths, space radiation hardness and CNC machining capabilities.

  2. On the origin of extragalactic infrared radiation

    International Nuclear Information System (INIS)

    Yorke, H.W.; Kollatschny, W.

    1985-01-01

    The paper concerns the infrared radiation flux of galaxies in terms of star formation processes and stellar evolution. Phase transitions in the interstellar medium are discussed, as well as stellar evolution and the time dependent appearance of a galaxy. (U.K.)

  3. BRDF measurements of sunshield and baffle materials for the IRAS telescope

    Science.gov (United States)

    Smith, S. M.

    1982-01-01

    Measurements of the far-infrared bidirectional reflectance distribution functions (BRDF) of four samples of Martin Black coating and one sample of gold coated aluminum from the telescope to be flown on the Infrared Astronomy Satellite (IRAS) are presented. At incidence angles near 35 deg Martin Black is a diffuse reflector at wavelengths as long as 36 microns. The gold coated aluminum sample from the IRAS sunshield has a visible grain which causes a strong diffraction enhancement of the BRDF at large nonspecular angles. This enhancement from the sunshield will increase the stray light level inside the telescope.

  4. Efficient Mosaicking of Spitzer Space Telescope Images

    Science.gov (United States)

    Jacob, Joseph; Makovoz, David; Eisenhardt, Peter

    2007-01-01

    A parallel version of the MOPEX software, which generates mosaics of infrared astronomical images acquired by the Spitzer Space Telescope, extends the capabilities of the prior serial version. In the parallel version, both the input image space and the output mosaic space are divided among the available parallel processors. This is the only software that performs the point-source detection and the rejection of spurious imaging effects of cosmic rays required by Spitzer scientists. This software includes components that implement outlier-detection algorithms that can be fine-tuned for a particular set of image data by use of a number of adjustable parameters. This software has been used to construct a mosaic of the Spitzer Infrared Array Camera Shallow Survey, which comprises more than 17,000 exposures in four wavelength bands from 3.6 to 8 m and spans a solid angle of about 9 square degrees. When this software was executed on 32 nodes of the 1,024-processor Cosmos cluster computer at NASA s Jet Propulsion Laboratory, a speedup of 8.3 was achieved over the serial version of MOPEX. The performance is expected to improve dramatically once a true parallel file system is installed on Cosmos.

  5. Advanced Athermal Telescopes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed innovative athermal telescope design uses advanced lightweight and high-stiffness material of Beryllium-Aluminum (Be-38Al). Peregrine's expertise with...

  6. The JCMT Telescope Management System

    Science.gov (United States)

    Tilanus, Remo P. J.; Jenness, Tim; Economou, Frossie; Cockayne, Steve

    Established telescopes often face a challenge when trying to incorporate new software standards and utilities into their existing real-time control system. At the JCMT we have successfully added important new features such as a Relational Database (the Telescope Management System---TMS), an online data Archive, and WWW based utilities to an, in part, 10-year old system. The new functionality was added with remarkably few alterations to the existing system. We are still actively expanding and exploring these new capabilities.

  7. Alt-Az Spacewatch Telescope

    Science.gov (United States)

    Gehrels, Tom

    1997-01-01

    This grant funded about one third of the cost of the construction of a telescope with an aperture 1.8 meters in diameter to discover asteroids and comets and investigate the statistics of their populations and orbital distributions. This telescope has been built to the PI's specifications and installed in a dome on Kitt Peak mountain in Arizona. Funds for the dome and building were provided entirely by private sources. The dome building and telescope were dedicated in a ceremony at the site on June 7, 1997. The attached abstract describes the parameters of the telescope. The telescope is a new item of capital property. It is permanently located in University of Arizona building number 910 in the Steward Observatory compound on Kitt Peak mountain in the Tohono O'odham Nation, Arizona. fts property tag number is A252107. This grant did not include funds for the coma corrector lens, instrument derotator, CCD detector, detector electronics, or computers to acquire or process the data. It also did not include funds to operate the telescope or conduct research with it. Funds for these items and efforts are pending from NASA and other sources.

  8. The Submillimeter Telescope (SMT) project

    International Nuclear Information System (INIS)

    Martin, R.N.; Baars, J.W.M.

    1990-01-01

    To exploit the potential of submillimeter astronomy, the Submillimeter Telescope (SMT) will be located at an altitude of 3178 meters on Emerald Peak 75 miles northeast of Tucson in Southern Arizona. The instrument is an altazimuth mounted f/13.8 Cassegrain homology telescope with two Nasmyth and bent Cassegrain foci. It will have diffraction limited performance at a wavelength of 300 microns and an operating overall figure accuracy of 15 microns rms. An important feature of the SMT is the construction of the primary and secondary reflectors out of aluminum-core CFRP face sheet sandwich panels, and the reflector backup structure and secondary support out of CFRP structural elements. This modern technology provides both a means for reaching the required precision of the SMT for both night and day operation (basically because of the low coefficient of thermal expansion and high strength-to-weight ratio of CFRP) and a potential route for the realization of lightweight telescopes of even greater accuracy in the future. The SMT will be the highest accuracy radio telescope ever built (at least a factor of 2 more accurate than existing telescopes). In addition, the SMT will be the first 10 m-class submillimeter telescope with a surface designed for efficient measurements at the important 350 microns wavelength atmospheric window. 9 refs

  9. Software framework for automatic learning of telescope operation

    Science.gov (United States)

    Rodríguez, Jose A.; Molgó, Jordi; Guerra, Dailos

    2016-07-01

    The "Gran Telescopio de Canarias" (GTC) is an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). The GTC Control System (GCS) is a distributed object and component oriented system based on RT-CORBA and it is responsible for the operation of the telescope, including its instrumentation. The current development state of GCS is mature and fully operational. On the one hand telescope users as PI's implement the sequences of observing modes of future scientific instruments that will be installed in the telescope and operators, in turn, design their own sequences for maintenance. On the other hand engineers develop new components that provide new functionality required by the system. This great work effort is possible to minimize so that costs are reduced, especially if one considers that software maintenance is the most expensive phase of the software life cycle. Could we design a system that allows the progressive assimilation of sequences of operation and maintenance of the telescope, through an automatic self-programming system, so that it can evolve from one Component oriented organization to a Service oriented organization? One possible way to achieve this is to use mechanisms of learning and knowledge consolidation to reduce to the minimum expression the effort to transform the specifications of the different telescope users to the operational deployments. This article proposes a framework for solving this problem based on the combination of the following tools: data mining, self-Adaptive software, code generation, refactoring based on metrics, Hierarchical Agglomerative Clustering and Service Oriented Architectures.

  10. Alignment and phasing of deployable telescopes

    Science.gov (United States)

    Woolf, N. J.; Ulich, B. L.

    1983-01-01

    The experiences in coaligning and phasing the Multi-Mirror Telescope (MMT), together with studies in setting up radio telescopes, are presented. These experiences are discussed, and on the basis they furnish, schemes are suggested for coaligning and phasing four large future telescopes with complex primary mirror systems. These telescopes are MT2, a 15-m-equivalent MMT, the University of California Ten Meter Telescope, the 10 m sub-mm wave telescope of the University of Arizona and the Max Planck Institute for Radioastronomy, and the Large Deployable Reflector, a future space telescope for far-IR and sub-mm waves.

  11. Infrared radiation from dark globules

    International Nuclear Information System (INIS)

    Spencer, R.G.; Leung, C.M.

    1978-01-01

    Theoretical models are constructed by which to study the infrared emission from dark globules heated by the interstellar radiation field (ISRF). The effects of cloud parameters (grain type, optical depth, and density inhomogeneity) on the emergent spectrum and infrared surface brightnesses are studied. Compared with clouds which have internal heat sources, the emergent flux for globules is found to be at least a factor of 10 smaller and to peak at wavelengths 100 μm< or =lambda< or =130 μm for graphite clouds and 310 μm< or =lambda< or =550 μm for silicate clouds. Either limb brightening or limb darkening in the infrared can occur, which depends sensitively on the optical depth. For globules of moderate extinction (greater than approx.10 in the visible), significant infrared limb brightening occurs at wavelengths of grain emission (20 μm< or =lambda< or =600 μm). A physical interpretation of these results is presented. To help remove ambiguities from interpretations of future observations, the observable effects of a grain mixture, variation of the ISRF, as well as beam dilution are examined in detail. The presence of a second grain component alters the emergent spectrum significantly. For a variation of the ISRF within wide limits, the ratio of surface to central temperature (T/sub s//T/sub c/) of an optically thick cloud remains fairly constant (3< or approx. =T/sub s//T/sub c/< or approx. =4). Infrared limb brightening may be smoothed out by beam dilution as well as by density inhomogeneities. Finally, the expected flux densities in the infrared of a typical globule are presented for different beam sizes. The predicted fluxes are within the detection threshold of currently available infrared detectors, using either ground-based or balloon-borne telescopes

  12. VizieR Online Data Catalog: Space telescope RM project. V. NGC5548 sp. monitoring (Pei+, 2017)

    Science.gov (United States)

    Pei, L.; Fausnaugh, M. M.; Barth, A. J.; Peterson, B. M.; Bentz, M. C.; De Rosa, G.; Denney, K. D.; Goad, M. R.; Kochanek, C. S.; Korista, K. T.; Kriss, G. A.; Pogge, R. W.; Bennert, V. N.; Brotherton, M.; Clubb, K. I.; Dalla Bonta, E.; Filippenko, A. V.; Greene, J. E.; Grier, C. J.; Vestergaard, M.; Zheng, W.; Adams, S. M.; Beatty, T. G.; Bigley, A.; Brown, J. E.; Brown, J. S.; Canalizo, G.; Comerford, J. M.; Coker, C. T.; Corsini, E. M.; Croft, S.; Croxall, K. V.; Deason, A. J.; Eracleous, M.; Fox, O. D.; Gates, E. L.; Henderson, C. B.; Holmbeck, E.; Holoien, T. W.-S.; Jensen, J. J.; Johnson, C. A.; Kelly, P. L.; Kim, S.; King, A.; Lau, M. W.; Li, M.; Lochhaas, C.; Ma, Z.; Manne-Nicholas, E. R.; Mauerhan, J. C.; Malkan, M. A.; McGurk, R.; Morelli, L.; Mosquera, A.; Mudd, D.; Sanchez, F. M.; Nguyen, M. L.; Ochner, P.; Ou-Yang, B.; Pancoast, A.; Penny, M. T.; Pizzella, A.; Poleski, R.; Runnoe, J.; Scott, B.; Schimoia, J. S.; Shappee, B. J.; Shivvers, I.; Simonian, G. V.; Siviero, A.; Somers, G.; Stevens, D. J.; Strauss, M. A.; Tayar, J.; Tejos, N.; Treu, T.; van Saders, J.; Vican, L.; Villanueva, S.; Yuk, H.; Zakamska, N. L.; Zhu, W.; Anderson, M. D.; Arevalo, P.; Bazhaw, C.; Bisogni, S.; Borman, G. A.; Bottorff, M. C.; Brandt, W. N.; Breeveld, A. A.; Cackett, E. M.; Carini, M. T.; Crenshaw, D. M.; de Lorenzo-Caceres, A.; Dietrich, M.; Edelson, R.; Efimova, N. V.; Ely, J.; Evans, P. A.; Ferland, G. J.; Flatland, K.; Gehrels, N.; Geier, S.; Gelbord, J. M.; Grupe, D.; Gupta, A.; Hall, P. B.; Hicks, S.; Horenstein, D.; Horne, K.; Hutchison, T.; Im, M.; Joner, M. D.; Jones, J.; Kaastra, J.; Kaspi, S.; Kelly, B. C.; Kennea, J. A.; Kim, M.; Kim, S. C.; Klimanov, S. A.; Lee, J. C.; Leonard, D. C.; Lira, P.; Macinnis, F.; Mathur, S.; McHardy, I. M.; Montouri, C.; Musso, R.; Nazarov, S. V.; Netzer, H.; Norris, R. P.; Nousek, J. A.; Okhmat, D. N.; Papadakis, I.; Parks, J. R.; Pott, J.-U.; Rafter, S. E.; Rix, H.-W.; Saylor, D. A.; Schnulle, K.; Sergeev, S. G.; Siegel, M.; Skielboe, A.; Spencer, M.; Starkey, D.; Sung, H.-I.; Teems, K. G.; Turner, C. S.; Uttley, P.; Villforth, C.; Weiss, Y.; Woo, J.-H.; Yan, H.; Young, S.; Zu, Y.

    2017-10-01

    Spectroscopic data were obtained from five telescopes: the McGraw-Hill 1.3m telescope at the MDM Observatory (4225-5775Å; median S/N=118), the Shane 3m telescope at the Lick Observatory (Kast Double Spectrograph: 3250-7920Å; median S/N=194), the 1.22m Galileo telescope at the Asiago Astrophysical Observatory (3250-7920Å; median S/N=160), the 3.5m telescope at Apache Point Observatory (APO; Dual Imaging Spectrograph: 4180-5400Å, median S/N =160), and the 2.3m telescope at the Wyoming Infrared Observatory (WIRO; 5599-4399Å; median S/N=217). The optical spectroscopic monitoring targeting NGC 5548 began on 2014 January 4 and continued through 2014 July 6 with approximately daily cadence. MDM contributed the largest number of spectra with 143 epochs. (1 data file).

  13. Using New Media to Spread the Word About the James Webb Space Telescope

    Science.gov (United States)

    Masetti, Maggie; Krishnamurthi, A.

    2008-05-01

    The James Webb Space Telescope is a 6.5 m infrared telescope that will be launched in 2013. This modern telescope will look very different from the simple telescope Galileo used to look up at the skies 400 years ago. Modern technology, coupled with scientific curiosity, is enabling science to help us understand a Universe Galileo had not dreamed of in his time. The International Year of Astronomy presents an excellent opportunity to take the public along on the journey of the development of the Webb Telescope and its technological innovations. In keeping with the cutting-edge nature of the Webb, its education and public outreach (EPO) team is using a variety of new media to engage the public. We will discuss several of our EPO projects including our website, exhibits and displays in Second Life (an internet-based virtual world), and involvement in podcasts. Webb's EPO team is looking to expand past a passive web presence to engage the new and growing internet-savvy audiences. We are making our website more interactive through a variety of means, including a Flash game that allows the user to compare the Webb to a common reflecting telescope. This will enable the user to learn about the changes in telescopes that have come about since Galileo's time. We are also taking advantage of other new media opportunities as they present themselves - we participate in podcasts and have an engaging presence for the Webb Telescope on NASA's "islands” in Second Life.

  14. A Scientific Revolution: The Hubble and James Webb Space Telescopes

    Science.gov (United States)

    Gardner, Jonathan P.

    2010-01-01

    Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss some of the important discoveries of the last decade, from dwarf planets in the outer Solar System to the mysterious dark energy that overcomes gravity to accelerate the expansion of the Universe. The next decade will be equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. An infrared-optimized 6.5m space telescope, Webb is designed to find the first galaxies that formed in the early universe and to peer into the dusty gas clouds where stars and planets are born. With MEMS technology, a deployed primary mirror and a tennis-court sized sunshield, the mission presents many technical challenges. I will describe Webb's scientific goals, its design and recent progress in constructing the observatory. Webb is scheduled for launch in 2014.

  15. Moving toward queue operations at the Large Binocular Telescope Observatory

    Science.gov (United States)

    Edwards, Michelle L.; Summers, Doug; Astier, Joseph; Suarez Sola, Igor; Veillet, Christian; Power, Jennifer; Cardwell, Andrew; Walsh, Shane

    2016-07-01

    The Large Binocular Telescope Observatory (LBTO), a joint scientific venture between the Instituto Nazionale di Astrofisica (INAF), LBT Beteiligungsgesellschaft (LBTB), University of Arizona, Ohio State University (OSU), and the Research Corporation, is one of the newest additions to the world's collection of large optical/infrared ground-based telescopes. With its unique, twin 8.4m mirror design providing a 22.8 meter interferometric baseline and the collecting area of an 11.8m telescope, LBT has a window of opportunity to exploit its singular status as the "first" of the next generation of Extremely Large Telescopes (ELTs). Prompted by urgency to maximize scientific output during this favorable interval, LBTO recently re-evaluated its operations model and developed a new strategy that augments classical observing with queue. Aided by trained observatory staff, queue mode will allow for flexible, multi-instrument observing responsive to site conditions. Our plan is to implement a staged rollout that will provide many of the benefits of queue observing sooner rather than later - with more bells and whistles coming in future stages. In this paper, we outline LBTO's new scientific model, focusing specifically on our "lean" resourcing and development, reuse and adaptation of existing software, challenges presented from our one-of-a-kind binocular operations, and lessons learned. We also outline further stages of development and our ultimate goals for queue.

  16. Telescope Innovations Improve Speed, Accuracy of Eye Surgery

    Science.gov (United States)

    2013-01-01

    One of the main components of NASA's vision for the future of space exploration will actually have a keen eye for the past. The James Webb Space Telescope (JWST), scheduled to launch in 2018, will have spectacular sight, after it reaches orbit, one of its main goals is to observe the first galaxies that formed in the early universe. "JWST offers new capabilities in the infrared well beyond what we can see from current telescopes, either on the ground or in space. It will let us explore the early universe, extrasolar planets, and really, all branches of astrophysics," says Lee Feinberg, optical telescope element manager for the JWST at Goddard Space Flight Center. Building such a keen space telescope is an astronomic task. Because JWST will gaze over such incredible distances, it requires very large mirrors. In fact, the primary mirror will be more than two stories in diameter and consists of 18 separate segments. Each segment must be perfectly smooth, flat, and scratch-free in order to deliver a view 13 billion light years away. Construction of the 18 mirror segments involved measuring, grinding, polishing, and testing - and more measuring, grinding, polishing, and testing - and more measuring, grinding, polishing, and testing (you get the idea). One of the most time consuming steps of the mirror development process, the grinding phase, can take years.

  17. Infrared observations of AE Aquarii

    Science.gov (United States)

    Tanzi, E. G.; Chincarini, G.; Tarenghi, M.

    1981-01-01

    Broadband infrared observations of the cataclysmic variable AE Aquarii are reported. The observations were obtained in the J, H, K and L filters with the InSb photometer attached to the 1-m telescope of the European Southern Observatory. The infrared energy distribution observed from 0.35 to 3.5 microns for phase 0.5 suggests a spectral type of K5 V for the secondary and a distance to the system of approximately 70 pc if an absolute magnitude of 7.3 is assumed. Monitoring of the flux at 2.2 microns reveals a variability with an amplitude of approximately 0.3 magnitude over one third of the orbital period, the nature of which is under investigation.

  18. New infrared observations of IRS 1, IRS 3, and the adjacent nebula in the OMC-2 cluster

    International Nuclear Information System (INIS)

    Pendelton, Y.; Werner, M.; Dinerstein, H.

    1984-01-01

    Recent reports show that near infrared reflection nebulae are often observed around embedded protostellar objects. New observations are here reported of the infrared cluster of low luminosity protostars in Orion Molecular Cloud 2 (OMC2). It has been determined that the asymmetric distribution of the extended emission seen about IRS1 is in fact another infrared reflection nebula. Observations of near infrared polarimetry, photometry, and spectrophotometry were carried out at the NASA Infrared Telescope Facility October 1982 and January 1983. (author)

  19. First solar radio spectrometer deployed in Scotland, UK

    Science.gov (United States)

    Monstein, Christian

    2012-10-01

    A new Callisto solar radio spectrometer system has recently been installed and set into operation at Acre Road Observatory, a facility of University of Glasgow, Scotland UK. There has been an Observatory associated with Glasgow University since 1757, and they presently occupy two different sites. The main observatory ('Acre Road') is close to the Garscube Estate on the outskirts of the city of Glasgow. The outstation ('Cochno', housing the big 20 inch Grubb Parsons telescope) is located farther out at a darker site in the Kilpatrick Hills. The Acre Road Observatory comprises teaching and research labs, a workshop, the main dome housing the 16 inch Meade, the solar dome, presently housing the 12 inch Meade, a transit house containing the transit telescope, a 3m HI radio telescope and a 408 MHz pulsar telescope. They also have 10 and 8 inch Meade telescopes and several 5 inch Celestron instruments. There is a small planetarium beneath the solar dome. The new Callisto instrument is mainly foreseen for scientific solar burst observations as well as for student projects and for 'bad-weather' outreach activities.

  20. UK Mission to CERN

    CERN Multimedia

    2004-01-01

    At the end of June, nine experts from UK industry visited CERN to study techniques for developing distributed computing systems and to look at some specific applications. In a packed three-day programme, almost 40 CERN experts presented a comprehensive survey of achievements.

  1. Trick or Treat and Telescopes

    Science.gov (United States)

    Buratti, Bonnie J.; Meinke, Bonnie K.; Schmude, Richard W.

    2017-10-01

    Based on an activity that DPS member Richard Schmude Jr. has been doing for years, with over 5000 children reached, DPS initiated in 2016 a pilot program entitled “Trick-or-Treat and Telescopes.” DPS encouraged its members to put out their telescopes during trick-or-treat time on Halloween, in their own lawns or in a neighbor’s lawn with better viewing (or more traffic). The program will be continued in 2017. This year should offer good viewing with a waxing gibbous moon and Saturn visible. The program was also advertised though the Night Sky Network, a consortium of astronomy clubs. The following website gives advice and connections to resources.https://dps.aas.org/education/trick-or-treat-and-telescopes acknowledged.

  2. Scientific management of Space Telescope

    Science.gov (United States)

    Odell, C. R.

    1981-01-01

    A historical summay is given on the science management of the Space Telescope, the inception of which began in 1962, when scientists and engineers first recommended the development of a nearly diffraction limited substantial-size optical telescope. Phase A, the feasibility requirements generation phase, began in 1971 and consisted largely of NASA scientists and a NASA design. Phase B, the preliminary design phase, established a tiered structure of scientists, led by the Large Space Telescope operations and Management Work Group. A Mission Operations Working Group headed six instrument definition teams to develop the essential instrument definitions. Many changes took place during Phase B, before design and development, which began in 1978 and still continues today.

  3. Space Telescope maintenance and refurbishment

    Science.gov (United States)

    Trucks, H. F.

    1983-01-01

    The Space Telescope (ST) represents a new concept regarding spaceborne astronomical observatories. Maintenance crews will be brought to the orbital worksite to make repairs and replace scientific instruments. For major overhauls the telescope can be temporarily returned to earth with the aid of the Shuttle. It will, thus, be possible to conduct astronomical studies with the ST for two decades or more. The five first-generation scientific instruments used with the ST include a wide field/planetary camera, a faint object camera, a faint object spectrograph, a high resolution spectrograph, and a high speed photometer. Attention is given to the optical telescope assembly, the support systems module, aspects of mission and science operations, unscheduled maintenance, contingency orbital maintenance, planned on-orbit maintenance, ground maintenance, ground refurbishment, and ground logistics.

  4. LSST telescope and site status

    Science.gov (United States)

    Gressler, William J.

    2016-07-01

    The Large Synoptic Survey Telescope (LSST) Project1 received its construction authorization from the National Science Foundation in August 2014. The Telescope and Site (T and S) group has made considerable progress towards completion in subsystems required to support the scope of the LSST science mission. The LSST goal is to conduct a wide, fast, deep survey via a 3-mirror wide field of view optical design, a 3.2-Gpixel camera, and an automated data processing system. The summit facility is currently under construction on Cerro Pachón in Chile, with major vendor subsystem deliveries and integration planned over the next several years. This paper summarizes the status of the activities of the T and S group, tasked with design, analysis, and construction of the summit and base facilities and infrastructure necessary to control the survey, capture the light, and calibrate the data. All major telescope work package procurements have been awarded to vendors and are in varying stages of design and fabrication maturity and completion. The unique M1M3 primary/tertiary mirror polishing effort is completed and the mirror now resides in storage waiting future testing. Significant progress has been achieved on all the major telescope subsystems including the summit facility, telescope mount assembly, dome, hexapod and rotator systems, coating plant, base facility, and the calibration telescope. In parallel, in-house efforts including the software needed to control the observatory such as the scheduler and the active optics control, have also seen substantial advancement. The progress and status of these subsystems and future LSST plans during this construction phase are presented.

  5. A monolithic silicon detector telescope

    International Nuclear Information System (INIS)

    Cardella, G.; Amorini, F.; Cabibbo, M.; Di Pietro, A.; Fallica, G.; Franzo, G.; Figuera, P.; Papa, M.; Pappalardo, G.; Percolla, G.; Priolo, F.; Privitera, V.; Rizzo, F.; Tudisco, S.

    1996-01-01

    An ultrathin silicon detector (1 μm) thick implanted on a standard 400 μm Si-detector has been built to realize a monolithic telescope detector for simultaneous charge and energy determination of charged particles. The performances of the telescope have been tested using standard alpha sources and fragments emitted in nuclear reactions with different projectile-target colliding systems. An excellent charge resolution has been obtained for low energy (less than 5 MeV) light nuclei. A multi-array lay-out of such detectors is under construction to charge identify the particles emitted in reactions induced by low energy radioactive beams. (orig.)

  6. Artificial Intelligence in Autonomous Telescopes

    Science.gov (United States)

    Mahoney, William; Thanjavur, Karun

    2011-03-01

    Artificial Intelligence (AI) is key to the natural evolution of today's automated telescopes to fully autonomous systems. Based on its rapid development over the past five decades, AI offers numerous, well-tested techniques for knowledge based decision making essential for real-time telescope monitoring and control, with minimal - and eventually no - human intervention. We present three applications of AI developed at CFHT for monitoring instantaneous sky conditions, assessing quality of imaging data, and a prototype for scheduling observations in real-time. Closely complementing the current remote operations at CFHT, we foresee further development of these methods and full integration in the near future.

  7. UK Royal Navy WWII Logbooks

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2006, the UK and NOAA's Climate Database Modernization Program (CDMP) funded the imaging of approximately 8,000 Royal Navy logbooks in the UK National Archives...

  8. Hewitt launches Research Councils UK

    CERN Multimedia

    2002-01-01

    "Trade and Industry Secretary Patricia Hewitt today launched 'Research Councils UK' - a new strategic partnership that will champion research in science, engineering and technology across the UK" (1 page).

  9. The CFRP primary structure of the MIRI instrument onboard the James Webb Space Telescope

    DEFF Research Database (Denmark)

    Jessen, Niels Christian; Nørgaard-Nielsen, Hans Ulrik; Schroll, J

    2004-01-01

    The design of the Primary Structure of the Mid Infra-Red Instrument (MIRI) onboard the NASA/ESA James Webb Space Telescope will be presented. The main design driver is the energy flow from the 35 K "hot" satellite interface to the 7 K "cold" MIRI interface. Carbon fibre reinforced plastic (CFRP...

  10. WTS: A near-infrared transit survey

    Directory of Open Access Journals (Sweden)

    Hodgkin Simon

    2013-04-01

    Full Text Available The WFCAM Transit Survey is a transiting planet survey running on the United Kingdom Infrared Telescope targeting M dwarf stars in the near infrared. The survey has been operating since 2007 and gathering photometric time series of about 15000 M dwarf stars brighter than J = 17 mag. We identified and followed-up planet candidates from the most complete field and found two hot Jupiters around non-M dwarf hosts (WTS-1b & WTS-2b but found no planets around the M dwarfs.

  11. Results with the UKIRT infrared camera

    International Nuclear Information System (INIS)

    Mclean, I.S.

    1987-01-01

    Recent advances in focal plane array technology have made an immense impact on infrared astronomy. Results from the commissioning of the first infrared camera on UKIRT (the world's largest IR telescope) are presented. The camera, called IRCAM 1, employs the 62 x 58 InSb DRO array from SBRC in an otherwise general purpose system which is briefly described. Several imaging modes are possible including staring, chopping and a high-speed snapshot mode. Results to be presented include the first true high resolution images at IR wavelengths of the entire Orion nebula

  12. Neutrino telescopes in the World

    International Nuclear Information System (INIS)

    Ernenwein, J.-P.

    2007-01-01

    Neutrino astronomy has rapidly developed these last years, being the only way to get specific and reliable information about astrophysical objects still poorly understood.Currently two neutrino telescopes are operational in the World: BAIKAL, in the lake of the same name in Siberia, and AMANDA, in the ices of the South Pole. Two telescopes of the same type are under construction in the Mediterranean Sea: ANTARES and NESTOR. All these telescopes belong to a first generation, with an instrumented volume smaller or equal to 0.02 km3. Also in the Mediterranean Sea, the NEMO project is just in its starting phase, within the framework of a cubic kilometer size neutrino telescope study. Lastly, the ICECUBE detector, with a volume reaching about 1 km3, is under construction on the site of AMANDA experiment, while an extension of the BAIKAL detector toward km3 is under study. We will present here the characteristics of these experiments, as well as the results of their observations

  13. Push-To Telescope Mathematics

    Science.gov (United States)

    Teets, Donald

    2012-01-01

    Two coordinate systems are related here, one defined by the earth's equator and north pole, the other by the orientation of a telescope at some location on the surface of the earth. Applying an interesting though somewhat obscure property of orthogonal matrices and using the cross-product simplifies this relationship, revealing that a surprisingly…

  14. GISOT: a giant solar telescope

    Science.gov (United States)

    Hammerschlag, Robert H.; von der Lühe, Oskar F.; Bettonvil, Felix C.; Jägers, Aswin P.; Snik, Frans

    2004-10-01

    A concept is presented for an extremely large high-resolution solar telescope with an aperture of 11 m and diffraction limited for visual wavelengths. The structure of GISOT will be transparent to wind and placed on a transparent stiff tower. For efficient wind flushing, all optics, including the primary mirror, will be located above the elevation axis. The aperture will be of the order of 11 m, not rotatively symmetrical, but of an elongated shape with dimensions 11 x 4 m. It consists of a central on-axis 4 m mirror with on both sides 3 pieces of 2 m mirrors. The optical layout will be kept simple to guarantee quality and minimize stray light. A Coudé room for instruments is planned below the telescope. The telescope will not be housed in a dome-like construction, which interferes with the open principle. Instead the telescope will be protected by a foldable tent construction with a diameter of the order of 30 m, which doesn"t form any obstruction during observations, but can withstand the severe weather circumstances on mountain sites. Because of the nature of the solar scene, extremely high resolution in only one dimension is sufficient to solve many exciting problems in solar physics and in this respect the concept of GISOT is very promising.

  15. The Thirty-Meter Telescope

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The Thirty-Meter Telescope international observatory will enable transformational observations over the full cosmic timeline all the way from the first luminous objects in the Universe to the planets and moons of our own solar system. To realize its full scientific potential, TMT will be equipped with a powerful ...

  16. Monster telescope hunts blue planets

    CERN Multimedia

    Leake, J

    2003-01-01

    BRITAIN is to back a project to build the world's biggest telescope - so powerful that it could see life-bearing planets in other solar systems. It will need the largest mirror ever built at about 100 metres in diameter (1/2 page).

  17. An afocal telescope configuration for the ESA Ariel mission

    Science.gov (United States)

    Da Deppo, V.; Middleton, K.; Focardi, M.; Morgante, G.; Pace, E.; Claudi, R.; Micela, G.

    2017-09-01

    ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) is one of the three candidates for the next ESA medium-class science mission (M4) expected to be launched in 2026. This mission will be devoted to observing spectroscopically in the infrared (IR) a large population of known transiting planets in the neighborhood of the Solar System, opening a new discovery space in the field of extrasolar planets and enabling the understanding of the physics and chemistry of these far away worlds. ARIEL is based on a 1-m class telescope ahead of two spectrometer channels covering the band 1.95 to 7.8 microns. In addition there are four photometric channels: two wide band, also used as fine guidance sensors, and two narrow band. During its 3.5 years of operations from L2 orbit, ARIEL will continuously observe exoplanets transiting their host star. The ARIEL optical design is conceived as a fore-module common afocal telescope that will feed the spectrometer and photometric channels. The telescope optical design is composed of an off-axis portion of a two-mirror classic Cassegrain coupled to a tertiary off-axis paraboloidal mirror. The telescope and optical bench operating temperatures, as well as those of some subsystems, will be monitored and fine tuned/stabilised mainly by means of a thermal control subsystem (TCU-Telescope Control Unit) working in closed-loop feedback and hosted by the main Payload electronics unit, the Instrument Control Unit (ICU). Another important function of the TCU will be to monitor the telescope and optical bench thermistors when the Payload decontamination heaters will be switched on (when operating the instrument in Decontamination Mode) during the Commissioning Phase and cyclically, if required. Then the thermistors data will be sent by the ICU to the On Board Computer by means of a proper formatted telemetry. The latter (OBC) will be in charge of switching on and off the decontamination heaters on the basis of the thermistors readout

  18. Sizewell: UK power demand

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The Sizewell Inquiry was about whether the next power stations to be built in the UK should be nuclear or coal and, if nuclear, PWRs or AGRs. During the period of the Inquiry forecasts of demand for electricity were low. Now, however, it seems that the forecast demand is much increased. This uncertainty in demand and the wide regional variations are examined in some detail. Facts and figures on electricity sales (area by area) are presented. Also the minutes of supply lost per consumer per year. These show that security of supply is also a problem. It is also shown that the way electricity is used has changed. Whilst electricity generation has been changing to large-scale, centralised power stations the demand patterns may make smaller scale, quickly-constructed units more sensible. The questions considered at the Sizewell Inquiry may, indeed, no longer be the right ones. (UK)

  19. Overdenture dengan Pegangan Telescopic Crown

    Directory of Open Access Journals (Sweden)

    Pambudi Santoso

    2014-06-01

    Full Text Available Kaitan presisi merupakan alat retensi mekanis yang menghubungkan antara satu atau lebih pegangan gigi tiruan, yang bertujuan untuk menambah retensi dan/atau stabilisasi. Kaitan presisi dapat digunakan secara luas pada gigi tiruan cekat, gigi tiruan sebagian lepasan, overdenture, implant untuk retensi overdenture, dan protesa maksilo fasial. Overdenture dengan kaitan presisi dapat membantu dalam pembagian beban kunyah, meminimalkan trauma pada gigi pegangan dan jaringan lunak, meminimalkan resorbsi tulang, dan meningkatkan estetik dan pengucapan suara. Salah satu jenis dari kaitan presisi adalah telescopic crown, terdiri dari 2 macam mahkota, yaitu mahkota primer yang melekat secara permanen pada gigi penyangga, dan mahkota sekunder yang melekat pada gigi tiruan. Tujuan pemaparan kasus ini adalah untuk memberikan informasi tentang rehabilitasi pasien edentulous sebagian rahang atas dengan telescopic crown..  Pasien wanita berusia 45 tahun datang ke klinik prostodonsia RSGM Prof.Soedomo dengan keluhan ingin dibuatkan gigi tiruan. Pasien kehilangan gigi 11 12 15 16 17 21 22 24 25 26 dan 27 yang diindikasikan untuk pembuatan overdenture gigi tiruan sebagian lepasan (GTS kerangka logam dengan pegangan telescopic crown pada gigi 13 dan 14 dengan sistem parallel-sided crown. Tahap-tahap pembuatan telescopic crown yaitu mencetak model study dengan catatan gigit pendahuluan. Perawatan saluran dilakukan pada akar gigi 13, dilanjutkan pemasangan pasak fiber serta rewalling dinding bukal. Gigi 13 dan 14 dilakukan preparasi mahkota penuh, dilanjutkan dengan pencetakan model kerja untuk coping primer dan kerangka logam dengan metode double impression. Coping primer disementasi pada gigi penyangga, dilanjutkan pasang coba coping sekunder beserta kerangka logam. Selanjutnya dilakukan pencatatan gigit, pencetakan model kerja, penyusunan gigi dan pasang coba penyusunan gigi pada pasien. Prosedur dilanjutkan dengan proses di laboratorium, serta insersi pada

  20. UK Tax Update

    Energy Technology Data Exchange (ETDEWEB)

    Deakin, John F.

    1998-07-01

    The presentation deals with the North Sea fiscal regime, a modern system for corporation tax payments, transfer pricing, general anti-avoidance rule for direct taxes, treaty refunds, deductibility of interest for corporation tax, UK/US double taxation convention, and plain and simple tax legislation. Part of the background for the presentation was the fact that in England a new Labour Government had replaced the Conservatives and the new Chancellor had announced a review of the North Sea fiscal regime.

  1. Kalman Filter for Calibrating a Telescope Focal Plane

    Science.gov (United States)

    Kang, Bryan; Bayard, David

    2006-01-01

    The instrument-pointing frame (IPF) Kalman filter, and an algorithm that implements this filter, have been devised for calibrating the focal plane of a telescope. As used here, calibration signifies, more specifically, a combination of measurements and calculations directed toward ensuring accuracy in aiming the telescope and determining the locations of objects imaged in various arrays of photodetectors in instruments located on the focal plane. The IPF Kalman filter was originally intended for application to a spaceborne infrared astronomical telescope, but can also be applied to other spaceborne and ground-based telescopes. In the traditional approach to calibration of a telescope, (1) one team of experts concentrates on estimating parameters (e.g., pointing alignments and gyroscope drifts) that are classified as being of primarily an engineering nature, (2) another team of experts concentrates on estimating calibration parameters (e.g., plate scales and optical distortions) that are classified as being primarily of a scientific nature, and (3) the two teams repeatedly exchange data in an iterative process in which each team refines its estimates with the help of the data provided by the other team. This iterative process is inefficient and uneconomical because it is time-consuming and entails the maintenance of two survey teams and the development of computer programs specific to the requirements of each team. Moreover, theoretical analysis reveals that the engineering/ science iterative approach is not optimal in that it does not yield the best estimates of focal-plane parameters and, depending on the application, may not even enable convergence toward a set of estimates.

  2. Space astronomical telescopes and instruments; Proceedings of the Meeting, Orlando, FL, Apr. 1-4, 1991

    Science.gov (United States)

    Bely, Pierre Y.; Breckinridge, James B.

    The present volume on space astronomical telescopes and instruments discusses lessons from the HST, telescopes on the moon, future space missions, and mirror fabrication and active control. Attention is given to the in-flight performance of the Goddard high-resolution spectrograph of the HST, the initial performance of the high-speed photometer, results from HST fine-guidance sensors, and reconstruction of the HST mirror figure from out-of-focus stellar images. Topics addressed include system concepts for a large UV/optical/IR telescope on the moon, optical design considerations for next-generation space and lunar telescopes, the implications of lunar dust for astronomical observatories, and lunar liquid-mirror telescopes. Also discussed are space design considerations for the Space Infrared Telescope Facility, the Hubble extrasolar planet interferometer, Si:Ga focal-plane arrays for satellite and ground-based telescopes, microchannel-plate detectors for space-based astronomy, and a method for making ultralight primary mirrors.

  3. The Dutch Open Telescope: History, Status, Prospects

    NARCIS (Netherlands)

    Rutten, R.J.

    1999-01-01

    After many years of persistent telescope design and telescope construction, R.H. Hammerschlag has installed his Dutch Open Telescope (DOT) on La Palma. I brie y review its history and design. The future of optical solar physics at Utrecht hinges on a recently-funded three- year DOT science

  4. The 1.3-m Robotically Controlled Telescope (RCT) at Kitt Peak - A Fifty year old dream Realized: Telescope Characteristics, Current Research and Education Progr

    Science.gov (United States)

    Guinan, Edward; Gelderman, Richard; Strolger, Louis-Gregory; Carini, Michael T.; McGruder, Charles, III; Campbell, Rachel; Walter, Donald K.; Davis, Donald R.; Tedesco, Edward F.; Engle, Scott G.

