WorldWideScience

Sample records for uf membranes incorporating

  1. Dynamic coating of mf/uf membranes for fouling mitigation

    KAUST Repository

    Tabatabai, S. Assiyeh Alizadeh; Leiknes, TorOve

    2017-01-01

    A membrane system including an anti-fouling layer and a method of applying an anti-fouling layer to a membrane surface are provided. In an embodiment, the surface is a microfiltration (MF) or an ultrafiltration (UF) membrane surface. The anti

  2. Treatment of car wash wastewater by UF membranes

    Science.gov (United States)

    Istirokhatun, Titik; Destianti, Puti; Hargianintya, Adenira; Oktiawan, Wiharyanto; Susanto, Heru

    2015-12-01

    The existence of car wash service facilitates car owners to remove dirt and grime from their vehicles. However, the dirt washed off vehicles as well as the cleaning materials themselves may be harmful to the environment if they are not properly managed and discharged. Many technologies have been proposed to treat car wash wastewater such as coagulation flocculation, tricking filter and flocculation-flotation. Nevertheless, these technologies have low efficiency to eliminate oil and small organic compounds. Ultrafiltration (UF) membranes were used in this study to treat car wash wastewater. This study investigated the performance of UF membranes under various pressures to remove COD, oil and grease, and also turbidity from car wash waste water. The membrane performance was examined by investigation of permeate flux and membrane rejection. The results meet the standard of environmental regulation and it is possible to be reused. The highest rejection was shown by PES10 (polyethersulfone 10 kDa) in 1 bar operation with complete rejection for both turbidity and oil and grace and 95% rejection for COD.

  3. Recycling Cellulase from Enzymatic Hydrolyzate of Laser-Pretreated Corn Stover by UF Membrane

    Directory of Open Access Journals (Sweden)

    Shuang-Qi Tian

    2015-09-01

    Full Text Available The ultrafiltration membrane reactor, utilizing a membrane module with a suitable molecular weight alleyway, retains the larger cellulase components. Smaller molecules, such as the fermentable reducing sugars and water, pass through the membrane. The purpose of this work was to investigate the capability of recycling cellulase in the UF membrane. PS30 hollow fiber membrane, an ultrafiltration method using internal pressure, was found to be an ideal membrane separation device, allowing re-use of the enzyme. A Box-Behnken experimental design (BBD established the following optimum pretreatment parameters: operation pressure at 1.73 bar, temperature at 36.38 °C, and a pH of 5.92. Under these conditions, the model predicted a membrane flux yield of 2.3174 L/(m2•h. The rejection rate of the UF membrane was over 95%.

  4. Tight ceramic UF membrane as RO pre-treatment: the role of electrostatic interactions on phosphate rejection.

    Science.gov (United States)

    Shang, Ran; Verliefde, Arne R D; Hu, Jingyi; Zeng, Zheyi; Lu, Jie; Kemperman, Antoine J B; Deng, Huiping; Nijmeijer, Kitty; Heijman, Sebastiaan G J; Rietveld, Luuk C

    2014-01-01

    Phosphate limitation has been reported as an effective approach to inhibit biofouling in reverse osmosis (RO) systems for water purification. The rejection of dissolved phosphate by negatively charged TiO2 tight ultrafiltration (UF) membranes (1 kDa and 3 kDa) was observed. These membranes can potentially be adopted as an effective process for RO pre-treatment in order to constrain biofouling by phosphate limitation. This paper focuses on electrostatic interactions during tight UF filtration. Despite the larger pore size, the 3 kDa ceramic membrane exhibited greater phosphate rejection than the 1 kDa membrane, because the 3 kDa membrane has a greater negative surface charge and thus greater electrostatic repulsion against phosphate. The increase of pH from 6 to 8.5 led to a substantial increase in phosphate rejection by both membranes due to increased electrostatic repulsion. At pH 8.5, the maximum phosphate rejections achieved by the 1 kDa and 3 kDa membrane were 75% and 86%, respectively. A Debye ratio (ratio of the Debye length to the pore radius) is introduced in order to evaluate double layer overlapping in tight UF membranes. Threshold Debye ratios were determined as 2 and 1 for the 1 kDa and 3 kDa membranes, respectively. A Debye ratio below the threshold Debye ratio leads to dramatically decreased phosphate rejection by tight UF membranes. The phosphate rejection by the tight UF, in combination with chemical phosphate removal by coagulation, might accomplish phosphate-limited conditions for biological growth and thus prevent biofouling in the RO systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. The feasibility of nanofiltration membrane bioreactor (NF-MBR)+reverse osmosis (RO) process for water reclamation: Comparison with ultrafiltration membrane bioreactor (UF-MBR)+RO process.

    Science.gov (United States)

    Tay, Ming Feng; Liu, Chang; Cornelissen, Emile R; Wu, Bing; Chong, Tzyy Haur

    2018-02-01

    This study examines the feasibility of a novel nanofiltration membrane bioreactor (NF-MBR) followed by reverse osmosis (RO) process for water reclamation at 90% recovery and using an ultrafiltration MBR (UF-MBR)+RO as baseline for comparison. Both MBRs adopted the same external hollow fiber membrane configurations and operating conditions. The collected permeates of the MBRs were subsequently fed to the respective RO systems. The results showed that the NF-MBR (operated at a constant flux of 10 L/m 2 h) achieved superior MBR permeate quality due to enhanced biodegradation and high rejection capacity of the NF membrane, leading to lower RO fouling rates (∼3.3 times) as compared to the UF-MBR. Further analysis indicated that the cake layer fouling that caused the cake-enhanced osmotic pressure (CEOP) effect contributed predominantly to the transmembrane pressure (TMP) increase in the NF-MBR, while irreversible pore fouling was the major reason for UF membrane fouling. Furthermore, it was found that the biopolymers (i.e., organics with MW > 10 kDa) were the main components present in the foulants of the NF/UF membranes and RO membranes. The analysis indicated that the NF-MBR + RO system at recovery of 90% has comparable energy consumption as the UF-MBR + RO system at recovery of 75%. Our findings proved the feasibility of the NF-MBR + RO for water reclamation at a high recovery rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Dynamic coating of mf/uf membranes for fouling mitigation

    KAUST Repository

    Tabatabai, S. Assiyeh Alizadeh

    2017-01-19

    A membrane system including an anti-fouling layer and a method of applying an anti-fouling layer to a membrane surface are provided. In an embodiment, the surface is a microfiltration (MF) or an ultrafiltration (UF) membrane surface. The anti-fouling layer can include a stimuli responsive layer and a dynamic protective layer applied over the stimuli responsive layer that can be a coating on a surface of the membrane. The stimuli responsive polymer layer can act as an adhesive prior to coating with the dynamic protective layer to aid in adhering the dynamic protective layer to the membrane surface. The dynamic protective layer can be formed by suitable nanoparticles that can prevent adhesion of foulants directly to the membrane surface. The stimuli responsive layer can be responsive to physio- chemical stimuli to cause a release of the stimuli responsive layer and the dynamic protective layer including foulants from the membrane.

  7. Experimental study of lactose hydrolysis and separation in cstr-uf membrane reactor

    Directory of Open Access Journals (Sweden)

    M. Namvar-Mahboub

    2012-09-01

    Full Text Available In this study, the effect of processing conditions on the performance of continuous stirred tank -ultrafiltration (CSTR-UF in dead - end mode was investigated. An UF membrane with a molecular weight cutoff of 3 kDa made of regenerated cellulose material was used to separate enzyme from products. The effect of operating pressure ranging between 2 and 5 bar and time on the performance of the CSTR-UF system was studied. The experiments were performed with a 0.139 molar aqueous solution of lactose as feed. According to the experimental data, the lactose concentration in the permeate decreased with time due to concentration polarization and hydrolysis. It was found that the rejection factor of lactose increases from 33 to 77% with time from 5 to 85 min. Permeation flux of the membrane was evaluated in terms of pure water flux (PWF and lactose aqueous solution. Results showed that a high operating pressure led to a high permeation flux for both mentioned cases. Also, adding lactose and enzyme to pure water caused a reduction of the permeation flux due to concentration polarization.

  8. Optimizing UF Cleaning in UF-SWRO System Using Red Sea Water

    KAUST Repository

    Bahshwan, Mohanad

    2012-07-01

    Increasing demand for fresh water in arid and semi-arid areas, similar to the Middle East, pushed for the use of seawater desalination techniques to augment freshwater. Seawater Reverse Osmosis (SWRO) is one of the techniques that have been commonly used due to its cost effectiveness. Recently, the use of Ultrafiltration (UF) was recommended as an effective pretreatment for SWRO membranes, as opposed to conventional methods (i.e. sand filtration). During UF operation, intermittent cleaning is required to remove particles and contaminants from the membrane\\'s surface and pores. The different cleaning steps consume chemicals and portion of the product water, resulting in a decrease in the overall effectiveness of the process and hence an increase in the production cost. This research focused on increasing the plant\\'s efficiency through optimizing the cleaning protocol without jeopardizing the effectiveness of the cleaning process. For that purpose, the design of experiment (DOE) focused on testing different combinations of these cleaning steps while all other parameters (such as filtration flux or backwash flux) remained constant. The only chemical used was NaOCI during the end of each experiment to restore the trans-membrane pressure (TMP) to its original state. Two trains of Dow™ Ultrafiltration SFP-2880 were run in parallel for this study. The first train (named UF1) was kept at the manufacturer\\'s recommended cleaning steps and frequencies, while the second train (named UF2) was varied according to the DOE. The normalized final TMP was compared to the normalized initial TMP to measure the fouling rate of the membrane at the end of each experiment. The research was supported by laboratory analysis to investigate the cause of the error in the data by analyzing water samples collected at different locations. Visual inspection on the results from the control unit showed that the data cannot be reproduced with the current feed water quality. Statistical analysis

  9. Impact of Acid Cleaning on the Performance of PVDF UF Membranes in Seawater Reverse Osmosis Pretreatment

    KAUST Repository

    Alsogair, Safiya

    2016-01-01

    required to maintain the characteristics of the membrane. This research was made with the purpose of investigating the effects of acid cleaning during chemically enhanced backwashing (CEB) on the performance of ultrafiltration (UF) membranes in seawater

  10. Fate of antibiotics in activated sludge followed by ultrafiltration (CAS-UF) and in a membrane bioreactor (MBR).

    Science.gov (United States)

    Sahar, Eyal; Messalem, Rami; Cikurel, Haim; Aharoni, Avi; Brenner, Asher; Godehardt, Manuel; Jekel, Martin; Ernst, Mathias

    2011-10-15

    The fates of several macrolide, sulphonamide, and trimethoprim antibiotics contained in the raw sewage of the Tel-Aviv wastewater treatment plant (WWTP) were investigated after the sewage was treated using either a full-scale conventional activated sludge (CAS) system coupled with a subsequent ultrafiltration (UF) step or a pilot membrane bioreactor (MBR) system. Antibiotics removal in the MBR system, once it achieved stable operation, was 15-42% higher than that of the CAS system. This advantage was reduced to a maximum of 20% when a UF was added to the CAS. It was hypothesized that the contribution of membrane separation (in both systems) to antibiotics removal was due either to sorption to biomass (rather than improvement in biodegradation) or to enmeshment in the membrane biofilm (since UF membrane pores are significantly larger than the contaminant molecules). Batch experiments with MBR biomass showed a markedly high potential for sorption of the tested antibiotics onto the biomass. Moreover, methanol extraction of MBR biomass released significant amounts of sorbed antibiotics. This finding implies that more attention must be devoted to the management of excess sludge. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Improved separation and antifouling properties of thin-film composite nanofiltration membrane by the incorporation of cGO

    Science.gov (United States)

    Li, Hongbin; Shi, Wenying; Du, Qiyun; Zhou, Rong; Zhang, Haixia; Qin, Xiaohong

    2017-06-01

    Poly(piperazine amide) composite nanofiltration (NF) membranes were modified through the incorporation of carboxylated graphene oxide (cGO) in the polyamide layer during the interfacial polymerization (IP) process on the polysulfone (PSF)/nonwoven fabric (NWF) ultrafiltration (UF) substrate membrane surface. The composition and morphology of the prepared NF membrane surface were determined by means of ATR-FTIR, SEM-EDX and AFM. The effects of cGO contents on membrane hydrophilicity, separation performance and antifouling properties were investigated through Water Contact Angle (WCA) analysis, the permeance and three-cycle fouling measurements. The growth model of cGO-incorporated polyamide thin-film was proposed. Compared to the original NF membranes, the surface hydrophilicity, water permeability, salt rejection and antifouling properties of the cGO-incorporated NF membrane had all improved. When cGO content was 100 ppm, the MgSO4 rejection of composite NF membrane reached a maximum value of 99.2% meanwhile membrane obtained an obvious enhanced water flux (81.6 L m-2 h-1, at 0.7 MPa) which was nearly three times compared to the virginal NF membrane. The cGO-incorporated NF membrane showed an excellent selectivity of MgSO4 and NaCl with the rejection ratio of MgSO4/NaCl of approximately 8.0.

  12. Tight ceramic UF membrane as RO pre-treatment: The role of electrostatic interactions on phosphate rejection

    NARCIS (Netherlands)

    Shang, R.; Verliefde, A.R.D.; Hu, J.; Zeng, Z; Lu, L.; Lu, L.; Kemperman, Antonius J.B.; Deng, H.; Nijmeijer, Dorothea C.; Heijman, S.G.J.; Rietveld, L.C.

    2014-01-01

    Phosphate limitation has been reported as an effective approach to inhibit biofouling in reverse osmosis (RO) systems for water purification. The rejection of dissolved phosphate by negatively charged TiO2 tight ultrafiltration (UF) membranes (1 kDa and 3 kDa) was observed. These membranes can

  13. Impact of Acid Cleaning on the Performance of PVDF UF Membranes in Seawater Reverse Osmosis Pretreatment

    KAUST Repository

    Alsogair, Safiya

    2016-05-05

    Low-pressure membrane systems such as Microfiltration (MF) and Ultrafiltration (UF) have been presented as viable option to pre-treatment systems in potable water applications. UF membranes are sporadically backwashed with ultra-filtered water to remove deposited matter from the membrane and restore it. Several factors that may cause permeability and selectivity decrease are involved and numerous procedures are applicable to achieve this objective. Membrane cleaning is the most important step required to maintain the characteristics of the membrane. This research was made with the purpose of investigating the effects of acid cleaning during chemically enhanced backwashing (CEB) on the performance of ultrafiltration (UF) membranes in seawater reverse osmosis (SWRO) pretreatment. To accomplish this, the questions made were: Does the acid addition (before or after the alkali CEB) influence the overall CEB cleaning effectiveness on Dow UF membrane? Does the CEB order of alkali (NaOCl) and acid (H2SO4) affect the overall CEB cleaning effectiveness? If yes, which order is better/worse? What is the optimal acid CEB frequency that will ensure the most reliable performance of the UF?. To answer this queries, a series of sequences were carried out with different types of chemical treatments: Only NaOCl, daily NaOCl plus weekly acid, daily NaOCl plus daily acid, and weekly acid plus daily NaOCl. To investigate the consequence of acid by studying the effect of operational data like the trans-pressure membrane, resistance or permeability and support that by the analytical experiments (organic, inorganic and microbial characterization). Microorganisms were removed almost completely at hydraulic cleaning and showed no difference with addition of acid. As a conclusion of the operational data the organic and inorganic chatacterization resulted in the elimination of the first sequence due to the acummulation of fouling over time, which produces that the cleaning increases downtime

  14. Treatment of poultry slaughterhouse wastewater using a static granular bed reactor (SGBR) coupled with ultrafiltration (UF) membrane system.

    Science.gov (United States)

    Basitere, M; Rinquest, Z; Njoya, M; Sheldon, M S; Ntwampe, S K O

    2017-07-01

    The South African poultry industry has grown exponentially in recent years due to an increased demand for their products. As a result, poultry plants consume large volumes of high quality water to ensure that hygienically safe poultry products are produced. Furthermore, poultry industries generate high strength wastewater, which can be treated successfully at low cost using anaerobic digesters. In this study, the performance of a bench-scale mesophilic static granular bed reactor (SGBR) containing fully anaerobic granules coupled with an ultrafiltration (UF) membrane system, as a post-treatment system, was investigated. The poultry slaughterhouse wastewater was characterized by a chemical oxygen demand (COD) range between 1,223 and 9,695mg/L, average biological oxygen demand of 2,375mg/L and average fats, oil and grease (FOG) of 554mg/L. The SGBR anaerobic reactor was operated for 9 weeks at different hydraulic retention times (HRTs), i.e. 55 and 40 h, with an average organic loading rate (OLR) of 1.01 and 3.14g COD/L.day. The SGBR results showed an average COD, total suspended solids (TSS) and FOG removal of 93%, 95% and 90% respectively, for both OLR. The UF post-treatment results showed an average of COD, TSS and FOG removal of 64%, 88% and 48%, respectively. The overall COD, TSS and FOG removal of the system (SGBR and UF membrane) was 98%, 99.8%, and 92.4%, respectively. The results of the combined SGBR reactor coupled with the UF membrane showed a potential to ensure environmentally friendly treatment of poultry slaughterhouse wastewater.

  15. Modeling the improvement of ultrafiltration membrane mass transfer when using biofiltration pretreatment in surface water applications.

    Science.gov (United States)

    Netcher, Andrea C; Duranceau, Steven J

    2016-03-01

    In surface water treatment, ultrafiltration (UF) membranes are widely used because of their ability to supply safe drinking water. Although UF membranes produce high-quality water, their efficiency is limited by fouling. Improving UF filtrate productivity is economically desirable and has been attempted by incorporating sustainable biofiltration processes as pretreatment to UF with varying success. The availability of models that can be applied to describe the effectiveness of biofiltration on membrane mass transfer are lacking. In this work, UF water productivity was empirically modeled as a function of biofilter feed water quality using either a quadratic or Gaussian relationship. UF membrane mass transfer variability was found to be governed by the dimensionless mass ratio between the alkalinity (ALK) and dissolved organic carbon (DOC). UF membrane productivity was optimized when the biofilter feed water ALK to DOC ratio fell between 10 and 14. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Study on treating of low-level radioactive reactor wastewater by combined membrane process (UF-RO)

    International Nuclear Information System (INIS)

    Lu Yunyun; Cao Qiru; Chen Yunming; Huang Lijuan; Bai Xiaofeng; Li Bing; Feng Liang

    2013-01-01

    According to the characteristics of radionuclide exists in the low-level radioactive reactor waste water from HFETR, we use a new combined membrane process separation technology to study the efficient treating of low-lever radioactive reactor wastewater. First, the prepared the simulated wastewater contained Cs + , Sr 2+ , CO 2+ , Ni 2+ , and Fe 3+ . Then, we sequentially investigated the pressure, ion concentration, pH value and EDTA, which have effects on the desalination rate of membrane processing metal ions in wastewater. The results show that: in the condition of pH = 7, and added 0.15 mol/L EDTA, the simulated wastewater separated by UF-RO, desalination rates of Cs + , Sr 2+ , CO 2+ , Ni 2+ and Fe 3+ are all above 95%; In the subsequent trials, adding 0.15 mol/L EDTA into the radioactive residuary solution, and then treating by UF-RO-RO, the decontamination efficiency can reach 95.7%. (authors)

  17. Technical documentation of HGSYSTEM/UF6 model

    International Nuclear Information System (INIS)

    Hanna, S.R.; Chang, J.C.; Zhang, J.X.

    1996-01-01

    MMES has been directed to upgrade the safety analyses for the gaseous diffusion plants at Paducah KY and Piketon OH. These will require assessment of consequences of accidental releases of UF 6 to the atmosphere at these plants. The HGSYSTEM model has been chosen as the basis for evaluating UF 6 releases; it includes dispersion algorithms for dense gases and treats the chemistry and thermodynamics of HF, a major product of the reaction of UF 6 with water vapor in air. Objective of this project was to incorporate additional capability into HGSYSTEM: UF 6 chemistry and thermodynamics, plume lift-off algorithms, and wet and dry deposition. The HGSYSTEM modules are discussed. The hybrid HGSYSTEM/UF 6 model has been evaluated in three ways

  18. Contribution of effluent organic matter (EfOM) to ultrafiltration (UF) membrane fouling: Isolation, characterization, and fouling effect of EfOM fractions

    KAUST Repository

    Zheng, Xing; Khan, Muhammad; Croue, Jean-Philippe

    2014-01-01

    EfOM has been regarded as a major organic foulant resulting in UF membrane fouling in wastewater reclamation. To investigate fouling potential of different EfOM fractions, the present study isolated EfOM into hydrophobic neutrals (HPO-N), colloids

  19. Fouling Removal of UF Membrane with Coated TiO2 Nanoparticles under UV Irradiation for Effluent Recovery during TFT-LCD Manufacturing

    Directory of Open Access Journals (Sweden)

    S. H. You

    2013-01-01

    Full Text Available An ultrafiltration (UF membrane process was employed to treat the secondary effluent discharged from a manufacturing of thin film transistor-liquid crystal display (TFT-LCD in this study. A bench-scale system was performed to evaluate the fouling removal of a UF membrane with coated titanium dioxide (TiO2 nanoparticles under UV irradiation. The operating pressure and feed temperature were controlled at 300 KN/m2 and 25°C, respectively. It was found that the optimum operating conditions were attained with TiO2 concentrations of 10 wt% for both 5 KD and 10 KD MWCO. Continuous UV irradiation of 5 KD MWCO improved the permeate flux rate from 45.0% to 59.5% after 4 hours of operation. SEM-EDS analysis also showed that the photocatalytic effect had reduced the average thickness of cake fouling on the membrane from 6.40 μm to 2.70 μm for 5 KD MWCO and from 6.70 μm to 3.1 μm for 10 KD MWCO. In addition, the membrane contact angle was reduced from 54° to 44°. The photocatalytic properties of TiO2 apparently increased the hydrophilicity of the membrane surface, thereby reducing membrane fouling.

  20. Reactions UF{sub 4} - ClF, UF{sub 4} - ClF{sub 3}, UF{sub 5} - ClF, UF{sub 5} - ClF{sub 3}; Reactions UF{sub 4} - ClF, UF{sub 4} - ClF{sub 3}, UF{sub 5} - ClF, UF{sub 5} - ClF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Luce, M; Benoit, R; Hartmanshenn, O [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    The reaction between ClF{sub 3} and UF{sub 4} is partially explained by the study of the reactions of the three systems: UF{sub 4}-ClF, UF{sub 5}-ClF and UF{sub 5}-ClF{sub 3}. The analytical techniques used are: the micro-sublimation, the infra-red spectroscopy and the thermogravimetry. The origin of the by-products is indicated. (authors) [French] La reaction entre ClF{sub 3} et UF{sub 4} est partiellement expliquee grace a l'etude des reactions des trois systemes UF{sub 4}-ClF, UF{sub 5}-ClF et UF{sub 5}-ClF{sub 3}. Les techniques analytiques utilisees sont: la micro-sublimation, la spectroscopie infrarouge et la thermogravimetrie. L'origine des sous-produits est indiquee. (auteurs)

  1. Investigation of severe UF membrane fouling induced by three marine algal species

    KAUST Repository

    Merle, Tony

    2016-02-06

    Reducing membrane fouling caused by seawater algal bloom is a challenge for regions of the world where most of their freshwater is produced by seawater desalination. This study aims to compare ultrafiltration (UF) fouling potential of three ubiquitous marine algal species cultures (i.e., Skeletonena costatum-SKC, Tetraselmis sp.-TET, and Hymenomonas sp.-HYM) sampled at different phases of growth. Results showed that flux reduction and irreversible fouling were more severe during the decline phase as compared to the exponential phase, for all species. SKC and TET were responsible for substantial irreversible fouling but their impact was significantly lower than HYM. The development of a transparent gel layer surrounding the cell during the HYM growth and accumulating in water is certainly responsible for the more severe observed fouling. Chemical backwash with a standard chlorine solution did not recover any membrane permeability. For TET and HYM, the Hydraulically Irreversible Fouling Index (HIFI) was correlated to their biopolymer content but this correlation is specific for each species. Solution pre-filtration through a 1.2 μm membrane proved that cells and particulate algal organic matter (p-AOM) considerably contribute to fouling, especially for HYM for which the HIFI was reduced by a factor of 82.3.

  2. Separation Properties of Wastewater Containing O/W Emulsion Using Ceramic Microfiltration/Ultrafiltration (MF/UF Membranes

    Directory of Open Access Journals (Sweden)

    Kanji Matsumoto

    2013-06-01

    Full Text Available Washing systems using water soluble detergent are used in electrical and mechanical industries and the wastewater containing O/W emulsion are discharged from these systems. Membrane filtration has large potential for the efficient separation of O/W emulsion for reuses of treated water and detergent. The separation properties of O/W emulsions by cross-flow microfiltration and ultrafiltration were studied with ceramic MF and UF membranes. The effects of pore size; applied pressure; cross-flow velocity; and detergent concentration on rejection of O/W emulsion and flux were systematically studied. At the condition achieving complete separation of O/W emulsion the pressure-independent flux was observed and this flux behavior was explained by gel-polarization model. The O/W emulsion tended to permeate through the membrane at the conditions of larger pore size; higher emulsion concentration; and higher pressure. The O/W emulsion could permeate the membrane pore structure by destruction or deformation. These results imply the stability of O/W emulsion in the gel-layer formed on membrane surface play an important role in the separation properties. The O/W emulsion was concentrated by batch cross-flow concentration filtration and the flux decline during the concentration filtration was explained by the gel- polarization model.

  3. Separation Properties of Wastewater Containing O/W Emulsion Using Ceramic Microfiltration/Ultrafiltration (MF/UF) Membranes

    Science.gov (United States)

    Nakamura, Kazuho; Matsumoto, Kanji

    2013-01-01

    Washing systems using water soluble detergent are used in electrical and mechanical industries and the wastewater containing O/W emulsion are discharged from these systems. Membrane filtration has large potential for the efficient separation of O/W emulsion for reuses of treated water and detergent. The separation properties of O/W emulsions by cross-flow microfiltration and ultrafiltration were studied with ceramic MF and UF membranes. The effects of pore size; applied pressure; cross-flow velocity; and detergent concentration on rejection of O/W emulsion and flux were systematically studied. At the condition achieving complete separation of O/W emulsion the pressure-independent flux was observed and this flux behavior was explained by gel-polarization model. The O/W emulsion tended to permeate through the membrane at the conditions of larger pore size; higher emulsion concentration; and higher pressure. The O/W emulsion could permeate the membrane pore structure by destruction or deformation. These results imply the stability of O/W emulsion in the gel-layer formed on membrane surface play an important role in the separation properties. The O/W emulsion was concentrated by batch cross-flow concentration filtration and the flux decline during the concentration filtration was explained by the gel- polarization model. PMID:24958621

  4. MF/UF rejection and fouling potential of algal organic matter from bloom-forming marine and freshwater algae

    KAUST Repository

    Villacorte, Loreen O.

    2015-07-01

    Pretreatment with microfiltration (MF) or ultrafiltration (UF) membranes has been proposed for seawater reverse osmosis (SWRO) plants to address operational issues associated with algal blooms. Here, we investigated the MF/UF rejection and fouling potential of algal organic matter (AOM) released by common species of bloom-forming marine (Alexandrium tamarense and Chaetoceros affinis) and freshwater (Microcystis sp.) algae. Batch culture monitoring of the three algal species illustrated varying growth pattern, cell concentration, AOM released and membrane fouling potential. The high membrane fouling potential of the cultures can be directly associated (R2>0.85) with AOM such as transparent exopolymer particle (TEP) while no apparent relationship with algal cell concentration was observed. The AOM comprised mainly biopolymers (e.g., polysaccharides and proteins) and low molecular weight organic compounds (e.g., humic-like substances). The former were largely rejected by MF/UF membranes while the latter were poorly rejected. MF (0.4μm and 0.1μm pore size) rejected 14%-56% of biopolymers while conventional UF (100kDa) and tight UF (10kDa) rejected up to 83% and 97%, respectively. The retention of AOM resulted in a rapid increase in trans-membrane pressure (δP) over time, characterised by pore blocking followed by cake filtration with enhanced compression as illustrated by an exponential progression of δP. © 2015 Elsevier B.V.

