WorldWideScience

Sample records for ugo fano atomic

  1. In memorium: Ugo Fano (1912-2001)

    International Nuclear Information System (INIS)

    Inokuti, M.

    2001-01-01

    With the passing of Ugo Fano on 13 February 2001, the Radiation Research Society lost an influential founding member. A broader community dearly misses a great theoretical physicist. Ugo Fano was born a son of Rosa Cassin and Gino Fano (1871-1952), professor of mathematics at Turin, Italy, specializing in differential geometry. Having studied mathematics first at the University of Turin, the younger Fano turned to physics under the influence of his cousin, Giulio Racah (1909-1965), a physicist known for the powerful theory of angular momentum. Then Fano was fortunate to receive postdoctoral training from two giants in modern physics: Enrico Fermi at Rome in 1934-1936 and Werner Heisenberg at Leipzig in 1936-1937. Fano's American career began with pioneering work in 1940-1944 in what was later to be called radiation biology with M. Demerec and others at the Department of Genetics of the Carnegie Institution at Cold Spring Harbor. It is noteworthy that, after a seminar in Rome by P. Jordan on the effects of X rays on genetic material, Fermi had suggested to Fano that the biological action of radiation would be an important and suitable topic for study. Fano's papers in this period concerned chromosomal rearrangements, mutations, lethal effects, and genetic effects of X rays and neutrons on Drosophila melanogaster, as well as theoretical analysis of genetic data. His work also included the discovery of bacteriophage-resistant mutants in Escherichia coli, following up earlier studies by Salvador E. Luria. After a wartime effort at the U.S. Army Ballistic Research Laboratory in 1944-1945, Fano joined the staff of the National Bureau of Standards in 1946. Fano's two decades at NBS saw prolific and outstanding contributions to two major areas of research: radiation physics and the basic physics of atoms, molecules and condensed matter. Many of Fano's contributions to radiation physics are seminal to later developments. In 1946, he put forth the first general theory of the

  2. The Scientific Legacy of Ugo Fano

    Science.gov (United States)

    Inokuti, Mitio

    2001-04-01

    In 1934 Fano received a Sc. D. degree in mathematics at University of Turin, Italy (the city of his birth in 1912). He was then led to physics by his cousin Guilio Racah, and received postdoctoral training from Fermi at Rome and from Heisenberg at Leipzig. He worked at institutions near Washington, D. C. during the war, and joined the staff of the National Bureau of Standards in 1946. He became a professor of physics at The University of Chicago in 1966. His contributions to radiation physics, atomic and molecular physics, and statistical physics are extensive and outstanding. Recognition includes many honors such as the Fermi Award by the DOE, and terms such as the Beutler-Fano profile of certain spectral lines, the Fano factor characterizing the fluctuations of the radiation-induced ionization, the Fano-Lichten mechanism for inelastic atomic collisions, and the Fano effect leading to spin-polarized photoelectrons. His work follows a style inherited from Fermi and is characterized by incisive insight into the physics behind experimental data, penetrating mathematical analysis, and close communications with many colleagues. Because he took a leading role in developing new areas of research and in nurturing young scientists, his influence now permeates many topics of physics. They include far uv and soft x-ray spectroscopy with synchrotron radiation and fundamental radiological physics, both stemming from his time at NBS, as well as multi-channel quantum-defect theory and hyperspherical-coordinate approach, both pioneered at Chicago. Fuller accounts of his life and science are seen in Inokuti [1], in Rau [2], and in a forthcoming special issue of Physics Essays in his honor. The present work is supported by U. S. DOE, Office of Science, Nuclear Physics Division, under Contract No. W-31-109-Eng-38. References 1. M. Inokuti, in Fundamental Processes of Atomic Dynamics, J. S. Briggs et al. (eds.), (Plenum, New York, 1988), p. 1. 2. A. R. P. Rau, Comments At. Mol. Phys

  3. The scientific legacy of Ugo Fano

    International Nuclear Information System (INIS)

    Inokuti, M.

    2001-01-01

    In 1934 Fano received a Sc. D. degree in mathematics at University of Turin, Italy (the city of his birth in 1912). He was then led to physics by his cousin Guilio Racah, and received postdoctoral training from Fermi at Rome and from Heisenberg at Leipzig. He worked at institutions near Washington, D. C. during the war, and joined the staff of the National Bureau of Standards in 1946. He became a professor of physics at The University of Chicago in 1966. His contributions to radiation physics, atomic and molecular physics, and statistical physics are extensive and outstanding. Recognition includes many honors such as the Fermi Award by the DOE, and terms such as the Beutler-Fano profile of certain spectral lines, the Fano factor characterizing the fluctuations of the radiation-induced ionization, the Fano-Lichten mechanism for inelastic atomic collisions, and the Fano effect leading to spin-polarized photoelectrons. His work follows a style inherited from Fermi and is characterized by incisive insight into the physics behind experimental data, penetrating mathematical analysis, and close communications with many colleagues. Because he took a leading role in developing new areas of research and in nurturing young scientists, his influence now permeates many topics of physics. They include far uv and soft x-ray spectroscopy with synchrotron radiation and fundamental radiological physics, both stemming from his time at NBS, as well as multi-channel quantum-defect theory and hyperspherical-coordinate approach, both pioneered at Chicago. Fuller accounts of his life and science are seen in Inokuti [1], in Rau [2], and in a forthcoming special issue of Physics Essays in his honor. The present work is supported by U. S. DOE, Office of Science, Nuclear Physics Division, under Contract No. W-31-109-Eng-38. References 1. M. Inokuti, in Fundamental Processes of Atomic Dynamics, J. S. Briggs et al. (eds.), (Plenum, New York, 1988), p. 1. 2. A. R. P. Rau, Comments At. Mol. Phys

  4. Observation of Fano-Type Interference in a Coupled Cavity-Atom System

    International Nuclear Information System (INIS)

    Cheng Yong; Tan Zheng; Wang Jin; Zhan Ming-Sheng; Zhu Yi-Fu

    2016-01-01

    We present the experimental observation of the Fano-type interference in a coupled cavity-atom system by confining the laser-cooled "8"5Rb atoms in an optical cavity. The asymmetric Fano profile is obtained through quantum interference in a three-level atomic system coherently coupled to a single mode cavity field. The observed Fano profile can be explained by the interference between the intra-cavity dark state and the polariton state of the coupled cavity-atom system. The possible applications of our observations include all-optical switching, optical sensing and narrow band optical filters. (paper)

  5. Acoustic Fano resonators

    KAUST Repository

    Amin, Muhammad; Farhat, Mohamed; Bagci, Hakan

    2014-01-01

    The resonances with asymmetric Fano line-shapes were originally discovered in the context of quantum mechanics (U. Fano, Phys. Rev., 124, 1866-1878, 1961). Quantum Fano resonances were generated from destructive interference of a discrete state

  6. Photonic crystal Fano lasers and Fano switches

    DEFF Research Database (Denmark)

    Mørk, Jesper; Yu, Yi; Bekele, Dagmawi Alemayehu

    2017-01-01

    We show that Fano resonances can be realized in photonic crystal membrane structures by coupling line-defect waveguides and point-defect nanocavities. The Fano resonance can be exploited to realize optical switches with very small switching energy, as well as Fano lasers, that can generate short...

  7. Acoustic Fano resonators

    KAUST Repository

    Amin, Muhammad

    2014-07-01

    The resonances with asymmetric Fano line-shapes were originally discovered in the context of quantum mechanics (U. Fano, Phys. Rev., 124, 1866-1878, 1961). Quantum Fano resonances were generated from destructive interference of a discrete state with a continuum one. During the last decade this concept has been applied in plasmonics where the interference between a narrowband polariton and a broader one has been used to generate electromagnetically induced transparency (EIT) (M. Rahmani, et al., Laser Photon. Rev., 7, 329-349, 2013).

  8. Symposium in honour of Ugo Amaldi's 60th birthday

    CERN Document Server

    Myatt, Gerald; Ellis, Jonathan Richard; Kalmus, George Ernest; Llewellyn Smith, Christopher Hubert; Matthiae, Giorgio; Richter, Burton; Wiik, Bjørn Haavard; Winter, Klaus; CERN. Geneva

    1994-12-07

    Ugo Amaldi,a man of science , G Myattpp total cross section, G Matthiae Neutrino physics, K Winter DELPHI & LEP physics, G Kalmus Supersymmetry, J EllisElectron-proton physics, B WiikLinear colliders, B Richter Closing address, C Llewellyn Smith -

  9. The Ghost of Blanco: A Note to Ugo Mattei

    Directory of Open Access Journals (Sweden)

    Michele Surdi

    2012-11-01

    Full Text Available By noting the end of the dualism between public and private law, between state and international law and between goods and services, the article comments and interprets Ugo Mattei’s doctrine about new forms of property. Cognitive transformations, both technological and social, do not prelude to a new and different juridical intermediation as guarantee of the communal regime of goods. These new forms of property, when confronted with the domain that private economic property continues to exercise, do not announce neither the dissolution of the monopoly of state coercion, nor the advent of a merely administrative management.

  10. Classification of smooth Fano polytopes

    DEFF Research Database (Denmark)

    Øbro, Mikkel

    A simplicial lattice polytope containing the origin in the interior is called a smooth Fano polytope, if the vertices of every facet is a basis of the lattice. The study of smooth Fano polytopes is motivated by their connection to toric varieties. The thesis concerns the classification of smooth...... Fano polytopes up to isomorphism. A smooth Fano -polytope can have at most vertices. In case of vertices an explicit classification is known. The thesis contains the classification in case of vertices. Classifications of smooth Fano -polytopes for fixed exist only for . In the thesis an algorithm...... for the classification of smooth Fano -polytopes for any given is presented. The algorithm has been implemented and used to obtain the complete classification for ....

  11. Fano resonances in bilayer phosphorene nanoring

    Science.gov (United States)

    Zhang, Rui; Wu, Zhenhua; Li, X. J.; Li, L. L.; Chen, Qiao; Li, Yun-Mei; Peeters, F. M.

    2018-05-01

    Tunable transport properties and Fano resonances are predicted in a circular bilayer phosphorene nanoring. The conductance exhibits Fano resonances with varying incident energy and applied perpendicular magnetic field. These Fano resonance peaks can be accurately fitted with the well known Fano curves. When a magnetic field is applied to the nanoring, the conductance oscillates periodically with magnetic field which is reminiscent of the Aharonov–Bohm effect. Fano resonances are tightly related to the discrete states in the central nanoring, some of which are tunable by the magnetic field.

  12. Tuning Fano Resonances with Graphene

    DEFF Research Database (Denmark)

    Emani, Naresh K.; Chung, Ting-Fung; Prokopeva, Ludmila

    2013-01-01

    We demonstrate strong electrical control of plasmonic Fano resonances in dolmen structures using tunable interband transitions in graphene. Such graphene-plasmonic hybrid devices can have applications in light modulation and sensing. OCIS codes: (250.5403) Plasmonics; (160.4670) Optical materials...

  13. Seminar in honour of Professor Ugo Amaldi on the occasion of his 65th birthday

    CERN Multimedia

    Paulo Pascoal

    1999-01-01

    Entourant Ugo Amaldi (en haut, au centre), dans le sens des aiguilles d'une montre en partant de sa gauche : Luciano Maiani, Directeur general du CERN, G. Wolf (DESY), G. Kalmus (CERN), D. Treille (CERN), W. Schnell (retraite du CERN), P. Langacker (Universite de Pennsylvanie) et M. Goitein (Northeast Proton Therapy Center, Boston)

  14. Double Fano resonances in plasmon coupling nanorods

    International Nuclear Information System (INIS)

    Liu, Fei; Jin, Jie

    2015-01-01

    Fano resonances are investigated in nanorods with symmetric lengths and side-by-side assembly. Single Fano resonance can be obtained by a nanorod dimer, and double Fano resonances are shown in nanorod trimers with side-by-side assembly. With transverse plasmon excitation, Fano resonances are caused by the destructive interference between a bright superradiant mode and dark subradiant modes. The bright mode originates from the electric plasmon resonance, and the dark modes originate from the magnetic resonances induced by near-field inter-rod coupling. Double Fano resonances result from double dark modes at different wavelengths, which are induced and tuned by the asymmetric gaps between the adjacent nanorods. Fano resonances show a high figure of merit and large light extinction in the periodic array of assembled nanorods, which can potentially be used in multiwavelength sensing in the visible and near-infrared regions. (paper)

  15. Investigations on the parity of Fano resonances in photonic crystals

    DEFF Research Database (Denmark)

    Østerkryger, Andreas Dyhl; de Lasson, Jakob Rosenkrantz; Yu, Yi

    We investigate the relation between the parity of Fano resonances and field distribution in a photonic crystal structure using Fourier modal method, establishing a correlation between Fano parity and field profile.......We investigate the relation between the parity of Fano resonances and field distribution in a photonic crystal structure using Fourier modal method, establishing a correlation between Fano parity and field profile....

  16. Bidirectional waveguide coupling with plasmonic Fano nanoantennas

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Rui; Decker, Manuel, E-mail: manuel.decker@anu.edu.au; Staude, Isabelle; Neshev, Dragomir N.; Kivshar, Yuri S. [Nonlinear Physics Centre and Centre for Ultrahigh Bandwidth Devices for Optical Systems (CUDOS), Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia)

    2014-08-04

    We introduce the concept of a bidirectional, compact single-element Fano nanoantenna that allows for directional coupling of light in opposite directions of a high-index dielectric waveguide for two different operation wavelengths. We utilize a Fano resonance to tailor the radiation phases of a gold nanodisk and a nanoslit that is inscribed into the nanodisk to realize bidirectional scattering. We show that this Fano nanoantenna operates as a bidirectional waveguide coupler at telecommunication wavelengths and, thus, is ideally suitable for integrated wavelength-selective light demultiplexing.

  17. Balanced line bundles on Fano varieties

    DEFF Research Database (Denmark)

    Lehmann, Brian; Tanimoto, Sho; Tschinkel, Yuri

    2018-01-01

    A conjecture of Batyrev and Manin relates arithmetic properties of varieties with ample anticanonical class to geometric invariants. We analyze the geometry underlying these invariants using the Minimal Model Program and then apply our results to primitive Fano threefolds....

  18. Estimation of Fano factor in inorganic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bora, Vaibhav, E-mail: bora.vaibhav@gmail.com [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Barrett, Harrison H., E-mail: barrett@radiology.arizona.edu [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Fastje, David, E-mail: dfastje@gmail.com [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Clarkson, Eric, E-mail: clarkson@radiology.arizona.edu [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Furenlid, Lars, E-mail: furen@radiology.arizona.edu [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Bousselham, Abdelkader, E-mail: abousselham@qf.org.qa [Qatar Foundation, QEERI, P.O. Box 5825, Doha (Qatar); Shah, Kanai S., E-mail: kanaishah@yahoo.com [Radiation Monitoring Devices, Inc., Watertown, MA 02472 (United States); Glodo, Jarek, E-mail: jglodo@rmdinc.com [Radiation Monitoring Devices, Inc., Watertown, MA 02472 (United States)

    2016-01-01

    The Fano factor of an integer-valued random variable is defined as the ratio of its variance to its mean. Correlation between the outputs of two photomultiplier tubes on opposite faces of a scintillation crystal was used to estimate the Fano factor of photoelectrons and scintillation photons. Correlations between the integrals of the detector outputs were used to estimate the photoelectron and photon Fano factor for YAP:Ce, SrI{sub 2}:Eu and CsI:Na scintillator crystals. At 662 keV, SrI{sub 2}:Eu was found to be sub-Poisson, while CsI:Na and YAP:Ce were found to be super-Poisson. An experiment setup inspired from the Hanbury Brown and Twiss experiment was used to measure the correlations as a function of time between the outputs of two photomultiplier tubes looking at the same scintillation event. A model of the scintillation and the detection processes was used to generate simulated detector outputs as a function of time for different values of Fano factor. The simulated outputs from the model for different Fano factors was compared to the experimentally measured detector outputs to estimate the Fano factor of the scintillation photons for YAP:Ce, LaBr{sub 3}:Ce scintillator crystals. At 662 keV, LaBr{sub 3}:Ce was found to be sub-Poisson, while YAP:Ce was found to be close to Poisson.

  19. Multiple electromechanically-induced-transparency windows and Fano resonances in hybrid nano-electro-optomechanics

    Science.gov (United States)

    Ullah, Kamran; Jing, Hui; Saif, Farhan

    2018-03-01

    We show multiple electromechanically-induced transparency (EMIT) windows in a hybrid nano-electro-optomechanical system in the presence of two-level atoms coupled to a single-mode cavity field. The multiple EMIT-window profile can be observed by controlling the atom field coupling as well as Coulomb coupling between the two charged mechanical resonators. We derive the analytical expression of the multiple-EMIT-windows profile and describe the splitting of multiple EMIT windows as a function of optomechanical coupling, atom-field coupling, and Coulomb coupling. In particular, we discuss the robustness of the system against the cavity decay rate. We compare the results of identical mechanical resonators to different mechanical resonators. We further show how the hybrid nano-electro-optomechanics coupled system can lead to the splitting of the multiple Fano resonances (MFR). The Fano resonances are very sensitive to decay terms in such systems, i.e., atoms, cavities, and the mechanical resonators.

  20. Fano resonances from gradient-index metamaterials.

    Science.gov (United States)

    Xu, Yadong; Li, Sucheng; Hou, Bo; Chen, Huanyang

    2016-01-27

    Fano resonances - resonant scattering features with a characteristic asymmetric profile - have generated much interest, due to their extensive and valuable applications in chemical or biological sensors, new types of optical switches, lasers and nonlinear optics. They have been observed in a wide variety of resonant optical systems, including photonic crystals, metamaterials, metallic gratings and nanostructures. In this work, a waveguide structure is designed by employing gradient-index metamaterials, supporting strong Fano resonances with extremely sharp spectra. As the changes in the transmission spectrum originate from the interaction of guided modes from different channels, instead of resonance structures or metamolecules, the Fano resonances can be observed for both transverse electric and transverse magnetic polarizations. These findings are verified by fine agreement with analytical calculations and experimental results at microwave, as well as simulated results at near infrared frequencies.

  1. Design of Fano Resonators for Novel Metamaterial Applications

    KAUST Repository

    Amin, Muhammad

    2014-05-01

    effective refractive index required by sensing applications is achieved though the dispersion characteristics within PIT window. Higher order modes required for Fano resonance are generated through geometrical symmetry breaking by embedding a shifted and elongated cavity into a circular disk. The resulting dual band PIT can be geometrically tuned by varying the cavity\\'s width and rotation angle. II.\\tTunable Terahertz Fano resonator: The possibility to dynamically tune graphene\\'s conductivity has made it an attractive choice over conventional noble metals to generate surface plasmon modes at Terahertz frequencies. Subsequently, a polarization-independent and dynamically tunable hybrid gold-graphene structure is designed to achieve PIT/Fano resonance by allowing graphene and metallic plasmon modes to interfere. The effective group index of the resulting resonator is found to be very high (ng=1400, several times higher than all previously reported PIT devices) within the PIT window. Dynamic tunability achieved through a gate voltage applied to graphene suggests applications in switching. III.\\tTunable Terahertz Fano absorber: Many photonic and optical devices rely on their ability to efficiently absorb an incoming electromagnetic field. The absorption in atomically thin graphene sheet is already very high i.e., “2.3%” per layer. However, considering its atomic thickness graphene sheet remains practically transparent to Terahertz waves. The proposed absorber design makes of an asymmetrically patterned graphene layer that supports higher order plasmon modes at Terahertz frequencies. Several of these patterned layers backed by dielectric substrates are stacked on top of each other followed by reflector screen. The dynamically controllable resonances from each graphene layer and the spacing between them are fine tuned to achieve a large bandwidth of 6.9 Terahertz (from 4.7 to 11.6 Terahertz) for over 90% absorption, which is significantly higher than that of existing

  2. ICTR-PHE Public Talk | Physics is beautiful and useful by Ugo Amaldi | 11 February

    CERN Multimedia

    2014-01-01

    In the framework of the International Conference on Translational Research in Radiation Oncology – Physics for Health in Europe (ICTR-PHE, see here), which will take place at the Geneva International Conference Centre from 10 to 14 February 2014, the public is invited to attend an exceptional talk:   Physics is beautiful and useful by Ugo Amaldi Tuesday 11 February 2014, 6.30 p.m. Geneva International Conference Centre 17, rue de Varembé, Geneva *The talk will be in English with simultaneous translation into French* Abstract: The year 2014 marks the 60th anniversary of CERN and of the first cancer treatment with protons done at Berkeley. This is no coincidence: indeed, the beauty of particle physics has always gone hand in hand with useful applications. These “useful” activities follow from the technical developments in particle accelerators and radiation detectors that have brought about the discoveries of neutral currents (1973), of its mediator the...

  3. Ritorno al futuro: memorie, orizzonti e riflessi dell'antropologia. Intervista a Ugo Fabietti

    Directory of Open Access Journals (Sweden)

    Alfonso Romaniello

    2012-01-01

    Full Text Available Abstract – IT Più che un’intervista, un incontro/discussione con una delle figure più autorevoli dell’antropologia italiana, il Prof. Ugo Fabietti. Le sue parole, oltre che offrirci notevoli spunti di riflessione su cosa sia e come debba orientarsi oggi l’antropologia, ci accompagnano in un percorso dove riemergono le radici stesse della disciplina: il viaggio, l’incontro con l’alterità culturale, l’epochè, la ricerca sul campo, il relativismo. Uno sguardo sui fondamenti teorici della disciplina, ma anche sulle sue prospettive di applicazione, sul suo riconoscimento sociale ed istituzionale. Il Professor Fabietti, presentandoci l’antropologia come “un mestiere solitario”, ci racconta con passione la ricchezza e gli strumenti che derivano “dall’incontro con l’altro”, e lo fa in un condensato di teoria ed esperienza…che è poi l’humus della disciplina stessa. Abstract – EN More than an interview, this is a meeting/discussion with one of the most important figures of Italian anthropology, Professor Ugo Fabietti. His words offer innumerable points of reflection about what anthropology is, and the direction it should take. They also accompany us along a path in which the roots of anthropology themselves re-emerge: travel, encountering cultural otherness, epochè, fieldwork and relativism. He provides a look at the theoretical structure of the discipline and also its potential applications, at its social and institutional recognition. Professor Fabietti, presenting anthropology as “solitary knowledge”, details with passion the richness and the instruments deriving “from the meeting with the other”. He presents it in an essence of theory and experience… which is after all the quintessence of anthropology itself.

  4. Was Ugo Foscolo (1778-1827) affected by alpha-1 antitrypsin deficiency?

    Science.gov (United States)

    Perciaccante, A; Negri, C; Coralli, A; Charlier, P; Appenzeller, O; Bianucci, R

    2018-02-01

    Niccolò Ugo Foscolo (1778-1827), known as Ugo, is one of the masters of the Italian poetry. A writer and a revolutionary, he embraced the ideals of the French Revolution and took part in the stormy political discussions, which the fall of the Republic of Venice had provoked. Despite his poor health, Foscolo lived an adventurous life serving as a volunteer in the Guardia Nazionale and in the Napoleonic army. Following Napoleon's fall (1814), he went into voluntary exile in early 1815. He reached London in Sept. 1816 and lived in poverty at Turnham Green (Chiswick) until his premature death. Foscolo's medical history has been poorly investigated and the cause of his death remains unclear. In an attempt to shed light on his clinical history, we analyzed his Correspondence (Epistolario), a series of more than 3000 letters written between 1794 and 1827. From the age of 26 (1808), Foscolo had frequent episodes of cough and dyspnea that progressively worsened. Four acute respiratory exacerbations occurred in 1812. Between September 1812 and April 1813, he had breathlessness as that of asthma. Frail and ailing, he developed a chronic liver disease in 1826. In August 1827, weakness, dyspepsia and drowsiness further increased and dropsy became manifest. He went into coma on September 7, 1827 and died aged 49 three days later. Based on a brief history of urethritis and urinary obstructions (1811-1812), previous scholars have suggested that Foscolo had urethral stenosis that caused a chronic bladder outlet obstruction and led to consequent renal failure. This hypothesis, however, does not mention the respiratory symptomatology present since 1804, which is a pivotal feature of Foscolo's illness. We surmise that Foscolo suffered from alpha-1 anti trypsin (AAT) deficiency, a rare genetic disease, which caused his premature death and support our interpretation with documental evidence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Log canonical thresholds of smooth Fano threefolds

    International Nuclear Information System (INIS)

    Cheltsov, Ivan A; Shramov, Konstantin A

    2008-01-01

    The complex singularity exponent is a local invariant of a holomorphic function determined by the integrability of fractional powers of the function. The log canonical thresholds of effective Q-divisors on normal algebraic varieties are algebraic counterparts of complex singularity exponents. For a Fano variety, these invariants have global analogues. In the former case, it is the so-called α-invariant of Tian; in the latter case, it is the global log canonical threshold of the Fano variety, which is the infimum of log canonical thresholds of all effective Q-divisors numerically equivalent to the anticanonical divisor. An appendix to this paper contains a proof that the global log canonical threshold of a smooth Fano variety coincides with its α-invariant of Tian. The purpose of the paper is to compute the global log canonical thresholds of smooth Fano threefolds (altogether, there are 105 deformation families of such threefolds). The global log canonical thresholds are computed for every smooth threefold in 64 deformation families, and the global log canonical thresholds are computed for a general threefold in 20 deformation families. Some bounds for the global log canonical thresholds are computed for 14 deformation families. Appendix A is due to J.-P. Demailly.

  6. Birationally rigid varieties. I. Fano varieties

    International Nuclear Information System (INIS)

    Pukhlikov, A V

    2007-01-01

    The theory of birational rigidity of rationally connected varieties generalises the classical rationality problem. This paper gives a survey of the current state of this theory and traces its history from Noether's theorem and the Lueroth problem to the latest results on the birational superrigidity of higher-dimensional Fano varieties. The main components of the method of maximal singularities are considered.

  7. Molecular detection by active Fano-sensor

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Yifei; Guo, Zhongyi [School of Computer and Information, Hefei University of Technology, Hefei, 230009 (China)

    2017-04-15

    The optical properties and sensing performances of the molecular sensors based on plasmonic Fano-resonance (PFR) nanostructures have been numerically investigated in detail. The on-resonance sensor, in which the Fano-resonance position is overlapping with the absorption-band of the detected molecules perfectly, reveals a powerful ability to detect the molecules with a low concentration or thin thickness. By the bias-modulation of a single-layer graphene, the Fano-resonance position of the nanostructures can be tuned effectively. On being modulated properly, the PFR sensor shows an ultrahigh performance because of the unprecedentedly high overlap of the Fano-resonance position with the absorption-band of molecules, which is enabling superior signal strength in the molecular detections based on their vibrational fingerprints. Our proposed strategy may enable the development of dynamic sensors and open exciting prospects for bio-sensing. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Fano Factor in Strained Graphene Nanoribbon Nanodevices

    Institute of Scientific and Technical Information of China (English)

    Walid Soliman; Mina D.Asham; Adel H.Phillips

    2017-01-01

    We investigate the Fano factor in a strained armchair and zigzag graphene nanoribbon nanodevice under the effect of ac field in a wide range of frequencies at different temperatures (10 K T0 K).This nanodevice is modeled as follows:a graphene nanoribbon is connected to two metallic leads.These two metallic leads operate as a source and a drain.The conducting substance is the gate electrode in this three-terminal nanodevice.Another metallic gate is used to govern the electrostatics and the switching of the graphene nanoribbon channel The substances at the graphene nanoribbon/metal contact are controlled by the back gate.The photon-assisted tunneling probability is deduced by solving the Dirac eigenvalue differential equation in which the Fano factor is expressed in terms of this tunneling probability.The results show that for the investigated nanodevice,the Fano factor decreases as the frequency of the induced ac field increases,while it increases as the temperature increases.In general,the Fano factors for both strained armchair and zigzag graphene nanoribbons are different.This is due to the effect of the uniaxial strain.It is shown that the band structure parameters of graphene nanoribbons at the energy gap,the C-C bond length,the hopping integral,the Fermi energy and the width are modulated by uniaxial strain.This research gives us a promise of the present nanodevice being used for digital nanoelectronics and sensors.

  9. Spatial effects of Fano resonance in local tunneling conductivity in vicinity of impurity on semiconductor surface

    OpenAIRE

    Mantsevich, V. N.; Maslova, N. S.

    2009-01-01

    We present the results of local tunneling conductivity spatial distribution detailed theoretical investigations in vicinity of impurity atom for a wide range of applied bias voltage. We observed Fano resonance in tunneling conductivity resulting from interference between resonant tunneling channel through impurity energy level and direct tunneling channel between the tunneling contact leads. We have found that interference between tunneling channels strongly modifies form of tunneling conduct...

  10. Fano-induced spontaneous emission enhancement of molecule placed in a cluster of asymmetrically-arranged metallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Le, Khai Q., E-mail: khai.lequang@hoasen.edu.vn [Faculty of Science and Technology, Hoa Sen University, Ho Chi Minh (Viet Nam); Department of Electrical Engineering, University of Minnesota, Duluth, MN 55812 (United States); Bai, Jing [Department of Electrical Engineering, University of Minnesota, Duluth, MN 55812 (United States); Nguyen, H.P.T. [Department of Electrical and Computer Engineering, New Jersey Institute of Technology, NJ 07102 (United States)

    2016-05-15

    We demonstrate that plasmonic Fano resonance significantly boosts spontaneous emission rate of a single emitter, e.g. atom, molecule and quantum dot, over a moderately broad emission spectrum. An emission enhancement of up to 140 times compared to the system with no external inclusion at tunable frequencies is achieved, providing a new complementary enhancement mechanism. Fano resonance is induced in clusters of four asymmetric-arranged nanoparticles with ultra-small inter-particle gaps. It is shown to play a dominant role in light-emitting enhancement, mediated by combined localized surface plasmon resonances.

  11. Determination of Fano's factor in semiconductors

    International Nuclear Information System (INIS)

    Gomes, P.R.S.

    1975-07-01

    A study was made of three different semiconductor detectors: intrinsic germanium, germanium drifted with lithium, and silicon drifted with lithium. In the efficiency measurements for these detectors, special attention was paid to the escape of the germanium X-rays produced within the detector. The principal part of this work is the determination of the Fano factor for germanium and silicon. A great deal of attention was given to the analysis of experimental results. Different criteria for eliminating the linewidth contribution due to charge collection fluctuations lead to widely different values and have caused great controversy over the value of the Fano factor. Measurements were made for the three detectors using energies of 14.4 kev, 35.4 kev, 46.5 kev, 59.5 kev, 81 kev, 88 kev, 122 kev and 136.5 kev and the results indicate a Fano factor of 0.105 +- 0.004 for germanium and 0.130 +- 0.120 for silicon. (author) [pt

  12. Embedding and partial resolution of complex cones over Fano threefolds

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, Siddharth, E-mail: sdwivedi@iitk.ac.in

    2016-12-15

    This work deals with the study of embeddings of toric Calabi–Yau fourfolds which are complex cones over the smooth Fano threefolds. In particular, we focus on finding various embeddings of Fano threefolds inside other Fano threefolds and study the partial resolution of the latter in hope to find new toric dualities. We find many diagrams possible for many of these Fano threefolds, but unfortunately, none of them are consistent quiver theories. We also obtain a quiver Chern–Simons theory which matches a theory known to the literature, thus providing an alternate method of obtaining it.

  13. Talk | The impact of fundamental Physics on Medicine by Ugo Amaldi | 10 April

    CERN Multimedia

    2014-01-01

    The impact of fundamental Physics on Medicine, by Ugo Amaldi, TERA Foundation and Technische Universität München.   Thursday 10 April 2014, at 7.30 p.m. Globe of Science and Innovation Route de Meyrin, 1211 Genève Talk in English with French translation. Abstract: It is clear to anybody who visits a hospital that Physics applications are everywhere. Medical doctors use Physics when they measure blood pressure, when they perform an ultrasound scan to determine the sex of an unborn child, when they take a radiography or a CT scan. Fundamental physics, which aims at understanding how particles and forces act in the subatomic world and are organized to form everything we observe around us, has numerous medical applications.  Everything started in 1895 with the discovery of X-rays by Röntgen, who was using the best particle accelerator of the time. In the lecture the theme of the title will be presented by following the 120 years long story of par...

  14. Electrical Modulation of Fano Resonance in Plasmonic Nanostructures Using Graphene

    DEFF Research Database (Denmark)

    Emani, Naresh K.; Chung, Ting-Fung; Kildishev, Alexander V.

    2014-01-01

    Pauli blocking of interband transistions gives rise to tunable optical properties in single layer graphene (SLG). This effect is exploited in a graphene-nanoantenna hybrid device where Fano resonant plasmonic nanostructures are fabricated on top of a graphene sheet. The use of Fano resonant eleme......-element simulations. Our approach can be used for development of next generation of tunable plasmonic and hybrid nanophotonic devices.......Pauli blocking of interband transistions gives rise to tunable optical properties in single layer graphene (SLG). This effect is exploited in a graphene-nanoantenna hybrid device where Fano resonant plasmonic nanostructures are fabricated on top of a graphene sheet. The use of Fano resonant...... elements enhances the interaction of incident radiation with the graphene sheet and enables efficient electrical modulation of the plasmonic resonance. We observe electrically controlled damping in the Fano resonances occurring at approximately 2 μm, and the results are verified by full-wave 3D finite...

  15. Magnetically coupled Fano resonance of dielectric pentamer oligomer

    International Nuclear Information System (INIS)

    Zhang, Fuli; Li, Chang; He, Xuan; Chen, Lei; Fan, Yuancheng; Zhao, Qian; Zhang, Weihong; Zhou, Ji

    2017-01-01

    We present magnetically induced Fano resonance inside a dielectric metamaterial pentamer composed of ceramic bricks. Unlike previous reports where different sizes of dielectric resonators were essential to produce Fano resonance, under external magnetic field excitation, central and outer dielectric bricks with identical sizes exhibit in-phase and out-of-phase magnetic Mie oscillations. An asymmetric line shape of Fano resonance along with enhanced group delay is observed due to the interference between the magnetic resonance of the central brick and the symmetric magnetic resonance of outer bricks. Besides, Fano resonance blueshifts with the increasing resonance of the smaller central brick. The thermal-dependent permittivity of ceramics allows Fano resonance to be reversibly tuned by 300 MHz when temperature varies by 60 °C. (paper)

  16. Experimental demonstration of a Fano laser based on photonic crystals

    DEFF Research Database (Denmark)

    Yu, Yi; Semenova, Elizaveta; Yvind, Kresten

    2017-01-01

    Conventional semiconductor laser mirrors are based on Fresnel reflection [1], Bragg reflection [2, 3] or total internal reflection [4]. Here we demonstrate a new laser concept using photonic crystals (PhC), with a mirror based on Fano interference between a waveguide continuum and a discrete...... resonance of a nanocavity [5]. We show that the very narrowband feature of the Fano resonance [6] can lead to single mode lasing. In addition, when combined with optical nonlinearity, the highly dispersive feature of the Fano resonance can promote self-pulsations at gigahertz frequencies [7], which...

  17. Theory of Self-pulsing in Photonic Crystal Fano Lasers

    DEFF Research Database (Denmark)

    Rasmussen, Thorsten Svend; Yu, Yi; Mørk, Jesper

    2017-01-01

    -dispersive Fano mirror, the laser frequency and the threshold gain. The model is based upon a combination of conventional laser rate equations and coupled-mode theory. The dynamical model is used to demonstrate how the laser has two regimes of operation, continuous-wave output and self-pulsing, and these regimes......Laser self-pulsing was a phenomenon exclusive to macroscopic lasers until recently, where self-starting laser pulsation in a microscopic photonic crystal Fano laser was reported. In this paper a theoretical model is developed to describe the Fano laser, including descriptions of the highly...

  18. Electronic and transport properties of noncollinear magnetic monatomic Mn chains: Fano resonances in the superlattice of noncollinear magnetic barriers and magnetic anisotropic bands

    International Nuclear Information System (INIS)

    Dai, C.J.; Yan, X.H.; Xiao, Y.; Guo, Y.D.

    2015-01-01

    By means of the density functional theory combined with non-equilibrium Green's function method, ballistic transport properties of one-dimensional noncollinear magnetic monatomic chains were investigated using the single-atomic Mn chains as a model system. Fano resonances are found to exist in the monatomic Mn chains with spin-spiral structure. Furthermore, in the monatomic Mn chains with magnetic soliton lattice, Fano resonances are enhanced and cause the conductance splitting in the transmission spectra. The Fano resonances in the noncollinear magnetic single-atomic Mn chains are arising from the coupling of the localized d-states and the extended states of the quantum channels. By constructing a theoretical model and calculating its conductance, it is found that the phenomena of Fano resonances and the accompanying conductance splitting exist universally in the superlattice of one-dimensional noncollinear magnetic barriers, due to the interference of the incident waves and reflected waves by the interfaces between the neighboring barriers. Moreover, the band structures of the ferromagnetic and spin-spiral monatomic Mn chains exhibit a strong dependence on the spatial arrangement of the magnetic moments of Mn atoms when spin–orbit coupling is considered. - Highlights: • Transport properties of noncollinear magnetic monatomic Mn chains are studied. • Fano resonances are found in the noncollinear magnetic monatomic Mn chains. • Magnetic soliton lattice leads to conductance splitting in the transmission curve. • Fano resonances exist in the superlattice of noncollinear magnetic barriers. • Effect of SOC on the band structure of FM and spin-spiral Mn chains are studied

  19. Ellipsoidal all-dielectric Fano resonant core-shell metamaterials

    Science.gov (United States)

    Reena, Reena; Kalra, Yogita; Kumar, Ajeet

    2018-06-01

    In this paper, ellipsoidal core (Si) and shell (SiO2) metamaterial has been proposed for highly directional properties. At the wavelength of magnetic resonance, Fano dip occurs in the backward scattering cross section and forward scattering enhancement takes place at the same wavelength so that there is an increment in the directivity. Effect on the directivity by changing the length of ellipsoidal nanoparticle along semi-axes has been analyzed. Two Fano resonances have been observed by decreasing the length of the nanoparticle along the semi-axis having electric polarization, where first and second Fano resonances are attributed to the dipole and quadrupole moments, respectively. These Fano resonant wavelengths in ellipsoidal nanoparticle exhibit higher directivity than the Kerker's type scattering or forward scattering shown by symmetrical structures like sphere. So, this core-shell metamaterial can act as an efficient directional nanoantenna.

  20. A dynamically-tunable graphene-based fano metasurface

    KAUST Repository

    Amin, Muhammad

    2013-09-01

    A planar graphene metasurface with rectangular holes, which is capable of supporting a dynamically tunable Fano resonance at Terahertz (THz) frequencies, is proposed. The rectangular hole is patterned asymmetrically within the metasurface\\'s unit cell to \\'brighten\\' an originally-dark quadrupolar surface plasmon mode. Fano resonance is achieved via the destructive interference of this mode with a dipolar surface plasmon. The spectral location and line shape of the Fano resonance can be dynamically tuned via a gate voltage applied to the metasurface to change graphene\\'s optical properties. The dynamic tunability of the Fano resonance suggests the applicability of the proposed metasurface in designing THz wave modulators and band-pass filters. © 2013 IEEE.

  1. Tuning the Fano factor of graphene via Fermi velocity modulation

    Science.gov (United States)

    Lima, Jonas R. F.; Barbosa, Anderson L. R.; Bezerra, C. G.; Pereira, Luiz Felipe C.

    2018-03-01

    In this work we investigate the influence of a Fermi velocity modulation on the Fano factor of periodic and quasi-periodic graphene superlattices. We consider the continuum model and use the transfer matrix method to solve the Dirac-like equation for graphene where the electrostatic potential, energy gap and Fermi velocity are piecewise constant functions of the position x. We found that in the presence of an energy gap, it is possible to tune the energy of the Fano factor peak and consequently the location of the Dirac point, by a modulation in the Fermi velocity. Hence, the peak of the Fano factor can be used experimentally to identify the Dirac point. We show that for higher values of the Fermi velocity the Fano factor goes below 1/3 at the Dirac point. Furthermore, we show that in periodic superlattices the location of Fano factor peaks is symmetric when the Fermi velocity vA and vB is exchanged, however by introducing quasi-periodicity the symmetry is lost. The Fano factor usually holds a universal value for a specific transport regime, which reveals that the possibility of controlling it in graphene is a notable result.

  2. Explicit Gromov-Hausdorff compactifications of moduli spaces of Kähler-Einstein Fano manifolds

    DEFF Research Database (Denmark)

    Spotti, Cristiano; Sun, Song

    We exhibit the first non-trivial concrete examples of Gromov-Hausdorff compactifications of moduli spaces of Kähler-Einstein Fano manifolds in all complex dimensions bigger than two (Fano K-moduli spaces). We also discuss potential applications to explicit study of moduli spaces of K-stable Fano...

  3. Fano effect in the transport of an artificial molecule

    Science.gov (United States)

    Norimoto, Shota; Nakamura, Shuji; Okazaki, Yuma; Arakawa, Tomonori; Asano, Kenichi; Onomitsu, Koji; Kobayashi, Kensuke; Kaneko, Nobu-hisa

    2018-05-01

    The Fano effect is a ubiquitous phenomenon arising from interference between a discrete energy state and an energy continuum. We explore this effect in an artificial molecule, namely, two lateral quantum dots (QDs) fabricated from a two-dimensional electron gas system and coupled in series. When the coupling between the leads and QDs is small, the charge stability diagram of the system shows a honeycomb lattice structure that is characteristic of a double QD system. As the coupling increases, a honeycomb structure consisting of the Fano resonances emerges. A numerical simulation based on the T-matrix method can satisfactorily reproduce our experimental observation. This report constitutes a clear example of the ubiquitous nature of the Fano effect in mesoscopic transport.

  4. A Fano cavity test for Monte Carlo proton transport algorithms

    International Nuclear Information System (INIS)

    Sterpin, Edmond; Sorriaux, Jefferson; Souris, Kevin; Vynckier, Stefaan; Bouchard, Hugo

    2014-01-01

    Purpose: In the scope of reference dosimetry of radiotherapy beams, Monte Carlo (MC) simulations are widely used to compute ionization chamber dose response accurately. Uncertainties related to the transport algorithm can be verified performing self-consistency tests, i.e., the so-called “Fano cavity test.” The Fano cavity test is based on the Fano theorem, which states that under charged particle equilibrium conditions, the charged particle fluence is independent of the mass density of the media as long as the cross-sections are uniform. Such tests have not been performed yet for MC codes simulating proton transport. The objectives of this study are to design a new Fano cavity test for proton MC and to implement the methodology in two MC codes: Geant4 and PENELOPE extended to protons (PENH). Methods: The new Fano test is designed to evaluate the accuracy of proton transport. Virtual particles with an energy ofE 0 and a mass macroscopic cross section of (Σ)/(ρ) are transported, having the ability to generate protons with kinetic energy E 0 and to be restored after each interaction, thus providing proton equilibrium. To perform the test, the authors use a simplified simulation model and rigorously demonstrate that the computed cavity dose per incident fluence must equal (ΣE 0 )/(ρ) , as expected in classic Fano tests. The implementation of the test is performed in Geant4 and PENH. The geometry used for testing is a 10 × 10 cm 2 parallel virtual field and a cavity (2 × 2 × 0.2 cm 3 size) in a water phantom with dimensions large enough to ensure proton equilibrium. Results: For conservative user-defined simulation parameters (leading to small step sizes), both Geant4 and PENH pass the Fano cavity test within 0.1%. However, differences of 0.6% and 0.7% were observed for PENH and Geant4, respectively, using larger step sizes. For PENH, the difference is attributed to the random-hinge method that introduces an artificial energy straggling if step size is not

  5. Acoustically induced transparency using Fano resonant periodic arrays

    KAUST Repository

    El-Amin, Mohamed

    2015-10-22

    A three-dimensional acoustic device, which supports Fano resonance and induced transparency in its response to an incident sound wave, is designed and fabricated. These effects are generated from the destructive interference of closely coupled one broad- and one narrow-band acoustic modes. The proposed design ensures excitation and interference of two spectrally close modes by locating a small pipe inside a wider and longer one. Indeed, numerical simulations and experiments demonstrate that this simple-to-fabricate structure can be used to generate Fano resonance as well as acoustically induced transparency with promising applications in sensing, cloaking, and imaging.

  6. Acoustically induced transparency using Fano resonant periodic arrays

    KAUST Repository

    El-Amin, Mohamed; Elayouch, A.; Farhat, Mohamed; Addouche, M.; Khelif, A.; Bagci, Hakan

    2015-01-01

    A three-dimensional acoustic device, which supports Fano resonance and induced transparency in its response to an incident sound wave, is designed and fabricated. These effects are generated from the destructive interference of closely coupled one broad- and one narrow-band acoustic modes. The proposed design ensures excitation and interference of two spectrally close modes by locating a small pipe inside a wider and longer one. Indeed, numerical simulations and experiments demonstrate that this simple-to-fabricate structure can be used to generate Fano resonance as well as acoustically induced transparency with promising applications in sensing, cloaking, and imaging.

  7. Demonstration of a self-pulsing photonic crystal Fano laser

    DEFF Research Database (Denmark)

    Yu, Yi; Xue, Weiqi; Semenova, Elizaveta

    2017-01-01

    photonic and plasmonic systems(13,14). The Fano resonance leads to unique laser characteristics. In particular, because the Fano mirror is very narrowband compared to conventional laser mirrors, the laser is single mode and can be modulated via the mirror. We show, experimentally and theoretically......, that nonlinearities in the mirror may even promote the generation of a self-sustained train of pulses at gigahertz frequencies, an effect that has previously been observed only in macroscopic lasers(15-18). Such a source is of interest for a number of applications within integrated photonics....

  8. Atoms

    International Nuclear Information System (INIS)

    Fuchs, Alain; Villani, Cedric; Guthleben, Denis; Leduc, Michele; Brenner, Anastasios; Pouthas, Joel; Perrin, Jean

    2014-01-01

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  9. Improved switching using Fano resonances in photonic crystal structures

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Kristensen, Philip Trøst; Elesin, Yuriy

    2013-01-01

    difference time domain simulations taking into account the signal bandwidth. The results suggest a significant energy reduction by employing Fano resonances compared to more well established Lorentzian resonance structures. A specific example of a Kerr nonlinearity shows an order of magnitude energy...

  10. Fano-Andreev effect in Quantum Dots in Kondo regime

    Science.gov (United States)

    Orellana, Pedro; Calle, Ana Maria; Pacheco, Monica; Apel, Victor

    In the present work, we investigate the transport through a T-shaped double quantum dot system coupled to two normal leads and to a superconducting lead. We study the role of the superconducting lead in the quantum interferometric features of the double quantum dot and by means of a slave boson mean field approximation at low temperature regime. We inquire into the influence of intradot interactions in the electronic properties of the system as well. Our results show that Fano resonances due to Andreev bound states are exhibited in the transmission from normal to normal lead as a consequence of quantum interference and proximity effect. This Fano effect produced by Andreev bound states in a side quantum dot was called Fano-Andreev effect, which remains valid even if the electron-electron interaction are taken into account, that is, the Fano-Andreev effect is robust against e-e interactions even in Kondo regime. We acknowledge the financial support from FONDECYT program Grants No. 3140053 and 11400571.

  11. Twin "Fano-Snowflakes" Over the Smallest Ring of Ternions

    Czech Academy of Sciences Publication Activity Database

    Saniga, M.; Havlicek, H.; Planat, M.; Pracna, Petr

    2008-01-01

    Roč. 4, - (2008), 050-1-7 ISSN 1815-0659 Institutional research plan: CEZ:AV0Z40400503 Keywords : geometry over rings * non-communicative ring of order eight * Fano plane Subject RIV: CF - Physical ; Theoretical Chemistry

  12. Large signal simulation of photonic crystal Fano laser

    DEFF Research Database (Denmark)

    Zali, Aref Rasoulzadeh; Yu, Yi; Moravvej-Farshi, Mohammad Kazem

    2017-01-01

    be modulated at frequencies exceeding 1 THz which is much higher than its corresponding relaxation oscillation frequency. Large signal simulation of the Fano laser is also investigated based on pseudorandom bit sequence at 0.5 Tbit/s. It shows eye patterns are open at such high modulation frequency, verifying...

