WorldWideScience

Sample records for uhf singlet ground

  1. Singlet Ground State Magnetism:

    DEFF Research Database (Denmark)

    Loidl, A.; Knorr, K.; Kjems, Jørgen

    1979-01-01

    The magneticGamma 1 –Gamma 4 exciton of the singlet ground state system TbP has been studied by inelastic neutron scattering above the antiferromagnetic ordering temperature. Considerable dispersion and a pronounced splitting was found in the [100] and [110] directions. Both the band width...

  2. Magnetic properties of singlet ground state systems

    International Nuclear Information System (INIS)

    Diederix, K.M.

    1979-01-01

    Experiments are described determining the properties of a magnetic system consisting of a singlet ground state. Cu(NO 3 ) 2 .2 1/2H 2 O has been studied which is a system of S = 1/2 alternating antiferromagnetic Heisenberg chains. The static properties, spin lattice relaxation time and field-induced antiferromagnetically ordered state measurements are presented. Susceptibility and magnetic cooling measurements of other compounds are summarised. (Auth.)

  3. GPM GROUND VALIDATION NOAA UHF 449 PROFILER RAW DATA SPC FORMAT MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NOAA UHF 449 Profiler Raw Data SPC Format MC3E dataset was collected during the NASA supported Midlatitude Continental Convective Clouds...

  4. Magnetic excitons in singlet-ground-state ferromagnets

    DEFF Research Database (Denmark)

    Birgeneau, R.J.; Als-Nielsen, Jens Aage; Bucher, E.

    1971-01-01

    The authors report measurements of the dispersion of singlet-triplet magnetic excitons as a function of temperature in the singlet-ground-state ferromagnets fcc Pr and Pr3Tl. Well-defined excitons are observed in both the ferromagnetic and paramagnetic regions, but with energies which are nearly...

  5. A signature correlation study of ground target VHF/UHF ISAR imagery

    Science.gov (United States)

    Gatesman, Andrew J.; Beaudoin, Christopher J.; Giles, Robert H.; Kersey, William T.; Waldman, Jerry; Carter, Steve; Nixon, William E.

    2003-09-01

    VV and HH-polarized radar signatures of several ground targets were acquired in the VHF/UHF band (171-342 MHz) by using 1/35th scale models and an indoor radar range operating from 6 to 12 GHz. Data were processed into medianized radar cross sections as well as focused, ISAR imagery. Measurement validation was confirmed by comparing the radar cross section of a test object with a method of moments radar cross section prediction code. The signatures of several vehicles from three vehicle classes (tanks, trunks, and TELs) were measured and a signature cross-correlation study was performed. The VHF/UHF band is currently being exploited for its foliage penetration ability, however, the coarse image resolution which results from the relatively long radar wavelengths suggests a more challenging target recognition problem. One of the study's goals was to determine the amount of unique signature content in VHF/UHF ISAR imagery of military ground vehicles. Open-field signatures are compared with each other as well as with simplified shapes of similar size. Signatures were also acquired on one vehicle in a variety of configurations to determine the impact of monitor target variations on the signature content at these frequencies.

  6. VHF/UHF imagery and RCS measurements of ground targets in forested terrain

    Science.gov (United States)

    Gatesman, Andrew J.; Beaudoin, Christopher J.; Giles, Robert H.; Waldman, Jerry; Nixon, William E.

    2002-08-01

    The monostatic VV and HH-polarized radar signatures of several targets and trees have been measured at foliage penetration frequencies (VHF/UHF) by using 1/35th scale models and an indoor radar range operating at X-band. An array of high-fidelity scale model ground vehicles and test objects as well as scaled ground terrain and trees have been fabricated for the study. Radar measurement accuracy has been confirmed by comparing the signature of a test object with a method of moments radar cross section prediction code. In addition to acquiring signatures of targets located on a smooth, dielectric ground plane, data have also been acquired with targets located in simulated wooded terrain that included scaled tree trunks and tree branches. In order to assure the correct backscattering behavior, all dielectric properties of live tree wood and moist soil were scaled properly to match the complex dielectric constant of the full-scale materials. The impact of the surrounding tree clutter on the VHF/UHF radar signatures of ground vehicles was accessed. Data were processed into high-resolution, polar-formatted ISAR imagery and signature comparisons are made between targets in open-field and forested scenarios.

  7. GPM GROUND VALIDATION NOAA UHF 449 PROFILER RAW DATA SPC FORMAT MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NOAA UHF 449 Profiler Raw SPC foramt data was collected during the NASA supported Midlatitude Continental Convective Clouds Experiment (MC3E). The Ultra High...

  8. Singlet Ground State Magnetism: III Magnetic Excitons in Antiferromagnetic TbP

    DEFF Research Database (Denmark)

    Knorr, K.; Loidl, A.; Kjems, Jørgen

    1981-01-01

    The dispersion of the lowest magnetic excitations of the singlet ground state system TbP has been studied in the antiferromagnetic phase by inelastic neutron scattering. The magnetic exchange interaction and the magnetic and the rhombohedral molecular fields have been determined.......The dispersion of the lowest magnetic excitations of the singlet ground state system TbP has been studied in the antiferromagnetic phase by inelastic neutron scattering. The magnetic exchange interaction and the magnetic and the rhombohedral molecular fields have been determined....

  9. Consolidated Ground Segment Requirements for a UHF Radar for the ESSAS

    Science.gov (United States)

    Muller, Florent; Vera, Juan

    2009-03-01

    ESA has launched a nine months long study to define the requirements associated to the ground segment of a UHF (300-3000 MHz) radar system. The study has been awarded in open competition to a consortium led by Onera, associated to the Spanish companies Indra and its sub-contractor Deimos. After a phase of consolidation of the requirements, different monostatic and bistatic concepts of radars will be proposed and evaluated. Two concepts will be selected for further design studies. ESA will then select the best one, for detailed design as well as cost and performance evaluation. The aim of this paper is to present the results of the first phase of the study concerning the consolidation of the radar system requirements. The main mission for the system is to be able to build and maintain a catalogue of the objects in low Earth orbit (apogee lower than 2000km) in an autonomous way, for different sizes of objects, depending on the future successive development phases of the project. The final step must give the capability of detecting and tracking 10cm objects, with a possible upgrade to 5 cm objects. A demonstration phase must be defined for 1 m objects. These different steps will be considered during all the phases of the study. Taking this mission and the different steps of the study as a starting point, the first phase will define a set of requirements for the radar system. It was finished at the end of January 2009. First part will describe the constraints derived from the targets and their environment. Orbiting objects have a given distribution in space, and their observability and detectability are based on it. It is also related to the location of the radar system But they are also dependant on the natural propagation phenomenon, especially ionospheric issues, and the characteristics of the objects. Second part will focus on the mission itself. To carry out the mission, objects must be detected and tracked regularly to refresh the associated orbital parameters

  10. Soluble and stable heptazethrenebis(dicarboximide) with a singlet open-shell ground state

    KAUST Repository

    Sun, Zhe; Huang, Kuo-Wei; Wu, Jishan

    2011-01-01

    A soluble and stable heptazethrene derivative was synthesized and characterized for the first time. This molecule exhibits a singlet biradical character in the ground state, which is the first case among zethrene homologue series. Exceptional stability of this heptazethrenebis(dicarboximide) raises the likelihood of its practical applications in materials science. © 2011 American Chemical Society.

  11. Soluble and stable heptazethrenebis(dicarboximide) with a singlet open-shell ground state

    KAUST Repository

    Sun, Zhe

    2011-08-10

    A soluble and stable heptazethrene derivative was synthesized and characterized for the first time. This molecule exhibits a singlet biradical character in the ground state, which is the first case among zethrene homologue series. Exceptional stability of this heptazethrenebis(dicarboximide) raises the likelihood of its practical applications in materials science. © 2011 American Chemical Society.

  12. Wearable Passive E-Textile UHF RFID Tag Based on a Slotted Patch Antenna with Sewn Ground and Microchip Interconnections

    Directory of Open Access Journals (Sweden)

    Johanna Virkki

    2017-01-01

    Full Text Available We present a wearable passive UHF RFID tag based on a slotted patch antenna comprising only textile materials (e-textile, textile substrate, and conductive yearn. As a novel manufacturing approach, we realize the patch-to-ground and antenna-to-IC interfaces using only conductive thread and a sewing machine. We outline the electromagnetic optimization of the antenna for body-worn operation through simulations and present a performance comparison between the e-textile tag and a tag produced using regular electronics materials and methods. The measured results show that the textile tag achieves the electrical performance required in practical applications and that the slotted patch type antenna provides stable electromagnetic performance in different body-worn configurations.

  13. Zethrenes, Extended p -Quinodimethanes, and Periacenes with a Singlet Biradical Ground State

    KAUST Repository

    Sun, Zhe

    2014-08-19

    ConspectusResearchers have studied polycyclic aromatic hydrocarbons (PAHs) for more than 100 years, and most PAHs in the neutral state reported so far have a closed-shell electronic configuration in the ground state. However, recent studies have revealed that specific types of polycyclic hydrocarbons (PHs) could have a singlet biradical ground state and exhibit unique electronic, optical, and magnetic activities. With the appropriate stabilization, these new compounds could prove useful as molecular materials for organic electronics, nonlinear optics, organic spintronics, organic photovoltaics, and energy storage devices. However, before researchers can use these materials to design new devices, they need better methods to synthesize these molecules and a better understanding of the fundamental relationship between the structure and biradical character of these compounds and their physical properties. Their biradical character makes these compounds difficult to synthesize. These compounds are also challenging to physically characterize and require the use of various experimental techniques and theoretic methods to comprehensively describe their unique properties.In this Account, we will discuss the chemistry and physics of three types of PHs with a significant singlet biradical character, primarily developed in our group. These structures are zethrenes, Z-shaped quinoidal hydrocarbons; hydrocarbons that include a proaromatic extended p-quinodimethane unit; and periacenes, acenes fused in a peri-Arrangement. We used a variety of synthetic methods to prepare these compounds and stabilized them using both thermodynamic and kinetic approaches. We probed their ground-state structures by electronic absorption, NMR, ESR, SQUID, Raman spectroscopy, and X-ray crystallography and also performed density functional theory calculations. We investigated the physical properties of these PHs using various experimental methods such as one-photon absorption, two-photon absorption

  14. Global potential energy surface of ground state singlet spin O4

    Science.gov (United States)

    Mankodi, Tapan K.; Bhandarkar, Upendra V.; Puranik, Bhalchandra P.

    2018-02-01

    A new global potential energy for the singlet spin state O4 system is reported using CASPT2/aug-cc-pVTZ ab initio calculations. The geometries for the six-dimensional surface are constructed using a novel point generation scheme that employs randomly generated configurations based on the beta distribution. The advantage of this scheme is apparent in the reduction of the number of required geometries for a reasonably accurate potential energy surface (PES) and the consequent decrease in the overall computational effort. The reported surface matches well with the recently published singlet surface by Paukku et al. [J. Chem. Phys. 147, 034301 (2017)]. In addition to the O4 PES, the ground state N4 PES is also constructed using the point generation scheme and compared with the existing PES [Y. Paukku et al., J. Chem. Phys. 139, 044309 (2013)]. The singlet surface is constructed with the aim of studying high energy O2-O2 collisions and predicting collision induced dissociation cross section to be used in simulating non-equilibrium aerothermodynamic flows.

  15. Decamethylytterbocene Complexes of Bipyridines and Diazabutadienes: Multiconfigurational Ground States and Open-Shell Singlet Formation

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Corwin H.; Walter, Marc D.; Kazhdan, Daniel; Hu, Yung-Jin; Lukens, Wayne W.; Bauer, Eric D.; Maron, Laurent; Eisenstein, Odile; Andersen, Richard A.

    2009-04-22

    Partial ytterbium f-orbital occupancy (i.e., intermediate valence) and open-shell singlet formation are established for a variety of bipyridine and diazabutadiene adducts with decamethylytterbocene, (C5Me5)2Yb, abbreviated as Cp*2Yb. Data used to support this claim include ytterbium valence measurements using Yb LIII-edge X-ray absorption near-edge structure spectroscopy, magnetic susceptibility, and complete active space self-consistent field (CASSCF) multiconfigurational calculations, as well as structural measurements compared to density functional theory calculations. The CASSCF calculations indicate that the intermediate valence is the result of a multiconfigurational ground-state wave function that has both an open-shell singlet f13(?*)1, where pi* is the lowest unoccupied molecular orbital of the bipyridine or dpiazabutadiene ligands, and a closed-shell singlet f14 component. A number of other competing theories for the unusual magnetism in these materials are ruled out by the lack of temperature dependence of the measured intermediate valence. These results have implications for understanding chemical bonding not only in organolanthanide complexes but also for f-element chemistry in general, as well as understanding magnetic interactions in nanoparticles and devices.

  16. Decamethylytterbocene complexes of bipyridines and diazabutadines: multiconfigurational ground states and open-shell singlet formation

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Eric D [Los Alamos National Laboratory; Booth, C H [LBNL; Walter, M D [LBNL; Kazhdan, D [LBNL; Hu, Y - J [LBNL; Lukens, Wayne [LBNL; Maron, Laurent [INSA TOULOUSE; Eisentein, Odile [UNIV MONTPELLIER 2; Anderson, Richard [LBNL

    2009-01-01

    Partial ytterbium f-orbital occupancy (i.e. intermediate valence) and open-shell singlet Draft 12/formation are established for a variety of bipyridine and diazabutadiene adducts to decamethylytterbocene, (C{sub 5}Me{sub 5}){sub 2}Yb or Cp*{sub 2}Yb. Data used to support this claim includes ytterbium valence measurements using Yb Lm-edge x-ray absorption near-edge structure (XANES) spectroscopy, magnetic susceptibility and Complete Active Space Self-Consistent Field (CASSCF) multi configurational calculations, as well as structural measurements compared to density-functional theory (DFT) calculations. The CASSCF calculations indicate that the intermediate valence is the result of a multiconfigurational ground state wave function that has both an open-shell singlet f{sup 13} and a closed-shell singlet f{sup 14} component. A number of other competing theories for the unusual magnetism in these materials are ruled out by the presence of intermediate valence and its lack of any significant temperature dependence. These results have implications for understanding chemical bonding not only in organolanthanide complexes, but also for organometallic chemistry in general, as well as understanding magnetic interactions in nanopartic1es and devices.

  17. Experimental and theoretical dipole moments of purines in their ground and lowest excited singlet states

    Science.gov (United States)

    Aaron, Jean-Jacques; Diabou Gaye, Mame; Párkányi, Cyril; Cho, Nam Sook; Von Szentpály, László

    1987-01-01

    The ground-state dipole moments of seven biologically important purines (purine, 6-chloropurine, 6-mercaptopurine, hypoxanthine, theobromine, theophylline and caffeine) were determined at 25°C in acetic acid (all the above compounds with the exception of purine) and in ethyl acetate (purine, theophylline and caffeine). Because of its low solubility, it was not possible to measure the dipole moment of uric acid. The first excited singlet-state dipole moments were obtained on the basis of the Bakhshiev and Chamma—Viallet equations using the variation of the Stokes shift with the solvent dielectric constant-refractive index term. The theoretical dipole moments for all the purines listed above and including uric acid were calculated by combining the use of the PPP (π-LCI-SCF-MO) method for the π-contribution to the overall dipole moment with the σ-contribution obtained as a vector sum of the σbond moments and group moments. The experimental and theoretical values were compared with the data available in the literature for some of the purines under study. For several purines, the calculations were carried out for different tautomeric forms. Excited singlet-state dipole moments are smaller than the ground-state values by 0.8 to 2.2 Debye units for all purines under study with the exception of 6-chloropurine. The effects of the structure upon the ground- and excited-state dipole moments of the purines are discussed.

  18. Indolo[2,3-b]carbazoles with tunable ground states: How Clar's aromatic sextet determines the singlet biradical character

    KAUST Repository

    Luo, Ding; Lee, Sangsu; Zheng, Bin; Sun, Zhe; Zeng, Wangdong; Huang, Kuo-Wei; Furukawa, Ko; Kim, Dongho; Webster, Richard D.; Wu, Jishan

    2014-01-01

    and showed different ground states. Based on variable-temperature NMR/ESR measurements and density functional theory calculations, it was found that the indolo[2,3-b]carbazole derivative 1 is a persistent singlet biradical in the ground state with a moderate

  19. Induced quadrupolar singlet ground state of praseodymium in a modulated pyrochlore

    Science.gov (United States)

    van Duijn, J.; Kim, K. H.; Hur, N.; Ruiz-Bustos, R.; Adroja, D. T.; Bridges, F.; Daoud-Aladine, A.; Fernandez-Alonso, F.; Wen, J. J.; Kearney, V.; Huang, Q. Z.; Cheong, S.-W.; Perring, T. G.; Broholm, C.

    2017-09-01

    The complex structure and magnetism of Pr2 -xBixRu2O7 was investigated by neutron scattering and extended x-ray absorption fine structure. Pr has an approximate doublet ground state and the first excited state is a singlet. While the B -site (Ru) is well ordered throughout, this is not the case for the A -site (Pr/Bi). A broadened distribution for the Pr-O2 bond length at low temperature indicates the Pr environment varies from site to site even for x =0 . The environment about the Bi site is highly disordered ostensibly due to the 6 s lone pairs on Bi3 +. Correspondingly, we find that the non-Kramers doublet ground-state degeneracy, otherwise anticipated for Pr in the pyrochlore structure, is lifted so as to produce a quadrupolar singlet ground state with a spatially varying energy gap. For x =0 , below TN, the Ru sublattice orders antiferromagnetically, with propagation vector k =(0 ,0 ,0 ) as for Y2Ru2O7 . No ordering associated with the Pr sublattice is observed down to 100 mK. The low-energy magnetic response of Pr2 -xBixRu2O7 features a broad spectrum of magnetic excitations associated with inhomogeneous splitting of the Pr quasidoublet ground state. For x =0 (x =0.97 ), the spectrum is temperature dependent (independent). It appears disorder associated with Bi alloying enhances the inhomogeneous Pr crystal-field level splitting so that intersite interactions become irrelevant for x =0.97 . The structural complexity for the A -site may be reflected in the hysteretic uniform magnetization of B -site ruthenium in the Néel phase.

  20. Photophysics of trioxatriangulenium ion. Electrophilic reactivity in the ground state and excited singlet state

    DEFF Research Database (Denmark)

    Reynisson, J.; Wilbrandt, R.; Brinck, V.

    2002-01-01

    . The physical and chemical properties of the excited singlet state of the trioxatriangulenium (TOTA(+)) carbenium ion are investigated by experimental and Computational means. The degeneracy of the lowest excited states is counteracted by Jahn-Teller-type distortion, which leads to vibronic broadening...... of the long wavelength absorption band. A strong fluorescence is observed at 520 nm (tau(n) = 14.6 ns, phi(n) = 0.12 in deaerated acetonitrile). The fluorescence is quenched by 10 aromatic electron donors predominantly via a dynamic charge transfer mechanism, but ground state complexation is shown...... triphenylenes is studied separately. Phosphorescence spectra, triplet lifetimes, and triplet-triplet absorption spectra are provided. In the discussion, TOTA(+) is compared to the unsubstituted xanthenium ion and its 9-phenyl derivative with respect to the excited state properties....

  1. Line shape of magnetic excitations in singlet-ground-state systems

    International Nuclear Information System (INIS)

    Bak, P.

    1976-08-01

    The excitation spectrum in a paramagnetic singlet doublet system is calculated using a diagrammatic expansion technique, and the theoretical predictions are compared with experiments on praseodymium. The theory gives an accurate description of the dramatic temperature dependence of the energies and lineshapes for the exciton modes

  2. Coexisting Kondo singlet state with antiferromagnetic long-range order: A possible ground state for Kondo insulators

    International Nuclear Information System (INIS)

    Zhang Guangming; Yu Lu

    2000-04-01

    The ground-state phase diagram of a half-filled anisotropic Kondo lattice model is calculated within a mean-field theory. For small transverse exchange coupling J perpendicular perpendicular c1 , the ground state shows an antiferromagnetic long-range order with finite staggered magnetizations of both localized spins and conduction electrons. When J perpendicular > J perpendicular c2 , the long-range order is destroyed and the system is in a disordered Kondo singlet state with a hybridization gap. Both ground states can describe the low-temperature phases of Kondo insulating compounds. Between these two distinct phases, there may be a coexistent regime as a result of the balance between local Kondo screening and magnetic interactions. (author)

  3. Indolo[2,3-b]carbazoles with tunable ground states: How Clar's aromatic sextet determines the singlet biradical character

    KAUST Repository

    Luo, Ding

    2014-01-01

    Polycyclic hydrocarbons (PHs) with a singlet biradical ground state have recently attracted extensive interest in physical organic chemistry and materials science. Replacing the carbon radical center in the open-shell PHs with a more electronegative nitrogen atom is expected to result in the more stable aminyl radical. In this work, two kinetically blocked stable/persistent derivatives (1 and 2) of indolo[2,3-b]carbazole, an isoelectronic structure of the known indeno[2,1-b]fluorene, were synthesized and showed different ground states. Based on variable-temperature NMR/ESR measurements and density functional theory calculations, it was found that the indolo[2,3-b]carbazole derivative 1 is a persistent singlet biradical in the ground state with a moderate biradical character (y0 = 0.269) and a small singlet-triplet energy gap (ΔES-T ≅ -1.78 kcal mol-1), while the more extended dibenzo-indolo[2,3-b]carbazole 2 exhibits a quinoidal closed-shell ground state. The difference can be explained by considering the number of aromatic sextet rings gained from the closed-shell to the open-shell biradical resonance form, that is to say, two for compound 1 and one for compound 2, which determines their different biradical characters. The optical and electronic properties of 2 and the corresponding aromatic precursors were investigated by one-photon absorption, transient absorption and two-photon absorption (TPA) spectroscopies and electrochemistry. Amphoteric redox behaviour, a short excited lifetime and a moderate TPA cross section were observed for 2, which can be correlated to its antiaromaticity and small biradical character. Compound 2 showed high reactivity to protic solvents due to its extremely low-lying LUMO energy level. Unusual oxidative dimerization was also observed for the unblocked dihydro-indolo[2,3-b]carbazole precursors 6 and 11. Our studies shed light on the rational design of persistent aminyl biradicals with tunable properties in the future. This journal

  4. Theory of singlet-ground-state magnetism. Application to field-induced transitions in CsFeCl3 and CsFeBr3

    DEFF Research Database (Denmark)

    Lindgård, P.-A.; Schmid, B.

    1993-01-01

    In the singlet ground-state systems CsFeCl3 and CsFeBr3 a large single-ion anisotropy causes a singlet ground state and a doubly degenerate doublet as the first excited states of the Fe2+ ion. In addition the magneteic interaction is anisotropic being much larger along the z axis than perpendicular...... to it. Therefore, these quasi-one-dimensional magnetic model systems are ideal to demonstrate unique correlation effects. Within the framework of the correlation theory we derive the expressions for the excitation spectrum. When a magnetic field is applied parallel to the z axis both substances have...

  5. Fate of the open-shell singlet ground state in the experimentally accessible acenes: A quantum Monte Carlo study

    Science.gov (United States)

    Dupuy, Nicolas; Casula, Michele

    2018-04-01

    By means of the Jastrow correlated antisymmetrized geminal power (JAGP) wave function and quantum Monte Carlo (QMC) methods, we study the ground state properties of the oligoacene series, up to the nonacene. The JAGP is the accurate variational realization of the resonating-valence-bond (RVB) ansatz proposed by Pauling and Wheland to describe aromatic compounds. We show that the long-ranged RVB correlations built in the acenes' ground state are detrimental for the occurrence of open-shell diradical or polyradical instabilities, previously found by lower-level theories. We substantiate our outcome by a direct comparison with another wave function, tailored to be an open-shell singlet (OSS) for long-enough acenes. By comparing on the same footing the RVB and OSS wave functions, both optimized at a variational QMC level and further projected by the lattice regularized diffusion Monte Carlo method, we prove that the RVB wave function has always a lower variational energy and better nodes than the OSS, for all molecular species considered in this work. The entangled multi-reference RVB state acts against the electron edge localization implied by the OSS wave function and weakens the diradical tendency for higher oligoacenes. These properties are reflected by several descriptors, including wave function parameters, bond length alternation, aromatic indices, and spin-spin correlation functions. In this context, we propose a new aromatic index estimator suitable for geminal wave functions. For the largest acenes taken into account, the long-range decay of the charge-charge correlation functions is compatible with a quasi-metallic behavior.

  6. Magnetic field effects on the soft mode in a singlet ground-state dimer system: a neutron scattering study of Cs3Cr2Br9

    DEFF Research Database (Denmark)

    Leuenberger, Bruno; Gudel, Hans U.; Feile, Rudolf

    1985-01-01

    Neutron scattering experiments in a magnetic field have been performed on the singlet ground-state dimer system Cs3Cr2Br9. At low fields the Zeeman splitting of the soft mode evolves in agreement with the isotropic random-phase approximation (RPA) model, with the notable absence of a quasielastic...... peak. At a temperature of 1.7K the expected long-range magnetic order is not found at the predicted field of 2.8 T, indicating the shortcomings of the isotropic RPA model in the critical region. Magnetic intensity on the weak nuclear Bragg peak (1¯1¯4) indicates a probable ordering with a ferromagnetic...

  7. Singlet ground-state fluctuations in praseodymium observed by muon spin relaxation in PrP and PrP0.9

    International Nuclear Information System (INIS)

    Noakes, D R; Waeppling, R; Kalvius, G M; Jr, M F White; Stronach, C E

    2005-01-01

    Muon spin relaxation (μSR) in the singlet ground-state compounds PrP and PrP 0.9 reveals the unusual situation of a Lorentzian local field distribution with fast-fluctuation-limit strong-collision dynamics, a case that does not show motional narrowing. Contrary to publications by others, where PrP 0.9 was asserted to have vacancy-induced spin-glass freezing, no spin-glass freezing is seen in PrP 0.9 or PrP down to ≤100mK. This was confirmed by magnetization measurements on these same samples. In both compounds, the muon spin relaxation rate does increase as temperature decreases, demonstrating increasing strength of the paramagnetic response. A Monte Carlo model of fluctuations of Pr ions out of their crystalline-electric-field singlet ground states into their magnetic excited states (and back down again) produces the strong-collision-dynamic Lorentzian relaxation functions observed at each individual temperature but not the observed temperature dependence. This model contains no exchange interaction, and so predicts decreasing paramagnetic response as the temperature decreases, contrary to the temperature dependence observed. Comparison of the simulations to the data suggests that the exchange interaction is causing the system to approach magnetic freezing (by mode softening), but fails to complete the process

  8. Search for Singlet Fission Chromophores

    Energy Technology Data Exchange (ETDEWEB)

    Havlas, Z.; Akdag, A.; Smith, M. B.; Dron, P.; Johnson, J. C.; Nozik, A. J.; Michl, J.

    2012-01-01

    Singlet fission, in which a singlet excited chromophore shares its energy with a ground-state neighbor and both end up in their triplet states, is of potential interest for solar cells. Only a handful of compounds, mostly alternant hydrocarbons, are known to perform efficiently. In view of the large number of conditions that a successful candidate for a practical cell has to meet, it appears desirable to extend the present list of high performers to additional classes of compounds. We have (i) identified design rules for new singlet fission chromophores and for their coupling to covalent dimers, (ii) synthesized them, and (iii) evaluated their performance as neat solids or covalent dimers.

  9. Ionospheric Impacts on UHF Space Surveillance

    Science.gov (United States)

    Jones, J. C.

    2017-12-01

    Earth's atmosphere contains regions of ionized plasma caused by the interaction of highly energetic solar radiation. This region of ionization is called the ionosphere and varies significantly with altitude, latitude, local solar time, season, and solar cycle. Significant ionization begins at about 100 km (E layer) with a peak in the ionization at about 300 km (F2 layer). Above the F2 layer, the atmosphere is mostly ionized but the ion and electron densities are low due to the unavailability of neutral molecules for ionization so the density decreases exponentially with height to well over 1000 km. The gradients of these variations in the ionosphere play a significant role in radio wave propagation. These gradients induce variations in the index of refraction and cause some radio waves to refract. The amount of refraction depends on the magnitude and direction of the electron density gradient and the frequency of the radio wave. The refraction is significant at HF frequencies (3-30 MHz) with decreasing effects toward the UHF (300-3000 MHz) range. UHF is commonly used for tracking of space objects in low Earth orbit (LEO). While ionospheric refraction is small for UHF frequencies, it can cause errors in range, azimuth angle, and elevation angle estimation by ground-based radars tracking space objects. These errors can cause significant errors in precise orbit determinations. For radio waves transiting the ionosphere, it is important to understand and account for these effects. Using a sophisticated radio wave propagation tool suite and an empirical ionospheric model, we calculate the errors induced by the ionosphere in a simulation of a notional space surveillance radar tracking objects in LEO. These errors are analyzed to determine daily, monthly, annual, and solar cycle trends. Corrections to surveillance radar measurements can be adapted from our simulation capability.

  10. UHF RFID technologies for identification and traceability

    CERN Document Server

    Laheurte, Jean-Marc; Paret, Dominique; Loussert, Christophe

    2014-01-01

    UHF Radio Frequency Identification (RFID) is an electronic tagging technology that allows an object, place or person to be automatically identified at a distance without a direct line-of-sight using a radio wave exchange. Applications include inventory tracking, prescription medication tracking and authentication, secure automobile keys, and access control for secure facilities. This book begins with an overview of UHF RFID challenges describing the applications, markets, trades and basic technologies. It follows this by highlighting the main features distinguishing UHF (860MHz-960MHz) and HF

  11. Femtosecond stimulated Raman evidence for charge-transfer character in pentacene singlet fission† †Electronic supplementary information (ESI) available: Actinic pump spectrum, discussion on ground state addition process, peak fitting procedure, transient absorption data, power dependence measurements, etalon pulse shaping, TIPS-pentacene FSRS data, and optimized geometry and frequency calculation results. See DOI: 10.1039/c7sc03496b

    Science.gov (United States)

    Hart, Stephanie M.; Silva, W. Ruchira

    2017-01-01

    Singlet fission is a spin-allowed process in which an excited singlet state evolves into two triplet states. We use femtosecond stimulated Raman spectroscopy, an ultrafast vibrational technique, to follow the molecular structural evolution during singlet fission in order to determine the mechanism of this process. In crystalline pentacene, we observe the formation of an intermediate characterized by pairs of excited state peaks that are red- and blue-shifted relative to the ground state features. We hypothesize that these features arise from the formation of cationic and anionic species due to partial transfer of electron density from one pentacene molecule to a neighboring molecule. These observations provide experimental evidence for the role of states with significant charge-transfer character which facilitate the singlet fission process in pentacene. Our work both provides new insight into the singlet fission mechanism in pentacene and demonstrates the utility of structurally-sensitive time-resolved spectroscopic techniques in monitoring ultrafast processes. PMID:29675170

  12. Compact broadband circularly polarised slot antenna for universal UHF RFID readers

    DEFF Research Database (Denmark)

    Xu, Bo; Zhang, Shuai; Liu, Yusha

    2015-01-01

    A compact broadband circularly polarised (CP) slot antenna is designed for universal ultra-high-frequency (UHF) radio frequency identification (RFID) readers. The antenna consists of an L-shaped metal strip and a square-slot-loaded ground plane with four tuning stubs. The total size is 100 mm×100mm......×1.6 mm. The measured –10 dB impedance bandwidth is 40.7% (772–1166 MHz) and the measured 3 dB axial ratio (AR) bandwidth is 13.9% (840–965 MHz). Both the impedance and AR bandwidth cover the worldwide UHF RFID band....

  13. Integration of IP-Packet Data Transfers Within UHF DAMA

    National Research Council Canada - National Science Library

    Huckell, Gary

    1998-01-01

    ...). The existing military standards for UHF DAMA do not provide for efficient UHF resource utilization among users wanting WWW type data access characterized by dynamically changing data rate needs for each user...

  14. 47 CFR 74.733 - UHF translator signal boosters.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false UHF translator signal boosters. 74.733 Section... Translator, and TV Booster Stations § 74.733 UHF translator signal boosters. (a) The licensee of a UHF television broadcast translator station may be authorized to operate one or more signal boosters for the...

  15. Glow discharge in singlet oxygen

    International Nuclear Information System (INIS)

    Vagin, N.P.; Ionin, A.A.; Klimachev, Yu.M.; Sinitsyn, D.V.; Yuryshev, N.N.; Kochetov, I.V.; Napartovich, A.P.

    2003-01-01

    Currently, there is no experimental data on the plasma balance in gas mixtures with a high content of singlet delta oxygen O 2 ( 1 Δ g ). These data can be obtained by studying the parameters of an electric discharge in singlet oxygen produced by a chemical generator. The O 2 ( 1 Δ g ) molecules significantly change the kinetics of electrons and negative ions in plasma. Hence, the discharge conditions at low and high O 2 ( 1 Δ g ) concentrations are very different. Here, the parameters of the positive column of a glow discharge in a gas flow from a chemical singlet-oxygen generator are studied. It is experimentally shown that, at an O 2 ( 1 Δ g ) concentration of 50% and at pressures of 1.5 and 2 torr, the electric field required to sustain the discharge is considerably lower than in the case when all of the oxygen molecules are in the ground state. A theoretical model of the glow discharge is proposed whose predictions are in good agreement with the experimental data

  16. Singlet oxygen quenching by oxygen in tetraphenyl-porphyrin solutions

    International Nuclear Information System (INIS)

    Dedic, Roman; Korinek, Miloslav; Molnar, Alexander; Svoboda, Antonin; Hala, Jan

    2006-01-01

    Time-resolved measurement of singlet oxygen infrared phosphorescence is a powerful tool for determination of quantum yields and kinetics of its photosensitization. This technique was employed to investigate in detail the previously observed effect of singlet oxygen quenching by oxygen. The question whether the singlet oxygen is quenched by oxygen in ground or in excited state was addressed by study of two complementary dependencies of singlet oxygen lifetimes: on dissolved oxygen concentration and on excitation intensity. Oxygen concentration dependence study of meso-tetra(4-sulphonato)phenylporphyrin (TPPS 4 ) phosphorescence kinetics showed linearity of the dependence of TPPS 4 triplet state rate-constant. Corresponding bimolecular quenching constant of (1.5±0.1)x10 9 l/mol s was obtained. On the other hand, rate constants of singlet oxygen depopulation exhibit nonlinear dependence on oxygen concentration. Comparison of zero oxygen concentration-extrapolated value of singlet oxygen lifetime of (6.5±0.4) μs to (3.7±0.1) μs observed under air-saturated conditions indicates importance of the effect of quenching of singlet oxygen by oxygen. Upward-sloping dependencies of singlet oxygen depopulation rate-constant on excitation intensity evidence that singlet oxygen is predominantly quenched by oxygen in excited singlet state

  17. RTD application in low power UHF rectifiers

    International Nuclear Information System (INIS)

    Sinyakin, V Yu; Makeev, M O; Meshkov, S A

    2016-01-01

    In the current work, the problem of UHF RFID passive tag sensitivity increase is considered. Tag sensitivity depends on HF signal rectifier efficiency and antenna-rectifier impedance matching. Possibility of RFID passive tag sensitivity increase up to 10 times by means of RTD use in HF signal rectifier in comparison with tags based on Schottky barrier diode is shown. (paper)

  18. Singlet fission in pentacene dimers

    Science.gov (United States)

    Zirzlmeier, Johannes; Lehnherr, Dan; Coto, Pedro B.; Chernick, Erin T.; Casillas, Rubén; Basel, Bettina S.; Thoss, Michael; Tykwinski, Rik R.; Guldi, Dirk M.

    2015-01-01

    Singlet fission (SF) has the potential to supersede the traditional solar energy conversion scheme by means of boosting the photon-to-current conversion efficiencies beyond the 30% Shockley–Queisser limit. Here, we show unambiguous and compelling evidence for unprecedented intramolecular SF within regioisomeric pentacene dimers in room-temperature solutions, with observed triplet quantum yields reaching as high as 156 ± 5%. Whereas previous studies have shown that the collision of a photoexcited chromophore with a ground-state chromophore can give rise to SF, here we demonstrate that the proximity and sufficient coupling through bond or space in pentacene dimers is enough to induce intramolecular SF where two triplets are generated on one molecule. PMID:25858954

  19. 47 CFR 73.4195 - Political advertising by UHF translators.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Political advertising by UHF translators. 73.4195 Section 73.4195 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO... advertising by UHF translators. See Public Notice, FCC 76936, dated October 8, 1976. 62 FCC 2d 896; 41 FR...

  20. Special Semaphore Scheme for UHF Spacecraft Communications

    Science.gov (United States)

    Butman, Stanley; Satorius, Edgar; Ilott, Peter

    2006-01-01

    A semaphore scheme has been devised to satisfy a requirement to enable ultrahigh- frequency (UHF) radio communication between a spacecraft descending from orbit to a landing on Mars and a spacecraft, in orbit about Mars, that relays communications between Earth and the lander spacecraft. There are also two subsidiary requirements: (1) to use UHF transceivers, built and qualified for operation aboard the spacecraft that operate with residual-carrier binary phase-shift-keying (BPSK) modulation at a selectable data rate of 8, 32, 128, or 256 kb/s; and (2) to enable low-rate signaling even when received signals become so weak as to prevent communication at the minimum BPSK rate of 8 kHz. The scheme involves exploitation of Manchester encoding, which is used in conjunction with residual-carrier modulation to aid the carrier-tracking loop. By choosing various sequences of 1s, 0s, or 1s alternating with 0s to be fed to the residual-carrier modulator, one would cause the modulator to generate sidebands at a fundamental frequency of 4 or 8 kHz and harmonics thereof. These sidebands would constitute the desired semaphores. In reception, the semaphores would be detected by a software demodulator.

  1. Using the SLAC VHF and UHF radio systems

    International Nuclear Information System (INIS)

    Struven, W.

    1987-02-01

    The use of the SLAC VHF and UHF Radio Systems and the Tunnel Antenna Systems as they are presently configured is described. The original radio system was built in 1966 and has grown in scope over the years. The Tunnel Antenna Systems were developed for, and first installed in, the PEP ring, and later added to other tunnels and redesigned to cover the UHF range, as well as VHF. The UHF radio system was designed and built for SLC use, and was first used in the SLC Arcs. The three radio systems will be described and the capabilities of each system will be defined

  2. Singlet oxygen-mediated damage to proteins and its consequences

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2003-01-01

    by the transfer of energy to ground state (triplet) molecular oxygen by either protein-bound, or other, chromophores. Singlet oxygen can also be generated by a range of other enzymatic and non-enzymatic reactions including processes mediated by heme proteins, lipoxygenases, and activated leukocytes, as well...... the absorption of UV radiation by the protein, or bound chromophore groups, thereby generating excited states (singlet or triplets) or radicals via photo-ionisation. The second major process involves indirect oxidation of the protein via the formation and subsequent reactions of singlet oxygen generated...... as radical termination reactions. This paper reviews the data available on singlet oxygen-mediated protein oxidation and concentrates primarily on the mechanisms by which this excited state species brings about changes to both the side-chains and backbone of amino acids, peptides, and proteins. Recent work...

  3. Environmental/Noise Effects on VHF/UHF UWB SAR

    National Research Council Canada - National Science Library

    Ralston, James

    1998-01-01

    This paper presents a straightforward approach to estimating the impact of natural environmental noise on an overall system noise temperature for very high frequency/ultrahigh frequency synthetic aperture radar (VHF/UHF SAR...

  4. Assessment of Multipath and Shadowing Effects on UHF Band in ...

    African Journals Online (AJOL)

    Sultan

    bands are used for television broadcasting, mobile cellular systems, Wi-Fi, satellite communications and many others. Effective communication link in the UHF band requires direct line of sight ..... ad-hoc 802.11 wireless LAN (WLAN) devices.

  5. Singlets of fermionic gauge symmetries

    NARCIS (Netherlands)

    Bergshoeff, E.A.; Kallosh, R.E.; Rahmanov, M.A.

    1989-01-01

    We investigate under which conditions singlets of fermionic gauge symmetries which are "square roots of gravity" can exist. Their existence is non-trivial because there are no fields neutral in gravity. We tabulate several examples of singlets of global and local supersymmetry and κ-symmetry and

  6. Gaugino mass without singlets

    International Nuclear Information System (INIS)

    Giudice, Gian F.; Luty, Markus A.; Murayama, Hitoshi; Rattazzi, Riccardo

    1998-01-01

    In models with dynamical supersymmetry breaking in the hidden sector, the gaugino masses in the observable sector have been believed to be extremely suppressed (below 1 keV), unless there is a gauge singlet in the hidden sector with specific couplings to the observable sector gauge multiplets. We point out that there is a pure supergravity contribution to gaugino masses at the quantum level arising from the superconformal anomaly. Our results are valid to all orders in perturbation theory and are related to the ''exact'' beta functions for soft terms. There is also an anomaly contribution to the A terms proportional to the beta function of the corresponding Yukawa coupling. The gaugino masses are proportional to the corresponding gauge beta functions, and so do not satisfy the usual GUT relations

  7. Toward Singlet-Triplet Bistable Nonalternant Kekulé Hydrocarbons: Azulene-to-Naphthalene Rearrangement.

    Science.gov (United States)

    Das, Soumyajit; Wu, Jishan

    2015-12-04

    Recent developments of open-shell singlet diradicaloids motivated the search for stable singlet-triplet bistable nonalternant polycyclic hydrocarbons. During the synthesis of this type of molecule, such as the dibenzo-cyclohepta[def]fluorene 3, an unexpected azulene-to-naphthalene rearrangement was observed at room temperature, which resulted in new nonalternant hydrocarbons 8a/8b with a closed-shell singlet ground state. These studies provided insight into the unique chemistry of azulene and challenges for the synthesis of singlet-triplet bistable polycyclic hydrocarbons.

  8. The design and simulation of UHF RFID microstrip antenna

    Science.gov (United States)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; Liu, Liping; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Renheng, Xu

    2018-02-01

    At present, China has delineated UHF RFID communicating frequency range which is 840 ∼ 845 MHz and 920 ∼ 925 MHz, but most UHF microstrip antenna don’t carry out this standard, that leads to radio frequency pollution. In order to solve the problems above, a method combining theory and simulation is adopted. Combining with a new ceramic material, a 925.5 MHz RFID microstrip antenna is designed, which is optimized and simulated by HFSS software. The results show that the VSWR of this RFID microstrip antenna is relatively small in the vicinity of 922.5 MHz, the gain is 2.1 dBi, which can be widely used in China’s UHF RFID communicating equipments.

  9. Assessment of multipath and shadowing effects on UHF band in ...

    African Journals Online (AJOL)

    In this work, the multi-path and shadowing effects on signal impairment were investigated through the use of empirical and semi-empirical path loss models analysis in built-up environments. Electromagnetic field strength measurements were conducted using four television transmitters at UHF bands along four major routes ...

  10. Increased operational range for implantable UHF RFID antennas

    NARCIS (Netherlands)

    Dubok, A.; Smolders, A.B.

    2014-01-01

    This paper discusses the main design challenges of implantable UHF RFID antennas in lossy environments. A novel cylindrical implantable antenna concept is presented. The proposed antenna shows good performance inside lossy environments, like a human body. The RFID tag is able to work in a range up

  11. From VHF to UHF CMOS-MEMS Monolithically Integrated Resonators

    DEFF Research Database (Denmark)

    Teva, Jordi; Berini, Abadal Gabriel; Uranga, A.

    2008-01-01

    This paper presents the design, fabrication and characterization of microresonators exhibiting resonance frequencies in the VHF and UHF bands, fabricated using the available layers of the standard and commercial CMOS technology, AMS-0.35mum. The resonators are released in a post-CMOS process cons...

  12. Femtosecond stimulated Raman evidence for charge-transfer character in pentacene singlet fission.

    Science.gov (United States)

    Hart, Stephanie M; Silva, W Ruchira; Frontiera, Renee R

    2018-02-07

    Singlet fission is a spin-allowed process in which an excited singlet state evolves into two triplet states. We use femtosecond stimulated Raman spectroscopy, an ultrafast vibrational technique, to follow the molecular structural evolution during singlet fission in order to determine the mechanism of this process. In crystalline pentacene, we observe the formation of an intermediate characterized by pairs of excited state peaks that are red- and blue-shifted relative to the ground state features. We hypothesize that these features arise from the formation of cationic and anionic species due to partial transfer of electron density from one pentacene molecule to a neighboring molecule. These observations provide experimental evidence for the role of states with significant charge-transfer character which facilitate the singlet fission process in pentacene. Our work both provides new insight into the singlet fission mechanism in pentacene and demonstrates the utility of structurally-sensitive time-resolved spectroscopic techniques in monitoring ultrafast processes.

  13. Singlet Oxygen at the Laundromat

    Science.gov (United States)

    Keeports, David

    1995-09-01

    Singlet molecular oxygen is an interesting molecule both visually and theoretically, since its red chemiluminescence can be analyzed by the application of simple molecular orbital theory. It can be produced from the reaction of hydrogen peroxide from either chlorine gas or hypochlorite ion from household bleach. Here we demostrate how to produce it using simple laundry cleansers.

  14. CPW-Fed Wideband Circular Polarized Antenna for UHF RFID Applications

    Directory of Open Access Journals (Sweden)

    Sun-Woong Kim

    2017-01-01

    Full Text Available We propose a wide bandwidth antenna with a circular polarization for universal Ultra High Frequency (UHF radio-frequency identification (RFID reader applications. To achieve a wide 3 dB axial ratio (AR bandwidth, three T-shaped microstrip lines are inserted into the ground plane. The measured impedance bandwidth of the proposed antenna is 480 MHz and extends from 660 to 1080 MHz, and the 3 dB AR bandwidth is 350 MHz and extends from 800 to 1155 MHz. The radiation pattern is a bidirectional pattern with a maximum antenna gain of 3.67 dBi. The overall size of the proposed antenna is 114 × 114 × 0.8 mm3.

  15. Wind turbine clutter mitigation in coastal UHF radar.

    Science.gov (United States)

    Yang, Jing; Pan, Chao; Wang, Caijun; Jiang, Dapeng; Wen, Biyang

    2014-01-01

    Coastal UHF radar provides a unique capability to measure the sea surface dynamic parameters and detect small moving targets, by exploiting the low energy loss of electromagnetic waves propagating along the salty and good conducting ocean surface. It could compensate the blind zone of HF surface wave radar at close range and reach further distance than microwave radars. However, its performance is susceptible to wind turbines which are usually installed on the shore. The size of a wind turbine is much larger than the wavelength of radio waves at UHF band, which results in large radar cross section. Furthermore, the rotation of blades adds time-varying Doppler frequency to the clutter and makes the suppression difficult. This paper proposes a mitigation method which is based on the specific periodicity of wind turbine clutter and performed mainly in the time-frequency domain. Field experimental data of a newly developed UHF radar are used to verify this method, and the results prove its effectiveness.

  16. Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices.

    Science.gov (United States)

    Wilson, Mark W B; Rao, Akshay; Ehrler, Bruno; Friend, Richard H

    2013-06-18

    Singlet exciton fission is the process in conjugated organic molecules bywhich a photogenerated singlet exciton couples to a nearby chromophore in the ground state, creating a pair of triplet excitons. Researchers first reported this phenomenon in the 1960s, an event that sparked further studies in the following decade. These investigations used fluorescence spectroscopy to establish that exciton fission occurred in single crystals of several acenes. However, research interest has been recently rekindled by the possibility that singlet fission could be used as a carrier multiplication technique to enhance the efficiency of photovoltaic cells. The most successful architecture to-date involves sensitizing a red-absorbing photoactive layer with a blue-absorbing material that undergoes fission, thereby generating additional photocurrent from higher-energy photons. The quest for improved solar cells has spurred a drive to better understand the fission process, which has received timely aid from modern techniques for time-resolved spectroscopy, quantum chemistry, and small-molecule device fabrication. However, the consensus interpretation of the initial studies using ultrafast transient absorption spectroscopy was that exciton fission was suppressed in polycrystalline thin films of pentacene, a material that would be otherwise expected to be an ideal model system, as well as a viable candidate for fission-sensitized photovoltaic devices. In this Account, we review the results of our recent transient absorption and device-based studies of polycrystalline pentacene. We address the controversy surrounding the assignment of spectroscopic features in transient absorption data, and illustrate how a consistent interpretation is possible. This work underpins our conclusion that singlet fission in pentacene is extraordinarily rapid (∼80 fs) and is thus the dominant decay channel for the photoexcited singlet exciton. Further, we discuss our demonstration that triplet excitons

  17. A spin exchange model for singlet fission

    Science.gov (United States)

    Yago, Tomoaki; Wakasa, Masanobu

    2018-03-01

    Singlet fission has been analyzed with the Dexter model in which electron exchange occurs between chromophores, conserving the spin for each electron. In the present study, we propose a spin exchange model for singlet fission. In the spin exchange model, spins are exchanged by the exchange interaction between two electrons. Our analysis with simple spin functions demonstrates that singlet fission is possible by spin exchange. A necessary condition for spin exchange is a variation in exchange interactions. We also adapt the spin exchange model to triplet fusion and triplet energy transfer, which often occur after singlet fission in organic solids.

  18. Confinement sensitivity in quantum dot singlet-triplet relaxation

    Science.gov (United States)

    Wesslén, C. J.; Lindroth, E.

    2017-11-01

    Spin-orbit mediated phonon relaxation in a two-dimensional quantum dot is investigated using different confining potentials. Elliptical harmonic oscillator and cylindrical well results are compared to each other in the case of a two-electron GaAs quantum dot subjected to a tilted magnetic field. The lowest energy set of two-body singlet and triplet states are calculated including spin-orbit and magnetic effects. These are used to calculate the phonon induced transition rate from the excited triplet to the ground state singlet for magnetic fields up to where the states cross. The roll of the cubic Dresselhaus effect, which is found to be much more important than previously assumed, and the positioning of ‘spin hot-spots’ are discussed and relaxation rates for a few different systems are exhibited.

  19. Effects of Intermolecular Coupling on Excimer Formation and Singlet Fission

    Science.gov (United States)

    Mauck, Catherine McKay

    compelling strategy for improving organic photovoltaic device efficiencies. The formation of triplet states through singlet fission can be characterized using femtosecond visible transient absorption spectroscopy (fsTA). However, in PDI, the triplet-triplet absorption spectrum is strongly overlapped with the ground state bleach absorption. Here, a dyad molecule where PDI is covalently attached to an apocarotene triplet acceptor is synthesized, and studied in solution aggregates and thin films with fsTA, to demonstrate that apocarotene can be used as a sensitive spectral tag for triplet formation in PDI due to triplet-triplet energy transfer from PDI to the carotenoid. The efficiency of singlet fission in DPP can be tuned by modulating the crystal packing in the solid state. By synthesizing 3,6-bis(thiophene) derivatives of DPP with a series of different sidechains, thin film DPP singlet fission is related to the crystal structure intermolecular geometries, to more precisely determine the relationship between interchromophore coupling and singlet fission rate, which will inform the design of more robust chromophores for singlet fission. Finally, the role of the dielectric environment and stabilization of charge transfer configurations and charge transfer states is explored in DPP singlet fission, through aqueous nanoparticles of 3,6-bis(phenylthiophene) with different surface area-to-volume ratios, and a covalently linked dimer of DPP in solvents of varying polarity which can undergo symmetry-breaking charge separation.

  20. RFID antenna design for circular polarization in UHF band

    Science.gov (United States)

    Shahid, Hamza; Khan, Muhammad Talal Ali; Tayyab, Umais; Irshad, Usama Bin; Alkhazraji, Emad; Javaid, Muhammad Sharjeel

    2017-05-01

    A miniature half cross dipole antenna for defense and aerospace RFID applications in UHF band is presented. The dipole printed line arms are half crossed shape on top of dielectric substrate backed by reactive impedance surface. The antenna fed by a coaxial cable at the gap separating the dipole arms. Our design is intended to work at 2.42 GHz for RFID readers. The radiation pattern obtained has HPBW of 112, return loss of 22.24 dB and 90 MHz bandwidth.

  1. Singlet ground state in the spin-1/2 weakly coupled dimer compound NH4[ (V2O3)2(4,4'-b p y ) 2(H2PO4)(PO4)2] .0.5 H2O

    Science.gov (United States)

    Arjun, U.; Kumar, Vinod; Anjana, P. K.; Thirumurugan, A.; Sichelschmidt, J.; Mahajan, A. V.; Nath, R.

    2017-05-01

    We present the synthesis and a detailed investigation of structural and magnetic properties of polycrystalline NH4[(V2O3)2(4,4'-b p y ) 2(H2PO4) (PO4)2] .0.5 H2O by means of x-ray diffraction, magnetic susceptibility, electron spin resonance, and 31P nuclear magnetic resonance measurements. Temperature-dependent magnetic susceptibility could be described well using a weakly coupled spin-1/2 dimer model with an excitation gap Δ /kB≃26.1 K between the singlet ground state and triplet excited states and a weak interdimer exchange coupling J'/kB≃4.6 K. A gapped chain model also describes the data well with a gap of about 20 K. The electron spin resonance intensity as a function of temperature traces the bulk susceptibility nicely. The isotropic Landé g factor is estimated to be about g ≃1.97 , at room temperature. We are able to resolve the 31P NMR signal as coming from two inequivalent P sites in the crystal structure. The hyperfine coupling constant between 31P nucleus and V4 + spins is calculated to be Ahf(1 ) ≃2963 Oe/μB and Ahf(2 ) ≃1466 Oe/μB for the P(1) and P(2) sites, respectively. Our NMR shift and spin-lattice relaxation rate for both the 31P sites show an activated behavior at low temperatures, further confirming the singlet ground state. The estimated value of the spin gap from the NMR data measured in an applied field of H =9.394 T is consistent with the gap obtained from the magnetic susceptibility analysis using the dimer model. Because of a relatively small spin gap, NH4[(V2O3)2(4,4'-b p y ) 2(H2PO4) (PO4)2] .0.5 H2O is a promising compound for further experimental studies under high magnetic fields.

  2. Copper thin film for RFID UHF antenna on flexible substrate

    International Nuclear Information System (INIS)

    Tran, Nhan Ai; Tran, Huy Nam; Dang, Mau Chien; Fribourg-Blanc, Eric

    2010-01-01

    A process flow using photolithography and sputtering was studied for copper antenna fabrication on thin poly(ethylene terephthalate) (PET) substrate. The lift-off route was chosen for its flexibility at laboratory scale. It was clarified that the cleaning of PET is an important step that necessitates mild oxygen plasma etching. Then copper is sputter deposited after photolithographic definition of the antenna. Care is necessary since PET, as a very flexible substrate, is temperature sensitive. The temperature increase generated by the impact of deposited copper should be maintained below the glass transition temperature of the polymer to avoid detrimental deformation. dc power of 40 to 50 W was found to be the maximum possible sputtering power for commercial PET. It was found that the resistivity of the thin film is below two times the bulk resistivity of copper for a deposition pressure below 4×10 −3  mbar and thickness above 450 nm. These results enable the reliable fabrication of copper RFID UHF antennae on a PET substrate for further testing of new tag designs. The present paper summarizes the effort to test new designs of antennae for RadioFrequency IDentification (RFID) Ultra High Frequency (UHF) tags, for use in various applications (e.g. object tracking and environment monitoring) in Vietnam

  3. Detection of moving humans in UHF wideband SAR

    Science.gov (United States)

    Sjögren, Thomas K.; Ulander, Lars M. H.; Frölind, Per-Olov; Gustavsson, Anders; Stenström, Gunnar; Jonsson, Tommy

    2014-06-01

    In this paper, experimental results for UHF wideband SAR imaging of humans on an open field and inside a forest is presented. The results show ability to detect the humans and suggest possible ways to improve the results. In the experiment, single channel wideband SAR mode of the UHF UWB system LORA developed by Swedish Defence Research Agency (FOI). The wideband SAR mode used in the experiment was from 220 to 450 MHz, thus with a fractional bandwidth of 0.68. Three humans walking and one stationary were available in the scene with one of the walking humans in the forest. The signature of the human in the forest appeared on the field, due to azimuth shift from the positive range speed component. One human on the field and the one in the forest had approximately the same speed and walking direction. The signatures in the SAR image were compared as a function of integration time based on focusing using the average relative speed of these given by GPS logs. A signal processing gain was obtained for the human in forest until approximately 15 s and 35 s for the human on the field. This difference is likely explained by uneven terrain and trees in the way, causing a non-straight walking path.

  4. Colour singlets in perturbative QCD

    International Nuclear Information System (INIS)

    Bassetto, A.

    1979-01-01

    In the axial gauge and at the leading log level, a definite and consistent picture seems to emerge of a parton decay into states in which many partons are found just before confinement should take place. They are grouped into colourless clusters in a number sufficient to exhaust the ''final'' state, still possessing a finite average mass. This result is peculiar of QCD, in particular of its non-abelian nature. Large transverse momenta or more generally average invariant quantities of partons are mainly due to the multiplicities involved in the branching processes. If eventually confinement would convert these clusters into hadrons (and this is of course the main issue which has still to be proven) without a large rearrangement of the colour lines, the picture we have found for colour singlets could apply to the real hadronic world. (author)

  5. New ab initio adiabatic potential energy surfaces and bound state calculations for the singlet ground X˜ 1A1 and excited C˜ 1B2(21A') states of SO2

    Science.gov (United States)

    Kłos, Jacek; Alexander, Millard H.; Kumar, Praveen; Poirier, Bill; Jiang, Bin; Guo, Hua

    2016-05-01

    We report new and more accurate adiabatic potential energy surfaces (PESs) for the ground X˜ 1A1 and electronically excited C˜ 1B2(21A') states of the SO2 molecule. Ab initio points are calculated using the explicitly correlated internally contracted multi-reference configuration interaction (icMRCI-F12) method. A second less accurate PES for the ground X ˜ state is also calculated using an explicitly correlated single-reference coupled-cluster method with single, double, and non-iterative triple excitations [CCSD(T)-F12]. With these new three-dimensional PESs, we determine energies of the vibrational bound states and compare these values to existing literature data and experiment.

  6. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Directory of Open Access Journals (Sweden)

    J.-L. Caccia

    2004-11-01

    Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with thermal circulation, the

  7. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Science.gov (United States)

    Caccia, J.; Guénard, V.; Benech, B.; Campistron, B.; Drobinski, P.

    2004-11-01

    The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program) in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission) in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking), which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with thermal circulation, the vertical motions are

  8. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Energy Technology Data Exchange (ETDEWEB)

    Caccia, J.L.; Guenard, V. [LSEET, CNRS/Univ. de Toulon, La Garde (France); Benech, B.; Campistron, B. [CRA/LA, CNRS/Obs. Midi-Pyrenees, Campistrous (France); Drobinski, P. [IPSL/SA, CNRS/Univ. de Paris VI, Paris (France)

    2004-07-01

    The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhone-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhone-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (mesoscale alpine program) in autumn 1999, and ESCOMPTE (Experience sur Site pour COntraindre les Modeles de Pollution atmospheriques et de Transports d'Emission) in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhone valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of ''flow around'' and ''flow over'' mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking), which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with

  9. Holographic monitoring of spatial distributions of singlet oxygen in water

    Science.gov (United States)

    Belashov, A. V.; Bel'tyukova, D. M.; Vasyutinskii, O. S.; Petrov, N. V.; Semenova, I. V.; Chupov, A. S.

    2014-12-01

    A method for monitoring spatial distributions of singlet oxygen in biological media has been developed. Singlet oxygen was generated using Radachlorin® photosensitizer, while thermal disturbances caused by nonradiative deactivation of singlet oxygen were detected by the holographic interferometry technique. Processing of interferograms yields temperature maps that characterize the deactivation process and show the distribution of singlet oxygen species.

  10. Advanced Singlet Oxygen Generator for a COIL

    National Research Council Canada - National Science Library

    Kodymova, Jarmila; Zagidullin, M; Nikolaev, V; Svistun, M; Khvatov, N; Hruby, J; Spalek, O; Jirasek, V; Censsky, M

    2005-01-01

    This report results from a contract tasking Academy of Sciences as follows: The Grantee will develop new and radically different ideas for a high performance, advanced singlet oxygen generator for driving a supersonic COIL...

  11. Spin nematics next to spin singlets

    Science.gov (United States)

    Yokoyama, Yuto; Hotta, Chisa

    2018-05-01

    We provide a route to generate nematic order in a spin-1/2 system. Unlike the well-known magnon-binding mechanism, our spin nematics requires neither the frustration effect nor spin polarization in a high field or in the vicinity of a ferromagnet, but instead appears next to the spin singlet phase. We start from a state consisting of a quantum spin-1/2 singlet dimer placed on each site of a triangular lattice, and show that interdimer ring exchange interactions efficiently dope the SU(2) triplets that itinerate and interact, easily driving a stable singlet state to either Bose-Einstein condensates or a triplet crystal, some hosting a spin nematic order. A variety of roles the ring exchange serves includes the generation of a bilinear-biquadratic interaction between nearby triplets, which is responsible for the emergent nematic order separated from the singlet phase by a first-order transition.