  5. Sensitivity of UF-R, UF-VCh, UF-VR films used for soft x-ray (lambda=2+10A) detection

    International Nuclear Information System (INIS)

    Aglitskij, E.V.; Bojko, V.A.; Kalinkina, T.A.

    1975-01-01

    The sensitometric characteristics of the following types of photographic film were measured in the range of wavelengths 2-10A: UF-R, UF-VCh, and UF-VR. It was demonstrated that UF-VR photographic film is four times as sensitive as UF-R film and 1.6 times as sensitive as UF-VCh film; it is also most suitable film for x-ray spectroscopy of multiply charged ions and for diagnosing high-temperature laser plasma

  6. Contribution of effluent organic matter (EfOM) to ultrafiltration (UF) membrane fouling: Isolation, characterization, and fouling effect of EfOM fractions

    KAUST Repository

    Zheng, Xing

    2014-11-01

    EfOM has been regarded as a major organic foulant resulting in UF membrane fouling in wastewater reclamation. To investigate fouling potential of different EfOM fractions, the present study isolated EfOM into hydrophobic neutrals (HPO-N), colloids, hydrophobic acids (HPO-A), transphilic neutrals and acids (TPI), and hydrophilics (HPI), and tested their fouling effect in both salt solution and pure water during ultrafiltration (UF). Major functional groups and chemical structure of the isolates were identified using Fourier transform infrared spectroscopy (FT-IR) and solid-state carbon nuclear magnetic resonance (13C NMR) analysis. The influence of the isolation process on the properties of EfOM fractions was minor because the raw and reconstituted secondary effluents were found similar with respect to UV absorbance, molecular size distribution, and fluorescence character. In membrane filtration tests, unified membrane fouling index (UMFI) and hydraulic resistance were used to quantify irreversible fouling potential of different water samples. Results show that under similar DOC level in feed water, colloids present much more irreversible fouling than other fractions. The fouling effect of the isolates is related to their size, chemical properties, and solution chemistry. Further investigations have identified that the interaction between colloids and other fractions also influences the performance of colloids in fouling phenomena. © 2014 Elsevier Ltd.

  7. Hydraulically irreversible fouling on ceramic MF/UF membranes: comparison of fouling indices, foulant composition and irreversible pore narrowing

    KAUST Repository

    Shang, Ran; Vuong, Francois; Hu, Jingyi; Li, Sheng; Kemperman, Antoine J.B.; Nijmeijer, Kitty; Cornelissen, Emile R.; Heijman, Sebastiaan G.J.; Rietveld, Luuk C.

    2015-01-01

    The application of ceramic membranes in water treatment is becoming increasing attractive because of their long life time and excellent chemical, mechanical and thermal stability. However, fouling of ceramic membranes, especially hydraulically irreversible fouling, is still a critical aspect affecting the operational cost and energy consumption in water treatment plants. In this study, four ceramic membranes with pore sizes or molecular weight cut-off (MWCO) of 0.20 μm, 0.14 μm, 300 kDa and 50 kDa were compared during natural surface water filtration with respect to hydraulically irreversible fouling index (HIFI), foulant composition and narrowing of pore size due to the irreversible fouling. Our results showed that the hydraulically irreversible fouling index (HIFI) was proportional to the membrane pore size (r2=0.89) when the same feed water was filtrated. The UF membranes showed lower HIFI values than the MF membranes. Pore narrowing (internal fouling) was found to be a main fouling pattern of the hydraulically irreversible fouling. The internal fouling was caused by monolayer adsorption of foulants with different sizes that is dependent on the size of the membrane pore.

  8. Hydraulically irreversible fouling on ceramic MF/UF membranes: comparison of fouling indices, foulant composition and irreversible pore narrowing

    KAUST Repository

    Shang, Ran

    2015-05-06

    The application of ceramic membranes in water treatment is becoming increasing attractive because of their long life time and excellent chemical, mechanical and thermal stability. However, fouling of ceramic membranes, especially hydraulically irreversible fouling, is still a critical aspect affecting the operational cost and energy consumption in water treatment plants. In this study, four ceramic membranes with pore sizes or molecular weight cut-off (MWCO) of 0.20 μm, 0.14 μm, 300 kDa and 50 kDa were compared during natural surface water filtration with respect to hydraulically irreversible fouling index (HIFI), foulant composition and narrowing of pore size due to the irreversible fouling. Our results showed that the hydraulically irreversible fouling index (HIFI) was proportional to the membrane pore size (r2=0.89) when the same feed water was filtrated. The UF membranes showed lower HIFI values than the MF membranes. Pore narrowing (internal fouling) was found to be a main fouling pattern of the hydraulically irreversible fouling. The internal fouling was caused by monolayer adsorption of foulants with different sizes that is dependent on the size of the membrane pore.

  9. Reactions UF4 - ClO2F and UF5 - ClO2F

    International Nuclear Information System (INIS)

    Benoit, Raymond; Besnard, Ginette; Hartmanshenn, Olivier; Luce, Michel; Mougin, Jacques; Pelissie, Jean

    1970-02-01

    The study of the reaction UF 4 - ClO 2 F between 0 deg. and 100 deg. C, by various techniques (micro-sublimation, isopiestic method, IR and UV spectrography, thermogravimetry and X-ray diffraction) shows that intermediate steps are possible before the production of UF 5 . The whole reaction may be schematised by two equations: (1) n UF 4 + ClO 2 F → n UF x + ClO 2 (4 4 + ClO 2 F → UF x + 1/2 Cl 2 + O 2 . The more the temperature rises, the more the second equation becomes experimentally verified. The reaction at 0 deg. C between UF 5 and ClO 2 F may be represented by: UF 5 + ClO 2 F → UF 6 ClO 2 . The reactions: UF 5 + ClO 2 F → UF 6 + ClO 2 , UF 5 + ClO 2 F → UF 6 + 1/2 Cl 2 + O 2 are verified, the first and the second at 25 deg. C., the second from 50 deg. to 150 deg. C. From the results of AGRON it is possible to predict the residual solids before complete volatilization as UF 6 . The IR spectra of ClO 2 F adsorbed on UF 4 and UF x at 60 deg. C have been compared with those of gaseous ClO 2 F and UF 6 adsorbed on UF 4 . (authors) [fr

  10. Safety provisions for UF{sub 6} handling in the design of a new UF{sub 6} conversion plant

    Energy Technology Data Exchange (ETDEWEB)

    Bannister, S.P. [British Nuclear Fuels plc, Preston (United Kingdom)

    1991-12-31

    British Nuclear Fuels plc (BNFL) Fuel Division is currently undertaking the final design and construction of a new UF{sub 6} conversion plant at its production site at Springfields near Preston in the north of England. The Company has gained much experience in the handling of UF{sub 6} during operation of plants on site since 1961. The major hazard occurs during the liquefication cycle and the basis of the maximum credible incident scenario adopted for safety assessment and design purposes is discussed. This paper considers the design features which have been incorporated in the new plant to counter the hazards presented by the presence of UF{sub 6} in gaseous and liquid form and explains current thinking on operational procedures in areas of potential risk such as cylinder filling. The plant emergency response philosophy and systems are described and specific design provisions which have been included to satisfy the UK regulatory bodies are outlined in some detail.

  11. Uranium isotope exchange between gaseous UF6 and solid UF5

    International Nuclear Information System (INIS)

    Yato, Yumio; Kishimoto, Yoichiro; Sasao, Nobuyuki; Suto, Osamu; Funasaka, Hideyuki

    1996-01-01

    Based on a collision model, a new rate equation is derived for uranium isotope exchange between gaseous UF 6 and solid UF 5 by considering the number of UF 5 molecules on the solid surface to be dependent on time. The reaction parameters included in the equation are determined from the experimental data and compared with the previous ones. A remarkable agreement is found between the particle sizes of UF 5 estimated from the reaction parameter and from the direct observation with an electron microscope. The rate equation given in this work fully satisfies the related mass conservation and furthermore includes explicitly the terms related to the UF 6 density and the mean size of UF 5 particles, both of which are considered to cause an important effect on the reaction. This remarkable feature facilitates the simulation studies on this reaction under various conditions. The long term behavior of a simulated exchange reaction is studied under the condition considered to be close to that in a recovery zone of the MLIS process. The result indicates that the reaction is virtually limited to the solid surface under this conditions and thus the depletion of 235 UF 5 concentration averaged over the whole UF 5 particles is not significant even after 200 h of the exchange reaction

  12. Photoionization mass spectrometry of UF6

    International Nuclear Information System (INIS)

    Berkowitz, J.

    1979-01-01

    The photoionization mass spectrum of 238 UF 6 was obtained. At 600 A = 20.66 eV, the relative ionic abundances were as follows: UF 6 + , 1.4; UF 5 + , 100; UF + , 17; UF 3 + , approx. 0.7; UF 2 + , very weak; UF + , very weak; U + , essentially zero. The adiabatic ionization potential for UF 6 was 13.897 +- 0.005 eV. The production of UF 5 + begins at approx. 887 A = 13.98 eV, at which energy the UF 6 + partial cross section abruptly declines and then levels off. This behavior suggests the vague possibility of an isotope effect. The UF 4 + signal begins at approx. 725 A = 17.10 eV, at which energy the UF 5 + signal reaches a plateau value. The UF 5 + photoionization yield curve displays some autoionization structure from its threshold to approx. 750 A

  13. Enhancement of antibacterial activity in nanofillers incorporated PSF/PVP membranes

    Science.gov (United States)

    Pramila, P.; Gopalakrishnan, N.

    2018-04-01

    An attempt has been made to investigate the nanofillers incorporated polysulfone (PSF) and polyvinylpyrrolidone (PVP) polymer membranes prepared by phase inversion method. Initially, the nanofillers, viz, Zinc Oxide (ZnO) nanoparticle, Graphene Oxide-Zinc Oxide (GO-ZnO) nanocomposite were synthesized and then directly incorporated into PSF/PVP blend during the preparation of membranes. The prepared membranes have been subjected to FE-SEM, AFM, BET, contact angle, tensile test and anti-bacterial studies. Significant membrane morphologies and nanoporous properties have been observed by FE-SEM and BET, respectively. It has been observed that hydrophilicity, mechanical strength and water permeability of the ZnO and GO-ZnO incorporated membranes were enhanced than bare membrane. Antibacterial activity was assessed by measuring the inhibition zones formed around the membrane by disc-diffusion method using Escherichia coli (gram-negative) as a model bacterium. Again, it has been observed that nanofillers incorporated membrane exhibits high antibacterial performance compared to bare membrane.

  14. Studies on (2UF4 + H2 = 2UF3 + 2HF) and vapour pressure of UF3

    International Nuclear Information System (INIS)

    Roy, K.N.; Prasad, R.; Venugopal, V.; Singh, Z.; Sood, D.D.

    1982-01-01

    Equilibrium constants for 2UF 4 (s) + H 2 (g) = 2UF 3 (s) + 2HF(g) have been measured in the temperature range 967 to 1120 K. An expression is given for the results. The results have been treated by second- and third-law methods to obtain ΔH 0 (298.15 K) and the values are given. The value of ΔS 0 (298.15 K) has been calculated by the second-law method. An expression is given for the vapour pressure of UF 3 (s), measured by the transpiration technique in the range 1229 to 1367 K. The standard enthalpy of vaporization ΔH 0 sub(v) (298.15 K) and the standard entropy of vaporization ΔS 0 sub(v) (298.15 K) have been calculated. The vaporization results have also been used for the calculation of ΔH 0 sub(f)(UF 3 , g, 298.15 K) and ΔS 0 sub(f)(UF 3 ,g, 298.15 K). (author)

  15. Antifouling Ultrafiltration Membranes via Post-Fabrication Grafting of Biocidal Nanomaterials

    KAUST Repository

    Mauter, Meagan S.; Wang, Yue; Okemgbo, Kaetochi C.; Osuji, Chinedum O.; Giannelis, Emmanuel P.; Elimelech, Menachem

    2011-01-01

    Figure Presented: Ultrafiltration (UF) membranes perform critical pre-treatment functions in advanced water treatment processes. In operational systems, however, biofouling decreases membrane performance and increases the frequency and cost of chemical cleaning. The present work demonstrates a novel technique for covalently or ionically tethering antimicrobial nanoparticles to the surface of UF membranes. Silver nanoparticles (AgNPs) encapsulated in positively charged polyethyleneimine (PEI) were reacted with an oxygen plasma modified polysulfone UF membrane with and without 1-ethyl-3-(3- dimethylaminopropyl) carbodiimide hydrochloride (EDC) present. The nucleophilic primary amines of the PEI react with the electrophilic carboxyl groups on the UF membrane surface to form electrostatic and covalent bonds. The irreversible modification process imparts significant antimicrobial activity to the membrane surface. Post-synthesis functionalization methods, such as the one presented here, maximize the density of nanomaterials at the membrane surface and may provide a more efficient route for fabricating diverse array of reactive nanocomposite membranes. © 2011 American Chemical Society.

  16. Antifouling Ultrafiltration Membranes via Post-Fabrication Grafting of Biocidal Nanomaterials

    KAUST Repository

    Mauter, Meagan S.

    2011-08-24

    Figure Presented: Ultrafiltration (UF) membranes perform critical pre-treatment functions in advanced water treatment processes. In operational systems, however, biofouling decreases membrane performance and increases the frequency and cost of chemical cleaning. The present work demonstrates a novel technique for covalently or ionically tethering antimicrobial nanoparticles to the surface of UF membranes. Silver nanoparticles (AgNPs) encapsulated in positively charged polyethyleneimine (PEI) were reacted with an oxygen plasma modified polysulfone UF membrane with and without 1-ethyl-3-(3- dimethylaminopropyl) carbodiimide hydrochloride (EDC) present. The nucleophilic primary amines of the PEI react with the electrophilic carboxyl groups on the UF membrane surface to form electrostatic and covalent bonds. The irreversible modification process imparts significant antimicrobial activity to the membrane surface. Post-synthesis functionalization methods, such as the one presented here, maximize the density of nanomaterials at the membrane surface and may provide a more efficient route for fabricating diverse array of reactive nanocomposite membranes. © 2011 American Chemical Society.

  17. Influence of hydraulic retention time on UASB post-treatment with UF membranes.

    Science.gov (United States)

    Salazar-Peláez, M L; Morgan-Sagastume, J M; Noyola, A

    2011-01-01

    A pilot UASB reactor coupled with an external ultrafiltration (UF) membrane was operated under three different hydraulic retention times (HRT) for domestic wastewater treatment. The aim was to assess the HRT influence on system performance and fouling. The highest concentrations of COD, total solids, extracellular polymeric substances (EPS) and soluble microbial products (SMP) in UASB effluent and permeate were found when the UASB reactor was operated under the lowest HRT studied (4 hours); although the fulfillment of Mexican Standard for wastewater reclamation was not compromised. This fact could be attributed to the higher shear stress forces inside the UASB reactor when it was operated at low HRT, which promoted the release of biopolymeric substances in its effluent. Besides, the fouling propensity in the UASB effluent was worsened with HRT reduction, by increasing the fouling rate and the specific cake resistance. Based on these results, it is recommended to avoid operating the UASB reactor at low HRTs (less than 4 hours) in order to control SMP and EPS fouling potential. The results presented also suggest that HRT reduction has a detrimental effect on performance and fouling.

  18. Styrene process condensate treatment with a combination process of UF and NF for reuse.

    Science.gov (United States)

    Wang, Aijun; Liu, Guangmin; Huang, Jin; Wang, Lijuan; Li, Guangbin; Su, Xudong; Qi, Hong

    2013-01-15

    Aiming at reusing the SPC to save water resource and heat energy, a combination treatment process of UF/NF was applied to remove inorganic irons, suspended particles and little amount of organic contaminants in this article. To achieve the indexes of CODM≤5.00 mg L(-1), oil≤2.00 mg L(-1), conductivity≤10.00 μs cm(-1), pH of 6.0-8.0, the NF membrane process was adopted. It was necessary to employ a pretreatment process to reduce NF membrane fouling. Hence UF membrane as an efficient pretreatment unit was proposed to remove the inorganic particles, such as iron oxide catalyst, to meet the influent demands of NF. The effluent of UF, which was less than 0.02 mg L(-1) of total iron, went into a security filter and then was pumped into the NF process unit. High removal efficiencies of CODM, oil and conductivity were achieved by using NF process. The ABS grafting copolymerization experiment showed that the effluent of the combination process met the criteria of ABS production process, meanwhile the process could alleviate the environment pollution. It was shown that this combination process concept was feasible and successful in treating the SPC. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Obtaining of uranium tetrafluoride UF4 by electrodialysis reactive from uranium concentrates

    International Nuclear Information System (INIS)

    Munoz Lay, Danny Mauricio

    2014-01-01

    The generation of uranium fuels has always been a topic worldwide. The uranium fuel manufacturing base is made under very strict parameters of radiological and industrial safety, being a stage called 'nuclear fuel cycle'. In Chile, it is done constant research for fuels. This report focuses primarily on participating in such research; mainly in the production of uranium tetrafluoride (UF 4 ) .The tetrafluoride production is very crucial for the nuclear fuel industry. Its production varies from precipitation in stirred conditions to electrolysis in mercury. However, both processes has shortcomings either in performance and environmental pollution, which is why it is proposed a new method of production based on a friendly process to the environment and easier to operate, the reactive electrodialysis (RED). Electrodialysis is a hybrid reactive process of separation by membranes, cationic and / or anionic, namely, ionic species. In the process, ions are induced to move by an electric potential applied and separated by these membranes, a highly selective physical barrier which allows passage of ions with certain charge, and prevents the passage of oppositely charged ions. And in turn, it is reactive because it forces a chemical reaction, redox, to obtain uranium tetrafluoride (UF 4 ). The results of these experiments show that by reactive electrodialysis, NH 4 UF 5 deposits were obtained. However, calcinating the NH 4 UF 5 to 450 o C, it decomposes to obtain uranium tetrafluoride, UF 4 . The best working conditions were obtained with an electric current of 0.5 (A), 41 o C and a flow of 16 (ml / s) of the electrolyte. It was possible to obtain 5,995 (g) to 3 (h), giving a current efficiency of 71.42%. In turn, working at high temperatures and flow recirculation is possible to operate with a potential difference of 1.7 (V)

  20. Membrane treatment of alkaline bleaching effluents from elementary chlorine free kraft softwood cellulose production.

    Science.gov (United States)

    Oñate, Elizabeth; Rodríguez, Edgard; Bórquez, Rodrigo; Zaror, Claudio

    2015-01-01

    This paper reports experimental results on the sequential use of ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) to fractionate alkaline extraction bleaching effluents from kraft cellulose production. The aim was to unveil the way key pollutants are distributed when subjected to sequential UF/NF/RO membrane separation processes. Alkaline bleaching effluents were obtained from a local pinewood-based mill, featuring elementary chlorine free bleaching to produce high-brightness cellulose. The experimental system was based on a laboratory-scale membrane system, DSS LabStak® M20 Alfa Laval, using Alfa Laval UF and NF/RO membranes, operated at a constant transmembrane pressure (6 bar for UF membranes and 32 bar for NF/RO membranes), at 25°C. Results show that 78% chemical oxygen demand (COD) and total phenols, 82% adsorbable organic halogens (AOX) and 98% colour were retained by UF membranes which have molecular weight cut-off (MWCO) above 10 kDa. In all, 16% of original COD, total phenols and AOX, and the remaining 2% colour were retained by UF membranes within the 1 to 10 kDa MWCO range. Chloride ions were significantly present in all UF permeates, and RO was required to obtain a high-quality permeate with a view to water reuse. It is concluded that UF/NF/RO membranes offer a feasible option for water and chemicals recovery from alkaline bleaching effluents in kraft pulp production.

  1. Performance evaluation of carbon nanotube enhanced membranes for SWRO pretreatment application

    KAUST Repository

    Lee, Jieun

    2016-04-25

    Multi-wall carbon nanotube (MWCNT) membrane was tested for SWRO pretreatment. The MWCNT membrane itself showed a superior permeate flux (321.3 LMH/bar), which was 4-times as polyethersulfone ultrafiltration (PES-UF) membrane. Reduction of dissolved organic matter improved to 66% with fewer amounts of powder activated carbon (PAC) (0.5 g/L) in MWCNT membrane filtration maintaining a high permeate flux of 600 LMH/bar. It was due to the increased porosity (84.5%) and hydrophilicity (52.9°) by incorporating MWCNT/polyaniline into PES membrane. Ionic strength affected organic removal in seawater filtration by altering electrostatic interaction between organic matter and surface charge of the positively charged MWCNT membrane.

  2. Membrane Bioreactor (MBR) as Alternative to a Conventional Activated Sludge System Followed by Ultrafiltration (CAS-UF) for the Treatment of Fischer-Tropsch Reaction Water from Gas-to-Liquids Industries

    NARCIS (Netherlands)

    Laurinonyte, Judita; Meulepas, Roel J.W.; Brink, van den Paula; Temmink, Hardy

    2017-01-01

    The potential of a membrane bioreactor (MBR) system to treat Fischer-Tropsch (FT) reaction water from gas-to-liquids (GTL) industries was investigated and compared with the current treatment system: a conventional activated sludge system followed by an ultrafiltration (CAS-UF) unit. The MBR and

  3. Microfluidic platform for efficient Nanodisc assembly, membrane protein incorporation, and purification.

    Science.gov (United States)

    Wade, James H; Jones, Joshua D; Lenov, Ivan L; Riordan, Colleen M; Sligar, Stephen G; Bailey, Ryan C

    2017-08-22

    The characterization of integral membrane proteins presents numerous analytical challenges on account of their poor activity under non-native conditions, limited solubility in aqueous solutions, and low expression in most cell culture systems. Nanodiscs are synthetic model membrane constructs that offer many advantages for studying membrane protein function by offering a native-like phospholipid bilayer environment. The successful incorporation of membrane proteins within Nanodiscs requires experimental optimization of conditions. Standard protocols for Nanodisc formation can require large amounts of time and input material, limiting the facile screening of formation conditions. Capitalizing on the miniaturization and efficient mass transport inherent to microfluidics, we have developed a microfluidic platform for efficient Nanodisc assembly and purification, and demonstrated the ability to incorporate functional membrane proteins into the resulting Nanodiscs. In addition to working with reduced sample volumes, this platform simplifies membrane protein incorporation from a multi-stage protocol requiring several hours or days into a single platform that outputs purified Nanodiscs in less than one hour. To demonstrate the utility of this platform, we incorporated Cytochrome P450 into Nanodiscs of variable size and lipid composition, and present spectroscopic evidence for the functional active site of the membrane protein. This platform is a promising new tool for membrane protein biology and biochemistry that enables tremendous versatility for optimizing the incorporation of membrane proteins using microfluidic gradients to screen across diverse formation conditions.

  4. Adducts of UF5 with SbF5 and structure of UF5 . 2SbF5

    International Nuclear Information System (INIS)

    Sawodny, W.; Rediess, K.

    1980-01-01

    Both α-UF 5 and β-UF 5 form only a 1:2 compound UF 5 . 2SbF 5 reacting directly with SbF 5 , from which UF 5 . SbF 5 can be obtained by thermal decomposition. UF 5 . 2SbF 5 crystallizes in the monoclinic space group P2 1 /c with the following lattice constants a = 8.110(4), b = 14.129(6), c = 10.032(6) A and β = 96.97(5) 0 ; Z = 4. An X-ray study shows centrosymmetric four-membered rings of alternating UF 8 and SbF 6 polyhedra connected by other SbF 6 entities. This structure is similar to that of UOF 5 . 2SbF 5 , but the distorted pentagonal-bipyramidal coordination of the U atom found there is increased to a dodecahedral coordination by an additional U-F-Sb bridge, though with a somewaht larger UF distance. (author)

  5. Research on the experiment of reservoir water treatment applying ultrafiltration membrane technology of different processes.

    Science.gov (United States)

    Zhang, Liyong; Zhang, Penghui; Wang, Meng; Yang, Kai; Liu, Junliang

    2016-09-01

    The processes and effects of coagulation-ultrafiltration (C-UF) and coagulation sedimentation-ultrafiltration (CS-UF) process used in the treatment of Dalangdian Reservoir water were compared. The experiment data indicated that 99% of turbidity removal and basically 100% of microorganism and algae removal were achieved in both C-UF and CS-UF process. The organic removal effect of CS-UF? process was slightly better than C-UF process. However, the organic removal effect under different processes was not obvious due to limitation of ultrafiltration membrane aperture. Polyaluminium chloride was taken as a coagulant in water plant. The aluminum ion removal result revealed that coagulant dosage was effectively saved by using membrane technology during megathermal high algae laden period. Within the range of certain reagent concentration and soaking time, air-water backwashing of every filtration cycle of membrane was conducted to effectively reduce membrane pollution. Besides, maintenance cleaning was conducted every 60 min. whether or not restorative cleaning was conducted depends on the pollution extent. After cleaning, recovery of membrane filtration effect was obvious.

  6. Optimization of O3 as Pre-Treatment and Chemical Enhanced Backwashing in UF and MF Ceramic Membranes for the Treatment of Secondary Wastewater Effluent and Red Sea Water

    KAUST Repository

    Herrera, Catalina

    2011-12-12

    Ceramic membranes have proven to have many advantages over polymeric membranes. Some of these advantages are: resistance against extreme pH, higher permeate flux, less frequent chemical cleaning, excellent backwash efficiency and longer lifetime. Other main advantage is the use of strong chemical agent such as Ozone (O3), to perform membrane cleaning. Ozone has proven to be a good disinfection agent, deactivating bacteria and viruses. Ozone has high oxidation potential and high reactivity with natural organic matter (NOM). Several studies have shown that combining ozone to MF/UF systems could minimize membrane fouling and getting higher operational fluxes. This work focused on ozone – ceramic membrane filtration for treating wastewater effluent and seawater. Effects of ozone as a pre – treatment or chemical cleaning with ceramic membrane filtration were identified in terms of permeate flux and organic fouling. Ozonation tests were done by adjusting O3 dose with source water, monitoring flux decline and membrane fouling. Backwashing availability and membrane recovery rate were also analyzed. Two types of MF/UF ceramics membranes (AAO and TAMI) were used for this study. When ozone dosage was higher in the source water, membrane filtration improved in performance, resulting in a reduced flux decline. In secondary wastewater effluent, raw source water declined up to 77% of normalized flux, while with O3 as pre – treatment, source water at its higher O3 dose, flux decreased only 33% of normalized flux. For seawater, membrane performance increase from declining to 37% of its final normalized flux to 21%, when O3 as a pre – treatment was used. Membrane recovery rate also improved even with low O3 dose, as an example, with 8 mg/L irreversible fouling decreases from 58% with no ozone addition to 29% for secondary wastewater effluent treatment. For seawater treatment, irreversible fouling decreased from 37% with no ozone addition to 21% at 8 mg/L, proving ozone is a

  7. Removal of uranium and thorium from aqueous solution by ultrafiltration (UF) and PAMAM dendrimer assisted ultrafiltration (DAUF)

    International Nuclear Information System (INIS)

    Ilaiyaraja, P.; Ashish Kumar Singha Deb; Ponraju, D.

    2015-01-01

    Studies on removal of U(VI) and Th(IV) from aqueous solution have been carried out by ultrafiltration (UF) and dendrimer assisted ultrafiltration (DAUF) using regenerated cellulose acetate membrane and PAMAM [poly(amido)amine] dendrimer chelating agent. In UF, the U(VI) and Th(IV) are removed from aqueous solution by adsorption/mass deposition on the membrane at pH > 4. In DAUF, the water soluble PAMAM dendrimer chelating agent effectively concentrates these metal ions in retentate thereby preventing the mass deposition on membrane. At acidic pH (≤3), the binding of metal ions with PAMAM dendrimer is very weak and hence PAMAM can be regenerated and reused. Electronic supplementary material. The online version of this article (doi:10.1007/s10967-014-3462-x) contains supplementary material, which is available to authorized users. (author)

  8. Analysis of accidental UF6 releases

    International Nuclear Information System (INIS)

    Fan Yumao; Tan Rui; Gao Qifa

    2012-01-01

    As interim substance in the nuclear fuel enrichment process, Uranium Hexafluoride (UF 6 ) is widely applied in nuclear processing, enrichment and fuel fabrication plants. Because of its vivid chemical characteristics and special radiological hazard and chemical toxicity, great attention must be paid to accident of UF 6 leakage. The chemical reactions involved in UF 6 release processes were introduced, therewith potential release styles, pathways and characteristics of diffusion were analyzed. The results indicated that the accidental release process of UF 6 is not a simple passive diffusion. So, specific atmospheric diffusion model related to UF 6 releases need be used in order to analyze and evaluate accurately the accidental consequences. (authors)

  9. Silica incorporated membrane for wastewater based filtration

    Science.gov (United States)

    Fernandes, C. S.; Bilad, M. R.; Nordin, N. A. H. M.