    2011-03-01

    The 1.3 m Robotically Controlled Telescope (RCT) on Kitt Peak has a rich history, including its role as a prototype for remotely controlled telescopes during the 1960s. As such, the RCT could be considered one of the first - Telescopes from Afar. The telescope, originally called the Remotely Controlled Telescope, has been renamed the Robotically Controlled Telescope to reflect the change in operational control and mode of use. The RCT was a conceptual precursor of today's robotic telescopes, but the actual operation of a remotely controlled telescope was technologically premature for its time, and was subsequently manually operated primarily to conduct optical and infrared observations as well being used as a test bed for new spectroscopic and photometric instruments. In 1995 budget constraints forced the closing of the telescope as part of the Kitt Peak National Observatory (KPNO), following nearly 30 years of distinguished service to KPNO. A request for proposals to operate this telescope was issued to the science community. The RCT consortium, lead by Western Kentucky University, was the successful proposer for operation of the telescope. After several difficult years of retrofitting, refurbishing, and automating the telecope and observatory dome, the telescope has returned to routine science operations in November 2009. The RCT has operated smoothly since that time, with no major interruptions. Observations of objects of interest to the consortium partners (including: comets & asteroids, variable & binary stars, exoplanets, supernovae, quasars & blazars) are being routinely obtained and evaluated. One of the distinguishing features of the RCT is that it is an autonomous observatory designed to handle diverse optical imaging and photometry programs. These include being able to automatically deal with a wide range of observing parameters such as -integration time, sky conditions, repetitions, return visits, filters, air mass, non-sidereal objects, transients etc

  5. Infrared Heaters

    Science.gov (United States)

    1979-01-01

    The heating units shown in the accompanying photos are Panelbloc infrared heaters, energy savers which burn little fuel in relation to their effective heat output. Produced by Bettcher Manufacturing Corporation, Cleveland, Ohio, Panelblocs are applicable to industrial or other facilities which have ceilings more than 12 feet high, such as those pictured: at left the Bare Hills Tennis Club, Baltimore, Maryland and at right, CVA Lincoln- Mercury, Gaithersburg, Maryland. The heaters are mounted high above the floor and they radiate infrared energy downward. Panelblocs do not waste energy by warming the surrounding air. Instead, they beam invisible heat rays directly to objects which absorb the radiation- people, floors, machinery and other plant equipment. All these objects in turn re-radiate the energy to the air. A key element in the Panelbloc design is a coating applied to the aluminized steel outer surface of the heater. This coating must be corrosion resistant at high temperatures and it must have high "emissivity"-the ability of a surface to emit radiant energy. The Bettcher company formerly used a porcelain coating, but it caused a production problem. Bettcher did not have the capability to apply the material in its own plant, so the heaters had to be shipped out of state for porcelainizing, which entailed extra cost. Bettcher sought a coating which could meet the specifications yet be applied in its own facilities. The company asked The Knowledge Availability Systems Center, Pittsburgh, Pennsylvania, a NASA Industrial Applications Center (IAC), for a search of NASA's files

  6. Focusing Telescopes in Nuclear Astrophysics

    CERN Document Server

    Ballmoos, Peter von

    2007-01-01

    This volume is the first of its kind on focusing gamma-ray telescopes. Forty-eight refereed papers provide a comprehensive overview of the scientific potential and technical challenges of this nascent tool for nuclear astrophysics. The book features articles dealing with pivotal technologies such as grazing incident mirrors, multilayer coatings, Laue- and Fresnel-lenses - and even an optic using the curvature of space-time. The volume also presents an overview of detectors matching the ambitious objectives of gamma ray optics, and facilities for operating such systems on the ground and in space. The extraordinary scientific potential of focusing gamma-ray telescopes for the study of the most powerful sources and the most violent events in the Universe is emphasized in a series of introductory articles. Practicing professionals, and students interested in experimental high-energy astrophysics, will find this book a useful reference

  7. The Atacama Cosmology Telescope: Instrument

    Science.gov (United States)

    Thornton, Robert J.; Atacama Cosmology Telescope Team

    2010-01-01

    The 6-meter Atacama Cosmology Telescope (ACT) is making detailed maps of the Cosmic Microwave Background at Cerro Toco in northern Chile. In this talk, I focus on the design and operation of the telescope and its commissioning instrument, the Millimeter Bolometer Array Camera. The camera contains three independent sets of optics that operate at 148 GHz, 217 GHz, and 277 GHz with arcminute resolution, each of which couples to a 1024-element array of Transition Edge Sensor (TES) bolometers. I will report on the camera performance, including the beam patterns, optical efficiencies, and detector sensitivities. Under development for ACT is a new polarimeter based on feedhorn-coupled TES devices that have improved sensitivity and are planned to operate at 0.1 K.

  8. Spectroscopic Classification of Nine Optical Transients with the 2.5-m du Pont Telescope

    Science.gov (United States)

    Bose, Subhash; Holoien, Tom; Prieto, Jose L.; Dong, Subo; Chen, P.; Stanek, K. Z.

    2018-04-01

    We report spectroscopic observations and classifications of optical transients using the du Pont 2.5-m telescope (+ WFCCD) at Las Campanas Observatory. Targets were discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN, Shappee et al. 2014) (ATel #11391, ATel #11343, ATel #11459), Gaia Alerts (http://gsaweb.ast.cam.ac.uk/alerts/alertsindex) and A. Rest et al. (for 2018agk).

  9. RHCV Telescope System Operations Manual

    Science.gov (United States)

    2018-01-05

    KRISTOFFER A. SMITH-RODRIGUEZ, LTCOL, USAF Chief, Warfighter Interface Division Airman Systems Directorate This report is published in the...other system components via ASCOM protocols. 1. Start the MaxImDL application using the desktop shortcut (a) Start Observatory dialog, (b...the desktop shortcut (a) Select “Connect Telescope” from Startup menu in Telescope tab (b) Select “Look Up” icon on ribbon menu at the top right of

  10. Telescopic Overdenture: A Case Report

    OpenAIRE

    Shruthi, C. S.; Poojya, R.; Ram, Swati; Anupama,

    2017-01-01

    Patient: This report describes the case of a 68 year old female patient who presented with the chief complaint of difficulty in chewing and poor aesthetics due to missing teeth. The patient was interested in saving the remaining natural teeth and desired minimal tissue coverage from the prosthesis. After consideration of all the factors involved, it was deemed advisable to resort to a palate free maxillary telescopic complete denture and a mandibular removable partial denture. Discussion: Con...

  11. Telescopic mine roof-support

    Energy Technology Data Exchange (ETDEWEB)

    Piscitelli, A

    1989-05-17

    A mining roof support which includes a main body consisting of a pair of telescopically associated elongated members and which slide relative to each other to extend the support, engaging one of the members. A locking plate which is movable into engagement with the member by means of a lever operated cam causes tilting of the plate to engage the member and then to raise the member and lock it in the raised position. 1 fig.

  12. Telescopic Overdenture: A Case Report

    Science.gov (United States)

    Shruthi, C. S.; Poojya, R.; Ram, Swati; Anupama

    2017-01-01

    Patient: This report describes the case of a 68 year old female patient who presented with the chief complaint of difficulty in chewing and poor aesthetics due to missing teeth. The patient was interested in saving the remaining natural teeth and desired minimal tissue coverage from the prosthesis. After consideration of all the factors involved, it was deemed advisable to resort to a palate free maxillary telescopic complete denture and a mandibular removable partial denture. Discussion: Considering the age of the patient and the cost involved, implant supported prosthesis was ruled out as a treatment option for the patient. A telescopic denture was chosen as a favourable treatment option since it overcomes many of the problems posed by conventional complete dentures like progressive bone loss, lower stability and retention, loss of periodontal proprioception and low masticatory efficiency. It also provides minimal tissue coverage and better distribution of forces. Evaluation of occlusion, esthetics, phonetics and comfort after 24 hours, 1 week and 1 month of treatment showed that the patient was happy with the prosthesis and was able to speak and chew well. Conclusion: Telescopic overdentures have better retention and stability as compared to conventional complete dentures. They improve the chewing efficiency, patient comfort and also decrease the alveolar bone resorption. As such they are an excellent alternative to conventional complete denture treatment. PMID:28533736

  13. Black holes at neutrino telescopes

    International Nuclear Information System (INIS)

    Kowalski, M.; Ringwald, A.; Tu, H.

    2002-01-01

    In scenarios with extra dimensions and TeV-scale quantum gravity, black holes are expected to be produced in the collision of light particles at center-of-mass energies above the fundamental Planck scale with small impact parameters. Black hole production and evaporation may thus be studied in detail at the large hadron collider (LHC). But even before the LHC starts operating, neutrino telescopes such as AMANDA/IceCube, ANTARES, Baikal, and RICE have an opportunity to search for black hole signatures. Black hole production in the scattering of ultrahigh energy cosmic neutrinos on nucleons in the ice or water may initiate cascades and through-going muons with distinct characteristics above the Standard Model rate. In this Letter, we investigate the sensitivity of neutrino telescopes to black hole production and compare it to the one expected at the Pierre Auger Observatory, an air shower array currently under construction, and at the LHC. We find that, already with the currently available data, AMANDA and RICE should be able to place sensible constraints in black hole production parameter space, which are competitive with the present ones from the air shower facilities Fly's Eye and AGASA. In the optimistic case that a ultrahigh energy cosmic neutrino flux significantly higher than the one expected from cosmic ray interactions with the cosmic microwave background radiation is realized in nature, one even has discovery potential for black holes at neutrino telescopes beyond the reach of LHC. (orig.)

  14. Academic Training: Deep Space Telescopes

    CERN Multimedia

    Françoise Benz

    2006-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 20, 21, 22, 23, 24 February from 11:00 to 12:00 - Council Chamber on 20, 21, 23, 24 February, TH Auditorium, bldg 4 - 3-006, on 22 February Deep Space Telescopes G. BIGNAMI / CNRS, Toulouse, F & Univ. di Pavia, I The short series of seminars will address results and aims of current and future space astrophysics as the cultural framework for the development of deep space telescopes. It will then present such new tools, as they are currently available to, or imagined by, the scientific community, in the context of the science plans of ESA and of all major world space agencies. Ground-based astronomy, in the 400 years since Galileo's telescope, has given us a profound phenomenological comprehension of our Universe, but has traditionally been limited to the narrow band(s) to which our terrestrial atmosphere is transparent. Celestial objects, however, do not care about our limitations, and distribute most of the information about their physics thro...

  15. EUSO-TA prototype telescope

    Energy Technology Data Exchange (ETDEWEB)

    Bisconti, Francesca, E-mail: francesca.bisconti@kit.edu

    2016-07-11

    EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.

  16. Telescopic Overdenture: A Case Report.

    Science.gov (United States)

    Shruthi, C S; Poojya, R; Ram, Swati; Anupama

    2017-03-01

    This report describes the case of a 68 year old female patient who presented with the chief complaint of difficulty in chewing and poor aesthetics due to missing teeth. The patient was interested in saving the remaining natural teeth and desired minimal tissue coverage from the prosthesis. After consideration of all the factors involved, it was deemed advisable to resort to a palate free maxillary telescopic complete denture and a mandibular removable partial denture. Considering the age of the patient and the cost involved, implant supported prosthesis was ruled out as a treatment option for the patient. A telescopic denture was chosen as a favourable treatment option since it overcomes many of the problems posed by conventional complete dentures like progressive bone loss, lower stability and retention, loss of periodontal proprioception and low masticatory efficiency. It also provides minimal tissue coverage and better distribution of forces. Evaluation of occlusion, esthetics, phonetics and comfort after 24 hours, 1 week and 1 month of treatment showed that the patient was happy with the prosthesis and was able to speak and chew well. Telescopic overdentures have better retention and stability as compared to conventional complete dentures. They improve the chewing efficiency, patient comfort and also decrease the alveolar bone resorption. As such they are an excellent alternative to conventional complete denture treatment.

  17. EUSO-TA prototype telescope

    Science.gov (United States)

    Bisconti, Francesca; JEM-EUSO Collaboration

    2016-07-01

    EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.

  18. Managing UK nuclear liabilities

    International Nuclear Information System (INIS)

    Sadnicki, Mike; MacKerron, Gordon.

    1997-01-01

    This paper sets out a framework for a fundamental reappraisal of the management of nuclear liabilities in the United Kingdom, built around two policy objectives, sustainable development and cost-effectiveness. The practical implications of the policy objectives are explored in relation to nuclear liability strategies, such as the adequacy or otherwise of current funding arrangements, the completeness of liability estimates and the distribution of financial responsibility between the public and private sector. A fundamental review of the management of nuclear liabilities is urged in the light of inadequacies identified in this paper. (UK)

  19. The 1.5 meter solar telescope GREGOR

    Science.gov (United States)

    Schmidt, W.; von der Lühe, O.; Volkmer, R.; Denker, C.; Solanki, S. K.; Balthasar, H.; Bello Gonzalez, N.; Berkefeld, Th.; Collados, M.; Fischer, A.; Halbgewachs, C.; Heidecke, F.; Hofmann, A.; Kneer, F.; Lagg, A.; Nicklas, H.; Popow, E.; Puschmann, K. G.; Schmidt, D.; Sigwarth, M.; Sobotka, M.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Waldmann , T. A.

    2012-11-01

    The 1.5 m telescope GREGOR opens a new window to the understanding of solar small-scale magnetism. The first light instrumentation includes the Gregor Fabry Pérot Interferometer (GFPI), a filter spectro-polarimeter for the visible wavelength range, the GRating Infrared Spectro-polarimeter (GRIS) and the Broad-Band Imager (BBI). The excellent performance of the first two instruments has already been demonstrated at the Vacuum Tower Telescope. GREGOR is Europe's largest solar telescope and number 3 in the world. Its all-reflective Gregory design provides a large wavelength coverage from the near UV up to at least 5 microns. The field of view has a diameter of 150 arcsec. GREGOR is equipped with a high-order adaptive optics system, with a subaperture size of 10 cm, and a deformable mirror with 256 actuators. The science goals are focused on, but not limited to, solar magnetism. GREGOR allows us to measure the emergence and disappearance of magnetic flux at the solar surface at spatial scales well below 100 km. Thanks to its spectro-polarimetric capabilities, GREGOR will measure the interaction between the plasma flows, different kinds of waves, and the magnetic field. This will foster our understanding of the processes that heat the chromosphere and the outer layers of the solar atmosphere. Observations of the surface magnetic field at very small spatial scales will shed light on the variability of the solar brightness.

  20. Twin-Telescope Wettzell (TTW)

    Science.gov (United States)

    Hase, H.; Dassing, R.; Kronschnabl, G.; Schlüter, W.; Schwarz, W.; Lauber, P.; Kilger, R.

    2007-07-01

    Following the recommendations made by the VLBI2010 vision report of the IVS, a proposal has been made to construct a Twin Telescope for the Fundamental Station Wettzell in order to meet the future requirements of the next VLBI generation. The Twin Telescope consists of two identical radiotelescopes. It is a project of the Federal Agency for Cartography and Geodesy (BKG). This article summarizes the project and some design ideas for the Twin-Telescope. %ZALMA (2005). Technical Specification for Design, Manufacturing, Transport and Integration on Site of the ALMA ANTENNAS, Doc. ALMA-34.00.00.00.006-BSPE. Behrend, D. (2006). VLBI2010 Antenna Specs, Data sheet. DeBoer, D. (2001). The ATA Offset Gregorian Antenna, ATA Memo #16, February 10. Imbriale, W.A. (2006). Design of a Wideband Radio Telescope, Jet Propulsion Laboratory and S. Weinreb and H. Mandi, California Institute of Technology. Kilger, R. (2007). TWIN-Design studies, Presentation for the IVS board members (internal document),Wettzell. Kronschnabl, G. (2006). Subject: Memo from Bill Petrachenko, E-mail to the Twin-Working Group (in German), July. Lindgren, ETS-Lindgren (2005). The Model 3164-05 Open Boundary Quadridge Horn, Data Sheet. Niell, A., A. Whitney, W. Petrachenko, W. Schlüter, N. Vandenberg, H.Hase, Y. Koyama, C. Ma, H. Schuh, G. Tucari (2006). in: IVS Annual Report 2005, pg. 13-40, NASA/TP-2006-214136, April. Olsson, R., Kildal, P.-S., and Weinreb, S. (2006). IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, February. Petrachenko, B. (2006). The Case For and Against Multiple Antennas at a Site, IVS Memorandum, 2006-019v01. Petrachenko, B. (2006). IVS Memorandum, 2006-016v01. RFSpin (2004). Double Ridged Waveguide Horn-Model DRH20, Antenna Specifications, Data Sheet. Rohde&Schwarz (2004). SHF Antennas Crossed Log- Periodic Antennas HL024A1/S1, Data Sheet. Rohde&Schwarz (2004). SHF Antennas Log-Periodic Antennas HL050/HL050S1, Data Sheet. Rogers, A.E.E. (2006). Simulations of broadband

  1. Spitzer mid-infrared spectra of cool-core galaxy clusters

    NARCIS (Netherlands)

    de Messières, G.E.; O'Connell, R.W.; McNamara, B.R.; Donahue, M.; Nulsen, P.E.J.; Voit, G.M.; Wise, M.W.; Smith, B.; Higdon, J.; Higdon, S.; Bastian, N.

    2010-01-01

    We have obtained mid-infrared spectra of nine cool-core galaxy clusters with the Infrared Spectrograph aboard the Spitzer Space Telescope. X-ray, ultraviolet and optical observations have demonstrated that each of these clusters hosts a cooling flow which seems to be fueling vigorous star formation

  2. Design, Manufacturing, and Commissioning of BIRCAM (Bootes InfraRed CAMera

    Directory of Open Access Journals (Sweden)

    Alberto Riva

    2010-01-01

    Full Text Available This paper covers the various aspect of design, manufacturing and commissioning of the infrared camera BIRCAM, installed at BOOTES-IR, the 60 cm robotic infrared telescope at Sierra Nevada Observatory (OSN, Granada, Spain. We describe how we achieved a quality astronomical image, moving from the scientific requirements.

  3. Massive protostars in the infrared dark cloud MSXDC G034.43+00.24

    NARCIS (Netherlands)

    Rathborne, JM; Jackson, JM; Chambers, ET; Simon, R; Shipman, R; Frieswijk, W

    2005-01-01

    We present a multiwavelength study of the infrared dark cloud MSXDC G034.43 + 00.24. Dust emission, traced by millimeter/submmillimeter images obtained with the IRAM, JCMT, and CSO telescopes, reveals three compact cores within this infrared dark cloud with masses of 170 - 800 M-circle dot and sizes

  4. UK retail marketing survey 94

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This document draws together data on the United Kingdom (UK) petroleum market up to the end of 1993. Lists include suppliers of petrol to the UK market listed by brand name, a regional breakdown of petrol and derv outlets, UK outlets which retail derv. Average retail prices for motor spirit and derv per litre are given as are sites fitted with Vapour Recovery equipment. Other tables shown indicate various companies' share of the market in terms of the percentage of petrol sites, including supermarkets. The volumes of motor spirit and derv delivered to retail and commercial customers between 1984 and 1993 is also given. (UK)

  5. Infrared Astronomical Satellite (IRAS) Catalogs and Atlases. Explanatory Supplement

    Science.gov (United States)

    Beichman, C. A. (Editor); Neugebauer, G. (Editor); Habing, H. J. (Editor); Clegg, P. E. (Editor); Chester, T. J. (Editor)

    1985-01-01

    The Infrared Astronomical Satellite (IRAS) mission is described. An overview of the mission, a description of the satellite and its telescope system, and a discussion of the mission design, requirements, and inflight modifications are given. Data reduction, flight tests, flux reconstruction and calibration, data processing, and the formats of the IRAS catalogs and atlases are also considered.

  6. A radio continuum and infrared study of Galactic HII regions

    NARCIS (Netherlands)

    Martin-Hernandez, NL; van der Hulst, JM; Tielens, AGGM

    We present observations of the 4.8 and 8.6 GHz continuum emission towards 11 southern H II regions made with the Australian Telescope Compact Array. The observed objects were selected from the Infrared Space Observatory (ISO) spectral catalogue of compact H II regions (Peeters et al. 2002b). The

  7. An afocal telescope configuration for the ESA ARIEL mission

    Science.gov (United States)

    Da Deppo, Vania; Focardi, Mauro; Middleton, Kevin; Morgante, Gianluca; Pascale, Enzo; Grella, Samuele; Pace, Emanuele; Claudi, Riccardo; Amiaux, Jérôme; Colomé Ferrer, Josep; Hunt, Thomas; Rataj, Miroslaw; Sierra-Roig, Carles; Ficai Veltroni, Iacopo; Eccleston, Paul; Micela, Giuseppina; Tinetti, Giovanna

    2017-12-01

    Atmospheric Remote-Sensing Infrared Exoplanet Large Survey (ARIEL) is a candidate as an M4 ESA mission to launch in 2026. During its 3.5 years of scientific operations, ARIEL will observe spectroscopically in the infrared (IR) a large population of known transiting planets in the neighbourhood of the solar system. ARIEL aims to give a breakthrough in the observation of exoplanet atmospheres and understanding of the physics and chemistry of these far-away worlds. ARIEL is based on a 1 m class telescope feeding a collimated beam into two separate instrument modules: a spectrometer module covering the waveband between 1.95 and 7.8 μm and a combined fine guidance system/visible photometer/NIR spectrometer. The telescope configuration is a classic Cassegrain layout used with an eccentric pupil and coupled to a tertiary off-axis paraboloidal mirror. To constrain the thermo-mechanically induced optical aberrations, the primary mirror (M1) temperature will be monitored and finely tuned using an active thermal control system based on thermistors and heaters. They will be switched on and off to maintain the M1 temperature within ± 1 K by the telescope control unit (TCU). The TCU is a payload electronics subsystem also responsible for the thermal control of the spectrometer module detectors as well as the secondary mirror mechanism and IR calibration source management. The TCU, being a slave subsystem of the instrument control unit, will collect the housekeeping data from the monitored subsystems and will forward them to the master unit. The latter will run the application software, devoted to the main spectrometer management and to the scientific data on-board processing.

  8. High-redshift supernova rates measured with the gravitational telescope A 1689

    OpenAIRE

    Petrushevska, T.; Amanullah, R.; Goobar, A.; Fabbro, S.; Johansson, J.; Kjellsson, T.; Lidman, C.; Paech, K.; Richard, J.; Dahle, Håkon; Ferretti, R.; Kneib, J.-P.; Limousin, M.; Nordin, J.; Stanishev, V.

    2016-01-01

    Aims. We present a ground-based, near-infrared search for lensed supernovae behind the massive cluster Abell 1689 at z = 0.18, which is one of the most powerful gravitational telescopes that nature provides. Methods. Our survey was based on multi-epoch J-band observations with the HAWK-I instrument on VLT, with supporting optical data from the Nordic Optical Telescope. Results. Our search resulted in the discovery of five photometrically classified, core-collapse supernovae with high re...

  9. Pathways Towards Habitable Planets: Capabilities of the James Webb Space Telescope

    Science.gov (United States)

    Clampin, Mark

    2009-01-01

    The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 m to 28 m. JWST s primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. We also review the expected scientific performance of the observatory for observations of exosolar planets by means of transit photometry and spectroscopy, and direct coronagraphic imaging and address its role in the search for habitable planets.

  10. Advanced UVOIR Mirror Technology Development (AMTD) for Very Large Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Smith, W. Scott; Mosier, Gary; Abplanalp, Laura; Arnold, William

    2014-01-01

    ASTRO2010 Decadal stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. AMTD builds on the state of art (SOA) defined by over 30 years of monolithic & segmented ground & space-telescope mirror technology to mature six key technologies. AMTD is deliberately pursuing multiple design paths to provide the science community with op-tions to enable either large aperture monolithic or segmented mirrors with clear engineering metrics traceable to science requirements.

  11. The Northwest Indiana Robotic Telescope

    Science.gov (United States)

    Slavin, Shawn D.; Rengstorf, A. W.; Aros, J. C.; Segally, W. B.

    2011-01-01

    The Northwest Indiana Robotic (NIRo) Telescope is a remote, automated observing facility recently built by Purdue University Calumet (PUC) at a site in Lowell, IN, approximately 30 miles from the PUC campus. The recently dedicated observatory will be used for broadband and narrowband optical observations by PUC students and faculty, as well as pre-college students through the implementation of standards-based, middle-school modules developed by PUC astronomers and education faculty. The NIRo observatory and its web portal are the central technical elements of a project to improve astronomy education at Purdue Calumet and, more broadly, to improve science education in middle schools of the surrounding region. The NIRo Telescope is a 0.5-meter (20-inch) Ritchey-Chrétien design on a Paramount ME robotic mount, featuring a seven-position filter wheel (UBVRI, Hα, Clear), Peltier (thermoelectrically) cooled CCD camera with 3056 x 3056, square, 12 μm pixels, and off-axis guiding. It provides a coma-free imaging field of 0.5 degrees square, with a plate scale of 0.6 arcseconds per pixel. The observatory has a wireless internet connection, local weather station which publishes data to an internet weather site, and a suite of CCTV security cameras on an IP-based, networked video server. Control of power to every piece of instrumentation is maintained via internet-accessible power distribution units. The telescope can be controlled on-site, or off-site in an attended fashion via an internet connection, but will be used primarily in an unattended mode of automated observation, where queued observations will be scheduled daily from a database of requests. Completed observational data from queued operation will be stored on a campus-based server, which also runs the web portal and observation database. Partial support for this work was provided by the National Science Foundation's Course, Curriculum, and Laboratory Improvement (CCLI) program under Award No. 0736592.

  12. Infrared Images of an Infant Solar System

    Science.gov (United States)

    2002-05-01

    understanding of the formation of solar-type stars and planetary systems from the interstellar medium. However, in most cases the large difference of brightness between the young star and its surrounding material makes it impossible to image directly the circumstellar disk. But when the disk is seen nearly edge-on, the light from the central star will be blocked out by the dust grains in the disk. Other grains below and above the disk midplane scatter the stellar light, producing a typical pattern of a dark lane between two reflection nebulae. The first young stellar object (YSO) found to display this typical pattern, HH 30 IRS in the Taurus dark cloud at a distance of about 500 light-years (140 pc), was imaged by the Hubble Space telescope (HST) in 1996. Edge-on disks have since also been observed with ground-based telescopes in the near-infrared region of the spectrum, sometimes by means of adaptive optics techniques or speckle imaging, or under very good sky image quality, cf. ESO PR Photo 03d/01 with a VLT image of such an object in the Orion Nebula. A surprise discovery ESO PR Photo 12a/02 ESO PR Photo 12a/02 [Preview - JPEG: 400 x 459 pix - 55k] [Normal - JPEG: 800 x 918 pix - 352k] Caption : PR Photo 12a/02 shows a three-colour reproduction of the discovery image of strange-looking object (nicknamed the "Flying Saucer" by the astronomers), obtained with the SOFI multi-mode instrument at the ESO 3.5-m New Technology Telescope (NTT) at the La Silla Observatory. Compared to the unresolved stars in the field, the image of this object appears extended. Two characteristic reflection nebulae are barely visible, together with a marginally resolved dark dust lane in front of the star and oriented East-West. Technical information about the photo is available below. Last year, a group of astronomers [1] carried out follow-up observations of new X-ray sources found by the ESA XMM-Newton and NASA Chandra X-ray satellites. They were looking at the periphery of the so-called Rho

  13. History of Robotic and Remotely Operated Telescopes

    Science.gov (United States)

    Genet, Russell M.

    2011-03-01

    While automated instrument sequencers were employed on solar eclipse expeditions in the late 1800s, it wasn't until the 1960s that Art Code and associates at Wisconsin used a PDP minicomputer to automate an 8-inch photometric telescope. Although this pioneering project experienced frequent equipment failures and was shut down after a couple of years, it paved the way for the first space telescopes. Reliable microcomputers initiated the modern era of robotic telescopes. Louis Boyd and I applied single board microcomputers with 64K of RAM and floppy disk drives to telescope automation at the Fairborn Observatory, achieving reliable, fully robotic operation in 1983 that has continued uninterrupted for 28 years. In 1985 the Smithsonian Institution provided us with a suburb operating location on Mt. Hopkins in southern Arizona, while the National Science Foundation funded additional telescopes. Remote access to our multiple robotic telescopes at the Fairborn Observatory began in the late 1980s. The Fairborn Observatory, with its 14 fully robotic telescopes and staff of two (one full and one part time) illustrates the potential for low operating and maintenance costs. As the information capacity of the Internet has expanded, observational modes beyond simple differential photometry opened up, bringing us to the current era of real-time remote access to remote observatories and global observatory networks. Although initially confined to smaller telescopes, robotic operation and remote access are spreading to larger telescopes as telescopes from afar becomes the normal mode of operation.

  14. UK Nuclear Workforce Demand

    International Nuclear Information System (INIS)

    Roberts, John

    2017-01-01

    UK Nuclear Sites: DECOMMISSIONING - 26 Magnox Reactors, 2 Fast Reactors; OPERATIONAL - 14 AGRs, 1 PWR; 9.6 GWe Total Capacity. Nuclear Workforce Demand • Total workforce demand is expected to grow from ~88,000 in 2017 to ~101,000 in 2021 • Average “inflow” is ~7,000 FTEs per annum • 22% of the workforce is female (28% in civil, 12% in defence) • 81% generic skills, 18% nuclear skills, 1% subject matter experts • 3300 trainees total in SLCs and Defence Enterprise (16% graduate trainees) • At peak demand on Civils Construction, over 4,000 workers will be required on each nuclear new build site • Manufacturing workforce is expected to rise from around 4,000 in 2014 to 8,500 at the peak of onsite activity in 2025

  15. New discoveries with radio telescopes

    International Nuclear Information System (INIS)

    Schmidt, J.

    1985-01-01

    The author describes in a simple fashion the results obtained by astronomers from ETH Zurich using the broadband 7-m radio telescope in Switzerland to observe the sun over a period of six years. He explains the results in terms of our present understanding of the sun's workings. The astronomers found that a solar eruption is not a single event but consists of tens of thousands of small eruptions or spikes each only 200 km high and producing a burst of radio waves 10-100 times as intense as the background. (T.J.R.A.)

  16. Imaging monolithic silicon detector telescopes

    International Nuclear Information System (INIS)

    Amorini, F.; Sipala, V.; Cardella, G.; Boiano, C.; Carbone, B.; Cosentino, L.; Costa, E.; Di Pietro, A.; Emanuele, U.; Fallica, G.; Figuera, P.; Finocchiaro, P.; La Guidara, E.; Marchetta, C.; Pappalardo, A.; Piazza, A.; Randazzo, N.; Rizzo, F.; Russo, G.V.; Russotto, P.

    2008-01-01

    We show the results of some test beams performed on a new monolithic strip silicon detector telescope developed in collaboration with the INFN and ST-microelectronics. Using an appropriate design, the induction on the ΔE stages, generated by the charge released in the E stage, was used to obtain the position of the detected particle. The position measurement, together with the low threshold for particle charge identification, allows the new detector to be used for a large variety of applications due to its sensitivity of only a few microns measured in both directions

  17. UK manufacturers construction joint venture

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This report examines the legal and commercial framework for UK manufacturers to collaborate in a construction venture for a small combustion/steam cycle power plant fueled with biomass. The integration of technology and project plan, the working capital and capitalisation, financial aspects, the market plan, turnkey packages, joint venture entities, and collaboration are discussed. (UK)

  18. ESO Telescope Designer Raymond Wilson Wins Prestigious Kavli Award for Astrophysics

    Science.gov (United States)

    2010-06-01

    with four individual telescopes with 17.5 cm thick 8.2-metre mirrors. Active optics has contributed towards making the VLT the world's most successful ground-based observatory and will be an integral part of ESO's European Extremely Large Telescope (E-ELT) project. Active optics technology is also part of the twin 10-metre Keck telescopes, the Subaru telescope's 8.2-metre mirror and the two 8.1-metre Gemini telescopes. Co-prize winners Jerry Nelson and Roger Angel respectively pioneered the use of segmentation in telescope primary mirrors - as used on the Keck telescopes, and the development of lightweight mirrors with short focal ratios. A webcast from Oslo, Norway, announcing the prize winners is available at www.kavlifoundation.org and www.kavliprize.no. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  19. Solar energy: a UK assessment

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    A panel convened by UK-ISES to analyze all aspects of solar energy systems and to assess the potential for solar energy utilization and research and development needs in the UK and for export is reported. Topics covered include: solar energy in relation to other energy sources; international solar energy research and development program; the physical nature of solar energy and its availability in the UK and other countries; thermal collection, storage, and low-temperature applications; solar energy and architecture; solar thermal power systems; solar cells; agricultural and biological systems; photochemical systems; social, legal, and political considerations with particular reference to the UK; and future policy on solar research and development for the UK. (WDM)

  20. Hubble Space Telescope Image of Omega Nebula

    Science.gov (United States)

    2002-01-01

    This sturning image, taken by the newly installed Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST), is an image of the center of the Omega Nebula. It is a hotbed of newly born stars wrapped in colorful blankets of glowing gas and cradled in an enormous cold, dark hydrogen cloud. The region of nebula shown in this photograph is about 3,500 times wider than our solar system. The nebula, also called M17 and the Swan Nebula, resides 5,500 light-years away in the constellation Sagittarius. The Swan Nebula is illuminated by ultraviolet radiation from young, massive stars, located just beyond the upper-right corner of the image. The powerful radiation from these stars evaporates and erodes the dense cloud of cold gas within which the stars formed. The blistered walls of the hollow cloud shine primarily in the blue, green, and red light emitted by excited atoms of hydrogen, nitrogen, oxygen, and sulfur. Particularly striking is the rose-like feature, seen to the right of center, which glows in the red light emitted by hydrogen and sulfur. As the infant stars evaporate the surrounding cloud, they expose dense pockets of gas that may contain developing stars. One isolated pocket is seen at the center of the brightest region of the nebula. Other dense pockets of gas have formed the remarkable feature jutting inward from the left edge of the image. The color image is constructed from four separate images taken in these filters: blue, near infrared, hydrogen alpha, and doubly ionized oxygen. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA.

  1. Grism and immersion grating for space telescope

    Science.gov (United States)

    Ebizuka, Noboru; Oka, Kiko; Yamada, Akiko; Ishikawa, Mami; Kashiwagi, Masako; Kodate, Kashiko; Hirahara, Yasuhiro; Sato, Shuji; Kawabata, Koji S.; Wakaki, Moriaki; Morita, Shin-ya; Simizu, Tomoyuki; Yin, Shaohui; Omori, Hitoshi; Iye, Masanori

    2017-11-01

    The grism is a versatile dispersion element for an astronomical instrument ranging from ultraviolet to infrared. Major benefit of using a grism in a space application, instead of a reflection grating, is the size reduction of optical system because collimator and following optical elements could locate near by the grism. The surface relief (SR) grism is consisted a transmission grating and a prism, vertex angle of which is adjusted to redirect the diffracted beam straight along the direct vision direction at a specific order and wavelength. The volume phase holographic (VPH) grism consists a thick VPH grating sandwiched between two prisms, as specific order and wavelength is aligned the direct vision direction. The VPH grating inheres ideal diffraction efficiency on a higher dispersion application. On the other hand, the SR grating could achieve high diffraction efficiency on a lower dispersion application. Five grisms among eleven for the Faint Object Camera And Spectrograph (FOCAS) of the 8.2m Subaru Telescope with the resolving power from 250 to 3,000 are SR grisms fabricated by a replication method. Six additional grisms of FOCAS with the resolving power from 3,000 to 7,000 are VPH grisms. We propose "Quasi-Bragg grism" for a high dispersion spectroscopy with wide wavelength range. The germanium immersion grating for instance could reduce 1/64 as the total volume of a spectrograph with a conventional reflection grating since refractive index of germanium is over 4.0 from 1.6 to 20 μm. The prototype immersion gratings for the mid-InfraRed High dispersion Spectrograph (IRHS) are successfully fabricated by a nano-precision machine and grinding cup of cast iron with electrolytic dressing method.

  2. VLTI First Fringes with Two Auxiliary Telescopes at Paranal

    Science.gov (United States)

    2005-03-01

    ESO Video Newsreel 15, released on March 14, 2005. It provides an introduction to the VLT Interferometer (VLTI) and the two Auxiliary Telescopes (ATs) now installed at Paranal. ESO PR Photo 07a/05 shows the impressive ensemble at the summit of Paranal. From left to right, the enclosure of VLT Antu, Kueyen and Melipal, AT1, the VLT Survey Telescope (VST) in the background, AT2 and VLT Yepun. Located at the summit of the 2,600-m high Cerro Paranal in the Atacama Desert (Chile), ESO's Very Large Telescope (VLT) is at the forefront of astronomical technology and is one of the premier facilities in the world for optical and near-infrared observations. The VLT is composed of four 8.2-m Unit Telescope (Antu, Kueyen, Melipal and Yepun). They have been progressively put into service together with a vast suite of the most advanced astronomical instruments and are operated every night in the year. Contrary to other large astronomical telescopes, the VLT was designed from the beginning with the use of interferometry as a major goal. The href="/instruments/vlti">VLT Interferometer (VLTI) combines starlight captured by two 8.2- VLT Unit Telescopes, dramatically increasing the spatial resolution and showing fine details of a large variety of celestial objects. The VLTI is arguably the world's most advanced optical device of this type. It has already demonstrated its powerful capabilities by addressing several key scientific issues, such as determining the size and the shape of a variety of stars (ESO PR 22/02, PR 14/03 and PR 31/03), measuring distances to stars (ESO PR 25/04), probing the innermost regions of the proto-planetary discs around young stars (ESO PR 27/04) or making the first detection by infrared interferometry of an extragalactic object (ESO PR 17/03). "Little Brothers" ESO PR Photo 07b/05 ESO PR Photo 07b/05 [Preview - JPEG: 597 x 400 pix - 47k] [Normal - JPEG: 1193 x 800 pix - 330k] [HiRes - JPEG: 5000 x 3354 pix - 10.0M] ESO PR Photo 07c/05 ESO PR Photo 07c/05

  3. Advances in telescope mirror cleaning

    Science.gov (United States)

    Blanken, Maarten F.; Chopping, Alan K.; Dee, Kevin M.

    2004-09-01

    Metrology and cleaning techniques for telescope mirrors are generally well established. CO2 cleaning and water washing are mainly used. Water washing has proven to be the best method of removing oil and water stains and restoring the aluminium to nearly fresh values. The risk of water getting to unwanted places such as electronics or other optics prevents this method from being employed more often. Recently the Isaac Newton Group introduced a new cleaning technique for their telescope mirrors, which reduces the risks discussed above. This technique uses water vapour instead of water to wash the mirror. The advantage of this method is that the amount of water needed is drastically reduced. In addition the pressure of the vapour will blow away any large dust particles on the mirror and the temperature shock between the vapour and the mirror will help to de-bond the dust particles. Adding a soapy solution will help to clean oil and watermarks of the mirror. This paper describes the vapour cleaning method, tests that have been done and the overall findings.

  4. Telescoping phenomenon in pathological gambling

    DEFF Research Database (Denmark)

    Grant, Jon E; Odlaug, Brian Lawrence; Mooney, Marc E

    2012-01-01

    The course of pathological gambling (PG) in women has been described as having a later age of initiation but a shorter time to problematic gambling ("telescoped"). This study examined evidence for telescoping and its relationship with comorbidities. Seventy-one treatment-seeking individuals with PG...... underwent a diagnostic interview to examine gambling behaviors, age at initiation of gambling, and time from initiation to meeting criteria for PG. The women had a higher mean age at gambling initiation compared with that of the men (mean [SD] age, 31.3 [13.0] years, compared with 22.4 [7.9] years; p = 0.......0003) and a significantly shorter time from initiation of gambling to meeting the criteria for PG (8.33 [8.7] years compared with 11.97 [9.1] years; p = 0.0476) after controlling for demographic and clinical variables. This study presents evidence for a gender-specific course of PG unrelated to psychiatric comorbidities...