  12. Signatures for exotic quark singlets from superstrings

    International Nuclear Information System (INIS)

    Barger, V.; Deshpande, N.G.; Gunion, J.F.

    1986-09-01

    We consider various scenarios, at Superconducting Super Collider energy and luminosity, for detection of the extra colored, weak isospin singlet, charge -1/3 heavy fermion resulting from E 6 compactification in superstring theories

  13. Finite-bias conductance anomalies at a singlet-triplet crossing

    DEFF Research Database (Denmark)

    Stevanato, Chiara; Leijnse, Martin Christian; Flensberg, Karsten

    2012-01-01

    at the crossing. Here we show that, in addition, level crossings can give rise to a nearly vertical step-edge, ridge or even a Fano-like ridge-valley feature in the dierential conductance inside the relevant Coulomb diamond. We study a gate-tunable quasidegeneracy between singlet and triplet ground states...

  14. Dibenzoheptazethrene isomers with different biradical characters: An exercise of clar's aromatic sextet rule in singlet biradicaloids

    KAUST Repository

    Sun, Zhe; Lee, Sangsu; Park, Kyuhyung; Zhu, Xiaojian; Zhang, Wenhua; Zheng, Bin; Hu, Pan; Zeng, Zebing; Das, Soumyajit; Li, Yuan; Chi, Chunyan; Li, Runwei; Huang, Kuo-Wei; Ding, Jun; Kim, Dongho; Wu, Jishan

    2013-01-01

    that the number of aromatic sextet rings plays an important role in determination of their ground states. In order to test the validity of this rule in singlet biradicaloids, the two soluble and stable dibenzoheptazethrene isomers DBHZ1 and DBHZ2 were prepared

  15. Singlet fermionic dark matter with Veltman conditions

    OpenAIRE

    Kim, Yeong Gyun; Lee, Kang Young; Nam, Soo-hyeon

    2018-01-01

    We reexamine a renormalizable model of a fermionic dark matter with a gauge singlet Dirac fermion and a real singlet scalar which can ameliorate the scalar mass hierarchy problem of the Standard Model (SM). Our model setup is the minimal extension of the SM for which a realistic dark matter (DM) candidate is provided and the cancellation of one-loop quadratic divergence to the scalar masses can be achieved by the Veltman condition (VC) simultaneously. This model extension, although renormaliz...

  16. Singlet axial constant from QCD sum rules

    International Nuclear Information System (INIS)

    Belitskij, A.V.; Teryaev, O.V.

    1995-01-01

    We analyze the singlet axial form factor of the proton for small momentum transferred in the framework of QCD sum rules using the interpolating nucleon current which explicitly accounts for the gluonic degrees of freedom. As the result we come to the quantitative prediction of the singlet axial constant. It is shown that the bilocal power corrections play the most important role in the analysis. 21 refs., 3 figs

  17. A Numerical Estimation of a RFID Reader Field and SAR inside a Blood Bag at UHF

    Directory of Open Access Journals (Sweden)

    Alessandro Fanti

    2016-11-01

    Full Text Available In this paper, the effects of UHF electromagnetic fields produced by a RFID reader on a blood bag are evaluated numerically in several configurations. The results of the simulation, field level and distribution, specific absorption rate (SAR, and heating time show that an exposure to a typical reader field leads to a temperature increase smaller than 0.1 C and to a SAR smaller than 1 W/kg. As a consequence, no adverse biological effects occur during a typical UHF RFID reading cycle on a blood bag. Therefore, the blood contained in a bag traced using UHF-RFID is as safe as those traced using barcodes. The proposed analysis supports the use of UHF RFID in the blood transfusion supply chain.

  18. Coplanar UHF RFID tag antenna with U-shaped inductively coupled feed for metallic applications.

    Directory of Open Access Journals (Sweden)

    Karrar Naji Salman

    Full Text Available In this paper, we present a novel compact, coplanar, tag antenna design for metallic objects. Electrically small antenna has designed for a UHF RFID (860-960 MHz based on a proximity-coupled feed through. Furthermore, two symmetrical Via-loaded coplanar grounds fed by a U-shaped inductively coupled feed through an embedded transmission line. This configuration results in an antenna with dimensions of 31 × 19.5 × 3.065 mm3 at 915 MHz, and the total gain for the antenna is 0.12 dBi. The Via-loaded coplanar and U-shaped inductively coupled feeds allow the antenna to provide flexible tuning in terms of antenna impedance. In addition, a figure of merit is applied for the proposed tag antenna, and the results are presented. The read range is measured to be 4.2 m, which is very close to simulated values. This antenna measurement shows very good agreement with simulations.

  19. CPW-fed Circularly Polarized Slot Antenna with Small Gap and Stick-shaped Shorted Strip for UHF FRID Readers

    Science.gov (United States)

    Pan, Chien-Yuan; Su, Chum-Chieh; Yang, Wei-Lin

    2018-04-01

    A new circularly polarized (CP) slot antenna with a small gap and a stick-shaped shorted strip is presented. The proposed antenna has a sufficient bandwidth for ultrahigh frequency (UHF) radio-frequency identification (RFID) reader applications. The antenna structure consists of a rectangular slot with a small gap, a stick-shaped shorted strip and a 50 Ω coplanar waveguide (CPW) feedline with an asymmetrical ground plane. By using the stick -shaped shorted strip to disturb magnetic current distribution on the slot, the CP radiation can be generated. The measured results demonstrate that the proposed antenna can reach a 10 dB return loss impedance bandwidth of 14.1 % (894-1030 MHz) and a 3 dB axial ratio (AR) bandwidth of 6.4 % (910-970 MHz). The whole antenna size is 80 × 80 × 1.6 mm3.

  20. Time-dependent resonant UHF CI approach for the photo-induced dynamics of the multi-electron system confined in 2D QD

    Energy Technology Data Exchange (ETDEWEB)

    Okunishi, Takuma; Clark, Richard; Takeda, Kyozaburo [Waseda University, Tokyo 169-8555 (Japan); Kusakabe, Kouichi [Osaka University, Osaka 560-8531 (Japan); Tomita, Norikazu [Yamagata University, Yamagata 960-8560 (Japan)

    2013-12-04

    We extend the static multi-reference description (resonant UHF) to the dynamic system in order to include the correlation effect over time, and simplify the TD Schrödinger equation (TD-CI) into a time-developed rate equation where the TD external field Ĥ′(t) is then incorporated directly in the Hamiltonian without any approximations. We apply this TD-CI method to the two-electron ground state of a 2D quantum dot (QD) under photon injection and study the resulting two-electron Rabi oscillation.

  1. Photophysical characterization and time-resolved spectroscopy of a anthradithiophene dimer: exploring the role of conformation in singlet fission

    KAUST Repository

    Dean, Jacob C.

    2017-08-18

    Quantitative singlet fission has been observed for a variety of acene derivatives such as tetracene and pentacene, and efforts to extend the library of singlet fission compounds is of current interest. Preliminary calculations suggest anthradithiophenes exhibit significant exothermicity between the first optically-allowed singlet state, S1, and 2 × T1 with an energy difference of >5000 cm−1. Given the fulfillment of this ingredient for singlet fission, here we investigate the singlet fission capability of a difluorinated anthradithiophene dimer (2ADT) covalently linked by a (dimethylsilyl)ethane bridge and derivatized by triisobutylsilylethynyl (TIBS) groups. Photophysical characterization of 2ADT and the single functionalized ADT monomer were carried out in toluene and acetone solution via absorption and fluorescence spectroscopy, and their photo-initiated dynamics were investigated with time-resolved fluorescence (TRF) and transient absorption (TA) spectroscopy. In accordance with computational predictions, two conformers of 2ADT were observed via fluorescence spectroscopy and were assigned to structures with the ADT cores trans or cis to one another about the covalent bridge. The two conformers exhibited markedly different excited state deactivation mechanisms, with the minor trans population being representative of the ADT monomer showing primarily radiative decay, while the dominant cis population underwent relaxation into an excimer geometry before internally converting to the ground state. The excimer formation kinetics were found to be solvent dependent, yielding time constants of ∼1.75 ns in toluene, and ∼600 ps in acetone. While the difference in rates elicits a role for the solvent in stabilizing the excimer structure, the rate is still decidedly long compared to most singlet fission rates of analogous dimers, suggesting that the excimer is neither a kinetic nor a thermodynamic trap, yet singlet fission was still not observed. The result

  2. Non-diagonal processes of singlet and ordinary quark production

    International Nuclear Information System (INIS)

    Bejlin, V.A.; Vereshkov, G.M.; Kuksa, V.I.

    1995-01-01

    Non-diagonal processes of singlet and ordinary quark production are analyzed in the model where the down singlet quark mixes with the ordinary ones. The possibility of experimental selection of h-quark effects is demonstrated

  3. Magnetic excitations in intermediate valence semiconductors with singlet ground state

    International Nuclear Information System (INIS)

    Kikoin, K.A.; Mishchenko, A.S.

    1994-01-01

    The explanation of the origin inelastic peaks in magnetic neutron scattering spectra of the mixed-valent semiconductor SmB 6 is proposed. It is shown that the excitonic theory of intermediate valence state not only gives the value of the peak frequency but also explains the unusual angular dependence of intensity of inelastic magnetic scattering and describes the dispersion of magnetic excitations in good agreement with experiment

  4. Recycling and imaging of nuclear singlet hyperpolarization

    DEFF Research Database (Denmark)

    Pileio, Giuseppe; Bowen, Sean; Laustsen, Christoffer

    2013-01-01

    observation of the same batch of polarized nuclei over a period of 30 min and more. We report a recycling protocol in which the enhanced nuclear polarization achieved by dissolution-DNP is observed with full intensity and then returned to singlet order. MRI experiments may be run on a portion of the available...

  5. Singlet fermionic dark matter with Veltman conditions

    Science.gov (United States)

    Kim, Yeong Gyun; Lee, Kang Young; Nam, Soo-hyeon

    2018-07-01

    We reexamine a renormalizable model of a fermionic dark matter with a gauge singlet Dirac fermion and a real singlet scalar which can ameliorate the scalar mass hierarchy problem of the Standard Model (SM). Our model setup is the minimal extension of the SM for which a realistic dark matter (DM) candidate is provided and the cancellation of one-loop quadratic divergence to the scalar masses can be achieved by the Veltman condition (VC) simultaneously. This model extension, although renormalizable, can be considered as an effective low-energy theory valid up to cut-off energies about 10 TeV. We calculate the one-loop quadratic divergence contributions of the new scalar and fermionic DM singlets, and constrain the model parameters using the VC and the perturbative unitarity conditions. Taking into account the invisible Higgs decay measurement, we show the allowed region of new physics parameters satisfying the recent measurement of relic abundance. With the obtained parameter set, we predict the elastic scattering cross section of the new singlet fermion into target nuclei for a direct detection of the dark matter. We also perform the full analysis with arbitrary set of parameters without the VC as a comparison, and discuss the implication of the constraints by the VC in detail.

  6. Update on scalar singlet dark matter

    NARCIS (Netherlands)

    Cline, J.M.; Scott, P.; Kainulainen, K.; Weniger, C.

    2013-01-01

    One of the simplest models of dark matter is where a scalar singlet field S comprises some or all of the dark matter and interacts with the standard model through an vertical bar H vertical bar S-2(2) coupling to the Higgs boson. We update the present limits on the model from LHC searches for

  7. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Directory of Open Access Journals (Sweden)

    J.-L. Caccia

    2004-11-01

    Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001.

    Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events.

    In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations.

    HF RFID versus UHF RFID--Technology for Library Service Transformation at City University of Hong Kong

    Science.gov (United States)

    Ching, Steve H.; Tai, Alice

    2009-01-01

    Since libraries first used RFID systems in the late 1990s, more and more libraries have identified the advantages of the technology. With advances in HF and UHF RFID, both alternatives are now viable in library applications. While some librarians are still skeptical towards UHF RFID as unproven in the library arena, the City University of Hong…

  8. Modeling and analysis of power extraction circuits for passive UHF RFID applications

    International Nuclear Information System (INIS)

    Fan Bo; Dai Yujie; Zhang Xiaoxing; Lue Yingjie

    2009-01-01

    Modeling and analysis of far field power extraction circuits for passive UHF RF identification (RFID) applications are presented. A mathematical model is derived to predict the complex nonlinear performance of UHF voltage multiplier using Schottky diodes. To reduce the complexity of the proposed model, a simple linear approximation for Schottky diode is introduced. Measurement results show considerable agreement with the values calculated by the proposed model. With the derived model, optimization on stage number for voltage multiplier to achieve maximum power conversion efficiency is discussed. Furthermore, according to the Bode-Fano criterion and the proposed model, a limitation on maximum power up range for passive UHF RFID power extraction circuits is also studied.

  9. Experimental Study on Inkjet-Printed Passive UHF RFID Tags on Versatile Paper-Based Substrates

    Directory of Open Access Journals (Sweden)

    Han He

    2016-01-01

    Full Text Available We present the possibilities and challenges of passive UHF RFID tag antennas manufactured by inkjet printing silver nanoparticle ink on versatile paper-based substrates. The most efficient manufacturing parameters, such as the pattern resolution, were determined and the optimal number of printed layers was evaluated for each substrate material. Next, inkjet-printed passive UHF RFID tags were fabricated on each substrate with the optimized parameters and number of layers. According to our measurements, the tags on different paper substrates showed peak read ranges of 4–6.5 meters and the tags on different cardboard substrates exhibited peak read ranges of 2–6 meters. Based on their wireless performance, these inkjet-printed paper-based passive UHF RFID tags are sufficient for many future wireless applications and comparable to tags fabricated on more traditional substrates, such as polyimide.

  10. The Anti-RFI Design of Intelligent Electric Energy Meters with UHF RFID

    Science.gov (United States)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng

    2018-03-01

    In order to solve the existing artificial meter reading watt-hour meter industry is still slow and inventory of common problems, using the uhf radio frequency identification (RFID) technology and intelligent watt-hour meter depth fusion, which has a one-time read multiple tags, identification distance, high transmission rate, high reliability, etc, while retaining the original asset management functions, in order to ensure the uhf RFID and minimum impact on the operation of the intelligent watt-hour meter, proposed to improve the stability of the electric meter system while working at the same time, this paper designs the uhf RFID intelligent watt-hour meter radio frequency interference resistance, put forward to improve intelligent watt-hour meter electromagnetic compatibility design train of thought, and introduced its power and the hardware circuit design of printed circuit board, etc.

  11. Singlet oxygen produced by quasi-continuous photo-excitation of hypericin in dimethyl-sulfoxide

    Energy Technology Data Exchange (ETDEWEB)

    Varchola, J.; Želonková, K. [Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); Chorvat Jr, D. [International Laser Centre, Ilkovicova 3, 841 05 Bratislava (Slovakia); Jancura, D. [Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); Center for Interdisciplinary Biosciences, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); Miskovsky, P. [Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); International Laser Centre, Ilkovicova 3, 841 05 Bratislava (Slovakia); Center for Interdisciplinary Biosciences, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); and others

    2016-09-15

    Singlet oxygen (O{sub 2}({sup 1}Δ{sub g})) production by photo-excited hypericin (Hyp) dissolved in dimethyl-sulfoxide (DMSO) was studied by means of time-resolved phosphorescence measurements. In order to minimize photo-bleaching, the samples were excited in quasi-continuous mode using long-pulse (35 μs) laser excitation. The measured lifetime of singlet oxygen is τ{sub Δ}=5.5±0.3 μs. This result helps to resolve the discrepancy existing in the literature concerning singlet oxygen lifetime in DMSO. The obtained quantum yield of singlet oxygen photosensitized by Hyp in air-saturated DMSO is Φ{sub Δ}=0.4±0.03. The rate constant for Hyp triplet state depopulation in reaction with ground state molecular oxygen is measured to be k{sub q}=1.6±0.3×10{sup 9} M{sup −1} s{sup −1}.

  12. Theoretical study of singlet oxygen molecule generation via an exciplex with valence-excited thiophene.

    Science.gov (United States)

    Sumita, Masato; Morihashi, Kenji

    2015-02-05

    Singlet-oxygen [O2((1)Δg)] generation by valence-excited thiophene (TPH) has been investigated using multireference Møller-Plesset second-order perturbation (MRMP2) theory of geometries optimized at the complete active space self-consistent field (CASSCF) theory level. Our results indicate that triplet TPH(1(3)B2) is produced via photoinduced singlet TPH(2(1)A1) because 2(1)A1 TPH shows a large spin-orbit coupling constant with the first triplet excited state (1(3)B2). The relaxed TPH in the 1(3)B2 state can form an exciplex with O2((3)Σg(-)) because this exciplex is energetically more stable than the relaxed TPH. The formation of the TPH(1(3)B2) exciplex with O2((3)Σg(-)) whose total spin multiplicity is triplet (T1 state) increases the likelihood of transition from the T1 state to the singlet ground or first excited singlet state. After the transition, O2((1)Δg) is emitted easily although the favorable product is that from a 2 + 4 cycloaddition reaction.

  13. Is the Chemical Strategy for Imbuing "Polyene" Character in Diketopyrrolopyrrole-Based Chromophores Sufficient for Singlet Fission?

    OpenAIRE

    Mukhopadhyay, T; Musser, AJ; Puttaraju, B; Dhar, J; Friend, Richard Henry; Patil, S

    2017-01-01

    In this work, we have rationally designed and synthesized a novel thiophene-diketopyrrolopyrrole (TDPP)-vinyl-based dimer. We have investigated the optical and electronic properties and have probed the photophysical dynamics using transient absorption to investigate the possibility of singlet exciton fission. These revealed extremely rapid decay to the ground state (

  14. High-power generator of singlet oxygen

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Čenský, Miroslav; Špalek, Otomar; Kodymová, Jarmila

    2013-01-01

    Roč. 36, č. 10 (2013), s. 1755-1763 ISSN 0930-7516 Grant - others:Laser Science and Technology Centre(IN) LASTEC/FE/RKT/54/10-11 Institutional research plan: CEZ:AV0Z10100523 Keywords : high-pressure singlet oxygen generator * spray generator * centrifugal separation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.175, year: 2013

  15. Analysis strategies for high-resolution UHF-fMRI data.

    Science.gov (United States)

    Polimeni, Jonathan R; Renvall, Ville; Zaretskaya, Natalia; Fischl, Bruce

    2018-03-01

    Functional MRI (fMRI) benefits from both increased sensitivity and specificity with increasing magnetic field strength, making it a key application for Ultra-High Field (UHF) MRI scanners. Most UHF-fMRI studies utilize the dramatic increases in sensitivity and specificity to acquire high-resolution data reaching sub-millimeter scales, which enable new classes of experiments to probe the functional organization of the human brain. This review article surveys advanced data analysis strategies developed for high-resolution fMRI at UHF. These include strategies designed to mitigate distortion and artifacts associated with higher fields in ways that attempt to preserve spatial resolution of the fMRI data, as well as recently introduced analysis techniques that are enabled by these extremely high-resolution data. Particular focus is placed on anatomically-informed analyses, including cortical surface-based analysis, which are powerful techniques that can guide each step of the analysis from preprocessing to statistical analysis to interpretation and visualization. New intracortical analysis techniques for laminar and columnar fMRI are also reviewed and discussed. Prospects for single-subject individualized analyses are also presented and discussed. Altogether, there are both specific challenges and opportunities presented by UHF-fMRI, and the use of proper analysis strategies can help these valuable data reach their full potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Comparison of UHF measurements with the propagation model of Recommendation ITU-R P.1546

    NARCIS (Netherlands)

    Witvliet, B.A.; Wijninga, P.W.; van Maanen, E.; Smith, B.

    2010-01-01

    This report describes a radio propagation measurement campaign that has been performed along paths between the Netherlands and the United Kingdom. The campaign focused on UHF propagation on mixed land/sea paths. Special attention was given to calibration accuracy and validation of the measurement

  17. Inkjet printing of UHF antennas on corrugated cardboards for packaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Sowade, Enrico, E-mail: enrico.sowade@mb.tu-chemnitz.de [Digital Printing and Imaging Technology, Technische Universität Chemnitz, Chemnitz (Germany); Göthel, Frank [Digital Printing and Imaging Technology, Technische Universität Chemnitz, Chemnitz (Germany); Zichner, Ralf [Department Printed Functionalities, Fraunhofer Institute for Electronic Nano Systems (ENAS), Chemnitz (Germany); Baumann, Reinhard R. [Digital Printing and Imaging Technology, Technische Universität Chemnitz, Chemnitz (Germany); Department Printed Functionalities, Fraunhofer Institute for Electronic Nano Systems (ENAS), Chemnitz (Germany)

    2015-03-30

    Highlights: • Inkjet printing of UHF antennas on cardboard substrates. • Development of primer layer to compensate the absorptiveness of the cardboard and the rough surface. • Manufacturing of UHF antennas in a fully digital manner for packaging applications. - Abstract: In this study, a method based on inkjet printing has been established to develop UHF antennas on a corrugated cardboard for packaging applications. The use of such a standardized, paper-based packaging substrate as material for printing electronics is challenging in terms of its high surface roughness and high ink absorption rate, especially when depositing very thin films with inkjet printing technology. However, we could obtain well-defined silver layers on the cardboard substrates due to a primer layer approach. The primer layer is based on a UV-curable ink formulation and deposited as well as the silver ink with inkjet printing technology. Industrial relevant printheads were chosen for the deposition of the materials. The usage of inkjet printing allows highest flexibility in terms of pattern design. The primer layer was proven to optimize the surface characteristics of the substrate, mainly reducing the surface roughness and water absorptiveness. Thanks to the primer layer approach, ultra-high-frequency (UHF) radio-frequency identification (RFID) antennas were deposited by inkjet printing on the corrugated cardboards. Along with the characterization and interpretation of electrical properties of the established conductive antenna patterns, the performance of the printed antennas were analyzed in detail by measuring the scattering parameter S{sub 11} and the antenna gain.

  18. A Broadband UHF Tag Antenna For Near-Field and Far-Field RFID Communications

    Directory of Open Access Journals (Sweden)

    M. Dhaouadi

    2014-12-01

    Full Text Available The paper deals with the design of passive broadband tag antenna for Ultra-High Frequency (UHF band. The antenna is intended for both near and far fields Radio Frequency Identification (RFID applications. The meander dipole tag antenna geometry modification is designed for frequency bandwidth increasing. The measured bandwidth of the proposed broadband Tag antenna is more than 140 MHz (820–960 MHz, which can cover the entire UHF RFID band. A comparison between chip impedance of datasheet and the measured chip impedance has been used in our simulations. The proposed progressive meandered antenna structure, with an overall size of 77 mm × 14 mm × 0.787 mm, produces strong and uniform magnetic field distribution in the near-field zone. The antenna impedance is matched to common UHF chips in market simply by tuning its capacitive and inductive values since a perfect matching is required in the antenna design in order to enhance the near and the far field communications. Measurements confirm that the designed antenna exhibits good performance of Tag identification for both near-field and far-field UHF RFID applications.

  19. The effects of single bit quantization on direction of arrival estimation of UHF RFID tags

    NARCIS (Netherlands)

    Huiting, J.; Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria

    2016-01-01

    Phased arrays can be used to estimate the direction-of-arrival (DOA) of UHF RFID tags. To save on energy consumption and hardware costs, in this paper we explore the possibility of using single bit analog-to-digital converters for our phased array setup. This setup consists of an off-the-shelf

  1. FSL based estimation of white space availability in UHF TV bands in Bergvliet, South Africa

    CSIR Research Space (South Africa)

    Lysko, AA

    2012-09-01

    Full Text Available in the UHF TV frequency bands. The free space loss (FSL) formula, together with a line of sight condition, are applied to the information about the location and power of TV transmitters around this area. The predictions show 61% correlation between...

  2. UHF Signal Processing and Pattern Recognition of Partial Discharge in Gas-Insulated Switchgear Using Chromatic Methodology.

    Science.gov (United States)

    Wang, Xiaohua; Li, Xi; Rong, Mingzhe; Xie, Dingli; Ding, Dan; Wang, Zhixiang

    2017-01-18

    The ultra-high frequency (UHF) method is widely used in insulation condition assessment. However, UHF signal processing algorithms are complicated and the size of the result is large, which hinders extracting features and recognizing partial discharge (PD) patterns. This article investigated the chromatic methodology that is novel in PD detection. The principle of chromatic methodologies in color science are introduced. The chromatic processing represents UHF signals sparsely. The UHF signals obtained from PD experiments were processed using chromatic methodology and characterized by three parameters in chromatic space ( H , L , and S representing dominant wavelength, signal strength, and saturation, respectively). The features of the UHF signals were studied hierarchically. The results showed that the chromatic parameters were consistent with conventional frequency domain parameters. The global chromatic parameters can be used to distinguish UHF signals acquired by different sensors, and they reveal the propagation properties of the UHF signal in the L-shaped gas-insulated switchgear (GIS). Finally, typical PD defect patterns had been recognized by using novel chromatic parameters in an actual GIS tank and good performance of recognition was achieved.

  3. Experimental Investigation on Propagation Characteristics of PD Radiated UHF Signal in Actual 252 kV GIS

    Directory of Open Access Journals (Sweden)

    Tianhui Li

    2017-07-01

    Full Text Available For partial discharge (PD diagnostics in gas insulated switchgears (GISs based on the ultra-high-frequency (UHF method, it is essential to study the attenuation characteristics of UHF signals so as to improve the application of the UHF technique. Currently, the performance of UHF has not been adequately considered in most experimental research, while the constructive conclusions about the installation and position of UHF sensors are relatively rare. In this research, by using a previously-designed broadband sensor, the output signal is detected and analyzed experimentally in a 252 kV GIS with L-shaped structure and disconnecting switch. Since the relative position of the sensor and the defect is usually fixed by prior research, three circumferential angle positions of the defect in cross section are performed. The results are studied by time, statistics and frequency analyses. This identifies that the discontinuity conductor of DS will lead to a rise of both the peak to peak value (Vpp and the transmission rate of the UHF signal. Then, the frequency analysis indicates that the reason for the distinction of signal amplitude and transmission rate is that the mode components of the PD signal are distinctively affected by the special structure of GIS. Finally, the optimal circumferential angle position of the UHF Sensor is given based on the comparison of transmission rates.

  4. Is the Chemical Strategy for Imbuing "Polyene" Character in Diketopyrrolopyrrole-Based Chromophores Sufficient for Singlet Fission?

    Science.gov (United States)

    Mukhopadhyay, Tushita; Musser, Andrew J; Puttaraju, Boregowda; Dhar, Joydeep; Friend, Richard H; Patil, Satish

    2017-03-02

    In this work, we have rationally designed and synthesized a novel thiophene-diketopyrrolopyrrole (TDPP)-vinyl-based dimer. We have investigated the optical and electronic properties and have probed the photophysical dynamics using transient absorption to investigate the possibility of singlet exciton fission. These revealed extremely rapid decay to the ground state (TDPP-V-TDPP under direct photoexcitation. This may be a consequence of significant singlet stabilization in the dimer, bringing it below the energy needed to form two triplets. Our studies on this model compound set valuable lessons for design of novel triplet-forming materials and highlight the need for more broadly applicable design principles.

  5. The development of efficient two-photon singlet oxygen sensitizers

    DEFF Research Database (Denmark)

    Nielsen, Christian Benedikt

    The development of efficient two-photon singlet oxygen sensitizers is addressed focusing on organic synthesis. Photophysical measurements were carried out on new lipophilic molecules, where two-photon absorption cross sections and singlet oxygen quantumyields were measured. Design principles...... for making efficient two-photon singlet oxygen sensitizers were then constructed from these results. Charge-transfer in the excited state of the prepared molecules was shown to play a pivotal role in the generationof singlet oxygen. This was established through studies of substituent effects on both...... the singlet oxygen yield and the two-photon absorption cross section, where it was revealed that a careful balancing of the amount of charge transfer present in theexcited state of the sensitizer is necessary to obtain both a high singlet oxygen quantum yield and a high two-photon cross section. An increasing...

  6. Probing color-singlet exchange at D0

    International Nuclear Information System (INIS)

    Abbott, B.; Abolins, M.; Acharya, B.S.

    1997-07-01

    We present latest preliminary results on hard color-singlet exchange in proton-antiproton collisions. The fraction of dijet events produced via color-singlet exchange is measured as a function of jet transverse energy, dijet pseudorapidity separation, and proton-antiproton center-of-mass energy. These results are qualitatively consistent with a color-singlet fraction that increases with increasing quark-initiated processes

  7. Molecular and Cell Mechanisms of Singlet Oxygen Effect on Biosystems

    OpenAIRE

    Martusevich А.А.; Peretyagin S.P.; Martusevich А.К.

    2012-01-01

    There has been considered a poorly studied form of activated oxygen — singlet oxygen. Its physicochemical properties (electron configuration of a molecule, reactive capacity, features) are analyzed, and enzymic and nonenzymic ways of singlet oxygen generation in body are specified. There are shown in detail biological effects of the compound as a regulator of cell activity including that determining the mechanism of apoptosis initiation. The relation of singlet oxygen and photodynamic effect ...

  8. Deep inelastic singlet structure functions and scaling violation

    Energy Technology Data Exchange (ETDEWEB)

    Wen-zhu, Li; Bing-xun, Hu

    1984-02-01

    The flavour singlet structure functions of deep inelastic scattering processes can yield more decisive tests of QCD than the non-singlet. We give analytical expression for flavour singlet structure functions through analysing the lepton-nucleon deep inelastic scattering processes by means of QCD and using Jacobi polynomials. This expression contains 4 to 5 parameters and shows the changes of the singlet structure functions with x and Q/sup 2/ very well. In QCD leading order, the conclusion is in reasonable agreement with experimental data.

  9. Astrophysical constraints on singlet scalars at LHC

    Science.gov (United States)

    Hertzberg, Mark P.; Masoumi, Ali

    2017-04-01

    We consider the viability of new heavy gauge singlet scalar particles at colliders such as the LHC . Our original motivation for this study came from the possibility of a new heavy particle of mass ~ TeV decaying significantly into two photons at colliders, such as LHC, but our analysis applies more broadly. We show that there are significant constraints from astrophysics and cosmology on the simplest UV complete models that incorporate such new particles and its associated collider signal. The simplest and most obvious UV complete model that incorporates such signals is that it arises from a new singlet scalar (or pseudo-scalar) coupled to a new electrically charged and colored heavy fermion. Here we show that these new fermions (and anti-fermions) would be produced in the early universe, then form new color singlet heavy mesons with light quarks, obtain a non-negligible freeze-out abundance, and remain in kinetic equilibrium until decoupling. These heavy mesons possess interesting phenomenology, dependent on their charge, including forming new bound states with electrons and protons. We show that a significant number of these heavy states would survive for the age of the universe and an appreciable number would eventually be contained within the earth and solar system. We show that this leads to detectable consequences, including the production of highly energetic events from annihilations on earth, new spectral lines, and, spectacularly, the destabilization of stars. The lack of detection of these consequences rules out such simple UV completions, putting pressure on the viability of such new particles at LHC . To incorporate such a scalar would require either much more complicated UV completions or even further new physics that provides a decay channel for the associated fermion.

  10. Astrophysical constraints on singlet scalars at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hertzberg, Mark P.; Masoumi, Ali, E-mail: mark.hertzberg@tufts.edu, E-mail: ali@cosmos.phy.tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2017-04-01

    We consider the viability of new heavy gauge singlet scalar particles at colliders such as the LHC . Our original motivation for this study came from the possibility of a new heavy particle of mass ∼ TeV decaying significantly into two photons at colliders, such as LHC, but our analysis applies more broadly. We show that there are significant constraints from astrophysics and cosmology on the simplest UV complete models that incorporate such new particles and its associated collider signal. The simplest and most obvious UV complete model that incorporates such signals is that it arises from a new singlet scalar (or pseudo-scalar) coupled to a new electrically charged and colored heavy fermion. Here we show that these new fermions (and anti-fermions) would be produced in the early universe, then form new color singlet heavy mesons with light quarks, obtain a non-negligible freeze-out abundance, and remain in kinetic equilibrium until decoupling. These heavy mesons possess interesting phenomenology, dependent on their charge, including forming new bound states with electrons and protons. We show that a significant number of these heavy states would survive for the age of the universe and an appreciable number would eventually be contained within the earth and solar system. We show that this leads to detectable consequences, including the production of highly energetic events from annihilations on earth, new spectral lines, and, spectacularly, the destabilization of stars. The lack of detection of these consequences rules out such simple UV completions, putting pressure on the viability of such new particles at LHC . To incorporate such a scalar would require either much more complicated UV completions or even further new physics that provides a decay channel for the associated fermion.

  11. Singlet exciton interactions in crystalline naphthalene

    International Nuclear Information System (INIS)

    Heisel, F.; Miehe, J.A.; Sipp, B.

    1978-01-01

    The decay of prompt fluorescence in crystalline naphthalene at 300 K, excited by picosecond 266 nm pulse, has been studied as a function of excitation intensity. Experimental decay curves can be fitted only when the exponential distribution in depth of excitation and the radial (gaussian) intensity profile of the excitation are both taken into account. From analysis of decay at early time ( -10 cm 3 s -1 . If the reaction is diffusion-limited, this rate implies an average singlet diffusivity Dsub(S)=(2+-1)10 -4 cm 2 s -1

  12. Singlet deflected anomaly/gauge mediation

    International Nuclear Information System (INIS)

    Blas, J. de; Delgado, A.

    2012-01-01

    We study an extension of the standard anomaly/gauge mediation scenario where the messenger fields have direct interactions with an extra gauge singlet. This realizes a phenomenologically viable NMSSM-like scenario free of the μ-b μ problem. Current cosmological constraints imply a small size for the anomaly-mediation contributions, unless some source of R-parity violation is permitted. In the latter case the allowed regions in the parameter space can be substantially larger than in the corresponding gauge-mediation scenario.

  13. Intramolecular singlet-singlet energy transfer in antenna-substituted azoalkanes.

    Science.gov (United States)

    Pischel, Uwe; Huang, Fang; Nau, Werner M

    2004-03-01

    Two novel azoalkane bichromophores and related model compounds have been synthesised and photophysically characterised. Dimethylphenylsiloxy (DPSO) or dimethylnaphthylsiloxy (DNSO) serve as aromatic donor groups (antenna) and the azoalkane 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) as the acceptor. The UV spectral window of DBO (250-300 nm) allows selective excitation of the donor. Intramolecular singlet-singlet energy transfer to DBO is highly efficient and proceeds with quantum yields of 0.76 with DPSO and 0.99 with DNSO. The photophysical and spectral properties of the bichromophoric systems suggest that energy transfer occurs through diffusional approach of the donor and acceptor within a van der Waals contact at which the exchange mechanism is presumed to dominate. Furthermore, akin to the behaviour of electron-transfer systems in the Marcus inverted region, a rate of energy transfer 2.5 times slower was observed for the system with the more favourable energetics, i.e. singlet-singlet energy transfer from DPSO proceeded slower than from DNSO, although the process is more exergonic for DPSO (-142 kJ mol(-1) for DPSO versus-67 kJ mol(-1) for DNSO).

  14. Actinide chemistry using singlet-paired coupled cluster and its combinations with density functionals

    Science.gov (United States)

    Garza, Alejandro J.; Sousa Alencar, Ana G.; Scuseria, Gustavo E.

    2015-12-01

    Singlet-paired coupled cluster doubles (CCD0) is a simplification of CCD that relinquishes a fraction of dynamic correlation in order to be able to describe static correlation. Combinations of CCD0 with density functionals that recover specifically the dynamic correlation missing in the former have also been developed recently. Here, we assess the accuracy of CCD0 and CCD0+DFT (and variants of these using Brueckner orbitals) as compared to well-established quantum chemical methods for describing ground-state properties of singlet actinide molecules. The f0 actinyl series (UO22+, NpO23+, PuO24+), the isoelectronic NUN, and thorium (ThO, ThO2+) and nobelium (NoO, NoO2) oxides are studied.

  15. Miniaturized UHF, S-, and Ka-band RF MEMS Filters for Small Form Factor, High Performance EVA Radio, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase II of this SBIR, Harmonic Devices (HDI) proposes to develop miniaturized MEMS filters at UHF, S-band and Ka-band to address the requirements of NASA's...

  16. Dibenzoheptazethrene isomers with different biradical characters: An exercise of clar's aromatic sextet rule in singlet biradicaloids

    KAUST Repository

    Sun, Zhe

    2013-12-04

    Clar\\'s aromatic sextet rule has been widely used for the prediction of the reactivity and stability of polycyclic aromatic hydrocarbons with a closed-shell electronic configuration. Recent advances in open-shell biradicaloids have shown that the number of aromatic sextet rings plays an important role in determination of their ground states. In order to test the validity of this rule in singlet biradicaloids, the two soluble and stable dibenzoheptazethrene isomers DBHZ1 and DBHZ2 were prepared by different synthetic approaches and isolated in crystalline form. These two molecules have different numbers of aromatic sextet rings in their respective biradical resonance forms and thus are expected to exhibit varied singlet biradical character. This assumption was verified by different experimental methods, including nuclear magnetic resonance (NMR), electron spin resonance (ESR), superconducting quantum interference device (SQUID), steady-state and transient absorption spectroscopy (TA), and X-ray crystallographic analysis, assisted by unrestricted symmetry-broken density functional theory (DFT) calculations. DBHZ2, with more aromatic sextet rings in the biradical form, was demonstrated to possess greater biradical character than DBHZ1; as a result, DBHZ2 exhibited an intense one-photon absorption (OPA) in the near-infrared region (λabs max = 804 nm) and a large two-photon absorption (TPA) cross-section (σ(2)max = 2800 GM at 1600 nm). This investigation together with previous studies indicates that Clar\\'s aromatic sextet rule can be further extended to the singlet biradicaloids to predict their ground states and singlet biradical characters. © 2013 American Chemical Society.

  17. Stability of singlet and triplet trions in carbon nanotubes

    International Nuclear Information System (INIS)

    Ronnow, Troels F.; Pedersen, Thomas G.; Cornean, Horia D.

    2009-01-01

    We investigate singlet and triplet trion states in semiconducting carbon nanotubes using a one-dimensional model. It is concluded that singlet trion states in bind up to 13.6% stronger than exciton states, and that they lower the optical transition energy with up to 50% of the tight binding band gap energy.

  18. Stability of singlet and triplet trions in carbon nanotubes

    DEFF Research Database (Denmark)

    Rønnow, Troels Frimodt; Pedersen, Thomas Garm; Cornean, Horia

    2009-01-01

    We investigate singlet and triplet trion states in semiconducting carbon nanotubes using a one-dimensional model. It is concluded that singlet trion states in bind up to 13.5% stronger than exciton states, and that they lower the optical transition energy with up to 50% of the tight binding band...

  19. A Compact RFID Reader Antenna for UHF Near-Field and Far-Field Operations

    Directory of Open Access Journals (Sweden)

    Lai Xiao zheng

    2013-01-01

    Full Text Available A compact loop antenna is presented for mobile ultrahigh frequency (UHF radio frequency identification (RFID application. This antenna, printed on a 0.8 mm thick FR4 substrate with a small size of 31 mm × 31 mm, achieves good impedance bandwidth from 897 to 928 MHz, which covers USA RFID Band (902–928 MHz. The proposed loop configuration, with a split-ring resonator (SRR coupled inside it, demonstrates strong and uniform magnetic field distribution in the near-field antenna region. Its linearly polarized radiation pattern provides available far-field gain. Finally, the reading capabilities of antenna are up to 56 mm for near-field and 1.05 m for far-field UHF RFID operations, respectively.

  20. Investigating Feasibility of Multiple UHF Passive RFID Transmitters Using Backscatter Modulation Scheme in BCI Applications

    DEFF Research Database (Denmark)

    Al Ajrawi, Shams; Sarkar, Mahasweta; Mihovska, Albena

    Building a wireless body area network (WBAN) application including implantable transceivers placed inside the human brain to collect the data from the electrodes and transmit them wirelessly to a controller placed outside the brain on the scalp faced major challenges. The transmission...... using passive RFID as the implantable transmitters and letting them operate in the UHF range. Backscatter modulation has been used as a power transfer mechanism. Investigation on the feasibility and applicability of implantable UHF Passive RFID transmitters inside the brain is done for capturing multi......-channel ECoG signals when traversing through a phantom brain model as a transmission medium for the experiments at a high data transfer rate. Detailed analysis has been done on parameters such as Received Signal Strength Indication (RSSI), signal to noise ratio (SNR), Maximum number of electrodes, Path Loss...

  1. Characterization of inkjet-printing HF and UHF antennas for RFID applications

    Science.gov (United States)

    Tarapata, Grzegorz; Paczesny, Daniel; Kawecki, Krzysztof

    2013-10-01

    The aim of this work was to perform a set of RFID antennas on flexible plastic substrates designed for range of HF and UHF band. The samples was fabricated using inkjet printing technology and conductive material base on silver nanopartilces ink. Fabricated antennas have been characterized, and the results were compared with the parameters of antennas made with usage of classical PCB technology on FR4 laminate with copper metallization. The paper presents studies on the impact of elastic substrates and conductive materials on antennas electrical parameters, as well as the communication range of the resulting RFID tags. During the experiment two patterns of HF and three patterns of UHF antennas was examined and the antennas was realized on different types of substrates, such as PET, Kapton® and FR4.

  2. Calibration of ultra-high frequency (UHF) partial discharge sensors using FDTD method

    Science.gov (United States)

    Ishak, Asnor Mazuan; Ishak, Mohd Taufiq

    2018-02-01

    Ultra-high frequency (UHF) partial discharge sensors are widely used for conditioning monitoring and defect location in insulation system of high voltage equipment. Designing sensors for specific applications often requires an iterative process of manufacturing, testing and mechanical modifications. This paper demonstrates the use of finite-difference time-domain (FDTD) technique as a tool to predict the frequency response of UHF PD sensors. Using this approach, the design process can be simplified and parametric studies can be conducted in order to assess the influence of component dimensions and material properties on the sensor response. The modelling approach is validated using gigahertz transverse electromagnetic (GTEM) calibration system. The use of a transient excitation source is particularly suitable for modeling using FDTD, which is able to simulate the step response output voltage of the sensor from which the frequency response is obtained using the same post-processing applied to the physical measurement.

  3. Assessment of immunomodulating action of combined therapy with UHF-hyperthermia in children with osteogenic sarcoma

    International Nuclear Information System (INIS)

    Neprina, G.S.; Panteleeva, E.S.; Vatin, O.E.; Bizer, V.A.; Bojko, I.N.

    1989-01-01

    The paper is concerned with immunological evaluation of different stages of combined therapy with local UHF-hyperthermia in children with osteogenic sarcoma. Combined therapy (polychemo- and raditherapy) was shown to cause a decrease in the number of immunocompetent cells, to enhance dysbalance of immunoregulatory T-lymphocytes, to weaken T-lymphocyte function on PHA; immunosuppressive action of combined therapy did not depend on a tumor site. The incorporation of UHF-hyperthermia in the therapeutic scheme weakened the manifestations of secondary immunodeficiency, got back to normal structure of T-lymphocyte population. A favorable immunomodulating effect of hyperthermia was more frequently observed in patients with crural bone tumors. The effect of hyperthermia was revealed after direct influence of thermotherapy but it was absent in continuation of combined treatment

  4. UHF RFID tag implementation on cork substrate for wine bottle monitoring

    OpenAIRE

    Rima Martí, Sergi; Georgiadis, Apostolos

    2013-01-01

    Wine industry is starting to deploy RFID technology for production control, logistics or innovative marketing. However, identifying wine bottles is difficult due to the unfavorable material content for the operation of the antennas. The thesis consists on the implementation of a UHF RFID tag placed on cork substrate in order to provide a feasible way of identifying wine packaged bottle. The proposed RFID tag consists on a meandered line dipole antenna, designed to be conformed so that it can ...

  5. Un sistema RFID in banda UHF per l'autoprestito in Biblioteca

    OpenAIRE

    Ricci, Franco; Crisanti, Andrea

    2009-01-01

    Department of Physics and CASPUR have been starting, in the past 2 years, a collaborationin order to develop a new RFID (Radio Frequency IDentification) system for automaticlibrary loan procedures. These systems (generally known as self-checkequipments) uses radio signals in the UHF frequency range to interact with antennas(passive tags) used to identify books. Users identification is made through special cardswith an embedded tag. The entire loan process is completely managed by users throug...

  6. Magnetism of singlet - singlet ions interacting with an electron gas: application to PrAl2

    International Nuclear Information System (INIS)

    Palermo, L.

    1986-01-01

    Various magnetic quantities are investigated for a system consisting of singlet-singlet ions interacting with an electron gas. In obtaining the magnetic state equations, the molecular field approximation is used. At T=0, an onset magnetic order condition in function of crystal field and exchange parameters and eletronic density of states at Fermi level is derived. A parametric study of the model is performed numerically. Main results are shown on diagrams. From the experimental data existent in the literature for magnetisation, susceptibility and magnetic specific heat of the PrAl 2 , a fitting with the model predictions is obtained using the following parameters: exchange interaction: 611meV; crystal field parameters: 2,5 meV; band with: 10 eV (of a rectangular density of states with 0,8 el/atom). (author) [pt

  7. Singlet oxygen-mediated protein oxidation

    DEFF Research Database (Denmark)

    Wright, Adam; Bubb, William A; Hawkins, Clare Louise

    2002-01-01

    Singlet oxygen (1O2) is generated by a number of enzymes as well as by UV or visible light in the presence of a sensitizer and has been proposed as a damaging agent in a number of pathologies including cataract, sunburn, and skin cancers. Proteins, and Cys, Met, Trp, Tyr and His side chains...... in particular, are major targets for 1O2 as a result of their abundance and high rate constants for reaction. In this study it is shown that long-lived peroxides are formed on free Tyr, Tyr residues in peptides and proteins, and model compounds on exposure to 1O2 generated by both photochemical and chemical....... These studies demonstrate that long-lived Tyr-derived peroxides are formed on proteins exposed to 1O2 and that these may promote damage to other targets via further radical generation....

  8. Complex singlet extension of the standard model

    International Nuclear Information System (INIS)

    Barger, Vernon; McCaskey, Mathew; Langacker, Paul; Ramsey-Musolf, Michael; Shaughnessy, Gabe

    2009-01-01

    We analyze a simple extension of the standard model (SM) obtained by adding a complex singlet to the scalar sector (cxSM). We show that the cxSM can contain one or two viable cold dark matter candidates and analyze the conditions on the parameters of the scalar potential that yield the observed relic density. When the cxSM potential contains a global U(1) symmetry that is both softly and spontaneously broken, it contains both a viable dark matter candidate and the ingredients necessary for a strong first order electroweak phase transition as needed for electroweak baryogenesis. We also study the implications of the model for discovery of a Higgs boson at the Large Hadron Collider.

  9. Metal bacteriochlorins which act as dual singlet oxygen and superoxide generators.

    Science.gov (United States)

    Fukuzumi, Shunichi; Ohkubo, Kei; Zheng, Xiang; Chen, Yihui; Pandey, Ravindra K; Zhan, Riqiang; Kadish, Karl M

    2008-03-06

    A series of stable free-base, Zn(II) and Pd(II) bacteriochlorins containing a fused six- or five-member diketo- or imide ring have been synthesized as good candidates for photodynamic therapy sensitizers, and their electrochemical, photophysical, and photochemical properties were examined. Photoexcitation of the palladium bacteriochlorin affords the triplet excited state without fluorescence emission, resulting in formation of singlet oxygen with a high quantum yield due to the heavy atom effect of palladium. Electrochemical studies revealed that the zinc bacteriochlorin has the smallest HOMO-LUMO gap of the investigated compounds, and this value is significantly lower than the triplet excited-state energy of the compound in benzonitrile. Such a small HOMO-LUMO gap of the zinc bacteriochlorin enables intermolecular photoinduced electron transfer from the triplet excited state to the ground state to produce both the radical cation and the radical anion. The radical anion thus produced can transfer an electron to molecular oxygen to produce superoxide anion which was detected by electron spin resonance. The same photosensitizer can also act as an efficient singlet oxygen generator. Thus, the same zinc bacteriochlorin can function as a sensitizer with a dual role in that it produces both singlet oxygen and superoxide anion in an aprotic solvent (benzonitrile).

  10. The electroweak phase transition in models with gauge singlets

    International Nuclear Information System (INIS)

    Ahriche, A.

    2007-01-01

    A strong first order phase transition is needed for generating the baryon asymmetry; and also to save it during the electroweak phase transition (EWPT). However this condition is not fulfilled within the Standard Model (SM), but in its extensions. It is widely believed that the existence of singlet scalars in some Standard Model extensions can easily make the EWPT strongly first order. In this work, we will examine the strength of the EWPT in the simplest extension of the SM with a real gauge singlet using the sphaleron energy at the critical temperature. We find that the phase transition is stronger by adding a singlet; and also that the criterion for a strong phase transition Ω(T c )/T c >or similar 1, where Ω = (v 2 + (x - x 0 ) 2 ) ( 1)/(2) and x(x 0 ) is the singlet vacuum expectation value in the broken (symmetric) phase, is not valid for models containing singlets, even though often used in the literature. The usual condition v c /T c >or similar 1 is more meaningful, and it is satisfied for the major part of the parameter space for physically allowed Higgs masses. Then it is convenient to study the EWPT in models with singlets that couple only to the Higgs doublets, by replacing the singlets by their vevs. (orig.)

  11. The electroweak phase transition in models with gauge singlets

    Energy Technology Data Exchange (ETDEWEB)

    Ahriche, A.

    2007-04-18

    A strong first order phase transition is needed for generating the baryon asymmetry; and also to save it during the electroweak phase transition (EWPT). However this condition is not fulfilled within the Standard Model (SM), but in its extensions. It is widely believed that the existence of singlet scalars in some Standard Model extensions can easily make the EWPT strongly first order. In this work, we will examine the strength of the EWPT in the simplest extension of the SM with a real gauge singlet using the sphaleron energy at the critical temperature. We find that the phase transition is stronger by adding a singlet; and also that the criterion for a strong phase transition {omega}(T{sub c})/T{sub c} >or similar 1, where {omega} = (v{sup 2} + (x - x{sub 0}){sup 2}){sup (}1)/(2) and x(x{sub 0}) is the singlet vacuum expectation value in the broken (symmetric) phase, is not valid for models containing singlets, even though often used in the literature. The usual condition v{sub c}/T{sub c} >or similar 1 is more meaningful, and it is satisfied for the major part of the parameter space for physically allowed Higgs masses. Then it is convenient to study the EWPT in models with singlets that couple only to the Higgs doublets, by replacing the singlets by their vevs. (orig.)

  12. Singlet Extensions of the MSSM with ℤ4R Symmetry

    International Nuclear Information System (INIS)

    Ratz, Michael; Vaudrevange, Patrick K. S.

    2015-01-01

    We discuss singlet extensions of the MSSM with ℤ 4 R symmetry. We show that holomorphic zeros can avoid a potentially large coefficient of the term linear in the singlet. The emerging model has both an effective μ term and a supersymmetric mass term for the singlet μ N which are controlled by the gravitino mass. The μ term turns out to be suppressed against μ N by about one or two orders of magnitude. We argue that this class of models might provide us with a solution to the little hierarchy problem of the MSSM

  13. Optical detection of singlet oxygen from single cells

    DEFF Research Database (Denmark)

    Snyder, John; Skovsen, Esben; Lambert, John D. C.

    2006-01-01

    The lowest excited electronic state of molecular oxygen, singlet molecular oxygen, O2(a 1g), is a reactive species involved in many chemical and biological processes. To better understand the roles played by singlet oxygen in biological systems, particularly at the sub-cellular level, optical tools...... including across the cell membrane into the extracellular environment. On one hand, these results demonstrate that the behavior of singlet oxygen in an intact cell can be significantly different from that inferred from model bulk studies. More generally, these results provide a new perspective...

  14. Photochemical Dynamics of Intramolecular Singlet Fission

    Science.gov (United States)

    Lin, Zhou; Iwasaki, Hikari; Van Voorhis, Troy

    2017-06-01

    Singlet fission (SF) converts a singlet exciton (S_1) into a pair of triplet ones (T_1) via a ``multi-exciton'' (ME) intermediate: S_1 \\longleftrightarrow ^1ME \\longleftrightarrow ^1(T_1T_1) \\longrightarrow 2T_1. In exothermic cases, e.g., crystalline pentacene or its derivatives, the quantum yield of SF can reach 200%. With SF doubling the electric current generated by an incident high-energy photon, the solar conversion efficiency in pentacene-based organic photovoltaics (OPVs) can exceed the Shockley-Queisser limit of 33.7%. The ME state is popularly considered to be a dimeric state with significant charge transfer (CT) character that is strongly coupled to both S_1 and ^1(T_1T_1), while this local model lacks strong support from full quantum dynamics studies. Intramolecular SF (ISF) occurring to covalently-bound dimers in the solution phase is an excellent model for a straightforward dynamics simulation of local excitons. In the present study, we investigate the ISF mechanisms for three covalently-bound dimers of pentacene derivatives, including ortho-, meta-, and para-bis(6,13-bis(triisopropylsilylethynyl)pentacene)benzene, in non-protic solvents. Specifically, we propagate the real-time, non-adiabatic quantum mechanical/molecular mechanical (QM/MM) dynamics on the potential energy surfaces associated with the states of S_1, ^1(T_1T_1) and CT. We explore how the energies of these ISF-relevant states and the non-adiabatic couplings between each other fluctuate with time and the instantaneous molecular configuration (e.g., intermonomer distance and orientation). We also quantitatively compare Condon and non-Condon ISF dynamics with solution-phase spectroscopic data. Our results allow us to understand the roles of CT energy levels in the ISF mechanism and propose a design strategy to maximize ISF efficiency. M. B. Smith and J. Michl, Chem. Rev. 110, 6891 (2010). W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961). T. C. Berkelbach, M. S. Hybertsen

  15. Hyperpolarized singlet NMR on a small animal imaging system

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Pileio, Giuseppe; Tayler, Michael C. D.

    2012-01-01

    Nuclear spin hyperpolarization makes a significant advance toward overcoming the sensitivity limitations of in vivo magnetic resonance imaging, particularly in the case of low-gamma nuclei. The sensitivity may be improved further by storing the hyperpolarization in slowly relaxing singlet...... populations of spin- 1/2 pairs. Here, we report hyperpolarized 13C spin order transferred into and retrieved from singlet spin order using a small animal magnetic resonance imaging scanner. For spins in sites with very similar chemical shifts, singlet spin order is sustained in high magnetic field without...... requiring strong radiofrequency irradiation. The demonstration of robust singlet-to-magnetization conversion, and vice versa, on a small animal scanner, is promising for future in vivo and clinical deployments....

  16. Microscopic theory of singlet exciton fission. III. Crystalline pentacene

    International Nuclear Information System (INIS)

    Berkelbach, Timothy C.; Reichman, David R.; Hybertsen, Mark S.

    2014-01-01

    We extend our previous work on singlet exciton fission in isolated dimers to the case of crystalline materials, focusing on pentacene as a canonical and concrete example. We discuss the proper interpretation of the character of low-lying excited states of relevance to singlet fission. In particular, we consider a variety of metrics for measuring charge-transfer character, conclusively demonstrating significant charge-transfer character in the low-lying excited states. The impact of this electronic structure on the subsequent singlet fission dynamics is assessed by performing real-time master-equation calculations involving hundreds of quantum states. We make direct comparisons with experimental absorption spectra and singlet fission rates, finding good quantitative agreement in both cases, and we discuss the mechanistic distinctions that exist between small isolated aggregates and bulk systems

  17. Microscopic theory of singlet exciton fission. III. Crystalline pentacene

    Energy Technology Data Exchange (ETDEWEB)

    Berkelbach, Timothy C., E-mail: tcb2112@columbia.edu; Reichman, David R., E-mail: drr2103@columbia.edu [Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027 (United States); Hybertsen, Mark S., E-mail: mhyberts@bnl.gov [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    2014-08-21

    We extend our previous work on singlet exciton fission in isolated dimers to the case of crystalline materials, focusing on pentacene as a canonical and concrete example. We discuss the proper interpretation of the character of low-lying excited states of relevance to singlet fission. In particular, we consider a variety of metrics for measuring charge-transfer character, conclusively demonstrating significant charge-transfer character in the low-lying excited states. The impact of this electronic structure on the subsequent singlet fission dynamics is assessed by performing real-time master-equation calculations involving hundreds of quantum states. We make direct comparisons with experimental absorption spectra and singlet fission rates, finding good quantitative agreement in both cases, and we discuss the mechanistic distinctions that exist between small isolated aggregates and bulk systems.

  18. Antiaromatic bisindeno-[n]thienoacenes with small singlet biradical characters: Syntheses, structures and chain length dependent physical properties

    KAUST Repository

    Shi, Xueliang

    2014-01-01

    Recent studies demonstrated that aromaticity and biradical character play important roles in determining the ground-state structures and physical properties of quinoidal polycyclic hydrocarbons and oligothiophenes, a kind of molecular materials showing promising applications for organic electronics, photonics and spintronics. In this work, we designed and synthesized a new type of hybrid system, the so-called bisindeno-[n]thienoacenes (n = 1-4), by annulation of quinoidal fused α-oligothiophenes with two indene units. The obtained molecules can be regarded as antiaromatic systems containing 4n π electrons with small singlet biradical character (y0). Their ground-state geometry and electronic structures were studied by X-ray crystallographic analysis, NMR, ESR and Raman spectroscopy, assisted by density functional theory calculations. With extension of the chain length, the molecules showed a gradual increase of the singlet biradical character accompanied by decreased antiaromaticity, finally leading to a highly reactive bisindeno[4]thienoacene (S4-TIPS) which has a singlet biradical ground state (y0= 0.202). Their optical and electronic properties in the neutral and charged states were systematically investigated by one-photon absorption, two-photon absorption, transient absorption spectroscopy, cyclic voltammetry and spectroelectrochemistry, which could be correlated to the chain length dependent antiaromaticity and biradical character. Our detailed studies revealed a clear structure-aromaticity-biradical character-physical properties-reactivity relationship, which is of importance for tailored material design in the future. This journal is

  19. 4-spin plaquette singlet state in the Shastry-Sutherland compound SrCu2(BO3)2

    Science.gov (United States)

    Zayed, M. E.; Rüegg, Ch.; Larrea J., J.; Läuchli, A. M.; Panagopoulos, C.; Saxena, S. S.; Ellerby, M.; McMorrow, D. F.; Strässle, Th.; Klotz, S.; Hamel, G.; Sadykov, R. A.; Pomjakushin, V.; Boehm, M.; Jiménez-Ruiz, M.; Schneidewind, A.; Pomjakushina, E.; Stingaciu, M.; Conder, K.; Rønnow, H. M.

    2017-10-01

    The study of interacting spin systems is of fundamental importance for modern condensed-matter physics. On frustrated lattices, magnetic exchange interactions cannot be simultaneously satisfied, and often give rise to competing exotic ground states. The frustrated two-dimensional Shastry-Sutherland lattice realized by SrCu2(BO3)2 (refs ,) is an important test case for our understanding of quantum magnetism. It was constructed to have an exactly solvable 2-spin dimer singlet ground state within a certain range of exchange parameters and frustration. While the exact dimer state and the antiferromagnetic order at both ends of the phase diagram are well known, the ground state and spin correlations in the intermediate frustration range have been widely debated. We report here the first experimental identification of the conjectured plaquette singlet intermediate phase in SrCu2(BO3)2. It is observed by inelastic neutron scattering after pressure tuning to 21.5 kbar. This gapped singlet state leads to a transition to long-range antiferromagnetic order above 40 kbar, consistent with the existence of a deconfined quantum critical point.

  20. 2HDM portal for Singlet-Doublet Dark Matter

    OpenAIRE

    Arcadi, Giorgio

    2018-01-01

    We present an extensive analysis of a model in which the (Majorana) Dark Matter candidate is a mixture between a SU(2) singlet and two SU(2) doublets. This kind of setup takes the name of singlet-doublet model. We will investigate in detail an extension of this model in which the Dark Matter sector interactions with a 2-doublet Higgs sector enforcing the complementarity between Dark Matter phenomenology and searches of extra Higgs bosons.