  13. Simple classical model for Fano statistics in radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V. [Pacific Northwest National Laboratory, National Security Division - Radiological and Chemical Sciences Group PO Box 999, Richland, WA 99352 (United States)], E-mail: David.Jordan@pnl.gov; Renholds, Andrea S.; Jaffe, John E.; Anderson, Kevin K.; Rene Corrales, L.; Peurrung, Anthony J. [Pacific Northwest National Laboratory, National Security Division - Radiological and Chemical Sciences Group PO Box 999, Richland, WA 99352 (United States)

    2008-02-01

    A simple classical model that captures the essential statistics of energy partitioning processes involved in the creation of information carriers (ICs) in radiation detectors is presented. The model pictures IC formation from a fixed amount of deposited energy in terms of the statistically analogous process of successively sampling water from a large, finite-volume container ('bathtub') with a small dipping implement ('shot or whiskey glass'). The model exhibits sub-Poisson variance in the distribution of the number of ICs generated (the 'Fano effect'). Elementary statistical analysis of the model clarifies the role of energy conservation in producing the Fano effect and yields Fano's prescription for computing the relative variance of the IC number distribution in terms of the mean and variance of the underlying, single-IC energy distribution. The partitioning model is applied to the development of the impact ionization cascade in semiconductor radiation detectors. It is shown that, in tandem with simple assumptions regarding the distribution of energies required to create an (electron, hole) pair, the model yields an energy-independent Fano factor of 0.083, in accord with the lower end of the range of literature values reported for silicon and high-purity germanium. The utility of this simple picture as a diagnostic tool for guiding or constraining more detailed, 'microscopic' physical models of detector material response to ionizing radiation is discussed.

  14. Design of Fano Resonators for Novel Metamaterial Applications

    KAUST Repository

    Amin, Muhammad

    2014-01-01

    I.\tNano-disk Fano resonator: Open disk-like plasmonic nanostructures are preferred for bio-chemical sensing because of their higher capacity to be in contact with greater volumes of analyte. High effective refractive index required by sensing

  15. Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Han, Song; Yang, Helin [College of Physical Science and Technology, Central China Normal University, Wuhan (China); Cong, Lonqing; Singh, Ranjan [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore)

    2016-05-15

    Toroidal multipoles have recently been explored in various scientific communities, ranging from atomic and molecular physics, electrodynamics, and solid-state physics to biology. Here we experimentally and numerically demonstrate a three-dimensional toroidal metamaterial where two different toroidal dipoles along orthogonal directions have been observed. The chosen toroidal metamaterial also simultaneously supports Fano resonance and the classical analog of electromagnetically induced transparency (EIT) phenomena in the transmission spectra that originate from the electric-toroidal dipole and electric-magnetic dipole destructive interference. The intriguing properties of the toroidal resonances may open up avenues for applications in toroidal moments generator, sensing and slow-light devices. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. The electronic conductance of polypyrrole (PPy molecular wires and emergence of Fano resonance phenomena

    Directory of Open Access Journals (Sweden)

    M Mardaani

    2012-06-01

    Full Text Available In this paper, we studied the electronic conductance of a polypyrrole polymer, which is embedded between two semi-infinite simple chains by using Green’s function technique in tight-binding approach. We first reduced the center polymer to a one dimensional chain with renormalized onsite and hopping energies by renormalization method. Then, we calculated the system conductivity as a function of incoming electron energy, polymer length and contact hopping terms. The results showed that by increasing polymer length and decreasing contact hopping energies, the conductance decreases in the gap regions. This means that for larger gaps, the electron tunneling happens with more difficulty. Moreover, at the resonance area, due to the existence of nitrogen atom in the polymer cyclic structure, the Fano resonance will emerge. Furthermore, the polymer can behave like a metallic chain by variation of the value of nitrogen on-site term.

  17. Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers.

    Science.gov (United States)

    Verre, R; Yang, Z J; Shegai, T; Käll, M

    2015-03-11

    The possibility of achieving optical magnetism at visible frequencies using plasmonic nanostructures has recently been a subject of great interest. The concept is based on designing structures that support plasmon modes with electron oscillation patterns that imitate current loops, that is, magnetic dipoles. However, the magnetic resonances are typically spectrally narrow, thereby limiting their applicability in, for example, metamaterial designs. We show that a significantly broader magnetic response can be realized in plasmonic pentamers constructed from metal-insulator-metal (MIM) sandwich particles. Each MIM unit acts as a magnetic meta-atom and the optical magnetism is rendered quasi-broadband through hybridization of the in-plane modes. We demonstrate that scattering spectra of individual MIM pentamers exhibit multiple Fano resonances and a broad subradiant spectral window that signals the magnetic interaction and a hierarchy of coupling effects in these intricate three-dimensional nanoparticle oligomers.

  18. Atom

    International Nuclear Information System (INIS)

    Auffray, J.P.

    1997-01-01

    The atom through centuries, has been imagined, described, explored, then accelerated, combined...But what happens truly inside the atom? And what are mechanisms who allow its stability? Physicist and historian of sciences, Jean-Paul Auffray explains that these questions are to the heart of the modern physics and it brings them a new lighting. (N.C.)

  19. Fano resonance control in a photonic crystal structure and its application to ultrafast switching

    DEFF Research Database (Denmark)

    Yu, Yi; Heuck, Mikkel; Hu, Hao

    2014-01-01

    We experimentally demonstrate a photonic crystal structure that allows easy and robust control of the Fano spectrum. Its operation relies on controlling the amplitude of light propagating along one of the light paths in the structure from which the Fano resonance is obtained. Short-pulse dynamic ...... reshaping effect of the nonlinear Fano transfer function. As an example, we present a system application of a Fano structure, demonstrating its advantages by the experimental realiza- tion of 10 Gbit/s all-optical modulation with optical control power less than 1mW.......We experimentally demonstrate a photonic crystal structure that allows easy and robust control of the Fano spectrum. Its operation relies on controlling the amplitude of light propagating along one of the light paths in the structure from which the Fano resonance is obtained. Short-pulse dynamic...

  20. Fano resonance and persistent current of a quantum ring

    International Nuclear Information System (INIS)

    Xiong Yongjian; Liang Xianting

    2004-01-01

    We investigate electron transport and persistent current of a quantum ring weakly attached to current leads. Assuming there is direct coupling (weakly or strongly) between two leads, electrons can transmit by the inter-lead coupling or tunneling through the quantum ring. The interference between the two paths yields asymmetric Fano line shape for conductance. In presence of interior magnetic flux, there is persistent current along the ring with narrow resonance peaks. The positions of the conductance resonances and the persistent current peaks correspond to the quasibound levels of the closed ring. This feature is helpful to determine the energy spectrum of the quantum ring. Our results show that the proposed setup provides a tunable Fano system

  1. Fano factor evaluation of diamond detectors for alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Shimaoka, Takehiro; Kaneko, Junichi H.; Tsubota, Masakatsu; Shimmyo, Hiroaki [Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628 (Japan); Sato, Yuki [Naraha Remote Technology Development Center, Japan Atomic Energy Agency, Naraha-machi, Futaba-gun, Fukushima, 979-0513 (Japan); Chayahara, Akiyoshi; Umezawa, Hitoshi; Mokuno, Yoshiaki [Advanced Power Electronics Research Center, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577 (Japan); Watanabe, Hideyuki [Research Institute for Electronics and Photonics, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, 305-8565 (Japan)

    2016-10-15

    This report is the first describing experimental evaluation of Fano factor for diamond detectors. High-quality self-standing chemical vapor deposited diamond samples were produced using lift-off method. Alpha-particle induced charge measurements were taken for three samples. A 13.1 ±0.07 eV of the average electron-hole pair creation energy and excellent energy resolution of approximately 0.3% were found for 5.486 MeV alpha particles from an {sup 241}Am radioactive source. The best Fano factor for 5.486 MeV alpha particles, calculated from experimentally obtained epsilon values and the detector intrinsic energy resolution, was 0.382 ± 0.007. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Fano resonance in anodic aluminum oxide based photonic crystals.

    Science.gov (United States)

    Shang, Guo Liang; Fei, Guang Tao; Zhang, Yao; Yan, Peng; Xu, Shao Hui; Ouyang, Hao Miao; Zhang, Li De

    2014-01-08

    Anodic aluminum oxide based photonic crystals with periodic porous structure have been prepared using voltage compensation method. The as-prepared sample showed an ultra-narrow photonic bandgap. Asymmetric line-shape profiles of the photonic bandgaps have been observed, which is attributed to Fano resonance between the photonic bandgap state of photonic crystal and continuum scattering state of porous structure. And the exhibited Fano resonance shows more clearly when the sample is saturated ethanol gas than air-filled. Further theoretical analysis by transfer matrix method verified these results. These findings provide a better understanding on the nature of photonic bandgaps of photonic crystals made up of porous materials, in which the porous structures not only exist as layers of effective-refractive-index material providing Bragg scattering, but also provide a continuum light scattering state to interact with Bragg scattering state to show an asymmetric line-shape profile.

  3. Fano resonances in heterogeneous dimers of silicon and gold nanospheres

    Science.gov (United States)

    Zhao, Qian; Yang, Zhong-Jian; He, Jun

    2018-06-01

    We theoretically investigate the optical properties of dimers consisting of a gold nanosphere and a silicon nanosphere. The absorption spectrum of the gold sphere in the dimer can be significantly altered and exhibits a pronounced Fano profile. Analytical Mie theory and numerical simulations show that the Fano profile is induced by constructive and destructive interference between the incident electric field and the electric field of the magnetic dipole mode of the silicon sphere in a narrow wavelength range. The effects of the silicon sphere size, distance between the two spheres, and excitation configuration on the optical responses of the dimers are studied. Our study reveals the coherent feature of the electric fields of magnetic dipole modes in dielectric nanostructures and the strong interactions of the coherent fields with other nanophotonic structures.

  4. Acoustic transparency and opacity using Fano Interferences in Metamaterials

    KAUST Repository

    Khelif, A.

    2015-08-04

    We investigate both experimentally and theoretically how to generate the acoustical analogue of the Electromagnetically Induced Transparency. This phenomenon arises from Fano resonances originating from constructive and destructive interferences of a narrow discrete resonance with a broad spectral line or continuum. Measurements were realized on a double-cavity structure by using a Kundt’s Tube. Transmission properties reveal an asymmetric lineshape of the transmission that leads to acoustic transparency.

  5. Twin ''Fano-Snowflakes'' over the Smallest Ring of Ternions

    Directory of Open Access Journals (Sweden)

    Metod Saniga

    2008-06-01

    Full Text Available Given a finite associative ring with unity, R, any free (left cyclic submodule (FCS generated by a unimodular (n + 1-tuple of elements of R represents a point of the n-dimensional projective space over R. Suppose that R also features FCSs generated by (n + 1-tuples that are not unimodular: what kind of geometry can be ascribed to such FCSs? Here, we (partially answer this question for n = 2 when R is the (unique non-commutative ring of order eight. The corresponding geometry is dubbed a ''Fano-Snowflake'' due to its diagrammatic appearance and the fact that it contains the Fano plane in its center. There exist, in fact, two such configurations – each being tied to either of the two maximal ideals of the ring – which have the Fano plane in common and can, therefore, be viewed as twins. Potential relevance of these noteworthy configurations to quantum information theory and stringy black holes is also outlined.

  6. Full controlling of Fano resonances in metal-slit superlattice.

    Science.gov (United States)

    Deng, Zi-Lan; Yogesh, Natesan; Chen, Xiao-Dong; Chen, Wen-Jie; Dong, Jian-Wen; Ouyang, Zhengbiao; Wang, Guo Ping

    2015-12-18

    Controlling of the lineshape of Fano resonance attracts much attention recently due to its wide capabilities for lasing, biosensing, slow-light applications and so on. However, the controllable Fano resonance always requires stringent alignment of complex symmetry-breaking structures and thus the manipulation could only be performed with limited degrees of freedom and narrow tuning range. Furthermore, there is no report so far on independent controlling of both the bright and dark modes in a single structure. Here, we semi-analytically show that the spectral position and linewidth of both the bright and dark modes can be tuned independently and/or simultaneously in a simple and symmetric metal-slit superlattice, and thus allowing for a free and continuous controlling of the lineshape of both the single and multiple Fano resonances. The independent controlling scheme is applicable for an extremely large electromagnetic spectrum range from optical to microwave frequencies, which is demonstrated by the numerical simulations with real metal and a microwave experiment. Our findings may provide convenient and flexible strategies for future tunable electromagnetic devices.

  7. CERN Library | Michael Dittmar presents "Extracted: How the Quest for Mineral Wealth Is Plundering the Planet" by Ugo Bardi (et al.) | 24 July

    CERN Multimedia

    2014-01-01

    As we dig, drill and excavate to unearth the planet’s mineral bounty, the resources we exploit from ores, veins, seams and wells are gradually becoming exhausted. Mineral treasures that took millions, or even billions, of years to form are now being squandered in just centuries—or sometimes just decades.   Extracted: How the Quest for Mineral Wealth Is Plundering the Planet, by Ugo Bardi et al., Chelsea Green Publishing, 2014, ISBN 9781603585415. Will there come a time when we actually run out of minerals? Debates already soar over how we are going to obtain energy without oil, coal and gas. But what about the other mineral losses we face? Without metals, and semiconductors, how are we going to keep our industrial system running? Without mineral fertilisers and fuels, how are we going to produce the food we need? Ugo Bardi delivers a sweeping history of the mining industry, starting with its humble beginning when our early ancestors started digging underground to find the st...

  8. Photonic crystal Fano resonances for realizing optical switches, lasers and non-reciprocal elements

    DEFF Research Database (Denmark)

    Bekele, Dagmawi Alemayehu; Yu, Yi; Hu, Hao

    2017-01-01

    structure in combination with cavity-enhanced nonlinearity can be used to realize non-reciprocal transmission at ultra-low power and with large bandwidth. A novel type of laser structure, denoted a Fano laser, is discussed in which one of the mirrors is based on a Fano resonance. Finally, the design...

  9. Size-dependent Fano Interaction in the Laser-etched Silicon Nanostructures

    Directory of Open Access Journals (Sweden)

    Kumar Rajesh

    2008-01-01

    Full Text Available AbstractPhoto-excitation and size-dependent Raman scattering studies on the silicon (Si nanostructures (NSs prepared by laser-induced etching are presented here. Asymmetric and red-shifted Raman line-shapes are observed due to photo-excited Fano interaction in the quantum confined nanoparticles. The Fano interaction is observed between photo-excited electronic transitions and discrete phonons in Si NSs. Photo-excited Fano studies on different Si NSs show that the Fano interaction is high for smaller size of Si NSs. Higher Fano interaction for smaller Si NSs is attributed to the enhanced interference between photo-excited electronic Raman scattering and phonon Raman scattering.

  10. Quantum interference in the system of Lorentzian and Fano magnetoexciton resonances in GaAs

    International Nuclear Information System (INIS)

    Siegner, U.; Mycek, M.; Glutsch, S.; Chemla, D.S.

    1995-01-01

    Using femtosecond four-wave mixing (FWM), we study the coherent dynamics of Lorentzian and Fano magnetoexciton resonances in GaAs. For unperturbed Lorentzian magnetoexcitons, we find that the time-integrated FWM signal decays due to dephasing processes as expected for Lorentzian resonances. The time-integrated FWM signal from a single Fano magnetoexciton resonance, however, decays quasi-instantaneously although the dephasing time of the Fano resonance is much longer than the time resolution of the experiment. This fast decay is the manifestation of destructive quantum interference. Although destructive quantum interference in our system is closely related to the dynamics of Fano resonances, for the simultaneous excitation of Lorentzian and Fano magnetoexciton resonances destructive quantum interference also strongly affects the dynamics of Lorentzian magnetoexcitons due to quantum-mechanical coupling between the two types of resonances

  11. Geant4 and Fano cavity test: where are we?

    CERN Document Server

    Elles, S; Maire, M; Urbàn, L

    2008-01-01

    The electron transport algorithm implemented in Geant4 has been recently revised. The modifications concern several physics aspects of the simulation model: the step limitation, the energy loss along a step and the multiple scattering. The Fano cavity setup was used to test these developments. The upgrades increase significantly the accuracy of the electron transport simulation. The ratio of simulated to theoretical dose deposition in the cavity is stable to ~1% while varying several parameters and within ~1.5% of the expected value for water and graphite. Work is underway to identify and resolve the remaining shift.

  12. Regimes of self-pulsing in photonic crystal Fano lasers

    DEFF Research Database (Denmark)

    Rasmussen, Thorsten Svend; Yu, Yi; Mørk, Jesper

    2017-01-01

    Laser self-pulsing was a property exclusive to macroscopic laser systems until recently, where self-pulsing laser operation was demonstrated experimentally and theoretically in a microscopic photonic crystal Fano laser [1]. We now provide a detailed theoretical analysis of the self......-pulsing mechanism and laser characteristics with numerical simulations to demonstrate the parameter dependence of the self-pulsing regime and its limitations, indicating how the design may be optimised for applications in e.g. integrated on-chip communication systems....

  13. Geometry of minimal rational curves on Fano manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J -M [Korea Institute for Advanced Study, Seoul (Korea, Republic of)

    2001-12-15

    This lecture is an introduction to my joint project with N. Mok where we develop a geometric theory of Fano manifolds of Picard number 1 by studying the collection of tangent directions of minimal rational curves through a generic point. After a sketch of some historical background, the fundamental object of this project, the variety of minimal rational tangents, is defined and various examples are examined. Then some results on the variety of minimal rational tangents are discussed including an extension theorem for holomorphic maps preserving the geometric structure. Some applications of this theory to the stability of the tangent bundles and the rigidity of generically finite morphisms are given. (author)

  14. Composite modulation of Fano resonance in plasmonic microstructures by electric-field and microcavity

    International Nuclear Information System (INIS)

    Zhang, Fan; Wu, Chenyun; Yang, Hong; Hu, Xiaoyong; Gong, Qihuang

    2014-01-01

    Composite modulation of Fano resonance by using electric-field and microcavity simultaneously is realized in a plasmonic microstructure, which consists of a gold nanowire grating inserted into a Fabry-Perot microcavity composited of a liquid crystal layer sandwiched between two indium tin oxide layers. The Fano resonance wavelength varies with the applied voltage and the microcavity resonance. A large shift of 48 nm in the Fano resonance wavelength is achieved when the applied voltage is 20 V. This may provide a new way for the study of multi-functional integrated photonic circuits and chips based on plasmonic microstructures

  15. Composite modulation of Fano resonance in plasmonic microstructures by electric-field and microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; Wu, Chenyun; Yang, Hong [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Hu, Xiaoyong, E-mail: xiaoyonghu@pku.edu.cn; Gong, Qihuang [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2014-11-03

    Composite modulation of Fano resonance by using electric-field and microcavity simultaneously is realized in a plasmonic microstructure, which consists of a gold nanowire grating inserted into a Fabry-Perot microcavity composited of a liquid crystal layer sandwiched between two indium tin oxide layers. The Fano resonance wavelength varies with the applied voltage and the microcavity resonance. A large shift of 48 nm in the Fano resonance wavelength is achieved when the applied voltage is 20 V. This may provide a new way for the study of multi-functional integrated photonic circuits and chips based on plasmonic microstructures.

  16. Enhanced Faraday rotation in one dimensional magneto-plasmonic structure due to Fano resonance

    Science.gov (United States)

    Sadeghi, S.; Hamidi, S. M.

    2018-04-01

    Enhanced Faraday rotation in a new type of magneto-plasmonic structure with the capability of Fano resonance, has been reported theoretically. A magneto-plasmonic structure composed of a gold corrugated layer deposited on a magneto-optically active layer was studied by means of Lumerical software based on finite-difference time-domain. In our proposed structure, plasmonic Fano resonance and localized surface plasmon have induced enhancement in magneto-optical Faraday rotation. It is shown that the influence of geometrical parameters in gold layer offers a desirable platform for engineering spectral position of Fano resonance and enhancement of Faraday rotation.

  17. Relativistic decay widths of autoionization processes: The relativistic FanoADC-Stieltjes method

    Energy Technology Data Exchange (ETDEWEB)

    Fasshauer, Elke, E-mail: Elke.Fasshauer@uit.no [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø–The Arctic University of Norway, N-9037 Tromsø (Norway); Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany); Kolorenč, Přemysl [Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Prague (Czech Republic); Pernpointner, Markus [Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)

    2015-04-14

    Electronic decay processes of ionized systems are, for example, the Auger decay or the Interatomic/ Intermolecular Coulombic Decay. In both processes, an energetically low lying vacancy is filled by an electron of an energetically higher lying orbital and a secondary electron is instantaneously emitted to the continuum. Whether or not such a process occurs depends both on the energetic accessibility and the corresponding lifetime compared to the lifetime of competing decay mechanisms. We present a realization of the non-relativistically established FanoADC-Stieltjes method for the description of autoionization decay widths including relativistic effects. This procedure, being based on the Algebraic Diagrammatic Construction (ADC), was adapted to the relativistic framework and implemented into the relativistic quantum chemistry program package Dirac. It is, in contrast to other existing relativistic atomic codes, not limited to the description of autoionization lifetimes in spherically symmetric systems, but is instead also applicable to molecules and clusters. We employ this method to the Auger processes following the Kr3d{sup −1}, Xe4d{sup −1}, and Rn5d{sup −1} ionization. Based on the results, we show a pronounced influence of mainly scalar-relativistic effects on the decay widths of autoionization processes.

  18. Plasmonic properties of gold nanoparticles on silicon substrates: Understanding Fano-like spectra observed in reflection

    Science.gov (United States)

    Bossard-Giannesini, Léo; Cruguel, Hervé; Lacaze, Emmanuelle; Pluchery, Olivier

    2016-09-01

    Gold nanoparticles (AuNPs) are known for their localized surface plasmon resonance (LSPR) that can be measured with UV-visible spectroscopy. AuNPs are often deposited on silicon substrates for various applications, and the LSPR is measured in reflection. In this case, optical spectra are measured by surface differential reflectance spectroscopy (SDRS) and the absorbance exhibits a negative peak. This article studies both experimentally and theoretically on the single layers of 16 nm diameter spherical gold nanoparticles (AuNPs) grafted on silicon. The morphology and surface density of AuNPs were investigated by atomic force microscopy (AFM). The plasmon response in transmission on the glass substrate and in reflection on the silicon substrate is described by an analytical model based on the Fresnel equations and the Maxwell-Garnett effective medium theory (FMG). The FMG model shows a strong dependence to the incidence angle of the light. At low incident angles, the peak appears negatively with a shallow intensity, and at angles above 30°, the usual positive shape of the plasmon is retrieved. The relevance of the FMG model is compared to the Mie theory within the dipolar approximation. We conclude that no Fano effect is responsible for this derivative shape. An easy-to-use formula is derived that agrees with our experimental data.

  19. Coil-type Fano Resonances: a Plasmonic Approach to Magnetic Sub-diffraction Confinement

    KAUST Repository

    Panaro, Simone

    2015-05-10

    Matrices of nanodisk trimers are introduced as plasmonic platforms for the generation of localized magnetic hot-spots. In Fano resonance condition, the optical magnetic fields can be squeezed in sub-wavelength regions, opening promising scenarios for spintronics.

  20. Coil-type Fano Resonances: a Plasmonic Approach to Magnetic Sub-diffraction Confinement

    KAUST Repository

    Panaro, Simone; Nazir, Adnan; Zaccaria, Remo Proietti; Liberale, Carlo; De Angelis, Francesco; Toma, Andrea

    2015-01-01

    Matrices of nanodisk trimers are introduced as plasmonic platforms for the generation of localized magnetic hot-spots. In Fano resonance condition, the optical magnetic fields can be squeezed in sub-wavelength regions, opening promising scenarios for spintronics.

  1. Density-near-zero using the acoustically induced transparency of a Fano acoustic resonator

    KAUST Repository

    Elayouch, A.; Addouche, M.; Farhat, Mohamed; El-Amin, Mohamed; Bagci, Hakan; Khelif, A.

    2017-01-01

    We report experimental results of near-zero mass density involving an acoustic metamaterial supporting Fano resonance. For this, we designed and fabricated an acoustic resonator with two closely coupled modes and measured its transmission properties

  2. Noise and Fano-Factor Control in AC-Driven Aharonov-Casher Ring

    Directory of Open Access Journals (Sweden)

    Zein W. A.

    2011-01-01

    Full Text Available The spin dependent current and Fano factor of Aharonov-Casher semiconducting ring is investigated under the effect of microwave, infrared, ultraviolet radiation and magnetic field. Both the average current and the transport noise (Fano factor characteristics are expressed in terms of the tunneling probability for the respective scattering channels. For spin transport induced by microwave and infrared radiation, a random oscillatory behavior of the Fano factor is observed. These oscillations are due to constructive and destructive spin interference effects. While for the case of ultraviolet radiation, the Fano factor becomes constant. This is due to that the oscillations has been washed out by phase averaging (i.e. ensemble dephasing over the spin transport channels. The present investigation is very important for quantum computing and information processing.

  3. Noise and Fano-factor Control in AC-Driven Aharonov-Casher Ring

    Directory of Open Access Journals (Sweden)

    Phillips A. H.

    2011-01-01

    Full Text Available The spin dependent current and Fano factor of Aharonov-Casher semiconducting ring is investigated under the effect of microwave, infrared, ultraviolet radiation and magnetic field. Both the average current and the transport noise (Fano factor characteristics are expressed in terms of the tunneling probability for the respective scattering channels. For spin transport induced by microwave and infrared radiation, a random oscillatory behavior of the Fano factor is observed. These oscillations are due to constructive and destructive spin interference effects. While for the case of ultraviolet radiation, the Fano factor becomes constant. This is due to that the oscillations has been washed out by phase averaging (i.e. ensemble dephasing over the spin transport channels. The present investigation is very important for quantum computing and information processing.

  4. Fano resonance of the ultrasensitve optical force excited by Gaussian evanescent field

    International Nuclear Information System (INIS)

    Yang, Yang; Li, Jiafang; Li, Zhi-Yuan

    2015-01-01

    In this paper, we study the angle-dependent Fano-like optical force spectra of plasmonic Ag nanoparticles, which exhibit extraordinary transformation from Lorentzian resonance to Fano resonance when excited by a Gaussian evanescent wave. We systematically analyze the behavior of this asymmetric scattering induced optical force under different conditions and find that this Fano interference-induced force is ultrasensitive to the excitation wavelength, incident angle and particle size, as well as the core–shell configuration, which could be useful for wavelength- and angle-dependent size-selective optical manipulation. The origin of this Fano resonance is further identified as the interference between the two adjacent-order multipolar plasmonic modes excited in the Ag particle under the excitation of an inhomogeneously distributed evanescent field. (paper)

  5. Optical Realization of Double-Continuum Fano Interference and Coherent Control in Plasmonic Metasurfaces

    Science.gov (United States)

    Arju, Nihal; Ma, Tzuhsuan; Khanikaev, Alexander; Purtseladze, David; Shvets, Gennady

    2015-06-01

    Classical realization of a ubiquitous quantum mechanical phenomenon of double-continuum Fano interference using metasurfaces is experimentally demonstrated by engineering the near-field interaction between two bright and one dark plasmonic modes. The competition between the bright modes, one of them effectively suppressing the Fano interference for the orthogonal light polarization, is discovered. Coherent control of optical energy concentration and light absorption by the ellipticity of the incident light is theoretically predicted.

  6. High Quality Plasmonic Sensors Based on Fano Resonances Created through Cascading Double Asymmetric Cavities

    OpenAIRE

    Zhang, Xiangao; Shao, Mingzhen; Zeng, Xiaoqi

    2016-01-01

    In this paper, a type of compact nanosensor based on a metal-insulator-metal structure is proposed and investigated through cascading double asymmetric cavities, in which their metal cores shift along different axis directions. The cascaded asymmetric structure exhibits high transmission and sharp Fano resonance peaks via strengthening the mutual coupling of the cavities. The research results show that with the increase of the symmetry breaking in the structure, the number of Fano resonances ...

  7. Multiple Fano-Like MIM Plasmonic Structure Based on Triangular Resonator for Refractive Index Sensing

    OpenAIRE

    Jankovic, Nikolina; Cselyuszka, Norbert

    2018-01-01

    In this paper, we present a Fano metal-insulator-metal (MIM) structure based on an isosceles triangular cavity resonator for refractive index sensing applications. Due to the specific feeding scheme and asymmetry introduced in the triangular cavity, the resonator exhibits four sharp Fano-like resonances. The behavior of the structure is analyzed in detail and its sensing capabilities demonstrated through the responses for various refractive indices. The results show that the sensor has very g...

  8. Vibrational Fano resonances in the photodetachment of dipole-bound anions

    International Nuclear Information System (INIS)

    Edwards, Stephen T; Tully, John C; Johnson, Mark A

    2012-01-01

    A simple model for the photodetachment of dipole-bound anions is proposed where non-adiabatic coupling of vibrational states leads to a Fano resonance in the spectrum. It is found that the shape of the photodetachment spectrum depends significantly on the parameter representing molecular polarizability. The model is also applied to a Fano profile observed in the photodetachment of small water cluster anions.

  9. Influence of Fano interference and incoherent processes on optical bistability in a four-level quantum dot nanostructure

    International Nuclear Information System (INIS)

    Hossein Asadpour, Seyyed; Solookinejad, G; Panahi, M; Ahmadi Sangachin, E

    2016-01-01

    Role of Fano interference and incoherent pumping field on optical bistability in a four-level designed InGaN/GaN quantum dot nanostructure embedded in a unidirectional ring cavity are analyzed. It is found that intensity threshold of optical bistability can be manipulated by Fano interference. It is shown that incoherent pumping fields make the threshold of optical bistability behave differently by Fano interference. Moreover, in the presence of Fano interference the medium becomes phase-dependent. Therefore, the relative phase of applied fields can affect the behaviors of optical bistability and intensity threshold can be controlled easily. (paper)

  10. Fano factors of rare gases and their mixtures

    International Nuclear Information System (INIS)

    Lima, E.P. de; Salete, M.; Leite, S.C.P.; Alves, M.A.F.; Policarpo, A.J.P.

    1982-01-01

    Measurements of FW (Fano factor x mean energy to make an ion-pair) for several non metastable Penning gas mixtures were made using the proportional scintillation process. Taking for W the values that correspond to 5.3 MeV alpha particles, upper limits of F were determined. The following results were obtained: 100% Xe, FW = 3.247, F <= 0.15 +- 0.03; 100% Ar, FW = 10.536, F <= 0.40 +- 0.03; Ar + 80% Xe, FW = 4.635, F <= 0.21 +- 0.03; Ar + 5% Kr, FW = 9.397, F <= 0.37 +- 0.06; Ar + 24% Xe, FW = 5.093, F <= 0.23 +- 0.02; Ar + 20% Kr, FW = 3.038, F <= 0.12 +- 0.03; Ar + 20% Xe, FW = 3.582, F <= 0.16 +- 0.02; Ar + 79% Kr, FW = 3.113, F <= 0.13 +- 0.02; Ar + 5% Xe, FW = 3.204, F <= 0.14 +- 0.03; 100% Kr, FW = 4.584, F <= 0.19 +- 0.02. (orig.)

  11. Cores, Joins and the Fano-Flow Conjectures

    Directory of Open Access Journals (Sweden)

    Jin Ligang

    2018-02-01

    Full Text Available The Fan-Raspaud Conjecture states that every bridgeless cubic graph has three 1-factors with empty intersection. A weaker one than this conjecture is that every bridgeless cubic graph has two 1-factors and one join with empty intersection. Both of these two conjectures can be related to conjectures on Fano-flows. In this paper, we show that these two conjectures are equivalent to some statements on cores and weak cores of a bridgeless cubic graph. In particular, we prove that the Fan-Raspaud Conjecture is equivalent to a conjecture proposed in [E. Steffen, 1-factor and cycle covers of cubic graphs, J. Graph Theory 78 (2015 195–206]. Furthermore, we disprove a conjecture proposed in [G. Mazzuoccolo, New conjectures on perfect matchings in cubic graphs, Electron. Notes Discrete Math. 40 (2013 235–238] and we propose a new version of it under a stronger connectivity assumption. The weak oddness of a cubic graph G is the minimum number of odd components (i.e., with an odd number of vertices in the complement of a join of G. We obtain an upper bound of weak oddness in terms of weak cores, and thus an upper bound of oddness in terms of cores as a by-product.

  12. Tunable Fano Resonance in Asymmetric MIM Waveguide Structure.

    Science.gov (United States)

    Zhao, Xuefeng; Zhang, Zhidong; Yan, Shubin

    2017-06-25

    A plasmonic waveguide coupled system that uses a metal-insulator-metal (MIM) waveguide with two silver baffles and a coupled ring cavity is proposed in this study. The transmission properties of the plasmonic system were investigated using the finite element method. The simulation results show a Fano profile in the transmission spectrum, which was caused by the interaction of the broadband resonance of the Fabry-Perot (F-P) cavity and the narrow band resonance of the ring cavity. The Fabry-Perot (F-P) cavity in this case was formed by two silver baffles dividing the MIM waveguide. The maximum sensitivity of 718 nm/RIU and the maximum figure of merit of 4354 were achieved. Furthermore, the effects of the structural parameters of the F-P cavity and the ring cavity on the transmission properties of the plasmonic system were analyzed. The results can provide a guide for designing highly sensitive on-chip sensors based on surface plasmon polaritons.

  13. Transmission gaps, trapped modes and Fano resonances in Aharonov-Bohm connected mesoscopic loops

    Science.gov (United States)

    Mrabti, T.; Labdouti, Z.; El Abouti, O.; El Boudouti, E. H.; Fethi, F.; Djafari-Rouhani, B.

    2018-03-01

    A simple mesoscopic structure consisting of a double symmetric loops coupled by a segment of length d0 in the presence of an Aharonov-Bohm flux is designed to obtain transmission band gaps and Fano resonances. A general analytical expression for the transmission coefficient and the density of states (DOS) are obtained for various systems of this kind within the framework of the Green's function method in the presence of the magnetic flux. In this work, the amplitude of the transmission and DOS are discussed as a function of the wave vector. We show that the transmission spectrum of the whole structure may exhibit a band gap and a resonance of Fano type without introducing any impurity in one arm of the loop. In particular, we show that for specific values of the magnetic flux and the lengths of the arms constituting the loops, the Fano resonance collapses giving rise to the so-called trapped states or bound in continuum (BIC) states. These states appear when the width of the Fano resonance vanishes in the transmission coefficient as well as in the density of states. Also, we show that the shape of the Fano resonances and the width of the band gaps are very sensitive to the value of the magnetic flux and the geometry of the structure. These results may have important applications for electronic transport in mesoscopic systems.

  14. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.

    Science.gov (United States)

    He, Yong; Zhu, Ka-Di

    2017-06-20

    In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.

  15. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System

    Directory of Open Access Journals (Sweden)

    Yong He

    2017-06-01

    Full Text Available In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP and the excitons in semiconductor quantum dots (SQDs in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.

  16. Fano effect and Andreev bound states in T-shape double quantum dots

    International Nuclear Information System (INIS)

    Calle, A.M.; Pacheco, M.; Orellana, P.A.

    2013-01-01

    In this Letter, we investigate the transport through a T-shaped double quantum dot coupled to two normal metal leads left and right and a superconducting lead. Analytical expressions of Andreev transmission and local density of states of the system at zero temperature have been obtained. We study the role of the superconducting lead in the quantum interferometric features of the double quantum dot. We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. Our results show that as a consequence of quantum interference and proximity effect, the transmission from normal to normal lead exhibits Fano resonances due to Andreev bound states. We find that this interference effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads. - Highlights: • Transport properties of a double quantum dot coupled in T-shape configuration to conducting and superconducting leads are studied. • We report Fano antiresonances in the normal transmission due to the Andreev reflections in the superconducting lead. • We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. • Fano effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads. • Andreev bound states survives even for strong dot-superconductor coupling

  17. Fano resonance assisting plasmonic circular dichroism from nanorice heterodimers for extrinsic chirality

    Science.gov (United States)

    Hu, Li; Huang, Yingzhou; Fang, Liang; Chen, Guo; Wei, Hua; Fang, Yurui

    2015-11-01

    In this work, the circular dichroisms (CD) of nanorice heterodimers consisting of two parallel arranged nanorices with the same size but different materials are investigated theoretically. Symmetry-breaking is introduced by using different materials and oblique incidence to achieve strong CD at the vicinity of Fano resonance peaks. We demonstrate that all Au-Ag heterodimers exhibit multipolar Fano resonances and strong CD effect. A simple quantitative analysis shows that the structure with larger Fano asymmetry factor has stronger CD. The intensity and peak positions of the CD effect can be flexibly tuned in a large range by changing particle size, shape, the inter-particle distance and surroundings. Furthermore, CD spectra exhibit high sensitivity to ambient medium in visible and near infrared regions. Our results here are beneficial for the design and application of high sensitive CD sensors and other related fields.

  18. High Quality Plasmonic Sensors Based on Fano Resonances Created through Cascading Double Asymmetric Cavities.

    Science.gov (United States)

    Zhang, Xiangao; Shao, Mingzhen; Zeng, Xiaoqi

    2016-10-18

    In this paper, a type of compact nanosensor based on a metal-insulator-metal structure is proposed and investigated through cascading double asymmetric cavities, in which their metal cores shift along different axis directions. The cascaded asymmetric structure exhibits high transmission and sharp Fano resonance peaks via strengthening the mutual coupling of the cavities. The research results show that with the increase of the symmetry breaking in the structure, the number of Fano resonances increase accordingly. Furthermore, by modulating the geometrical parameters appropriately, Fano resonances with high sensitivities to the changes in refractive index can be realized. A maximum figure of merit (FoM) value of 74.3 is obtained. Considerable applications for this work can be found in bio/chemical sensors with excellent performance and other nanophotonic integrated circuit devices such as optical filters, switches and modulators.

  19. High Quality Plasmonic Sensors Based on Fano Resonances Created through Cascading Double Asymmetric Cavities

    Directory of Open Access Journals (Sweden)

    Xiangao Zhang

    2016-10-01

    Full Text Available In this paper, a type of compact nanosensor based on a metal-insulator-metal structure is proposed and investigated through cascading double asymmetric cavities, in which their metal cores shift along different axis directions. The cascaded asymmetric structure exhibits high transmission and sharp Fano resonance peaks via strengthening the mutual coupling of the cavities. The research results show that with the increase of the symmetry breaking in the structure, the number of Fano resonances increase accordingly. Furthermore, by modulating the geometrical parameters appropriately, Fano resonances with high sensitivities to the changes in refractive index can be realized. A maximum figure of merit (FoM value of 74.3 is obtained. Considerable applications for this work can be found in bio/chemical sensors with excellent performance and other nanophotonic integrated circuit devices such as optical filters, switches and modulators.

  20. Multi-bi- and tri-stability using nonlinear plasmonic Fano resonators

    KAUST Repository

    Amin, Muhammad

    2013-09-01

    A plasmonic Fano resonator embedding Kerr nonlinearity is used to achieve multi-bi- and tri-stability. Fano resonance is obtained by inducing higher-order plasmon modes on metallic surfaces via geometrical symmetry breaking. The presence of the multiple higher order plasmon modes provides the means for producing multi-bi- or tri-stability in the response of the resonator when it is loaded with a material with Kerr nonlinearity. The multi-stability in the response of the proposed resonator enables its use in three-state all optical memory and switching applications. © 2013 IEEE.

  1. Bidirectional Fano Algorithm for Lattice Coded MIMO Channels

    KAUST Repository

    Al-Quwaiee, Hessa

    2013-05-08

    Recently, lattices - a mathematical representation of infinite discrete points in the Euclidean space, have become an effective way to describe and analyze communication systems especially system those that can be modeled as linear Gaussian vector channel model. Channel codes based on lattices are preferred due to three facts: lattice codes have simple structure, the code can achieve the limits of the channel, and they can be decoded efficiently using lattice decoders which can be considered as the Closest Lattice Point Search (CLPS). Since the time lattice codes were introduced to Multiple Input Multiple Output (MIMO) channel, Sphere Decoder (SD) has been an efficient way to implement lattice decoders. Sphere decoder offers the optimal performance at the expense of high decoding complexity especially for low signal-to-noise ratios (SNR) and for high- dimensional systems. On the other hand, linear and non-linear receivers, Minimum Mean Square Error (MMSE), and MMSE Decision-Feedback Equalization (DFE), provide the lowest decoding complexity but unfortunately with poor performance. Several studies works have been conducted in the last years to address the problem of designing low complexity decoders for the MIMO channel that can achieve near optimal performance. It was found that sequential decoders using backward tree 
search can bridge the gap between SD and MMSE. The sequential decoder provides an interesting performance-complexity trade-off using a bias term. Yet, the sequential decoder still suffers from high complexity for mid-to-high SNR values. In this work, we propose a new algorithm for Bidirectional Fano sequential Decoder (BFD) in order to reduce the mid-to-high SNR complexity. Our algorithm consists of first constructing a unidirectional Sequential Decoder based on forward search using the QL decomposition. After that, BFD incorporates two searches, forward and backward, to work simultaneously till they merge and find the closest lattice point to the

  2. All-Optical Switching Improvement Using Photonic-Crystal Fano Structures

    DEFF Research Database (Denmark)

    Yu, Yi; Xue, Weiqi; Hu, Hao

    2016-01-01

    by incorporating a partially transmitting element in the waveguide. Compared to traditional Lorentzian structures, the Fano structure shows improved switching contrast and speed without adding any extra phase modulation, corresponding to a much lower chirp parameter. Using a simple and ultracompact InP photonic...

  3. Ambiguous Refractive Index Sensitivity of Fano Resonance on an Array of Gold Nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Špačková, Barbora; Lebrušková, Petra; Šípová, Hana; Kwiecien, P.; Richter, I.; Homola, Jiří

    2014-01-01

    Roč. 9, č. 4 (2014), s. 729-735 ISSN 1557-1955 R&D Projects: GA ČR GBP205/12/G118; GA MŠk(CZ) LH11102 Institutional support: RVO:67985882 Keywords : Island film theory * Fano resonance * Nanoparticle array Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.238, year: 2014

  4. Add-drop double bus microresonator array local oscillators for sharp multiple Fano resonance engineering

    Science.gov (United States)

    Li, Jiahua; Qu, Ye; Wu, Ying

    2018-03-01

    Asymmetric resonances are currently the subject of considerable research efforts in photonic nanostructures. Here we propose a feasible method to achieve multiple Fano resonances and their control in an optical compound system consisting of an array of on-chip microresonators without mutual coupling and two parallel fiber waveguides side-coupled to the microresonator array by means of a local oscillator. We derive analytical and transparent expressions for the power transmission function summing over the two light transporting paths within the framework of quantum optics. It is clearly shown that introducing the local oscillator as an additional light propagating path plays an important role in the formation of narrow and multiple Fano resonance lineshapes. The power transmission spectrum through the combination of both the microresonator array and the local oscillator is very sensitive to the system parameters, for example, the intrinsic decay rate of the resonator, the phase shift factor of the local oscillator, the transmission coefficient of the fiber beam splitter, and the total number of the microresonators. Through detailed analysis, we identify the optimums for generating Fano resonance lineshapes. Also, we assess the experimental feasibility of the scheme using currently available technology. The proposed method is relatively straightforward as it requires only one local oscillator as one interferometer arm and it is mostly fiber-based. We believe that our work will help to understand and improve multiple Fano resonance engineering.

  5. The basics of experimental determination of the Fano factor in intrinsic semiconductors

    International Nuclear Information System (INIS)

    Samedov, Victor-V.

    2013-06-01

    Intrinsic semiconductors such as High Purity Germanium Detectors are exceptional X-ray and gamma-ray detectors because of their large sizes and small band gap. They are used for fundamental scientific researches, nuclear material safeguards and security, environmental protection, and human health and safety. The fundamental limit of the energy resolution of a semiconductor detector is determined by variance in the number of electron-hole pairs produced by X-rays in detector volume. The principal characteristic of material for using as semiconductor detector is the Fano factor that determines the fluctuation in the number of electron-hole pairs. Now, all existing methods of experimental determination of the Fano factor in semiconductors are based on the subtraction of electronic noise from the signal variance. In this work, I propose the method of experimental determination of the Fano factor in a planar semiconductor detector based on dependences of the mean amplitude and the energy resolution on the electric field. It was shown that inverse electric field expansion of these dependences allow determining the Fano factor, electron mobility lifetime product, and relative variance of electron lifetime due to inhomogeneous charge transport in semiconductor material. The important advantage of the proposed method is independence on detector electronic noise. (authors)

  6. Experimental demonstration of non-reciprocal transmission in a nonlinear photonic-crystal Fano structure

    DEFF Research Database (Denmark)

    Yu, Yi; Chen, Yaohui; Hu, Hao

    2015-01-01

    We suggest and experimentally demonstrate a photonic-crystal structure with more than 30 dB difference between forward and backward transmission levels. The non-reciprocity relies on the combination of ultrafast carrier nonlinearities and spatial symmetry breaking in a Fano structure employing...

  7. Dynamic analysis of optical soliton pair and four-wave mixing via Fano interference in multiple quantum wells

    International Nuclear Information System (INIS)

    Yan, Wei; Qu, Junle; Niu, H B

    2014-01-01

    We perform a time-dependent analysis of the formation and stable propagation of an ultraslow optical soliton pair, and four-wave mixing (FWM) via tunable Fano interference in double-cascade type semiconductor multiple quantum wells (SMQWs). By using the probability amplitude method to describe the interaction of the system, we demonstrate that the electromagnetically induced transparency (EIT) can be controlled by Fano interference in the linear case and the strength of Fano interference has an important effect on the group velocity and amplitude of the soliton pair in the nonlinear case. Then, when the signal field is removed, the dynamic FWM process is analyzed in detail, and we find that the strength of Fano interference also has an important effect on the FWM’s efficiency: the maximum FWM efficiency is ∼28% in appropriate conditions. The investigations are promising for practical applications in optical devices and optical information processing for solid systems. (paper)

  8. Investigation of Fano resonances induced by higher order plasmon modes on a circular nano-disk with an elongated cavity

    KAUST Repository

    Amin, Muhammad Ruhul; Bagci, Hakan

    2012-01-01

    In this paper, a planar metallic nanostructure design, which supports two distinct Fano resonances in its extinction cross-section spectrum under normally incident and linearly polarized electromagnetic field, is proposed. The proposed design

  9. Tables of Shore and Fano parameters for the helium resonances 2s21S, 2p21D, and 2s 2p 1P excited in p-He collisions E/sub p/ = 33 to 150 keV

    International Nuclear Information System (INIS)

    Bordenave-Montesquieu, A.; Benoit-Cattin, P.; Gleizes, A.; Merchez, H.

    1976-01-01

    Absolute values of Shore and Fano parameters are tabulated for the helium atom 2s 2 1 S, 2p 2 1 D, and 2s 2p 1 P resonances produced by a proton beam. Observations were made on the spectra of ejected electrons. The important variation of the shape of the resonances with ejection angle is illustrated for E/sub p/ = 100 keV; the variation with proton energy is shown at 30 0

  10. Fano resonance in the absorption of two photons in crystal defects. Ressonancia de Fano na absorcao de dois fotons em defeitos cristalinos

    Energy Technology Data Exchange (ETDEWEB)

    Souza, G P

    1984-01-01

    The absorption of two photons in the electronic transition within the 4f/sup 7/ configuration which is superposed to the vibronic structure of the 4f/sup 7/ - 4f/sup 6/5d transition, is studied. The line shape with the Fano's formalism is described. The study was carried out on Eu/sup +2/ doped CaF/sub 2/. The experimental apparatus was built and the results obtained are in good agreement with the theoretical predictions.

  11. Visit at CERN of representatives of the Department of Piacenza (Italy), received by Lucio Rossi and Ugo Amaldi and hosted by the DG. The department of Piacenza is the native land of Edoardo Amaldi, one of the founding fathers of CERN, and the Department is preparing the celebration of the centennial of his birth.

    CERN Multimedia

    Maximilien Brice

    2008-01-01

    Visit at CERN of representatives of the Department of Piacenza (Italy), received by Lucio Rossi and Ugo Amaldi and hosted by the DG. The department of Piacenza is the native land of Edoardo Amaldi, one of the founding fathers of CERN, and the Department is preparing the celebration of the centennial of his birth.

  12. Shot noise as a probe of spin-polarized transport through single atoms

    DEFF Research Database (Denmark)

    Burtzlaff, Andreas; Weismann, Alexander; Brandbyge, Mads

    2015-01-01

    Single atoms on Au(111) surfaces have been contacted with the Au tip of a low temperature scanning tunneling microscope. The shot noise of the current through these contacts has been measured up to frequencies of 120 kHz and Fano factors have been determined to characterize the transport channels...

  13. Optical and acoustic sensing using Fano-like resonances in dual phononic and photonic crystal plate

    DEFF Research Database (Denmark)

    Amoudache, Samira; Moiseyenko, Rayisa; Pennec, Yan

    2016-01-01

    We perform a theoretical study based on the transmissions of optical and acoustic waves normally impinging to a periodic perforated silicon plate when the embedded medium is a liquid and show the existence of Fano-like resonances in both cases. The signature of the resonances appears as well-defi...... of standing waves confined inside the cavity coming from the deformation of the water/silicon edges of the cylindrical inclusion. We finally use these features for sensing and show ultra-sensitivity to the light and sound velocities for different concentrations of analytes.......-defined asymmetric peaks in the phononic and photonic transmission spectra. We show that the origin of the Fano-like resonances is different with respect to the nature of the wave. In photonic, the origin comes from guided modes in the photonic plate while in phononic we show that it comes from the excitation...