  5. ANTARES: An Undersea Neutrino telescope

    CERN Multimedia

    2002-01-01

    The ANTARES (Astronomy with a Neutrino Telescope and ${Abyss}$ environmental RESearch) deep-sea neutrino telescope is designed to search for neutrinos of astrophysical origin. Neutrinos are unique probes of the high energy universe; being neutral they are not deflected by magnetic fields and interacting weakly they can readily escape from the densest regions of the universe. Potential sources of neutrino are galactic (e.g supernova remnants, micro-quasars) and extra-galactic (e.g active galactic nuclei, gamma-ray bursters). Annihilation of dark matter particles in the Sun or Galactic Centre is another well motivated potential source of extra terrestrial neutrinos. The ANTARES detector is located 40 km off the coast of Toulon (France) at a depth of 2475m in the Mediterranean Sea. Being located in the Northern hemisphere it studies the Southern sky and in particular has the Galactic Centre in its field of view. Since 2006, the detector has operated continuously in a partial configuration. The detector was compl...

  6. Merz telescopes a global heritage worth preserving

    CERN Document Server

    2017-01-01

    This book comprises a fascinating collection of contributions on the Merz telescopes in Italy that collectively offer the first survey on historical large refracting telescopes in the country, drawing on original documents and photographs. It opens with a general introduction on the importance of Merz telescopes in the history of astronomy and analyses of the local and international contexts in which the telescopes were made. After examination of an example of the interaction between the maker and the astronomer in the construction and maintenance of these refractors, the history of the Merz telescopes at the main Italian observatories in the nineteenth century is described in detail. Expert testimony is also provided on how these telescopes were successfully used until the second half of the twentieth century for research purposes, thus proving their excellent optical qualities.

  7. Review of lunar telescope studies at MSFC

    Science.gov (United States)

    Hilchey, John D.; Nein, Max E.

    1993-09-01

    In the near future astronomers can take advantage of the lunar surface as the new 'high ground' from which to study the universe. Optical telescopes placed and operated on the lunar surface would be successors to NASA's Great Observatories. Four telescopes, ranging in aperture from a 16-m, IR/Vis/UV observatory down to a 1-m, UV 'transit' instrument, have been studied by the Lunar Telescope Working Group and the LUTE (lunar telescope ultraviolet experiment) Task Team of the Marshall Space Flight Center (MSFC). This paper presents conceptual designs of the telescopes, provides descriptions of the telescope subsystem options selected for each concept, and outlines the potential evolution of their science capabilities.

  8. Customized overhead cranes for installation of India's largest 3.6m optical telescope at Devasthal, Nainital, India

    Science.gov (United States)

    Bangia, Tarun; Yadava, Shobhit; Kumar, Brijesh; Ghanti, A. S.; Hardikar, P. M.

    2016-07-01

    India's largest 3.6 m aperture optical telescope facility has been recently established at Devasthal site by Aryabhatta Research Institute of Observation Sciences (ARIES), an autonomous Institute under Department of Science and Technology, Government of India. The telescope is equipped with active optics and it is designed to be used for seeinglimited observations at visible and near-infrared wavelengths. A steel building with rotating cylindrical steel Dome was erected to house 3.6m telescope and its accessories at hilltop of Devasthal site. Customized cranes were essentially required inside the building as there were space constraints around the telescope building for operating big external heavy duty cranes from outside, transportation constraints in route for bringing heavy weight cranes, altitude of observatory, and sharp bends etc. to site. To meet the challenge of telescope installation from inside the telescope building by lifting components through its hatch, two Single Girder cranes and two Under Slung cranes of 10 MT capacity each were specifically designed and developed. All the four overhead cranes were custom built to achieve the goal of handling telescope mirror and its various components during installation and assembly. Overhead cranes were installed in limited available space inside the building and tested as per IS 3177. Cranes were equipped with many features like VVVFD compatibility, provision for tandem operation, digital load display, anti-collision mechanism, electrical interlocks, radio remote, low hook height and compact carriage etc. for telescope integration at site.

  9. A wide deep infrared look at the Pleiades with UKIDSS: new constraints on the substellar binary fraction and the low-mass initial mass function

    NARCIS (Netherlands)

    Lodieu, N.; Dobbie, P.D.; Deacon, N.R.; Hodgkin, S.T.; Hambly, N.C.; Jameson, R.F.

    2007-01-01

    We present the results of a deep wide-field near-infrared survey of 12 deg2 of the Pleiades conducted as part of the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Galactic Cluster Survey (GCS). We have extracted over 340 high-probability proper motion (PM)

  10. ANTARES: The first undersea neutrino telescope

    Science.gov (United States)

    Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; Ameli, F.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Arnaud, K.; Aslanides, E.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Becherini, Y.; Beltramelli, J.; Bersani, A.; Bertin, V.; Beurthey, S.; Biagi, S.; Bigongiari, C.; Billault, M.; Blaes, R.; Bogazzi, C.; de Botton, N.; Bou-Cabo, M.; Boudahef, B.; Bouwhuis, M. C.; Brown, A. M.; Brunner, J.; Busto, J.; Caillat, L.; Calzas, A.; Camarena, F.; Capone, A.; Caponetto, L.; Cârloganu, C.; Carminati, G.; Carmona, E.; Carr, J.; Carton, P. H.; Cassano, B.; Castorina, E.; Cecchini, S.; Ceres, A.; Chaleil, Th.; Charvis, Ph.; Chauchot, P.; Chiarusi, T.; Circella, M.; Compère, C.; Coniglione, R.; Coppolani, X.; Cosquer, A.; Costantini, H.; Cottini, N.; Coyle, P.; Cuneo, S.; Curtil, C.; D'Amato, C.; Damy, G.; van Dantzig, R.; de Bonis, G.; Decock, G.; Decowski, M. P.; Dekeyser, I.; Delagnes, E.; Desages-Ardellier, F.; Deschamps, A.; Destelle, J.-J.; di Maria, F.; Dinkespiler, B.; Distefano, C.; Dominique, J.-L.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drogou, J.-F.; Drouhin, D.; Druillole, F.; Durand, D.; Durand, R.; Eberl, T.; Emanuele, U.; Engelen, J. J.; Ernenwein, J.-P.; Escoffier, S.; Falchini, E.; Favard, S.; Fehr, F.; Feinstein, F.; Ferri, M.; Ferry, S.; Fiorello, C.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatá, S.; Galeotti, S.; Gay, P.; Gensolen, F.; Giacomelli, G.; Gojak, C.; Gómez-González, J. P.; Goret, Ph.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartmann, B.; Heijboer, A. J.; Heine, E.; Hello, Y.; Henry, S.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hogenbirk, J.; Hsu, C. C.; Hubbard, J. R.; Jaquet, M.; Jaspers, M.; de Jong, M.; Jourde, D.; Kadler, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Karg, T.; Karkar, S.; Karolak, M.; Katz, U.; Keller, P.; Kestener, P.; Kok, E.; Kok, H.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Kulikovskiy, V.; Lachartre, D.; Lafoux, H.; Lagier, P.; Lahmann, R.; Lahonde-Hamdoun, C.; Lamare, P.; Lambard, G.; Languillat, J.-C.; Larosa, G.; Lavalle, J.; Le Guen, Y.; Le Provost, H.; Levansuu, A.; Lefèvre, D.; Legou, T.; Lelaizant, G.; Lévéque, C.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Magnier, P.; Mangano, S.; Marcel, A.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Masullo, R.; Mazéas, F.; Mazure, A.; Meli, A.; Melissas, M.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Neff, M.; Niess, V.; Nooren, G. J. L.; Oberski, J. E. J.; Olivetto, C.; Palanque-Delabrouille, N.; Palioselitis, D.; Papaleo, R.; Păvălaş, G. E.; Payet, K.; Payre, P.; Peek, H.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Piret, Y.; Poinsignon, J.; Popa, V.; Pradier, T.; Presani, E.; Prono, G.; Racca, C.; Raia, G.; van Randwijk, J.; Real, D.; Reed, C.; Réthoré, F.; Rewiersma, P.; Riccobene, G.; Richardt, C.; Richter, R.; Ricol, J. S.; Rigaud, V.; Roca, V.; Roensch, K.; Rolin, J.-F.; Rostovtsev, A.; Rottura, A.; Roux, J.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Sciliberto, D.; Shanidze, R.; Shirokov, E.; Simeone, F.; Sottoriva, A.; Spies, A.; Spona, T.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Streeb, K.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Tasca, L.; Terreni, G.; Tezier, D.; Toscano, S.; Urbano, F.; Valdy, P.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Venekamp, G.; Verlaat, B.; Vernin, P.; Virique, E.; de Vries, G.; van Wijk, R.; Wijnker, G.; Wobbe, G.; de Wolf, E.; Yakovenko, Y.; Yepes, H.; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zúñiga, J.

    2011-11-01

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.

  11. ANTARES: The first undersea neutrino telescope

    International Nuclear Information System (INIS)

    Ageron, M.; Aguilar, J.A.; Al Samarai, I.; Albert, A.; Ameli, F.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Arnaud, K.; Aslanides, E.; Assis Jesus, A.C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.

    2011-01-01

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.

  12. Innovative UK Approaches to Acquisition Management

    Science.gov (United States)

    2009-05-01

    Financial and Operational Imperatives Size of UK armed forces UK Industry ? Political influence PFI / PPP Increased Scrutiny - NAO “ Commercialisation “ of the...acquisition KNOWLEDGE (EXPERIENCE – Lessons learned) KNOWLEDGE (Training) KNOWLEDGE ( Education ) OPTIMAL OPERATIONAL PERFORMANCE Operational Capability UK

  13. GRANITE- A steroscopic imaging Chernkov telescope system

    International Nuclear Information System (INIS)

    Shubnell, M.; Akerlof, C.W.; Cawley, M.F.; Chantell, M.; Fegan, D.J.; Fennell, S.; O'Flaherty, K.S.; Freeman, S.; Frishman, D.; Gaidos, J.A.; Hagan, J.; Harris, K.; Hillas, A.M.; Kerrick, A.D.; Lamb, R.C.; Lappin, T.; Lawrence, M.A.; Levy, H.; Lewis, D.A.; Meyer, D.I.; Mohanty, G.; Punch, M.; Reynolds, P.T.; Rovero, A.C.; Sembroski, G.; Weaverdyck, C.; Weekes, T.C.; Whitaker, T.; Wilson, C.

    1993-01-01

    A second 10 meter class imaging telescope was constructed on Mt. Hopkins, Arizona, the site of the original 10 meter Whipple Cherenkov telescope. The twin telescope system with a 140 meter base line will allow both a reduction in the energy threshold and an improvement in the rejection of the hardonic background. The new telescope started operation in December 1991. With the final completion of the first installation stage (GRANITE I) during spring 92, it is now operating simultaneously with the orginal reflector. We describe in this paper design and construction of the new instrument and demonstrate the capability of the experiment to record coincident events

  14. Preliminary Cost Model for Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Prince, F. Andrew; Smart, Christian; Stephens, Kyle; Henrichs, Todd

    2009-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. However, great care is required. Some space telescope cost models, such as those based only on mass, lack sufficient detail to support such analysis and may lead to inaccurate conclusions. Similarly, using ground based telescope models which include the dome cost will also lead to inaccurate conclusions. This paper reviews current and historical models. Then, based on data from 22 different NASA space telescopes, this paper tests those models and presents preliminary analysis of single and multi-variable space telescope cost models.

  15. Radio Telescopes Reveal Youngest Stellar Corpse

    Science.gov (United States)

    2004-06-01

    Astronomers using a global combination of radio telescopes to study a stellar explosion some 30 million light-years from Earth have likely discovered either the youngest black hole or the youngest neutron star known in the Universe. Their discovery also marks the first time that a black hole or neutron star has been found associated with a supernova that has been seen to explode since the invention of the telescope nearly 400 years ago. M51 An artist's impression of Supernova 1986J. The newly discovered nebula around the black hole or neutron star in the center is shown in blue, and is in the center of the expanding, fragmented shell of material thrown off in the supernova explosion, which is shown in red. CREDIT: Norbert Bartel and Michael F. Bietenholz, York University; Artist: G. Arguner (Click on image for larger version) Image Files Artist's Conception (above image, 836K) Galaxy and Supernova (47K) A VLA image (left) of the galaxy NGC 891, showing the bright supernova explosion below the galaxy's center. At right, a closer view of the supernova, made with a global array of radio telescopes. CREDIT: Miguel A. Perez-Torres, Antxon Alberdi and Lucas Lara, Instituto de Astrofisica de Andalucia - CSIC, Spain, Jon Marcaide and Jose C. Guirado, Universidad de Valencia, Spain Franco Mantovani, IRA-CNR, Italy, Eduardo Ros, MPIfR, Germany, and Kurt W. Weiler, Naval Research Laboratory, USA Multi-Frequency Closeup View (201K) Blue and white area shows the nebula surrounding the black hole or neutron star lurking in the center of the supernova. This nebula is apparent at a higher radio frequency (15 GHz). The red and also the contours show the distorted, expanding shell of material thrown off in the supernova explosion. This shell is seen at a lower radio frequency (5 GHz). CREDIT: Michael F. Bietenholz and Norbert Bartel, York University, Michael Rupen, NRAO, NRAO/AUI/NSF A supernova is the explosion of a massive star after it exhausts its supply of nuclear fuel and

  16. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    Science.gov (United States)

    Gardner, Jonathan P.

    2009-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts z greater than 6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z greater than 10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (less than 50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth-Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems, and discuss recent progress in constructing the observatory.

  17. The Lunar Transit Telescope (LTT) - An early lunar-based science and engineering mission

    Science.gov (United States)

    Mcgraw, John T.

    1992-01-01

    The Sentinel, the soft-landed lunar telescope of the LTT project, is described. The Sentinel is a two-meter telescope with virtually no moving parts which accomplishes an imaging survey of the sky over almost five octaves of the electromagnetic spectrum from the ultraviolet into the infrared, with an angular resolution better than 0.1 arsec/pixel. The Sentinel will incorporate innovative techniques of interest for future lunar-based telescopes and will return significant engineering data which can be incorporated into future lunar missions. The discussion covers thermal mapping of the Sentinel, measurement of the cosmic ray flux, lunar dust, micrometeoroid flux, the lunar atmosphere, and lunar regolith stability and seismic activity.

  18. Diffractive X-Ray Telescopes

    International Nuclear Information System (INIS)

    Skinner, G.K.; Skinner, G.K

    2010-01-01

    Diffractive X-ray telescopes using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution several orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro arc seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the supermassive black holes in the center of active galaxies What then is precluding their immediate adoption Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed atmospheric absorption

  19. Can Radio Telescopes Find Axions?

    Science.gov (United States)

    Kohler, Susanna

    2017-08-01

    axions. Now scientists Katharine Kelley and Peter Quinn at ICRAR, University of Western Australia, have explored how we might use next-generation radio telescopes to search for photons that were created by axions interacting with the magnetic fields of our galaxy.Hope for Next-Gen TelescopesPotential axion coupling strengths vs. mass (click for a closer look). The axion mass is thought to lie between a eV and a meV; two theoretical models are shown with dashed lines. The plot shows the sensitivity of the upcoming SKA and its precursors, ASKAP and MEERKAT. [KelleyQuinn 2017]By using a simple galactic halo model and reasonable assumptions for the central galactic magnetic field even taking into account the time dependence of the field Kelley and Quinn estimate the radio-frequency power density that we would observe at Earth from axions being converted to photons within the Milky Ways magnetic field.The authors then compare this signature to the detection capabilities of upcoming radio telescope arrays. They show that the upcoming Square Kilometer Array and its precursors should have the capability to detect signs of axions across large parts of parameter space.Kelley and Quinn conclude that theres good cause for optimism about future radio telescopes ability to detect axions. And if we did succeed in making a detection, it would be a triumph for both particle physics and astrophysics, finally providing an explanation for the universes dark matter.CitationKatharine Kelley and P. J. Quinn 2017 ApJL 845 L4. doi:10.3847/2041-8213/aa808d

  20. NESTOR Deep Sea Neutrino Telescope

    International Nuclear Information System (INIS)

    Aggouras, G.; Anassontzis, E.G.; Ball, A.E.; Bourlis, G.; Chinowsky, W.; Fahrun, E.; Grammatikakis, G.; Green, C.; Grieder, P.; Katrivanos, P.; Koske, P.; Leisos, A.; Markopoulos, E.; Minkowsky, P.; Nygren, D.; Papageorgiou, K.; Przybylski, G.; Resvanis, L.K.; Siotis, I.; Sopher, J.; Staveris-Polikalas, A.; Tsagli, V.; Tsirigotis, A.; Tzamarias, S.; Zhukov, V.A.

    2006-01-01

    One module of NESTOR, the Mediterranean deep-sea neutrino telescope, was deployed at a depth of 4000m, 14km off the Sapienza Island, off the South West coast of Greece. The deployment site provides excellent environmental characteristics. The deployed NESTOR module is constructed as a hexagonal star like latticed titanium star with 12 Optical Modules and an one-meter diameter titanium sphere which houses the electronics. Power and data were transferred through a 30km electro-optical cable to the shore laboratory. In this report we describe briefly the detector and the detector electronics and discuss the first physics data acquired and give the zenith angular distribution of the reconstructed muons

  1. The Infrared Astronomical Satellite (IRAS) mission

    Science.gov (United States)

    Neugebauer, G.; Habing, H. J.; Van Duinen, R.; Aumann, H. H.; Beichman, C. A.; Baud, B.; Beintema, D. A.; Boggess, N.; Clegg, P. E.; De Jong, T.

    1984-01-01

    The Infrared Astronomical Satellite (IRAS) consists of a spacecraft and a liquid helium cryostat that contains a cooled IR telescope. The telescope's focal plane assembly is cooled to less than 3 K, and contains 62 IR detectors in the survey array which are arranged so that every source crossing the field of view can be seen by at least two detectors in each of four wavelength bands. The satellite was launched into a 900 km-altitude near-polar orbit, and its cryogenic helium supply was exhausted on November 22, 1983. By mission's end, 72 percent of the sky had been observed with three or more hours-confirming scans, and 95 percent with two or more hours-confirming scans. About 2000 stars detected at 12 and 25 microns early in the mission, and identified in the SAO (1966) catalog, have a positional uncertainty ellipse whose axes are 45 x 9 arcsec for an hours-confirmed source.

  2. The Andromeda Optical and Infrared Disk Survey

    Science.gov (United States)

    Sick, J.; Courteau, S.; Cuillandre, J.-C.

    2014-03-01

    The Andromeda Optical and Infrared Disk Survey has mapped M31 in u* g' r' i' JKs wavelengths out to R = 40 kpc using the MegaCam and WIRCam wide-field cameras on the Canada-France-Hawaii Telescope. Our survey is uniquely designed to simultaneously resolve stars while also carefully reproducing the surface brightness of M31, allowing us to study M31's global structure in the context of both resolved stellar populations and spectral energy distributions. We use the Elixir-LSB method to calibrate the optical u* g' r' i' images by building real-time maps of the sky background with sky-target nodding. These maps are stable to μg ≲ 28.5 mag arcsec-2 and reveal warps in the outer M31 disk in surface brightness. The equivalent WIRCam mapping in the near-infrared uses a combination of sky-target nodding and image-to-image sky offset optimization to produce stable surface brightnesses. This study enables a detailed analysis of the systematics of spectral energy distribution fitting with near-infrared bands where asymptotic giant branch stars impose a significant, but ill-constrained, contribution to the near-infrared light of a galaxy. Here we present panchromatic surface brightness maps and initial results from our near-infrared resolved stellar catalog.

  3. Proxy magnetometry with the Dutch Open Telescope

    NARCIS (Netherlands)

    Rutten, R.J.; Hammerschlag, R.H.; Sütterlin, P.; Bettonvil, F.C.M.

    1999-01-01

    Superb movies from the Dutch Open Telescope (DOT) on La Palma have proven the validity of the open concept of this innovative telescope for high-resolution imaging of the solar atmosphere. A five- camera speckle-burst registration system is being installed that should permit consistent and

  4. ANTARES : The first undersea neutrino telescope

    NARCIS (Netherlands)

    Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; Ameli, F.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Arnaud, K.; Aslanides, E.; Jesus, A. C. Assis; Astraatmadja, T.; Aubert, J. -J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Becherini, Y.; Beltramelli, J.; Bersani, A.; Bertin, V.; Beurthey, S.; Biagi, S.; Bigongiari, C.; Billault, M.; Blaes, R.; Bogazzi, C.; de Botton, N.; Bou-Cabo, M.; Boudahef, B.; Bouwhuis, M. C.; Brown, A. M.; Brunner, J.; Busto, J.; Caillat, L.; Calzas, A.; Camarena, F.; Capone, A.; Caponetto, L.; Carloganu, C.; Carminati, G.; Carmona, E.; Carr, J.; Carton, P. H.; Cassano, B.; Castorina, E.; Cecchini, S.; Ceres, A.; Chaleil, Th; Charvis, Ph; Chauchot, P.; Chiarusi, T.; Circella, M.; Compere, C.; Coniglione, R.; Coppolani, X.; Cosquer, A.; Costantini, H.; Cottini, N.; Coyle, P.; Cuneo, S.; Curtil, C.; D'Amato, C.; Damy, G.; van Dantzig, R.; De Bonis, G.; Decock, G.; Decowski, M. P.; Dekeyser, I.; Delagnes, E.; Desages-Ardellier, F.; Deschamps, A.; Destelle, J. -J.; Di Maria, F.; Dinkespiler, B.; Distefano, C.; Dominique, J. -L.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drogou, J. -F.; Drouhin, D.; Druillole, F.; Durand, D.; Durand, R.; Eberl, T.; Emanuele, U.; Engelen, J. J.; Ernenwein, J. -P.; Escoffier, S.; Falchini, E.; Favard, S.; Fehr, F.; Feinstein, F.; Ferri, M.; Ferry, S.; Fiorello, C.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J. -L.; Galata, S.; Galeotti, S.; Gay, P.; Gensolen, F.; Giacomelli, G.; Gojak, C.; Gomez-Gonzalez, J. P.; Goret, Ph.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartmann, B.; Heijboer, A. J.; Heine, E.; Hello, Y.; Henry, S.; Hernandez-Rey, J. J.; Herold, B.; Hoessl, J.; Hogenbirk, J.; Hsu, C. C.; Hubbard, J. R.; Jaquet, M.; Jaspers, M.; de Jong, M.; Jourde, D.; Kadler, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Karg, T.; Karkar, S.; Karolak, M.; Katz, U.; Keller, P.; Kestener, P.; Kok, E.; Kok, H.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Kulikovskiy, V.; Lachartre, D.; Lafoux, H.; Lagier, P.; Lahmann, R.; Lahonde-Hamdoun, C.; Lamare, P.; Lambard, G.; Languillat, J-C; Larosa, G.; Lavalle, J.; Le Guen, Y.; Le Provost, H.; LeVanSuu, A.; Lefevre, D.; Legou, T.; Lelaizant, G.; Leveque, C.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Magnier, P.; Mangano, S.; Marcel, A.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Masullo, R.; Mazeas, F.; Mazure, A.; Meli, A.; Melissas, M.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Neff, M.; Niess, V.; Nooren, G. J. L.; Oberski, J. E. J.; Olivetto, C.; Palanque-Delabrouille, N.; Patioselitis, D.; Papaleo, R.; Pavalas, G. E.; Payet, K.; Payre, P.; Peek, H.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Piret, Y.; Poinsignon, J.; Popa, V.; Pradier, T.; Presani, E.; Prono, G.; Racca, C.; Raia, G.; van Randwijk, J.; Real, D.; Reed, C.; Rethore, F.; Rewiersma, P.; Riccobene, G.; Richardt, C.; Richter, R.; Ricol, J. S.; Rigaud, V.; Roca, V.; Roensch, K.; Rolin, J. -F.; Rostovtsev, A.; Rottura, A.; Roux, J.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schoeck, F.; Schuller, J. -P.; Schuessler, F.; Sciliberto, D.; Shanidze, R.; Shirokov, E.; Simeone, F.; Sottoriva, A.; Spies, A.; Spona, T.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th; Streeb, K.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Tasca, L.; Terreni, G.; Tezier, D.; Toscano, S.; Urbano, F.; Valdy, P.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Venekamp, G.; Verlaat, B.; Vernin, P.; Virique, E.; de Vries, G.; Wijnker, G.; Wobbe, G.; de Wolf, E.; Yakovenko, Y.; Yepes, H.; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zuniga, J.; van Wijk, R.

    2011-01-01

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the

  5. Hard x-ray telescope mission

    DEFF Research Database (Denmark)

    Gorenstein, P.; Worrall, D.; Joensen, K.D.

    1996-01-01

    The Hard X-Ray Telescope was selected for study as a possible new intermediate size mission for the early 21st century. Its principal attributes are: (1) multiwavelength observing with a system of focussing telescopes that collectively observe from the UV to over 1 MeV, (2) much higher sensitivity...

  6. The Gemini 8-Meter Telescopes Project

    Science.gov (United States)

    Boroson, Todd A.

    1995-05-01

    The Gemini 8-Meter Telescopes Project is an international partnership to build and operate two 8-meter telescopes, one on Mauna Kea, Hawaii, and one on Cerro Pachon, Chile. The telescopes will be international facilities, open to the scientific communities of the six member countries, the United States (50%), the United Kingdom (25%), Canada (15%), Chile (5%), Argentina (2.5%), and Brazil (2.5%). The telescopes are designed to exploit the best atmospheric conditions at these excellent sites. Near diffraction limited performance will be delivered at 2.2 microns and longward, with minimal degradation of the best seeing conditions at shorter wavelengths. The telescopes and facilities are designed to achieve emissivity opportunity. First light for the Mauna Kea telescope is expected in late 1998, and for the Cerro Pachon telescope in mid-2000. This talk will report on construction progress, the instrumental capabilities, and operations strategies being considered. The Gemini 8-meter Telescopes Project is managed by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation which serves as executive agency for the Gemini partner countries. U.S. participation in the project is through the U.S. Gemini Program, a division of the National Optical Astronomy Observatories. NOAO is operated by AURA, Inc. under cooperative agreement with the National Science Foundation.

  7. Funding Decommissioning - UK Experience

    International Nuclear Information System (INIS)

    MacKerron, Gordon

    2006-01-01

    'Funding' started with CEGB and SSEB (state-owned electric utilities) in 1976 using the internal un-segregated fund route (i.e unfunded). This continued until privatisation of electricity industry (excluding nuclear) in 1990. Assets bought with the internal un-segregated fund were mostly transferred into non-nuclear private utilities. New state-owned Nuclear Electric (England and Wales) was given a 'Fossil Fuel Levy', a consumer charge of 10% on retail bills, amounting to c. BP 1 bn. annually. This allowed Nuclear Electric to trade legally (A reserve of BP 2.5 bn. was available from Government if company ran out of money). By 1996 the newer nuclear stations (AGRS plus PWR) were privatised as British Energy. British Energy started an external segregated fund, the Nuclear Decommissioning Fund, with a starting endowment of c. BP 225 m. - and BE made annual contributions of British Pound 16 m. into the Fund. Assumptions were that BE had 70 to accumulate cash and could get a 3.5% average annual real return. Older stations (Magnox) were left in private sector and went to BNFL in 1997. Magnox inherited the surplus cash in BE - mostly unspent Fossil Fuel Levy receipts - of c. BP 2.6 bn. Government gave an 'Undertaking' to pay BP 3.8 bn. (escalating at 4.5% real annually) for Magnox liabilities, should Magnox Electric run out of cash. BNFL inherited the BP 2.6 bn. and by 2000 had a 'Nuclear Liabilities Investment Portfolio' of c. BP 4 bn. This was a quasi-segregated internal fund for liabilities in general. [Note: overall UK nuclear liabilities in civilian sector were running at c. BP 48 bn. by now]. BE started profitable and paid BP 100 m. annually in dividends to private investors for several years. BE ran into severe financial problems after 2001 and Government organised restructuring aid, now approved by European Commission. Terms include: - BE now to contribute BP 20 m. a year into an expanded Nuclear Liabilities Fund; - A bond issue of BP 275 m. to go to Fund; - 65

  8. "UK today" Tallinnas / Tuuli Oder

    Index Scriptorium Estoniae

    Oder, Tuuli, 1958-

    2001-01-01

    Vabariikliku inglise keele olümpiaadi raames toimus Tallinnas viktoriini "UK today" lõppvoor. Osalesid 22 kooli kaheliikmelised võistkonnad. Viktoriini tulemused koolide lõikes ja küsimused õigete vastustega

  9. A virtual reality environment for telescope operation

    Science.gov (United States)

    Martínez, Luis A.; Villarreal, José L.; Ángeles, Fernando; Bernal, Abel

    2010-07-01

    Astronomical observatories and telescopes are becoming increasingly large and complex systems, demanding to any potential user the acquirement of great amount of information previous to access them. At present, the most common way to overcome that information is through the implementation of larger graphical user interfaces and computer monitors to increase the display area. Tonantzintla Observatory has a 1-m telescope with a remote observing system. As a step forward in the improvement of the telescope software, we have designed a Virtual Reality (VR) environment that works as an extension of the remote system and allows us to operate the telescope. In this work we explore this alternative technology that is being suggested here as a software platform for the operation of the 1-m telescope.

  10. Remote secure observing for the Faulkes Telescopes

    Science.gov (United States)

    Smith, Robert J.; Steele, Iain A.; Marchant, Jonathan M.; Fraser, Stephen N.; Mucke-Herzberg, Dorothea

    2004-09-01

    Since the Faulkes Telescopes are to be used by a wide variety of audiences, both powerful engineering level and simple graphical interfaces exist giving complete remote and robotic control of the telescope over the internet. Security is extremely important to protect the health of both humans and equipment. Data integrity must also be carefully guarded for images being delivered directly into the classroom. The adopted network architecture is described along with the variety of security and intrusion detection software. We use a combination of SSL, proxies, IPSec, and both Linux iptables and Cisco IOS firewalls to ensure only authenticated and safe commands are sent to the telescopes. With an eye to a possible future global network of robotic telescopes, the system implemented is capable of scaling linearly to any moderate (of order ten) number of telescopes.

  11. A telescope with augmented reality functions

    Science.gov (United States)

    Hou, Qichao; Cheng, Dewen; Wang, Qiwei; Wang, Yongtian

    2016-10-01

    This study introduces a telescope with virtual reality (VR) and augmented reality (AR) functions. In this telescope, information on the micro-display screen is integrated to the reticule of telescope through a beam splitter and is then received by the observer. The design and analysis of telescope optical system with AR and VR ability is accomplished and the opto-mechanical structure is designed. Finally, a proof-of-concept prototype is fabricated and demonstrated. The telescope has an exit pupil diameter of 6 mm at an eye relief of 19 mm, 6° field of view, 5 to 8 times visual magnification , and a 30° field of view of the virtual image.

  12. Simulation and Track Reconstruction for Beam Telescopes

    CERN Document Server

    Maqbool, Salman

    2017-01-01

    Beam telescopes are an important tool to test new detectors under development in a particle beam. To test these novel detectors and determine their properties, the particle tracks need to be reconstructed from the known detectors in the telescope. Based on the reconstructed track, its predicted position on the Device under Test (DUT) are compared with the actual hits on the DUT. Several methods exist for track reconstruction, but most of them do not account for the effects of multiple scattering. General Broken Lines is one such algorithm which incorporates these effects during reconstruction. The aim of this project was to simulate the beam telescope and extend the track reconstruction framework for the FE-I4 telescope, which takes these effects into account. Section 1 introduces the problem, while section 2 focuses on beam telescopes. This is followed by the Allpix2 simulation framework in Section 3. And finally, Section 4 introduces the Proteus track reconstruction framework along with the General Broken ...

  13. A COMPREHENSIVE CENSUS OF NEARBY INFRARED EXCESS STARS

    Energy Technology Data Exchange (ETDEWEB)

    Cotten, Tara H.; Song, Inseok, E-mail: tara@physast.uga.edu, E-mail: song@physast.uga.edu [Department of Physics and Astronomy, University of Georgia, Athens, GA 30602 (United States)

    2016-07-01

    The conclusion of the Wide-Field Infrared Survey Explorer ( WISE ) mission presents an opportune time to summarize the history of using excess emission in the infrared as a tracer of circumstellar material and exploit all available data for future missions such as the James Webb Space Telescope . We have compiled a catalog of infrared excess stars from peer-reviewed articles and perform an extensive search for new infrared excess stars by cross-correlating the Tycho-2 and all-sky WISE (AllWISE) catalogs. We define a significance of excess in four spectral type divisions and select stars showing greater than either 3 σ or 5 σ significance of excess in the mid- and far-infrared. Through procedures including spectral energy distribution fitting and various image analyses, each potential excess source was rigorously vetted to eliminate false positives. The infrared excess stars from the literature and the new stars found through the Tycho-2 and AllWISE cross-correlation produced nearly 500 “Prime” infrared excess stars, of which 74 are new sources of excess, and >1200 are “Reserved” stars, of which 950 are new sources of excess. The main catalog of infrared excess stars are nearby, bright, and either demonstrate excess in more than one passband or have infrared spectroscopy confirming the infrared excess. This study identifies stars that display a spectral energy distribution suggestive of a secondary or post-protoplanetary generation of dust, and they are ideal targets for future optical and infrared imaging observations. The final catalogs of stars summarize the past work using infrared excess to detect dust disks, and with the most extensive compilation of infrared excess stars (∼1750) to date, we investigate various relationships among stellar and disk parameters.

  14. News and Views: Research council resource allocations: managing demand; e-MERLIN radio telescope network is up and running

    Science.gov (United States)

    2011-02-01

    The research councils discovered in December the allocation of money from the UK government's Comprehensive Spending Review, and have set out their delivery plans outlining how they will spend it. Details and decisions will follow consultation in the coming months. The first image from eMerlin, the UK's national radio astronomy facility, shows the power of the enhanced network of radio telescopes spread over 220 km and now linked by fibre optics. These links and advanced receivers will allow astronomers to see in a single day what would have previously taken them more than a year of observations.

  15. Solar System Observations with the James Webb Space Telescope

    Science.gov (United States)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; hide

    2016-01-01

    The James Webb Space Telescope (JWST) will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010. It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV, in 2012.

  16. The Atacama Cosmology Telescope: cross correlation with Planck maps

    Energy Technology Data Exchange (ETDEWEB)

    Louis, Thibaut; Calabrese, Erminia; Dunkley, Joanna; Næss, Sigurd [Department of Astrophysics, Oxford University, Oxford OX1 3RH (United Kingdom); Addison, Graeme E.; Hincks, Adam D. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Hasselfield, Matthew; Hlozek, Renée [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Bond, J. Richard; Hajian, Amir [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Das, Sudeep [Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL 60439 (United States); Devlin, Mark J. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, U.S.A (United States); Dünner, Rolando; Infante, Leopoldo [Departamento de Astronomía y Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Gralla, Megan; Marriage, Tobias A. [Dept. of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States); Huffenberger, Kevin [Department of Physics, Florida State University, Keen Physics Building, 77 Chieftan Way, Tallahassee, Florida (United States); Kosowsky, Arthur [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, 15260 (United States); Moodley, Kavilan [Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Durban, 4041 (South Africa); Niemack, Michael D., E-mail: Thibaut.Louis@astro.ox.ac.uk [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); and others

    2014-07-01

    We present the temperature power spectrum of the Cosmic Microwave Background obtained by cross-correlating maps from the Atacama Cosmology Telescope (ACT) at 148 and 218 GHz with maps from the Planck satellite at 143 and 217 GHz, in two overlapping regions covering 592 square degrees. We find excellent agreement between the two datasets at both frequencies, quantified using the variance of the residuals between the ACT power spectra and the ACT × Planck cross-spectra. We use these cross-correlations to measure the calibration of the ACT data at 148 and 218 GHz relative to Planck, to 0.7% and 2% precision respectively. We find no evidence for anisotropy in the calibration parameter. We compare the Planck 353 GHz power spectrum with the measured amplitudes of dust and cosmic infrared background (CIB) of ACT data at 148 and 218 GHz. We also compare planet and point source measurements from the two experiments.

  17. An infrared upconverter for astronomical imaging

    Science.gov (United States)

    Boyd, R. W.; Townes, C. H.

    1977-01-01

    An imaging upconverter has been constructed which is suitable for use in the study of the thermal 10-micron radiation from astronomical sources. The infrared radiation is converted to visible radiation by mixing in a 1-cm-long proustite crystal. The phase-matched 2-kayser bandpass is tunable from 9 to 11 microns. The conversion efficiency is 2 by 10 to the -7th power and the field of view of 40 arc seconds on the sky contains several hundred picture elements, approximately diffraction-limited resolution in a large telescope. The instrument has been used in studies of the sun, moon, Mercury, and VY Canis Majoris.

  18. Cross-Calibrating Sunspot Magnetic Field Strength Measurements from the McMath-Pierce Solar Telescope and the Dunn Solar Telescope

    Science.gov (United States)

    Watson, Fraser T.; Beck, Christian; Penn, Matthew J.; Tritschler, Alexandra; Pillet, Valentín Martinez; Livingston, William C.

    2015-11-01

    In this article we describe a recent effort to cross-calibrate data from an infrared detector at the McMath-Pierce Solar Telescope and the Facility InfraRed Spectropolarimeter (FIRS) at the Dunn Solar Telescope. A synoptic observation program at the McMath-Pierce has measured umbral magnetic field strengths since 1998, and this data set has recently been compared with umbral magnetic field observations from SOHO/MDI and SDO/HMI. To further improve on the data from McMath-Pierce, we compared the data with measurements taken at the Dunn Solar Telescope with far greater spectral resolution than has been possible with space instrumentation. To minimise potential disruption to the study, concurrent umbral measurements were made so that the relationship between the two datasets can be most accurately characterised. We find that there is a strong agreement between the umbral magnetic field strengths recorded by each instrument, and we reduced the FIRS data in two different ways to successfully test this correlation further.

  19. NASA Telescopes Help Identify Most Distant Galaxy Cluster

    Science.gov (United States)

    2011-01-01

    together, should exist in the early universe. But locating one proved difficult -- until now. Capak and his colleagues first used the Chandra X-ray Observatory and the United Kingdom's James Clerk Maxwell Telescope on Mauna Kea, Hawaii, to search for the black holes and bursts of star formation needed to form the massive galaxies at the centers of modern galaxy cities. The astronomers then used Hubble and the Subaru telescopes to estimate the distances to these objects, and look for higher densities of galaxies around them. Finally, the Keck telescope was used to confirm that these galaxies were at the same distance and part of the same galactic sprawl. Once the scientists found this lumping of galaxies, they measured the combined mass with the help of Spitzer. At this distance the optical light from stars is shifted, or stretched, to infrared wavelengths that can only be observed in outer space by Spitzer. The lump sum of the mass turned out to be a minimum of 400 billion suns -- enough to indicate that the astronomers had indeed uncovered a massive proto-cluster. The Spitzer observations also helped confirm a massive galaxy at the center of the cluster was forming stars at an impressive rate. Chandra X-ray observations were used to find and characterize the whopping black hole with a mass of more than 30 million suns. Massive black holes are common in present-day galaxy clusters, but this is the first time a feeding black hole of this heft has been linked to a cluster that is so young. Finally, the Institut de Radioastronomie Millimétrique's interferometer telescope in France and 30-meter telescope in Spain, along with the National Radio Astronomy Observatory's Very Large Array telescope in New Mexico, measured the amount of gas, or fuel for future star formation, in the cluster. The results indicate the cluster will keep growing into a modern city of galaxies. "It really did take a village of telescopes to nail this cluster," said Capak. "Observations across the

  20. DMD-based multi-object spectrograph on Galileo telescope

    Science.gov (United States)

    Zamkotsian, Frederic; Spano, Paolo; Lanzoni, Patrick; Bon, William; Riva, Marco; Nicastro, Luciano; Molinari, Emilio; Di Marcantonio, Paolo; Zerbi, Filippo; Valenziano, Luca

    2013-03-01

    Next-generation infrared astronomical instrumentation for ground-based and space telescopes could be based on MOEMS programmable slit masks for multi-object spectroscopy (MOS). This astronomical technique is used extensively to investigate the formation and evolution of galaxies. We propose to develop a 2048x1080 DMD-based MOS instrument to be mounted on the Galileo telescope and called BATMAN. A two-arm instrument has been designed for providing in parallel imaging and spectroscopic capabilities. The two arms with F/4 on the DMD are mounted on a common bench, and an upper bench supports the detectors thanks to two independent hexapods. Very good optical quality on the DMD and the detectors will be reached. ROBIN, a BATMAN demonstrator, has been designed, realized and integrated. It permits to determine the instrument integration procedure, including optics and mechanics integration, alignment procedure and optical quality. First images have been obtained and measured. A DMD pattern manager has been developed in order to generate any slit mask according to the list of objects to be observed; spectra have been generated and measured. Observation strategies will be studied and demonstrated for the scientific optimization strategy over the whole FOV. BATMAN on the sky is of prime importance for characterizing the actual performance of this new family of MOS instruments, as well as investigating the operational procedures on astronomical objects. This instrument will be placed on the Telescopio Nazionale Galileo at the beginning of next year, in 2014.