  1. Singlet Fission in Rubrene Derivatives: Impact of Molecular Packing

    KAUST Repository

    Sutton, Christopher

    2017-03-13

    We examine the properties of six recently synthesized rubrene derivatives (with substitutions on the side phenyl rings) that show vastly different crystal structures. In order to understand how packing in the solid state affects the excited states and couplings relevant for singlet fission, the lowest excited singlet (S), triplet (T), multiexciton (TT), and charge-transfer (CT) states of the rubrene derivatives are compared to known singlet fission materials [tetracene, pentacene, 5,12-diphenyltetracene (DPT), and rubrene itself]. While a small difference of less than 0.2 eV is calculated for the S and TT energies, a range of 0.50 to 1.2 eV in the CT energies and nearly 3 orders of magnitude in the electronic couplings are computed for the rubrene derivatives in their crystalline packings, which strongly affects the role of the CT state in facilitating SF. To rationalize experimental observations of singlet fission occurring in amorphous phases of rubrene, DPT, and tetracene, we use molecular dynamics (MD) simulations to assess the impact of molecular packing and orientations and to gain a better understanding of the parameters that control singlet fission in amorphous films compared to crystalline packings. The MD simulations point to a crystalline-like packing for thin films of tetracene; on the other hand, DPT, rubrene, and the rubrene derivatives all show various degrees of disorder with a number of sites that have larger electronic couplings than in the crystal, which can facilitate singlet fission in such thin films. Our analysis underlines the potential of these materials as promising candidates for singlet fission and helps understand how various structural motifs affect the critical parameters that control the ability of a system to undergo singlet fission.

  2. Singlet-oxygen therapy. Scientific and methodological materials

    OpenAIRE

    Chukhraiev, N.; Chukhraieva, E.; Gun'ko, M.; Kurik, L.; Lomeiko, S.; Marushko, Y.; Samosyuk, N.; Tkalina, A.; Vladimirov, A.; Unichenko, A.; Zavorotnaya, R.; Zukow, W.

    2018-01-01

    Radomska Szkoła Wyższa w Radomiu MEDICAL INNOVATIVE TECHNOLOGIES SINGLET-OXYGEN THERAPY Scientific and methodological materials 2018 This edition had extended and translated from ukrainian Edited by Chukhraiev N., Vladimirov A., Zukow W. Radom, Kyiv Radomska Szkoła Wyższa w Radomiu MEDICAL INNOVATIVE TECHNOLOGIES SINGLET-OXYGEN THERAPY Scientific and methodological materials 2018 This edition had extended and translated from ukrainian Edited by ...

  3. Partial Discharge Spectral Characterization in HF, VHF and UHF Bands Using Particle Swarm Optimization.

    Science.gov (United States)

    Robles, Guillermo; Fresno, José Manuel; Martínez-Tarifa, Juan Manuel; Ardila-Rey, Jorge Alfredo; Parrado-Hernández, Emilio

    2018-03-01

    The measurement of partial discharge (PD) signals in the radio frequency (RF) range has gained popularity among utilities and specialized monitoring companies in recent years. Unfortunately, in most of the occasions the data are hidden by noise and coupled interferences that hinder their interpretation and renders them useless especially in acquisition systems in the ultra high frequency (UHF) band where the signals of interest are weak. This paper is focused on a method that uses a selective spectral signal characterization to feature each signal, type of partial discharge or interferences/noise, with the power contained in the most representative frequency bands. The technique can be considered as a dimensionality reduction problem where all the energy information contained in the frequency components is condensed in a reduced number of UHF or high frequency (HF) and very high frequency (VHF) bands. In general, dimensionality reduction methods make the interpretation of results a difficult task because the inherent physical nature of the signal is lost in the process. The proposed selective spectral characterization is a preprocessing tool that facilitates further main processing. The starting point is a clustering of signals that could form the core of a PD monitoring system. Therefore, the dimensionality reduction technique should discover the best frequency bands to enhance the affinity between signals in the same cluster and the differences between signals in different clusters. This is done maximizing the minimum Mahalanobis distance between clusters using particle swarm optimization (PSO). The tool is tested with three sets of experimental signals to demonstrate its capabilities in separating noise and PDs with low signal-to-noise ratio and separating different types of partial discharges measured in the UHF and HF/VHF bands.

  4. Singlet oxygen: photosensitized generation, detection and reaction with organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Barik, Atanu; Indira Priyadarsini, K; Mohan, Hari; Bajaj, P N; Sapre, A V; Mittal, J P; Mukherjee, T [Radiation and Photochemistry Div., Bhabha Atomic Research Centre, Mumbai (India)

    2006-10-15

    Singlet molecular oxygen ({sup 1}O{sub 2}) is an excited state of molecular oxygen, having antiparallel spin in the same {pi} antibonding orbital. The study of singlet oxygen production and reactivity has emerged as a rich and diverse area, with implication in diverse fields, such as synthetic chemistry, polymer chemistry, photodynamic therapy, etc. There are several known methods to produce singlet oxygen, and also various techniques employed to detect it. Out of these, photosensitization method is the most popular one. In this article, photosensitized production of singlet oxygen from triplet oxygen and photosensitizers in presence of light, and its detection by the infrared luminescence at 1270 nm have been presented. Further, some results using different types of photosensitizers, effect of solvent on singlet oxygen quantum yields and lifetime have been discussed. The quenching rate constants of singlet oxygen have been determined with different types of organic molecules such as derivatives of thiourea and its analogues, hydroxy indoles and antioxidants and the results have been presented. (author)

  5. Singlet oxygen: photosensitized generation, detection and reaction with organic molecules

    International Nuclear Information System (INIS)

    Barik, Atanu; Indira Priyadarsini, K.; Hari Mohan; Bajaj, P.N.; Sapre, A.V.; Mittal, J.P.; Mukherjee, T.

    2006-10-01

    Singlet molecular oxygen ( 1 O 2 ) is an excited state of molecular oxygen, having antiparallel spin in the same π antibonding orbital. The study of singlet oxygen production and reactivity has emerged as a rich and diverse area, with implication in diverse fields, such as synthetic chemistry, polymer chemistry, photodynamic therapy, etc. There are several known methods to produce singlet oxygen, and also various techniques employed to detect it. Out of these, photosensitization method is the most popular one. In this article, photosensitized production of singlet oxygen from triplet oxygen and photosensitizers in presence of light, and its detection by the infrared luminescence at 1270 nm have been presented. Further, some results using different types of photosensitizers, effect of solvent on singlet oxygen quantum yields and lifetime have been discussed. The quenching rate constants of singlet oxygen have been determined with different types of organic molecules such as derivatives of thiourea and its analogues, hydroxy indoles and antioxidants and the results have been presented. (author)

  6. Effects of wind turbines on UHF television reception: field tests in Denmark

    International Nuclear Information System (INIS)

    Sorenson, B.

    1992-01-01

    As a result of a planning application for a windfarm comprising 20 wind turbines at Tynewydd Farm, Gilfach Goch in Mid Glamorgan, a report discussing any detrimental effects the proposal might have on u.h.f. television reception was produced. In order to make the report as definitive as possible, it was decided to carry out field tests on the exact model of wind turbine to be used at Tynewydd. This required a field trip to Denmark, and the opportunity was taken to make measurements on two other models of turbine at the same time. This report presents the analysis of the results for all three turbines. (author)

  7. Letter to the Editor UHF electromagnetic emission stimulated by HF pumping of the ionosphere

    Directory of Open Access Journals (Sweden)

    S. M. Grach

    2002-10-01

    Full Text Available UHF electromagnetic emission (with a frequency near 600 MHz from the F-region of the ionosphere pumped by an HF powerful radio wave is revealed. Possible mechanisms of the emission excitation, such as plasma mode con-version, scattering or Earth thermal noise emission off the plasma density irregularities, bremsstrahlung and excitation of high Rydberg states of the neutral particles by the accelerated electrons are discussed.Key words. Ionosphere (active experiments; wave-particle interactions – Solar physics, astrophysics, and astronomy (radio emissions

  8. Letter to the Editor UHF electromagnetic emission stimulated by HF pumping of the ionosphere

    Directory of Open Access Journals (Sweden)

    E. N. Sergeev

    Full Text Available UHF electromagnetic emission (with a frequency near 600 MHz from the F-region of the ionosphere pumped by an HF powerful radio wave is revealed. Possible mechanisms of the emission excitation, such as plasma mode con-version, scattering or Earth thermal noise emission off the plasma density irregularities, bremsstrahlung and excitation of high Rydberg states of the neutral particles by the accelerated electrons are discussed.Key words. Ionosphere (active experiments; wave-particle interactions – Solar physics, astrophysics, and astronomy (radio emissions

  9. Investigating Feasibility Of Multiple UHF Passive RFID Transmitters Using Backscatter Modulation Scheme In BCI Applications

    DEFF Research Database (Denmark)

    Al Ajrawi, Shams; Sarkar, Mahasweta; Rao, Ramesh

    simulatedbrain matter to a receiver located on the surface of a simulatedskull. These analyses are essential for building a brain computerinterface application. We showcase theoretical and experimentalresults based on a phantom model of the human brain usingpassive RFID as the implantable transmitter operating...... in UHFrange. Furthermore, we use backscatter modulation as a powertransfer mechanism. Investigation on the feasibility and appli-cability of implantable UHF Passive RFID transmitters insidethe brain is done for capturing multi-channel ECoG signals at ahigh data transfer rate. Detailed analysis have been done...

  10. A Novel Technology for Motion Capture Using Passive UHF RFID Tags

    DEFF Research Database (Denmark)

    Krigslund, Rasmus; Popovski, Petar; Pedersen, Gert Frølund

    2013-01-01

    Although there are several existing methods for human motion capture, they all have important limitations and hence there is the need to explore fundamentally new approaches. Here we present a method based on a Radio Frequency IDentification (RFID) system with passive Ultra High Frequency (UHF...... walking. The reference joint angles for the validation were obtained by an optoelectronic system. Although the method is in its initial phase of development, the results of the validation are promising and show that the movement information can be extracted from the RFID response signals....

  11. Investigation of particle reduction and its transport mechanism in UHF-ECR dielectric etching system

    International Nuclear Information System (INIS)

    Kobayashi, Hiroyuki; Yokogawa, Ken'etsu; Maeda, Kenji; Izawa, Masaru

    2008-01-01

    Control of particle transport was investigated by using a UHF-ECR etching apparatus with a laser particle monitor. The particles, which float at a plasma-sheath boundary, fall on a wafer when the plasma is turned off. These floating particles can be removed from the region above the wafer by changing the plasma distribution. We measured the distribution of the rotational temperature of nitrogen molecules across the wafer to investigate the effect of the thermophoretic force. We found that mechanisms of particle transport in directions parallel to the wafer surface can be explained by the balance between thermophoretic and gas viscous forces

  12. Effects of wind turbines on UHF television reception: field tests in Denmark, November 1991

    International Nuclear Information System (INIS)

    Wright, D.T.

    1992-01-01

    As a result of a planning application for a wind farm comprising 20 wind turbines at Tynewydd Farm, Gilfach Goch in Mid Glamorgan, it became necessary to produce a Report discussing any detrimental effects the proposal might have on UHF television reception. In order to make that Report as definitive as possible, it was decided to carry out field tests on the exact model of wind turbine to be used to Tynewydd. This required a field trip to Denmark, and the opportunity was taken to make measurements on two other models of turbine at the same time. This Report presents the analysis of the results for all three turbines. (Author)

  13. Towards Washable Electrotextile UHF RFID Tags: Reliability Study of Epoxy-Coated Copper Fabric Antennas

    Directory of Open Access Journals (Sweden)

    Shiqi Wang

    2015-01-01

    Full Text Available We investigate the impact of washing on the performance of passive UHF RFID tags based on dipole antennas fabricated from copper fabric and coated with protective epoxy coating. Initially, the tags achieved read ranges of about 8 meters, under the European RFID emission regulation. To assess the impact of washing on the performance of the tags, they were washed repeatedly in a washing machine and measured after every washing cycle. Despite the reliability challenges related to mechanical stress, the used epoxy coating was found to be a promising coating for electrotextile tags in moist conditions.

  14. SAR exposure from UHF RFID reader in adult, child, pregnant woman, and fetus anatomical models.

    Science.gov (United States)

    Fiocchi, Serena; Markakis, Ioannis A; Ravazzani, Paolo; Samaras, Theodoros

    2013-09-01

    The spread of radio frequency identification (RFID) devices in ubiquitous applications without their simultaneous exposure assessment could give rise to public concerns about their potential adverse health effects. Among the various RFID system categories, the ultra high frequency (UHF) RFID systems have recently started to be widely used in many applications. This study addresses a computational exposure assessment of the electromagnetic radiation generated by a realistic UHF RFID reader, quantifying the exposure levels in different exposure scenarios and subjects (two adults, four children, and two anatomical models of women 7 and 9 months pregnant). The results of the computations are presented in terms of the whole-body and peak spatial specific absorption rate (SAR) averaged over 10 g of tissue to allow comparison with the basic restrictions of the exposure guidelines. The SAR levels in the adults and children were below 0.02 and 0.8 W/kg in whole-body SAR and maximum peak SAR levels, respectively, for all tested positions of the antenna. On the contrary, exposure of pregnant women and fetuses resulted in maximum peak SAR(10 g) values close to the values suggested by the guidelines (2 W/kg) in some of the exposure scenarios with the antenna positioned in front of the abdomen and with a 100% duty cycle and 1 W radiated power. Copyright © 2013 Wiley Periodicals, Inc.

  15. Performance and Benchmarking of Multisurface UHF RFID Tags for Readability and Reliability

    Directory of Open Access Journals (Sweden)

    Joshua Bolton

    2017-01-01

    Full Text Available As the price of passive radio frequency identification (RFID tags continues to decrease, more and more companies are considering item-level tagging. Although the use of RFID is simple, its proper application should be studied to achieve maximum efficiency and utilization in the industry. This paper is intended to demonstrate the test results of various multisurface UHF tags from different manufacturers for their readability under varying conditions such as orientation of tags with respect to reader, distance of tag from the reader, and materials used for embedding tags. These conditions could affect the reliability of RFID systems used for varied applications. In this paper, we implement a Design for Six Sigma Research (DFSS-R methodology that allows for reliability testing of RFID systems. In this paper, we have showcased our results about the benchmarking of UHF RFID tags and have put forward an important observation about the blind spots observed at different distances and orientations along different surfaces, which is primarily due to the polarity of the antenna chosen.

  16. VHF/UHF radar observations of tropical mesoscale convective systems over southern India

    Directory of Open Access Journals (Sweden)

    K. Kishore Kumar

    2005-07-01

    Full Text Available Several campaigns have been carried out to study the convective systems over Gadanki (13.5° N, 79.2° E, a tropical station in India, using VHF and UHF radars. The height-time sections of several convective systems are investigated in detail to study reflectivity, turbulence and vertical velocity structure. Structure and dynamics of the convective systems are the main objectives of these campaigns. The observed systems are classified into single- and multi-cell systems. It has been observed that most of the convective systems at this latitude are multi-cellular in nature. Simultaneous VHF and UHF radar observations are used to classify the observed precipitating systems as convective, intermediary and stratiform regions. Composite height profiles of vertical velocities in these regions were obtained and the same were compared with the profiles obtained at other geographical locations. These composite profiles of vertical velocity in the convective regions have shown their peaks in the mid troposphere, indicating that the maximum latent heat is being released at those heights. These profiles are very important for numerical simulations of the convective systems, which vary significantly from one geographical location to the other.

    Keywords. Meteorology and atmospheric dynamics (Mesoscale meteorology; Convective processes – Radio science (Remote sensing

  17. VHF/UHF radar observations of tropical mesoscale convective systems over southern India

    Directory of Open Access Journals (Sweden)

    K. Kishore Kumar

    2005-07-01

    Full Text Available Several campaigns have been carried out to study the convective systems over Gadanki (13.5° N, 79.2° E, a tropical station in India, using VHF and UHF radars. The height-time sections of several convective systems are investigated in detail to study reflectivity, turbulence and vertical velocity structure. Structure and dynamics of the convective systems are the main objectives of these campaigns. The observed systems are classified into single- and multi-cell systems. It has been observed that most of the convective systems at this latitude are multi-cellular in nature. Simultaneous VHF and UHF radar observations are used to classify the observed precipitating systems as convective, intermediary and stratiform regions. Composite height profiles of vertical velocities in these regions were obtained and the same were compared with the profiles obtained at other geographical locations. These composite profiles of vertical velocity in the convective regions have shown their peaks in the mid troposphere, indicating that the maximum latent heat is being released at those heights. These profiles are very important for numerical simulations of the convective systems, which vary significantly from one geographical location to the other. Keywords. Meteorology and atmospheric dynamics (Mesoscale meteorology; Convective processes – Radio science (Remote sensing

  18. Study of the frequency modulation of various U.H.F. signals occurring in a linear electron accelerator; Etude de la modulation de frequence de divers signaux U.H.F. existant dans un accelerateur lineaire d'electrons

    Energy Technology Data Exchange (ETDEWEB)

    Bergere, R; Veyssiere, A; Daujat, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-06-01

    This paper contains a digest of a series of studies on the frequency modulation of U.H.F. fields and signals associated with the linear electron accelerator at Saclay. We first consider the frequency modulation of a U. H. F. pulse before its injection into an accelerating structure and after its subsequent propagation when no accelerated electrons are present. We then apply a similar analysis to the frequency modulation due to the direct interaction of the electron beam itself, and the accelerating U.H.F. fields. Finally we consider the phase modulation of the elementary electron packet itself. This phase modulation can be correctly interpreted by considering the dynamics of the electron beam as such. This analysis moreover, gives a correct interpretation of the evolution of the phase modulation with time, as the elementary electron packets move along with the sinusoidal U.H.F. accelerating fields. (authors) [French] Cet article resume les etudes faites sur l'accelerateur lineaire d'electrons de Saclay a propos de la modulation de frequence des divers signaux U.H.F. presents autour de l'accelerateur. On etudie d'abord la modulation de frequence des impulsions U.H.F. entrant sur la structure acceleratrice ou transmises par cette structure en l'absence de faisceau d'electrons acceleres. On analyse ensuite la modulation de frequence resultant de l'interaction d'une de ces ondes avec le faisceau d'electrons acceleres. On etudie enfin, la modulation de phase des divers paquets elementaires constituant une impulsion d'electrons acceleres. On montre comment cette modulation de phase peut s'expliquer par des considerations sur la dynamique du faisceau et conduire a une representation dans les divers cas possibles de l'evolution de la phase d'accrochage des electrons sur l'onde sinusoidale progressive de champ accelerateur. (auteurs)

  19. Recent applications of UHF-MRI in the study of human brain function and structure : a review

    NARCIS (Netherlands)

    Van der Zwaag, W.; Schäfer, Andreas; Marques, José P; Turner, R.; Trampel, Robert

    The increased availability of ultra-high-field (UHF) MRI has led to its application in a wide range of neuroimaging studies, which are showing promise in transforming fundamental approaches to human neuroscience. This review presents recent work on structural and functional brain imaging, at 7 T and

  20. Singlet fission efficiency in tetracene-based organic solar cells

    International Nuclear Information System (INIS)

    Wu, Tony C.; Thompson, Nicholas J.; Congreve, Daniel N.; Hontz, Eric; Yost, Shane R.; Van Voorhis, Troy; Baldo, Marc A.

    2014-01-01

    Singlet exciton fission splits one singlet exciton into two triplet excitons. Using a joint analysis of photocurrent and fluorescence modulation under a magnetic field, we determine that the triplet yield within optimized tetracene organic photovoltaic devices is 153% ± 5% for a tetracene film thickness of 20 nm. The corresponding internal quantum efficiency is 127% ± 18%. These results are used to prove the effectiveness of a simplified triplet yield measurement that relies only on the magnetic field modulation of fluorescence. Despite its relatively slow rate of singlet fission, the measured triplet yields confirm that tetracene is presently the best candidate for use with silicon solar cells

  1. In-vivo singlet oxygen threshold doses for PDT.

    Science.gov (United States)

    Zhu, Timothy C; Kim, Michele M; Liang, Xing; Finlay, Jarod C; Busch, Theresa M

    2015-02-01

    Dosimetry of singlet oxygen ( 1 O 2 ) is of particular interest because it is the major cytotoxic agent causing biological effects for type-II photosensitizers during photodynamic therapy (PDT). An in-vivo model to determine the singlet oxygen threshold dose, [ 1 O 2 ] rx,sh , for PDT was developed. An in-vivo radiation-induced fibrosarcoma (RIF) tumor mouse model was used to correlate the radius of necrosis to the calculation based on explicit PDT dosimetry of light fluence distribution, tissue optical properties, and photosensitizer concentrations. Inputs to the model include five photosensitizer-specific photochemical parameters along with [ 1 O 2 ] rx,sh . Photosensitizer-specific model parameters were determined for benzoporphyrin derivative monoacid ring A (BPD) and compared with two other type-II photosensitizers, Photofrin ® and m-tetrahydroxyphenylchlorin (mTHPC) from the literature. The mean values (standard deviation) of the in-vivo [ 1 O 2 ] rx,sh are approximately 0.56 (0.26) and 0.72 (0.21) mM (or 3.6×10 7 and 4.6×10 7 singlet oxygen per cell to reduce the cell survival to 1/e) for Photofrin ® and BPD, respectively, assuming that the fraction of generated singlet oxygen that interacts with the cell is 1. While the values for the photochemical parameters (ξ, σ, g , β) used for BPD were preliminary and may need further refinement, there is reasonable confidence for the values of the singlet oxygen threshold doses. In comparison, the [ 1 O 2 ] rx,sh value derived from in-vivo mouse study was reported to be 0.4 mM for mTHPC-PDT. However, the singlet oxygen required per cell is reported to be 9×10 8 per cell per 1/ e fractional kill in an in-vitro mTHPC-PDT study on a rat prostate cancer cell line (MLL cells) and is reported to be 7.9 mM for a multicell in-vitro EMT6/Ro spheroid model for mTHPC-PDT. A theoretical analysis is provided to relate the number of in-vitro singlet oxygen required per cell to reach cell killing of 1/ e to in-vivo singlet

  2. Singlet channel coupling in deuteron elastic scattering at intermediate energies

    International Nuclear Information System (INIS)

    Al-Khalili, J.S.; Tostevin, J.A.; Johnson, R.C.

    1990-01-01

    Intermediate energy deuteron elastic scattering is investigated in a three-body model incorporating relativistic kinematics. The effects of deuteron breakup to singlet spin intermediate states, on the elastic scattering observables for the 58 Ni(d vector, d) 58 Ni reaction at 400 and 700 MeV, are studied quantitatively. The singlet-breakup contributions to the elastic amplitude are estimated within an approximate two-step calculation. The calculation makes an adiabatic approximation in the intermediate states propagator which allows the use of closure over the np intermediate states continuum. The singlet channel coupling is found to produce large effects on the calculated reaction tensor analysing power A yy , characteristic of a dynamically induced second-rank tensor interaction. By inspection of the calculated breakup amplitudes we show this induced interaction to be of the T L tensor type. (orig.)

  3. Development of QCD jets emitted by color-singlet sources

    International Nuclear Information System (INIS)

    Ellis, R.K.; Gunion, J.F.; Kalinowski, J.; Webber, B.R.

    1985-01-01

    We compare the angular-ordering approximation to QCD jet development with full calculations to order αsub(s) in the following cases: emission of quark jets by a color-singlet vector source (as in e + e - annihilation) and emission of gluon jets by a color-singlet scalar (Fsup(a)sub(μν)Fsup(aμν)) source. In contrast to the case of a color-octet (gluon) source, we find that the approximation is good in those regions of phase space where the next-to-leading corrections to the amplitude are large. (orig.)

  4. Design of a passive UHF RFID tag for the ISO18000-6C protocol

    International Nuclear Information System (INIS)

    Wang Yao; Wen Guangjun; Mao Wei; He Yanli; Zhu Xueyong

    2011-01-01

    This paper presents a new fully integrated wide-range UHF passive RFID tag chip design that is compatible with the ISO18000-6C protocol. In order to reduce the die area, an ultra-low power CMOS voltage regulator without resistors and an area-efficient amplitude shift keying demodulator with a novel adaptive average generator are both adopted. A low power clock generator is designed to guarantee the accuracy of the clock under ±4%. As the clock gating technology is employed to reduce the power consumption of the baseband processor, the total power consumption of the tag is about 14 μW with a sensitivity of -9.5 dBm. The detection distance can reach about 5 m under 4 W effective isotropic radiated power. The whole tag is fabricated in TSMC 0.18 μm CMOS technology and the chip size is 880 x 880 μm 2 . (semiconductor integrated circuits)

  5. Passive UHF RFID Tags with Specific Printed Antennas for Dielectric and Metallic Objects Applications

    Directory of Open Access Journals (Sweden)

    K. Siakavara

    2017-09-01

    Full Text Available Design process and respective results for the synthesis of specific Radiofrequency Identification(RFID tag antennas, suitable for dielectric and metallic objects, are presented. The antennas were designed for the UHF(865MHz-869MHz band and their basic configuration is that of the printed spiral type. Six modification steps to the classical spiral layout are proposed and it was proved that they can lead to tags with high readability and reading distances up to 10m when designed for dielectric object and up to 7m in the case of metallic objects. The results of the measurements of the fabricated tags are explained via theoretical evaluations which take into account reflection phenomena, that are present in a real environment at which the tags are used.

  6. Experimental Study on Strain Reliability of Embroidered Passive UHF RFID Textile Tag Antennas and Interconnections

    Directory of Open Access Journals (Sweden)

    Xiaochen Chen

    2017-01-01

    Full Text Available We present embroidered antennas and interconnections in passive UHF RFID textile tags and test their strain reliability. Firstly, we fabricate tag antennas on two different stretchable fabric substrates by five different embroidery patterns and choose the most stretchable ones for testing. Next, the tag ICs are attached by sewing and gluing, and the tag reliability during repeated stretching cycles is evaluated through wireless measurements. Initially, the chosen tags achieve read ranges of 6–8 meters and can strain up to 140–150% of their original length. After 100 stretching cycles to 80% of their maximum strain, the read ranges of the tags with glued interconnections are similar to the initial values. In addition, also the read ranges of the tags with sewed interconnections are still more than 70%–85% of their initial values. However, some challenges with the reproducibility need to be solved next.

  7. Design of a passive UHF RFID tag for the ISO18000-6C protocol

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yao; Wen Guangjun; Mao Wei; He Yanli; Zhu Xueyong, E-mail: wangyao220597@yahoo.com.cn [RFIC Laboratory CICS, School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu 611731 (China)

    2011-05-15

    This paper presents a new fully integrated wide-range UHF passive RFID tag chip design that is compatible with the ISO18000-6C protocol. In order to reduce the die area, an ultra-low power CMOS voltage regulator without resistors and an area-efficient amplitude shift keying demodulator with a novel adaptive average generator are both adopted. A low power clock generator is designed to guarantee the accuracy of the clock under {+-}4%. As the clock gating technology is employed to reduce the power consumption of the baseband processor, the total power consumption of the tag is about 14 {mu}W with a sensitivity of -9.5 dBm. The detection distance can reach about 5 m under 4 W effective isotropic radiated power. The whole tag is fabricated in TSMC 0.18 {mu}m CMOS technology and the chip size is 880 x 880 {mu}m{sup 2}. (semiconductor integrated circuits)

  8. Low-cost low-power UHF RFID tag with on-chip antenna

    Energy Technology Data Exchange (ETDEWEB)

    Xi Jingtian; Yan Na; Che Wenyi; Xu Conghui; Wang Xiao; Yang Yuqing; Jian Hongyan; Min Hao, E-mail: jtxi@fudan.edu.c [State Key Laboratory of ASIC and System, Auto-ID Laboratory, Fudan University, Shanghai 201203 (China)

    2009-07-15

    This paper presents an EPC Class 1 Generation 2 compatible tag with on-chip antenna implemented in the SMIC 0.18 {mu}m standard CMOS process. The UHF tag chip includes an RF/analog front-end, a digital baseband, and a 640-bit EEPROM memory. The on-chip antenna is optimized based on a novel parasitic-aware model. The rectifier is optimized to achieve a power conversion efficiency up to 40% by applying a self-bias feedback and threshold compensation techniques. A good match between the tag circuits and the on-chip antenna is realized by adjusting the rectifier input impedance. Measurements show that the presented tag can achieve a communication range of 1 cm with 1 W reader output power using a 1 x 1 cm{sup 2} single-turn loop reader antenna.

  9. Design of an ultra-low-power digital processor for passive UHF RFID tags

    Energy Technology Data Exchange (ETDEWEB)

    Shi Wanggen; Zhuang Yiqi; Li Xiaoming; Wang Xianghua; Jin Zhao; Wang Dan, E-mail: wanggen_shi@163.co [Key Laboratory of the Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, Institute of Microelectronics, Xidian University, Xi' an 710071 (China)

    2009-04-15

    A new architecture of digital processors for passive UHF radio-frequency identification tags is proposed. This architecture is based on ISO/IEC 18000-6C and targeted at ultra-low power consumption. By applying methods like system-level power management, global clock gating and low voltage implementation, the total power of the design is reduced to a few microwatts. In addition, an innovative way for the design of a true RNG is presented, which contributes to both low power and secure data transaction. The digital processor is verified by an integrated FPGA platform and implemented by the Synopsys design kit for ASIC flows. The design fits different CMOS technologies and has been taped out using the 2P4M 0.35 mum process of Chartered Semiconductor.

  10. A passive UHF RFID tag with a dynamic-Vth-cancellation rectifier

    International Nuclear Information System (INIS)

    Shen Jinpeng; Wang Bo; Liu Shan; Wang Xin'an; Ruan Zhengkun; Li Shoucheng

    2013-01-01

    This paper presents a passive UHF RFID tag with a dynamic-V th -cancellation (DVC) rectifier. In the rectifier, the threshold voltages of MOSFETs are cancelled by applying gate bias voltages, which are dynamically changed according to the states of the MOSFETs. The DVC rectifier enables both low ON-resistance and small reverse leakage of the MOSFETs, resulting in high power conversion efficiency (PCE). An area-efficient demodulator with a novel average detector is also designed, which takes advantage of the rectifier's first stage as the envelope detector. The whole tag chip is implemented in a 0.18 μm CMOS process with a die size of 880 × 950 μm 2 . Measurement results show that the rectifier achieves a maximum PCE of 53.7% with 80 kΩ resistor load. (semiconductor integrated circuits)

  11. Extended post processing for simulation results of FEM synthesized UHF-RFID transponder antennas

    Directory of Open Access Journals (Sweden)

    R. Herschmann

    2007-06-01

    Full Text Available The computer aided design process of sophisticated UHF-RFID transponder antennas requires the application of reliable simulation software. This paper describes a Matlab implemented extension of the post processor capabilities of the commercially available three dimensional field simulation programme Ansoft HFSS to compute an accurate solution of the antenna's surface current distribution. The accuracy of the simulated surface currents, which are physically related to the impedance at the feeding point of the antenna, depends on the convergence of the electromagnetic fields inside the simulation volume. The introduced method estimates the overall quality of the simulation results by combining the surface currents with the electromagnetic fields extracted from the field solution of Ansoft HFSS.

  12. Design of an ultra-low-power digital processor for passive UHF RFID tags

    International Nuclear Information System (INIS)

    Shi Wanggen; Zhuang Yiqi; Li Xiaoming; Wang Xianghua; Jin Zhao; Wang Dan

    2009-01-01

    A new architecture of digital processors for passive UHF radio-frequency identification tags is proposed. This architecture is based on ISO/IEC 18000-6C and targeted at ultra-low power consumption. By applying methods like system-level power management, global clock gating and low voltage implementation, the total power of the design is reduced to a few microwatts. In addition, an innovative way for the design of a true RNG is presented, which contributes to both low power and secure data transaction. The digital processor is verified by an integrated FPGA platform and implemented by the Synopsys design kit for ASIC flows. The design fits different CMOS technologies and has been taped out using the 2P4M 0.35 μm process of Chartered Semiconductor.

  13. Wide-Range Adaptive RF-to-DC Power Converter for UHF RFIDs

    KAUST Repository

    Ouda, Mahmoud H.

    2016-07-27

    A wide-range, differential, cross-coupled rectifier is proposed with an extended dynamic range of input RF power that enables wireless powering from varying distances. The proposed architecture mitigates the reverse-leakage problem in conven- tional, cross-coupled rectifiers without degrading sensitivity. A prototype is designed for UHF RFID applications, and is imple- mented using 0.18 μ m CMOS technology. On-chip measurements demonstrate a sensitivity of − 18 dBm for 1 V output over a 100 k Ω load and a peak RF-to-DC power conversion efficiency of 65%. A conventional, fully cross-coupled rectifier is fabricated along- side for comparison and the proposed rectifier shows more than 2 × increase in dynamic range and a 25% boosting in output voltage than the conventional rectifier

  14. Small Size and Low Cost UHF RFID Tag Antenna Mountable on Metallic Objects

    Directory of Open Access Journals (Sweden)

    Sergio López-Soriano

    2015-01-01

    Full Text Available Reducing tag size while maintaining good performance is one of the major challenges in radio-frequency identification applications (RFID, in particular when labeling metallic objects. In this contribution, a small size and low cost tag antenna for identifying metal objects in the European UHF band (865–868 MHz is presented. The antenna consists of a transmission line mounted on an inexpensive thin dielectric which is proximity-coupled to a short-ended patch mounted on FR4 substrate. The overall dimensions of the tag are 33.5 × 30 × 3.1 mm. Experimental results show that, for an EIRP of 3.2 W (European regulations, such a small and cheap tag attains read ranges of about 5 m when attached to a metallic object.

  15. Singlet and triplet polaron relaxation in doubly charged self-assembled quantum dots

    International Nuclear Information System (INIS)

    Grange, T; Zibik, E A; Ferreira, R; Bastard, G; Carpenter, B A; Phillips, P J; Stehr, D; Winnerl, S; Helm, M; Steer, M J; Hopkinson, M; Cockburn, J W; Skolnick, M S; Wilson, L R

    2007-01-01

    Polaron relaxation in self-assembled InAs/GaAs quantum dot samples containing 2 electrons per dot is studied using far-infrared, time-resolved pump-probe measurements for transitions between the s-like ground and p-like first excited conduction band states. Spin-flip transitions between singlet and triplet states are observed experimentally in the decay of the absorption bleaching, which shows a clear biexponential dependence. The initial fast decay (∼30 ps) is associated with the singlet polaron decay, while the decay component with the longer time constant (∼5 ns) corresponds to the excited state triplet lifetime. The results are explained by considering the intrinsic Dresselhaus spin-orbit interaction, which induces spin-flip transitions by acoustic phonon emission or phonon anharmonicity. We have calculated the spin-flip decay times, and good agreement is obtained between the experiment and the simulation of the pump-probe signal. Our results demonstrate the importance of spin-mixing effects for intraband energy relaxation in InAs/GaAs quantum dots

  16. Absence of Intramolecular Singlet Fission in Pentacene-Perylenediimide Heterodimers: The Role of Charge Transfer State.

    Science.gov (United States)

    Wang, Long; Wu, Yishi; Chen, Jianwei; Wang, Lanfen; Liu, Yanping; Yu, Zhenyi; Yao, Jiannian; Fu, Hongbing

    2017-11-16

    A new class of donor-acceptor heterodimers based on two singlet fission (SF)-active chromophores, i.e., pentacene (Pc) and perylenediimide (PDI), was developed to investigate the role of charge transfer (CT) state on the excitonic dynamics. The CT state is efficiently generated upon photoexcitation. However, the resulting CT state decays to different energy states depending on the energy levels of the CT state. It undergoes extremely rapid deactivation to the ground state in polar CH 2 Cl 2 , whereas it undergoes transformation to a Pc triplet in nonpolar toluene. The efficient triplet generation in toluene is not due to SF but CT-mediated intersystem crossing. In light of the energy landscape, it is suggested that the deep energy level of the CT state relative to that of the triplet pair state makes the CT state actually serve as a trap state that cannot undergoes an intramolecular singlet fission process. These results provide guidance for the design of SF materials and highlight the requisite for more widely applicable design principles.

  17. Reversible Photochemical Control of Singlet Oxygen Generation Using Diarylethene Photochromic Switches

    NARCIS (Netherlands)

    Hou, Lili; Zhang, Xiaoyan; Pijper, Thomas C.; Browne, Wesley R.; Feringa, Bernard

    2014-01-01

    Reversible noninvasive control over the generation of singlet oxygen is demonstrated in a bicomponent system comprising a diarylethene photochromic switch and a porphyrin photosensitizer by selective irradiation at distinct wavelengths. The efficient generation of singlet oxygen by the

  18. Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells

    KAUST Repository

    Dimitrov, Stoichko; Schroeder, Bob; Nielsen, Christian; Bronstein, Hugo; Fei, Zhuping; McCulloch, Iain; Heeney, Martin; Durrant, James

    2016-01-01

    The lifetime of singlet excitons in conjugated polymer films is a key factor taken into account during organic solar cell device optimization. It determines the singlet exciton diffusion lengths in polymer films and has a direct impact

  19. Robust singlet fission in pentacene thin films with tuned charge transfer interactions.

    Science.gov (United States)

    Broch, K; Dieterle, J; Branchi, F; Hestand, N J; Olivier, Y; Tamura, H; Cruz, C; Nichols, V M; Hinderhofer, A; Beljonne, D; Spano, F C; Cerullo, G; Bardeen, C J; Schreiber, F

    2018-03-05

    Singlet fission, the spin-allowed photophysical process converting an excited singlet state into two triplet states, has attracted significant attention for device applications. Research so far has focused mainly on the understanding of singlet fission in pure materials, yet blends offer the promise of a controlled tuning of intermolecular interactions, impacting singlet fission efficiencies. Here we report a study of singlet fission in mixtures of pentacene with weakly interacting spacer molecules. Comparison of experimentally determined stationary optical properties and theoretical calculations indicates a reduction of charge-transfer interactions between pentacene molecules with increasing spacer molecule fraction. Theory predicts that the reduced interactions slow down singlet fission in these blends, but surprisingly we find that singlet fission occurs on a timescale comparable to that in pure crystalline pentacene. We explain the observed robustness of singlet fission in such mixed films by a mechanism of exciton diffusion to hot spots with closer intermolecular spacings.

  20. Long range ultra-high frequency (UHF) radio frequency identification (RFID) antenna design

    Science.gov (United States)

    Reynolds, Nathan D.

    There is an ever-increasing demand for radio frequency identification (RFID) tags that are passive, long range, and mountable on multiple surfaces. Currently, RFID technology is utilized in numerous applications such as supply chain management, access control, and public transportation. With the combination of sensory systems in recent years, the applications of RFID technology have been extended beyond tracking and identifying. This extension includes applications such as environmental monitoring and healthcare applications. The available sensory systems usually operate in the medium or high frequency bands and have a low read range. However, the range limitations of these systems are being overcome by the development of RFID sensors focused on utilizing tags in the ultra-high frequency (UHF) band. Generally, RFID tags have to be mounted to the object that is being identified. Often the objects requiring identification are metallic. The inherent properties of metallic objects have substantial effects on nearby electromagnetic radiation; therefore, the operation of the tag antenna is affected when mounted on a metallic surface. This outlines one of the most challenging problems for RFID systems today: the optimization of tag antenna performance in a complex environment. In this research, a novel UHF RFID tag antenna, which has a low profile, long range, and is mountable on metallic surfaces, is designed analytically and simulated using a 3-D electromagnetic simulator, ANSYS HFSS. A microstrip patch antenna is selected as the antenna structure, as patch antennas are low profile and suitable for mounting on metallic surfaces. Matching and theoretical models of the microstrip patch antenna are investigated. Once matching and theory of a microstrip patch antenna is thoroughly understood, a unique design technique using electromagnetic band gap (EBG) structures is explored. This research shows that the utilization of an EBG structure in the patch antenna design yields

  1. Meteor head echo polarization at 930 MHz studied with the EISCAT UHF HPLA radar

    Directory of Open Access Journals (Sweden)

    G. Wannberg

    2011-06-01

    Full Text Available The polarization characteristics of 930-MHz meteor head echoes have been studied for the first time, using data obtained in a series of radar measurements carried out with the tristatic EISCAT UHF high power, large aperture (HPLA radar system in October 2009. An analysis of 44 tri-static head echo events shows that the polarization of the echo signal recorded by the Kiruna receiver often fluctuates strongly on time scales of tens of microseconds, illustrating that the scattering process is essentially stochastic. On longer timescales (> milliseconds, more than 90 % of the recorded events show an average polarization signature that is independent of meteor direction of arrival and echo strength and equal to that of an incoherent-scatter return from underdense plasma filling the tristatic observation volume. This shows that the head echo plasma targets scatter isotropically, which in turn implies that they are much smaller than the 33-cm wavelength and close to spherically symmetric, in very good agreement with results from a previous EISCAT UHF study of the head echo RCS/meteor angle-of-incidence relationship. Significant polarization is present in only three events with unique target trajectories. These all show a larger effective target cross section transverse to the trajectory than parallel to it. We propose that the observed polarization may be a signature of a transverse charge separation plasma resonance in the region immediately behind the meteor head, similar to the resonance effects previously discussed in connection with meteor trail echoes by Herlofson, Billam and Browne, Jones and Jones and others.

  2. First-Principle Characterization for Singlet Fission Couplings.

    Science.gov (United States)

    Yang, Chou-Hsun; Hsu, Chao-Ping

    2015-05-21

    The electronic coupling for singlet fission, an important parameter for determining the rate, has been found to be too small unless charge-transfer (CT) components were introduced in the diabatic states, mostly through perturbation or a model Hamiltonian. In the present work, the fragment spin difference (FSD) scheme was generalized to calculate the singlet fission coupling. The largest coupling strength obtained was 14.8 meV for two pentacenes in a crystal structure, or 33.7 meV for a transition-state structure, which yielded a singlet fission lifetime of 239 or 37 fs, generally consistent with experimental results (80 fs). Test results with other polyacene molecules are similar. We found that the charge on one fragment in the S1 diabatic state correlates well with FSD coupling, indicating the importance of the CT component. The FSD approach is a useful first-principle method for singlet fission coupling, without the need to include the CT component explicitly.

  3. 1,3-Diphenylisobenzofuran: a Model Chromophore for Singlet Fission

    Czech Academy of Sciences Publication Activity Database

    Johnson, J. C.; Michl, Josef

    2017-01-01

    Roč. 375, č. 5 (2017), č. článku 80. ISSN 2365-0869 R&D Projects: GA ČR GA15-19143S Institutional support: RVO:61388963 Keywords : 1,3-diphenylisobenzofuran * photophysics * solar energy * singlet fission * covalent dimers Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.033, year: 2016

  4. Status of the scalar singlet dark matter model

    Energy Technology Data Exchange (ETDEWEB)

    Athron, Peter; Balazs, Csaba [Monash University, School of Physics and Astronomy, Melbourne, VIC (Australia); Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); Bringmann, Torsten; Dal, Lars A.; Krislock, Abram; Raklev, Are [University of Oslo, Department of Physics, Oslo (Norway); Buckley, Andy [University of Glasgow, SUPA, School of Physics and Astronomy, Glasgow (United Kingdom); Chrzaszcz, Marcin [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Polish Academy of Sciences, H. Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Conrad, Jan; Edsjoe, Joakim; Farmer, Ben [AlbaNova University Centre, Oskar Klein Centre for Cosmoparticle Physics, Stockholm (Sweden); Stockholm University, Department of Physics, Stockholm (Sweden); Cornell, Jonathan M. [McGill University, Department of Physics, Montreal, QC (Canada); Jackson, Paul; White, Martin [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); University of Adelaide, Department of Physics, Adelaide, SA (Australia); Kahlhoefer, Felix [DESY, Hamburg (Germany); Kvellestad, Anders; Savage, Christopher [NORDITA, Stockholm (Sweden); McKay, James; Scott, Pat [Imperial College London, Department of Physics, Blackett Laboratory, London (United Kingdom); Mahmoudi, Farvah [Univ. Lyon, Univ. Lyon 1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, Saint-Genis-Laval (France); CERN, Theoretical Physics Department, Geneva (Switzerland); Martinez, Gregory D. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Putze, Antje [LAPTh, Universite de Savoie, CNRS, Annecy-le-Vieux (France); Rogan, Christopher [Harvard University, Department of Physics, Cambridge, MA (United States); Saavedra, Aldo [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); The University of Sydney, Centre for Translational Data Science, Faculty of Engineering and Information Technologies, School of Physics, Sydney, NSW (Australia); Serra, Nicola [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Weniger, Christoph [University of Amsterdam, GRAPPA, Institute of Physics, Amsterdam (Netherlands); Collaboration: The GAMBIT Collaboration

    2017-08-15

    One of the simplest viable models for dark matter is an additional neutral scalar, stabilised by a Z{sub 2} symmetry. Using the GAMBIT package and combining results from four independent samplers, we present Bayesian and frequentist global fits of this model. We vary the singlet mass and coupling along with 13 nuisance parameters, including nuclear uncertainties relevant for direct detection, the local dark matter density, and selected quark masses and couplings. We include the dark matter relic density measured by Planck, direct searches with LUX, PandaX, SuperCDMS and XENON100, limits on invisible Higgs decays from the Large Hadron Collider, searches for high-energy neutrinos from dark matter annihilation in the Sun with IceCube, and searches for gamma rays from annihilation in dwarf galaxies with the Fermi-LAT. Viable solutions remain at couplings of order unity, for singlet masses between the Higgs mass and about 300 GeV, and at masses above ∝ 1 TeV. Only in the latter case can the scalar singlet constitute all of dark matter. Frequentist analysis shows that the low-mass resonance region, where the singlet is about half the mass of the Higgs, can also account for all of dark matter, and remains viable. However, Bayesian considerations show this region to be rather fine-tuned. (orig.)

  5. Singlet oxygen reactions with flavonoids. A theoretical-experimental study.

    Science.gov (United States)

    Morales, Javier; Günther, Germán; Zanocco, Antonio L; Lemp, Else

    2012-01-01

    Detection of singlet oxygen emission, λ(max) = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, k(T), and the reactive reaction rate constant, k(r), for the reaction between singlet oxygen and several flavonoids. Values of k(T) determined in deuterated water, ranging from 2.4×10(7) M(-1) s(-1) to 13.4×10(7) M(-1) s(-1), for rutin and morin, respectively, and the values measured for k(r), ranging from 2.8×10(5) M(-1) s(-1) to 65.7×10(5) M(-1) s(-1) for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid.

  6. Generation of deviation parameters for amino acid singlets, doublets ...

    Indian Academy of Sciences (India)

    We present a new method, secondary structure prediction by deviation parameter (SSPDP) for predicting the secondary structure of proteins from amino acid sequence. Deviation parameters (DP) for amino acid singlets, doublets and triplets were computed with respect to secondary structural elements of proteins based on ...

  7. Singlet oxygenation in microemulsion catalysed by vanadium chloroperoxidase

    NARCIS (Netherlands)

    Renirie, R.; Pierlot, C.; Wever, R.; Aubry, J.-M.

    2009-01-01

    Non-ionic microemulsions compatible with the enzyme vanadium chloroperoxidase were designed to perform singlet oxygenation of apolar substrates. The media were based on mono- and polydisperse ethoxylated fatty alcohols (CiEj). octane and aqueous buffer. "Fish" diagrams were determined to identify

  8. Flavor-singlet spectrum in multi-flavor QCD

    Science.gov (United States)

    Aoki, Yasumichi; Aoyama, Tatsumi; Bennett, Ed; Kurachi, Masafumi; Maskawa, Toshihide; Miura, Kohtaroh; Nagai, Kei-ichi; Ohki, Hiroshi; Rinaldi, Enrico; Shibata, Akihiro; Yamawaki, Koichi; Yamazaki, Takeshi

    2018-03-01

    Studying SU(3) gauge theories with increasing number of light fermions is relevant both for understanding the strong dynamics of QCD and for constructing strongly interacting extensions of the Standard Model (e.g. UV completions of composite Higgs models). In order to contrast these many-flavors strongly interacting theories with QCD, we study the flavor-singlet spectrum as an interesting probe. In fact, some composite Higgs models require the Higgs boson to be the lightest flavor-singlet scalar in the spectrum of a strongly interacting new sector with a well defined hierarchy with the rest of the states. Moreover, introducing many light flavors at fixed number of colors can influence the dynamics of the lightest flavor-singlet pseudoscalar. We present the on-going study of these flavor-singlet channels using multiple interpolating operators on high-statistics ensembles generated by the LatKMI collaboration and we compare results with available data obtained by the Lattice Strong Dynamics collaboration. For the theory with 8 flavors, the two collaborations have generated configurations that complement each others with the aim to tackle the massless limit using the largest possible volumes.

  9. Flavor-singlet spectrum in multi-flavor QCD

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Yasamichi; Rinaldi, Enrico

    2017-06-18

    Studying SU(3) gauge theories with increasing number of light fermions is relevant both for understanding the strong dynamics of QCD and for constructing strongly interacting extensions of the Standard Model (e.g. UV completions of composite Higgs models). In order to contrast these many-flavors strongly interacting theories with QCD, we study the flavor-singlet spectrum as an interesting probe. In fact, some composite Higgs models require the Higgs boson to be the lightest flavor-singlet scalar in the spectrum of a strongly interacting new sector with a well defined hierarchy with the rest of the states. Moreover, introducing many light flavors at fixed number of colors can influence the dynamics of the lightest flavor-singlet pseudoscalar. We present the on-going study of these flavor-singlet channels using multiple interpolating operators on high-statistics ensembles generated by the LatKMI collaboration and we compare results with available data obtained by the Lattice Strong Dynamics collaboration. For the theory with 8 flavors, the two collaborations have generated configurations that complement each others with the aim to tackle the massless limit using the largest possible volumes.

  10. Label-free electrochemical detection of singlet oxygen protein damage

    Czech Academy of Sciences Publication Activity Database

    Vargová, Veronika; Gimenez, R.E.; Černocká, Hana; Trujillo, D.C.; Tulli, F.; Zanini, V.I.P.; Paleček, Emil; Borsarelli, C.D.; Ostatná, Veronika

    2016-01-01

    Roč. 187, JAN 2016 (2016), s. 662-669 ISSN 0013-4686 R&D Projects: GA ČR GA13-00956S Institutional support: RVO:68081707 Keywords : singlet oxygen protein damage * surface-attached protein stability * mercury and carbon electrodes Subject RIV: BO - Biophysics Impact factor: 4.798, year: 2016

  11. Status of the scalar singlet dark matter model

    Science.gov (United States)

    Athron, Peter; Balázs, Csaba; Bringmann, Torsten; Buckley, Andy; Chrząszcz, Marcin; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Jackson, Paul; Kahlhoefer, Felix; Krislock, Abram; Kvellestad, Anders; McKay, James; Mahmoudi, Farvah; Martinez, Gregory D.; Putze, Antje; Raklev, Are; Rogan, Christopher; Saavedra, Aldo; Savage, Christopher; Scott, Pat; Serra, Nicola; Weniger, Christoph; White, Martin

    2017-08-01

    One of the simplest viable models for dark matter is an additional neutral scalar, stabilised by a Z_2 symmetry. Using the GAMBIT package and combining results from four independent samplers, we present Bayesian and frequentist global fits of this model. We vary the singlet mass and coupling along with 13 nuisance parameters, including nuclear uncertainties relevant for direct detection, the local dark matter density, and selected quark masses and couplings. We include the dark matter relic density measured by Planck, direct searches with LUX, PandaX, SuperCDMS and XENON100, limits on invisible Higgs decays from the Large Hadron Collider, searches for high-energy neutrinos from dark matter annihilation in the Sun with IceCube, and searches for gamma rays from annihilation in dwarf galaxies with the Fermi-LAT. Viable solutions remain at couplings of order unity, for singlet masses between the Higgs mass and about 300 GeV, and at masses above ˜ 1 TeV. Only in the latter case can the scalar singlet constitute all of dark matter. Frequentist analysis shows that the low-mass resonance region, where the singlet is about half the mass of the Higgs, can also account for all of dark matter, and remains viable. However, Bayesian considerations show this region to be rather fine-tuned.

  12. Singlet-triplet annihilation in single LHCII complexes

    NARCIS (Netherlands)

    Gruber, J.M.; Chmeliov, J.; Kruger, T.P.J.; Valkunas, L.; van Grondelle, R.

    2015-01-01

    In light harvesting complex II (LHCII) of higher plants and green algae, carotenoids (Cars) have an important function to quench chlorophyll (Chl) triplet states and therefore avoid the production of harmful singlet oxygen. The resulting Car triplet states lead to a non-linear self-quenching

  13. Singlet Oxygen Reactions with Flavonoids. A Theoretical – Experimental Study

    Science.gov (United States)

    Morales, Javier; Günther, Germán; Zanocco, Antonio L.; Lemp, Else

    2012-01-01

    Detection of singlet oxygen emission, λmax = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, kT, and the reactive reaction rate constant, kr, for the reaction between singlet oxygen and several flavonoids. Values of kT determined in deuterated water, ranging from 2.4×107 M−1s−1 to 13.4×107 M−1s−1, for rutin and morin, respectively, and the values measured for kr, ranging from 2.8×105 M−1s−1 to 65.7×105 M−1s−1 for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid. PMID:22802966

  14. Singlet oxygen reactions with flavonoids. A theoretical-experimental study.

    Directory of Open Access Journals (Sweden)

    Javier Morales

    Full Text Available Detection of singlet oxygen emission, λ(max = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, k(T, and the reactive reaction rate constant, k(r, for the reaction between singlet oxygen and several flavonoids. Values of k(T determined in deuterated water, ranging from 2.4×10(7 M(-1 s(-1 to 13.4×10(7 M(-1 s(-1, for rutin and morin, respectively, and the values measured for k(r, ranging from 2.8×10(5 M(-1 s(-1 to 65.7×10(5 M(-1 s(-1 for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid.

  15. Sea quark matrix elements and flavor singlet spectroscopy on the lattice

    International Nuclear Information System (INIS)

    Lagae, J.F.

    1996-01-01

    I summarize the results of three recent lattice studies which use stochastic estimator techniques in order to investigate the flavor singlet dynamics in QCD. These include a measurement of the pion-nucleon σ-term, the computation of the flavor singlet axial coupling constant of the nucleon and a determination of flavor singlet meson screening lengths in finite temperature QCD

  16. Exact exchange-correlation potentials of singlet two-electron systems

    Science.gov (United States)

    Ryabinkin, Ilya G.; Ospadov, Egor; Staroverov, Viktor N.

    2017-10-01

    We suggest a non-iterative analytic method for constructing the exchange-correlation potential, v XC ( r ) , of any singlet ground-state two-electron system. The method is based on a convenient formula for v XC ( r ) in terms of quantities determined only by the system's electronic wave function, exact or approximate, and is essentially different from the Kohn-Sham inversion technique. When applied to Gaussian-basis-set wave functions, the method yields finite-basis-set approximations to the corresponding basis-set-limit v XC ( r ) , whereas the Kohn-Sham inversion produces physically inappropriate (oscillatory and divergent) potentials. The effectiveness of the procedure is demonstrated by computing accurate exchange-correlation potentials of several two-electron systems (helium isoelectronic series, H2, H3 + ) using common ab initio methods and Gaussian basis sets.

  17. Accurate simulation of geometry, singlet-singlet and triplet-singlet excitation of cyclometalated iridium(III) complex.

    Science.gov (United States)

    Wang, Jian; Bai, Fu-Quan; Xia, Bao-Hui; Zhang, Hong-Xing; Cui, Tian

    2014-03-01

    In the current contribution, we present a critical study of the theoretical protocol used for the determination of the electronic spectra properties of luminescent cyclometalated iridium(III) complex, [Ir(III)(ppy)₂H₂dcbpy]⁺ (where, ppy = 2-phenylpyridine, H₂dcbpy = 2,2'-bipyridine-4,4'-dicarboxylic acid), considered as a representative example of the various problems related to the prediction of electronic spectra of transition metal complex. The choice of the exchange-correlation functional is crucial for the validity of the conclusions that would be drawn from the numerical results. The influence of the exchange-correlation on geometry parameter and absorption/emission band, the role of solvent effects on time-dependent density function theory (TD-DFT) calculations, as well as the importance of the chosen proper procedure to optimize triplet excited geometry, have been thus examined in detail. From the obtained results, some general conclusions and guidelines are presented: i) PBE0 functional is the most accurate in prediction of ground state geometry; ii) the well-established B3LYP, B3P86, PBE0, and X3LYP have similar accuracy in calculation of absorption spectrum; and iii) the hybrid approach TD-DFT//CIS gives out excellent agreement in the evaluation of triplet excitation energy.

  18. Disordered redox metabolism of brain cells in rats exposed to low doses of ionizing radiation or UHF electromagnetic radiation.

    Science.gov (United States)

    Burlaka, A P; Druzhyna, M O; Vovk, A V; Lukin, S М

    2016-12-01

    To investigate the changes of redox-state of mammalian brain cells as the critical factor of initiation and formation of radiation damage of biological structures in setting of continuous exposure to low doses of ionizing radiation or fractionated ultra high frequency electromagnetic radiation (UHF EMR) at non-thermal levels. The influence of low-intensity ionizing radiation was studied on outbred female rats kept for 1.5 years in the Chernobyl accident zone. The effects of total EMR in the UHF band of non-thermal spectrum were investigated on Wistar rats. The rate of formation of superoxide radicals and the rate of NO synthesis in mitochondria were determined by the EPR. After exposure to ionizing or UHF radiation, the levels of ubisemiquinone in brain tissue of rats decreased by 3 and 1.8 times, respectively. The content of NO-FeS-protein complexes in both groups increased significantly (р < 0.05). In the conditions of ionizing or EMR the rates of superoxide radical generation in electron-transport chain of brain cell mitochondria increased by 1.5- and 2-fold, respectively (р < 0.05). In brain tissue of rats kept in the Chernobyl zone, significant increase of NO content was registered; similar effect was observed in rats treated with UHFR (р < 0.05). The detected changes in the electron transport chain of mitochondria of brain cells upon low-intensity irradiation or UHF EMR cause the metabolic reprogramming of cell mitochondria that increases the rate of superoxide radical generation and nitric oxide, which may initiate the development of neurodegenerative diseases and cancer. This article is part of a Special Issue entitled "The Chornobyl Nuclear Accident: Thirty Years After".

  19. Development of two U.H.F. band resonators for application to CO2 laser electro-optical modulation

    International Nuclear Information System (INIS)

    Egan, M.G.; Blanc, P.; Sexton, M.C.

    1980-01-01

    The purpose of this report is to describe the design and testing of two U.H.F. band resonators destined for use in the linear electro-optical modulator of the CO 2 Laser Rapid Interferometer diagnostic at present under development for the WEGA Tokamak. The resonators take the form of a re-entrant coaxial line cavity and an interdigital line filter, both of which possess the regions of high electric field necessary to activate the linear electro-optical effect

  20. Meteor head echo altitude distributions and the height cutoff effect studied with the EISCAT HPLA UHF and VHF radars

    Directory of Open Access Journals (Sweden)

    A. Westman

    2004-04-01

    Full Text Available Meteor head echo altitude distributions have been derived from data collected with the EISCAT VHF (224MHz and UHF (930MHz high-power, large-aperture (HPLA radars. At the high-altitude end, the distributions cut off abruptly in a manner reminiscent of the trail echo height ceiling effect observed with classical meteor radars. The target dimensions are shown to be much smaller than both the VHF and the UHF probing wavelengths, but the cutoff heights for the two systems are still clearly different, the VHF cutoff being located several km above the UHF one. A single-collision meteor-atmosphere interaction model is used to demonstrate that meteors in the (1.3–7.2µg mass range will ionise such that critical electron density at 224MHz is first reached at or around the VHF cutoff altitude and critical density at 930MHz will be reached at the UHF cutoff altitude. The observed seasonal variation in the cutoff altitudes is shown to be a function of the seasonal variation of atmospheric density with altitude. Assuming that the electron density required for detection is in the order of the critical density, the abrupt altitude cutoffs can be explained as a consequence of the micrometeoroid joint size-speed distribution dropping off so fast at the large-mass, high-velocity end that above a certain altitude the number of detectable events becomes vanishingly small. Conversely, meteors at the low-mass end of the distribution will be gradually retarded such that the ionisation they generate never reaches critical density. These particles will remain unobservable.Key words. Radio science (instruments and techniques – Interplatery physics (interplanetary dust – General or miscellaneous (new fields

  1. Single Cell Responses to Spatially Controlled Photosensitized Production of Extracellular Singlet Oxygen

    DEFF Research Database (Denmark)

    Pedersen, Brian Wett; Sinks, Louise E.; Breitenbach, Thomas

    2011-01-01

    The response of individual HeLa cells to extracellularly produced singlet oxygen was examined. The spatial domain of singlet oxygen production was controlled using the combination of a membrane-impermeable Pd porphyrin-dendrimer, which served as a photosensitizer, and a focused laser, which served...... to localize the sensitized production of singlet oxygen. Cells in close proximity to the domain of singlet oxygen production showed morphological changes commonly associated with necrotic cell death. The elapsed post-irradiation “waiting period” before necrosis became apparent depended on (a) the distance...... between the cell membrane and the domain irradiated, (b) the incident laser fluence and, as such, the initial concentration of singlet oxygen produced, and (c) the lifetime of singlet oxygen. The data imply that singlet oxygen plays a key role in this process of light-induced cell death. The approach...