  14. Q-factorial Gorenstein toric Fano varieties with large Picard number

    DEFF Research Database (Denmark)

    Nill, Benjamin; Øbro, Mikkel

    2010-01-01

    In dimension $d$, ${\\boldsymbol Q}$-factorial Gorenstein toric Fano varieties with Picard number $\\rho_X$ correspond to simplicial reflexive polytopes with $\\rho_X + d$ vertices. Casagrande showed that any $d$-dimensional simplicial reflexive polytope has at most $3 d$ and $3d-1$ vertices if $d......$ is even and odd, respectively. Moreover, for $d$ even there is up to unimodular equivalence only one such polytope with $3 d$ vertices, corresponding to the product of $d/2$ copies of a del Pezzo surface of degree six. In this paper we completely classify all $d$-dimensional simplicial reflexive polytopes...... having $3d-1$ vertices, corresponding to $d$-dimensional ${\\boldsymbol Q}$-factorial Gorenstein toric Fano varieties with Picard number $2d-1$. For $d$ even, there exist three such varieties, with two being singular, while for $d > 1$ odd there exist precisely two, both being nonsingular toric fiber...

  15. Optical and acoustic sensing using Fano-like resonances in dual phononic and photonic crystal plate

    Energy Technology Data Exchange (ETDEWEB)

    Amoudache, Samira [Institut d' Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria); Moiseyenko, Rayisa [Department of Physics, Technical University of Denmark, DTU Physics, Building 309, DK-2800 Kongens Lyngby (Denmark); Pennec, Yan, E-mail: yan.pennec@univ-lille1.fr; Rouhani, Bahram Djafari [Institut d' Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Khater, Antoine [Institut des Molécules et Matériaux du Mans (IMMM), UMR CNRS 6283, l' UNAM, Université du Maine, 72085 Le Mans (France); Lucklum, Ralf [Institute of Micro and Sensor Systems (IMOS), Otto-von-Guericke-University, P.O. Box 4120, D-39016 Magdeburg (Germany); Tigrine, Rachid [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria)

    2016-03-21

    We perform a theoretical study based on the transmissions of optical and acoustic waves normally impinging to a periodic perforated silicon plate when the embedded medium is a liquid and show the existence of Fano-like resonances in both cases. The signature of the resonances appears as well-defined asymmetric peaks in the phononic and photonic transmission spectra. We show that the origin of the Fano-like resonances is different with respect to the nature of the wave. In photonic, the origin comes from guided modes in the photonic plate while in phononic we show that it comes from the excitation of standing waves confined inside the cavity coming from the deformation of the water/silicon edges of the cylindrical inclusion. We finally use these features for sensing and show ultra-sensitivity to the light and sound velocities for different concentrations of analytes.

  16. Multiple Fano-Like MIM Plasmonic Structure Based on Triangular Resonator for Refractive Index Sensing.

    Science.gov (United States)

    Jankovic, Nikolina; Cselyuszka, Norbert

    2018-01-19

    In this paper, we present a Fano metal-insulator-metal (MIM) structure based on an isosceles triangular cavity resonator for refractive index sensing applications. Due to the specific feeding scheme and asymmetry introduced in the triangular cavity, the resonator exhibits four sharp Fano-like resonances. The behavior of the structure is analyzed in detail and its sensing capabilities demonstrated through the responses for various refractive indices. The results show that the sensor has very good sensitivity and maximal figure of merit (FOM) value of 3.2 × 10⁵. In comparison to other similar sensors, the proposed one has comparable sensitivity and significantly higher FOM, which clearly demonstrates its high sensing potential.

  17. Pulse carving using nanocavity-enhanced nonlinear effects in photonic crystal Fano structures

    DEFF Research Database (Denmark)

    Bekele, Dagmawi Alemayehu; Yu, Yi; Hu, Hao

    2018-01-01

    We experimentally demonstrate the use of a photonic crystal Fano resonance for carving-out short pulses from long-duration input pulses. This is achieved by exploiting an asymmetric Fano resonance combined with carrier-induced nonlinear effects in a photonic crystal membrane structure. The use...... of a nanocavity concentrates the input field to a very small volume leading to an efficient nonlinear resonance shift that carves a short pulse out of the input pulse. Here, we demonstrate shortening of ∼500  ps and ∼100  ps long pulses to ∼30  ps and ∼20  ps pulses, respectively. Furthermore, we demonstrate...

  18. Tailoring double Fano profiles with plasmon-assisted quantum interference in hybrid exciton-plasmon system

    International Nuclear Information System (INIS)

    Zhao, Dongxing; Wu, Jiarui; Gu, Ying; Gong, Qihuang

    2014-01-01

    We propose tailoring of the double Fano profiles via plasmon-assisted quantum interference in a hybrid exciton-plasmon system. Tailoring is performed by the interference between two exciton channels interacting with a common localized surface plasmon. Using an applied field of low intensity, the absorption spectrum of the hybrid system reveals a double Fano lineshape with four peaks. For relatively large field intensity, a broad flat window in the absorption spectrum appears which results from the destructive interference between excitons. Because of strong constructive interference, this window vanishes as intensity is further increased. We have designed a nanometer bandpass optical filter for visible light based on tailoring of the optical spectrum. This study provides a platform for quantum interference that may have potential applications in ultracompact tunable quantum devices.

  19. Polarization and angle independent magneto-electric Fano resonance in multilayer hetero-nanoshells

    Science.gov (United States)

    Wang, Wudeng; Xiong, Li; Zheng, Li; Li, Wei; Shi, Ying; Qi, Jianguang

    2018-05-01

    In this work, we have demonstrated that the Si-SiO2 -Au multilayer hetero-nanoshells can support the polarization and angle independent magneto-electric Fano resonance. Such Fano resonance arises from the direct destructive interference between the orthogonal electric dipole mode of Au core and magnetic dipole mode of the Si shell and is independent of the angle due to the high structural symmetry. In contrast to metal particle arrays, here is a possibility to generate controllable interaction between the electric and magnetic dipole resonances of individual nanoshell with the structural features. The discrete magnetic responses provided directly by the Si shell pave the groundwork for designing the magnetic responses at optical frequencies and enable many fascinating applications in nanophotonics.

  20. Tunable Fano resonator using multilayer graphene in the near-infrared region

    Science.gov (United States)

    Zhou, Chaobiao; Liu, Guoqin; Ban, Guoxun; Li, Shiyu; Huang, Qingzhong; Xia, Jinsong; Wang, Yi; Zhan, Mingsheng

    2018-03-01

    Fano resonance (FR) holds promising applications for high performance optoelectronic devices due to its strong enhancement of light-matter interactions. In this work, we experimentally demonstrate a tunable FR in a photonic crystal nanoresonator (PCR), including the effects of structural parameters and graphene nanosheets with different layer numbers. The results show that the intensity and position of Fano peaks can be tuned via altering the lattice constant and the hole radius of PCR due to the variation of the effective refractive index. More importantly, we experimentally study the interaction between sharp FR with multilayer graphene. The results indicate that the FR transmission spectrum can be efficiently adjusted with the layer number of graphene, and the largest change in transmission (˜44%) is achieved with three-layer graphene because of high conductivity. These consequences may lead to efficient and tunable electro-optical modulators, biosensors, and optical switches in the near-infrared region.

  1. Electromagnetically induced reflectance and Fano resonance in one dimensional superconducting photonic crystal

    Science.gov (United States)

    Athe, Pratik; Srivastava, Sanjay; Thapa, Khem B.

    2018-04-01

    In the present work, we demonstrate the generation of optical Fano resonance and electromagnetically induced reflectance (EIR) in one-dimensional superconducting photonic crystal (1D SPC) by numerical simulation using transfer matrix method as analysis tool. We investigated the optical response of 1D SPC structure consisting of alternate layer of two different superconductors and observed that the optical spectra of this structure exhibit two narrow reflectance peaks with zero reflectivity of sidebands. Further, we added a dielectric cap layer to this 1D SPC structure and found that addition of dielectric cap layer transforms the line shape of sidebands around the narrow reflectance peaks which leads to the formation of Fano resonance and EIR line shape in reflectance spectra. We also studied the effects of the number of periods, refractive index and thickness of dielectric cap layer on the lineshape of EIR and Fano resonances. It was observed that the amplitude of peak reflectance of EIR achieves 100% reflectance by increasing the number of periods.

  2. Conversion between EIT and Fano spectra in a microring-Bragg grating coupled-resonator system

    Science.gov (United States)

    Zhang, Zecen; Ng, Geok Ing; Hu, Ting; Qiu, Haodong; Guo, Xin; Wang, Wanjun; Rouifed, Mohamed Saïd; Liu, Chongyang; Wang, Hong

    2017-08-01

    A conversion between the electromagnetically induced transparency (EIT) transmission and Fano transmission is theoretically and experimentally demonstrated in an all-pass microring-Bragg grating (APMR-BG) coupled-resonator system. In this work, the coupling between the two resonators (the microring resonator and the Fabry-Perot resonator formed by two Bragg gratings) gives rise to the EIT and Fano transmissions. The resonant status strongly depends on the round-trip attenuation of the microring and the coupling strength. By tuning the coupling strength, the EIT and Fano transmissions can be controlled and converted. The device performance has been theoretically calculated and analyzed with a specially developed numerical model based on the transfer matrix method. The APMR-BG coupled-resonator systems with different gap widths were designed, fabricated, and characterized on a silicon-on-insulator (SOI) platform. The conversion of resonance was experimentally observed and verified. In addition, this on-chip system has the advantage of a small footprint, and the fabrication process is compatible with the planar waveguide fabrication process.

  3. Dynamic control of the asymmetric Fano resonance in side-coupled Fabry–Pérot and photonic crystal nanobeam cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tong; Chau, Fook Siong; Zhou, Guangya, E-mail: mpezgy@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore); Deng, Jie [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore)

    2015-11-30

    Fano resonance is a prevailing interference phenomenon that stems from the intersection between discrete and continuum states in many fields. We theoretically and experimentally characterize the asymmetric Fano lineshape in side-coupled waveguide Fabry–Pérot and photonic crystal nanobeam cavities. The measured quality-factor of the Fano resonance before tuning is 28 100. A nanoelectromechanical systems bidirectional actuator is integrated seamlessly to control the shape of the Fano resonance through in-plane translations in two directions without sacrificing the quality-factor. The peak intensity level of the Fano resonance can be increased by 8.5 dB from 60 nW to 409 nW while the corresponding dip intensity is increased by 12.8 dB from 1 nW to 18 nW. The maximum recorded quality-factor throughout the tuning procedure is up to 32 500. Potential applications of the proposed structure include enhancing the sensitivity of sensing, reconfigurable nanophotonics devices, and on-chip intensity modulator.

  4. Polarization of photoelectrons produced from atoms by synchrotron radiation

    International Nuclear Information System (INIS)

    Hughes, V.W.; Lu, D.C.; Huang, K.N.

    1981-01-01

    The polarization of photoelectrons from stoms has proved to be an important tool for studying correlation effects in atoms, as well as relativistic effects such as the spin-orbit interaction. Extensive experimental and theoretical studies have been made of the Fano effect, which is the production of polarized electrons by photoionization of unpolarized atoms by circularly polarized light. The experiments have dealt mostly with alkali atoms and with photon energies slightly above the ionization thresholds. Measurements that could be made to utilize polarized radiation are discussed

  5. Investigation of Fano resonances induced by higher order plasmon modes on a circular nano-disk with an elongated cavity

    KAUST Repository

    Amin, Muhammad Ruhul

    2012-08-10

    In this paper, a planar metallic nanostructure design, which supports two distinct Fano resonances in its extinction cross-section spectrum under normally incident and linearly polarized electromagnetic field, is proposed. The proposed design involves a circular disk embedding an elongated cavity; shifting and rotating the cavity break the symmetry of the structure with respect to the incident field and induce higher order plasmon modes. As a result, Fano resonances are generated in the visible spectrum due to the destructive interference between the sub-radiant higher order modes and super-radiant the dipolar mode. The Fano resonances can be tuned by varying the cavity\\'s width and the rotation angle. An RLC circuit, which is mathematically equivalent to a mass-spring oscillator, is proposed to model the optical response of the nanostructure design.

  6. All-optical switching based on a tunable Fano-like resonance in nonlinear ferroelectric photonic crystals

    International Nuclear Information System (INIS)

    Chai, Zhen; Hu, Xiaoyong; Gong, Qihuang

    2013-01-01

    A low-power all-optical switching is presented based on the all-optical tunable Fano-like resonance in a two-dimensional nonlinear ferroelectric photonic crystal made of polycrystalline lithium niobate. An asymmetric Fano-like line shape is achieved in the transmission spectrum by using two cascaded and uncoupled photonic crystal microcavities. The physical mechanism underlying the all-optical switching is attributed to the dynamic shift of the Fano-like resonance peak caused by variations in the dispersion relations of the photonic crystal structure induced by pump light. A large switching efficiency of 61% is reached under excitation of a weak pump light with an intensity as low as 1 MW cm −2 . (paper)

  7. Limpieza y esterilización en quirófano de oftalomología

    OpenAIRE

    Lama Ochoa de Retama, María Angosto

    2012-01-01

    En oftalmología el espacio para la cirugía, debe cumplir unos requerim ientos, debe ser una zona de acceso limitado y se deben respetar las normas de asepsia quirúrgica.. Se deben de tener en cuenta conceptos como asepsia, asepsia quirúrgica, limpieza y desinfección. Hay que tener muy en cuenta la limpieza y desinfección de superficies. El personal debe tener y respetar unas normas dentro del quirófano sobre cómo llevar el pijama, gorro, guantes, mascarilla...Se debe de tener en cuenta la lim...

  8. High quality-factor fano metasurface comprising a single resonator unit cell

    Science.gov (United States)

    Sinclair, Michael B.; Warne, Larry K.; Basilio, Lorena I.; Langston, William L.; Campione, Salvatore; Brener, Igal; Liu, Sheng

    2017-06-20

    A new monolithic resonator metasurface design achieves ultra-high Q-factors while using only one resonator per unit cell. The metasurface relies on breaking the symmetry of otherwise highly symmetric resonators to induce intra-resonator mixing of bright and dark modes (rather than inter-resonator couplings), and is scalable from the near-infrared to radio frequencies and can be easily implemented in dielectric materials. The resulting high-quality-factor Fano metasurface can be used in many sensing, spectral filtering, and modulation applications.

  9. Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Weidong; Yang Hongjun; Qiang Zexuan; Chen Li; Yang Weiquan; Chuwongin, Santhad; Zhao Deyin [Department of Electrical Engineering, NanoFAB Center, University of Texas at Arlington, TX 76019 (United States); Ma Zhenqiang; Qin Guoxuan; Pang Huiqing, E-mail: wzhou@uta.ed, E-mail: mazq@engr.wisc.ed [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, WI 53706 (United States)

    2009-12-07

    Crystalline semiconductor nanomembranes (NMs), which are transferable, stackable, bondable and manufacturable, offer unprecedented opportunities for unique and novel device applications. We report and review here nanophotonic devices based on stacked semiconductor NMs that were built on Si, glass and flexible PET substrates. Photonic-crystal Fano resonance based surface-normal optical filters and broadband reflectors have been demonstrated with unique angle and polarization properties. Such a low temperature NM stacking process can lead to a paradigm shift on silicon photonic integration and inorganic flexible photonics.

  10. Fano resonances in a high-Q terahertz whispering-gallery mode resonator coupled to a multi-mode waveguide.

    Science.gov (United States)

    Vogt, Dominik Walter; Leonhardt, Rainer

    2017-11-01

    We report on Fano resonances in a high-quality (Q) whispering-gallery mode (WGM) spherical resonator coupled to a multi-mode waveguide in the terahertz (THz) frequency range. The asymmetric line shape and phase of the Fano resonances detected with coherent continuous-wave (CW) THz spectroscopy measurements are in excellent agreement with the analytical model. A very high Q factor of 1600, and a finesse of 22 at critical coupling is observed around 0.35 THz. To the best of our knowledge this is the highest Q factor ever reported for a THz WGM resonator.

  11. Coherence effects in atomic impact processes

    International Nuclear Information System (INIS)

    Blum, K.

    1980-01-01

    The author considers excitation of target atoms by projectile particles and the coincident detection of the scattered projectiles and the photons emitted in the subsequent decay by the target atoms. The observation is restricted to radiation emitted by those atoms only which 'scattered' the projectiles with a given energy in a given direction defined by the particle detector. Thus, a certain subensemble of atoms is selected in the experiment. The author reviews the theoretical scheme used for the description of the excited subensemble with the emphasis on the coherence properties. The author reviews developments of the Fano-Macek theory concerning the description of coherently excited states with different angular momenta and parities. A comprehensive expression for the angular distribution of the emitted radiation, including all possible interference terms is given. (Auth.)

  12. Fano coil-type resonances: a plasmonic tool for the magnetic field manipulation (Conference Presentation)

    Science.gov (United States)

    Panaro, Simone; Proietti Zaccaria, Remo; Toma, Andrea

    2017-02-01

    Spintronics and spin-based technology rely on the ultra-fast unbalance of the electronic spin population in quite localized spatial regions. However, as a matter of fact, the low susceptibility of conventional materials at high frequencies strongly limits these phenomena, rendering the efficiency of magnetically active devices insufficient for application purposes. Among the possible strategies which can be envisaged, plasmonics offers a direct approach to increase the effect of local electronic unbalancing processes. By confining and enhancing free radiation in nm-size spatial regions, plasmonic nano-assemblies have demonstrated to support very intense electric and magnetic hot-spots. In particular, very recent studies have proven the fine control of magnetic fields in Fano resonance condition. The near-field-induced out-of-phase oscillation of localized surface plasmons has manifested itself with the arising of magnetic sub-diffractive hot-spots. Here, we show how this effect can be further boosted in the mid-infrared regime via the introduction of higher order plasmonic modes. The investigated system, namely Moon Trimer Resonator (MTR), combines the high efficiency of a strongly coupled nano-assembly in Fano interferential condition with the elevated tunability of the quadrupolar resonance supported by a moon-like geometry. The fine control of the apical gap in this unique nanostructure, characterizes a plasmonic device able to tune its resonance without any consequence on the magnetic hot-spot size, thus enabling an efficient squeezing in the infrared.

  13. Tunable Fano resonance in MDM stub waveguide coupled with a U-shaped cavity

    Science.gov (United States)

    Yi, Xingchun; Tian, Jinping; Yang, Rongcao

    2018-04-01

    A new compact metal-dielectric-metal waveguide system consisting of a stub coupled with a U-cavity is proposed to produce sharp and asymmetric Fano resonance. The transmission properties of the proposed structure are numerically studied by the finite element method and verified by the coupled mode theory. Simulation results reveal that the spectral profile can be easily tuned by adjusting the geometric parameters of the structure. One of the potential application of the proposed structure as a highly efficient plasmonic refractive index nanosensor was investigated with its sensitivity of more than 1000 nm/RIU and a figure of merit of up to 5500. Another application is integrated slow-light device whose group index can be greater than 6. In addition, multiple Fano resonances will occur in the broadband transmission spectrum by adding another U-cavity or (and) stub. The characteristics of the proposed structure are very promising for the highly performance filters, on-chip nanosensors, and slow-light devices.

  14. Shot noise and Fano factor in tunneling in three-band pseudospin-1 Dirac-Weyl systems

    Science.gov (United States)

    Zhu, Rui; Hui, Pak Ming

    2017-06-01

    Tunneling through a potential barrier of height V0 in a two-dimensional system with a band structure consisting of three bands with a flat band intersecting the touching apices of two Dirac cones is studied. Results of the transmission coefficient at various incident angles, conductivity, shot noise, and Fano factor in this pseudospin-1 Dirac-Weyl system are presented and contrasted with those in graphene which is typical of a pseudospin-1/2 system. The pseudospin-1 system is found to show a higher transmission and suppressed shot noise in general. Significant differences in the shot noise and Fano factor due to the super Klein tunneling effect that allows perfect transmission at all incident angles under certain conditions are illustrated. For Fermi energy EF =V0 / 2, super Klein tunneling leads to a noiseless conductivity that takes on the maximum value 2e2 DkF / (πh) for 0 ≤EF ≤V0. This gives rise to a minimum Fano factor, in sharp contrast with that of a local maximum in graphene. For EF =V0, the band structure of pseudospin-1 system no longer leads to a quantized value of the conductivity as in graphene. Both the conductivity and the shot noise show a minimum with the Fano factor approaching 1/4, which is different from the value of 1/3 in graphene.

  15. A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications

    KAUST Repository

    Amin, M.; Farhat, Mohamed; Bagci, Hakan

    2013-01-01

    We report on a novel electrically tunable hybrid graphene-gold Fano resonator. The proposed metamaterial consists of a square graphene patch and a square gold frame. The destructive interference between the narrow- and broadband dipolar surface plasmons, which are induced respectively on the surfaces of the graphene patch and the gold frame, leads to the plasmonic equivalent of electromagnetically induced transparency (EIT). The response of the metamaterial is polarization independent due to the symmetry of the structure and its spectral features are shown to be highly controllable by changing a gate voltage applied to the graphene patch. Additionally, effective group index of the device is retrieved and is found to be very high within the EIT window suggesting its potential use in slow light applications. Potential outcomes such as high sensing ability and switching at terahertz frequencies are demonstrated through numerical simulations with realistic parameters.

  16. Plasmonic Moon: a Fano-like approach for squeezing the magnetic field in the infrared

    KAUST Repository

    Panaro, Simone

    2015-08-11

    Outstanding results have been achieved in the localization of optical electric fields via ultrasmall plasmonic cavities, paving the way to the subdiffractive confinement of local electromagnetic fields. However, due to the intrinsic constraints related to conventional architectures, no comparable squeezing factors have been managed yet for the magnetic counterpart of radiation, practically hindering the detection and manipulation of magneto-optical effects at the nanoscale. Here, we observe a strong magnetic field nanofocusing in the infrared, promoted by the induction of a coil-type Fano resonance. By triggering the coil current via a quadrupole-like plasmonic mode, we straightforwardly boost the enhancement of the infrared magnetic field and perform its efficient squeezing in localized nanovolumes.

  17. A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications

    KAUST Repository

    Amin, M.

    2013-07-01

    We report on a novel electrically tunable hybrid graphene-gold Fano resonator. The proposed metamaterial consists of a square graphene patch and a square gold frame. The destructive interference between the narrow- and broadband dipolar surface plasmons, which are induced respectively on the surfaces of the graphene patch and the gold frame, leads to the plasmonic equivalent of electromagnetically induced transparency (EIT). The response of the metamaterial is polarization independent due to the symmetry of the structure and its spectral features are shown to be highly controllable by changing a gate voltage applied to the graphene patch. Additionally, effective group index of the device is retrieved and is found to be very high within the EIT window suggesting its potential use in slow light applications. Potential outcomes such as high sensing ability and switching at terahertz frequencies are demonstrated through numerical simulations with realistic parameters.

  18. Density-near-zero using the acoustically induced transparency of a Fano acoustic resonator

    KAUST Repository

    Elayouch, A.

    2017-01-05

    We report experimental results of near-zero mass density involving an acoustic metamaterial supporting Fano resonance. For this, we designed and fabricated an acoustic resonator with two closely coupled modes and measured its transmission properties. Our study reveals that the phenomenon of acoustically induced transparency is accompanied by an effect of near-zero density. Indeed, the dynamic effective parameters obtained from experimental data show the presence of a frequency band where the effective mass density is close to zero, with high transmission levels reaching 0.7. Furthermore, we demonstrate that such effective parameters lead to wave guiding in a 90-degrees-bent channel. This kind of acoustic metamaterial can, therefore, give rise to acoustic functions like controlling the wavefront, which may lead to very promising applications in acoustic cloacking or imaging.

  19. A perfect Fresnel acoustic reflector implemented by a Fano-resonant metascreen

    KAUST Repository

    Amin, M.

    2018-04-10

    We propose a perfectly reflecting acoustic metasurface which is designed by replacing the curved segments of the traditional Fresnel reflector by flat Fano-resonant sub-wavelength unit cells. To preserve the original Fresnel focusing mechanism, the unit cell phase follows a specific phase profile which is obtained by applying the generalized Snell\\'s law and Fermat\\'s principle. The reflected curved phase fronts are thus created at the air-metasurface boundary by tailoring the metasurface dispersion as dictated by Huygens\\' principle. Since the unit cells are implemented by sub-wavelength double slit-shaped cavity resonators, the impinging sound waves are perfectly reflected producing acoustic focusing with negligible absorption. We use plane-wave solution and full-wave simulations to demonstrate the focusing effects. The simulation results closely follow the analytical predictions.

  20. Imaging Plasmon Hybridization of Fano Resonances via Hot-Electron-Mediated Absorption Mapping.

    Science.gov (United States)

    Simoncelli, Sabrina; Li, Yi; Cortés, Emiliano; Maier, Stefan A

    2018-05-04

    The inhibition of radiative losses in dark plasmon modes allows storing electromagnetic energy more efficiently than in far-field excitable bright-plasmon modes. As such, processes benefiting from the enhanced absorption of light in plasmonic materials could also take profit of dark plasmon modes to boost and control nanoscale energy collection, storage, and transfer. We experimentally probe this process by imaging with nanoscale precision the hot-electron driven desorption of thiolated molecules from the surface of gold Fano nanostructures, investigating the effect of wavelength and polarization of the incident light. Spatially resolved absorption maps allow us to show the contribution of each element of the nanoantenna in the hot-electron driven process and their interplay in exciting a dark plasmon mode. Plasmon-mode engineering allows control of nanoscale reactivity and offers a route to further enhance and manipulate hot-electron driven chemical reactions and energy-conversion and transfer at the nanoscale.

  1. Fano and Dicke effects in a double Rashba-ring system

    International Nuclear Information System (INIS)

    Apel, V M; Orellana, P A; Pacheco, M

    2008-01-01

    The electronic transport in a system of two quantum rings side-coupled to a quantum wire is studied via a single-band tunneling tight-binding Hamiltonian. We derived analytical expressions for the conductance and spin polarization when the rings are threaded by magnetic fluxes with Rashba spin-orbit interaction. We show that by using the Fano and Dicke effects this system can be used as an efficient spin filter even for small spin-orbit interaction and small values of magnetic fluxes. We compare the spin-dependent polarization of this design and the polarization obtained with one ring side-coupled to a quantum ring. As a main result, we find better spin polarization capabilities as compared to the one-ring design

  2. A perfect Fresnel acoustic reflector implemented by a Fano-resonant metascreen

    KAUST Repository

    Amin, M.; Siddiqui, O.; Farhat, Mohamed; Khelif, A.

    2018-01-01

    We propose a perfectly reflecting acoustic metasurface which is designed by replacing the curved segments of the traditional Fresnel reflector by flat Fano-resonant sub-wavelength unit cells. To preserve the original Fresnel focusing mechanism, the unit cell phase follows a specific phase profile which is obtained by applying the generalized Snell's law and Fermat's principle. The reflected curved phase fronts are thus created at the air-metasurface boundary by tailoring the metasurface dispersion as dictated by Huygens' principle. Since the unit cells are implemented by sub-wavelength double slit-shaped cavity resonators, the impinging sound waves are perfectly reflected producing acoustic focusing with negligible absorption. We use plane-wave solution and full-wave simulations to demonstrate the focusing effects. The simulation results closely follow the analytical predictions.

  3. Restauración de la Iglesia de San Francesco en Fano (Italia

    Directory of Open Access Journals (Sweden)

    Claudio Galli

    2014-07-01

    Full Text Available La iglesia de San Francisco de Fano expuesta a cielo abierto desde hace décadas posee una gran capacidad de evocación para propios y extraños. La intervención llevada a cabo ha asumido su condición incompleta y fragmentaria evitando una repristinación que era relativamente fácil por la existencia de abundante documentación y restos conservados. La restauración ha acometido la tarea de afianzar sus fábricas desplomadas, consolidar la decoración remanente e insertar las instalaciones estrictamente necesarias para el mantenimiento del césped natural como pavimento y la iluminación del espacio para su uso como foro de actos públicos o, simplemente, como museo de los avatares de su propia historia construida.

  4. Scattering of electromagnetic pulses by metal nanospheres in the vicinity of a Fano-like resonance

    International Nuclear Information System (INIS)

    Astapenko, V.A.; Svita, S.Yu.

    2015-01-01

    In the work, radiation scattering by metal nanospheres in a dielectric matrix in case of ultrashort and long electromagnetic pulses is studied theoretically. Spectral efficiencies of backward and forward scattering by silver nanospheres in glass are calculated with the use of experimental data on the dielectric permittivity of silver. The presence of Fano-like resonances in spectral dependences of scattering efficiency caused by interference of dipole and quadrupole scatterings is shown. Backward and forward scattering of ultrashort pulses is calculated and analyzed. The obtained dependences of the total probability of scattering (during all time of the action of a pulse) on pulse duration demonstrate an essential distinction between an ultrashort case and a long pulse limit

  5. Sensor based on Fano resonances of plane metamaterial with narrow slits

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wan-Xia, E-mail: kate@mail.ahnu.edu.cn [State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education) and Physics Department, Fudan University, Shanghai 200433 (China); The College of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241000 (China); Guo, Juan-Juan; Wang, Mao-Sheng; Zhao, Guo-Ren [The College of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241000 (China)

    2017-03-11

    The optical properties of a composite metamaterial composed of narrow slits and nano hole pairs have been investigated experimentally and numerically. The strength of the transmission peak originating from the interference between the coupled surface plasmon polaritons (SPP) of the narrow slit and the SPP modes of the hole array is modulated by the degree of symmetry breaking. Some SPP modes can be inhibited by controlling the spacer layer thickness. Our metamaterial has potential applications in sensing and weak signal detection. - Highlights: • The plasmonic nanostructure composed of narrow slits and nano hole pairs were designed. • The optical properties were investigated experimentally and numerically. • The Fano resonances were found on the compound nanostructure. • The results have potential applications in sensing and weak signal detection.

  6. Fano Description of Single-Hydrocarbon Fluorescence Excited by a Scanning Tunneling Microscope.

    Science.gov (United States)

    Kröger, Jörg; Doppagne, Benjamin; Scheurer, Fabrice; Schull, Guillaume

    2018-06-13

    The detection of fluorescence with submolecular resolution enables the exploration of spatially varying photon yields and vibronic properties at the single-molecule level. By placing individual polycyclic aromatic hydrocarbon molecules into the plasmon cavity formed by the tip of a scanning tunneling microscope and a NaCl-covered Ag(111) surface, molecular light emission spectra are obtained that unravel vibrational progression. In addition, light spectra unveil a signature of the molecule even when the tunneling current is injected well separated from the molecular emitter. This signature exhibits a distance-dependent Fano profile that reflects the subtle interplay between inelastic tunneling electrons, the molecular exciton and localized plasmons in at-distance as well as on-molecule fluorescence. The presented findings open the path to luminescence of a different class of molecules than investigated before and contribute to the understanding of single-molecule luminescence at surfaces in a unified picture.

  7. A perfect Fresnel acoustic reflector implemented by a Fano-resonant metascreen

    Science.gov (United States)

    Amin, M.; Siddiqui, O.; Farhat, M.; Khelif, A.

    2018-04-01

    We propose a perfectly reflecting acoustic metasurface which is designed by replacing the curved segments of the traditional Fresnel reflector by flat Fano-resonant sub-wavelength unit cells. To preserve the original Fresnel focusing mechanism, the unit cell phase follows a specific phase profile which is obtained by applying the generalized Snell's law and Fermat's principle. The reflected curved phase fronts are thus created at the air-metasurface boundary by tailoring the metasurface dispersion as dictated by Huygens' principle. Since the unit cells are implemented by sub-wavelength double slit-shaped cavity resonators, the impinging sound waves are perfectly reflected producing acoustic focusing with negligible absorption. We use plane-wave solution and full-wave simulations to demonstrate the focusing effects. The simulation results closely follow the analytical predictions.

  8. Tables of Shore and Fano parameters for the helium resonances 2s/sup 2/ /sup 1/S, 2p/sup 2/ /sup 1/D, and 2s 2p /sup 1/P excited in p-He collisions E/sub p/ = 33 to 150 keV

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, A.; Benoit-Cattin, P.; Gleizes, A.; Merchez, H.

    1976-02-01

    Absolute values of Shore and Fano parameters are tabulated for the helium atom 2s/sup 2/ /sup 1/S, 2p/sup 2/ /sup 1/D, and 2s 2p /sup 1/P resonances produced by a proton beam. Observations were made on the spectra of ejected electrons. The important variation of the shape of the resonances with ejection angle is illustrated for E/sub p/ = 100 keV; the variation with proton energy is shown at 30/sup 0/.

  9. SU-E-T-347: Validation of the Condensed History Algorithm of Geant4 Using the Fano Test

    International Nuclear Information System (INIS)

    Lee, H; Mathis, M; Sawakuchi, G

    2014-01-01

    Purpose: To validate the condensed history algorithm and physics of the Geant4 Monte Carlo toolkit for simulations of ionization chambers (ICs). This study is the first step to validate Geant4 for calculations of photon beam quality correction factors under the presence of a strong magnetic field for magnetic resonance guided linac system applications. Methods: The electron transport and boundary crossing algorithms of Geant4 version 9.6.p02 were tested under Fano conditions using the Geant4 example/application FanoCavity. User-defined parameters of the condensed history and multiple scattering algorithms were investigated under Fano test conditions for three scattering models (physics lists): G4UrbanMscModel95 (PhysListEmStandard-option3), G4GoudsmitSaundersonMsc (PhysListEmStandard-GS), and G4WentzelVIModel/G4CoulombScattering (PhysListEmStandard-WVI). Simulations were conducted using monoenergetic photon beams, ranging from 0.5 to 7 MeV and emphasizing energies from 0.8 to 3 MeV. Results: The GS and WVI physics lists provided consistent Fano test results (within ±0.5%) for maximum step sizes under 0.01 mm at 1.25 MeV, with improved performance at 3 MeV (within ±0.25%). The option3 physics list provided consistent Fano test results (within ±0.5%) for maximum step sizes above 1 mm. Optimal parameters for the option3 physics list were 10 km maximum step size with default values for other user-defined parameters: 0.2 dRoverRange, 0.01 mm final range, 0.04 range factor, 2.5 geometrical factor, and 1 skin. Simulations using the option3 physics list were ∼70 – 100 times faster compared to GS and WVI under optimal parameters. Conclusion: This work indicated that the option3 physics list passes the Fano test within ±0.5% when using a maximum step size of 10 km for energies suitable for IC calculations in a 6 MV spectrum without extensive computational times. Optimal user-defined parameters using the option3 physics list will be used in future IC simulations to

  10. Fully Valley/spin polarized current and Fano factor through the Graphene/ferromagnetic silicene/Graphene junction

    Energy Technology Data Exchange (ETDEWEB)

    Rashidian, Zeinab; Rezaeipour, Saeid [Department of Physics, Faculty of Science, Lorestan University, Lorestan (Iran, Islamic Republic of); Hajati, Yaser [Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Lorestaniweiss, Zeinab, E-mail: rashidian1983z@gmail.com [Department of Physics, Faculty of Science, Lorestan University, Lorestan (Iran, Islamic Republic of); Ueda, Akiko [Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba (Japan)

    2017-02-15

    In this work, we study the transport properties of Dirac fermions through the ferromagnetic silicene which is sandwiched between the Graphene leads (G/FS/G). Spin/valley conductance, spin/valley polarization, and also Fano factor are theoretically calculated using the Landauer-Buttiker formula. We find that the fully valley and spin polarized currents through the G/FS/G junction can be obtained by increasing the electric field strength and the length of ferromagnetic silicene region. Moreover, the valley polarization can be tuned from negative to positive values by changing the electric field. We find that the Fano factor also changes with the spin and valley polarization. Our findings of high controllability of the spin and valley transport in such a G/FS/G junction the potential of this junction for spin-valleytronics applications.

  11. Prediction of quantum interference in molecular junctions using a parabolic diagram: Understanding the origin of Fano and anti-resonances

    DEFF Research Database (Denmark)

    Nozaki, Daijiro; Avdoshenko, Stanislav M.; Sevincli, Haldun

    2013-01-01

    Recently the interest in quantum interference (QI) phenomena in molecular devices (molecular junctions) has been growing due to the unique features observed in the transmission spectra. In order to design single molecular devices exploiting QI effects as desired, it is necessary to provide simple...... rules for predicting the appearance of QI effects such as anti-resonances or Fano line shapes and for controlling them. In this study, we derive a transmission function of a generic molecular junction with a side group (T-shaped molecular junction) using a minimal toy model. We developed a simple method...... to predict the appearance of quantum interference, Fano resonances or anti- resonances, and its position in the conductance spectrum by introducing a simple graphical representation (parabolic model). Using it we can easily visualize the relation between the key electronic parameters and the positions...

  12. Analytical determination of Kondo and Fano resonances of electron Green's function in a single-level quantum dot

    International Nuclear Information System (INIS)

    Nguyen Bich Ha; Nguyen Van Hop

    2009-01-01

    The Kondo and Fano resonances in the two-point Green's function of the single-level quantum dot were found and investigated in many previous works by means of different numerical calculation methods. In this work we present the derivation of the analytical expressions of resonance terms in the expression of the two-point Green's function. For that purpose the system of Dyson equations for the two-point nonequilibrium Green's functions in the complex-time Keldysh formalism was established in the second order with respect to the tunneling coupling constants and the mean field approximation. This system of Dyson equations was solved exactly and the analytical expressions of the resonance terms are derived. The conditions for the existence of Kondo or Fano resonances are found.

  13. Theoretical study of high-Q Fano resonance and extrinsic chirality in an ultrathin Babinet-inverted metasurface

    Science.gov (United States)

    Wang, Feng; Wang, Zhengping; Shi, Jinhui

    2014-10-01

    A high-Q Fano resonance and giant extrinsic chirality have been demonstrated in an ultrathin Babinet-inverted metasurface composed of asymmetrical split ring apertures (ASRAs) perforated through a metal plate based on the full-wave simulations. The performance of the Fano resonance at normal incidence strongly depends on the asymmetry of the ASRA. The quality factor is larger than 1000 and the local field enhancement is an order of 104. For oblique incidence, giant extrinsic chirality can be achieved in the Babinet-inverted metasurface. It reveals a cross-polarization transmission band with a ripple-free peak and also a spectrum split for large angles of incidence. The electromagnetic response of the metasurface can be easily tuned via angles of incidence and asymmetry. The proposed ASRA metasurface is of importance to develop many metamaterial-based devices, such as filters and circular polarizers.

  14. Fano lineshapes of 'Peak-tracking chip' spatial profiles analyzed with correlation analysis for bioarray imaging and refractive index sensing

    KAUST Repository

    Bougot-Robin, K.

    2013-05-22

    The asymmetric Fano resonance lineshapes, resulting from interference between background and a resonant scattering, is archetypal in resonant waveguide grating (RWG) reflectivity. Resonant profile shift resulting from a change of refractive index (from fluid medium or biomolecules at the chip surface) is classically used to perform label-free sensing. Lineshapes are sometimes sampled at discretized “detuning” values to relax instrumental demands, the highest reflectivity element giving a coarse resonance estimate. A finer extraction, needed to increase sensor sensitivity, can be obtained using a correlation approach, correlating the sensed signal to a zero-shifted reference signal. Fabrication process is presented leading to discrete Fano profiles. Our findings are illustrated with resonance profiles from silicon nitride RWGs operated at visible wavelengths. We recently demonstrated that direct imaging multi-assay RWGs sensing may be rendered more reliable using “chirped” RWG chips, by varying a RWG structure parameter. Then, the spatial reflectivity profiles of tracks composed of RWGs units with slowly varying filling factor (thus slowly varying resonance condition) are measured under monochromatic conditions. Extracting the resonance location using spatial Fano profiles allows multiplex refractive index based sensing. Discretization and sensitivity are discussed both through simulation and experiment for different filling factor variation, here Δf=0.0222 and Δf=0.0089. This scheme based on a “Peak-tracking chip” demonstrates a new technique for bioarray imaging using a simpler set-up that maintains high performance with cheap lenses, with down to Δn=2×10-5 RIU sensitivity for the highest sampling of Fano lineshapes. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  15. Fano lineshapes of 'Peak-tracking chip' spatial profiles analyzed with correlation analysis for bioarray imaging and refractive index sensing

    KAUST Repository

    Bougot-Robin, K.; Li, S.; Yue, W.; Chen, L. Q.; Zhang, Xixiang; Wen, W. J.; Benisty, H.

    2013-01-01

    The asymmetric Fano resonance lineshapes, resulting from interference between background and a resonant scattering, is archetypal in resonant waveguide grating (RWG) reflectivity. Resonant profile shift resulting from a change of refractive index (from fluid medium or biomolecules at the chip surface) is classically used to perform label-free sensing. Lineshapes are sometimes sampled at discretized “detuning” values to relax instrumental demands, the highest reflectivity element giving a coarse resonance estimate. A finer extraction, needed to increase sensor sensitivity, can be obtained using a correlation approach, correlating the sensed signal to a zero-shifted reference signal. Fabrication process is presented leading to discrete Fano profiles. Our findings are illustrated with resonance profiles from silicon nitride RWGs operated at visible wavelengths. We recently demonstrated that direct imaging multi-assay RWGs sensing may be rendered more reliable using “chirped” RWG chips, by varying a RWG structure parameter. Then, the spatial reflectivity profiles of tracks composed of RWGs units with slowly varying filling factor (thus slowly varying resonance condition) are measured under monochromatic conditions. Extracting the resonance location using spatial Fano profiles allows multiplex refractive index based sensing. Discretization and sensitivity are discussed both through simulation and experiment for different filling factor variation, here Δf=0.0222 and Δf=0.0089. This scheme based on a “Peak-tracking chip” demonstrates a new technique for bioarray imaging using a simpler set-up that maintains high performance with cheap lenses, with down to Δn=2×10-5 RIU sensitivity for the highest sampling of Fano lineshapes. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  16. A T-shaped double quantum dot system as a Fano interferometer: Interplay of coherence and correlation upon spin currents

    Science.gov (United States)

    Fernandes, I. L.; Cabrera, G. G.

    2018-05-01

    Based on Keldysh non-equilibrium Green function method, we have investigated spin current production in a hybrid T-shaped device, consisting of a central quantum dot connected to the leads and a side dot which only couples to the central dot. The topology of this structure allows for quantum interference of the different paths that go across the device, yielding Fano resonances in the spin dependent transport properties. Correlation effects are taken into account at the central dot and handled within a mean field approximation. Its interplay with the Fano effect is analyzed in the strong coupling regime. Non-vanishing spin currents are only obtained when the leads are ferromagnetic, the current being strongly dependent on the relative orientation of the lead polarizations. We calculate the conductance (spin and charge) by numerically differentiating the current, and a rich structure is obtained as a manifestation of quantum coherence and correlation effects. Increase of the Coulomb interaction produces localization of states at the side dot, largely suppressing Fano resonances. The interaction is also responsible for the negative values of the spin conductance in some regions of the voltage near resonances, effect which is the spin analog of the Esaki tunnel diode. We also analyze control of the currents via gate voltages applied to the dots, possibility which is interesting for practical operations.

  17. Dynamical Fano-Like Interference between Rabi Oscillations and Coherent Phonons in a Semiconductor Microcavity System.

    Science.gov (United States)

    Yoshino, S; Oohata, G; Mizoguchi, K

    2015-10-09

    We report on dynamical interference between short-lived Rabi oscillations and long-lived coherent phonons in CuCl semiconductor microcavities resulting from the coupling between the two oscillations. The Fourier-transformed spectra of the time-domain signals obtained from semiconductor microcavities by using a pump-probe technique show that the intensity of the coherent longitudinal optical phonon of CuCl is enhanced by increasing that of the Rabi oscillation, which indicates that the coherent phonon is driven by the Rabi oscillation through the Fröhlich interaction. Moreover, as the Rabi oscillation frequency decreases upon crossing the phonon frequency, the spectral profile of the coherent phonon changes from a peak to a dip with an asymmetric structure. The continuous wavelet transformation reveals that these peak and dip structures originate from constructive and destructive interference between Rabi oscillations and coherent phonons, respectively. We demonstrate that the asymmetric spectral structures in relation to the frequency detuning are well reproduced by using a classical coupled oscillator model on the basis of dynamical Fano-like interference.

  18. Mala praxis médica en el quirófano

    Directory of Open Access Journals (Sweden)

    Tania Amores Agulla

    Full Text Available La mala praxis médica constituye actualmente un problema global de salud, incluso en los mejores centros hospitalarios del mundo. Se consultaron 26 referencias bibliográficas nacionales e internacionales acerca del tema con el objetivo de determinar el estado actual de los errores médicos en el quirófano. El ejercicio de la medicina tiene riesgos inherentes y la naturaleza humana hace imposible que el hombre sea infalible. Los tipos de errores más frecuentes en la práctica médica son: administración equívoca de medicamentos, diagnósticos inciertos, fallas técnicas (procedimientos insuficientes, incompletos y/o incorrectos y demora en el salón de operaciones. Las causas más frecuentes engloban el cansancio, la prisa, falta de conocimientos, entre otras. La prevención es posible y son numerosas las estrategias aplicadas por los diferentes sistemas de salud: estimular el trabajo en equipo, fortalecer la capacitación del médico y personal paramédico, evitar confiar en la memoria usando listas de chequeo, estandarizar procedimientos y protocolos, crear la cultura del reporte voluntario de errores. El error debe ser utilizado como una oportunidad para aprender, para mejorar la calidad en la atención y por ende, la seguridad de los enfermos.

  19. Enhancement and tunability of Fano resonance in symmetric multilayer metamaterials at optical regime

    International Nuclear Information System (INIS)

    Cao, Tun; Zhang, Lei; Xiao, Zai-peng; Huang, Hui

    2013-01-01

    Fano resonance (FR) is routinely observed in three-dimensional symmetric metamaterials (MMs) consisting of elliptical nanoholes array (ENA) embedding through metal–dielectric–metal (MDM) multilayers. It is shown theoretically that a square periodic ENA perforating through MDM layers produces an FR response in the near infrared regime. This FR response is attributed to the interplay between the bright modes and dark modes, where the bright modes originate from the electric resonance (localized surface plasmon resonance) caused by the ENA and the dark modes are due to the magnetic resonance (inductive–capacitive resonance) induced by the MDM multilayers. Notably, one can achieve a narrower FR when the elliptical nanoholes occupy the sites of a rectangular lattice, owing to the interaction of the magnetic resonances with the enhanced electric resonances. Moreover, a higher varying degree of the lattice constant along the horizontal direction allows for an FR with a higher value of the quality factor and the tuning of the amplitude and the resonant frequency of the transparency window. Such an FR created by the interference among the magnetic and electric dipolar resonances opens up an alternative way of forming a sharp FR in the symmetric multilayer MMs, and could be exploited for sensing. (paper)

  20. Ultra-narrow band perfect absorbers based on Fano resonance in MIM metamaterials

    Science.gov (United States)

    Zhang, Ming; Fang, Jiawen; Zhang, Fei; Chen, Junyan; Yu, Honglin

    2017-12-01

    Metallic nanostructures have attracted numerous attentions in the past decades due to their attractive plasmonic properties. Resonant plasmonic perfect absorbers have promising applications in a wide range of technologies including photothermal therapy, thermophotovoltaics, heat-assisted magnetic recording and biosensing. However, it remains to be a great challenge to achieve ultra-narrow band in near-infrared band with plasmonic materials due to the large optical losses in metals. In this letter, we introduced Fano resonance in MIM metamaterials composed of an asymmetry double elliptic cylinders (ADEC), which can achieve ultra-narrow band perfect absorbers. In theoretical calculations, we observed an ultranarrow band resonant absorption peak with the full width at half maximum (FWHM) of 8 nm and absorption amplitude exceeding 99% at 930 nm. Moreover, we demonstrate that the absorption increases with the increase of asymmetry and the absorption resonant wavelength can be tuned by changing the size and arrangement of the unit cell. The asymmetry metallic nanostructure also exhibit a higher refractive sensitivity as large as 503 nm/RIU with high figure of merit of 63, which is promising for high sensitive sensors. Results of this work are desirable for various potential applications in micro-technological structures such as biological sensors, narrowband emission, photodetectors and solar thermophotovoltaic (STPV) cells.