  1. Gamma ray astronomy with atmospheric Cherenkov telescopes: the future

    International Nuclear Information System (INIS)

    Krennrich, Frank

    2009-01-01

    Atmospheric Cherenkov telescopes have been key to the recent discoveries in teraelectronvolt (TeV) γ-ray astronomy. The detection of TeV γ rays from more than 90 galactic and extragalactic sources provides a wealth of data for probing physical phenomena that pertain to some of the big questions in astrophysics. These include the understanding of the origin of cosmic rays, unveiling the connection between relativistic jets and black holes, shedding light on dark matter and its relation to supersymmetric particles and estimating the brightness of cosmological diffuse radiation fields in the optical/infrared waveband. While these recent advances were made with instruments designed in the 1990s, the present paper is concerned with a next generation of imaging atmospheric Cherenkov telescopes (IACTs) that are currently in the conceptual planning stage. We discuss the basic ideas, the required technology and expected performance of a ≥1 square-kilometer array, which is poised to yield the most dramatic step yet to come in TeV astronomy.

  2. Parametric Cost Models for Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtney

    2010-01-01

    Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.

  3. Parametric cost models for space telescopes

    Science.gov (United States)

    Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtnay

    2017-11-01

    Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.

  4. Results from the UK 3rd generation programme: Albion

    Science.gov (United States)

    McEwen, R. K.; Axcell, C.; Knowles, P.; Hoade, K. P.; Wilson, M.; Dennis, P. N. J.; Backhouse, P.; Gordon, N. T.

    2008-10-01

    Following the development of 1st Generation systems in the 1970s, thermal imaging has been in service with the UK armed forces for over 25 years and has proven itself to be a battle winning technology. More recently the wider accessibility to similar technologies within opposing forces has reduced the military advantage provided by these 1st Generation systems and a clear requirement has been identified by the UK MOD for thermal imaging sensors providing increased detection, recognition and identification (DRI) ranges together with a simplified logistical deployment burden and reduced through-life costs. In late 2005, the UK MOD initiated a programme known as "Albion" to develop high performance 3rd Generation single waveband infrared detectors to meet this requirement. At the same time, under a separate programme supporting higher risk technology, a dual waveband infrared detector was also developed. The development phase of the Albion programme has now been completed and prototype detectors are now available and have been integrated into demonstration thermal imaging cameras. The Albion programme has now progressed into the second phase, incorporating both single and dual waveband devices, focussing on low rate initial production (LRIP) and qualification of the devices for military applications. All of the detectors have been fabricated using cadmium mercury telluride material (CMT), grown by metal organic vapour phase epitaxy (MOVPE) on low cost, gallium arsenide (GaAs) substrates and bump bonded to the silicon read out circuit (ROIC). This paper discusses the design features of the 3rd Generation detectors developed in the UK together with the results obtained from the prototype devices both in the laboratory and when integrated into field deployable thermal imaging cameras.

  5. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    Science.gov (United States)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  6. Ground-Based Telescope Parametric Cost Model

    Science.gov (United States)

    Stahl, H. Philip; Rowell, Ginger Holmes

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.

  7. Feldspar, Infrared Stimulated Luminescence

    DEFF Research Database (Denmark)

    Jain, Mayank

    2014-01-01

    This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars.......This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars....

  8. Nuclear power and the UK

    International Nuclear Information System (INIS)

    Murphy, St.

    2009-01-01

    This series of slides describes the policy of the UK government concerning nuclear power. In January 2008 the UK Government published the White Paper on the Future of Nuclear Power. The White Paper concluded that new nuclear power stations should have a role to play in this country's future energy mix. The role of the Government is neither to build nuclear power plants nor to finance them. The White Paper set out the facilitative actions the Government planned to take to reduce regulatory and planning risks associated with investing in new nuclear power stations. The White Paper followed a lengthy period of consultation where the UK Government sought a wide variety of views from stakeholders and the public across the country on the future of nuclear power. In total energy companies will need to invest in around 30-35 GW of new electricity generating capacity over the next two decades. This is equivalent to about one-third of our existing capacity. The first plants are expected to enter into service by 2018 or sooner. The Office for Nuclear Development (OND) has been created to facilitate new nuclear investment in the UK while the Nuclear Development Forum (NDF) has been established to lock in momentum to secure the long-term future of nuclear power generation in the UK. (A.C.)

  9. Confronting Standard Models of Proto-planetary Disks with New Mid-infrared Sizes from the Keck Interferometer

    OpenAIRE

    Millan-Gabet, Rafael; Che, Xiao; Monnier, John D.; Sitko, Michael L.; Russell, Ray W.; Grady, Carol A.; Day, Amanda N.; Perry, R. B.; Harries, Tim J.; Aarnio, Alicia N.; Colavita, Mark M.; Wizinowich, Peter L.; Ragland, Sam; Woillez, Julien

    2016-01-01

    We present near- and mid-infrared (MIR) interferometric observations made with the Keck Interferometer Nuller and near-contemporaneous spectro-photometry from the infrared telescope facilities (IRTFs) of 11 well-known young stellar objects, several of which were observed for the first time in these spectral and spatial resolution regimes. With au-level spatial resolution, we first establish characteristic sizes of the infrared emission using a simple geometrical model consisting of a hot inne...

  10. The ATHENA telescope and optics status

    Science.gov (United States)

    Bavdaz, Marcos; Wille, Eric; Ayre, Mark; Ferreira, Ivo; Shortt, Brian; Fransen, Sebastiaan; Collon, Maximilien; Vacanti, Giuseppe; Barriere, Nicolas; Landgraf, Boris; Haneveld, Jeroen; van Baren, Coen; Zuknik, Karl-Heintz; Della Monica Ferreira, Desiree; Massahi, Sonny; Christensen, Finn; Krumrey, Michael; Burwitz, Vadim; Pareschi, Giovanni; Spiga, Daniele; Valsecchi, Giuseppe; Vernani, Dervis; Oliver, Paul; Seidel, André

    2017-08-01

    The work on the definition and technological preparation of the ATHENA (Advanced Telescope for High ENergy Astrophysics) mission continues to progress. In parallel to the study of the accommodation of the telescope, many aspects of the X-ray optics are being evolved further. The optics technology chosen for ATHENA is the Silicon Pore Optics (SPO), which hinges on technology spin-in from the semiconductor industry, and uses a modular approach to produce large effective area lightweight telescope optics with a good angular resolution. Both system studies and the technology developments are guided by ESA and implemented in industry, with participation of institutional partners. In this paper an overview of the current status of the telescope optics accommodation and technology development activities is provided.

  11. EDUCATIONAL ASTRONOMICAL OBSERVATIONS ON REMOTE ACCESS TELESCOPES

    Directory of Open Access Journals (Sweden)

    Ivan P. Kriachko

    2016-01-01

    Full Text Available The purpose of this article is to show the way of overcoming one of the major problems of astronomy teaching methods in upper secondary school – organization of educational astronomical observations. Nowadays it became possible to perform such observations on remote access telescopes. By using up-to-date informational and communicational technologies, having an opportunity to work with robotic telescopes allows us to organize a unique cognitive and research oriented activities for students while conducting their specialized astronomical studies. Below here is given a brief description of the most significant robotic telescopes and the way of the usage of open remote access telescopic network which was created by professors and scientists of Harvard-Smithsonian Center for Astrophysics, USA.

  12. Possible GRB Observation with the MAGIC Telescope

    Science.gov (United States)

    Bastieri, D.; Bigongiari, C.; Mariotti, M.; Peruzzo, L.; Saggion, A.

    2001-08-01

    The MAGIC Telescope, with its reflecting parabolic dish of 17 m of diameter and its careful design of a robust, lightweight, alto-azimuthal mount, is an ideal detector for GRB phenomena. The telescope is an air Cherenkov telescope that, even in the first phase, equipped with standard PMTs, can reach an energy threshold below 30 GeV. The threshold is going to drop well below 10 GeV in the envisaged second phase, when chamber PMTs will be substituted by high quantum efficiency APDs. The telescope can promptly respond to GRB alerts coming, for instance, from GCN, and can reposition itself in less than 30 seconds, 20 seconds being the time to turn half a round for the azimuth bearing. In this report, the effective area of the detector as a function of energy and zenith angle is taken into account, in order to evaluate the expected yearly occurrence and the response to different kinds of GRBs.

  13. Direct illumination LED calibration for telescope photometry

    International Nuclear Information System (INIS)

    Barrelet, E.; Juramy, C.

    2008-01-01

    A calibration method for telescope photometry, based on the direct illumination of a telescope with a calibrated light source regrouping multiple LEDs, is proposed. Its purpose is to calibrate the instrument response. The main emphasis of the proposed method is the traceability of the calibration process and a continuous monitoring of the instrument in order to maintain a 0.2% accuracy over a period of years. Its specificity is to map finely the response of the telescope and its camera as a function of all light ray parameters. This feature is essential to implement a computer model of the instrument representing the variation of the overall light collection efficiency of each pixel for various filter configurations. We report on hardware developments done for SNDICE, the first application of this direct illumination calibration system which will be installed in Canada France Hawaii telescope (CFHT) for its leading supernova experiment (SNLS)

  14. Proposed National Large Solar Telescope Jagdev Singh

    Indian Academy of Sciences (India)

    proposed to design, fabricate and install a 2-meter class solar telescope at a suitable site in India to ... which can facilitate simultaneous measurements of the solar atmospheric parameters and of the vector ... Intensity variation of. 1% or less.

  15. Search for bright stars with infrared excess

    Energy Technology Data Exchange (ETDEWEB)

    Raharto, Moedji, E-mail: moedji@as.itb.ac.id [Astronomy Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Bright stars, stars with visual magnitude smaller than 6.5, can be studied using small telescope. In general, if stars are assumed as black body radiator, then the color in infrared (IR) region is usually equal to zero. Infrared data from IRAS observations at 12 and 25μm (micron) with good flux quality are used to search for bright stars (from Bright Stars Catalogues) with infrared excess. In magnitude scale, stars with IR excess is defined as stars with IR color m{sub 12}−m{sub 25}>0; where m{sub 12}−m{sub 25} = −2.5log(F{sub 12}/F{sub 25})+1.56, where F{sub 12} and F{sub 25} are flux density in Jansky at 12 and 25μm, respectively. Stars with similar spectral type are expected to have similar color. The existence of infrared excess in the same spectral type indicates the existence of circum-stellar dust, the origin of which is probably due to the remnant of pre main-sequence evolution during star formation or post AGB evolution or due to physical process such as the rotation of those stars.

  16. The afocal telescope optical design and tolerance analysis for the ESA ARIEL mission

    Science.gov (United States)

    Da Deppo, Vania; Middleton, Kevin; Focardi, Mauro; Morgante, Gianluca; Grella, Samuele; Claudi, Riccardo; Pace, Emanuele; Ficai Veltroni, Iacopo; Micela, Giuseppina

    2017-11-01

    ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) is one of the three present candidates for the next ESA medium-class science mission (M4) to be launched in 2026. During its 3.5 years of scientific operations from L2 orbit, this mission will observe spectroscopically in the infrared (IR) a large population of known transiting planets in the neighbourhood of the Solar System. The aim is to enable a deep understanding of the physics and chemistry of these exoplanets. ARIEL is based on a 1-m class telescope ahead of a suite of instruments: two spectrometer channels covering the band 1.95 to 7.80 µm and four photometric channels (two wide and two narrow band) in the range 0.5 to 1.9 μm. The ARIEL optical design is conceived as a fore-module common afocal telescope that will feed the spectrometer and photometric channels. The telescope optical design is based on an eccentric pupil two-mirror classic Cassegrain configuration coupled to a tertiary paraboloidal mirror. An all-aluminum structure has been considered for the telescope layout, and a detailed tolerance analysis has been conducted to assess the telescope feasibility. This analysis has been done including the different parts of the realization and life of the instrument, from integration on-ground to in-flight stability during the scientific acquisitions. The primary mirror (M1) temperature will be monitored and finely tuned via an active thermal control system based on thermistors and heaters. The heaters will be switched on and off to maintain the M1 temperature within ±1K thanks to a proportional-integral-derivative (PID) controller.

  17. A 16-m Telescope for the Advanced Technology Large Aperture Telescope (ATLAST) Mission

    Science.gov (United States)

    Lillie, Charles F.; Dailey, D. R.; Polidan, R. S.

    2010-01-01

    Future space observatories will require increasingly large telescopes to study the earliest stars and galaxies, as well as faint nearby objects. Technologies now under development will enable telescopes much larger than the 6.5-meter diameter James Webb Space Telescope (JWST) to be developed at comparable costs. Current segmented mirror and deployable optics technology enables the 6.5 meter JWST telescope to be folded for launch in the 5-meter diameter Ariane 5 payload fairing, and deployed autonomously after reaching orbit. Late in the next decade, when the Ares V Cargo Launch Vehicle payload fairing becomes operational, even larger telescope can be placed in orbit. In this paper we present our concept for a 16-meter JWST derivative, chord-fold telescope which could be stowed in the 10-m diameter Ares V fairing, plus a description of the new technologies that enable ATLAST to be developed at an affordable price.

  18. The ATHENA telescope and optics status

    DEFF Research Database (Denmark)

    Bavdaz, Marcos; Wille, Eric; Ayre, Mark

    2017-01-01

    chosen for ATHENA is the Silicon Pore Optics (SPO), which hinges on technology spin-in from the semiconductor industry, and uses a modular approach to produce large effective area lightweight telescope optics with a good angular resolution. Both system studies and the technology developments are guided...... by ESA and implemented in industry, with participation of institutional partners. In this paper an overview of the current status of the telescope optics accommodation and technology development activities is provided....

  19. CLIC Telescope optimization with ALLPIX simulation

    CERN Document Server

    Qi, Wu

    2015-01-01

    A simulation study of CLIC-EUDET telescope resolution with MIMOSA 26 as reference sensors under DESY (5.6 GeV electron beam) and CERN-SPS (120-180 GeV pion^{-} beam) conditions. During the study, a virtual DUT sensor with cylindrical sensing area was defined and used with ALLPIX software. By changing the configuration of telescope, some results for DESY's setup were found agreeing with the theoretical calculation.

  20. LYCORIS - A Large Area Strip Telescope

    CERN Document Server

    Krämer, U; Stanitzki, M; Wu, M

    2018-01-01

    The LYCORIS Large Area Silicon Strip Telescope for the DESY II Test Beam Facility is presented. The DESY II Test Beam Facility provides elec- tron and positron beams for beam tests of up to 6 GeV. A new telescope with a large 10 × 20 cm2 coverage area based on a 25 μm pitch strip sensor is to be installed within the PCMAG 1 T solenoid. The current state of the system is presented.

  1. Early results from the Infrared Astronomical Satellite

    International Nuclear Information System (INIS)

    Neugebauer, G.; Beichman, C.A.; Soifer, B.T.

    1984-01-01

    For 10 months the Infrared Astronomical Satellite (IRAS) provided astronomers with what might be termed their first view of the infrared sky on a clear, dark night. Without IRAS, atmospheric absorption and the thermal emission from both the atmosphere and Earthbound telescopes make the task of the infrared astronomer comparable to what an optical astronomer would face if required to work only on cloudy afternoons. IRAS observations are serving astronomers in the same manner as the photographic plates of the Palomar Observatory Sky Survey; just as the optical survey has been used by all astronomers for over three decades, as a source of quantitative information about the sky and as a roadmap for future observations, the results of IRAS will be studied for years to come. IRAS has demonstrated the power of infrared astronomy from space. Already, from a brief look at a miniscule fraction of the data available, we have learned much about the solar system, about nearby stars, about the Galaxy as a whole and about distant extragalactic systems. Comets are much dustier than previously thought. Solid particles, presumably the remnants of the star-formation process, orbit around Vega and other stars and may provide the raw material for planetary systems. Emission from cool interstellar material has been traced throughout the Galaxy all the way to the galactic poles. Both the clumpiness and breadth of the distribution of this material were previously unsuspected. The far-infrared sky away from the galactic plane has been found to be dominate by spiral galaxies, some of which emit more than 50% and as much as 98% of their energy in the infrared - an exciting and surprising revelation. The IRAS mission is clearly the pathfinder for future mission that, to a large extent, will be devoted to the discoveries revealed by IRAS. 8 figures

  2. Mapping the infrared background radiation from the Shuttle

    Science.gov (United States)

    Koch, D.; Fazio, G. G.; Traub, W. A.; Urban, E. W.; Katz, L.; Rieke, G. H.; Gautier, T. N.; Hoffmann, W. F.; Low, F. J.; Poteet, W.

    1981-01-01

    The Spacelab-2 Small Helium-Cooled Infrared Telescope will be used to map extended astronomical sources of low surface brightness emission, to measure the Shuttle induced environment and to develop techniques for managing large volumes of superfluid helium in space. The instrument is an f/4 15.2-cm Herschelian telescope with ten photoconductor detectors in the focal plane. This paper describes the hardware and software aspects of the instrument with emphasis on mission operations. In particular, a description is given of the observing plan formulated to meet the scientific and engineering objectives, the scan drive system, the precautions in design and operation necessary to prevent the sun, moon, and earth from adversely affecting the observations, the implications of thruster firings, and the on-board experiment computer application software to control the scanning of the telescope and support on-board displays.

  3. Are the infrared-faint radio sources pulsars?

    Science.gov (United States)

    Cameron, A. D.; Keith, M.; Hobbs, G.; Norris, R. P.; Mao, M. Y.; Middelberg, E.

    2011-07-01

    Infrared-faint radio sources (IFRS) are objects which are strong at radio wavelengths but undetected in sensitive Spitzer observations at infrared wavelengths. Their nature is uncertain and most have not yet been associated with any known astrophysical object. One possibility is that they are radio pulsars. To test this hypothesis we undertook observations of 16 of these sources with the Parkes Radio Telescope. Our results limit the radio emission to a pulsed flux density of less than 0.21 mJy (assuming a 50 per cent duty cycle). This is well below the flux density of the IFRS. We therefore conclude that these IFRS are not radio pulsars.

  4. VizieR Online Data Catalog: Isaac Newton Telescope Wide Field Survey (CASU 2002)

    Science.gov (United States)

    Cambridge Astronomical Survey Unit

    2002-04-01

    The INT Wide Field Survey (WFS) is using the Wide Field Camera (~0.3 square degrees) on the 2.5m Isaac Newton Telescope (INT). The project was initiated in August 1998 and is expected to have a duration of up to five years. Multicolour data will be obtained over 200+ square degrees to a typical depth of ~25 mag (u' through z'). The data is publically accessible via the Cambridge Astronomical Survey Unit to UK and NL communities from day one, with access to the rest of the world after one year. This observation log lists all observations older than the one year proprietary period. (1 data file).

  5. Hartman Testing of X-Ray Telescopes

    Science.gov (United States)

    Saha, Timo T.; Biskasch, Michael; Zhang, William W.

    2013-01-01

    Hartmann testing of x-ray telescopes is a simple test method to retrieve and analyze alignment errors and low-order circumferential errors of x-ray telescopes and their components. A narrow slit is scanned along the circumference of the telescope in front of the mirror and the centroids of the images are calculated. From the centroid data, alignment errors, radius variation errors, and cone-angle variation errors can be calculated. Mean cone angle, mean radial height (average radius), and the focal length of the telescope can also be estimated if the centroid data is measured at multiple focal plane locations. In this paper we present the basic equations that are used in the analysis process. These equations can be applied to full circumference or segmented x-ray telescopes. We use the Optical Surface Analysis Code (OSAC) to model a segmented x-ray telescope and show that the derived equations and accompanying analysis retrieves the alignment errors and low order circumferential errors accurately.

  6. SCIENTIFIC EFFICIENCY OF GROUND-BASED TELESCOPES

    International Nuclear Information System (INIS)

    Abt, Helmut A.

    2012-01-01

    I scanned the six major astronomical journals of 2008 for all 1589 papers that are based on new data obtained from ground-based optical/IR telescopes worldwide. Then I collected data on numbers of papers, citations to them in 3+ years, the most-cited papers, and annual operating costs. These data are assigned to four groups by telescope aperture. For instance, while the papers from telescopes with an aperture >7 m average 1.29 more citations than those with an aperture of 2 to 7 m) telescopes. I wonder why the large telescopes do so relatively poorly and suggest possible reasons. I also found that papers based on archival data, such as the Sloan Digital Sky Survey, produce 10.6% as many papers and 20.6% as many citations as those based on new data. Also, the 577.2 papers based on radio data produced 36.3% as many papers and 33.6% as many citations as the 1589 papers based on optical/IR telescopes.

  7. An overview of instrumentation for the Large Binocular Telescope

    Science.gov (United States)

    Wagner, R. Mark

    2012-09-01

    An overview of instrumentation for the Large Binocular Telescope (LBT) is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' x 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the left and right direct F/15 Gregorian foci incorporating multiple slit masks for multi-object spectroscopy over a 6' field and spectral resolutions of up to 2000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCI), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at the left and right front bent F/15 Gregorian foci and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multiobject spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 × 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development that can utilize the full 23-m baseline of the LBT include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). LBTI is currently undergoing commissioning on the LBT and utilizing the installed adaptive secondary mirrors in both single- sided and two-sided beam combination modes. In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. Over the past four years the LBC pair, LUCI1, and MODS1 have been commissioned and are now scheduled for routine partner science observations. The delivery of both LUCI2 and MODS2 is anticipated before the end of 2012. The

  8. Teaching Astronomy in UK Schools

    Science.gov (United States)

    Roche, Paul; Roberts, Sarah; Newsam, Andy; Barclay, Charles

    2012-01-01

    This article attempts to summarise the good, bad and (occasionally) ugly aspects of teaching astronomy in UK schools. It covers the most common problems reported by teachers when asked about covering the astronomy/space topics in school. Particular focus is given to the GCSE Astronomy qualification offered by Edexcel (which is currently the…

  9. Maturing safety in the UK

    International Nuclear Information System (INIS)

    Debenham, A.; Kovan, D.

    1994-01-01

    AEA Technology provides UK nuclear industry with technical services and R+D support, concentrating on plant performance, safety and environmental issues. Today, safety has a new set of priorities, reflected by a more demanding regulatory regime which takes account of concerns such as human factors, severe accidents, risks during plant outages, the need for improving safety culture, etc

  10. Nuclear prospects in the UK

    International Nuclear Information System (INIS)

    Hawley, Robert

    1993-01-01

    During the late 1980s and early 1990s the UK government decided to privatise the UK electricity supply industry. In order to introduce competition into the generation side of the business it was decided that the large generating boards - the Central Electricity Generating Board (CEGB) and in Scotland, the South of Scotland Electricity Board and North of Scotland Hydro Board, - should be split up into smaller companies. In England and Wales two companies were proposed. The larger company National Power would include the nuclear generating business in England and Wales, the smaller company, Power Gen would use fossil generation only. Scotland was also to have two companies, Scottish Power - including Scotland's nuclear stations - and Scottish Hydro. But these were troubled times for the UK nuclear industry. A lot of misinformation was being issued by its opponents, in particular about decommissioning and fuel reprocessing costs. Looking back I can see there were reasons for that. Both National Power and Scottish Power wanted to be absolutely certain that they got the best possible deal and that every imaginable, and unimaginable, cost that may ever arise would be taken care of. This attitude resulted in the estimate of huge liabilities and 'unprecedented guarantees' that the then Secretary of State for Energy in the UK, could not accept

  11. Country report for the UK

    International Nuclear Information System (INIS)

    Abram, T.

    2000-01-01

    In the frame of the status of the UK nuclear industry, activities concerning fast reactor are reviewed. There is no government funded program except for decommissioning work at Dounrey. Major activities are concerned with knowledge preservation, fuel cycle modelling and scenario studies, and gas-cooled fast reactor feasibility studies. European, international and BNFL collaboration are also reviewed

  12. Open principle for large high-resolution solar telescopes

    NARCIS (Netherlands)

    Hammerschlag, R.H.; Bettonvil, F.C.M.; Jägers, A.P.L.; Sliepen, G.

    2009-01-01

    Vacuum solar telescopes solve the problem of image deterioration inside the telescope due to refractive index fluctuations of the air heated by the solar light. However, such telescopes have a practical diameter limit somewhat over 1 m. The Dutch Open Telescope (DOT) was the pioneering demonstrator

  13. A balloon borne telescope for planetary observations with a fine pointing technology

    Science.gov (United States)

    Shoji, Yasuhiro; Onishi, Tomoya; Battazzo, Steve; Yoshimura, Atsushi; Sakamoto, Yuji; Yoshida, Kazuya; Takahashi, Yukihiro; Taguchi, Makoto

    A balloon borne telescope is one of the effective observation methods for planets under space environment. A telescope is carried up to the stratosphere at an altitude of higher than 32 km where the air density is as thin as 1/100 of that at the ground. The thin atmosphere gives a telescope better observation conditions: fine seeing, stable weather, and high transmittance especially in the infrared region. Moreover there is a chance that a planet can be continuously seen for a window longer than 24 hours from the polar stratosphere. The authors have been developing a balloon borne telescope system for years to take finer images of planets in the solar system., The first object is Venus, of which atmospheric motions are derived by tracking the changes of cloud patterns with bands of UV, visible and NIR. Highly precise pointing control within the error of sub-arcseconds is required so that the balloon borne telescope achieves its diffraction-limited spatial resolution. The flight system is equipped with a three-stage attitude and pointing control system in order to realize the desired pointing control precision. In 2009, the flight system was built and tested in various ground tests and an actual balloon flight. Although the balloon experiment failed due to trouble with an onboard computer, the ground tests before the flight operation have verified that the pointing control system can achieve pointing error of less than 0.2 arcseconds. The balloon borne telescope is being redesigned for a sequential observation of Venus, Mars and Jupiter in the summer of 2011. This flight will be a step for a long-duration observation in the polar stratosphere. Additionally, an observation of the sodium tail of Mercury with a small telescope and a wide field of view has been under consideration. Mercury has very thin atmosphere called a surface-bounded exosphere. Past observations by spacecraft and ground-based telescopes revealed that one of the atmospheric components, gaseous

  14. Indian Diaspora In The UK

    Directory of Open Access Journals (Sweden)

    L. V. Kulik

    2017-01-01

    Full Text Available The author traces the history of formation of the Indian diaspora in the UK, evaluates the key trends that characterize the current state of diaspora. The article highlights the level of involvement and participation of diaspora in the evolution of the bilateral relations, as well as the influence of diaspora over home and foreign policy in the UK and India. The diaspora today is not just a unique vibrant connection between the two countries, it has also become a factor of influence over domestic, social and economic affairs in both the UK and India. There is a growing number of Indians among British statesmen and politicians. Indians occupy significant posts in various sectors in Britain, including business and finance. This contributes to strengthening of economic ties between the two countries, particularly important considering Britain’s forthcoming exit from the EU. As to internal political matters, though potential issues exist (those include, for instance, the possible transfer from India into Britain of problematic inter-caste relations, India’s criticism over unbalanced approach to teaching colonial history in British schools, the Indian diaspora due to its’ inherent tolerance and moderation generally plays a stabilizing role in the UK, especially on the background of radicalization of other ethnic communities. For the new India the diaspora today is not just an important source of financing, competences and know-how, it is also a significant lobbying and soft-power instrument. This article is part of a broader research, related to the contemporary relations between the United Kingdom and India. Indian diaspora in the UK is an integral part of the unique centuries-long history that connects the two countries. It is poised to remain a strong factor contributing to interdependence and cooperation between Britain and India in the XXI century.

  15. Organic Species in Infrared Dark Clouds

    Science.gov (United States)

    Vasyunina, T.; Vasyunin, A. I.; Herbst, Eric; Linz, Hendrik; Voronkov, Maxim; Britton, Tui; Zinchenko, Igor; Schuller, Frederic

    2014-01-01

    It is currently assumed that infrared dark clouds (IRDCs) represent the earliest evolutionary stages of high-mass stars (>8 M ⊙). Submillimeter and millimeter-wave studies performed over the past 15 yr show that IRDCs possess a broad variety of properties, and hence a wide range of problems and questions that can be tackled. In this paper, we report an investigation of the molecular composition and chemical processes in two groups of IRDCs. Using the Mopra, APEX, and IRAM radio telescopes over the last four years, we have collected molecular line data for CO, H2CO, HNCO, CH3CCH, CH3OH, CH3CHO, CH3OCHO, and CH3OCH3. For all of these species we estimated molecular abundances. We then undertook chemical modeling studies, concentrating on the source IRDC028.34+0.06, and compared observed and modeled abundances. This comparison showed that to reproduce observed abundances of complex organic molecules, a zero-dimensional gas-grain model with constant physical conditions is not sufficient. We achieved greater success with the use of a warm-up model, in which warm-up from 10 K to 30 K occurs following a cold phase. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). This publication is based on data acquired with the Atacama Pathfinder Experiment (APEX). APEX is a collaboration between the Max-Planck-Institut für Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory. The 22 m Mopra antenna is part of the Australia Telescope, which is funded by the Commonwealth of Australia for operations as a National Facility managed by CSIRO. The University of New South Wales Digital Filter Bank used for the observations with the Mopra Telescope was provided with support from the Australian Research Council.

  16. A new network of faint calibration stars from the near infrared spectrometer (NIRS) on the IRTS

    Science.gov (United States)

    Freund, Minoru M.; Matsuura, Mikako; Murakami, Hiroshi; Cohen, Martin; Noda, Manabu; Matsuura, Shuji; Matsumoto, Toshio

    1997-01-01

    The point source extraction and calibration of the near infrared spectrometer (NIRS) onboard the Infrared Telescope in Space (IRTS) is described. About 7 percent of the sky was observed during a one month mission in the range of 1.4 micrometers to 4 micrometers. The accuracy of the spectral shape and absolute values of calibration stars provided by the NIRS/IRTS were validated.

  17. Mid-Infrared Observations of the White Dwarf Brown Dwarf Binary GD 1400

    OpenAIRE

    Farihi, J.; Zuckerman, B.; Becklin, E. E.

    2005-01-01

    Fluxes are measured for the DA white dwarf plus brown dwarf pair GD 1400 with the Infrared Array Camera on the {\\em Spitzer Space Telescope}. GD 1400 displays an infrared excess over the entire $3-8\\mu$m region consistent with the presence of a mid- to late-type L dwarf companion. A discussion is given regarding current knowledge of this unique system.

  18. Hubble Space Telescope, Faint Object Camera

    Science.gov (United States)

    1981-01-01

    This drawing illustrates Hubble Space Telescope's (HST's), Faint Object Camera (FOC). The FOC reflects light down one of two optical pathways. The light enters a detector after passing through filters or through devices that can block out light from bright objects. Light from bright objects is blocked out to enable the FOC to see background images. The detector intensifies the image, then records it much like a television camera. For faint objects, images can be built up over long exposure times. The total image is translated into digital data, transmitted to Earth, and then reconstructed. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  19. Simulation and track reconstruction for beam telescopes

    CERN Document Server

    Maqbool, Salman

    2017-01-01

    Beam telescopes are used for testing new detectors under development. Sensors are placed and a particle beam is passed through them. To test these novel detectors and determine their properties, the particle tracks need to be reconstructed from the known detectors in the telescope. Based on the reconstructed track, it’s predicted hits on the Device under Test (DUT) are compared with the actual hits on the DUT. Several methods exist for track reconstruction, but most of them don’t account for the effects of multiple scattering. General Broken Lines is one such algorithm which incorporates these effects during reconstruction. The aim of this project was to simulate the beam telescope and extend the track reconstruction framework for the FE-I4 telescope, which takes these effects into account. Section 1 introduces the problem, while section 2 focuses on beam telescopes. This is followed by the Allpix2 simulation framework in Section 3. And finally, Section 4 introduces the Proteus track reconstruction framew...

  20. Habitable Exoplanet Imager Optical Telescope Concept Design

    Science.gov (United States)

    Stahl, H Philip

    2017-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sun-like stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirror-anastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  1. Liverpool Telescope 2: beginning the design phase

    Science.gov (United States)

    Copperwheat, Christopher M.; Steele, Iain A.; Barnsley, Robert M.; Bates, Stuart D.; Bode, Mike F.; Clay, Neil R.; Collins, Chris A.; Jermak, Helen E.; Knapen, Johan H.; Marchant, Jon M.; Mottram, Chris J.; Piascik, Andrzej S.; Smith, Robert J.

    2016-07-01

    The Liverpool Telescope is a fully robotic 2-metre telescope located at the Observatorio del Roque de los Muchachos on the Canary Island of La Palma. The telescope began routine science operations in 2004, and currently seven simultaneously mounted instruments support a broad science programme, with a focus on transient followup and other time domain topics well suited to the characteristics of robotic observing. Work has begun on a successor facility with the working title `Liverpool Telescope 2'. We are entering a new era of time domain astronomy with new discovery facilities across the electromagnetic spectrum, and the next generation of optical survey facilities such as LSST are set to revolutionise the field of transient science in particular. The fully robotic Liverpool Telescope 2 will have a 4-metre aperture and an improved response time, and will be designed to meet the challenges of this new era. Following a conceptual design phase, we are about to begin the detailed design which will lead towards the start of construction in 2018, for first light ˜2022. In this paper we provide an overview of the facility and an update on progress.

  2. Calibration strategies for the Cherenkov Telescope Array

    Science.gov (United States)

    Gaug, Markus; Berge, David; Daniel, Michael; Doro, Michele; Förster, Andreas; Hofmann, Werner; Maccarone, Maria C.; Parsons, Dan; de los Reyes Lopez, Raquel; van Eldik, Christopher

    2014-08-01

    The Central Calibration Facilities workpackage of the Cherenkov Telescope Array (CTA) observatory for very high energy gamma ray astronomy defines the overall calibration strategy of the array, develops dedicated hardware and software for the overall array calibration and coordinates the calibration efforts of the different telescopes. The latter include LED-based light pulsers, and various methods and instruments to achieve a calibration of the overall optical throughput. On the array level, methods for the inter-telescope calibration and the absolute calibration of the entire observatory are being developed. Additionally, the atmosphere above the telescopes, used as a calorimeter, will be monitored constantly with state-of-the-art instruments to obtain a full molecular and aerosol profile up to the stratosphere. The aim is to provide a maximal uncertainty of 10% on the reconstructed energy-scale, obtained through various independent methods. Different types of LIDAR in combination with all-sky-cameras will provide the observatory with an online, intelligent scheduling system, which, if the sky is partially covered by clouds, gives preference to sources observable under good atmospheric conditions. Wide-field optical telescopes and Raman Lidars will provide online information about the height-resolved atmospheric extinction, throughout the field-of-view of the cameras, allowing for the correction of the reconstructed energy of each gamma-ray event. The aim is to maximize the duty cycle of the observatory, in terms of usable data, while reducing the dead time introduced by calibration activities to an absolute minimum.

  3. The Telescope: Outline of a Poetic History

    Science.gov (United States)

    Stocchi, M. P.

    2011-06-01

    Amongst the first editions of Galileo's books, only the Saggiatore has on its frontispiece the image of the telescope. Indeed, the telescope is not pictured on the very emphatic frontispieces of the other books in which Galileo was presenting and defending the results achieved by his celestial observations, such as the Sidereus Nuncius. Many contemporary scientists denied the reliability of the telescope, and some even refused to look into the eyepiece. In the 16th and 17th century, the lenses, mirrors, and optical devices of extraordinary complexity did not have the main task of leading to the objective truth but obtaining the deformation of the reality by means of amazing effects of illusion. The Baroque art and literature had the aim of surprising, and the artists gave an enthusiastic support to the telescope. The poems in praise of Galileo's telescopic findings were quite numerous, including Adone composed by Giovanni Battista Marino, one of the most renowned poets of the time. The Galilean discoveries were actually accepted by the poets as ideologically neutral contributions to the "wonder" in spite they were rejected or even condemned by the scientists, philosophers, and theologians.

  4. Habitable exoplanet imager optical telescope concept design

    Science.gov (United States)

    Stahl, H. Philip

    2017-09-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sunlike stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirroranastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  5. A free market in telescope time?

    Science.gov (United States)

    Etherton, Jason; Steele, Iain A.; Mottram, Christopher J.

    2004-09-01

    As distributed systems are becoming more and more diverse in application there is a growing need for more intelligent resource scheduling. eSTAR Is a geographically distributed network of Grid-enabled telescopes, using grid middleware to provide telescope users with an authentication and authorisation method, allowing secure, remote access to such resources. The eSTAR paradigm is based upon this secure, single sign-on, giving astronomers or their agent proxies direct access to these telescopes. This concept, however, involves the complex issue of how to schedule observations stored within physically distributed media, on geographically distributed resources. This matter is complicated further by the varying degrees of constraints placed upon observations such as timeliness, atmospheric and meteorological conditions, and sky brightness to name a few. This paper discusses a free market approach to this scheduling problem, where astronomers are given credit, instead of time, from their respective TAGs to spend on telescopes as they see fit. This approach will ultimately provide a community-driven schedule, genuine indicators of the worth of specific telescope time and promote a more efficient use of that time, as well as demonstrating a 'survival of the fittest' type selection.

  6. Development and Performances of the Magic Telescope

    Science.gov (United States)

    Bastieri, D.; Bigongiari, C.; Dazzi, F.; Mariotti, M.; Moralejo, A.; Peruzzo, L.; Saggion, A.; Tonello, N.

    2002-11-01

    The MAGIC Collaboration is building an imaging Čerenkov telescope at La Palma site (2200 m a.s.l.), in the Canary Islands, to observe gamma rays in the hundred-GeV region. The MAGIC telescope, with its reflecting parabolic dish, 17 m in diameter, and a two-level pattern trigger designed to cope with severe trigger rates, is the Čerenkov telescope with the lowest envisaged energy threshold. Due to its lightweight alto-azimuthal mounting, MAGIC can be repositioned in less than 30 seconds, becoming the only detector, with an adequate effective area, capable to observe GRB phenomena above 30 GeV. MAGIC telescope is characterised by a 30 GeV energy threshold and a sensitivity of 6×l0-11 cm-2s-1 for a 5σ-detection in 50-hours of observation. In this report, some future scientific goals for MAGIC will be highlighted and the technical development for the main elements of the telescope will be detailed. Special emphasis will be given to the construction of the individual metallic mirrors which form the reflecting surface and the development of the fast pattern-recognition trigger.

  7. Infrared microscope inspection apparatus

    Science.gov (United States)

    Forman, Steven E.; Caunt, James W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface.

  8. Sustainability in the UK construction minerals industry

    OpenAIRE

    Mitchell, Clive

    2015-01-01

    Sustainability in the UK construction minerals industry Clive Mitchell, Industrial Minerals Specialist, British Geological Survey, Nottingham, UK Email: Sustainability is not just about environmental protection it also concerns biodiversity, community relations, competence, employment, geodiversity, health and safety, resource efficiency, restoration and stakeholder accountability. The UK construction minerals industry aims to supply essential materials in a sustainabl...

