WorldWideScience

Sample records for uhfmicrophone touchpanel hearingloop

  1. Development of a High Precision Edge Alignment System for Touch-Panel Glass Substrates

    Directory of Open Access Journals (Sweden)

    Hau-Wei Lee

    2014-06-01

    Full Text Available There are two kinds of alignment systems, marked and unmarked. The glass substrate for touch panels is categorized as an unmarked work piece. Vision based glass substrate alignment (GSA relies on the edge of the glass. Traditional GSA systems compensate first for angular and then for linear error. This reduces alignment accuracy and increases alignment time and edge detection usually takes longer than 10 ms. This study proposes an effortless edge detection method. This method is very simple and can significantly reduce the time taken to detect the edge to about 6 ms using a 1.3 megapixel image. In this study, a floating center idea is used to control the glass substrate on a high precision coplanar XXY alignment stage. According to the method, users can set the rotation center anywhere as long as it is on the working (xy plane. Tolerance prognosis is also considered in this study to help the operator decide if the substrate is usable or should be rejected. The experimental results show alignment repeatability of the x, y, and θ axes to be 1 μm, 1 μm, and 5 arcsec, respectively.

  2. Development of virtual touch panel system for operation at KEK-Electron Linac

    International Nuclear Information System (INIS)

    Kudou, T.; Kusano, S.; Furukawa, K.; Kamikubota, N.; Satoh, M.

    2004-01-01

    At the KEK Electron Linac, various operator interfaces are employed to keep its stable operation. Among these, the touch-panel system has been used to manipulate each equipment. However, maintenance of the touch-panel system became difficult for various reasons. A new operator interface on X Window was developed as a virtual touch-panel system with an improved operator interface. All the functions which are used in the old system were already ported. It is designed so that a new function can be added flexibly. The architecture of those old and new touch panel systems is described. (author)

  3. Dissecting the COW

    International Nuclear Information System (INIS)

    Linstadt, E.

    1985-04-01

    The COW, or Console On Wheels, is the primary operator interface to the SLC accelerator control system. A hardware and software description of the COW, a microcomputer based system with a color graphics display output and touch-panel and knob inputs, is given. The ease of development and expandability, due to both the modular nature of the hardware and the multitasking, interrupt driven software running in the COW, are described. Integration of the COW into the SLCNET communications network and SLC Control system is detailed

  4. Dissecting the COW

    International Nuclear Information System (INIS)

    Linstadt, E.

    1985-01-01

    The COW, or Console On Wheels, is the primary operator interface to the SLC accelerator control system. A hardware and software description of the COW, a microcomputer based system with a color graphics display output and touchpanel and knob inputs, is given. The ease of development and expandability, due to both the modular nature of the hardware and the multitasking, interrupt driven software running in the COW, are described. Integration of the COW into the SLCNET communications network and SLC Control system is detailed

  5. AUTOMATION AV GALLERKLIPPARE

    OpenAIRE

    Taboada Vargas, Marco Antonio

    2016-01-01

    Detta examensarbete handlar om automatisering och assistans att CE-märka en maskin. Arbetet innefattade automationsplanering, tillverkning av elskåp, montering på maskin och igångkörning. Automationsplaneringen bestod av elritningar och programmering. Elsystemet bestod av elskåp med bl.a. programmerbar logik, touch-panel och säkerhetskomponenter. CE-märkning utfördes enligt de direktiv, standarder och säkerhetsföreskrifter som bör följas. Nu med det nya automatiserade systemet är samm...