  1. Sci-Sat AM: Radiation Dosimetry and Practical Therapy Solutions - 05: Not all geometries are equivalent for magnetic field Fano cavity tests

    Energy Technology Data Exchange (ETDEWEB)

    Malkov, Victor N.; Rogers, David W.O. [Carleton University (Canada)

    2016-08-15

    The coupling of MRI and radiation treatment systems for the application of magnetic resonance guided radiation therapy necessitates a reliable magnetic field capable Monte Carlo (MC) code. In addition to the influence of the magnetic field on dose distributions, the question of proper calibration has arisen due to the several percent variation of ion chamber and solid state detector responses in magnetic fields when compared to the 0 T case (Reynolds et al., Med Phys, 2013). In the absence of a magnetic field, EGSnrc has been shown to pass the Fano cavity test (a rigorous benchmarking tool of MC codes) at the 0.1 % level (Kawrakow, Med.Phys, 2000), and similar results should be required of magnetic field capable MC algorithms. To properly test such developing MC codes, the Fano cavity theorem has been adapted to function in a magnetic field (Bouchard et al., PMB, 2015). In this work, the Fano cavity test is applied in a slab and ion-chamber-like geometries to test the transport options of an implemented magnetic field algorithm in EGSnrc. Results show that the deviation of the MC dose from the expected Fano cavity theory value is highly sensitive to the choice of geometry, and the ion chamber geometry appears to pass the test more easily than larger slab geometries. As magnetic field MC codes begin to be used for dose simulations and correction factor calculations, care must be taken to apply the most rigorous Fano test geometries to ensure reliability of such algorithms.

  2. Deskrypcja długości i szerokości stóp kobiet i mężczyzn w obciążeniu masą własną, w wieku od 4 do 18 lat w świetle mory projekcyjnej

    Directory of Open Access Journals (Sweden)

    Mirosław Mrozkowiak

    2015-09-01

    Mirosław Mrozkowiak   Uniwersytet Kazimierza Wielkiego, Instytut Kultury Fizycznej, Bydgoszcz e-mail: magmar54@interia.pl, strona: http://wadypostawy.republika.pl   Słowa kluczowe: długość i szerokość stopy.   Streszczenie   Wstęp. Długość i szerokość stopy to cechy, których przyśpieszony wzrost w okresie pokwitania pojawia się najwcześniej. U chłopców przypada na okres między 12,5 a13 r.ż., wg innych doniesień długość i szerokość stopy u chłopców wzrasta do 18 r.ż. Z wiekiem stopa zmienia się z szerokiej i krótkiej u noworodków, do pośredniej u dzieci starszych. Cel. Określenie przebiegu zmian średnich wartości długości i szerokości stóp, okresów gwałtownego wzrostu i spowolnienia przyrostu badanych parametrów w grupie dziewcząt i chłopców w wieku od 4 do 18 lat. Materiał i metodyka. Pomiarami długości i szerokości stóp objęto populację 9804 dziewcząt i 8699 chłopców w wieku od 4 do 18 lat, z losowo wybranych przedszkoli i szkół regionu warmińsko–mazurskiego. Do oceny wykorzystano stanowisko do komputerowej oceny postawy ciała, techniką mory projekcyjnej. Wyniki. Krzywa średnich wartości długości stóp obojga płci ma bardzo zbliżony przebieg  do wykresu właściwej płci. Krzywa rozpoczyna się wartością P: 168,2, L:168,22 mm, kończy P: 238,0, L:233,3 mm. W 14 r.ż. występuje obniżenie wartości do P: 214,68, L:209,91 mm. Szerokość posiada wartość początkową P: 62,99, L:64,92 mm, końcową P: 90,8, L:90,18 mm. W 14 r.ż. występuje załamanie do wartości P: 81,82, L:82,39 mm. Wnioski     1. Przyrost długości i szerokości stóp populacji żeńskiej i męskiej od 4 do 18 r.ż. jest równomiernie intensywny, przy czym w 14 r.ż. następuje spowolnienie przyrostu wielkości badanych cech.     2. Przebieg zmian średnich wielkości długości i szerokości stopy w wieku od 4 do 18 lat regionu warmińsko – mazurskiego nie znajduje w pełni potwierdzenia w badaniach metod

  3. El acoso psicológico en los quirófanos. Mobbingin operating theatres.

    Directory of Open Access Journals (Sweden)

    Susana Azzollini

    2005-12-01

    Full Text Available Se realizó un estudio comparativo, descriptivo, prospec-tivo, de corte transversal con el objetivo de determinar el acoso psicológico reflejado en el estilo comunicacional del cirujano hacia el personal no médico en el quirófano de dos instituciones, una pública y la otra privada. Las hipótesis fueron: a cuanto más desfavorables sean las características de la situación, más inadecuado será el estilo comunicacional, favoreciendo la aparición de acoso psicológico hacia el personal no médico; b los cirujanos que no tengan un cargo de jefes y sean adultos jóvenes presentarán un estilo comunicacional inadecuado, favoreciendo la aparición de acoso psicológico y; c existirá un estilo comunicacional más inadecuado y con mayor presencia de acoso psicológico en la institución privada que en la institución pública. Se construyó una lista de control para observar el estilo comunicacional de los cirujanos durante la intervención quirúrgica y un cuestionario de datos personales que fueron aplicados a una muestra no probabilística intencional de 30 cirujanos de cada institución. Se analizaron los datos utilizando estadística descriptiva y se realizaron análisis bivariados para probar hipótesis. Los resultados evidencian que el acoso psicológico es una práctica generalizada en los quirófanos, que se da más en los cirujanos cardiovasculares que en las otras especialidades. Además, se produce en mayor medida en la institución privada que en la pública y el acosador no suele tener un cargo jerárquico.The aim of this comparative transversal court study was to make out the mobbing reflected by the communicational style of surgeon towards no medical staff inside two institutions: a public and a private one. The hypothesis were: a the more harmful the situation, the more inadequate the communicational style, allowing the show up of mobbing towards the no medical staff. b Young surgeons who weren't heads of department will

  4. Zigzag phosphorene nanoribbons: one-dimensional resonant channels in two-dimensional atomic crystals

    Science.gov (United States)

    Páez, Carlos J; Pereira, Ana L C; Schulz, Peter A

    2016-01-01

    We theoretically investigate phosphorene zigzag nanoribbons as a platform for constriction engineering. In the presence of a constriction at one of the edges, quantum confinement of edge-protected states reveals conductance peaks, if the edge is uncoupled from the other edge. If the constriction is narrow enough to promote coupling between edges, it gives rise to Fano-like resonances as well as antiresonances in the transmission spectrum. These effects are shown to mimic an atomic chain like behavior in a two dimensional atomic crystal. PMID:28144546

  5. Zigzag phosphorene nanoribbons: one-dimensional resonant channels in two-dimensional atomic crystals

    Directory of Open Access Journals (Sweden)

    Carlos. J. Páez

    2016-12-01

    Full Text Available We theoretically investigate phosphorene zigzag nanoribbons as a platform for constriction engineering. In the presence of a constriction at one of the edges, quantum confinement of edge-protected states reveals conductance peaks, if the edge is uncoupled from the other edge. If the constriction is narrow enough to promote coupling between edges, it gives rise to Fano-like resonances as well as antiresonances in the transmission spectrum. These effects are shown to mimic an atomic chain like behavior in a two dimensional atomic crystal.

  6. Photoassociation spectroscopy of 87Rb2 (5s1/2+5p1/2)0u+ long-range molecular states: Coupling with the (5s1/2+5p3/2)0u+ series analyzed using the Lu-Fano approach

    International Nuclear Information System (INIS)

    Jelassi, H.; Viaris de Lesegno, B.; Pruvost, L.

    2006-01-01

    We report on photoassociation of cold 87 Rb atoms providing the spectroscopy of (5s 1/2 +5p 1/2 )0 u + long-range molecular states, in the energy range of [-12.5, -0.7 cm -1 ] below the dissociation limit. A Lu-Fano approach coupled to the LeRoy-Bernstein formula is used to analyze the data. The Lu-Fano graph exhibits the coupling of the molecular series with the (5s 1/2 +5p 3/2 )0 u + one, which is due to spin effects in the molecule. A two-channel model involving an improved LeRoy-Bernstein formula allows us to characterize the molecular series, to localize (5s 1/2 +5p 3/2 )0 u + levels, to evaluate the coupling, and to predict the energy and width of the first predissociated level of (5s 1/2 +5p 3/2 )0 u + series. An experimental spectrum confirms the prediction

  7. Analysis and experiments on Fano interference using a 2D metamaterial cavity for field localized wireless power transfer

    International Nuclear Information System (INIS)

    Pham, Thanh Son; Ranaweera, Aruna Kumara; Ngo, Duc Viet; Lee, Jong-Wook

    2017-01-01

    To meet both safety and efficiency demands of future wireless power transfer (WPT) systems, field leakage to the nearby environment should be controlled below a certain level. Therefore, field localization is one of the key issues in advanced WPT systems. Recently, metamaterials have shown great potential for enhanced control of electromagnetic propagation in various environments. In this work, we investigate a locally modified metamaterial to create a two-dimensional (2D) cavity for field localization at a sub-wavelength scale. We also show that the field localization in the cavity can be explained using Fano-type interference. We believe that this is one of the first works demonstrating that Fano-type interference can be applied for resonance-coupled mid-range WPT. Using the proposed approach, we achieve a localized WPT in a region that is eight times smaller than that of a transmit coil. At a distance of 0.6 meters, the measured efficiency is 56.5%, which represents a six-fold and two-fold enhancement compared to free space and uniform metamaterial slabs, respectively. (paper)

  8. Analysis and experiments on Fano interference using a 2D metamaterial cavity for field localized wireless power transfer

    Science.gov (United States)

    Son Pham, Thanh; Kumara Ranaweera, Aruna; Viet Ngo, Duc; Lee, Jong-Wook

    2017-08-01

    To meet both safety and efficiency demands of future wireless power transfer (WPT) systems, field leakage to the nearby environment should be controlled below a certain level. Therefore, field localization is one of the key issues in advanced WPT systems. Recently, metamaterials have shown great potential for enhanced control of electromagnetic propagation in various environments. In this work, we investigate a locally modified metamaterial to create a two-dimensional (2D) cavity for field localization at a sub-wavelength scale. We also show that the field localization in the cavity can be explained using Fano-type interference. We believe that this is one of the first works demonstrating that Fano-type interference can be applied for resonance-coupled mid-range WPT. Using the proposed approach, we achieve a localized WPT in a region that is eight times smaller than that of a transmit coil. At a distance of 0.6 meters, the measured efficiency is 56.5%, which represents a six-fold and two-fold enhancement compared to free space and uniform metamaterial slabs, respectively.

  9. Fano-Kondo and the Kondo box regimes crossover in a quantum dot coupled to a quantum box

    Science.gov (United States)

    Apel, Victor M.; Orellana, Pedro A.; Pacheco, Monica; Anda, Enrique V.

    2013-12-01

    In this work, we study the Kondo effect of a quantum dot (QD) connected to leads and to a discrete set of one-particle states provided by a quantum box represented by a quantum ring (QR) pierced by a magnetic flux side attached to the QD. The interplay between the bulk Kondo effect and the so-called Kondo box regime is studied. In this system the QR energies can be continuously modified by the application of the magnetic field. The crossover between these two regimes is analyzed by changing the connection of the QD to the QR from the weak to the strong coupling regime. In the weak coupling regime, the differential conductance develops a sequence of Fano-Kondo anti-resonances due to destructive interference between the discrete quantum ring levels and the conducting Kondo channel provided by the leads. In the strong coupling regime the differential conductance has very sharp resonances when one of the Kondo discrete sub-levels characterizing the Kondo box is tuned by the applied potential. The conductance, the current fluctuations and the Fano coefficient result as being the relevant physical magnitudes to be analyzed to reveal the physical properties of these two Kondo regimes and the crossover region between them. The results were obtained by using the slave boson mean field theory (SBMFT).

  10. Families of Smooth Rational Curves of Small Degree on the Fano Variety of Degree 5 of Main Series

    Directory of Open Access Journals (Sweden)

    M. S. Omelkova

    2013-01-01

    Full Text Available In this paper we consider some families of smooth rational curves of degree 2, 3 and 4 on a smooth Fano threefold X which is a linear section of the Grassmanian G(1, 4 under the Pl¨ucker embedding. We prove that these families are irreducible. The proof of the irreducibility of the families of curves of degree d is based on the study of degeneration of a rational curve of degree d into a curve which decomposes into an irreducible rational curve of degree d−1 and a projective line intersecting transversally at a point. We prove that the Hilbert scheme of curves of degree d on X is smooth at the point corresponding to such a reducible curve. Then calculations in the framework of deformation theory show that such a curve varies into a smooth rational curve of degree d. Thus, the set of reducible curves of degree d of the above type lies in the closure of a unique component of the Hilbert scheme of smooth rational curves of degree d on X. From this fact and the irreducibility of the Hilbert scheme of smooth rational curves of degree d on the Grassmannian G(1, 4 one deduces the irreducibility of the Hilbert scheme of smooth rational curves of degree d on a general Fano threefold X.

  11. Leczenie astmy wziewnymi glikokortykosteroidami i długo działającymi β2-agonistami – leczenie podtrzymujące i doraźne

    Directory of Open Access Journals (Sweden)

    Iwona Grzelewska-Rzymowska

    2014-03-01

    Full Text Available Autorzy przedstawiają niektóre problemy dotyczące wziewnego leczenia astmy kombinacją wziewnych glikokortykosteroidów (wGKS i długo działających β2-agonistów (LAβA, określanego jako leczenie podtrzymujące i doraźne (LPiD. Od 2006 roku międzynarodowe zalecenia dotyczące terapii astmy i jej zapobiegania (GINA – Globalna Inicjatywa dla Astmy rekomendują małe dawki wGKS jako pierwszą linię leczenia chorych na łagodną, przewlekłą astmę (drugi stopień leczenia i średnie dawki wGKS lub kombinację wGKS z LAβA jako preferowane leczenie astmy umiarkowanej (trzeci stopień leczenia. Wziewne glikokortykosteroidy stanowią główne leki w astmie, ponieważ są skuteczne w kontrolowaniu objawów choroby i wskaźników spirometrycznych. Salmeterol i formoterol (LAβA wywierają przede wszystkim działanie rozszerzające oskrzela, które utrzymuje się ponad 12 godzin. Ta grupa leków jest bardzo ważna w leczeniu astmy, pozwala bowiem na zmniejszenie dawki wGKS. Fundamentalną cechą astmy jest zapalenie, które dotyczy dużych i małych dróg oddechowych (o średnicy mniejszej niż 2 mm. Zajęcie małych oskrzeli jest powiązane z ciężkością choroby. W badaniach epidemiologicznych wykazano, że astma nie jest dostatecznie kontrolowana nie tylko w badaniach klinicznych, ale również w real-life. Nowy model terapii astmy, wykorzystujący budezonid oraz formoterol, określony jako leczenie podtrzymujące i doraźne, okazał się skuteczny i dobrze tolerowany. Poprawiał podatność pacjentów na terapię, zmniejszał ryzyko jej przerwania i poprawiał kliniczny przebieg astmy. Technologia Modulate pozwoliła na zmniejszenie cząstek dwupropionianu beklometazonu i formoterolu (BDP/F w połączeniu, co umożliwiło uzyskanie homogennego rozkładu cząstek leku w całym drzewie oskrzelowym. Ostatnio ta superdrobnocząstkowa formulacja BDP/F była oceniana u chorych na astmę według modelu LPiD. Wykazano, że leczenie kombinacj

  12. Inducción de la enzima triptófano 2,3 dioxigenasa por glucocorticoides y su papel en la tolerancia materna al feto

    Directory of Open Access Journals (Sweden)

    Angela Cadavid

    2004-02-01

    Full Text Available

    El mecanismo por el cual la madre no rechaza al feto, sigue siendo una incógnita en la inmunología de la reproducción. Una de las hipótesis planteadas es la inmunosupresión mediada por el catabolismo del triptófano, el cual es un amino ácido sencial para la proliferación de los linfocitos T. Una de las nzimas que cataboliza el triptófano es la triptófano 2,3 ioxigenasa (TDO.
    La TDO es inducida por los glucocorticoides en el hígado, pero aún no se conoce si estos inducen la producción de la TDO n la interfase materno fetal al interactuar con los receptores resentes en células estromales y NK; En un modelo murino, e observó que la TDO se expresa en la interfase materno etal con un pico que coincide con el de mayor actividad de egradación del triptófano, sugiriendo entonces que esta nzima puede estar involucrada en la tolerancia materna al feto.

     

     

  13. Coupled-mode theory and Fano resonances in guided-mode resonant gratings: the conical diffraction mounting.

    Science.gov (United States)

    Bykov, Dmitry A; Doskolovich, Leonid L; Soifer, Victor A

    2017-01-23

    We study resonances of guided-mode resonant gratings in conical mounting. By developing 2D time-dependent coupled-mode theory we obtain simple approximations of the transmission and reflection coefficients. Being functions of the incident light's frequency and in-plane wave vector components, the obtained approximations can be considered as multi-variable generalizations of the Fano line shape. We show that the approximations are in good agreement with the rigorously calculated transmission and reflection spectra. We use the developed theory to investigate angular tolerances of the considered structures and to obtain mode excitation conditions. In particular, we obtain the cross-polarization mode excitation conditions in the case of conical mounting.

  14. Fano-Agarwal couplings and non-rotating wave approximation in single-photon timed Dicke subradiance

    Science.gov (United States)

    Mirza, Imran M.; Begzjav, Tuguldur

    2016-04-01

    Recently a new class of single-photon timed Dicke (TD) subradiant states has been introduced with possible applications in single-photon-based quantum information storage and on demand ultrafast retrieval (Scully M. O., Phys. Rev. Lett., 115 (2015) 243602). However, the influence of any kind of virtual processes on the decay of these new kind of subradiant states has been left as an open question. In the present paper, we focus on this problem in detail. In particular, we investigate how pure Fano-Agarwal couplings and other virtual processes arising from non-rotating wave approximation impact the decay of otherwise sub- and superradiant states. In addition to the overall virtual couplings among all TD states, we also focus on the dominant role played by the couplings between specific TD states.

  15. Distortion of He(2l2l') Fano lineshapes by strong post-collision interaction in H+-He collisions

    International Nuclear Information System (INIS)

    Moretto-Capelle, P.; Benhenni, M.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A.

    1996-01-01

    The three-body post-collisional interaction (PCI) between the scattered proton, recoil target ion and emitted electron has been investigated by electron spectrometry near the 2l2l' helium resonances, in the 20-100 keV energy range (V p 0.9-2 au). Particular attention has been paid to the PCI deformations of the Fano lineshapes when V-vector'' p ≅ V-vector e (2l2l'). Their angle and collision velocity dependences have been studied for the first time experimentally. A large variety of lineshapes have been observed, all of them successfully described by a single formula. At the lowest proton velocities the rescattering effect (also called Coulomb two-path scattering) is seen. (Author)

  16. Bound states in the continuum and Fano antiresonance in electronic transport through a four-quantum-dot system

    International Nuclear Information System (INIS)

    Yan Junxia; Fu Huahua

    2013-01-01

    We study the electronic transport through a four-quantum-dot (FQD) structure with a diamond-like shape through nonequilibrium Green's function theory. It is observed that the bound state in the continuum (BIC) appears in this multiple QDs system, and the position of the BIC in the total density of states (TDOS) spectrum is tightly determined by the strength of the electronic hopping between the upper QD and the lower one. As the symmetry in the energy levels in these two QDs is broken, the BIC is suppressed to a general conductance peak with a finite width, and meanwhile a Fano-type antiresonance with a zero point appears in the conductance spectrum. These results will develop our understanding of the BICs and their spintronic device applications of spin filter and quantum computing.

  17. Partial pseudospin polarization, latticetronics and Fano resonances in quantum dots based in graphene ribbons: a conductance spectroscopy

    Science.gov (United States)

    López, Luis I. A.; Champi, Ana; Ujevic, Sebastian; Mendoza, Michel

    2015-11-01

    In this work we study, as a function of the height V and width L b of the potential barriers, the transport of Dirac quasi-particles through quantum dots in graphene ribbons. We observed, as we increase V, a partial polarization ( PP) of the pseudospin due to the participation of the hyperbolic bands. This generates polarizations in the sub-lattices A or B outside the dot regions for single, coupled, and open dots. Thus for energies around the Dirac point, the conductance G at both sides of the dot shows a latticetronics of conductances G A and G B as a function of V and L b . This fact can be used as a PP spectroscopy which associates hole-type waves with the latticetronics. A periodic enhancement of PP is obtained with the increase of V in dots formed by barriers that completely occupy the nanoribbon width. For this case, a direct correspondence between G( V) and PP( V) exists. On the other hand, for the open dots, the PP( V) and the G( V) show a complex behavior that exhibit higher intensities when compared to the previous case. In the Dirac limit we have no backscattering signs, however when we move slightly away from this limit the first signs of confinement appear in the PP( V) (it freezes in a given sub-lattice). In the last case the backscattering fingerprints are obtained directly from the conductance (splittings). The open quantum dots are very sensible to their opening w d and this generates Fano line-shapes of difficult interpretation around the Dirac point. The PP spectroscopy used here allows us to understand the influence of w d in the relativistic analogues and to associate electron-type waves with the observed Fano line-shapes.

  18. Atom optics

    International Nuclear Information System (INIS)

    Balykin, V. I.; Jhe, W.

    1999-01-01

    Atom optics, in analogy to neutron and electron optics, deals with the realization of as a traditional elements, such as lenes, mirrors, beam splitters and atom interferometers, as well as a new 'dissipative' elements such as a slower and a cooler, which have no analogy in an another types of optics. Atom optics made the development of atom interferometer with high sensitivity for measurement of acceleration and rotational possible. The practical interest in atom optics lies in the opportunities to create atom microprobe with atom-size resolution and minimum damage of investigated objects. (Cho, G. S.)

  19. Atom-by-atom assembly

    International Nuclear Information System (INIS)

    Hla, Saw Wai

    2014-01-01

    Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed. (review article)

  20. Shot noise as a probe of spin-correlated transport through single atoms

    Science.gov (United States)

    Pradhan, S.; Fransson, J.

    2018-03-01

    We address the shot noise in the tunneling current through a local spin, pertaining to recent experiments on magnetic adatoms and single molecular magnets. We show that both uncorrelated and spin-correlated scattering processes contribute vitally to the noise spectrum. The spin-correlated scattering processes provide an additional contribution to the Landauer-Büttiker shot noise expression, accounting for correlations between the tunneling electrons and the localized spin moment. By calculating the Fano factor, we show that both super- and sub-Poissonian shot noise can be described within our approach. Our theory provides transparent insights into noise spectroscopy, consistent with recent experiments using local probing techniques on magnetic atoms.

  1. Time-resolved two-photon photoemission at the Si(001)-surface. Hot electron dynamics and two-dimensional Fano resonance; Zeitaufgeloeste Zweiphotonen-Photoemission an der Si(001)-Oberflaeche. Dynamik heisser Elektronen und zweidimensionaler Fano-Effekt

    Energy Technology Data Exchange (ETDEWEB)

    Eickhoff, Christian

    2010-10-27

    By combining ultrafast laser excitation with energy-, angle- and time-resolved twophoton photoemission (2PPE), the electronic properties of bulk silicon and the Si(001) surface are investigated in this thesis. A custom-built laser- and UHV-systemequipped with a display type 2D-CCD-detector gives new insight into the relaxation dynamics of excited carriers on a femtosecond timescale. The bandgap between occupied valence bands and unoccupied conduction bands characteristically influences the dynamics of excited electrons in the bulk, as well as in surface states and resonances. For the electron-phonon interaction this leads to the formation of a bottleneck during the relaxation of hot electrons in the conduction band, which maintains the elevated electronic temperature for several picoseconds. During relaxation, excited electrons also scatter from the conduction band into the unoccupied dangling-bond surface state D{sub down}. Depending on the excitation density this surface recombination is dominated by electron-electron- or electron-phonon scattering. The relaxation of the carriers in the D{sub down}-band is again slowed down by the formation of a bottleneck in electron-phonon coupling. Furthermore, the new laser system has allowed detection of the Rydberg-like series of image-potential resonances on the Si(001)-surface. It is shown that the lifetime of these image-potential resonances in front of the semiconducting surface exhibits the same behavior as those in front of metallic surfaces. Moreover the electron-phonon coupling in the first image-potential resonance was investigated and compared to the D{sub down}-surface state. For the first time, Fano-type lineprofiles are demonstrated and analyzed in a 2PPEprocess on a surface. Tuning the photon energy of the pump-laser across the resonance between the occupied dangling-bond state D{sub up}, and the unoccupied image-potential resonance n=1, reveals a clear intensity variation that can be successfully described

  2. 190. Extubación en el Quirófano Como Rutina Tras Cirugía Cardíaca: 500 Casos Consecutivos

    Directory of Open Access Journals (Sweden)

    A. Ysasi

    2012-04-01

    Conclusiones: la extubación en el quirófano de forma rutinaria en pacientes sometidos a cirugía cardíaca es viable y segura. La necesidad de reintubación o reingreso en UCI es baja. Contribuye a la recuperación precoz del paciente y disminuye los tiempos de estancia y consumo de recursos hospitalarios.

  3. ¿Es posible tener un incendio en un quirófano? Is it possible to have a fire in an operating theatre?

    Directory of Open Access Journals (Sweden)

    Juan José Agún González

    2010-03-01

    Full Text Available Podemos pensar que un quirófano es el Sancta Sanctorum de un Hospital, el sitio más "seguro" dentro del entorno más controlado, en todos los aspectos. Pero, es un hecho contrastado, aunque no siempre difundido, que los incendios en quirófano existen y suelen ser por causas internas al propio quirófano. Durante una intervención quirúrgica tenemos una posibilidad de sufrir un incendio en el momento más peligroso de la vida de un paciente y crear una situación de emergencia en un área crítica. Los objetivos de esta investigación son: - Incidir en la posibilidad de tener un incendio en quirófano. - Analizar las posibilidades del riesgo. - Detectar conductas y elementos peligrosos. - Analizar las medidas preventivas a adoptar.We might think that an operating theatre is the sanctum sanctorum of a Hospital. The 'safest' place within a very much controlled environment in all aspects. But it is a contrasted fact, although not always published, that fires in operating theatres exist and that they are normally caused by situations in the operating theatre itself. During an operation there is the possibility of having a fire in the most dangerous moment for the life of a patient and in the most critical zones of a hospital. The objectives of this research are the following: - To emphasize the possibility of fire in an operating theatre - To analyse the possibilities of risk - To detect hazardous elements and behaviour - To analyse the preventive measures to be adopted

  4. Atomic polarizabilities

    International Nuclear Information System (INIS)

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-01

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed

  5. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  6. Atomic physics

    CERN Document Server

    Foot, Christopher J

    2007-01-01

    This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen

  7. The Kondo effect in ferromagnetic atomic contacts.

    Science.gov (United States)

    Calvo, M Reyes; Fernández-Rossier, Joaquín; Palacios, Juan José; Jacob, David; Natelson, Douglas; Untiedt, Carlos

    2009-04-30

    Iron, cobalt and nickel are archetypal ferromagnetic metals. In bulk, electronic conduction in these materials takes place mainly through the s and p electrons, whereas the magnetic moments are mostly in the narrow d-electron bands, where they tend to align. This general picture may change at the nanoscale because electrons at the surfaces of materials experience interactions that differ from those in the bulk. Here we show direct evidence for such changes: electronic transport in atomic-scale contacts of pure ferromagnets (iron, cobalt and nickel), despite their strong bulk ferromagnetism, unexpectedly reveal Kondo physics, that is, the screening of local magnetic moments by the conduction electrons below a characteristic temperature. The Kondo effect creates a sharp resonance at the Fermi energy, affecting the electrical properties of the system; this appears as a Fano-Kondo resonance in the conductance characteristics as observed in other artificial nanostructures. The study of hundreds of contacts shows material-dependent log-normal distributions of the resonance width that arise naturally from Kondo theory. These resonances broaden and disappear with increasing temperature, also as in standard Kondo systems. Our observations, supported by calculations, imply that coordination changes can significantly modify magnetism at the nanoscale. Therefore, in addition to standard micromagnetic physics, strong electronic correlations along with atomic-scale geometry need to be considered when investigating the magnetic properties of magnetic nanostructures.

  8. Atomic physics

    International Nuclear Information System (INIS)

    Armbruster, P.; Beyer, H.; Bosch, F.; Dohmann, H.D.; Kozhuharov, C.; Liesen, D.; Mann, R.; Mokler, P.H.

    1984-01-01

    The heavy ion accelerator UNILAC is well suited to experiments in the field of atomic physics because, with the aid of high-energy heavy ions atoms can be produced in exotic states - that is, heavy atoms with only a few electrons. Also, in close collisions of heavy ions (atomic number Z 1 ) and heavy target atoms (Z 2 ) short-lived quasi-atomic 'superheavy' systems will be formed - huge 'atoms', where the inner electrons are bound in the field of the combined charge Z 1 + Z 2 , which exceeds by far the charge of the known elements (Z <= 109). Those exotic or transient superheavy atoms delivered from the heavy ion accelerator make it possible to study for the first time in a terrestrial laboratory exotic, but fundamental, processes, which occur only inside stars. Some of the basic research carried out with the UNILAC is discussed. This includes investigation of highly charged heavy atoms with the beam-foil method, the spectroscopy of highly charged slow-recoil ions, atomic collision studies with highly ionised, decelerated ions and investigations of super-heavy quasi-atoms. (U.K.)

  9. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.

    2005-01-01

    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  10. Multiple transparency windows and Fano interferences induced by dipole-dipole couplings

    Science.gov (United States)

    Diniz, E. C.; Borges, H. S.; Villas-Boas, C. J.

    2018-04-01

    We investigate the optical properties of a two-level system (TLS) coupled to a one-dimensional array of N other TLSs with dipole-dipole coupling between the first neighbors. The first TLS is probed by a weak field, and we assume that it has a decay rate much greater than the decay rates of the other TLSs. For N =1 and in the limit of a Rabi frequency of a probe field much smaller than the dipole-dipole coupling, the optical response of the first TLS, i.e., its absorption and dispersion, is equivalent to that of a three-level atomic system in the configuration which allows one to observe the electromagnetically induced transparency (EIT) phenomenon. Thus, here we investigate an induced transparency phenomenon where the dipole-dipole coupling plays the same role as the control field in EIT in three-level atoms. We describe this physical phenomenon, named a dipole-induced transparency (DIT), and investigate how it scales with the number of coupled TLSs. In particular, we have shown that the number of TLSs coupled to the main TLS is exactly equal to the number of transparency windows. The ideas presented here are very general and can be implemented in different physical systems, such as an array of superconducting qubits, or an array of quantum dots, spin chains, optical lattices, etc.

  11. Sensing performance analysis on Fano resonance of metallic double-baffle contained MDM waveguide coupled ring resonator

    Science.gov (United States)

    Chen, Ying; Luo, Pei; Liu, Xiaofei; Di, Yuanjian; Han, Shuaitao; Cui, Xingning; He, Lei

    2018-05-01

    Based on the transmission property and the photon localization characteristic of the surface plasmonic sub-wavelength structure, a metallic double-baffle contained metal-dielectric-metal (MDM) waveguide coupled ring resonator is proposed. Like the electromagnetically induced transparency (EIT), the Fano resonance can be achieved by the interference between the metallic double-baffle resonator and the ring resonator. Based on the coupled mode theory, the transmission property is analyzed. Through the numerical simulation by the finite element method (FEM), the quantitative analysis on the influences of the radius R of the ring and the coupling distance g between the metallic double-baffle resonator and the ring resonator for the figure of merit (FOM) is performed. And after the structure parameter optimization, the sensing performance of the waveguide structure is discussed. The simulation results show that the FOM value of the optimized structure can attain to 5.74 ×104 and the sensitivity of resonance wavelength with refractive index drift is about 825 nm/RIU. The range of the detected refractive index is suitable for all gases. The waveguide structure can provide effective theoretical references for the design of integrated plasmonic devices.

  12. Nonlinear optical spectra having characteristics of Fano interferences in coherently coupled lowest exciton biexciton states in semiconductor quantum dots

    Directory of Open Access Journals (Sweden)

    Hideki Gotoh

    2014-10-01

    Full Text Available Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL method in a coherently coupled exciton-biexciton system in a single quantum dot (QD. PL and photoluminescence excitation spectroscopy (PLE are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicate that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.

  13. Ubiquitous atom

    International Nuclear Information System (INIS)

    Spruch, G.M.; Spruch, L.

    1974-01-01

    The fundamentals of modern physics, including the basic physics and chemistry of the atom, elementary particles, cosmology, periodicity, and recent advances, are surveyed. The biology and chemistry of the life process is discussed to provide a background for considering the effects of atomic particles on living things. The uses of atomic power in space travel, merchant shipping, food preservation, desalination, and nuclear clocks are explored. (Pollut. Abstr.)

  14. Atomic physics

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Research activities in atomic physics at Lawrence Berkeley Laboratory during 1976 are described. Topics covered include: experiments on stored ions; test for parity violation in neutral weak currents; energy conservation and astrophysics; atomic absorption spectroscopy, atomic and molecular detectors; theoretical studies of quantum electrodynamics and high-z ions; atomic beam magnetic resonance; radiative decay from the 2 3 Po, 2 levels of helium-like argon; quenching of the metastable 2S/sub 1/2/ state of hydrogen-like argon in an external electric field; and lifetime of the 2 3 Po level of helium-like krypton

  15. Atomic physics

    CERN Document Server

    Born, Max

    1969-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  16. Early Atomism

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/reso/015/10/0905-0925. Keywords. Atomic theory; Avogadro's hypothesis; atomic weights; periodic table; valence; molecular weights; molecular formula; isomerism. Author Affiliations. S Ramasesha1. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, ...

  17. Atom spectroscopy

    International Nuclear Information System (INIS)

    Kodling, K.

    1981-01-01

    Experiments on atom photoabsorption spectroscopy using synchrotron radiation in the 10-1000 eV range are reviewed. Properties of the necessary synchrotron radiation and the experiment on absorption spectroscopy are briefly described. Comparison with other spectroscopy methods is conducted. Some data on measuring photoabsorption, photoelectron emission and atom mass spectra are presented [ru

  18. Exotic atoms

    International Nuclear Information System (INIS)

    Horvath, D.; Lambrecht, R.M.

    1984-01-01

    This bibliography on exotic atoms covers the years 1939 till 1982. The annual entries are headed by an introduction describing the state of affairs of the branch of science and listing the main applications in quantum electrodynamics, particle physics, nuclear physics, atomic physics, chemical physics and biological sciences. The bibliography includes an author index and a subject index. (Auth.)

  19. Atomic fusion, Gerrard atomic fusion

    International Nuclear Information System (INIS)

    Gerrard, T.H.

    1980-01-01

    In the approach to atomic fusion described here the heat produced in a fusion reaction, which is induced in a chamber by the interaction of laser beams and U.H.F. electromagnetic beams with atom streams, is transferred to a heat exchanger for electricity generation by a coolant flowing through a jacket surrounding the chamber. (U.K.)

  20. Superradiators created atom by atom

    Science.gov (United States)

    Meschede, Dieter

    2018-02-01

    High radiation rates are usually associated with macroscopic lasers. Laser radiation is “coherent”—its amplitude and phase are well-defined—but its generation requires energy inputs to overcome loss. Excited atoms spontaneously emit in a random and incoherent fashion, and for N such atoms, the emission rate simply increases as N. However, if these atoms are in close proximity and coherently coupled by a radiation field, this microscopic ensemble acts as a single emitter whose emission rate increases as N2 and becomes “superradiant,” to use Dicke's terminology (1). On page 662 of this issue, Kim et al. (2) show the buildup of coherent light fields through collective emission from atomic radiators injected one by one into a resonator field. There is only one atom ever in the cavity, but the emission is still collective and superradiant. These results suggest another route toward thresholdless lasing.

  1. Efecto de la ingesta de cereales enriquecidos con triptófano sobre el sueño, melatonina, serotonina, cortisol y estado antioxidante en personas mayores

    OpenAIRE

    Matito Celaya, Sergio

    2015-01-01

    Teniendo en cuenta el concepto de Crononutrición y la secreción de melatonina, serotonina, cortisol durante el día y la noche, nuestro objetivo ha sido analizar como el consumo de cereales enriquecidos con triptófano, precursor de Serotonina y Melatonina, puede ayudar a la reestructuración del ciclo sueño / vigilia, como actúa sobre la secreción de Cortisol matutino y como la Melatonina ayuda a la excreción de radicales libres en orina por su capacidad antioxidante. Para objetivar como afec...

  2. Atomic interferometry

    International Nuclear Information System (INIS)

    Baudon, J.; Robert, J.

    2004-01-01

    Since the theoretical works of L. De Broglie (1924) and the famous experiment of Davisson and Germer (1927), we know that a wave is linked with any particle of mass m by the relation λ = h/(mv), where λ is the wavelength, v the particle velocity and h is the Planck constant. The basic principle of the interferometry of any material particle, atom, molecule or aggregate is simple: using a simple incident wave, several mutually consistent waves (with well-defined relative phases) are generated and controllable phase-shifts are introduced between them in order to generate a wave which is the sum of the previous waves. An interference figure is obtained which consists in a succession of dark and bright fringes. The atomic interferometry is based on the same principle but involves different techniques, different wave equations, but also different beams, sources and correlations which are described in this book. Because of the small possible wavelengths and the wide range of possible atomic interactions, atomic interferometers can be used in many domains from the sub-micron lithography to the construction of sensors like: inertial sensors, gravity-meters, accelerometers, gyro-meters etc. The first chapter is a preliminary study of the space and time diffraction of atoms. The next chapters is devoted to the description of slit, light separation and polarization interferometers, and the last chapter treats of the properties of Bose-Einstein condensates which are interesting in atomic interferometry. (J.S.)

  3. Interference between radiative emission and autoionization in the decay of excited states of atoms

    International Nuclear Information System (INIS)

    Armstrong, L. Jr.; Theodosiou, C.E.; Wall, M.J.

    1978-01-01

    An excited state of an atom which can autoionize can also undergo radiative decay. We consider the interaction between the final states resulting from these two modes of decay, and its effects on such quantities as the fluorescence yield of the excited state, excitation profile of the excited state, and the spectra of the emitted photons and electrons. It is shown that the fraction of decays of the excited state resulting in a photon (fluorescence yield) is particularly sensitive to the details of the final-state interaction. In lowest order in the final-state interaction, the fluorescence yield is increased by a factor (1 + 1/q 2 ) from the traditional value, where q is the Fano q parameter relating to the excited state and the final atomic state

  4. Atomic politics

    International Nuclear Information System (INIS)

    Skogmar, G.

    1979-01-01

    The authors basic point is that the military and civil sides of atomic energy cannot be separated. The general aim of the book is to analyze both the military and civil branches, and the interdependence between them, of American foreign policy in the atomic field. Atomic policy is seen as one of the most important imstruments of foreign policy which, in turn, is seen against the background of American imperialism in general. Firstly, the book investigates the most important means by which the United States has controlled the development in the nuclear field in other countries. These means include influencing the conditions of access to nuclear resources of various kinds, influencing the flow of technical-economic information and influencing international organizations and treaties bearing on atomic energy. The time period treated is 1945-1973. 1973 is chosen as the end-year of the study mainly because of the new conditions in the whole energy field initiated by the oil crisis in that year. The sources of the empirical work are mainly hearings before the Joint Committee on Atomic Energy of the U.S. Congress and legal material of various kinds. Secondly, the goals of the American policy are analyzed. The goals identified are armament effect, non-proliferation (horizontal), sales, and energy dependence. The relation between the main goals is discussed.The discussion is centered on the interdependence between the military and the civil aspects, conflict and coincidence of various goals, the relation between short-term and long-term goals, and the possibilities of using one goal as pretext for another. Thirdly, some causes of the changes in the atomic policy around 1953 and 1963 are identified. These are the strategic balance, the competitive situation, the capacity (of the American atomic productive apparatus), and the nuclear technological stage. The specific composition of these four factors at the two time-points can explain the changes of policy. (author)

  5. Humanización de la Atención de Enfermería en el Quirófano Humanization of caring: Nursing at Surgical Center

    Directory of Open Access Journals (Sweden)

    Carolina Heluy de Castro

    2004-06-01

    Full Text Available En el quirófano, muchas veces, la atención al paciente es impersonal y, naturalmente, los problemas individuales son ignorados. El estudio pretende identificar lo que representa la humanización para los profesionales y su relación con la satisfacción del paciente de este quirófano, a través del contacto directo con ellos. Probablemente, una atención humanizada es el primer paso para alcanzar el éxito y la calidad asistencial en los servicios de salud.Often, in surgical center, patient´s attendance is impersonal and, naturally, peculiar problems are unawarred. The aim of this study is to recognize professionals and their relationship with patients´satisfaction representing around humanization, an in-depth direct contact with sanitary staff and patients at those operating rooms. Probably, a humanization of caring is the first steep to reach success and quality of attendance in the health services.

  6. Atomic secrecy

    International Nuclear Information System (INIS)

    Sweet, W.

    1979-01-01

    An article, The H-Bomb Secret: How We Got It, Why We're Telling It, by Howard Morland was to be published in The Progressive magazine in February, 1979. The government, after learning of the author's and the editors' intention to publish the article and failing to persuade them to voluntarily delete about 20% of the text and all of the diagrams showing how an H-bomb works, requested a court injunction against publication. Acting under the Atomic Energy Act of 1954, US District Court Judge Robert W. Warren granted the government's request on March 26. Events dealing with the case are discussed in this publication. Section 1, Progressive Hydrogen Bomb Case, is discussed under the following: Court Order Blocking Magazine Report; Origins of the Howard Morland Article; Author's Motives, Defense of Publication; and Government Arguments Against Disclosure. Section 2, Access to Atomic Data Since 1939, contains information on need for secrecy during World War II; 1946 Atomic Energy Act and its effects; Soviet A-Bomb and the US H-Bomb; and consequences of 1954 Atomic Energy Act. Section 3, Disputed Need for Atomic Secrecy, contains papers entitled: Lack of Studies on H-Bomb Proliferation; Administration's Position on H-Bombs; and National Security Needs vs Free Press

  7. Antimatter atoms

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    In january 1996, CERN broadcasted the information of the creation of nine anti-hydrogen atoms, observed through disintegration products. The experimental facility was CERN LEAR ring. An antiproton beam scattered a xenon jet, and the resulting antimatter was first selected by its insensitivity to beam bending magnets. Their disintegration was detected in thin NaI detectors, in which the anti-atoms are at once deprived from their positron. Then, magnetic and time-of-flight spectrometers are used. (D.L.)

  8. Atomic theories

    CERN Document Server

    Loring, FH

    2014-01-01

    Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec

  9. Atoms stories

    International Nuclear Information System (INIS)

    Radvanyi, P.; Bordry, M.

    1988-01-01

    Physicists from different countries told each evening during one learning week, to an audience of young people, some great discoveries in evoking the difficulties and problems to which the researchers were confronted. From Antiquity to a more recent history, it is a succession of atoms stories. (N.C.)

  10. Atomic physics

    International Nuclear Information System (INIS)

    Held, B.

    1991-01-01

    This general book describes the change from classical physics to quantum physics. The first part presents atom evolution since antiquity and introduces fundamental quantities and elements of relativity. Experiments which have contributed to the evolution of knowledge on matter are analyzed in the second part. Applications of wave mechanics to the study of matter properties are presented in the third part [fr

  11. SU-E-T-180: Fano Cavity Test of Proton Transport in Monte Carlo Codes Running On GPU and Xeon Phi

    International Nuclear Information System (INIS)

    Sterpin, E; Sorriaux, J; Souris, K; Lee, J; Vynckier, S; Schuemann, J; Paganetti, H; Jia, X; Jiang, S

    2014-01-01

    Purpose: In proton dose calculation, clinically compatible speeds are now achieved with Monte Carlo codes (MC) that combine 1) adequate simplifications in the physics of transport and 2) the use of hardware architectures enabling massive parallel computing (like GPUs). However, the uncertainties related to the transport algorithms used in these codes must be kept minimal. Such algorithms can be checked with the so-called “Fano cavity test”. We implemented the test in two codes that run on specific hardware: gPMC on an nVidia GPU and MCsquare on an Intel Xeon Phi (60 cores). Methods: gPMC and MCsquare are designed for transporting protons in CT geometries. Both codes use the method of fictitious interaction to sample the step-length for each transport step. The considered geometry is a water cavity (2×2×0.2 cm 3 , 0.001 g/cm 3 ) in a 10×10×50 cm 3 water phantom (1 g/cm 3 ). CPE in the cavity is established by generating protons over the phantom volume with a uniform momentum (energy E) and a uniform intensity per unit mass I. Assuming no nuclear reactions and no generation of other secondaries, the computed cavity dose should equal IE, according to Fano's theorem. Both codes were tested for initial proton energies of 50, 100, and 200 MeV. Results: For all energies, gPMC and MCsquare are within 0.3 and 0.2 % of the theoretical value IE, respectively (0.1% standard deviation). Single-precision computations (instead of double) increased the error by about 0.1% in MCsquare. Conclusion: Despite the simplifications in the physics of transport, both gPMC and MCsquare successfully pass the Fano test. This ensures optimal accuracy of the codes for clinical applications within the uncertainties on the underlying physical models. It also opens the path to other applications of these codes, like the simulation of ion chamber response

  12. SU-E-T-180: Fano Cavity Test of Proton Transport in Monte Carlo Codes Running On GPU and Xeon Phi

    Energy Technology Data Exchange (ETDEWEB)

    Sterpin, E; Sorriaux, J; Souris, K; Lee, J; Vynckier, S [Universite catholique de Louvain, Brussels, Brussels (Belgium); Schuemann, J; Paganetti, H [Massachusetts General Hospital, Boston, MA (United States); Jia, X; Jiang, S [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States)

    2014-06-01

    Purpose: In proton dose calculation, clinically compatible speeds are now achieved with Monte Carlo codes (MC) that combine 1) adequate simplifications in the physics of transport and 2) the use of hardware architectures enabling massive parallel computing (like GPUs). However, the uncertainties related to the transport algorithms used in these codes must be kept minimal. Such algorithms can be checked with the so-called “Fano cavity test”. We implemented the test in two codes that run on specific hardware: gPMC on an nVidia GPU and MCsquare on an Intel Xeon Phi (60 cores). Methods: gPMC and MCsquare are designed for transporting protons in CT geometries. Both codes use the method of fictitious interaction to sample the step-length for each transport step. The considered geometry is a water cavity (2×2×0.2 cm{sup 3}, 0.001 g/cm{sup 3}) in a 10×10×50 cm{sup 3} water phantom (1 g/cm{sup 3}). CPE in the cavity is established by generating protons over the phantom volume with a uniform momentum (energy E) and a uniform intensity per unit mass I. Assuming no nuclear reactions and no generation of other secondaries, the computed cavity dose should equal IE, according to Fano's theorem. Both codes were tested for initial proton energies of 50, 100, and 200 MeV. Results: For all energies, gPMC and MCsquare are within 0.3 and 0.2 % of the theoretical value IE, respectively (0.1% standard deviation). Single-precision computations (instead of double) increased the error by about 0.1% in MCsquare. Conclusion: Despite the simplifications in the physics of transport, both gPMC and MCsquare successfully pass the Fano test. This ensures optimal accuracy of the codes for clinical applications within the uncertainties on the underlying physical models. It also opens the path to other applications of these codes, like the simulation of ion chamber response.

  13. Elkarrizketa: Dani Fano

    OpenAIRE

    González Santana, Alazne

    2015-01-01

    Dani Fanori egindako elkarrizketa, Ikastolen Elkarteak argitaratzen duen Xabiroi aldizkariaren parte-hartzaileetako bat Txikitan Tintin, Asterix eta Obelix, Mortadelo y Filemón, Ipurbeltz edo Mafalda irakurtzen igarotzen zituen Dani Fanok (Donostia, 1968). Gaur egun donostiarrak Goscinny, Miguelanxo Prado, Quino, Enki Bilal, Arthur Rackham… bezalako autoreak miresten ditu. Zientzia fikzioa oso baieztatzen duen arren, denetariko komikiak irakurtzen dituela aipatzen du komiki eta irudigile g...

  14. Distortion of He(2l2l`) Fano lineshapes by strong post-collision interaction in H{sup +}-He collisions

    Energy Technology Data Exchange (ETDEWEB)

    Moretto-Capelle, P.; Benhenni, M.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A. [Toulouse-3 Univ., 31 (France)

    1996-05-28

    The three-body post-collisional interaction (PCI) between the scattered proton, recoil target ion and emitted electron has been investigated by electron spectrometry near the 2l2l` helium resonances, in the 20-100 keV energy range (V{sub p} 0.9-2 au). Particular attention has been paid to the PCI deformations of the Fano lineshapes when V-vector``{sub p} {approx_equal} V-vector {sub e}(2l2l`). Their angle and collision velocity dependences have been studied for the first time experimentally. A large variety of lineshapes have been observed, all of them successfully described by a single formula. At the lowest proton velocities the rescattering effect (also called Coulomb two-path scattering) is seen. (Author).