    2017-10-01

    Membrane technology has long been applied for waste water treatment industries due to its numerous advantages compared to other conventional processes. However, the biggest challenge in pressure driven membrane process is membrane fouling. Fouling decreases the productivity and efficiency of the filtration, reduces the lifespan of the membrane and reduces the overall efficiency of water treatment processes. In this study, a novel membrane material is developed for water filtration. The developed membrane incorporates silica nanoparticles mainly to improve its structural properties. Membranes with different loadings of silica nanoparticles were applied in this study. The result shows an increase in clean water permeability and filterability of the membrane for treating activated sludge, microalgae solution, secondary effluent and raw sewage as feed. Adding silica into the membrane matrix does not significantly alter contact angle and membrane pore size. We believe that silica acts as an effective pore forming agent that increases the number of pores without significantly altering the pore sizes. A higher number of small pores on the surface of the membrane could reduce membrane fouling because of a low specific loading imposed to individual pores.

  10. Chemical exchange between UF6 and UF6- ion in anhydrous hydrofluoric acid

    International Nuclear Information System (INIS)

    Chatelet, J.; Luce, M.; Plurien, P.; Rigny, P.

    1975-01-01

    The chemical exchange between UF 6 and the UF 6 - ion is of potential interest for the separation of U isotopes. In this paper, results concerning the value of the separation factor and the kinetics of the homogeneous exchange are given [fr

  11. A study of UF4 preparations

    International Nuclear Information System (INIS)

    Chang, I.S.; Doh, J.B.; Choi, Y.D.

    1985-05-01

    Uranium tetrafluoride (UF 4 ), green salt, is very important intermediate in the production of metallic uranium and uranium hexafluoride (UF 6 ) for enrichment. The hydrofluorination of uranium dioxide (UO 2 ) with anhydrous hydrogen fluoride (HF), produced from ADU (ammonium diuranate) process or AUC (ammonium uranyl carbonate) process, are commercially used for the production of uranium tetrafluoride. At present, a new approach such as direct UF 4 preparation at the mine-site without further precipitation, filteration and drying of yellow cake from leaching solution has been studied. The single step continous reduction of uranium hexafluoride to uranium tetrafluoride is one of the most interesting process being applied for the commercial use of a large amount of depleted UF 6 which is produced in tail after enrichment. The direct conversion of UF 6 and UF 4 with hydrogen and fluorine gases using cold wall reactor has a certain advantage over various wet process such as AUD and AUC processes in which hydrolysis of UF 6 and various kind of chemicals are required, including liquid waste treatment. This report reviews and analyzes the theory and processes being used commercially or under study. (Author)

  12. Evaluation of biochar-ultrafiltration membrane processes for humic acid removal under various hydrodynamic, pH, ionic strength, and pressure conditions.

    Science.gov (United States)

    Shankar, Vaibhavi; Heo, Jiyong; Al-Hamadani, Yasir A J; Park, Chang Min; Chu, Kyoung Hoon; Yoon, Yeomin

    2017-07-15

    The performance of an ultrafiltration (UF)-biochar process was evaluated in comparison with a UF membrane process for the removal of humic acid (HA). Bench-scale UF experiments were conducted to study the rejection and flux trends under various hydrodynamic, pH, ionic strength, and pressure conditions. The resistance-in-series model was used to evaluate the processes and it showed that unlike stirred conditions, where low fouling resistance was observed (28.7 × 10 12  m -1 to 32.5 × 10 12  m -1 ), higher values and comparable trends were obtained for UF-biochar and UF alone for unstirred conditions (28.7 × 10 12  m -1 to 32.5 × 10 12  m -1 ). Thus, the processes were further evaluated under unstirred conditions. Additionally, total fouling resistance was decreased in the presence of biochar by 6%, indicating that HA adsorption by biochar could diminish adsorption fouling on the UF membrane and thus improve the efficiency of the UF-biochar process. The rejection trends of UF-biochar and UF alone were similar in most cases, whereas UF-biochar showed a noticeable increase in flux of around 18-25% under various experimental conditions due to reduced membrane fouling. Three-cycle filtration tests further demonstrated that UF-biochar showed better membrane recovery and antifouling capability by showing more HA rejection (3-5%) than UF membrane alone with each subsequent cycle of filtration. As a result of these findings, the UF-biochar process may potentially prove be a viable treatment option for the removal of HA from water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Membrane technology applications

    Energy Technology Data Exchange (ETDEWEB)

    Golomb, A

    1990-10-01

    Due to a continuing emphasis on increasing the efficiency of utilizing the Province's electrical energy system, a Membrane Testing and Development Facility (MTDF) has been established at Ontario Hydro Research Division. The MTDF comprises bench-scale and pilot-scale reverse osmosis (RO) and ultrafiltration (UF) systems. RO and UF are membrane separation technologies which with microfiltration (MF) have found numerous industrial applications in wastewater treatment and/or byproduct recovery. Since no phase change is involved in RO and UF, they are more energy efficient separation processes than, say, evaporation or distillation. Initial tests have been carried out to demonstrate the capability of the newly-established MTDF. Bench- and pilot-scale RO treatment, at 4.1 MPa applied pressure, of a simulated nickel plating waste rinse stream was demonstrated. RO membrane rejection efficiencies for nickel were 99+% (in the bench scale test) and 99.9+% (on the pilot scale). Volume reduction factors of about 25 were attained, at purified water flux rates in the range 1 to 1.5 m{sup 3}/m{sup 2} per day. Good correlation was noted between bench-scale and pilot-scale RO test results. Pilot-scale UF of a simulated industrial cutting oil/water waste emulsion at 0.40 MPa gave 99+% oil rejection (pilot scale) at a flux rate of 0.7 m{sup 3}/m{sup 2} per day. A volume reduction of about 5.2 was attained. Overviews of opportunities for membrane separation technology applied to the metal cutting and surface finishing industries, and the food and beverage industry are given. Capabilities (and some present needs) of the MTDF are outlined, with recommendations. 17 refs., 10 figs., 7 tabs.

  14. Transparent exopolymer particles (TEP) removal efficiency by a combination of coagulation and ultrafiltration to minimize SWRO membrane fouling

    KAUST Repository

    Li, Sheng; Lee, Shang-Tse; Sinha, Shahnawaz; Leiknes, TorOve; Amy, Gary L.; Ghaffour, NorEddine

    2016-01-01

    This study investigated the impact of coagulation on the transformation between colloidal and particulate transparent exopolymer particles (TEP) in seawater; and the effectiveness of a combined pretreatment consisting of coagulation and UF on minimizing TEP fouling of seawater reverse osmosis (SWRO) membranes. Coagulation with ferric chloride at pH 5 substantially transformed colloidal TEP (0.1–0.4) into particulate TEP (>0.4) leading to a better membrane fouling control. Both 50 and 100 kDa molecular weight cut-off (MWCO) UF membranes removed most of particulate and colloidal TEP without the assistance of coagulation, but coagulation is still necessary for better UF fouling control. The improvement of combined SWRO pretreatment with coagulation and 50 kDa UF membranes was not that much significant compared to UF pretreatment with 50 KDa alone. Therefore, the minimal coagulant dosage for seawater containing TEP should be based on the UF fouling control requirements rather than removal efficiency. © 2016 Elsevier Ltd

  15. Transparent exopolymer particles (TEP) removal efficiency by a combination of coagulation and ultrafiltration to minimize SWRO membrane fouling

    KAUST Repository

    Li, Sheng

    2016-07-02

    This study investigated the impact of coagulation on the transformation between colloidal and particulate transparent exopolymer particles (TEP) in seawater; and the effectiveness of a combined pretreatment consisting of coagulation and UF on minimizing TEP fouling of seawater reverse osmosis (SWRO) membranes. Coagulation with ferric chloride at pH 5 substantially transformed colloidal TEP (0.1–0.4) into particulate TEP (>0.4) leading to a better membrane fouling control. Both 50 and 100 kDa molecular weight cut-off (MWCO) UF membranes removed most of particulate and colloidal TEP without the assistance of coagulation, but coagulation is still necessary for better UF fouling control. The improvement of combined SWRO pretreatment with coagulation and 50 kDa UF membranes was not that much significant compared to UF pretreatment with 50 KDa alone. Therefore, the minimal coagulant dosage for seawater containing TEP should be based on the UF fouling control requirements rather than removal efficiency. © 2016 Elsevier Ltd

  16. A STUDY OF BRACKISH WATER MEMBRANE WITH ULTRAFILTRATION PRETREATMENT IN INDONESIA´S COASTAL AREA

    Directory of Open Access Journals (Sweden)

    Elis Hastuti

    2012-01-01

    Full Text Available Water pollution and sea water intrusion to water sources in coastal areas result lack of provision safe drinking water by the drinking water regional company or coastal community. The existing water treatment plant that operated on brackish surface water or groundwater feed requires improving process. Membrane process could be a choice to treat the quality of brackish water to the level of potable water that designed to lower cost with high stabil flux and longer lifetime. This research focus on application of pilot plant of brackish water treatment using Ultrafiltration (UF membrane-air lift system as pretreatment of Reverse Osmosis (RO membrane-low pressure. Brackish water sources contain high colloidal and suspended solids that can cause fouling load of RO membranes and impair its performance. UF pretreatment operation tested by addition of compressed air into the feed (air lift system, resulted stable flux, reduces membrane fouling and low feed pressure. A flux of RO with UF pretreatment can produce drinking water of 30--61 L/m2·hour. It was observed, the good quality of RO permeate resulted by using a pretreatment of UF--PS (Polysulfone-UF with total dissolved solid rejection about 96--98% and color rejection about 99--100% at 5 or 8 bars of operation pressure. This paper concludes that performance of membrane technology with UF--air lift system pretreatment and RO membrane-low pressure could be accepted as condition of brackish water source in Indonesia coastal areas in producing drinking water.

  17. Sensitometric characteristics of UF-4, UF-5, and UFSh-O films in the quantum-energy range of 5-30 keV

    International Nuclear Information System (INIS)

    Datsko, I.M.; Slabkovskaya, M.A.; Sokolov, A.S.; Uvarova, N.V.; Sheromov, M.A.

    1987-01-01

    The sensitivity, gamma, and transmission of UF-4, UF-5, and UFSh-O for quanta with energies of 5-30 keV extracted from a beam of synchrotron radiation are measured. UFSh-O photographic film is more sensitive by a factor of 1.5-2 than are the UF-4 and UF-5 films. The gamma of all the films is greatly dependent on the quantum energy

  18. Investigation of UF6 behavior in a fire

    International Nuclear Information System (INIS)

    Williams, W.R.

    1988-01-01

    Reactions between UF 6 and combustible gases and the potential for UF 6 -filled cylinders to rupture when exposed to fire are addressed. Although the absence of kinetic data prevents specific identification and quantification of the chemical species formed, potential reaction products resulting from the release of UF 6 into a fire include UF 4 , UO 2 F 2 , HF, C, CF 4 ,COF 2 , and short chain, fluorinated or partially fluorinated hydrocarbons. Such a release adds energy to a fire relative to normal combustion reactions. Time intervals to an assumed point of rupture for UF 6 -filled cylinders exposed to fire are estimated conservatively. Several related studies are also summarized, including a test series in which small UF 6 -filled cylinders were immersed in fire resulting in valve failures and explosive ruptures. It is concluded that all sizes of UF 6 cylinders currently in use may rupture within 30 minutes when totally immersed in a fire. For cylinders adjacent to fires, rupture of the larger cylinders appears much less likely

  19. Preparation and characterization of novel zwitterionic poly(arylene ether sulfone) ultrafiltration membrane with good thermostability and excellent antifouling properties

    Science.gov (United States)

    Rong, Guolong; Zhou, Di; Han, Xiaocui; Pang, Jinhui

    2018-01-01

    Zwitterionic poly(arylene ether sulfone) (PAES-NS) was synthesized via copolymerization by using a bisphenol monomer with a pyridine group. The chemical structures of the copolymers were confirmed by using Fourier transform infrared (FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopy; the copolymers showed good thermal stability. A series of polyphenysulfone (PPSU)/PAES-NS blend ultrafiltration (UF) membranes was prepared via conventional immersion precipitation phase inversion methods The morphologies of the modified membranes were investigated by scanning electron microscopy (SEM). The surface hydrophilicity of the UF membranes was studied by water contact angle measurement, indicating that the zwitterionic group increased the membrane hydrophilicity. UF of solvated model pollutants using the membranes showed a significant reduction of the irreversible adsorption of the foulants, illustrating the excellent anti-fouling properties of the membrane. The water flux of the PAES-NS membrane was significantly enhanced, being almost three times higher than that of the pristine PPSU membrane, with retention of a high rejection level. After three UF cycles, the water flux recovery of the PAES-NS membrane was as high as 96%.

  20. UF{sub 6} pressure excursions during cylinder heating

    Energy Technology Data Exchange (ETDEWEB)

    Brown, P.G. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31

    As liquid UF{sub 6} inside a cylinder changes from a liquid to a solid, it forms a porous solid which occupies approximately the same volume as that of the liquid before cooling. Simultaneously as the liquid cools, UF{sub 6} vapor in the cylinder ullage above the liquid desublimes on the upper region of the inner cylinder wall. This solid is a dense, glass-like material which can accumulate to a significant thickness. The thickness of the solid coating on the upper cylinder wall and directly behind the cylinder valve area will vary depending on the conditions during the cooling stage. The amount of time lapsed between UF{sub 6} solidification and UF{sub 6} liquefaction can also affect the UF{sub 6} coating. This is due to the daily ambient heat cycle causing the coating to sublime from the cylinder wall to cooler areas, thus decreasing the thickness. Structural weakening of the dense UF{sub 6} layer also occurs due to cylinder transport vibration and thermal expansion. During cylinder heating, the UF{sub 6} nearest the cylinder wall will liquefy first. As the solid coating behind the cylinder valve begins to liquefy, it results in increased pressure depending upon the available volume for expansion. At the Paducah Gaseous Diffusion Plant (PGDP) during the liquefaction of the UF{sub 6} in cylinders in the UF{sub 6} feed and sampling autoclaves, this pressure increase has resulted in the activation of the systems rupture discs which are rated at 100 pounds per square inch differential.

  1. Effect of membrane hydrophilization on ultrafiltration performance for biomolecules separation

    International Nuclear Information System (INIS)

    Susanto, H.; Roihatin, A.; Aryanti, N.; Anggoro, D.D.; Ulbricht, M.

    2012-01-01

    This paper compares the performance of different hydrophilization methods to prepare low fouling ultrafiltration (UF) membranes. The methods include post-modification with hydrophilic polymer and blending of hydrophilic agent during either conventional or reactive phase separation (PS). The post-modification was done by photograft copolymerization of water-soluble monomer, poly(ethylene glycol) methacrylate (PEGMA), onto a commercial polyethersulfone (PES) UF membrane. Hydrophilization via blend polymer membrane with hydrophilic additive was performed using non-solvent induced phase separation (NIPS). In reactive PS method, the cast membrane was UV-irradiated before coagulation. The resulting membrane characteristic, the performance and hydrophilization stability were systematically compared. The investigated membrane characteristics include surface hydrophilicity (by contact angle /CA/), surface chemistry (by FTIR spectroscopy), and surface morphology (by scanning electron microscopy). The membrane performance was examined by investigation of adsorptive fouling and ultrafiltration using solution of protein or polysaccharide or humic acid. The results suggest that all methods could increase the hydrophilicity of the membrane yielding less fouling. Post-modification decreased CA from 44.8 ± 4.2 o to 37.8 ± 4.2 o to 42.5 ± 4.3 o depending on the degree of grafting (DG). The hydrophilization via polymer blend decreased CA from from 65 deg. to 54 deg. for PEG concentration of 5%. Nevertheless, decreasing hydraulic permeability was observed after post-modification as well as during polymer blend modification. Stability examination showed that there was leaching out of modifier agent from the membrane matrix prepared via conventional PS after 10 days soaking in both water and NaOH. Reactive PS could increase the stability of the modifier agent in membrane matrix. Highlights: ► We compared different methods to prepare low fouling ultrafiltration (UF) membranes.

  2. Natural Organic Matter Removal and Fouling in a Low Pressure Hybrid Membrane Systems

    Directory of Open Access Journals (Sweden)

    Vedat Uyak

    2014-01-01

    Full Text Available The objective of this study was to investigate powdered activated carbon (PAC contribution to natural organic matter (NOM removal by a submerged MF and UF hybrid systems. It was found that filtration of surface waters by a bare MF and UF membranes removed negligible TOC; by contrast, significant amounts of TOC were removed when daily added PAC particles were predeposited on the membrane surfaces. These results support the assumption that the membranes surface properties and PAC layer structure might have considerably influential factor on NOM removal. Moreover, it was concluded that the dominant removal mechanism of hybrid membrane system is adsorption of NOM within PAC layer rather than size exclusion of NOM by both of membrane pores. Transmembrane pressure (TMP increases with PAC membrane systems support the view that PAC adsorption pretreatment will not prevent the development of membrane pressure; on the contrary, PAC particles themselves caused membrane fouling by blocking the entrance of pores of MF and UF membranes. Although all three source waters have similar HPI content, it appears that the PAC interaction with the entrance of membrane pores was responsible for offsetting the NOM fractional effects on membrane fouling for these source waters.

  3. Studies on carboxylated graphene oxide incorporated polyetherimide mixed matrix ultrafiltration membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kaleekkal, Noel Jacob, E-mail: noeljacob89@gmail.com [Membrane Laboratory, Department of Chemical Engineering, ACT, Anna University, Chennai, 600025 (India); Thanigaivelan, A., E-mail: thanichemstar@gmail.com [Membrane Laboratory, Department of Chemical Engineering, ACT, Anna University, Chennai, 600025 (India); Rana, Dipak, E-mail: rana@uottawa.ca [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Private, Ottawa, Ontario, K1N 6N5 (Canada); Mohan, D., E-mail: mohantarun@gmail.com [Membrane Laboratory, Department of Chemical Engineering, ACT, Anna University, Chennai, 600025 (India)

    2017-01-15

    In this work the graphene oxide prepared by the modified Hummers’ method was effectively carboxylated. These carboxylated graphene oxide (c-GO) microsheets was characterized by X-ray diffraction analysis, Raman shift, zeta potential, and their morphology was observed using a high resolution scanning/transmission electron microscopy. Polyetherimide mixed matrix membranes (MMMs) were fabricated by the non-solvent induced phase separation technique with varying concentration of this microsheet. The presence of these microsheets on the membrane surface was confirmed by Fourier transform infrared spectroscopy, Raman spectroscopy and could also be confirmed visually by optical images. The membranes were further characterized; they showed a greater water flux, higher porosity, and sufficient thermal stability. Incorporation of these microsheets improved the hydrophilicity of the membrane confirmed by the lower contact angle values, which in turn explained the lower interfacial free energy, the increase in work of adhesion, the higher solid-vapor free energy and the spreading coefficient. Membranes loaded with 0.3 wt% of c-GO showed a flux recovery of 94% and only a small flux decline even after 180 min of filtration of humic acid (HA) solution. The efficiency of these membranes in removal of HA, toxic metal ions was also investigated. The bacterial anti-adhesion property of c-GO in the membranes was also explored using Escherichia coli, as a model bio-foulant. The charge of the microsheets and their unique architecture imparts higher hydrophilicity and greater fouling resistance along with improved permeation flux when incorporated into the polymer matrix. - Highlights: • Novel membranes by incorporating carboxylated GO into polyetherimide matrix. • Modified membranes exhibited greater porosity, flux and high humic acid rejection. • Nanoplatelets improved the flux recovery ratio to >94%. • Liquid phase polymer based retention utilized for toxic heavy metal

  4. Removal of paraquat and linuron from water by continuous flow adsorption/ ultrafiltration membrane processes

    International Nuclear Information System (INIS)

    Zahoor, M.

    2013-01-01

    The magnetic activated carbon (MAC) was prepared, characterized and compared with powdered activated carbon (PAC) for its adsorptive parameters. Both adsorbents were then used in combination ultrafiltration (UF) membrane as pretreatment for the removal of paraquat and linuron from water. The comparison of membrane parameters like percent retention, permeate flux and backwash times for PAC/UF and MAC/UF hybrid processes showed that percent retention of paraquat and linuron was high for PAC due to its high surface area. However due to cake formation over membrane surface the decline permeate fluxes and long backwash times for PAC were observed. PAC also caused blackening of pipes and flow meter. MAC (an iron oxide and PAC composite) was removed from slurry through magnet thus no cake formation and secondary problems observed for PAC was not encountered. Also the backwash times were minimum for MAC/UF process. (author)

  5. Experimental Determination of the Solubility of Industrial UF4 Particles

    International Nuclear Information System (INIS)

    Chazel, V.; Houpert, P.; Paquet, F.; Ansoborlo, E.; Henge-Napoli, M.H.

    2000-01-01

    The chemical solubility in cell culture medium and in Gamble's solution and the biokinetic behaviour on rats of an industrial UF 4 compound have been studied in order to predict experimentally absorption parameters (f r , s r , s s ) after inhalation and to provide data for interpreting bioassay data. According to these results, this compound has been found to have an intermediate type of absorption between Types F and M as designated by ICRP for the human respiratory tract. A dose coefficient of 1.4 μSv.Bq -1 has been calculated for an inhaled aerosol with an AMAD of 5.1 μm (σg 2.5), which corresponded to the mean value encountered at the fluorination workplace. Predictive urinary and faecal excretion and lung retention curves have also been deduced to calculate the incorporated activity and the received dose in case of an inhalation of UF 4 by workers. (author)

  6. Enhanced antifouling and antibacterial properties of poly (ether sulfone) membrane modified through blending with sulfonated poly (aryl ether sulfone) and copper nanoparticles

    Science.gov (United States)

    Zhang, Jingjing; Xu, Ya'nan; Chen, Shouwen; Li, Jiansheng; Han, Weiqing; Sun, Xiuyun; Wu, Dihua; Hu, Zhaoxia; Wang, Lianjun

    2018-03-01

    A series of novel blend ultrafiltration (UF) membranes have been successfully prepared from commercial poly (ether sulfone), lab-synthesized sulfonated poly (aryl ether sulfone) (SPAES, 1 wt%) and copper nanoparticles (0 ∼ 0.4 wt%) via immersion precipitation phase conversion. The micro-structure and separation performance of the membranes were characterized by field emission scanning electron microscopy (SEM) and cross-flow filtration experiments, respectively. Sodium alginate, bovine serum albumin and humic acid were chosen as model organic foulants to investigate the antifouling properties, while E. coil was used to evaluate the antibacterial property of the fabricated membranes. By the incorporation with SPAES and copper nanoparticles, the hydrophilicity, antifouling and antibacterial properties of the modified UF membranes have been profoundly improved. At a copper nanoparticles content of 0.4 wt%, the PES/SPAES/nCu(0.4) membrane exhibited a high pure water flux of 193.0 kg/m2 h, reaching the smallest contact angle of 52°, highest flux recovery ratio of 79% and largest antibacterial rate of 78.9%. Furthermore, the stability of copper nanoparticles inside the membrane matrix was also considerably enhanced, the copper nanoparticles were less than 0.08 mg/L in the effluent during the whole operation.

  7. Assessment of UF6 Equation of State

    Energy Technology Data Exchange (ETDEWEB)

    Brady, P; Chand, K; Warren, D; Vandersall, J

    2009-02-11

    A common assumption in the mathematical analysis of flows of compressible fluids is to treat the fluid as a perfect gas. This is an approximation, as no real fluid obeys the perfect gas relationships over all temperature and pressure conditions. An assessment of the validity of treating the UF{sub 6} gas flow field within a gas centrifuge with perfect gas relationships has been conducted. The definition of a perfect gas is commonly stated in two parts: (1) the gas obeys the thermal equation of state, p = {rho}RT (thermally perfect), and, (2) the gas specific heats are constant (calorically perfect). Analysis indicates the thermally perfect assumption is valid for all flow conditions within the gas centrifuge, including shock fields. The low operating gas pressure is the primary factor in the suitability of the thermally perfect equation of state for gas centrifuge computations. UF{sub 6} is not calorically perfect, as the specific heats vary as a function of temperature. This effect is insignificant within the bulk of the centrifuge gas field, as gas temperatures vary over a narrow range. The exception is in the vicinity of shock fields, where temperature, pressure, and density gradients are large, and the variation of specific heats with temperature should be included in the technically detailed analyses. Results from a normal shock analysis incorporating variable specific heats is included herein, presented in the conventional form of shock parameters as a function of inlet Mach Number. The error introduced by assuming constant specific heats is small for a nominal UF{sub 6} shock field, such that calorically perfect shock relationships can be used for scaling and initial analyses. The more rigorous imperfect gas analysis should be used for detailed analyses.

  8. Practical experience of backwashing with SWRO permeate for UF fouling control

    KAUST Repository

    Li, Sheng; Heijman, Sebastiaan G J; Verberk, J. Q J C; Amy, Gary L.; Van Dijk, Johannis C.

    2013-01-01

    Effectiveness of seawater reverse osmosis (SWRO) permeate backwash on fouling control of seawater ultrafiltration was investigated at a pilot scale. A standard membrane module was used in this pilot to represent full-scale desalination plants. Results of the pilot show a good reproducibility. When the UF permeate was used for backwash, the frequency of chemically enhanced backwash (CEB) was around once per day. However, results of the pilot show that SWRO permeate backwashing could significantly reduce the CEB frequency. © 2013 Desalination Publications.

  9. Pilot plant UF6 to UF4 test operations report

    International Nuclear Information System (INIS)

    Bicha, W.J.; Fallings, M.; Gilbert, D.D.; Koch, G.E.; Levine, P.J.; McLaughlin, D.F.; Nuhfer, K.R.; Reese, J.C.

    1987-02-01

    The FMPC site includes a plant designed for the reduction of uranium hexafluoride (UF 6 ) to uranium tetrafluoride (UF 4 ). Limited operation of the upgraded reduction facility began in August 1984 and continued through January 19, 1986. A reaction vessel ruptured on that date causing the plant operation to be shut down. The DOE conducted a Class B investigation with the findings of the investigation board issued in preliminary form in May 1986 and as a final recommendation in July 1986. A two-phase restart of the plant was planned and implemented. Phase I included implementing safety system modifications, changing reaction vessel temperature control strategy, and operating the reduction plant under an 8-week controlled test. The results of the test period are the subject of this report. 41 figs., 11 tabs

  10. The process research of drying UF4 by microwave

    International Nuclear Information System (INIS)

    Wen Guo; Wang Yunbo; Liu Long

    2010-01-01

    This paper make use of microwave to dry UF 4 filter cake, the aim is desorbed adsorption water. The research focus on such process conditions, boat material, thickness of filter cake, drying time, setting temperature, heating power and so on. the research of desorption crystal water of UF 4 that dried by microwave in fixed bed .When UF 4 drying by microwave and claiming by fixed bed, the qualified UF 4 powder is prepared. The research is shown that microwave can desorbs adsorption water which contain in UF 4 filter cake. There is a stable water contents in UF 4 after drying, and the sum of two members is less. After drying by microwave and claiming by fixed bed, the contents of water, UO 2 and UO 2 F 2 are all according to the quality standard. (authors)

  11. The Effect of Concentration Factor on Membrane Fouling

    Directory of Open Access Journals (Sweden)

    Appana Lok

    2017-09-01

    Full Text Available Bench-scale systems are often used to evaluate pretreatment methods and operational conditions that can be applied in full-scale ultrafiltration (UF systems. However, the membrane packing density is substantially different in bench and full-scale systems. Differences in concentration factor (CF at the solution–membrane interface as a result of packing density may impact the mass transfer and fouling rate and the applicability of bench-scale systems. The present study compared membrane resistance when considering raw water (CF = 1 and reject water (also commonly referred to as concentrate water (CF > 1 as feed in UF systems operated in deposition (dead-end mode. A positive relationship was observed between the concentration of the organic matter in the solution being filtered and resistance. Bench-scale trials conducted with CF = 1 water were more representative of full-scale operation than trials conducted with elevated CFs when considering membrane resistance and permeate quality. As such, the results of this study indicate that the use of the same feed water as used at full-scale (CF = 1 is appropriate to evaluate fouling in UF systems operated in deposition mode.