  2. Disturbances in VHF/UHF telemetry links as a possible effect of the 2003 Hokkaido Tokachi-oki earthquake

    Directory of Open Access Journals (Sweden)

    H. Nagamoto

    2008-08-01

    Full Text Available The data on radio telemetry links (for water information at VHF/UHF in Hokkaido are used to investigate the rate of disturbances on radio links (or connection failure and its association with a huge earthquake, Tokachi-oki earthquake on 26 September 2003. Especially, the telemetry links at the Tokachi region closest to the earthquake epicenter, showed a significant increase in disturbances on radio links two weeks to a few days before the earthquake on the basis of analysis during a long interval from 1 June 2002 to 3 November 2007 (over 5 years. We suggest that these severe disturbances in VHF/UHF telemetry links are attributed to the generation of seismogenic VHF/UHF radio noises (emissions. Based on this idea, we have estimated that the intensity of these seismogenic emissions is on the order of 10–19 dB μV/m. Finally, the present result was compared with other physical parameters already obtained for this earthquake.

  3. High orbital angular momentum states in H2 and D2. III. Singlet--triplet splittings, energy levels, and ionization potentials

    International Nuclear Information System (INIS)

    Jungen, C.; Dabrowski, I.; Herzberg, G.; Vervloet, M.

    1990-01-01

    The 5g--4 f Rydberg groups of H 2 and D 2 first studied in paper I have been obtained with a tenfold increase in resolution which made it possible to resolve the singlet from the triplet components. As a result we can now establish separately precise values for the energy levels in the triplet and singlet systems. For this purpose we have remeasured a number of transitions between the lower energy levels for which at present only old measurements are available. In particular we obtain accurate values for the energies of the lowest (stable) triplet state a 3 Σ + g relative to the singlet ground state, as well as of the ionization potential. The values obtained for the former are more accurate than obtained from singlet--triplet anticrossings while the latter are of similar accuracy as those reported recently by McCormack et al. [Phys. Rev. A 39, 2260 (1989)] and fit well within this accuracy with the most recent ab initio values

  4. Singlet oxygen production and quenching mechanisms in travelling microwave discharges

    International Nuclear Information System (INIS)

    Savin, Yu V; Goryachev, L V; Adamenkov, Yu A; Rakhimova, T V; Mankelevich, Yu A; Popov, N A; Adamenkov, A A; Egorov, V V; Ilyin, S P; Kolobyanin, Yu V; Kudryashov, E A; Rogozhnikov, G S; Vyskubenko, B A

    2004-01-01

    Experimental and theoretical studies of singlet oxygen excitation in travelling microwave (TMW) discharges are presented. Singlet oxygen O 2 (a 1 Δ g ) concentrations and atomic oxygen mole fraction have been measured for different pressures, input powers and distances from the MW resonator. It was shown that a steady-state TMW discharge with a coaxial cavity resonator could provide a maximal O 2 (a 1 Δ g ) yield of 22% for 2 Torr of pure oxygen and 27-30% for He : O 2 = 1 : 1 mixture. The two-dimensional (r, z) model developed for calculations of plasma-chemical kinetics, heat and mass transfer was used for simulation of processes in the TMW discharge under study. Effects of gas pressure, gas flow rate and input power are studied and compared with experimental measurements of O 2 (a 1 Δ g ) concentrations and atomic oxygen mole fractions

  5. Trap-induced photoconductivity in singlet fission pentacene diodes

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Xianfeng, E-mail: qiaoxianfeng@hotmail.com; Zhao, Chen; Chen, Bingbing; Luan, Lin [WuHan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wu Han 430074 (China)

    2014-07-21

    This paper reports a trap-induced photoconductivity in ITO/pentacene/Al diodes by using current-voltage and magneto-conductance measurements. The comparison of photoconductivity between pentacene diodes with and without trap clearly shows that the traps play a critical role in generating photoconductivity. It shows that no observable photoconductivity is detected for trap-free pentacene diodes, while significant photoconductivity is observed in diodes with trap. This is because the initial photogenerated singlet excitons in pentacene can rapidly split into triplet excitons with higher binding energy prior to dissociating into free charge carriers. The generated triplet excitons react with trapped charges to release charge-carriers from traps, leading to a trap-induced photoconductivity in the single-layer pentacene diodes. Our studies elucidated the formation mechanisms of photoconductivity in pentacene diodes with extremely fast singlet fission rate.

  6. Stability of mass hierarchy in models with a sliding singlet

    International Nuclear Information System (INIS)

    Smirnov, A.Yu.; Tainov, E.A.

    1986-01-01

    In the broad class of models with a heavy sliding singlet and softly broken supersymmetry (e.g. by the effects of N=1 supergravity) it is shown that the doublet-triplet hierarchy obtained at the tree level is not destroyed by quantum correction at any loop order. As an example the simplest SU(5) model with a stable doublet-triplet hierarchy is proposed. The necessary and sufficient conditions of the hierarchy stability are discussed. (orig.)

  7. Photorelease of triplet and singlet oxygen from dioxygen complexes

    Czech Academy of Sciences Publication Activity Database

    Wagnerová, Dana Marie; Lang, Kamil

    2011-01-01

    Roč. 255, 23-24 (2011), s. 2904-2911 ISSN 0010-8545 R&D Projects: GA ČR GAP207/10/1447; GA ČR GAP208/10/1678 Institutional research plan: CEZ:AV0Z40320502 Keywords : singlet oxygen * triplet oxygen * photochemical elimination * photorelease * Dioxygen complex Subject RIV: CA - Inorganic Chemistry Impact factor: 12.110, year: 2011

  8. Standard Model with a real singlet scalar and inflation

    Energy Technology Data Exchange (ETDEWEB)

    Enqvist, Kari; Nurmi, Sami; Tenkanen, Tommi; Tuominen, Kimmo, E-mail: kari.enqvist@helsinki.fi, E-mail: sami.nurmi@helsinki.fi, E-mail: tommi.tenkanen@helsinki.fi, E-mail: kimmo.i.tuominen@helsinki.fi [University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, FI-00014, Helsinki (Finland)

    2014-08-01

    We study the post-inflationary dynamics of the Standard Model Higgs and a real singlet scalar s, coupled together through a renormalizable coupling λ{sub sh}h{sup 2}s{sup 2}, in a Z{sub 2} symmetric model that may explain the observed dark matter abundance and/or the origin of baryon asymmetry. The initial values for the Higgs and s condensates are given by inflationary fluctuations, and we follow their dissipation and relaxation to the low energy vacua. We find that both the lowest order perturbative and the non-perturbative decays are blocked by thermal effects and large background fields and that the condensates decay by two-loop thermal effects. Assuming instant reheating at T=10{sup 16} GeV, the characteristic temperature for the Higgs condensate thermalization is found to be T{sub h} ∼ 10{sup 14} GeV, whereas s thermalizes typically around T{sub s} ∼ 10{sup 6} GeV. By that time, the amplitude of the singlet is driven very close to the vacuum value by the expansion of the universe, unless the portal coupling takes a value λ{sub sh}∼< 10{sup -7} and the singlet s never thermalizes. With these values of the coupling, it is possible to slowly produce a sizeable fraction of the observed dark matter abundance via singlet condensate fragmentation and thermal Higgs scattering. Physics also below the electroweak scale can therefore be affected by the non-vacuum initial conditions generated by inflation.

  9. Singlet-paired coupled cluster theory for open shells

    Science.gov (United States)

    Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2016-06-01

    Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior for strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference.

  10. Singlet-paired coupled cluster theory for open shells

    International Nuclear Information System (INIS)

    Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2016-01-01

    Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior for strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference.

  11. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling☆

    Science.gov (United States)

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-01-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2.) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. PMID:26225731

  12. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling.

    Science.gov (United States)

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-12-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2(.)) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Enhancing the power output of the VA-955 UHF-TV klystron

    International Nuclear Information System (INIS)

    Bowen, O.N.; Lawson, J.Q.

    1977-01-01

    The Varian VA-955 UHF-TV klystron is rated at 50 kW CW, and four of these klystrons were used to provide 200 kW of RF power for lower hybrid heating experiments on the ATC machine at 800 MHz. These proven, production-type tubes were wanted to generate more power for larger type machines, such as the PDX. Varian was asked whether the tubes were capable of higher-power operation in pulsed applications. They replied that they had no experimental data but felt that the tubes were capable of greatly enhanced performance under pulsed conditions. By using cathode modulation instead of modulating anode control of the klystron, and thus limiting the time that high voltage is applied to the cathode, it was shown that the tube is capable of an output power of 200 kW for tens of milliseconds compared to its normal CW rating of 50 kW. A description is given of the experimental results, the required modifications to the klystron and output transmission circuit, the details of operation of the regulating modulator used to perform the experiment. Upgrade kits are now being fabricated to allow 200 kW operation of the two 50 kW units which were lent to General Atomic for Doublet II experiments

  14. A low cost integrated transceiver for mobile UHF passive RFID reader applications

    International Nuclear Information System (INIS)

    Wang Jingchao; Zhang Chun; Chi Baoyong; Wang Ziqiang; Li Fule; Wang Zhihua

    2009-01-01

    A low cost integrated transceiver for mobile UHF passive RFID reader applications is implemented in a 0.18-μm CMOS process. The transceiver contains an OOK modulator and a power amplifier in the transmitter chain, an IQ direct-down converter, variable-gain amplifiers, channel-select filters and a 10-bit ADC in the receiver chain. The measured output P 1DB power of the transmitter is 17.6 dBm and the measured receiver sensitivity is -70 dBm. The on-chip integer N synthesizer achieves a frequency resolution of 200 kHz with a phase noise of -104 dBc/Hz at 100 kHz frequency offset and -120.83 dBc/Hz at 1 MHz frequency offset. The transmitter, the receiver and the frequency synthesizer consume 201.34, 25.3 and 54 mW, respectively. The chip has a die area of 4 x 2.5 mm 2 including pads.

  15. A low cost integrated transceiver for mobile UHF passive RFID reader applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jingchao; Zhang Chun; Chi Baoyong; Wang Ziqiang; Li Fule; Wang Zhihua, E-mail: wangjc@gmail.co [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China)

    2009-09-15

    A low cost integrated transceiver for mobile UHF passive RFID reader applications is implemented in a 0.18-{mu}m CMOS process. The transceiver contains an OOK modulator and a power amplifier in the transmitter chain, an IQ direct-down converter, variable-gain amplifiers, channel-select filters and a 10-bit ADC in the receiver chain. The measured output P{sub 1DB} power of the transmitter is 17.6 dBm and the measured receiver sensitivity is -70 dBm. The on-chip integer N synthesizer achieves a frequency resolution of 200 kHz with a phase noise of -104 dBc/Hz at 100 kHz frequency offset and -120.83 dBc/Hz at 1 MHz frequency offset. The transmitter, the receiver and the frequency synthesizer consume 201.34, 25.3 and 54 mW, respectively. The chip has a die area of 4 x 2.5 mm{sup 2} including pads.

  16. Design and implementation of an ultra-low power passive UHF RFID tag

    International Nuclear Information System (INIS)

    Shen Jinpeng; Wang Xin'an; Liu Shan; Zong Hongqiang; Huang Jinfeng; Yang Xin; Feng Xiaoxing; Ge Binjie

    2012-01-01

    This paper presents a fully integrated passive UHF RFID tag chip complying with the ISO18000-6B protocol. The tag chip includes an RF/analog front-end, a baseband processor, and a 512-bit EEPROM memory. To improve power conversion efficiency, a Schottky barrier diode based rectifier is adopted. A novel voltage reference using the peaking current source is discussed in detail, which can meet the low-power, low-voltage requirement while retaining circuit simplicity. Most of the analog blocks are designed to work under sub-1 V to reduce power consumption, and several practical methods are used to further reduce the power consumption of the baseband processor. The whole tag chip is implemented in a TSMC 0.18 μm CMOS process with a die size of 800 × 800 μm 2 . Measurement results show that the total power consumption of the tag chip is only 7.4 μW with a sensitivity of −12 dBm. (semiconductor integrated circuits)

  17. Design and implementation of a high sensitivity fully integrated passive UHF RFID tag

    International Nuclear Information System (INIS)

    Li Shoucheng; Wang Xin'an; Lin Ke; Shen Jinpeng; Zhang Jinhai

    2014-01-01

    A fully integrated passive UHF RFID tag complying with the ISO18000-6B protocol is presented, which includes an analog front-end, a baseband processor, and an EEPROM memory. To extend the communication range, a high efficiency differential-drive CMOS rectifier is adopted. A novel high performance voltage limiter is used to provide a stable limiting voltage, with a 172 mV voltage variation against temperature variation and process dispersion. The dynamic band-enhancement technique is used in the regulator circuit to improve the regulating capacity. A rail-to-rail hysteresis comparator is adopted to demodulate the signal correctly in any condition. The whole transponder chip is implemented in a 0.18 μm CMOS process, with a die size of 900 × 800 μm 2 . Our measurement results show that the total power consumption of the tag chip is only 6.8 μW, with a sensitivity of −13.5 dBm (semiconductor integrated circuits)

  18. Near Field UHF RFID Antenna System Enabling the Tracking of Small Laboratory Animals

    Directory of Open Access Journals (Sweden)

    Luca Catarinucci

    2013-01-01

    Full Text Available Radio frequency identification (RFID technology is more and more adopted in a wide range of applicative scenarios. In many cases, such as the tracking of small-size living animals for behaviour analysis purposes, the straightforward use of commercial solutions does not ensure adequate performance. Consequently, both RFID hardware and the control software should be tailored for the particular application. In this work, a novel RFID-based approach enabling an effective localization and tracking of small-sized laboratory animals is proposed. It is mainly based on a UHF Near Field RFID multiantenna system, to be placed under the animals’ cage, and able to rigorously identify the NF RFID tags implanted in laboratory animals (e.g., mice. Once the requirements of the reader antenna have been individuated, the antenna system has been designed and realized. Moreover, an algorithm based on the measured Received Signal Strength Indication (RSSI aiming at removing potential ambiguities in data captured by the multiantenna system has been developed and integrated. The animal tracking system has been largely tested on phantom mice in order to verify its ability to precisely localize each subject and to reconstruct its path. The achieved and discussed results demonstrate the effectiveness of the proposed tracking system.

  19. A UHF RFID system with on-chip-antenna tag for short range communication

    International Nuclear Information System (INIS)

    Peng Qi; Zhang Chun; Zhao Xijin; Wang Zhihua

    2015-01-01

    A UHF RF identification system based on the 0.18 μm CMOS process has been developed for short range and harsh size requirement applications, which is composed of a fully integrated tag and a special reader. The whole tag chip with the antenna takes up an area of 0.36 mm 2 , which is smaller than other reported tags with an on-chip antenna (OCA) using the standard CMOS process. A self-defined protocol is proposed to reduce the power consumption, and minimize the size of the tag. The specialized SOC reader system consists of the RF transceiver, digital baseband, MCU and host interface. Its power consumption is about 500 mW. Measurement results show that the system's reading range is 2 mm with 20 dBm reader output power. With an inductive antenna printed on a paper substrate around the OCA tag, the reading range can be extended from several centimeters to meters, depending on the shape and size of the inductive antenna. (paper)

  20. First UHF Implementation of the Incremental Scheme for Open-Shell Systems.

    Science.gov (United States)

    Anacker, Tony; Tew, David P; Friedrich, Joachim

    2016-01-12

    The incremental scheme makes it possible to compute CCSD(T) correlation energies to high accuracy for large systems. We present the first extension of this fully automated black-box approach to open-shell systems using an Unrestricted Hartree-Fock (UHF) wave function, extending the efficient domain-specific basis set approach to handle open-shell references. We test our approach on a set of organic and metal organic structures and molecular clusters and demonstrate standard deviations from canonical CCSD(T) values of only 1.35 kJ/mol using a triple ζ basis set. We find that the incremental scheme is significantly more cost-effective than the canonical implementation even for relatively small systems and that the ease of parallelization makes it possible to perform high-level calculations on large systems in a few hours on inexpensive computers. We show that the approximations that make our approach widely applicable are significantly smaller than both the basis set incompleteness error and the intrinsic error of the CCSD(T) method, and we further demonstrate that incremental energies can be reliably used in extrapolation schemes to obtain near complete basis set limit CCSD(T) reaction energies for large systems.

  1. A voltage regulator system with dynamic bandwidth boosting for passive UHF RFID transponders

    International Nuclear Information System (INIS)

    Shen Jinpeng; Wang Xin'an; Liu Shan; Li Shoucheng; Ruan Zhengkun

    2013-01-01

    This paper presents a voltage regulator system for passive UHF RFID transponders, which contains a rectifier, a limiter, and a regulator. The rectifier achieves power by rectifying the incoming RF energy. Due to the huge variation of the rectified voltage, a limiter at the rectifier output is used to clamp the rectified voltage. In this paper, the design of a limiter circuit is discussed in detail, which can provide a stable limiting voltage with low sensitivity to temperature variation and process dispersion. The key aspect of the voltage regulator system is the dynamic bandwidth boosting in the regulator. By sensing the excess current that is bypassed in the limiter during periods of excess energy, the bias current as well as the bandwidth of the regulator are increased, the output supply voltage can recover quickly from line transients during the periods of no RF energy to a full blast of RF energy. This voltage regulator system is implemented in a 0.18 μm CMOS process. (semiconductor integrated circuits)

  2. Design of planar electron gun for UHF range, CW power inductive output tube

    International Nuclear Information System (INIS)

    Kaushik, Meenu; Joshi, L.M.

    2015-01-01

    Inductive Output Tube (lOT) is an amplifier which is now-a-days in demand for scientific applications. For every vacuum tube, electron gun is an important part and in fact considered as the heart of the tube. Hence, designing of this component is very crucial for efficient operation of the device throughout its lifetime. This paper is all about the electromagnetic (EM) design of planar electron gun of 40 kV, 3.5 A beam voltage and beam current respectively, for a 100 kW CW power lOT operating in UHF range. The design considerations and basic equations involved in its design are included in the paper. The gun structure has been optimized for getting the desired beam characteristics. The simulation results including the beam profile along with the beam current are shown using two commercial codes namely TRAK and MAGIC code. Planar shape of electron beam reduces space charge forces in the beam itself and consequently beam energy spread for a given current. The magnetic focusing of planar beam is easier comparative to spherical beam hence, this structure has been adopted for this particular device design. (author)

  3. In situ occupational and general public exposure to VHF/UHF transmission for air traffic communication.

    Science.gov (United States)

    Joseph, Wout; Goeminne, Francis; Verloock, Leen; Vermeeren, Günter; Martens, Luc

    2012-09-01

    Occupational and general public exposure due to very high frequency (VHF)/ultra high frequency (UHF) transmission centres for verbal communication for air traffic control is investigated in situ for the first time. These systems are used for communication with aircraft, resulting in different human exposure from that of classical broadcasting. Measurement methods are proposed for the exposure assessment, and a measurement campaign is executed in three transmission centres. By investigating the temporal behaviour of the VHF signals for 6 d, a realistic worst-case duty cycle of 29 % is determined. Periods of high exposures corresponding with high aircraft traffic are from 7 a.m. to 1 p.m. and in the evening. All measured electric-field values satisfy the International Commission on Non-ionizing Radiation Protection guidelines. Fields vary from 0.2 to 21.1 V m(-1) for occupational exposure and from 0.007 to 8.0 V m(-1) for general public exposure. The average fields equal 5.2 V m(-1) for workers, and 0.7 V m(-1) for general public.

  4. In situ occupational and general public exposure to VHF/UHF transmission for air traffic communication

    International Nuclear Information System (INIS)

    Joseph, W.; Goeminne, F.; Verloock, L.; Vermeeren, G.; Martens, L.

    2012-01-01

    Occupational and general public exposure due to very high frequency (VHF)/ultra high frequency (UHF) transmission centres for verbal communication for air traffic control is investigated in situ for the first time. These systems are used for communication with aircraft, resulting in different human exposure from that of classical broadcasting. Measurement methods are proposed for the exposure assessment, and a measurement campaign is executed in three transmission centres. By investigating the temporal behaviour of the VHF signals for 6 d, a realistic worst-case duty cycle of 29 % is determined. Periods of high exposures corresponding with high aircraft traffic are from 7 a.m. to 1 p.m. and in the evening. All measured electric field values satisfy the International Commission on Non-ionizing Radiation Protection guidelines. Fields vary from 0.2 to 21.1 V m -1 for occupational exposure and from 0.007 to 8.0 V m -1 for general public exposure. The average fields equal 5.2 V m -1 for workers, and 0.7 V m -1 for general public. (authors)

  5. Benchmarking singlet and triplet excitation energies of molecular semiconductors for singlet fission: Tuning the amount of HF exchange and adjusting local correlation to obtain accurate functionals for singlet-triplet gaps

    Science.gov (United States)

    Brückner, Charlotte; Engels, Bernd

    2017-01-01

    Vertical and adiabatic singlet and triplet excitation energies of molecular p-type semiconductors calculated with various DFT functionals and wave-function based approaches are benchmarked against MS-CASPT2/cc-pVTZ reference values. A special focus lies on the singlet-triplet gaps that are very important in the process of singlet fission. Singlet fission has the potential to boost device efficiencies of organic solar cells, but the scope of existing singlet-fission compounds is still limited. A computational prescreening of candidate molecules could enlarge it; yet it requires efficient methods accurately predicting singlet and triplet excitation energies. Different DFT formulations (Tamm-Dancoff approximation, linear response time-dependent DFT, Δ-SCF) and spin scaling schemes along with several ab initio methods (CC2, ADC(2)/MP2, CIS(D), CIS) are evaluated. While wave-function based methods yield rather reliable singlet-triplet gaps, many DFT functionals are shown to systematically underestimate triplet excitation energies. To gain insight, the impact of exact exchange and correlation is in detail addressed.

  6. New strategies to produce and detect singlet oxygen in a cell

    DEFF Research Database (Denmark)

    Gollmer, Anita

    2012-01-01

    of the general methodology to generate and detect singlet oxygen is currently of great importance in order to better understand the roles played by singlet oxygen in photo-induced cell death. From a mechanistic perspective, experiments performed at the level of a single cell provide unique insight......Singlet oxygen, the first excited electronic state of molecular oxygen, plays a major role in oxygen-dependent photo-induced cell death. In such systems, singlet oxygen is generally produced in a photosensitized process wherein light is absorbed by a molecule (the so-called sensitizer) which......, and that is the perspective of this study. Although the direct optical detection of singlet oxygen by its near IR phosphorescence is the ideal way to monitor this species, it suffers from the problem of weak signal intensity. Fluorescent probes can be a more sensitive way to detect singlet oxygen. The photochemical behavior...

  7. Quantum Monte Carlo study of the singlet-triplet transition in ethylene

    International Nuclear Information System (INIS)

    El Akramine, Ouafae; Kollias, Alexander C.; Lester, William A. Jr.

    2003-01-01

    A theoretical study is reported of the transition between the ground state ( 1 A g ) and the lowest triplet state (1 3 B 1u ) of ethylene based on the diffusion Monte Carlo (DMC) variant of the quantum Monte Carlo method. Using DMC trial functions constructed from Hartree-Fock, complete active space self-consistent field and multi-configuration self-consistent field wave functions, we have computed the atomization energy and the heat of formation of both states, and adiabatic and vertical energy differences between these states using both all-electron and effective core potential DMC. The ground state atomization energy and heat of formation are found to agree with experiment to within the error bounds of the computation and experiment. Predictions by DMC of the triplet state atomization energy and heat of formation are presented. The adiabatic singlet-triplet energy difference is found to differ by 5 kcal/mol from the value obtained in a recent photodissociation experiment

  8. Cross sections for the vibrational excitation of the H2 X 1Σ+g(v) levels generated by electron collisional excitation of the higher singlet states

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1991-01-01

    The excitation cross sections, σ(v,v double-prime), for an H 2 molecule initially in any one of the 15 vibrational levels, v belonging to the ground electronic state and excited to a final vibrational level, v double-prime are evaluated for direct excitations via all members of the excited electronic singlet spectrum. Account is taken of predissociation, autoionization, and radiative decay of the excited electronic spectrum that leads to a final population distribution for the ground electronic state, X 1 Σ + g (v double-prime). For v=0, account is taken explicitly of transitions via the B, C, B', and D electronic states in evaluating the cross sections. The additional contribution of excitations via all Rydberg states lying above the D state enhances these cross sections by approximately 10%. For v>0, cross sections are evaluated taking explicit account of transitions through the B and C states; higher singlet excitations enhance these values by 25%. The choice of the reference total cross sections remains a subjective one, causing the values calculated here to have a possible uncertainty of +20% -30% . For excitations occurring within a hydrogen discharge, collisional excitation-ionization events among the intermediate singlet states will effectively quench the v, v double-prime excitation process for discharge densities in excess of the range 10 15 --10 16 electrons/cm -3

  9. A UHF RFID positioning system for use in warehouse navigation by employees with cognitive disability.

    Science.gov (United States)

    Gunther, Eric J M; Sliker, Levin J; Bodine, Cathy

    2017-11-01

    Unemployment among the almost 5 million working-age adults with cognitive disabilities in the USA is a costly problem in both tax dollars and quality of life. Job coaching is an effective tool to overcome this, but the cost of job coaching services sums with every new employee or change of employment roles. There is a need for a cost-effective, automated alternative to job coaching that incurs a one-time cost and can be reused for multiple employees or roles. An effective automated job coach must be aware of its location and the location of destinations within the job site. This project presents a design and prototype of a cart-mounted indoor positioning and navigation system with necessary original software using Ultra High Frequency Radio Frequency Identification (UHF RFID). The system presented in this project for use within a warehouse setting is one component of an automated job coach to assist in the job of order filler. The system demonstrated accuracy to within 0.3 m under the correct conditions with strong potential to serve as the basis for an effective indoor navigation system to assist warehouse workers with disabilities. Implications for rehabilitation An automated job coach could improve employability of and job retention for people with cognitive disabilities. An indoor navigation system using ultra high frequency radio frequency identification was proposed with an average positioning accuracy of 0.3 m. The proposed system, in combination with a non-linear context-aware prompting system, could be used as an automated job coach for warehouse order fillers with cognitive disabilities.

  10. UHF-RFID solutions for logistics units management in the food supply chain

    Directory of Open Access Journals (Sweden)

    Paolo Barge

    2013-09-01

    Full Text Available The availability of systems for automatic and simultaneous identification of several items belonging to a logistics unit during production, warehousing and delivering can improve supply chain management and speed traceability controls. Radio frequency identification (RFID is a powerful technique that potentially permits to reach this goal, but some aspects as, for instance, food product composition (e.g. moisture content, salt or sugar content and some peculiarities of the production environment (high moisture, high/low temperatures, metallic structures have prevented, so far, its application in food sector. In the food industry, composition and shape of items are much less regular than in other commodities sectors. In addition, a wide variety of packaging, composed by different materials, is employed. As material, size and shape of items to which the tag should be attached strongly influence the minimum power requested for tag functioning, performance improvements can be achieved only selecting suitable RF identifier for the specific combination of food product and packaging. When dealing with logistics units, the dynamic reading of a vast number of tags originates simultaneous broadcasting of signals (tag-to-tag collisions that could affect reading rates and the overall reliability of the identification procedure. This paper reports the results of an extensive analysis of the reading performance of UHF RFID systems for multiple dynamic electronic identification of food packed products in controlled conditions. Products were considered singularly or arranged on a logistics pallet. The effects on reading rate and reading zone of different factors, among which the type of product, the number and position of antennas, the field polarization, the reader RF power output, the interrogation protocol configuration as well as the transit speed, the number of tags and their interactions were analysed and compared.

  11. Unitarity constraints in the standard model with a singlet scalar field

    International Nuclear Information System (INIS)

    Kang, Sin Kyu; Park, Jubin

    2015-01-01

    Motivated by the discovery of a new scalar field and amelioration of the electroweak vacuum stability ascribed to a singlet scalar field embedded in the standard model (SM), we examine the implication of the perturbative unitarity in the SM with a singlet scalar field. Taking into account the full contributions to the scattering amplitudes, we derive unitarity conditions on the scattering matrix which can be translated into bounds on the masses of the scalar fields. In the case that the singlet scalar field develops vacuum expectation value (VEV), we get the upper bound on the singlet scalar mass varying with the mixing between the singlet and Higgs scalars. On the other hand, the mass of the Higgs scalar can be constrained by the unitarity condition in the case that the VEV of the singlet scalar is not generated. Applying the upper bound on the Higgs mass to the scenario of the unitarized Higgs inflation, we discuss how the unitarity condition can constrain the Higgs inflation. The singlet scalar mass is not constrained by the unitarity itself when we impose Z 2 in the model because of no mixing with the Higgs scalar. But, regarding the singlet scalar field as a cold dark matter candidate, we derive upper bound on the singlet scalar mass by combining the observed relic abundance with the unitarity condition.

  12. Singlet Oxygen Sensor Green: Photochemical Behavior in Solution and in a Mammalian Cell

    DEFF Research Database (Denmark)

    Gollmer, Anita; Arnbjerg, Jacob; Blaikie, Frances Helen

    2011-01-01

    The development of efficient and selective luminescent probes for reactive oxygen species, particularly for singlet molecular oxygen, is currently of great importance. In this study, the photochemical behavior of Singlet Oxygen Sensor Green® (SOSG), a commercially available fluorescent probe...... of the reaction between SOSG and singlet oxygen is, itself, an efficient singlet oxygen photosensitizer. Second, SOSG appears to efficiently bind to proteins which, in turn, can influence uptake by a cell as well as behavior in the cell. As such, incorrect use of SOSG can yield misleading data on yields...

  13. Scenarios and business models for mobile network operators utilizing the hybrid use concept of the UHF broadcasting spectrum

    Directory of Open Access Journals (Sweden)

    S. Yrjölä

    2016-09-01

    Full Text Available This paper explores and presents scenarios and business models for mobile network operators (MNOs in the novel hybrid use spectrum sharing concept of the Ultra High Frequency broadcasting spectrum (470-790 MHz used for Digital Terrestrial TV (DTT and Mobile Broadband (MBB. More flexible use of the band could lead to higher efficiency in delivering fast growing and converging MBB, media and TV content to meet changing consumer needs. On one hand, this could be beneficial for broadcasters (BC, e.g., by preserving the spectrum, by providing additional revenues, or by lowering cost of the spectrum and, on the other hand, for MNOs to gain faster access to new potentially lower cost, licensed, below 1GHz spectrum to cope with booming data traffic. As a collaborative benefit, the concept opens up new business opportunities for delivering TV and media content using MBB network with means to introduce this flexibly. This paper highlights the importance of developing sound business models for the new spectrum use concept, as they need to provide clear benefits to the key stakeholders to be adopted in real life. The paper applies a future and action oriented approach to the MBB using the concept to derive scenarios and business models for MNOs for accessing hybrid UHF bands. In order to address the convergence and transformation coming with the concept, business models are first developed for the current situation with separate exclusive spectrum bands. Novel business scenarios are then developed for the introduction of the new flexible hybrid UHF spectrum concept. The created business model indicates that the MNOs could benefit significantly from the new UHF bands, which would enable them to cope with increasing data traffic asymmetry, and to offer differentiation through personalized broadcasting and new media services. Moreover, it could significantly re-shape the business ecosystem around both the broadcasting and the mobile broadband by introducing

  14. Singlet oxygen-mediated formation of protein peroxides within cells

    International Nuclear Information System (INIS)

    Wright, A.; Policarpio, V.

    2003-01-01

    Full text: Singlet oxygen is generated by a number of cellular, enzymatic and chemical reactions as well as by exposure to UV, or visible light in the presence of a sensitizer; as a consequence this oxidant has been proposed as a damaging agent in a number of pathologies including photo-aging and skin cancer. Proteins are major targets for singlet oxygen as a result of their abundance and high rate constants for reaction. In this study it is shown that illumination of viable, sensitizer-loaded, THP-1 (human monocyte-like) cells with visible light gives rise to intra-cellular protein-derived peroxides. The peroxide yield increases with illumination time, requires the presence of the sensitizer, is enhanced in D 2 O, and decreased by azide; these data are consistent with the mediation of singlet oxygen. The concentration of peroxides detected, which is not affected by glucose or ascorbate loading of the cells, corresponds to ca. 1.5 nmoles peroxide per 10 6 cells using rose bengal as sensitizer, or 10 nmoles per mg cell protein and account for up to ca. 15% of the O 2 consumed by the cells. Similar peroxides have been detected on isolated cellular proteins exposed to light in the presence of rose bengal and oxygen. After cessation of illumination, the cellular protein peroxide levels decreases with t 1/2 ca. 4 hrs at 37 deg C, and this is associated with increased cell lysis. Decomposition of protein peroxides formed within cells, or on isolated cellular proteins, by metal ions, gives rise to radicals as detected by EPR spin trapping. These protein peroxides, and radicals derived from them, can inactivate key cellular enzymes (including caspases, GAPDH and glutathione reductase) and induce DNA base oxidation, strand breaks and DNA-protein cross-links. These studies demonstrate that exposure of intact cells to visible light in the presence of a sensitizer gives rise to novel long-lived, but reactive, intra-cellular protein peroxides via singlet oxygen

  15. Reactive species formed on proteins exposed to singlet oxygen

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2004-01-01

    Singlet oxygen ((1)O(2)) is believed to be generated in biological systems by a range of endogenous processes (e.g. enzymatic and chemical reactions) and exogenous stimuli (e.g. UV or visible light in the presence of a sensitiser). Kinetic data is consistent with proteins being a major target...... hydroperoxides, which can be reduced to the corresponding alcohols; other products arising from radical intermediates can also be generated, particularly in the presence of UV light and metal ions. With His side-chains, poorly characterised peroxides are also formed. Reaction with Met and Cys has been proposed...

  16. Entanglement and Metrology with Singlet-Triplet Qubits

    Science.gov (United States)

    Shulman, Michael Dean

    Electron spins confined in semiconductor quantum dots are emerging as a promising system to study quantum information science and to perform sensitive metrology. Their weak interaction with the environment leads to long coherence times and robust storage for quantum information, and the intrinsic tunability of semiconductors allows for controllable operations, initialization, and readout of their quantum state. These spin qubits are also promising candidates for the building block for a scalable quantum information processor due to their prospects for scalability and miniaturization. However, several obstacles limit the performance of quantum information experiments in these systems. For example, the weak coupling to the environment makes inter-qubit operations challenging, and a fluctuating nuclear magnetic field limits the performance of single-qubit operations. The focus of this thesis will be several experiments which address some of the outstanding problems in semiconductor spin qubits, in particular, singlet-triplet (S-T0) qubits. We use these qubits to probe both the electric field and magnetic field noise that limit the performance of these qubits. The magnetic noise bath is probed with high bandwidth and precision using novel techniques borrowed from the field of Hamiltonian learning, which are effective due to the rapid control and readout available in S-T 0 qubits. These findings allow us to effectively undo the undesired effects of the fluctuating nuclear magnetic field by tracking them in real-time, and we demonstrate a 30-fold improvement in the coherence time T2*. We probe the voltage noise environment of the qubit using coherent qubit oscillations, which is partially enabled by control of the nuclear magnetic field. We find that the voltage noise bath is frequency-dependent, even at frequencies as high as 1MHz, and it shows surprising and, as of yet, unexplained temperature dependence. We leverage this knowledge of the voltage noise environment, the

  17. Quadrupole singlet focusing for achromatic parallel-to-parallel devices

    International Nuclear Information System (INIS)

    Brown, K.L.

    1983-01-01

    A first order achromatic magnetic deflection system for use in conjunction with a charged particle accelerator is realized from a stepped gap magnet wherein charged particles propagating through the system are subject to at least two adjacent homogeneous magnetic fields in adjacent regions in traversing one-half of a symmetric trajectory through the system. A quadrupole singlet element Q of adjustable focal length disposed substantially at the entrance plane of such a symmetric system makes possible the coincidence of the waists of the beam in both the vertical (transverse) and (radial) bending planes. (author)

  18. Resonance of conductivity in UHF-range to the action of alternating current in La0.7Pb0.3MnO3 crystals

    International Nuclear Information System (INIS)

    Volkov, N.V.; Petrakovskij, G.A.; Sablina, K.A.

    1999-01-01

    The experimental results of the study on the effect of the low frequency transport current on the conductivity in UHF-range of the La 0.7 Pb 0.3 MnO 3 monocrystals are presented. In absence of the external magnetic field the UHF-conductivity response signal on the current impact has the form of the relaxation process. The peak of the amplitude resonance growth is observed in the external magnetic field in the response spectrum. The resonance response is of nonlinear character. The temperature and field dependences of the UHF-response basic parameters are in direct correlation with the magnetoresistance behaviour. The results obtained are analyzed within the frames of the oscillatory approximation. The mechanism of the phases electron separation is proposed as the possible mechanism of the current impact [ru

  19. X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: determination of singlet oxygen quantum yield

    OpenAIRE

    Clement, Sandhya; Deng, Wei; Camilleri, Elizabeth; Wilson, Brian C.; Goldys, Ewa M.

    2016-01-01

    Singlet oxygen is a primary cytotoxic agent in photodynamic therapy. We show that CeF3 nanoparticles, pure as well as conjugated through electrostatic interaction with the photosensitizer verteporfin, are able to generate singlet oxygen as a result of UV light and 8?keV X-ray irradiation. The X-ray stimulated singlet oxygen quantum yield was determined to be 0.79???0.05 for the conjugate with 31 verteporfin molecules per CeF3 nanoparticle, the highest conjugation level used. From this result ...

  20. Study of the coastal atmospheric boundary layer during ESCOMPTE 2001. Evaluation and improvement of the efficiency of a UHF radar; Etude de la couche limite atmospherique cotiere durant ESCOMPTE 2001. Evaluation et amelioration des performances d'un radar UHF

    Energy Technology Data Exchange (ETDEWEB)

    Puygrenier, V

    2005-12-15

    Forecasting of pollution events was the main objective of the ESCOMPTE-2001 campaign, which took place in the Marseille/Fos/Berre heterogeneous area (southeastern France) in the early summer 2001. This goal requires good understanding and taking into account, by physico-chemical numerical models, of the physical processes in the Atmospheric Boundary Layer (ABL), in which pollutants are emitted, transported and diffused. In the ESCOMPTE-2001 campaign context, this work was devoted to study the low troposphere during sea breeze events, related to meteorological conditions responsible for poor air quality of coastal areas. It presents notably an oscillation of the sea breeze intensity and competitions of locals and regional sea breeze, which change the advective time of the marine air above the continental surface and thus influence the ABL development and its pollutants concentration. This study is based principally on the network of four UHF wind profilers radars set up on the coastal area of Marseille/Fos/Berre, allowing a continuous three-dimensional description of the sea breeze flow and the ABL. For the needs of this phenomenological work, methodological developments was realized to improve the measurement of ABL turbulent properties with UHF radars (terms of turbulent kinetic energy budget) and the use of wind profilers network for the study of pollutants plumes trajectory-graphy. (author)

  1. Singlet vs Nonsinglet Perturbative Renormalization factors of Staggered Fermion Bilinears

    Science.gov (United States)

    Panagopoulos, Haralambos; Spanoudes, Gregoris

    2018-03-01

    In this paper we present the perturbative computation of the difference between the renormalization factors of flavor singlet (Σfψ¯fΓψf', f : flavor index) and nonsinglet (ψ¯f1Γψf2,f1 ≠ f2) bilinear quark operators (where Γ = 𝟙, γ5, γ µ, γ5 γ µ, γ5 σµv on the lattice. The computation is performed to two loops and to lowest order in the lattice spacing, using Symanzik improved gluons and staggered fermions with twice stout-smeared links. The stout smearing procedure is also applied to the definition of bilinear operators. A significant part of this work is the development of a method for treating some new peculiar divergent integrals stemming from the staggered formalism. Our results can be combined with precise simulation results for the renormalization factors of the nonsinglet operators, in order to obtain an estimate of the renormalization factors for the singlet operators. The results have been published in Physical Review D [1].

  2. Discrete R symmetries for the MSSM and its singlet extensions

    CERN Document Server

    Lee, Hyun Min; Ratz, Michael; Ross, Graham G; Schieren, Roland; Schmidt-Hoberg, Kai; Vaudrevange, Patrick K S

    2011-01-01

    We determine the anomaly free discrete R symmetries, consistent with the MSSM, that commute with SU(5) and suppress the $\\mu$ parameter and nucleon decay. We show that the order M of such $Z_M^R$ symmetries has to divide 24 and identify 5 viable symmetries. The simplest possibility is a $Z_4^R$ symmetry which commutes with SO(10). We present a string-derived model with this $Z_4^R$ symmetry and the exact MSSM spectrum below the GUT scale; in this model $Z_4^R$ originates from the Lorentz symmetry of compactified dimensions. We extend the discussion to include the singlet extensions of the MSSM and find $Z_4^R$ and $Z_8^R$ are the only possible symmetries capable of solving the $\\mu$ problem in the NMSSM. We also show that a singlet extension of the MSSM based on a $Z_{24}^R$ symmetry can provide a simultaneous solution to the $\\mu$ and strong CP problem with the axion coupling in the favoured window.

  3. Singlet structure function F_1 in double-logarithmic approximation

    Science.gov (United States)

    Ermolaev, B. I.; Troyan, S. I.

    2018-03-01

    The conventional ways to calculate the perturbative component of the DIS singlet structure function F_1 involve approaches based on BFKL which account for the single-logarithmic contributions accompanying the Born factor 1 / x. In contrast, we account for the double-logarithmic (DL) contributions unrelated to 1 / x and because of that they were disregarded as negligibly small. We calculate the singlet F_1 in the double-logarithmic approximation (DLA) and account at the same time for the running α _s effects. We start with a total resummation of both quark and gluon DL contributions and obtain the explicit expression for F_1 in DLA. Then, applying the saddle-point method, we calculate the small- x asymptotics of F_1, which proves to be of the Regge form with the leading singularity ω _0 = 1.066. Its large value compensates for the lack of the factor 1 / x in the DLA contributions. Therefore, this Reggeon can be identified as a new Pomeron, which can be quite important for the description of all QCD processes involving the vacuum (Pomeron) exchanges at very high energies. We prove that the expression for the small- x asymptotics of F_1 scales: it depends on a single variable Q^2/x^2 only instead of x and Q^2 separately. Finally, we show that the small- x asymptotics reliably represent F_1 at x ≤ 10^{-6}.

  4. Natural NMSSM with a light singlet Higgs and singlino LSP

    International Nuclear Information System (INIS)

    Potter, C.T.

    2016-01-01

    Supersymmetry (SUSY) is an attractive extension of the Standard Model (SM) of particle physics which solves the SM hierarchy problem. Motivated by the theoretical μ-term problem of the Minimal Supersymmetric Model (MSSM), the Next-to MSSM (NMSSM) can also account for experimental deviations from the SM like the anomalous muon magnetic moment and the dark matter relic density. Natural SUSY, motivated by naturalness considerations, exhibits small fine tuning and a characteristic phenomenology with light higgsinos, stops, and gluinos. We describe a scan in NMSSM parameter space motivated by Natural SUSY and guided by the phenomenology of an NMSSM with a slightly broken Peccei-Quinn symmetry and a lightly coupled singlet. We identify a scenario which survives experimental constraints with a light singlet Higgs and a singlino lightest SUSY particle. We then discuss how the scenario is not presently excluded by searches at the Large Hadron Collider (LHC) and which channels are promising for discovery at the LHC and International Linear Collider. (orig.)

  5. Detection of Singlet Oxygen Formation inside Photoactive Biohybrid Composite Material

    Directory of Open Access Journals (Sweden)

    Kata Hajdu

    2017-12-01

    Full Text Available Photosynthetic reaction center proteins (RCs are the most efficient light energy converter systems in nature. The first steps of the primary charge separation in photosynthesis take place in these proteins. Due to their unique properties, combining RCs with nano-structures promising applications can be predicted in optoelectronic systems. In the present work RCs purified from Rhodobacter sphaeroides purple bacteria were immobilized on multiwalled carbon nanotubes (CNTs. Carboxyl—and amine-functionalised CNTs were used, so different binding procedures, physical sorption and chemical sorption as well, could be applied as immobilization techniques. Light-induced singlet oxygen production was measured in the prepared photoactive biocomposites in water-based suspension by histidine mediated chemical trapping. Carbon nanotubes were applied under different conditions in order to understand their role in the equilibration of singlet oxygen concentration in the suspension. CNTs acted as effective quenchers of 1O2 either by physical (resonance energy transfer or by chemical (oxidation reaction and their efficiency showed dependence on the diffusion distance of 1O2.

  6. Singlet Oxygen Detection Using Red Wine Extracts as Photosensitizers.

    Science.gov (United States)

    Lagunes, Irene; Vázquez-Ortega, Fernanda; Trigos, Ángel

    2017-09-01

    Moderate consumption of red wine provides beneficial effects to health. This is attributed to polyphenol compounds present in wine such as resveratrol, quercetin, gallic acid, rutin, and vanillic acid. The amount of these antioxidants is variable; nevertheless, the main beneficial effects of red wine are attributed to resveratrol. However, it has been found that resveratrol and quercetin are able to photosensitize singlet oxygen generation and conversely, gallic acid acts as quencher. Therefore, and since resveratrol and quercetin are some of the most important antioxidants reported in red wines, the aim of this research was to evaluate the photosensitizing ability of 12 red wine extracts through photo-oxidation of ergosterol. The presence of 1 O 2 was detected by ergosterol conversion into peroxide of ergosterol through 1 H NMR analysis. Our results showed that 10 wine extracts were able to act as photosensitizers in the generation of singlet oxygen. The presence of 1 O 2 can damage other compounds of red wine and cause possible organoleptic alterations. Finally, although the reaction conditions employed in this research do not resemble the inherent conditions in wine making processing or storing, or even during its consumption, this knowledge could be useful to prevent possible pro-oxidant effects and avoid detrimental effects in red wines. © 2017 Institute of Food Technologists®.

  7. Comparative Method for Indirect Sensitivity Measurement of UHF RFID Reader with Respect to Interoperability and Conformance Requirements

    Directory of Open Access Journals (Sweden)

    Lukas Kypus

    2014-01-01

    Full Text Available There is never-ending race for the competitive advantage that forces RFID technology service integrators to focus more on used technology qualitative aspects and theirs impacts inside RFID ecosystem. This paper contributes to UHF RFID reader qualitative parameters evaluation and assessment problematic. It presents and describes in details indirect method and procedure of sensitivity measurement created for UHF RFID readers. We applied this method on RFID readers within prepared test environment and confirmed long term intention and recognized trend. Due to regulations limitations, there is not possible to increase output power over defined limits, but there are possibilities to influence reader sensitivity. Our proposal is to use customized comparative measurement method with insertion loss compensation for return link. Beside the main goal achievement, results show as well the qualitative status of development snapshot of reader. Method and following experiment helped us to gain an external view, current values of important parameters and motivation we want to follow up on as well as compared developed reader with its commercial competitors.

  8. In-vitro singlet oxygen threshold dose at PDT with Radachlorin photosensitizer

    Science.gov (United States)

    Klimenko, V. V.; Shmakov, S. V.; Kaydanov, N. E.; Knyazev, N. A.; Kazakov, N. V.; Rusanov, A. A.; Bogdanov, A. A.; Dubina, M. V.

    2017-07-01

    In this present study we investigate the Radachlorin photosensitizer accumulation in K562 cells and Hela cells and determined the cell viability after PDT. Using the macroscopic singlet oxygen modeling and cellular photosensitizer concentration the singlet oxygen threshold doses for K562 cells and Hela cells were calculated.

  9. Search for Colour Singlet and Colour Reconnection Effects in Hadronic Z Decays at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, Q; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2004-01-01

    A search is performed in symmetric 3-jet hadronic Z decay events for evidence of colour singlet production or colour reconnection effects. Asymmetries in the angular separation of particles are found to be sensitive indicators of such effects. Upper limits on the level of colour singlet production and colour reconnection effects are established for a variety of models.

  10. Zethrenes, Extended p -Quinodimethanes, and Periacenes with a Singlet Biradical Ground State

    KAUST Repository

    Sun, Zhe; Zeng, Zebing; Wu, Jishan

    2014-01-01

    are also challenging to physically characterize and require the use of various experimental techniques and theoretic methods to comprehensively describe their unique properties.In this Account, we will discuss the chemistry and physics of three types of PHs

  11. Critical Scattering in the Singlet-Ground State System Pr3TI

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Kjems, Jørgen; Buyers, W. J. L.

    1977-01-01

    A central mode in the ferromagnetic phase transition of Pr3T1 is observed by inelastic and quasielastic neutron scattering. The intensity, assuming a Lorentzian wave vector dependence, has a correlation range parameter that is much larger than in ordinary ferromagnets.......A central mode in the ferromagnetic phase transition of Pr3T1 is observed by inelastic and quasielastic neutron scattering. The intensity, assuming a Lorentzian wave vector dependence, has a correlation range parameter that is much larger than in ordinary ferromagnets....

  12. Observation of a Central Mode in an Exchange-Coupled Singlet-Ground State System

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Kjems, Jørgen; Buyers, W. J. L.

    1977-01-01

    A central mode in the ferromagnetic phase transition of Pr3Tl is observed by inelastic and quasielastic neutron scattering. The integrated intensity has a Lorentzian wavevector dependence with a correlation range that is much larger than in ordinary ferromagnets. The softening of the exciton mode...... is considerably smaller than predicted by mean field theory....

  13. Singlet Oxygen Sensor Green: Photochemical Behavior in Solution and in a Mammalian Cell

    DEFF Research Database (Denmark)

    Gollmer, Anita; Arnbjerg, Jacob; Blaikie, Frances Helen

    2011-01-01

    The development of efficient and selective luminescent probes for reactive oxygen species, particularly for singlet molecular oxygen, is currently of great importance. In this study, the photochemical behavior of Singlet Oxygen Sensor Green® (SOSG), a commercially available fluorescent probe...... for singlet oxygen, was examined. Despite published claims to the contrary, the data presented herein indicate that SOSG can, in fact, be incorporated into a living mammalian cell. However, for a number of reasons, caution must be exercised when using SOSG. First, it is shown that the immediate product...... of the reaction between SOSG and singlet oxygen is, itself, an efficient singlet oxygen photosensitizer. Second, SOSG appears to efficiently bind to proteins which, in turn, can influence uptake by a cell as well as behavior in the cell. As such, incorrect use of SOSG can yield misleading data on yields...

  14. Singlet oxygen in the low-temperature plasma of an electron-beam-sustained discharge

    International Nuclear Information System (INIS)

    Vagin, N. P.; Ionin, A. A.; Klimachev, Yu. M.; Kotkov, A. A.; Kochetov, I. V.; Napartovich, A. P.; Podmar'kov, Yu. P.; Rulev, O. A.; Seleznev, L. V.; Sinitsyn, D. V.; Frolov, M. P.; Yuryshev, N. N.

    2006-01-01

    Results are presented from experimental and theoretical studies of the production of singlet delta oxygen in a pulsed electron-beam-sustained discharge ignited in a large (∼18-1) volume at a total gas mixture pressure of up to 210 Torr. The measured yield of singlet oxygen reaches 10.5%. It is found that varying the reduced electric field from ∼2 to ∼11 kV/(cm atm) slightly affects singlet oxygen production. It is shown experimentally that an increase in the gas mixture pressure or the specific input energy reduces the duration of singlet oxygen luminescence. The calculated time evolution of the singlet oxygen concentration is compared with experimental results

  15. Controlling Long-Lived Triplet Generation from Intramolecular Singlet Fission in the Solid State

    KAUST Repository

    Pace, Natalie A.

    2017-11-30

    The conjugated polymer poly(benzothiophene dioxide) (PBTDO1) has recently been shown to exhibit efficient intramolecular singlet fission in solution. In this paper, we investigate the role of intermolecular interactions in triplet separation dynamics after singlet fission. We use transient absorption spectroscopy to determine the singlet fission rate and triplet yield in two polymers differing only by side chain motif in both solution and the solid state. Whereas solid-state films show singlet fission rates identical to those measured in solution, the average lifetime of the triplet population increases dramatically, and is strongly dependent on side-chain identity. These results show that it may be necessary to carefully engineer the solid-state microstructure of these “singlet fission polymers” in order to produce the long-lived triplets needed to realize efficient photovoltaic devices.

  16. Controlling Long-Lived Triplet Generation from Intramolecular Singlet Fission in the Solid State

    KAUST Repository

    Pace, Natalie A.; Zhang, Weimin; Arias, Dylan H.; McCulloch, Iain; Rumbles, Garry; Johnson, Justin C.

    2017-01-01

    The conjugated polymer poly(benzothiophene dioxide) (PBTDO1) has recently been shown to exhibit efficient intramolecular singlet fission in solution. In this paper, we investigate the role of intermolecular interactions in triplet separation dynamics after singlet fission. We use transient absorption spectroscopy to determine the singlet fission rate and triplet yield in two polymers differing only by side chain motif in both solution and the solid state. Whereas solid-state films show singlet fission rates identical to those measured in solution, the average lifetime of the triplet population increases dramatically, and is strongly dependent on side-chain identity. These results show that it may be necessary to carefully engineer the solid-state microstructure of these “singlet fission polymers” in order to produce the long-lived triplets needed to realize efficient photovoltaic devices.

  17. WIMP Dark Matter and Unitarity-Conserving Inflation via a Gauge Singlet Scalar

    International Nuclear Information System (INIS)

    Kahlhoefer, Felix; McDonald, John

    2015-07-01

    A gauge singlet scalar with non-minimal coupling to gravity can drive inflation and later freeze out to become cold dark matter. We explore this idea by revisiting inflation in the singlet direction (S-inflation) and Higgs Portal Dark Matter in light of the Higgs discovery, limits from LUX and observations by Planck. We show that large regions of parameter space remain viable, so that successful inflation is possible and the dark matter relic abundance can be reproduced. Moreover, the scalar singlet can stabilise the electroweak vacuum and at the same time overcome the problem of unitarity-violation during inflation encountered by Higgs Inflation, provided the singlet is a real scalar. The 2-σ Planck upper bound on n s imposes that the singlet mass is below 2 TeV, so that almost the entire allowed parameter range can be probed by XENON1T.

  18. Unified model for singlet fission within a non-conjugated covalent pentacene dimer

    Science.gov (United States)

    Basel, Bettina S.; Zirzlmeier, Johannes; Hetzer, Constantin; Phelan, Brian T.; Krzyaniak, Matthew D.; Reddy, S. Rajagopala; Coto, Pedro B.; Horwitz, Noah E.; Young, Ryan M.; White, Fraser J.; Hampel, Frank; Clark, Timothy; Thoss, Michael; Tykwinski, Rik R.; Wasielewski, Michael R.; Guldi, Dirk M.

    2017-01-01

    When molecular dimers, crystalline films or molecular aggregates absorb a photon to produce a singlet exciton, spin-allowed singlet fission may produce two triplet excitons that can be used to generate two electron–hole pairs, leading to a predicted ∼50% enhancement in maximum solar cell performance. The singlet fission mechanism is still not well understood. Here we report on the use of time-resolved optical and electron paramagnetic resonance spectroscopy to probe singlet fission in a pentacene dimer linked by a non-conjugated spacer. We observe the key intermediates in the singlet fission process, including the formation and decay of a quintet state that precedes formation of the pentacene triplet excitons. Using these combined data, we develop a single kinetic model that describes the data over seven temporal orders of magnitude both at room and cryogenic temperatures. PMID:28516916

  19. A rigorous nonorthogonal configuration interaction approach for the calculation of electronic couplings between diabatic states applied to singlet fission

    NARCIS (Netherlands)

    Wibowo, Meilani; Broer, Ria; Havenith, Remco W. A.

    2017-01-01

    For the design of efficient singlet fission chromophores, knowledge of the factors that govern the singlet fission rate is important. This rate is approximately proportional to the electronic coupling between the lowest (diabatic) spin singlet state that is populated following photoexcitation state

  20. Evolution of truncated moments of singlet parton distributions

    International Nuclear Information System (INIS)

    Forte, S.; Magnea, L.; Piccione, A.; Ridolfi, G.

    2001-01-01

    We define truncated Mellin moments of parton distributions by restricting the integration range over the Bjorken variable to the experimentally accessible subset x 0 ≤x≤1 of the allowed kinematic range 0≤x≤1. We derive the evolution equations satisfied by truncated moments in the general (singlet) case in terms of an infinite triangular matrix of anomalous dimensions which couple each truncated moment to all higher moments with orders differing by integers. We show that the evolution of any moment can be determined to arbitrarily good accuracy by truncating the system of coupled moments to a sufficiently large but finite size, and show how the equations can be solved in a way suitable for numerical applications. We discuss in detail the accuracy of the method in view of applications to precision phenomenology

  1. Resummation of singlet parton evolution at small x

    CERN Document Server

    Altarelli, Guido; Forte, Stefano; Altarelli, Guido; Ball, Richard D.; Forte, Stefano

    2000-01-01

    We propose an improvement of the splitting functions at small x which overcomes the apparent problems encountered by the BFKL approach. We obtain a stable expansion for the x-evolution function chi(M) near M=0 by including in it a sequence of terms derived from the one- and two-loop anomalous dimension gamma. The requirement of momentum conservation is always satisfied. The residual ambiguity on the splitting functions is effectively parameterized in terms of the value of lambda, which fixes the small x asymptotic behaviour x^-lambda of the singlet parton distributions. We derive from this improved evolution function an expansion of the splitting function which leads to good apparent convergence, and to a description of scaling violations valid both at large and small x.

  2. Generation of macroscopic singlet states in atomic ensembles

    Science.gov (United States)

    Tóth, Géza; Mitchell, Morgan W.

    2010-05-01

    We study squeezing of the spin uncertainties by quantum non-demolition (QND) measurement in non-polarized spin ensembles. Unlike the case of polarized ensembles, the QND measurements can be performed with negligible back-action, which allows, in principle, perfect spin squeezing as quantified by Tóth et al (2007 Phys. Rev. Lett. 99 250405). The generated spin states approach many-body singlet states and contain a macroscopic number of entangled particles even when individual spin is large. We introduce the Gaussian treatment of unpolarized spin states and use it to estimate the achievable spin squeezing for realistic experimental parameters. Our proposal might have applications for magnetometry with a high spatial resolution or quantum memories storing information in decoherence free subspaces.

  3. Signal for a light singlet scalar at the LHC

    Science.gov (United States)

    Chang, We-Fu; Modak, Tanmoy; Ng, John N.

    2018-03-01

    In the general Higgs portal-like models, the extra neutral scalar, S , can mix with the Standard Model (SM) Higgs boson, H . We perform an exploratory study focusing on the direct search for such a light singlet S at the Large Hadron Collider (LHC). After careful study of the SM background, we find the process p p →t t ¯ S followed by S →b b ¯ can be used to investigate S with mass in the 20 Higgs factories. With similar luminosity, the current Large Electron-Positron Collider (LEP) limits on the mixing between S and H can be improved by at least one or two order of magnitudes.

  4. Color-singlet production at NNLO in MCFM

    Energy Technology Data Exchange (ETDEWEB)

    Boughezal, Radja [Argonne National Laboratory, High Energy Physics Division, Argonne, IL (United States); Campbell, John M.; Giele, Walter [Fermilab, P.O.Box 500, Batavia, IL (United States); Ellis, R.K. [University of Durham, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom); Focke, Christfried [Northwestern University, Department of Physics and Astronomy, Evanston, IL (United States); Liu, Xiaohui [University of Maryland, Maryland Center for Fundamental Physics, College Park, Maryland (United States); Petriello, Frank [Argonne National Laboratory, High Energy Physics Division, Argonne, IL (United States); Northwestern University, Department of Physics and Astronomy, Evanston, IL (United States); Williams, Ciaran [University at Buffalo, The State University of New York, Department of Physics, Buffalo (United States)

    2017-01-15

    We present the implementation of several color-singlet final-state processes at Next-to-Next-to Leading Order (NNLO) accuracy in QCD to the publicly available parton-level Monte Carlo program MCFM. Specifically we discuss the processes pp → H, pp → Z, pp → W, pp → HZ, pp → HW and pp → γγ. Decays of the unstable bosons are fully included, resulting in a flexible fully differential Monte Carlo code. The NNLO corrections have been calculated using the non-local N-jettiness subtraction approach. Special attention is given to the numerical aspects of running MCFM for these processes at this order. We pay particular attention to the systematic uncertainties due to the power corrections induced by the N-jettiness regularization scheme and the evaluation time needed to run the hybrid openMP/MPI version of MCFM at NNLO on multi-processor systems. (orig.)