  15. Real-time UV-visible spectroscopy analysis of purple membrane-polyacrylamide film formation taking into account Fano line shapes and scattering.

    Science.gov (United States)

    Gomariz, María; Blaya, Salvador; Acebal, Pablo; Carretero, Luis

    2014-01-01

    We theoretically and experimentally analyze the formation of thick Purple Membrane (PM) polyacrylamide (PA) films by means of optical spectroscopy by considering the absorption of bacteriorhodopsin and scattering. We have applied semiclassical quantum mechanical techniques for the calculation of absorption spectra by taking into account the Fano effects on the ground state of bacteriorhodopsin. A model of the formation of PM-polyacrylamide films has been proposed based on the growth of polymeric chains around purple membrane. Experimentally, the temporal evolution of the polymerization process of acrylamide has been studied as function of the pH solution, obtaining a good correspondence to the proposed model. Thus, due to the formation of intermediate bacteriorhodopsin-doped nanogel, by controlling the polymerization process, an alternative methodology for the synthesis of bacteriorhodopsin-doped nanogels can be provided.

  16. Atom-surface potentials and atom interferometry

    International Nuclear Information System (INIS)

    Babb, J.F.

    1998-01-01

    Long-range atom-surface potentials characterize the physics of many actual systems and are now measurable spectroscopically in deflection of atomic beams in cavities or in reflection of atoms in atomic fountains. For a ground state, spherically symmetric atom the potential varies as -1/R 3 near the wall, where R is the atom-surface distance. For asymptotically large distances the potential is weaker and goes as -1/R 4 due to retardation arising from the finite speed of light. This diminished interaction can also be interpreted as a Casimir effect. The possibility of measuring atom-surface potentials using atomic interferometry is explored. The particular cases studied are the interactions of a ground-state alkali-metal atom and a dielectric or a conducting wall. Accurate descriptions of atom-surface potentials in theories of evanescent-wave atomic mirrors and evanescent wave-guided atoms are also discussed. (author)

  17. Exotic atoms

    International Nuclear Information System (INIS)

    Kunselman, R.

    1993-01-01

    The experiments use a solid hydrogen layer to form muonic hydrogen isotopes that escape into vacuum. The method relies on transfer of the muon from protium to either a deuteron or a triton. The resulting muonic deuterium or muonic tritium will not immediately thermalize because of the very low elastic cross sections, and may be emitted from the surface of the layer. Measurements which detect decay electrons, muonic x-rays, and fusion products have been used to study the processes. A target has been constructed which exploits muonic atom emission in order to learn more about the energy dependence of transfer and muon molecular formation

  18. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  19. La enfermera y la visión de seguridad del paciente en el quirófano en aspectos relacionados con la asepsia y la técnica estéril.

    Directory of Open Access Journals (Sweden)

    Nohora Isabel Tobo Vargas

    2013-06-01

    Full Text Available El profesional de enfermería en la mayoría de los casos tiene a su cargo y es de su responsabilidad hacer una supervisión y comprobación periódica de los diversos procesos administrativos y operativos, de aplicación rigurosa de las normas y principios de asepsia y antisepsia quirúrgica. Es de vital importancia la aplicación de la técnica aséptica para evitar que las personas que ingresan por cualquier procedimiento quirúrgico adquieran infecciones en razón a la susceptibilidad en particular en el quirófano. Estos principios son de obligatoriedad conocer y aplicar, no por unos pocos sino por todo el personal que labora en el quirófano. Es responsabilidad de los profesionales de la salud y del personal auxiliar que ayuda en los quirófanos cumplir y hacer cumplir las normas establecidas para brindar un ambiente seguro a toda persona que necesita de una intervención quirúrgica. Todos los procesos necesitan ser evaluados y auditados para verificar sus resultados.

  20. Atomic reactor thermal engineering

    International Nuclear Information System (INIS)

    Kim, Gwang Ryong

    1983-02-01

    This book starts the introduction of atomic reactor thermal engineering including atomic reaction, chemical reaction, nuclear reaction neutron energy and soon. It explains heat transfer, heat production in the atomic reactor, heat transfer of fuel element in atomic reactor, heat transfer and flow of cooler, thermal design of atomic reactor, design of thermodynamics of atomic reactor and various. This deals with the basic knowledge of thermal engineering for atomic reactor.

  1. Atomic energy

    International Nuclear Information System (INIS)

    Ramanna, R.

    1978-01-01

    Development of nuclear science in India, particularly the research and development work at the Bhabha Atomic Research Centre (BARC), Bombay, is described. Among the wide range of materials developed for specific functions under rigorous conditions are nuclear pure grade uranium, zirconium and beryllium, and conventional materials like aluminium, carbon steel and stainless steels. Radioisotopes are produced and used for tracer studies in various fields. Various types of nuclear gauges and nuclear instruments are produced. Radiations have been used to develop new high yielding groundnut mutants with large kernals. The sterile male technique for pest control and radiosterilization technique to process potatoes, onions and marine foods for storage are ready for exploitation. Processes and equipment have been developed for production of electrolytic hydrogen, electrothermal phosphorus and desalinated water. Indigenously manufactured components and materials are now being used for the nuclear energy programme. Indian nuclear power programme strategy is to build heavy water reactors and to utilise their byproduct plutonium and depleted uranium to feed fast breeder reactors which will produce more fissile material than burnt. Finally a special mention has been made of the manpower development programme of the BARC. BARC has established a training school in 1957 giving advanced training in physics, chemistry and various branches of engineering and metallurgy

  2. Bremsstrahlung in atom-atom collisions

    International Nuclear Information System (INIS)

    Amus'ya, M.Y.; Kuchiev, M.Y.; Solov'ev, A.V.

    1985-01-01

    It is shown that in the collision of a fast atom with a target atom when the frequencies are on the order of the potentials or higher, there arises bremsstrahlung comparable in intensity with the bremsstrahlung emitted by an electron with the same velocity in the field of the target atom. The mechanism by which bremsstrahlung is produced in atom-atom collisions is elucidated. Results of specific calculations of the bremsstrahlung spectra are given for α particles and helium atoms colliding with xenon

  3. La tradizione del nuovo nel cinema di Ugo Nespolo

    OpenAIRE

    Bertetto, Paolo

    2018-01-01

    On the background of Nespolo’s cinema there are on the one hand the new rules and the new structures assigned by art to itself during the Twentieth Century. On the other hand the “logic of dada”, based on the immediacy of the creation through a gesture of everyday objects presentation. Therefore, by exploring the experimental use of camera and of its technical possibilities, what Nespolo does is avant-gardist cinema in two senses: as an elaboration of visual image that represents surrealistic...

  4. Quantum chaos in ultracold collisions of gas-phase erbium atoms.

    Science.gov (United States)

    Frisch, Albert; Mark, Michael; Aikawa, Kiyotaka; Ferlaino, Francesca; Bohn, John L; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana

    2014-03-27

    Atomic and molecular samples reduced to temperatures below one microkelvin, yet still in the gas phase, afford unprecedented energy resolution in probing and manipulating the interactions between their constituent particles. As a result of this resolution, atoms can be made to scatter resonantly on demand, through the precise control of a magnetic field. For simple atoms, such as alkalis, scattering resonances are extremely well characterized. However, ultracold physics is now poised to enter a new regime, where much more complex species can be cooled and studied, including magnetic lanthanide atoms and even molecules. For molecules, it has been speculated that a dense set of resonances in ultracold collision cross-sections will probably exhibit essentially random fluctuations, much as the observed energy spectra of nuclear scattering do. According to the Bohigas-Giannoni-Schmit conjecture, such fluctuations would imply chaotic dynamics of the underlying classical motion driving the collision. This would necessitate new ways of looking at the fundamental interactions in ultracold atomic and molecular systems, as well as perhaps new chaos-driven states of ultracold matter. Here we describe the experimental demonstration that random spectra are indeed found at ultralow temperatures. In the experiment, an ultracold gas of erbium atoms is shown to exhibit many Fano-Feshbach resonances, of the order of three per gauss for bosons. Analysis of their statistics verifies that their distribution of nearest-neighbour spacings is what one would expect from random matrix theory. The density and statistics of these resonances are explained by fully quantum mechanical scattering calculations that locate their origin in the anisotropy of the atoms' potential energy surface. Our results therefore reveal chaotic behaviour in the native interaction between ultracold atoms.

  5. Atomic weight versus atomic mass controversy

    International Nuclear Information System (INIS)

    Holden, N.E.

    1985-01-01

    A problem for the Atomic Weights Commission for the past decade has been the controversial battle over the names ''atomic weight'' and ''atomic mass''. The Commission has considered the arguments on both sides over the years and it appears that this meeting will see more of the same discussion taking place. In this paper, I review the situation and offer some alternatives

  6. S142 set-up to detect X-ray from antiproton-proton atoms (protonium).

    CERN Multimedia

    1978-01-01

    This experiment was designed by the Daresbury-Mainz-TRIUMF Collaboration and was located in the m14 partially separated antiproton beam in the PS South Hall. It used a gaseous hydrogen target, 1 m long, surrounded by a ring of proportional counters, surrounded in turn by a ring of 36 scintillators strips to aid in the annihilation product identification. Ugo Gastaldi (centre)

  7. Highly excited atoms

    International Nuclear Information System (INIS)

    Kleppner, D.; Littman, M.G.; Zimmerman, M.L.

    1981-01-01

    Highly excited atoms are often called Rydberg atoms. These atoms have a wealth of exotic properties which are discussed. Of special interest, are the effects of electric and magnetic fields on Rydberg atoms. Ordinary atoms are scarcely affected by an applied electric or magnetic field; Rydberg atoms can be strongly distorted and even pulled apart by a relatively weak electric field, and they can be squeezed into unexpected shapes by a magnetic field. Studies of the structure of Rydberg atoms in electric and magnetic fields have revealed dramatic atomic phenomena that had not been observed before

  8. Laser-assisted atom-atom collisions

    International Nuclear Information System (INIS)

    Roussel, F.

    1984-01-01

    The basic layer-assisted atom-atom collision processes are reviewed in order to get a simpler picture of the main physical facts. The processes can be separated into two groups: optical collisions where only one atom is changing state during the collision, the other acting as a spectator atom, and radiative collisions where the states of the two atoms are changing during the collision. All the processes can be interpreted in terms of photoexcitation of the quasimolecule formed during the collisional process. (author)

  9. Code ATOM for calculation of atomic characteristics

    International Nuclear Information System (INIS)

    Vainshtein, L.A.

    1990-01-01

    In applying atomic physics to problems of plasma diagnostics, it is necessary to determine some atomic characteristics, including energies and transition probabilities, for very many atoms and ions. Development of general codes for calculation of many types of atomic characteristics has been based on general but comparatively simple approximate methods. The program ATOM represents an attempt at effective use of such a general code. This report gives a brief description of the methods used, and the possibilities of and limitations to the code are discussed. Characteristics of the following processes can be calculated by ATOM: radiative transitions between discrete levels, radiative ionization and recombination, collisional excitation and ionization by electron impact, collisional excitation and ionization by point heavy particle (Born approximation only), dielectronic recombination, and autoionization. ATOM explores Born (for z=1) or Coulomb-Born (for z>1) approximations. In both cases exchange and normalization can be included. (N.K.)

  10. Alternative types of molecule-decorated atomic chains in Au–CO–Au single-molecule junctions

    Directory of Open Access Journals (Sweden)

    Zoltán Balogh

    2015-06-01

    Full Text Available We investigate the formation and evolution of Au–CO single-molecule break junctions. The conductance histogram exhibits two distinct molecular configurations, which are further investigated by a combined statistical analysis. According to conditional histogram and correlation analysis these molecular configurations show strong anticorrelations with each other and with pure Au monoatomic junctions and atomic chains. We identify molecular precursor configurations with somewhat higher conductance, which are formed prior to single-molecule junctions. According to detailed length analysis two distinct types of molecule-affected chain-formation processes are observed, and we compare these results to former theoretical calculations considering bridge- and atop-type molecular configurations where the latter has reduced conductance due to destructive Fano interference.

  11. Atomic fountain and applications

    International Nuclear Information System (INIS)

    Rawat, H.S.

    2000-01-01

    An overview of the development of working of MOT along with the basic principle of laser atom cooling and trapping is given. A technique to separate the cooled and trapped atoms from the MOT using atomic fountain technique will also be covered. The widely used technique for atomic fountain is, first to cool and trap the neutral atoms in MOT and then launch them in the vertical direction, using moving molasses technique. Using 133 Cs atomic fountain clock, time improvement of 2 to 3 order of magnitude over a conventional 133 Cs atomic clock has been observed

  12. Interferometry with atoms

    International Nuclear Information System (INIS)

    Helmcke, J.; Riehle, F.; Witte, A.; Kisters, T.

    1992-01-01

    Physics and experimental results of atom interferometry are reviewed and several realizations of atom interferometers are summarized. As a typical example of an atom interferometer utilizing the internal degrees of freedom of the atom, we discuss the separated field excitation of a calcium atomic beam using four traveling laser fields and demonstrate the Sagnac effect in a rotating interferometer. The sensitivity of this interferometer can be largely increased by use of slow atoms with narrow velocity distribution. We therefore furthermore report on the preparation of a laser cooled and deflected calcium atomic beam. (orig.)

  13. Three-atom clusters

    International Nuclear Information System (INIS)

    Pen'kov, F.M.

    1998-01-01

    The Born-Oppenheimer approximation is used to obtain an equation for the effective interaction in three atoms bound by a single electron. For low binding energies in an 'electron + atom' pair, long-range forces arise between the atoms, leading to bound states when the size of the three-atom cluster is a few tens of angstrom. A system made of alkali-metal atoms is considered as an example

  14. Stable atomic hydrogen: Polarized atomic beam source

    International Nuclear Information System (INIS)

    Niinikoski, T.O.; Penttilae, S.; Rieubland, J.M.; Rijllart, A.

    1984-01-01

    We have carried out experiments with stable atomic hydrogen with a view to possible applications in polarized targets or polarized atomic beam sources. Recent results from the stabilization apparatus are described. The first stable atomic hydrogen beam source based on the microwave extraction method (which is being tested ) is presented. The effect of the stabilized hydrogen gas density on the properties of the source is discussed. (orig.)

  15. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  16. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  17. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  18. Progress in atomic spectroscopy

    International Nuclear Information System (INIS)

    Beyer, H.J.; Kleinpoppen, H.

    1984-01-01

    This book presents reviews by leading experts in the field covering areas of research at the forefront of atomic spectroscopy. Topics considered include the k ordering of atomic structure, multiconfiguration Hartree-Fock calculations for complex atoms, new methods in high-resolution laser spectroscopy, resonance ionization spectroscopy (inert atom detection), trapped ion spectroscopy, high-magnetic-field atomic physics, the effects of magnetic and electric fields on highly excited atoms, x rays from superheavy collision systems, recoil ion spectroscopy with heavy ions, investigations of superheavy quasi-atoms via spectroscopy of electron rays and positrons, impact ionization by fast projectiles, and amplitudes and state parameters from ion- and atom-atom excitation processes

  19. Niveles de descontaminación en el bloque quirúrgico. Limpieza, desinfección y esterilización en el quirófano oftalmológico

    OpenAIRE

    Zamorano García, Patricia

    2013-01-01

    La asepsia quirúrgica ha sufrido grandes cambios a lo largo de la historia, cambios que han conseguido reducir considerablemente las infecciones contraidas dentro del entorno quirúrgico. el trabajo trata acerca de las técnicas de enfermería relacionadas con la descontaminación del bloque quirúrgico, especialmente en el quirófano de oftalmología. dadas las características particulares del instrumental oftalmológico, es preciso procesarle de una manera concreta, que no ponga en riesgo su ...

  20. Atomic Fisher information versus atomic number

    International Nuclear Information System (INIS)

    Nagy, A.; Sen, K.D.

    2006-01-01

    It is shown that the Thomas-Fermi Fisher information is negative. A slightly more sophisticated model proposed by Gaspar provides a qualitatively correct expression for the Fisher information: Gaspar's Fisher information is proportional to the two-third power of the atomic number. Accurate numerical calculations show an almost linear dependence on the atomic number

  1. Atomic-fluorescence spectrophotometry

    International Nuclear Information System (INIS)

    Bakhturova, N.F.; Yudelevich, I.G.

    1975-01-01

    Atomic-fluorescence spectrophotometry, a comparatively new method for the analysis of trace quantities, has developed rapidly in the past ten years. Theoretical and experimental studies by many workers have shown that atomic-fluorescence spectrophotometry (AFS) is capable of achieving a better limit than atomic absorption for a large number of elements. The present review examines briefly the principles of atomic-fluorescence spectrophotometry and the types of fluorescent transition. The excitation sources, flame and nonflame atomizers, used in AFS are described. The limits of detection achieved up to the present, using flame and nonflame methods of atomization are given

  2. A Single Atom Antenna

    International Nuclear Information System (INIS)

    Trinter, Florian; Williams, Joshua B; Weller, Miriam; Waitz, Markus; Pitzer, Martin; Voigtsberger, Jörg; Schober, Carl; Kastirke, Gregor; Müller, Christian; Goihl, Christoph; Burzynski, Phillip; Wiegandt, Florian; Wallauer, Robert; Kalinin, Anton; Schmidt, Lothar Ph H; Schöffler, Markus S; Jahnke, Till; Dörner, Reinhard; Chiang, Ying-Chih; Gokhberg, Kirill

    2015-01-01

    Here we demonstrate the smallest possible implementation of an antenna-receiver complex which consists of a single (helium) atom acting as the antenna and a second (neon) atom acting as a receiver. (paper)

  3. Atom chips: mesoscopic physics with cold atoms

    International Nuclear Information System (INIS)

    Krueger, P.; Wildermuth, S.; Hofferberth, S.; Haller, E.; GAllego Garcia, D.; Schmiedmayer, J.

    2005-01-01

    Full text: Cold neutral atoms can be controlled and manipulated in microscopic potentials near surfaces of atom chips. These integrated micro-devices combine the known techniques of atom optics with the capabilities of well established micro- and nanofabrication technology. In analogy to electronic microchips and integrated fiber optics, the concept of atom chips is suitable to explore the domain of mesoscopic physics with matter waves. We use current and charge carrying structures to form complex potentials with high spatial resolution only microns from the surface. In particular, atoms can be confined to an essentially one-dimensional motion. In this talk, we will give an overview of our experiments studying the manipulation of both thermal atoms and BECs on atom chips. First experiments in the quasi one-dimensional regime will be presented. These experiments profit from strongly reduced residual disorder potentials caused by imperfections of the chip fabrication with respect to previously published experiments. This is due to our purely lithographic fabrication technique that proves to be advantageous over electroplating. We have used one dimensionally confined BECs as an ultra-sensitive probe to characterize these potentials. These smooth potentials allow us to explore various aspects of the physics of degenerate quantum gases in low dimensions. (author)

  4. Quasi-atoms

    International Nuclear Information System (INIS)

    Armbruster, P.

    1976-01-01

    The concept of a quasi-atom is discussed, and several experiments are described in which molecular or quasi-atomic transitions have been observed. X-ray spectra are shown for these experiments in which heavy ion projectiles were incident on various targets and the resultant combined system behaved as a quasi-atom. This rapidly developing field has already given new insight into atomic collision phenomena. (P.J.S.)

  5. Atomic Energy Control Act

    International Nuclear Information System (INIS)

    1970-01-01

    This act provides for the establishment of the Atomic Energy Control Board. The board is responsible for the control and supervision of the development, application and use of atomic energy. The board is also considered necessary to enable Canada to participate effectively in measures of international control of atomic energy

  6. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  7. Photoionization of atoms. Progress report, 1 April 1979-30 March 1980

    International Nuclear Information System (INIS)

    Samson, J.A.R.; Starace, A.F.

    1979-12-01

    A strong 304 A fluorescent signal from He + (n = 2) has been observed as a function of incident photon wavelength; strong autoionizing structure arising from 3n + states are seen in the spectrum. Measurements of the ratio of photoproduced Ne + ions to Ne 2+ ions indicate that further calibration of detector response is required. The dissociative photoionization of O 2 has been measured successfully as a necessary preliminary to measuring the photoionization cross section of atomic oxygen. The experimental apparatus has been built to measure the photoelectron angular distribution of atomic cesium. In order to measure rare gas photoionization cross sections to +-1% accuracy, a new gas tight window has been developed and second order lines in the laboratory light sources have been classified. A new random phase approximation (RPA) for the theoretical calculation of open- or closed-shell atom photoionization cross sections has been developed; the close-coupling approximation and the closed-shell atom RPA of Chang and Fano are limiting cases of a new set of coupled differential equations. The Rydberg energy spectrum and oscillator strengths of atomic hydrogen have been calculated for magnetic fields of order 10 5 Gauss using a basis of oblate spheroidal angle functions. Below N approx. = 12 an adiabatic approximation is excellent. Above n approx. = 12 non-adiabatic coupling terms rapidly become important, and the perturbed energy levels for n greater than or equal to 16 cross, indicating quasi-conserved dynamical symmetries. A previous calculation of the cesium 6s → epsilon p photoionization cross section has been extended to include interchannel coupling to the 5p → epsilon d photoionization channels; above the near threshold cross section minimum, the cross section is dominated by 5p → 5d resonance transitions

  8. Atom-atom collision cascades localization

    International Nuclear Information System (INIS)

    Kirsanov, V.V.

    1980-01-01

    The presence of an impurity and thermal vibration influence on the atom-atom collision cascade development is analysed by the computer simulation method (the modificated dynamic model). It is discovered that the relatively low energetic cascades are localized with the temperature increase of an irradiated crystal. On the basis of the given effect the mechanism of splitting of the high energetic cascades into subcascades is proposed. It accounts for two factors: the primary knocked atom energy and the irradiated crystal temperature. Introduction of an impurity also localizes the cascades independently from the impurity atom mass. The cascades localization leads to intensification of the process of annealing in the cascades and reduction of the post-cascade vacancy cluster sizes. (author)

  9. Interaction of light with planar lattices of atoms: Reflection, transmission, and cooperative magnetometry

    Science.gov (United States)

    Facchinetti, G.; Ruostekoski, J.

    2018-02-01

    We study strong, light-mediated, resonant dipole-dipole interactions in two-dimensional planar lattices of cold atoms. We provide a detailed analysis for the description of the dipolar point emitter lattice plane as a "superatom" whose response is similar to electromagnetically induced transparency but which exhibits an ultranarrow collective size-dependent subradiant resonance linewidth. The superatom model provides intuitively simple descriptions for the spectral response of the array, including the complete reflection, full transmission, narrow Fano resonances, and asymptotic expressions for the resonance linewidths of the collective eigenmodes. We propose a protocol to transfer almost the entire radiative excitation to a single correlated subradiant eigenmode in a lattice and show that the medium obtained by stacked lattice arrays can form a cooperative magnetometer. Such a magnetometer utilizes similar principles as magnetometers based on the electromagnetically induced transparency. The accuracy of the cooperative magnetometer, however, is not limited by the single-atom resonance linewidth but the much narrower collective linewidth that results from the strong dipole-dipole interactions.

  10. Atomic collisions research with excited atomic species

    International Nuclear Information System (INIS)

    Hoogerland, M.D.; Gulley, R.J.; Colla, M.; Lu, W.; Milic, D.; Baldwin, K.G.H.; Buckman, S.J.

    1999-01-01

    Measurements and calculations of fundamental atomic collision and spectroscopic properties such as collision cross sections, reaction rates, transition probabilities etc. underpin the understanding and operation of many plasma and gas-discharge-based devices and phenomena, for example plasma processing and deposition. In almost all cases the complex series of reactions which sustains the discharge or plasma, or produces the reactive species of interest, has a precursor electron impact excitation, attachment, dissociation or ionisation event. These processes have been extensively studied in a wide range of atomic and molecular species and an impressive data base of collision cross sections and reaction rates now exists. However, most of these measurements are for collisions with stable atomic or molecular species which are initially in their ground electronic state. Relatively little information is available for scattering from excited states or for scattering from unstable molecular radicals. Examples of such species would be metastable excited rare gases, which are often used as buffer gases, or CF 2 radicals formed by electron impact dissociation in a CF 4 plasma processing discharge. We are interested in developing experimental techniques which will enable the quantitative study of such exotic atomic and molecular species. In this talk I would like to outline one such facility which is being used for studies of collisions with metastable He(2 3 S) atoms

  11. Atoms - molecules - nuclei. Vol. 1

    International Nuclear Information System (INIS)

    Otter, G.; Honecker, R.

    1993-01-01

    This first volume covers the following topics: Wave-particle dualism, classical atomic physics; the Schroedinger equation, angular momentum in quantum physics, one-electron atoms and many-electron atoms with atomic structure, atomic spectra, exotic atoms, influence of electric and magnetic fields

  12. Atomic and molecular sciences

    International Nuclear Information System (INIS)

    Lane, N.F.

    1989-01-01

    The theoretical atomic and molecular physics program at Rice University addresses basic questions about the collision dynamics of electrons, atoms, ions and molecules, emphasizing processes related to possible new energy technologies and other applications. The program focuses on inelastic collision processes that are important in understanding energy and ionization balance in disturbed gases and plasmas. Emphasis is placed on systems and processes where some experimental information is available or where theoretical results may be expected to stimulate new measurements. Examples of current projects include: excitation and charge-transfer processes; orientation and alignment of excited states following collisions; Rydberg atom collisions with atoms and molecules; Penning ionization and ion-pair formation in atom-atom collisions; electron-impact ionization in dense, high-temperature plasmas; electron-molecule collisions; and related topics

  13. Modern atomic physics

    CERN Document Server

    Natarajan, Vasant

    2015-01-01

    Much of our understanding of physics in the last 30-plus years has come from research on atoms, photons, and their interactions. Collecting information previously scattered throughout the literature, Modern Atomic Physics provides students with one unified guide to contemporary developments in the field. After reviewing metrology and preliminary material, the text explains core areas of atomic physics. Important topics discussed include the spontaneous emission of radiation, stimulated transitions and the properties of gas, the physics and applications of resonance fluorescence, coherence, cooling and trapping of charged and neutral particles, and atomic beam magnetic resonance experiments. Covering standards, a different way of looking at a photon, stimulated radiation, and frequency combs, the appendices avoid jargon and use historical notes and personal anecdotes to make the topics accessible to non-atomic physics students. Written by a leader in atomic and optical physics, this text gives a state-of-the...

  14. Metal atom oxidation laser

    International Nuclear Information System (INIS)

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-01-01

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides

  15. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1997-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  16. Economical Atomic Layer Deposition

    Science.gov (United States)

    Wyman, Richard; Davis, Robert; Linford, Matthew

    2010-10-01

    Atomic Layer Deposition is a self limiting deposition process that can produce films at a user specified height. At BYU we have designed a low cost and automated atomic layer deposition system. We have used the system to deposit silicon dioxide at room temperature using silicon tetrachloride and tetramethyl orthosilicate. Basics of atomic layer deposition, the system set up, automation techniques and our system's characterization are discussed.

  17. Atomic physics made clear

    International Nuclear Information System (INIS)

    Meinhold, H.

    1980-01-01

    This book is a popular introduction into the foundations of atomic physics und quantum mechanics. Starting from some phenomenological concepts Bohr's model and the construction of the periodic system regarding the shell structure of atoms are introduced. In this framework the selection rules and magnetic moments of atomic electrons are considered. Finally the wave-particle dualism is considered. In the appendix some mathematical methods are described which are useful for a deeper penetration into the considered ideas. (HSI)

  18. Deeply bound pionic atom

    International Nuclear Information System (INIS)

    Toki, Hiroshi; Yamazaki, Toshimitsu

    1989-01-01

    The standard method of pionic atom formation does not produce deeply bound pionic atoms. A study is made on the properties of deeply bound pionic atom states by using the standard pion-nucleus optical potential. Another study is made to estimate the cross sections of the formation of ls pionic atom states by various methods. The pion-nucleus optical potential is determined by weakly bound pionic atom states and pion nucleus scattering. Although this potential may not be valid for deeply bound pionic atoms, it should provide some hint on binding energies and level widths of deeply bound states. The width of the ls state comes out to be 0.3 MeV and is well separated from the rest. The charge dependence of the ls state is investigated. The binding energies and the widths increase linearly with Z azbove a Z of 30. The report then discusses various methods to populate deeply bound pionic atoms. In particular, 'pion exchange' reactions are proposed. (n, pπ) reaction is discussed first. The cross section is calculated by assuming the in- and out-going nucleons on-shell and the produced pion in (n1) pionic atom states. Then, (n, dπ - ) cross sections are estimated. (p, 2 Heπ - ) reaction would have cross sections similar to the cross section of (n, dπ - ) reaction. In conclusion, it seems best to do (n, p) experiment on heavy nuclei for deeply bound pionic atom. (Nogami, K.)

  19. Single atom oscillations

    International Nuclear Information System (INIS)

    Wiorkowski, P.; Walther, H.

    1990-01-01

    Modern methods of laser spectroscopy allow the study of single atoms or ions in an unperturbed environment. This has opened up interesting new experiments, among them the detailed study of radiation-atom coupling. In this paper, the following two experiments dealing with this problem are reviewed: the single-atom maser and the study of the resonance fluorescence of a single stored ion. The simplest and most fundamental system for studying radiation-matter coupling is a single two-level atom interacting with a single mode of an electromagnetic field in a cavity. This problem received a great deal of attention shortly after the maser was invented

  20. Atomic hydrogen reactor

    International Nuclear Information System (INIS)

    Massip de Turville, C.M.D.

    1982-01-01

    Methods are discussed of generating heat in an atomic hydrogen reactor which involve; the production of atomic hydrogen by an electrical discharge, the capture of nascent neutrons from atomic hydrogen in a number of surrounding steel alloy tubes having a high manganese content to produce 56 Mn, the irradiation of atomic hydrogen by the high energy antineutrinos from the beta decay of 56 Mn to yield nascent neutrons, and the removal of the heat generated by the capture of nascent neutrons by 55 Mn and the beta decay of 56 Mn. (U.K.)

  1. Atom dynamics in laser fields

    International Nuclear Information System (INIS)

    Jang, Su; Mi, No Gin

    2004-12-01

    This book introduces coherent dynamics of internal state, spread of atoms wave speed, semiclassical atoms density matrix such as dynamics equation in both still and moving atoms, excitation of atoms in movement by light, dipole radiating power, quantum statistical mechanics by atoms in movement, semiclassical atoms in movement, atoms in movement in the uniform magnetic field including effects of uniform magnetic field, atom cooling using laser such as Doppler cooling, atom traps using laser and mirrors, radiant heat which particles receive, and near field interactions among atoms in laser light.

  2. Shot-noise Fano factor

    Czech Academy of Sciences Publication Activity Database

    Rajdl, K.; Lánský, Petr

    2015-01-01

    Roč. 92, č. 5 (2015), č. článku 052135. ISSN 2470-0045 Institutional support: RVO:67985823 Keywords : response functions * limit-theorems * spike trains * variability Subject RIV: BD - Theory of Information Impact factor: 2.252, year: 2015

  3. Atoms stories; Histoire d`atomes

    Energy Technology Data Exchange (ETDEWEB)

    Radvanyi, P; Bordry, M [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France)

    1988-12-31

    Physicists from different countries told each evening during one learning week, to an audience of young people, some great discoveries in evoking the difficulties and problems to which the researchers were confronted. From Antiquity to a more recent history, it is a succession of atoms stories. (N.C.)

  4. Low energy atom-atom collisions

    International Nuclear Information System (INIS)

    Child, M.S.

    1980-01-01

    The semiclassical theory of atom-atom potential scattering and of low energy inelastic atom-atom scattering is reviewed. Particular attention is given to the origin and interpretation of rainbow structure, diffraction oscillations and exchange oscillations in the potential scattering differential cross-section, and to the glory structure and symmetry oscillations in the integral cross-section. Available methods for direct inversion of the cross-section data to recover the potential are reviewed in some detail. The theory of non-adiabatic transitions is introduced by a short discussion of interaction mechanisms and of diabetic and adiabatic representations. Analytical S matrix elements are presented for two state curve-crossing (Landau-Zener-Stuckelberg), Demkov and Nikitin models. The relation between Stuckelberg oscillations in the S matrix and in the differential cross-section is discussed in terms of interference between trajectories belonging to two different classical deflection functions. The energy dependences of the inelastic integral cross-section for curve-crossing and Demkov type transitions are also discussed. Finally the theory is reviewed in relation to a recent close-coupled study of fine structure transitions in F( 2 P) + Xe( 2 S) scattering

  5. Atoms, Molecules, and Compounds

    CERN Document Server

    Manning, Phillip

    2007-01-01

    Explores the atoms that govern chemical processes. This book shows how the interactions between simple substances such as salt and water are crucial to life on Earth and how those interactions are predestined by the atoms that make up the molecules.

  6. Atomic Energy Control Board

    International Nuclear Information System (INIS)

    Blackman, N.S.; Gummer, W.K.

    1982-02-01

    This paper has been prepared to provide an overview of the responsibilities and activities of the Atomic Energy Control Board. It is designed to address questions that are often asked concerning the establishment of the Atomic Energy Control Board, its enabling legislation, licensing and compliance activities, federal-provincial relationships, international obligations, and communications with the public

  7. mu. -nucleon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Dobretsov, Yu; Dolgoshein, B; Kirillov-Ugryumov, V

    1980-12-01

    The properties and formation are described of ..mu..-nucleon atoms, the Larmor method of muon spin precession is discussed and the experimental confirmation of the existence of ..mu..-nucleon atoms is shown. The prospects of their use are indicated.

  8. μ-nucleon atoms

    International Nuclear Information System (INIS)

    Dobretsov, Yu.; Dolgoshejn, B.; Kirillov-Ugryumov, V.

    1980-01-01

    The properties and formation are described of μ-nucleon atoms, the Larmor method of muon spin precession is discussed and the experimental confirmation of the existence of μ-nucleon atoms is shown. The prospects of their use are indicated. (J.P.)

  9. Atomic Ferris wheel beams

    Science.gov (United States)

    Lembessis, Vasileios E.

    2017-07-01

    We study the generation of atom vortex beams in the case where a Bose-Einstein condensate, released from a trap and moving in free space, is diffracted from a properly tailored light mask with a spiral transverse profile. We show how such a diffraction scheme could lead to the production of an atomic Ferris wheel beam.

  10. Atom lithography of Fe

    NARCIS (Netherlands)

    Sligte, te E.; Smeets, B.; van der Stam, K.M.R.; Herfst, R.W.; Straten, van der P.; Beijerinck, H.C.W.; Leeuwen, van K.A.H.

    2004-01-01

    Direct write atom lithography is a technique in which nearly resonant light is used to pattern an atom beam. Nanostructures are formed when the patterned beam falls onto a substrate. We have applied this lithography scheme to a ferromagnetic element, using a 372 nm laser light standing wave to

  11. Beyond the Atom

    Science.gov (United States)

    Cox, John

    2011-08-01

    1. Introduction - the atom in the seventies; 2. The vacuum tube; 3. The new rays; 4. The new substances; 5. Disintegration; 6. A family tree; 7. Verifications and results; 8. The objective reality of molecules; 9. The new atom; Bibliography; Index.

  12. When Atoms Want

    Science.gov (United States)

    Talanquer, Vicente

    2013-01-01

    Chemistry students and teachers often explain the chemical reactivity of atoms, molecules, and chemical substances in terms of purposes or needs (e.g., atoms want or need to gain, lose, or share electrons in order to become more stable). These teleological explanations seem to have pedagogical value as they help students understand and use…

  13. Atom electron scattering

    International Nuclear Information System (INIS)

    Santoso, B.

    1976-01-01

    Green Lippmann-Schwinger functions operator representations, derivation of perturbation method using Green function and atom electron scattering, are discussed. It is concluded that by using complex coordinate places where resonances occur, can be accurately identified. The resonance can be processed further for practical purposes, for example for the separation of atom. (RUW)

  14. Atomic energy for progress

    International Nuclear Information System (INIS)

    1974-01-01

    The film discusses the functions and activities of the Philippine Atomic Energy Commission. Shown are the applications of atomic energy in research, agriculture, engineering, industry and medicine, as well as the construction of the research reactor and its inauguration by President Marcos

  15. Zeeman atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Loos-Vollebregt, M.T.C. de.

    1980-01-01

    A new method of background correction in atomic absorption spectroscopy has recently been introduced, based on the Zeeman splitting of spectral lines in a magnetic field. A theoretical analysis of the background correction capability observed in such instruments is presented. A Zeeman atomic absorption spectrometer utilizing a 50 Hz sine wave modulated magnetic field is described. (Auth.)

  16. Isotopes and atomic weights

    International Nuclear Information System (INIS)

    Zhang Qinglian

    1990-01-01

    A review of the chemical and mass spectrometric methods of determining the atomic weights of elements is presented. A, special discussion is devoted to the calibration of the mass spectrometer with highly enriched isotopes. It is illustrated by the recent work on europium. How to choose the candidate element for new atomic weight determination forms the last section of the article

  17. Atomic diffusion in stars

    CERN Document Server

    Michaud, Georges; Richer, Jacques

    2015-01-01

    This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling.  In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...

  18. Theoretical atomic physics

    CERN Document Server

    Friedrich, Harald

    2017-01-01

    This expanded and updated well-established textbook contains an advanced presentation of quantum mechanics adapted to the requirements of modern atomic physics. It includes topics of current interest such as semiclassical theory, chaos, atom optics and Bose-Einstein condensation in atomic gases. In order to facilitate the consolidation of the material covered, various problems are included, together with complete solutions. The emphasis on theory enables the reader to appreciate the fundamental assumptions underlying standard theoretical constructs and to embark on independent research projects. The fourth edition of Theoretical Atomic Physics contains an updated treatment of the sections involving scattering theory and near-threshold phenomena manifest in the behaviour of cold atoms (and molecules). Special attention is given to the quantization of weakly bound states just below the continuum threshold and to low-energy scattering and quantum reflection just above. Particular emphasis is laid on the fundamen...

  19. Antiprotonic-hydrogen atoms

    International Nuclear Information System (INIS)

    Batty, C.J.

    1989-07-01

    Experimental studies of antiprotonic-hydrogen atoms have recently made great progress following the commissioning of the low energy antiproton facility (LEAR) at CERN in 1983. At the same time our understanding of the atomic cascade has increased considerably through measurements of the X-ray spectra. The life history of the p-bar-p atom is considered in some detail, from the initial capture of the antiproton when stopping in hydrogen, through the atomic cascade with the emission of X-rays, to the final antiproton annihilation and production of mesons. The experiments carried out at LEAR are described and the results compared with atomic cascade calculations and predictions of strong interaction effects. (author)

  20. Experimental atomic physics

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The experimental atomic physics program within the physics division is carried out by two groups, whose reports are given in this section. Work of the accelerator atomic physics group is centered around the 6.5-MV EN tandem accelerator; consequently, most of its research is concerned with atomic processes occurring to, or initiated by, few MeV/amu heavy ions. Other activities of this group include higher energy experiments at the Holifield Heavy Ion Research Facility (HHIRF), studies of electron and positron channeling radiation, and collaborative experiments at other institutions. The second experimental group concerns itself with lower energy atomic collision physics in support of the Fusion Energy Program. During the past year, the new Electron Cyclotron Resonance Source has been completed and some of the first data from this facility is presented. In addition to these two activities in experimental atomic physics, other chapters of this report describe progress in theoretical atomic physics, experimental plasma diagnostic development, and atomic data center compilation activities

  1. Atomic mass spectrometry

    International Nuclear Information System (INIS)

    Sanz-Medel, A.

    1997-01-01

    The elemental inorganic analysis seems to be dominated today by techniques based on atomic spectrometry. After an evaluation of advantages and limitations of using mass analysers (ion detectors) versus conventional photomultipliers (photon detector) a brief review of the more popular techniques of the emerging Atomic Mass spectrometry is carried out. Their huge potential for inorganic trace analysis is such that in the future we could well witness how this end of the century and millennium marked the fall of the photons empire in Analytical Atomic Spectrometry. (Author)

  2. Physics of the atom

    CERN Document Server

    Wehr, Russell M; Adair, Thomas W

    1984-01-01

    The fourth edition of Physics of the Atom is designed to meet the modern need for a better understanding of the atomic age. It is an introduction suitable for students with a background in university physics and mathematical competence at the level of calculus. This book is designed to be an extension of the introductory university physics course into the realm of atomic physics. It should give students a proficiency in this field comparable to their proficiency in mechanics, heat, sound, light, and electricity.

  3. Atom trap trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O' Connor, T. P.; Young, L.

    2000-05-25

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications.

  4. Division of atomic physics

    International Nuclear Information System (INIS)

    Kroell, S.

    1994-01-01

    The Division of Atomic Physics, Lund Institute of Technology (LTH), is responsible for the basic physics teaching in all subjects at LTH and for specialized teaching in Optics, Atomic Physics, Atomic and Molecular Spectroscopy and Laser Physics. The Division has research activities in basic and applied optical spectroscopy, to a large extent based on lasers. It is also part of the Physics Department, Lund University, where it forms one of eight divisions. Since the beginning of 1980 the research activities of our division have been centred around the use of lasers. The activities during the period 1991-1992 is described in this progress reports

  5. Atom trap trace analysis

    International Nuclear Information System (INIS)

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O'Connor, T. P.; Young, L.

    2000-01-01

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual 85 Kr and 81 Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10 -11 and 10 -13 , respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications

  6. Section of Atomic Collisions

    International Nuclear Information System (INIS)

    Berenyi, D.; Biri, S.; Gulyas, L.; Juhasz, Z.; Kover, A.; Orban, A.; Palinkas, J.; Papp, T.; Racz, R.; Ricz, S.

    2009-01-01

    The Section of Atomic Collisions is a research unit with extended activity in the field of atomic and molecular physics. Starting from the study of atomic processes at the beamlines of nuclear physics accelerators in the seventies, our research community became one of the centers of fundamental research in Atomki. We also have a strong connection to materials sciences especially along the line of electron and ion spectroscopy methods. Our present activity covers a wide range of topics from atomic collision mechanisms of fundamental interest, to the complex interactions of electrons, ions, photons and antiparticles with atoms, molecules, surfaces, and specific nanostructures. In the last few years, an increasing fraction of our present topics has become relevant for applications, e.g., molecular collision studies for the radiation therapy methods of tumors, or ion-nanostructure interactions for the future construction of small ion-focusing elements. Our section belongs to the Division of Atomic Physics. The other unit of the Division is the Section of Electron Spectroscopy and Materials Sciences. There are traditionally good connections and a strong collaboration between the groups of the two sections in many fields. From the very beginning of our research work in atomic collisions, external collaborations were of vital importance for us. We regularly organize international workshops in the field of fast ion-atom collisions and related small conferences in Debrecen from 1981. Recently, we organized the Conference on Radiation Damage in Biomolecular Systems (RADAM 2008, Debrecen), and coorganized the Conference on Elementary Processes in Atomic Systems (CEPAS 2008, Cluj). We have access to several large scale facilities in Europe within the framework of formal and informal collaborations. The next themes are in this article: Forward electron emission from energetic atomic collisions; Positron-atom collisions; Photon-atom interactions; Interference effects in electron

  7. History of early atomic clocks

    International Nuclear Information System (INIS)

    Ramsey, N.F.

    2005-01-01

    This review of the history of early atomic clocks includes early atomic beam magnetic resonance, methods of separated and successive oscillatory fields, microwave absorption, optical pumping and atomic masers. (author)

  8. Atomic Energy Authority Bill

    International Nuclear Information System (INIS)

    Gray, J.H.N.; Stoddart, D.L.; Sinclair, R.M.; Ezra, D.

    1985-01-01

    The House, in Committee, discussed the following matters in relation to the Atomic Energy Authority Bill; financing; trading; personnel conditions of employment; public relations; organization; research programmes; fuels; energy sources; information dissemination. (U.K.)

  9. Atomic and Molecular Interactions

    International Nuclear Information System (INIS)

    2002-01-01

    The Gordon Research Conference (GRC) on Atomic and Molecular Interactions was held at Roger Williams University, Bristol, RI. Emphasis was placed on current unpublished research and discussion of the future target areas in this field

  10. Zeeman atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Hadeishi, T.; McLaughlin, R.

    1978-08-01

    The design and development of a Zeeman atomic absorption spectrometer for trace element analysis are described. An instruction manual is included which details the operation, adjustment, and maintenance. Specifications and circuit diagrams are given

  11. Optics With Cold Atoms

    National Research Council Canada - National Science Library

    Hau, Lene

    2004-01-01

    .... And to test the novel atom sensor, we have built a moving-molasses magneto-optical trap in a geometry tailor-suited to the nanotube detector geometry, involving construction of a highly stable laser...

  12. Atomic Energy Control Regulations

    International Nuclear Information System (INIS)

    1992-01-01

    This is the consolidated text of the Atomic Energy Control Regulations of 17 March 1960, with amendments to 27 August 1992. The Regulations cover the licensing of nuclear facilities, radiation sources, including uranium mining, radiation protection questions, etc. (NEA)

  13. The atomic conflict

    International Nuclear Information System (INIS)

    Mez, L.

    1981-01-01

    This book provides a general view at the atomic programmes of several countries and makes an attempt to unmask the atomic industrial combines with their interlockings. The governments role is analysed as well as the atomic policy of the parties, union-trades and associations. Then, the anti-atomic movements in those countries, their forms of resistance, the resonance and the alternative proposals are presented. The countries concerned are Australia, the FRG, COMECON, Danmark, the EG, Finland, France, Great Britain, Ireland, Japan, the Netherlands, Norway, Austria, Sweden, Switzerland, Spain and the USA. For the pocket book version, Lutz Mez adds an updating epilogue which continues with the developments until springtime 1981. (orig./HP) [de

  14. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1998-01-01

    This volume continues the series'' cutting-edge reviews on developments in this field. Since its invention in the 1920s, electrostatic precipitation has been extensively used in industrial hygiene to remove dust and particulate matter from gases before entering the atmosphere. This combination of electrostatic precipitation is reported upon in the first chapter. Following this, chapter two reviews recent advances in the area of chemical modification in electrothermal atomization. Chapter three consists of a review which deal with advances and uses of electrothermal atomization atomic absorption spectrometry. Flow injection atomic spectroscopy has developed rapidly in recent years and after a general introduction, various aspects of this technique are looked at in chapter four. Finally, in chapter five the use of various spectrometric techniques for the determination of mercury are described.

  15. Atom chip gravimeter

    Science.gov (United States)

    Schubert, Christian; Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Ahlers, Holger; Müntinga, Hauke; Matthias, Jonas; Sahelgozin, Maral; Herr, Waldemar; Lämmerzahl, Claus; Ertmer, Wolfgang; Rasel, Ernst

    2016-04-01

    Atom interferometry has developed into a tool for measuring rotations [1], accelerations [2], and testing fundamental physics [3]. Gravimeters based on laser cooled atoms demonstrated residual uncertainties of few microgal [2,4] and were simplified for field applications [5]. Atomic gravimeters rely on the interference of matter waves which are coherently manipulated by laser light fields. The latter can be interpreted as rulers to which the position of the atoms is compared. At three points in time separated by a free evolution, the light fields are pulsed onto the atoms. First, a coherent superposition of two momentum states is produced, then the momentum is inverted, and finally the two trajectories are recombined. Depending on the acceleration the atoms experienced, the number of atoms detected in the output ports will change. Consequently, the acceleration can be determined from the output signal. The laser cooled atoms with microkelvin temperatures used in state-of-the-art gravimeters impose limits on the accuracy [4]. Therefore, ultra-cold atoms generated by Bose-Einstein condensation and delta-kick collimation [6,7] are expected to be the key for further improvements. These sources suffered from a low flux implying an incompatible noise floor, but a competitive performance was demonstrated recently with atom chips [8]. In the compact and robust setup constructed for operation in the drop tower [6] we demonstrated all steps necessary for an atom chip gravimeter with Bose-Einstein condensates in a ground based operation. We will discuss the principle of operation, the current performance, and the perspectives to supersede the state of the art. The authors thank the QUANTUS cooperation for contributions to the drop tower project in the earlier stages. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM

  16. Atoms at work

    International Nuclear Information System (INIS)

    1982-07-01

    This illustrated booklet discusses the following: atoms; fission of uranium; nuclear power plants; reactor types; plutonium (formation, properties, uses); radioactive waste (fuel cycle, reprocessing, waste management); nuclear fusion; fusion reactors; radiation; radioisotopes and their uses. (U.K.)