  12. Covalent modification of serum transferrin with phospholipid and incorporation into liposomal membranes

    DEFF Research Database (Denmark)

    Afzelius, P; Demant, E J; Hansen, Gert Helge

    1989-01-01

    A method is described for incorporation of water-soluble proteins into liposomal membranes using covalent protein-phospholipid conjugates in detergent solution. A disulfide derivative of phosphatidylethanolamine containing a reactive N-hydroxysuccinimide ester group is synthesized, and the deriva......A method is described for incorporation of water-soluble proteins into liposomal membranes using covalent protein-phospholipid conjugates in detergent solution. A disulfide derivative of phosphatidylethanolamine containing a reactive N-hydroxysuccinimide ester group is synthesized...

  13. Monitoring the Orientational Changes of Alamethicin during Incorporation into Bilayer Lipid Membranes.

    Science.gov (United States)

    Forbrig, Enrico; Staffa, Jana K; Salewski, Johannes; Mroginski, Maria Andrea; Hildebrandt, Peter; Kozuch, Jacek

    2018-02-13

    Antimicrobial peptides (AMPs) are the first line of defense after contact of an infectious invader, for example, bacterium or virus, with a host and an integral part of the innate immune system of humans. Their broad spectrum of biological functions ranges from cell membrane disruption over facilitation of chemotaxis to interaction with membrane-bound or intracellular receptors, thus providing novel strategies to overcome bacterial resistances. Especially, the clarification of the mechanisms and dynamics of AMP incorporation into bacterial membranes is of high interest, and different mechanistic models are still under discussion. In this work, we studied the incorporation of the peptaibol alamethicin (ALM) into tethered bilayer lipid membranes on electrodes in combination with surface-enhanced infrared absorption (SEIRA) spectroscopy. This approach allows monitoring the spontaneous and potential-induced ion channel formation of ALM in situ. The complex incorporation kinetics revealed a multistep mechanism that points to peptide-peptide interactions prior to penetrating the membrane and adopting the transmembrane configuration. On the basis of the anisotropy of the backbone amide I and II infrared absorptions determined by density functional theory calculations, we employed a mathematical model to evaluate ALM reorientations monitored by SEIRA spectroscopy. Accordingly, ALM was found to adopt inclination angles of ca. 69°-78° and 21° in its interfacially adsorbed and transmembrane incorporated states, respectively. These orientations can be stabilized efficiently by the dipolar interaction with lipid head groups or by the application of a potential gradient. The presented potential-controlled mechanistic study suggests an N-terminal integration of ALM into membranes as monomers or parallel oligomers to form ion channels composed of parallel-oriented helices, whereas antiparallel oligomers are barred from intrusion.

  14. Ultrafiltration (UF Pilot Plant for Municipal Wastewater Reuse in Agriculture: Impact of the Operation Mode on Process Performance

    Directory of Open Access Journals (Sweden)

    Dario Falsanisi

    2010-11-01

    Full Text Available Following increasing interest in the use of UltraFiltration (UF membrane processes as an alternative advanced disinfection technique, the performance of a UF pilot plant was investigated under two opposite operating conditions (“stressed operating condition” versus “conventional operating condition”. The results indicate that for both conditions, the reclaimed effluent complied with the Italian regulations for unrestricted wastewater reuse (i.e., Total Suspended Solids (TSS < 10 mg/L; Chemical Oxygen Demand (COD < 100 mg/L and Escherichia coli < 10 CFU/100 mL. On the other hand, when compared with the Title 22 of the California Wastewater Reclamation Criteria, only the effluent produced under the “conventional operating condition” met the stipulated water quality standards (i.e., TSS and turbidity undetectable and total coliforms < 2.2 CFU/100 mL. It should be noted that, in spite of the nominal cut-off size, total coliforms breakthrough was indeed occasionally observed. A localized membrane pore micro-enlargement mechanism was hypothesized to explain the total coliforms propagation in the ultrafiltered effluent, as monitoring of the membrane permeability and transmembrane pressure highlighted that gel/cake formation had only a minor contribution to the overall membrane fouling mechanism with respect to pore plugging and pore narrowing mechanisms.

  15. Thin-film Nanofibrous Composite Membranes Containing Cellulose or Chitin Barrier Layers Fabricated by Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    H Ma; B Hsiao; B Chu

    2011-12-31

    The barrier layer of high-flux ultrafiltration (UF) thin-film nanofibrous composite (TFNC) membranes for purification of wastewater (e.g., bilge water) have been prepared by using cellulose, chitin, and a cellulose-chitin blend, regenerated from an ionic liquid. The structures and properties of regenerated cellulose, chitin, and a cellulose-chitin blend were analyzed with thermogravimetric analysis (TGA) and wide-angle X-ray diffraction (WAXD). The surface morphology, pore size and pore size distribution of TFNC membranes were determined by SEM images and molecular weight cut-off (MWCO) methods. An oil/water emulsion, a model of bilge water, was used as the feed solution, and the permeation flux and rejection ratio of the membranes were investigated. TFNC membranes based on the cellulose-chitin blend exhibited 10 times higher permeation flux when compared with a commercial UF membrane (PAN10, Sepro) with a similar rejection ratio after filtration over a time period of up to 100 h, implying the practical feasibility of such membranes for UF applications.

  16. Uranium isotope fractionation resulting from UF6 vapor distillation from containers

    International Nuclear Information System (INIS)

    Hedge, W.D.; Turner, C.M.

    1985-01-01

    This empirical study for possible isotopic fractionation due to UF 6 vapor distillation from valved containers was performed to determine the effects of repeated vapor sampling. Four different experiments were performed, each of which varied by the method of measuring the isotopic contents and/or by the difference in temperature gradients as follows: The ratio of the parent UF 6 to the desublimed UF 6 collected at liquid nitrogen temperature and homogenized was measured by sampling the containers. The ratio of the parent UF 6 to the desublimed UF 6 collected at liquid nitrogen temperature and homogenized was measured by direct comparison to each other without subsampling. The ratio of the parent UF 6 to the desublimed UF 6 collected at liquid nitrogen and ice-water temperatures and homogenized was measured by indirect comparison to a common UF 6 reference material without subsampling. The ratio of the parent UF 6 to the desublimed UF 6 collected at liquid nitrogen temperature without homogenizing was measured by indirect comparison to a common UF 6 reference. Gas-phase, relative mass spectrometry was used for all isotopic measurements. Results of the study indicate that fractionation does occur. The U-235 isotope becomes more enriched in the parent container as the UF 6 is vaporized from it and desublimed into the receiving cylinder; i.e., the vaporized fraction is enriched in the U-238 isotope. The degree of fractionation indicates that the separation is due to the U-238 isotope of UF 6 having a higher vapor pressure than the U-235 isotope of UF 6 . 3 refs., 4 figs., 4 tabs

  17. Hybrid coagulation-UF processes for spent filter backwash water treatment: a comparison studies for PAFCl and FeCl3 as a pre-treatment.

    Science.gov (United States)

    Ebrahimi, Afshin; Amin, Mohammad Mehdi; Pourzamani, Hamidreza; Hajizadeh, Yaghoub; Mahvi, Amir Hossein; Mahdavi, Mokhtar; Rad, Mohammad Hassan Rabie

    2017-08-01

    In this study, the reclamation of clean water from spent filter backwash water (SFBW) was investigated through pilot-scale experiments. The pilot plant consisted of pre-sedimentation, coagulation, flocculation, clarification, and ultrafiltration (UF). Two coagulants of PAFCl and FeCl 3 were investigated with respect to their performance on treated SFBW quality and UF membrane fouling. At the optimum dose of PAFCl and FeCl 3 turbidity removal of 99.6 and 99.4% was attained, respectively. PAFCl resulted in an optimum UV 254 , TOC, and DOC removal of 80, 83.6, and 72.7%, respectively, and FeCl 3 caused the removal of those parameters by 76.7, 80.9, and 65.9%, respectively. PAFCl removed hydrophilic and transphilic constituent better than FeCl 3 , but FeCl 3 had, to some extent, higher affinities to a hydrophobic fraction. It was concluded that PAFCl showed a better coagulation performance in most cases and caused a lower membrane fouling rate compared to FeCl 3 . Finally, the treated SFBW with both coagulant-UF systems met the drinking water standards.

  18. Study of the Photocatalytic Property of Polysulfone Membrane Incorporating TiO2 Nanoparticles

    Science.gov (United States)

    Chen, Xingxing; Zhou, Weiqi; Chen, Zhe; Yao, Lei

    In order to investigate the effect of the incorporated nanoparticles on the photocatalytic property of the hybrid membranes, the uncovered and covered polysulfone/TiO2 hybrid membranes were prepared. Positron annihilation γ-ray spectroscopy coupled with a positron beam was utilized to examine the depth profiles of the two membranes. The photocatalytic activities of the membranes were evaluated by the degradation of Rhodamine B (RhB) aqueous solution under the irradiation of Xe lamp. UV-Vis spectroscopy was applied to study the UV transmission through the polysulfone layer. Electrochemical impedance spectroscopy was used to detect the photo-generated charges by the covered membrane during the irradiation. It can be found that UV light can penetrate through the covered layer (about 230nm), and the incorporated nanoparticles can still generate charges under irradiation, which endows the photocatalytic ability of the covered membrane.

  19. Incorporation of Graphene-Related Carbon Nanosheets in Membrane Fabrication for Water Treatment: A Review

    Directory of Open Access Journals (Sweden)

    Jenny Lawler

    2016-12-01

    Full Text Available The minimization of the trade-off between the flux and the selectivity of membranes is a key area that researchers are continually working to optimise, particularly in the area of fabrication of novel membranes. Flux versus selectivity issues apply in many industrial applications of membranes, for example the unwanted diffusion of methanol in fuel cells, retention of valuable proteins in downstream processing of biopharmaceuticals, rejection of organic matter and micro-organisms in water treatment, or salt permeation in desalination. The incorporation of nanosheets within membrane structures can potentially lead to enhancements in such properties as the antifouling ability, hydrophilicy and permeability of membranes, with concomitant improvements in the flux/selectivity balance. Graphene nanosheets and derivatives such as graphene oxide and reduced graphene oxide have been investigated for this purpose, for example inclusion of nanosheets within the active layer of Reverse Osmosis or Nanofiltration membranes or the blending of nanosheets as fillers within Ultrafiltration membranes. This review summarizes the incorporation of graphene derivatives into polymeric membranes for water treatment with a focus on a number of industrial applications, including desalination and pharmaceutical removal, where enhancement of productivity and reduction in fouling characteristics have been afforded by appropriate incorporation of graphene derived nanosheets during membrane fabrication.

  20. Effect of membrane hydrophilization on ultrafiltration performance for biomolecules separation

    Energy Technology Data Exchange (ETDEWEB)

    Susanto, H., E-mail: heru.susanto@undip.ac.id [Department of Chemical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto-Tembalang, Semarang (Indonesia); Roihatin, A.; Aryanti, N.; Anggoro, D.D. [Department of Chemical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto-Tembalang, Semarang (Indonesia); Ulbricht, M. [Lehrstuhl fuer Technische Chemie, Universitaet Duisburg-Essen, Germany, Universitaetstr. 5, Essen (Germany)

    2012-10-01

    This paper compares the performance of different hydrophilization methods to prepare low fouling ultrafiltration (UF) membranes. The methods include post-modification with hydrophilic polymer and blending of hydrophilic agent during either conventional or reactive phase separation (PS). The post-modification was done by photograft copolymerization of water-soluble monomer, poly(ethylene glycol) methacrylate (PEGMA), onto a commercial polyethersulfone (PES) UF membrane. Hydrophilization via blend polymer membrane with hydrophilic additive was performed using non-solvent induced phase separation (NIPS). In reactive PS method, the cast membrane was UV-irradiated before coagulation. The resulting membrane characteristic, the performance and hydrophilization stability were systematically compared. The investigated membrane characteristics include surface hydrophilicity (by contact angle /CA/), surface chemistry (by FTIR spectroscopy), and surface morphology (by scanning electron microscopy). The membrane performance was examined by investigation of adsorptive fouling and ultrafiltration using solution of protein or polysaccharide or humic acid. The results suggest that all methods could increase the hydrophilicity of the membrane yielding less fouling. Post-modification decreased CA from 44.8 {+-} 4.2{sup o} to 37.8 {+-} 4.2{sup o} to 42.5 {+-} 4.3{sup o} depending on the degree of grafting (DG). The hydrophilization via polymer blend decreased CA from from 65 deg. to 54 deg. for PEG concentration of 5%. Nevertheless, decreasing hydraulic permeability was observed after post-modification as well as during polymer blend modification. Stability examination showed that there was leaching out of modifier agent from the membrane matrix prepared via conventional PS after 10 days soaking in both water and NaOH. Reactive PS could increase the stability of the modifier agent in membrane matrix. Highlights: Black-Right-Pointing-Pointer We compared different methods to prepare low

  1. UF{sub 6} cylinder fire test

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H. [Oak Ridge K-25 Site, Oak Ridge, TN (United States)

    1991-12-31

    With the increasing number of nuclear reactors for power generation, there is a comparable increase in the amount of UF{sub 6} being transported. Likewise, the probability of having an accident involving UF{sub 6}-filled cylinders also increases. Accident scenarios which have been difficult to assess are those involving a filled UF{sub 6} cylinder subjected to fire. A study is underway at the Oak Ridge K-25 Site, as part of the US DOE Enrichment Program, to provide empirical data and a computer model that can be used to evaluate various cylinder-in-fire scenarios. It is expected that the results will provide information leading to better handling of possible fire accidents as well as show whether changes should be made to provide different physical protection during shipment. The computer model being developed will be capable of predicting the rupture of various cylinder sizes and designs as well as the amount of UF{sub 6}, its distribution in the cylinder, and the conditions of the fire.

  2. Thermodynamic properties of a high pressure subcritical UF6He gas volume (irradiated by an external source)

    International Nuclear Information System (INIS)

    Sterritt, D.E.; Lalos, G.T.; Schneider, R.T.

    1976-12-01

    A computer simulation study concerning a compressed fissioning UF 6 gas is presented. The compression is to be achieved by a ballistic piston compressor. Data on UF 6 obtained with this compressor were incorporated in the simulation study. As a neutron source to create the fission events in the compressed gas, a fast burst reactor was considered. The conclusion is that it takes a neutron flux in excess of 10 15 n/cm 2 -s to produce measurable increases in pressure and temperature, while a flux in excess of 10 19 n/cm 2 -s would probably damage the compressor

  3. Ozone and membrane filtration based strategies for the treatment of cork processing wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, F. Javier [Departamento de Ingenieria Quimica, Universidad de Extremadura, 06071 Badajoz (Spain)], E-mail: javben@unex.es; Acero, Juan L.; Leal, Ana I.; Real, Francisco J. [Departamento de Ingenieria Quimica, Universidad de Extremadura, 06071 Badajoz (Spain)

    2008-03-21

    The degradation of the pollutant organic matter present in the cork processing wastewater was studied by combining chemical treatments, which used ozone and some Advanced Oxidation Processes, and membrane filtration procedures. Two schemes were conducted: firstly, a single ozonation stage followed by an UF stage; and secondly, a membrane filtration stage, using different MF and UF membranes, followed by a chemical oxidation stage, where ozone, UV radiation, and the AOPs constituted by ozone plus UV radiation and ozone plus hydrogen peroxide, were used. The membrane filtration stages were carried out in tangential filtration laboratory equipment, and the membranes used were two MF membranes with pores sizes of 0.65 and 0.1 {mu}m, and three UF membranes with molecular weights cut-off of 300, 10, and 5 kDa. The effectiveness of the different stages (conversions in the chemical procedures and rejection coefficients in the membrane processes) were evaluated in terms of several parameters which measure the global pollutant content of the wastewater: COD, absorbance at 254 nm, tannins content, color, and ellagic acid. In the ozonation/UF combined process the following removals were achieved: 100% for ellagic acid and color, 90% for absorbance at 254 nm, more than 80% for tannins, and 42-57% for COD reduction. In the filtration/chemical oxidation combined process, 100% elimination of ellagic acid, more than 90% elimination in color, absorbance at 254 nm and tannins, and removal higher than 80% in COD were reached, which indicates a greater purification power of this combination.

  4. In-line coagulation prior to UF of treated domestic wastewater - foulants removal, fouling control and phosphorus removal

    KAUST Repository

    Zheng, Xing; Plume, Stephan; Ernst, Mathias; Croue, Jean-Philippe; Jekel, Martin R.

    2012-01-01

    The present work investigated fouling control and phosphorus removal by applying in-line coagulation prior to ultrafiltration (UF) of treated domestic wastewater. Experiments were conducted in both lab- and pilot-scale under close to neutral pH condition. Lab-scale foulant removal tests showed that increasing the dosage of FeCl3, AlCl3 and polymeric aluminum chloride (PACl) can improve biopolymer removal. Specifically, PACl reduced preferentially the proteinaceous fraction of biopolymer while the other two coagulants showed no significant preference. The filterability of water samples was improved after coagulation, which is contributed to biopolymer removal and the formation of larger particles. Pilot UF experiments demonstrated that in-line coagulation improved the performance of UF to a large extent. Within 0.037-0.148mmol Me3+/L dosage range, adding more FeCl3 and AlCl3 slowed down the development of trans-membrane pressure (TMP) correspondingly, while changing PACl dosage showed little effect on the variation of TMP increase rate. Further investigations indicated that PACl related precipitates contributed to more irreversible fouling than that which the monomeric coagulants made. Fouling control is thus considered as a co-effect determined by foulant removal efficiency, fouling layer structure and the adherence of hydrolysis products/precipitates onto the membrane. With respect to phosphorus removal, dosing FeCl3 and AlCl3 achieved higher removal efficiency than using PACl. Based on lab- and pilot-scale results, dosing FeCl3 and AlCl3 at a relative dosage of over 2.5mol Me3+ per mol total phosphorus (TP) in feedwater is necessarily required to keep the TP concentration under 50μg/L in UF permeate. © 2012 Elsevier B.V.

  5. In-line coagulation prior to UF of treated domestic wastewater - foulants removal, fouling control and phosphorus removal

    KAUST Repository

    Zheng, Xing

    2012-06-01

    The present work investigated fouling control and phosphorus removal by applying in-line coagulation prior to ultrafiltration (UF) of treated domestic wastewater. Experiments were conducted in both lab- and pilot-scale under close to neutral pH condition. Lab-scale foulant removal tests showed that increasing the dosage of FeCl3, AlCl3 and polymeric aluminum chloride (PACl) can improve biopolymer removal. Specifically, PACl reduced preferentially the proteinaceous fraction of biopolymer while the other two coagulants showed no significant preference. The filterability of water samples was improved after coagulation, which is contributed to biopolymer removal and the formation of larger particles. Pilot UF experiments demonstrated that in-line coagulation improved the performance of UF to a large extent. Within 0.037-0.148mmol Me3+/L dosage range, adding more FeCl3 and AlCl3 slowed down the development of trans-membrane pressure (TMP) correspondingly, while changing PACl dosage showed little effect on the variation of TMP increase rate. Further investigations indicated that PACl related precipitates contributed to more irreversible fouling than that which the monomeric coagulants made. Fouling control is thus considered as a co-effect determined by foulant removal efficiency, fouling layer structure and the adherence of hydrolysis products/precipitates onto the membrane. With respect to phosphorus removal, dosing FeCl3 and AlCl3 achieved higher removal efficiency than using PACl. Based on lab- and pilot-scale results, dosing FeCl3 and AlCl3 at a relative dosage of over 2.5mol Me3+ per mol total phosphorus (TP) in feedwater is necessarily required to keep the TP concentration under 50μg/L in UF permeate. © 2012 Elsevier B.V.

  6. Polyethersulfone-based ultrafiltration hollow fibre membrane for drinking water treatment systems

    Science.gov (United States)

    Chew, Chun Ming; Ng, K. M. David; Ooi, H. H. Richard

    2017-12-01

    Conventional media/sand filtration has been the mainstream water treatment process for most municipal water treatment plants in Malaysia. Filtrate qualities of conventional media/sand filtration are very much dependent on the coagulation-flocculation process prior to filtration and might be as high as 5 NTU. However, the demands for better quality of drinking water through public piped-water supply systems are growing. Polymeric ultrafiltration (UF) hollow fibre membrane made from modified polyethersulfone (PES) material is highly hydrophilic with high tensile strength and produces excellent quality filtrate of below 0.3 NTU in turbidity. This advanced membrane filtration material is also chemical resistance which allows a typical lifespan of 5 years. Comparisons between the conventional media/sand filtration and PES-based UF systems are carried out in this paper. UF has been considered as the emerging technology in municipal drinking water treatment plants due to its consistency in producing high quality filtrates even without the coagulation-flocculation process. The decreasing cost of PES-based membrane due to mass production and competitive pricing by manufacturers has made the UF technology affordable for industrial-scale water treatment plants.

  7. Cleaning UF membranes with simple and formulated solutions

    NARCIS (Netherlands)

    Levitsky, I.; Duek, A.; Naim, R.; Arkhangelsky, E.; Gitis, V.

    2012-01-01

    The ultrafiltration membranes fouled by proteins are typically cleaned by consecutive soaking in alkali, surfactant and oxidizing solutions. We combined all three chemicals into a formulated cleaning agent and examined its efficiency to restore the water flux without damaging the membrane or

  8. Impact of granular filtration on ultrafiltration membrane performance as pre-treatment to seawater desalination in presence of algal blooms

    Directory of Open Access Journals (Sweden)

    Nour-Eddine Sabiri

    2018-04-01

    Full Text Available To mitigate fouling of the ultrafiltration (UF membrane and improve permeate quality, we coupled granular filters (GF with UF membrane as a pre-treatment for reconstituted seawater in the presence of algal bloom. Mono and bilayer granular filtrations were led at a mean velocity of 10 m h−1 over a 7-hour period. Both GF gave the same algal cell retention rate (∼63% after 7 hours of filtration. Turbidity reduction rate was 50% for the monolayer filter and 75% for the bilayer filter. Resulting organic matter removal rate was 10% for the monolayer filter and 35% for the bilayer filter. Dissolved organic carbon removal was low (20% with the bilayer filter and non-existent with the monolayer filter. GF-coupled UF reduced humic acids in the permeate (20% compared with UF alone. Peak pressure of 3 bars was reached at the end of 30 minutes of UF in both direct UF or UF after monolayer GF. The filtrate from the bilayer GF enables UF over a longer period (7 hours.

  9. Application of volume-retarded osmosis and low-pressure membrane hybrid process for water reclamation.

    Science.gov (United States)

    Im, Sung-Ju; Choi, Jungwon; Lee, Jung-Gil; Jeong, Sanghyun; Jang, Am

    2018-03-01

    A new concept of volume-retarded osmosis and low-pressure membrane (VRO-LPM) hybrid process was developed and evaluated for the first time in this study. Commercially available forward osmosis (FO) and ultrafiltration (UF) membranes were employed in a VRO-LPM hybrid process to overcome energy limitations of draw solution (DS) regeneration and production of permeate in the FO process. To evaluate its feasibility as a water reclamation process, and to optimize the operational conditions, cross-flow FO and dead-end mode UF processes were individually evaluated. For the FO process, a DS concentration of 0.15 g mL -1 of polysulfonate styrene (PSS) was determined to be optimal, having a high flux with a low reverse salt flux. The UF membrane with a molecular weight cut-off of 1 kDa was chosen for its high PSS rejection in the LPM process. As a single process, UF (LPM) exhibited a higher flux than FO, but this could be controlled by adjusting the effective membrane area of the FO and UF membranes in the VRO-LPM system. The VRO-LPM hybrid process only required a circulation pump for the FO process. This led to a decrease in the specific energy consumption of the VRO-LPM process for potable water production, that was similar to the single FO process. Therefore, the newly developed VRO-LPM hybrid process, with an appropriate DS selection, can be used as an energy efficient water production method, and can outperform conventional water reclamation processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Application of volume-retarded osmosis and low-pressure membrane hybrid process for water reclamation

    KAUST Repository

    Im, Sung-Ju; Choi, Jungwon; Lee, Jung Gil; Jeong, Sanghyun; Jang, Am

    2017-01-01

    A new concept of volume-retarded osmosis and low-pressure membrane (VRO-LPM) hybrid process was developed and evaluated for the first time in this study. Commercially available forward osmosis (FO) and ultrafiltration (UF) membranes were employed in a VRO-LPM hybrid process to overcome energy limitations of draw solution (DS) regeneration and production of permeate in the FO process. To evaluate its feasibility as a water reclamation process, and to optimize the operational conditions, cross-flow FO and dead-end mode UF processes were individually evaluated. For the FO process, a DS concentration of 0.15 g mL−1 of polysulfonate styrene (PSS) was determined to be optimal, having a high flux with a low reverse salt flux. The UF membrane with a molecular weight cut-off of 1 kDa was chosen for its high PSS rejection in the LPM process. As a single process, UF (LPM) exhibited a higher flux than FO, but this could be controlled by adjusting the effective membrane area of the FO and UF membranes in the VRO-LPM system. The VRO-LPM hybrid process only required a circulation pump for the FO process. This led to a decrease in the specific energy consumption of the VRO-LPM process for potable water production, that was similar to the single FO process. Therefore, the newly developed VRO-LPM hybrid process, with an appropriate DS selection, can be used as an energy efficient water production method, and can outperform conventional water reclamation processes.

  11. Application of volume-retarded osmosis and low-pressure membrane hybrid process for water reclamation

    KAUST Repository

    Im, Sung-Ju

    2017-11-15

    A new concept of volume-retarded osmosis and low-pressure membrane (VRO-LPM) hybrid process was developed and evaluated for the first time in this study. Commercially available forward osmosis (FO) and ultrafiltration (UF) membranes were employed in a VRO-LPM hybrid process to overcome energy limitations of draw solution (DS) regeneration and production of permeate in the FO process. To evaluate its feasibility as a water reclamation process, and to optimize the operational conditions, cross-flow FO and dead-end mode UF processes were individually evaluated. For the FO process, a DS concentration of 0.15 g mL−1 of polysulfonate styrene (PSS) was determined to be optimal, having a high flux with a low reverse salt flux. The UF membrane with a molecular weight cut-off of 1 kDa was chosen for its high PSS rejection in the LPM process. As a single process, UF (LPM) exhibited a higher flux than FO, but this could be controlled by adjusting the effective membrane area of the FO and UF membranes in the VRO-LPM system. The VRO-LPM hybrid process only required a circulation pump for the FO process. This led to a decrease in the specific energy consumption of the VRO-LPM process for potable water production, that was similar to the single FO process. Therefore, the newly developed VRO-LPM hybrid process, with an appropriate DS selection, can be used as an energy efficient water production method, and can outperform conventional water reclamation processes.

  12. Incorporation of adenylate cyclase into membranes of giant liposomes using membrane fusion with recombinant baculovirus-budded virus particles.

    Science.gov (United States)

    Mori, Takaaki; Kamiya, Koki; Tomita, Masahiro; Yoshimura, Tetsuro; Tsumoto, Kanta

    2014-06-01

    Recombinant transmembrane adenylate cyclase (AC) was incorporated into membranes of giant liposomes using membrane fusion between liposomes and baculovirus-budded virus (BV). AC genes were constructed into transfer vectors in a form fused with fluorescent protein or polyhistidine at the C-terminus. The recombinant BVs were collected by ultracentrifugation and AC expression was verified using western blotting. The BVs and giant liposomes generated using gentle hydration were fused under acidic conditions; the incorporation of AC into giant liposomes was demonstrated by confocal laser scanning microscopy through the emission of fluorescence from their membranes. The AC-expressing BVs were also fused with liposomes containing the substrate (ATP) with/without a specific inhibitor (SQ 22536). An enzyme immunoassay on extracts of the sample demonstrated that cAMP was produced inside the liposomes. This procedure facilitates direct introduction of large transmembrane proteins into artificial membranes without solubilization.