  5. Two-singlet model for light cold dark matter

    International Nuclear Information System (INIS)

    Abada, Abdessamad; Ghaffor, Djamal; Nasri, Salah

    2011-01-01

    We extend the standard model by adding two gauge-singlet Z 2 -symmetric scalar fields that interact with visible matter only through the Higgs particle. One is a stable dark matter WIMP, and the other one undergoes a spontaneous breaking of the symmetry that opens new channels for the dark matter annihilation, hence lowering the mass of the WIMP. We study the effects of the observed dark matter relic abundance on the WIMP annihilation cross section and find that in most regions of the parameters' space, light dark matter is viable. We also compare the elastic-scattering cross section of our dark matter candidate off a nucleus with existing (CDMSII and XENON100) and projected (SuperCDMS and XENON1T) experimental exclusion bounds. We find that most of the allowed mass range for light dark matter will be probed by the projected sensitivity of the XENON1T experiment.

  6. Device-independent parallel self-testing of two singlets

    Science.gov (United States)

    Wu, Xingyao; Bancal, Jean-Daniel; McKague, Matthew; Scarani, Valerio

    2016-06-01

    Device-independent self-testing offers the possibility of certifying the quantum state and measurements, up to local isometries, using only the statistics observed by querying uncharacterized local devices. In this paper we study parallel self-testing of two maximally entangled pairs of qubits; in particular, the local tensor product structure is not assumed but derived. We prove two criteria that achieve the desired result: a double use of the Clauser-Horne-Shimony-Holt inequality and the 3 ×3 magic square game. This demonstrate that the magic square game can only be perfectly won by measuring a two-singlet state. The tolerance to noise is well within reach of state-of-the-art experiments.

  7. Singlet Higgs phenomenology and the electroweak phase transition

    International Nuclear Information System (INIS)

    Profumo, Stefano; Ramsey-Musolf, Michael J.; Shaughnessy, Gabe

    2007-01-01

    We study the phenomenology of gauge singlet extensions of the Standard Model scalar sector and their implications for the electroweak phase transition. We determine the conditions on the scalar potential parameters that lead to a strong first order phase transition as needed to produce the observed baryon asymmetry of the universe. We analyze the constraints on the potential parameters derived from Higgs boson searches at LEP and electroweak precision observables. For models that satisfy these constraints and that produce a strong first order phase transition, we discuss the prospective signatures in future Higgs studies at the Large Hadron Collider and a Linear Collider. We argue that such studies will provide powerful probes of phase transition dynamics in models with an extended scalar sector

  8. Theory of singlet-doublet excitations in praseodymium

    International Nuclear Information System (INIS)

    Bak, P.

    1975-10-01

    The magnetic excitation spectrum in a paramagnetic singlet-doublet system is calculated using a diagrammatic high density expansion technique. The lowest order diagrams, which correspond to the random phase approximation (RPA), give a detailed description of the wave vector and temperature dependence of the four exciton modes in praseodymium in terms of a Hamiltonian including isotropic Heisenberg exchange interactions and anisotropic, dipolar-like interactions. The leading contributions to the linewidths of the excitations are obtained by extending the 1/Z expansion of the generalized susceptibility propagators one order beyond the random phase approximation. This damping corresponds to spin wave scattering on single-site fluctuations. The theoretical spectral functions are in detailed agreement with experiment

  9. Spin Singlet Quantum Hall Effect and nonabelian Landau-Ginzburg theory

    International Nuclear Information System (INIS)

    Balatsky, A.

    1991-01-01

    In this paper we present a theory of Singlet Quantum Hall Effect (SQHE). We show that the Halperin-Haldane SQHE wave function can be written in the form of a product of a wave function for charged semions in a magnetic field and a wave function for the Chiral Spin Liquid of neutral spin-1/2 semions. We introduce field-theoretic model in which the electron operators are factorized in terms of charged spinless semions (holons) and neutral spin-1/2 semions (spinons). Broken time reversal symmetry and short ranged spin correlations lead to Su(2) κ=1 Chern-Simons term in Landau-Ginzburg action for SQHE phase. We construct appropriate coherent states for SQHE phase and show the existence of SU(2) valued gauge potential. This potential appears as a result of ''spin rigidity'' of the ground state against any displacements of nodes of wave function from positions of the particles and reflects the nontrivial monodromy in the presence of these displacenmants. We argue that topological structure of Su(2) κ=1 Chern-Simons theory unambiguously dictates semion statistics of spinons. 19 refs

  10. A Possible Role for Singlet Oxygen in the Degradation of Various Antioxidants. A Meta-Analysis and Review of Literature Data

    Directory of Open Access Journals (Sweden)

    Athinoula L. Petrou

    2018-02-01

    Full Text Available The thermodynamic parameters Eact, ΔH≠, ΔS≠, and ΔG≠ for various processes involving antioxidants were calculated using literature kinetic data (k, T. The ΔG≠ values of the antioxidants’ processes vary in the range 91.27–116.46 kJmol−1 at 310 K. The similarity of the ΔG≠ values (for all of the antioxidants studied is supported to be an indication that a common mechanism in the above antioxidant processes may be taking place. A value of about 10–30 kJmol−1 is the activation energy for the diffusion of reactants depending on the reaction and the medium. The energy 92 kJmol−1 is needed for the excitation of O2 from the ground to the first excited state (1Δg, singlet oxygen. We suggest the same role of the oxidative stress and specifically of singlet oxygen to the processes of antioxidants as in the processes of proteinaceous diseases. We therefore suggest a competition between the various antioxidants and the proteins of proteinaceous diseases in capturing singlet oxygen’s empty π* orbital. The concentration of the antioxidants could be a crucial factor for the competition. Also, the structures of the antioxidant molecules play a significant role since the various structures have a different number of regions of high electron density.

  11. Cluster expansion of the wavefunction. Calculation of electron correlations in ground and excited states by SAC and SAC CI theories

    International Nuclear Information System (INIS)

    Nakatsuji, H.

    1979-01-01

    The SAC and SAC CI theories are formulated for actual calculations of singlet ground states and their excited states of arbitrary spin multiplicity. Approximations are considered for the variational methods since time-consuming terms are involved. The results of test calculations for singlet states have shown, with much smaller numbers of variables (sizes of the matrices involved), excellent agreement with the full CI and close-to-full CI results. This shows the utility of the SAC theory for ground states and especially of the SAC CI theory for excited states, since the slow convergence of the CI theory is much more critical for excited states than for ground states. (Auth.)

  12. Photo-excitation of carotenoids causes cytotoxicity via singlet oxygen production

    International Nuclear Information System (INIS)

    Yoshii, Hiroshi; Yoshii, Yukie; Asai, Tatsuya; Furukawa, Takako; Takaichi, Shinichi; Fujibayashi, Yasuhisa

    2012-01-01

    Highlights: ► Some photo-excited carotenoids have photosensitizing ability. ► They are able to produce ROS. ► Photo-excited fucoxanthin can produce singlet oxygen through energy transfer. -- Abstract: Carotenoids, natural pigments widely distributed in algae and plants, have a conjugated double bond system. Their excitation energies are correlated with conjugation length. We hypothesized that carotenoids whose energy states are above the singlet excited state of oxygen (singlet oxygen) would possess photosensitizing properties. Here, we demonstrated that human skin melanoma (A375) cells are damaged through the photo-excitation of several carotenoids (neoxanthin, fucoxanthin and siphonaxanthin). In contrast, photo-excitation of carotenoids that possess energy states below that of singlet oxygen, such as β-carotene, lutein, loroxanthin and violaxanthin, did not enhance cell death. Production of reactive oxygen species (ROS) by photo-excited fucoxanthin or neoxanthin was confirmed using a reporter assay for ROS production with HeLa Hyper cells, which express a fluorescent indicator protein for intracellular ROS. Fucoxanthin and neoxanthin also showed high cellular penetration and retention. Electron spin resonance spectra using 2,2,6,6-tetramethil-4-piperidone as a singlet oxygen trapping agent demonstrated that singlet oxygen was produced via energy transfer from photo-excited fucoxanthin to oxygen molecules. These results suggest that carotenoids such as fucoxanthin, which are capable of singlet oxygen production through photo-excitation and show good penetration and retention in target cells, are useful as photosensitizers in photodynamic therapy for skin disease.

  13. Design and Optimization of Passive UHF RFID Tag Antenna for Mounting on or inside Material Layers

    Science.gov (United States)

    Shao, Shuai

    There is great desire to employ passive UHF RFID tags for inventory tracking and sensing in a diversity of applications and environments. Owing to its battery-free operation, non-line-of sight detection, low cost, long read range and small form factor, each year billions of RFID tags are being deployed in retail, logistics, manufacturing, biomedical inventories, among many other applications. However, the performance of these RFID systems has not met expectations. This is because a tag's performance deteriorates significantly when mounted on or inside arbitrary materials. The tag antenna is optimized only for a given type of material at a certain location of placement, and detuning takes place when attached to or embedded in materials with dielectric properties outside the design range. Thereby, different customized tags may be needed for identifying objects even within the same class of products. This increases the overall cost of the system. Furthermore, conventional copper foil-based RFID tag antennas are prone to metal fatigue and wear, and cannot survive hostile environments where antennas could be deformed by external forces and failures occur. Therefore, it is essential to understand the interaction between the antenna and the material in the vicinity of the tag, and design general purpose RFID tag antennas possessing excellent electrical performance as well as robust mechanical structure. A particularly challenging application addressed here is designing passive RFID tag antennas for automotive tires. Tires are composed of multiple layers of rubber with different dielectric properties and thicknesses. Furthermore, metallic plies are embedded in the sidewalls and steel belts lie beneath the tread to enforce mechanical integrity. To complicate matters even more, a typical tire experiences a 10% stretching during the construction process. This dissertation focuses on intuitively understanding the interaction between the antenna and the material in the

  14. On the behaviour of non-singlet structure functions at small x

    International Nuclear Information System (INIS)

    Bluemlein, J.

    1995-10-01

    The resummation of O(α s l+1 ln 2l x) terms in the evolution kernels of non-singlet combinations of unpolarized and polarized structure functions is investigated. The agreement with complete calculations up to order α s 2 is demonstrated, and the leading small-x contributions to the three-loop non-singlet splitting functions P ± are derived. The additional contributions due to the resummed terms are studied numerically for the most important non-singlet structure functions. They are found to be about 1% or smaller in the kinematical regions accessible at present and in the forseeable future. (orig.)

  15. Cytotoxicity But No Mutagenicity In Bacteria With Externally Generated Singlet Oxygen

    Science.gov (United States)

    Midden, W. Robert; Dahl, Thomas A.; Hartman, Philip E.

    1988-02-01

    Singlet oxygen is believed to be an important intermediate responsible for the cytotoxicity of HpD phototherapy. It has been recognized as a possible intermediate in photosensitization for more than 20 years. However, it has been difficult to obtain conclusive evidence of its biological characteristics in the past because most of the methods available for its generation that are compatible with biological systems also generate other reactive intermediates whose effects are difficult to distinguish from singlet oxygen. We have used a recently devised separated-surface-sensi-tizer (S-S-S) system for singlet oxygen generation' to measure the cytotoxicity and mutagenicity of singlet oxygen in bacteria. The S-S-S system employs rose bengal as a sensitizer immobilized on one surface of a glass plate. The glass plate is placed sensitizer-side down a small distance (plate is illuminated from above to generate singlet oxygen at the surface of the sensitizer. The singlet oxygen thus generated can diffuse the short dis-tance to the surface of the membrane to react with the bacteria. Because of the short lifetime of singlet oxygen in air, increasing the distance between the sensitizer and the membrane causes a decline in the amount of singlet oxygen reaching the membrane according to a function derived from the Einstein-Smoluchowski equation for net displacement by diffusion. Plotting the log of the effect measured (e.g., cytotoxicity) vs. the square of the distance gives a straight line. The slope of this line can be used to calculate the gas phase half life of the intermediate responsible for the observed effects. We have found that bacteria are rapidly killed in the illuminated S-S-S system and that the gas phase half life of the agent responsible for cell killing is the same as that of singlet oxygen. This observation and other simple chemical tests have conclusively estab-lished that singlet oxygen is responsible for the cytotoxicity observed with bacteria. Dosimetry

  16. Bromorhodamines - new singlet oxygen photosensitizers for oxidative water and wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Slivka, L.; Alekseeva, V.; Kuznetsova, N.; Marinina, L.; Savvina, L.; Kaliya, O.; Lukyanets, E.; Vorozhtsov, G. [Organic Intermediates and Dyes Inst., Moscow (Russian Federation); Krasnovsky, A.; Butorina, D. [Inst. of Biochemistry RAS, Moscow (Russian Federation)

    2003-07-01

    The cationic mono-, di- and tetrabromoderivatives of rhodamine 123 have been synthesized and studied as sensitizers for singlet oxygen formation in application for oxidative water treatment. Singlet oxygen quantum yields for compounds under investigation have been determined by using its near IR luminescence at 1270 nm. Bromorhodamines123 have been shown to sensitize the formation of singlet oxygen in aqueous solution with high quantum yields. Efficient oxidation of tryptophan in aqueous solutions sensitized by dibromorhodamine 123 has been demonstrated. This dye was tested as sensitizer for photodynamic treatment of water contaminated with coliform bacteria. It was shown to participate in the photosensitization of coliform bacteria, resulting in their efficient killing. (orig.)

  17. Wavelength dependence of the efficiency of singlet oxygen generation upon photoexcitation of photosensitizers

    Directory of Open Access Journals (Sweden)

    Starukhin A.

    2017-01-01

    Full Text Available The dependence of the efficiency of singlet oxygen (1Δg generation upon excitation of photosensitizer at different wavelength was observed for several derivatives of palladium porphyrin in carbon tetrachloride. The efficiency of singlet oxygen generation upon excitation in a blue region of the spectrum (Soret band exceeds by several times the efficiency at excitation in the red spectral region (Q band. The effect of enhancement of singlet oxygen generation upon CW photoexcitation to Soret band of photosensitizer may be explained by influence of high laying triplet states of a donor molecule on the triplet-triplet energy transfer.

  18. A current-mode voltage regulator with an embedded sub-threshold reference for a passive UHF RFID transponder

    International Nuclear Information System (INIS)

    Liu Zhongqi; Zhang Chun; Li Yongming; Wang Zhihua

    2010-01-01

    This paper presents a current-mode voltage regulator for a passive UHF RFID transponder. The passive tag power is extracted from RF energy through the RF-to-DC rectifier. Due to huge variations of the incoming RF power, the rectifier output voltage should be regulated to achieve a stable power supply. By accurately controlling the current flowing into the load with an embedded sub-threshold reference, the regulated voltage varies in a range of 1-1.3 V from -20 to 80 0 C, and a bandwidth of about 100 kHz is achieved for a fast power recovery. The circuit is fabricated in UMC 0.18 μm mixed-mode CMOS technology, and the current consumption is only 1 μA. (semiconductor integrated circuits)

  19. A current-mode voltage regulator with an embedded sub-threshold reference for a passive UHF RFID transponder

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhongqi [Department of Electronic Engineering, Tsinghua University, Beijing 100084 (China); Zhang Chun; Li Yongming; Wang Zhihua, E-mail: liu-zq04@mails.tsinghua.edu.c [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China)

    2010-06-15

    This paper presents a current-mode voltage regulator for a passive UHF RFID transponder. The passive tag power is extracted from RF energy through the RF-to-DC rectifier. Due to huge variations of the incoming RF power, the rectifier output voltage should be regulated to achieve a stable power supply. By accurately controlling the current flowing into the load with an embedded sub-threshold reference, the regulated voltage varies in a range of 1-1.3 V from -20 to 80 {sup 0}C, and a bandwidth of about 100 kHz is achieved for a fast power recovery. The circuit is fabricated in UMC 0.18 {mu}m mixed-mode CMOS technology, and the current consumption is only 1 {mu}A. (semiconductor integrated circuits)

  20. On the Feasibility of Gap Detection of Power Transformer Partial Discharge UHF Signals: Gap Propagation Characteristics of Electromagnetic Waves

    Directory of Open Access Journals (Sweden)

    Xiaoxing Zhang

    2017-10-01

    Full Text Available This study analyzed the transformer electromagnetic gap propagation characteristics. The influence of gap size is also analyzed, and the results experimentally verified. The obtained results indicated that the gap propagation characteristics of electromagnetic wave signals radiated by the partial discharge (PD source in different directions are substantially different. The intensity of the electromagnetic wave in the gap reaches a maximum at a gap height of 1 cm; and inside the gap, the intensity of the electromagnetic wave depicted an increasing trend at the tail area of the gap. Finally, from the obtained results, some suggestions on where to install sensors in practical systems for ultra high frequency (UHF PD signal detection in the transformer gap are provided. The obtained results confirmed the feasibility of using this approach. These results can be seen as a benchmark and a challenge for further research in this field.

  1. Regulation of singlet oxygen-induced apoptosis by cytosolic NADP+-dependent isocitrate dehydrogenase.

    Science.gov (United States)

    Kim, Sun Yee; Lee, Su Min; Tak, Jean Kyoung; Choi, Kyeong Sook; Kwon, Taeg Kyu; Park, Jeen-Woo

    2007-08-01

    Singlet oxygen is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules and it also promotes deleterious processes such as cell death. Recently, we demonstrated that the control of redox balance and the cellular defense against oxidative damage are the primary functions of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) through supplying NADPH for antioxidant systems. In this report, we demonstrate that modulation of IDPc activity in HL-60 cells regulates singlet oxygen-induced apoptosis. When we examined the protective role of IDPc against singlet oxygen-induced apoptosis with HL-60 cells transfected with the cDNA for mouse IDPc in sense and antisense orientations, a clear inverse relationship was observed between the amount of IDPc expressed in target cells and their susceptibility to apoptosis. The results suggest that IDPc plays an important protective role in apoptosis of HL-60 cells induced by singlet oxygen.

  2. A two-component dark matter model with real singlet scalars ...

    Indian Academy of Sciences (India)

    2016-01-05

    component dark matter model with real singlet scalars confronting GeV -ray excess from galactic centre and Fermi bubble. Debasish Majumdar Kamakshya Prasad Modak Subhendu Rakshit. Special: Cosmology Volume 86 Issue ...

  3. Spin-singlet quantum Hall states and Jack polynomials with a prescribed symmetry

    International Nuclear Information System (INIS)

    Estienne, Benoit; Bernevig, B. Andrei

    2012-01-01

    We show that a large class of bosonic spin-singlet Fractional Quantum Hall model wavefunctions and their quasihole excitations can be written in terms of Jack polynomials with a prescribed symmetry. Our approach describes new spin-singlet quantum Hall states at filling fraction ν=(2k)/(2r-1) and generalizes the (k,r) spin-polarized Jack polynomial states. The NASS and Halperin spin-singlet states emerge as specific cases of our construction. The polynomials express many-body states which contain configurations obtained from a root partition through a generalized squeezing procedure involving spin and orbital degrees of freedom. The corresponding generalized Pauli principle for root partitions is obtained, allowing for counting of the quasihole states. We also extract the central charge and quasihole scaling dimension, and propose a conjecture for the underlying CFT of the (k,r) spin-singlet Jack states.

  4. Interference effects of two scalar boson propagators on the LHC search for the singlet fermion DM

    Energy Technology Data Exchange (ETDEWEB)

    Ko, P., E-mail: pko@kias.re.kr; Li, Jinmian, E-mail: jmli@kias.re.kr

    2017-02-10

    A gauge invariant UV-completion for singlet fermion DM interacting with the standard model (SM) particles involves a new singlet scalar. Therefore the model contains two scalar mediators, mixtures of the SM Higgs boson and a singlet scalar boson. Collider phenomenology of the interference effect between these two scalar propagators is studied in this work. This interference effect can be either constructive or destructive in the DM production cross section depending on both singlet scalar and DM masses, and it will soften the final state jets in the full mass region. Applying the CMS mono-jet search to our model, we find the interference effect plays a very important role in the DM search sensitivity, and the DM production cross section of our model is more than one order of magnitude below the LHC sensitivity at current stage.

  5. Singlet Delta Oxygen: A Quantitative Analysis Using Off-Axis Integrated-Cavity-Output-Spectroscopy (ICOS)

    National Research Council Canada - National Science Library

    Gallagher, Jeffrey E

    2006-01-01

    .... The method is based on off-axis integrated-cavity-output spectroscopy (ICOS). The primary goal for this research effort is to utilize the ICOS technique and demonstrate its ability to provide quantitative data of singlet delta oxygen...

  6. Molecular Tuning of Phenylene-Vinylene Derivatives for Two-Photon Photosensitized Singlet Oxygen Production

    DEFF Research Database (Denmark)

    Nielsen, Christian B.; Arnbjerg, Jacob; Johnsen, Mette

    2009-01-01

    Substituent-dependent features and properties of the sensitizer play an important role in the photosensitized production of singlet oxygen, O2(a1Δg). In this work, we systematically examine the effect of molecular changes in the sensitizer on the efficiency of singlet oxygen production using......, as the sensitizer, oligophenylene-vinylene derivatives designed to optimally absorb light in a nonlinear two-photon process. We demonstrate that one cannot always rely on rule-of-thumb guidelines when attempting to construct efficient two-photon singlet oxygen sensitizers. Rather, as a consequence of behavior...... that can deviate from the norm, a full investigation of the photophysical properties of the system is generally required. For example, it is acknowledged that the introduction of a ketone moiety to the sensitizer chromophore often results in more efficient production of singlet oxygen. However, we show...

  7. Pallidol, a resveratrol dimer from red wine, is a selective singlet oxygen quencher

    International Nuclear Information System (INIS)

    He Shan; Jiang Liyan; Wu Bin; Pan Yuanjiang; Sun Cuirong

    2009-01-01

    Pallidol is a naturally occurring resveratrol dimer from red wine with antioxidant and antifungal activities. In this report, with the use of the EPR spin-trapping technique, the scavenging and quenching effects of pallidol on reactive oxygen species (ROS) were investigated. The results demonstrated that pallidol showed strong quenching effects on singlet oxygen at very low concentrations, but it was ineffective to scavenge hydroxyl radicals or superoxide anions. Further kinetic study revealed that the reaction of pallidol with singlet oxygen had an extremely high rate constant (k a = 1.71 x 10 10 ). Therefore, pallidol is a potent and selective singlet oxygen quencher in aqueous systems. It may be used in singlet oxygen-mediated diseases as a pharmacological agent, which may contribute to the health beneficial effects of red wine.

  8. The low-lying electronic states of pentacene and their roles in singlet fission.

    Science.gov (United States)

    Zeng, Tao; Hoffmann, Roald; Ananth, Nandini

    2014-04-16

    We present a detailed study of pentacene monomer and dimer that serves to reconcile extant views of its singlet fission. We obtain the correct ordering of singlet excited-state energy levels in a pentacene molecule (E (S1) pentacene, we use a well-developed diabatization scheme to characterize the six low-lying singlet states of a pentacene dimer that approximates the unit cell structure of crystalline pentacene. The local, single-excitonic diabats are not directly coupled with the important multiexcitonic state but rather mix through their mutual couplings with one of the charge-transfer configurations. We analyze the mixing of diabats as a function of monomer separation and pentacene rotation. By defining an oscillator strength measure of the coherent population of the multiexcitonic diabat, essential to singlet fission, we find this population can, in principle, be increased by small compression along a specific crystal direction.

  9. Highly sensitive time resolved singlet oxygen luminescence detection using LEDs as the excitation source

    International Nuclear Information System (INIS)

    Hackbarth, S; Schlothauer, J; Preuss, A; Röder, B

    2013-01-01

    For the first time singlet oxygen luminescence kinetics in living cells were detected at high precision using LED light for excitation. As LED technology evolves, the light intensity emitted by standard LEDs allows photosensitized singlet oxygen luminescence detection in solution and cell suspensions. We present measurements superior to those of most actual laser powered setups regarding precision of singlet oxygen kinetics in solutions and cell suspensions. Data presented here show that LED based setups allow the determination of the photosensitizer triplet and singlet oxygen decay times in vitro with an accuracy of 0.1 μs. This enables monitoring of the photosensitizer efficiency and interaction with the cellular components using illumination doses small enough not to cause cell death. (letter)

  10. Analyzing of singlet fermionic dark matter via the updated direct detection data

    Energy Technology Data Exchange (ETDEWEB)

    Ettefaghi, M.M.; Moazzemi, R. [University of Qom, Department of Physics, Qom (Iran, Islamic Republic of)

    2017-05-15

    We revisit the parameter space of singlet fermionic cold dark matter model in order to determine the role of the mixing angle between the standard model Higgs and a new singlet one. Furthermore, we restudy the direct detection constraints with the updated and new experimental data. As an important conclusion, this model is completely excluded by recent XENON100, PandaX II and LUX data. (orig.)

  11. Spray generator of singlet oxygen for a chemical oxygen-iodine laser

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Hrubý, Jan; Špalek, Otomar; Čenský, Miroslav; Kodymová, Jarmila

    2010-01-01

    Roč. 100, č. 4 (2010), s. 779-791 ISSN 0946-2171 Grant - others:European Office of Aerospace R&D(US) FA8655-09-1-3091 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20760514 Keywords : spray generator of singlet oxygen * singlet oxygen * chemical oxygen-iodine laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.239, year: 2010

  12. Label-free electrochemical detection of singlet oxygen protein damage

    International Nuclear Information System (INIS)

    Vargová, Veronika; Giménez, Rodrigo E.; Černocká, Hana; Trujillo, Diana Chito; Tulli, Fiorella; Zanini, Verónica I. Paz; Paleček, Emil; Borsarelli, Claudio D.; Ostatná, Veronika

    2016-01-01

    Oxidative damage of proteins results in changes of their structures and functions. In this work, the singlet oxygen ( 1 O 2 )-mediated oxidation of bovine serum albumin (BSA) and urease by blue-light photosensitization of the tris(2,2′-bipyridine)ruthenium(II) cation [Ru(bpy) 3 ] 2+ was studied by square wave voltammetry at glassy carbon electrode and by constant current chronopotentiometry at mercury electrode. Small changes in voltammetric oxidation Tyr and Trp peaks did not indicate significant changes in the BSA structure after photo-oxidation at carbon electrode. On the other hand chronopotentiometric peak H of BSA at HMDE increased during blue-light photosensitization, indicating that photo-oxidized BSA was more susceptible to the electric field-induced denaturation than non-oxidized native BSA. Similar results were obtained for urease, where enzymatic activity was also evaluated. The present results show the capability of label- and reagent-free electrochemical methods to detect oxidative changes in proteins. We believe that these methods will become important tools for detection of various protein damages.

  13. Modeling temperature dependent singlet exciton dynamics in multilayered organic nanofibers

    Science.gov (United States)

    de Sousa, Leonardo Evaristo; de Oliveira Neto, Pedro Henrique; Kjelstrup-Hansen, Jakob; da Silva Filho, Demétrio Antônio

    2018-05-01

    Organic nanofibers have shown potential for application in optoelectronic devices because of the tunability of their optical properties. These properties are influenced by the electronic structure of the molecules that compose the nanofibers and also by the behavior of the excitons generated in the material. Exciton diffusion by means of Förster resonance energy transfer is responsible, for instance, for the change with temperature of colors in the light emitted by systems composed of different types of nanofibers. To study in detail this mechanism, we model temperature dependent singlet exciton dynamics in multilayered organic nanofibers. By simulating absorption and emission spectra, the possible Förster transitions are identified. Then, a kinetic Monte Carlo model is employed in combination with a genetic algorithm to theoretically reproduce time-resolved photoluminescence measurements for several temperatures. This procedure allows for the obtainment of different information regarding exciton diffusion in such a system, including temperature effects on the Förster transfer efficiency and the activation energy of the Förster mechanism. The method is general and may be employed for different systems where exciton diffusion plays a role.

  14. Singlet oxygen-induced oxidation of alkylthiocarboxylic acids

    International Nuclear Information System (INIS)

    Celuch, M.; Pogocki, D.; Enache, M.

    2006-01-01

    Singlet oxygen ( 1 O 2 ) could be generated in biological systems by endogenous and exogenous processes (e.g. enzymatic and chemical reactions, UV or visible light in the presence of a sensitizer). Numerous data show that proteins are the major targets of 1 O 2 -induced damage in the living cells. In particular, reaction of 1 O 2 with thioether sulphur of methionine (Met) leads to the formation of persulphoxide >S (+) O-O (-) which is in equilibrium with superoxide radical-anion (O 2 ·- ) and respective sulphur-centered-radical-cation >S ·+ . In presented work, investigation the mechanisms of deprotonation and decarboxylation of the S ·+ - the irreversible processes, which competes with the formation of sulphoxide. Using thioethers dissevering by the number and positions of carboxylate groups it has been shown that efficiency of both decarboxylation and deprotonation could be influenced by various factors such as neighbouring group participation and environmental effects. The observed influence of carboxylate groups in β-position relative to the sulphur on the efficiency of decarboxylation suggests furthermore that they may also catalyze decarboxylation of α-positioned carboxylate in a manner similar to hydroxide anion

  15. A pulse radiolysis based singlet oxygen luminescence facility

    International Nuclear Information System (INIS)

    Gorman, A.A.; Hamblett, I.; Land, E.J.

    1989-01-01

    In this paper the authors report the first successful time-resolved detection of singlet oxygen, O 2 ( 1 Δ g ), luminescence using the pulse radiolysis technique. The use of this technique (a) to produce high concentrations of solute (S) triplet states in aerated benzene (B) via a combination of channels 1-4 and (b) to subsequently form O 2 ( 1 Δ g ) via channel 5 has already been described. The method complements direct pulsed laser excitation of S in that formation of 3 S*, and therefore of O 2 ( 1 Δ g ), is still efficient in those instances where intersystem crossing (channel 4) is unimportant. In the latter situation a laser-based experiment would require an additional light-absorbing sensitizer which could subsequently transfer triplet energy to high concentrations of S. Such experiments, certainly of a quantitative nature, are usually doomed to failure because of competitive light absorption problems. No such problems exist with pulse radiolysis, and the high available triplet energy of 3 B* (84 kcal mol -1 ) ensures that virtually any solute of interest, in the O 2 ( 1 Δ g ) context, will be efficiently promoted to its triplet state

  16. A Simple Singlet Fermionic Dark-Matter Model Revisited

    International Nuclear Information System (INIS)

    Qin Hong-Yi; Wang Wen-Yu; Xiong Zhao-Hua

    2011-01-01

    We evaluate the spin-independent elastic dark matter-nucleon scattering cross section in the framework of the simple singlet fermionic dark matter extension of the standard model and constrain the model parameter space with the following considerations: (i) new dark matter measurement, in which, apart from WMAP and CDMS, the results from the XENON experiment are also used in constraining the model; (ii) new fitted value of the quark fractions in nucleons, in which the updated value of f T s from the recent lattice simulation is much smaller than the previous one and may reduce the scattering rate significantly; (iii) new dark matter annihilation channels, in which the scenario where top quark and Higgs pairs produced by dark matter annihilation was not included in the previous works. We find that unlike in the minimal supersymmetric standard model, the cross section is just reduced by a factor of about 1/4 and dark matter lighter than 100 GeV is not favored by the WMAP, CDMS and XENON experiments. (the physics of elementary particles and fields)

  17. The nature of singlet excitons in oligoacene molecular crystals

    KAUST Repository

    Yamagata, H.; Norton, J.; Hontz, E.; Olivier, Y.; Beljonne, D.; Brédas, J. L.; Silbey, R. J.; Spano, F. C.

    2011-01-01

    A theory for polarized absorption in crystalline oligoacenes is presented, which includes Frenkel exciton coupling, the coupling between Frenkel and charge-transfer (CT) excitons, and the coupling of all neutral and ionic excited states to the dominant ring-breathing vibrational mode. For tetracene, spectra calculated using all Frenkel couplings among the five lowest energy molecular singlet states predict a Davydov splitting (DS) of the lowest energy (0-0) vibronic band of only -32cm-1, far smaller than the measured value of 631cm-1 and of the wrong sign-a negative sign indicating that the polarizations of the lower and upper Davydov components are reversed from experiment. Inclusion of Frenkel-CT coupling dramatically improves the agreement with experiment, yielding a 0-0 DS of 601cm-1 and a nearly quantitative reproduction of the relative spectral intensities of the 0-n vibronic components. Our analysis also shows that CT mixing increases with the size of the oligoacenes. We discuss the implications of these results on exciton dissociation and transport. © 2011 American Institute of Physics.

  18. Exposure of vitamins to UVB and UVA radiation generates singlet oxygen.

    Science.gov (United States)

    Knak, Alena; Regensburger, Johannes; Maisch, Tim; Bäumler, Wolfgang

    2014-05-01

    Deleterious effects of UV radiation in tissue are usually attributed to different mechanisms. Absorption of UVB radiation in cell constituents like DNA causes photochemical reactions. Absorption of UVA radiation in endogenous photosensitizers like vitamins generates singlet oxygen via photosensitized reactions. We investigated two further mechanisms that might be involved in UV mediated cell tissue damage. Firstly, UVB radiation and vitamins also generate singlet oxygen. Secondly, UVB radiation may change the chemical structure of vitamins that may change the role of such endogenous photosensitizers in UVA mediated mechanisms. Vitamins were irradiated in solution using monochromatic UVB (308 nm) or UVA (330, 355, or 370 nm) radiation. Singlet oxygen was directly detected and quantified by its luminescence at 1270 nm. All investigated molecules generated singlet oxygen with a quantum yield ranging from 0.007 (vitamin D3) to 0.64 (nicotinamide) independent of the excitation wavelength. Moreover, pre-irradiation of vitamins with UVB changed their absorption in the UVB and UVA spectral range. Subsequently, molecules such as vitamin E and vitamin K1, which normally exhibit no singlet oxygen generation in the UVA, now produce singlet oxygen when exposed to UVA at 355 nm. This interplay of different UV sources is inevitable when applying serial or parallel irradiation with UVA and UVB in experiments in vitro. These results should be of particular importance for parallel irradiation with UVA and UVB in vivo, e.g. when exposing the skin to solar radiation.

  19. Dynamics of Singlet Fission and Electron Injection in Self-Assembled Acene Monolayers on Titanium Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Justin C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pace, Natalie A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Arias, Dylan H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christensen, Steven T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Granger, Devin B. [University of Kentucky; Anthony, John E. [University of Kentucky

    2018-02-26

    We employ a combination of linear spectroscopy, electrochemistry, and transient absorption spectroscopy to characterize the interplay between electron transfer and singlet fission dynamics in polyacene-based dyes attached to nanostructured TiO2. For triisopropyl silylethynyl (TIPS)-pentacene, we find that the singlet fission time constant increases to 6.5 ps on a nanostructured TiO2 surface relative to a thin film time constant of 150 fs, and that triplets do not dissociate after they are formed. In contrast, TIPS-tetracene singlets quickly dissociate in 2 ps at the molecule/TiO2 interface, and this dissociation outcompetes the relatively slow singlet fission process. The addition of an alumina layer slows down electron injection, allowing the formation of triplets from singlet fission in 40 ps. However, the triplets do not inject electrons, which is likely due to a lack of sufficient driving force for triplet dissociation. These results point to the critical balance required between efficient singlet fission and appropriate energetics for interfacial charge transfer.

  20. Properties of pseudoscalar flavor singlet mesons from lattice QCD

    International Nuclear Information System (INIS)

    Ottnad, Konstantin

    2014-01-01

    indeed described well by a single mixing angle, indicating that the η' is mostly a flavor singlet state. Moreover, our results confirm that the charm quark does not contribute to any of the two states within errors. Apart from the flavor singlet sector, we also perform calculations of masses for the remaining light pseudoscalar octet mesons. Matching these masses to two-flavor Wilson chiral perturbation theory allows for a determination of the low energy constants W 6 ' , W 8 ' and their linear combination c 2 which controls the O(a 2 ) mass splitting between charged and neutral pion. We study the dependence of these low energy constants on the number of dynamical quark flavors and for different choices of the lattice action.

  1. Spatial and temporal distribution of singlet oxygen in Lake Superior.

    Science.gov (United States)

    Peterson, Britt M; McNally, Ann M; Cory, Rose M; Thoemke, John D; Cotner, James B; McNeill, Kristopher

    2012-07-03

    A multiyear field study was undertaken on Lake Superior to investigate singlet oxygen ((1)O(2)) photoproduction. Specifically, trends within the lake were examined, along with an assessment of whether correlations existed between chromophoric dissolved organic matter (CDOM) characteristics and (1)O(2) production rates and quantum yields. Quantum yield values were determined and used to estimate noontime surface (1)O(2) steady-state concentrations ([(1)O(2)](ss)). Samples were subdivided into three categories based on their absorbance properties (a300): riverine, river-impacted, or open lake sites. Using calculated surface [(1)O(2)](ss), photochemical half-lives under continuous summer sunlight were calculated for cimetidine, a pharmaceutical whose reaction with (1)O(2) has been established, to be on the order of hours, days, and a week for the riverine, river-impacted, and open lake waters, respectively. Of the CDOM properties investigated, it was found that dissolved organic carbon (DOC) and a300 were the best parameters for predicting production rates of [(1)O(2)](ss). For example, given the correlations found, one could predict [(1)O(2)](ss) within a factor of 4 using a300 alone. Changes in the quantum efficiency of (1)O(2) production upon dilution of river water samples with lake water samples demonstrated that the CDOM found in the open lake is not simply diluted riverine organic matter. The open lake pool was characterized by low absorption coefficient, low fluorescence, and low DOC, but more highly efficient (1)O(2) production and predominates the Lake Superior system spatially. This study establishes that parameters that reflect the quantity of CDOM (e.g., a300 and DOC) correlate with (1)O(2) production rates, while parameters that characterize the absorbance spectrum (e.g., spectral slope coefficient and E2:E3) correlate with (1)O(2) production quantum yields.

  2. Grounded theory.

    Science.gov (United States)

    Harris, Tina

    2015-04-29

    Grounded theory is a popular research approach in health care and the social sciences. This article provides a description of grounded theory methodology and its key components, using examples from published studies to demonstrate practical application. It aims to demystify grounded theory for novice nurse researchers, by explaining what it is, when to use it, why they would want to use it and how to use it. It should enable nurse researchers to decide if grounded theory is an appropriate approach for their research, and to determine the quality of any grounded theory research they read.

  3. Phenomenological model of photoluminescence degradation and photoinduced defect formation in silicon nanocrystal ensembles under singlet oxygen generation

    Energy Technology Data Exchange (ETDEWEB)

    Gongalsky, Maxim B., E-mail: mgongalsky@gmail.com; Timoshenko, Victor Yu. [Faculty of Physics, Moscow State M.V. Lomonosov University, 119991 Moscow (Russian Federation)

    2014-12-28

    We propose a phenomenological model to explain photoluminescence degradation of silicon nanocrystals under singlet oxygen generation in gaseous and liquid systems. The model considers coupled rate equations, which take into account the exciton radiative recombination in silicon nanocrystals, photosensitization of singlet oxygen generation, defect formation on the surface of silicon nanocrystals as well as quenching processes for both excitons and singlet oxygen molecules. The model describes well the experimentally observed power law dependences of the photoluminescence intensity, singlet oxygen concentration, and lifetime versus photoexcitation time. The defect concentration in silicon nanocrystals increases by power law with a fractional exponent, which depends on the singlet oxygen concentration and ambient conditions. The obtained results are discussed in a view of optimization of the photosensitized singlet oxygen generation for biomedical applications.

  4. Circularly Polarized Low-Profile Antenna for Radiating Parallel to Ground Plane for RFID Reader Applications

    Directory of Open Access Journals (Sweden)

    Kittima Lertsakwimarn

    2013-01-01

    Full Text Available This paper presents a low-profile printed antenna with double U-shaped arms radiating circular polarization for the UHF RFID readers. The proposed antenna consists of double U-shaped strip structures and a capacitive feeding line to generate circular polarization. A part of the U-shaped arms is bent by 90° to direct the main beam parallel to the ground plane. From the results, -10 dB |S11| and 3 dB axial ratio of the antenna cover a typical UHF RFID band from 920 MHz to 925 MHz. The bidirectional beam is obtained with the maximum gain of 1.8 dBic in the parallel direction to the ground plane at the 925 MHz. The overall size of the proposed antenna including ground plane is 107 mm × 57 mm × 12.8 mm (0.33λ0 × 0.17λ0 × 0.04λ0.

  5. Highly twisted 1,2:8,9-dibenzozethrenes: Synthesis, ground state, and physical properties

    KAUST Repository

    Sun, Zhe; Zheng, Bin; Hu, Pan; Huang, Kuo-Wei; Wu, Jishan

    2014-01-01

    Two soluble and stable 1,2:8,9-dibenzozethrene derivatives (3a,b) are synthesized through a palladium-catalyzed cyclodimerization reaction. X-ray crystallographic analysis shows that these molecules are highly twisted owing to congestion at the cove region. Broken-symmetry DFT calculations predict that they have a singlet biradical ground state with a smaller biradical character and a large singlet-triplet energy gap; these predictions are supported by NMR and electronic absorption measurements. They have small energy gaps and exhibit farred/near-infrared absorption/emission and amphoteric redox behaviors.

  6. Highly twisted 1,2:8,9-dibenzozethrenes: Synthesis, ground state, and physical properties

    KAUST Repository

    Sun, Zhe

    2014-08-08

    Two soluble and stable 1,2:8,9-dibenzozethrene derivatives (3a,b) are synthesized through a palladium-catalyzed cyclodimerization reaction. X-ray crystallographic analysis shows that these molecules are highly twisted owing to congestion at the cove region. Broken-symmetry DFT calculations predict that they have a singlet biradical ground state with a smaller biradical character and a large singlet-triplet energy gap; these predictions are supported by NMR and electronic absorption measurements. They have small energy gaps and exhibit farred/near-infrared absorption/emission and amphoteric redox behaviors.

  7. Development of Singlet Oxygen Luminescence Kinetics during the Photodynamic Inactivation of Green Algae

    Directory of Open Access Journals (Sweden)

    Tobias Bornhütter

    2016-04-01

    Full Text Available Recent studies show the feasibility of photodynamic inactivation of green algae as a vital step towards an effective photodynamic suppression of biofilms by using functionalized surfaces. The investigation of the intrinsic mechanisms of photodynamic inactivation in green algae represents the next step in order to determine optimization parameters. The observation of singlet oxygen luminescence kinetics proved to be a very effective approach towards understanding mechanisms on a cellular level. In this study, the first two-dimensional measurement of singlet oxygen kinetics in phototrophic microorganisms on surfaces during photodynamic inactivation is presented. We established a system of reproducible algae samples on surfaces, incubated with two different cationic, antimicrobial potent photosensitizers. Fluorescence microscopy images indicate that one photosensitizer localizes inside the green algae while the other accumulates along the outer algae cell wall. A newly developed setup allows for the measurement of singlet oxygen luminescence on the green algae sample surfaces over several days. The kinetics of the singlet oxygen luminescence of both photosensitizers show different developments and a distinct change over time, corresponding with the differences in their localization as well as their photosensitization potential. While the complexity of the signal reveals a challenge for the future, this study incontrovertibly marks a crucial, inevitable step in the investigation of photodynamic inactivation of biofilms: it shows the feasibility of using the singlet oxygen luminescence kinetics to investigate photodynamic effects on surfaces and thus opens a field for numerous investigations.

  8. Cellular defense against singlet oxygen-induced oxidative damage by cytosolic NADP+-dependent isocitrate dehydrogenase.

    Science.gov (United States)

    Kim, Sun Yee; Park, Jeen-Woo

    2003-03-01

    Singlet oxygen (1O2) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. Recently, we have shown that NADP+-dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study, we investigated the role of cytosolic form of NADP+-dependent isocitrate dehydrogenase (IDPc) against singlet oxygen-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to singlet oxygen generated from photoactivated dye, the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against singlet oxygen, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against singlet oxygen-induced oxidative injury.

  9. Parabanic acid is the singlet oxygen specific oxidation product of uric acid.

    Science.gov (United States)

    Iida, Sayaka; Ohkubo, Yuki; Yamamoto, Yorihiro; Fujisawa, Akio

    2017-11-01

    Uric acid quenches singlet oxygen physically or reacts with it, but the oxidation product has not been previously characterized. The present study determined that the product is parabanic acid, which was confirmed by LC/TOFMS analysis. Parabanic acid was stable at acidic pH (acid at neutral or alkaline pH. The total yields of parabanic acid and oxaluric acid based on consumed uric acid were ~100% in clean singlet oxygen production systems such as UVA irradiation of Rose Bengal and thermal decomposition of 3-(1,4-dihydro-1,4-epidioxy-4-methyl-1-naphthyl)propionic acid. However, the ratio of the amount of uric acid consumed to the total amount of singlet oxygen generated was less than 1/180, indicating that most of the singlet oxygen was physically quenched. The total yields of parabanic acid and oxaluric acid were high in the uric acid oxidation systems with hydrogen peroxide plus hypochlorite or peroxynitrite. They became less than a few percent in peroxyl radical-, hypochlorite- or peroxynitrite-induced oxidation of uric acid. These results suggest that parabanic acid could be an in vivo probe of singlet oxygen formation because of the wide distribution of uric acid in human tissues and extracellular spaces. In fact, sunlight exposure significantly increased human skin levels of parabanic acid.

  10. Explicit role of dynamical and nondynamical electron correlation on singlet-triplet splitting in carbenes

    International Nuclear Information System (INIS)

    Seal, Prasenjit; Chakrabarti, Swapan

    2007-01-01

    Density functional theoretical studies have been performed on carbene systems to determine the singlet-triplet splitting and also to explore the role of electron correlation. Using an approximate method of separation of dynamical and nondynamical correlation, it is found that dynamical and nondynamical electron correlation stabilizes the singlet state relative to the triplet for halo carbenes in both BLYP and B3LYP methods. Calculations performed on higher homologues of methylene suggest that beyond CH(CH 3 ), both the electron correlations have leveling effect in stabilizing the singlet state relative to the triplet. It has also been observed while dynamical electron correlation fails to provide any substantial degree of stabilization to the singlet states of higher homologues of methylene in B3LYP method, an opposite trend is observed for nondynamical counterpart. Among the larger systems studied (9-triptycyl)(α-naphthyl)-carbene has the highest stability of the triplet state whereas bis-imidazol-2-ylidenes has the most stable singlet state. Interestingly, the values of the dynamical electron correlation for each state of each system studied are different for the two methods used. The reason behind this apparent discrepancy lies in the fact that the coefficients of the LYP part in B3LYP and BLYP functionals are different

  11. Microscopic time-resolved imaging of singlet oxygen by delayed fluorescence in living cells.

    Science.gov (United States)

    Scholz, Marek; Dědic, Roman; Hála, Jan

    2017-11-08

    Singlet oxygen is a highly reactive species which is involved in a number of processes, including photodynamic therapy of cancer. Its very weak near-infrared emission makes imaging of singlet oxygen in biological systems a long-term challenge. We address this challenge by introducing Singlet Oxygen Feedback Delayed Fluorescence (SOFDF) as a novel modality for semi-direct microscopic time-resolved wide-field imaging of singlet oxygen in biological systems. SOFDF has been investigated in individual fibroblast cells incubated with a well-known photosensitizer aluminium phthalocyanine tetrasulfonate. The SOFDF emission from the cells is several orders of magnitude stronger and much more readily detectable than the very weak near-infrared phosphorescence of singlet oxygen. Moreover, the analysis of SOFDF kinetics enables us to estimate the lifetimes of the involved excited states. Real-time SOFDF images with micrometer spatial resolution and submicrosecond temporal-resolution have been recorded. Interestingly, a steep decrease in the SOFDF intensity after the photodynamically induced release of a photosensitizer from lysosomes has been demonstrated. This effect could be potentially employed as a valuable diagnostic tool for monitoring and dosimetry in photodynamic therapy.

  12. Origins of Singlet Fission in Solid Pentacene from an ab initio Green's Function Approach

    Science.gov (United States)

    Refaely-Abramson, Sivan; da Jornada, Felipe H.; Louie, Steven G.; Neaton, Jeffrey B.

    2017-12-01

    We develop a new first-principles approach to predict and understand rates of singlet fission with an ab initio Green's-function formalism based on many-body perturbation theory. Starting with singlet and triplet excitons computed from a G W plus Bethe-Salpeter equation approach, we calculate the exciton-biexciton coupling to lowest order in the Coulomb interaction, assuming a final state consisting of two noninteracting spin-correlated triplets with finite center-of-mass momentum. For crystalline pentacene, symmetries dictate that the only purely Coulombic fission decay process from a bright singlet state requires a final state consisting of two inequivalent nearly degenerate triplets of nonzero, equal and opposite, center-of-mass momenta. For such a process, we predict a singlet lifetime of 30-70 fs, in very good agreement with experimental data, indicating that this process can dominate singlet fission in crystalline pentacene. Our approach is general and provides a framework for predicting and understanding multiexciton interactions in solids.

  13. A dual-mode secure UHF RFID tag with a crypto engine in 0.13-μm CMOS

    Science.gov (United States)

    Tao, Yang; Linghao, Zhu; Xi, Tan; Junyu, Wang; Lirong, Zheng; Hao, Min

    2016-07-01

    An ultra-high-frequency (UHF) radio frequency identification (RFID) secure tag chip with a non-crypto mode and a crypto mode is presented. During the supply chain management, the tag works in the non-crypto mode in which the on-chip crypto engine is not enabled and the tag chip has a sensitivity of -12.8 dBm for long range communication. At the point of sales (POS), the tag will be switched to the crypto mode in order to protect the privacy of customers. In the crypto mode, an advanced encryption standard (AES) crypto engine is enabled and the sensitivity of the tag chip is switched to +2 dBm for short range communication, which is a method of physical protection. The tag chip is implemented and verified in a standard 0.13-μm CMOS process. Project supported by the National Science & Technology Pillar Program of China (No. 2015BAK36B01).

  14. VHF and UHF radar observations of equatorial F region ionospheric irregularities and background densities

    Science.gov (United States)

    Towle, D. M.

    1980-02-01

    A series of measurements of the properties of equatorial ionospheric irregularities were made at Kwajalein, Marshall Islands (M.I.) in August 1977 and July-August 1978. These measurements, sponsored by the Defense Nuclear Agency (DNA), involved coordinated ground-based and in situ sensors. The ARPA Long-Range Tracking and Instrumentation Radar (ALTAIR), operated by Lincoln Laboratory, obtained backscatter and transmission data during five nights in August 1977 and eight nights in July-August 1978. This report describes the ALTAIR data from the night of August 11, 1978, which yield direct quantitative measurements of 1-m and 3/8-m irregularities and of plasma depleted regions. These plasma depleted regions, previously predicted on the basis of theoretical analysis and in situ data, were observed during the decay phase and not the generative phase of the field-aligned irregularities.

  15. UHF coplanar-slot antenna for aircraft-to-satellite data communications

    Science.gov (United States)

    Myhre, R. W.

    1979-01-01

    The initiative for starting the Aircraft-to-Satellite Data Relay (ASDAR) Program came from a recognition that much of the world's weather originates in the data sparse area of the tropics which are primarily ocean. The ASDAR system consists of (1) a data acquisition and control unit to acquire, store and format these data; (2) a clock to time the data sampling and transmission periods; and (3) a transmitter and low-profile upper hemisphere coverage antenna to relay the formatted data via satellite to the National Weather Service ground stations, as shown schematically. The low-profile antenna is a conformal antenna based on the coplanar-slot approach. The antenna is circular polarized and has an on-axis gain of nearly 2.5 dB and a HPBW greater than 90 deg. The discussion covers antenna design, radiation characteristics, flight testing, and system performance.

  16. Direct detection of singlet dark matter in classically scale-invariant standard model

    Directory of Open Access Journals (Sweden)

    Kazuhiro Endo

    2015-10-01

    Full Text Available Classical scale invariance is one of the possible solutions to explain the origin of the electroweak scale. The simplest extension is the classically scale-invariant standard model augmented by a multiplet of gauge singlet real scalar. In the previous study it was shown that the properties of the Higgs potential deviate substantially, which can be observed in the International Linear Collider. On the other hand, since the multiplet does not acquire vacuum expectation value, the singlet components are stable and can be dark matter. In this letter we study the detectability of the real singlet scalar bosons in the experiment of the direct detection of dark matter. It is shown that a part of this model has already been excluded and the rest of the parameter space is within the reach of the future experiment.

  17. Interplay between singlet and triplet excited states in a conformationally locked donor–acceptor dyad

    KAUST Repository

    Filatov, Mikhail A.

    2015-10-13

    The synthesis and photophysical characterization of a palladium(II) porphyrin – anthracene dyad bridged via short and conformationally rigid bicyclo[2.2.2]octadiene spacer were achieved. A spectroscopic investigation of the prepared molecule in solution has been undertaken to study electronic energy transfer in excited singlet and triplet states between the anthracene and porphyrin units. By using steady-state and time-resolved photoluminescence spectroscopy it was shown that excitation of the singlet excited state of the anthracene leads to energy transfer to the lower-lying singlet state of porphyrin. Alternatively, excitation of the porphyrin followed by intersystem crossing to the triplet state leads to very fast energy transfer to the triplet state of anthracene. The rate of this energy transfer has been determined by transient absorption spectroscopy. Comparative studies of the dynamics of triplet excited states of the dyad and reference palladium octaethylporphyrin (PdOEP) have been performed.

  18. Flavor-singlet baryons in the graded symmetry approach to partially quenched QCD

    Science.gov (United States)

    Hall, Jonathan M. M.; Leinweber, Derek B.

    2016-11-01

    Progress in the calculation of the electromagnetic properties of baryon excitations in lattice QCD presents new challenges in the determination of sea-quark loop contributions to matrix elements. A reliable estimation of the sea-quark loop contributions represents a pressing issue in the accurate comparison of lattice QCD results with experiment. In this article, an extension of the graded symmetry approach to partially quenched QCD is presented, which builds on previous theory by explicitly including flavor-singlet baryons in its construction. The formalism takes into account the interactions among both octet and singlet baryons, octet mesons, and their ghost counterparts; the latter enables the isolation of the quark-flow disconnected sea-quark loop contributions. The introduction of flavor-singlet states enables systematic studies of the internal structure of Λ -baryon excitations in lattice QCD, including the topical Λ (1405 ).

  19. Interplay between singlet and triplet excited states in a conformationally locked donor–acceptor dyad

    KAUST Repository

    Filatov, Mikhail A.; Etzold, Fabian; Gehrig, Dominik; Laquai, Fré dé ric; Busko, Dmitri; Landfester, Katharina; Baluschev, Stanislav

    2015-01-01

    The synthesis and photophysical characterization of a palladium(II) porphyrin – anthracene dyad bridged via short and conformationally rigid bicyclo[2.2.2]octadiene spacer were achieved. A spectroscopic investigation of the prepared molecule in solution has been undertaken to study electronic energy transfer in excited singlet and triplet states between the anthracene and porphyrin units. By using steady-state and time-resolved photoluminescence spectroscopy it was shown that excitation of the singlet excited state of the anthracene leads to energy transfer to the lower-lying singlet state of porphyrin. Alternatively, excitation of the porphyrin followed by intersystem crossing to the triplet state leads to very fast energy transfer to the triplet state of anthracene. The rate of this energy transfer has been determined by transient absorption spectroscopy. Comparative studies of the dynamics of triplet excited states of the dyad and reference palladium octaethylporphyrin (PdOEP) have been performed.

  20. Diradical character dependences of the first and second hyperpolarizabilities of asymmetric open-shell singlet systems.

    Science.gov (United States)

    Nakano, Masayoshi; Champagne, Benoît

    2013-06-28

    The static first and second hyperpolarizabilities (referred to as β and γ, respectively) of asymmetric open-shell singlet systems have been investigated using the asymmetric two-site diradical model within the valence configuration interaction level of theory in order to reveal the effect of the asymmetric electron distribution on the diradical character and subsequently on β and γ. It is found that the increase of the asymmetric electron distribution causes remarkable changes in the amplitude and the sign of β and γ, and that their variations are intensified with the increase of the diradical character. These results demonstrate that the asymmetric open-shell singlet systems with intermediate diradical characters can exhibit further enhancements of β and γ as compared to conventional asymmetric closed-shell systems and also to symmetric open-shell singlet systems with intermediate diradical characters.

  1. Bactericidal action of photogenerated singlet oxygen from photosensitizers used in plaque disclosing agents.

    Directory of Open Access Journals (Sweden)

    Kirika Ishiyama

    Full Text Available BACKGROUND: Photodynamic therapy (PDT has been suggested as an efficient clinical approach for the treatment of dental plaque in the field of dental care. In PDT, once the photosensitizer is irradiated with light of a specific wavelength, it transfers the excitation energy to molecular oxygen, which gives rise to singlet oxygen. METHODOLOGY/PRINCIPAL FINDINGS: Since plaque disclosing agents usually contain photosensitizers such as rose bengal, erythrosine, and phloxine, they could be used for PTD upon photoactivation. The aim of the present study is to compare the ability of these three photosensitizers to produce singlet oxygen in relation to their bactericidal activity. The generation rates of singlet oxygen determined by applying an electron spin resonance technique were in the order phloxine > erythrosine ≒ rose bengal. On the other hand, rose bengal showed the highest bactericidal activity against Streptococcus mutans, a major causative pathogen of caries, followed by erythrosine and phloxine, both of which showed activity similar to each other. One of the reasons for the discrepancy between the singlet oxygen generating ability and bactericidal activity was the incorporation efficiency of the photosensitizers into the bacterial cells. The incorporation rate of rose bengal was the highest among the three photosensitizers examined in the present study, likely leading to the highest bactericidal activity. Meanwhile, the addition of L-histidine, a singlet oxygen quencher, cancelled the bactericidal activity of any of the three photoactivated photosensitizers, proving that singlet oxygen was responsible for the bactericidal action. CONCLUSIONS: It is strongly suggested that rose bengal is a suitable photosensitizer for the plaque disclosing agents as compared to the other two photosensitizers, phloxine and erythrosine, when used for PDT.

  2. Spin-Triplet Pairing Induced by Spin-Singlet Interactions in Noncentrosymmetric Superconductors

    Science.gov (United States)

    Matsuzaki, Tomoaki; Shimahara, Hiroshi

    2017-02-01

    In noncentrosymmetric superconductors, we examine the effect of the difference between the intraband and interband interactions, which becomes more important when the band splitting increases. We define the difference ΔVμ between their coupling constants, i.e., that between the intraband and interband hopping energies of intraband Cooper pairs. Here, the subscript μ of ΔVμ indicates that the interactions scatter the spin-singlet and spin-triplet pairs when μ = 0 and μ = 1,2,3, respectively. It is shown that the strong antisymmetric spin-orbit interaction reverses the target spin parity of the interaction: it converts the spin-singlet and spin-triplet interactions represented by ΔV0 and ΔVμ>0 into effective spin-triplet and spin-singlet pairing interactions, respectively. Hence, for example, triplet pairing can be induced solely by the singlet interaction ΔV0. We name the pairing symmetry of the system after that of the intraband Cooper pair wave function, but with an odd-parity phase factor excluded. The pairing symmetry must then be even, even for the triplet component, and the following results are obtained. When ΔVμ is small, the spin-triplet p-wave interactions induce spin-triplet s-wave and spin-triplet d-wave pairings in the regions where the repulsive singlet s-wave interaction is weak and strong, respectively. When ΔV0 is large, a repulsive interband spin-singlet interaction can stabilize spin-triplet pairing. When the Rashba interaction is adopted for the spin-orbit interaction, the spin-triplet pairing interactions mediated by transverse magnetic fluctuations do not contribute to triplet pairing.

  3. On the Josephson effect between superconductors in singlet and triplet spin-pairing states

    International Nuclear Information System (INIS)

    Pals, J.A.; Haeringen, W. van

    1977-01-01

    An expression is derived for the Josephson current between two weakly coupled superconductors of which one or both have pairs in a spin-triplet state. It is shown that there can be no Josephson effect up to second order in the transition matrix elements between a superconductor with spin-triplet pairs and one with spin-singlet pairs if the coupling between the two superconductors can be described with a spin-conserving tunnel hamiltonian. This is shown to offer a possibility to investigate experimentally whether a particular superconductor has spin-triplet pairs by coupling it weakly to a well-known spin-singlet pairing superconductor. (Auth.)

  4. Second-order contributions to the structure functions in deep inelastic scattering III The singlet

    CERN Document Server

    González-Arroyo, A

    1980-01-01

    For pt.II see ibid., vol.159, p.512 (1979). Pointlike QCD predictions for the singlet part of the structure functions are given up to next- to-leading order of perturbation theory. This generalises the result obtained in pt.I (see ibid., vol.153, p.161, 1979) which deals with the non-singlet case. An interesting by-product is an exact and simple analytical expression for the anomalous dimension matrix to second non-trivial order in the QCD coupling constant. (18 refs).