  17. Topics in atomic physics

    CERN Document Server

    Burkhardt, Charles E

    2006-01-01

    The study of atomic physics propelled us into the quantum age in the early twentieth century and carried us into the twenty-first century with a wealth of new and, in some cases, unexplained phenomena. Topics in Atomic Physics provides a foundation for students to begin research in modern atomic physics. It can also serve as a reference because it contains material that is not easily located in other sources. A distinguishing feature is the thorough exposition of the quantum mechanical hydrogen atom using both the traditional formulation and an alternative treatment not usually found in textbooks. The alternative treatment exploits the preeminent nature of the pure Coulomb potential and places the Lenz vector operator on an equal footing with other operators corresponding to classically conserved quantities. A number of difficult to find proofs and derivations are included as is development of operator formalism that permits facile solution of the Stark effect in hydrogen. Discussion of the classical hydrogen...

  18. Atomic Interferometry, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Vertical cavity surface emitting lasers (VCSELs) is a new technology which can be used for developing high performance laser components for atom-based sensors...

  19. Atomic bomb cataracts

    International Nuclear Information System (INIS)

    Shiraeda, Kanji

    1992-01-01

    Eye disturbance caused by atomic bomb radiation can be divided into three groups: direct injury immediately after exposure, eye lesions associated with radiation syndrome, and delayed disturbance. The crystalline lens of the eye is the most radiosensitive. Atomic bomb cataract has been investigated in a number of studies. The first section of this chapter discusses radiation cataract in terms of the incidence and characteristics. The second section deals with atomic bomb cataract, which can be diagnosed based on the four criteria: (1) opacity of the crystalline lens, (2) a history of proximal exposure, (3) lack of eye disease complicating cataract, and (4) non-exposure to radiation other than atomic bombing. The prevalence of cataract and severity of opacity are found to correlate with exposure doses and age at the time of exposure. Furthermore, it is found to correlate with distance from the hypocenter, the condition of shielding, epilation, and the presence or absence or degree of radiation syndrome. (N.K.)

  20. The Atomic Energy Control Board

    International Nuclear Information System (INIS)

    Doern, G.B.

    1976-01-01

    This study describes and assesses the regulatory and administrative processes and procedures of the Atomic Energy Control Board, the AECB. The Atomic Energy Control Act authorized the AECB to control atomic energy materials and equipment in the national interest and to participate in measures for the international control of atomic energy. The AECB is authorized to make regulations to control atomic energy materials and equipment and to make grants in support of atomic energy research. (author)

  1. Energy flux of hot atoms

    International Nuclear Information System (INIS)

    Wotzak, G.P.; Kostin, M.D.

    1976-01-01

    The process in which hot atoms collide with thermal atoms of a gas, transfer kinetic energy to them, and produce additional hot atoms is investigated. A stochastic method is used to obtain numerical results for the spatial and time dependent energy flux of hot atoms in a gas. The results indicate that in hot atom systems a front followed by an intense energy flux of hot atoms may develop

  2. Harnessing the atom

    International Nuclear Information System (INIS)

    1999-01-01

    Splitting the atom has had a major impact on the history of the latter part of the 20th century. This film depicts the many benefits - and also drawbacks - of nuclear technology, and describes how the International Atomic Energy Agency performs its various tasks. It touches on challenges such as the choice between major energy sources, growing concerns about the global climate, and prospects for nuclear arms control and disarmament

  3. Atomic Energy Act 1946

    International Nuclear Information System (INIS)

    1946-01-01

    This Act provides for the development of atomic energy in the United Kingdom and for its control. It details the duties and powers of the competent Minister, in particular his powers to obtain information on and to inspect materials, plant and processes, to control production and use of atomic energy and publication of information thereon. Also specified is the power to search for and work minerals and to acquire property. (NEA) [fr

  4. Hirshfeld atom refinement.

    Science.gov (United States)

    Capelli, Silvia C; Bürgi, Hans-Beat; Dittrich, Birger; Grabowsky, Simon; Jayatilaka, Dylan

    2014-09-01

    Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.

  5. Manipulating atoms with photons

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, C.N.

    1998-01-01

    The article is a translation of the lecture delivered on the occasion of the 1997 Nobel Prize awarding ceremony. The physical mechanisms which allow manipulating of neutral atoms with laser photons are described. A remark is also made concerning several possible applications of ultra-cool atoms and streams of future research. The article is completed by Prof. Cohen-Tannoudji's autobiography. (Z.J.)

  6. Atoms, molecules & elements

    CERN Document Server

    Graybill, George

    2007-01-01

    Young scientists will be thrilled to explore the invisible world of atoms, molecules and elements. Our resource provides ready-to-use information and activities for remedial students using simplified language and vocabulary. Students will label each part of the atom, learn what compounds are, and explore the patterns in the periodic table of elements to find calcium (Ca), chlorine (Cl), and helium (He) through hands-on activities.

  7. Atomic bomb and leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Ichimaru, M; Tomonaga, M; Amenomori, T; Matsuo, T [Nagasaki Univ. (Japan). School of Medicine

    1991-12-01

    Characteristic features of the leukemia among atomic bomb survivors were studied. Dose estimates of atomic bomb radiation were based on T65D, but the new dosimetry system DS86 was used for some analyses. The ratio of a single leukemia type to all leukemias was highest for chronic myelogenous leukemia (CML) in Hiroshima, and the occurrence of CML was thought to be most characteristic to atomic bomb radiation induced leukemia. The threshold of CML occurrence in Hiroshima is likely to be between 0.5{approx}0.09 Gy. However, the threshold of acute leukemia appears to be nearly 1 Gy. In the distribution of acute myeloid leukemia (AML) subtypes by French-American-British classification, there was no M3 case in 1 Gy or more group, although several atypical AML cases of survivors were observed. Although aplastic anemia has not increased as a late effect of the atomic bomb radiation exposure, many atypical leukemia or other myeloproliferative diseases who had been diagnosed as aplastic anemia or its related diseases have been experienced among atomic bomb survivors. Chromosome study was conducted using colony forming cells induced by hemopoietic stem cells of peripheral blood of proximal survivors. Same chromosome aberrations were observed in colony forming cells and peripheral T-cells in several atomic bomb survivors. (author).

  8. On the bosonic atoms

    Science.gov (United States)

    Amusia, M. Ya.; Chernysheva, L. V.

    2018-01-01

    We investigate ground state properties of atoms, in which substitute fermions - electrons by bosons, namely π --mesons. We perform some calculations in the frame of modified Hartree-Fock (HF) equation. The modification takes into account symmetry, instead of anti-symmetry of the pair identical bosons wave function. The modified HF approach thus enhances (doubles) the effect of self-action for the boson case. Therefore, we accordingly modify the HF equations by eliminating the self-action terms "by hand". The contribution of meson-meson and meson-nucleon non-Coulomb interaction is inessential at least for atoms with low and intermediate nuclear charge, which is our main subject. We found that the binding energy of pion negative ions A π - , pion atoms A π , and the number of extra bound pions ΔN π increases with the growth of nuclear charge Z. For e.g. Xe ΔN π = 4. As an example of a simple process with a pion atom, we consider photoionization that differs essentially from that for electron atoms. Namely, it is not monotonic decreasing from the threshold but has instead a prominent maximum above threshold. We study also elastic scattering of pions by pion atoms.

  9. Electron - atom bremsstrahlung

    International Nuclear Information System (INIS)

    Kim, L.

    1986-01-01

    Features of bremsstrahlung radiation from neutral atoms and atoms in hot dense plasmas are studied. Predictions for the distributions of electron-atom bremsstrahlung radiation for both the point-Coulomb potential and screened potentials are obtained using a classical numerical method. Results agree with exact quantum-mechanical partial-wave results for low incident electron energies in both the point-Coulomb and screened potentials. In the screened potential, the asymmetry parameter of a spectrum is reduced from the Coulomb values. The difference increases with decreasing energy and begins to oscillate at very low energies. The scaling properties of bremsstrahlung spectra and energy losses were also studied. It was found that the ratio of the radiative energy loss for positrons to that for electrons obeys a simple scaling law, being expressible fairly accurately as a function only of the quantity T 1 /Z 2 . This scaling is exact in the case of the point-Coulomb potential, both for classical bremsstrahlung and for the nonrelativistic dipole Sommerfeld formula. Bremsstrahlung from atoms in hot dense plasmas were also studied describing the atomic potentials by the temperature-and-density dependent Thomas-Fermi mode. Gaunt factors were obtained with the relativistic partial-wave method for atoms in plasmas of various densities and temperatures

  10. FAO and atomic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-07-15

    During the past six years FAO has become more engaged in work concerned with atomic energy. In 1957 it established an Atomic Energy Branch. The new forces and new tools which have become available for use in the fight against poverty, disease and malnutrition can be of the greatest assistance in FAO's work in nearly all phases of the production, storage and distribution of food and other agricultural products. The Organization promotes their use to improve the standards of feeding, clothing and housing throughout the world. Another side of work related to atomic energy is concerned with combating contamination from the use of atomic energy for power production and other purposes. This raises considerable problems for food and agriculture, so that FAO also has a responsibility for assisting Governments in safeguarding their food and food-producing resources from contamination. FAO is essentially concerned with fostering wider knowledge of the many contributions that atomic science can make to agriculture, forestry, fisheries and nutrition. It is also concerned in assisting governments to establish sound programmes for applying atomic science in food and agriculture. One way of spreading such knowledge is through the publication of documents and reports

  11. Atomic clocks for geodesy

    Science.gov (United States)

    Mehlstäubler, Tanja E.; Grosche, Gesine; Lisdat, Christian; Schmidt, Piet O.; Denker, Heiner

    2018-06-01

    We review experimental progress on optical atomic clocks and frequency transfer, and consider the prospects of using these technologies for geodetic measurements. Today, optical atomic frequency standards have reached relative frequency inaccuracies below 10‑17, opening new fields of fundamental and applied research. The dependence of atomic frequencies on the gravitational potential makes atomic clocks ideal candidates for the search for deviations in the predictions of Einstein’s general relativity, tests of modern unifying theories and the development of new gravity field sensors. In this review, we introduce the concepts of optical atomic clocks and present the status of international clock development and comparison. Besides further improvement in stability and accuracy of today’s best clocks, a large effort is put into increasing the reliability and technological readiness for applications outside of specialized laboratories with compact, portable devices. With relative frequency uncertainties of 10‑18, comparisons of optical frequency standards are foreseen to contribute together with satellite and terrestrial data to the precise determination of fundamental height reference systems in geodesy with a resolution at the cm-level. The long-term stability of atomic standards will deliver excellent long-term height references for geodetic measurements and for the modelling and understanding of our Earth.

  12. FAO and atomic energy

    International Nuclear Information System (INIS)

    1960-01-01

    During the past six years FAO has become more engaged in work concerned with atomic energy. In 1957 it established an Atomic Energy Branch. The new forces and new tools which have become available for use in the fight against poverty, disease and malnutrition can be of the greatest assistance in FAO's work in nearly all phases of the production, storage and distribution of food and other agricultural products. The Organization promotes their use to improve the standards of feeding, clothing and housing throughout the world. Another side of work related to atomic energy is concerned with combating contamination from the use of atomic energy for power production and other purposes. This raises considerable problems for food and agriculture, so that FAO also has a responsibility for assisting Governments in safeguarding their food and food-producing resources from contamination. FAO is essentially concerned with fostering wider knowledge of the many contributions that atomic science can make to agriculture, forestry, fisheries and nutrition. It is also concerned in assisting governments to establish sound programmes for applying atomic science in food and agriculture. One way of spreading such knowledge is through the publication of documents and reports

  13. Atomic bomb and leukemia

    International Nuclear Information System (INIS)

    Ichimaru, M.; Tomonaga, M.; Amenomori, T.; Matsuo, T.

    1991-01-01

    Characteristic features of the leukemia among atomic bomb survivors were studied. Dose estimates of atomic bomb radiation were based on T65D, but the new dosimetry system DS86 was used for some analyses. The ratio of a single leukemia type to all leukemias was highest for chronic myelogenous leukemia (CML) in Hiroshima, and the occurrence of CML was thought to be most characteristic to atomic bomb radiation induced leukemia. The threshold of CML occurrence in Hiroshima is likely to be between 0.5∼0.09 Gy. However, the threshold of acute leukemia appears to be nearly 1 Gy. In the distribution of acute myeloid leukemia (AML) subtypes by French-American-British classification, there was no M3 case in 1 Gy or more group, although several atypical AML cases of survivors were observed. Although aplastic anemia has not increased as a late effect of the atomic bomb radiation exposure, many atypical leukemia or other myeloproliferative diseases who had been diagnosed as aplastic anemia or its related diseases have been experienced among atomic bomb survivors. Chromosome study was conducted using colony forming cells induced by hemopoietic stem cells of peripheral blood of proximal survivors. Same chromosome aberrations were observed in colony forming cells and peripheral T-cells in several atomic bomb survivors. (author)

  14. Atomic phenomena in dense plasmas

    International Nuclear Information System (INIS)

    Weisheit, J.C.

    1981-03-01

    The following chapters are included: (1) the plasma environment, (2) perturbations of atomic structure, (3) perturbations of atomic collisions, (4) formation of spectral lines, and (5) dielectronic recombination

  15. UNESCO and atomic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-01-15

    Atomic energy has been of particular concern to UNESCO virtually since the founding of this United Nations agency with the mission of promoting the advancement of science along with education and culture. UNESCO has been involved in the scientific aspects of nuclear physics - notably prior to the creation of the International Atomic Energy Agency - but it has also focussed its attention upon the educational and cultural problems of the atomic age. UNESCO's sphere of action was laid down by its 1954 General Conference which authorized its Director-General to extend full co-operation to the United Nations in atomic energy matters, with special reference to 'the urgent study of technical questions such as those involved in the effects of radioactivity on life in general, and to the dissemination of objective information concerning all aspects of the peaceful utilization of atomic energy; to study, and if necessary, to propose measures of international scope to facilitate the use of radioisotopes in research and industry'. UNESCO's first action under this resolution was to call a meeting of a committee of experts from twelve nations to study the establishment of a system of standards and regulations for the preparation, distribution, transport and utilization of radioactive isotopes and tracer molecules

  16. Diseño de un sistema de gestión de calidad ISO 9001:2008 para las áreas de emergencia, cuidados intensivos y quirófano de la clínica del pacífico.

    OpenAIRE

    Vera Parra, Kary Estefanía; Peña Triviño, Israel Guillermo

    2015-01-01

    Diseño de un sistema de gestión de calidad ISO 9001:2008 para las áreas de emergencia, cuidados intensivos y quirófano de la clínica del pacífico. The design of a quality management system based on ISO 9001: 2008 in the Pacific Hospital aims to identify and develop the necessary documentation for compliance with the requirements of the standard, for continuous improvement of the organization.

  17. Accelerators for atomic energy research

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    1999-01-01

    The research and educational activities accomplished using accelerators for atomic energy research were studied. The studied items are research subjects, facility operation, the number of master theses and doctor theses on atomic energy research using accelerators and the future role of accelerators in atomic energy research. The strategy for promotion of the accelerator facility for atomic energy research is discussed. (author)

  18. Atomic nucleus and elementary particles

    International Nuclear Information System (INIS)

    Zakrzewski, J.

    1976-01-01

    Negatively charged leptons and hadrons can be incorporated into atomic shells forming exotic atoms. Nucleon resonances and Λ hyperons can be considered as constituents of atomic nuclei. Information derived from studies of such exotic systems enriches our knowledge of both the interactions of elementary particles and of the structure of atomic nuclei. (author)

  19. Compilation of data from hadronic atoms

    International Nuclear Information System (INIS)

    Poth, H.

    1979-01-01

    This compilation is a survey of the existing data of hadronic atoms (pionic-atoms, kaonic-atoms, antiprotonic-atoms, sigmonic-atoms). It collects measurements of the energies, intensities and line width of X-rays from hadronic atoms. Averaged values for each hadronic atom are given and the data are summarized. The listing contains data on 58 pionic-atoms, on 54 kaonic-atoms, on 23 antiprotonic-atoms and on 20 sigmonic-atoms. (orig./HB) [de

  20. CP violation in atoms

    International Nuclear Information System (INIS)

    Barr, S.M.

    1992-01-01

    Electric dipole moments of large atoms are an excellent tool to search for CP violation beyond the Standard Model. These tell us about the electron EDM but also about CP-violating electron-nucleon dimension-6 operators that arise from Higgs-exchange. Rapid strides are being made in searches for atomic EDMs. Limits on the electron EDM approaching the values which would be expected from Higgs-exchange mediated CP violation have been achieved. It is pointed out that in this same kind of model if tan β is large the effects in atoms of the dimension-6 e - n operators may outweigh the effect of the electron EDM. (author) 21 refs

  1. US Atomic Energy Law

    International Nuclear Information System (INIS)

    1981-01-01

    This is a new volume follows in the series supplementing the volumes 11 and 12 published in 1965 and 1966, updating the collection of Federal Acts and Executive Orders of the President of the United States of America relating to atomic energy legislation. Since the publication of volumes 11 and 12, the US Atomic Energy Act of 1954 alone has been amended 25 times, mainly as a consequence of by the Nuclear Non-Proliferation Act and the Uranium Mill Tailings Radiation Control Act, both of 1978. The Atomic Energy Act of 1954 is supplemented by a selection of the most important Federal Acts, Executive Orders of the President and Resolutions of the Congress. (orig./HSCH) [de

  2. Atomic profits, no thanks

    International Nuclear Information System (INIS)

    Bartels, W.; Dietrich, K.; Moeller, H.; Speier, C.

    1980-01-01

    The authors deal with the following topics: The secret of nuclear energy; the atom programmes of Bonn; on some arguments of the present nuclear energy discussion; how socialist countries solve the problems of nuclear energy. From the socialist point of view they discuss sociological, ideological and moral reasons for a peaceful utilization of nuclear energy. Nevertheless they refuse Bonn's atom programme because the high finance's interests concerning profit and power make it a danger. The biggest danger is said to lie in the creation of a plutonium-industry and the militaristic abuse which would be connected with it. The socialist way of utilizing atomic energy is seen by them as a way with a high feeling of responsibility towards all people and towards a guaranteed energy supply. (HSCH) [de

  3. Controlling the atom

    International Nuclear Information System (INIS)

    Mazuzan, G.T.; Walker, J.S.

    1984-01-01

    The authors trace the early history of nuclear power regulation in the US. Focusing on the Atomic Energy Commission, they describe the role of other groups that figured in the development of regulatory policies, including the Congressional Joint Committee on Atomic Energy, other federal agencies, state governments, the nuclear industry, and scientific organizations. They consider changes in public perceptions of and attitudes toward atomic energy and the dangers of radiation exposure. The basic purpose of the book is to provide the Nuclear Regulatory Commission and the general public with information on the historical antecedents and background of regulatory issues so that there will be continuity in policy decisions. The book concludes with an annotated bibliography of selected references. 19 figures

  4. Rydberg atoms in strong fields

    International Nuclear Information System (INIS)

    Kleppner, D.; Tsimmerman, M.

    1985-01-01

    Experimental and theoretical achievements in studying Rydberg atoms in external fields are considered. Only static (or quasistatic) fields and ''one-electron'' atoms, i.e. atoms that are well described by one-electron states, are discussed. Mainly behaviour of alkali metal atoms in electric field is considered. The state of theoretical investigations for hydrogen atom in magnetic field is described, but experimental data for atoms of alkali metals are presented as an illustration. Results of the latest experimental and theoretical investigations into the structure of Rydberg atoms in strong fields are presented

  5. Atoms in Slovakia

    International Nuclear Information System (INIS)

    Danis, D.; Feik, K.; Florek, M.; Kmosena, J.; Chrapan, J.; Morovic, M.; Slugen, V.; Seliga, M.; Valovic, J.

    2006-01-01

    In this book the history of development of using of nuclear energy in the Slovak Republic as well as in the Czechoslovakia (before 1993 year) is presented. The aim of the book is to preserve the memory of the period when the creation and development of nuclear physics, technology, nuclear medicine, radioecology and energetics in Slovakia occurred - as witnessed by people who experienced this period and to adapt it to future generations. The Editorial board of the SNUS collected the views of 60 contributors and distinguished workers - Slovakian experts in nuclear science, education and technology. Calling upon a wide spectrum of experts ensured an objective historical description of the period. A huge amount of subjective views on recent decades were collected and supported by a wealth of photographic documentation. This created a synthesised reflection on the history of the 'atoms' in Slovakia. The book contains 15 tables, 192 black and white and 119 colour pictures from around the world and from places involved in the compilation of the study and with the study of atomic science in Slovakia. The main chapters are as follows: Atoms in the world, Atoms in Slovakia, Atoms in the educational system, Atoms in health services (Radiology, Nuclear medicine, Radiation protection, the Cyclotron centre of the Slovak Republic), Radioecology, Other applications of irradiation, Nuclear energetics (Electric energy in the second half of the 20 th century, NPP Bohunice, NPP Mochovce, the back-end of Nuclear energetics, Big names in Nuclear energetics in Slovakia), Chronology and an Appendix entitled 'Slovak companies in nuclear energetics'

  6. Positron-atom collisions

    International Nuclear Information System (INIS)

    Drachman, R.J.

    1984-01-01

    The past decade has seen the field of positron-atom collisions mature into an important sub-field of atomic physics. Increasingly intense positron sources are leading towards a situation in which electron and positron collision experiments will be on almost an equal footing, challenging theory to analyze their similarities and differences. The author reviews the advances made in theory, including dispersion theory, resonances, and inelastic processes. A survey of experimental progress and a brief discussion of astrophysical positronics is also included. (Auth.)

  7. Atomic Force Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Day, R.D.; Russell, P.E.

    1988-12-01

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  8. Optically pumped atoms

    CERN Document Server

    Happer, William; Walker, Thad

    2010-01-01

    Covering the most important knowledge on optical pumping of atoms, this ready reference is backed by numerous examples of modelling computation for optical pumped systems. The authors show for the first time that modern scientific computing software makes it practical to analyze the full, multilevel system of optically pumped atoms. To make the discussion less abstract, the authors have illustrated key points with sections of MATLAB codes. To make most effective use of contemporary mathematical software, it is especially useful to analyze optical pumping situations in the Liouville spa

  9. Atomic cluster collisions

    Science.gov (United States)

    Korol, Andrey V.; Solov'yov, Andrey

    2013-01-01

    Atomic cluster collisions are a field of rapidly emerging research interest by both experimentalists and theorists. The international symposium on atomic cluster collisions (ISSAC) is the premier forum to present cutting-edge research in this field. It was established in 2003 and the most recent conference was held in Berlin, Germany in July of 2011. This Topical Issue presents original research results from some of the participants, who attended this conference. This issues specifically focuses on two research areas, namely Clusters and Fullerenes in External Fields and Nanoscale Insights in Radiation Biodamage.

  10. Pulsed atomic soliton laser

    International Nuclear Information System (INIS)

    Carr, L.D.; Brand, J.

    2004-01-01

    It is shown that simultaneously changing the scattering length of an elongated, harmonically trapped Bose-Einstein condensate from positive to negative and inverting the axial portion of the trap, so that it becomes expulsive, results in a train of self-coherent solitonic pulses. Each pulse is itself a nondispersive attractive Bose-Einstein condensate that rapidly self-cools. The axial trap functions as a waveguide. The solitons can be made robustly stable with the right choice of trap geometry, number of atoms, and interaction strength. Theoretical and numerical evidence suggests that such a pulsed atomic soliton laser can be made in present experiments

  11. Polarized atomic beams for targets

    International Nuclear Information System (INIS)

    Grueebler, W.

    1984-01-01

    The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density

  12. Atomic collisions related to atomic laser isotope separation

    International Nuclear Information System (INIS)

    Shibata, Takemasa

    1995-01-01

    Atomic collisions are important in various places in atomic vapor laser isotope separation (AVLIS). At a vaporization zone, many atomic collisions due to high density have influence on the atomic beam characteristics such as velocity distribution and metastable states' populations at a separation zone. In the separation zone, a symmetric charge transfer between the produced ions and the neutral atoms may degrade selectivity. We have measured atomic excitation temperatures of atomic beams and symmetric charge transfer cross sections for gadolinium and neodymium. Gadolinium and neodymium are both lanthanides. Nevertheless, results for gadolinium and neodymium are very different. The gadolinium atom has one 5d electron and neodymium atom has no 5d electron. It is considered that the differences are due to existence of 5d electron. (author)

  13. Spatially resolved photoionization of ultracold atoms on an atom chip

    International Nuclear Information System (INIS)

    Kraft, S.; Guenther, A.; Fortagh, J.; Zimmermann, C.

    2007-01-01

    We report on photoionization of ultracold magnetically trapped Rb atoms on an atom chip. The atoms are trapped at 5 μK in a strongly anisotropic trap. Through a hole in the chip with a diameter of 150 μm, two laser beams are focused onto a fraction of the atomic cloud. A first laser beam with a wavelength of 778 nm excites the atoms via a two-photon transition to the 5D level. With a fiber laser at 1080 nm the excited atoms are photoionized. Ionization leads to depletion of the atomic density distribution observed by absorption imaging. The resonant ionization spectrum is reported. The setup used in this experiment is suitable not only to investigate mixtures of Bose-Einstein condensates and ions but also for single-atom detection on an atom chip

  14. Atomic physics through astrophysics

    International Nuclear Information System (INIS)

    Dalgarno, A.

    1987-01-01

    Astronomical environments encompass an extreme range of physical conditions of temperature, density, pressure and radiation fields and unusual situations abound. In this lecture, the author describes some of the objects found in the Universe and discussed the atomic processes that occur. 45 references, 8 figures

  15. Rutherford-Bohr atom

    Science.gov (United States)

    Heilbron, J. L.

    1981-03-01

    Bohr used to introduce his attempts to explain clearly the principles of the quantum theory of the atom with an historical sketch, beginning invariably with the nuclear model proposed by Rutherford. That was sound pedagogy but bad history. The Rutherford-Bohr atom stands in the middle of a line of work initiated by J.J. Thomson and concluded by the invention of quantum mechanics. Thompson's program derived its inspiration from the peculiar emphasis on models characteristic of British physics of the 19th century. Rutherford's atom was a late product of the goals and conceptions of Victorian science. Bohr's modifications, although ultimately fatal to Thomson's program, initially gave further impetus to it. In the early 1920s the most promising approach to an adequate theory of the atom appeared to be the literal and detailed elaboration of the classical mechanics of multiply periodic orbits. The approach succeeded, demonstrating in an unexpected way the force of an argument often advanced by Thomson: because a mechanical model is richer in implications than the considerations for which it was advanced, it can suggest new directions of research that may lead to important discoveries.

  16. Deep diode atomic battery

    International Nuclear Information System (INIS)

    Anthony, T.R.; Cline, H.E.

    1977-01-01

    A deep diode atomic battery is made from a bulk semiconductor crystal containing three-dimensional arrays of columnar and lamellar P-N junctions. The battery is powered by gamma rays and x-ray emission from a radioactive source embedded in the interior of the semiconductor crystal

  17. Atoms in Astronomy.

    Science.gov (United States)

    Blanchard, Paul A.

    This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers of secondary school chemistry, physics, and earth science. A Basic Topics section discusses atomic structure, emphasizing states of matter at high temperature and spectroscopic analysis of light from the stars. A section…

  18. Atomic energy and you

    International Nuclear Information System (INIS)

    1975-01-01

    The film discusses the peaceful applications of atomic energy in agriculture, engineering, industry and medicine. Shows exploration, prospecting and mining of uraninum ores at Larap, Camarines Norte and the study of geographical conditions of the site for the proposed Nuclear Power Plant in Bataan

  19. Discovery and the atom

    International Nuclear Information System (INIS)

    1989-01-01

    ''Discovery and the Atom'' tells the story of the founding of nuclear physics. This programme looks at nuclear physics up to the discovery of the neutron in 1932. Animation explains the science of the classic experiments, such as the scattering of alpha particles by Rutherford and the discovery of the nucleus. Archive film shows the people: Lord Rutherford, James Chadwick, Marie Curie. (author)

  20. Atomically resolved tissue integration.

    Science.gov (United States)

    Karlsson, Johan; Sundell, Gustav; Thuvander, Mattias; Andersson, Martin

    2014-08-13

    In the field of biomedical technology, a critical aspect is the ability to control and understand the integration of an implantable device in living tissue. Despite the technical advances in the development of biomaterials, the elaborate interplay encompassing materials science and biology on the atomic level is not very well understood. Within implantology, anchoring a biomaterial device into bone tissue is termed osseointegration. In the most accepted theory, osseointegration is defined as an interfacial bonding between implant and bone; however, there is lack of experimental evidence to confirm this. Here we show that atom probe tomography can be used to study the implant-tissue interaction, allowing for three-dimensional atomic mapping of the interface region. Interestingly, our analyses demonstrated that direct contact between Ca atoms and the implanted titanium oxide surface is formed without the presence of a protein interlayer, which means that a pure inorganic interface is created, hence giving experimental support to the current theory of osseointegration. We foresee that this result will be of importance in the development of future biomaterials as well as in the design of in vitro evaluation techniques.

  1. Atomic transport properties

    International Nuclear Information System (INIS)

    Freyss, M.

    2015-01-01

    As presented in the first chapter of this book, atomic transport properties govern a large panel of nuclear fuel properties, from its microstructure after fabrication to its behaviour under irradiation: grain growth, oxidation, fission product release, gas bubble nucleation. The modelling of the atomic transport properties is therefore the key to understanding and predicting the material behaviour under irradiation or in storage conditions. In particular, it is noteworthy that many modelling techniques within the so-called multi-scale modelling scheme of materials make use of atomic transport data as input parameters: activation energies of diffusion, diffusion coefficients, diffusion mechanisms, all of which are then required to be known accurately. Modelling approaches that are readily used or which could be used to determine atomic transport properties of nuclear materials are reviewed here. They comprise, on the one hand, static atomistic calculations, in which the migration mechanism is fixed and the corresponding migration energy barrier is calculated, and, on the other hand, molecular dynamics calculations and kinetic Monte-Carlo simulations, for which the time evolution of the system is explicitly calculated. (author)

  2. Experimental atomic physics

    International Nuclear Information System (INIS)

    Sellin, I.A.; Elston, S.B.; Forester, J.P.; Liao, K.H.; Pegg, D.J.; Peterson, R.S.; Thoe, R.S.; Hayden, H.C.; Griffin, P.M.

    1976-01-01

    The atomic structure and collision phenomena of highly stripped ions in the range Z = 6 to 35 were studied. Charge-transfer and multiple-electron-loss cross sections were determined. Absolute x-ray-production cross sections for incident heavy ions were measured. 10 figures, 1 table

  3. Transition probabilities for atoms

    International Nuclear Information System (INIS)

    Kim, Y.K.

    1980-01-01

    Current status of advanced theoretical methods for transition probabilities for atoms and ions is discussed. An experiment on the f values of the resonance transitions of the Kr and Xe isoelectronic sequences is suggested as a test for the theoretical methods

  4. Ludwig Boltzmann: Atomic genius

    Energy Technology Data Exchange (ETDEWEB)

    Cercignani, C. [Department of Mathematics, Politecnico di Milano (Italy)]. E-mail: carcer@mate.polimi.it

    2006-09-15

    On the centenary of the death of Ludwig Boltzmann, Carlo Cercignani examines the immense contributions of the man who pioneered our understanding of the atomic nature of matter. The man who first gave a convincing explanation of the irreversibility of the macroscopic world and the symmetry of the laws of physics was the Austrian physicist Ludwig Boltzmann, who tragically committed suicide 100 years ago this month. One of the key figures in the development of the atomic theory of matter, Boltzmann's fame will be forever linked to two fundamental contributions to science. The first was his interpretation of 'entropy' as a mathematically well-defined measure of the disorder of atoms. The second was his derivation of what is now known as the Boltzmann equation, which describes the statistical properties of a gas as made up of molecules. The equation, which described for the first time how a probability can evolve with time, allowed Boltzmann to explain why macroscopic phenomena are irreversible. The key point is that while microscopic objects like atoms can behave reversibly, we never see broken coffee cups reforming because it would involve a long series of highly improbable interactions - and not because it is forbidden by the laws of physics. (U.K.)

  5. Observational Evidence for Atoms.

    Science.gov (United States)

    Jones, Edwin R., Jr.; Childers, Richard L.

    1984-01-01

    Discusses the development of the concept of atomicity and some of the many which can be used to establish its validity. Chemical evidence, evidence from crystals, Faraday's law of electrolysis, and Avogadro's number are among the areas which show how the concept originally developed from a purely philosophical idea. (JN)

  6. Coherent atomic spectroscopy

    International Nuclear Information System (INIS)

    Garton, W.R.S.

    1988-01-01

    The Argonne Spectroscopy Laboratory, initiated and advanced over several decades by F.S. Tomkins and M. Fred, has been a major international facility. A range of collaborative work in atomic spectroscopy is selected to illustrate advances in experimental physics which have been made possible by combination of the talents of Tomkins and Fred with the unique facilities of the Argonne Laboratory. (orig.)

  7. Spectra of alkali atoms

    International Nuclear Information System (INIS)

    Santoso, Budi; Arumbinang, Haryono.

    1981-01-01

    Emission spectra of alkali atoms has been determined by using spectrometer at the ultraviolet to infra red waves range. The spectra emission can be obtained by absorption spectrophotometric analysis. Comparative evaluations between experimental data and data handbook obtained by spark method were also presented. (author tr.)

  8. Atomic Particle Detection

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1970-01-01

    This booklet tells how scientists observe the particles and electromagnetic radiation that emerges from an atomic nucleus. The equipment used falls into two general categories: counters which count each particle as it passes by, and track detectors, which make a photographic record of the particle's track.

  9. Atomic Physics 16: Sixteenth International Conference on Atomic Physics. Proceedings

    International Nuclear Information System (INIS)

    Baylis, W.E.; Drake, G.W.

    1999-01-01

    These proceedings represent papers presented at the 16th International Conference on Atomic Physics held in Windsor, Ontario, Canada, in August, 1998. The topics discussed included a wide array of subjects in atomic physics such as atom holography, alignment in atomic collisions, coulomb-interacting particles, muon experiments, x-rays from comets, atomic electron collisions in intense laser fields, spectroscopy of trapped ions, and Bose-Einstein condensates. This conference represents the single most important meeting world wide on fundamental advances in atomic physics. There were 30 papers presented at the conference,out of which 4 have been abstracted for the Energy, Science and Technology database

  10. Atomic bomb injury: radiation

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, C L; Cronkite, E P; Le Roy, G V; Warren, S

    1959-01-01

    This document contains 3 reports. In the first report, the clinical diagnosis and treatment of radiation syndrome in survivors of the atomic explosions in Hiroshima and Nagasaki are described. The syndrome of acute radiation injury is applied to the symptom complex, or diseased state, which results from exposure of the whole body to the initial nuclear radiation of an atomic bomb. It is applied to injuries of the skin and subcutaneous tissues resulting from x-radiation or from contact with radioactive material. Internal radiation injury may result from the selective deposition, such as in bone or thyroid, of radioactive material that has been inhaled or absorbed through the gastrointestinal tract or wounds. Radiation syndrome is classified as very severe, severe, and mild. In the second report, a brief discussion is presented on the question of genetic effects in atomic bomb survivors in Hiroshima and Nagasaki. In the third report, a study was carried out on 205 4-1/2 year old children who had been exposed to the atomic bomb blast during the first half of intra-uterine life. Correlation between head size and mental development of the child with distance from the hypocenter, symptoms of radiation effect and type of shielding of the mother is discussed. The conclusion drawn from the present study is that central nervous system defects can be produced in the fetus by atomic bomb radiation, provided that exposure occurs within approximately 1200 meters of the hypocenter and that no effective shielding, such as concrete, protects the fetus from direct irradiation.

  11. Trapped atoms along nanophotonic resonators

    Science.gov (United States)

    Fields, Brian; Kim, May; Chang, Tzu-Han; Hung, Chen-Lung

    2017-04-01

    Many-body systems subject to long-range interactions have remained a very challenging topic experimentally. Ultracold atoms trapped in extreme proximity to the surface of nanophotonic structures provides a dynamic system combining the strong atom-atom interactions mediated by guided mode photons with the exquisite control implemented with trapped atom systems. The hybrid system promises pair-wise tunability of long-range interactions between atomic pseudo spins, allowing studies of quantum magnetism extending far beyond nearest neighbor interactions. In this talk, we will discuss our current status developing high quality nanophotonic ring resonators, engineered on CMOS compatible optical chips with integrated nanostructures that, in combination with a side illuminating beam, can realize stable atom traps approximately 100nm above the surface. We will report on our progress towards loading arrays of cold atoms near the surface of these structures and studying atom-atom interaction mediated by photons with high cooperativity.

  12. Ionization of highly excited atoms by atomic particle impact

    International Nuclear Information System (INIS)

    Smirnov, B.M.

    1976-01-01

    The ionization of a highly excited atom by a collision with an atom or molecule is considered. The theory of these processes is presented and compared with experimental data. Cross sections and ionization potential are discussed. 23 refs

  13. Single-atom lasing induced atomic self-trapping

    International Nuclear Information System (INIS)

    Salzburger, T.; Ritsch, H.

    2004-01-01

    We study atomic center of mass motion and field dynamics of a single-atom laser consisting of a single incoherently pumped free atom moving in an optical high-Q resonator. For sufficient pumping, the system starts lasing whenever the atom is close to a field antinode. If the field mode eigenfrequency is larger than the atomic transition frequency, the generated laser light attracts the atom to the field antinode and cools its motion. Using quantum Monte Carlo wave function simulations, we investigate this coupled atom-field dynamics including photon recoil and cavity decay. In the regime of strong coupling, the generated field shows strong nonclassical features like photon antibunching, and the atom is spatially confined and cooled to sub-Doppler temperatures. (author)

  14. Angular momentum coupling in atom-atom collisions

    International Nuclear Information System (INIS)

    Grosser, J.

    1986-01-01

    The coupling between the electronic angular momentum and the rotating atom-atom axis in the initial or the final phase of an atom-atom collision is discussed, making use of the concepts of radial and rotational (Coriolis) coupling between different molecular states. The description is based on a limited number of well-understood approximations, and it allows an illustrative geometric representation of the transition from the body fixed to the space fixed motion of the electrons. (orig.)

  15. Hot atom chemistry of monovalent atoms in organic condensed phases

    International Nuclear Information System (INIS)

    Stoecklin, G.

    1975-01-01

    The advantages and disadvantages of hot atom studies in condensed organic phases are considered, and recent advances in condensed phase organic hot atom chemistry of recoil tritium and halogen atoms are discussed. Details are presented of the present status and understanding of liquid phase hot atom chemistry and also that of organic solids. The consequences of the Auger effect in condensed organic systems are also considered. (author)

  16. Absorption imaging of ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Smith, David A.; Aigner, Simon; Hofferberth, Sebastian

    2011-01-01

    Imaging ultracold atomic gases close to surfaces is an important tool for the detailed analysis of experiments carried out using atom chips. We describe the critical factors that need be considered, especially when the imaging beam is purposely reflected from the surface. In particular we present...... methods to measure the atom-surface distance, which is a prerequisite for magnetic field imaging and studies of atom surface-interactions....

  17. The Atomic energy basic law

    International Nuclear Information System (INIS)

    1979-01-01

    The law aims to secure future energy resources, push forward progress of science and advancement of industry for welfare of the mankind and higher standard of national life by helping research, development and utilization of atomic power. Research, development and utilization of atomic power shall be limited to the peaceful purpose with emphasis laid on safety and carried on independently under democratic administration. Basic concepts and terms are defined, such as: atomic power; nuclear fuel material; nuclear raw material; reactor and radiation. The Atomic Energy Commission and the Atomic Energy Safety Commission shall be set up at the Prime Minister's Office deliberately to realize national policy of research, development and utilization of atomic power and manage democratic administration for atomic energy. The Atomic Energy Commission shall plan, consider and decide matters concerning research, development and utilization of atomic energy. The Atomic Energy Safety Commission shall plan, consider and decide issues particularly concerning safety securing among such matters. The Atomic Energy Research Institute shall be founded under the governmental supervision to perform research, experiment and other necessary affairs for development of atomic energy. The Power Reactor and Nuclear Fuel Development Corporation shall be established likewise to develop fast breeding reactor, advanced thermal reactor and nuclear fuel materials. Development of radioactive minerals, control of nuclear fuel materials and reactors and measures for patent and invention concerning atomic energy, etc. are stipulated respectively. (Okada, K.)

  18. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    Science.gov (United States)

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  19. Atomic Act amended

    International Nuclear Information System (INIS)

    Drabova, D.

    2002-01-01

    In the paper by the chairwoman of the Czech nuclear regulatory authority, the history of Czech nuclear legislation is outlined, the reasons for the amendment of the Atomic Act (Act No. 18/1997) are explained, and the amendments themselves are highlighted. The Act No. 13/2002 of 18 December 2001 is reproduced from the official Collection of Acts of the Czech Republic in the facsimile form. The following acts were thereby amended: Atomic Act No. 18/1997, Metrology Act No. 505/1990, Public Health Protection Act No. 258/2000, and Act No. 2/1969 on the Establishment of Ministries and Other Governmental Agencies of the Czech Republic. (P.A.)

  20. Atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Haswell, S.J.

    1991-01-01

    Atomic absorption spectroscopy is now well established and widely used technique for the determination of trace and major elements in a wide range analyte types. There have been many advances in the atomic spectroscopy over the last decade and for this reason and to meet the demand, it was felt that there was a need for an updated book. Whilst interest in instrumental design has tended to dominate the minds of the spectrocopist, the analyst concerned with obtaining reliable and representative data, in diverse areas of application, has been diligently modifying and developing sample treatment and instrumental introduction techniques. Such methodology is de fundamental part of analysis and form the basis of the fourteen application chapters of this book. The text focuses in the main on AAS; however, the sample handling techniques described are in many cases equally applicable to ICP-OES and ICP-MS analysis. (author). refs.; figs.; tabs

  1. Elementary relativistic atoms

    International Nuclear Information System (INIS)

    Nemenov, L.

    2001-01-01

    The Coulomb interaction which occurs in the final state between two particles with opposite charges allows for creation of the bound state of these particles. In the case when particles are generated with large momentum in lab frame, the Lorentz factors of the bound state will also be much larger than one. The relativistic velocity of the atoms provides the opportunity to observe bound states of (π + μ - ), (π + π - ) and (π + K - ) with a lifetime as short as 10 -16 s, and to measure their parameters. The ultrarelativistic positronium atoms (A 2e ) allow us to observe the e.ect of superpenetration in matter, to study the effects caused by the formation time of A 2e from virtual e + e - pairs and to investigate the process of transformation of two virtual particles into the bound state

  2. Atomic assistance in 1961

    International Nuclear Information System (INIS)

    1961-01-01

    More than 100 experts provided by the International Atomic Energy Agency will be working in different parts of the world this year, assisting the Agency's Member States in building up their national programs of peaceful atomic development. The total allocation of EPTA funds to the Agency for the two-year period 1961-62 is $1 393 600 (of which approximately half is available in 1961), and is meant not only for the provision of experts and equipment but also for training fellowships and regional projects. The countries which will receive Agency assistance in the form of experts and equipment this year are: Afghanistan, Argentina, Austria, Brazil, Burma, Ceylon, Chile, the Republic of China, Denmark, Greece, Guatemala, Iceland, Indonesia, Iran, Iraq, Israel, Japan, the Republic of Korea, the Republic of Mali, Mexico, Morocco, Pakistan, the Philippines, Senegal, the Sudan, Thailand, Tunisia, Turkey, the United Arab Republic, Vietnam and Yugoslavia

  3. Meteorology and atomic energy

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The science of meteorology is useful in providing information that will be of assistance in the choice of favorable plant locations and in the evaluation of significant relations between meteorology and the design, construction, and operation of plant and facilities, especially those from which radioactive or toxic products could be released to the atmosphere. Under a continuing contract with the Atomic Energy Commission, the Weather Bureau has carried out this study. Some of the meteorological techniques that are available are summarized, and their applications to the possible atmospheric pollution deriving from the use of atomic energy are described. Methods and suggestions for the collection, analysis, and use of meteorological data are presented. Separate abstracts are included of 12 chapters in this publication for inclusion in the Energy Data Base

  4. Glossary of atomic terms

    International Nuclear Information System (INIS)

    1982-04-01

    This glossary, containing almost 400 terms, has been compiled to help people outside the atomic energy industry to understand what those inside it are saying. It is not intended to be a definitive dictionary of scientific or technical terms, nor does it aim to cover terms that are in general use in science and technology. A list of about 100 initials and acronyms will be found at the end. (author)

  5. Glossary of atomic terms

    International Nuclear Information System (INIS)

    1980-01-01

    This glossary (of about 400 terms) has been compiled to help people outside the atomic energy industry to understand what those inside it are saying. It is not intended to be a definitive dictionary of scientific or technical terms, nor does it aim to cover terms that are in general use in science and technology. A list of some initials and acronyms is appended. (author)

  6. Fragmentation of atomic systems

    International Nuclear Information System (INIS)

    Bohn, J.L.; Fano, U.

    1996-01-01

    We report recent progress toward a nonperturbative formulation of many-body quantum dynamics that treats all constituent particles on an equal footing. This formulation is capable of detailing the evolution of a system toward the diverse fragments into which it can break up. We illustrate the general concept with the simple example of the simultaneous excitation of both electrons in a helium atom. copyright 1996 The American Physical Society

  7. Atomic and molecular theory

    International Nuclear Information System (INIS)

    Inokuti, Mitio.

    1990-01-01

    The multifaceted role of theoretical physics in understanding the earliest stages of radiation action is discussed. Scientific topics chosen for the present discourse include photoabsorption, electron collisions, and ionic collisions, and electron transport theory, Connections of atomic and molecular physics with condensed-matter physics are also discussed. The present article includes some historical perspective and an outlook for the future. 114 refs., 3 figs

  8. Navigation with Atom Interferometers

    Science.gov (United States)

    2017-03-20

    of frequency L . This problem can be found in many standard quantum optics textbooks e.g [6]. In textbooks , the two states are usually ground and...imprinted” on the atom. Taking into account all three laser pulses, the phase difference then becomes )2()(2)0( TtTtt   , (4a

  9. Atomic emission spectroscopy

    Science.gov (United States)

    Andrew, K. H.

    1975-01-01

    The relationship between the Slater-Condon theory and the conditions within the atom as revealed by experimental data was investigated. The first spectrum of Si, Rb, Cl, Br, I, Ne, Ar, and Xe-136 and the second spectrum of As, Cu, and P were determined. Methods for assessing the phase stability of fringe counting interferometers and the design of an autoranging scanning system for digitizing the output of an infrared spectrometer and recording it on magnetic tape are described.

  10. Atomic and molecular theory

    Energy Technology Data Exchange (ETDEWEB)

    Inokuti, Mitio.

    1990-01-01

    The multifaceted role of theoretical physics in understanding the earliest stages of radiation action is discussed. Scientific topics chosen for the present discourse include photoabsorption, electron collisions, and ionic collisions, and electron transport theory, Connections of atomic and molecular physics with condensed-matter physics are also discussed. The present article includes some historical perspective and an outlook for the future. 114 refs., 3 figs.

  11. Australia's atomic conspiracy theory

    International Nuclear Information System (INIS)

    Binnie, A.

    2001-01-01

    The author questions claims by the Newcastle University historian Wayne Reynolds in his book 'Australia's Bid for the Bomb', that the impetus behind the Snowy Mountains Scheme was to provide a secure source of power for the enrichment of uranium and production of heavy water so that Australia could produce its own atomic bombs. Reynolds also argued that the Australian Atomic Energy Commission (AAEC) was set up so that Australia had a trained scientific workforce to produce plutonium for the bomb. While the book is well researched, Reynolds does not seem to understand the principles of basic science and engineering. After the Second World War, a manufacturing and industrial base with a skilled and trained workforce was needed so it could be converted to war or defence manufacturing when the need arose. This new manufacturing community would require electrical power to sustain it. Hydroelectricity and atomic energy could help provide these needs. Even though war was still raging, Prime Minister John Curtin looked ahead and set up a Department of Post-War Reconstruction. It was through this department that the Snowy Mountains Scheme would be established. Curtin did not live to see this. He died in 1945 but his successor, Ben Chifley, continued the vision. The author believes, an understanding of the science behind these developments and an appreciation of how how humans interact with each others when it comes to getting something they want is likely to give a more balanced view of the past

  12. Ghost imaging with atoms

    Science.gov (United States)

    Khakimov, R. I.; Henson, B. M.; Shin, D. K.; Hodgman, S. S.; Dall, R. G.; Baldwin, K. G. H.; Truscott, A. G.