  13. Synthesis of nickel-incorporated larch-based carbon membranes with controllable porous structure for gas separation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin; Li, Wei; Huang, Zhanhua; Liu, Shouxin, E-mail: chemist@126.com, E-mail: liushouxin@126.com [Northeast Forestry University, College of Material Science and Engineering (China)

    2015-11-15

    Ni-incorporated larch-based carbon membranes have been synthesized by introducing the Ni(NO{sub 3}){sub 2} into the liquefied larch using liquefied larch sawdust as precursors and F127 as the soft template. The porous structure can be tailored by the amount of Ni(NO{sub 3}){sub 2}, and the Ni and NiO nanoparticles with a size of 10 nm incorporated in the carbon frameworks. The increase in Ni(NO{sub 3}){sub 2} content can lead to the formation of disordered porous structure and shrinkage of carbon frameworks. The Ni-incorporated carbon membranes with largest pores possess highest gas permeation for N{sub 2}, CO{sub 2}, and O{sub 2} of 37.5, 19.8, and 55.5 m{sup 3} cm/m{sup 2} h kPa, which is larger than that of the pure carbon membranes, respectively. However, the poor ordered porous structure caused by adding large amount of Ni(NO{sub 3}){sub 2} can reduce the gas separation performance, which is attributed to the weaken of the molecular sieve function. The results indicate that the incorporation of few nanoparticles into larch-based carbon membranes can improve molecular sieve function.Graphical abstractNi-incorporated larch-based carbon membranes have been synthesized by introducing the Ni(NO{sub 3}){sub 2} into the liquefied larch. The porous structure can be tailored by the amount of Ni(NO{sub 3}){sub 2}, and the Ni and NiO nanoparticles incorporated in the carbon frameworks. The Ni-incorporated carbon membranes with largest pores possess highest gas permeation and gas permseparation.

  14. Ultrafiltration of biologically treated domestic wastewater: How membrane properties influence performance

    KAUST Repository

    Filloux, Emmanuelle; Teychene, Benoî t; Tazi-Pain, Annie; Croue, Jean-Philippe

    2014-01-01

    In this study, the impact of membrane properties on membrane fouling and permeate water quality was investigated. Short- and long-term laboratory scale experiments using four commercially available hollow fiber UF membranes were performed to study the impact of membrane properties on reversible and irreversible fouling. No significant differences in terms of permeate quality (i.e. biopolymer rejection) were observed over the four tested membranes. It was found that membrane characteristics including pore size, pore distribution and especially materials had a strong impact on the filtration performances in terms of both reversible and irreversible fouling. The short-term filtration tests showed that due to its specific hydrodynamic condition only the inside-out mode UF membrane was subjected to irreversible fouling. These data demonstrate the importance of membrane selection with appropriate operating conditions for optimum performances. The added value of membrane characterization to lab-scale filtration tests for membrane performance was discussed. © 2014 Elsevier B.V. All rights reserved.

  15. Ultrafiltration of biologically treated domestic wastewater: How membrane properties influence performance

    KAUST Repository

    Filloux, Emmanuelle

    2014-09-01

    In this study, the impact of membrane properties on membrane fouling and permeate water quality was investigated. Short- and long-term laboratory scale experiments using four commercially available hollow fiber UF membranes were performed to study the impact of membrane properties on reversible and irreversible fouling. No significant differences in terms of permeate quality (i.e. biopolymer rejection) were observed over the four tested membranes. It was found that membrane characteristics including pore size, pore distribution and especially materials had a strong impact on the filtration performances in terms of both reversible and irreversible fouling. The short-term filtration tests showed that due to its specific hydrodynamic condition only the inside-out mode UF membrane was subjected to irreversible fouling. These data demonstrate the importance of membrane selection with appropriate operating conditions for optimum performances. The added value of membrane characterization to lab-scale filtration tests for membrane performance was discussed. © 2014 Elsevier B.V. All rights reserved.

  16. Economic Assessment of an Integrated Membrane System for Secondary Effluent Polishing for Unrestricted Reuse

    Directory of Open Access Journals (Sweden)

    Gideon Oron

    2012-03-01

    Full Text Available Extra treatment stages are required to polish the secondary effluent for unrestricted reuse, primarily for agricultural irrigation. Improved technology for the removal of particles, turbidity, bacteria and cysts, without the use of disinfectants is based on MicroFiltration (MF and UltraFiltration (UF membrane technology and in series with Reverse Osmosis (RO for dissolved solids removal. Field experiments were conducted using a mobile UF and RO membrane pilot unit at a capacity of around 1.0 m3/hr. A management model was defined and tested towards optimal polishing of secondary effluent. The two major purposes of the management model are: (i to delineate a methodology for economic assessment of optimal membrane technology implementation for secondary effluent upgrading for unrestricted use, and; (ii to provide guidelines for optimal RO membrane selection in regards to the pretreatment stage. The defined linear model takes into account the costs of the feed secondary effluent, the UF pretreatment and the RO process. Technological constraints refer primarily to the longevity of the membrane and their performance. Final treatment cost (the objective function includes investment, operation and maintenance expenses, UF pretreatment, RO treatment, post treatment and incentive for low salinity permeate use. The cost range of water for irrigation according to the model is between 15 and 42 US cents per m3.

  17. Effect of polyunsaturated fatty acids and phospholipids on [3H]-vitamin E incorporation into pulmonary artery endothelial cell membranes

    International Nuclear Information System (INIS)

    Sekharam, K.M.; Patel, J.M.; Block, E.R.

    1990-01-01

    Vitamin E, a dietary antioxidant, is presumed to be incorporated into the lipid bilayer of biological membranes to an extent proportional to the amount of polyunsaturated fatty acids or phospholipids in the membrane. In the present study we evaluated the distribution of incorporated polyunsaturated fatty acids (PUFA) and phosphatidylethanolamine (PE) in various membranes of pulmonary artery endothelial cells. We also studied whether incorporation of PUFA or PE is responsible for increased incorporation of [3H]-vitamin E into the membranes of these cells. Following a 24-hr incubation with linoleic acid (18:2), 18:2 was increased by 6.9-, 9.2-, and 13.2-fold in plasma, mitochondrial, and microsomal membranes, respectively. Incorporation of 18:2 caused significant increases in the unsaturation indexes of mitochondrial and microsomal polyunsaturated fatty acyl chains (P less than .01 versus control in both membranes). Incubation with arachidonic acid (20:4) for 24 hr resulted in 1.5-, 2.3-, and 2.4-fold increases in 20:4 in plasma, mitochondrial, and microsomal membranes, respectively. The unsaturation indexes of polyunsaturated fatty acyl chains of mitochondrial and microsomal membranes also increased (P less than .01 versus control in both membranes). Although incubations with 18:2 or 20:4 resulted in several-fold increases in membrane 18:2 or 20:4 fatty acids, incorporation of [3H]-vitamin E into these membranes was similar to that in controls. Following a 24-hr incubation with PE, membrane PE content was significantly increased, and [3H]-vitamin E incorporation was also increased to a comparable degree, i.e., plasma membrane greater than mitochondria greater than microsomes. Endogenous vitamin E content of the cells was not altered because of increased incorporation of PE and [3H]-vitamin E

  18. Processing radioactive wastes using membrane (UF/HF/RO) systems

    International Nuclear Information System (INIS)

    Doyle, R.D.

    1988-01-01

    Over the years many technologies have been utilized to process low level radioactive waste streams generated by the nuclear industry, including: demineralization, evaporation, reverse osmosis and filtration. In the early 1980's interest was generated in membrane technologies and their application to radioactive wastes. This interest was generated based on the capabilities shown by membrane systems in non-radioactive environments and the promise that reverse osmosis systems showed in early testing with radioactive wastes. Membrane technologies have developed from the early development of reverse osmosis system to also include specifically designed membranes for ultrafiltration and hyperfiltration applications

  19. A study of brackish water membrane with ultrafiltration pretreatment in Indonesia’s coastal area

    Directory of Open Access Journals (Sweden)

    Elis Hastuti

    2012-06-01

    Full Text Available Water pollution and sea water intrusion to water sources in coastal areas result lack of provision safe drinking water by the drinking water regional company or coastal community. The existing water treatment plant that operated on brackish surface water or groundwater feed requires improving process. Membrane process could be a choice to treat the quality of brackish water to the level of potable water that designed to lower cost with high stabil flux and longer lifetime. This research focus on application of pilot plant of brackish water treatment using Ultrafiltration (UF membrane-air lift system as pretreatment of Reverse Osmosis (RO membrane-low pressure. Brackish water sources contain high colloidal and suspended solids that can cause fouling load of RO membranes and impair its performance. UF pretreatment operation tested by addition of compressed air into the feed (air lift system, resulted stable flux, reduces membrane fouling and low feed pressure. A flux of RO with UF pretreatment can produce drinking water of 30–61 L/m2∙hour. It was observed, the good quality of RO permeate resulted by using a pretreatment of UF–PS (Polysulfone-UF with total dissolved solid rejection about 96–98% and color rejection about 99–100% at 5 or 8 bars of operation pressure. This paper concludes that performance of membrane technology with UF–air lift system pretreatment and RO membrane-low pressure could be accepted as condition of brackish water source in Indonesia coastal areas in producing drinking water.

  20. Removal of a synthetic organic chemical by PAC-UF systems. II: Model application.

    Science.gov (United States)

    Matsui, Y; Colas, F; Yuasa, A

    2001-02-01

    This paper describes several application potentials with a recently developed model for predicting the synthetic organic chemical (SOC) removal by powdered activated carbon (PAC) adsorption during ultrafiltration (UF) and discusses the removal mechanism. The model was successfully applied, without any modification, to dead-end mode operation as well as to cross-flow mode operation, validating the assumption of the internal diffusion control mechanism and the continuously-stirred-tank-reactor (CSTR) concept. Even when UF was operated in a cross-flow mode, PAC added was re-circulating in suspension for only a short time. Then, solute uptake took place mostly by PAC immobilized in membrane tubes not only for dead-end operation but also for cross-flow operation. Therefore, cross-flow operation did not have any advantage regarding the SOC mass transfer on PAC in UF loop over dead-end operation. The model simulation implied that pulse PAC addition at the beginning of filtration cycle resulted better SOC removal than continuous PAC addition. However, for the pulse PAC addition mode, the model predicted somewhat lower effluent SOC concentration than the observed values, and the benefit of pulse PAC application in terms of reducing SOC over its continuous dosage was not confirmed. Longer detention time of PAC dosed in a pulse than continuously dosed PAC could possibly further decrease internal diffusivity.

  1. Hybrid MF and membrane bioreactor process applied towards water and indigo reuse from denim textile wastewater.

    Science.gov (United States)

    Couto, Carolina Fonseca; Marques, Larissa Silva; Balmant, Janine; de Oliveira Maia, Andreza Penido; Moravia, Wagner Guadagnin; Santos Amaral, Miriam Cristina

    2018-03-01

    This work investigates the application of a microfiltration (MF)-membrane bioreactor (MBR) hybrid process for textile dyeing process wastewater reclamation. The indigo blue dye was efficiently retained by the MF membrane (100%), which allows its recovery from the concentrate stream. MF promotes 100% of colour removal, and reduces the chemical oxygen demand (COD) and conductivity by about 65% and 25%, respectively, and improves the wastewater biodegradability. MF flux decline was mostly attributed to concentration polarization and the chemical cleaning was efficient enough to recover initial hydraulic resistance. The MBR provides to be a stable process maintaining its COD and ammonia removal efficiency (73% and 100%, respectively) mostly constant throughout and producing a permeate that meets the reuse criteria for some industry activities, such as washing-off and equipment washdown. The use of an MF or ultrafiltration (UF) membrane in the MBR does not impact the MBR performance in terms of COD removal. Although the membrane of MBR-UF shows permeability lower than MBR-MF membrane, the UF membrane contributes to a more stable operation in terms of permeability.

  2. Method and apparatus for measuring enrichment of UF6

    Science.gov (United States)

    Hill, Thomas Roy [Santa Fe, NM; Ianakiev, Kiril Dimitrov [Los Alamos, NM

    2011-06-07

    A system and method are disclosed for determining the enrichment of .sup.235U in Uranium Hexafluoride (UF6) utilizing synthesized X-rays which are directed at a container test zone containing a sample of UF6. A detector placed behind the container test zone then detects and counts the X-rays which pass through the container and the UF6. In order to determine the portion of the attenuation due to the UF6 gas alone, this count rate may then be compared to a calibration count rate of X-rays passing through a calibration test zone which contains a vacuum, the test zone having experienced substantially similar environmental conditions as the actual test zone. Alternatively, X-rays of two differing energy levels may be alternately directed at the container, where either the container or the UF6 has a high sensitivity to the difference in the energy levels, and the other having a low sensitivity.

  3. Renewable energy powered membrane technology. 2. The effect of energy fluctuations on performance of a photovoltaic hybrid membrane system

    OpenAIRE

    Richards, B.S.; Capão, D.P.S.; Schäfer, Andrea

    2008-01-01

    This paper reports on the performance fluctuations during the operation of a batteryless hybrid ultrafiltration-nanofiltration/reverse osmosis (UF-NF/RO) membrane desalination system powered by photovoltaics treating brackish groundwater in outback Australia. The renewable energy powered membrane (RE-membrane) system is designed to supply clean drinking water to a remote community of about 50 inhabitants. The performance of the RE-membrane system over four different solar days is summarized u...

  4. HEU to LEU Conversion and Blending Facility: UF6 blending alternative to produce LEU UF6 for commercial use

    International Nuclear Information System (INIS)

    1995-09-01

    US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials; the nuclear material will be converted to a form more proliferation- resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. Five technologies for blending HEU will be assessed; blending as UF 6 to produce a UF 6 product for commercial use is one of them. This document provides data to be used in the environmental impact analysis for the UF 6 blending HEU disposition option. Resource needs, employment needs, waste and emissions from plant, hazards, accident scenarios, and intersite transportation are discussed

  5. Membrane flux dynamics in the submerged ultrafiltration hybrid treatment process during particle and natural organic matter removal

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Xiaojian Zhang; Yonghong Li; Jun Wang; Chao Chen

    2011-01-01

    Particles and natural organic matter (NOM) are two major concerns in surface water,which greatly influence the membrane filtration process.The objective of this article is to investigate the effect of particles,NOM and their interaction on the submerged ultrafiltration (UF) membrane flux under conditions of solo UF and coagulation and PAC adsorption as the pretreatment of UF.Particles,NOM and their mixture were spiked in tap water to simulate raw water.Exponential relationship,(JP/JP0 =axexp{-k[t-(n- 1)T]}),was developed to quantify the normalized membrane flux dynamics during the filtration period and fitted the results well.In this equation,coefficient a was determined by the value of Jp/Jp0 at the beginning of a filtration cycle,reflecting the flux recovery after backwashing,that is,the irreversible fouling.The coefficient k reflected the trend of flux dynamics.Integrated total permeability (ΣJp) in one filtration period could be used as a quantified indicator for comparison of different hybrid membrane processes or under different scenarios.According to the results,there was an additive effect on membrane flux by NOM and particles during solo UF process.This additive fouling could be alleviated by coagulation pretreatment since particles helped the formation of flocs with coagulant,which further delayed the decrease of membrane flux and benefited flux recovery by backwashing.The addition of PAC also increased membrane flux by adsorbing NOM and improved flux recovery through backwashing.

  6. FTIR spectroscopy of UF6 clustering in a supersonic Laval nozzle

    International Nuclear Information System (INIS)

    Tanimura, Shinobu; Okada, Yoshiki; Takeuchi, Kazuo

    1996-01-01

    The clustering of UF 6 seeded in Ar was observed in a continuous supersonic Laval nozzle flow. The onset conditions for UF 6 clustering were investigated by measuring the FTIR spectra of UF 6 monomer and clusters in the nozzle. The onset conditions for the clustering, temperature, density of UF 6 (or partial pressure), and cooling rate, were determined. The onset temperature determined here was higher by 40-50 K than that determined by a light-scattering method. The frequency shift of the main peak of the UF 6 clusters from the monomer peak was about -17 cm -1 , which was smaller than the shift of the crystalline UF 6 by about 11 cm -1 . The increase in temperature caused by the heat of condensation and the change of the spectra of UF 6 clusters with the growth after the onset were also observed. It was shown that the clustering rate due to the collision between the monomer and cluster is much higher than that due to the collision between the monomers. 19 refs., 9 figs

  7. Review of potential models for UF6 dispersion

    International Nuclear Information System (INIS)

    Sykes, R.I.; Lewellen, W.S.

    1992-07-01

    A survey of existing atmospheric dispersion models has been conducted to determine the most appropriate basis for the development of a model for predicting the consequences of an accidental UF 6 release. The model is required for safety analysis studies and should therefore be computationally efficient. The release of UF 6 involves a number of physical phenomena which make the situation more complicated than passive dispersion of a trace gas. The safety analysis must consider the density variations in the UF 6 cloud, which can be heavier or lighter than the ambient air. The release also involves rapid chemical reactions and associated heat release, which must be modeled. Other Department of Energy storage facilities require a dense gas prediction capability, so the model must be sufficiently general for use with a variety of release scenarios. The special problems associated with UF 6 make it unique, so there are very few models with existing capability for the problem. There are, however, a large number of dense gas dispersion models, some with relevant chemical reaction modeling, that could potentially form the basis of an advanced UF 6 model. We have examined a large selection of possible candidates, and selected 5 models for detailed consideration

  8. Mechanical performance of laminated composites incorporated with nanofibrous membranes

    International Nuclear Information System (INIS)

    Liu, L.; Huang, Z.-M.; He, C.L.; Han, X.J.

    2006-01-01

    The effect of non-woven nanofibrous membranes as interlaminar interfaces on the mechanical performance of laminated composites was investigated experimentally. The nanofibrous membranes are porous, thin and lightweight, and exhibit toughness and strength to some extent. They give little increase in weight and thickness when incorporated into a laminate. More important, they can be used as a functional agent carrier for the laminate. The nanofiber membranes used in this paper were prepared by electrospinning of Nylon-6 (PA6), Epoxy 609 (EPO 1691-410) and thermoplastic polyurethane (TPU), with a thickness ranging from 20 to 150 μm. The non-woven fabrics were attached to one side of a glass/epoxy fabric lamina prior to lamination and each fabric was arranged in between two adjacent plies of the laminate. The nanofibrous membranes were characterized through scanning electron microscopy (SEM) and tensile testing, whereas the mechanical properties of the laminate were understood in terms of three-point bending and short-beam shear tests. Results have shown that the nanofibrous membranes in the ply interfaces with a proper thickness did not affect the mechanical performance of the composite laminates significantly

  9. Urenco`s experience of UF{sub 6} handling

    Energy Technology Data Exchange (ETDEWEB)

    Saelmans, F. [Urenco Almelo (Netherlands); Scane, C. [Urenco Capenhurst (United Kingdom); Christofzik, J. [Urenco Gronau (Germany)

    1991-12-31

    Urenco operates enrichment plants at three sites, Almelo (Netherlands), Capenhurst (United Kingdom) and Gronau (Germany). Current installed separative work capacity is 2,500 tSWpa. Since 1971, when the first pilot plants were built, enrichment production has totalled 18,000 tSW. During this last 20 years over 3,500 48 containers of UF{sub 6} have been fed to the plants, over 3,700 30 containers have been filled with product and delivered successfully to Urenco`s customers worldwide and over 3,000 48 containers of depleted tails have been filled and have either been returned to customers or retained for long term storage on site. The paper gives a brief outline of Urenco`s experience in handling UF{sub 6}: the equipment and methods used in receiving, feeding, filling, blending, liquid sampling, storing, moving on site and despatching of UF{sub 6} containers. Some of the difficulties experienced with UF{sub 6} containers are appended.

  10. Metamorphosis: Phases of UF{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, R.H. [Department of Energy, Oak Ridge, TN (United States)

    1991-12-31

    A 15-minute videotape is presented. The subject matter is 150 grams of UF{sub 6} sealed in a glass tube. Close-up views show the UF{sub 6} as phase changes are effected by the addition or removal of heat from the closed system. The solid-to-liquid transition is shown as heat is added, both slowly and rapidly. The solid phases which result from freezing and from desublimation are contrasted. In the solid state, uranium hexafluoride is a nearly-white, dense crystalline solid. The appearance of this solid depends on whether it is formed by freezing from the liquid or by desublimation from the vapor phase. If frozen from the liquid, the solid particles take the form of irregularly shaped coarse grains, while the solid product of desublimation tends to be a rather formless mass without individually distinguishable particles. The changes in state are presented in terms of the UF{sub 6} phase diagram.

  11. Synthesis and characterization of a new uranium(V) compound: H3O+UF6-

    International Nuclear Information System (INIS)

    Masson, J.P.; Desmoulin, J.P.; Charpin, P.; Bougon, R.

    1976-01-01

    The reaction of equimolar amounts of UF 5 and H 2 O in hydrogen fluoride results in the partial dissolution of UF 5 , yielding a blue-green solution from which the new salt oxonium hexafluorouranate(V)(H 3 O + UF 6 - ) could be isolated as a green crystalline solid. Calorimetric measurements showed H 3 O + UF 6 - to decompose at about 68 0 C and its heat of formation to be equal to -628 +- 2 kcal mol. Its ionic nature in the solid state and in HF solutions was demonstrated from vibrational and electronic spectra. The electronic spectrum is closely similar to those of LiUF 6 , NaUF 6 , and CsUF 6 and differs from those of RbUF 6 and KUF 6 . This adduct shows a strong ESR signal, with g = -0.78 +- 0.10, characteristic of UF 6 - salts. Based on its x-ray powder diffraction pattern, H 3 O + UF 6 - is cubic with a = 5.2229 +- 0.0005 A

  12. Highly efficient forward osmosis based on porous membranes--applications and implications.

    Science.gov (United States)

    Qi, Saren; Li, Ye; Zhao, Yang; Li, Weiyi; Tang, Chuyang Y

    2015-04-07

    For the first time, forward osmosis (FO) was performed using a porous membrane with an ultrafiltration (UF)-like rejection layer and its feasibility for high performance FO filtration was demonstrated. Compared to traditional FO membranes with dense rejection layers, the UF-like FO membrane was 2 orders of magnitude more permeable. This gave rise to respectable FO water flux even at ultralow osmotic driving force, for example, 7.6 L/m(2).h at an osmotic pressure of merely 0.11 bar (achieved by using a 0.1% poly(sodium 4-styrene-sulfonate) draw solution). The membrane was applied to oil/water separation, and a highly stable FO water flux was achieved. The adoption of porous FO membranes opens a door to many new opportunities, with potential applications ranging from wastewater treatment, valuable product recovery, and biomedical applications. The potential applications and implications of porous FO membranes are addressed in this paper.

  13. Incorporation of layered double nanomaterials in thin film nanocomposite nanofiltration membrane for magnesium sulphate removal

    Science.gov (United States)

    Hanis Tajuddin, Muhammad; Yusof, Norhaniza; Salleh, Wan Norharyati Wan; Fauzi Ismail, Ahmad; Hanis Hayati Hairom, Nur; Misdan, Nurasyikin

    2018-03-01

    Thin film nanocomposite (TFN) membrane with copper-aluminium layered double hydroxides (LDH) incorporated into polyamide (PA) selective layer has been prepared for magnesium sulphate salt removal. 0, 0.05, 0.1, 0.15, 0.2 wt% of LDH were dispersed in the trimesoyl chloride (TMC) in n-hexane as organic solution and embedded into PA layer during interfacial polymerization with piperazine. The fabricated membranes were further characterized to evaluate its morphological structure and membrane surface hydrophilicity. The TFN membranes performance were evaluated with divalent salt magnesium sulphate (MgSO4) removal and compared with thin film composite (TFC). The morphological structures of TFN membranes were altered and the surface hydrophilicity were enhanced with addition of LDH. Incorporation of LDH has improved the permeate water flux by 82.5% compared to that of TFC membrane with satisfactory rejection of MgSO4. This study has experimentally validated the potential of LDH to improve the divalent salt separation performance for TFN membranes.

  14. Incorporation of layered double nanomaterials in thin film nanocomposite nanofiltration membrane for magnesium sulphate removal

    Directory of Open Access Journals (Sweden)

    Tajuddin Muhammad Hanis

    2018-01-01

    Full Text Available Thin film nanocomposite (TFN membrane with copper-aluminium layered double hydroxides (LDH incorporated into polyamide (PA selective layer has been prepared for magnesium sulphate salt removal. 0, 0.05, 0.1, 0.15, 0.2 wt% of LDH were dispersed in the trimesoyl chloride (TMC in n-hexane as organic solution and embedded into PA layer during interfacial polymerization with piperazine. The fabricated membranes were further characterized to evaluate its morphological structure and membrane surface hydrophilicity. The TFN membranes performance were evaluated with divalent salt magnesium sulphate (MgSO4 removal and compared with thin film composite (TFC. The morphological structures of TFN membranes were altered and the surface hydrophilicity were enhanced with addition of LDH. Incorporation of LDH has improved the permeate water flux by 82.5% compared to that of TFC membrane with satisfactory rejection of MgSO4. This study has experimentally validated the potential of LDH to improve the divalent salt separation performance for TFN membranes.

  15. Depleted UF6 programmatic environmental impact statement

    International Nuclear Information System (INIS)

    1997-01-01

    The US Department of Energy has developed a program for long-term management and use of depleted uranium hexafluoride, a product of the uranium enrichment process. As part of this effort, DOE is preparing a Programmatic Environmental Impact Statement (PEIS) for the depleted UF 6 management program. This report duplicates the information available at the web site (http://www.ead.anl.gov/web/newduf6) set up as a repository for the PEIS. Options for the web site include: reviewing recent additions or changes to the web site; learning more about depleted UF 6 and the PEIS; browsing the PEIS and related documents, or submitting official comments on the PEIS; downloading all or part of the PEIS documents; and adding or deleting one's name from the depleted UF 6 mailing list

  16. Synthesis of nickel-incorporated larch-based carbon membranes with controllable porous structure for gas separation

    Science.gov (United States)

    Zhao, Xin; Li, Wei; Huang, Zhanhua; Liu, Shouxin

    2015-11-01

    Ni-incorporated larch-based carbon membranes have been synthesized by introducing the Ni(NO3)2 into the liquefied larch using liquefied larch sawdust as precursors and F127 as the soft template. The porous structure can be tailored by the amount of Ni(NO3)2, and the Ni and NiO nanoparticles with a size of 10 nm incorporated in the carbon frameworks. The increase in Ni(NO3)2 content can lead to the formation of disordered porous structure and shrinkage of carbon frameworks. The Ni-incorporated carbon membranes with largest pores possess highest gas permeation for N2, CO2, and O2 of 37.5, 19.8, and 55.5 m3 cm/m2 h kPa, which is larger than that of the pure carbon membranes, respectively. However, the poor ordered porous structure caused by adding large amount of Ni(NO3)2 can reduce the gas separation performance, which is attributed to the weaken of the molecular sieve function. The results indicate that the incorporation of few nanoparticles into larch-based carbon membranes can improve molecular sieve function.

  17. Preparation of antifouling ultrafiltration membranes via irradiation induced graft polymerization technique

    International Nuclear Information System (INIS)

    Deng Bo; Liu Zhognying; Lu Xiaofeng; Li Jingye; Yang Xuanxuan; Yu Ming; Zhang Bowu

    2010-01-01

    PVDF powders were irradiated in air at dose of 15 kGy by using gamma-rays. Macromolecular peroxides transformed from free radicals in the irradiated PVDF powders in air can be preserved for long-term at appropriate temperature stably. By mixing acrylic monomers with irradiated PVDF powders then the graft polymerization can be initiated by heating. Then a series of hydrophilic ultrafiltration (UF) membranes were fabricated by dissolving the PVDF-g-PAAc powders in the NMP under phase inversion method. The antifouling performances of UF membranes cast from virgin and grafted PVDF powders were compared. (authors)

  18. TENERIFE program: high temperature experiments on A 4 tons UF6 container

    International Nuclear Information System (INIS)

    Casselman, C.; Duret, B.; Seiler, J.M.; Ringot, C.; Warniez, P.; Wataru, M.; Shiomi, S.; Ozaki, S.; Yamakawa, H.