  6. The TRISTAN control system

    International Nuclear Information System (INIS)

    Kurokawa, Shinichi; Akiyama, Atsuyoshi; Ishii, Kazuhiro; Kadokura, Eiichi; Katoh, Tadahiko; Kawamoto, Takashi; Kikutani, Eiji; Kimura, Yoshitaka; Koiso, Haruyo; Komada, Ichitaka; Kudo, Kikuo; Naito, Takashi; Oide, Katsunobu; Takeda, Shigeru; Uchino, Kenji; Urakawa, Junji; Shinomoto, Manabu; Kurihara, Michio; Abe, Kenichi

    1986-01-01

    The 8 GeV accumulation ring and the 30 GeV main ring of TRISTAN, an accelerator-storage ring complex at KEK, are controlled by a highly computerized control system. Twenty-four minicomputers are linked by optical fiber cables to form an N-to-N token ring network. The transmission speed on the cables is 10 Mbps. From each minicomputer, a CAMAC serial highway extends to the controlled equipment. At present, twenty minicomputers are connected to the network and are used to control the accumulation ring. The software system is based on the NODAL language devised at the CERN SPS. The KEK NODAL system retains main features of the original NODAL: the interpretive scheme, the multi-computer programming facility, and the data-module concept. In addition, it has the following features: (1) fast execution due to the compiler-interpreter method, (2) a multi-computer file system (3), a full-screen editing facility, and (4) a dynamic linkage scheme for data modules and NODAL functions. The accelerators are operated through five operator consoles, each of which is mangaged by one minicomputer in the network. An operator console contains two 20-inch high-resolution color graphic displays, a pair of touch-panels, and ten small TV monitors. One touch-panel is used to select a program and a piece of equipment to be controlled; the other is used mainly to perform the console actions. (orig.)

  7. Operating experience with a new accelerator control system based upon microprocessors

    Energy Technology Data Exchange (ETDEWEB)

    Magyary, S.; Lancaster, H.; Selph, F.; Fahmie, M.; Timossi, C.; Glatz, J.; Ritchie, A.; Hinkson, J.; Benjegerdes, R.; Brodzik, D.

    1981-03-01

    This paper describes the design and operating experience with a high performance control system tailored to the requirements of the SuperHILAC accelerator. A large number (20) of the latest 16-bit microcomputer boards are used in a parallel-distributed manner to get a high system bandwidth. Because of the high bandwidth, software costs and complexity are significantly reduced. The system by its very nature and design is easily upgraded and repaired. Dynamically assigned and labeled knobs, together with touch-panels, allow a flexible and efficient operator interface. An X-Y vector graphics system provides for display and labeling of real-time signals as well as general plotting functions. This control system allows attachment of a powerful auxiliary computer for scientific processing with access to accelerator parameters.

  8. IKONET: distributed accelerator and experiment control

    International Nuclear Information System (INIS)

    Koldewijn, P.

    1986-01-01

    IKONET is a network consisting of some 35 computers used to control the 500 MeV Medium Energy Amsterdam electron accelerator (MEA) and its various experiments. The control system is distributed over a whole variety of machines, which are combined in a transparent central-oriented network. The local hardware is switched and tuned via Camac by a series of mini-computers with a real-time multitask operating system. Larger systems provide central intelligence for the higher-level control layers. An image of the complete accelerator settings is maintained by central database administrators. Different operator facilities handle touchpanels, multi-purpose knobs and graphical displays. The network provides remote login facilities and file servers. On basis of the present layout, an overview is given of future developments for subsystems of the network. (Auth.)

  9. Overview of the MFTF electrical systems

    International Nuclear Information System (INIS)

    Lindquist, W.B.; Eckard, R.D.; Holdsworth, T.; Mooney, L.J.; Moyer, D.R.; Peterson, R.L.; Shimer, D.W.; Wyman, R.H.; VanNess, H.W.