    2016-12-01

    Ghost imaging is a counter-intuitive phenomenon—first realized in quantum optics—that enables the image of a two-dimensional object (mask) to be reconstructed using the spatio-temporal properties of a beam of particles with which it never interacts. Typically, two beams of correlated photons are used: one passes through the mask to a single-pixel (bucket) detector while the spatial profile of the other is measured by a high-resolution (multi-pixel) detector. The second beam never interacts with the mask. Neither detector can reconstruct the mask independently, but temporal cross-correlation between the two beams can be used to recover a ‘ghost’ image. Here we report the realization of ghost imaging using massive particles instead of photons. In our experiment, the two beams are formed by correlated pairs of ultracold, metastable helium atoms, which originate from s-wave scattering of two colliding Bose-Einstein condensates. We use higher-order Kapitza-Dirac scattering to generate a large number of correlated atom pairs, enabling the creation of a clear ghost image with submillimetre resolution. Future extensions of our technique could lead to the realization of ghost interference, and enable tests of Einstein-Podolsky-Rosen entanglement and Bell’s inequalities with atoms.

  13. Relativistic correlations in atoms

    International Nuclear Information System (INIS)

    Dietz, K.

    1987-01-01

    Atoms are particularly well-suited objects when it comes to testing certain concepts of many-body theories. They play a unique role in this respect because of two constructively interfering reasons: first of all, the laws describing the interactions of their constituents are the ones best known in all of Physics; secondly, their structure is comparatively simple and amenable to concise theoretical treatment. Because of these two reasons, physically motivated many-body approximation schemes, ordered in a systematic hierarchy of precision, can be carefully tested; discrepancies between theory and experiment are due to many-body effects and are never masked by uncertainties in the constituent-interaction (needless to say, the very small hadronic contributions to atomic structure is left out. Many-body effects in atoms are solely produced by the electron-electron interaction which derives from the laws of Quantum Electrodynamics or, in a very good approximation from the repulsive Coulomb potential; in the general nomenclature they are named correlations. The material is organized in two chapters: chapter 1 deals with a general introduction and discussion of g-Hartree mean-field theories, chapter 2 deals with applications. The role of vacuum fluctuations and deformations of the Dirac sea in a consistent construction of mean-fields is emphasized and their explicit form in the g-Hartree theory is given. 21 references, 5 figures, 3 tables

  14. A new atomic model

    International Nuclear Information System (INIS)

    Petrescu, Florian Ion

    2012-01-01

    The movement of an electron around the atomic nucleus has today a great importance in many engineering fields. Electronics, aeronautics, micro and nanotechnology, electrical engineering, optics, lasers, nuclear power, computing, equipment and automation, telecommunications, genetic engineering, bioengineering, special processing, modern welding, robotics, energy and electromagnetic wave field is today only a few of the many applications of electronic engineering. This book presents, shortly, a new and original relation (20 and 20') who determines the radius with that, the electron is running around the nucleus of an atom. One utilizes, two times the Lorenz relation, the Niels Bohr generalized equation, and a mass relation, which was deduced from the kinematics energy relation written in two modes: classical and Coulombian. Equalizing the mass relation with Lorenz relation one obtains a form which is a relation between the squared electron speed (v 2 ) and the radius (r). The second relation between v 2 and r was obtained by equalizing the mass of Bohr equation and the mass of Lorenz relation. For a Bohr energetically level (n=a constant value), one determines now two energetically below levels, which form an electronic layer. The author realizes by this a new atomic model, or a new quantum theory, which explains the existence of electron-clouds without spin.Writing the kinematics energy relation in two modes, classical and Coulombian one determines a relation, from which explicitely the mass of the electron is determined.

  15. A new atomic model

    Energy Technology Data Exchange (ETDEWEB)

    Petrescu, Florian Ion

    2012-07-01

    The movement of an electron around the atomic nucleus has today a great importance in many engineering fields. Electronics, aeronautics, micro and nanotechnology, electrical engineering, optics, lasers, nuclear power, computing, equipment and automation, telecommunications, genetic engineering, bioengineering, special processing, modern welding, robotics, energy and electromagnetic wave field is today only a few of the many applications of electronic engineering. This book presents, shortly, a new and original relation (20 and 20') who determines the radius with that, the electron is running around the nucleus of an atom. One utilizes, two times the Lorenz relation, the Niels Bohr generalized equation, and a mass relation, which was deduced from the kinematics energy relation written in two modes: classical and Coulombian. Equalizing the mass relation with Lorenz relation one obtains a form which is a relation between the squared electron speed (v{sup 2}) and the radius (r). The second relation between v{sup 2} and r was obtained by equalizing the mass of Bohr equation and the mass of Lorenz relation. For a Bohr energetically level (n=a constant value), one determines now two energetically below levels, which form an electronic layer. The author realizes by this a new atomic model, or a new quantum theory, which explains the existence of electron-clouds without spin.Writing the kinematics energy relation in two modes, classical and Coulombian one determines a relation, from which explicitely the mass of the electron is determined.

  16. Atomic-level computer simulation

    International Nuclear Information System (INIS)

    Adams, J.B.; Rockett, Angus; Kieffer, John; Xu Wei; Nomura, Miki; Kilian, K.A.; Richards, D.F.; Ramprasad, R.

    1994-01-01

    This paper provides a broad overview of the methods of atomic-level computer simulation. It discusses methods of modelling atomic bonding, and computer simulation methods such as energy minimization, molecular dynamics, Monte Carlo, and lattice Monte Carlo. ((orig.))

  17. Atomic inner-shell physics

    International Nuclear Information System (INIS)

    Crasemann, B.

    1985-01-01

    This book discusses: relativistic and quantum electrodynamic effects on atomic inner shells; relativistic calculation of atomic transition probabilities; many-body effects in energetic atomic transitions; Auger Electron spectrometry of core levels of atoms; experimental evaluation of inner-vacancy level energies for comparison with theory; mechanisms for energy shifts of atomic K-X rays; atomic physics research with synchrotron radiation; investigations of inner-shell states by the electron energy-loss technique at high resolution; coherence effects in electron emission by atoms; inelastic X-ray scattering including resonance phenomena; Rayleigh scattering: elastic photon scattering by bound electrons; electron-atom bremsstrahlung; X-ray and bremsstrahlung production in nuclear reactions; positron production in heavy-ion collisions, and X-ray processes in heavy-ion collisions

  18. Into the atom and beyond

    CERN Document Server

    1989-01-01

    Magnifying an atom to football pitch size. The dense nucleus, carrying almost all the atomic mass, is much smaller than the ball. The players (the electrons) would see something about the size of a marble!

  19. Atomic physics issues in fusion

    International Nuclear Information System (INIS)

    Post, D.E.

    1982-01-01

    Atomic physics issues have played a large role in controlled fusion research. A general introduction to the present role of atomic processes in both inertial and magnetic controlled fusion work is presented. (Auth.)

  20. Real and Hybrid Atomic Orbitals.

    Science.gov (United States)

    Cook, D. B.; Fowler, P. W.

    1981-01-01

    Demonstrates that the Schrodinger equation for the hydrogenlike atom separates in both spheroconal and prolate spheroidal coordinates and that these separations provide a sound theoretical basis for the real and hybrid atomic orbitals. (Author/SK)

  1. Physics of atoms and molecules

    International Nuclear Information System (INIS)

    Bransden, B.H.; Joachain, C.J.

    1983-01-01

    This book presents a unified account of the physics of atoms and molecules at a level suitable for second- and third-year undergraduate students of physics and physical chemistry. Following a brief historical introduction to the subject the authors outline the ideas and approximation methods of quantum mechanics to be used later in the book. Six chapters look at the structure of atoms and the interactions between atoms and electromagnetic radiation. The authors then move on to describe the structure of molecules and molecular spectra. Three chapters deal with atomic collisions, the scattering of electrons by atoms and the scattering of atoms by atoms. The concluding chapter considers a few of the many important applications of atomic physics within astrophysics, laser technology, and nuclear fusion. Problems are given at the end of each chapter, with hints at the solutions in an appendix. Other appendices include various special topics and derivations together with useful tables of units. (author)

  2. Capture of muons in atoms

    International Nuclear Information System (INIS)

    Vogel, P.

    1978-01-01

    A lecture is given on the general theoretical framework developed for the description of the formation of mesic atom and the initial part of the atomic cascade. Some of the observable phenomena are also discussed. 16 references

  3. New sources of cold atoms for atomic clocks

    International Nuclear Information System (INIS)

    Aucouturier, E.

    1997-01-01

    The purpose of this doctoral work is the realisation of new sources of cold cesium atoms that could be useful for the conception of a compact and high-performance atomic clock. It is based on experiences of atomic physics using light induced atomic manipulation. We present here the experiences of radiative cooling of atoms that have been realised at the Laboratoire de l'Horloge Atomique from 1993 to 1996. Firstly, we applied the techniques of radiative cooling and trapping of atoms in order to create a three-dimensional magneto-optical trap. For this first experience, we developed high quality laser sources, that were used for other experiments. We imagined a new configuration of trapping (two-dimensional magneto-optical trap) that was the basis for a cold atom source. This design gives the atoms a possibility to escape towards one particular direction. Then, we have extracted the atoms from this anisotropic trap in order to create a continuous beam of cold atoms. We have applied three methods of extraction. Firstly, the launching of atoms was performed by reducing the intensity of one of the cooling laser beams in the desired launching direction. Secondly, a frequency detuning between the two laser laser beams produced the launching of atoms by a so-called 'moving molasses'. The third method consisted in applying a static magnetic field that induced the launching of atoms in the direction of this magnetic field. At the same time, another research on cold atoms was initiated at the I.H.A. It consisted in cooling a large volume of atoms from a cell, using an isotropic light. This offers an interesting alternative to the traditional optical molasses. (author)

  4. Elementary Atom Interaction with Matter

    OpenAIRE

    Mrowczynski, Stanislaw

    1998-01-01

    The calculations of the elementary atom (the Coulomb bound state of elementary particles) interaction with the atom of matter, which are performed in the Born approximation, are reviewed. We first discuss the nonrelativistic approach and then its relativistic generalization. The cross section of the elementary atom excitation and ionization as well as the total cross section are considered. A specific selection rule, which applies for the atom formed as positronium by particle-antiparticle pa...

  5. Rapid prototyping of versatile atom chips for atom interferometry applications.

    Science.gov (United States)

    Kasch, Brian; Squires, Matthew; Olson, Spencer; Kroese, Bethany; Imhof, Eric; Kohn, Rudolph; Stuhl, Benjamin; Schramm, Stacy; Stickney, James

    2016-05-01

    We present recent advances in the manipulation of ultracold atoms with ex-vacuo atom chips (i.e. atom chips that are not inside to the UHV chamber). Details will be presented of an experimental system that allows direct bonded copper (DBC) atom chips to be removed and replaced in minutes, requiring minimal re-optimization of parameters. This system has been used to create Bose-Einstein condensates, as well as magnetic waveguides with precisely tunable axial parameters, allowing double wells, pure harmonic confinement, and modified harmonic traps. We investigate the effects of higher order magnetic field contributions to the waveguide, and the implications for confined atom interferometry.

  6. Breaking the atom with Samson

    NARCIS (Netherlands)

    Väänänen, J.; Coecke, B.; Ong, L.; Panangaden, P.

    2013-01-01

    The dependence atom =(x,y) was introduced in [11]. Here x and y are finite sets of attributes (or variables) and the intuitive meaning of =(x,y) is that the attributes x completely (functionally) determine the attributes y. One may wonder, whether the dependence atom is truly an atom or whether it

  7. Polarizational radiation or 'atomic' bremsstrahlung

    International Nuclear Information System (INIS)

    Ya Amusia, M.

    1992-01-01

    It is demonstrated that a new kind of continuum spectrum radiation exists, where the mechanism of formation is quite different from that of ordinary bremsstrahlung. The latter originates due to slowing down of the charged projectile in the target field, while the former, called polarization radiation or 'atomic' bremsstrahlung, is a result of radiation either of the target or the projectile particles dipolarly polarized during the collision process. Not only general formulae, but also results of concrete calculations are presented. These demonstrate, that for electron-atom collisions the atomic contribution to the total bremsstrahlung spectrum becomes dominant for photon energies near and above the atomic ionization potential. As to atom-atom or ion-atom collisions, the bremsstrahlung spectrum is completely determined by the atomic contribution. The specific features of the case when the incoming particles are relativistic are discussed at length. A number of examples of colliding pairs are considered, for which the atomic bremsstrahlung process is quite essential: A bare nucleus and an atom, pair of atoms, at least one of which is excited, electron, or atom interacting with a molecule. The same mechanism is essential also in formation of radiation in nuclear and elementary particle collisions. (orig.)

  8. Magnetic trapping of Rydberg atoms

    NARCIS (Netherlands)

    Niestadt, D.; Naber, J.; Kokkelmans, S.J.J.M.F.; Spreeuw, R.J.C.

    2016-01-01

    Magnetic trapping is a well-established technique for ground state atoms. We seek to extend this concept to Rydberg atoms. Rydberg atoms are important for current visions of quantum simulators that will be used in the near future to simulate and analyse quantum problems. Current efforts in Amsterdam

  9. German atomic low meeting 2004

    International Nuclear Information System (INIS)

    Ossenbuehl, F.

    2005-01-01

    The conference report on the German atomic law meeting 2004 contains 14 contributions on the German atomic legislation within four parts: Damage precaution in the operational phase; Legal general requirements for the final disposal - considerations ''de lege lata'' and ''de lege ferenda''. Financing of the site searching by a statutory company (''Verbandsmodell''). Atomic supervision authority - federal executive administration or federal self administration?

  10. Atomic Energy Commission Act, 1963

    International Nuclear Information System (INIS)

    1963-01-01

    Promulgated in 1963, the Atomic Energy Commission Act (204) established and vested in the Ghana Atomic Energy Commission the sole responsibility for all matters relating to the peaceful uses of atomic energy in the country. Embodied in the Act are provisions relating to the powers, duties, rights and liabilities of the Commission. (EAA)

  11. Current Trends in Atomic Spectroscopy.

    Science.gov (United States)

    Wynne, James J.

    1983-01-01

    Atomic spectroscopy is the study of atoms/ions through their interaction with electromagnetic radiation, in particular, interactions in which radiation is absorbed or emitted with an internal rearrangement of the atom's electrons. Discusses nature of this field, its status and future, and how it is applied to other areas of physics. (JN)

  12. Connection of off-diagonal radiative-decay coupling to electromagnetically induced transparency and amplification without inversion in a three-level atomic system

    International Nuclear Information System (INIS)

    Cardimona, D.A.; Huang Danhong

    2002-01-01

    The equivalence between the off-diagonal radiative-decay coupling (ODRDC) effect in the bare-atom picture of a three-level atomic system [see Cardimona et al., J. Phys. B 15, 55 (1982)] and the electromagnetically induced transparency (EIT) effect in the dressed-atom picture [see Imamoglu et al., Opt. Lett. 14, 1344 (1989)] is uncovered and a full comparison of their physical origins is given. The mechanism for both ODRDC and Harris' EIT is found to be a consequence of the quantum interference between a direct absorption path and an indirect absorption path mediated by either a self absorption of spontaneous photons or a Fano-type coupling. A connection is then pointed out between the effects of probe-field gain (PFG) based on an ODRDC process [see Huang et al., Phys. Rev. A 64, 013822 (2001)] and amplification without inversion (AWI) [see Fearn et al., Opt. Commun. 87, 323 (1992)] in the bare-atom picture of a three-level atomic system. The PFG effect is found as a result of transferring electrons between the two upper levels due to the phase-sensitive coherence provided by a laser-induced ODRDC process, while the AWI effect to one of the two probe fields is attributed to its coupling to a strong laser field generating an off-resonant gain through an induced nonlinearity in the other probe field. Both the advantages and disadvantages as well as the limitations of the ODRDC, EIT, PFG, and AWI effects are discussed and compared

  13. Mixture of Electromagnetically Induced Transparency and Autler–Townes Splitting in a Five-Level Atomic System

    International Nuclear Information System (INIS)

    Zhang Xiao-Yun; Wu Shan; Li Hai-Chao

    2017-01-01

    Discerning electromagnetically induced transparency (EIT) from Autler–Townes splitting (ATS) is a significant issue in quantum optics and has attracted wide attention in various three-level configurations. Here we present a detailed study of EIT and ATS in a five-level atomic system considered to be composed of a four-level Y-type subsystem and a three-level Λ-type subsystem. In our theoretical calculations with standard density matrix formalism and steady-state approximation, we obtain the general analytical expression of the first-order matrix element responsible for the probe-field absorption. In light of the well-known three-level EIT and ATS criteria, we numerically show an intersection of EIT with ATS for the Y-type subsystem. Furthermore, we show that an EIT dip is sandwiched between two ATS dips (i.e., multi-dip mixture of EIT and ATS) in the absorption line for the five-level system, which can be explained by the dressed-state theory and Fano interference. (paper)

  14. Cold atoms close to surfaces

    DEFF Research Database (Denmark)

    Krüger, Peter; Wildermuth, Stephan; Hofferberth, Sebastian

    2005-01-01

    Microscopic atom optical devices integrated on atom chips allow to precisely control and manipulate ultra-cold (T atoms and Bose-Einstein condensates (BECs) close to surfaces. The relevant energy scale of a BEC is extremely small (down to ... be utilized as a sensor for variations of the potential energy of the atoms close to the surface. Here we describe how to use trapped atoms as a measurement device and analyze the performance and flexibility of the field sensor. We demonstrate microscopic magnetic imaging with simultaneous high spatial...

  15. Topics in atomic collision theory

    CERN Document Server

    Geltman, Sydney; Brueckner, Keith A

    1969-01-01

    Topics in Atomic Collision Theory originated in a course of graduate lectures given at the University of Colorado and at University College in London. It is recommended for students in physics and related fields who are interested in the application of quantum scattering theory to low-energy atomic collision phenomena. No attention is given to the electromagnetic, nuclear, or elementary particle domains. The book is organized into three parts: static field scattering, electron-atom collisions, and atom-atom collisions. These are in the order of increasing physical complexity and hence necessar

  16. Atomization process for metal powder

    International Nuclear Information System (INIS)

    Lagutkin, Stanislav; Achelis, Lydia; Sheikhaliev, Sheikhali; Uhlenwinkel, Volker; Srivastava, Vikas

    2004-01-01

    A new atomization process has been developed, which combines pressure and gas atomization. The melt leaves the pressure nozzle as a hollow thin film cone. After the pre-filming step, the melt is atomized by a gas stream delivered by a ring nozzle. The objectives of this investigation are to achieve a narrow size distribution and low specific gas consumption compared to conventional gas atomization techniques. Both lead to a higher efficiency and low costs. Tin and some alloys have been atomized successfully with this technique. The mass median diameters from different experiments are between 20 and 100 μm. Sieving analysis of the tin powder shows close particle size distributions

  17. Offshore atomic power plants

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Various merits of offshore atomic power plants are illustrated, and their systems are assessed. The planning of the offshore atomic power plants in USA is reviewed, and the construction costs of the offshore plant in Japan were estimated. Air pollution problem may be solved by the offshore atomic power plants remarkably. Deep water at low temperature may be advantageously used as cooling water for condensers. Marine resources may be bred by building artificial habitats and by providing spring-up equipments. In the case of floating plants, the plant design can be standardized so that the construction costs may be reduced. The offshore plants can be classified into three systems, namely artificial island system, floating system and sea bottom-based system. The island system may be realized with the present level of civil engineering, but requires the development of technology for the resistance of base against earthquake and its calculation means. The floating system may be constructed with conventional power plant engineering and shipbuilding engineering, but the aseismatic stability of breakwater may be a problem to be solved. Deep water floating system and deep water submerging system are conceivable, but its realization may be difficult. The sea bottom-based system with large caissons can be realized by the present civil engineering, but the construction of the caissons, stability against earthquake and resistance to waves may be problems to be solved. The technical prediction and assessment of new plant sites for nuclear power plants have been reported by Science and Technology Agency in 1974. The construction costs of an offshore plant has been estimated by the Ministry of International Trade and Industry to be yen71,026/kW as of 1985. (Iwakiri, K.)

  18. Superconducting microtraps for ultracold atoms

    International Nuclear Information System (INIS)

    Hufnagel, C.

    2011-01-01

    Atom chips are integrated devices in which atoms and atomic clouds are stored and manipulated in miniaturized magnetic traps. State of the art fabrication technologies allow for a flexible design of the trapping potentials and consequently provide extraordinary control over atomic samples, which leads to a promising role of atom chips in the engineering and investigation of quantum mechanical systems. Naturally, for quantum mechanical applications, the atomic coherence has to be preserved. Using room temperature circuits, the coherence time of atoms close to the surface was found to be drastically limited by thermal current fluctuations in the conductors. Superconductors offer an elegant way to circumvent thermal noise and therefore present a promising option for the coherent manipulation of atomic quantum states. In this thesis trapping and manipulation of ultracold Rubidium atoms in superconducting microtraps is demonstrated. In this connection the unique properties of superconductors are used to build traps based on persistent currents, the Meissner effect and remanent magnetization. In experiment it is shown, that in superconducting atom chips, thermal magnetic field noise is significantly reduced. Furthermore it is demonstrated, that atomic samples can be employed to probe the properties of superconducting materials. (author) [de

  19. Boron atom reactions

    International Nuclear Information System (INIS)

    Estes, R.; Tabacco, M.B.; Digiuseppe, T.G.; Davidovits, P.

    1982-01-01

    The reaction rates of atomic boron with various epoxides have been measured in a flow tube apparatus. The bimolecular rate constants, in units of cm 3 molecule -1 s -1 , are: 1,2-epoxypropane (8.6 x 10 -11 ), 1,2-epoxybutane (8.8 x 10 -11 ), 1,2,3,4-diepoxybutane (5.5 x 10 -11 ), 1-chloro-2,3-epoxypropane (5.7 x 10 -11 ), and 1,2-epoxy-3,3,3-trichloropropane (1.5 x 10 -11 ). (orig.)

  20. Atom and Society

    International Nuclear Information System (INIS)

    1997-01-01

    The object of this colloquium is a thought about the means, for a democracy to adapt the process of decisions and the methods of communication with public opinion in order that the profits derived from atom go on to be larger than the risks. The questions of low doses, the nuclear safety, the underground laboratories for radioactive wastes, are studied in relation with public opinion, the question itself of public opinion is studied, the history of nuclear energy in France through the weapons and the nuclear power plants is evoked and gives an explanation of the situation of nuclear controversy. (N.C.)

  1. Chameleon induced atomic afterglow

    International Nuclear Information System (INIS)

    Brax, Philippe; Burrage, Clare

    2010-01-01

    The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter.

  2. Chameleon Induced Atomic Afterglow

    CERN Document Server

    Brax, Philippe

    2010-01-01

    The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter.

  3. Chameleon induced atomic afterglow

    International Nuclear Information System (INIS)

    Brax, Philippe

    2010-09-01

    The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter. (orig.)

  4. Atomic mechanics of solids

    CERN Document Server

    MacPherson, A K

    1990-01-01

    This volume brings together some of the presently available theoretical techniques which will be useful in the design of solid-state materials. At present, it is impossible to specify the atomic composition of a material and its macroscopic physical properties. However, the future possibilities for such a science are being laid today. This is coming about due to the development of fast, cheap computers which will be able to undertake the calculations which are necessary.Since this field of science is fairly new, it is not yet quite clear which direction of analysis will eventually prov

  5. Amendment of Atomic Ordinance

    International Nuclear Information System (INIS)

    1987-10-01

    This amendment to the 1984 Ordinance on definitions and licences in the atomic energy field aims essentially to ensure that the commitments under the Treaty on the Non-Proliferation of Nuclear Weapons are complied with in Switzerland. The goods and articles involving uranium enrichment by the gas centrifuge process and nuclear fuel reprocessing as specified by the competent international bodies, are henceforth included in the goods subject to notification or licensing listed in the Annex to the Ordinance. Also, it is provided that a construction and an operating licence for a nuclear installation may be granted simultaneously in cases where safe operating conditions can be fully assessed. (NEA) [fr

  6. Atomic data for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A. (eds.); Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  7. Atomic energy and food

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1969-07-01

    International activities aimed at improving, increasing and conserving food supplies are fostered in special ways by the Joint Division of Atomic Energy in Food and Agriculture established by the Agency and the Food and Agriculture Organization of the United Nations. An examination of the processes by which food is produced and of the skills arising from nuclear techniques which are being applied is made here by Maurice Fried and Bjorn Sigurbjornsson. They are the Director and Deputy Director of the Joint Division, which is an integral part of both the Agriculture Department of FAO and of the Agency's Department of Research and Isotopes. (author)

  8. Atoms for peace awards

    International Nuclear Information System (INIS)

    1968-01-01

    In making their annual selection for 1968 the Atoms for Peace Award Trust has paid signal tribute to the Agency. Each of the three recipients has for many years contributed to its work. Sigvard Eklund, Abdus Salam and Henry DeWolf Smyth received their gold medallion and $30 000 honorarium at a ceremony in New York on 14 October this year. All of them have achieved high distinction in science, but their greatest efforts have been to make the world aware of the benefits to be gained from using nuclear knowledge for peace, health and prosperity. (author)

  9. Atomic data for fusion

    International Nuclear Information System (INIS)

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A.; Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research

  10. Chameleon induced atomic afterglow

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [CEA, IPhT, CNRS, Gif-sur-Yvette (France). Inst. de Physique Theorique; Burrage, Clare [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-09-15

    The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter. (orig.)

  11. Dynamical polarizability of atoms

    International Nuclear Information System (INIS)

    Mukhopadhyay, G.; Lundqvist, S.

    1980-07-01

    The frequency-dependent polarizability of a closed-shell atom is considered in an RPA type approximation. This is usually done using many-body perturbation theory but can also be recast into the form of equations for the density oscillations as previously shown by the authors. The latter approach is known to lead to a non-hermitian problem because of the structure of the interaction kernel. This note shows that this is also true if using the reaction matrix method. The main result is to derive the expression for the polarizability function taking into account the non-hermitian nature of the problem. (author)

  12. Electroless atomic layer deposition

    Science.gov (United States)

    Robinson, David Bruce; Cappillino, Patrick J.; Sheridan, Leah B.; Stickney, John L.; Benson, David M.

    2017-10-31

    A method of electroless atomic layer deposition is described. The method electrolessly generates a layer of sacrificial material on a surface of a first material. The method adds doses of a solution of a second material to the substrate. The method performs a galvanic exchange reaction to oxidize away the layer of the sacrificial material and deposit a layer of the second material on the surface of the first material. The method can be repeated for a plurality of iterations in order to deposit a desired thickness of the second material on the surface of the first material.

  13. Synchrotron radiation in atomic physics

    International Nuclear Information System (INIS)

    Crasemann, B.

    1998-01-01

    Much of present understanding of atomic and molecular structure and dynamics was gained through studies of photon-atom interactions. In particular, observations of the emission, absorption, and scattering of X rays have complemented particle-collision experiments in elucidating the physics of atomic inner shells. Grounded on Max von Laue's theoretical insight and the invention of the Bragg spectrometer, the field's potential underwent a step function with the development of synchrotron-radiation sources. Notably current third-generation sources have opened new horizons in atomic and molecular physics by producing radiation of wide tunability and exceedingly high intensity and polarization, narrow energy bandwidth, and sharp time structure. In this review, recent advances in synchrotron-radiation studies in atomic and molecular science are outlined. Some tempting opportunities are surveyed that arise for future studies of atomic processes, including many-body effects, aspects of fundamental photon-atom interactions, and relativistic and quantum-electrodynamic phenomena. (author)

  14. Cancer in atomic bomb survivors

    International Nuclear Information System (INIS)

    Shigematsu, I.; Kagan, A.

    1986-01-01

    This book presents information on the following topics: sampling of atomic bomb survivors and method of cancer detection in Hiroshima and Nagasaki; atomic bomb dosimetry for epidemiological studies of survivors in Hiroshima and Nagasaki; tumor and tissue registries in Hiroshima and Nagasaki; the cancer registry in Nagasaki, with atomic bomb survivor data, 1973-1977; cancer mortality; methods for study of delayed health effects of a-bomb radiation; experimental radiation carcinogenesis in rodents; leukemia, multiple myeloma, and malignant lymphoma; cancer of the thyroid and salivary glands; malignant tumors in atomic bomb survivors with special reference to the pathology of stomach and lung cancer; colorectal cancer among atomic bomb survivors; breast cancer in atomic bomb survivors; and ovarian neoplasms in atomic bomb survirors

  15. Magnetic atom optics: mirrors, guides, traps, and chips for atoms

    Energy Technology Data Exchange (ETDEWEB)

    Hinds, E.A.; Hughes, I.G. [Sussex Centre for Optical and Atomic Physics, University of Sussex, Brighton (United Kingdom)

    1999-09-21

    For the last decade it has been possible to cool atoms to microkelvin temperatures ({approx}1 cm s{sup -1}) using a variety of optical techniques. Light beams provide the very strong frictional forces required to slow atoms from room temperature ({approx}500 m s{sup -1}). However, once the atoms are cold, the relatively weak conservative forces of static electric and magnetic fields play an important role. In our group we have been studying the interaction of cold rubidium atoms with periodically magnetized data storage media. Here we review the underlying principles of the forces acting on atoms above a suitably magnetized substrate or near current-carrying wires. We also summarize the status of experiments. These structures can be used as smooth or corrugated reflectors for controlling the trajectories of cold atoms. Alternatively, they may be used to confine atoms to a plane, a line, or a dot and in some cases to reach the quantum limit of confinement. Atoms levitated above a magnetized surface can be guided electrostatically by wires deposited on the surface. The flow and interaction of atoms in such a structure may form the basis of a new technology, 'integrated atom optics' which might ultimately be capable of realizing a quantum computer. (author)

  16. Directed Atom-by-Atom Assembly of Dopants in Silicon.

    Science.gov (United States)

    Hudak, Bethany M; Song, Jiaming; Sims, Hunter; Troparevsky, M Claudia; Humble, Travis S; Pantelides, Sokrates T; Snijders, Paul C; Lupini, Andrew R

    2018-05-17

    The ability to controllably position single atoms inside materials is key for the ultimate fabrication of devices with functionalities governed by atomic-scale properties. Single bismuth dopant atoms in silicon provide an ideal case study in view of proposals for single-dopant quantum bits. However, bismuth is the least soluble pnictogen in silicon, meaning that the dopant atoms tend to migrate out of position during sample growth. Here, we demonstrate epitaxial growth of thin silicon films doped with bismuth. We use atomic-resolution aberration-corrected imaging to view the as-grown dopant distribution and then to controllably position single dopants inside the film. Atomic-scale quantum-mechanical calculations corroborate the experimental findings. These results indicate that the scanning transmission electron microscope is of particular interest for assembling functional materials atom-by-atom because it offers both real-time monitoring and atom manipulation. We envision electron-beam manipulation of atoms inside materials as an achievable route to controllable assembly of structures of individual dopants.

  17. Cold atoms in singular potentials

    International Nuclear Information System (INIS)

    Denschlag, J. P.

    1998-09-01

    We studied both theoretically and experimentally the interaction between cold Li atoms from a magnetic-optical trap (MOT) and a charged or current-carrying wire. With this system, we were able to realize 1/r 2 and 1/r potentials in two dimensions and to observe the motion of cold atoms in both potentials. For an atom in an attractive 1/r 2 potential, there exist no stable trajectories, instead there is a characteristic class of trajectories for which atoms fall into the singularity. We were able to observe this falling of atoms into the center of the potential. Moreover, by probing the singular 1/r 2 potential with atomic clouds of varying size and temperature we extracted scaling properties of the atom-wire interaction. For very cold atoms, and very thin wires the motion of the atoms must be treated quantum mechanically. Here we predict that the absorption cross section for the 1/r 2 potential should exhibit quantum steps. These quantum steps are a manifestation of the quantum mechanical decomposition of plane waves into partial waves. For the second part of this work, we realized a two dimensional 1/r potential for cold atoms. If the potential is attractive, the atoms can be bound and follow Kepler-like orbits around the wire. The motion in the third dimension along the wire is free. We were able to exploit this property and constructed a novel cold atom guide, the 'Kepler guide'. We also demonstrated another type of atom guide (the 'side guide'), by combining the magnetic field of the wire with a homogeneous offset magnetic field. In this case, the atoms are held in a potential 'tube' on the side of the wire. The versatility, simplicity, and scaling properties of this guide make it an interesting technique. (author)

  18. Neuromorphic atomic switch networks.

    Directory of Open Access Journals (Sweden)

    Audrius V Avizienis

    Full Text Available Efforts to emulate the formidable information processing capabilities of the brain through neuromorphic engineering have been bolstered by recent progress in the fabrication of nonlinear, nanoscale circuit elements that exhibit synapse-like operational characteristics. However, conventional fabrication techniques are unable to efficiently generate structures with the highly complex interconnectivity found in biological neuronal networks. Here we demonstrate the physical realization of a self-assembled neuromorphic device which implements basic concepts of systems neuroscience through a hardware-based platform comprised of over a billion interconnected atomic-switch inorganic synapses embedded in a complex network of silver nanowires. Observations of network activation and passive harmonic generation demonstrate a collective response to input stimulus in agreement with recent theoretical predictions. Further, emergent behaviors unique to the complex network of atomic switches and akin to brain function are observed, namely spatially distributed memory, recurrent dynamics and the activation of feedforward subnetworks. These devices display the functional characteristics required for implementing unconventional, biologically and neurally inspired computational methodologies in a synthetic experimental system.

  19. WMO and atomic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-09-15

    The growing interest of WMO in atomic energy was reflected in the decision of the Executive Committee in 1956 to establish a panel of experts to study the meteorological aspects of the nuclear energy. One of the major achievements of the panel, which has held two meetings since its inception, has been the preparation of a technical note treating fully the various meteorological problems resulting from the applications of the peaceful uses of atomic energy. Over the past four years, steady progress has also been made both in adapting nuclear techniques to meteorological uses and in providing advice and assistance. Much time and thought are now being devoted to the study of large-scale air mass movements, turbulent diffusion and the other meteorological processes on which the transport and gradual fall-out of radioactive debris depend. The safe location of nuclear plants and the disposal of radioactive waste are related problems in which WMO has also taken a very active interest. Another aspect of the help which WMO as an organization can provide is to help for the collection and analysis of radioactive material in the biosphere. Advances in nuclear physics have also opened up great possibilities for the use of radioactive isotopes in making meteorological and hydrometeorological measurements

  20. High speed atom source

    International Nuclear Information System (INIS)

    Hoshino, Hitoshi.

    1990-01-01

    In a high speed atom source, since the speed is not identical between ions and electrons, no sufficient neutralizing effect for ionic rays due to the mixing of the ionic rays and the electron rays can be obtained failing to obtain high speed atomic rays at high density. In view of the above, a speed control means is disposed for equalizing the speed of ions forming ionic rays and the speed of electrons forming electron rays. Further, incident angle of the electron rays and/or ionic rays to a magnet or an electrode is made variable. As a result, the relative speed between the ions and the electrons to the processing direction is reduced to zero, in which the probability of association between the ions and the electrons due to the coulomb force is increased to improve the neutralizing efficiency to easily obtain fine and high density high speed electron rays. Further, by varying the incident angle, a track capable of obtaining an ideal mixing depending on the energy of the neutralized ionic rays is formed. Since the high speed electron rays has such high density, they can be irradiated easily to the minute region of the specimen. (N.H.)

  1. Experiments with cold hydrogen atoms

    International Nuclear Information System (INIS)

    Leonas, V.B.

    1981-01-01

    Numerous investigations of atomic processes in Waseous phase on the surface with participation of ''cold'' hydrogen atoms, made during the last years, are considered. The term ''cold atom'' means the range of relative collision energies E<10 MeV (respectively 'ultracold ' atoms at E< or approximately 1 MeV) which corresponds to the range of temperatures in tens (units) of K degrees. Three main ranges of investigations where extensive experimental programs are realized are considered: study of collisional processes with hydrogen atom participation, hydrogen atoms being of astrophysical interest; study of elastic atom-molecular scattering at superlow energies and studies on the problem of condensed hydrogen. Hydrogen atoms production is realized at dissociation in non-electrode high-frequency or superhigh-frequency discharge. A method of hydrogen quantum generator and of its modifications appeared to be rather an effective means to study collisional changes of spin state of hydrogen atoms. First important results on storage and stabilization of the gas of polarized hydrogen atoms are received

  2. Single atom spintronics

    International Nuclear Information System (INIS)

    Sullivan, M. R.; Armstrong, J. N.; Hua, S. Z.; Chopra, H. D.

    2005-01-01

    Full text: Single atom spintronics (SASS) represents the ultimate physical limit in device miniaturization. SASS is characterized by ballistic electron transport, and is a fertile ground for exploring new phenomena. In addition to the 'stationary' (field independent) scattering centers that have a small and fixed contribution to total transmission probability of electron waves, domain walls constitute an additional and enhanced source of scattering in these magnetic quantum point contacts (QPCs), the latter being both field and spin-dependent. Through the measurement of complete hysteresis loops as a function of quantized conductance, we present definitive evidence of enhanced backscattering of electron waves by atomically sharp domain walls in QPCs formed between microfabricated thin films [1]. Since domain walls move in a magnetic field, the magnitude of spin-dependent scattering changes as the QPC is cycled along its hysteresis loop. For example, as shown in the inset in Fig. 1, from zero towards saturation in a given field direction, the resistance varies as the wall is being swept away, whereas the resistance is constant upon returning from saturation towards zero, since in this segment of the hysteresis loop no domain wall is present across the contact. The observed spin-valve like behavior is realized by control over wall width and shape anisotropy. This behavior also unmistakably sets itself apart from any mechanical artifacts; additionally, measurements made on single atom contacts provide an artifact-free environment [2]. Intuitively, it is simpler to organize the observed BMR data according to all possible transitions between different conductance plateaus, as shown by the dotted line in Fig. 1; the solid circles show experimental data for Co, which follows the predicted scheme. Requisite elements for the observation of the effect will be discussed in detail along with a review of state of research in this field. Practically, the challenge lies in making

  3. Atoms: for war or peace

    Energy Technology Data Exchange (ETDEWEB)

    Subrahmanyam, K V

    1981-08-01

    History of nuclear power generation starting from the experimental split of uranium atom in 1938 to the establishment of the International Atomic Energy Agency is traced. In India, the Atomic Energy Commission was established with the major objective of developing nuclear power to make up India's deficiencies in energy sources. It is noted that from the very beginning the commission's activities were covered under a blanket of secrecy. According to the author, India's atomic energy programme stagnated after Dr. Bhabha's death. The Department of Atomic Energy diverted its attention to the nuclear explosion which was carried out in 1974. This event caused a great setback to the collaboration with Canada and USA in the nuclear power programme. The resulting problems are still not fully solved. The author maintains that the Department of Atomic Energy should have confined its efforts to the reactor development with special reference to the fast breeder reactor so that thorium can be utilised to the maximum advantage.

  4. Optical angular momentum and atoms.

    Science.gov (United States)

    Franke-Arnold, Sonja

    2017-02-28

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  5. Self-lacing atom chains

    International Nuclear Information System (INIS)

    Zandvliet, Harold J W; Van Houselt, Arie; Poelsema, Bene

    2009-01-01

    The structural and electronic properties of self-lacing atomic chains on Pt modified Ge(001) surfaces have been studied using low-temperature scanning tunnelling microscopy and spectroscopy. The self-lacing chains have a cross section of only one atom, are perfectly straight, thousands of atoms long and virtually defect free. The atomic chains are composed of dimers that have their bonds aligned in a direction parallel to the chain direction. At low temperatures the atomic chains undergo a Peierls transition: the periodicity of the chains doubles from a 2 x to a 4 x periodicity and an energy gap opens up. Furthermore, at low temperatures (T<80 K) novel quasi-one-dimensional electronic states are found. These quasi-one-dimensional electronic states originate from an electronic state of the underlying terrace that is confined between the atomic chains.

  6. Spectroscopy of highly ionized atoms

    International Nuclear Information System (INIS)

    Livingston, A.E.

    1987-01-01

    The atomic structure and decay characteristics of excited states in multiply ionized atoms represent a fertile testing ground for atomic calculations ranging from accurate ab initio theory for few-electron systems to practical semi-empirical approaches for many-electron species. Excitation of fast ions by thin foils generally produces the highest ionization stages for heavy ions in laboratory sources. The associated characteristics of spectroscopic purity and high time resolution provide unique capabilities for studying the atomic properties of highly-ionized atoms. This report is limited to a brief discussion of three classes of atomic systems that are experiencing current theoretical and experimental interest: precision structure of helium-like ions, fine structure of doubly-excited states, and lifetimes of metastable states. Specific measurements in each of these types of systems are mentioned, with emphasis on the relation to studies involving slow, highly-charged ions

  7. Atoms in dense plasmas

    International Nuclear Information System (INIS)

    More, R.M.

    1987-01-01

    This paper covers some aspects of the theory of atomic processes in dense plasmas. Because the topic is very broad, a few general rules which give useful guidance about the typical behavior of dense plasmas have been selected. These rules are illustrated by semiclassical estimates, scaling laws and appeals to more elaborate calculations. Included in the paper are several previously unpublished results including a new mechanism for electron-ion heat exchange (section II), and an approximate expression for oscillator-strengths of highly charged ions (section V). However the main emphasis is not upon practical formulas but rather on questions of fundamental theory, the structural ingredients which must be used in building a model for plasma events. What are the density effects and how does one represent them? Which are most important? How does one identify an incorrect theory? The general rules help to answer these questions. 106 references, 23 figures, 2 tables

  8. The SILVA atomic process

    International Nuclear Information System (INIS)

    Cazalet, J.

    1997-01-01

    The SILVA laser isotope separation process is based on the laser selective photo-ionization of uranium atomic vapour; the process is presently under development by CEA and COGEMA in France, with the aim to reduce by a factor three the cost of uranium enrichment. The two main components of a SILVA process plant are the lasers (copper vapour lasers and dye lasers) and the separator for the vaporization (with a high energy electron beam), ionization and separation operations. Researches on the SILVA process started in 1985 and the technical and economical feasibility is to be demonstrated in 1997. The progresses of similar rival processes and other processes are discussed and the remaining research stages and themes of the SILVA program are presented

  9. The SILVA atomic process

    International Nuclear Information System (INIS)

    Cazalet, J.

    1996-01-01

    The SILVA isotopic laser separation process of atomic uranium vapor requires the use of specific high power visible light laser devices and systems for uranium evaporation and management (separation modules). The CEA, in collaboration with industrialists, has developed these components and built some demonstration plants. The scientific and technological challenges raised by this process are now surmounted. The principle of the SILVA process is the selective photo-ionization of uranium isotopes using laser photon beams tuned to the exact excitation frequency of the isotope electron layers. This paper describes the principle of the SILVA process (lasers and separator), the technical feasibility and actual progress of the program and its future steps, its economical stakes, and the results obtained so far. (J.S.). 2 figs., 2 photos

  10. Atomic absorption spectrophotometer

    International Nuclear Information System (INIS)

    Stockdale, T. J.

    1985-01-01

    In atomic absorption spectrophotometer, a reference path may be provided for radiation which excludes the flame. This radiation provides a signal from a detector which varies only with the instrumental drift produced by variations in the radiation source brightness and by variations in detector gain. The signal can be used to compensate for drift in other signals received through a sample path including the flame. In the present invention, radiation passes through the sample path continuously during measurement, and only through the reference path between sample measurements. Movable mirrors shift the radiation between the paths upon externally applied commands. Conveniently, the reference path measurement is made while the flame is stabilized during the change between samples. The reference path measurements are stored and used to correct for drift

  11. Atomic and gravitational clocks

    International Nuclear Information System (INIS)

    Canuto, V.M.; City Coll., New York; Goldman, I.

    1982-01-01

    Atomic and gravitational clocks are governed by the laws of electrodynamics and gravity respectively. While the strong equivalence principle (SEP) assumes that the two clocks have been synchronous at all times, recent planetary data seem to suggest a possible violation of the SEP. Past analysis of the implications of an SEP violation on different physical phenomena revealed no disagreement. However, these studies assumed that the two different clocks can be consistently constructed within the framework. The concept of scale invariance, and the physical meaning of different systems of units, are now reviewed and the construction of two clocks that do not remain synchronous-whose rates are related by a non-constant function βsub(a)-is demonstrated. The cosmological character of βsub(a) is also discussed. (author)

  12. Atomic war field Europe

    International Nuclear Information System (INIS)

    Calder, N.

    1980-01-01

    Progressive atomic weapons, results of a perfect and perfidious technology face each other in the centre of a possible crisis - in Europe. The strategists of the Warszhaw Pact and of Nato seem very optimistic, which they owe to their professions, the population's increasing fear of a war, however, can no longer be denied. Nervous military personnel, political and religions fanatics and perplexed politicians sit at the switches of fear - without a concept and without alternatives. Despite this alarming conditions, Nigel Calder who has investigated in the USA and in the USSR, and in Europe, managed to remain a calm spectator of the imminent apocalypse. Without compromises and clearly he analyses the nearly hopeless consequences resulting from the changed world-political situation, the tremendously fast development of the arms technology, and the crazy strategical doctrines in East and West and in the Third World. (orig./UA) [de

  13. Atoms against the universe

    International Nuclear Information System (INIS)

    Senovilla, J.; Raul Vera, M.M.

    1999-01-01

    In Woody Allen's masterpiece Annie Hall the main character is worried about the expansion of the universe. Indeed, during a childhood visit to his psychiatrist, his mother admonishes him: ''You're here in Brooklyn! Brooklyn is not expanding!''. But is that really true? Relativists have attacked this naive question many times and have arrived at different answers. New light has now been thrown on the subject by William Bonnor from Queen Mary and Westfield College in London by considering the influence of the expanding universe on the size of the hydrogen atom (Class. Quantum Grav. 1999 16 1313). According to Bonner's calculations we can conclude that the cosmic expansion does not affect human-scale objects like laboratories and our bodies. In this article the authors explain the reasoning behind this research and its thought provoking consequences. (UK)

  14. Atomic Weapons Establishment Bill

    International Nuclear Information System (INIS)

    Clark, Alan; Dalyell, Tam; Haynes, Frank

    1990-01-01

    The Bill debated concerns the government's proposal for the future organisations of the atomic weapons establishment in the United Kingdom. The proposals arise from a full review carried out in 1989 and include points raised by the Select Committee on the Trident programme. Studies of productivity, pay and conditions, information systems and long term manufacturing strategy have been started to enable recommendations of the reorganisation of the establishments to be made. The details of the Bill were debated for just over two hours. The debate is reported verbatim. The main issues were over the principle of contractorisation, possible staff redundancies, conditions of employment, safety and security. The proposal that the Bill be read a second time was carried. (UK)

  15. Atoms in astronomy

    Science.gov (United States)

    Blanchard, P. A.

    1976-01-01

    Aspects of electromagnetic radiation and atomic physics needed for an understanding of astronomical applications are explored. Although intended primarily for teachers, this brochure is written so that it can be distributed to students if desired. The first section, Basic Topics, is suitable for a ninth-grade general science class; the style is simple and repetitive, and no mathematics or physics background is required. The second section, Intermediate and Advanced Topics, requires a knowledge of the material in the first section and assumes a generally higher level of achievement and motivation on the part of the student. These latter topics might fit well into junior-level physics, chemistry, or earth-science courses. Also included are a glossary, a list of references and teaching aids, class exercises, and a question and answer section.

  16. Safeguarding the atom

    International Nuclear Information System (INIS)

    Fischer, D.; Szasz, P.

    1985-01-01

    Safeguards play a key role in verifying the effectiveness of restraints on the spread of nuclear weapons. This book is a study of the safeguards system of the International Atomic Energy Agency, an important element of the non-proliferation regime. It focuses on the politics of safeguards, especially the political problems of the IAEA and of the day-to-day application of safeguards. It contains a critical appraisal and proposals for ways of improving existing procedures and of adapting them to the political and technological changes of recent years. IAEA safeguards represent the world's first and so far only attempt to verify an arms control agreement by systematic on-site inspection, and their applicability to other arms control measures is examined. (author)

  17. Atomic iodine laser

    International Nuclear Information System (INIS)

    Fisk, G.A.; Gusinow, M.A.; Hays, A.K.; Padrick, T.D.; Palmer, R.E.; Rice, J.K.; Truby, F.K.; Riley, M.E.

    1978-05-01

    The atomic iodine photodissociation laser has been under intensive study for a number of years. The physics associated with this system is now well understood and it is possible to produce a 0.1 nsec (or longer) near-diffraction-limited laser pulse which can be amplified with negligible temporal distortion and little spatial deformation. The output of either a saturated or unsaturated amplifier consists of a high-fidelity near-diffraction-limited, energetic laser pulse. The report is divided into three chapters. Chapter 1 is a survey of the important areas affecting efficient laser operation and summarizes the findings of Chap. 2. Chapter 2 presents detailed discussions and evaluations pertinent to pumps, chemical regeneration, and other elements in the overall laser system. Chapter 3 briefly discusses those areas that require further work and the nature of the work required to complete the full-scale evaluation of the applicability of the iodine photodissociation laser to the inertial confinement program

  18. Atomic power plant

    International Nuclear Information System (INIS)

    Kawakami, Hiroto.