    1993-01-01

    To know the input of the future thermo-mechanical code, we have to get a better understanding of the thermo-physical evolution of the UF 6 which pressurizes the container. This evolution is function of: a) the heat transfer rate from the fire to the container b) the UF 6 behaviour in the container. These tests are essentially analytical at simulated fire temperatures of between 800 and 1000degC. They use a representative mass of UF 6 (around 4 tons). The tests will not seek to rupture the test container which has a diameter equal to the 48Y container, but shorter length. These tests carried out in realistic conditions (typical thermal gradient at the wall, characteristic period for UF 6 internal mass transfer) should make possible to improve knowledge of two fundamental phenomena: 1) vaporization of UF 6 on contact with the heated wall (around 400degC), a phenomenon which controls the container internal pressurization kinetic, 2) the equivalent conductivity of solid UF 6 , a phenomenon which is linked to the heat transfer by UF 6 vaporization-condensation through the solid's porosities and which depends on the diameter of the container. In addition, they will allow the influence of other parameters to be studied, such as UF 6 container filling mode or the mechanical characteristics of the container material. A UF 6 container fitted with instruments (wall temperature, UF 6 temperature, pressure) is heated by a rapid heat transient in a radiating furnace where the temperature and thermal power supplied can be measured. The test continues until pre-established thresholds have been reached: 1) strain threshold measured on the container surface (strain gauges positioned on the outside), 2) maximum temperature threshold of UF 6 , 3) container internal pressure threshold. (J.P.N.)

  19. Computer programs for developing source terms for a UF{sub 6} dispersion model to simulate postulated UF{sub 6} releases from buildings

    Energy Technology Data Exchange (ETDEWEB)

    Williams, W.R.

    1985-03-01

    Calculational methods and computer programs for the analysis of source terms for postulated releases of UF{sub 6} are presented. Required thermophysical properties of UF{sub 6}, HF, and H{sub 2}O are described in detail. UF{sub 6} reacts with moisture in the ambient environment to form HF and H{sub 2}O. The coexistence of HF and H{sub 2}O significantly alters their pure component properties, and HF vapor polymerizes. Transient compartment models for simulating UF{sub 6} releases inside gaseous diffusion plant feed and withdrawl buildings and cascade buildings are also described. The basic compartment model mass and energy balances are supported by simple heat transfer, ventilation system, and deposition models. A model that can simulate either a closed compartment or a steady-state ventilation system is also discussed. The transient compartment models provide input to an atmospheric dispersion model as output.

  20. Characterisation of transparent exopolymer particles (TEP) produced during algal bloom: A membrane treatment perspective

    KAUST Repository

    Villacorte, Loreen O.

    2013-01-01

    Algal blooms are currently a major concern of the membrane industry as it generates massive concentrations of organic matter (e.g. transparent exopolymer particles [TEP]), which can adversely affect the operation of membrane filtration systems. The goal of this study is to understand the production, composition and membrane rejection of these organic materials using different characterisation techniques. Two common species of bloom-forming freshwater and marine algae were cultivated in batch cultures for 30days and the productions of TEP and other organic matter were monitored at different growth phases. TEP production of the marine diatom, Chaetoceros affinis, produced 6-9 times more TEP than the freshwater blue-green algae, Microcystis. The organic substances produced by both algal species were dominated by biopolymeric substances such as polysaccharides (45-64%) and proteins (2-17%) while the remaining fraction comprises of low molecular weight refractory (humic-like) and/ or biogenic organic substances. MF/UF membranes mainly rejected the biopolymers but not the low molecular weight organic materials. MF membranes (0.1-0.4 lm) rejected 42-56% of biopolymers, while UF membranes (10-100 kDa) rejected 65-95% of these materials. Further analysis of rejected organic materials on the surface of the membranes revealed that polysac-charides and proteins are likely responsible for the fouling of MF/UF systems during an algal bloom situation. © 2013 Desalination Publications.

  1. 2D modelling of a UF6 container in a fire

    International Nuclear Information System (INIS)

    Duret, B.; Seiler, J.M.

    1993-01-01

    We present some results on 2D thermal modelisation of the behaviour of UF6 in a fire. A cylindrical container is engulfed by a high temperature space where the heat transfer is expected to occur by radiation only. During the first minutes, we assume that the thermal resistance is between the external wall and the UF6 solid, the heat transfer can be split up into three kinds: 1) conduction to solid UF6 through a contact surface. 2) radiative transfer. 3) gas layer with a small heat conductance. This thermal resistance is initially determined by the UF6 filling type, shape and also is time dependant by thermal dilatation effects. On the onset of liquifying the heat transfer increases because of the larger liquid exchange. The liquid and boiling heat flow is then calculated by a model on the basis of classical correlations in vertical cavities. Numerical evaluations have been performed with a finite element model using: ANSYS. With a realistic hypothesis, the effect of the following parameters is estimated: thermal conductivity of UF6 solid, contact surface fraction, UF6 emissivity, gas gap thickness, liquid UF6 wall exchange, solid liquid transition criteria, non condensation factor k. (J.P.N.)

  2. Monoolein lipid phases as incorporation and enrichment materials for membrane protein crystallization.

    Directory of Open Access Journals (Sweden)

    Ellen Wallace

    Full Text Available The crystallization of membrane proteins in amphiphile-rich materials such as lipidic cubic phases is an established methodology in many structural biology laboratories. The standard procedure employed with this methodology requires the generation of a highly viscous lipidic material by mixing lipid, for instance monoolein, with a solution of the detergent solubilized membrane protein. This preparation is often carried out with specialized mixing tools that allow handling of the highly viscous materials while minimizing dead volume to save precious membrane protein sample. The processes that occur during the initial mixing of the lipid with the membrane protein are not well understood. Here we show that the formation of the lipidic phases and the incorporation of the membrane protein into such materials can be separated experimentally. Specifically, we have investigated the effect of different initial monoolein-based lipid phase states on the crystallization behavior of the colored photosynthetic reaction center from Rhodobacter sphaeroides. We find that the detergent solubilized photosynthetic reaction center spontaneously inserts into and concentrates in the lipid matrix without any mixing, and that the initial lipid material phase state is irrelevant for productive crystallization. A substantial in-situ enrichment of the membrane protein to concentration levels that are otherwise unobtainable occurs in a thin layer on the surface of the lipidic material. These results have important practical applications and hence we suggest a simplified protocol for membrane protein crystallization within amphiphile rich materials, eliminating any specialized mixing tools to prepare crystallization experiments within lipidic cubic phases. Furthermore, by virtue of sampling a membrane protein concentration gradient within a single crystallization experiment, this crystallization technique is more robust and increases the efficiency of identifying productive

  3. Physical–chemical properties, separation performance, and fouling resistance of mixed-matrix ultrafiltration membranes

    KAUST Repository

    Hoek, Eric M.V.; Ghosh, Asim K.; Huang, Xiaofei; Liong, Monty; Zink, Jeffrey I.

    2011-01-01

    Herein we report on the formation and characterization of mixed-matrix ultrafiltration (UF) membranes hand-cast by nonsolvent induced phase inversion. We evaluated nanometer-to-micrometer sized inorganic fillers (silver, copper, silica, zeolite, and silver-zeolite) materials with polysulfone (PSf) as the polymeric dispersing matrix. In general, mixed-matrix membranes were rougher, more hydrophilic, and more mechanically robust. Only sub-micron zeolite-PSf mixed-matrix membranes exhibited simultaneous improvements in water permeability and solute selectivity; all other mixed-matrix membranes were more permeable, but less selective due to defects associated with poor polymer-filler binding. Protein and bacterial fouling resistance of mixed-matrix membranes containing silver, zeolite, and silver-zeolite nanoparticles were compared to a low-fouling, poly(acrylonitrile) (PAN) UF membrane. Zeolite and silver containing membranes exhibited better protein fouling resistance (due to higher hydrophilicity), whereas silver and silver-zeolite based membranes produce better bacterial fouling resistance due to antimicrobial properties. Overall, zeolite-PSf and silver exchanged zeolite-PSf membranes offered the best combination of improved permeability, selectivity, and fouling resistance - superior to the commercial PAN membrane. © 2011 Elsevier B.V.

  4. Physical–chemical properties, separation performance, and fouling resistance of mixed-matrix ultrafiltration membranes

    KAUST Repository

    Hoek, Eric M.V.

    2011-12-01

    Herein we report on the formation and characterization of mixed-matrix ultrafiltration (UF) membranes hand-cast by nonsolvent induced phase inversion. We evaluated nanometer-to-micrometer sized inorganic fillers (silver, copper, silica, zeolite, and silver-zeolite) materials with polysulfone (PSf) as the polymeric dispersing matrix. In general, mixed-matrix membranes were rougher, more hydrophilic, and more mechanically robust. Only sub-micron zeolite-PSf mixed-matrix membranes exhibited simultaneous improvements in water permeability and solute selectivity; all other mixed-matrix membranes were more permeable, but less selective due to defects associated with poor polymer-filler binding. Protein and bacterial fouling resistance of mixed-matrix membranes containing silver, zeolite, and silver-zeolite nanoparticles were compared to a low-fouling, poly(acrylonitrile) (PAN) UF membrane. Zeolite and silver containing membranes exhibited better protein fouling resistance (due to higher hydrophilicity), whereas silver and silver-zeolite based membranes produce better bacterial fouling resistance due to antimicrobial properties. Overall, zeolite-PSf and silver exchanged zeolite-PSf membranes offered the best combination of improved permeability, selectivity, and fouling resistance - superior to the commercial PAN membrane. © 2011 Elsevier B.V.

  5. HEU to LEU Conversion and Blending Facility: UF{sub 6} blending alternative to produce LEU UF{sub 6} for commercial use

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials; the nuclear material will be converted to a form more proliferation- resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. Five technologies for blending HEU will be assessed; blending as UF{sub 6} to produce a UF{sub 6} product for commercial use is one of them. This document provides data to be used in the environmental impact analysis for the UF{sub 6} blending HEU disposition option. Resource needs, employment needs, waste and emissions from plant, hazards, accident scenarios, and intersite transportation are discussed.

  6. Anisotropy of the fluorine chemical shift tensor in UF6

    International Nuclear Information System (INIS)

    Rigny, P.

    1965-04-01

    An 19 F magnetic resonance study of polycrystalline UF 6 is presented. The low temperature complex line can be analyzed as the superposition of two distinct lines, which is attributed to a distortion of the UF 6 octahedron in the solid. The shape of the two components is studied. Their width is much larger than the theoretical dipolar width, and must be explained by large anisotropies of the fluorine chemical shift tensors. The resulting shape functions of the powder spectra are determined. The values of the parameters of the chemical shift tensors yield estimates of the characters of the U-F bonds, and this gives some information on the ground state electronic wave function of the UF 6 molecule in the solid. (author) [fr

  7. Corrosion of breached UF6 storage cylinders

    International Nuclear Information System (INIS)

    Barber, E.J.; Taylor, M.S.; DeVan, J.H.

    1993-01-01

    This paper describes the corrosion processes that occurred following the mechanical failure of two steel 14-ton storage cylinders containing depleted UF 6 . The failures both were traced to small mechanical tears that occurred during stacking of the cylinders. Although subsequent corrosion processes greatly extended the openings in the wall. the reaction products formed were quite protective and prevented any significant environmental insult or loss of uranium. The relative sizes of the two holes correlated with the relative exposure times that had elapsed from the time of stacking. From the sizes and geometries of the two holes, together with analyses of the reaction products, it was possible to determine the chemical reactions that controlled the corrosion process and to develop a scenario for predicting the rate of hydrolysis of UF 6 , the loss rate of HF, and chemical attack of a breached UF 6 storage cylinder

  8. Recovery of flavonoids from orange press liquor by an integrated membrane process.

    Science.gov (United States)

    Cassano, Alfredo; Conidi, Carmela; Ruby-Figueroa, René

    2014-08-11

    Orange press liquor is a by-product generated by the citrus processing industry containing huge amounts of natural phenolic compounds with recognized antioxidant activity. In this work, an integrated membrane process for the recovery of flavonoids from orange press liquors was investigated on a laboratory scale. The liquor was previously clarified by ultrafiltration (UF) in selected operating conditions by using hollow fiber polysulfone membranes. Then, the clarified liquor with a total soluble solids (TSS) content of 10 g·100 g-1 was pre-concentrated by nanofiltration (NF) up to 32 g TSS 100 g-1 by using a polyethersulfone spiral-wound membrane. A final concentration step, up to 47 g TSS 100 g-1, was performed by using an osmotic distillation (OD) apparatus equipped with polypropylene hollow fiber membranes. Suspended solids were completely removed in the UF step producing a clarified liquor containing most part of the flavonoids of the original press liquor due to the low rejection of the UF membrane towards these compounds. Flavanones and anthocyanins were highly rejected by the NF membrane, producing a permeate stream with a TSS content of 4.5 g·100 g-1. An increasing of both the flavanones and anthocyanins concentration was observed in the NF retentate by increasing the volume reduction factor (VRF). The final concentration of flavonoids by OD produced a concentrated solution of interest for nutraceutical and pharmaceutical applications.

  9. Recovery of Flavonoids from Orange Press Liquor by an Integrated Membrane Process

    Directory of Open Access Journals (Sweden)

    Alfredo Cassano

    2014-08-01

    Full Text Available Orange press liquor is a by-product generated by the citrus processing industry containing huge amounts of natural phenolic compounds with recognized antioxidant activity. In this work, an integrated membrane process for the recovery of flavonoids from orange press liquors was investigated on a laboratory scale. The liquor was previously clarified by ultrafiltration (UF in selected operating conditions by using hollow fiber polysulfone membranes. Then, the clarified liquor with a total soluble solids (TSS content of 10 g·100 g−1 was pre-concentrated by nanofiltration (NF up to 32 g TSS 100 g−1 by using a polyethersulfone spiral-wound membrane. A final concentration step, up to 47 g TSS 100 g−1, was performed by using an osmotic distillation (OD apparatus equipped with polypropylene hollow fiber membranes. Suspended solids were completely removed in the UF step producing a clarified liquor containing most part of the flavonoids of the original press liquor due to the low rejection of the UF membrane towards these compounds. Flavanones and anthocyanins were highly rejected by the NF membrane, producing a permeate stream with a TSS content of 4.5 g·100 g−1. An increasing of both the flavanones and anthocyanins concentration was observed in the NF retentate by increasing the volume reduction factor (VRF. The final concentration of flavonoids by OD produced a concentrated solution of interest for nutraceutical and pharmaceutical applications.

  10. Integration of sand and membrane filtration systems for iron and pesticide removal without chemical addition

    DEFF Research Database (Denmark)

    Kowalski, Krysztof; Madsen, Henrik Tækker; Søgaard, Erik Gydesen

    2013-01-01

    the content of key foulants, the techniques can be used as a pre-treatment for nanofiltration and low pressure reverse osmosis that has proved to be capable of removing pesticides. It was found that a lower fouling potential could be obtained by using the membranes, but that sand filter was better at removing......Pilot plant investigations of sand and membrane filtration (MF/UF/NF/LPRO) have been performed to treat groundwater polluted with pesticides. The results show that simple treatment, with use of aeration and sand filtration or MF/UF membranes, does not remove pesticides. However, by reducing...... manganese and dissolved organic matter. The results indicate that combining aeration; sand filtration and membrane techniques might be a good option for pesticide removal without any addition of chemicals and minimized membrane maintenance....

  11. Membrane Incorporation, Channel Formation, and Disruption of Calcium Homeostasis by Alzheimer's β-Amyloid Protein

    Directory of Open Access Journals (Sweden)

    Masahiro Kawahara

    2011-01-01

    Full Text Available Oligomerization, conformational changes, and the consequent neurodegeneration of Alzheimer's β-amyloid protein (AβP play crucial roles in the pathogenesis of Alzheimer's disease (AD. Mounting evidence suggests that oligomeric AβPs cause the disruption of calcium homeostasis, eventually leading to neuronal death. We have demonstrated that oligomeric AβPs directly incorporate into neuronal membranes, form cation-sensitive ion channels (“amyloid channels”, and cause the disruption of calcium homeostasis via the amyloid channels. Other disease-related amyloidogenic proteins, such as prion protein in prion diseases or α-synuclein in dementia with Lewy bodies, exhibit similarities in the incorporation into membranes and the formation of calcium-permeable channels. Here, based on our experimental results and those of numerous other studies, we review the current understanding of the direct binding of AβP into membrane surfaces and the formation of calcium-permeable channels. The implication of composition of membrane lipids and the possible development of new drugs by influencing membrane properties and attenuating amyloid channels for the treatment and prevention of AD is also discussed.

  12. UF6 Cylinder Imaging by Fast Neutron Transmission Tomography

    International Nuclear Information System (INIS)

    McElroy, R.; Hausladen, P.; Blackston, M.; Croft, S.

    2015-01-01

    The common use Non-Destructive Assay techniques for the determination of 235 U enrichment and mass of UF6 cylinders used in the production of nuclear reactor fuel require prior knowledge of the physical distribution of the UF6 within the cylinder. The measurement performance for these techniques is typically evaluated based on assumed bounding case distributions of the material. However, little direct data such as radiographic or tomographic images, regarding the distribution of the UF6 within the cylinder is available against which to judge these assumptions. We have developed and tested a prototype active neutron tomographic imaging system employing an Associated Particle Imaging (API) neutron generator and an array of pixelated neutron scintillation counters. This system has been successfully used to obtain the 3-dimensional map of the distribution of UF6 within a type 12B storage cylinder. Results from these measurements are presented and the potential performance and utility of this technique with larger 30B and 48Y cylinders is discussed. (author)

  13. Chemical cleaning/disinfection and ageing of organic UF membranes: a review.

    Science.gov (United States)

    Regula, C; Carretier, E; Wyart, Y; Gésan-Guiziou, G; Vincent, A; Boudot, D; Moulin, P

    2014-06-01

    Membrane separation processes have become a basic unit operation for process design and product development. These processes are used in a variety of separation and concentration steps, but in all cases, the membranes must be cleaned regularly to remove both organic and inorganic material deposited on the surface and/or into the membrane bulk. Cleaning/disinfection is a vital step in maintaining the permeability and selectivity of the membrane in order to get the plant to its original capacity, to minimize risks of bacteriological contamination, and to make acceptable products. For this purpose, a large number of chemical cleaning/disinfection agents are commercially available. In general, these cleaning/disinfection agents have to improve the membrane flux to a certain extent. However, they can also cause irreversible damages in membrane properties and performances over the long term. Until now, there is considerably less literature dedicated to membrane ageing than to cleaning/disinfection. The knowledge in cleaning/disinfection efficiency has recently been improved. But in order to develop optimized cleaning/disinfection protocols there still remains a challenge to better understand membrane ageing. In order to compensate for the lack of correlated cleaning/disinfection and ageing data from the literature, this paper investigates cleaning/disinfection efficiencies and ageing damages of organic ultrafiltration membranes. The final aim is to provide less detrimental cleaning/disinfection procedures and to propose some guidelines which should have been taken into consideration in term of membrane ageing studies. To carry out this study, this article will detail the background of cleaning/disinfection and aging membrane topics in a first introductive part. In a second part, key factors and endpoints of cleaning/disinfection and aging membranes will be discussed deeply: the membrane role and the cleaning parameters roles, such as water quality, storing conditions

  14. Photochemical removal of NpF6 and PuF6 from UF6 gas streams

    International Nuclear Information System (INIS)

    Beitz, J.V.; Williams, C.W.

    1990-01-01

    A novel photochemical method of removing reactive fluorides from UF 6 gas has been discovered. This method reduces generated waste to little more than the volume of the removed impurities, minimizes loss of UF 6 , and can produce a recyclable by-product, fluorine gas. In our new method, impure UF 6 , is exposed to ultraviolet light which dissociates the UF 6 to UF 5 and fluorine atom. Impurities which chemically react with UF 5 are reduced and form solid compounds easily removed from the gas while UF 5 is converted back to UF 6 . Proof-of-concept testing involved UF 6 containing NpF 6 and PuF 6 with CO added as a fluorine atom scavenger. In a single photolysis step, greater than 5000-fold reduction of PuF 6 was demonstrated while reducing NpF 6 by more than 40-fold. This process is likely to remove corrosion and fission product fluorides that are more reactive than UF 6 and has been demonstrated without an added fluorine atom scavenger by periodically removing photogenerated fluorine gas. 44 refs., 3 figs., 2 tabs

  15. Perekayasaan Heat Exchanger Sebagai Pemanas Umpan Uf 6 Dalam Pabrik Elemen Bakar Nuklir

    OpenAIRE

    Zacharias, Petrus; Pancoko, Marliyadi

    2011-01-01

    DESIGN OF HEAT EXCHANGER FOR HEATING UF6 FEED IN NUCLEAR FUEL ELEMENT PLANT. The process of conversion of UF6 to UO through Integrated Dry Route (IDR) i s done in a rotary kiln reactor. There are two stages of initi al treatment / conditioni ng before inserting the UF 6 in to the reactor : changing UF6 2 solid into the gas phase at a temperature of 60°C in an evaporator, and then, raising the temperature of UF C to 2900 C i n a Heat Exchanger (HE). Therefore it i s necessary to desi gn...

  16. Investigation of technology for the monitoring of UF6 mass flow in UF6 streams diluted with H2

    International Nuclear Information System (INIS)

    Baker, O.J.; Cooley, J.N.; Hewgley, W.A.; Moran, B.W.; Swindle, D.W. Jr.

    1986-12-01

    The applicability, availability, and effectiveness of gas flow meters are assessed as a means for verifying the mass flows of pure UF 6 streams diluted with a carrier gas. The initial survey identified the orifice, pitot tube, thermal, vortex shedding, and vortex precession (swirl) meters as promising for the intended use. Subsequent assessments of these flow meters revealed that two - the orifice meter and the pitot tube meter - are the best choices for the proposed applications: the first is recommended for low velocity gas, small diameter piping; the latter, for high velocity gas, large diameter piping. Final selection of the gas flow meters should be based on test loop evaluations in which the proposed meters are subjected to gas flows, temperatures, and pressures representative of those expected in service. Known instruments are evaluated that may be applicable to the measurement of uranium or UF 6 concentration in a UF 6 - H 2 process stream at an aerodynamic enrichment plant. Of the six procedures evaluated, four have been used for process monitoring in a UF 6 environment: gas mass spectrometry, infrared-ultraviolet-visible spectrophotometry, gas chromatography, and acoustic gas analysis. The remaining two procedures, laser fluorimetry and atomic absorption spectroscopy, would require significant development work before they could be used for process monitoring. Infrared-ultravioloet-visible spectrophotometry is judged to be the best procedure currently available to perform the required measurement

  17. Template-mediated synthesis of periodic membranes for improved liquid-phase separations

    International Nuclear Information System (INIS)

    Groger, H.

    1997-01-01

    Solid/liquid separations of particulates in waste streams will benefit from design and development of ultrafiltration (UF) membranes with uniform, tailorable pore size and chemical, thermal, and mechanical stability. Such membranes will perform solid/liquid separations with high selectivity, permeance, lifetime, and low operating costs. Existing organic and inorganic membrane materials do not adequately meet all these requirements. An innovative solution to the need for improved inorganic membranes is the application of mesoporous ceramics with narrow pore-size distributions and tailorable pore size (1.5 to 10 nm) that have recently been shown to form with the use of organic surfactant molecules and surfactant assemblies as removable templates. This series of porous ceramics, designated MCM-41, consists of silica or aluminosilicates distinguished by periodic arrays of uniform channels. In this Phase I Small Business Innovation Research program, American Research Corporation of Virginia will demonstrate the use of supported MCM-41 thin films deposited by a proprietary technique, as UF membranes. Technical objectives include deposition in thin, defect-free periodic mesoporous MCM-41 membranes on porous supports; measurement of membrane separation factors, permeance, and fouling; and measurement of membrane lifetime as part of an engineering and economic analysis

  18. Template-mediated synthesis of periodic membranes for improved liquid-phase separations

    Energy Technology Data Exchange (ETDEWEB)

    Groger, H. [American Research Corp. of Virginia, Radford, VA (United States)

    1997-10-01

    Solid/liquid separations of particulates in waste streams will benefit from design and development of ultrafiltration (UF) membranes with uniform, tailorable pore size and chemical, thermal, and mechanical stability. Such membranes will perform solid/liquid separations with high selectivity, permeance, lifetime, and low operating costs. Existing organic and inorganic membrane materials do not adequately meet all these requirements. An innovative solution to the need for improved inorganic membranes is the application of mesoporous ceramics with narrow pore-size distributions and tailorable pore size (1.5 to 10 nm) that have recently been shown to form with the use of organic surfactant molecules and surfactant assemblies as removable templates. This series of porous ceramics, designated MCM-41, consists of silica or aluminosilicates distinguished by periodic arrays of uniform channels. In this Phase I Small Business Innovation Research program, American Research Corporation of Virginia will demonstrate the use of supported MCM-41 thin films deposited by a proprietary technique, as UF membranes. Technical objectives include deposition in thin, defect-free periodic mesoporous MCM-41 membranes on porous supports; measurement of membrane separation factors, permeance, and fouling; and measurement of membrane lifetime as part of an engineering and economic analysis.

  19. Preliminary studies on membrane filtration for the production of potable water: a case of Tshaanda rural village in South Africa.

    Science.gov (United States)

    Molelekwa, Gomotsegang F; Mukhola, Murembiwa S; Van der Bruggen, Bart; Luis, Patricia

    2014-01-01

    Ultrafiltration (UF) systems have been used globally for treating water from resources including rivers, reservoirs, and lakes for the production of potable water in the past decade. UF membranes with a pore size of between 0.1 and 0.01 micrometres provide an effective barrier for bacteria, viruses, suspended particles, and colloids. The use of UF membrane technology in treating groundwater for the supply of potable water in the impoverished and rural village, Tshaanda (i.e., the study area) is demonstrated. The technical and administrative processes that are critical for the successful installation of the pilot plant were developed. Given the rural nature of Tshaanda, the cultural and traditional protocols were observed. Preliminary results of the water quality of untreated water and the permeate are presented. Escherichia coli in the untreated water during the dry season (i.e., June and July) was 2 cfu/100 ml and was 2419.2 cfu/100 ml) before UF. Following UF, it dramatically reduced to acceptable level (7 cfu/100 ml) which is within the WHO recommended level of water for suspended particles and colloids. Considering these data, it can be concluded that the water is suitable for human consumption, following UF.

  20. Effect of membrane properties on the performance of a hybrid GAC and ultrafiltration process for water treatment.

    Science.gov (United States)

    Qiao, Tiejun; Wu, Guangxue; Zhang, Xihui; Au, Doris W T; Zhang, Jinsong

    2012-06-01

    The performance of a hybrid granular activated carbon (GAC) and ultrafiltration (UF) process for water treatment was investigated using five types of UF membranes. The removal percentages for chemical oxygen demand (COD(Mn)), particles (> or = 2 microm) and total bacteria by the hybrid process were 30-40%, 98-99% and 76-92%, respectively. No invertebrates were detected in the hybrid process effluent. Transmembrane pressure and specific permeate flux (SPF) of the five types of membranes varied. With decreasing membrane pore sizes, removal of COD(Mn) and particles increased, whereas SPF firstly decreased and then increased. Hydrophilic membranes had a relatively high COD(Mn) removal potential, but did not obviously affect particle removal or SPF.

  1. Investigation of technology for monitoring UF6 mass flow

    International Nuclear Information System (INIS)

    Cooley, J.N.; Moran, B.W.; Swindle, D.W. Jr.