  5. Baryogenesis in the two doublet and inert singlet extension of the Standard Model

    DEFF Research Database (Denmark)

    Alanne, Tommi; Kainulainen, Kimmo; Tuominen, Kimmo

    2016-01-01

    We investigate an extension of the Standard Model containing two Higgs doublets and a singlet scalar field (2HDSM). We show that the model can have a strongly first-order phase transition and give rise to the observed baryon asymmetry of the Universe, consistent with all experimental constraints...... with the critical temperature, Tn Tc, which can significantly alter the usual phase-transition pattern in 2HD models with Tn ≈ Tc. Furthermore, the singlet field can be the dark matter particle. However, in models with a strong first-order transition its abundance is typically but a thousandth of the observed dark...... matter abundance....

  6. Slow light enhanced singlet exciton fission solar cells with a 126% yield of electrons per photon

    International Nuclear Information System (INIS)

    Thompson, Nicholas J.; Congreve, Daniel N.; Baldo, Marc A.; Goldberg, David; Menon, Vinod M.

    2013-01-01

    Singlet exciton fission generates two triplet excitons per absorbed photon. It promises to increase the power extracted from sunlight without increasing the number of photovoltaic junctions in a solar cell. We demonstrate solar cells with an external quantum efficiency of 126% by enhancing absorption in thin films of the singlet exciton fission material pentacene. The device structure exploits the long photon dwell time at the band edge of a distributed Bragg reflector to achieve enhancement over a broad range of angles. Measuring the reflected light from the solar cell establishes a lower bound of 137% for the internal quantum efficiency

  7. Dimensional reduction of the Standard Model coupled to a new singlet scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Brauner, Tomáš [Faculty of Science and Technology, University of Stavanger,N-4036 Stavanger (Norway); Tenkanen, Tuomas V.I. [Department of Physics and Helsinki Institute of Physics,P.O. Box 64, FI-00014 University of Helsinki (Finland); Tranberg, Anders [Faculty of Science and Technology, University of Stavanger,N-4036 Stavanger (Norway); Vuorinen, Aleksi [Department of Physics and Helsinki Institute of Physics,P.O. Box 64, FI-00014 University of Helsinki (Finland); Weir, David J. [Faculty of Science and Technology, University of Stavanger,N-4036 Stavanger (Norway); Department of Physics and Helsinki Institute of Physics,P.O. Box 64, FI-00014 University of Helsinki (Finland)

    2017-03-01

    We derive an effective dimensionally reduced theory for the Standard Model augmented by a real singlet scalar. We treat the singlet as a superheavy field and integrate it out, leaving an effective theory involving only the Higgs and SU(2){sub L}×U(1){sub Y} gauge fields, identical to the one studied previously for the Standard Model. This opens up the possibility of efficiently computing the order and strength of the electroweak phase transition, numerically and nonperturbatively, in this extension of the Standard Model. Understanding the phase diagram is crucial for models of electroweak baryogenesis and for studying the production of gravitational waves at thermal phase transitions.

  8. Storage of magnetization as singlet order by optimal control designed pulses

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Bowen, Sean; Vinding, Mads Sloth

    2014-01-01

    The use of hyperpolarization to enhance the sensitivity of MRI has so far been limited by the decay of the polarization through T1 relaxation. Recently, methods have been proposed that extend the lifetime of the hyperpolarization by storing the spin order in slowly relaxing singlet states....... With this aim, optimal control theory was applied to create pulses that for near‐equivalent spins accomplish transfers in and out of the singlet state with maximum efficiency while ensuring robustness toward variations in the nuclear spin system Hamiltonian (chemical shift, J‐couplings, B1 and B magnetic field...

  9. Sterile Neutrinos, Dark Matter, and Pulsar Velocities in Models with a Higgs Singlet

    International Nuclear Information System (INIS)

    Kusenko, Alexander

    2006-01-01

    We identify the range of parameters for which the sterile neutrinos can simultaneously explain the cosmological dark matter and the observed velocities of pulsars. To satisfy all cosmological bounds, the relic sterile neutrinos must be produced sufficiently cold. This is possible in a class of models with a gauge-singlet Higgs boson coupled to the neutrinos. Sterile dark matter can be detected by the x-ray telescopes. The presence of the singlet in the Higgs sector can be tested at the CERN Large Hadron Collider

  10. Inactivation of Neurospora crassa conidia by singlet molecular oxygen generated by a photosensitized reaction

    International Nuclear Information System (INIS)

    Shimizu, M.; Egashira, T.; Takahama, U.

    1979-01-01

    Photodynamic damage of Neurospora crassa conidia was studied in the presence of the photosensitizing dye, toluidine blue O. Conidia which germinated to form colonies decreased in number as irradiation time became longer. The photoinactivation of conidia was suppressed by azide, bovine serum albumin, and histidine, and was stimulated in deuterium oxide. Wild-type conidia were less sensitive to the irradiation that albino conidia. In the wild type, carotenoid-enriched conidia were more resistant against the lethal damage than the conidia which contained small amounts of carotenoids. These results suggest that singlet molecular oxygen causes photodynamic lethal damage to N. crassa conidia and that singlet molecular oxygen is quenched by endogenous carotenoids

  11. Slow light enhanced singlet exciton fission solar cells with a 126% yield of electrons per photon

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Nicholas J.; Congreve, Daniel N.; Baldo, Marc A., E-mail: vmenon@qc.cuny.edu, E-mail: baldo@mit.edu [Energy Frontier Research Center for Excitonics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Goldberg, David; Menon, Vinod M., E-mail: vmenon@qc.cuny.edu, E-mail: baldo@mit.edu [Department of Physics, Queens College and Graduate Center, The City University of New York, Flushing, New York 11367 (United States)

    2013-12-23

    Singlet exciton fission generates two triplet excitons per absorbed photon. It promises to increase the power extracted from sunlight without increasing the number of photovoltaic junctions in a solar cell. We demonstrate solar cells with an external quantum efficiency of 126% by enhancing absorption in thin films of the singlet exciton fission material pentacene. The device structure exploits the long photon dwell time at the band edge of a distributed Bragg reflector to achieve enhancement over a broad range of angles. Measuring the reflected light from the solar cell establishes a lower bound of 137% for the internal quantum efficiency.

  12. On colour non-singlet representations of the quark-gluon system at finite temperature

    International Nuclear Information System (INIS)

    Abbas, A.; Paria, L.

    2000-01-01

    We use a group theoretical technique to project out the partition function for a system of quarks, antiquarks and gluons onto a particular representation of the internal symmetry group SU(3): the colour singlet, colour octet and colour 27-plet, at finite temperature. We do this to calculate the thermodynamic quantities for those representations. We also calculate the change in free energy of the plasma droplet formed from the hot hadronic gas. We find that the size of the droplet in the colour-octet representation is smaller than that in the colour-singlet representations at different temperatures in the vicinity of the critical temperatures of the phase transitions. (orig.)

  13. First-Principles Quantum Dynamics of Singlet Fission: Coherent versus Thermally Activated Mechanisms Governed by Molecular π Stacking

    Science.gov (United States)

    Tamura, Hiroyuki; Huix-Rotllant, Miquel; Burghardt, Irene; Olivier, Yoann; Beljonne, David

    2015-09-01

    Singlet excitons in π -stacked molecular crystals can split into two triplet excitons in a process called singlet fission that opens a route to carrier multiplication in photovoltaics. To resolve controversies about the mechanism of singlet fission, we have developed a first principles nonadiabatic quantum dynamical model that reveals the critical role of molecular stacking symmetry and provides a unified picture of coherent versus thermally activated singlet fission mechanisms in different acenes. The slip-stacked equilibrium packing structure of pentacene derivatives is found to enhance ultrafast singlet fission mediated by a coherent superexchange mechanism via higher-lying charge transfer states. By contrast, the electronic couplings for singlet fission strictly vanish at the C2 h symmetric equilibrium π stacking of rubrene. In this case, singlet fission is driven by excitations of symmetry-breaking intermolecular vibrations, rationalizing the experimentally observed temperature dependence. Design rules for optimal singlet fission materials therefore need to account for the interplay of molecular π -stacking symmetry and phonon-induced coherent or thermally activated mechanisms.

  14. Reliable Prediction with Tuned Range-Separated Functionals of the Singlet-Triplet Gap in Organic Emitters for Thermally Activated Delayed Fluorescence (TADF)

    KAUST Repository

    Sun, Haitao; Zhong, Cheng; Bredas, Jean-Luc

    2015-01-01

    excited states. Here, we demonstrate that time-dependent density functional theory (TD-DFT) in the Tamm-Dancoff Approximation can be very successful in the calculations of the lowest singlet and triplet excitation energies and the corresponding singlet

  15. Irradiation- and Sensitizer-Dependent Changes in the Lifetime of Intracellular Singlet Oxygen Produced in a Photosensitized Process

    DEFF Research Database (Denmark)

    Silva, Elsa; Pedersen, Brian Wett; Breitenbach, Thomas

    2012-01-01

    Singlet oxygen, O2(a1Δg), was produced upon pulsed-laser irradiation of an intracellular photosensitizer and detected by its 1275 nm O2(a1Δg) →O2(X3Σg-) phosphorescence in time-resolved experiments using (1) individual mammalian cells on the stage of a microscope and (2) suspensions of mammalian...... cells in a 1 cm cuvette. Data were recorded using hydrophilic and, independently, hydrophobic sensitizers. The microscope-based single cell results are consistent with a model in which the behavior of singlet oxygen reflects the environment in which it is produced; nevertheless, the data also indicate...... that a significant fraction of a given singlet oxygen population readily crosses barriers between phase-separated intracellular domains. The singlet oxygen phosphorescence signals reflect the effects of singlet-oxygen-mediated damage on cell components which, at the limit, mean that data were collected from dead...

  16. Electromagnetic fields (UHF) increase voltage sensitivity of membrane ion channels; possible indication of cell phone effect on living cells.

    Science.gov (United States)

    Ketabi, N; Mobasheri, H; Faraji-Dana, R

    2015-03-01

    The effects of ultra high frequency (UHF) nonionizing electromagnetic fields (EMF) on the channel activities of nanopore forming protein, OmpF porin, were investigated. The voltage clamp technique was used to study the single channel activity of the pore in an artificial bilayer in the presence and absence of the electromagnetic fields at 910 to 990 MHz in real time. Channel activity patterns were used to address the effect of EMF on the dynamic, arrangement and dielectric properties of water molecules, as well as on the hydration state and arrangements of side chains lining the channel barrel. Based on the varied voltage sensitivity of the channel at different temperatures in the presence and absence of EMF, the amount of energy transferred to nano-environments of accessible groups was estimated to address the possible thermal effects of EMF. Our results show that the effects of EMF on channel activities are frequency dependent, with a maximum effect at 930 MHz. The frequency of channel gating and the voltage sensitivity is increased when the channel is exposed to EMF, while its conductance remains unchanged at all frequencies applied. We have not identified any changes in the capacitance and permeability of membrane in the presence of EMF. The effect of the EMF irradiated by cell phones is measured by Specific Absorption Rate (SAR) in artificial model of human head, Phantom. Thus, current approach applied to biological molecules and electrolytes might be considered as complement to evaluate safety of irradiating sources on biological matter at molecular level.

  17. Oxathiiranes 8 On the OCS2 Singlet Potential Energy Surface

    DEFF Research Database (Denmark)

    Carlsen, Lars

    1982-01-01

    The reaction between atomic oxygen and carbon disulfide is predicted to lead to at least two primary products, which are the dithiiranone (1) and the oxathiirane-thione (2) and/or the carbon disulfide S-oxide (4). The possible intramolecular equilibria 1 ⇄ 2, 1 ⇄ 3, 2 ⇄ 4, and 2 ⇄ 5 as well...... as the fragmentations of the possible intermediates 1–5 have been studied theoretically within the semiempirical cndo/B framework as conceivable ground-state reactions. On the basis of mo correlations and potential energy changes along the reaction paths, supplementary with previously reported experimental data...

  18. Análisis mecánico por elementos finitos de una antena UHF en la órbita de Marte

    OpenAIRE

    Moreno García, Carlos

    2015-01-01

    El proyecto desarrolla el diseño mecánico de una antena helicoidal en banda UHF que será parte de un satélite cuyo destino final será Marte. Los principales objetivos de la misión son: Buscar trazas o evidencia de metano y otros gases atmosféricos que podrían manifestar signos de procesos biológicos o geológicos activos, es decir, buscar indicios de vida pasada en Marte Poner a prueba la tecnología necesaria para posteriores misiones europeas a Marte. El proyecto se centrará en la...

  19. Calculation of the ground and excited states of the Ne2 molecule by the variational cellular method

    International Nuclear Information System (INIS)

    Dias, A.M.; Rosato, A.

    1981-07-01

    The potential curves for the ground state 1 Σ + sub(g) and for the first singlet excited state 1 Σ + sub (u) of the Ne 2 molecule are determined by the Variational Cellular Method. From these curves some spectroscopical constants are obtained. Ionization energies of the excited state 1 Σ + sub (u) are calculated. (Author) [pt

  20. Calculation of the ground and excited states of the Ne2 molecule by the Variational Cellular Method

    International Nuclear Information System (INIS)

    Dias, A.M.; Rosato, A.

    1982-01-01

    The potential curves for the ground 1 μ + sub(g) and for the first singlet excited state 1 μ + sub(u) of the Ne 2 molecule are determined by the Variational Cellular Method. From these curves some spectroscopical constants are obtained. Ionization energies of the excited state 1 μ + sub(u) are calculated. (Author) [pt

  1. BODIPY-Au(I): A Photosensitizer for Singlet Oxygen Generation and Photodynamic Therapy.

    Science.gov (United States)

    Üçüncü, Muhammed; Karakuş, Erman; Kurulgan Demirci, Eylem; Sayar, Melike; Dartar, Suay; Emrullahoğlu, Mustafa

    2017-05-19

    Upon complexation with Au(I), a photoinactive BODIPY derivative was transformed into a highly photoactive triplet sensitizer. Along with high efficiency in singlet oxygen generation (Φ Δ = 0.84), the new BODIPY-Au(I) skeleton showed excellent photocytotoxic activity against cancer cell lines (EC 50 = 2.5 nM).

  2. Cytometric quantification of singlet oxygen in the human malaria parasite Plasmodium falciparum

    NARCIS (Netherlands)

    Butzloff, Sabine; Groves, Matthew R; Wrenger, Carsten; Müller, Ingrid B

    The malaria parasite Plasmodium falciparum proliferates within human erythrocytes and is thereby exposed to a variety of reactive oxygen species (ROS) such as hydrogen peroxide, hydroxyl radical, superoxide anion, and highly reactive singlet oxygen ((1)O(2)). While most ROS are already well studied

  3. General Approach to the Evolution of Singlet Nanoparticles from a Rapidly Quenched Point Source

    NARCIS (Netherlands)

    Feng, J.; Huang, Luyi; Ludvigsson, Linus; Messing, Maria; Maiser, A.; Biskos, G.; Schmidt-Ott, A.

    2016-01-01

    Among the numerous point vapor sources, microsecond-pulsed spark ablation at atmospheric pressure is a versatile and environmentally friendly method for producing ultrapure inorganic nanoparticles ranging from singlets having sizes smaller than 1 nm to larger agglomerated structures. Due to its fast

  4. Photocurrent Enhanced by Singlet Fission in a Dye-Sensitized Solar Cell

    Czech Academy of Sciences Publication Activity Database

    Schrauben, J. N.; Zhao, Y.; Mercado, C.; Dron, P. I.; Ryerson, J. L.; Michl, Josef; Zhu, K.; Johnson, J. C.

    2015-01-01

    Roč. 7, č. 4 (2015), s. 2286-2293 ISSN 1944-8244 Institutional support: RVO:61388963 Keywords : photovoltaics * singlet fission * triplet * spectroscopy * charge transfer * photocurrent Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.145, year: 2015

  5. Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells

    KAUST Repository

    Dimitrov, Stoichko

    2016-01-13

    The lifetime of singlet excitons in conjugated polymer films is a key factor taken into account during organic solar cell device optimization. It determines the singlet exciton diffusion lengths in polymer films and has a direct impact on the photocurrent generation by organic solar cell devices. However, very little is known about the material properties controlling the lifetimes of singlet excitons, with most of our knowledge originating from studies of small organic molecules. Herein, we provide a brief summary of the nature of the excited states in conjugated polymer films and then present an analysis of the singlet exciton lifetimes of 16 semiconducting polymers. The exciton lifetimes of seven of the studied polymers were measured using ultrafast transient absorption spectroscopy and compared to the lifetimes of seven of the most common photoactive polymers found in the literature. A plot of the logarithm of the rate of exciton decay vs. the polymer optical bandgap reveals a medium correlation between lifetime and bandgap, thus suggesting that the Energy Gap Law may be valid for these systems. This therefore suggests that small bandgap polymers can suffer from short exciton lifetimes, which may limit their performance in organic solar cell devices. In addition, the impact of film crystallinity on the exciton lifetime was assessed for a small bandgap diketopyrrolopyrrole co-polymer. It is observed that the increase of polymer film crystallinity leads to reduction in exciton lifetime and optical bandgap again in agreement with the Energy Gap Law.

  6. A two-component dark matter model with real singlet scalars ...

    Indian Academy of Sciences (India)

    Theoretical framework. In the present work, the dark matter candidate has two components S and S′ both of ... The scalar sector potential (for Higgs and two real singlet scalars) in this framework can then be written .... In this work we obtain the allowed values of model parameters (δ2, δ′2, MS and M′S) using three direct ...

  7. Laser-induced generation of singlet oxygen and its role in the cerebrovascular physiology

    Science.gov (United States)

    Semyachkina-Glushkovskaya, O. V.; Sokolovski, S. G.; Goltsov, A.; Gekaluyk, A. S.; Saranceva, E. I.; Bragina, O. A.; Tuchin, V. V.; Rafailov, E. U.

    2017-09-01

    For over 55 years, laser technology has expanded from laboratory research to widespread fields, for example telecommunication and data storage amongst others. Recently application of lasers in biology and medicine presents itself as one of the emerging areas. In this review, we will outline the recent advances in using lasers for the generation of singlet oxygen, traditionally used to kill tumour cells or induce thrombotic stroke model due to damage vascular effects. Over the last two decade, completely new results on cerebrovascular effects of singlet oxygen generated during photodynamic therapy (PDT) have been shown alongside promising applications for delivery of drugs and nanoparticles into the brain for therapy of brain cancer. Furthermore, a ;gold key; has been found to overcome the limitations of PDT, such as low light penetration and high toxicity of photosensitizers, by direct generation of singlet oxygen using quantum-dot laser diodes emitting in the near infrared (NIR) spectral range. It is our motivation to highlight these pioneering results in this review, to improve understanding of the biological role of singlet oxygen and to provide new perspectives for improving clinical application of laser based therapy in further research.

  8. Singlet oxygen oxygenation of enol ethers; the synthesis of optically active 1,2-dioxetanes. II

    NARCIS (Netherlands)

    Meijer, E.W.; Wynberg, H.

    1979-01-01

    (+)-(Methoxymethylene)fenchane I (R = H, R1 = OMe) on singlet O oxidn. gave dioxetanes II and III, which on thermal decompn. underwent chemiluminescence in which (+)-fenchone was the only chemiluminescent species at lmax 420 nm. Photosensitized oxygenation of I (R = OMe, R1 = H) also gave 2 isomeric

  9. A two-component dark matter model with real singlet scalars ...

    Indian Academy of Sciences (India)

    2016-01-05

    Jan 5, 2016 ... We propose a two-component dark matter (DM) model, each component of which is a real singlet scalar, to explain results from both direct and indirect detection experiments. We put the constraints on the model parameters from theoretical bounds, PLANCK relic density results and direct DM experiments.

  10. Photosensitized production of singlet oxygen: spatially-resolved optical studies in single cells

    DEFF Research Database (Denmark)

    Breitenbach, Thomas; Kuimova, Marina; Gbur, Peter

    2009-01-01

    be monitored using viability assays. Time- and spatially-resolved optical measurements of both singlet oxygen and its precursor, the excited state sensitizer, reflect the complex and dynamic morphology of the cell. These experiments help elucidate photoinduced, oxygen-dependent events that compromise cell...

  11. Constraints on singlet right-handed neutrinos coming from the Z0-width

    International Nuclear Information System (INIS)

    Escobar, C.O.; Peres, O.L.G.; Pleitez, V.

    1992-12-01

    The constraints on masses and missing angles imposed by the measured Z 0 invisible width, in a model in which a singlet right-handed neutrino mixes with all the Standard model neutrinos are studied. If neutrinos are massive an important question to be answered concerns the way the Z-pole observables constraint their masses and mixing parameters. In particular the measured Z-invisible width, Γ inv , implies that the number of families is compatible with three. On the other hand, it is well known that this number need not to be an integer number if right-handed neutrinos transformed as singlets under SU(2) L x U(1) Y are added to the particle content of the theory. Experimental searches for sequential neutron leptons beyond the three generations exclude stable Dirac neutrinos below 41.8 GeV and stable Majorana neutrinos below 34.8 GeV. For the unstable cases these values are 46,4 and 45.1 GeV respectively. However, it is worth stressing that these limits are valid for sequential leptons and do not apply to the case of singlets of right-handed neutrinos. Here we will consider the simplest extension of the standard electroweak model with the addition of the one right-handed singlet neutral fermion, resulting in 4 physical neutrinos two of them massless and two massive ones. (author)

  12. Photocurrent enhanced by singlet fission in a dye-sensitized solar cell.

    Science.gov (United States)

    Schrauben, Joel N; Zhao, Yixin; Mercado, Candy; Dron, Paul I; Ryerson, Joseph L; Michl, Josef; Zhu, Kai; Johnson, Justin C

    2015-02-04

    Investigations of singlet fission have accelerated recently because of its potential utility in solar photoconversion, although only a few reports definitively identify the role of singlet fission in a complete solar cell. Evidence of the influence of singlet fission in a dye-sensitized solar cell using 1,3-diphenylisobenzofuran (DPIBF, 1) as the sensitizer is reported here. Self-assembly of the blue-absorbing 1 with co-adsorbed oxidation products on mesoporous TiO2 yields a cell with a peak internal quantum efficiency of ∼70% and a power conversion efficiency of ∼1.1%. Introducing a ZrO2 spacer layer of thickness varying from 2 to 20 Å modulates the short-circuit photocurrent such that it is initially reduced as thickness increases but 1 with 10-15 Å of added ZrO2. This rise can be explained as being due to a reduced rate of injection of electrons from the S1 state of 1 such that singlet fission, known to occur with a 30 ps time constant in polycrystalline films, has the opportunity to proceed efficiently and produce two T1 states per absorbed photon that can subsequently inject electrons into TiO2. Transient spectroscopy and kinetic simulations confirm this novel mode of dye-sensitized solar cell operation and its potential utility for enhanced solar photoconversion.

  13. Flavor-singlet axial-vector current in quark model within background field

    International Nuclear Information System (INIS)

    Chen Kun; Yan Mulin

    1993-01-01

    The flavor-singlet axial-vector current is calculated in a quark model within pseudoscalar background-field through the Seeley-DeWitt coefficients. This current is responsible for the quark spin content of proton and is of O(1) in the large-N e expansion

  14. Optimal free will on one side in reproducing the singlet correlation

    International Nuclear Information System (INIS)

    Banik, Manik; Gazi, MD. Rajjak; Das, Subhadipa; Rai, Ashutosh; Kunkri, Samir

    2012-01-01

    Bell’s theorem teaches us that there are quantum correlations that cannot be simulated by just shared randomness (local hidden variable). There are some recent results which simulate the singlet correlation by using either 1 bit or a binary (no-signaling) correlation which violates Bell’s inequality maximally. But there is one more possible way to simulate quantum correlation by relaxing the condition of independency of measurement on shared randomness. Recently, Hall showed that the statistics of a singlet state can be generated by sacrificing measurement independence where underlying distribution of hidden variables depends on measurement directions of both parties (Hall 2010 Phys. Rev. Lett. 105 250404). He also proved that for any model of singlet correlation, 86% measurement independence is optimal. In this paper, we show that 59% measurement independence is optimal for simulating the singlet correlation when the underlying distribution of hidden variables depends only on the measurements of one party. We also show that a distribution corresponding to this optimal lack of free will already exists in the literature which first appeared in the context of detection efficiency loophole (Gisin and Gisin 1999 Phys. Lett. A 323–7). (paper)

  15. Technicolor Models with Color-Singlet Technifermions and their Ultraviolet Extensions

    DEFF Research Database (Denmark)

    Ryttov, Thomas; Shrock, Robert

    2011-01-01

    for the technifermions and additional color-singlet, technisinglet fermions arising from the necessity of avoiding stable bound states with exotic electric charges. Precision electroweak constraints on these models are also discussed. We determine some general properties of extended technicolor theories containing...

  16. An operator basis for the Standard Model with an added scalar singlet

    Energy Technology Data Exchange (ETDEWEB)

    Gripaios, Ben [Cavendish Laboratory, J.J. Thomson Avenue, Cambridge (United Kingdom); Sutherland, Dave [Cavendish Laboratory, J.J. Thomson Avenue, Cambridge (United Kingdom); Kavli Institute for Theoretical Physics, UCSB Kohn Hall, Santa Barbara CA (United States)

    2016-08-17

    Motivated by the possible di-gamma resonance at 750 GeV, we present a basis of effective operators for the Standard Model plus a scalar singlet at dimensions 5, 6, and 7. We point out that an earlier list at dimensions 5 and 6 contains two redundant operators at dimension 5.

  17. Regge-like initial input and evolution of non-singlet structure ...

    Indian Academy of Sciences (India)

    Regge-like initial input and evolution of non-singlet structure functions from DGLAP equation up to next-next-to-leading order at low x and low Q. 2. NAYAN MANI NATH1,2,∗, MRINAL KUMAR DAS1 and JAYANTA KUMAR SARMA1. 1Department of Physics, Tezpur University, Tezpur 784 028, India. 2Department of Physics ...

  18. A laser flash photolysis and quantum chemical study of the fluorinated derivatives of singlet phenylnitrene.

    Science.gov (United States)

    Gritsan, N P; Gudmundsdóttir, A D; Tigelaar, D; Zhu, Z; Karney, W L; Hadad, C M; Platz, M S

    2001-03-07

    Laser flash photolysis (LFP, Nd:YAG laser, 35 ps, 266 nm, 10 mJ or KrF excimer laser, 10 ns, 249 nm, 50 mJ) of 2-fluoro, 4-fluoro, 3,5-difluoro, 2,6-difluoro, and 2,3,4,5,6-pentafluorophenyl azides produces the corresponding singlet nitrenes. The singlet nitrenes were detected by transient absorption spectroscopy, and their spectra are characterized by sharp absorption bands with maxima in the range of 300-365 nm. The kinetics of their decay were analyzed as a function of temperature to yield observed decay rate constants, k(OBS). The observed rate constant in inert solvents is the sum of k(R) + k(ISC) where k(R) is the absolute rate constant of rearrangement of singlet nitrene to an azirine and k(ISC) is the absolute rate constant of nitrene intersystem crossing (ISC). Values of k(R) and k(ISC) were deduced after assuming that k(ISC) is independent of temperature. Barriers to cyclization of 4-fluoro-, 3,5-difluoro-, 2-fluoro-, 2,6-difluoro-, and 2,3,4,5,6-pentafluorophenylnitrene in inert solvents are 5.3 +/- 0.3, 5.5 +/- 0.3, 6.7 +/- 0.3, 8.0 +/- 1.5, and 8.8 +/- 0.4 kcal/mol, respectively. The barrier to cyclization of parent singlet phenylnitrene is 5.6 +/- 0.3 kcal/mol. All of these values are in good quantitative agreement with CASPT2 calculations of the relative barrier heights for the conversion of fluoro-substituted singlet aryl nitrenes to benzazirines (Karney, W. L. and Borden, W. T. J. Am. Chem. Soc. 1997, 119, 3347). A single ortho-fluorine substituent exerts a small but significant bystander effect on remote cyclization that is not steric in origin. The influence of two ortho-fluorine substituents on the cyclization is pronounced. In the case of the singlet 2-fluorophenylnitrene system, evidence is presented that the benzazirine is an intermediate and that the corresponding singlet nitrene and benzazirine interconvert. Ab initio calculations at different levels of theory on a series of benzazirines, their isomeric ketenimines, and the transition

  19. Rearrangement of van der Waals stacking and formation of a singlet state at T = 90 K in a cluster magnet

    Energy Technology Data Exchange (ETDEWEB)

    Sheckelton, John P.; Plumb, Kemp W.; Trump, Benjamin A.; Broholm, Collin L.; McQueen, Tyrel M.

    2017-01-01

    Insulating Nb3Cl8 is a layered chloride consisting of two-dimensional triangular layers of Seff = 1/2 Nb3Cl13 clusters at room temperature. Magnetic susceptibility measurement show a sharp, hysteretic drop to a temperature independent value below T = 90 K. Specific heat measurements show that the transition is first order, with ΔS ≈ 5 J K-1 mol-1 f.u.-1, and a low temperature T-linear contribution originating from defect spins. Neutron and X-ray diffraction show a lowering of symmetry from trigonal P[3 with combining macron]m1 to monoclinic C2/m symmetry, with a change in layer stacking from –AB–AB– to –AB'–BC'–CA'– and no observed magnetic order. This lowering of symmetry and rearrangement of successive layers evades geometric magnetic frustration to form a singlet ground state. It is the lowest temperature at which a change in stacking sequence is known to occur in a van der Waals solid, occurs in the absence of orbital degeneracies, and suggests that designer 2-D heterostructures may be able to undergo similar phase transitions.

  20. LHC signals for singlet neutrinos from a natural warped seesaw mechanism. II

    Science.gov (United States)

    Agashe, Kaustubh; Du, Peizhi; Hong, Sungwoo

    2018-04-01

    A natural seesaw mechanism for obtaining the observed size of SM neutrino masses can arise in a warped extra-dimensional/composite Higgs framework. In a previous paper, we initiated the study of signals at the LHC for the associated ˜TeV mass SM singlet neutrinos, within a canonical model of S U (2 )L×S U (2 )R×U (1 )B-L (LR) symmetry in the composite sector, as motivated by consistency with the EW precision tests. Here, we investigate LHC signals in a different region of parameter space for the same model, where production of singlet neutrinos can occur from particles beyond those in the usual LR models. Specifically, we assume that the composite (B -L ) gauge boson is lighter than all the others in the EW sector. We show that the composite (B -L ) gauge boson can acquire a significant coupling to light quarks simply via mixing with elementary hypercharge gauge boson. Thus, the singlet neutrino can be pair-produced via decays of the(B -L ) gauge boson, without a charged current counterpart. Furthermore, there is no decay for the (B -L ) gauge boson directly into dibosons, unlike for the usual case of WR± and Z'. Independently of the above extension of the EW sector, we analyze production of singlet neutrinos in decays of composite partners of S U (2 )L doublet leptons, which are absent in the usual LR models. In turn, these doublet leptons can be produced in composite WL decays. We show that the 4 -5 σ signal can be achieved for both cases described above for the following spectrum with 3000 fb-1 luminosity: 2-2.5 TeV composite gauge bosons, 1 TeV composite doublet lepton (for the second case) and 500-750 GeV singlet neutrino.

  1. Scope and limitations of the TEMPO/EPR method for singlet oxygen detection: the misleading role of electron transfer.

    Science.gov (United States)

    Nardi, Giacomo; Manet, Ilse; Monti, Sandra; Miranda, Miguel A; Lhiaubet-Vallet, Virginie

    2014-12-01

    For many biological and biomedical studies, it is essential to detect the production of (1)O2 and quantify its production yield. Among the available methods, detection of the characteristic 1270-nm phosphorescence of singlet oxygen by time-resolved near-infrared (TRNIR) emission constitutes the most direct and unambiguous approach. An alternative indirect method is electron paramagnetic resonance (EPR) in combination with a singlet oxygen probe. This is based on the detection of the TEMPO free radical formed after oxidation of TEMP (2,2,6,6-tetramethylpiperidine) by singlet oxygen. Although the TEMPO/EPR method has been widely employed, it can produce misleading data. This is demonstrated by the present study, in which the quantum yields of singlet oxygen formation obtained by TRNIR emission and by the TEMPO/EPR method are compared for a set of well-known photosensitizers. The results reveal that the TEMPO/EPR method leads to significant overestimation of singlet oxygen yield when the singlet or triplet excited state of the photosensitizer is efficiently quenched by TEMP, acting as electron donor. In such case, generation of the TEMP(+) radical cation, followed by deprotonation and reaction with molecular oxygen, gives rise to an EPR-detectable TEMPO signal that is not associated with singlet oxygen production. This knowledge is essential for an appropriate and error-free application of the TEMPO/EPR method in chemical, biological, and medical studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Collisional-radiative model for neutral helium in plasma. Excitation cross section and singlet-triplet wavefunction mixing

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Motoshi [National Inst. for Fusion Science, Toki, Gifu (Japan); Fujimoto, Takashi

    1997-10-01

    We have revised the collisional-radiative (CR) model code of neutral helium (T. Fujimoto, JQSRT 21, 1979). The spin-orbit interaction gives rise to mixing of the wavefunctions of the singlet and triplet states. The degree of the mixing depends on the magnetic field, and at the field strength of the level-anticrossings complete mixing, or complete breakdown of the L-S coupling scheme, occurs. We have approximately incorporated this effect into the code. We have reviewed the excitation cross section data for electron impacts. For transitions starting from the ground state, the recent assessment by the group led by Dr. de Heer is judged satisfactory. For transitions from the metastable levels the assessment by the same group appears rather conservative; there remains a question about the cross section values near the threshold. For transitions between different-l levels within the same multiplicity and same n, a semi-empirical formula based on the Born cross section gives a good agreement with experiment. Proton impacts are also considered for these transitions. We compare the new cross sections with those used in the original version. These cross sections for transitions starting from the metastable levels are fitted by analytical formulas and the parameter values are given. We also give parameter values for the excitation rate coefficient for these transitions as well as for transitions starting from the ground state. With all the above revisions incorporated into the CR model code, we have calculated the energy loss rates and the line intensity ratios for the purpose of plasma diagnostics, where the effect of a magnetic field is noted. The calculated population distribution over excited levels are compared with experiment, and a tentative conclusion is drawn concerning the excitation cross section from the metastable level. (author)

  3. A fully integrated UHF RFID reader SoC for handheld applications in the 0.18 μm CMOS process

    International Nuclear Information System (INIS)

    Wang Jingchao; Zhang Chun; Wang Zhihua

    2010-01-01

    A low cost fully integrated single-chip UHF radio frequency identification (RFID) reader SoC for short distance handheld applications is presented. The SoC integrates all building blocks-including an RF transceiver, a PLL frequency synthesizer, a digital baseband and an MCU-in a 0.18 μm CMOS process. A high-linearity RX front-end is designed to handle the large self-interferer. A class-E power amplifier with high power efficiency is also integrated to fulfill the function of a UHF passive RFID reader. The measured maximum output power of the transmitter is 20.28 dBm and the measured receiver sensitivity is -60 dBm. The digital baseband including MCU core consumes 3.91 mW with a clock of 10 MHz and the analog part including power amplifier consumes 368.4 mW. The chip has a die area of 5.1 x 3.8 mm 2 including pads. (semiconductor integrated circuits)

  4. A fully integrated UHF RFID reader SoC for handheld applications in the 0.18 {mu}m CMOS process

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jingchao; Zhang Chun; Wang Zhihua, E-mail: wangjc@gmail.co [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    A low cost fully integrated single-chip UHF radio frequency identification (RFID) reader SoC for short distance handheld applications is presented. The SoC integrates all building blocks-including an RF transceiver, a PLL frequency synthesizer, a digital baseband and an MCU-in a 0.18 {mu}m CMOS process. A high-linearity RX front-end is designed to handle the large self-interferer. A class-E power amplifier with high power efficiency is also integrated to fulfill the function of a UHF passive RFID reader. The measured maximum output power of the transmitter is 20.28 dBm and the measured receiver sensitivity is -60 dBm. The digital baseband including MCU core consumes 3.91 mW with a clock of 10 MHz and the analog part including power amplifier consumes 368.4 mW. The chip has a die area of 5.1 x 3.8 mm{sup 2} including pads. (semiconductor integrated circuits)

  5. A Tower-based Prototype VHF/UHF Radar for Subsurface Sensing: System Description and Data Inversion Results

    Science.gov (United States)

    Moghaddam, Mahta; Pierce, Leland; Tabatabaeenejad, Alireza; Rodriguez, Ernesto

    2005-01-01

    Knowledge of subsurface characteristics such as permittivity variations and layering structure could provide a breakthrough in many terrestrial and planetary science disciplines. For Earth science, knowledge of subsurface and subcanopy soil moisture layers can enable the estimation of vertical flow in the soil column linking surface hydrologic processes with that in the subsurface. For planetary science, determining the existence of subsurface water and ice is regarded as one of the most critical information needs for the study of the origins of the solar system. The subsurface in general can be described as several near-parallel layers with rough interfaces. Each homogenous rough layer can be defined by its average thickness, permittivity, and rms interface roughness assuming a known surface spectral distribution. As the number and depth of layers increase, the number of measurements needed to invert for the layer unknowns also increases, and deeper penetration capability would be required. To nondestructively calculate the characteristics of the rough layers, a multifrequency polarimetric radar backscattering approach can be used. One such system is that we have developed for data prototyping of the Microwave Observatory of Subcanopy and Subsurface (MOSS) mission concept. A tower-mounted radar makes backscattering measurements at VHF, UHF, and L-band frequencies. The radar is a pulsed CW system, which uses the same wideband antenna to transmit and receive the signals at all three frequencies. To focus the beam at various incidence angles within the beamwidth of the antenna, the tower is moved vertically and measurements made at each position. The signals are coherently summed to achieve focusing and image formation in the subsurface. This requires an estimate of wave velocity profiles. To solve the inverse scattering problem for subsurface velocity profile simultaneously with radar focusing, we use an iterative technique based on a forward numerical solution of

  6. Singlet and triplet states of trions in Zinc Selenide-based quantum wells probed by magnetic fields to 50 Tesla

    International Nuclear Information System (INIS)

    Astakhov, G.V.; Yakovlev, D.R.; Crooker, Scott A.; Barrick, Todd; Dzyubenko, A.B.; Sander, Thomas; Kochereshko, V.P.; Ossau, W.; Faschinger, W.; Waag, A.

    2002-01-01

    Singlet and triplet states of positively (X + ) and negatively (X - ) charged excitons in ZnSe-based quantum wells have been studied by means of photoluminescence in pulsed magnetic fields up to 50 T. The binding energy of the X - singlet state shows a monotonic increase with magnetic field with a tendency to saturation, while that of the X + slightly decreases. The triplet X + and X - states, being unbound at zero magnetic field, noticeably increase their binding energy in high magnetic fields. The experimental evidence for the interaction between the triplet and singlet states of lTions leading to their anticrossing in magnetic fields has been found.

  7. Scheme for generating the singlet state of three atoms trapped in distant cavities coupled by optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong-Yang [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Wen, Jing-Ji [College of Foundation Science, Harbin University of Commerce, Harbin, Heilongjiang 150028 (China); Bai, Cheng-Hua; Hu, Shi; Cui, Wen-Xue [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Wang, Hong-Fu, E-mail: hfwang@ybu.edu.cn [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Zhu, Ai-Dong [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Zhang, Shou, E-mail: szhang@ybu.edu.cn [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China)

    2015-09-15

    An effective scheme is proposed to generate the singlet state with three four-level atoms trapped in three distant cavities connected with each other by three optical fibers, respectively. After a series of appropriate atom–cavity interactions, which can be arbitrarily controlled via the selective pairing of Raman transitions and corresponding optical switches, a three-atom singlet state can be successfully generated. The influence of atomic spontaneous decay, photon leakage of cavities and optical fibers on the fidelity of the state is numerically simulated showing that the three-atom singlet state can be generated with high fidelity by choosing the experimental parameters appropriately.

  8. Ground water

    International Nuclear Information System (INIS)

    Osmond, J.K.; Cowart, J.B.

    1982-01-01

    The subject is discussed under the headings: background and theory (introduction; fractionation in the hydrosphere; mobility factors; radioisotope evolution and aquifer classification; aquifer disequilibria and geochemical fronts); case studies (introduction; (a) conservative, and (b) non-conservative, behaviour); ground water dating applications (general requirements; radon and helium; radium isotopes; uranium isotopes). (U.K.)

  9. Ground water

    International Nuclear Information System (INIS)

    Osmond, J.K.; Cowart, J.B.

    1992-01-01

    The great variations in concentrations and activity ratios of 234 U/ 238 U in ground waters and the features causing elemental and isotopic mobility in the hydrosphere are discussed. Fractionation processes and their application to hydrology and other environmental problems such as earthquake, groundwater and aquifer dating are described. (UK)

  10. Colour-singlet exchange and tests of models of diffractive DIS

    International Nuclear Information System (INIS)

    Williams, J.C.

    2000-03-01

    Diffractive deep-inelastic scattering events observed at the HERA electron-proton collider are interpreted as an interaction involving a virtual photon scattering off a colour-singlet state within the proton. Models which attempt to describe the colour-singlet exchanged in diffractive interactions range from the purely phenomenological Donnachie-Landshoff form factor approach to the QCD-motivated gluon-exchange models and the scalar-pomeron model. It is important to find ways to test these models. In this thesis colour-singlet exchange models of diffractive DIS are compared with cross section and structure function data from the H1 detector. H1 select diffractive data by requiring there to be a large angle between the forward proton direction and any other significant detector activity. This pseudo-rapidity gap cut extracts colour-singlet exchange events from the standard DIS data sample. For a wide range of the parameter space covered by the HERA experiments, however, the pseudo-rapidity gap cuts restrict the final-state phase space available for diffractive scattering. One consequence is that pseudo-rapidity gap cuts can be used to select diffractive events in which the colour-singlet only couples to off-shell partons. To leading order in the strong coupling constant, the diffractive final state consists of a quark-antiquark pair. Higher-order events include diffractive production of quark-antiquark-gluon states. In the region where pseudo-rapidity gap cuts restrict the accessible phase space, the cuts reject low transverse momentum quark-antiquark diffractive events. Pseudo-rapidity gap data selection cuts also allow selection of an enhanced 3-jet data sample. The structure function and transverse momentum distribution data can be described by either a two-gluon model or by the Donnachie-Landshoff model, both models requiring a significant contribution from quark-antiquark-gluon diffractive final states to fit the full kinematic range of the diffractive data

  11. Exact ground and excited states of an antiferromagnetic quantum spin model

    International Nuclear Information System (INIS)

    Bose, I.

    1989-08-01

    A quasi-one-dimensional spin model which consists of a chain of octahedra of spins has been suggested for which a certain parameter regime of the Hamiltonian, the ground state, can be written down exactly. The ground state is highly degenerate and can be other than a singlet. Also, several excited states can be constructed exactly. The ground state is a local RVB state for which resonance is confined to rings of spins. Some exact numerical results for an octahedron of spins have also been reported. (author). 16 refs, 2 figs, 1 tab

  12. Transient photocurrent in molecular junctions: singlet switching on and triplet blocking.

    Science.gov (United States)

    Petrov, E G; Leonov, V O; Snitsarev, V

    2013-05-14

    The kinetic approach adapted to describe charge transmission in molecular junctions, is used for the analysis of the photocurrent under conditions of moderate light intensity of the photochromic molecule. In the framework of the HOMO-LUMO model for the single electron molecular states, the analytic expressions describing the temporary behavior of the transient and steady state sequential (hopping) as well as direct (tunnel) current components have been derived. The conditions at which the current components achieve their maximal values are indicated. It is shown that if the rates of charge transmission in the unbiased molecular diode are much lower than the intramolecular singlet-singlet excitation/de-excitation rate, and the threefold degenerated triplet excited state of the molecule behaves like a trap blocking the charge transmission, a possibility of a large peak-like transient switch-on photocurrent arises.

  13. Singlet Oxygen and Free Radical Reactions of Retinoids and Carotenoids—A Review

    Science.gov (United States)

    Truscott, T. George

    2018-01-01

    We report on studies of reactions of singlet oxygen with carotenoids and retinoids and a range of free radical studies on carotenoids and retinoids with emphasis on recent work, dietary carotenoids and the role of oxygen in biological processes. Many previous reviews are cited and updated together with new data not previously reviewed. The review does not deal with computational studies but the emphasis is on laboratory-based results. We contrast the ease of study of both singlet oxygen and polyene radical cations compared to neutral radicals. Of particular interest is the switch from anti- to pro-oxidant behavior of a carotenoid with change of oxygen concentration: results for lycopene in a cellular model system show total protection of the human cells studied at zero oxygen concentration, but zero protection at 100% oxygen concentration. PMID:29301252

  14. Single Molecule Atomic Force Microscopy Studies of Photosensitized Singlet Oxygen Behavior on a DNA Origami Template

    DEFF Research Database (Denmark)

    Helmig, Sarah Wendelboe; Rotaru, Alexandru; Arian, Dumitru

    2010-01-01

    DNA origami, the folding of a long single-stranded DNA sequence (scaffold strand) by hundreds of short synthetic oligonucleotides (staple strands) into parallel aligned helices, is a highly efficient method to form advanced self-assembled DNA-architectures. Since molecules and various materials can...... be conjugated to each of the short staple strands, the origami method offers a unique possibility of arranging molecules and materials in well-defined positions on a structured surface. Here we combine the action of light with AFM and DNA nanostructures to study the production of singlet oxygen from a single...... photosensitizer molecule conjugated to a selected DNA origami staple strand on an origami structure. We demonstrate a distance-dependent oxidation of organic moieties incorporated in specific positions on DNA origami by singlet oxygen produced from a single photosensitizer located at the center of each origami....

  15. Thermal right-handed sneutrino dark matter with a singlet Higgs

    International Nuclear Information System (INIS)

    Cerdeno, David G.

    2009-01-01

    We report on a model in which the right-handed sneutrino is a viable WIMP dark matter candidate. It consists on an extension of the MSSM with a singlet S with coupling SH 1 H 2 in order to solve the μ problem as in the NMSSM, and right-handed neutrinos N with couplings SNN in order to generate dynamically electroweak-scale Majorana masses. Through the direct coupling to the singlet, the sneutrino can not only be thermally produced in the right amount but also have a large enough scattering cross section with nuclei to detect it directly in near future, in contrast with most of other right-handed sneutrino dark matter models.

  16. Prediction of Tetraoxygen Reaction Mechanism with Sulfur Atom on the Singlet Potential Energy Surface

    Directory of Open Access Journals (Sweden)

    Ashraf Khademzadeh

    2014-01-01

    Full Text Available The mechanism of S+O4 (D2h reaction has been investigated at the B3LYP/6-311+G(3df and CCSD levels on the singlet potential energy surface. One stable complex has been found for the S+O4 (D2h reaction, IN1, on the singlet potential energy surface. For the title reaction, we obtained four kinds of products at the B3LYP level, which have enough thermodynamic stability. The results reveal that the product P3 is spontaneous and exothermic with −188.042 and −179.147 kcal/mol in Gibbs free energy and enthalpy of reaction, respectively. Because P1 adduct is produced after passing two low energy level transition states, kinetically, it is the most favorable adduct in the 1S+1O4 (D2h atmospheric reactions.

  17. Singlet-triplet splittings from the virial theorem and single-particle excitation energies

    Science.gov (United States)

    Becke, Axel D.

    2018-01-01

    The zeroth-order (uncorrelated) singlet-triplet energy difference in single-particle excited configurations is 2Kif, where Kif is the Coulomb self-energy of the product of the transition orbitals. Here we present a non-empirical, virial-theorem argument that the correlated singlet-triplet energy difference should be half of this, namely, Kif. This incredibly simple result gives vertical HOMO-LUMO excitation energies in small-molecule benchmarks as good as the popular TD-B3LYP time-dependent approach to excited states. For linear acenes and nonlinear polycyclic aromatic hydrocarbons, the performance is significantly better than TD-B3LYP. In addition to the virial theorem, the derivation borrows intuitive pair-density concepts from density-functional theory.

  18. Singlet Fission and Excimer Formation in Disordered Solids of Alkyl-Substituted 1,3-Diphenylisobenzofurans.

    Science.gov (United States)

    Dron, Paul I; Michl, Josef; Johnson, Justin C

    2017-11-16

    We describe the preparation and excited state dynamics of three alkyl derivatives of 1,3-diphenylisobenzofuran (1) in both solutions and thin films. The substitutions are intended to disrupt the slip-stacked packing observed in crystals of 1 while maintaining the favorable energies of singlet and triplet for singlet fission (SF). All substitutions result in films that are largely amorphous as judged by the absence of strong X-ray diffraction peaks. The films of 1 carrying a methyl in the para position of one phenyl ring undergo SF relatively efficiently (≥75% triplet yield, Φ T ) but more slowly than thin films of 1. When the methyl is replaced with a t-butyl, kinetic competition in the excited state favors excimer formation rather than SF (Φ T = 55%). When t-Bu groups are placed in both meta positions of the phenyl substituent, SF is slowed further and Φ T = 35%.

  19. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    Science.gov (United States)

    Azyazov, V. N.; Torbin, A. P.; Pershin, A. A.; Mikheyev, P. A.; Heaven, M. C.

    2015-12-01

    The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O3(υ) formed in O + O2 recombination is thought to be a significant agent in the deactivation of singlet oxygen O2(a1Δ), oxygen atom removal and ozone formation. It is shown that the process O3(υ ⩾ 2) + O2(a1Δ) → 2O2 + O is the main O2(a1Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O2(a1Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  20. Mechanism of singlet oxygen deactivation in an electric discharge oxygen – iodine laser

    Energy Technology Data Exchange (ETDEWEB)

    Azyazov, V N; Mikheyev, P A; Torbin, A P [Samara Branch of the P.N. Lebedev Physical Institute, Russian Academy of Sciences, Samara (Russian Federation); Pershin, A A [S.P. Korolev Samara State Aerospace University, Samara (Russian Federation); Heaven, M C [Emory University, Atlanta, GA, 30322 (United States)

    2014-12-31

    We have determined the influence of the reaction of molecular singlet oxygen with a vibrationally excited ozone molecule O{sub 2}(a {sup 1}Δ) + O{sub 3}(ν) → 2O{sub 2} + O on the removal rate of O{sub 2}(a {sup 1}Δ) in an electric-discharge-driven oxygen – iodine laser. This reaction has been shown to be a major channel of O{sub 2}(a {sup 1}Δ) loss at the output of an electric-discharge singlet oxygen generator. In addition, it can also contribute significantly to the loss of O{sub 2}(a {sup 1}Δ) in the discharge region of the generator. (lasers)

  1. Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector

    International Nuclear Information System (INIS)

    Petraki, Kalliopi; Kusenko, Alexander

    2008-01-01

    Sterile neutrino with mass of several keV can be the cosmological dark matter, can explain the observed velocities of pulsars, and can play an important role in the formation of the first stars. We describe the production of sterile neutrinos in a model with an extended Higgs sector, in which the Majorana mass term is generated by the vacuum expectation value of a gauge-singlet Higgs boson. In this model the relic abundance of sterile neutrinos does not necessarily depend on their mixing angles, the free-streaming length can be much smaller than in the case of warm dark matter produced by neutrino oscillations, and, therefore, some of the previously quoted bounds do not apply. The presence of the gauge singlet in the Higgs sector has important implications for the electroweak phase transition, baryogenesis, and the upcoming experiments at the Large Hadron Collider and a Linear Collider.

  2. Does interchain stacking morphology contribute to the singlet-triplet interconversion dynamics in polymer heterojunctions?

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, Eric R. [Department of Chemistry and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States)], E-mail: bittner@uh.edu; Burghardt, Irene [Departement de Chimie, Ecole Normale Superieure, 24 rue Lhomond, F-75231 Paris cedex 05 (France); Friend, Richard H. [Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE (United Kingdom)

    2009-02-23

    Time-dependent density functional theory (TD-DFT) is used to examine the effect of stacking in a model semiconducting polymer hetrojunction system consisting of two co-facially stacked oligomers. We find that the excited electronic states are highly sensitive to the alignment of the monomer units of the two chains. In the system we examined, the exchange energy is nearly identical to both the and band off-set at the heterojunction and to the exciton binding energy. Our results indicate that the triplet excitonic states are nearly degenerate with the singlet exciplex states opening the possibility for the interconversion of singlet and triplet electronic states at the heterojunction interface via spin-orbit coupling localized on the heteroatoms. Using Russell-Saunders theory, we estimate this interconversion rate to be approximately 700-800 ps, roughly a 5-10-fold increase compared to isolated organic polymer chains.

  3. Acceleration of Singlet Fission in an Aza-Derivative of TIPS-Pentacene.

    Science.gov (United States)

    Herz, Julia; Buckup, Tiago; Paulus, Fabian; Engelhart, Jens; Bunz, Uwe H F; Motzkus, Marcus

    2014-07-17

    The influence of the carbon to nitrogen substitution on the photoinduced dynamics of TIPS-pentacene was investigated by ultrafast transient absorption measurements on spin-coated thin films in the visible and in the near-infrared spectral region. A global target analysis was performed to provide a detailed picture of the excited-state dynamics. We found that the chemical modification has a high impact on the triplet formation and leads to shorter dynamics; hence it speeds up the singlet fission process. A faster relaxation from the singlet into the triplet manifold implies a higher efficiency because other relaxation channels are avoided. The air-stable aza-derivatives have the potential to exceed the energy conversion efficiency of TIPS-pentacene.

  4. Non-self-sustained electric discharge in oxygen gas mixtures: singlet delta oxygen production

    CERN Document Server

    Ionin, A A; Kotkov, A A; Kochetov, I V; Napartovich, A P; Seleznev, L V; Sinitsyn, D V; Hager, G D

    2003-01-01

    The possibility of obtaining a high specific input energy in an electron-beam sustained discharge ignited in oxygen gas mixtures O sub 2 : Ar : CO (or H sub 2) at the total gas pressures of 10-100 Torr was experimentally demonstrated. The specific input energy per molecular component exceeded approx 6 kJ l sup - sup 1 atm sup - sup 1 (150 kJ mol sup - sup 1) as a small amount of carbon monoxide was added into a gas mixture of oxygen and argon. It was theoretically demonstrated that one might expect to obtain a singlet delta oxygen yield of 25% exceeding its threshold value needed for an oxygen-iodine laser operation at room temperature, when maintaining a non-self-sustained discharge in oxygen gas mixtures with molecular additives CO, H sub 2 or D sub 2. The efficiency of singlet delta oxygen production can be as high as 40%.

  5. Thermal Performance Analyses of Multiborehole Ground Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Wanjing Luo

    2017-01-01

    Full Text Available Geothermal energy known as a clean, renewable energy resource is widely available and reliable. Ground heat exchangers (GHEs can assist the development of geothermal energy by reducing the capital cost and greenhouse gas emission. In this paper, a novel semianalytical method was developed to study the thermal performance of multiborehole ground heat exchangers (GHEs with arbitrary configurations. By assuming a uniform inlet fluid temperature (UIFT, instead of uniform heat flux (UHF, the effects of thermal interference and the thermal performance difference between different boreholes can be examined. Simulation results indicate that the monthly average outlet fluid temperatures of GHEs will increase gradually while the annual cooling load of the GHEs is greater than the annual heating load. Besides, two mechanisms, the thermal dissipation and the heat storage effect, will determine the heat transfer underground, which can be further divided into four stages. Moreover, some boreholes will be malfunctioned; that is, boreholes can absorb heat from ground when the GHEs are under the cooling mode. However, as indicated by further investigations, this malfunction can be avoided by increasing borehole spacing.

  6. PHOTOGENERATION OF SINGLET OXYGEN AND FREE RADICALS IN DISSOLVED ORGANIC MATTER ISOLATED FROM THE MISSISSIPPI AND ATCHAFALAYA RIVER PLUMES

    Science.gov (United States)

    The photoreactivity to UV light of ultrafiltered dissolved organic matter (DOM) collected during cruises along salinity transects in the Mississippi and Atchafalaya River plumes was examined by measuring photogenerated free radicals and singlet molecular oxygen (1O2) photosensiti...

  7. Simultaneous monitoring of singlet and triplet exciton variations in solid organic semiconductors driven by an external static magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Baofu, E-mail: b.ding@ecu.edu.au; Alameh, Kamal, E-mail: k.alameh@ecu.edu.au [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 (Australia)

    2014-07-07

    The research field of organic spintronics has remarkably and rapidly become a promising research area for delivering a range of high-performance devices, such as magnetic-field sensors, spin valves, and magnetically modulated organic light emitting devices (OLEDs). Plenty of microscopic physical and chemical models based on exciton or charge interactions have been proposed to explain organic magneto-optoelectronic phenomena. However, the simultaneous observation of singlet- and triplet-exciton variations in an external magnetic field is still unfeasible, preventing a thorough theoretical description of the spin dynamics in organic semiconductors. Here, we show that we can simultaneously observe variations of singlet excitons and triplet excitons in an external magnetic field, by designing an OLED structure employing a singlet-exciton filtering and detection layer in conjunction with a separate triplet-exciton detection layer. This OLED structure enables the observation of a Lorentzian and a non-Lorentzian line-shape magnetoresponse for singlet excitons and triplet excitons, respectively.

  8. Simultaneous monitoring of singlet and triplet exciton variations in solid organic semiconductors driven by an external static magnetic field

    International Nuclear Information System (INIS)

    Ding, Baofu; Alameh, Kamal

    2014-01-01

    The research field of organic spintronics has remarkably and rapidly become a promising research area for delivering a range of high-performance devices, such as magnetic-field sensors, spin valves, and magnetically modulated organic light emitting devices (OLEDs). Plenty of microscopic physical and chemical models based on exciton or charge interactions have been proposed to explain organic magneto-optoelectronic phenomena. However, the simultaneous observation of singlet- and triplet-exciton variations in an external magnetic field is still unfeasible, preventing a thorough theoretical description of the spin dynamics in organic semiconductors. Here, we show that we can simultaneously observe variations of singlet excitons and triplet excitons in an external magnetic field, by designing an OLED structure employing a singlet-exciton filtering and detection layer in conjunction with a separate triplet-exciton detection layer. This OLED structure enables the observation of a Lorentzian and a non-Lorentzian line-shape magnetoresponse for singlet excitons and triplet excitons, respectively.

  9. Adler function, sum rules and Crewther relation of order O(αs4): The singlet case

    International Nuclear Information System (INIS)

    Baikov, P.A.; Chetyrkin, K.G.; Kühn, J.H.; Rittinger, J.

    2012-01-01

    The analytic result for the singlet part of the Adler function of the vector current in a general gauge theory is presented in five-loop approximation. Comparing this result with the corresponding singlet part of the Gross-Llewellyn Smith sum rule (Baikov et al., 2010 ), we successfully demonstrate the validity of the generalized Crewther relation for the singlet part. This provides a non-trivial test of both our calculations and the generalized Crewther relation. Combining the result with the already available non-singlet part of the Adler function (Baikov et al., 2008 , Baikov et al., 2010 ) we arrive at the complete O(α s 4 ) expression for the Adler function and, as a direct consequence, at the complete O(α s 4 ) correction to the e + e - annihilation into hadrons in a general gauge theory.

  10. Effects of molecular packing in organic crystals on singlet fission with ab initio many body perturbation theory

    Science.gov (United States)

    Haber, Jonah; Refaely-Abramson, Sivan; da Jornada, Felipe H.; Louie, Steven G.; Neaton, Jeffrey B.

    Multi-exciton generation processes, in which multiple charge carriers are generated from a single photon, are mechanisms of significant interest for achieving efficiencies beyond the Shockley-Queisser limit of conventional p-n junction solar cells. One well-studied multiexciton process is singlet fission, whereby a singlet decays into two spin-correlated triplet excitons. Here, we use a newly developed computational approach to calculate singlet-fission coupling terms and rates with an ab initio Green's function formalism based on many-body perturbation theory (MBPT) within the GW approximation and the Bethe-Salpeter equation approach. We compare results for crystalline pentacene and TIPS-pentacene and explore the effect of molecular packing on the singlet fission mechanism. This work is supported by the Department of Energy.

  11. Ground Pollution Science

    International Nuclear Information System (INIS)

    Oh, Jong Min; Bae, Jae Geun

    1997-08-01

    This book deals with ground pollution science and soil science, classification of soil and fundamentals, ground pollution and human, ground pollution and organic matter, ground pollution and city environment, environmental problems of the earth and ground pollution, soil pollution and development of geological features of the ground, ground pollution and landfill of waste, case of measurement of ground pollution.