    1975-01-01

    Object: To permit decay heat to be reliably removed after reactor shut-down at such instance as occurrence of loss of power by means of an emergency water supply pump. Structure: An atomic power plant having a closed cycle constructed by connecting a vapor generator, a vapor valve, a turbine having a generator, a condenser, and a water supply pump in the mentioned order, and provided with an emergency water supply pump operated when there is a loss of power to the water supply pump, a degasifier pressure holding means for holding the pressure of the degasifier by introducing part of the vapor produced from said vapor generator, and a valve for discharge to atmosphere provided on the downstream side of said vapor generator. (Kamimura, M.)

  19. Atomic Basic Blocks

    Science.gov (United States)

    Scheler, Fabian; Mitzlaff, Martin; Schröder-Preikschat, Wolfgang

    Die Entscheidung, einen zeit- bzw. ereignisgesteuerten Ansatz für ein Echtzeitsystem zu verwenden, ist schwierig und sehr weitreichend. Weitreichend vor allem deshalb, weil diese beiden Ansätze mit äußerst unterschiedlichen Kontrollflussabstraktionen verknüpft sind, die eine spätere Migration zum anderen Paradigma sehr schwer oder gar unmöglich machen. Wir schlagen daher die Verwendung einer Zwischendarstellung vor, die unabhängig von der jeweils verwendeten Kontrollflussabstraktion ist. Für diesen Zweck verwenden wir auf Basisblöcken basierende Atomic Basic Blocks (ABB) und bauen darauf ein Werkzeug, den Real-Time Systems Compiler (RTSC) auf, der die Migration zwischen zeit- und ereignisgesteuerten Systemen unterstützt.

  20. Bettis Atomic Power Laboratory

    International Nuclear Information System (INIS)

    1992-01-01

    The Bettis Atomic Power Laboratory (Bettis) is owned by the US Department of Energy (DOE) and has been operated under Government contract by the Westinghouse Electric Corporation since 1949. The Bettis Site in West Mifflin, Pennsylvania conducts research and development work on improved nuclear propulsion plants for US Navy warships and is the headquarters for all of the Laboratory's operations. For many years, environmental monitoring has been performed to demonstrate that the Bettis Site is being operated in accordance with environmental standards. While the annual report describes monitoring practices and results, it does not describe the nature and environmental aspects of work and facilities at the Bettis Site nor give a historical perspective of Bettis' operations. The purpose of this report is to provide this information as well as background information, such as the geologic and hydrologic nature of the Bettis Site, pertinent to understanding the environmental aspects of Bettis operations. Waste management practices are also described

  1. Atomic absorption spectrophotometry in perspective

    International Nuclear Information System (INIS)

    Soffiantini, V.

    1981-01-01

    Atomic absorption spectrophotometry is essentially an analytical technique used for quantitative trace metal analysis in a variety of materials. The speed and specificity of the technique is its greatest advantage over other analytical techniques. What atomic absorption spectrophotometry can and cannot do and its advantages and disadvantages are discussed, a summary of operating instructions are given, as well as a summary of analytical interferences. The applications of atomic absorption spectrophotometry are also shortly discussed

  2. Molecular invariants: atomic group valence

    International Nuclear Information System (INIS)

    Mundim, K.C.; Giambiagi, M.; Giambiagi, M.S. de.

    1988-01-01

    Molecular invariants may be deduced in a very compact way through Grassman algebra. In this work, a generalized valence is defined for an atomic group; it reduces to the Known expressions for the case of an atom in a molecule. It is the same of the correlations between the fluctions of the atomic charges qc and qd (C belongs to the group and D does not) around their average values. Numerical results agree with chemical expectation. (author) [pt

  3. Atomic Australia: 1944-1990

    International Nuclear Information System (INIS)

    Cawte, Alice.

    1992-01-01

    This book tells how successive Australian governments pursued the elusive uranium dream. With Australian uranium committed to the West's atomic arsenals, Australia seemed set to become a nation powered by the atom. But by the mid-1950 the Australian government learnt that their expectations were premature, if not unrealistic. The background of the creation of the Australian Atomic Energy Commission is also given along with the examination of the uranium controversies of the 1970s and 1980s. 150 refs

  4. Energy levels of muonic atoms

    International Nuclear Information System (INIS)

    Borie, E.; Rinker, G.A.

    1982-01-01

    The theory of muonic atoms is a complex and highly developed combination of nuclear physics, atomic physics, and quantum electrodynamics. Perhaps nowhere else in microscopic physics are such diverse branches so intimately intertwined and yet readily available for precise experimental verification or rejection. In the present review we summarize and discuss all of the most important components of muonic atom theory, and show in selected cases how this theory meets experimental measurements

  5. Stanford polarized atomic beam target

    International Nuclear Information System (INIS)

    Mavis, D.G.; Dunham, J.S.; Hugg, J.W.; Glavish, H.F.

    1976-01-01

    A polarized atomic beam source was used to produce an atomic hydrogen beam which was in turn used as a polarized proton target. A target density of 2 x 10'' atoms/cm 3 and a target polarization of 0.37 without the use of rf transitions were measured. These measurements indicate that a number of experiments are currently feasible with a variety of polarized target beams

  6. Study on laser atomic spectroscopy

    International Nuclear Information System (INIS)

    Lee, Jong Min; Song, Kyu Seok; Jeong, Do Young; Kim, Chul Joong; Han, Phil Soon

    1992-01-01

    Electric discharge type atomic vaporizer is developed for the spectroscopic study on actinide elements. Laser induced fluorescence study on actinide elements is performed by using this high temperature type atomizer. For the effective photoionization of elements, copper vapor laser pumped dye laser and electron beam heating type atomic vaporizer are built and their characteristics are measured. In addition, resonance ionization mass spectroscopic analysis for lead sample as well as laser induced fluorescence study on uranium sample in solution phase is made. (Author)

  7. Atomic beams probe surface vibrations

    International Nuclear Information System (INIS)

    Robinson, A.L.

    1982-01-01

    In the last two years, surface scientist have begun trying to obtain the vibrational frequencies of surface atoms in both insulating and metallic crystals from beams of helium atoms. It is the inelastic scattering that researchers use to probe surface vibrations. Inelastic atomic beam scattering has only been used to obtain vibrational frequency spectra from clean surfaces. Several experiments using helium beams are cited. (SC)

  8. Giant atoms cast long shadow

    International Nuclear Information System (INIS)

    Amato, I.

    1996-01-01

    Atoms swollen with energy can serve as supersensitive detectors. They also probe the shadow realm where the quantum world of the atom gives way to the familiar classical world. Created in the laboratory, where they live for a few milliseconds inside vacuum chambers, Rydberg atoms acquire their girth when one or sometimes two of their electrons are excited to very high energy levels, displacing them far from the nuclear core. This article describes the atoms, the history of their identification, and future possibilities. 2 figs

  9. Precision measurement with atom interferometry

    International Nuclear Information System (INIS)

    Wang Jin

    2015-01-01

    Development of atom interferometry and its application in precision measurement are reviewed in this paper. The principle, features and the implementation of atom interferometers are introduced, the recent progress of precision measurement with atom interferometry, including determination of gravitational constant and fine structure constant, measurement of gravity, gravity gradient and rotation, test of weak equivalence principle, proposal of gravitational wave detection, and measurement of quadratic Zeeman shift are reviewed in detail. Determination of gravitational redshift, new definition of kilogram, and measurement of weak force with atom interferometry are also briefly introduced. (topical review)

  10. Quantum information with Rydberg atoms

    DEFF Research Database (Denmark)

    Saffman, Mark; Walker, T.G.; Mølmer, Klaus

    2010-01-01

    Rydberg atoms with principal quantum number n»1 have exaggerated atomic properties including dipole-dipole interactions that scale as n4 and radiative lifetimes that scale as n3. It was proposed a decade ago to take advantage of these properties to implement quantum gates between neutral atom...... of multiqubit registers, implementation of robust light-atom quantum interfaces, and the potential for simulating quantum many-body physics. The advances of the last decade are reviewed, covering both theoretical and experimental aspects of Rydberg-mediated quantum information processing....

  11. Chemical generation of iodine atoms

    Energy Technology Data Exchange (ETDEWEB)

    Hewett, Kevin B. [Directed Energy Directorate, Air Force Research Laboratory, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776 (United States)]. E-mail: kevin.hewett@kirtland.af.mil; Hager, Gordon D. [Directed Energy Directorate, Air Force Research Laboratory, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776 (United States); Crowell, Peter G. [Northrup Grumman Information Technology, Science and Technology Operating Unit, Advanced Technology Division, P.O. Box 9377, Albuquerque, NM 87119-9377 (United States)

    2005-01-10

    The chemical generation of atomic iodine using a chemical combustor to generate the atomic fluorine intermediate, from the reaction of F{sub 2} + H{sub 2}, followed by the production of atomic iodine, from the reaction of F + HI, was investigated. The maximum conversion efficiency of HI into atomic iodine was observed to be approximately 75%, which is in good agreement with the theoretical model. The conversion efficiency is limited by the formation of iodine monofluoride at the walls of the combustor where the gas phase temperature is insufficient to dissociate the IF.

  12. Atomic Force Microscopy and Real Atomic Resolution. Simple Computer Simulations

    NARCIS (Netherlands)

    Koutsos, V.; Manias, E.; Brinke, G. ten; Hadziioannou, G.

    1994-01-01

    Using a simple computer simulation for AFM imaging in the contact mode, pictures with true and false atomic resolution are demonstrated. The surface probed consists of two f.c.c. (111) planes and an atomic vacancy is introduced in the upper layer. Changing the size of the effective tip and its

  13. Atomic masses 1995. The 1995 atomic mass evaluation

    International Nuclear Information System (INIS)

    Audi, G.; Wapstra, A.H.

    1995-01-01

    The 1995 atomic mass evaluation by G. Audi and A.H. Wapstra is documented. The resulting data files containing recommended values of atomic masses, obtained by experiment or systematics, and related data such as reaction and separation energies are described. The data files can be obtained through online services from several nuclear data centers or on magnetic tape, free of charge. (author)

  14. Atomic masses 1993. The 1993 atomic mass evaluation

    International Nuclear Information System (INIS)

    Audi, G.; Wapstra, A.H.

    1993-01-01

    The 1993 atomic mass evaluation by G. Audi and A.H. Wapstra is documented. The resulting data files containing recommended values of atomic masses, obtained by experiment of systematics, and related data such as reaction and separation energies are described. The data files can be obtained through online services from several nuclear data centers or on magnetic tape, free of charge. (author)

  15. Systematics of atom-atom collision strengths at high speeds

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Inokuti, M.

    1980-01-01

    The collision strengths for atom-atom collisions at high speeds are calculated in the first Born approximation. We studied four classes of collisions, distinguished depending upon whether each of the collision partners becomes excited or not. The results of numerical calculations of the collision strengths are presented for all neutral atoms with Z< or =18. The calculations are based on atomic form factors and incoherent scattering functions found in the literature. The relative contribution of each class of collision processes to the total collision cross section is examined in detail. In general, inelastic processes dominate for low-Z atoms, while elastic scattering is more important for large Z. Other systematics of the collision strengths are comprehensively discussed. The relevant experimental literature has been surveyed and the results of this work for the three collision systems H-He, He-He, and H-Ar are compared with the data for electron-loss processes. Finally, suggestions are made for future work in measurements of atom-atom and ion-atom collision cross sections

  16. prepared via atom transfer radical polymerization, reverse atom

    Indian Academy of Sciences (India)

    Synthesis and characterization of poly(2-ethylhexyl acrylate) prepared via atom transfer radical polymerization, reverse atom transfer radical polymerization and ... Zydex Industries, 25-A Gandhi Oil Mill Compound, Gorwa, Vadodara 390 016, India; Rubber Technology Centre, Indian Institute of Technology Kharagpur, ...

  17. High efficiency atomic hydrogen source

    International Nuclear Information System (INIS)

    Lagomarsino, V.; Bassi, D.; Bertok, E.; De Paz, M.; Tommasini, F.

    1974-01-01

    This work presents preliminary results of research intended to produce a M.W. discharge atomic hydrogen source with good dissociation at pressures larger than 10 torr. Analysis of the recombination process at these pressures shows that the volume recombination by three body collisions may be more important than wall recombination or loss of atoms by diffusion and flow outside the discharge region

  18. Bohmian picture of Rydberg atoms

    Indian Academy of Sciences (India)

    Abstract. Unlike the previous theoretical results based on standard quantum mechanics that established the nearly elliptical shapes for the centre-of-mass motion in Rydberg atoms using numerical simulations, we show analytically that the Bohmian trajectories in Rydberg atoms are nearly elliptical.

  19. Laser cooling of neutral atoms

    International Nuclear Information System (INIS)

    1993-01-01

    A qualitative description of laser cooling of neutral atoms is given. Two of the most important mechanisms utilized in laser cooling, the so-called Doppler Cooling and Sisyphus Cooling, are reviewed. The minimum temperature reached by the atoms is derived using simple arguments. (Author) 7 refs

  20. The atomic energy basic law

    International Nuclear Information System (INIS)

    1977-01-01

    The law establishes clearly the principles that Japan makes R and D, and utilizations of atomic energy only for the peaceful purposes. All the other laws and regulations concerning atomic energy are based on the law. The first chapter lays down the above mentioned objective of the law, and gives definitions of basic concepts and terms, such as atomic energy, nuclear fuel material, nuclear source material, nuclear reactor and radiation. The second chapter provides for the establishment of Atomic Energy Commission which conducts plannings and investigations, and also makes decisions concerning R and D, and utilizations of atomic energy. The third chapter stipulates for establishment of two government organizations which perform R and D of atomic energy developments including experiments and demonstrations of new types of reactors, namely, Atomic Energy Research Institute and Power Reactor and Nuclear Fuel Development Corporation. Chapters from 4th through 8th provide for the regulations on development and acquisition of the minerals containing nuclear source materials, controls on nuclear fuel materials and nuclear reactors, administrations of the patents and inventions concerning atomic energy, and also prevention of injuries due to radiations. The last 9th chapter requires the government and its appointee to compensate the interested third party for damages in relation to the exploitation of nuclear source materials. (Matsushima, A.)

  1. Atomic absorption instrument functional description

    International Nuclear Information System (INIS)

    Bystroff, R.I.; Boyle, W.G. Jr.; Barton, G.W. Jr.

    1976-01-01

    This report describes a proposed system for automating atomic absorption analysis. The system consists of two atomic absorption instruments and an automatic sampler that can be attached to either instrument. A computer program controls the sampling and gathers data. The program then uses the data to perform bookkeeping, data processing, and report writing

  2. Electromagnetic trapping of neutral atoms

    International Nuclear Information System (INIS)

    Metcalf, H.J.

    1986-01-01

    Cooling and trapping of neutral atoms is a new branch of applied physics that has potential for application in many areas. The authors present an introduction to laser cooling and magnetic trapping. Some basic ideas and fundamental limitations are discussed, and the first successful experiments are reviewed. Trapping a neutral object depends on the interaction between an inhomogeneous electromagnetic field and a multiple moment that results in the exchange of kinetic for potential energy. In neutral atom traps, the potential energy must be stored as internal atomic energy, resulting in two immediate and extremely important consequences. First, the atomic energy levels will necessarily shift as the atoms move in the trap, and, second, practical traps for ground state neutral atoms atr necessarily very shallow compared to thermal energy. This small depth also dictates stringent vacuum requirements because a trapped atom cannot survive a single collision with a thermal energy background gas molecule. Neutral trapping, therefore, depends on substantial cooling of a thermal atomic sample and is inextricably connected with the cooling process

  3. Stopping atoms with diode lasers

    International Nuclear Information System (INIS)

    Watts, R.N.; Wieman, C.E.

    1986-01-01

    The use of light pressure to cool and stop neutral atoms has been an area of considerable interest recently. Cooled neutral atoms are needed for a variety of interesting experiments involving neutral atom traps and ultrahigh-resolution spectroscopy. Laser cooling of sodium has previously been demonstrated using elegant but quite elaborate apparatus. These techniques employed stabilized dye lasers and a variety of additional sophisticated hardware. The authors have demonstrated that a frequency chirp technique can be implemented using inexpensive diode lasers and simple electronics. In this technique the atoms in an atomic beam scatter resonant photons from a counterpropagating laser beam. The momentum transfer from the photons slows the atoms. The primary difficulty is that as the atoms slow their Doppler shift changes, and so they are no longer in resonance with the incident photons. In the frequency chirp technique this is solved by rapidly changing the laser frequency so that the atoms remain in resonance. To achieve the necessary frequency sweep with a dye laser one must use an extremely sophisticated high-speed electrooptic modulator. With a diode laser, however, the frequency can be smoothly and rapidly varied over many gigahertz simply by changing the injection current

  4. Atomic Energy Authority Act 1954

    International Nuclear Information System (INIS)

    1954-01-01

    This Act provides for the setting up of an Atomic Energy Authority for the United Kingdom. It also makes provision for the Authority's composition, powers, duties, rights and liabilities, and may amend, as a consequence of the establishment of the Authority and in connection therewith, the Atomic Energy Act, 1946, the Radioactive Substances Act 1948 and other relevant enactments. (NEA) [fr

  5. Collision-produced atomic states

    International Nuclear Information System (INIS)

    Andersen, N.; Copenhagen Univ.

    1988-01-01

    The last 10-15 years have witnessed the development of a new, powerful class of experimental techniques for atomic collision studies, allowing partial or complete determination of the state of the atoms after a collision event, i.e. the full set of quantum-mechanical scattering amplitudes or - more generally - the density matrix describing the system. Evidently, such studies, involving determination of alignment and orientation parameters, provide much more severe tests of state-of-the-art scattering theories than do total or differential cross section measurements which depend on diagonal elements of the density matrix. The off-diagonal elements give us detailed information about the shape and dynamics of the atomic states. Therefore, close studies of collision-produced atomic states are currently leading to deeper insights into the fundamental physical mechanisms governing the dynamics of atomic collision events. The first part of the lectures deals with the language used to describe atomic states, while the second part presents a selection of recent results for model systems which display fundamental aspects of the collision physics in particularly instructive ways. I shall here restrict myself to atom-atom collisions. The discussion will be focused on states decaying by photon emission though most of the ideas can be easily modified to include electron emission as well. (orig./AH)

  6. Hot atom chemistry of carbon

    International Nuclear Information System (INIS)

    Wolf, A.P.

    1975-01-01

    The chemistry of energetic carbon atoms is discussed. The experimental approach to studies that have been carried out is described and the mechanistic framework of hot carbon atom reactions is considered in some detail. Finally, the direction that future work might take is examined, including the relationship of experimental to theoretical work. (author)

  7. Atoms in astrophysics

    CERN Document Server

    Eissner, W; Hummer, D; Percival, I

    1983-01-01

    It is hard to appreciate but nevertheless true that Michael John Seaton, known internationally for the enthusiasm and skill with which he pursues his research in atomic physics and astrophysics, will be sixty years old on the 16th of January 1983. To mark this occasion some of his colleagues and former students have prepared this volume. It contains articles that de­ scribe some of the topics that have attracted his attention since he first started his research work at University College London so many years ago. Seaton's association with University College London has now stretched over a period of some 37 years, first as an undergraduate student, then as a research student, and then, successively, as Assistant Lecturer, Lecturer, Reader, and Professor. Seaton arrived at University College London in 1946 to become an undergraduate in the Physics Department, having just left the Royal Air Force in which he had served as a navigator in the Pathfinder Force of Bomber Command. There are a number of stories of ho...

  8. ILO and atomic energy

    International Nuclear Information System (INIS)

    1961-01-01

    The work of the International Labour Organisation in the field of atomic energy has been concerned primarily with the protection of the worker against radiation; in this respect it developed the work carried out before the war on the occupational pathology of roentgen ray operators, radium and radioactive substances and uranium. In view of the extremely serious consequences to society and the individual that would result from a neglect of the essential precautions, the ILO has to adopt international standards setting out the essential precautions that should be observed in a work which may entail a radiation hazard. The 44th International Labour Conference, meeting in the summer of 1960, adopted a convention and recommendation on this subject. The Convention applies to all activities involving exposure of workers to ionizing radiations in the course of their work and provides that each Member of the ILO which ratifies it shall undertake to give effect to it by means of laws or regulations, codes of practice or other appropriate means. It further provides that the necessary steps taken at the national level to ensure effective protection should be progressively brought in line with the provisions of the Convention after its ratification

  9. Beyond the atom

    International Nuclear Information System (INIS)

    Laurikainen, K.V.

    1988-01-01

    The Austrian physicist Wolfgang Pauli (1900-1958) is often called 'the conscience of physics'. He was famous for his sharp and critical mind which made him a central figure among the founders of quantum physics. To a lesser extent it is known that he also was an outstanding philosopher, especially interested in finding a new conception of reality and of causality. A careful study of the original sources of the past culminated in his study of Kepler and of medieval symbolism, a concept that played a central role in his discussion with C.G. Jung on the 'psychophysical problem'. Pauli considered in particular the sharp distinctions between knowledge and faith and between spirit and matter as dangerous. Rather they should complement each other in our comprehension of reality. The author tries for the first time to describe in detail Pauli's ideas. His book is based on the large and as yet unpublished correspondence between Pauli and M. Fierz. Its careful analysis adds depth and clarity to the few publications by Pauli on the above mentioned problems and explains why Pauli grasped the meaning of atomic theory more deeply than even N. Bohr himself. The book should be of interest both to philosophers and to physicists and should encourage further studies on the humanist W. Pauli and his contribution to our understanding of reality. But also the laymen pondering over the conception of reality in science will take advantage of this text. (orig.)

  10. Safeguards for the atom

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-10-15

    Concern over the destructive potentialities of nuclear energy has grown all over the world. In fact, it was this concern, coupled with an awareness of the equally great potentialities for peaceful prosperity, that led to the establishment of the International Atomic Energy Agency. That nuclear energy should be used solely for peaceful purposes is an ideal to which all people would subscribe. Realization of this ideal, however, is dependent on many complex factors which are outside the scope of the Agency. In its own limited sphere, however, the Agency has the responsibility to ensure that in its efforts to promote the peaceful uses it does not in any way increase the potentiality of military use. The possibility of military application is not the only danger that the Agency must guard against, it has a further function arising from the nature of the materials needed in atomic energy work. Since the basic materials are radioactive and since all ionizing radiation is potentially dangerous, the Agency must ensure that in helping its Member States to develop the peaceful uses of atomic energy it does not increase the hazards of nuclear radiation or radioactive contamination. It must establish standards of safe practice for activities carried out under its auspices or with its assistance. Since the safeguards will have two distinct objectives, a distinction can be made between those which will be designed to prevent the diversion of Agency assistance to military use and those against health and safety hazards. So far as the health and safety measures are concerned, a good deal of work has already been done in determining the standards of safe practice which will be the basis for the relevant rules. The Agency has published the first in its series of safety manuals, 'Safe Handling of Radioisotopes', which deals with such standards. Safeguards against the diversion or loss of nuclear materials and facilities are more difficult to devise. It is not considered feasible for

  11. Safeguards for the atom

    International Nuclear Information System (INIS)

    1959-01-01

    Concern over the destructive potentialities of nuclear energy has grown all over the world. In fact, it was this concern, coupled with an awareness of the equally great potentialities for peaceful prosperity, that led to the establishment of the International Atomic Energy Agency. That nuclear energy should be used solely for peaceful purposes is an ideal to which all people would subscribe. Realization of this ideal, however, is dependent on many complex factors which are outside the scope of the Agency. In its own limited sphere, however, the Agency has the responsibility to ensure that in its efforts to promote the peaceful uses it does not in any way increase the potentiality of military use. The possibility of military application is not the only danger that the Agency must guard against, it has a further function arising from the nature of the materials needed in atomic energy work. Since the basic materials are radioactive and since all ionizing radiation is potentially dangerous, the Agency must ensure that in helping its Member States to develop the peaceful uses of atomic energy it does not increase the hazards of nuclear radiation or radioactive contamination. It must establish standards of safe practice for activities carried out under its auspices or with its assistance. Since the safeguards will have two distinct objectives, a distinction can be made between those which will be designed to prevent the diversion of Agency assistance to military use and those against health and safety hazards. So far as the health and safety measures are concerned, a good deal of work has already been done in determining the standards of safe practice which will be the basis for the relevant rules. The Agency has published the first in its series of safety manuals, 'Safe Handling of Radioisotopes', which deals with such standards. Safeguards against the diversion or loss of nuclear materials and facilities are more difficult to devise. It is not considered feasible for

  12. Tau electron atoms at RHIC

    International Nuclear Information System (INIS)

    Weiss, M.S.

    1985-01-01

    An amusement ancillary to the proposed quark-gluon plasma production hypothesized from a relativistic heavy ion collider (RHIC is a sufficient quantity of tau electrons to potentially admit the study of its exotic atoms. In this paper the given wealth of nuclear phenomena is derived from muonic atoms assume a tau atom is more forthcoming of information due to the lower orbits entirely contained within the nucleus. It is the purpose of this brief note to discuss the production mechanism at a RHIC and to delineate some of the more obvious properties of the tau atom. As in the case of the mu, more exotic phenomena derived from resonance ''accidents'' with nuclear transitions takes place, but it would be presumptions to discuss them at this time. Given the complete containment in nuclear matter of the tau lepton in its innermost atomic orbits. An experiment performed with such an exotic species results in the measurement of its lifetime

  13. Atomic spectroscopy and radiative processes

    CERN Document Server

    Landi Degl'Innocenti, Egidio

    2014-01-01

    This book describes the basic physical principles of atomic spectroscopy and the absorption and emission of radiation in astrophysical and laboratory plasmas. It summarizes the basics of electromagnetism and thermodynamics and then describes in detail the theory of atomic spectra for complex atoms, with emphasis on astrophysical applications. Both equilibrium and non-equilibrium phenomena in plasmas are considered. The interaction between radiation and matter is described, together with various types of radiation (e.g., cyclotron, synchrotron, bremsstrahlung, Compton). The basic theory of polarization is explained, as is the theory of radiative transfer for astrophysical applications. Atomic Spectroscopy and Radiative Processes bridges the gap between basic books on atomic spectroscopy and the very specialized publications for the advanced researcher: it will provide under- and postgraduates with a clear in-depth description of theoretical aspects, supported by practical examples of applications.

  14. Multielectron effects in atomic processes

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Chernysheva, L.V.

    1999-01-01

    One demonstrates a prominent role of electron collectivization in atoms and quasi-atomic formations. Paper discusses in detail the approximation of random phases with exchange enabling to take account of these effects. One points out the necessity to go outside the terms of the approximation when studying some processes via combination of the approximation with the theory of disturbances. The results of the recently conducted estimations of cross sections of photoionization of atomic iodine and of its positive and negative ions, Xe + single-electron photoionization, resonance-amplified emission of photons in electron collisions with atoms and quasi-atomic formations, non-dipole corrections to the angular distribution of photoelectrons, probabilities of two electron transitions where the whole amount of energy releases in the form of one photon, illustrate the role of the collective effects [ru

  15. Optical angular momentum and atoms

    Science.gov (United States)

    2017-01-01

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom’s angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light’s OAM, aiding our fundamental understanding of light–matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069766

  16. Electromagnetic transitions in the atom

    International Nuclear Information System (INIS)

    Ulehla, I.; Suk, M.; Trka, Z.

    1990-01-01

    Methods to achieve excitation of atoms are outlined and conditions necessary for the occurrence of electromagnetic transitions in the atomic shell are given. Radiative transitions between the energy states of the atom include stimulated absorption, spontaneous emission, and stimulated emission. Selection rules applying to the majority of observed transitions are given. The parity concept is explained. It is shown how the electromagnetic field and its interaction with the magnetic moment of the atom lead to a disturbance of the energy states of the atom and the occurrence of various electro-optical and magneto-optical phenomena. The Stark effect and electron spin resonance are described. X-rays and X-ray spectra, the Auger effect and the internal photoeffect are also dealt with. The principle of the laser is explained. (M.D.). 22 figs., 1 tab

  17. Exotic objects of atomic physics

    Science.gov (United States)

    Eletskii, A. V.

    2017-11-01

    There has been presented a short survey of physical properties, methods of production and exploration as well as directions of practical usage of the objects of atomic physics which are not yet described in detail in modern textbooks and manuals intended for students of technical universities. The family of these objects includes negative and multicharged ions, Rydberg atoms, excimer molecules, clusters. Besides of that, in recent decades this family was supplemented with new nanocarbon structures such as fullerenes, carbon nanotubes and graphene. The textbook “Exotic objects of atomic physics” [1] edited recently contains some information on the above-listed objects of the atomic physics. This textbook can be considered as a supplement to classic courses of atomic physics teaching in technical universities.

  18. Optically polarized atoms understanding light-atom interactions

    CERN Document Server

    Auzinsh, Marcis; Rochester, Simon M

    2010-01-01

    This book is addressed at upper-level undergraduate and graduate students involved in research in atomic, molecular, and optical Physics. It will also be useful to researchers practising in this field. It gives an intuitive, yet sufficiently detailed and rigorous introduction to light-atom interactions with a particular emphasis on the symmetry aspects of the interaction, especially those associated with the angular momentum of atoms and light. The book will enable readers to carryout practical calculations on their own, and is richly illustrated with examples drawn from current research topic

  19. Atom interferometry with trapped Bose-Einstein condensates: impact of atom-atom interactions

    International Nuclear Information System (INIS)

    Grond, Julian; Hohenester, Ulrich; Mazets, Igor; Schmiedmayer, Joerg

    2010-01-01

    Interferometry with ultracold atoms promises the possibility of ultraprecise and ultrasensitive measurements in many fields of physics, and is the basis of our most precise atomic clocks. Key to a high sensitivity is the possibility to achieve long measurement times and precise readout. Ultracold atoms can be precisely manipulated at the quantum level and can be held for very long times in traps; they would therefore be an ideal setting for interferometry. In this paper, we discuss how the nonlinearities from atom-atom interactions, on the one hand, allow us to efficiently produce squeezed states for enhanced readout and, on the other hand, result in phase diffusion that limits the phase accumulation time. We find that low-dimensional geometries are favorable, with two-dimensional (2D) settings giving the smallest contribution of phase diffusion caused by atom-atom interactions. Even for time sequences generated by optimal control, the achievable minimal detectable interaction energy ΔE min is of the order of 10 -4 μ, where μ is the chemical potential of the Bose-Einstein condensate (BEC) in the trap. From these we have to conclude that for more precise measurements with atom interferometers, more sophisticated strategies, or turning off the interaction-induced dephasing during the phase accumulation stage, will be necessary.

  20. Atomic energy review

    International Nuclear Information System (INIS)

    1971-01-01

    The ATOMIC ENERGY REVIEW (AER), a periodical started in 1963 in accordance with the recommendation made by the Scientific Advisory Committee, is now preparing for its tenth year of publication. The journal appears quarterly (ca 900 pages/year) and occasionally has special issues and supplements. From 1963 to 1971 AER developed into an important international high-standard scientific journal which keeps scientists in Member States informed on progress in various fields of nuclear energy. The Agency's specific role of helping 'developing countries to further their science and education' is reflected in the publication policy of the journal. The subject scope of AER, which was determined at the journal's inception, is very broad. It covers topics in experimental and theoretical physics, nuclear electronics and equipment, physics and technology of reactors and reactor materials and fuels, radio-chemistry, and industrial, medical and other uses of radioisotopes. In other words, almost any subject related to the peaceful application of nuclear energy can qualify for inclusion. Specifically, at any particular time the selection criteria for topics are influenced by the Agency's current programme and interests. AER carries comprehensive review articles, critical state-of-the-art and current awareness surveys, and reports on the important meetings organized or sponsored by the Agency. The following four subsections gradually became necessary to do justice to this variety of material: 'Reviews' proper, 'Current Research and Development', 'Special Item' and 'Conferences and Symposia'. Apart from the conference reports, one hundred and twenty-five reviews, almost all of which were published in English to make them accessible to a wide public, have so far been published

  1. Giant light enhancement in atomic clusters

    International Nuclear Information System (INIS)

    Gadomsky, O. N.; Gadomskaya, I. V.; Altunin, K. K.

    2009-01-01

    We show that the polarizing effect of the atoms in an atomic cluster can lead to full compensation of the radiative damping of excited atomic states, a change in the sign of the dispersion of the atomic polarizability, and giant light enhancement by the atomic cluster.

  2. Atomization of volatile compounds for atomic absorption and atomic fluorescence spectrometry: On the way towards the ideal atomizer

    International Nuclear Information System (INIS)

    Dedina, Jiri

    2007-01-01

    This review summarizes and discusses the individual atomizers of volatile compounds. A set of criteria important for analytical praxis is used to rank all the currently existing approaches to the atomization based on on-line atomization for atomic absorption (AAS) and atomic fluorescence spectrometry (AFS) as well as on in-atomizer trapping for AAS. Regarding on-line atomization for AAS, conventional quartz tubes are currently the most commonly used devices. They provide high sensitivity and low baseline noise. Running and investment costs are low. The most serious disadvantage is the poor resistance against atomization interferences and often unsatisfactory linearity of calibration graphs. Miniature diffusion flame (MDF) is extremely resistant to interferences, simple, cheap and user-friendly. Its essential disadvantage is low sensitivity. A novel device, known as a multiatomizer, was designed to overcome disadvantages of previous atomizers. It matches performance of conventional quartz tubes in terms of sensitivity and baseline noise as well as in running and investment costs. The multiatomizer, however, provides much better (i) resistance against atomization interferences and (ii) linearity of calibration graphs. In-atomizer trapping enhances the sensitivity of the determination and eliminates the effect of the generation kinetics and of surges in gas flow on the signal shape. This is beneficial for the accuracy of the determination. It could also be an effective tool for reducing some interferences in the liquid phase. In-situ trapping in graphite furnaces (GF) is presently by far the most popular approach to the in-atomizer trapping. Its resistance against interferences is reasonably good and it can be easily automated. In-situ trapping in GF is a mature method well established in various application fields. These are the reasons to rank in-situ trapping in GF as currently the most convenient approach to hydride atomization for AAS. The recently suggested

  3. PubChem atom environments.

    Science.gov (United States)

    Hähnke, Volker D; Bolton, Evan E; Bryant, Stephen H

    2015-01-01

    Atom environments and fragments find wide-spread use in chemical information and cheminformatics. They are the basis of prediction models, an integral part in similarity searching, and employed in structure search techniques. Most of these methods were developed and evaluated on the relatively small sets of chemical structures available at the time. An analysis of fragment distributions representative of most known chemical structures was published in the 1970s using the Chemical Abstracts Service data system. More recently, advances in automated synthesis of chemicals allow millions of chemicals to be synthesized by a single organization. In addition, open chemical databases are readily available containing tens of millions of chemical structures from a multitude of data sources, including chemical vendors, patents, and the scientific literature, making it possible for scientists to readily access most known chemical structures. With this availability of information, one can now address interesting questions, such as: what chemical fragments are known today? How do these fragments compare to earlier studies? How unique are chemical fragments found in chemical structures? For our analysis, after hydrogen suppression, atoms were characterized by atomic number, formal charge, implicit hydrogen count, explicit degree (number of neighbors), valence (bond order sum), and aromaticity. Bonds were differentiated as single, double, triple or aromatic bonds. Atom environments were created in a circular manner focused on a central atom with radii from 0 (atom types) up to 3 (representative of ECFP_6 fragments). In total, combining atom types and atom environments that include up to three spheres of nearest neighbors, our investigation identified 28,462,319 unique fragments in the 46 million structures found in the PubChem Compound database as of January 2013. We could identify several factors inflating the number of environments involving transition metals, with many

  4. Spontaneous emission by moving atoms

    International Nuclear Information System (INIS)

    Meystre, P.; Wilkens, M.

    1994-01-01

    It is well known that spontaneous emission is not an intrinsic atomic property, but rather results from the coupling of the atom to the vacuum modes of the electromagnetic field. As such, it can be modified by tailoring the electromagnetic environment into which the atom can radiate. This was already realized by Purcell, who noted that the spontaneous emission rate can be enhanced if the atom placed inside a cavity is resonant with one of the cavity is resonant with one of the cavity modes, and by Kleppner, who discussed the opposite case of inhibited spontaneous emission. It has also been recognized that spontaneous emission need not be an irreversible process. Indeed, a system consisting of a single atom coupled to a single mode of the electromagnetic field undergoes a periodic exchange of excitation between the atom and the field. This periodic exchange remains dominant as long as the strength of the coupling between the atom and a cavity mode is itself dominant. 23 refs., 6 figs

  5. Atom Optics in a Nutshell

    Science.gov (United States)

    Meystre, Pierre

    This chapter presents a brief introduction to atom optics, assuming only a basic knowledge of elementary physics ideas such as conservation of energy and conservation of momentum, and making only limited use of elementary algebra. Starting from a historical perspective we introduce the idea of wave-particle duality, a fundamental tenet of quantum mechanics that teaches us that atoms, just like light, behave sometimes as waves, and sometimes as particles. It is this profound but counter-intuitive property that allows one to do with atoms much of what is familiar from conventional optics. However, because in contrast to photons atoms have a mass, there are also fundamental differences between the two that have important consequences. In particular this property opens up a number of applications that are ill-suited for conventional optical methods. After explaining why it is particularly advantageous to work at temperatures close to absolute zero to benefit most readily from the wave nature of atoms we discuss several of these applications, concentrating primarily on the promise of atom microscopes and atom interferometers in addressing fundamental and extraordinarily challenging questions at the frontier of current physics knowledge.

  6. Classical approach in atomic physics

    International Nuclear Information System (INIS)

    Solov'ev, E.A.

    2011-01-01

    The application of a classical approach to various quantum problems - the secular perturbation approach to quantization of a hydrogen atom in external fields and a helium atom, the adiabatic switching method for calculation of a semiclassical spectrum of a hydrogen atom in crossed electric and magnetic fields, a spontaneous decay of excited states of a hydrogen atom, Gutzwiller's approach to Stark problem, long-lived excited states of a helium atom discovered with the help of Poincare section, inelastic transitions in slow and fast electron-atom and ion-atom collisions - is reviewed. Further, a classical representation in quantum theory is discussed. In this representation the quantum states are treated as an ensemble of classical states. This approach opens the way to an accurate description of the initial and final states in classical trajectory Monte Carlo (CTMC) method and a purely classical explanation of tunneling phenomenon. The general aspects of the structure of the semiclassical series such as renormalization group symmetry, criterion of accuracy and so on are reviewed as well. (author)

  7. A linear atomic quantum coupler

    Energy Technology Data Exchange (ETDEWEB)

    El-Orany, Faisal A A [Department of Mathematics and computer Science, Faculty of Science, Suez Canal University 41522, Ismailia (Egypt); Wahiddin, M R B, E-mail: el_orany@hotmail.co, E-mail: faisal.orany@mimos.m, E-mail: mridza@mimos.m [Cyberspace Security Laboratory, MIMOS Berhad, Technology Park Malaysia, 57000 Kuala Lumpur (Malaysia)

    2010-04-28

    In this paper we develop the notion of the linear atomic quantum coupler. This device consists of two modes propagating into two waveguides, each of which includes a localized atom. These waveguides are placed close enough to allow exchange of energy between them via evanescent waves. Each mode interacts with the atom in the same waveguide in the standard way as the Jaynes-Cummings model (JCM) and with the atom-mode system in the second waveguide via the evanescent wave. We present the Hamiltonian for this system and deduce its wavefunction. We investigate the atomic inversions and the second-order correlation function. In contrast to the conventional coupler the atomic quantum coupler is able to generate nonclassical effects. The atomic inversions can exhibit a long revival-collapse phenomenon as well as subsidiary revivals based on the competition among the switching mechanisms in the system. Finally, under certain conditions the system can yield the results of the two-mode JCM.

  8. Electronic structure of atoms: atomic spectroscopy information system

    International Nuclear Information System (INIS)

    Kazakov, V V; Kazakov, V G; Kovalev, V S; Meshkov, O I; Yatsenko, A S

    2017-01-01

    The article presents a Russian atomic spectroscopy, information system electronic structure of atoms (IS ESA) (http://grotrian.nsu.ru), and describes its main features and options to support research and training. The database contains over 234 000 records, great attention paid to experimental data and uniform filling of the database for all atomic numbers Z, including classified levels and transitions of rare earth and transuranic elements and their ions. Original means of visualization of scientific data in the form of spectrograms and Grotrian diagrams have been proposed. Presentation of spectral data in the form of interactive color charts facilitates understanding and analysis of properties of atomic systems. The use of the spectral data of the IS ESA together with its functionality is effective for solving various scientific problems and training of specialists. (paper)

  9. Electronic structure of atoms: atomic spectroscopy information system

    Science.gov (United States)

    Kazakov, V. V.; Kazakov, V. G.; Kovalev, V. S.; Meshkov, O. I.; Yatsenko, A. S.

    2017-10-01

    The article presents a Russian atomic spectroscopy, information system electronic structure of atoms (IS ESA) (http://grotrian.nsu.ru), and describes its main features and options to support research and training. The database contains over 234 000 records, great attention paid to experimental data and uniform filling of the database for all atomic numbers Z, including classified levels and transitions of rare earth and transuranic elements and their ions. Original means of visualization of scientific data in the form of spectrograms and Grotrian diagrams have been proposed. Presentation of spectral data in the form of interactive color charts facilitates understanding and analysis of properties of atomic systems. The use of the spectral data of the IS ESA together with its functionality is effective for solving various scientific problems and training of specialists.

  10. Atomization mechanisms for barium in furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Styris, D.L.

    1984-01-01

    Atomic absorption spectrometry and mass spectrometry are used simultaneously in order to elucidate atomization mechanisms of barium dichloride in pyrolytic graphite, vitreous carbon, and tantalum furnaces. Gas-phase barium dicarbide is observed to appear concurrently with the free barium. Barium oxide and barium dihydroxide precursors appear with the chlorides. Surface reactions involving species that are absorbed on the various furnaces are postulated to explain the appearances of the species that are observed in the gas phase. 49 references, 4 figures, 1 table

  11. Observation of relativistic antihydrogen atoms

    International Nuclear Information System (INIS)

    Blanford, Glenn DelFosse

    1998-01-01

    An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 0 production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e + e - pair creation near a nucleus with the e + being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure

  12. Quantum Electronics for Atomic Physics

    CERN Document Server

    Nagourney, Warren

    2010-01-01

    Quantum Electronics for Atomic Physics provides a course in quantum electronics for researchers in atomic physics. The book covers the usual topics, such as Gaussian beams, cavities, lasers, nonlinear optics and modulation techniques, but also includes a number of areas not usually found in a textbook on quantum electronics. It includes such practical matters as the enhancement of nonlinear processes in a build-up cavity, impedance matching into a cavity, laser frequencystabilization (including servomechanism theory), astigmatism in ring cavities, and atomic/molecular spectroscopic techniques

  13. Correlations between interacting Rydberg atoms

    DEFF Research Database (Denmark)

    Paris-Mandoki, Asaf; Braun, Christoph; Hofferberth, Sebastian

    2018-01-01

    This paper is a short introduction to Rydberg physics and quantum nonlinear optics using Rydberg atoms. It has been prepared as a compliment to a series of lectures delivered during the Latin American School of Physics "Marcos Moshinsky" 2017. We provide a short introduction to the properties...... of individual Rydberg atoms and discuss in detail how the interaction potential between Rydberg atom pairs is calculated. We then discuss how this interaction gives rise to the Rydberg blockade mechanism. With the aid of hallmark experiments in the field applications of the blockade for creating correlated...

  14. Mechanical filter for alkali atoms

    CERN Document Server

    Toporkov, D K

    2000-01-01

    A device for separating gases of different mass is discussed. Such a device could be used in a laser-driven spin exchange source of polarized hydrogen atoms to reduce the contamination of alkali atoms. A Monte Carlo simulation has shown that the suggested apparatus based on a commercial turbo pump could reduce by a factor of 10-15 the concentration of the alkali-metal atoms in the hydrogen flow from a laser driven polarized source. This would greatly enhance the effective polarization in hydrogen targets.

  15. Detecting device of atomic probe

    International Nuclear Information System (INIS)

    Nikonenkov, N.V.

    1979-01-01

    Operation of an atomic-probe recording device is discussed in detail and its flowsheet is given. The basic elements of the atomic-probe recording device intented for microanalysis of metals and alloys in an atomic level are the storage oscillograph with a raster-sweep unit, a two-channel timer using frequency meters, a digital printer, and a control unit. The digital printer records information supplied by four digital devices (two frequency meters and two digital voltmeters) in a four-digit binary-decimal code. The described device provides simultaneous recording of two ions produced per one vaporation event

  16. Sample Preprocessing For Atomic Spectrometry

    International Nuclear Information System (INIS)

    Kim, Sun Tae

    2004-08-01

    This book gives descriptions of atomic spectrometry, which deals with atomic absorption spectrometry such as Maxwell-Boltzmann equation and Beer-Lambert law, atomic absorption spectrometry for solvent extraction, HGAAS, ETASS, and CVAAS and inductively coupled plasma emission spectrometer, such as basic principle, generative principle of plasma and device and equipment, and interferences, and inductively coupled plasma mass spectrometry like device, pros and cons of ICP/MS, sample analysis, reagent, water, acid, flux, materials of experiments, sample and sampling and disassembling of sample and pollution and loss in open system and closed system.

  17. Review of atomic mass formula

    Energy Technology Data Exchange (ETDEWEB)

    Tachibana, Takahiro [Waseda Univ., Tokyo (Japan). Advanced Research Center for Science and Engineering

    1997-07-01

    Wapstra and Audi`s Table is famous for evaluation of experimental data of atomic nuclear masses (1993/1995 version) which estimated about 2000 kinds of nuclei. The error of atomic mass of formula is 0.3 MeV-0.8 MeV. Four kinds of atomic mass formula: JM (Jaenecke and Masson), TUYY (Tachibana, Uno, Yamada and Yamada), FRDM (Moeller, Nix, Myers and Swiatecki) and ETFSI (Aboussir, Pearson, Dutta and Tondeur) and their properties (number of parameter and error etc.) were explained. An estimation method of theoretical error of mass formula was presented. It was estimated by the theoretical error of other surrounding nuclei. (S.Y.)

  18. Fundamentals in hadronic atom theory

    CERN Document Server

    Deloff, A

    2003-01-01

    Hadronic atoms provide a unique laboratory for studying hadronic interactions essentially at threshold. This text is the first book-form exposition of hadronic atom theory with emphasis on recent developments, both theoretical and experimental. Since the underlying Hamiltonian is a non-self-adjoined operator, the theory goes beyond traditional quantum mechanics and this book covers topics that are often glossed over in standard texts on nuclear physics. The material contained here is intended for the advanced student and researcher in nuclear, atomic or elementary-particle physics. A good know

  19. Atomic collisions involving pulsed positrons

    DEFF Research Database (Denmark)

    Merrison, J. P.; Bluhme, H.; Field, D.

    2000-01-01

    Conventional slow positron beams have been widely and profitably used to study atomic collisions and have been instrumental in understanding the dynamics of ionization. The next generation of positron atomic collision studies are possible with the use of charged particle traps. Not only can large...... instantaneous intensities be achieved with in-beam accumulation, but more importantly many orders of magnitude improvement in energy and spatial resolution can be achieved using positron cooling. Atomic collisions can be studied on a new energy scale with unprecedented precion and control. The use...

  20. AtomPy: an open atomic-data curation environment

    Science.gov (United States)

    Bautista, Manuel; Mendoza, Claudio; Boswell, Josiah S; Ajoku, Chukwuemeka

    2014-06-01

    We present a cloud-computing environment for atomic data curation, networking among atomic data providers and users, teaching-and-learning, and interfacing with spectral modeling software. The system is based on Google-Drive Sheets, Pandas (Python Data Analysis Library) DataFrames, and IPython Notebooks for open community-driven curation of atomic data for scientific and technological applications. The atomic model for each ionic species is contained in a multi-sheet Google-Drive workbook, where the atomic parameters from all known public sources are progressively stored. Metadata (provenance, community discussion, etc.) accompanying every entry in the database are stored through Notebooks. Education tools on the physics of atomic processes as well as their relevance to plasma and spectral modeling are based on IPython Notebooks that integrate written material, images, videos, and active computer-tool workflows. Data processing workflows and collaborative software developments are encouraged and managed through the GitHub social network. Relevant issues this platform intends to address are: (i) data quality by allowing open access to both data producers and users in order to attain completeness, accuracy, consistency, provenance and currentness; (ii) comparisons of different datasets to facilitate accuracy assessment; (iii) downloading to local data structures (i.e. Pandas DataFrames) for further manipulation and analysis by prospective users; and (iv) data preservation by avoiding the discard of outdated sets.