    1987-06-01

    The applicability of gas flow meters, in-line enrichment monitors, and instruments for measuring uranium or UF 6 concentrations in process streams as a means for verifying declared plant throughput have been investigated. The study was performed to assist the International Atomic Energy Agency in the development of an effective international safeguards approach for aerodynamic uranium enrichment plants. Because the process gas in an aerodynamic enrichment facility is a mixture of UF 6 and H 2 , a mass flow measurement in conjunction with a measurement of the uranium (or UF 6 ) concentration in the process gas is required to quantify the amount of uranium being fed into, and withdrawn from, the cascades for nuclear materials accountability verification. In-line enrichment monitors developed for the US gas centrifuge enrichment plant are found to be applicable only to pure UF 6 streams. Of the five gas flow meters evaluated, the orifice meter and the pitot tube meter are judged the best choices for the proposed applications: the first is recommended for low-velocity gas, small diameter piping; the latter, for high-velocity gas, large diameter piping. Of the six procedures evaluated for measurement of uranium or UF 6 concentration in a mixed process stream, infrared-ultraviolet-visible spectrophotometry is judged to be the best procedure currently available to perform the required measurement. 4 refs., 3 figs., 3 tabs

  2. Investigation of the UF6 aerosol behavior in air, (4)

    International Nuclear Information System (INIS)

    Ishida, Junichiro; Sakamoto, Genji; Takeda, Seiichi; Kato, Jinzo

    1979-01-01

    When gaseous uranium hexafluoride (UF 6 ) is released into air, it hydrolizes with moisture in air to produce HF gas and particulate UO 2 F 2 which is visible. The lowest visible concentration in air is about 5 x 10 -8 μCi/cm 3 in case of releasing UF 6 and about 10 -9 μCi/cm 3 in case of released UF 6 cloud. By watching the occurrence of released UF 6 cloud, it is possible to take necessary action without delay. But in the case that there is no one to watch or that the concentration is not high enough to be visible, an alarm monitor system has to be relied on. Therefore the characteristics of the alarm monitors which can detect UF 6 promptly were examined. As UF 6 is hydrolized into gaseous HF and particulate UO 2 F 2 , three monitoring methods are considered; (1) to detect the alpha radiation of uranium, (2) to detect HF gas and (3) to detect airborne particles (aerosol). Performance tests were conducted on an alpha dust monitor, an electrochemical HF monitor, a thin film electrolyte HF monitor and an ionized smoke detector. The relationship between radioactivity concentration and HF concentration was investigated especially regarding with the conditions of released UF 6 amount and the distance from a release point to the observation point. The experimental facilities containing a large glove-box made of SUS and acrylic resin walls, a dust monitor, an HF monitor, a smoke detector and a filter, and the experimental procedure are explained. As the experimental results, the response characteristics of the dust monitor and HF monitor, the relationship of radioactivity concentration to HF concentration in air and the relation of the distance from the release point to the concentration of U and HF are presented. (Nakai, Y.)

  3. Reducing ultrafiltration membrane fouling during potable water reuse using pre-ozonation.

    Science.gov (United States)

    Wang, Hui; Park, Minkyu; Liang, Heng; Wu, Shimin; Lopez, Israel J; Ji, Weikang; Li, Guibai; Snyder, Shane A

    2017-11-15

    Wastewater reclamation has increasingly become popular to secure potable water supply. Low-pressure membrane processes such as microfiltration (MF) and ultrafiltration (UF) play imperative roles as a barrier of macromolecules for such purpose, but are often limited by membrane fouling. Effluent organic matter (EfOM), including biopolymers and particulates, in secondary wastewater effluents have been known to be major foulants in low-pressure membrane processes. Hence, the primary aim of this study was to investigate the effects of pre-ozonation as a pre-treatment for UF on the membrane fouling caused by EfOM in secondary wastewater effluents for hydrophilic regenerated cellulose (RC) and hydrophobic polyethersulfone (PES) UF membranes. It was found that greater fouling reduction was achieved by pre-ozonation for the hydrophilic RC membrane than the hydrophobic PES membrane at increasing ozone doses. In addition, the physicochemical property changes of EfOM, including biopolymer fractions, by pre-ozonation were systemically investigated. The classical pore blocking model and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theories were employed to scrutinize the fouling alleviation mechanism by pre-ozonation. As a result, the overarching mechanisms of fouling reduction were attributed to the following key reasons: (1) Ozone degraded macromolecules such as biopolymers like proteins and polysaccharides into smaller fractions, thereby increasing free energy of cohesion of EfOM and rendering them more hydrophilic and stable; (2) pre-ozonation augmented the interfacial free energy of adhesion between foulants and the RC/PES membranes, leading to the increase of repulsions and/or the decrease of attractions; and (3) pre-ozonation prolonged the transition from pore blocking to cake filtration that was a dominant fouling mechanism, thereby reducing fouling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effects of Bloom-Forming Algae on Fouling of Integrated Membrane Systems in Seawater Desalination

    Science.gov (United States)

    Ladner, David Allen

    2009-01-01

    Combining low- and high-pressure membranes into an integrated membrane system is an effective treatment strategy for seawater desalination. Low-pressure microfiltration (MF) and ultrafiltration (UF) membranes remove particulate material, colloids, and high-molecular-weight organics leaving a relatively foulant-free salt solution for treatment by…

  5. Carbon dioxide nucleation as a novel cleaning method for ultrafiltration membranes

    KAUST Repository

    Al Ghamdi, Mohanned

    2016-12-08

    The use of low-pressure membranes, mainly ultrafiltration (UF), has emerged in the last decade and began to show acceptance as a novel pretreatment process for seawater reverse osmosis (SWRO) desalination. This is mainly due to the superior water quality provided by these membranes, in addition to reduction in chemicals consumption compared to conventional methods. However, membrane fouling remains the main drawback of this technology. Therefore, frequent cleaning of these membranes is required to maintain water flux and its quality. Usually, after a series of backwash using UF permeate chemical cleaning is required under some conditions to fully recover the operating flux. Frequent chemical cleaning will probably decrease the life time of the membrane, increase costs, and will have some effects on the environment. The new cleaning method proposed in this study consists of using a solution saturated with carbon dioxide (CO2) to clean UF membranes. Under the drop in pressure, this solution will become in a supersaturated state and bubbles will start to nucleate on the surface of the membrane and its pores from this solution resulting in the removal of the fouling material deposited on the membrane. Different compositions of fouling solutions including the use of organic compounds such as sodium alginate and colloidal 5 silica with different concentrations were studied using synthetic seawater with different concentrations. This cleaning method was then compared to the backwash using Milli-Q water and showed an improved performance compared to it. An operational modification to this cleaning technique was then investigated which includs a series of sudden pressure drop during the backwash process. This enhanced technique showed an even better performance in cleaning the membrane, especially at severe fouling conditions. In most cases, the membrane permeability was fully recovered even at harsh conditions where conventional backwash failed to maintain a stable

  6. Preparation and Preliminary Dialysis Performance Research of Polyvinylidene Fluoride Hollow Fiber Membranes

    Science.gov (United States)

    Zhang, Qinglei; Lu, Xiaolong; Liu, Juanjuan; Zhao, Lihua

    2015-01-01

    In this study, the separation properties of Polyvinylidene fluoride (PVDF) hollow fiber hemodialysis membranes were improved by optimizing membrane morphology and structure. The results showed that the PVDF membrane had better mechanical and separation properties than Fresenius Polysulfone High-Flux (F60S) membrane. The PVDF membrane tensile stress at break, tensile elongation and bursting pressure were 11.3 MPa, 395% and 0.625 MPa, respectively. Ultrafiltration (UF) flux of pure water reached 108.2 L∙h−1∙m−2 and rejection of Albumin from bovine serum was 82.3%. The PVDF dialyzers were prepared by centrifugal casting. The influences of membrane area and simulate fluid flow rate on dialysis performance were investigated. The results showed that the clearance rate of urea and Lysozyme (LZM) were improved with increasing membrane area and fluid flow rate while the rejection of albumin from bovine serum (BSA) had little influence. The high-flux PVDF dialyzer UF coefficient reached 62.6 mL/h/mmHg. The PVDF dialyzer with membrane area 0.69 m2 has the highest clearance rate to LZM and urea. The clearance rate of LZM was 66.8% and urea was 87.7%. PMID:25807890

  7. Application of Fe(II)/peroxymonosulfate for improving ultrafiltration membrane performance in surface water treatment: Comparison with coagulation and ozonation.

    Science.gov (United States)

    Cheng, Xiaoxiang; Liang, Heng; Ding, An; Zhu, Xuewu; Tang, Xiaobin; Gan, Zhendong; Xing, Jiajian; Wu, Daoji; Li, Guibai

    2017-11-01

    Coagulation and ozonation have been widely used as pretreatments for ultrafiltration (UF) membrane in drinking water treatment. While beneficial, coagulation or ozonation alone is unable to both efficiently control membrane fouling and product water quality in many cases. Thus, in this study an emerging alternative of ferrous iron/peroxymonosulfate (Fe(II)/PMS), which can act as both an oxidant and a coagulant was employed prior to UF for treatment of natural surface water, and compared with conventional coagulation and ozonation. The results showed that the Fe(II)/PMS-UF system exhibited the best performance for dissolved organic carbon removal, likely due to the dual functions of coagulation and oxidation in the single process. The fluorescent and UV-absorbing organic components were more susceptible to ozonation than Fe(II)/PMS treatment. Fe(II)/PMS and ozonation pretreatments significantly increased the removal efficiency of atrazine, p-chloronitrobenzene and sulfamethazine by 12-76% and 50-94%, respectively, whereas coagulation exerted a minor influence. The Fe(II)/PMS pretreatment also showed the best performance for the reduction of both reversible and irreversible membrane fouling, and the performance was hardly affected by membrane pore size and surface hydrophobicity. In addition, the characterization of hydraulic irreversible organic foulants confirmed its effectiveness. These results demonstrate the potential advantages of applying Fe(II)/PMS as a pretreatment for UF to simultaneously control membrane fouling and improve the permeate quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A comparative study of techniques used for porous membrane characterization: pore characterization

    NARCIS (Netherlands)

    Broek, A.P.; Kim, K.J.; Fane, A.G.; Ben aim, R.; Liu, M.G.; Jonsson, G.; Tessaro, I.C.; Broek, A.P.; Bargeman, D.; Bargeman, D.

    1994-01-01

    A range of commerical UF membranes have been characterized by thermoporometry, biliquid permporometry and molecular weight cut-off experiments. A comparison of results from these three independent techniques for the same types of membrane shows an indication of the strength and weakness of the

  9. Characterization of anisotropic UF-membranes: top layer thickness and pore structure

    NARCIS (Netherlands)

    Cuperus, F.P.; Cuperus, F.P.; Bargeman, D.; Bargeman, D.; Smolders, C.A.; Smolders, C.A.

    1991-01-01

    Anisotropic poly(2,6-dimethyl-, 1,4-phenylene oxide) (PPO) ultrafiltration membranes are characterized by means of two techniques. A new method for the determination of skin thicknesses, the gold sol method, is introduced and applied to these membranes. The membranes appeared to have a well-defined

  10. New regulatory aspects of UF6 transport

    International Nuclear Information System (INIS)

    Biaggio, A.L.; Lee Gonzales, H.M.; Lopez Vietri, J.R.; Novo, R.G.

    1987-01-01

    In nuclear industry, a great amount of uranium is transformed from a chemical form to another. When the fuel cycle requires enrichment, uranium hexafluoride (UF 6) is handled, stored and transported in great quantities. To analyze the risks involved in possible accidents associated with UF 6 , radiological and chemical aspects must be considered. So far, the international practice was based on the adoption of regulations from a particular country (ANSI No. 14.1-1982.U.S.A.). In this way, the adoption of these norms at international level is difficult. For that reason, the International Atomic Energy Agency has attempted to consider the chemical risks associated with UF 6 in order to establish a more universal basis ('Recommendations for Providing Protection during the Transport of Uranium Hexafluoride' IAEA-TECDOC-423, Vienna, June 1987 - Austria). A critical analysis of these recommendations is presented in this work. The coherence and the degree of completion of the new recommendations are evaluated and the safety level is compared with that of the accepted regulations for toxic or corrosive substances and for radioactive materials transport. (Author)

  11. Treatment of cosmetic effluent in different configurations of ceramic UF membrane based bioreactor: Toxicity evaluation of the untreated and treated wastewater using catfish (Heteropneustes fossilis).

    Science.gov (United States)

    Banerjee, Priya; Dey, Tanmoy Kumar; Sarkar, Sandeep; Swarnakar, Snehasikta; Mukhopadhyay, Aniruddha; Ghosh, Sourja

    2016-03-01

    Extensive usage of pharmaceutical and personal care products (PPCPs) and their discharge through domestic sewage have been recently recognized as a new generation environmental concern which deserves more scientific attention over the classical environmental pollutants. The major issues of this type of effluent addressed in this study were its colour, triclosan and anionic surfactant (SDS) content. Samples of cosmetic effluent were collected from different beauty treatment salons and spas in and around Kolkata, India and treated in bioreactors containing a bacterial consortium isolated from activated sludge samples collected from a common effluent treatment plant. Members of the consortium were isolated and identified as Klebsiella sp., Pseudomonas sp., Salmonella sp. and Comamonas sp. The biotreated effluent was subjected to ultrafiltration (UF) involving indigenously prepared ceramic membranes in both side-stream and submerged mode. Analysis of the MBR treated effluent revealed 99.22%, 98.56% and 99.74% removal of colour, triclosan and surfactant respectively. Investigation of probable acute and chronic cyto-genotoxic potential of the untreated and treated effluents along with their possible participation in triggering oxidative stress was carried out with Heteropneustes fossilis (Bloch). Comet formation recorded in both liver and gill cells and micronucleus count in peripheral erythrocytes of individuals exposed to untreated effluent increased with duration of exposure and was significantly higher than those treated with UF permeates which in turn neared control levels. Results of this study revealed successful application of the isolated bacterial consortium in MBR process for efficient detoxification of cosmetic effluent thereby conferring the same suitable for discharge and/or reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Modified cable equation incorporating transverse polarization of neuronal membranes for accurate coupling of electric fields.

    Science.gov (United States)

    Wang, Boshuo; Aberra, Aman S; Grill, Warren M; Peterchev, Angel V

    2018-04-01

    We present a theory and computational methods to incorporate transverse polarization of neuronal membranes into the cable equation to account for the secondary electric field generated by the membrane in response to transverse electric fields. The effect of transverse polarization on nonlinear neuronal activation thresholds is quantified and discussed in the context of previous studies using linear membrane models. The response of neuronal membranes to applied electric fields is derived under two time scales and a unified solution of transverse polarization is given for spherical and cylindrical cell geometries. The solution is incorporated into the cable equation re-derived using an asymptotic model that separates the longitudinal and transverse dimensions. Two numerical methods are proposed to implement the modified cable equation. Several common neural stimulation scenarios are tested using two nonlinear membrane models to compare thresholds of the conventional and modified cable equations. The implementations of the modified cable equation incorporating transverse polarization are validated against previous results in the literature. The test cases show that transverse polarization has limited effect on activation thresholds. The transverse field only affects thresholds of unmyelinated axons for short pulses and in low-gradient field distributions, whereas myelinated axons are mostly unaffected. The modified cable equation captures the membrane's behavior on different time scales and models more accurately the coupling between electric fields and neurons. It addresses the limitations of the conventional cable equation and allows sound theoretical interpretations. The implementation provides simple methods that are compatible with current simulation approaches to study the effect of transverse polarization on nonlinear membranes. The minimal influence by transverse polarization on axonal activation thresholds for the nonlinear membrane models indicates that

  13. A synergetic analysis method for antifouling behavior investigation on PES ultrafiltration membrane with self-assembled TiO2 nanoparticles.

    Science.gov (United States)

    Li, Xin; Li, Jiansheng; Fang, Xiaofeng; Bakzhan, Kariboz; Wang, Lianjun; Van der Bruggen, Bart

    2016-05-01

    Fouling of ultrafiltration (UF) membranes is a major impediment for their use in drinking water production. Mixed matrix membranes (MMMs) may have great opportunities in dealing with this challenge due to their hierarchical structures and multiple functionalities. In this study, a synergetic analysis method based on intermolecular adhesion force measurement and fouling process simulation was applied to investigate the fouling mechanism of polyethersulfone (PES) UF membranes containing in situ self-assembled TiO2 nanoparticles (NPs). The fouling resistance behavior and antifouling mechanism of the newly developed composite membranes were investigated with sodium alginate (SA), bovine serum albumin (BSA) and humic acid (HA) as model organic foulants. An improved antifouling effect was conspicuously observed for the composite membranes, expressed by a lower flux decline and significantly better cleaning efficiency. A strong correlation between the self-assembled structure of TiO2 NPs and the antifouling behavior of the composite membrane was observed. A lower magnitude and a narrower distribution of adhesion forces for the composite membrane suggest the effective suppression of foulants adsorption on the clean or fouled membrane. The simulation analysis indicates that the main fouling mechanism was standard blocking and cake filtration, further confirming the superiority of the NPs self-assembled structure in mitigating membrane fouling. This dual analysis method may provide a promising technological support for the application of modified UF membranes with self-assembled NPs in drinking water production. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Integrated membrane and microbial fuel cell technologies for enabling energy-efficient effluent Re-use in power plants.

    Science.gov (United States)

    Shrestha, Namita; Chilkoor, Govinda; Xia, Lichao; Alvarado, Catalina; Kilduff, James E; Keating, John J; Belfort, Georges; Gadhamshetty, Venkataramana

    2017-06-15

    Municipal wastewater is an attractive alternative to freshwater sources to meet the cooling water needs of thermal power plants. Here we offer an energy-efficient integrated microbial fuel cell (MFC)/ultrafiltration (UF) process to purify primary clarifier effluent from a municipal wastewater treatment plant for use as cooling water. The microbial fuel cell was shown to significantly reduce chemical oxygen demand (COD) in the primary settled wastewater effluent upstream of the UF module, while eliminating the energy demand required to deliver dissolved oxygen in conventional aerobic treatment. We investigated surface modification of the UF membranes to control fouling. Two promising hydrophilic monomers were identified in a high-throughput search: zwitterion (2-(Methacryloyloxy)-ethyl-dimethyl-(3-sulfopropyl ammoniumhydroxide, abbreviated BET SO 3 - ), and amine (2-(Methacryloyloxy) ethyl trimethylammonium chloride, abbreviated N(CH 3 ) 3 + ). Monomers were grafted using UV-induced polymerization on commercial poly (ether sulfone) membranes. Filtration of MFC effluent by membranes modified with BET SO 3 - and N(CH 3 ) 3 + exhibited a lower rate of resistance increase and lower energy consumption than the commercially available membrane. The MFC/UF process produced high quality cooling water that meets the Electrical Power Research Institute (EPRI) recommendations for COD, a suite of metals (Fe, Al, Cu, Zn, Si, Mn, S, Ca and Mg), and offered extremely low corrosion rates (<0.05 mm/yr). A series of AC and DC diagnostic tests were used to evaluate the MFC performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Aspects of uranium chemistry pertaining to UF{sub 6} cylinder handling

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, R.L.; Barber, E.J. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

    1991-12-31

    Under normal conditions, the bulk of UF{sub 6} in storage cylinders will be in the solid state with an overpressure of gaseous UF{sub 6} well below one atmosphere. Corrosion of the interior of the cylinder will be very slow, with formation of a small amount of reduced fluoride, probably U{sub 2}F{sub 9}. The UO{sub 3}-HF-H{sub 2}O phase diagram indicates that reaction of any inleaking water vapor with the solid UF{sub 6} will generate the solid material [H{sub 3}O]{sub 2}(U(OH){sub 4}F{sub 4}) in equilibrium with an aqueous HF solution containing only small amounts of uranium. The corrosion of the steel cylinder by these materials may be enhanced over that observed with gaseous anhydrous UF{sub 6}.

  16. Ceramic membrane development in NGK

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Kiyoshi; Sakai, Hitoshi, E-mail: kinsakai@ngk.co.jp [Corporate R and D, NGK Insulators, Ltd., Nagoya 467-8530 (Japan)

    2011-05-15

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R and D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  17. Ceramic membrane development in NGK

    Science.gov (United States)

    Araki, Kiyoshi; Sakai, Hitoshi

    2011-05-01

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R&D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  18. Incorporation of Human Recombinant Tropoelastin into Silk Fibroin Membranes with the View to Repairing Bruch’s Membrane

    Directory of Open Access Journals (Sweden)

    Audra M. A. Shadforth

    2015-09-01

    Full Text Available Bombyx mori silk fibroin membranes provide a potential delivery vehicle for both cells and extracellular matrix (ECM components into diseased or injured tissues. We have previously demonstrated the feasibility of growing retinal pigment epithelial cells (RPE on fibroin membranes with the view to repairing the retina of patients afflicted with age-related macular degeneration (AMD. The goal of the present study was to investigate the feasibility of incorporating the ECM component elastin, in the form of human recombinant tropoelastin, into these same membranes. Two basic strategies were explored: (1 membranes prepared from blended solutions of fibroin and tropoelastin; and (2 layered constructs prepared from sequentially cast solutions of fibroin, tropoelastin, and fibroin. Optimal conditions for RPE attachment were achieved using a tropoelastin-fibroin blend ratio of 10 to 90 parts by weight. Retention of tropoelastin within the blend and layered constructs was confirmed by immunolabelling and Fourier-transform infrared spectroscopy (FTIR. In the layered constructs, the bulk of tropoelastin was apparently absorbed into the initially cast fibroin layer. Blend membranes displayed higher elastic modulus, percentage elongation, and tensile strength (p < 0.01 when compared to the layered constructs. RPE cell response to fibroin membranes was not affected by the presence of tropoelastin. These findings support the potential use of fibroin membranes for the co-delivery of RPE cells and tropoelastin.

  19. Preliminary Hazard Analysis applied to Uranium Hexafluoride - UF6 production plant

    International Nuclear Information System (INIS)

    Tomzhinsky, David; Bichmacher, Ricardo; Braganca Junior, Alvaro; Peixoto, Orpet Jose

    1996-01-01

    The purpose of this paper is to present the results of the Preliminary hazard Analysis applied to the UF 6 Production Process, which is part of the UF 6 Conversion Plant. The Conversion Plant has designed to produce a high purified UF 6 in accordance with the nuclear grade standards. This Preliminary Hazard Analysis is the first step in the Risk Management Studies, which are under current development. The analysis evaluated the impact originated from the production process in the plant operators, members of public, equipment, systems and installations as well as the environment. (author)

  20. The electron spectrum of UF6 recorded in the gas phase

    Science.gov (United States)

    Mârtensson, N.; Malmquist, P.-Å.; Svensson, S.; Johansson, B.

    1984-06-01

    Gas phase core and valence electron spectra from UF6, excited by AlKα monochromatized x rays, in the binding energy range 0-1000 eV are presented. It is shown that the AlKα excited valence electron spectrum can be used to reassign the highest occupied molecular orbital (HOMO) in UF6. Many-body effects on the core levels are discussed and core level lifetimes are determined. The shift between solid phase and gas phase electron binding energies for core lines is used to discuss the U5 f population in UF6.

  1. Kâğıt atıksularından bütünleşik membran sistemi ile su geri kazanımı ve konsantre atık minimizasyonu

    Directory of Open Access Journals (Sweden)

    Coşkun AYDINER

    2017-04-01

    Full Text Available This study aimed to minimize the concentration obtained after the concentrate flow resulting from continuous operation of the NFloose/NFtight membrane filtration is treated through a hybrid Advanced Oxidation (Fenton and photo-Fenton/submerged UF processes. With the MPF-36/ESNA membrane filtration, 71 mg/L COD and 19 mg/L TOC values were obtained in the final effluent. The treatment of the resultant concentrate current with the IOP/submerged UF hybrid processes, it was observed that UVC-submerged UF process provided the best performance. TOC and COD values in the UF effluent were found to be close to the values of the raw paper wastewater used and it was determined that it could be fed to the NFloose input. Thus, while water recovery is ensured, it was also observed that the minimization of the membrane concentrate through hybrid process will achieve significant contributions to concentrate waste management.

  2. Combined effects of coagulation and adsorption on ultrafiltration membrane fouling control and subsequent disinfection in drinking water treatment.

    Science.gov (United States)

    Xing, Jiajian; Liang, Heng; Cheng, Xiaoxiang; Yang, Haiyan; Xu, Daliang; Gan, Zhendong; Luo, Xinsheng; Zhu, Xuewu; Li, Guibai

    2018-06-02

    This study investigated the combined effects of coagulation and powdered activated carbon (PAC) adsorption on ultrafiltration (UF) membrane fouling control and subsequent disinfection efficiency through filtration performance, dissolved organic carbon (DOC) removal, fluorescence excitation-emission matrix (EEM) spectroscopy, and disinfectant curve. The fouling behavior of UF membrane was comprehensively analyzed especially in terms of pollutant removal and fouling reversibility to understand the mechanism of fouling accumulation and disinfectant dose reduction. Pre-coagulation with or without adsorption both achieved remarkable effect of fouling mitigation and disinfection dose reduction. The two pretreatments were effective in total fouling control and pre-coagulation combined with PAC adsorption even decreased hydraulically irreversible fouling notably. Besides, pre-coagulation decreased residual disinfectant decline due to the removal of hydrophobic components of natural organic matters (NOM). Pre-coagulation combined with adsorption had a synergistic effect on further disinfectant decline rate reduction and decreased total disinfectant consumption due to additional removal of hydrophilic NOM by PAC adsorption. The disinfectant demand was further reduced after membrane. These results show that membrane fouling and disinfectant dose can be reduced in UF coupled with pretreatment, which could lead to the avoidance of excessive operation cost disinfectant dose for drinking water supply.

  3. UF{sub 6} cylinder inspections at PGDP

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, G.W.; Whinnery, W.N. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31

    Routine inspections of all UF{sub 6} cylinders at the Paducah Gaseous Diffusion Plant have been mandated by the Department of Energy. A specific UF{sub 6} cylinder inspection procedure for what items to inspect and training for the operators prior to inspection duty are described. The layout of the cylinder yards and the forms used in the inspections are shown. The large number of cylinders (>30,000) to inspect and the schedule for completion on the mandated time table are discussed. Results of the inspections and the actions to correct the deficiencies are explained. Future inspections and movement of cylinders for relocation of certain cylinder yards are defined.

  4. Fabrication of TiO2-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment

    Science.gov (United States)

    Qian, Yingjia; Chi, Lina; Zhou, Weili; Yu, Zhenjiang; Zhang, Zhongzhi; Zhang, Zhenjia; Jiang, Zheng

    2016-01-01

    Surface hydrophilic modification of polymer ultrafiltration membrane using metal oxide represents an effective yet highly challenging solution to improve water flux and antifouling performance. Via plasma-enhanced graft of poly acryl acid (PAA) prior to coating TiO2, we successfully fixed TiO2 functional thin layer on super hydrophobic polytetrafluoroethylene (PTFE) ultrafiltration (UF) membranes. The characterization results evidenced TiO2 attached on the PTFE-based UF membranes through the chelating bidentate coordination between surface-grafted carboxyl group and Ti4+. The TiO2 surface modification may greatly reduce the water contact angle from 115.8° of the PTFE membrane to 35.0° without degradation in 30-day continuous filtration operations. The novel TiO2/PAA/PTFE membranes also exhibited excellent antifouling and self-cleaning performance due to the intrinsic hydrophilicity and photocatalysis properties of TiO2, which was further confirmed by the photo-degradation of MB under Xe lamp irradiation.

  5. Membrane technologies for liquid radioactive waste treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Harasimowicz, M.; Zakrzewska-Trznadel, G.