    1979-01-01

    The Mirror Fusion Test Facility, scheduled for completion in October 1981, will contain a complex, state-of-the-art array of electrical and electronics equipment valued at over 60 M$. Three injector systems will be employed to initiate and sustain the MFTF deuterium plasma. A plasma streaming system and a startup neutron beam system will be used to establish a target plasma. A sustaining neutral beam system will be used to fuel and sustain the MFTF plasma for 0.5 s. Additional power supply systems required on MFTF include two magnet power supplies with quench protection circuitry for powering the superconducting YIN/YANG magnet pair and eight 10 KHz power supplies for powering the Ti gettering system. Due to the complexity, physical size, and multiple systems of MFTF, a distributed, hierarchial, computer control and instrumentation system will be used. Color graphic, touch-panel, control consoles will provide the man-machine interface. The MFTF will have the capability of conducting an experiment every five minutes

  10. A protable Database driven control system for SPEAR

    International Nuclear Information System (INIS)

    Howry, S.; Gromme, T.; King, A.; Sullenberger, M.

    1985-01-01

    The new computer control system software for SPEAR is presented as a transfer from the PEP system. Features of the target ring (SPEAR) such as symmetries, magnet groupings, etc., are all contained in a design file which is read by both people and computer. People use it as documentation; a program reads it to generate the database structure, which becomes the center of communication for all the software. Geometric information, such as element positions and lengths, and CAMAC I/O routing information is entered into the database as it is developed. Since application processes refer only to the database and since they do so only in generic terms, almost all of this software (representing more then fifteen man years) is transferred with few changes. Operator console menus (touchpanels) are also transferred with only superficial changes for the same reasons. The system is modular: the CAMAC I/O software is all in one process; the menu control software is a process; the ring optics model and the orbit model are separate processes, each of which runs concurrently with about 15 others in the multiprogramming environment of the VAX/VMS operating system

  11. Portable database driven control system for SPEAR

    Energy Technology Data Exchange (ETDEWEB)

    Howry, S.; Gromme, T.; King, A.; Sullenberger, M.

    1985-04-01

    The new computer control system software for SPEAR is presented as a transfer from the PEP system. Features of the target ring (SPEAR) such as symmetries, magnet groupings, etc., are all contained in a design file which is read by both people and computer. People use it as documentation; a program reads it to generate the database structure, which becomes the center of communication for all the software. Geometric information, such as element positions and lengths, and CAMAC I/O routing information is entered into the database as it is developed. Since application processes refer only to the database and since they do so only in generic terms, almost all of this software (representing more then fifteen man years) is transferred with few changes. Operator console menus (touchpanels) are also transferred with only superficial changes for the same reasons. The system is modular: the CAMAC I/O software is all in one process; the menu control software is a process; the ring optics model and the orbit model are separate processes, each of which runs concurrently with about 15 others in the multiprogramming environment of the VAX/VMS operating system. 10 refs., 1 fig.

  12. What makes a control system usable? An operational viewpoint

    International Nuclear Information System (INIS)

    Clay, M.

    1990-01-01

    This report discusses the generally accepted successes and shortcomings of the various computer and hardware-based control systems at the Los Alamos Meson Physics Facility (LAMPF) from an operator's standpoint. LAMPF currently utilizes three separate control rooms that, although critically co-dependent, use distinct operating methods. The first, the Injector Control Room, which is responsible for the operation of the three ion sources, the 750 keV transport lines and the 201.25 MHz portion of the linac, uses a predominantly hardware-based control system. The second, the LANSCE Control Room, which is responsible for the operation of the Los Alamos Neutron Scattering Center, uses a graphical touch-panel interface with single-application screens as its control system. The third, the LAMPF Central Control Room, which is responsible for the overall operation of LAMPF, primarily uses a text-oriented keyboard interface with multiple applications per screen. Though each system provides generally reliable human interfacing to the enormously complex and diverse machine known as LAMPF, the operational requirements of speed, usability, and reliability are increasingly necessitating the use of a standard control system that incorporates the positive aspects of all three control systems. (orig.)

  13. Emulating conventional operator interfaces on window-based workstations

    International Nuclear Information System (INIS)

    Carr, G.P.