  9. An innovative telescope control system architecture for SST-GATE telescopes at the CTA Observatory

    Science.gov (United States)

    Fasola, Gilles; Mignot, Shan; Laporte, Philippe; Abchiche, Abdel; Buchholtz, Gilles; Jégouzo, Isabelle

    2014-07-01

    SST-GATE (Small Size Telescope - GAmma-ray Telescope Elements) is a 4-metre telescope designed as a prototype for the Small Size Telescopes (SST) of the Cherenkov Telescope Array (CTA), a major facility for the very high energy gamma-ray astronomy of the next three decades. In this 100-telescope array there will be 70 SSTs, involving a design with an industrial view aiming at long-term service, low maintenance effort and reduced costs. More than a prototype, SST-GATE is also a fully functional telescope that shall be usable by scientists and students at the Observatoire de Meudon for 30 years. The Telescope Control System (TCS) is designed to work either as an element of a large array driven by an array controller or in a stand-alone mode with a remote workstation. Hence it is built to be autonomous with versatile interfacing; as an example, pointing and tracking —the main functions of the telescope— are managed onboard, including astronomical transformations, geometrical transformations (e.g. telescope bending model) and drive control. The core hardware is a CompactRIO (cRIO) featuring a real-time operating system and an FPGA. In this paper, we present an overview of the current status of the TCS. We especially focus on three items: the pointing computation implemented in the FPGA of the cRIO —using CORDIC algorithms— since it enables an optimisation of the hardware resources; data flow management based on OPCUA with its specific implementation on the cRIO; and the use of an EtherCAT field-bus for its ability to provide real-time data exchanges with the sensors and actuators distributed throughout the telescope.

  10. Europe's latest space telescope is off to a good start

    Science.gov (United States)

    1999-12-01

    stands for X-ray Multi-Mirror Mission. Its main telescopes will gather X-rays from the cosmos with 120 square metres of gold-coated surfaces, in 174 mirrors fashioned, smoothed and nested together with high precision by contractors in Germany and Italy. With XMM, Europe has taken the lead in X-ray missions and X-ray detectors: the most sensitive and largest ever made. The four complex scientific instruments on XMM have been developed and led by European scientists with participation from institutes worldwide. Compared with NASA's Chandra X-ray telescope launched earlier this year, XMM is at least 5 times more sensitive. The gain in sensitivity is 15-fold, at high X-ray energies. But Chandra has a sharper view, so the two missions are complementary and there is close transatlantic collaboration among the scientists involved. Prime scientific objectives for XMM are to find out exactly what goes on in the vicinity of black holes, and to help to clear up the mystery of the stupendous explosions called gamma-ray bursts. Other hot topics for investigation include cannibalism among the stars, the release of newly made chemical elements from stellar explosions, and the origin of the cosmic rays that rain on the Earth. XMM is one of a carefully-planned series of scientific satellites built in Europe by which ESA has established a pioneering role in space astronomy. Recently completed missions include the very successful star-mapping satellite Hipparcos, and the Infrared Space Observatory which revolutionized astronomers' knowledge of the cool parts of the universe. Coming along after XMM are Integral for gamma-ray astronomy, FIRST for the far-infrared, and Planck for examining the entire cosmic microwave background far more accurately than ever before.

  11. Far infrared supplement: Catalog of infrared observations, second edition

    International Nuclear Information System (INIS)

    Gezari, D.Y.; Schmitz, M.; Mead, J.M.

    1988-08-01

    The Far Infrared Supplement: Catalog of Infrared Observations summarizes all infrared astronomical observations at far infrared wavelengths (5 to 1000 microns) published in the scientific literature from 1965 through 1986. The Supplement list contain 25 percent of the observations in the full Catalog of Infrared Observations (CIO), and essentially eliminates most visible stars from the listings. The Supplement is thus more compact than the main catalog, and is intended for easy reference during astronomical observations. The Far Infrared Supplement (2nd Edition) includes the Index of Infrared Source Positions and the Bibliography of Infrared Astronomy for the subset of far infrared observations listed

  12. European astronaut selected for the third Hubble Space Telescope

    Science.gov (United States)

    1998-08-01

    will remove the European-built Faint Object Camera, which has been working without any problem since the launch in 1990, and replace it with a new-generation instrument, called the Advanced Camera for Survey. With its three electronic cameras and complement of filters, this camera is expected to improve the telescope's sensitivity tenfold. Other primary tasks to be accomplished during STS-104 mission include replacement of the existing solar arrays with rigid, high-efficiency arrays for which ESA will deliver the mechanisms, manufactured by Daimler-Benz Aerospace/Dornier. In common with optical instruments, solar arrays gradually decline in performance when exposed to the space environment. Further tasks are the replacement of a mechanical tape recorder with a new-generation solid-state recorder and the replacement of Fine Guidance Sensor no. 2, one of three such devices that help to point the telescope at a celestial target with an accuracy of 0.007 arc seconds. This is equivalent to keeping the telescope pointed at a candle in Amsterdam from Vevey, Switzerland, about 700 km away, where Nicollier was born. The crew will also install a cooling system to improve the thermal protection of some of the telescope's systems, a new-technology cryogenic cooler for the Near Infrared Camera and Mutli-Object Spectrometer instrument and six improvement kits which will enhance Hubble's battery charge capability. In addition, they will repair and replace much of the multi-layer exterior thermal insulation on the sun-facing side of the telescope. On the second Hubble servicing mission, STS-82 in February 1997, the crew noticed peeling on several areas of the insulation and applied four patches to the worst affected areas. Both Smith and Nicollier have previous in-flight experience with Hubble: Smith performed three extravehicular sorties during the STS-82 mission to Hubble and Nicollier operated the Shuttle's Canadian robot arm during the first servicing mission on the STS-61 mission

  13. Mid-Infrared Lasers

    Data.gov (United States)

    National Aeronautics and Space Administration — Mid infrared solid state lasers for Differential Absorption Lidar (DIAL) systems required for understanding atmospheric chemistry are not available. This program...

  14. LOBSTER - New Space X-Ray telescopes

    International Nuclear Information System (INIS)

    Hudec, R.; Pina, L.; Simon, V.; Sveda, L.; Inneman, A.; Semencova, V.; Skulinova, M.

    2007-01-01

    We discuss the technological and scientific aspects of fully innovative very wide-field X-ray telescopes with high sensitivity. The prototypes of Lobster telescopes designed, developed and tested are very promising, allowing the proposals for space projects with very wide-field Lobster Eye X-ray optics to be considered for the first time. The novel telescopes will monitor the sky with unprecedented sensitivity and angular resolution of order of 1 arcmin. They are expected to contribute essentially to study of various astrophysical objects such as AGN, SNe, Gamma-ray bursts (GRBs), X-ray flashes (XRFs), galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc. For example, the Lobster optics based X-ray All Sky Monitor is capable to detect around 20 GRBs and 8 XRFs yearly and this will surely significantly contribute to the related science

  15. The SPIRIT Telescope Initiative: six years on

    Science.gov (United States)

    Luckas, Paul

    2017-06-01

    Now in its sixth year of operation, the SPIRIT initiative remains unique in Australia, as a robust web-enabled robotic telescope initiative funded for education and outreach. With multiple modes of operation catering for a variety of usage scenarios and a fully supported education program, SPIRIT provides free access to contemporary astronomical tools for students and educators in Western Australia and beyond. The technical solution itself provides an excellent model for low cost robotic telescope installations, and the education program has evolved over time to include a broad range of student experiences-from engagement activities to authentic science. This paper details the robotic telescope solution, student interface and educational philosophy, summarises achievements and lessons learned and examines the possibilities for future enhancement including spectroscopy.

  16. Hubble Space Telescope via the Web

    Science.gov (United States)

    O'Dea, Christopher P.

    The Space Telescope Science Institute (STScI) makes available a wide variety of information concerning the Hubble Space Telescope (HST) via the Space Telescope Electronic Information Service (STEIS). STEIS is accessible via anonymous ftp, gopher, WAIS, and WWW. The information on STEIS includes how to propose for time on the HST, the current status of HST, reports on the scientific instruments, the observing schedule, data reduction software, calibration files, and a set of publicly available images in JPEG, GIF and TIFF format. STEIS serves both the astronomical community as well as the larger Internet community. WWW is currently the most widely used interface to STEIS. Future developments on STEIS are expected to include larger amounts of hypertext, especially HST images and educational material of interest to students, educators, and the general public, and the ability to query proposal status.

  17. Observatories and Telescopes of Modern Times

    Science.gov (United States)

    Leverington, David

    2016-11-01

    Preface; Part I. Optical Observatories: 1. Palomar Mountain Observatory; 2. The United States Optical Observatory; 3. From the Next Generation Telescope to Gemini and SOAR; 4. Competing primary mirror designs; 5. Active optics, adaptive optics and other technical innovations; 6. European Northern Observatory and Calar Alto; 7. European Southern Observatory; 8. Mauna Kea Observatory; 9. Australian optical observatories; 10. Mount Hopkins' Whipple Observatory and the MMT; 11. Apache Point Observatory; 12. Carnegie Southern Observatory (Las Campanas); 13. Mount Graham International Optical Observatory; 14. Modern optical interferometers; 15. Solar observatories; Part II. Radio Observatories: 16. Australian radio observatories; 17. Cambridge Mullard Radio Observatory; 18. Jodrell Bank; 19. Early radio observatories away from the Australian-British axis; 20. The American National Radio Astronomy Observatory; 21. Owens Valley and Mauna Kea; 22. Further North and Central American observatories; 23. Further European and Asian radio observatories; 24. ALMA and the South Pole; Name index; Optical observatory and telescope index; Radio observatory and telescope index; General index.

  18. Simulation of the Simbol-X Telescope

    International Nuclear Information System (INIS)

    Chauvin, M.; Roques, J. P.

    2009-01-01

    We have developed a simulation tool for a Wolter I telescope operating in formation flight. The aim is to understand and predict the behavior of the Simbol-X instrument. As the geometry is variable, formation flight introduces new challenges and complex implications. Our code, based on Monte Carlo ray tracing, computes the full photon trajectories up to the detector plane, along with the relative drifts of the two spacecrafts. It takes into account angle and energy dependent interactions of the photons with the mirrors and applies to any grazing incidence telescope. The resulting images of simulated sources from 0.1 keV to 100 keV allow us to optimize the configuration of the instrument and to assess the performance of the Simbol-X telescope.

  19. Simulation of the Simbol-X Telescope

    Science.gov (United States)

    Chauvin, M.; Roques, J. P.

    2009-05-01

    We have developed a simulation tool for a Wolter I telescope operating in formation flight. The aim is to understand and predict the behavior of the Simbol-X instrument. As the geometry is variable, formation flight introduces new challenges and complex implications. Our code, based on Monte Carlo ray tracing, computes the full photon trajectories up to the detector plane, along with the relative drifts of the two spacecrafts. It takes into account angle and energy dependent interactions of the photons with the mirrors and applies to any grazing incidence telescope. The resulting images of simulated sources from 0.1 keV to 100 keV allow us to optimize the configuration of the instrument and to assess the performance of the Simbol-X telescope.

  20. Deployable reflector configurations. [for space telescope

    Science.gov (United States)

    Meinel, A. B.; Meinel, M. P.; Woolf, N. J.

    1983-01-01

    Both the theoretical reasons for considering a non-circular format for the Large Deployable Reflector, and a potentially realizable concept for such a device, are discussed. The optimum systems for diffraction limited telescopes with incoherent detection have either a single filled aperture, or two such apertures as an interferometer to synthesize a larger aperture. For a single aperture of limited area, a reflector in the form of a slot can be used to give increased angular resolution. It is shown how a 20 x 8 meter telescope can be configured to fit the Space Shuttle bay, and deployed with relatively simple operations. The relationship between the sunshield design and the inclination of the orbit is discussed. The possible use of the LDR as a basic module to permit the construction of supergiant space telescopes and interferometers both for IR/submm studies and for the entire ultraviolet through mm wave spectral region is discussed.

  1. Neutrino telescopes sensitivity to dark matter

    International Nuclear Information System (INIS)

    Albuquerque, I.F.M.; Lamoureux, J.; Smoot, G.F.

    2002-01-01

    The nature of the dark matter of the Universe is yet unknown and most likely is connected with new physics. The search for its composition is underway through direct and indirect detection. Fundamental physical aspects such as energy threshold, geometry and location are taken into account to investigate proposed neutrino telescopes of km3 volume sensitivities to dark matter. These sensitivities are just sufficient to test a few weakly interacting massive particle scenarios. Telescopes of km3 volume, such as IceCube, can definitely discover or exclude superheavy (M>1010 GeV) strong interacting massive particles (simpzillas). Smaller neutrino telescopes such as ANTARES, AMANDA-II and NESTOR can probe a large region of simpzilla parameter space

  2. Template analysis for the MAGIC telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Uta [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: MAGIC-Collaboration

    2016-07-01

    The MAGIC telescopes are two 17-m-diameter Imaging Air Cherenkov Telescopes located on the Canary island of La Palma. They record the Cherenkov light from air showers induced by very high energy photons. The current data analysis uses a parametrization of the two shower images (including Hillas parameters) to determine the characteristics of the primary particle. I am implementing an advanced analysis method that compares shower images on a pixel basis with template images based on Monte Carlo simulations. To reduce the simulation effort the templates contain only pure shower images that are convolved with the telescope response later in the analysis. The primary particle parameters are reconstructed by maximizing the likelihood of the template. By using all the information available in the shower images, the performance of MAGIC is expected to improve. In this presentation I will explain the general idea of a template-based analysis and show the first results of the implementation.

  3. The VTIE telescope resource management system

    Science.gov (United States)

    Busschots, B.; Keating, J. G.

    2005-06-01

    The VTIE Telescope Resource Management System (TRMS) provides a frame work for managing a distributed group of internet telescopes as a single "Virtual Observatory". The TRMS provides hooks which allow for it to be connected to any Java Based web portal and for a Java based scheduler to be added to it. The TRMS represents each telescope and observatory in the system with a software agent and then allows the scheduler and web portal to communicate with these distributed resources in a simple transparent way, hence allowing the scheduler and portal designers to concentrate only on what they wish to do with these resources rather than how to communicate with them. This paper outlines the structure and implementation of this frame work.

  4. The ultraviolet telescope on the Astron satellite

    International Nuclear Information System (INIS)

    Boyarchuk, A.A.

    1987-01-01

    On 23 March 1983 in the USSR, the Astron astrophysical satellite, with the largest ultraviolet telescope (the UVT) in the world (main mirror diameter 80 cm) and a set of X-ray instruments on board was placed in a high-apogee orbit. The design of the ultraviolet telescope and the results of some of the observations carried out with it are described here. The X-ray instruments are discussed in a separate article. The ultraviolet telescope on the Astron astrophysical satellite is a result of the joint efforts of scientists and engineers at the Crimean Astrophysical Observatory (Academy of Sciences of the USSR), the Byurakan Astrophysical Observatory (Academy of Sciences of the Armenian USSR), and several industrial enterprises in our country. The Laboratoire d'Astronomie Spatiale (CNRS, Marseille, France) played a large role in building the spectrometer for the UVT

  5. Origins Space Telescope Concept 2: Trades, Decisions, and Study Status

    Science.gov (United States)

    Leisawitz, David; DiPirro, Michael; Carter, Ruth; Origins Space Telescope Decadal Mission Concept Study Team

    2018-01-01

    The Origins Space Telescope (OST) will trace the history of our cosmic origins from the time dust and heavy elements began to alter the astrophysical processes that shaped galaxies and enabled planets to form, culminating at least once in the development of a life-bearing planet. But how did the universe evolve in response to its changing ingredients, and how common are planets that support life? The OST, an advancing concept for the Far-Infrared Surveyor mission described in the NASA Astrophysics roadmap, is being designed to answer these questions. As envisaged in the Roadmap, Enduring Quests/Daring Visions, OST will offer sensitivity and spectroscopic capabilities that vastly exceed those found in any preceding far-IR observatory. The spectral range of OST was extended down to 6 microns to allow measurements of key biomarkers in transiting exoplanet spectra. Thus, OST is a mid- and far-IR mission. OST Concept 2 will inform the Science and Technology Definition Team’s understanding of the “solution space,” enabling a recommendation to the 2020 Decadal Survey which, while not fully optimized, will be scientifically compelling, executable, and intended to maximize the science return per dollar. OST Concept 1, described in a companion paper, would satisfy virtually all of the STDT’s science objectives in under 5 years. Concept 2 is intentionally less ambitious than Concept 1, but it still includes a 4 K telescope, enabling exquisitely sensitive far-IR measurements. This paper will summarize the architecture options considered for OST Concept 2 and describe the factors that led to the chosen design concept. Lessons from the Concept 1 study influenced our choices. We report progress on the Concept 2 study to date.

  6. SPITZER SPACE TELESCOPE MID-IR LIGHT CURVES OF NEPTUNE

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, John; Rebull, Luisa; Carey, Sean J.; Krick, Jessica; Ingalls, James G.; Lowrance, Patrick; Glaccum, William [Spitzer Science Center (SSC), California Institute of Technology, Pasadena, CA 91125 (United States); Marley, Mark S. [NASA Ames Research Center, Space Sciences and Astrobiology Division, MS245-3, Moffett Field, CA 94035 (United States); Gizis, John E. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Kirkpatrick, J. Davy [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Simon, Amy A. [NASA Goddard Space Flight Center, Solar System Exploration Division (690.0), 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Wong, Michael H. [University of California, Department of Astronomy, Berkeley CA 94720-3411 (United States)

    2016-11-01

    We have used the Spitzer Space Telescope in 2016 February to obtain high cadence, high signal-to-noise, 17 hr duration light curves of Neptune at 3.6 and 4.5 μ m. The light curve duration was chosen to correspond to the rotation period of Neptune. Both light curves are slowly varying with time, with full amplitudes of 1.1 mag at 3.6 μ m and 0.6 mag at 4.5 μ m. We have also extracted sparsely sampled 18 hr light curves of Neptune at W1 (3.4 μ m) and W2 (4.6 μ m) from the Wide-feld Infrared Survey Explorer ( WISE )/ NEOWISE archive at six epochs in 2010–2015. These light curves all show similar shapes and amplitudes compared to the Spitzer light curves but with considerable variation from epoch to epoch. These amplitudes are much larger than those observed with Kepler / K 2 in the visible (amplitude ∼0.02 mag) or at 845 nm with the Hubble Space Telescope ( HST ) in 2015 and at 763 nm in 2016 (amplitude ∼0.2 mag). We interpret the Spitzer and WISE light curves as arising entirely from reflected solar photons, from higher levels in Neptune’s atmosphere than for K 2. Methane gas is the dominant opacity source in Neptune’s atmosphere, and methane absorption bands are present in the HST 763 and 845 nm, WISE W1, and Spitzer 3.6 μ m filters.

  7. Augmenting WFIRST Microlensing with a Ground-Based Telescope Network

    Science.gov (United States)

    Zhu, Wei; Gould, Andrew

    2016-06-01

    Augmenting the Wide Field Infrared Survey Telescope (WFIRST) microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable full two-dimensional (2-D) vector microlens parallax measurements for a substantial fraction of low-mass lenses as well as planetary and binary events that show caustic crossing features. For a significant fraction of the free-floating planet (FFP) events and all caustic-crossing planetary/binary events, these 2-D parallax measurements directly lead to complete solutions (mass, distance, transverse velocity) of the lens object (or lens system). For even more events, the complementary ground-based observations will yield 1-D parallax measurements. Together with the 1-D parallaxes from WFIRST alone, they can probe the entire mass range M > M_Earth. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. Other benefits of such a survey include improved understanding of binaries (particularly with low mass primaries), and sensitivity to distant ice-giant and gas-giant companions of WFIRST lenses that cannot be detected by WFIRST itself due to its restricted observing windows. Existing ground-based microlensing surveys can be employed if WFIRST is pointed at lower-extinction fields than is currently envisaged. This would come at some cost to the event rate. Therefore the benefits of improved characterization of lenses must be weighed against these costs.

  8. Design and end-to-end modelling of a deployable telescope

    Science.gov (United States)

    Dolkens, Dennis; Kuiper, Hans

    2017-09-01

    Deployable optics have the potential of revolutionizing the field of high resolution Earth Observation. By offering the same resolutions as a conventional telescope, while using a much smaller launch volume and mass, the costs of high resolution image data can be brought down drastically. In addition, the technology will ultimately enable resolutions that are currently unattainable due to limitations imposed by the size of launcher fairings. To explore the possibilities and system complexities of a deployable telescope, a concept study was done to design a competitive deployable imager. A deployable telescope was designed for a ground sampling distance of 25 cm from an orbital altitude of 550 km. It offers an angular field of view of 0.6° and has a panchromatic channel as well as four multispectral bands in the visible and near infrared spectrum. The optical design of the telescope is based on an off-axis Korsch Three Mirror Anastigmat. A freeform tertiary mirror is used to ensure a diffraction limited image quality for all channels, while maintaining a compact design. The segmented primary mirror consists of four tapered aperture segments, which can be folded down during launch, while the secondary mirror is mounted on a deployable boom. In its stowed configuration, the telescope fits within a quarter of the volume of a conventional telescope reaching the same resolution. To reach a diffraction limited performance while operating in orbit, the relative position of each individual mirror segment must be controlled to a fraction of a wavelength. Reaching such tolerances with deployable telescope challenging, due to inherent uncertainties in the deployment mechanisms. Adding to the complexity is the fact that the telescope will be operating in a Low Earth Orbit (LEO) where it will be exposed to very dynamic thermal conditions. Therefore, the telescope will be equipped with a robust calibration system. Actuators underneath the primary mirror will be controlled using

  9. MROI Array telescopes: the relocatable enclosure domes

    Science.gov (United States)

    Marchiori, G.; Busatta, A.; Payne, I.

    2016-07-01

    The MROI - Magdalena Ridge Interferometer is a project which comprises an array of up to 10 1.4m diameter mirror telescopes arranged in a "Y" configuration. Each of these telescopes will be housed inside a Unit Telescope Enclosure (UTE) which are relocatable onto any of 28 stations. EIE GROUP Srl, Venice - Italy, was awarded the contract for the design, the construction and the erection on site of the MROI by the New Mexico Institute of Mining and Technology. The close-pack array of the MROI - including all 10 telescopes, several of which are at a relative distance of less than 8m center to center from each other - necessitated an original design for the Unit Telescope Enclosure (UTE). This innovative design enclosure incorporates a unique dome/observing aperture system to be able to operate in the harsh environmental conditions encountered at an altitude of 10,460ft (3,188m). The main characteristics of this Relocatable Enclosure Dome are: a Light insulated Steel Structure with a dome made of composites materials (e.g. glass/carbon fibers, sandwich panels etc.), an aperture motorized system for observation, a series of louvers for ventilation, a series of electrical and plants installations and relevant auxiliary equipment. The first Enclosure Dome is now under construction and the completion of the mounting on site id envisaged by the end of 2016. The relocation system utilizes a modified reachstacker (a transporter used to handle freight containers) capable of maneuvering between and around the enclosures, capable of lifting the combined weight of the enclosure with the telescope (30tons), with minimal impacts due to vibrations.

  10. The TACTIC atmospheric Cherenkov imaging telescope

    International Nuclear Information System (INIS)

    Koul, R.; Tickoo, A.K.; Kaul, S.K.; Kaul, S.R.; Kumar, N.; Yadav, K.K.; Bhatt, N.; Venugopal, K.; Goyal, H.C.; Kothari, M.; Chandra, P.; Rannot, R.C.; Dhar, V.K.; Koul, M.K.; Kaul, R.K.; Kotwal, S.; Chanchalani, K.; Thoudam, S.; Chouhan, N.; Sharma, M.; Bhattacharyya, S.; Sahayanathan, S.

    2007-01-01

    The TACTIC (TeV Atomospheric Cherenkov Telescope with Imaging Camera) γ-ray telescope, equipped with a light collector of area ∼9.5m 2 and a medium resolution imaging camera of 349 pixels, has been in operation at Mt. Abu, India, since 2001. This paper describes the main features of its various subsystems and its overall performance with regard to (a) tracking accuracy of its two-axes drive system, (b) spot size of the light collector, (c) back-end signal processing electronics and topological trigger generation scheme, (d) data acquisition and control system and (e) relative and absolute gain calibration methodology. Using a trigger field-of-view of 11x11 pixels (∼3.4 a tx3.4 a t), the telescope records a cosmic ray event rate of ∼2.5Hz at a typical zenith angle of 15 a t. Monte Carlo simulation results are also presented in the paper for comparing the expected performance of the telescope with actual observational results. The consistent detection of a steady signal from the Crab Nebula above ∼1.2TeV energy, at a sensitivity level of ∼5.0σ in ∼25h, along with excellent matching of its energy spectrum with that obtained by other groups, reassures that the performance of the TACTIC telescope is quite stable and reliable. Furthermore, encouraged by the detection of strong γ-ray signals from Mrk 501 (during 1997 and 2006 observations) and Mrk 421 (during 2001 and 2005-2006 observations), we believe that there is considerable scope for the TACTIC telescope to monitor similar TeV γ-ray emission activity from other active galactic nuclei on a long-term basis

  11. Large Binocular Telescope Observations of Europa Occulting Io's Volcanoes at 4.8 μm

    Science.gov (United States)

    Skrutskie, Michael F.; Conrad, Albert; Resnick, Aaron; Leisenring, Jarron; Hinz, Phil; de Pater, Imke; de Kleer, Katherine; Spencer, John; Skemer, Andrew; Woodward, Charles E.; Davies, Ashley Gerard; Defrére, Denis

    2015-11-01

    On 8 March 2015 Europa passed nearly centrally in front of Io. The Large Binocular Telescope observed this event in dual-aperture AO-corrected Fizeau interferometric imaging mode using the mid-infrared imager LMIRcam operating behind the Large Binocular Telescope Interferometer (LBTI) at a broadband wavelength of 4.8 μm (M-band). Occultation light curves generated from frames recorded every 123 milliseconds show that both Loki and Pele/Pillan were well resolved. Europa's center shifted by 2 kilometers relative to Io from frame-to-frame. The derived light curve for Loki is consistent with the double-lobed structure reported by Conrad et al. (2015) using direct interferometric imaging with LBTI.

  12. NASA's Newest Orbital Debris Ground-based Telescope Assets: MCAT and UKIRT

    Science.gov (United States)

    Lederer, S.; Frith, J.; Pace, L. F.; Cowardin, H. M.; Hickson, P.; Glesne, T.; Maeda, R.; Buckalew, B.; Nishimoto, D.; Douglas, D.; Stansbery, E. G.

    2014-09-01

    NASAs Orbital Debris Program Office (ODPO) will break ground on Ascension Island in 2014 to build the newest optical (0.30 1.06 microns) ground-based telescope asset dedicated to the study of orbital debris. The Meter Class Autonomous Telescope (MCAT) is a 1.3m optical telescope designed to track objects in orbits ranging from Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO). Ascension Island is located in the South Atlantic Ocean, offering longitudinal sky coverage not afforded by the Ground-based Electro-Optical Deep Space Surveillance (GEODSS) network. With a fast-tracking dome, a suite of visible wide-band filters, and a time-delay integration (TDI) capable camera, MCAT is capable of multiple observing modes ranging from tracking cataloged debris targets to surveying the overall debris environment. Access to the United Kingdom Infrared Telescope (UKIRT) will extend our spectral coverage into the near- (0.8-5 micron) and mid- to far-infrared (8-25 micron) regime. UKIRT is a 3.8m telescope located on Mauna Kea on the Big Island of Hawaii. At nearly 14,000-feet and above the atmospheric inversion layer, this is one of the premier astronomical sites in the world and is an ideal setting for an infrared telescope. An unprecedented one-third of this telescopes time has been allocated to collect orbital debris data for NASAs ODPO over a 2-year period. UKIRT has several instruments available to obtain low-resolution spectroscopy in both the near-IR and the mid/far-IR. Infrared spectroscopy is ideal for constraining the material types, albedos and sizes of debris targets, and potentially gaining insight into reddening effects caused by space weathering. In addition, UKIRT will be used to acquire broadband photometric imaging at GEO with the Wide Field Camera (WFCAM) for studying known objects of interest as well as collecting data in survey-mode to discover new targets. Results from the first stage of the debris campaign will be presented. The combination of

  13. Online Shopping In The UK

    OpenAIRE

    K. K. Ramachandran; K. K. Karthick; M. Saravana Kumar

    2011-01-01

    This paper will contribute to current academic literature in the area of online retailing and consumer behaviour. Our research outlines a survey conducted with respondents from the UK to ascertain their attitudes to grocery shopping both off and online. The findings indicate that, whilst the vast majority of our sample has experience of online shopping, few actively engage in online grocery shopping. Some of the reasons for this are highlighted and the key issues relate to consumer trust and ...

  14. Factors determining UK album success

    OpenAIRE

    Elliott, Caroline; Simmons, Robert

    2011-01-01

    This article uses a recently compiled dataset on the UK album sales to determine which factors contribute to best-selling album sales success. We control for factors including length of time since release, nationality of artist, artist type and album type, testing the increasing returns to information hypothesis. Information on general public online review scores for the albums in the dataset allows for a strong test of the accuracy of online reviews in predicting music sales, as online revie...

  15. Radon exposures in the UK

    International Nuclear Information System (INIS)

    O'Riordan, M.C.

    1992-01-01

    Public and occupational health protection against radon is provided in the UK. Protection is advised where geological conditions cause high concentrations in domestic and commercial buildings. These circumstances are described and the resulting exposures reviewed. An account is given of the limitation scheme for radon in the home and the regulatory scheme for radon at work, the manner in which they are implemented, and the degree to which they are successful. (author)

  16. Remote interest in the UK

    International Nuclear Information System (INIS)

    Watson, C.

    1993-01-01

    The United Kingdom nuclear industry has moved on from its low-technology solutions to remote handling problems which were popular in the 1950s and 1960s. A change in attitude has occurred which means that users are looking for high-technology solutions to today's remote handling problems. This review focuses on the ways in which their needs are being met and on the demands for future development which they are generating. (UK)

  17. Cosmic inquirers: Modern telescopes and their makers

    International Nuclear Information System (INIS)

    Tucker, W.; Tucker, K.

    1986-01-01

    An historical account is given of major, telescopic instrument-related advancements in 20th-century astronomy, with attention to the roles played by leading figures in the various fields of astronomical research involved. These biographical treatments encompass David Heeshen and the development of the VLA; Riccardo Giacconi and the X-ray astronomy Uhuru, High Energy Astronomy Observatory, and X-ray Explorer, and Einstein Observatory satellites; Allan Jacobson and the Gamma Ray Observatory satellite; the involvements of Frank Low and Gerry Neugebauer in the development of the IR Astronomy Satellite; and C. R. O'Dell's organization of the NASA Space Telescope program. 62 references

  18. Autonomous Dome for a Robotic Telescope

    Science.gov (United States)

    Kumar, A.; Sengupta, A.; Ganesh, S.

    2016-12-01

    The Physical Research Laboratory operates a 50 cm robotic observatory at Mount Abu (Rajsthan, India). This Automated Telescope for Variability Studies (ATVS) makes use of the Remote Telescope System 2 (RTS2) for autonomous operations. The observatory uses a 3.5 m dome from Sirius Observatories. We have developed electronics using Arduino electronic circuit boards with home grown logic and software to control the dome operations. We are in the process of completing the drivers to link our Arduino based dome controller with RTS2. This document is a short description of the various phases of the development and their integration to achieve the required objective.

  19. LOBSTER: new space x-ray telescopes

    Science.gov (United States)

    Hudec, R.; Sveda, L.; Pína, L.; Inneman, A.; Semencova, V.; Skulinova, M.

    2017-11-01

    The LOBSTER telescopes are based on the optical arrangement of the lobster eye. The main difference from classical X-ray space telescopes in wide use is the very large field of view while the use of optics results in higher efficiency if compared with detectors without optics. Recent innovative technologies have enabled to design, to develop and to test first prototypes. They will provide deep sensitive survey of the sky in X-rays for the first time which is essential for both long-term monitoring of celestial high-energy sources as well as in understanding transient phenomena. The technology is now ready for applications in space.

  20. Status of the GroundBIRD Telescope

    Science.gov (United States)

    Choi, J.; Génova-Santos, R.; Hattori, M.; Hazumi, M.; Ishitsuka, H.; Kanno, F.; Karatsu, K.; Kiuchi, K.; Koyano, R.; Kutsuma, H.; Lee, K.; Mima, S.; Minowa, M.; Nagai, M.; Nagasaki, T.; Naruse, M.; Oguri, S.; Okada, T.; Otani, C.; Rebolo, R.; Rubiño-Martín, J.; Sekimoto, Y.; Suzuki, J.; Taino, T.; Tajima, O.; Tomita, N.; Uchida, T.; Won, E.; Yoshida, M.

    2018-01-01

    Our understanding of physics at very early Universe, as early as 10-35 s after the Big Bang, relies on the scenario known as the inflationary cosmology. Inflation predicts a particular polarization pattern in the cosmic microwave background, known as the B-mode yet the strength of such polarization pattern is extremely weak. To search for the B-mode of the polarization in the cosmic microwave background, we are constructing an off-axis rotating telescope to mitigate systematic effects as well as to maximize the sky coverage of the observation. We will discuss the present status of the GroundBIRD telescope.

  1. The Status of the Telescope Array experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tokuno, H; Azuma, R [Tokyo Institute of Technology, Meguro, Tokyo (Japan); Abu-Zayyad, T; Allen, M; Barcikowski, E; Belz, J W; Blake, S A; Brusova, O; Cady, R [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States); Aida, R [University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering, Kofu, Yamanashi (Japan); Benno, T; Chikawa, M; Doura, K [Kinki University, Higashi Osaka, Osaka (Japan); Bergman, D R [Rutgers University, Piscataway (United States); Cheon, B G; Cho, E J [Hanyang University, Seongdong-gu, Seoul (Korea, Republic of); Chiba, J [Tokyo University of Science, Noda, Chiba (Japan); Cho, L S; Cho, W R [Yonsei University, Seodaemun-gu, Seoul (Korea, Republic of); Cohen, F, E-mail: htokuno@cr.phys.titech.ac.jp [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan)

    2011-04-01

    The purpose of The Telescope Array experiment is to identify origin of the ultra high energy cosmic rays. The Telescope Array is a hybrid detector consists of a surface detector array and air fluorescence detectors. This hybrid detector is observing extensive air showers to measure the energy spectrum, anisotropy and composition of Ultra High Energy Cosmic Rays. The detector construction has been completed in March 2008, and the hybrid observation with the full configuration has been running since that time. In this talk, the status of observation and our prospects are described.

  2. The Telescope Array experiment: status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Tokuno, H; Cohen, F [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa (Japan); Abbasi, R U; Abu-Zayyad, T; Belz, J W; Blake, S A; Brusova, O; Cady, R; Cao, Z [University of Utah, Salt Lake City (United States); Azuma, R [Tokyo Institute of Technology, Tokyo (Japan); Benno, T; Chikawa, M; Doura, K [Kinki University, Osaka (Japan); Bergman, D R [Rutgers University, Piscataway (United States); Cheon, B G [Hanyang University, Seoul (Korea, Republic of); Chiba, J [Tokyo University of Science, Noda (Japan); Cho, I S [Yonsei University, Seoul (Korea, Republic of); Chung, T [Ewha Womans University, Seoul (Korea, Republic of); Doyle, T [Utah State University, Logan (United States); Endo, A [Saitama University, Saitama (Japan)], E-mail: htokuno@icrr.u-tokyo.ac.jp (and others)

    2008-07-15

    Telescope Array (TA) is a hybrid detector of a surface detector array and fluorescence telescopes. This hybrid detector will measure the energy spectrum, anisotropy and composition of ultra-high energy cosmic rays (UHECRs) to identify their origin. The almost construction of the detector has been completed in May 2007, and the detector is running under test and adjustments. The first hybrid observation with the full configuration is planned in beginning of 2008. In this paper the status and prospects of TA detector is described.

  3. Status of the GroundBIRD Telescope

    Directory of Open Access Journals (Sweden)

    Choi J.

    2018-01-01

    Full Text Available Our understanding of physics at very early Universe, as early as 10−35 s after the Big Bang, relies on the scenario known as the inflationary cosmology. Inflation predicts a particular polarization pattern in the cosmic microwave background, known as the B-mode yet the strength of such polarization pattern is extremely weak. To search for the B-mode of the polarization in the cosmic microwave background, we are constructing an off-axis rotating telescope to mitigate systematic effects as well as to maximize the sky coverage of the observation. We will discuss the present status of the GroundBIRD telescope.

  4. Nutritional Knowledge of UK Coaches

    Directory of Open Access Journals (Sweden)

    Emma Cockburn

    2014-04-01

    Full Text Available Athletes obtain nutritional information from their coaches, yet their competency in this area is lacking. Currently, no research exists in the UK which has a different coach education system to many other countries. Therefore, the aim of this study was to evaluate the sports nutrition knowledge of UK coaching certificate (UKCC level 2 and 3, hockey and netball qualified coaches. All coaches (n = 163 completed a sports nutrition questionnaire to identify: (a if they provided nutritional advice; (b their level of sport nutrition knowledge; and (c factors that may have contributed to their level of knowledge. Over half the coaches provided advice to their athletes (n = 93, 57.1%, even though they were not competent to do so. Coaches responded correctly to 60.3 ± 10.5% of all knowledge questions with no differences between those providing advice and those who did not (p > 0.05. Those coaches who had undertaken formal nutrition training achieved higher scores than those who had not (p < 0.05. In conclusion, UK sports coaches would benefit from continued professional development in sports nutrition to enhance their coaching practice.

  5. A UK perspective on recycling

    International Nuclear Information System (INIS)

    Williams, T.

    1991-01-01

    The United Kingdom, through the recycling of depleted uranium from Magnox reactors into Advanced Gas-cooled Reactor (AGR) fuel, has already recycled significant quantities of reprocessed material in reactors owned by Nuclear Electric plc and Scottish Nuclear Limited. This AGR fuel has been satisfactorily irradiated and discharged over a decade or more, and will be reprocessed in the new Thermal Oxide Reprocessing Plant (THORP), currently under construction in the UK. British Nuclear Fuels plc (BNFL) and the UK Atomic Energy Authority (UKAEA) have also been exploiting the potential of plutonium recycled in mixed oxide (MOX) fuel, which they have been making since 1963. All of the UK nuclear companies are committed to further recycling of Magnox depleted uranium during the 1990s, and it is anticipated that oxide recycling will also become firmly established during the next decade. British Nuclear Fuels and Urenco Ltd, as the providers of fuel cycle services, are developing an infrastructure to close the fuel cycle for oxide nuclear fuel, using both the uranium and plutonium arising from reprocessing. (author)

  6. Worldwide open access: UK leadership?

    Directory of Open Access Journals (Sweden)

    Stevan Harnad

    2013-03-01

    Full Text Available The web is destined to become humankind's cognitive commons, where digital knowledge is jointly created and freely shared. The UK has been a leader in the global movement toward open access (OA to research but recently its leadership has been derailed by the joint influence of the publishing industry lobby from without and well-intentioned but premature and unhelpful over-reaching from within the OA movement itself. The result has been the extremely counterproductive ‘Finch Report’ followed by a new draft of the Research Councils UK (RCUK OA mandate, downgrading the role of cost-free OA self-archiving of research publications (‘green OA’ in favor of paying subscription publishers over and above subscriptions, out of scarce research funds, in exchange for making single articles OA (‘hybrid gold OA’. The motivation of the new policy is to reform publication and to gain certain re-use rights (CC-BY, but the likely effect would be researcher resistance, very little OA and a waste of research funds. There is still time to fix the RCUK mandate and restore the UK's leadership by taking a few very specific steps to clarify and strengthen the green component by adding a mechanism for monitoring and verifying compliance, with consequences for non-compliance, along lines also being adopted in the EC and the US.