  12. Impact of photosensitized oxidation and singlet oxygen on degradation of stabilized polymers

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, Jan; Nešpůrek, Stanislav; Pilař, Jan

    2008-01-01

    Roč. 93, č. 9 (2008), s. 1681-1688 ISSN 0141-3910 R&D Projects: GA AV ČR IAA100100622; GA AV ČR KAN400720701; GA AV ČR IAA400500804 Institutional research plan: CEZ:AV0Z40500505 Keywords : photosensitized oxidation * singlet molecular oxygen * oxygenation Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.320, year: 2008

  13. Peccei-Quinn invariant singlet extended SUSY with anomalous U(1) gauge symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Im, Sang Hui; Seo, Min-Seok [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS),Daejeon 305-811 (Korea, Republic of)

    2015-05-13

    Recent discovery of the SM-like Higgs boson with m{sub h}≃125 GeV motivates an extension of the minimal supersymmetric standard model (MSSM), which involves a singlet Higgs superfield with a sizable Yukawa coupling to the doublet Higgs superfields. We examine such singlet-extended SUSY models with a Peccei-Quinn (PQ) symmetry that originates from an anomalous U(1){sub A} gauge symmetry. We focus on the specific scheme that the PQ symmetry is spontaneously broken at an intermediate scale v{sub PQ}∼√(m{sub SUSY}M{sub Pl}) by an interplay between Planck scale suppressed operators and tachyonic soft scalar mass m{sub SUSY}∼√(D{sub A}) induced dominantly by the U(1){sub A}D-term D{sub A}. This scheme also results in spontaneous SUSY breaking in the PQ sector, generating the gaugino masses M{sub 1/2}∼√(D{sub A}) when it is transmitted to the MSSM sector by the conventional gauge mediation mechanism. As a result, the MSSM soft parameters in this scheme are induced mostly by the U(1){sub A}D-term and the gauge mediated SUSY breaking from the PQ sector, so that the sparticle masses can be near the present experimental bounds without causing the SUSY flavor problem. The scheme is severely constrained by the condition that a phenomenologically viable form of the low energy operators of the singlet and doublet Higgs superfields is generated by the PQ breaking sector in a way similar to the Kim-Nilles solution of the μ problem, and the resulting Higgs mass parameters allow the electroweak symmetry breaking with small tan β. We find two minimal models with two singlet Higgs superfields, satisfying this condition with a relatively simple form of the PQ breaking sector, and briefly discuss some phenomenological aspects of the model.

  14. Singlet versus Triplet Excited State Mediated Photoinduced Dehalogenation Reactions of Itraconazole in Acetonitrile and Aqueous Solutions.

    Science.gov (United States)

    Zhu, Ruixue; Li, Ming-de; Du, Lili; Phillips, David Lee

    2017-04-06

    Photoinduced dehalogenation of the antifungal drug itraconazole (ITR) in acetonitrile (ACN) and ACN/water mixed solutions was investigated using femtosecond and nanosecond time-resolved transient absorption (fs-TA and ns-TA, respectively) and nanosecond time-resolved resonance Raman spectroscopy (ns-TR 3 ) experiments. An excited resonance energy transfer is found to take place from the 4-phenyl-4,5-dihydro-3H-1,2,4-triazol-3-one part of the molecule to the 1,3-dichlorobenzene part of the molecule when ITR is excited by ultraviolet light. This photoexcitation is followed by a fast carbon-halogen bond cleavage that leads to the generation of radical intermediates via either triplet and/or singlet excited states. It is found that the singlet excited state-mediated carbon-halogen cleavage is the predominant dehalogenation process in ACN solvent, whereas a triplet state-mediated carbon-halogen cleavage prefers to occur in the ACN/water mixed solutions. The singlet-to-triplet energy gap is decreased in the ACN/water mixed solvents and this helps facilitate an intersystem crossing process, and thus, the carbon-halogen bond cleavage happens mostly through an excited triplet state in the aqueous solutions examined. The ns-TA and ns-TR 3 results also provide some evidence that radical intermediates are generated through a homolytic carbon-halogen bond cleavage via predominantly the singlet excited state pathway in ACN but via mainly the triplet state pathway in the aqueous solutions. In strong acidic solutions, protonation at the oxygen and/or nitrogen atoms of the 1,2,4-triazole-3-one group appears to hinder the dehalogenation reactions. This may offer the possibility that the phototoxicity of ITR due to the generation of aryl or halogen radicals can be reduced by protonation of certain moieties in suitably designed ITR halogen-containing derivatives.

  15. Covalent Dimers of 1,3-Diphenylisobenzofuran for Singlet Fission: Synthesis and Electrochemistry

    Czech Academy of Sciences Publication Activity Database

    Akdag, Akin; Wahab, Abdul; Beran, Pavel; Rulíšek, Lubomír; Dron, P. I.; Ludvík, Jiří; Michl, Josef

    2015-01-01

    Roč. 80, č. 1 (2015), s. 80-89 ISSN 0022-3263 R&D Projects: GA ČR GA13-21704S; GA ČR(CZ) GA14-31419S Institutional support: RVO:61388963 ; RVO:61388955 Keywords : singlet fission * reduction potentials * electrochemistry * theoretical calculations Subject RIV: CC - Organic Chemistry; CG - Electrochemistry (UFCH-W) Impact factor: 4.785, year: 2015

  16. Singlet oxygen production by combining erythrosine and halogen light for photodynamic inactivation of Streptococcus mutans.

    Science.gov (United States)

    Fracalossi, Camila; Nagata, Juliana Yuri; Pellosi, Diogo Silva; Terada, Raquel Sano Suga; Hioka, Noboru; Baesso, Mauro Luciano; Sato, Francielle; Rosalen, Pedro Luiz; Caetano, Wilker; Fujimaki, Mitsue

    2016-09-01

    Photodynamic inactivation of microorganisms is based on a photosensitizing substance which, in the presence of light and molecular oxygen, produces singlet oxygen, a toxic agent to microorganisms and tumor cells. This study aimed to evaluate singlet oxygen quantum yield of erythrosine solutions illuminated with a halogen light source in comparison to a LED array (control), and the photodynamic effect of erythrosine dye in association with the halogen light source on Streptococcus mutans. Singlet oxygen quantum yield of erythrosine solutions was quantified using uric acid as a chemical-probe in an aqueous solution. The in vitro effect of the photodynamic antimicrobial activity of erythrosine in association with the halogen photopolimerizing light on Streptococcus mutans (UA 159) was assessed during one minute. Bacterial cultures treated with erythrosine alone served as negative control. Singlet oxygen with 24% and 2.8% degradation of uric acid in one minute and a quantum yield of 0.59 and 0.63 was obtained for the erythrosine samples illuminated with the halogen light and the LED array, respectively. The bacterial cultures with erythrosine illuminated with the halogen light presented a decreased number of CFU mL(-1) in comparison with the negative control, with minimal inhibitory concentrations between 0.312 and 0.156mgmL(-1). The photodynamic response of erythrosine induced by the halogen light was capable of killing S. mutans. Clinical trials should be conducted to better ascertain the use of erythrosine in association with halogen light source for the treatment of dental caries. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Probing the singlet character of the two-hole states in cuprate superconductors

    NARCIS (Netherlands)

    Ghiringhelli, G; Brookes, NB; Tjeng, LH; Mizokawa, T; Tjernberg, O; Menovsky, AA; Steeneken, P.G.

    Using spin-resolved resonant photoemission we have probed the singlet vs. triplet character of the two-hole state in the layered cuprates Bi2Sr2CaCu2O8+delta La2-xSrxCuO4 and Sr2CuO2Cl2. The combination of the photon circular polarization with the photoelectron spin detection gives access to the

  18. Centrifugal spray generator of singlet oxygen for a chemical oxygen-iodine laser

    Czech Academy of Sciences Publication Activity Database

    Špalek, Otomar; Hrubý, Jan; Čenský, Miroslav; Jirásek, Vít; Kodymová, Jarmila

    2010-01-01

    Roč. 100, č. 4 (2010), s. 793-802 ISSN 0946-2171 Grant - others:European Office of Aerospace R&D(US) FA8655-09-1-3091 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20760514 Keywords : centrifugal generator of singlet oxygen * chemical oxygen-iodine laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.239, year: 2010

  19. Singlet-Fission-Sensitized Hybrid Thin-Films For Next-Generation Photovoltaics

    Science.gov (United States)

    2016-04-12

    SECURITY CLASSIFICATION OF: This grant enabled the acquisition of equipment for the fabrication of organic and nanocrystal based photovoltaic (PV... Photovoltaics . The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 singlet fission, nanocrystal, triplet, hybrid, photovoltaic REPORT

  20. The next-next-to-leading QCD approximation for non-singlet moments of deep inelastic structure functions

    Energy Technology Data Exchange (ETDEWEB)

    Larin, S.A.; Ritbergen, T. van; Vermaseren, J.A.M.

    1993-12-01

    We obtain the analytic next-next-to-leading perturbative QCD corrections in the leading twist approximation for the moments N = 2, 4, 6, 8 of the non-singlet deep inelastic structure functions F{sub 2} and F{sub L}. We calculate the three-loop anomalous dimensions of the corresponding non-singlet operators and the three-loop coefficient functions of the structure function F{sub L}. (orig.).

  1. The next-next-to-leading QCD approximation for non-singlet moments of deep inelastic structure functions

    International Nuclear Information System (INIS)

    Larin, S.A.; Ritbergen, T. van; Vermaseren, J.A.M.

    1993-12-01

    We obtain the analytic next-next-to-leading perturbative QCD corrections in the leading twist approximation for the moments N = 2, 4, 6, 8 of the non-singlet deep inelastic structure functions F 2 and F L . We calculate the three-loop anomalous dimensions of the corresponding non-singlet operators and the three-loop coefficient functions of the structure function F L . (orig.)

  2. Highly efficient oxidation of amines to imines by singlet oxygen and its application in Ugi-type reactions.

    Science.gov (United States)

    Jiang, Gaoxi; Chen, Jian; Huang, Jie-Sheng; Che, Chi-Ming

    2009-10-15

    A variety of secondary benzylic amines were oxidized to imines in 90% to >99% yields by singlet oxygen generated from oxygen and a porphyrin photosensitizer. On the basis of these reactions, a protocol was developed for oxidative Ugi-type reactions with singlet oxygen as the oxidant. This protocol has been used to synthesize C1- and N-functionalized benzylic amines in up to 96% yields.

  3. Determination of disconnected diagrams for flavor singlet matrix elements in full QCD

    International Nuclear Information System (INIS)

    Viehoff, J.

    1999-11-01

    Flavor-singlet phenomena play a fundamental role in the low energy regime of QCD. For observables which contain flavor-singlet currents, the impact of quantum fluctuations is reflected in terms of disconnected diagrams. In lattice calculations disconnected diagrams are directly accessible with stochastic estimator techniques. We review and improve the stochastic estimator techniques with complex Z2 noise and achieve clear evidence for contributions from disconnected diagrams in the pion-nucleon σ-term, σ πn , and the flavor-singlet axial coupling of the proton, G A 1 . The analysis is based on the SESAM gauge-field configurations with 2 flavors of dynamical Wilson fermions. Furthermore a set of configurations from the T χ L collaboration is analyzed as well. The lattice size is 16 3 x 32, respectively 24 3 x 40 for the T χ L configurations, with lattice spacing a ρ -1 ≅2.3 GeV and m π /m ρ =0.84-0.69. We find disconnected contributions for σ πN in the same order of magnitude as from the connected insertion and obtain σ πN =18(5) MeV. Furthermore we have determined the topological charge Q L on the gauge-field configurations with cooling techniques and with the Atiyah-Singer index-theorem in combination with SET. (orig.)

  4. Superconductivity switch from spin-singlet to -triplet pairing in a topological superconducting junction

    Science.gov (United States)

    Tao, Ze; Chen, F. J.; Zhou, L. Y.; Li, Bin; Tao, Y. C.; Wang, J.

    2018-06-01

    The interedge coupling is the cardinal characteristic of the narrow quantum spin Hall (QSH) insulator, and thus could bring about exotic transport phenomena. Herein, we present a theoretical investigation of the spin-resolved Andreev reflection (AR) in a QSH insulator strip touching on two neighbouring ferromagnetic insulators and one s-wave superconductor. It is demonstrated that, due to the interplay of the interedge coupling and ferromagnetic configuration, there could be not only usual local ARs leading to the spin-singlet pairing with the incident electron and Andreev-reflected hole from different spin subbands, but also novel local ARs giving rise to the spin-triplet pairing from the same spin subband. However, only the latter exists in the absence of the interedge coupling, and therefore the two pairings in turn testify the helical spin texture of the edge states. By proper tuning of the band structures of the ferromagnetic layers, under the resonance bias voltage, the usual and novel local ARs of can be all exhibited, resulting in fully spin-polarized pure spin-singlet superconductivity and pure spin-triplet superconductivity, respectively, which suggests a superconductivity switch from spin-singlet to -triplet pairing by electrical control. The results can be experimentally confirmed by the tunneling conductance and the noise power.

  5. Probability of color singlet chain states in e+e- annihilation

    International Nuclear Information System (INIS)

    Wang, Qun; Gustafson, Gosta; Jin, Yi; Xie, Qu-bing

    2001-01-01

    We use the method of the color effective Hamiltonian to study the structure of color singlet chain states in N c =3 and in the large N c limit. In order to obtain their total fraction when N c is finite, we illustrate how to orthogonalize these nonorthogonal states. We give numerical results for the fraction of orthogonalized states in e + e - ->q bar qgg. With the help of a diagram technique, we derive their fraction up to O(1/N c 2 ) for the general multigluon process. For large N c the singlet chain states correspond to well-defined color topologies. Therefore we may expect that the fraction of non-color-singlet-chain states is an estimate of the fraction of events where color reconnection is possible. In the case of soft gluon bremsstrahlung, we give an explicit form for the color effective Hamiltonian which leads to the dipole cascade formulation for parton showering in leading order in N c . The next-to-leading order corrections are also given for e + e - ->qbar qg 1 g 2 and e + e - ->qbar qg 1 g 2 g 3

  6. Singlet oxygen generator for a solar powered chemically pumped iodine laser

    Science.gov (United States)

    Busch, G. E.

    1984-01-01

    The potential of solid phase endoperoxides as a means to produce single-delta oxygen in the gas phase in concentrations useful to chemical oxygen-iodine lasers was investigated. The 1,4 - endoperoxide of ethyl 3- (4-methyl - 1-naphthyl) propanoate was deposited over an indium-oxide layer on a glass plate. Single-delta oxygen was released from the endoperoxide upon heating the organic film by means of an electrical discharge through the conductive indium oxide coating. The evolution of singlet-delta oxygen was determined by measuring the dimol emission signal at 634 nm. Comparison of the measured signal with an analytic model leads to two main conclusions: virtually all the oxygen being evolved is in the singlet-delta state and in the gas phase, and there is no significant quenching other than energy pooling on the time scale of the experiment (approximately 10 msec). The use of solid phase endoperoxide as a singlet-delta oxygen generator for an oxygen-iodine laser appears promising.

  7. Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments.

    Science.gov (United States)

    Landry, Markita P; McCall, Patrick M; Qi, Zhi; Chemla, Yann R

    2009-10-21

    Optical traps or "tweezers" use high-power, near-infrared laser beams to manipulate and apply forces to biological systems, ranging from individual molecules to cells. Although previous studies have established that optical tweezers induce photodamage in live cells, the effects of trap irradiation have yet to be examined in vitro, at the single-molecule level. In this study, we investigate trap-induced damage in a simple system consisting of DNA molecules tethered between optically trapped polystyrene microspheres. We show that exposure to the trapping light affects the lifetime of the tethers, the efficiency with which they can be formed, and their structure. Moreover, we establish that these irreversible effects are caused by oxidative damage from singlet oxygen. This reactive state of molecular oxygen is generated locally by the optical traps in the presence of a sensitizer, which we identify as the trapped polystyrene microspheres. Trap-induced oxidative damage can be reduced greatly by working under anaerobic conditions, using additives that quench singlet oxygen, or trapping microspheres lacking the sensitizers necessary for singlet state photoexcitation. Our findings are relevant to a broad range of trap-based single-molecule experiments-the most common biological application of optical tweezers-and may guide the development of more robust experimental protocols.

  8. Triplet energy transfer and triplet exciton recycling in singlet fission sensitized organic heterojunctions

    Science.gov (United States)

    Hamid, Tasnuva; Yambem, Soniya D.; Crawford, Ross; Roberts, Jonathan; Pandey, Ajay K.

    2017-08-01

    Singlet exciton fission is a process where an excited singlet state splits into two triplets, thus leading to generation of multiple excitons per absorbed photon in organic semiconductors. Herein, we report a detailed exciton management approach for multiexciton harvesting over a broadband region of the solar spectrum in singlet fission sensitized organic photodiodes. Through systematic studies on the model cascade of pentacene/rubrene/C60, we found that efficient photocurrent generation from pentacene can still occur despite the presence of a >10nm thick interlayer of rubrene in between the pentacene/C60 heterojunction. Our results show that thin rubrene interlayers of thickness pentacene despite having a reasonably thick rubrene interlayer, that too with higher triplet energy (T1=1.12 eV) than pentacene (T1= 0.86 eV), makes its operation a rather interesting result. We discuss the role of rubrene interlayer film discontinuity, triplet exciton reflection from rubrene interlayer and triplet energy transfer from rubrene to pentacene layer followed by diffusion of triplet excitons through rubrene as plausible mechanisms that would enable triplet excitons from pentacene to generate significant photocurrent in a multilayer organic heterojunction.

  9. Pentacene Dimers as a Critical Tool for the Investigation of Intramolecular Singlet Fission.

    Science.gov (United States)

    Hetzer, Constantin; Guldi, Dirk M; Tykwinski, Rik R

    2018-01-11

    Singlet fission (SF) involves the spontaneous splitting of a photoexcited singlet state into a pair of triplets, and it holds great promise toward the realization of more efficient solar cells. Although the process of SF has been known since the 1960s, debate regarding the underlying mechanism continues to this day, especially for molecular materials. A number of different chromophores have been synthesized and studied in order to better understand the process of SF. These previous reports have established that pentacene and its derivatives are especially well-suited for the study of SF, since the energetic requirement E(S 1 )≥2E(T 1 ) is fulfilled rendering the process exothermic and unidirectional. Dimeric pentacene derivatives, in which individual pentacene chromophores are tethered by a "spacer", have emerged as the system of choice toward exploring the mechanism of intramolecular singlet fission (iSF). The dimeric structure, and in particular the spacer, allows for controlling and tuning the distance, geometric relationship, and electronic coupling between the two pentacene moieties. This Minireview describes recent advances using pentacene dimers for the investigation of iSF. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Baryogenesis in the two doublet and inert singlet extension of the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Alanne, Tommi [CP" 3-Origins, University of Southern Denmark,Campusvej 55, DK-5230 Odense M (Denmark); Kainulainen, Kimmo [Department of Physics, University of Jyväskylä,P.O. Box 35 (YFL), FI-40014 Jyväskylä (Finland); Helsinki Institute of Physics, University of Helsinki,P.O. Box 64, FI-00014 Helsinki (Finland); Tuominen, Kimmo [Department of Physics, University of Helsinki,P.O. Box 64, FI-00014 Helsinki (Finland); Helsinki Institute of Physics, University of Helsinki,P.O. Box 64, FI-00014 Helsinki (Finland); Vaskonen, Ville [Department of Physics, University of Jyväskylä,P.O. Box 35 (YFL), FI-40014 Jyväskylä (Finland); Helsinki Institute of Physics, University of Helsinki,P.O. Box 64, FI-00014 Helsinki (Finland)

    2016-08-25

    We investigate an extension of the Standard Model containing two Higgs doublets and a singlet scalar field (2HDSM). We show that the model can have a strongly first-order phase transition and give rise to the observed baryon asymmetry of the Universe, consistent with all experimental constraints. In particular, the constraints from the electron and neutron electric dipole moments are less constraining here than in pure two-Higgs-doublet model (2HDM). The two-step, first-order transition in 2HDSM, induced by the singlet field, may lead to strong supercooling and low nucleation temperatures in comparison with the critical temperature, T{sub n}≪T{sub c}, which can significantly alter the usual phase-transition pattern in 2HD models with T{sub n}≈T{sub c}. Furthermore, the singlet field can be the dark matter particle. However, in models with a strong first-order transition its abundance is typically but a thousandth of the observed dark matter abundance.

  11. Singlet oxygen generation during the oxidation of L-tyrosine and L-dopa with mushroom tyrosinase

    Energy Technology Data Exchange (ETDEWEB)

    Miyaji, Akimitsu [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259-G1-14, Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Kohno, Masahiro [Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-G1-25 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Inoue, Yoshihiro [Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-8543 (Japan); Baba, Toshihide, E-mail: tbaba@chemenv.titech.ac.jp [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259-G1-14, Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2016-03-18

    The generation of singlet oxygen during the oxidation of tyrosine and L-dopa using mushroom tyrosinase in a phosphate buffer (pH 7.4), the model of melanin synthesis in melanocytes, was examined. The reaction was performed in the presence of 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TEMP), an acceptor of singlet oxygen and the electron spin resonance (ESR) of the spin adduct, 4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxy (4-oxo-TEMPO), was measured. An increase in the ESR signal attributable to 4-oxo-TEMPO was observed during the oxidation of tyrosine and L-dopa with tyrosinase, indicating the generation of singlet oxygen. The results suggest that {sup 1}O{sub 2} generation via tyrosinase-catalyzed melanin synthesis occurs in melanocyte. - Highlights: • Generation of singlet oxygen was observed during tyrosinase-catalyzed tyrosine oxidation. • The singlet oxygen generated when tyrosine was converted into dopachrome. • The amount of singlet oxygen is not sufficient for cell toxicity. • It decreased when the hydroxyl radicals and/or superoxide anions were trapped.

  12. An Advanced VHF/UHF Short Range, Groundwave Propagation Model for Paths With Near-Earth Antennas

    National Research Council Canada - National Science Library

    Cross, Marshall W; Fung, Tat Y

    2006-01-01

    ... the earth such as: Unattended Ground Sensors (UGS) and Intelligent Munitions Systems (IMS), are attenuated above free space values by the lossy earth itself and any obstructions between a transmitter and receiver pair...

  13. Production of Singlet Oxygen in a Non-Self-Sustained Discharge

    International Nuclear Information System (INIS)

    Vasil'eva, A.N.; Klopovskii, K.S.; Kovalev, A.S.; Lopaev, D.V.; Mankelevich, Yu.A.; Popov, N.A.; Rakhimov, A.T.; Rakhimova, T.V.

    2005-01-01

    The production of O 2 (a 1 Δ g ) singlet oxygen in non-self-sustained discharges in pure oxygen and mixtures of oxygen with noble gases (Ar or He) was studied experimentally. It is shown that the energy efficiency of O 2 (a 1 Δ g ) production can be optimized with respect to the reduced electric field E/N. It is shown that the optimal E/N values correspond to electron temperatures of 1.2-1.4 eV. At these E/N values, a decrease in the oxygen percentage in the mixture leads to an increase in the excitation rate of singlet oxygen because of the increase in the specific energy deposition per O 2 molecule. The onset of discharge instabilities not only greatly reduces the energy efficiency of singlet oxygen production but also makes it impossible to achieve high energy deposition in a non-self-sustained discharge. A model of a non-self-sustained discharge in pure oxygen is developed. It is shown that good agreement between the experimental and computed results for a discharge in oxygen over a wide range of reduced electric fields can be achieved only by taking into account the ion component of the discharge current. The cross section for the electron-impact excitation of O 2 (a 1 Δ g ) and the kinetic scheme of the discharge processes with the participation of singlet oxygen are verified by comparing the experimental and computed data on the energy efficiency of the production of O 2 (a 1 Δ g ) and the dynamics of its concentration. It is shown that, in the dynamics of O 2 (a 1 Δ g ) molecules in the discharge afterglow, an important role is played by their deexcitation in a three-body reaction with the participation of O( 3 P) atoms. At high energy depositions in a non-self-sustained discharge, this reaction can reduce the maximal attainable concentration of singlet oxygen. The effect of a hydrogen additive to an Ar : O 2 mixture is analyzed based on the results obtained using the model developed. It is shown that, for actual electron beam current densities, a

  14. LHC signals for singlet neutrinos from a natural warped seesaw mechanism. I

    Science.gov (United States)

    Agashe, Kaustubh; Du, Peizhi; Hong, Sungwoo

    2018-04-01

    Recently, it was shown in K. Agashe et al. [Phys. Rev. D 94, 013001 (2016), 10.1103/PhysRevD.94.013001] that a straightforward implementation of the type I seesaw mechanism in a warped extra dimensional framework is in reality a natural realization of "inverse" seesaw; i.e., the Standard Model (SM) neutrino mass is dominantly generated by exchange of pseudo-Dirac TeV-mass SM singlet neutrinos. By the AdS /CFT correspondence, this scenario is dual to these singlet particles being composites of some new strong dynamics, along with the SM Higgs boson (and possibly the top quark), with the rest of the SM particles being mostly elementary. We study signals from production of these heavy neutrinos at the Large Hadron Collider (LHC). We focus on the scenario where the strong sector has a global S U (2 )L×S U (2 )R×U (1 )X symmetry; such a left-right (LR) structure being motivated by consistency with the electroweak (EW) precision tests. The singlet neutrinos are charged under S U (2 )R×U (1 )X symmetry, thus can be produced from WR± exchange, as in four-dimensional LR symmetric models. However, the direct coupling of light quarks to WR± is negligible, due to WR± also being composite (cf. four-dimensional LR models); nonetheless, a sizable coupling can be induced by mixings among the various types of W± bosons. Furthermore, WR± decays dominantly into the singlet and composite partner of charged lepton (cf. SM lepton itself in four-dimensional LR model). This heavy charged lepton, in turn, decays into SM lepton, plus Z /Higgs , thus the latter can be used for extra identification of the signal. For a benchmark scenario with WR± of mass 2 TeV and singlet neutrino of mass 750 GeV, we find that, in both the dilepton +dijet +Higgs and trilepton +Higgs channels, significant evidence can be seen at the 14 TeV LHC for an integrated luminosity of 300 fb-1 and that even discovery is possible with slightly more luminosity.

  15. Communication grounding facility

    International Nuclear Information System (INIS)

    Lee, Gye Seong

    1998-06-01

    It is about communication grounding facility, which is made up twelve chapters. It includes general grounding with purpose, materials thermal insulating material, construction of grounding, super strength grounding method, grounding facility with grounding way and building of insulating, switched grounding with No. 1A and LCR, grounding facility of transmission line, wireless facility grounding, grounding facility in wireless base station, grounding of power facility, grounding low-tenton interior power wire, communication facility of railroad, install of arrester in apartment and house, install of arrester on introduction and earth conductivity and measurement with introduction and grounding resistance.

  16. A Theoretical Study of the Photodissociation Mechanism of Cyanoacetylene in Its Lowest Singlet and Triplet Excited States

    Science.gov (United States)

    Luo, Cheng; Du, Wei-Na; Duan, Xue-Mei; Li, Ze-Sheng

    2008-11-01

    Cyanoacetylene (H5-C4 ≡ C3-C2 ≡ N1) is a minor constituent of the atmosphere of Titan, and its photochemistry plays an important role in the formation of the haze surrounding the satellite. In this paper, the complete active space self-consistent field (CASSCF) and multiconfigurational second-order perturbation (CASPT2) approaches are employed to investigate the photochemical processes for cyanoacetylene in its first singlet and triplet excited states with the cc-pVTZ basis set. Fissions of the C4-H5 and C2-C3 bonds in S1 yield H(2S) + CCCN(A2Π) and HCC(A2Π) + CN(X2Σ+), respectively. In T1, the corresponding dissociation products are H(2S) + CCCN(X2Σ+) and HCC(X2Σ) + CN(X2Σ+). At the CASPT2(14,13)//CASSCF(14,13) + ZPE level, the barriers for the adiabatic dissociation of the C4-H5 and C2-C3 bonds are 6.11 and 6.94 eV in S1 and 5.71 and 6.39 eV in T1, respectively, taking the energy of S0 minimum as reference. Based on the calculated potential energy surfaces, the existence of a metastable excited molecule is anticipated upon 260-230 nm photoexcitation, which provides a probable approach for cyanoacetylene to polymerize. The internal conversion (IC) process through vibronic interaction followed by C4-H5 fission in the ground state is found to account for the observed diffuse character in the UV absorption spectrum below 240 nm.

  17. On the intramolecular proton transfer of 3-hydroxyflavone in the first singlet excited state: A theoretical study

    International Nuclear Information System (INIS)

    Casadesus, Ricard; Vendrell, Oriol; Moreno, Miquel; Lluch, Jose M.; Morokuma, Keiji

    2006-01-01

    The intramolecular proton-transfer reaction in 3-hydroxyflavone (3HF) is theoretically studied both in the ground (S 0 ) and first singlet excited (S 1 ) electronic states. In S 0 the proton-transfer reaction is shown to be quite unfavorable at the DFT (B3LYP) level. However, the back proton transfer is found to be a feasible process with a small energy barrier, both results being in qualitative agreement with known experimental facts. Different theoretical levels are considered and compared for S 1 . The ab initio configuration interaction singles (CIS) method overestimates the energy of S 1 and give too high energy barriers for the proton-transfer reaction. The complete active space SCF (CASSCF) method gives a more reasonable value but the inclusion of the dynamical correlation through second-order perturbation theory (CASPT2) upon CASSCF geometries or the use of the time-dependent DFT (TDDFT) method upon CIS geometries gives a barrierless process. Optimization of geometries (minima and transition-state structures) at the TDDFT level leads to a small but non-negligible energy barrier for the proton-transfer reaction in S 1 and global energies that fit quite well with the known experimental (spectroscopic and femtochemistry) data. Finally the effect of a polar environment is analyzed through a continuum model, which gives only a small difference from the previous gas-phase results. This points out that the remarkable changes in the photochemistry of 3HF observed experimentally are not to be solely attributed to the polarity of the surrounding media

  18. On the intramolecular proton transfer of 3-hydroxyflavone in the first singlet excited state: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Casadesus, Ricard [Departament de Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, GA 30322 (United States); Vendrell, Oriol [Departament de Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Moreno, Miquel [Departament de Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)], E-mail: mmf@klingon.uab.es; Lluch, Jose M. [Departament de Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Morokuma, Keiji [Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, GA 30322 (United States)

    2006-06-20

    The intramolecular proton-transfer reaction in 3-hydroxyflavone (3HF) is theoretically studied both in the ground (S{sub 0}) and first singlet excited (S{sub 1}) electronic states. In S{sub 0} the proton-transfer reaction is shown to be quite unfavorable at the DFT (B3LYP) level. However, the back proton transfer is found to be a feasible process with a small energy barrier, both results being in qualitative agreement with known experimental facts. Different theoretical levels are considered and compared for S{sub 1}. The ab initio configuration interaction singles (CIS) method overestimates the energy of S{sub 1} and give too high energy barriers for the proton-transfer reaction. The complete active space SCF (CASSCF) method gives a more reasonable value but the inclusion of the dynamical correlation through second-order perturbation theory (CASPT2) upon CASSCF geometries or the use of the time-dependent DFT (TDDFT) method upon CIS geometries gives a barrierless process. Optimization of geometries (minima and transition-state structures) at the TDDFT level leads to a small but non-negligible energy barrier for the proton-transfer reaction in S{sub 1} and global energies that fit quite well with the known experimental (spectroscopic and femtochemistry) data. Finally the effect of a polar environment is analyzed through a continuum model, which gives only a small difference from the previous gas-phase results. This points out that the remarkable changes in the photochemistry of 3HF observed experimentally are not to be solely attributed to the polarity of the surrounding media.

  19. State of immune system of patients with infectious-allergic asthma subjected to transcerebral exposure to UHF electron field (27, 12 MHz)

    Energy Technology Data Exchange (ETDEWEB)

    Bogolyubov, V.M.; Malyavin, A.G.; Pershin, S.B.; Shubina, A.V.; Kubli, S.Kh.; Myshelova, K.P.

    An attempt was made to affect immunologic reactions in infectious-allergic asthma patients by subjecting them to transcerebral exposure to UHF electric field. Seventy-six patients, aged 23 to 69 years with varying duration of the disease, were studied. The treatment consisted of 25 exposures lasting from 5 to 15 min; a sham exposure was used on ten patients serving as controls. In all, 55/66 patients experienced clinical improvement lasting 6 to 12 months; only 2/10 control patients had any improvement. After the exposure, the level of T-lymphocytes increased along with blood histamine level; no significant changes were observed in case of B-lymphocytes. This immunologic correction was most effective in patients with atopy, with decreased levels of T-lymphocytes and elevated levels of B-lymphocytes. 12 references.

  20. Ionospheric modification induced by high-power HF transmitters: a potential for extended range VHF--UHF communications and plasma physics research

    International Nuclear Information System (INIS)

    Utlaut, W.F.

    1975-01-01

    When the ionized upper atmosphere of the earth is illuminated by high-power HF radio waves at appropriate frequencies, the temperature of electrons in the ionosphere can be raised substantially. In addition, radio waves with sufficient energy cause parametric instabilities that generate a spectrum of intense plasma waves. Observations of these phenomena have produced new understanding of plasma processes. One consequence of heating and plasma wave generation is that irregularities are formed in the electron distribution which are aligned with the earth's magnetic field. Because of this, a scatterer of large radar cross section is produced, which scatters HF through UHF communication signals over long distance paths, that would not otherwise be normally possible by ionospheric means. Results of radio, radar, communication, and photometric experiments that explored the characteristics of the volume of ionosphere which has been intentionally modified, temporarily, above facilities near Boulder (Platteville), Colo., and at Arecibo, Puerto Rico are summarized

  1. Brush-Painting and Photonic Sintering of Copper Oxide and Silver Inks on Wood and Cardboard Substrates to Form Antennas for UHF RFID Tags

    Directory of Open Access Journals (Sweden)

    Erja Sipilä

    2016-01-01

    Full Text Available Additive deposition of inks with metallic inclusions provides compelling means to embed electronics into versatile structures. The need to integrate electronics into environmentally friendly components and structures increases dramatically together with the increasing popularity of the Internet of Things. We demonstrate a novel brush-painting method for depositing copper oxide and silver inks directly on wood and cardboard substrates and discuss the optimization of the photonic sintering process parameters for both materials. The optimized parameters were utilized to manufacture passive ultra high frequency (UHF radio frequency identification (RFID tag antennas. The results from wireless testing show that the RFID tags based on the copper oxide and silver ink antennas on wood substrate are readable from ranges of 8.5 and 11 meters, respectively, and on cardboard substrate from read ranges of 8.5 and 12 meters, respectively. These results are well sufficient for many future wireless applications requiring remote identification with RFID.

  2. 'Grounded' Politics

    DEFF Research Database (Denmark)

    Schmidt, Garbi

    2012-01-01

    play within one particular neighbourhood: Nørrebro in the Danish capital, Copenhagen. The article introduces the concept of grounded politics to analyse how groups of Muslim immigrants in Nørrebro use the space, relationships and history of the neighbourhood for identity political statements....... The article further describes how national political debates over the Muslim presence in Denmark affect identity political manifestations within Nørrebro. By using Duncan Bell’s concept of mythscape (Bell, 2003), the article shows how some political actors idealize Nørrebro’s past to contest the present...... ethnic and religious diversity of the neighbourhood and, further, to frame what they see as the deterioration of genuine Danish identity....

  3. Study of the coastal atmospheric boundary layer during ESCOMPTE 2001. Evaluation and improvement of the efficiency of a UHF radar; Etude de la couche limite atmospherique cotiere durant ESCOMPTE 2001. Evaluation et amelioration des performances d'un radar UHF

    Energy Technology Data Exchange (ETDEWEB)

    Puygrenier, V.

    2005-12-15

    Forecasting of pollution events was the main objective of the ESCOMPTE-2001 campaign, which took place in the Marseille/Fos/Berre heterogeneous area (southeastern France) in the early summer 2001. This goal requires good understanding and taking into account, by physico-chemical numerical models, of the physical processes in the Atmospheric Boundary Layer (ABL), in which pollutants are emitted, transported and diffused. In the ESCOMPTE-2001 campaign context, this work was devoted to study the low troposphere during sea breeze events, related to meteorological conditions responsible for poor air quality of coastal areas. It presents notably an oscillation of the sea breeze intensity and competitions of locals and regional sea breeze, which change the advective time of the marine air above the continental surface and thus influence the ABL development and its pollutants concentration. This study is based principally on the network of four UHF wind profilers radars set up on the coastal area of Marseille/Fos/Berre, allowing a continuous three-dimensional description of the sea breeze flow and the ABL. For the needs of this phenomenological work, methodological developments was realized to improve the measurement of ABL turbulent properties with UHF radars (terms of turbulent kinetic energy budget) and the use of wind profilers network for the study of pollutants plumes trajectory-graphy. (author)

  4. One-loop radiative correction to the triple Higgs coupling in the Higgs singlet model

    Directory of Open Access Journals (Sweden)

    Shi-Ping He

    2017-01-01

    Full Text Available Though the 125 GeV Higgs boson is consistent with the standard model (SM prediction until now, the triple Higgs coupling can deviate from the SM value in the physics beyond the SM (BSM. In this paper, the radiative correction to the triple Higgs coupling is calculated in the minimal extension of the SM by adding a real gauge singlet scalar. In this model there are two scalars h and H and both of them are mixing states of the doublet and singlet. Provided that the mixing angle is set to be zero, namely the SM limit, h is the pure left-over of the doublet and its behavior is the same as that of the SM at the tree level. However the loop corrections can alter h-related couplings. In this SM limit case, the effect of the singlet H may show up in the h-related couplings, especially the triple h coupling. Our numerical results show that the deviation is sizable. For λΦS=1 (see text for the parameter definition, the deviation δhhh(1 can be 40%. For λΦS=1.5, the δhhh(1 can reach 140%. The sizable radiative correction is mainly caused by three reasons: the magnitude of the coupling λΦS, light mass of the additional scalar and the threshold enhancement. The radiative corrections for the hVV, hff couplings are from the counter-terms, which are the universal correction in this model and always at O(1%. The hZZ coupling, which can be precisely measured, may be a complementarity to the triple h coupling to search for the BSM. In the optimal case, the triple h coupling is very sensitive to the BSM physics, and this model can be tested at future high luminosity hadron colliders and electron–positron colliders.

  5. BODIPY-pyrene and perylene dyads as heavy atom-free singlet oxygen sensitizers

    KAUST Repository

    Filatov, Mikhail A.

    2018-02-23

    Dyads combining BODIPY as an electron acceptor and pyrene or perylene as electron donor subunits were prepared and studied their photophysical properties studied by steady-state and transient spectroscopy. Depending on the structure of the subunits and polarity of the media, the dyads show either bright fluorescence or photo-induced electron transfer (PeT) in solution. Charge-transfer (CT) states formed as a result of PeT and were found to yield triplet excited states of the BODIPY. In the presence of molecular oxygen, the dyads sensitize singlet oxygen (1O2) with quantum yields of up to 0.75.

  6. Heavy Higgs boson production at colliders in the singlet-triplet scotogenic dark matter model

    Science.gov (United States)

    Díaz, Marco Aurelio; Rojas, Nicolás; Urrutia-Quiroga, Sebastián; Valle, José W. F.

    2017-08-01

    We consider the possibility that the dark matter particle is a scalar WIMP messenger associated to neutrino mass generation, made stable by the same symmetry responsible for the radiative origin of neutrino mass. We focus on some of the implications of this proposal as realized within the singlet-triplet scotogenic dark matter model. We identify parameter sets consistent both with neutrino mass and the observed dark matter abundance. Finally we characterize the expected phenomenological profile of heavy Higgs boson physics at the LHC as well as at future linear Colliders.

  7. The participation of singlet oxygen in a photocitotoxicity of extract from amazon plant to cancer cells

    Science.gov (United States)

    Tcibulnikova, Anna V.; Degterev, Igor A.; Bryukhanov, Valery V.; Roberto, Mantuanelly M.; Campos Pereira, F. D.; Marin-Morales, M. A.; Slezhkin, Vasily A.; Samusev, Ilya G.

    2018-01-01

    We have been searching for new photosensitizers (PS) for photodynamic therapy (PDT) of cancer based on extracts from Amazonian plants since 2009. In this paper, we demonstrate that, under certain conditions, the extract from fruits of the Amazonian palm Euterpe oleraceae (popular name Açaí) can serve as a PS for PDT treatment of murine breast cancer cells (4T1 cell line). We have been first to show directly that the photodynamic effect of plant PS is due to singlet oxygen.

  8. Standard model extended by a heavy singlet: Linear vs. nonlinear EFT

    Energy Technology Data Exchange (ETDEWEB)

    Buchalla, G., E-mail: gerhard.buchalla@lmu.de; Catà, O.; Celis, A.; Krause, C.

    2017-04-15

    We consider the Standard Model extended by a heavy scalar singlet in different regions of parameter space and construct the appropriate low-energy effective field theories up to first nontrivial order. This top-down exercise in effective field theory is meant primarily to illustrate with a simple example the systematics of the linear and nonlinear electroweak effective Lagrangians and to clarify the relation between them. We discuss power-counting aspects and the transition between both effective theories on the basis of the model, confirming in all cases the rules and procedures derived in previous works from a bottom-up approach.

  9. Novel approaches to singlet oxygen photosensitization in the nano- and bio-era

    OpenAIRE

    Planas Marquès, Oriol

    2017-01-01

    En aquesta tesis es detallen noves aproximacions nano- i biomoleculars amb l’objectiu de millorar la fotosensibilització i detecció d’oxigen singlet en medi biològic. En primer lloc es presenta una nova reacció fluoro- i cromogènica pel marcatge de proteïnes i nanopartícules amb derivats de porficè. Concretament, la reacció de porficens isotiocianat amb amines primàries i secundaries generen 2-aminotiazolo[4,5-c]poricè derivats amb un desplaçament concomitant en els seus espectres d’absor...

  10. Long-range corrected density functional theory study on static second hyperpolarizabilities of singlet diradical systems.

    Science.gov (United States)

    Kishi, Ryohei; Bonness, Sean; Yoneda, Kyohei; Takahashi, Hideaki; Nakano, Masayoshi; Botek, Edith; Champagne, Benoît; Kubo, Takashi; Kamada, Kenji; Ohta, Koji; Tsuneda, Takao

    2010-03-07

    Within the spin-unrestricted density functional theory (DFT) the long-range correction (LC) scheme combined with the Becke-Lee-Yang-Parr exchange-correlation functional, referred to as LC-UBLYP method, has been applied to the calculation of the second hyperpolarizability (gamma) of open-shell singlet diradical systems of increasing complexity and has demonstrated good performance: (i) for the simplest H(2) dissociation model, the gamma values calculated by the LC-UBLYP method significantly overshoot the full configuration interaction result but reproduce qualitatively the evolution of gamma as a function of the diradical character, (ii) for small singlet diradical 1,3-dipole systems, the diradical character dependence of gamma determined by the UCCSD and UCCSD(T) reference methods is reproduced semiquantitatively by the LC-UBLYP method except in the small diradical character region, where the spin-unrestricted solutions coincide with spin-restricted solutions, (iii) the LC-UBLYP method also closely reproduces the UCCSD(T) results on the diradical character dependence of gamma of the p-quinodimethane model system, particularly in the intermediate and large diradical character regions, whereas it shows an abrupt change for a diradical character (y) close to 0.2 originating from the triplet instability, (iv) the reliability of LC-UBLYP to reproduce reference coupled cluster results on open-shell singlet systems with intermediate and large diradical characters has also been substantiated in the case of gamma of 1,4-bis-(imidazol-2-ylidene)-cyclohexa-2,5-diene (BI2Y), then (v), for real systems built from a pair of phenalenyl radicals separated by a conjugated linker, the LC-UBLYP results have been found to closely match the UBHandHLYP values-which, for small systems are in good agreement with those obtained using correlated molecular orbital methods-whereas the UB3LYP results can be much different. These results are not only important from the viewpoint of an efficient

  11. Hybrid spin and valley quantum computing with singlet-triplet qubits.

    Science.gov (United States)

    Rohling, Niklas; Russ, Maximilian; Burkard, Guido

    2014-10-24

    The valley degree of freedom in the electronic band structure of silicon, graphene, and other materials is often considered to be an obstacle for quantum computing (QC) based on electron spins in quantum dots. Here we show that control over the valley state opens new possibilities for quantum information processing. Combining qubits encoded in the singlet-triplet subspace of spin and valley states allows for universal QC using a universal two-qubit gate directly provided by the exchange interaction. We show how spin and valley qubits can be separated in order to allow for single-qubit rotations.

  12. The two-mass contribution to the three-loop pure singlet operator matrix element

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Bluemlein, J.; Freitas, A. de; Schoenwald, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2017-11-15

    We present the two-mass QCD contributions to the pure singlet operator matrix element at three loop order in x-space. These terms are relevant for calculating the structure function F{sub 2}(x,Q{sup 2}) at O(α{sup 3}{sub s}) as well as for the matching relations in the variable flavor number scheme and the heavy quark distribution functions at the same order. The result for the operator matrix element is given in terms of generalized iterated integrals that include square root letters in the alphabet, depending also on the mass ratio through the main argument. Numerical results are presented.

  13. Layered Double Hydroxides with Intercalated Porphyrins as Photofunctional Materials: Subtle Structural Changes Modify Singlet Oxygen Production

    Czech Academy of Sciences Publication Activity Database

    Lang, Kamil; Bezdička, Petr; Bourdelande, J.L.; Hernando, J.; Jirka, Ivan; Káfuňková, Eva; Kubát, Pavel; Mosinger, Jiří; Wagnerová, Dana Marie

    2007-01-01

    Roč. 19, č. 15 (2007), s. 3822-3829 ISSN 0897-4756 R&D Projects: GA ČR(CZ) GA203/06/1244; GA ČR GA203/07/1424; GA AV ČR KAN100500651 Grant - others:MESS(ES) CTQ2006-01040 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40400503 Keywords : singlet oxygen Subject RIV: CA - Inorganic Chemistry Impact factor: 4.883, year: 2007

  14. BODIPY-pyrene and perylene dyads as heavy atom-free singlet oxygen sensitizers

    KAUST Repository

    Filatov, Mikhail A.; Karuthedath, Safakath; Polestshuk, Pavel M.; Callaghan, Susan; Flanagan, Keith J.; Wiesner, Thomas; Laquai, Fré dé ric; Senge, Mathias O.

    2018-01-01

    Dyads combining BODIPY as an electron acceptor and pyrene or perylene as electron donor subunits were prepared and studied their photophysical properties studied by steady-state and transient spectroscopy. Depending on the structure of the subunits and polarity of the media, the dyads show either bright fluorescence or photo-induced electron transfer (PeT) in solution. Charge-transfer (CT) states formed as a result of PeT and were found to yield triplet excited states of the BODIPY. In the presence of molecular oxygen, the dyads sensitize singlet oxygen (1O2) with quantum yields of up to 0.75.

  15. Theoretical rationalization of the singlet-triplet gap in OLEDs materials: impact of charge-transfer character.

    Science.gov (United States)

    Moral, M; Muccioli, L; Son, W-J; Olivier, Y; Sancho-García, J C

    2015-01-13

    New materials for OLED applications with low singlet-triplet energy splitting have been recently synthesized in order to allow for the conversion of triplet into singlet excitons (emitting light) via a Thermally Activated Delayed Fluorescence (TADF) process, which involves excited-states with a non-negligible amount of Charge-Transfer (CT). The accurate modeling of these states with Time-Dependent Density Functional Theory (TD-DFT), the most used method so far because of the favorable trade-off between accuracy and computational cost, is however particularly challenging. We carefully address this issue here by considering materials with small (high) singlet-triplet gap acting as emitter (host) in OLEDs and by comparing the accuracy of TD-DFT and the corresponding Tamm-Dancoff Approximation (TDA), which is found to greatly reduce error bars with respect to experiments thanks to better estimates for the lowest singlet-triplet transition. Finally, we quantitatively correlate the singlet-triplet splitting values with the extent of CT, using for it a simple metric extracted from calculations with double-hybrid functionals, that might be applied in further molecular engineering studies.

  16. Singlet-triplet fission of carotenoid excitation in light-harvesting LH2 complexes of purple phototrophic bacteria.

    Science.gov (United States)

    Klenina, I B; Makhneva, Z K; Moskalenko, A A; Gudkov, N D; Bolshakov, M A; Pavlova, E A; Proskuryakov, I I

    2014-03-01

    The current generally accepted structure of light-harvesting LH2 complexes from purple phototrophic bacteria conflicts with the observation of singlet-triplet carotenoid excitation fission in these complexes. In LH2 complexes from the purple bacterium Allochromatium minutissimum, a drop in the efficiency of carotenoid triplet generation is demonstrated, which correlates with the extent of selective photooxidation of bacteriochlorophylls absorbing at ~850 nm. We conclude that singlet-triplet fission of carotenoid excitation proceeds with participation of these excitonically coupled bacteriochlorophylls. In the framework of the proposed mechanism, the contradiction between LH2 structure and photophysical properties of carotenoids is eliminated. The possibility of singlet-triplet excitation fission involving a third mediator molecule was not considered earlier.

  17. Singlet and triplet states of trions in ZuSe-based quantum wells probed by magnetic fields to 50 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Astakhov, G. V.; Yakovlev, D. R.; Crooker, S. A. (Scott A.); Barrick, T. (Todd); Dzyubenko, A. B.; Sander, Thomas; Kochereshko, V. P.; Ossau, W.; Faschinger, W.; Waag, A.

    2002-01-01

    Singlet and triplet states of positively (X{sup +}) and negatively (X{sup -}) charged excitons in ZnSe-based quantum wells have been studied by means of photoluminescence in pulsed magnetic fields up to 50 T. The binding energy of the X{sup -} singlet state shows a monotonic increase with magnetic field with a tendency to saturation, while that of the X{sup +} slightly decreases. The triplet X{sup +} and X{sup -} states, being unbound at zero magnetic field, noticeably increase their binding energy in high magnetic fields. The experimental evidence for the interaction between the triplet and singlet states of lTions leading to their anticrossing in magnetic fields has been found.

  18. Sizable NSI from the SU(2){sub L} scalar doublet-singlet mixing and the implications in DUNE

    Energy Technology Data Exchange (ETDEWEB)

    Forero, David V. [Center for Neutrino Physics, Virginia Tech,Blacksburg, VA, 24061 (United States); Huang, Wei-Chih [Fakultät für Physik, Technische Universität Dortmund,Dortmund, 44221 (Germany)

    2017-03-03

    We propose a novel and simple mechanism where sizable effects of non-standard interactions (NSI) in neutrino propagation are induced from the mixing between an electrophilic second Higgs doublet and a charged singlet. The mixing arises from a dimensionful coupling of the scalar doublet and singlet to the standard model Higgs boson. In light of the small mass, the light mass eigenstate from the doublet-singlet mixing can generate much larger NSI than those induced by the heavy eigenstate. We show that a sizable NSI ε{sub eτ} (∼0.3) can be attained without being excluded by a variety of experimental constraints. Furthermore, we demonstrate that NSI can mimic effects of the Dirac CP phase in the neutrino mixing matrix but they can potentially be disentangled by future long-baseline neutrino experiments, such as the Deep Underground Neutrino Experiment (DUNE).

  19. Singlet-to-triplet ratio in the deuteron breakup reaction pd → pnp at 585 MeV

    International Nuclear Information System (INIS)

    Uzikov, Yu.N.; Komarov, V.I.; Rathmann, F.; Seyfarth, H.

    2001-01-01

    Available experimental data on the exclusive pd → pnp reaction at 585 MeV show a narrow peak in the proton-neutron final-state interaction region. It was supposed previously, on the basis of a phenomenological analysis of the shape of this peak, that the final spin-singlet pn state provided about one third of the observed cross section. By comparing the absolute value of the measured cross section with that of pd elastic scattering using the Faeldt-Wilkin extrapolation theorem, it is shown here that the pd → pnp data can be explained mainly by the spin-triplet final state with a singlet admixture of a few percent. The smallness of the singlet contribution is compatible with existing pN → pNπ data and the one-pion exchange mechanism of the pd → pnp reaction

  20. Effects of disorder on atomic density waves and spin-singlet dimers in one-dimensional optical lattices

    International Nuclear Information System (INIS)

    Gao Xianlong

    2008-01-01

    Using the Bethe-ansatz density-functional theory, we study a one-dimensional Hubbard model of confined attractively interacting fermions in the presence of a uniformly distributed disorder. The strongly correlated Luther-Emery nature of the attractive one-dimensional Hubbard model is fully taken into account as the reference system in the density-functional theory. The effects of the disorder are investigated on the atomic density waves in the weak-to-intermediate attractive interaction and on the spin-singlet dimers of doubly occupied sites in the strongly attractive regime. It is found that atomic density waves are sensitive to the disorder and the spin-singlet dimers of doubly occupied sites are quite unstable against the disorder. We also show that a very weak disorder could smear the singularities in the stiffness, thus, suppresses the spin-singlet pairs

  1. Four-loop non-singlet splitting functions in the planar limit and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Moch, S. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Ruijl, B. [Nikhef, Amsterdam (Netherlands). Theory Group; Leiden Univ. (Netherlands). Leiden Centre of Data Science; Ueda, T.; Vermaseren, J.A.M. [Nikhef, Amsterdam (Netherlands). Theory Group; Vogt, A. [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences

    2017-08-15

    We present the next-to-next-to-next-to-leading order (N{sup 3}LO) contributions to the non-singlet splitting functions for both parton distribution and fragmentation functions in perturbative QCD. The exact expressions are derived for the terms contributing in the limit of a large number of colours. For the remaining contributions, approximations are provided that are sufficient for all collider-physics applications. From their threshold limits we derive analytical and high-accuracy numerical results, respectively, for all contributions to the four-loop cusp anomalous dimension for quarks, including the terms proportional to quartic Casimir operators. We briefly illustrate the numerical size of the four-loop corrections, and the remarkable renormalization-scale stability of the N{sup 3}LO results, for the evolution of the non-singlet parton distribution and the fragmentation functions. Our results appear to provide a first point of contact of four-loop QCD calculations and the so-called wrapping corrections to anomalous dimensions in N=4 super Yang-Mills theory.

  2. Spin-selective coupling to Majorana zero modes in mixed singlet and triplet superconducting nanowires

    Science.gov (United States)

    Paul, Ganesh C.; Saha, Arijit; Das, Sourin

    2018-05-01

    We theoretically investigate the transport properties of a quasi-one-dimensional ferromagnet-superconductor junction where the superconductor consists of mixed singlet and triplet pairings. We show that the relative orientation of the Stoner field (h ˜) in the ferromagnetic lead and the d vector of the superconductor acts like a on-off switch for the zero bias conductance of the device. In the regime, where triplet pairing amplitude dominates over the singlet counterpart (topological phase), a pair of Majorana zero modes appear at each end of the superconducting part of the nanowire. When h ˜ is parallel or antiparallel to the d vector, transport gets completely blocked due to blockage in pairing while, when h ˜ and d are perpendicular to each other, the zero energy two terminal differential conductance spectra exhibits sharp transition from 4 e2/h to 2 e2/h as the magnetization strength in the lead becomes larger than the chemical potential indicating the spin-selective coupling of a pair of Majorana zero modes to the lead.

  3. Deletion of CGLD1 Impairs PSII and Increases Singlet Oxygen Tolerance of Green Alga Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Jiale Xing

    2017-12-01

    Full Text Available The green alga Chlamydomonas reinhardtii is a key model organism for studying photosynthesis and oxidative stress in unicellular eukaryotes. Using a forward genetics approach, we have identified and characterized a mutant x32, which lacks a predicted protein named CGLD1 (Conserved in Green Lineage and Diatom 1 in GreenCut2, under normal and stress conditions. We show that loss of CGLD1 resulted in minimal photoautotrophic growth and PSII activity in the organism. We observed reduced amount of PSII complex and core subunits in the x32 mutant based on blue-native (BN/PAGE and immunoblot analysis. Moreover, x32 exhibited increased sensitivity to high-light stress and altered tolerance to different reactive oxygenic species (ROS stress treatments, i.e., decreased resistance to H2O2/or tert-Butyl hydroperoxide (t-BOOH and increased tolerance to neutral red (NR and rose bengal (RB that induce the formation of singlet oxygen, respectively. Further analysis via quantitative real-time PCR (qRT-PCR indicated that the increased singlet-oxygen tolerance of x32 was largely correlated with up-regulated gene expression of glutathione-S-transferases (GST. The phenotypical and physiological implications revealed from our experiments highlight the important roles of CGLD1 in maintaining structure and function of PSII as well as in protection of Chlamydomonas under photo-oxidative stress conditions.

  4. Singlet Oxygen-Mediated Oxidation during UVA Radiation Alters the Dynamic of Genomic DNA Replication.

    Directory of Open Access Journals (Sweden)

    Dany Graindorge

    Full Text Available UVA radiation (320-400 nm is a major environmental agent that can exert its deleterious action on living organisms through absorption of the UVA photons by endogenous or exogenous photosensitizers. This leads to the production of reactive oxygen species (ROS, such as singlet oxygen (1O2 and hydrogen peroxide (H2O2, which in turn can modify reversibly or irreversibly biomolecules, such as lipids, proteins and nucleic acids. We have previously reported that UVA-induced ROS strongly inhibit DNA replication in a dose-dependent manner, but independently of the cell cycle checkpoints activation. Here, we report that the production of 1O2 by UVA radiation leads to a transient inhibition of replication fork velocity, a transient decrease in the dNTP pool, a quickly reversible GSH-dependent oxidation of the RRM1 subunit of ribonucleotide reductase and sustained inhibition of origin firing. The time of recovery post irradiation for each of these events can last from few minutes (reduction of oxidized RRM1 to several hours (replication fork velocity and origin firing. The quenching of 1O2 by sodium azide prevents the delay of DNA replication, the decrease in the dNTP pool and the oxidation of RRM1, while inhibition of Chk1 does not prevent the inhibition of origin firing. Although the molecular mechanism remains elusive, our data demonstrate that the dynamic of replication is altered by UVA photosensitization of vitamins via the production of singlet oxygen.

  5. Efficiency factors of singlet oxygen generation from core-modified expanded porphyrin: tetrathiarubyrin in ethanol

    CERN Document Server

    Ha, J H; Kim, Y R; Jung, G Y; Lee, Y H; Shin, K

    2001-01-01

    The photophysical properties and the singlet oxygen generation efficiency of tetrathiarubyrin have been investigated to elucidate the possibility of its use as a photodynamic therapy (PDT) photosensitizer by steady-state and time-resolved spectroscopic methods. The observed photophysical properties were affected by various molecular aspects, such as extended pi conjugation, structural distortion, and internal heavy atom. The steady-state electronic absorption spectrum was red-shifted due to the extended pi-conjugation, and the spin orbital coupling was enhanced by the structural distortion and the internal heavy atom effect. As a result of the enhanced spin orbital coupling, the triplet quantum yield increased to 0.90 +- 0.10 and the triplet state lifetime was shortened to 7.0 +- 1.2 mu s. Since the triplet state decays at a relatively faster rate, the efficiency of the oxygen quenching of the triplet state decreases. The singlet oxygen quantum yield was estimated to be 0.52 +- 0.02, which is somewhat lower t...

  6. Enhanced Higgs associated production with a top quark pair in the NMSSM with light singlets

    Energy Technology Data Exchange (ETDEWEB)

    Badziak, Marcin [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,ul. Pasteura 5, PL-02-093 Warsaw (Poland); Berkeley Center for Theoretical Physics, Department of Physics andTheoretical Physics Group, Lawrence Berkeley National Laboratory, University of California,Berkeley, CA 94720 (United States); Wagner, Carlos E.M. [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States); High Energy Physics Division, Argonne National Laboratory,Argonne, IL 60439 (United States); Kavli Institute for Cosmological Physics, University of Chicago,Chicago, IL 60637 (United States)

    2017-02-09

    Precision measurements of the 125 GeV Higgs resonance recently discovered at the LHC have determined that its properties are similar to the ones of the Standard Model (SM) Higgs boson. However, the current uncertainties in the determination of the Higgs boson couplings leave room for significant deviations from the SM expectations. In fact, if one assumes no correlation between the top-quark and gluon couplings to the Higgs, the current global fit to the Higgs data lead to central values of the Higgs couplings to the bottom-quark and the top-quark that are about 2 σ away from the SM predictions. In a previous work, we showed that such a scenario could be realized in the Next to Minimal Supersymmetric extension of the SM (NMSSM), for heavy singlets and light MSSM-like Higgs bosons and scalar top quarks, but for couplings that ruined the perturbative consistency of the theory up to the GUT scale. In this work we show that a perturbative consistent scenario, for somewhat heavier stops, may be obtained in the presence of light singlets. An interesting bonus of this scenario is the possibility of explaining an excess of events observed in CP-even Higgs searches at LEP2.