    1990-01-01

    This paper explores an approach to support the LAMPF and PSR control systems on VAX/VMS workstations using DECwindows and VI Corporation Data Views as the operator interface. The PSR control system was recently turned over to MP division and the two control-system staffs were merged into one group. One of the goals of this new group is to develop a common workstation-based operator console and interface which can be used in a single control room controlling both the linac and proton storage ring. The new console operator interface will need a high-level graphics toolkit for its implementation. During the conversion to the new consoles it will also probably be necessary to write a package to emulate the current operator interfaces at the software level. This paper describes a project to evaluate the appropriateness of VI Corporation's Data Views graphics package for use in the LAMPF control-system environment by using it to write an emulation of the LAMPF touch-panel interface to a large LAMPF control-system application program. A secondary objective of this project was to explore any productivity increases that might be realized by using an object-oriented graphics package and graphics editor. (orig.)

  14. Medial Orbitofrontal Cortex Is Associated with Fatigue Sensation

    Directory of Open Access Journals (Sweden)

    Seiki Tajima

    2010-01-01

    Full Text Available Fatigue is an indispensable bioalarm to avoid exhaustive state caused by overwork or stresses. It is necessary to elucidate the neural mechanism of fatigue sensation for managing fatigue properly. We performed H2O  15 positron emission tomography scans to indicate neural activations while subjects were performing 35-min fatigue-inducing task trials twice. During the positron emission tomography experiment, subjects performed advanced trail-making tests, touching the target circles in sequence located on the display of a touch-panel screen. In order to identify the brain regions associated with fatigue sensation, correlation analysis was performed using statistical parametric mapping method. The brain region exhibiting a positive correlation in activity with subjective sensation of fatigue, measured immediately after each positron emission tomography scan, was located in medial orbitofrontal cortex (Brodmann's area 10/11. Hence, the medial orbitofrontal cortex is a brain region associated with mental fatigue sensation. Our findings provide a new perspective on the neural basis of fatigue.

  15. Portable database driven control system for SPEAR

    International Nuclear Information System (INIS)

    Howry, S.; Gromme, T.; King, A.; Sullenberger, M.

    1985-04-01

    The new computer control system software for SPEAR is presented as a transfer from the PEP system. Features of the target ring (SPEAR) such as symmetries, magnet groupings, etc., are all contained in a design file which is read by both people and computer. People use it as documentation; a program reads it to generate the database structure, which becomes the center of communication for all the software. Geometric information, such as element positions and lengths, and CAMAC I/O routing information is entered into the database as it is developed. Since application processes refer only to the database and since they do so only in generic terms, almost all of this software (representing more then fifteen man years) is transferred with few changes. Operator console menus (touchpanels) are also transferred with only superficial changes for the same reasons. The system is modular: the CAMAC I/O software is all in one process; the menu control software is a process; the ring optics model and the orbit model are separate processes, each of which runs concurrently with about 15 others in the multiprogramming environment of the VAX/VMS operating system. 10 refs., 1 fig

  16. [Memory transfer in cerebellar motor learning].

    Science.gov (United States)

    Nagao, Soichi

    2012-01-01

    Most of our motor skills are acquired through learning. Experiments of gain adaptation of ocular reflexes have consistently suggested that the memory of adaptation is initially formed in the cerebellar cortex, and is transferred to the cerebellar (vestibular) nuclei for consolidation to long-term memory after repetitions of training. We have recently developed a new system to evaluate the motor learning in human subjects using prism adaptation of hand reaching movement, by referring to the prism adaptation of dart throwing of Martin et al. (1996). In our system, the subject views the small target presented in the touch-panel screen, and touches it with his/her finger without direct visual feedback. After 15-30 trials of touching wearing prisms, an adaptation occurs in healthy subjects: they became able to touch the target correctly. Meanwhile, such an adaptation was impaired in patients of cerebellar disease. We have proposed a model of human prism adaptation that the memory of adaptation is initially encoded in the cerebellar cortex, and is later transferred to the cerebellar nuclei after repetitions of training. The memory in the cerebellar cortex may be formed and extinguished independently of the memory maintained in the cerebellar nuclei, and these two memories work cooperatively.