  7. The James Webb Space Telescope's Plan for Operations and Instrument Capabilities for Observations in the Solar System

    Science.gov (United States)

    Milam, Stefanie N.; Stansberry, John A.; Sonneborn, George; Thomas, Cristina

    2016-01-01

    The James Webb Space Telescope (JWST) is optimized for observations in the near- and mid-infrared and will provide essential observations for targets that cannot be conducted from the ground or other missions during its lifetime. The state-of-the-art science instruments, along with the telescope's moving target tracking, will enable the infrared study, with unprecedented detail, for nearly every object (Mars and beyond) in the Solar System. The goals of this special issue are to stimulate discussion and encourage participation in JWST planning among members of the planetary science community. Key science goals for various targets, observing capabilities for JWST, and highlights for the complementary nature with other missions/observatories are described in this paper.

  8. Polarised infrared cathodoluminescence from platelet defects in natural diamonds

    International Nuclear Information System (INIS)

    Kiflawi, I.; Lang, A.R.

    1977-01-01

    It is reported that the large platelet defects occasionally found in natural diamonds emit polarised cathodoluminescence in the near infrared. There is much uncertainty regarding the composition and structure of the platelets. New findings on the optical properties of the platelets are discussed. The discovery that cathodoluminescence from giant platelets can be seen in the near infrared using an image converter was followed up by photographic recording with Kodak high speed infrared films, and it was found that the infrared emission from the platelets is polarised in the platelet plane with a considerably higher polarisation ratio than in the case of their visible emissions. In order to assess the degree of polarisation of the infrared emission a Polaroid Type HR linear polariser was used, which is very effective at the longest wavelengths recorded by the Kodak high speed infrared film. The high degree of polarisation of the platelet infrared emission constitutes a well defined optical characteristic that any model for platelet structure, and for optical processes associated with platelets, must satisfactorily accommodate. (U.K.)

  9. Turning the tide : tidal power in the UK

    OpenAIRE

    Sustainable Development Commission

    2007-01-01

    Contents: Turning the tide : tidal power in the UK -- Executive summary -- Tidal power in the UK : research report 1 : UK tidal resource assessment -- Tidal power in the UK : research report 2 : tidal technologies overview -- Tidal power in the UK : research report 3 : Severn barrage proposals -- Tidal power in the UK : research report 4 : Severn non-barrage options -- Tidal power in the UK : research report 5 : UK case studies. Summarised in the Welsh language version of the executive ...

  10. The afocal telescope of the ESA ARIEL mission: analysis of the layout

    Science.gov (United States)

    Da Deppo, Vania; Middleton, Kevin; Focardi, Mauro; Morgante, Gianluca; Corso, Alain Jody; Pace, Emanuele; Claudi, Riccardo; Micela, Giuseppina

    2017-09-01

    ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) is one of the three present candidates as an M4 ESA mission to be launched in 2026. During its foreseen 3.5 years operation, it will observe spectroscopically in the infrared a large population of known transiting planets in the neighborhood of the Solar System. The aim is to enable a deep understanding of the physics and chemistry of these exoplanets. ARIEL is based on a 1-m class telescope ahead of a suite of instruments: two spectrometer channels covering the band 1.95 to 7.8 μm and four photometric channels (two wide and two narrow band) in the range 0.5 to 1.9 μm. The ARIEL optical design is conceived as a fore-module common afocal telescope that will feed the spectrometer and photometric channels. The telescope optical design is based on an eccentric pupil two-mirror classic Cassegrain configuration coupled to a tertiary paraboloidal mirror. The temperature of the primary mirror (M1) will be monitored and finely tuned by means of an active thermal control system based on thermistors and heaters. They will be switched on and off to maintain the M1 temperature within ±1 K thanks to a proportional-integral-derivative (PID) controller implemented within the Telescope Control Unit (TCU), a Payload electronics subsystem mainly in charge of the active thermal control of the two detectors owning to the spectrometer. TCU will collect the housekeeping data of the controlled subsystems and will forward them to the spacecraft (S/C) by means of the Instrument Control Unit (ICU), the main Payload's electronic Unit linked to the S/C On Board Computer (OBC).

  11. Science Programs for a 2-m Class Telescope at Dome C, Antarctica: PILOT, the Pathfinder for an International Large Optical Telescope

    Science.gov (United States)

    Burton, M. G.; Lawrence, J. S.; Ashley, M. C. B.; Bailey, J. A.; Blake, C.; Bedding, T. R.; Bland-Hawthorn, J.; Bond, I. A.; Glazebrook, K.; Hidas, M. G.; Lewis, G.; Longmore, S. N.; Maddison, S. T.; Mattila, S.; Minier, V.; Ryder, S. D.; Sharp, R.; Smith, C. H.; Storey, J. W. V.; Tinney, C. G.; Tuthill, P.; Walsh, A. J.; Walsh, W.; Whiting, M.; Wong, T.; Woods, D.; Yock, P. C. M.

    2005-08-01

    The cold, dry, and stable air above the summits of the Antarctic plateau provides the best ground-based observing conditions from optical to sub-millimetre wavelengths to be found on the Earth. Pathfinder for an International Large Optical Telescope (PILOT) is a proposed 2m telescope, to be built at Dome C in Antarctica, able to exploit these conditions for conducting astronomy at optical and infrared wavelengths. While PILOT is intended as a pathfinder towards the construction of future grand-design facilities, it will also be able to undertake a range of fundamental science investigations in its own right. This paper provides the performance specifications for PILOT, including its instrumentation. It then describes the kinds of projects that it could best conduct. These range from planetary science to the search for other solar systems, from star formation within the Galaxy to the star formation history of the Universe, and from gravitational lensing caused by exo-planets to that produced by the cosmic web of dark matter. PILOT would be particularly powerful for wide-field imaging at infrared wavelengths, achieving near diffraction-limited performance with simple tip-tilt wavefront correction. PILOT would also be capable of near diffraction-limited performance in the optical wavebands, as well be able to open new wavebands for regular ground-based observation, in the mid-IR from 17 to 40μm and in the sub-millimetre at 200μm.

  12. Deepest Infrared View of the Universe

    Science.gov (United States)

    2002-12-01

    VLT Images Progenitors of Today's Large Galaxies Summary An international team of astronomers [2] has made the deepest-ever near-infrared Ks-band image of the sky, using the ISAAC multi-mode instrument on the 8.2-m VLT ANTU telescope. For this, the VLT was pointed for more than 100 hours under optimal observing conditions at the Hubble Deep Field South (HDF-S) and obtained images in three near-infrared filters. The resulting images reveal extremely distant galaxies, which appear at infrared wavelengths, but are barely detected in the deepest optical images acquired with the Hubble Space Telescope (HST). Astronomer Marijn Franx from the University of Leiden and leader of the team concludes: "These results demonstrate that very deep observations in the near-infrared are essential to obtain a proper census of the earliest phases of the universe. The new VLT images have opened a new research domain which has not been observationally accessible before". The HDF-S is a tiny field on the sky in the southern constellation Tucana (The Toucan) - only about 1% of the area of the full moon. The NASA/ESA Hubble Space Telescope (HST) observed it with a total exposure time of about 1 week, yielding the deepest optical images ever taken of the sky, similar to those made earlier on the Hubble Deep Field North (HDF-N). The VLT infrared images of the same field were obtained in the course of a major research project, the Faint InfraRed Extragalactic Survey (FIRES). They were made at wavelengths up to 2.3 µm where the HST is not competitive. Ivo Labbé, another team member from the University of Leiden, is certain: "Without the unique capabilities of the VLT and ISAAC we would never have been able to observe these very remote galaxies. In fact, the image in the Ks-band is the deepest which has ever been made at that wavelength". The optical light emitted by the distant galaxies has been redshifted to the near-infrared spectral region [3]. Indeed, some of the galaxies found in the new

  13. On infrared divergences

    International Nuclear Information System (INIS)

    Parisi, G.

    1979-01-01

    The structure of infrared divergences is studied in superrenormalizable interactions. It is conjectured that there is an extension of the Bogoliubov-Parasiuk-Hepp theorem which copes also with infrared divergences. The consequences of this conjecture on the singularities of the Borel transform in a massless asymptotic free field theory are discussed. The application of these ideas to gauge theories is briefly discussed. (Auth.)

  14. Design of a multiband near-infrared sky brightness monitor using an InSb detector.

    Science.gov (United States)

    Dong, Shu-Cheng; Wang, Jian; Tang, Qi-Jie; Jiang, Feng-Xin; Chen, Jin-Ting; Zhang, Yi-Hao; Wang, Zhi-Yue; Chen, Jie; Zhang, Hong-Fei; Jiang, Hai-Jiao; Zhu, Qing-Feng; Jiang, Peng; Ji, Tuo

    2018-02-01

    Infrared sky background level is an important parameter of infrared astronomy observations from the ground, particularly for a candidate site of an infrared capable observatory since low background level is required for such a site. The Chinese astronomical community is looking for a suitable site for a future 12 m telescope, which is designed for working in both optical and infrared wavelengths. However, none of the proposed sites has been tested for infrared observations. Nevertheless, infrared sky background measurements are also important during the design of infrared observing instruments. Based on the requirement, in order to supplement the current site survey data and guide the design of future infrared instruments, a multiband near-infrared sky brightness monitor (MNISBM) based on an InSb sensor is designed in this paper. The MNISBM consists of an optical system, mechanical structure and control system, detector and cooler, high gain readout electronics, and operational software. It is completed and tested in the laboratory. The results show that the sensitivity of the MNISBM meets the requirements of the measurement of near-infrared sky background level of several well-known astronomical infrared observing sites.

  15. Design of a multiband near-infrared sky brightness monitor using an InSb detector

    Science.gov (United States)

    Dong, Shu-cheng; Wang, Jian; Tang, Qi-jie; Jiang, Feng-xin; Chen, Jin-ting; Zhang, Yi-hao; Wang, Zhi-yue; Chen, Jie; Zhang, Hong-fei; Jiang, Hai-jiao; Zhu, Qing-feng; Jiang, Peng; Ji, Tuo

    2018-02-01

    Infrared sky background level is an important parameter of infrared astronomy observations from the ground, particularly for a candidate site of an infrared capable observatory since low background level is required for such a site. The Chinese astronomical community is looking for a suitable site for a future 12 m telescope, which is designed for working in both optical and infrared wavelengths. However, none of the proposed sites has been tested for infrared observations. Nevertheless, infrared sky background measurements are also important during the design of infrared observing instruments. Based on the requirement, in order to supplement the current site survey data and guide the design of future infrared instruments, a multiband near-infrared sky brightness monitor (MNISBM) based on an InSb sensor is designed in this paper. The MNISBM consists of an optical system, mechanical structure and control system, detector and cooler, high gain readout electronics, and operational software. It is completed and tested in the laboratory. The results show that the sensitivity of the MNISBM meets the requirements of the measurement of near-infrared sky background level of several well-known astronomical infrared observing sites.

  16. Revisiting the Effectiveness of Large Optical Telescopes

    Directory of Open Access Journals (Sweden)

    V. V. Sychev

    2015-01-01

    Full Text Available To create large-size optical telescopes, various design concepts have been used. Each concept inevitably faced the challenge to optimize technical characteristics and parameters of the telescope. There was always a question: what concept to choose, how to estimate efficiency of such telescopes and by what criteria and how to estimate expediency of this or that project of the large-size telescope. It is, obviously, insufficient to make a resolution-based estimation. An estimate by the angular field size is inappropriate too. Well, it may be also an estimate by the stellar magnitude. All these criteria are related to each other. Improvement of one of these parameters inevitably leads to deterioration of the others. Obviously, the certain generalized criterion considering all parameters and features of the design concept of the large-size telescope is necessary here. As such can serve the criterion of informational content of the telescope.The article offers a complex criterion allowing not only to estimate efficiency of large-size optical telescopes, but also to compare their conceptual and technological level among themselves in terms of obtaining information.The article suggests a new term, i.e. the informational content invariant to characterize informative capacities of the chosen concept and of the realizing technology. It will allow us to avoid unjustified complications of technical solutions, wrong accents in designing and excess material inputs when developing the project.The informational content criterion-based analysis of the existing projects of large-size telescopes has been convincingly shown that, conceptually, there are three best telescopes, namely: GSMT, CELT, and ACT-25. And, in terms of informational content, the АCТ-25 is 10 times more than GSMT and CELT, and the existing Keck-telescope exceeds by 30 times. Hence, it is hard to escape a conclusion that it is more favourable to implement one ACT-25, than to do 10 GSMT or CELT

  17. CANDELS : THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY

    NARCIS (Netherlands)

    Grogin, Norman A.; Kocevski, Dale D.; Faber, S. M.; Ferguson, Henry C.; Koekemoer, Anton M.; Riess, Adam G.; Acquaviva, Viviana; Alexander, David M.; Almaini, Omar; Ashby, Matthew L. N.; Barden, Marco; Bell, Eric F.; Bournaud, Frederic; Brown, Thomas M.; Caputi, Karina I.; Casertano, Stefano; Cassata, Paolo; Castellano, Marco; Challis, Peter; Chary, Ranga-Ram; Cheung, Edmond; Cirasuolo, Michele; Conselice, Christopher J.; Cooray, Asantha Roshan; Croton, Darren J.; Daddi, Emanuele; Dahlen, Tomas; Dave, Romeel; de Mello, Duilia F.; Dekel, Avishai; Dickinson, Mark; Dolch, Timothy; Donley, Jennifer L.; Dunlop, James S.; Dutton, Aaron A.; Elbaz, David; Fazio, Giovanni G.; Filippenko, Alexei V.; Finkelstein, Steven L.; Fontana, Adriano; Gardner, Jonathan P.; Garnavich, Peter M.; Gawiser, Eric; Giavalisco, Mauro; Grazian, Andrea; Guo, Yicheng; Hathi, Nimish P.; Haeussler, Boris; Hopkins, Philip F.; Huang, Jia-Sheng; Huang, Kuang-Han; Jha, Saurabh W.; Kartaltepe, Jeyhan S.; Kirshner, Robert P.; Koo, David C.; Lai, Kamson; Lee, Kyoung-Soo; Li, Weidong; Lotz, Jennifer M.; Lucas, Ray A.; Madau, Piero; McCarthy, Patrick J.; McGrath, Elizabeth J.; McIntosh, Daniel H.; McLure, Ross J.; Mobasher, Bahram; Moustakas, Leonidas A.; Mozena, Mark; Nandra, Kirpal; Newman, Jeffrey A.; Niemi, Sami-Matias; Noeske, Kai G.; Papovich, Casey J.; Pentericci, Laura; Pope, Alexandra; Primack, Joel R.; Rajan, Abhijith; Ravindranath, Swara; Reddy, Naveen A.; Renzini, Alvio; Rix, Hans-Walter; Robaina, Aday R.; Rodney, Steven A.; Rosario, David J.; Rosati, Piero; Salimbeni, Sara; Scarlata, Claudia; Siana, Brian; Simard, Luc; Smidt, Joseph; Somerville, Rachel S.; Spinrad, Hyron; Straughn, Amber N.; Strolger, Louis-Gregory; Telford, Olivia; Teplitz, Harry I.; Trump, Jonathan R.; van der Wel, Arjen; Villforth, Carolin; Wechsler, Risa H.; Weiner, Benjamin J.; Wiklind, Tommy; Wild, Vivienne; Wilson, Grant; Wuyts, Stijn; Yan, Hao-Jing; Yun, Min S.

    2011-01-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, over the approximate redshift (z) range 8-1.5. It will image >250,000 distant galaxies using three separate cameras on the Hubble Space Telescope, from the

  18. MOONS: a multi-object optical and near-infrared spectrograph for the VLT

    NARCIS (Netherlands)

    Cirasuolo, M.; Afonso, J.; Bender, R.; Bonifacio, P.; Evans, C.; Kaper, L.; Oliva, Ernesto; Vanzi, Leonardo; Abreu, Manuel; Atad-Ettedgui, Eli; Babusiaux, Carine; Bauer, Franz E.; Best, Philip; Bezawada, Naidu; Bryson, Ian R.; Cabral, Alexandre; Caputi, Karina; Centrone, Mauro; Chemla, Fanny; Cimatti, Andrea; Cioni, Maria-Rosa; Clementini, Gisella; Coelho, João.; Daddi, Emanuele; Dunlop, James S.; Feltzing, Sofia; Ferguson, Annette; Flores, Hector; Fontana, Adriano; Fynbo, Johan; Garilli, Bianca; Glauser, Adrian M.; Guinouard, Isabelle; Hammer, Jean-François; Hastings, Peter R.; Hess, Hans-Joachim; Ivison, Rob J.; Jagourel, Pascal; Jarvis, Matt; Kauffman, G.; Lawrence, A.; Lee, D.; Li Causi, G.; Lilly, S.; Lorenzetti, D.; Maiolino, R.; Mannucci, F.; McLure, R.; Minniti, D.; Montgomery, D.; Muschielok, B.; Nandra, K.; Navarro, R.; Norberg, P.; Origlia, L.; Padilla, N.; Peacock, J.; Pedicini, F.; Pentericci, L.; Pragt, J.; Puech, M.; Randich, S.; Renzini, A.; Ryde, N.; Rodrigues, M.; Royer, F.; Saglia, R.; Sánchez, A.; Schnetler, H.; Sobral, D.; Speziali, R.; Todd, S.; Tolstoy, E.; Torres, M.; Venema, L.; Vitali, F.; Wegner, M.; Wells, M.; Wild, V.; Wright, G.

    MOONS is a new conceptual design for a Multi-Object Optical and Near-infrared Spectrograph for the Very Large Telescope (VLT), selected by ESO for a Phase A study. The baseline design consists of ~1000 fibers deployable over a field of view of ~500 square arcmin, the largest patrol field offered by

  19. James Webb Space Telescope Optical Telescope Element Mirror Development History and Results

    Science.gov (United States)

    Feinber, Lee D.; Clampin, Mark; Keski-Kuha, Ritva; Atkinson, Charlie; Texter, Scott; Bergeland, Mark; Gallagher, Benjamin B.

    2012-01-01

    In a little under a decade, the James Webb Space Telescope (JWST) program has designed, manufactured, assembled and tested 21 flight beryllium mirrors for the James Webb Space Telescope Optical Telescope Element. This paper will summarize the mirror development history starting with the selection of beryllium as the mirror material and ending with the final test results. It will provide an overview of the technological roadmap and schedules and the key challenges that were overcome. It will also provide a summary or the key tests that were performed and the results of these tests.

  20. Commissioning and first tests of the MAGIC telescope

    Science.gov (United States)

    Baixeras, C.; Bastieri, D.; Bigongiari, C.; Blanch, O.; Blanchot, G.; Bock, R.; Bretz, T.; Chilingarian, A.; Coarasa, J. A.; Colombo, E.; Contreras, J. C.; Corti, D.; Cortina, J.; Domingo, C.; Domingo, E.; Ferenc, D.; Fernández, E.; Flix, J.; Fonseca, V.; Font, L.; Galante, N.; Gaug, M.; Garczarczyk, M.; Gebauer, J.; Giller, M.; Goebel, F.; Hengstebeck, T.; Jacone, P.; de Jager, O. C.; Kalekin, O.; Kestel, M.; Kneiske, T.; Laille, A.; López, M.; López, J.; Lorenz, E.; Mannheim, K.; Mariotti, M.; Martínez, M.; Mase, K.; Merck, M.; Meucci, M.; Miralles, L.; Mirzoyan, R.; Moralejo, A.; Wilhelmi, E. Oña; Orduña, R.; Paneque, D.; Paoletti, R.; Pascoli, D.; Pavel, N.; Pegna, R.; Peruzzo, L.; Piccioli, A.; Roberts, A.; Reyes, R.; Saggion, A.; Sánchez, A.; Sartori, P.; Scalzotto, V.; Schweizer, T.; Sillanpaa, A.; Sobczynska, D.; Stamerra, A.; Stepanian, A.; Stiehler, R.; Takalo, L.; Teshima, M.; Tonello, N.; Torres, A.; Turini, N.; Vitale, V.; Volkov, S.; Wagner, R. M.; Wibig, T.; Wittek, W.

    2004-02-01

    Major Atmospheric Gamma Imaging Cherenkov telescope is starting its operations with a set of engineering runs to tune the telescope subsystem elements to be ready for the first physics campaign. Many technical improvements have been developed and implemented in several elements of the telescope to reach the lowest energy threshold ever obtained by an Imaging Atmospheric Cherenkov Telescope. A general description of the telescope is presented. The commissioning of the telescope's elements is described and the expected performances are reviewed with the final detector set-up.

  1. Initial Technology Assessment for the Large UV-Optical-Infrared (LUVOIR) Mission Concept Study

    Science.gov (United States)

    Bolcar, Matthew R.; Feinberg, Lee D.; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-01-01

    The NASA Astrophysics Divisions 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet-optical-infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for bio-signatures via direct-imaging and spectroscopic characterization of habitable exo-planets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV-Optical Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  2. Initial Technology Assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) Mission Concept Study

    Science.gov (United States)

    Bolcar, Matthew R.; Feinberg, Lee; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-01-01

    The NASA Astrophysics Division's 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet/optical/infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for biosignatures via direct-imaging and spectroscopic characterization of habitable exoplanets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV/Optical/Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  3. Modeling and control of antennas and telescopes

    CERN Document Server

    Gawronski, Wodek

    2008-01-01

    The book shows, step-by-step, the design, implementation, and testing of the antenna/telescope control system, from the design stage (analytical model) to fine tuning of the RF beam pointing (monopulse and conscan). It includes wide use of Matlab and Simulink..

  4. The telescopic tourist's guide to the Moon

    CERN Document Server

    May, Andrew

    2017-01-01

    Whether you’re interested in visiting Apollo landing sites or the locations of classic sci-fi movies, this is the tourist guide for you! This tourist guide has a twist – it is a guide to a whole different world, which you can visit from the comfort of your backyard with the aid of nothing more sophisticated than an inexpensive telescope. It tells you the best times to view the Moon, the most exciting sights to look out for, and the best equipment to use, allowing you to snap stunning photographs as well as view the sights with your own eyes. Have you ever been inspired by stunning images from the Hubble telescope, or the magic of sci-fi special effects, only to look through a small backyard telescope at the disappointing white dot of a planet or faint blur of a galaxy? Yet the Moon is different. Seen through even a relatively cheap telescope, it springs into life like a real place, with mountains and valleys and rugged craters. With a bit of imagination, you can even picture yourself as a sightseeing visi...

  5. Functional check of telescoping transfer pumps

    International Nuclear Information System (INIS)

    Sharpe, C.L.

    1994-01-01

    Activities are defined which constitute a functional check of a telescoping transfer pump (TTP). This report is written to the Procedures group of HLW and particularly applies to those TTP's which are the sole means of emergency transfer from a HLW waste tank

  6. Laser Truss Sensor for Segmented Telescope Phasing

    Science.gov (United States)

    Liu, Duncan T.; Lay, Oliver P.; Azizi, Alireza; Erlig, Herman; Dorsky, Leonard I.; Asbury, Cheryl G.; Zhao, Feng

    2011-01-01

    A paper describes the laser truss sensor (LTS) for detecting piston motion between two adjacent telescope segment edges. LTS is formed by two point-to-point laser metrology gauges in a crossed geometry. A high-resolution (distribution can be optimized using the range-gated metrology (RGM) approach.

  7. Hydrodynamic experiments on dacryoconarid shell telescoping

    Czech Academy of Sciences Publication Activity Database

    Hladil, Jindřich; Šimčík, Miroslav; Růžička, Marek; Kulaviak, Lukáš; Lisý, Pavel

    2014-01-01

    Roč. 47, č. 3 (2014), s. 376-396 ISSN 0024-1164 R&D Projects: GA ČR GAP210/10/2351 Institutional support: RVO:67985831 ; RVO:67985858 Keywords : dacryoconarid shells * experimental fluid mechanics * narrow cones * Palaeozoic * telescoping Subject RIV: DB - Geology ; Mineralogy; CI - Industrial Chemistry, Chemical Engineering (UCHP-M) Impact factor: 1.454, year: 2014

  8. The 3.5-Meter Telescope Enclosure

    Science.gov (United States)

    1994-04-01

    and acoustic vibrations, and the enclosure cannot be stopped quickly in an emergency. Also, the work of Zago indicates that open-air operation of the...enclosure. This capability is useful during operational testing and maintenance of the telescope. ’ Zago , L., "Design and Performance of Large

  9. FACT. Bokeh alignment for Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Sebastian Achim [ETH Zurich (Switzerland); Buss, Jens [TU Dortmund (Germany)

    2016-07-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need fast and large imaging optics to map the faint Cherenkov light emitted in cosmic ray air showers onto their image sensors. Segmented reflectors are inexpensive, lightweight and offer good image quality. However, alignment of the mirror facets remains a challenge. A good alignment is crucial in IACT observations to separate gamma rays from hadronic cosmic rays. We present a simple, yet extendable method, to align segmented reflectors using their Bokeh. Bokeh alignment does not need a star or good weather nights but can be done anytime, even during the day. Bokeh alignment optimizes the facet orientations by comparing the segmented reflector's Bokeh to a predefined template. The Bokeh is observed using the out of focus image of a nearby point like light source in a distance of about ten times the focal lengths. We introduce Bokeh alignment on segmented reflectors and present its use on the First Geiger-mode Avalanche Cherenkov Telescope (FACT) on Canary Island La Palma, as well as on the Cherenkov Telescope Array (CTA) Medium Size Telescope (MST) prototype in Berlin Adlershof.

  10. Space Telescope Pointing Control System software

    Science.gov (United States)

    Dougherty, H.; Rodoni, C.; Rossini, R.; Tompetrini, K.; Nakashima, A.; Bradley, A.

    1982-01-01

    The Space Telescope Pointing Control System software is in the advanced development stage, having been tested on both the airbearing and the static simulator. The overall structure of the software is discussed, along with timing and sizing evaluations. The interaction between the controls analysts and software designer is described.

  11. Calibration strategies for the Cherenkov Telescope Array

    NARCIS (Netherlands)

    Gaug, M.; Berge, D.; Daniel, M.; Doro, M.; Förster, A.; Hofmann, W.; Maccarone, M.C.; Parsons, D.; de los Reyes Lopez, R.; van Eldik, C.

    2014-01-01

    The Central Calibration Facilities workpackage of the Cherenkov Telescope Array (CTA) observatory for very high energy gamma ray astronomy defines the overall calibration strategy of the array, develops dedicated hardware and software for the overall array calibration and coordinates the calibration

  12. Choosing and Using a Refracting Telescope

    CERN Document Server

    English, Neil

    2011-01-01

    The refracting telescope has a long and illustrious past. Here’s what the author says about early telescopes and today’s refractors: “Four centuries ago, a hitherto obscure Italian scientist turned a home-made spyglass towards the heavens. The lenses he used were awful by modern standards, inaccurately figured and filled with the scars of their perilous journey from the furnace to the finishing workshop. Yet, despite these imperfections, they allowed him to see what no one had ever seen before – a universe far more complex and dynamic than anyone had dared imagine. But they also proved endlessly useful in the humdrum of human affairs. For the first time ever, you could spy on your neighbor from a distance, or monitor the approach of a war-mongering army, thus deciding the fate of nations. “The refractor is without doubt the prince of telescopes. Compared with all other telescopic designs, the unobstructed view of the refractor enables it to capture the sharpest, highest contrast images and the wides...

  13. Go-To Telescopes Under Suburban Skies

    CERN Document Server

    Monks, Neale

    2010-01-01

    For the last four centuries stargazers have turned their telescopes to the night skies to look at its wonders, but only in this age of computers has it become possible to let the telescope find for you the object you are looking for! So-called “go-to” telescopes are programmed with the locations of thousands of objects, including dazzling distant Suns, stunning neighboring galaxies, globular and open star clusters, the remnants of past supernovae, and many other breathtaking sights. This book does not tell you how to use your Go-to telescope. Your manual will help you do that. It tells you what to look for in the deep sky and why, and what equipment to best see it with. Organized broadly by what is best for viewing in the northern hemisphere in different seasons, Monks further divides the sights of each season into groupings such as “Showpiece Objects,” “Interesting Deep Sky Objects,” and “Obscure and Challenging Deep Sky Objects.” He also tells what objects are visible even in light-polluted ...

  14. Modeling update for the Thirty Meter Telescope laser guide star dual-conjugate adaptive optics system

    Science.gov (United States)

    Gilles, Luc; Wang, Lianqi; Ellerbroek, Brent

    2010-07-01

    This paper describes the modeling efforts undertaken in the past couple of years to derive wavefront error (WFE) performance estimates for the Narrow Field Infrared Adaptive Optics System (NFIRAOS), which is the facility laser guide star (LGS) dual-conjugate adaptive optics (AO) system for the Thirty Meter Telescope (TMT). The estimates describe the expected performance of NFIRAOS as a function of seeing on Mauna Kea, zenith angle, and galactic latitude (GL). They have been developed through a combination of integrated AO simulations, side analyses, allocations, lab and lidar experiments.

  15. THE SPITZER LOCAL VOLUME LEGACY: SURVEY DESCRIPTION AND INFRARED PHOTOMETRY

    International Nuclear Information System (INIS)

    Dale, D. A.; Cohen, S. A.; Johnson, L. C.; Schuster, M. D.; Calzetti, D.; Engelbracht, C. W.; Kennicutt, R. C.; Block, M.; Marble, A. R.; Gil de Paz, A.; Lee, J. C.; Begum, A.; Dalcanton, J. J.; Funes, J. G.; Gordon, K. D.; Johnson, B. D.; Sakai, S.; Skillman, E. D.; Van Zee, L.; Walter, F.

    2009-01-01

    The survey description and the near-, mid-, and far-infrared flux properties are presented for the 258 galaxies in the Local Volume Legacy (LVL). LVL is a Spitzer Space Telescope legacy program that surveys the local universe out to 11 Mpc, built upon a foundation of ultraviolet, Hα, and Hubble Space Telescope imaging from 11HUGS (11 Mpc Hα and Ultraviolet Galaxy Survey) and ANGST (ACS Nearby Galaxy Survey Treasury). LVL covers an unbiased, representative, and statistically robust sample of nearby star-forming galaxies, exploiting the highest extragalactic spatial resolution achievable with Spitzer. As a result of its approximately volume-limited nature, LVL augments previous Spitzer observations of present-day galaxies with improved sampling of the low-luminosity galaxy population. The collection of LVL galaxies shows a large spread in mid-infrared colors, likely due to the conspicuous deficiency of 8 μm polycyclic aromatic hydrocarbon emission from low-metallicity, low-luminosity galaxies. Conversely, the far-infrared emission tightly tracks the total infrared emission, with a dispersion in their flux ratio of only 0.1 dex. In terms of the relation between the infrared-to-ultraviolet ratio and the ultraviolet spectral slope, the LVL sample shows redder colors and/or lower infrared-to-ultraviolet ratios than starburst galaxies, suggesting that reprocessing by dust is less important in the lower mass systems that dominate the LVL sample. Comparisons with theoretical models suggest that the amplitude of deviations from the relation found for starburst galaxies correlates with the age of the stellar populations that dominate the ultraviolet/optical luminosities.

  16. Observations of Young Stellar Objects with Infrared Interferometry: Recent Results from PTI, KI and IOTA

    Science.gov (United States)

    Akeson, Rachel

    Young stellar objects have been one of the favorite targets of infrared interferometers for many years. In this contribution I will briefly review some of the first results and their contributions to the field and then describe some of the recent results from the Keck Interferometer (KI), the Palomar Testbed Interferometer (PTI) and the Infrared-Optical Telescope Array (IOTA). This conference also saw many exciting new results from the VLTI at both near and mid-infrared wavelengths that are covered by other contributions.

  17. The Type Ia Supernova Rate in Radio and Infrared Galaxies from the CFHT Supernova Legacy Survey

    OpenAIRE

    Graham, M. L.; Pritchet, C. J.; Sullivan, M.; Howell, D. A.; Gwyn, S. D. J.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R. G.; Conley, A.; Fouchez, D.; Guy, J.; Hardin, D.; Hook, I. M.; Pain, R.

    2009-01-01

    We have combined the large SN Ia database of the Canada-France-Hawaii Telescope Supernova Legacy Survey and catalogs of galaxies with photometric redshifts, VLA 1.4 GHz radio sources, and Spitzer infrared sources. We present eight SNe Ia in early-type host galaxies which have counterparts in the radio and infrared source catalogs. We find the SN Ia rate in subsets of radio and infrared early-type galaxies is ~1-5 times the rate in all early-type galaxies, and that any enhancement is always

  18. Evidence for Infrared-faint Radio Sources as z > 1 Radio-loud Active Galactic Nuclei

    Science.gov (United States)

    Huynh, Minh T.; Norris, Ray P.; Siana, Brian; Middelberg, Enno

    2010-02-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey which have no observable mid-infrared counterpart in the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6-70 μm) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the spectral energy distribution of these objects shows that they are consistent with high-redshift (z >~ 1) active galactic nuclei.

  19. EVIDENCE FOR DYNAMICAL CHANGES IN A TRANSITIONAL PROTOPLANETARY DISK WITH MID-INFRARED VARIABILITY

    International Nuclear Information System (INIS)

    Muzerolle, James; Flaherty, Kevin; Balog, Zoltan; Smith, Paul S.; Rieke, George H.; Furlan, Elise; Allen, Lori; Muench, August; Calvet, Nuria; D'Alessio, Paola; Megeath, S. Thomas; Sherry, William H.

    2009-01-01

    We present multi-epoch Spitzer Space Telescope observations of the transitional disk LRLL 31 in the 2-3 Myr old star-forming region IC 348. Our measurements show remarkable mid-infrared variability on timescales as short as one week. The infrared continuum emission exhibits systematic wavelength-dependent changes that suggest corresponding dynamical changes in the inner disk structure and variable shadowing of outer disk material. We propose several possible sources for the structural changes, including a variable accretion rate or a stellar or planetary companion embedded in the disk. Our results indicate that variability studies in the infrared can provide important new constraints on protoplanetary disk behavior.

  20. Observation of near-infrared surface brightness of the large Magellanic cloud

    International Nuclear Information System (INIS)

    Hayakawa, Satio; Koizumi, Yutaka; Matsumoto, Toshio; Murakami, Hiroshi; Uyama, Kiichiro.

    1981-01-01

    The near-infrared surface brightness of the large Magellanic cloud was observed by an infrared telescope carried by a balloon. The balloon flight was made at Australian Balloon Launching Station. The brightness distribution of 2.4 Mu m radiation was obtained. A part of Bar was bright, and the expansion of the contour at the east end of Bar corresponded to the 30 Dor region. Many near-infrared sources distribute in this region. Discussions on the color and brightness of the center of Bar and the 30 Dor region are presented. (Kato, T.)

  1. The Southern African Large Telescope project

    Science.gov (United States)

    Buckley, David A. H.; Charles, Philip A.; Nordsieck, Kenneth H.; O'Donoghue, Darragh

    The recently completed Southern African Large Telescope (SALT) is a low cost, innovative, 10 m class optical telescope, which began limited scientific operations in August 2005, just 5 years after ground-breaking. This paper describes the design and construction of SALT, including the first-light instruments, SALTICAM and the Robert Stobie Spectrograph (RSS). A rigorous systems engineering approach has ensured that SALT was built to specification, on budget, close to the original schedule and using a relatively small project team. The design trade-offs, which include an active spherical primary mirror array and a fixed altitude telescope with a prime focus tracker, although restrictive in comparison to conventional telescopes, have resulted in an affordable 10 m class telescope for South Africa and its ten partners. Coupled with an initial set of two seeing-limited instruments that concentrate on the UV-visible region (320 - 900 nm) and featuring some niche observational capabilities, SALT will have an ability to conduct some unique science. This includes high time resolution studies, for which some initial results have already been obtained. Many of the versatile modes available with the RSS - which is currently being commissioned - are unique and provide unparallelled opportunities for imaging polarimetry and spectropolarimetry. Likewise, Multi-Object Spectroscopy (with slit masks) and imaging spectroscopy with the RSS, the latter using Fabry-Perot étalons and interference filters, will extend the multiplex advantage over resolutions from 300 to 9000 and fields of view of 2 to 8 arcminutes. Future instrumentation plans include an extremely stable, fibre-fed, high resolution échelle spectrograph and a near-IR (to between 1.5 to 1.7 μm) extension to the RSS. Future development possibilities include phasing the primary mirror and AO. Finally, extrapolations of the SALT/HET designs to ELT proportions remain viable and are surely more affordable than conventional

  2. Completion of the Southern African Large Telescope

    Science.gov (United States)

    Buckley, D. A. H.; Charles, P. A.; O'Donoghue, D.; Nordsieck, K. H.

    2006-08-01

    The Southern African Large Telescope (SALT) is a low cost (19.7M), innovative, 10-m class optical telescope, which was inaugurated on 10 November 2005, just 5 years after ground-breaking. SALT and its first-light instruments are currently being commissioned, and full science operations are expected to begin later this year. This paper describes the design and construction of SALT, including the first-light instruments, SALTICAM and the Robert Stobie Spectrograph (RSS). A rigorous Systems Engineering approach was adopted to ensure that SALT was built to specification, on budget, close to the original schedule and using a relatively small project team. The design trade-offs, which include an active spherical primary mirror array in a fixed altitude telescope with a prime focus tracker, although restrictive in comparison to conventional telescopes, have resulted in an affordable and capable 10-m class telescope for South Africa and its ten partners. Coupled with an initial set of two seeing-limited instruments that concentrate on the UV-visible region (320 - 900nm) and featuring some unique observational capabilities, SALT will have an ability to conduct a wide range of science programs. These will include high time resolution studies, for which some initial results have already been obtained and are presented here. Many of the versatile modes available with the RSS will provide unparalleled opportunities for imaging polarimetry and spectropolarimetry. Likewise, Multi-Object Spectroscopy (using laser cut graphite slit masks) and imaging spectroscopy with the RSS, the latter using Fabry-Perot etalons and interference filters, will extend the multiplex advantage over resolutions from R = 300 to 9000 over fields of view of 2 to 8 arcminutes. Future instrumentation plans include an extremely stable, fibre-fed, high resolution échelle spectrograph and a near-IR (possibly to 1.7 μm) extension to the RSS. Future development possibilities include phasing the primary mirror

  3. Polish and European SST Assets: the Solaris-Panoptes Global Network of Robotic Telescopes and the Borowiec Satellite Laser Ranging System

    Science.gov (United States)

    Konacki, M.; Lejba, P.; Sybilski, P.; Pawłaszek, R.; Kozłowski, S.; Suchodolski, T.; Litwicki, M.; Kolb, U.; Burwitz, V.; Baader, J.; Groot, P.; Bloemen, S.; Ratajczak, M.; Helminiak, K.; Borek, R.; Chodosiewicz, P.

    2016-09-01

    We present the assets of the Nicolaus Copernicus Astronomical Center, Space Research Center (both of the Polish Academy of Sciences), two Polish companies Sybilla Technologies, Cillium Engineering and a non-profit research foundation Baltic Institute of Technology. These assets are enhanced by telescopes belonging to The Open University (UK), the Max Planck Institute for Extraterrestrial Physics and in the future the Radboud University. They consist of the Solaris-Panoptes global network of optical robotic telescopes and the satellite laser ranging station in Borowiec, Poland. These assets will contribute to the Polish and European Space Surveillance and Tracking (SST) program. The Solaris component is composed of four autonomous observatories in the Southern Hemisphere. Solaris nodes are located at the South African Astronomical Observatory (Solaris-1 and Solaris-2), Siding Spring Observatory, Australia (Solaris-3) and Complejo Astronomico El Leoncito, Argentina (Solaris-4). They are equipped with 0.5-m telescopes on ASA DDM-160 direct drive mounts, Andor iKon-L cameras and housed in 3.5-m Baader Planetarium (BP) clamshell domes. The Panoptes component is a network of telescopes operated by software from Sybilla Technologies. It currently consists of 4 telescopes at three locations, all on GM4000 mounts. One 0.36-m (Panoptes-COAST, STL- 1001E camera, 3.5 BP clamshell dome) and one 0.43-m (Panoptes-PIRATE, FLI 16803 camera, 4.5-m BP clamshell dome, with planned exchange to 0.63-m) telescope are located at the Teide Observatory (Tenerfie, Canary Islands), one 0.6-m (Panoptes-COG, SBIG STX 16803 camera, 4.5-m BP clamshell dome) telescope in Garching, Germany and one 0.5-m (Panoptes-MAM, FLI 16803 camera, 4.5-m BP slit dome) in Mammendorf, Germany. Panoptes-COAST and Panoptes-PIRATE are owned by The Open University (UK). Panoptes-COG is owned by the Max Planck Institute

  4. Capabilities of a Laser Guide Star for a Large Segmented Space Telescope

    Science.gov (United States)

    Clark, James R.; Carlton, Ashley; Douglas, Ewan S.; Males, Jared R.; Lumbres, Jennifer; Feinberg, Lee; Guyon, Olivier; Marlow, Weston; Cahoy, Kerri L.