  7. Inert doublet dark matter with an additional scalar singlet and 125 GeV Higgs boson

    Energy Technology Data Exchange (ETDEWEB)

    Dutta Banik, Amit; Majumdar, Debasish [Saha Institute of Nuclear Physics, Astroparticle Physics and Cosmology Division, Kolkata (India)

    2014-11-15

    In this work we consider a model for particle dark matter where an extra inert Higgs doublet and an additional scalar singlet is added to the Standard Model (SM) Lagrangian. The dark matter candidate is obtained from only the inert doublet. The stability of this one component dark matter is ensured by imposing a Z{sub 2} symmetry on this additional inert doublet. The additional singlet scalar has a vacuum expectation value (VEV) and mixes with the Standard Model Higgs doublet, resulting in two CP even scalars h{sub 1} and h{sub 2}. We treat one of these scalars, h{sub 1}, to be consistent with the SM Higgs-like boson of mass around 125 GeV reported by the LHC experiment. These two CP even scalars contribute to the annihilation cross section of this inert doublet dark matter, resulting in a larger dark matter mass region that satisfies the observed relic density. We also investigate the h{sub 1} → γγ and h{sub 1} → γ Z processes and compared these with LHC results. This is also used to constrain the dark matter parameter space in the present model. We find that the dark matter candidate in the mass region 60-80 GeV (m{sub 1} = 125 GeV, mass of h{sub 1}) satisfies the recent bound from LUX direct detection experiment. (orig.)

  8. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    International Nuclear Information System (INIS)

    Azyazov, V.N.; Torbin, A.P.; Pershin, A.A.; Mikheyev, P.A.; Heaven, M.C.

    2015-01-01

    Highlights: • Vibrational excitation of O_3 increases the rate constant for O_3 + O_2(a) → 2O_2(X) + O. • Vibrationally excited O_3 is produced by the O + O_2(X) + M → O_3 + M reaction. • Ozone concentrations are impacted by the reactions of vibrationally excited O_3. • Relevant to ozone concentrations in oxygen discharges and the upper atmosphere. - Abstract: The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O_3(υ) formed in O + O_2 recombination is thought to be a significant agent in the deactivation of singlet oxygen O_2(a"1Δ), oxygen atom removal and ozone formation. It is shown that the process O_3(υ ⩾ 2) + O_2(a"1Δ) → 2O_2 + O is the main O_2(a"1Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O_2(a"1Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  9. Neural-network-designed pulse sequences for robust control of singlet-triplet qubits

    Science.gov (United States)

    Yang, Xu-Chen; Yung, Man-Hong; Wang, Xin

    2018-04-01

    Composite pulses are essential for universal manipulation of singlet-triplet spin qubits. In the absence of noise, they are required to perform arbitrary single-qubit operations due to the special control constraint of a singlet-triplet qubit, while in a noisy environment, more complicated sequences have been developed to dynamically correct the error. Tailoring these sequences typically requires numerically solving a set of nonlinear equations. Here we demonstrate that these pulse sequences can be generated by a well-trained, double-layer neural network. For sequences designed for the noise-free case, the trained neural network is capable of producing almost exactly the same pulses known in the literature. For more complicated noise-correcting sequences, the neural network produces pulses with slightly different line shapes, but the robustness against noises remains comparable. These results indicate that the neural network can be a judicious and powerful alternative to existing techniques in developing pulse sequences for universal fault-tolerant quantum computation.

  10. Singlet Oxygen-Mediated Oxidation during UVA Radiation Alters the Dynamic of Genomic DNA Replication

    Science.gov (United States)

    Graindorge, Dany; Martineau, Sylvain; Machon, Christelle; Arnoux, Philippe; Guitton, Jérôme; Francesconi, Stefania; Frochot, Céline; Sage, Evelyne; Girard, Pierre-Marie

    2015-01-01

    UVA radiation (320–400 nm) is a major environmental agent that can exert its deleterious action on living organisms through absorption of the UVA photons by endogenous or exogenous photosensitizers. This leads to the production of reactive oxygen species (ROS), such as singlet oxygen (1O2) and hydrogen peroxide (H2O2), which in turn can modify reversibly or irreversibly biomolecules, such as lipids, proteins and nucleic acids. We have previously reported that UVA-induced ROS strongly inhibit DNA replication in a dose-dependent manner, but independently of the cell cycle checkpoints activation. Here, we report that the production of 1O2 by UVA radiation leads to a transient inhibition of replication fork velocity, a transient decrease in the dNTP pool, a quickly reversible GSH-dependent oxidation of the RRM1 subunit of ribonucleotide reductase and sustained inhibition of origin firing. The time of recovery post irradiation for each of these events can last from few minutes (reduction of oxidized RRM1) to several hours (replication fork velocity and origin firing). The quenching of 1O2 by sodium azide prevents the delay of DNA replication, the decrease in the dNTP pool and the oxidation of RRM1, while inhibition of Chk1 does not prevent the inhibition of origin firing. Although the molecular mechanism remains elusive, our data demonstrate that the dynamic of replication is altered by UVA photosensitization of vitamins via the production of singlet oxygen. PMID:26485711

  11. Entanglement sharing via qudit channels: Nonmaximally entangled states may be necessary for one-shot optimal singlet fraction and negativity

    Science.gov (United States)

    Pal, Rajarshi; Bandyopadhyay, Somshubhro

    2018-03-01

    We consider the problem of establishing entangled states of optimal singlet fraction and negativity between two remote parties for every use of a noisy quantum channel and trace-preserving local operations and classical communication (LOCC) under the assumption that the parties do not share prior correlations. We show that for a family of quantum channels in every finite dimension d ≥3 , one-shot optimal singlet fraction and entanglement negativity are attained only with appropriate nonmaximally entangled states. A consequence of our results is that the ordering of entangled states in all finite dimensions may not be preserved under trace-preserving LOCC.

  12. Direct Detection of a Chemical Equilibrium between a Localized Singlet Diradical and Its σ-Bonded Species by Time-Resolved UV/Vis and IR Spectroscopy.

    Science.gov (United States)

    Yoshidomi, Shohei; Mishima, Megumi; Seyama, Shin; Abe, Manabu; Fujiwara, Yoshihisa; Ishibashi, Taka-Aki

    2017-03-06

    Localized singlet diradicals are key intermediates in bond homolyses. The singlet diradicals are energetically much less stable than the σ-bonded species. In general, only one-way reactions from diradicals to σ-bonded species are observed. In this study, a thermal equilibrium between a singlet 1,2-diazacyclopentane-3,5-diyl diradical and the corresponding σ-bonded species was directly observed. The singlet diradical was more stable than the σ-bonded species. The solvent effect clarified key features, such as the zwitterionic character of the singlet diradical. The effect of the nitrogen atoms is discussed in detail. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Singlet oxygen feedback delayed fluorescence of protoporphyrin IX in organic solutions.

    Science.gov (United States)

    Vinklárek, Ivo S; Scholz, Marek; Dědic, Roman; Hála, Jan

    2017-04-12

    Delayed fluorescence (DF) of protoporphyrin IX (PpIX) has been recently proposed as a tool for monitoring of mitochondrial oxygen tension in vivo as well as for observation of the effectiveness of photodynamic therapy (PDT) [E. G. Mik, Anesth. Analg., 2013, 117, 834-346; F. Piffaretti et al., J. Biomed. Opt., 2012, 17, 115007]. However, the efficiency of the mechanism of thermal activation (E-type DF), which was considered in the papers, is limited due to a large energy gap between the first excited singlet and the first triplet state of PpIX at room or body temperatures. Moreover, the energy gap is roughly equal to other porphyrinoid photosensitizers that generate DF mostly through the Singlet Oxygen Feedback-Induced mechanism (SOFDF) under certain conditions [M. Scholz and R. Dědic, Singlet Oxygen: Applications in Biosciences and Nanosciences, 2016, vol. 2, pp. 63-81]. The mechanisms of delayed fluorescence of PpIX dissolved either in dimethylformamide (DMF) or in the mixture of DMF with ethylene glycol (EG) were investigated at atmospheric partial pressure of oxygen by means of a simultaneous time-resolved detection of 1 O 2 phosphorescence and PpIX DF which makes a direct comparison of the kinetics and lifetimes of both the luminescence channels possible. Samples of PpIX (100 μM) exhibit concave DF kinetics, which is a typical footprint of the SOFDF mechanism. The dramatic decrease in the DF intensity after adding a selective 1 O 2 quencher sodium azide (NaN 3 , 10 mM) proves that >90% of DF is indeed generated through SOFDF. Moreover, the analysis of the DF kinetics in the presence of NaN 3 implies that the second significant mechanism of DF generation is the triplet-triplet annihilation (P-type DF). The bimolecular mechanism of DF was further confirmed by the decrease of the DF intensity in the more viscous mixture DMF/EG and by the increase of the ratio of DF to the prompt fluorescence (PF) intensity with the increasing excitation intensity. These results

  14. Ground water '89

    International Nuclear Information System (INIS)

    1989-01-01

    The proceedings of the 5th biennial symposium of the Ground Water Division of the Geological Society of South Africa are presented. The theme of the symposium was ground water and mining. Papers were presented on the following topics: ground water resources; ground water contamination; chemical analyses of ground water and mining and its influece on ground water. Separate abstracts were prepared for 5 of the papers presented. The remaining papers were considered outside the subject scope of INIS

  15. Gravitational waves at aLIGO and vacuum stability with a scalar singlet extension of the standard model

    NARCIS (Netherlands)

    Balazs, Csaba; Fowlie, Andrew; Mazumdar, Anupam; White, Graham A.

    2017-01-01

    A new gauge singlet scalar field can undergo a strongly first-order phase transition (PT) leading to gravitational waves (GW) potentially observable at aLIGO and stabilizes the electroweak vacuum at the same time by ensuring that the Higgs quartic coupling remains positive up to at least the grand

  16. An analytical expression for the non-singlet structure functions at small χ in the double logarithmic approximation

    International Nuclear Information System (INIS)

    Lublinsky, M.

    2004-01-01

    A simple analytic expression for the non-singlet structure function fns is given. The expression is derived from the result of B. I. Ermolaev et al. (1996) obtained by low x resummation of the quark ladder diagrams in the double logarithmic approximation of perturbative QCD. (orig.)

  17. Gold nanoring-enhanced generation of singlet oxygen: an intricate correlation with surface plasmon resonance and polyelectrolyte bilayers

    Czech Academy of Sciences Publication Activity Database

    Hu, Y.; Kaňka, Jiří; Liu, K.; Yang, Y.; Wang, H.; Du, H.

    2016-01-01

    Roč. 6, č. 106 (2016), s. 104819-104826 ISSN 2046-2069 R&D Projects: GA ČR(CZ) GBP205/12/G118 Institutional support: RVO:67985882 Keywords : Singlet oxygen * Fluorescence * Gold nanorings Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.108, year: 2016

  18. Irradiation- and Sensitizer-Dependent Changes in the Lifetime of Intracellular Singlet Oxygen Produced in a Photosensitized Process

    DEFF Research Database (Denmark)

    Silva, Elsa; Pedersen, Brian Wett; Breitenbach, Thomas

    2012-01-01

    Singlet oxygen, O2(a1Δg), was produced upon pulsed-laser irradiation of an intracellular photosensitizer and detected by its 1275 nm O2(a1Δg) →O2(X3Σg-) phosphorescence in time-resolved experiments using (1) individual mammalian cells on the stage of a microscope and (2) suspensions of mammalian...

  19. Impact of Dielectric Constant on the Singlet-Triplet Gap in Thermally Activated Delayed Fluorescence (TADF) Materials

    KAUST Repository

    Sun, Haitao; Hu, Zhubin; Zhong, Cheng; Chen, Xiankai; Sun, Zhenrong; Bredas, Jean-Luc

    2017-01-01

    Thermally activated delayed fluorescence (TADF) relies on the presence of a very small energy gap, ΔEST, between the lowest singlet and triplet excited states. ΔEST is thus a key factor in the molecular design of more efficient materials. However

  20. Generalized One-Band Model Based on Zhang-Rice Singlets for Tetragonal CuO

    Science.gov (United States)

    Hamad, I. J.; Manuel, L. O.; Aligia, A. A.

    2018-04-01

    Tetragonal CuO (T-CuO) has attracted attention because of its structure similar to that of the cuprates. It has been recently proposed as a compound whose study can give an end to the long debate about the proper microscopic modeling for cuprates. In this work, we rigorously derive an effective one-band generalized t -J model for T-CuO, based on orthogonalized Zhang-Rice singlets, and make an estimative calculation of its parameters, based on previous ab initio calculations. By means of the self-consistent Born approximation, we then evaluate the spectral function and the quasiparticle dispersion for a single hole doped in antiferromagnetically ordered half filled T-CuO. Our predictions show very good agreement with angle-resolved photoemission spectra and with theoretical multiband results. We conclude that a generalized t -J model remains the minimal Hamiltonian for a correct description of single-hole dynamics in cuprates.

  1. Effect of CP violation in the singlet-doublet dark matter model

    Directory of Open Access Journals (Sweden)

    Tomohiro Abe

    2017-08-01

    Full Text Available We revisit the singlet-doublet dark matter model with a special emphasis on the effect of CP violation on the dark matter phenomenology. The CP violation in the dark sector induces a pseudoscalar interaction of a fermionic dark matter candidate with the SM Higgs boson. The pseudoscalar interaction helps the dark matter candidate evade the strong constraints from the dark matter direct detection experiments. We show that the model can explain the measured value of the dark matter density even if dark matter direct detection experiments do not observe any signal. We also show that the electron electric dipole moment is an important complement to the direct detection for testing this model. Its value is smaller than the current upper bound but within the reach of future experiments.

  2. Simplified models for Higgs physics: singlet scalar and vector-like quark phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Matthew J. [ARC Centre of Excellence for Particle Physics at the Terascale,School of Physics, University of Melbourne,Melbourne 3010 (Australia); Hewett, J.L. [SLAC National Accelerator Laboratory,Menlo Park 94025, CA (United States); Krämer, M. [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University,D-52056 Aachen (Germany); Rizzo, T.G. [SLAC National Accelerator Laboratory,Menlo Park 94025, CA (United States)

    2016-07-08

    Simplified models provide a useful tool to conduct the search and exploration of physics beyond the Standard Model in a model-independent fashion. In this work we consider the complementarity of indirect searches for new physics in Higgs couplings and distributions with direct searches for new particles, using a simplified model which includes a new singlet scalar resonance and vector-like fermions that can mix with the SM top-quark. We fit this model to the combined ATLAS and CMS 125 GeV Higgs production and coupling measurements and other precision electroweak constraints, and explore in detail the effects of the new matter content upon Higgs production and kinematics. We highlight some novel features and decay modes of the top partner phenomenology, and discuss prospects for Run II.

  3. Stability of O/W Emulsion with Synthetic Perfumes Oxidized by Singlet Oxygen

    Directory of Open Access Journals (Sweden)

    Naoki Watabe

    2013-01-01

    Full Text Available We prepared O/W emulsion composed of a synthetic perfume, n-dodecane, protoporphyrin IX disodium salt (PpIX-2Na, sodium dodecyl sulfate, and water and investigated oxidative decomposition of the synthetic perfume in the emulsion and change in the stability of the emulsion by singlet oxygen (1O2 generated by photosensitization of PpIX-2Na. We used eugenol, linalool, benzyl acetate, α-ionone, α-hexylcinnamaldehyde, and d-limonene as a synthetic perfume. The stability of the O/W emulation including eugenol and linalool significantly decreased with increasing light irradiation time. The decrease in the emulsion stability may be attributable to oxidative decomposition of eugenol and linalool by 1O2 and enlargement of the oil droplet size.

  4. Next-to-next-to-leading order evolution of non-singlet fragmentation functions

    International Nuclear Information System (INIS)

    Mitov, A.; Moch, S.; Vogt, A.

    2006-04-01

    We have investigated the next-to-next-to-leading order (NNLO) corrections to inclusive hadron production in e + e - annihilation and the related parton fragmentation distributions, the 'time-like' counterparts of the 'space-like' deep-inelastic structure functions and parton densities. We have re-derived the corresponding second-order coefficient functions in massless perturbative QCD, which so far had been calculated only by one group. Moreover we present, for the first time, the third-order splitting functions governing the NNLO evolution of flavour non-singlet fragmentation distributions. These results have been obtained by two independent methods relating time-like quantities to calculations performed in deep-inelastic scattering. We briefly illustrate the numerical size of the NNLO corrections, and make a prediction for the difference of the yet unknown time-like and space-like splitting functions at the fourth order in the strong coupling constant. (Orig.)

  5. On higher-order flavour-singlet splitting and coefficient functions at large x

    International Nuclear Information System (INIS)

    Vogt, A.; Soar, G.; Vermaseren, J.A.M.

    2010-08-01

    We discuss the large-x behaviour of the splitting functions P qg and P gq and of flavour-singlet coefficient functions, such as the gluon contributions C 2,g and C L,g to the structure functions F 2,L , in massless perturbative QCD. These quantities are suppressed by one or two powers of (1-x) with respect to the (1-x) -1 terms which are the subject of the well-known threshold exponentiation. We show that the double-logarithmic contributions to P qg , P gq and C L at order α s 4 can be predicted from known third-order results and present, as a first step towards a full all-order generalization, the leading-logarithmic large-x behaviour of P qg , P gq and C 2,g at all orders in α s . (orig.)

  6. Tunneling Conductance in Ferromagnetic Metal/Normal Metal/Spin-Singlet -Wave Ferromagnetic Superconductor Junctions

    Directory of Open Access Journals (Sweden)

    Hamidreza Emamipour

    2013-01-01

    Full Text Available In the framework of scattering theory, we study the tunneling conductance in a system including two junctions, ferromagnetic metal/normal metal/ferromagnetic superconductor, where ferromagnetic superconductor is in spin-singlet -wave pairing state. The non-magnetic normal metal is placed in the intermediate layer with the thickness ( which varies from 1 nm to 10000 nm. The interesting result which we have found is the existence of oscillations in conductance curves. The period of oscillations is independent of FS and FN exchange field while it depends on . The obtained results can serve as a useful tool to determine the kind of pairing symmetry in ferromagnetic superconductors.

  7. Kinetic and mechanisms of methanimine reactions with singlet and triplet molecular oxygen: Substituent and catalyst effects

    Science.gov (United States)

    Asgharzadeh, Somaie; Vahedpour, Morteza

    2018-06-01

    Methanimine reaction with O2 on singlet and triplet potential energy surfaces are investigated using B3PW91, M06-2X, MP2 and CCSD(T) methods. Thermodynamic and kinetic parameters are calculated at M06-2X method. The most favorable channel involves H-abstraction of CH2NH+O2 to the formation of HCN + H2O2 products via low level energy barrier. The catalytic effect of water molecule on HCN + H2O2 products pathway are investigated. Result shows that contribution of water molecule using complex formation with methanimine can decreases barrier energy of transition state and the reaction rate increases. Also, substituent effect of fluorine atom as deactivating group are investigated on the main reaction pathway.

  8. Statistical equilibrium in cometary C2. IV. A 10 level model including singlet-triplet transitions

    International Nuclear Information System (INIS)

    Krishna Swamy, K.S.; O'dell, C.R.; Rice Univ., Houston, TX)

    1987-01-01

    Resonance fluorescence theory was used to calculate the population distribution in the energy states of the C2 molecule in comets. Ten electronic states, each with 14 vibrational states, were used in the calculations. These new calculations differ from earlier work in terms of additional electronic levels and the role of singlet-triplet transitions between the b and X levels. Since transition moments are not known, calculations are made of observable flux ratios for an array of possible values. Comparison with existing observations indicates that the a-X transition is very important, and there is marginal indication that the b-X transition is present. Swan band sequence flux ratios at large heliocentric distance are needed, as are accurate Mulliken/Swan and Phillips/Ballik-Ramsay (1963) observations. 29 references

  9. Liquid direct correlation function, singlet densities and the theory of freezing

    International Nuclear Information System (INIS)

    March, N.H.; Tosi, M.P.

    1981-04-01

    We have examined the solutions for the singlet density rho(r) in the hierarchical equation connecting rho(r) with the liquid direct correlation function c(r). In addition to the homogeneous solution rho(r)=rhosub(liquid), we exhibit a periodic solution which can co-exist with the liquid solution. If the defining equation for this is linearized, we recover the bifurcation condition of Lovett and Buff. We stress the difference between the two treatments as that between first and second-order transitions. It turns out that the treatment presented here leads to the same periodic density as that derived, using the hypernetted chain approximation, by Ramakrishnan and Yussouff in their theory of freezing. Invoking that approximation is shown thereby to be inessential. (author)

  10. Properties of pseudoscalar flavour-singlet mesons from 2+1+1 twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Cichy, Krzysztof; Poznan Univ.; Drach, Vincent; Garcia Ramos, Elena; Jansen, Karl; Michael, Chris; Ottnad, Konstantin; Urbach, Carsten; Zimmermann, Falk

    2012-11-01

    We study properties of pseudoscalar flavour-singlet mesons from Wilson twisted mass lattice QCD with N f =2+1+1 dynamical quark flavors. Results for masses are presented at three values of the lattice spacing and light quark masses corresponding to values of the pion mass from 230 MeV to 500 MeV. We briefly discuss scaling effects and the light and strange quark mass dependence of M η . In addition we present an exploratory study using Osterwalder-Seiler type strange and charm valence quarks. This approach avoids some of the complications of the twisted mass heavy doublet. We present first results for matching valence and unitary actions and a comparison of statistical uncertainties.

  11. Flavor singlet contribution to the structure function g1 at small-x

    International Nuclear Information System (INIS)

    Bartels, J.; Ryskin, M.G.

    1996-02-01

    The singlet contribution to the g 1 (x, Q 2 ) structure function are calculated in the double-logarithmic approximation of perturbative QCD in the region x s ln 2 (1/x)) k which are not included in the GLAP evolution equations are shown to give a power-like rise at small-x which is much stronger than the extrapolation of the GLAP expressions. The dominant contribution is due to the gluons which, in contrast to the unpolarized case, mix with the fermions also in the region x<<1. The two main reasons why the small-x behavior of the double logarithmic approximation is so much stronger than the usual GLAP evolution are: the larger kinematical region of integration (in particular, no ordering in transverse momentum) and the contributions from non-ladder diagrams. (orig.)

  12. LHC benchmark scenarios for the real Higgs singlet extension of the standard model

    International Nuclear Information System (INIS)

    Robens, Tania; Stefaniak, Tim

    2016-01-01

    We present benchmark scenarios for searches for an additional Higgs state in the real Higgs singlet extension of the Standard Model in Run 2 of the LHC. The scenarios are selected such that they fulfill all relevant current theoretical and experimental constraints, but can potentially be discovered at the current LHC run. We take into account the results presented in earlier work and update the experimental constraints from relevant LHC Higgs searches and signal rate measurements. The benchmark scenarios are given separately for the low-mass and high-mass region, i.e. the mass range where the additional Higgs state is lighter or heavier than the discovered Higgs state at around 125 GeV. They have also been presented in the framework of the LHC Higgs Cross Section Working Group. (orig.)

  13. Covalent dimers of 1,3-diphenylisobenzofuran for singlet fission: synthesis and electrochemistry.

    Science.gov (United States)

    Akdag, Akin; Wahab, Abdul; Beran, Pavel; Rulíšek, Lubomír; Dron, Paul I; Ludvík, Jiří; Michl, Josef

    2015-01-02

    The synthesis of covalent dimers in which two 1,3-diphenylisobenzofuran units are connected through one phenyl substituent on each is reported. In three of the dimers, the subunits are linked directly, and in three others, they are linked via an alkane chain. A seventh new compound in which two 1,3-diphenylisobenzofuran units share a phenyl substituent is also described. These materials are needed for investigations of the singlet fission process, which promises to increase the efficiency of solar cells. The electrochemical oxidation and reduction of the monomer, two previously known dimers, and the seven new compounds have been examined, and reversible redox potentials have been compared with results obtained from density functional theory. Although the overall agreement is satisfactory, some discrepancies are noted and discussed.

  14. Continuous-flow oxidative cyanation of primary and secondary amines using singlet oxygen.

    Science.gov (United States)

    Ushakov, Dmitry B; Gilmore, Kerry; Kopetzki, Daniel; McQuade, D Tyler; Seeberger, Peter H

    2014-01-07

    Primary and secondary amines can be rapidly and quantitatively oxidized to the corresponding imines by singlet oxygen. This reactive form of oxygen was produced using a variable-temperature continuous-flow LED-photoreactor with a catalytic amount of tetraphenylporphyrin as the sensitizer. α-Aminonitriles were obtained in good to excellent yields when trimethylsilyl cyanide served as an in situ imine trap. At 25°C, primary amines were found to undergo oxidative coupling prior to cyanide addition and yielded secondary α-aminonitriles. Primary α-aminonitriles were synthesized from the corresponding primary amines for the first time, by an oxidative Strecker reaction at -50 °C. This atom-economic and protecting-group-free pathway provides a route to racemic amino acids, which was exemplified by the synthesis of tert-leucine hydrochloride from neopentylamine. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Factors influencing the regioselectivity of the oxidation of asymmetric secondary amines with singlet oxygen.

    Science.gov (United States)

    Ushakov, Dmitry B; Plutschack, Matthew B; Gilmore, Kerry; Seeberger, Peter H

    2015-04-20

    Aerobic amine oxidation is an attractive and elegant process for the α functionalization of amines. However, there are still several mechanistic uncertainties, particularly the factors governing the regioselectivity of the oxidation of asymmetric secondary amines and the oxidation rates of mixed primary amines. Herein, it is reported that singlet-oxygen-mediated oxidation of 1° and 2° amines is sensitive to the strength of the α-C-H bond and steric factors. Estimation of the relative bond dissociation energy by natural bond order analysis or by means of one-bond C-H coupling constants allowed the regioselectivity of secondary amine oxidations to be explained and predicted. In addition, the findings were utilized to synthesize highly regioselective substrates and perform selective amine cross-couplings to produce imines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. MC-PDFT can calculate singlet-triplet splittings of organic diradicals

    Science.gov (United States)

    Stoneburner, Samuel J.; Truhlar, Donald G.; Gagliardi, Laura

    2018-02-01

    The singlet-triplet splittings of a set of diradical organic molecules are calculated using multiconfiguration pair-density functional theory (MC-PDFT), and the results are compared with those obtained by Kohn-Sham density functional theory (KS-DFT) and complete active space second-order perturbation theory (CASPT2) calculations. We found that MC-PDFT, even with small and systematically defined active spaces, is competitive in accuracy with CASPT2, and it yields results with greater accuracy and precision than Kohn-Sham DFT with the parent functional. MC-PDFT also avoids the challenges associated with spin contamination in KS-DFT. It is also shown that MC-PDFT is much less computationally expensive than CASPT2 when applied to larger active spaces, and this illustrates the promise of this method for larger diradical organic systems.

  17. Solving the Little Hierarchy Problem with a Singlet and Explicit μ Terms

    International Nuclear Information System (INIS)

    Delgado, Antonio; Kolda, Christopher; Olson, J. Pocahontas; Puente, Alejandro de la

    2010-01-01

    We present a generalization of the next-to-minimal supersymmetric standard model, with an explicit μ term and a supersymmetric mass for the singlet superfield, as a route to alleviating the little hierarchy problem of the minimal supersymmetric standard model (MSSM). Though this model does not address the μ problem of the MSSM, we are able to generate masses for the lightest neutral Higgs boson up to 140 GeV with top squarks below the TeV scale, all couplings perturbative to the gauge unification scale, and with no need to fine-tune parameters in the scalar potential. This model more closely resembles the MSSM phenomenologically than the canonical next-to-minimal supersymmetric standard model.

  18. Properties of pseudoscalar flavour-singlet mesons from 2+1+1 twisted mass lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Drach, Vincent; Garcia Ramos, Elena; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Michael, Chris [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Ottnad, Konstantin; Urbach, Carsten; Zimmermann, Falk [Bonn Univ. (Germany). Inst. fuer Strahlen- und Kernphysik

    2012-11-15

    We study properties of pseudoscalar flavour-singlet mesons from Wilson twisted mass lattice QCD with N{sub f}=2+1+1 dynamical quark flavors. Results for masses are presented at three values of the lattice spacing and light quark masses corresponding to values of the pion mass from 230 MeV to 500 MeV. We briefly discuss scaling effects and the light and strange quark mass dependence of M{sub {eta}}. In addition we present an exploratory study using Osterwalder-Seiler type strange and charm valence quarks. This approach avoids some of the complications of the twisted mass heavy doublet. We present first results for matching valence and unitary actions and a comparison of statistical uncertainties.

  19. Collider constraints and prospects of a scalar singlet extension to Higgs portal dark matter

    International Nuclear Information System (INIS)

    Dupuis, Grace

    2016-01-01

    This work considers an extension of the Standard Model (SM) Higgs sector by a real, scalar singlet field, including applicability to a dark matter (DM) model with the addition of a Yukawa coupling to a fermionic dark matter candidate. The collider signatures and constraints on the mixed two-Higgs scenario are determined, including limits from Higgs production signals and exclusion searches, as well as constraints arising from the Higgs total and invisible widths. As there is overwhelming Higgs data which is consistent with a SM scenario, the case in which an additional scalar has evaded detection is further explored in the context of Higgs precision measurement. The discovery reach and prospective signatures of the model at a proposed linear collider are investigated, with particular focus on the Higgs triple coupling, and di-Higgs production processes.

  20. Spectroscopy and intramolecular relaxation of methyl salicylate in its first excited singlet state

    Science.gov (United States)

    Kuper, Jerry W.; Perry, David S.

    1984-05-01

    High resolution fluorescence excitation experiments are reported for the blue emitting rotamer of methyl salicylate in its first excited singlet state. These experiments employ moderate expansions of methyl salicylate seeded in argon ( P0D=5-8 Torr cm) to achieve rotational and vibrational cooling in a pulsed supersonic jet. The rotational contour of the electronic origin at 30 055.3 cm-1 is shown to be consistent with a geometrically distorted π-π* excited state, partially polarized along the A axis and with a rotational temperature of 5-7 K. A noticeable broadening of the spectral features beyond the rotational contour begins at 500 cm-1 above the origin and then increases rapidly above 900 cm-1 reaching a width of 12 cm-1 near 1200 cm-1. The constancy of fluorescence decay lifetimes in this region indicate that intramolecular vibrational relaxation in the S1 manifold is the broadening mechanism.

  1. Quantum and Statistical Mechanics Applied to Singlet Carbenes, Pericyclic Reactions, and Condensed Phase Phenomena

    Science.gov (United States)

    Evanseck, Jeffrey Donald

    The completed research covers a broad range of theoretical applications in organic chemistry. It is divided into three chapters which covers the chemistry of singlet carbenes (Chapter 1), substituent effects in pericyclic rearrangements (Chapter 2), and the effects of solvent on the reactivity of organic reactions (Chapter 3). The selectivity between 1,2- and 1,4-intramolecular additions to restricted diene systems has been investigated. A decrease in activation energy for the intramolecular cycloaddition is noted for systems which approach the idealized geometry found with intermolecular addition of carbenes to olefins. Direct substitution at the carbene site dramatically effects the predicted activation barriers for 1,2-hydrogen shifts. An excellent correlation between the activation energy and a substituents sigma_sp {rm R}{rm o} parameters has been demonstrated. The long standing problem of orbital alignment influences on the selectivity of 1,2-hydrogen arrangements shows significant geometric distortions, yet has little influence on the rates of singlet alkylcarbene rearrangements. The exo-selectivities observed for 1,2-shifts in rigid systems are explained by torsional and steric interactions which develop in the transition structures. Substituent effects on pericyclic reactions have been computed for several conrotatory and disrotatory electrocyclizations. The six-electron disrotatory electrocyclization of 1-substituted hexatrienes displays a strong electronic component in determining stereoselectivity, despite incredible steric interference. The eight-electron conrotatory electrocyclization transition structure of 1-substituted octatetraene has an unusual helical transition structure which does not differentiate between substituent position. The effects of solvents on the acidity differences between E and Z esters has supplemented earlier ab initio quantum mechanical results on the enhanced acidity of Meldrum's acid. Monte Carlo simulations predict a

  2. Influence of clay minerals on curcumin properties: Stability and singlet oxygen generation

    Science.gov (United States)

    Gonçalves, Joyce L. S.; Valandro, Silvano R.; Poli, Alessandra L.; Schmitt, Carla C.

    2017-09-01

    Curcumin (CUR) has showed promising photophysical properties regarding to biological and chemical sciences. However, the main barrier for those applications are their low solubility and stability in aqueous solution. The effects of two different clay minerals, the montmorillonite (SWy-2) and the Laponite RD (Lap) nanoclay, on the stabilization of Curcumin were investigated. Their effects were compared with two well-established environments (acidic and neutral aqueous media). CUR/clay hybrids were prepared using a simple and fast method, where CUR solution was added into clay suspensions, to obtain well dispersed hybrids in water. The degradation process of CUR and CUR/clays hybrids was investigated using UV-Vis spectroscopic. For both studied hybrids, the CUR degradation process was suppressed by the presence of the clay particles. Furthermore, the Lap showed a great stabilization effect than SWy-2. This behavior was due to the smaller particle size and higher exfoliation ability of Lap, providing a large surface for CUR adsorption compared to SWy-2. The degradation process of CUR solutions and CUR/clay hybrids was also studied in the presence of light. CUR photodegradation process was faster not only in the aqueous solution but also in the clay suspension compared to those studied in the dark. The presence of clay particles accelerated the photodegradation of CUR due to the products formation in the reactions between CUR and oxygen radicals. Our results showed that the singlet oxygen quantum yield (ΦΔ) of CUR were about 59% higher in the clay suspensions than CUR in aqueous solution. Therefore, the formation of CUR/clay hybrids, in particularly with Lap, suppressed the degradation in absence light of CUR and increased the singlet oxygen generation, which makes this hybrids of CUR/clay a promising material to enlarge the application of CUR in the biological sciences.

  3. keV sterile neutrino dark matter from singlet scalar decays: basic concepts and subtle features

    International Nuclear Information System (INIS)

    Merle, Alexander; Totzauer, Maximilian

    2015-01-01

    We perform a detailed and illustrative study of the production of keV sterile neutrino Dark Matter (DM) by decays of singlet scalars in the early Universe. In the current study we focus on providing a clear and general overview of this production mechanism. For the first time we study all regimes possible on the level of momentum distribution functions, which we obtain by solving a system of Boltzmann equations. These quantities contain the full information about the production process, which allows us to not only track the evolution of the DM generation but to also take into account all bounds related to the spectrum, such as constraints from structure formation or from avoiding too much dark radiation. In particular we show that this simple production mechanism can, depending on the regime, lead to strongly non-thermal DM spectra which may even feature more than one peak in the momentum distribution. These cases could have particularly interesting consequences for cosmological structure formation, as their analysis requires more refined tools than the simplistic estimate using the free-streaming horizon. Here we present the mechanism including all concepts and subtleties involved, for now using the assumption that the effective number of relativistic degrees of freedom is constant during DM production, which is applicable in a significant fraction of the parameter space. This allows us to derive analytical results to back up our detailed numerical computations, thus leading to the most comprehensive picture of keV sterile neutrino DM production by singlet scalar decays that exists up to now

  4. Effects of Crystal Morphology on Singlet Exciton Fission in Diketopyrrolopyrrole Thin Films.

    Science.gov (United States)

    Hartnett, Patrick E; Margulies, Eric A; Mauck, Catherine M; Miller, Stephen A; Wu, Yilei; Wu, Yi-Lin; Marks, Tobin J; Wasielewski, Michael R

    2016-02-25

    Singlet exciton fission (SF) is a promising strategy for increasing photovoltaic efficiency, but in order for SF to be useful in solar cells, it should take place in a chromophore that is air-stable, highly absorptive, solution processable, and inexpensive. Unlike many SF chromophores, diketopyrrolopyrrole (DPP) conforms to these criteria, and here we investigate SF in DPP for the first time. SF yields in thin films of DPP derivatives, which are widely used in organic electronics and photovoltaics, are shown to depend critically on crystal morphology. Time-resolved spectroscopy of three DPP derivatives with phenyl (3,6-diphenylpyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione, PhDPP), thienyl (3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione, TDPP), and phenylthienyl (3,6-di(5-phenylthiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione, PhTDPP) aromatic substituents in 100-200 nm thin films reveals that efficient SF occurs only in TDPP and PhTDPP (τSF = 220 ± 20 ps), despite the fact that SF is most exoergic in PhDPP. This result correlates well with the greater degree of π-overlap and closer π-stacking in TDPP (3.50 Å) and PhTDPP (3.59 Å) relative to PhDPP (3.90 Å) and demonstrates that SF in DPP is highly sensitive to the electronic coupling between adjacent chromophores. The triplet yield in PhTDPP films is determined to be 210 ± 35% by the singlet depletion method and 165 ± 30% by the energy transfer method, showing that SF is nearly quantitative in these films and that DPP derivatives are a promising class of SF chromophores for enhancing photovoltaic performance.

  5. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    Energy Technology Data Exchange (ETDEWEB)

    Azyazov, V.N., E-mail: azyazov@fian.smr.ru [Samara State Aerospace University, 443086 (Russian Federation); Lebedev Physical Institute of RAS, Samara 443011 (Russian Federation); Torbin, A.P.; Pershin, A.A. [Samara State Aerospace University, 443086 (Russian Federation); Lebedev Physical Institute of RAS, Samara 443011 (Russian Federation); Mikheyev, P.A., E-mail: mikheyev@fian.smr.ru [Samara State Aerospace University, 443086 (Russian Federation); Lebedev Physical Institute of RAS, Samara 443011 (Russian Federation); Heaven, M.C., E-mail: mheaven@emory.edu [Emory University, Atlanta, GA 30322 (United States)

    2015-12-16

    Highlights: • Vibrational excitation of O{sub 3} increases the rate constant for O{sub 3} + O{sub 2}(a) → 2O{sub 2}(X) + O. • Vibrationally excited O{sub 3} is produced by the O + O{sub 2}(X) + M → O{sub 3} + M reaction. • Ozone concentrations are impacted by the reactions of vibrationally excited O{sub 3}. • Relevant to ozone concentrations in oxygen discharges and the upper atmosphere. - Abstract: The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O{sub 3}(υ) formed in O + O{sub 2} recombination is thought to be a significant agent in the deactivation of singlet oxygen O{sub 2}(a{sup 1}Δ), oxygen atom removal and ozone formation. It is shown that the process O{sub 3}(υ ⩾ 2) + O{sub 2}(a{sup 1}Δ) → 2O{sub 2} + O is the main O{sub 2}(a{sup 1}Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O{sub 2}(a{sup 1}Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  6. Unveiling Singlet Fission Mediating States in TIPS-pentacene and its Aza Derivatives.

    Science.gov (United States)

    Herz, Julia; Buckup, Tiago; Paulus, Fabian; Engelhart, Jens U; Bunz, Uwe H F; Motzkus, Marcus

    2015-06-25

    Femtosecond pump-depletion-probe experiments were carried out in order to shed light on the ultrafast excited-state dynamics of triisopropylsilylethynyl (TIPS)-pentacene and two nitrogen-containing derivatives, namely, diaza-TIPS-pentacene and tetraaza-TIPS-pentacene. Measurements performed in the visible and near-infrared spectral range in combination with rate model simulations reveal that singlet fission proceeds via the extremely short-lived intermediate (1)TT state, which absorbs in the near-infrared spectral region only. The T1 → T3 transition probed in the visible region shows a rise time that comprises two components according to a consecutive reaction (S1 → (1)TT → T1). The incorporation of nitrogen atoms into the acene structure leads to shorter dynamics, but the overall triplet formation follows the same kinetic model. This is of particular importance, since experiments on tetraaza-TIPS-pentacene allow for investigation of the triplet state in the visible range without an overlapping singlet contribution. In addition, the pump-depletion-probe experiments show that the triplet absorption in the visible (T1 → T3) and near-infrared (T1 → T2) regions occurs from the same initial state, which was questioned in previous studies. Furthermore, an additional ultrafast transfer between the excited triplet states (T3 → T2) is identified, which is also in agreement with the rate model simulation. By applying depletion pulses, which are resonant with higher vibrational levels, we gain insight into internal vibrational energy redistribution processes within the triplet manifold. This additional information is of great relevance regarding the study of loss channels within these materials.

  7. Conformal complex singlet extension of the Standard Model: scenario for dark matter and a second Higgs boson

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi-Wei; Steele, T.G. [Department of Physics and Engineering Physics, University of Saskatchewan,116 Science Place, Saskatoon, SK, S7N 5E2 (Canada); Hanif, T. [Department of Theoretical Physics, University of Dhaka,Dhaka-1000 (Bangladesh); Mann, R.B. [Department of Physics, University of Waterloo,Waterloo, ON, N2L 3G1 (Canada)

    2016-08-09

    We consider a conformal complex singlet extension of the Standard Model with a Higgs portal interaction. The global U(1) symmetry of the complex singlet can be either broken or unbroken and we study each scenario. In the unbroken case, the global U(1) symmetry protects the complex singlet from decaying, leading to an ideal cold dark matter candidate with approximately 100 GeV mass along with a significant proportion of thermal relic dark matter abundance. In the broken case, we have developed a renormalization-scale optimization technique to significantly narrow the parameter space and in some situations, provide unique predictions for all the model’s couplings and masses. We have found there exists a second Higgs boson with a mass of approximately 550 GeV that mixes with the known 125 GeV Higgs with a large mixing angle sin θ≈0.47 consistent with current experimental limits. The imaginary part of the complex singlet in the broken case could provide axion dark matter for a wide range of models. Upon including interactions of the complex scalar with an additional vector-like fermion, we explore the possibility of a diphoton excess in both the unbroken and the broken cases. In the unbroken case, the model can provide a natural explanation for diphoton excess if extra terms are introduced providing extra contributions to the singlet mass. In the broken case, we find a set of coupling solutions that yield a second Higgs boson of mass 720 GeV and an 830 GeV extra vector-like fermion F, which is able to address the 750 GeV LHC diphoton excess. We also provide criteria to determine the symmetry breaking pattern in both the Higgs and hidden sectors.

  8. Conformal complex singlet extension of the Standard Model: scenario for dark matter and a second Higgs boson

    Science.gov (United States)

    Wang, Zhi-Wei; Steele, T. G.; Hanif, T.; Mann, R. B.

    2016-08-01

    We consider a conformal complex singlet extension of the Standard Model with a Higgs portal interaction. The global U(1) symmetry of the complex singlet can be either broken or unbroken and we study each scenario. In the unbroken case, the global U(1) symmetry protects the complex singlet from decaying, leading to an ideal cold dark matter candidate with approximately 100 GeV mass along with a significant proportion of thermal relic dark matter abundance. In the broken case, we have developed a renormalization-scale optimization technique to significantly narrow the parameter space and in some situations, provide unique predictions for all the model's couplings and masses. We have found there exists a second Higgs boson with a mass of approximately 550 GeV that mixes with the known 125 GeV Higgs with a large mixing angle sin θ ≈ 0.47 consistent with current experimental limits. The imaginary part of the complex singlet in the broken case could provide axion dark matter for a wide range of models. Upon including interactions of the complex scalar with an additional vector-like fermion, we explore the possibility of a diphoton excess in both the unbroken and the broken cases. In the unbroken case, the model can provide a natural explanation for diphoton excess if extra terms are introduced providing extra contributions to the singlet mass. In the broken case, we find a set of coupling solutions that yield a second Higgs boson of mass 720 GeV and an 830 GeV extra vector-like fermion F , which is able to address the 750 GeV LHC diphoton excess. We also provide criteria to determine the symmetry breaking pattern in both the Higgs and hidden sectors.

  9. The effect of gold nanoparticles on exchange processes in collision complexes of triplet and singlet oxygen molecules with excited eosin molecules

    Science.gov (United States)

    Bryukhanov, V. V.; Minaev, B. M.; Tsibul'nikova, A. V.; Slezhkin, V. A.

    2015-07-01

    We have studied exchange processes in contact complexes of triplet eosin molecules with oxygen molecules in the triplet (3Σ{/g -}) and singlet (1Δ g ) states in thin polyvinylbutyral films in the presence of gold nanoparticles. Upon resonant excitation of surface plasmons in gold nanoparticles into the absorption band of eosin molecules-singlet oxygen sensitizers-we have obtained an increase in the intensity of the delayed fluorescence and an increase in the lifetime of the dye with simultaneous quenching of the luminescence of singlet oxygen. The kinetics of the delayed fluorescence of the dye as a result of singlet-triplet annihilation of triplet eosin molecules with singlet oxygen molecules has been investigated. To compare theoretical and experimental data, we have numerically simulated energy transfer processes. Rate constants of energy transfer and of singlet-triplet annihilation, as well as quenching constants of triplet states of the dye by molecular oxygen, have been calculated. Luminescence quantum yield 1Δ g of polyvinylbutyral has been estimated. We have analyzed quantum-chemically electronic mechanisms of singlet-triplet annihilation of oxygen and eosin.

  10. Activation of transcription factor AP-2 mediates UVA radiation- and singlet oxygen-induced expression of the human intercellular adhesion molecule 1 gene

    International Nuclear Information System (INIS)

    Grether-Beck, S.; Olaizola-Horn, S.; Schmitt, H.; Grewe, M.

    1996-01-01

    UVA radiation is the major component of the UV solar spectrum that reaches the earth, and the therapeutic application of UVA radiation is increasing in medicine. Analysis of the cellular effects of UVA radiation has revealed that exposure of human cells to UVA radiation at physiological doses leads to increased gene expression and that this UVA response is primarily mediated through the generation of singlet oxygen. In this study, the mechanisms by which UVA radiation induces transcriptional activation of the human intercellular adhesion molecule 1 (ICAM-1) were examined. UVA radiation was capable of inducing activation of the human ICAM-1 promoter and increasing OCAM-1 mRNA and protein expression. These UVA radiation effects were inhibited by singlet oxygen quenchers, augmented by enhancement of singlet oxygen life-time, and mimicked in unirradiated cells by a singlet oxygen-generating system. UVA radiation as well as singlet oxygen-induced ICAM-1 promoter activation required activation of the transcription factor AP-2. Accordingly, both stimuli activated AP-2, and deletion of the putative AP-2-binding site abrogated ICAM-1 promoter activation in this system. This study identified the AP-2 site as the UVA radiation- and singlet oxygen-responsive element of the human ICAM-1 gene. The capacity of UVA radiation and/or singlet oxygen to induce human gene expression through activation of AP-2 indicates a previously unrecognized role of this transcription factor in the mammalian stress response. 38 refs., 3 figs., 3 tabs

  11. Ground water and energy

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  12. Para-quinodimethane-bridged perylene dimers and pericondensed quaterrylenes: The effect of the fusion mode on the ground states and physical properties

    KAUST Repository

    Das, Soumyajit

    2014-07-23

    Polycyclic hydrocarbon compounds with a singlet biradical ground state show unique physical properties and promising material applications; therefore, it is important to understand the fundamental structure/biradical character/physical properties relationships. In this study, para-quinodimethane (p-QDM)-bridged quinoidal perylene dimers 4 and 5 with different fusion modes and their corresponding aromatic counterparts, the pericondensed quaterrylenes 6 and 7, were synthesized. Their ground-state electronic structures and physical properties were studied by using various experiments assisted with DFT calculations. The proaromatic p-QDM-bridged perylene monoimide dimer 4 has a singlet biradical ground state with a small singlet/triplet energy gap (-2.97 kcalmol-1), whereas the antiaromatic s-indacene-bridged N-annulated perylene dimer 5 exists as a closed-shell quinoid with an obvious intramolecular charge-transfer character. Both of these dimers showed shorter singlet excited-state lifetimes, larger two-photon-absorption cross sections, and smaller energy gaps than the corresponding aromatic quaterrylene derivatives 6 and 7, respectively. Our studies revealed how the fusion mode and aromaticity affect the ground state and, consequently, the photophysical properties and electronic properties of a series of extended polycyclic hydrocarbon compounds. A matter of fusion mode! Fusion of a para-quinodimethane (p-QDM) subunit at the peri and β positions of perylene dimers leads to systems with different ground states, that is, open and closed shell (see picture). These systems showed large two-photon absorption cross sections and ultrafast excited-state dynamics relative to their corresponding pericondensed aromatic quaterrylene counterparts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Excitation energies and properties of open-shell singlet molecules applications to a new class of molecules for nonlinear optics and singlet fission

    CERN Document Server

    Nakano, Masayoshi

    2014-01-01

    This brief investigates the diradical character, which is one of the ground-state chemical indices for 'bond weakness' or 'electron correlation' and which allows researchers to explore the origins of the electron-correlation-driven physico-chemical phenomena concerned with electronic, optical and magnetic properties as well as to control them in the broad fields of physics and chemistry. It then provides the theoretical fundamentals of ground and excited electronic structures of symmetric and asymmetric open-shell molecular systems by using model molecular systems. Moreover, it presents the th

  14. A passive UHF RFID tag chip with a dual-resolution temperature sensor in a 0.18 μm standard CMOS process

    International Nuclear Information System (INIS)

    Feng Peng; Zhang Qi; Wu Nanjian

    2011-01-01

    This paper presents a passive EPC Gen-2 UHF RFID tag chip with a dual-resolution temperature sensor. The chip tag integrates a temperature sensor, an RF/analog front-end circuit, an NVM memory and a digital baseband in a standard CMOS process. The sensor with a low power sigma—delta (ΣΔ) ADC is designed to operate in low and high resolution modes. It can not only achieve the target accuracy but also reduce the power consumption and the sensing time. A CMOS-only RF rectifier and a single-poly non-volatile memory (NVM) are designed to realize a low cost tag chip. The 192-bit-NVM tag chip with an area of 1 mm 2 is implemented in a 0.18-μm standard CMOS process. The sensitivity of the tag is −10.7 dBm/−8.4 dBm when the sensor is disabled/enabled. It achieves a maximum reading/sensing distance of 4 m/3.1 m at 2 W EIRP. The inaccuracy of the sensor is −0.6 °C/0.5 °C (−1.0 °C/1.2 °C) in the operating range from 5 to 15 °C in high resolution mode (−30 to 50 °C in low resolution mode). The resolution of the sensor achieves 0.02 °C (0.18 °C) in high (low) resolution mode. (semiconductor integrated circuits)

  15. Investigation of inertia-gravity waves in the upper troposphere/lower stratosphere over Northern Germany observed with collocated VHF/UHF radars

    Directory of Open Access Journals (Sweden)

    A. Serafimovich

    2005-01-01

    Full Text Available A case study to investigate the properties of inertia-gravity waves in the upper troposphere/lower stratosphere has been carried out over Northern Germany during the occurrence of an upper tropospheric jet in connection with a poleward Rossby wave breaking event from 17-19 December 1999. The investigations are based on the evaluation of continuous radar measurements with the OSWIN VHF radar at Kühlungsborn (54.1 N, 11.8 E and the 482 MHz UHF wind profiler at Lindenberg (52.2 N, 14.1 E. Both radars are separated by about 265 km. Based on wavelet transformations of both data sets, the dominant vertical wavelengths of about 2-4 km for fixed times as well as the dominant observed periods of about 11 h and weaker oscillations with periods of  6 h for the altitude range between 5 and 8 km are comparable. Gravity wave parameters have been estimated at both locations separately and by a complex cross-spectral analysis of the data of both radars. The results show the appearance of dominating inertia-gravity waves with characteristic horizontal wavelengths of  300 km moving in the opposite direction than the mean background wind and a secondary less pronounced wave with a horizontal wavelength in the order of about 200 km moving with the wind. Temporal and spatial differences of the observed waves are discussed.

  16. Ground-based remote sensing observation of the complex behaviour of the Marseille boundary layer during ESCOMPTE

    Science.gov (United States)

    Delbarre, H.; Augustin, P.; Saïd, F.; Campistron, B.; Bénech, B.; Lohou, F.; Puygrenier, V.; Moppert, C.; Cousin, F.; Fréville, P.; Fréjafon, E.

    2005-03-01

    Ground-based remote sensing systems have been used during the ESCOMPTE campaign, to continuously characterize the boundary-layer behaviour through many atmospheric parameters (wind, extinction and ozone concentration distribution, reflectivity, turbulence). This analysis is focused on the comparison of the atmospheric stratification retrieved from a UV angular ozone lidar, an Ultra High Frequency wind profiler and a sodar, above the area of Marseille, on June 26th 2001 (Intensive Observation Period 2b). The atmospheric stratification is shown to be very complex including two superimposed sea breezes, with an important contribution of advection. The temporal and spatial evolution of the stratification observed by the UV lidar and by the UHF radar are in good agreement although the origin of the echoes of these systems is quite different. The complexity of the dynamic situation has only partially been retrieved by a non-hydrostatic mesoscale model used with a 3 km resolution.

  17. Ground States of Ultracold Spin-1 Atoms in a Deep Double-Well Optical Superlattice in a Weak Magnetic Field

    International Nuclear Information System (INIS)

    Zheng Gong-Ping; Qin Shuai-Feng; Wang Shou-Yang; Jian Wen-Tian

    2013-01-01

    The ground states of the ultracold spin-1 atoms trapped in a deep one-dimensional double-well optical superlattice in a weak magnetic field are obtained. It is shown that the ground-state diagrams of the reduced double-well model are remarkably different for the antiferromagnetic and ferromagnetic condensates. The transition between the singlet state and nematic state is observed for the antiferromagnetic interaction atoms, which can be realized by modulating the tunneling parameter or the quadratic Zeeman energy. An experiment to distinguish the different spin states is suggested. (general)

  18. A Singlet Oxygen Photogeneration and Luminescence Study of Unsymmetrically Substituted Mesoporphyrinic Compounds

    Directory of Open Access Journals (Sweden)

    Anabela Sousa Oliveira

    2009-01-01

    Full Text Available This paper deals with a series of new unsymmetrically substituted mesoporphyrins: 5-(2-hydroxyphenyl-10,15,20-tris-phenyl-21,23-H-porphyrin (TPPOHO, 5-(3-hydroxyphenyl-10,15,20-tris-phenyl-21,23-H-porphyrin (TPPOHM, 5-(4-hydroxyphenyl-10,15,20-tris-phenyl-21,23-H-porphyrin (TPPOHP, 5-(2-hydroxyphenyl-10,15,20-tris-butyl-21,23-H-porphyrin (TBPOHO, and their parent nonsubstituted compounds, respectively, 5,10,15,20-tetrakis-phenyl-21,23-H-porphyrin (TPP and 5,10,15,20-tetrakis-butyl-21,23-H-porphyrin (TBP. Several photophysical studies were carried out to access the influence of the unsymmetrical substitution at the porphyrinic macrocycle on porthyrin's photophysical properties, especially porthyrin's efficiency as singlet oxygen sensitizers. The quantum yields of singlet oxygen generation were determined in benzene (ΦΔ(TPP = 0.66 ± 0.05; ΦΔ(TPPOHO = 0.69 ± 0.04; ΦΔ(TPPOHM = 0.62 ± 0.04; ΦΔ(TPPOHP = 0.73 ± 0.03; ΦΔ(TBP = 0.76 ± 0.03; ΦΔ(TBPOHO = 0.73 ± 0.02 using the 5,10,15,20-tetraphenyl-21,23-H-porphine (ΦΔ(TPP = 0.66 and Phenazine (ΦΔ(Phz = 0.83 as reference compounds. Their fluorescence quantum yields were found to be (Φf(TPPOHO = 0.10 ± 0.04; Φf(TPPOHM = 0.09 ± 0.03; Φf(TPPOHP = 0.13 ± 0.02; Φf(TBP = 0.08 ± 0.03 and Φf(TBPOHO = 0.08 ± 0.02 using 5,10,15,20-tetraphenyl-21,23-H-porphine as reference Φf(TPP = 0.13. Singlet state lifetimes were also determined in the same solvent. All the porphyrins presented very similar fluorescence lifetimes (mean values of τS (with O2, air equilibrated = 9.6 ± 0.3 nanoseconds and (without O2, argon purged = 10.1 ± 0.6 nanoseconds, resp.. The phosphorescence emission was found to be negligible for this series of unsymmetrically substituted mesoporphyrins, but an E-type, thermally activated, delayed fluorescence process was proved to occur at room temperature.

  19. Singlet oxygen generation in a high pressure non-self-sustained electric discharge

    International Nuclear Information System (INIS)

    Hicks, Adam; Norberg, Seth; Shawcross, Paul; Lempert, Walter R; Rich, J William; Adamovich, Igor V

    2005-01-01

    This paper presents results of singlet oxygen generation experiments in a high-pressure, non-self-sustained crossed discharge. The discharge consists of a high-voltage, short pulse duration, high repetition rate pulsed discharge, which produces ionization in the flow, and a low-voltage dc discharge which sustains current in a decaying plasma between the pulses. The sustainer voltage can be independently varied to maximize the energy input into electron impact excitation of singlet delta oxygen (SDO). The results demonstrate operation of a stable and diffuse crossed discharge in O 2 -He mixtures at static pressures of at least up to P 0 = 380 Torr and sustainer discharge powers of at least up to 1200 W, achieved at P 0 = 120 Torr. The reduced electric field in the positive column of the sustainer discharge varies from E/N = 0.3 x 10 -16 to 0.65 X 10 -16 V cm 2 , which is significantly lower than E/N in self-sustained discharges and close to the theoretically predicted optimum value for O 2 (a 1 Δ) excitation. Measurements of visible emission spectra O 2 (b 1 Σ → X 3 Σ) in the discharge afterglow show the O 2 (b 1 Σ) concentration to increase with the sustainer discharge power and to decrease as the O 2 fraction in the flow is increased. Rotational temperatures inferred from these spectra in 10% O 2 -90% He flows at P 0 = 120 Torr and mass flow rates of m-dot = 2.2 are 365-465 K. SDO yield at these conditions, 1.7% to 4.4%, was inferred from the integrated intensity of the (0, 0) band of the O 2 (a 1 Δ → X 3 Σ) infrared emission spectra calibrated using a blackbody source. The yield remains nearly constant in the discharge afterglow, up to at least 15 cm distance from the discharge. Kinetic modelling calculations using a quasi-one-dimensional nonequilibrium pulser-sustainer discharge model coupled with the Boltzmann equation for plasma electrons predict gas temperature rise in the discharge in satisfactory agreement with the experimental measurements

  20. Long-Lived Triplet Excited States of Bent-Shaped Pentacene Dimers by Intramolecular Singlet Fission.

    Science.gov (United States)

    Sakuma, Takao; Sakai, Hayato; Araki, Yasuyuki; Mori, Tadashi; Wada, Takehiko; Tkachenko, Nikolai V; Hasobe, Taku

    2016-03-24

    Intramolecular singlet fission (ISF) is a promising photophysical process to construct more efficient light energy conversion systems as one excited singlet state converts into two excited triplet states. Herein we synthesized and evaluated bent-shaped pentacene dimers as a prototype of ISF to reveal intrinsic characters of triplet states (e.g., lifetimes of triplet excited states). In this study, meta-phenylene-bridged TIPS-pentacene dimer (PcD-3Ph) and 2,2'-bipheynyl bridged TIPS-pentacene dimer (PcD-Biph) were newly synthesized as bent-shaped dimers. In the steady-state spectroscopy, absorption and emission bands of these dimers were fully characterized, suggesting the appropriate degree of electronic coupling between pentacene moieties in these dimers. In addition, the electrochemical measurements were also performed to check the electronic interaction between two pentacene moieties. Whereas the successive two oxidation peaks owing to the delocalization were observed in a directly linked-pentacene dimer (PcD) by a single bond, the cyclic voltammograms in PcD-Biph and PcD-3Ph implied the weaker interaction compared to that of p-phenylene-bridged TIPS-pentacene dimer (PcD-4Ph) and PcD. The femtosecond and nanosecond transient absorption spectra clearly revealed the slower ISF process in bent-shaped pentacene dimers (PcD-Biph and PcD-3Ph), more notably, the slower relaxation of the excited triplet states in PcD-Biph and PcD-3Ph. Namely, the quantum yields of triplet states (ΦT) by ISF approximately remain constant (ca. 180-200%) in all dimer systems, whereas the lifetimes of the triplet excited states became much longer (up to 360 ns) in PcD-Biph as compared to PcD-4Ph (15 ns). Additionally, the lifetimes of the corresponding triplet states in PcD-Biph and PcD-3Ph were sufficiently affected by solvent viscosity. In particular, the lifetimes of PcD-Biph triplet state in THF/paraffin (1.0 μs) increased up to approximately three times as compared to that in THF