  17. Long-Term Safety of Repeated Blood-Brain Barrier Opening via Focused Ultrasound with Microbubbles in Non-Human Primates Performing a Cognitive Task.

    Science.gov (United States)

    Downs, Matthew E; Buch, Amanda; Sierra, Carlos; Karakatsani, Maria Eleni; Teichert, Tobias; Chen, Shangshang; Konofagou, Elisa E; Ferrera, Vincent P

    2015-01-01

    Focused Ultrasound (FUS) coupled with intravenous administration of microbubbles (MB) is a non-invasive technique that has been shown to reliably open (increase the permeability of) the blood-brain barrier (BBB) in multiple in vivo models including non-human primates (NHP). This procedure has shown promise for clinical and basic science applications, yet the safety and potential neurological effects of long term application in NHP requires further investigation under parameters shown to be efficacious in that species (500 kHz, 200-400 kPa, 4-5 μm MB, 2 minute sonication). In this study, we repeatedly opened the BBB in the caudate and putamen regions of the basal ganglia of 4 NHP using FUS with systemically-administered MB over 4-20 months. We assessed the safety of the FUS with MB procedure using MRI to detect edema or hemorrhaging in the brain. Contrast enhanced T1-weighted MRI sequences showed a 98% success rate for openings in the targeted regions. T2-weighted and SWI sequences indicated a lack edema in the majority of the cases. We investigated potential neurological effects of the FUS with MB procedure through quantitative cognitive testing of' visual, cognitive, motivational, and motor function using a random dot motion task with reward magnitude bias presented on a touchpanel display. Reaction times during the task significantly increased on the day of the FUS with MB procedure. This increase returned to baseline within 4-5 days after the procedure. Visual motion discrimination thresholds were unaffected. Our results indicate FUS with MB can be a safe method for repeated opening of the BBB at the basal ganglia in NHP for up to 20 months without any long-term negative physiological or neurological effects with the parameters used.

  18. PLC-controlled cryostats for the BlackGEM and MeerLICHT detectors

    Science.gov (United States)

    Raskin, Gert; Morren, Johan; Pessemier, Wim; Bloemen, Steven; Klein-Wolt, Marc; Roelfsema, Ronald; Groot, Paul; Aerts, Conny

    2016-08-01

    BlackGEM is an array of telescopes, currently under development at the Radboud University Nijmegen and at NOVA (Netherlands Research School for Astronomy). It targets the detection of the optical counterparts of gravitational waves. The first three BlackGEM telescopes are planned to be installed in 2018 at the La Silla observatory (Chile). A single prototype telescope, named MeerLICHT, will already be commissioned early 2017 in Sutherland (South Africa) to provide an optical complement for the MeerKAT radio array. The BlackGEM array consists of, initially, a set of three robotic 65-cm wide-field telescopes. Each telescope is equipped with a single STA1600 CCD detector with 10.5k x 10.5k 9-micron pixels that covers a 2.7 square degrees field of view. The cryostats for housing these detectors are developed and built at the KU Leuven University (Belgium). The operational model of BlackGEM requires long periods of reliable hands-off operation. Therefore, we designed the cryostats for long vacuum hold time and we make use of a closed-cycle cooling system, based on Polycold PCC Joule-Thomson coolers. A single programmable logic controller (PLC) controls the cryogenic systems of several BlackGEM telescopes simultaneously, resulting in a highly reliable, cost-efficient and maintenance-friendly system. PLC-based cryostat control offers some distinct advantages, especially for a robotic facility. Apart of temperature monitoring and control, the PLC also monitors the vacuum quality, the power supply and the status of the PCC coolers (compressor power consumption and temperature, pressure in the gas lines, etc.). Furthermore, it provides an alarming system and safe and reproducible procedures for automatic cool down and warm up. The communication between PLC and higher-level software takes place via the OPC-UA protocol, offering a simple to implement, yet very powerful interface. Finally, a touch-panel display on the PLC provides the operator with a user-friendly and robust