    2018-01-01

    Large segmented mirror telescopes are planned for future space telescope missions such as LUVOIR (Large UV Optical Infrared Surveyor) to enable the improvement in resolution and contrast necessary to directly image Earth-like exoplanets, in addition to making contributions to general astrophysics. The precision surface control of these complex, large optical systems, which may have over a hundred meter-sized segments, is a challenge. Our initial simulations show that imaging a star of 2nd magnitude or brighter with a Zernike wavefront sensor should relax the segment stability requirements by factors between 10 and 50 depending on the wavefront control strategy. Fewer than fifty stars brighter than magnitude 2 can be found in the sky. A laser guide star (LGS) on a companion spacecraft will allow the telescope to target a dimmer science star and achieve wavefront control to the required stability without requiring slew or repointing maneuvers.We present initial results for one possible mission architecture, with a LGS flying at 100,000 km range from the large telescope in an L2 halo orbit, using a laser transmit power of 8 days) for an expenditure of system, it can be accommodated in a 6U CubeSat bus, but may require an extended period of time to transition between targets and match velocities with the telescope (e.g. 6 days to transit 10 degrees). If the LGS uses monopropellant propulsion, it must use at least a 27U bus to achieve the the same delta-V capability, but can transition between targets much more rapidly (flight are being refined. A low-cost prototype mission (e.g. between a small satellite in LEO and an LGS in GEO) to validate the feasibility is in development.

  5. OVERVIEW OF THE ATACAMA COSMOLOGY TELESCOPE: RECEIVER, INSTRUMENTATION, AND TELESCOPE SYSTEMS

    International Nuclear Information System (INIS)

    Swetz, D. S.; Devlin, M. J.; Dicker, S. R.; Ade, P. A. R.; Amiri, M.; Battistelli, E. S.; Burger, B.; Halpern, M.; Hasselfield, M.; Appel, J. W.; Essinger-Hileman, T.; Fisher, R. P.; Fowler, J. W.; Hincks, A. D.; Jarosik, N.; Chervenak, J.; Doriese, W. B.; Hilton, G. C.; Irwin, K. D.; Duenner, R.

    2011-01-01

    The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the cosmic microwave background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Toco in the Atacama Desert, at an altitude of 5190 m. A 6 m off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three 1000-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space millimeter-wave optics. Each frequency band has a field of view of approximately 22' x 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance.

  6. Overview of the Atacama Cosmology Telescope: Receiver, Instrumentation, and Telescope Systems

    Science.gov (United States)

    Swetz, D. S.; Ade, P. A. R.; Amiri, M.; Appel, J. W.; Battistelli, E. S.; Burger, B.; Chervenak, J.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Dünner, R.; Essinger-Hileman, T.; Fisher, R. P.; Fowler, J. W.; Halpern, M.; Hasselfield, M.; Hilton, G. C.; Hincks, A. D.; Irwin, K. D.; Jarosik, N.; Kaul, M.; Klein, J.; Lau, J. M.; Limon, M.; Marriage, T. A.; Marsden, D.; Martocci, K.; Mauskopf, P.; Moseley, H.; Netterfield, C. B.; Niemack, M. D.; Nolta, M. R.; Page, L. A.; Parker, L.; Staggs, S. T.; Stryzak, O.; Switzer, E. R.; Thornton, R.; Tucker, C.; Wollack, E.; Zhao, Y.

    2011-06-01

    The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the cosmic microwave background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Toco in the Atacama Desert, at an altitude of 5190 m. A 6 m off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three 1000-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space millimeter-wave optics. Each frequency band has a field of view of approximately 22' × 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance.

  7. Mechanical design of SST-GATE, a dual-mirror telescope for the Cherenkov Telescope Array

    Science.gov (United States)

    Dournaux, Jean-Laurent; Huet, Jean-Michel; Amans, Jean-Philippe; Dumas, Delphine; Laporte, Philippe; Sol, Hélène; Blake, Simon

    2014-07-01

    The Cherenkov Telescope Array (CTA) project aims to create the next generation Very High Energy (VHE) gamma-ray telescope array. It will be devoted to the observation of gamma rays over a wide band of energy, from a few tens of GeV to more than 100 TeV. Two sites are foreseen to view the whole sky where about 100 telescopes, composed of three different classes, related to the specific energy region to be investigated, will be installed. Among these, the Small Size class of Telescopes, SSTs, are devoted to the highest energy region, to beyond 100 TeV. Due to the large number of SSTs, their unit cost is an important parameter. At the Observatoire de Paris, we have designed a prototype of a Small Size Telescope named SST-GATE, based on the dual-mirror Schwarzschild-Couder optical formula, which has never before been implemented in the design of a telescope. Over the last two years, we developed a mechanical design for SST-GATE from the optical and preliminary mechanical designs made by the University of Durham. The integration of this telescope is currently in progress. Since the early stages of mechanical design of SST-GATE, finite element method has been used employing shape and topology optimization techniques to help design several elements of the telescope. This allowed optimization of the mechanical stiffness/mass ratio, leading to a lightweight and less expensive mechanical structure. These techniques and the resulting mechanical design are detailed in this paper. We will also describe the finite element analyses carried out to calculate the mechanical deformations and the stresses in the structure under observing and survival conditions.

  8. Whither the UK Continental Shelf?

    International Nuclear Information System (INIS)

    Kemp, A.G.

    1999-01-01

    The development of the oil and gas fields on the United Kingdom continental shelf has been carried out with remarkable success. However, low oil prices now threaten fresh investment and make it likely that both oil and gas output will start to fall in about 2001. The impact of a number of different price scenarios on further development is assessed. It is concluded that continuing technological improvements and the provision of adequate incentives by government should ensure a long productive future for the province. (UK)

  9. Energy strategies for the UK

    International Nuclear Information System (INIS)

    Littlechild, S.C.; Vaidya, K.G.

    1982-01-01

    This book provides the first comprehensive and integrated model of the UK energy sector which focuses on decision-making and optimisation rather than on forecasting or simulation. It incorporates the production and investment policy of all the major fuels (coal, oil, gas and electricity) over a fifty year horizon and analyses strategy under a variety of different assumptions about costs, demands, technolgy and future decisions. The authors cover the wide spectrum of energy problems and policy, including scenarios of rising il and gas prices, and there are striking calculations of the (low) costs of a non-nuclear plus conservation strategy. (author)

  10. History magazines in the UK

    OpenAIRE

    Haydn, Terry

    2013-01-01

    The paper explores the phenomenon of popular history magazines as a facet of public history. The UK has seen a substantial increase in the number of popular history magazines available to the public, with some magazines reaching high levels of circulation. The paper looks at the range of magazines available – from ‘heritage’ and ‘family’ history, to special interest magazines, and more ‘serious’ and scholarly history magazines. What is it that makes history magazines sell, and what influence ...

  11. Extending Supernova Spectral Templates for Next Generation Space Telescope Observations

    Science.gov (United States)

    Roberts-Pierel, Justin; Rodney, Steven A.; Steven Rodney

    2018-01-01

    Widely used empirical supernova (SN) Spectral Energy Distributions (SEDs) have not historically extended meaningfully into the ultraviolet (UV), or the infrared (IR). However, both are critical for current and future aspects of SN research including UV spectra as probes of poorly understood SN Ia physical properties, and expanding our view of the universe with high-redshift James Webb Space Telescope (JWST) IR observations. We therefore present a comprehensive set of SN SED templates that have been extended into the UV and IR, as well as an open-source software package written in Python that enables a user to generate their own extrapolated SEDs. We have taken a sampling of core-collapse (CC) and Type Ia SNe to get a time-dependent distribution of UV and IR colors (U-B,r’-[JHK]), and then generated color curves are used to extrapolate SEDs into the UV and IR. The SED extrapolation process is now easily duplicated using a user’s own data and parameters via our open-source Python package: SNSEDextend. This work develops the tools necessary to explore the JWST’s ability to discriminate between CC and Type Ia SNe, as well as provides a repository of SN SEDs that will be invaluable to future JWST and WFIRST SN studies.

  12. High resolution infrared spectroscopy of symbiotic stars

    International Nuclear Information System (INIS)

    Bensammar, S.

    1989-01-01

    We report here very early results of high resolution (5x10 3 - 4x10 4 ) infrared spectroscopy (1 - 2.5 μm) of different symbiotic stars (T CrB, RW Hya, CI Cyg, PU Vul) observed with the Fourier Transform Spectrometer of the 3.60m Canada France Hawaii Telescope. These stars are usually considered as interacting binaries and only little details are known about the nature of their cool component. CO absorption lines are detected for the four stars. Very different profiles of hydrogen Brackett γ and helium 10830 A lines are shown for CI Cyg observed at different phases, while Pu Vul shows very intense emission lines

  13. Meteorological Necessities for the Stratospheric Observatory for Infrared Astronomy

    Science.gov (United States)

    Houtas, Franzeska

    2011-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is joint program with NASA and DLR (German Aerospace Center) of a highly modified Boeing 747-SP. The purpose of this modification is to include a 2.5 m infrared telescope in a rear bulkhead of the airplane, with a retractable door open to the atmosphere. The NASA Dryden Flight Research Center (DFRC) is responsible for verifying that the aerodynamics, acoustics, and flying qualities of the modified aircraft stay within safe limits. Flight testing includes determining meteorological limitations of the aircraft, which is done by setting strict temporary operating limits and verifying through data analysis, what conditions are acceptable. Line operations are calibration tests of various telescope instruments that are done on the ground prior to flights. The method in determining limitations for this type of operation is similar to that of flight testing, but the meteorological limitations are different. Of great concern are the particulates near the surface that could cause damage to the telescope, as well as condensation forming on the mirror. Another meteorological involvement for this program is the process of obtaining Reduced Vertical Separation Minimums (RVSM) Certification from the FAA. This heavily involves obtaining atmospheric data pertinent to the flight, analyzing data to actual conditions for validity, and computing necessary results for comparison to aircraft instrumentation.

  14. Introducing wood pellet fuel to the UK

    Energy Technology Data Exchange (ETDEWEB)

    Cotton, R A; Giffard, A

    2001-07-01

    Technical and non-technical issues affecting the introduction of wood pellet-fired heating to the UK were investigated with the aim of helping to establish a wood pellet industry in the UK. The project examined the growth and status of the industry in continental Europe and North America, reviewed relevant UK standards and legislation, identified markets for pellet heating in the UK, organised workshops and seminars to demonstrate pellet burning appliances, carried out a trial pelletisation of a range of biomass fuels, helped to set up demonstration installations of pellet-fired appliances, undertook a promotional campaign for wood pellet fuel and compiled resource directories for pellet fuel and pellet burning appliances in the UK. The work was completed in three phases - review, identification and commercialisation. Project outputs include UK voluntary standards for wood pellet fuel and combustion appliances, and a database of individuals with an interest in wood pellet fuel.

  15. Nutritional knowledge of UK coaches.

    Science.gov (United States)

    Cockburn, Emma; Fortune, Alistair; Briggs, Marc; Rumbold, Penny

    2014-04-10

    Athletes obtain nutritional information from their coaches, yet their competency in this area is lacking. Currently, no research exists in the UK which has a different coach education system to many other countries. Therefore, the aim of this study was to evaluate the sports nutrition knowledge of UK coaching certificate (UKCC) level 2 and 3, hockey and netball qualified coaches. All coaches (n = 163) completed a sports nutrition questionnaire to identify: (a) if they provided nutritional advice; (b) their level of sport nutrition knowledge; and (c) factors that may have contributed to their level of knowledge. Over half the coaches provided advice to their athletes (n = 93, 57.1%), even though they were not competent to do so. Coaches responded correctly to 60.3 ± 10.5% of all knowledge questions with no differences between those providing advice and those who did not (p > 0.05). Those coaches who had undertaken formal nutrition training achieved higher scores than those who had not (p sports coaches would benefit from continued professional development in sports nutrition to enhance their coaching practice.

  16. 21 CFR 886.5870 - Low-vision telescope.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Low-vision telescope. 886.5870 Section 886.5870...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5870 Low-vision telescope. (a) Identification. A low-vision telescope is a device that consists of an arrangement of lenses or mirrors intended for...

  17. Eyes on the sky a spectrum of telescopes

    CERN Document Server

    Graham-Smith, Francis

    2016-01-01

    Astronomy is experiencing a golden age, with a new generation of innovative telescopes yielding a flood of information on the Universe. This book traces the development of telescopes from Galileo to the present day, and explains the basic principles of telescopes that operate in different parts of electromagnetic spectrum.

  18. Barrier Infrared Detector (BIRD)

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in MWIR detector design, has resulted in a high operating temperature (HOT) barrier infrared detector (BIRD) that is capable of spectral...

  19. Infrared Sky Surveys

    Science.gov (United States)

    Price, Stephan D.

    2009-02-01

    A retrospective is given on infrared sky surveys from Thomas Edison’s proposal in the late 1870s to IRAS, the first sensitive mid- to far-infrared all-sky survey, and the mid-1990s experiments that filled in the IRAS deficiencies. The emerging technology for space-based surveys is highlighted, as is the prominent role the US Defense Department, particularly the Air Force, played in developing and applying detector and cryogenic sensor advances to early mid-infrared probe-rocket and satellite-based surveys. This technology was transitioned to the infrared astronomical community in relatively short order and was essential to the success of IRAS, COBE and ISO. Mention is made of several of the little known early observational programs that were superseded by more successful efforts.

  20. Infrared emission from protostars

    International Nuclear Information System (INIS)

    Adams, F.C.; Shu, F.H.

    1985-01-01

    The emergent spectral energy distribution at infrared to radio wavelengths is calculated for the simplest theoretical construct of a low-mass protostar. It is shown that the emergent spectrum in the infrared is insensitive to the details assumed for the temperature profile as long as allowance is made for a transition from optically thick to optically thin conditions and luminosity conservation isenforced at the inner and outer shells. The radiation in the far infrared and submillimeter wavelengths depends on the exact assumptions made for grain opacities at low frequencies. An atlas of emergent spectral energy distributions is presented for a grid of values of the instantaneous mass of the protostar and the mass infall rate. The attenuated contribution of the accretion shock to the near-infrared radiation is considered. 50 references

  1. Young Astronomers' Observe with ESO Telescopes

    Science.gov (United States)

    1995-11-01

    are described, but in the end it is appears that only infrared astrometry and astrometry would allow to detect the presence of the planets around this star. Denmark: Mr. Joern C. Olsen, Mr. Henrik Struckmann, Mr. Uffe A. Hansen, Mr. Mogens Winther (Teacher) (Soenderborg Amtsgymnasium) This team performed extensive CCD-observations with the school telescope of three stellar clusters. The goal was to determine their HR-diagrammes (colour-magnitude) and other characteristics. Among others, the team succeeded to measure quite accurate B (blue) and V (green-yellow) colours of 40, 12-16-magnitude stars in the open stellar cluster NGC 6939. This allowed a determination of the distance (2500 parsec) to this cluster and its age (1800 million years), quite similar to the `professionally' determined values. As a side-result, and illustrating the faintness of starlight, a calculation showed that it would take no less than 437,236 years for the brightest star in the sky, Sirius, to heat a cup of coffee to the boiling point ! Finland: Mr. Reima EresmA, Ms. Laura Elina Nykyri, Ms. Reetamaija Janhonen (Cygnaeues-Lukeo, Jyvaeskylae and Jyvaeskylae Lyseon Lukeo) This group used a 50-cm amateur telescope in their home town to observe the spectra of galaxies. A CCD spectrograph recorded the data which were then image-processed in the computer. For this programme, five galaxy pairs were selected and their velocities were measured. This allowed to calculate the distance to the galaxies by means of Hubble's law and also to determine the velocity difference between the two galaxies in a binary system. This in turn makes it possible to estimate the galaxies' total mass. When comparing these numbers with the mass of the visible objects, the group finally determined that the visible mass is only about 8 percent of the total mass, i.e. there must be much `dark matter' in these galaxies. France: Mr. Rene Cavaroz (Teacher), Mr. Vincent Hardy, Mr. Antoine Lesuffleur (Lycee Chartier, Bayeux) This

  2. History of infrared detectors

    Science.gov (United States)

    Rogalski, A.

    2012-09-01

    This paper overviews the history of infrared detector materials starting with Herschel's experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940's. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ˜3 μm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called "dual-use technology applications." One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.

  3. Additive Manufacturing Infrared Inspection

    Science.gov (United States)

    Gaddy, Darrell; Nettles, Mindy

    2015-01-01

    The Additive Manufacturing Infrared Inspection Task started the development of a real-time dimensional inspection technique and digital quality record for the additive manufacturing process using infrared camera imaging and processing techniques. This project will benefit additive manufacturing by providing real-time inspection of internal geometry that is not currently possible and reduce the time and cost of additive manufactured parts with automated real-time dimensional inspections which deletes post-production inspections.

  4. Pub Culture in the U.K.

    Institute of Scientific and Technical Information of China (English)

    孙鑫

    2015-01-01

    In the U.K., pubs can be seen everywhere. They play an important role in the British society. How pubs came into being in the U.K.? Why is pub culture formed and what makes it prosperous? What effects does pub culture make on British society both in the past and in the present? Does any British character be shown in pub culture in the U.K.? In this paper, I will give a brief in-troduction of pub culture's history and development in the U.K.. Besides, the above questions will be explored and analyzed one by one.

  5. Deep Sky Diving with the ESO New Technology Telescope

    Science.gov (United States)

    1998-01-01

    Technology Telescope. Many of the advanced technological concepts now incorporated into the VLT were first tested in the NTT. When this new facility entered into operation at La Silla in 1990, it represented a break-through in telescope technology and it has since then made many valuable contributions to front-line astronomical projects. Last year, the control and data flow system at the NTT was thoroughly refurbished to the high VLT standards and current observations with the NTT closely simulate the future operation of the VLT. The successful, early tests with the new operations system have been described in ESO Press Release 03/97. The NTT SUSI Deep Field With the possibility to test already now observing procedures which will become standard for the operation of the VLT, a group of astronomers [1] was granted NTT time for observations of Faint Galaxies in an Ultra-Deep Multicolour SUSI field . This is a programme aimed at the study of the distribution of faint galaxies in the field and of gravitational lensing effects (cosmic mirages and deformation of images of distant galaxies caused by the gravitational field of intervening matter). SUSI (SUperb Seeing Imager) is a high-resolution CCD-camera at the NTT that is particularly efficient under excellent sky conditions. The observations were fully defined in advance and were carried out in service mode from February to April 1997 with flexible scheduling by a team of dedicated ESO astronomers (the NTT team). Only in this way was it possible to obtain the exposures under optimal atmospheric conditions, i.e. `photometric' sky and little atmospheric turbulence (seeing better than 1 arcsec). A total of 122 CCD frames were obtained in four colours (blue, green-yellow, red and near-infrared) with a total exposure time of no less than 31.5 hours. The frames cover a 2.3 x 2.3 arcmin `empty' sky field centered south of the high-redshift quasar QSO BR 1202-0725 (z=4.7), located just south of the celestial equator. ESO PR Photo 01a/98

  6. Computerization of a telescope at secondary education

    Science.gov (United States)

    García Santiago, A.; Martos Jumillas, J.

    2017-03-01

    The work we are presenting in this paper is the computerization of a refractor telescope on an EQ3 type equatorial mount through Arduino. The control of the mount is done via three different interfaces: Stellarium, an Android interface for mobile phones and a second interface for PC made with Processing. The aforementioned work was done by the authors with a double purpose: presenting the interest in astronomy in the Mathematics department, and the development of applications within the subject of Technology in 4th ESO. So, it is a collaborative project between both departments. Except for the telescope and the mount, all the resources we have used can be found in any high school: free software (Guadalinex v9), App Inventor and Processing.The project was carried out under the principle of reducing all possible costs given the economic possibilities of the institution.

  7. ANTARES: A High Energy Neutrino Undersea Telescope

    International Nuclear Information System (INIS)

    Hernandez, J.J.

    1999-01-01

    Neutrinos can reveal a brand new Universe at high energies. The ANTARES collaboration, formed in 1996, works towards the building and deployment of a neutrino telescope. This detector could observe and study high energy astrophysical sources such as X-ray binary systems, young supernova remnants or Active Galactic Nuclei and help to discover or set exclusion limits on some of the elementary particles and objects that have been put forward as candidates to fill the Universe (WIMPS, neutralinos, topological defects, Q-balls, etc.). A neutrino telescope will certainly open a new observational window and can shed light on the most energetic phenomena of the Universe. A review of the progress made by the ANTARES collaboration to achieve this goal is presented. (author)

  8. A planetary telescope at the ISS

    Science.gov (United States)

    Korablev, O.; Moroz, V.; Avanesov, G.; Rodin, V.; Bellucci, G.; Vid Machenko, A.; Tejfel, V.

    We present the development of a 40-cm telescope to be deployed at the Russian segment of International Space Station (ISS) dedicated to the observations of planets of Solar system, which primary goal will be tracking climate-related changes and other variable phenomena on planets. The most effective will be the observations of Venus, Mars, Jupiter, Saturn, and comets, while other interesting targets will be certainly considered. This space-based observatory will perform monitoring of Solar System objects on regular basis The observatory includes the 40-cm narrow-field (f:20) telescope at a pointing platform with guidance system assuring pointing accuracy of ~10", and an internal tracking system with an accuracy inferior to 1" during tens of minutes. Four focal plane instruments, a camera, two spectrometers and a spectropolarimeter, will perform imaging and spectral observations in the range from ~200 nm to ~3 μm.

  9. Advanced Dark Energy Physics Telescope (ADEPT)

    Energy Technology Data Exchange (ETDEWEB)

    Charles L. Bennett

    2009-03-26

    In 2006, we proposed to NASA a detailed concept study of ADEPT (the Advanced Dark Energy Physics Telescope), a potential space mission to reliably measure the time-evolution of dark energy by conducting the largest effective volume survey of the universe ever done. A peer-review panel of scientific, management, and technical experts reported back the highest possible 'excellent' rating for ADEPT. We have since made substantial advances in the scientific and technical maturity of the mission design. With this Department of Energy (DOE) award we were granted supplemental funding to support specific extended research items that were not included in the NASA proposal, many of which were intended to broadly advance future dark energy research, as laid out by the Dark Energy Task Force (DETF). The proposed work had three targets: (1) the adaptation of large-format infrared arrays to a 2 micron cut-off; (2) analytical research to improve the understanding of the dark energy figure-of- merit; and (3) extended studies of baryon acoustic oscillation systematic uncertainties. Since the actual award was only for {approx}10% of the proposed amount item (1) was dropped and item (2) work was severely restricted, consistent with the referee reviews of the proposal, although there was considerable contradictions between reviewer comments and several comments that displayed a lack of familiarity with the research. None the less, item (3) was the focus of the work. To characterize the nature of the dark energy, ADEPT is designed to observe baryon acoustic oscillations (BAO) in a large galaxy redshift survey and to obtain substantial numbers of high-redshift Type Ia supernovae (SNe Ia). The 2003 Wilkinson Microwave Anisotropy Probe (WMAP) made a precise determination of the BAO 'standard ruler' scale, as it was imprinted on the cosmic microwave background (CMB) at z {approx} 1090. The standard ruler was also imprinted on the pattern of galaxies, and was first

  10. Preliminary Multivariable Cost Model for Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip

    2010-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. Previously, the authors published two single variable cost models based on 19 flight missions. The current paper presents the development of a multi-variable space telescopes cost model. The validity of previously published models are tested. Cost estimating relationships which are and are not significant cost drivers are identified. And, interrelationships between variables are explored

  11. CFRP solutions for the innovative telescopes design

    Science.gov (United States)

    Rampini, Francesco; Marchiori, Gianpietro

    2006-02-01

    The new frontiers of the research in the astronomic field require the use of more and more advanced high-performance structures. Only an adequate technological innovation of conventional telescopes and radio-telescopes allow to obtain structures able to meet the new specification of the projects. Besides, technological innovation is founded not only on the identification of more and more sophisticated mechanisms and optical instruments, but also on the development of new materials and manufacturing processes for the entire structure that constitute an instrument such as a telescope or a radio-telescope. Among these materials, the use of the carbon fibre is highly important. This material, which is already widely used in the aerospace and automotive fields, shall join also the astronomic field for ground instruments. Thanks to the experience acquired with instruments like ALMA, the industry of composites is now able to guarantee different solutions at relatively low costs that allow the instruments of new generation to move extremely important steps in the development of scientific research. Not just materials, but also processes, through which the materials are worked and manufactured, are extremely important. The use of technologies, such as hand lay-up vacuum bag, compression moulding, table rolling of composite tubes, filament winding, poltrusion and Resin Transfer Moulding (RTM), allow to identify the ideal solution both for big dimension objects, such as backup structure, main mirror structure of quadripod legs, and relatively small objects, such as actuators, adjusters system, etc. The wide choice, concerning the use of composite materials, and their techniques of production, allow the technicians to satisfy the exigencies of astronomers be they addressed to simple control of the weights or of the stiffness of the structures, or to specific thermal behaviour of the piece itself.

  12. Time to Revisit the Heterogeneous Telescope Network

    Science.gov (United States)

    Hessman, F. V.

    The "Heterogeneous Telescope Network" (HTN) was founded in 2005 as a loose collaboration of people somehow associated with robotic telescopes and/or projects interested in the transient universe. Other than being a very interesting forum for the exchange of ideas, the only lasting contribution of the HTN was a proposed protocol for the operation of a loose e-market for the exchange of telescope time (Allan et al. 2006; White & Allan 2007). Since the last formal meeting in 2007, the HTN has gone into a "Dornröschenschlaf" (a better word than "hibernation") : the players and interest are there, but the public visibility and activity is not. Although the participants knew and know that global networking is the way of the future for many types of science, various things have kept the HTN from taking the idea and actually implementing it: work on simply getting one's own system to work (e.g. myself), career paths of major players (e.g. Allan), dealing with the complexity of ones' own network (TALONS, RoboNet, LCO), and - most importantly - no common science driver big enough to push the participants to try it in earnest. Things have changed, however: robotic telescopes have become easier to create and operate, private networks have matured, large-scale consortia have become more common, event reporting using VOEvent has become the global standard and has a well-defined infrastructure, and large-scale sources of new objects and events are operating or will soon be operating (OGLE, CSS, Pan-STARRs, GAIA). I will review the scientific and sociological prospects for re-invigorating the HTN idea and invite discussion.

  13. Chinese large solar telescopes site survey

    Science.gov (United States)

    Liu, Yu

    2017-04-01

    In order to observe the solar surface with unprecedentedly higher resolution, Chinse solar physics society decided to launch their solar site survey project in 2010 as the first step to look for the best candidate sites for the Chinese next-generation large-aperture solar telescopes, i.e., the 5-8 meter Chinese Giant Solar Telescope, and the 1 meter level coronagraph. We have built two long-term monitoring sites in Daocheng, with altitudes of around 4800 meters above the sea level located in the large Shangri-La mountain area, and we have collected systematic site data since 2014. Clear evidence, including the key parameters of seeing factor, sky brightness and water vapor content, has indicated that the large Shangri-La area owns the potential conditions of excellent seeing level and sufficient amount of clear-sky hours suitable for developing large solar telescopes. We will review the site survey progress and present the preliminary statistical results in this talk.

  14. UV/Visible Telescope with Hubble Disposal

    Science.gov (United States)

    Benford, Dominic J.

    2013-01-01

    Submission Overview: Our primary objective is to convey a sense of the significant advances possible in astrophysics investigations for major Cosmic Origins COR program goals with a 2.4m telescope asset outfitted with one or more advanced UV visible instruments. Several compelling science objectives were identified based on community meetings these science objectives drove the conceptual design of instruments studied by the COR Program Office during July September 2012. This RFI submission encapsulates the results of that study, and suggests that a more detailed look into the instrument suite should be conducted to prove viability and affordability to support the demonstrated scientific value. This study was conducted in the context of a larger effort to consider the options available for a mission to dispose safely of Hubble hence, the overall architecture considered for the mission we studied for the 2.4m telescope asset included resource sharing. This mitigates combined cost and risk and provides naturally for a continued US leadership role in astrophysics with an advanced, general-purpose UV visible space telescope.

  15. Science with the solar optical telescope

    Science.gov (United States)

    Jordan, S. D.; Hogan, G. D.

    1984-01-01

    The Solar Optical Telescope (SOT) is designed to provide the solar physics community with the data necessary for solving several fundamental problems in the energetics and dynamics of the solar atmosphere. Among these problems are questions on the origin and evolution of the sun's magnetic field, heating of the outer solar atmosphere, and sources of the solar wind in the lower lying regions of the outer atmosphere. The SOT will be built under the management of NASA's Goddard Space Flight Center, with science instruments provided by teams led by Principal Investigators. The telescope will be built by the Perkin-Elmer Corporation, and the science instruments selected for the first flight will be provided by the Lockheed Palo Alto Research Laboratory (LPARL) and the California Institute of Technology, with actual construction of a combined science instrument taking place at the LPARL. The SOT has a 1.3-meter-diameter primary mirror that will be capable of achieving diffraction-limited viewing in the visible of 0.1 arc-second. This dimension is less than a hydrodynamic scale-height or a mean-free-path of a continuum photon in the solar atmosphere. Image stability will be achieved by a control system in the telescope, which moves both the primary and tertiary mirrors in tandem, and will be further enhanced by a correlation tracker in the combined science instrument. The SOT Facility is currently scheduled for its first flight on Spacelab at the beginning of the 1990's.

  16. The Swift Ultra-Violet/Optical Telescope

    International Nuclear Information System (INIS)

    Roming, Peter; Hunsberger, S.D.; Nousek, John; Mason, Keith

    2001-01-01

    The Ultra-Violet/Optical Telescope (UVOT) provides the Swift Gamma-Ray Burst Explorer with the capability of quickly detecting and characterizing the optical and ultraviolet properties of gamma ray burst counterparts. The UVOT design is based on the design of the Optical Monitor on XMM-Newton. It is a Ritchey-Chretien telescope with microchannel plate intensified charged-coupled devices (MICs) that deliver sub-arcsecond imaging. These MICs are photon-counting devices, capable of detecting low intensity signal levels. When flown above the atmosphere, the UVOT will have the sensitivity of a 4m ground based telescope, attaining a limiting magnitude of 24 for a 1000 second observation in the white light filter. A rotating filter wheel allows sensitive photometry in six bands spanning the UV and visible, which will provide photometric redshifts of objects in the 1-3.5z range. For bright counterparts, such as the 9th magnitude GRB990123, or for fainter objects down to 17th magnitude, two grisms provide low-resolution spectroscopy

  17. A Cosmic Ray Telescope For Educational Purposes

    International Nuclear Information System (INIS)

    Voulgaris, G.; Kazanas, S.; Chamilothoris, I.

    2010-01-01

    Cosmic ray detectors are widely used, for educational purposes, in order to motivate students to the physics of elementary particles and astrophysics. Using a 'telescope' of scintillation counters, the directional characteristics, diurnal variation, correlation with solar activity, can be determined, and conclusions about the composition, origin and interaction of elementary particles with the magnetic field of earth can be inferred. A telescope was built from two rectangular scintillator panels with dimensions: 91.6x1.9x3.7 cm 3 . The scintillators are placed on top of each other, separated by a fixed distance of 34.6 cm. They are supported by a wooden frame which can be rotated around a horizontal axis. Direction is determined by the coincidence of the signals of the two PMTs. Standard NIM modules are used for readout. This device is to be used in the undergraduate nuclear and particle physics laboratory. The design and construction of the telescope as well as some preliminary results are presented.

  18. ESO Council Visits First VLT Unit Telescope Structure in Milan

    Science.gov (United States)

    1995-12-01

    As the ESO Very Large Telescope (VLT) rapidly takes on shape, Europe has just come one step closer to the realisation of its 556 million DEM astronomical showcase project. Last week, the ESO Council held its semi-annual meeting in Milan (Italy) [1]. During a break in the long agenda list, Council members had the opportunity to visit the Ansaldo factory in the outskirts of this city and to see for the first time the assembled mechanical structure of one of the four 8.2-metre VLT Unit telescopes. This Press Release is accompanied by a photo that shows the ESO Council delegates in front of the giant telescope. After a long climb up the steep staircase to the large Nasmyth platform at the side of the telescope where the astronomical instruments will later be placed, Dr. Peter Creola (Switzerland) , President of the ESO Council and a mechanics expert, grabbed the handrail and surveyed the structure with a professional eye: `I knew it was going to be big, but not that enormous!', he said. Other delegates experienced similar feelings, especially when they watched the 430 tonnes of steel in the 24-metre tall and squat structure turn smoothly and silently around the vertical axis. The Chairman of the ESO Scientific Technical Committee (STC), Dr. Johannes Andersen (Denmark) , summarized his first, close encounter with the VLT by `This is great fun!' and several of his colleague astronomers were soon seen in various corners of the vast structure, engaged in elated discussions about the first scientific investigations to be done with the VLT in two years' time. The VLT Main Structures The visit by Council took place at the invitation of Ansaldo Energia S.p.A. (Genova), EIE-European Industrial Engineering S.r.I. (Venice) and SOIMI-Societa Impianti Industriale S.p.A. (Milan), the three Italian enterprises responsible for the construction of the main structures of the VLT 8.2-metre Unit telescopes. Short speeches were given on this occasion by Drs. Ferruccio Bressani (Ansaldo

  19. THE PECULIAR EXTINCTION LAW OF SN 2014J MEASURED WITH THE HUBBLE SPACE TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Amanullah, R.; Goobar, A.; Johansson, J.; Petrushevska, T. [Oskar Klein Centre, Physics Department, Stockholm University, SE-106 91 Stockholm (Sweden); Banerjee, D. P. K.; Venkataraman, V.; Joshi, V.; Ashok, N. M. [Physical Research Laboratory, Ahmedabad 380009 (India); Cao, Y.; Kulkarni, S. R. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Kasliwal, M. M. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Nugent, P. E. [Department of Astronomy, University of California Berkeley, B-20 Hearst Field, Annex # 3411, Berkeley, CA 94720-3411 (United States); Stanishev, V., E-mail: rahman@fysik.su.se [CENTRA—Centro Multidisciplinar de Astrofísica, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal)

    2014-06-20

    The wavelength dependence of the extinction of Type Ia SN 2014J in the nearby galaxy M82 has been measured using UV to near-IR photometry obtained with the Hubble Space Telescope, the Nordic Optical Telescope, and the Mount Abu Infrared Telescope. This is the first time that the reddening of an SN Ia is characterized over the full wavelength range of 0.2-2 μm. A total-to-selective extinction, R{sub V} ≥ 3.1, is ruled out with high significance. The best fit at maximum using a Galactic type extinction law yields R{sub V} = 1.4 ± 0.1. The observed reddening of SN 2014J is also compatible with a power-law extinction, A {sub λ}/A{sub V} = (λ/λ {sub V}) {sup p} as expected from multiple scattering of light, with p = –2.1 ± 0.1. After correcting for differences in reddening, SN 2014J appears to be very similar to SN 2011fe over the 14 broadband filter light curves used in our study.

  20. Challenges with Electrical, Electronics, and Electromechanical Parts for James Webb Space Telescope

    Science.gov (United States)

    Jah, Muzar A.; Jeffers, Basil S.

    2016-01-01

    James Webb Space Telescope (JWST) is the space-based observatory that will extend the knowledge gained by the Hubble Space Telescope (HST). Hubble focuses on optical and ultraviolet wavelengths while JWST focuses on the infrared portion of the electromagnetic spectrum, to see the earliest stars and galaxies that formed in the Universe and to look deep into nearby dust clouds to study the formation of stars and planets. JWST, which commenced creation in 1996, is scheduled to launch in 2018. It includes a suite of four instruments, the spacecraft bus, optical telescope element, Integrated Science Instrument Module (ISIM, the platform to hold the instruments), and a sunshield. The mass of JWST is approximately 6200 kg, including observatory, on-orbit consumables and launch vehicle adaptor. Many challenges were overcome while providing the electrical and electronic components for the Goddard Space Flight Center hardware builds. Other difficulties encountered included developing components to work at cryogenic temperatures, failures of electronic components during development and flight builds, Integration and Test electronic parts problems, and managing technical issues with international partners. This paper will present the context of JWST from a EEE (electrical, electronic, and electromechanical) perspective with examples of challenges and lessons learned throughout the design, development, and fabrication of JWST in cooperation with our associated partners including the Canadian Space Agency (CSA), the European Space Agency (ESA), Lockheed Martin and their respective associated partners. Technical challenges and lessons learned will be discussed.

  1. Celebrating 30 years of science from the James Clerk Maxwell Telescope

    Science.gov (United States)

    Robson, Ian; Friberg, Per

    2017-01-01

    The James Clerk Maxwell Telescope (JCMT) has been the world’s most successful single-dish telescope at submillimetre wavelengths since it began operations in 1987. From the pioneering days of single-element photometers and mixers, through to the state-of-the-art imaging and spectroscopic cameras, the JCMT has been associated with a number of major scientific discoveries. Famous for the discovery of ‘SCUBA’ galaxies, which are responsible for a large fraction of the far-infrared background, the JCMT has pushed the sensitivity limits arguably more than any other facility in this most difficult of wavebands in which to observe. Closer to home, the first images of huge discs of cool debris around nearby stars gave us clues to the evolution of planetary systems, further evidence of the importance of studying astrophysics in the submillimetre region. Now approaching the 30th anniversary of the first observations, the telescope continues to carry out unique and innovative science. In this review article, we look back on some of the major scientific highlights from the past 30 years. PMID:28989775

  2. Celebrating 30 years of science from the James Clerk Maxwell Telescope

    Science.gov (United States)

    Robson, Ian; Holland, Wayne S.; Friberg, Per

    2017-09-01

    The James Clerk Maxwell Telescope (JCMT) has been the world's most successful single-dish telescope at submillimetre wavelengths since it began operations in 1987. From the pioneering days of single-element photometers and mixers, through to the state-of-the-art imaging and spectroscopic cameras, the JCMT has been associated with a number of major scientific discoveries. Famous for the discovery of `SCUBA' galaxies, which are responsible for a large fraction of the far-infrared background, the JCMT has pushed the sensitivity limits arguably more than any other facility in this most difficult of wavebands in which to observe. Closer to home, the first images of huge discs of cool debris around nearby stars gave us clues to the evolution of planetary systems, further evidence of the importance of studying astrophysics in the submillimetre region. Now approaching the 30th anniversary of the first observations, the telescope continues to carry out unique and innovative science. In this review article, we look back on some of the major scientific highlights from the past 30 years.

  3. Production of the 4.1-m Zerodur mirror blank for the VISTA Telescope

    Science.gov (United States)

    Doehring, Thorsten; Jedamzik, Ralf; Wittmer, Volker; Thomas, Armin

    2004-09-01

    VISTA (Visible and Infrared Survey Telescope for Astronomy) is designed to be the world's largest wide field telescope. After finishing of the construction the telescope will be part of ESO and located in Chile close to the VLT observatory at Cerro Paranal. In November 2001 SCHOTT was selected by the VISTA project office at the Royal Observatory of Edinburgh to deliver the 4.1 m diameter primary mirror blank. The manufacturing of the mirror blank made from the zero expansion material Zerodur was challenging especially due to the f/1 design. Several tons of the glass ceramic material were removed during the grinding operation. A meniscus blank with a diameter of 4100 mm and a thickness of 171.5 mm was generated, having a large central hole of 1200 mm and an aspherical shape of the concave surface. Also the handling and turning operations needed special effort and were performed by a skilled team. This paper presents details and pictures of the corresponding production and inspection sequence at SCHOTT. The geometrical parameters were measured during manufacturing by help of a laser tracker system and the achieved parameters were compared with the initial technical specification. The final quality inspection verified the excellent quality of the mirror blank. The close co-operation between the astronomers and industry resulted in a project management without problems. In April 2003 the VISTA blank was delivered successfully within a ceremony dedicated to the anniversary of "100 years of astronomical mirror blanks from SCHOTT."

  4. New Frontiers for Massive Star Winds: Imaging and Spectroscopy with the James Webb Space Telescope

    Science.gov (United States)

    Sonneborn, George

    2007-01-01

    The James Webb Space Telescope (JWST) is a large, infrared-optimized space telescope scheduled for launch in 2013. JWST will find the first stars and galaxies that formed in the early universe, connecting the Big Bang to our own Milky Way galaxy. JWST will peer through dusty clouds to see stars forming planetary systems, connecting the Milky Way to our own Solar System. JWST's instruments are designed to work primarily in the infrared range of 1 - 28 microns, with some capability in the visible range. JWST will have a large mirror, 6.5 meters in diameter, and will be diffraction-limited at 2 microns (0.1 arcsec resolution). JWST will be placed in an L2 orbit about 1.5 million km from the Earth. The instruments will provide imaging, coronography, and multi-object and integral-field spectroscopy across the full 1 - 28 micron wavelength range. The breakthrough capabilities of JWST will enable new studies of massive star winds from the Milky Way to the early universe.

  5. Measuring Visual Double Stars with Robotic Telescopes

    Science.gov (United States)

    Boyce, Pat; Boyce, Grady; Genet, Russell M.; Faisal Al-Zaben, Dewei Li, Yongyao Li, Aren Dennis, Zhixin Cao, Junyao Li, Steven Qu, Jeff Li, Michael Fene, Allen Priest, Stephen Priest, Rex Qiu, , and, Bill Riley

    2016-06-01

    The Astronomy Research Seminars introduce students to scientific research by carrying out the entire process: planning a scientific research project, writing a research proposal, gathering and analyzing observational data, drawing conclusions, and presenting the research results in a published paper and presentation.In 2015 Cuesta College and Russell Genet sponsored a new hybrid format for the seminar enabling distance learning. Boyce Research Initiatives and Education Foundation (BRIEF) conducted the course at The Army and Navy Academy (ANA) in Carlsbad, California, in the spring and fall of 2015.The course objective is to complete the research and publish the paper within one semester. Our program schedule called for observations to be performed within a two week period. Measurement of visual binary stars was chosen because sufficient observations could be made in just two evenings of good weather. We quickly learned that our location by the ocean did not provide reliable weather to use local telescopes.The iTelescope network of robotic telescopes located in Australia, Spain and the U.S. solved the problem. Reservations for these systems are booked online and include date, time, exposure and filters. The high quality telescopes range from 4" to 27" in size with excellent cameras. By watching the weather forecasts for the sites, we were able to schedule our observations within the two week time frame required.Timely and reliable data reduction was the next hurdle. The students were using widely varying equipment (PCs, MACs, tablets, smart phones) with incompatible software. After wasting time trying to be computer technicians, we settled a on standard set of software relying on Mirametrics' Mira Pro x64. We installed the software on an old laptop, downloaded the iTelescope data files, gave the students remote access using GoToMyPC.These efficiencies enabled us to meet the demanding one semester schedule and assure a better learning experience. We have been able to

  6. Classic Telescopes A Guide to Collecting, Restoring, and Using Telescopes of Yesteryear

    CERN Document Server

    English, Neil

    2013-01-01

    Classic Telescopes explores the exciting world of telescopes past, as well as the possibilities involved in acquiring these instruments. What are classic telescopes? First, the book takes a look at the more traditional telescopes built by the great instrument makers of the eighteenth and nineteenth centuries and the dynastic houses founded by the likes of John Dollond, Alvan Clark, Thomas Cooke & Sons and Carl Zeiss, plus some lesser-known luminaries, including John Brashear, John Calver, and Henry Fitz. Instruments constructed from the 1950s until as recently as the early 1990s are now also considered 'classic.' There is thus a very active market for buying and selling these 'modern' classics. The author examines some of the most talked about instruments on the amateur Internet forums, including the Unitron refractors, the Questar 90, a classic 6-inch reflector, the RV-6; a 3-inch F/15 achromat by Fullerscopes; the time-honored AstroScan Richfield reflector; and many, many more. Classic telescopes are of...

  7. Development of a mid-sized Schwarzschild-Couder Telescope for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, Robert A.

    2012-06-28

    The Cherenkov Telescope Array (CTA) is a ground-based observatory for very high-energy (10 GeV to 100 TeV) gamma rays, planned for operation starting in 2018. It will be an array of dozens of optical telescopes, known as Atmospheric Cherenkov Telescopes (ACTs), of 8 m to 24 m diameter, deployed over an area of more than 1 square km, to detect flashes of Cherenkov light from showers initiated in the Earth's atmosphere by gamma rays. CTA will have improved angular resolution, a wider energy range, larger fields of view and an order of magnitude improvement in sensitivity over current ACT arrays such as H.E.S.S., MAGIC and VERITAS. Several institutions have proposed a research and development program to eventually contribute 36 medium-sized telescopes (9 m to 12 m diameter) to CTA to enhance and optimize its science performance. The program aims to construct a prototype of an innovative, Schwarzschild-Couder telescope (SCT) design that will allow much smaller and less expensive cameras and much larger fields of view than conventional Davies-Cotton designs, and will also include design and testing of camera electronics for the necessary advances in performance, reliability and cost. We report on the progress of the mid-sized SCT development program.

  8. Analysis of polarization introduced due to the telescope optics of the Thirty Meter Telescope

    Science.gov (United States)

    Anche, Ramya Manjunath; Sen, Asoke Kumar; Anupama, Gadiyara Chakrapani; Sankarasubramanian, Kasiviswanathan; Skidmore, Warren

    2018-01-01

    An analytical model has been developed to estimate the polarization effects, such as instrumental polarization (IP), crosstalk (CT), and depolarization, due to the optics of the Thirty Meter Telescope. These are estimated for the unvignetted field-of-view and the wavelengths of interest. The model estimates an IP of 1.26% and a CT of 44% at the Nasmyth focus of the telescope at the wavelength of 0.6 μm at field angle zero with the telescope pointing to zenith. Mueller matrices have been estimated for the primary, secondary, and Nasmyth mirrors. It is found that some of the Mueller matrix elements of the primary and secondary mirrors show a fourfold azimuthal antisymmetry, which indicates that the polarization at the Cassegrain focus is negligible. At the inclined Nasmyth mirror, there is no azimuthal antisymmetry in the matrix elements, and this results in nonzero values for IP and CT, which would negatively impact the polarization measurements at the telescope focus. The averaged Mueller matrix is estimated at the Nasmyth focus at different instrument ports and various zenith angles of the telescope. The variation in the Mueller matrix elements for different coatings is also estimated. The impact of this polarization effect on the science case requirements has been discussed. This analysis will help in achieving precise requirements for future instruments with polarimetric capability.

  9. Do the enigmatic ``Infrared-Faint Radio Sources'' include pulsars?

    Science.gov (United States)

    Hobbs, George; Middelberg, Enno; Norris, Ray; Keith, Michael; Mao, Minnie; Champion, David

    2009-04-01

    The Australia Telescope Large Area Survey (ATLAS) team have surveyed seven square degrees of sky at 1.4GHz. During processing some unexpected infrared-faint radio sources (IFRS sources) were discovered. The nature of these sources is not understood, but it is possible that some of these sources may be pulsars within our own galaxy. We propose to observe the IFRS sources with steep spectral indices using standard search techniques to determine whether or not they are pulsars. A pulsar detection would 1) remove a subset of the IFRS sources from the ATLAS sample so they would not need to be observed with large optical/IR telescopes to find their hosts and 2) be intrinsically interesting as the pulsar would be a millisecond pulsar and/or have an extreme spatial velocity.

  10. Diabetes services in the UK

    DEFF Research Database (Denmark)

    Jefferson, I. G.; Swift, P. G F; Skinner, T. C.

    2003-01-01

    Aims: To determine the current level of diabetes services and to compare the results with previous national surveys. Methods: A questionnaire was mailed to all paediatricians in the UK identified as providing care for children with diabetes aged under 16 years. Information was sought on staffing...... consultants who did not contribute to the survey. Of 244 consultants, 78% expressed a special interest in diabetes and 91% saw children in a designated diabetic clinic. In 93% of the clinics there was a specialist nurse (44% were not trained to care for children; 47% had nurse:patient ratio > 1:100), 65......% a paediatric dietitian, and in 25% some form of specialist psychology or counselling available. Glycated haemoglobin was measured routinely at clinics in 88%, retinopathy screening was performed in 87%, and microalbuminuria measured in 66%. Only 34% consultants used a computer database. There were significant...

  11. Nuclear physics in the UK

    International Nuclear Information System (INIS)

    1994-12-01

    Nuclear physics is the study of the heavy but tiny nucleus that lies at the centre of all atoms and makes up 99.9 per cent by weight of everything we see. There are many applications of nuclear physics including direct contributions to medicine and industry, such as the use of radioactive isotopes as diagnostic tracers, or of beams of nuclei for tailoring the properties of semiconductors. More indirectly, ideas and concepts of nuclear physics have influence in many corners of modern science and technology. Physicists in the UK have a long tradition in nuclear physics, and have developed a world-wide reputation for the excellence of their work. This booklet explains more about this rich field of study, its applications, its role in training, and its future directions. (author)

  12. Electricity supply in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Eden, R; Evans, N

    1986-01-01

    This study is about future needs for electricity in the United Kingdom, the options for meeting these needs, and the issues that affect the choices between options. It examines the implications of the nuclear accident at Chernobyl and the problems that could arise if decisions on new power station construction continue to be delayed following the Sizewell PWR Inquiry. The book reviews the historical development of electricity supply in the UK. Alternative scenarios are outlined for future energy and electricity demand and their implications for future power station construction are deduced. Issues that are discussed include the choice of coal or nuclear power and the related political uncertainties, environmental problems such as acid rain, feasibility and costs of electricity supply options, and the likely effect on future energy import costs of alternative choices for electricity supply.

  13. Geothermal resources of the UK

    International Nuclear Information System (INIS)

    Batchelor, A.S.

    1990-01-01

    This paper reports that geothermal energy applications and research are being actively pursued in the United Kingdom despite the relatively normal heat flow regime. The cumulative expenditure on geothermal activity from 1975 to 1989 has been approximately Brit-pounds 46 million of 32% of the Renewable Energy Research Budget to date. The first practical application is a 2 MWt scheme at Southampton as part of a district heating scheme. Commercial operation started in February 1988 and further expansion is planned. The UK's enthusiasm for Hot Dry Rock has dimmed slightly as the entire program is reappraised and the long heralded deep exploration hole has yet to materialize. Future activity looks likely to focus on geothermal opportunities that have multiple uses or applications for the fluids in small scale schemes and Hot Dry Rock research will probably be linked to a pan-European program based in France

  14. Cocaine in the UK--1991.

    Science.gov (United States)

    Strang, J; Johns, A; Caan, W

    1993-01-01

    More than 100 years after Freud's original endorsement of the drug, the use of cocaine is a problem for both users and for society, which struggles to organise effective responses to the epidemic of the last decade. During the 1980s the rapid spread of smokeable cocaine (including 'crack') was seen in the Americas (particularly the US). The initial simple predictions of an identical European epidemic were mistaken. The available data on the extent of cocaine use and of cocaine problems in the UK are examined. New forms of cocaine have been developed by black-market entrepreneurs ('freebase' and 'crack'), and new technologies have emerged for their use; with these new technologies have come new effects and new problems. The general psychiatrist now needs a knowledge of directly and indirectly related psychopathology which has an increasing relevance to the diagnosis and management of the younger patient.

  15. Advanced Source Deconvolution Methods for Compton Telescopes

    Science.gov (United States)

    Zoglauer, Andreas

    The next generation of space telescopes utilizing Compton scattering for astrophysical observations is destined to one day unravel the mysteries behind Galactic nucleosynthesis, to determine the origin of the positron annihilation excess near the Galactic center, and to uncover the hidden emission mechanisms behind gamma-ray bursts. Besides astrophysics, Compton telescopes are establishing themselves in heliophysics, planetary sciences, medical imaging, accelerator physics, and environmental monitoring. Since the COMPTEL days, great advances in the achievable energy and position resolution were possible, creating an extremely vast, but also extremely sparsely sampled data space. Unfortunately, the optimum way to analyze the data from the next generation of Compton telescopes has not yet been found, which can retrieve all source parameters (location, spectrum, polarization, flux) and achieves the best possible resolution and sensitivity at the same time. This is especially important for all sciences objectives looking at the inner Galaxy: the large amount of expected sources, the high background (internal and Galactic diffuse emission), and the limited angular resolution, make it the most taxing case for data analysis. In general, two key challenges exist: First, what are the best data space representations to answer the specific science questions? Second, what is the best way to deconvolve the data to fully retrieve the source parameters? For modern Compton telescopes, the existing data space representations can either correctly reconstruct the absolute flux (binned mode) or achieve the best possible resolution (list-mode), both together were not possible up to now. Here we propose to develop a two-stage hybrid reconstruction method which combines the best aspects of both. Using a proof-of-concept implementation we can for the first time show that it is possible to alternate during each deconvolution step between a binned-mode approach to get the flux right and a

  16. The UK nuclear power industry

    International Nuclear Information System (INIS)

    Collier, J. G.

    1995-01-01

    In the United Kingdom, nuclear power plants are operated by three companies: Nuclear Electric (NE), Scottish Nuclear (SN), and British Nuclear Fuels plc (BNFL). The state-operated power industry was privatized in 1989 with the exception of nuclear power generation activities, which were made part of the newly founded (state-owned) NE and SN. At the same time, a moratorium on the construction of new nuclear power plants was agreed. Only Sizewell B, the first plant in the UK to be equipped with a pressurized water reactor, was to be completed. That unit was first synchronized with the power grid on February 14, 1995. Another decision in 1989 provided for a review to be conducted in 1994 of the future of the peaceful uses of nuclear power in the country. The results of the review were presented by the government in a white paper on May 9, 1995. Accordingly, NE and SN will be merged and privatized in 1996; the headquarters of the new holding company will be in Scotland. The review does not foresee the construction of more nuclear power plants. However, NE hopes to gain a competitive edge over other sources of primary energy as a result of this privatization, and advocates construction of a dual-unit plant identical with Sizewell B so as to avoid recurrent design and development costs. Outside the UK, the company plans to act jointly with the reactor vendor, Westinghouse, especially in the Pacific region; a bid submitted by the consortium has been shortisted by the future operator of the Lungmen nuclear power plant project in Taiwan. In upgrading the safety of nuclear power plants in Eastern Europe, the new company will be able to work through existing contacts of SN. (orig.) [de

  17. EARLY SCIENCE WITH SOFIA, THE STRATOSPHERIC OBSERVATORY FOR INFRARED ASTRONOMY

    Energy Technology Data Exchange (ETDEWEB)

    Young, E. T.; Becklin, E. E.; De Buizer, J. M.; Andersson, B.-G.; Casey, S. C.; Helton, L. A. [SOFIA Science Center, Universities Space Research Association, NASA Ames Research Center, MS 232, Moffett Field, CA 94035 (United States); Marcum, P. M.; Roellig, T. L.; Temi, P. [NASA Ames Research Center, MS 232, Moffett Field, CA 94035 (United States); Herter, T. L. [Astronomy Department, 202 Space Sciences Building, Cornell University, Ithaca, NY 14853-6801 (United States); Guesten, R. [Max-Planck Institut fuer Radioastronomie, Auf dem Huegel 69, Bonn (Germany); Dunham, E. W. [Lowell Observatory, 1400 W. Mars Hill Rd., Flagstaff AZ 86001 (United States); Backman, D.; Burgdorf, M. [SOFIA Science Center, NASA Ames Research Center, MS 211-1, Moffett Field, CA 94035 (United States); Caroff, L. J.; Erickson, E. F. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Davidson, J. A. [School of Physics, The University of Western Australia (M013), 35 Stirling Highway, Crawley WA 6009 (Australia); Gehrz, R. D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, S. E., University of Minnesota, Minneapolis, MN 55455 (United States); Harper, D. A. [Yerkes Observatory, University of Chicago, 373 W. Geneva St., Williams Bay, WI (United States); Harvey, P. M. [Astronomy Department, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); and others

    2012-04-20

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is an airborne observatory consisting of a specially modified Boeing 747SP with a 2.7 m telescope, flying at altitudes as high as 13.7 km (45,000 ft). Designed to observe at wavelengths from 0.3 {mu}m to 1.6 mm, SOFIA operates above 99.8% of the water vapor that obscures much of the infrared and submillimeter. SOFIA has seven science instruments under development, including an occultation photometer, near-, mid-, and far-infrared cameras, infrared spectrometers, and heterodyne receivers. SOFIA, a joint project between NASA and the German Aerospace Center Deutsches Zentrum fuer Luft und-Raumfahrt, began initial science flights in 2010 December, and has conducted 30 science flights in the subsequent year. During this early science period three instruments have flown: the mid-infrared camera FORCAST, the heterodyne spectrometer GREAT, and the occultation photometer HIPO. This Letter provides an overview of the observatory and its early performance.

  18. The UK commercial demonstration fast reactor design

    International Nuclear Information System (INIS)

    Holmes, J.A.G.

    1987-01-01

    The paper on the UK Commercial Demonstration Fast Reactor design was presented to the seminar on 'European Commercial Fast Reactor Programme, London 1987. The design is discussed under the topic headings:- primary circuit, intermediate heat exchangers and pumps, fuel and core, refuelling, steam generators, and nuclear island layout. (U.K.)

  19. UK creates new funding super-body

    Science.gov (United States)

    2017-06-01

    The UK government has passed its higher-education and research bill, which includes the creation of UK Research and Innovation (UKRI) - a new umbrella organization that will oversee the country’s seven research councils such as the Science and Technology Facilities Council and the Engineering and Physical Sciences Research Council.

  20. Cancer Research UK | IDRC - International Development Research ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Cancer Research UK. Cancer Research UK. https://www.cancerresearchuk.org/. The Economics of Tobacco Control Research Initiative. The Economics of Tobacco Control Research Initiative funds innovative fiscal policy research supporting tobacco control in low and middle-income countries. View more. The Economics ...

  1. The regulatory framework in the UK

    International Nuclear Information System (INIS)

    O'Sullivan, R.

    1984-01-01

    The subject is covered in sections, headed: basic regulatory requirements covering the transport of radioactive material in the UK; responsibility for safety (competent authority; provision of regulations; implementation of regulations (international and national); design of transport flask; safety case; testing; assessment; approval certificate; compliance assurance; administration); advice and information on the regulatory safety standards. (U.K.)

  2. A MID-INFRARED IMAGING SURVEY OF SUBMILLIMETER-SELECTED GALAXIES WITH THE SPITZER SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Hainline, Laura J.; Blain, A. W.; Smail, Ian; Frayer, D. T.; Chapman, S. C.; Ivison, R. J.; Alexander, D. M.

    2009-01-01

    We present Spitzer-IRAC and MIPS mid-IR observations of a sample of 73 radio-detected submillimeter-selected galaxies (SMGs) with spectroscopic redshifts, the largest such sample published to date. From our data, we find that IRAC colors of SMGs are much more uniform as compared with rest-frame UV and optical colors, and z>1.5 SMGs tend to be redder in their mid-IR colors than both field galaxies and lower-z SMGs. However, the IRAC colors of the SMGs overlap those of field galaxies sufficiently that color-magnitude and color-color selection criteria suggested in the literature to identify SMG counterparts produce ambiguous counterparts within an 8'' radius in 20%-35% of cases. We use a rest-frame J-H versus H-K color-color diagram and a S 24 /S 8.0 versus S 8.0 /S 4.5 color-color diagram to determine that 13%-19% of our sample are likely to contain active galactic nuclei which dominate their mid-IR emission. We observe in the rest-frame JHK colors of our sample that the rest-frame near-IR emission of SMGs does not resemble that of the compact nuclear starburst observed in local ultraluminous IR galaxies and is consistent with more widely distributed star formation. We take advantage of the fact that many high-z galaxy populations selected at different wavelengths are detected by Spitzer to carry out a brief comparison of mid-IR properties of SMGs to UV-selected high-z galaxies, 24 μm-selected galaxies, and high-z radio galaxies, and find that SMGs have mid-IR fluxes and colors which are consistent with being more massive and more reddened than UV-selected galaxies, while the IRAC colors of SMGs are most similar to powerful high-z radio galaxies.

  3. The first telescope of the HEGRA air Cherenkov imaging telescope array

    International Nuclear Information System (INIS)

    Mirzoyan, R.; Kankanian, R.; Krennrich, F.; Mueller, N.; Sander, H.; Sawallisch, P.; Aharonian, F.; Akhperjanian, A.; Beglarian, A.; Fernandez, J.; Fonseca, V.; Grewe, W.; Heusler, A.; Konopelko, A.K.; Lorenz, E.; Merck, M.; Plyasheshnikov, A.V.; Renker, D.; Samorski, M.; Sauerland, K.; Smarsch, E.; Stamm, W.; Ulrich, M.; Wiedner, C.A.; Wirth, H.

    1994-01-01

    In search of VHE γ ray emission from cosmic point sources a system of imaging Cherenkov telescopes is constructed at present on the Canarian island of La Palma; the first telescope has been operational since 1992. The Cherenkov light from air shower particles is collected by a 5 m 2 reflector. The camera at the focus contains 37 photomultipliers which sample the images of the Cherenkov flashes. The subsequent image analysis allows the discrimination of γ ray induced events from the much more abundant charged cosmic ray induced showers. The telescope has an effective energy threshold for γ showers of about 1.5 TeV. During the first year of operation a signal from the Crab nebula was detected. ((orig.))

  4. UK 2009-2010 repeat station report

    Directory of Open Access Journals (Sweden)

    Thomas J.G. Shanahan

    2013-03-01

    Full Text Available The British Geological Survey is responsible for conducting the UK geomagnetic repeat station programme. Measurements made at the UK repeat station sites are used in conjunction with the three UK magnetic observatories: Hartland, Eskdalemuir and Lerwick, to produce a regional model of the local field each year. The UK network of repeat stations comprises 41 stations which are occupied at approximately 3-4 year intervals. Practices for conducting repeat station measurements continue to evolve as advances are made in survey instrumentation and as the usage of the data continues to change. Here, a summary of the 2009 and 2010 UK repeat station surveys is presented, highlighting the measurement process and techniques, density of network, reduction process and recent results.

  5. Prospects for UK fuel cells component suppliers

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, C.; Tunnicliffe, M.

    2002-07-01

    This report examines the capabilities of the UK fuel cell industry in meeting the expected increase in demand, and aims to identify all UK suppliers of fuel cell components, evaluate their products and match them to fuel cell markets, and identify components where the UK is in a competitive position. Component areas are addressed along with the need to reduce costs and ensure efficient production. The well established supplier base in the UK is noted, and the car engine manufacturing base and fuel supply companies are considered. The different strengths of UK suppliers of the various types of fuel cells are listed. The future industry structure, the opportunities and dangers for business posed by fuel cells, the investment in cleaner technologies by the large fuel companies, opportunities for catalyst suppliers, and the residential combined heat and power and portable electronics battery markets are discussed.

  6. First results of the Test-Bed Telescopes (TBT) project: Cebreros telescope commissioning

    Science.gov (United States)

    Ocaña, Francisco; Ibarra, Aitor; Racero, Elena; Montero, Ángel; Doubek, Jirí; Ruiz, Vicente

    2016-07-01

    The TBT project is being developed under ESA's General Studies and Technology Programme (GSTP), and shall implement a test-bed for the validation of an autonomous optical observing system in a realistic scenario within the Space Situational Awareness (SSA) programme of the European Space Agency (ESA). The goal of the project is to provide two fully robotic telescopes, which will serve as prototypes for development of a future network. The system consists of two telescopes, one in Spain and the second one in the Southern Hemisphere. The telescope is a fast astrograph with a large Field of View (FoV) of 2.5 x 2.5 square-degrees and a plate scale of 2.2 arcsec/pixel. The tube is mounted on a fast direct-drive mount moving with speed up to 20 degrees per second. The focal plane hosts a 2-port 4K x 4K back-illuminated CCD with readout speeds up to 1MHz per port. All these characteristics ensure good survey performance for transients and fast moving objects. Detection software and hardware are optimised for the detection of NEOs and objects in high Earth orbits (objects moving from 0.1-40 arcsec/second). Nominal exposures are in the range from 2 to 30 seconds, depending on the observational strategy. Part of the validation scenario involves the scheduling concept integrated in the robotic operations for both sensors. Every night it takes all the input needed and prepares a schedule following predefined rules allocating tasks for the telescopes. Telescopes are managed by RTS2 control software, that performs the real-time scheduling of the observation and manages all the devices at the observatory.1 At the end of the night the observing systems report astrometric positions and photometry of the objects detected. The first telescope was installed in Cebreros Satellite Tracking Station in mid-2015. It is currently in the commissioning phase and we present here the first results of the telescope. We evaluate the site characteristics and the performance of the TBT Cebreros

  7. Simulation of the Simbol-X telescope: imaging performance of a deformable x-ray telescope

    Science.gov (United States)

    Chauvin, Maxime; Roques, Jean-Pierre

    2009-08-01

    We have developed a simulation tool for a Wolter I telescope subject to deformations. The aim is to understand and predict the behavior of Simbol-X and other future missions (NuSTAR, Astro-H, IXO, ...). Our code, based on Monte-Carlo ray-tracing, computes the full photon trajectories up to the detector plane, along with the deformations. The degradation of the imaging system is corrected using metrology. This tool allows to perform many analyzes in order to optimize the configuration of any of these telescopes.

  8. Infrared source test

    Energy Technology Data Exchange (ETDEWEB)

    Ott, L.

    1994-11-15

    The purpose of the Infrared Source Test (IRST) is to demonstrate the ability to track a ground target with an infrared sensor from an airplane. The system is being developed within the Advance Technology Program`s Theater Missile Defense/Unmanned Aerial Vehicle (UAV) section. The IRST payload consists of an Amber Radiance 1 infrared camera system, a computer, a gimbaled mirror, and a hard disk. The processor is a custom R3000 CPU board made by Risq Modular Systems, Inc. for LLNL. The board has ethernet, SCSI, parallel I/O, and serial ports, a DMA channel, a video (frame buffer) interface, and eight MBytes of main memory. The real-time operating system VxWorks has been ported to the processor. The application code is written in C on a host SUN 4 UNIX workstation. The IRST is the result of a combined effort by physicists, electrical and mechanical engineers, and computer scientists.

  9. Design of off-axial Gregory telescope design with freeform mirror corrector

    Science.gov (United States)

    Bazhanov, Yu.; Vlakhko, V.

    2017-08-01

    In this paper a well-known approach is used for calculation of off-axis three-mirror telescope. It includes usage of conic cross-sections properties, each of the sections forming a stigmatic image. To create a compact optical system, a flat mirror aberration corrector is introduced, which is at later stage transformed into a free-form surface in order to compensate field aberrations. Similarly, one can introduce such a corrector in finalized layout for its further optimization and getting a suitable form, including the conversion of multimirrors axial optical system into decentered one. As an example, off-axial Gregory telescope embodiment is used for infrared waveband region, due to the fact that, unlike the Cassegrain telescope, it provides a real exit pupil, and usage of the mirror corrector brings several advantages. Firstly, this feature may be used to include cold stop or adaptive mirror in the exit pupil, wherein corrector is introduced into a converging beam before the focus of the first mirror. Secondly, when placing corrector in the exit pupil of the optical system it is possible to eliminate high and low order aberrations of center point, which in turn improves optical system f-number, and minimize field aberrations. As another example, off-axial Ritchey-Chretien telescope embodiment is used as a good fit for visible region systems. Analysis and calculation results of optical systems with free-form correctors with surfaces, defined by Power polynomial series are presented in this paper. Advantages of different freeform surfaces usage depends on optical system layouts specifics.

  10. Antarctic observations at long wavelengths with the IRAIT-ITM Telescope at Dome C

    Science.gov (United States)

    Durand, Gilles A.; Tremblin, Pascal; Minier, Vincent; Reinert, Yann; Leroy dos Santos, Christophe; Rodriguez, Louis; Joffrin, Xavier; Busso, Maurizio; Tosti, Gino; Nucciarelli, Giuliano; Dolci, Mauro; Straniero, Oscar; Valentini, Angelo; Abia, Carlos; Christille, Jean Marc; Doumayrou, Eric; Lortholary, Michel; Charron, Patrice; Lotrus, Paul; Walter, Christian; Ronayette, Samuel; Challita, Zalpha; Fromont, Laurent; Condamin, Mathieu; Kwon, Min Kyong; Tavagnacco, Daniele

    2014-07-01

    We illustrate the status of the international infra-red telescope IRAIT-ITM, a project developed thanks to an Italian- Spanish-French collaboration and now sited at the Dome C Antarctic base. The telescope and its subsystems were installed at DomeC by a team of Italian and French scientists. The 80 cm telescope is placed on a small snow hill next to a laboratory of astronomy. The operations started in January 2013, with the Nasmyth focal planes equipped with the midinfrared camera AMICA for 1.25 to 25 μm and the sub-millimetre camera CAMISTIC for observation of the sky noise at 200 and 350 μm using a bolometer camera. During 2013 the two winter-overs worked mainly on technological duties, learning how to operate the telescope, while temperatures decreased down to -80°C. The cryogenic systems could be operated respectively at 0.25K and 4K at all times, with satisfactory use of the heat from the compressors of the cryocoolers to the warm-up the laboratory through a closed loop glycol system. The lack of tests and reliability in extreme conditions of some components and difficult access to maintenance hampered regular observations below -50°C. Using the lessons of this first winter, the summer team improves the robustness of the failing systems and ease the access to maintenance. The winter 2014 is the first one with programmed observations. Because of power restrictions, the two instruments are used each one at a time by periods of 2 weeks. The Camistic camera continues to observe the stability of the sky at a fixed altitude in chopping mode and performs skydips. The TCS is being upgraded in order to prepare the next summer season with extensive observations of the sun with Camistic.

  11. Anglo-Australian Telescope 1982/83

    International Nuclear Information System (INIS)

    1983-01-01

    Brief details of research on galaxies, QSOs, stars, SNRs and interstellar materials are noted. Some specific research projects are: gas motions in barred galaxies, a collapsing supercluster, an infrared nucleus in M104, asymmetric supernova explosion, NGC 4696, and supernovae and the liberation of dust. A list of pubications is included

  12. Powerful infrared emitting diodes

    Directory of Open Access Journals (Sweden)

    Kogan L. M.

    2012-02-01

    Full Text Available Powerful infrared LEDs with emission wavelength 805 ± 10, 870 ± 20 and 940 ± 10 nm developed at SPC OED "OPTEL" are presented in the article. The radiant intensity of beam diode is under 4 W/sr in the continuous mode and under 100 W/sr in the pulse mode. The radiation power of wide-angle LEDs reaches 1 W in continuous mode. The external quantum efficiency of emission IR diodes runs up to 30%. There also has been created infrared diode modules with a block of flat Fresnel lenses with radiant intensity under 70 W/sr.

  13. Performance of the MAGIC telescopes under moonlight

    Science.gov (United States)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Bhattacharyya, W.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Griffiths, S.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Maggio, C.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Minev, M.; Mirzoyan, R.; Moralejo, A.; Moreno, V.; Moretti, E.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Ninci, D.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Rugliancich, A.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Zarić, D.

    2017-09-01

    MAGIC, a system of two imaging atmospheric Cherenkov telescopes, achieves its best performance under dark conditions, i.e. in absence of moonlight or twilight. Since operating the telescopes only during dark time would severely limit the duty cycle, observations are also performed when the Moon is present in the sky. Here we develop a dedicated Moon-adapted analysis to characterize the performance of MAGIC under moonlight. We evaluate energy threshold, angular resolution and sensitivity of MAGIC under different background light levels, based on Crab Nebula observations and tuned Monte Carlo simulations. This study includes observations taken under non-standard hardware configurations, such as reducing the camera photomultiplier tubes gain by a factor ∼1.7 (reduced HV settings) with respect to standard settings (nominal HV) or using UV-pass filters to strongly reduce the amount of moonlight reaching the cameras of the telescopes. The Crab Nebula spectrum is correctly reconstructed in all the studied illumination levels, that reach up to 30 times brighter than under dark conditions. The main effect of moonlight is an increase in the analysis energy threshold and in the systematic uncertainties on the flux normalization. The sensitivity degradation is constrained to be below 10%, within 15-30% and between 60 and 80% for nominal HV, reduced HV and UV-pass filter observations, respectively. No worsening of the angular resolution was found. Thanks to observations during moonlight, the maximal duty cycle of MAGIC can be increased from ∼18%, under dark nights only, to up to ∼40% in total with only moderate performance degradation.

  14. Near infrared focal plane for the ISOCAM camera

    International Nuclear Information System (INIS)

    Epstein, G.; Stefanovitch, D.; Tiphene, D.; Carpentier, Y.; Lorans, D.

    1988-01-01

    ISOCAM is one of the science instruments in the Infrared Space Observatory. It is a 2-channel IR Astronomical Imager intended to observe at very low flux levels, thanks to the use of a liquid helium cooled telescope. This paper describes the Focal Plane Assembly design of the short wavelength channel. The operation of a 32 x 32 InSb CID-SAT array detector has been demonstrated. The problems encountered in the design of the cooled electronics and the component selection process are discussed in the light of specific ISO constraints, such as thermal control and radiation shielding. 6 references

  15. A NuSTAR survey of nearby ultraluminous infrared galaxies

    DEFF Research Database (Denmark)

    Teng, Stacy H.; Rigby, Jane R.; Stern, Daniel

    2015-01-01

    We present a Nuclear Spectroscopic Telescope Array (NuSTAR), Chandra, and XMM-Newton survey of nine of the nearest ultraluminous infrared galaxies (ULIRGs). The unprecedented sensitivity of NuSTAR at energies above 10 keV enables spectral modeling with far better precision than was previously......] line luminosity than do Seyfert 1 galaxies. We identify IRAS 08572+3915 as another candidate intrinsically X-ray weak source, similar to Mrk 231. We speculate that the X-ray weakness of IRAS 08572+3915 is related to its powerful outflow observed at other wavelengths....

  16. Near-infrared spectral imaging Michelson interferometer for astronomical applications

    Science.gov (United States)

    Wells, C. W.; Potter, A. E.; Morgan, T. H.

    1980-01-01

    The design and operation of an imaging Michelson interferometer-spectrometer used for near-infrared (0.8 micron to 2.5 microns) spectral imaging are reported. The system employs a rapid scan interferometer modified for stable low resolution (250/cm) performance and a 42 element PbS linear detector array. A microcomputer system is described which provides data acquisition, coadding, and Fourier transformation for near real-time presentation of the spectra of all 42 scene elements. The electronic and mechanical designs are discussed and telescope performance data presented.

  17. PORFIDO: Oceanographic data for neutrino telescopes

    International Nuclear Information System (INIS)

    Cordelli, Marco; Martini, Agnese; Habel, Roberto; Trasatti, Luciano

    2011-01-01

    PORFIDO (Physical Oceanography by RFID Outreach) is a system designed to be installed in the optical modules of the NEMO experiment and possibly, in future underwater neutrino telescopes to gather oceanographic data with a minimum of disturbance to the main project and a very limited budget. The system gathers oceanographic data (temperature, etc.) from passive RFID tags (WISPs) attached to the outside of the NEMO optical modules with an RF reader situated inside the glass sphere, without the need of connectors or penetrators, which are very expensive and offer low reliability. Ten PORFIDOs will be deployed with the NEMO Phase 2 tower in 2011.

  18. Supernova Remnants with Fermi Large Area Telescope

    Directory of Open Access Journals (Sweden)

    Caragiulo M.

    2017-01-01

    Full Text Available The Large Area Telescope (LAT, on-board the Fermi satellite, proved to be, after 8 years of data taking, an excellent instrument to detect and observe Supernova Remnants (SNRs in a range of energies running from few hundred MeV up to few hundred GeV. It provides essential information on physical processes that occur at the source, involving both accelerated leptons and hadrons, in order to understand the mechanisms responsible for the primary Cosmic Ray (CR acceleration. We show the latest results in the observation of Galactic SNRs by Fermi-LAT.

  19. The CERN axion solar telescope (CAST)

    International Nuclear Information System (INIS)

    Aalseth, C.E.; Arik, E.; Autiero, D.; Avignone, F.T.; Barth, K.; Bowyer, S.M.; Brauninger, H.; Brodzinski, R.L.; Carmona, J.M.; Cebrian, S.; Celebi, G.; Cetin, S.; Collar, J.I.; Creswick, R.; Delbart, A.; Delattre, M.; DiLella, L.; De Oliveira, R.; Eleftheriadis, Ch.; Erdutan, N.; Fanourakis, G.; Farach, H.A.; Fiorini, C.; Geralis, Th.; Giomataris, I.; Girard, T.A.; Gninenko, S.N.; Golubev, N.A.; Hasinoff, M.; Hoffmann, D.; Irastorza, I.G.; Jacoby, J.; Jeanneau, F.; Knopf, M.A.; Kovzelev, A.V.; Kotthaus, R.; Krcmar, M.; Krecak, Z.; Lakic, B.; Liolios, A.; Ljubicic, A.; Lutz, G.; Longoni, A.; Luzon, G.; Mailov, A.; Matveev, V.A.; Miley, H.S.; Morales, A.; Morales, J.; Mutterer, M.; Nikolaidis, A.; Nussinov, S.; Ortiz, A.; Pitts, W.K.; Placci, A.; Postoev, V.E.; Raffelt, G.G.; Riege, H.; Sampieto, M.; Sarsa, M.; Savvidis, I.; Stipcevic, M.; Thomas, C.W.; Thompson, R.C.; Valco, P.; Villar, J.A.; Villierme, B.; Walckiers, L.; Wilcox, W.; Zachariadou, K.; Zioutas, K.

    2002-01-01

    A decommissioned LHC test magnet is being prepared as the CERN Axion Solar Telescope (CAST) experiment. The magnet has a field of 9.6 Tesla and length of 10 meters. It is being mounted on a platform to track the sun over ±8 deg. vertically and ±45 deg. , horizontally. A sensitivity in axion-photon coupling gαγγ -11 GeV -1 can be reached for m α ≤ 10 -2 eV, and with a gas filled tube-can reach gαγγ ≤ 10 -10 GeV -1 for axion masses m α < 2eV

  20. Galileo's Instruments of Credit Telescopes, Images, Secrecy

    CERN Document Server

    Biagioli, Mario

    2006-01-01

    In six short years, Galileo Galilei went from being a somewhat obscure mathematics professor running a student boarding house in Padua to a star in the court of Florence to the recipient of dangerous attention from the Inquisition for his support of Copernicanism. In that brief period, Galileo made a series of astronomical discoveries that reshaped the debate over the physical nature of the heavens: he deeply modified the practices and status of astronomy with the introduction of the telescope and pictorial evidence, proposed a radical reconfiguration of the relationship between theology and a