    1998-01-01

    At Institute of Nuclear Chemistry and Technology (INCT) the membrane method for purification of radioactive wastes applied such processes as ultrafiltration (UF), 'seeded' ultrafiltration and reverse osmosis (RO) was developed. On the basis of the results obtained in laboratory experiments the pilot plant for radioactive effluents treatment was built. The plant was composed of UF unit (AMICON H 26P30 capillary module) and two RO units (NITTO NTR 739 HF S-4 spiral wound LPRO modules). The capacity of the pilot plant was up to 200 L/h and the specific activity of wastes purified in the system - below 10 4 Bq/L. Decontamination factor for entire system is higher than 5 x10 3 . Another possibility for radioactive wastes treatment is membrane distillation (MD), non-isothermal process employing hydrophobic polymer membrane, which is developed at INCT now. Preliminary tests with liquid radwaste were carried out on laboratory unit with permeation test-cell holding flat sheet membrane. As a hydrophobic barrier membranes made of two polymers were used: polytetrafluoroethylene (PTFE) and polypropylene (PP). The process was arranged in direct contact membrane distillation configuration. The permeate condensed directly in the cold stream (distilled water) and retentate was enriched in radionuclides. The further experiments carried out with capillary module BFMF 06-30-33 (Euro-Sep Ltd.) with polypropylene capillaries, diameter 0.33 mm and cut off 0.6 μm proved previous results. A pilot plant employing GORE-TEX membrane distillation was constructed. The plant can clean the low-level radioactive wastes from nuclear centre, at a throughput about 0.05 m 3 /h

  6. Studies on improved integrated membrane-based chromatographic process for bioseparation

    Science.gov (United States)

    Xu, Yanke

    To improve protein separation and purification directly from a fermentation broth, a novel membrane filtration-cum-chromatography device configuration having a relatively impermeable coated zone near the hollow fiber module outlet has been developed. The integrated membrane filtration-cum-chromatography unit packed with chromatographic beads on the shell side of the hollow fiber unit enjoys the advantages of both membrane filtration and chromatography; it allows one to load the chromatographic media directly from the fermentation broth or lysate and separate the adsorbed proteins through the subsequent elution step in a cyclic process. Interfacial polymerization was carried out to coat the bottom section of the hollow fiber membrane while leaving the rest of the hollow fiber membrane unaffected. Myoglobin (Mb), bovine serum albumin (BSA) and a-lactalbumin (a-LA) were used as model proteins in binary mixtures. Separation behaviors of binary protein mixtures were studied in devices using either an ultrafiltration (UF) membrane or a microfiltration (MF) membrane. Experimental results show that the breakthrough time and the protein loading capacities were dramatically improved after coating in both UF and MF modules. For a synthetic yeast fermentation broth feed, the Mb and a-LA elution profiles for the four consecutive cyclic runs were almost superimposable. Due to the lower transmembrane flux in this device plus the periodical washing-elution during the chromatographic separation, fouling was not a problem as it is in conventional microfiltration. A mathematical model describing the hydrodynamic and protein loading behaviors of the integrated device using UF membrane with a coated zone was developed. The simulation results for the breakthrough agree well with the experimental breakthrough curves. The optimal length of the coated zone was obtained from the simulation. A theoretical analysis of the protein mass transfer was performed using a diffusion-convection model

  7. Gas-phase UF6 enrichment monitor for enrichment plant safeguards

    International Nuclear Information System (INIS)

    Strittmatter, R.B.; Tape, J.W.

    1980-03-01

    An in-line enrichment monitor is being developed to provide real-time enrichment data for the gas-phase UF 6 feed stream of an enrichment plant. The nondestructive gamma-ray assay method can be used to determine the enrichment of natural UF 6 with a relative precision of better than 1% for a wide range of pressures

  8. High temperature experiments on a 4 tons UF6 container TENERIFE program

    Energy Technology Data Exchange (ETDEWEB)

    Casselman, C.; Duret, B.; Seiler, J.M.; Ringot, C.; Warniez, P.

    1991-12-31

    The paper presents an experimental program (called TENERIFE) whose aim is to investigate the behaviour of a cylinder containing UF{sub 6} when exposed to a high temperature fire for model validation. Taking into account the experiments performed in the past, the modelization needs further information in order to be able to predict the behaviour of a real size cylinder when engulfed in a 800{degrees}C fire, as specified in the regulation. The main unknowns are related to (1) the UF{sub 6} behaviour beyond the critical point, (2) the relationship between temperature field and internal pressure and (3) the equivalent conductivity of the solid UF{sub 6}. In order to investigate these phenomena in a representative way it is foreseen to perform experiments with a cylinder of real diameter, but reduced length, containing 4 tons of UF{sub 6}. This cylinder will be placed in an electrically heated furnace. A confinement vessel prevents any dispersion of UF{sub 6}. The heat flux delivered by the furnace will be calibrated by specific tests. The cylinder will be changed for each test.

  9. Evaluation of a RF-Based Approach for Tracking UF6 Cylinders at a Uranium Enrichment Plant

    International Nuclear Information System (INIS)

    Pickett, Chris A; Younkin, James R; Kovacic, Donald N; Laughter, Mark D; Hines, Jairus B; Boyer, Brian Martinez

    2008-01-01

    Approved industry-standard cylinders are used globally to handle and store uranium hexafluoride (UF 6 ) feed, product, tails, and samples at uranium enrichment plants. The International Atomic Energy Agency (IAEA) relies on time-consuming physical inspections to verify operator declarations and detect possible diversion of UF 6 . Development of a reliable, automated, and tamper-resistant system for near real-time tracking and monitoring UF 6 cylinders (as they move within an enrichment facility) would greatly improve the inspector function. This type of system can reduce the risk of false or misreported cylinder tare weights, diversion of nuclear material, concealment of excess production, utilization of undeclared cylinders, and misrepresentation of the cylinders contents. This paper will describe a proof-of-concept approach that was designed to evaluate the feasibility of using radio frequency (RF)-based technologies to track individual UF 6 cylinders throughout a portion of their life cycle, and thus demonstrate the potential for improved domestic accountability of materials, and a more effective and efficient method for application of site-level IAEA safeguards. The evaluation system incorporates RF-based identification devices (RFID) which provide a foundation for establishing a reliable, automated, and near real-time tracking system that can be set up to utilize site-specific, rules-based detection algorithms. This paper will report results from a proof-of-concept demonstration at a real enrichment facility that is specifically designed to evaluate both the feasibility of using RF to track cylinders and the durability of the RF equipment to survive the rigors of operational processing and handling. The paper also discusses methods for securely attaching RF devices and describes how the technology can effectively be layered with other safeguard systems and approaches to build a robust system for detecting cylinder diversion. Additionally, concepts for off

  10. Thermo-and pH-sensitive hydrogel membranes composed of poly(N-isopropylacrylamide)-hyaluronan for biomedical applications: Influence of hyaluronan incorporation on the membrane properties.

    Science.gov (United States)

    Kamoun, Elbadawy A; Fahmy, Alaa; Taha, Tarek H; El-Fakharany, Esmail M; Makram, Mohamed; Soliman, Hesham M A; Shehata, Hassan

    2018-01-01

    Interpenetrating hydrogel membranes consisting of pH-sensitive hyaluronan (HA) and thermo-sensitive poly(N-isopropylacrylamide) (PNIPAAM) were synthesized using redox polymerization, followed by N,N-methylenebisacrylamide (BIS) and epichlorohydrin (EPI) were added as chemical crosslinkers. The interaction between membrane compositions has been characterized by FTIR spectroscopy and discussed intensively. The result indicates that HA incorporation in membranes increase the gel fraction, swelling uptake, and the flexibility/elasticity of crosslinked membranes, however it reduced oppositely the mechanical elongation of membranes. PNIPAAm-HA hydrogels responded to both temperature and pH changes and the stimuli-responsiveness was reversible. However, in vitro bioevaluation results revealed that the released ampicillin during the burst release time was sharply influenced and increased with increasing HA contents in membranes; afterwards it became sustainable. Whereas, high HA contents in hydrogels unexpectedly impacted negatively on the cells viability, owing to the viscosity of cell culture media changed. A big resistance was observed against microbial growth of Staphylococcus aureus, Salmonella typhi, and Candida albicans in case of pure PNIPAAm hydrogel membranes without HA or ampicillin. However, HA incorporation or the loaded ampicillin in membranes showed unexpected easily microbial growth. The fast release performance with dual pH-thermo-sensitive hydrogels were suggested as promising materials for quick drug carrier in the biomedical field. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Natural phenomena evaluations of the K-25 site UF6 cylinder storage yards

    International Nuclear Information System (INIS)

    Fricke, K.E.

    1996-01-01

    The K-25 Site UF 6 cylinder storage yards are used for the temporary storage of UF 6 normal assay cylinders and long-term storage of other UF 6 cylinders. The K-25 Site UF 6 cylinder storage yards consist of six on-site areas: K-1066-B, K-1066-E, K-1066-F, K-1066-J, K-1066-K and K-1066-L. There are no permanent structures erected on the cylinder yards, except for five portable buildings. The operating contractor for the K-25 Site is preparing a Safety Analysis Report (SAR) to examine the safety related aspects of the K-25 Site UF 6 cylinder storage yards. The SAR preparation encompasses many tasks terminating in consequence analysis for the release of gaseous and liquid UF 6 , one of which is the evaluation of natural phenomena threats, such as earthquakes, floods, and winds. In support of the SAR, the six active cylinder storage yards were evaluated for vulnerabilities to natural phenomena, earthquakes, high winds and tornados, tornado-generated missiles, floods (local and regional), and lightning. This report summarizes those studies. 30 refs

  12. Preliminary studies on membrane filtration for the production of potable water: a case of Tshaanda rural village in South Africa.

    Directory of Open Access Journals (Sweden)

    Gomotsegang F Molelekwa

    Full Text Available Ultrafiltration (UF systems have been used globally for treating water from resources including rivers, reservoirs, and lakes for the production of potable water in the past decade. UF membranes with a pore size of between 0.1 and 0.01 micrometres provide an effective barrier for bacteria, viruses, suspended particles, and colloids. The use of UF membrane technology in treating groundwater for the supply of potable water in the impoverished and rural village, Tshaanda (i.e., the study area is demonstrated. The technical and administrative processes that are critical for the successful installation of the pilot plant were developed. Given the rural nature of Tshaanda, the cultural and traditional protocols were observed. Preliminary results of the water quality of untreated water and the permeate are presented. Escherichia coli in the untreated water during the dry season (i.e., June and July was 2 cfu/100 ml and was 2419.2 cfu/100 ml before UF. Following UF, it dramatically reduced to acceptable level (7 cfu/100 ml which is within the WHO recommended level of <10 cfu/100 ml. Additionally, during the wet/rainy season E. coli and enterococci were unacceptably high (40.4 cfu/100 ml and 73.3 cfu/100 ml, respectively before UF but were completely removed following UF, which are within the WHO and SANS recommended limit. The values for electrical conductivity (EC and turbidity were constantly within the WHO recommended limits of 300 µS/cm corrected at 25°C and <5 NTU, respectively, before and after UF, during dry season and wet season. This suggests that there is no need for pre-treatment of the water for suspended particles and colloids. Considering these data, it can be concluded that the water is suitable for human consumption, following UF.

  13. Nanofiltration and Tight Ultrafiltration Membranes for Natural Organic Matter Removal-Contribution of Fouling and Concentration Polarization to Filtration Resistance.

    Science.gov (United States)

    Winter, Joerg; Barbeau, Benoit; Bérubé, Pierre

    2017-07-02

    Nanofiltration (NF) and tight ultrafiltration (tight UF) membranes are a viable treatment option for high quality drinking water production from sources with high concentrations of contaminants. To date, there is limited knowledge regarding the contribution of concentration polarization (CP) and fouling to the increase in resistance during filtration of natural organic matter (NOM) with NF and tight UF. Filtration tests were conducted with NF and tight UF membranes with molecular weight cut offs (MWCOs) of 300, 2000 and 8000 Da, and model raw waters containing different constituents of NOM. When filtering model raw waters containing high concentrations of polysaccharides (i.e., higher molecular weight NOM), the increase in resistance was dominated by fouling. When filtering model raw waters containing humic substances (i.e., lower molecular weight NOM), the increase in filtration resistance was dominated by CP. The results indicate that low MWCO membranes are better suited for NOM removal, because most of the NOM in surface waters consist mainly of humic substances, which were only effectively rejected by the lower MWCO membranes. However, when humic substances are effectively rejected, CP can become extensive, leading to a significant increase in filtration resistance by the formation of a cake/gel layer at the membrane surface. For this reason, cross-flow operation, which reduces CP, is recommended.

  14. Moderate KMnO4-Fe(II) pre-oxidation for alleviating ultrafiltration membrane fouling by algae during drinking water treatment.

    Science.gov (United States)

    Ma, Baiwen; Qi, Jing; Wang, Xing; Ma, Min; Miao, Shiyu; Li, Wenjiang; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui

    2018-05-21

    Although ultrafiltration (UF) membranes are highly beneficial for removing algae, the removal process causes serious UF membrane fouling. To avoid the unfavorable effects of algal cells that have been damaged by oxidants, our previous study reported a novel, moderate pre-oxidation method (KMnO 4 -Fe(II) process) that aimed to achieve a balance between the release of intracellular organic matter and enhanced algae removal. This study further investigated the performance of a UF membrane with KMnO 4 -Fe(II) pretreatment in the presence of algae-laden reservoir water after a long running time. We found that algae could be completely removed, membrane fouling was significantly alleviated, and the overall performance was much better than that of Fe(III) coagulation alone. The transmembrane pressure (TMP) during Fe(III) coagulation increased to 42.8 kPa, however, that of the KMnO 4 -Fe(II) process only increased to 25.1 kPa for after running for 90 d. The slower transmembrane pressure was attributed to the larger floc size, higher surface activity, and inactivation of algae. Although there was little effect on microorganism development, lower microorganism abundance (20.7%) was observed during the KMnO 4 -Fe(II) process than during coagulation alone (44.9%) due to the release of extracellular polymeric substances. We also found that the floc cake layer was easily removed by washing, and many of the original membrane pores were clearly observed. Further analysis demonstrated that the effluent quality was excellent, especially its turbidity, chromaticity, and Mn and Fe concentrations. Based on the outstanding UF membrane performance, it may be concluded that the KMnO 4 -Fe(II) process exhibits considerable potential for application in the treatment of algae-laden water. Copyright © 2018. Published by Elsevier Ltd.

  15. Epidemiologisk forskning om uførepensjon i Norden

    Directory of Open Access Journals (Sweden)

    Johan Håkon Bjørngaard

    2010-01-01

    Full Text Available En relativ stor andel av befolkningen i yrkesaktiv alder i de nordiske landene mottar uførepensjon, og i Norge er det en klar tendens til økning. Parallelt med dette har interessen for forskning rundt uførepensjon som fenomen økt. Vi har i denne studien beskrevet den epidemiologiske forskningen om uførepensjon i Norden. I en systematisk litteraturgjennomgang fant vi 118 aktuelle artikler. Alle de nordiske landene er godt representert. Kohortstudier med uførepensjon som endepunkt utgjorde hovedvekten av materialet, hvor 67 var populasjonsbaserte mens 29 tok utgangspunkt i selekterte pasientpopulasjoner. I alt seks kohortstudier benyttet uførepensjon som eksponering. Vi fant videre syv kasus-kontrollstudier og ni forsøk. Det er betydelig dokumentasjon på at ulike sykdommer og helseplager er assosiert med økt risiko for uførhet, i tillegg til at sosioøkonomiske og arbeidsrelaterte forhold er av betydning. Gjennomgangen viser at den epidemiologiske forskningen for det meste har rettet blikket mot individuelle årsaker til uførepensjonering. Selv om denne forskningen er viktig, kan den neppe forklare økningen vi har sett i det siste tiåret. Den videre forskningen bør utforske nærmere hvordan individuell sårbarhet ender i utstøtelse fra arbeidslivet. Med tanke på den omfattende forskningen om årsaker på dette feltet, bør man også i større grad gjennomføre forsøk for å bedre utsatte gruppers arbeidsdeltakelse.Bjørngaard JH, Krokstad S, Johnsen R, Karlsen AO, Pape K, Støver M, Sund E, Westin S. Epidemiological research on disability benefits in the Nordic countries. Nor J Epidemiol 2009; 19 (2: 103-114 ENGLISH SUMMARYA substantial part of the workforce in the Nordic countries receives a disability benefit, and in Norway this beneficiary rate is growing. As a result, disability benefit has been the subject of new interest and research. In this study we have reviewed the epidemiological research on disability benefit in the

  16. HGSYSTEM/UF6 model enhancements for plume rise and dispersion around buildings, lift-off of buoyant plumes, and robustness of numerical solver

    International Nuclear Information System (INIS)

    Hanna, S.R.; Chang, J.C.

    1997-01-01

    The HGSYSTEM/UF 6 model was developed for use in preparing Safety Analysis Reports (SARs) by estimating the consequences of possible accidental releases of UF 6 to the atmosphere at the gaseous diffusion plants (GDPs) located in Portsmouth, Ohio, and Paducah, Kentucky. Although the latter report carries a 1996 date, the work that is described was completed in late 1994. When that report was written, the primary release scenarios of interest were thought to be gas pipeline and liquid tank ruptures over open terrain away from the influence of buildings. However, upon further analysis of possible release scenarios, the developers of the SARs decided it was necessary to also consider accidental releases within buildings. Consequently, during the fall and winter of 1995-96, modules were added to HGSYSTEM/UF 6 to account for flow and dispersion around buildings. The original HGSYSTEM/UF 6 model also contained a preliminary method for accounting for the possible lift-off of ground-based buoyant plumes. An improved model and a new set of wind tunnel data for buoyant plumes trapped in building recirculation cavities have become available that appear to be useful for revising the lift-off algorithm and modifying it for use in recirculation cavities. This improved lift-off model has been incorporated in the updated modules for dispersion around buildings

  17. Properties of Sago Particleboards Resinated with UF and PF Resin

    Directory of Open Access Journals (Sweden)

    Chen Chiang Tay

    2016-01-01

    Full Text Available The sago processing industry in Mukah, Sarawak, had generated huge amount of sago waste after the milling process and scientists have employed the waste into composite material. In this work, sago residues were mixed with the Phenol Formaldehyde (PF and Urea Formaldehyde (UF for particleboard fabrication. The fabrication and testing methods are based on JIS A 5908 Standard. A single layer particleboard using sago particles was fabricated at targeted density of 600 kg/m3. Particles with weight fractions of 90%, 85%, and 80% with two different matrices were used in the fabrication. The results demonstrated that the samples with different weight fraction and matrix have great influence on the mechanical properties such as MOR, MOE, Young’s Modulus, tensile strength, impact strength, screw test, and internal bonding. The sago UF/PF particleboard only displays single stage decomposition. All the panels underwent physical tests which are water absorption and thickness swelling. The combination of sago particles with UF/PF can be utilized for general indoor application purposes such as furniture manufacturing. Sago particleboard made by UF/PF provided the advantages like optimized performance, minimized weight and volume, cost effectiveness, chemical resistance, and resistance to biodegradation.

  18. On-Line Enrichment Monitor for UF{sub 6} Gas Centrifuge Enrichment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Ianakiev, K. D.; Boyer, B.; Favalli, A.; Goda, J. M.; Hill, T.; Keller, C.; Lombardi, M.; Paffett, M.; MacArthur, D. W.; McCluskey, C.; Moss, C. E.; Parker, R.; Smith, M. K.; Swinhoe, M. T. [Los Alamos National Laboratory, Los Alamos (United States)

    2012-06-15

    This paper is a continuation of the Advanced Enrichment Monitoring Technology for UF{sub 6} Gas Centrifuge Enrichment Plant (GCEP) work, presented in the 2010 IAEA Safeguards Symposium. Here we will present the system architecture for a planned side-by-side field trial test of passive (186-keV line spectroscopy and pressure-based correction for UF{sub 6} gas density) and active (186-keV line spectroscopy and transmission measurement based correction for UF{sub 6} gas density) enrichment monitoring systems in URENCO's enrichment plant in Capenhurst. Because the pressure and transmission measurements of UF{sub 6} are complementary, additional information on the importance of the presence of light gases and the UF{sub 6} gas temperature can be obtained by cross-correlation between simultaneous measurements of transmission, pressure and 186-keV intensity. We will discuss the calibration issues and performance in the context of accurate, on-line enrichment measurement. It is hoped that a simple and accurate on-line enrichment monitor can be built using the UF{sub 6} gas pressure provided by the Operator, based on online mass spectrometer calibration, assuming a negligible (a small fraction of percent) contribution of wall deposits. Unaccounted-for wall deposits present at the initial calibration will lead to unwanted sensitivity to changes in theUF{sub 6} gas pressure and thus to error in the enrichment results. Because the accumulated deposits in the cascade header pipe have been identified as an issue for Go/No Go measurements with the Cascade Header Enrichment Monitor (CHEM) and Continuous Enrichment Monitor (CEMO), it is important to explore their effect. Therefore we present the expected uncertainty on enrichment measurements obtained by propagating the errors introduced by deposits, gas density, etc. and will discuss the options for a deposit correction during initial calibration of an On-Line Enrichment Monitor (OLEM).

  19. Membrane technology for sustainable treated wastewater reuse: agricultural, environmental and hydrological considerations.

    Science.gov (United States)

    Oron, Gideon; Gillerman, Leonid; Bick, Amos; Manor, Yossi; Buriakovsky, Nisan; Hagin, Joseph

    2008-01-01

    Field experiments were conducted in agricultural fields in which secondary wastewater of the City of Arad (Israel) is reused for irrigation. For sustainable agricultural production and safe groundwater recharge the secondary effluent is further polished by a combined two-stage membrane pilot system. The pilot membrane system consists of two main in row stages: Ultrafiltration (UF) and Reverse Osmosis (RO). The UF stage is efficient in the removal of the pathogens and suspended organic matter while the successive RO stage provides safe removal of the dissolved solids (salinity). Effluents of various qualities were applied for agricultural irrigation along with continuous monitoring of the membrane system performance. Best agricultural yields were obtained when applying effluent having minimal content of dissolved solids (after the RO stage) as compared with secondary effluent without any further treatment and extended storage. In regions with shallow groundwater reduced soil salinity in the upper productive layers, maintained by extra membrane treatment, will guarantee minimal dissolved solids migration to the aquifers and minimize salinisation processes. (c) IWA Publishing 2008.

  20. Large-scale night soil treatment by membrane filtration. Shipped to Shida administrative associate; Daikibo makubunri shinyoshori shisetsu. Shida koiki jimu kumiai nonyu

    Energy Technology Data Exchange (ETDEWEB)

    Seki, H [Ebara Corp., Tokyo (Japan)

    1995-10-20

    Ebara`a UF (Ultra Filtration) Deni-pack Process, featuring night soil treatment by membrane filtration and high load denitrification, was installed at Fujieda Environment Management Center, Shizuoka Prefecture. This UF process is the largest of its kind in Japan-treatment capacity: 58 kl/d of night soil and 102 kl/d of septic tank sludge, total of 160 kl/d. The disposability standards are below 10 mg/l of COD, below 10 mg/l of total nitrogen, and below 20 degrees of Color Unit. Nitrification and denitrification are done in a 10-meter deep vertical reactor. As for membranes for the liquid-solid separation, polyolefine, tubular type array-flow UF membranes, fractional molecular weight of 10,000, are used. Three belt press dehydrators and a fluidized-bed incinerator are used for sludge treatment. Installation of this process was completed in December 1995, and stable operation is being continued after a successful commissioning test. 8 figs., 3 tabs.

  1. Évolution qualitative et quantitative des composantes de l'œuf ...

    African Journals Online (AJOL)

    SARAH

    28 févr. 2014 ... contrôle de coquille et de calibre dans les fermes. Mots clés : œuf, pondeuse, ... dynamique qualitative des composantes de l'œuf . Certains auteurs ont ... programme de conduite et de gestion d'élevage. Élevées en bande ...

  2. Kinetics of magnesiothermic reduction of UF4 by DTA

    International Nuclear Information System (INIS)

    Raina, Amulya; Agarwal, Renu

    2016-01-01

    Uranium metal production for nuclear fuel is usually carried out by magnesio-thermic reduction of UF 4 (s). This is a highly exothermic reaction: UF 4 +2Mg → 2MgF 2 + U, ΔH r 298.15 K = -349 kJ/mol. The process is carried out by loading 1:2 molar ratio of UF 4 and Mg mixture in a large stainless steel vessel lined with insulating MgF 2 . This bomb reactor is heated to ~1023 K, but the reaction is known to start at lower temperature. The furnace heat and reaction heat results in shooting mixture temperature to >1800 K. Attaining such high temperatures is desired for complete segregation of fluoride slag (T m MgF 2 =1538 K) and uranium melt (T m =1406 K) due to large difference in their densities, 3.4 gm/cc and 17.9 gm/cc, respectively. For efficient and economic magnesio-thermic reduction of UF 4 , it is desired to understand heat distribution in the reactor vessel, which requires kinetic parameters of this reaction: activation energy (E α ) and A. As this is a solid-solid reaction, studying this reaction kinetics can be approximated by nonisothermal DTA analysis using different heating rates. For non-isothermal conditions, the heating rate (ϕ) = dT/dt is related to rate of propagation of reaction

  3. Dual-Functional Ultrafiltration Membrane for Simultaneous Removal of Multiple Pollutants with High Performance.

    Science.gov (United States)

    Pan, Shunlong; Li, Jiansheng; Noonan, Owen; Fang, Xiaofeng; Wan, Gaojie; Yu, Chengzhong; Wang, Lianjun

    2017-05-02

    Simultaneous removal of multiple pollutants from aqueous solution with less energy consumption is crucial in water purification. Here, a novel concept of dual-functional ultrafiltration (DFUF) membrane is demonstrated by entrapment of nanostructured adsorbents into the finger-like pores of ultrafiltration (UF) membrane rather than in the membrane matrix in previous reports of blend membranes, resulting in an exceptionally high active content and simultaneous removal of multiple pollutants from water due to the dual functions of rejection and adsorption. As a demonstration, hollow porous Zr(OH) x nanospheres (HPZNs) were immobilized in poly(ether sulfone) (PES) UF membranes through polydopamine coating with a high content of 68.9 wt %. The decontamination capacity of DFUF membranes toward multiple model pollutants (colloidal gold, polyethylene glycol (PEG), Pb(II)) was evaluated against a blend membrane. Compared to the blend membrane, the DFUF membranes showed 2.1-fold increase in the effective treatment volume for the treatment of Pb(II) contaminated water from 100 ppb to below 10 ppb (WHO drinking water standard). Simultaneously, the DFUF membranes effectively removed the colloidal gold and PEG below instrument detection limit, however the blend membrane only achieved 97.6% and 96.8% rejection for colloidal gold and PEG, respectively. Moreover, the DFUF membranes showed negligible leakage of nanoadsorbents during testing; and the membrane can be easily regenerated and reused. This study sheds new light on the design of high performance multifunction membranes for drinking water purification.

  4. Transport of UF6 in compliance with TS-R-1

    International Nuclear Information System (INIS)

    Dekker, B.G.

    2004-01-01

    The IAEA Regulations TS-R-1 (ST-1, Revised) 1996 Edition include requirements for packages containing uranium hexafluoride (UF6); these are the first and only substance-specific requirements in the IAEA regulations. These requirements have already particularly affected, and will further affect, the transport of non-fissile and fissile excepted UF 6 and the packages used for these transports. Non-fissile and fissile excepted UF6 (ASTM C 787) has been transported worldwide for decades in a safe and reliable manner, using internationally standardised packages. Under the auspices of the World Nuclear Transport Institute (WNTI), an industry working group has been evaluating the existing packages against the requirements in TS-R-1. As new requirements came into effect, there were new challenges for the use of these standard packages, including the free drop test and the thermal requirements. In close cooperation with the WNTI HEXT Industry Working Group, a consortium of UF6 producers/users has worked together on the design and development, testing and certification of technical solutions for modification and optimisation of the existing packages to comply with TS-R-1. This paper reviews the existing standard packages against the requirements in TS-R-1. An update is also given describing the enhancements to the standard packages that have been designed and developed recently. The paper also describes how these solutions have been tested and certified, as well as the status of implementation. Finally, a review is made of the options that are available internationally to transport UF6 in compliance with TS-R-1. (author)

  5. An integrated membrane system for the biocatalytic production of 3′-sialyllactose from dairy by-products

    DEFF Research Database (Denmark)

    Luo, Jianquan; Nordvang, Rune Thorbjørn; Morthensen, Sofie Thage

    2014-01-01

    An integrated membrane system was investigated for the production of 30-sialyllactose by an engineered sialidase using casein glycomacropeptide (CGMP) and lactose as substrates. CGMP was purified by ultrafiltration (UF) to remove any small molecules present and then an enzymatic membrane reactor ...

  6. Confirmatory measurements of UF6 using the neutron self-interrogation method

    International Nuclear Information System (INIS)

    Stewart, J.E.; Ensslin, N.; Menlove, H.O.; Cowder, L.R.; Polk, P.J.

    1985-01-01

    A passive neutron counting method has been developed for measurement of the 235 U mass in Model 5A cylinders of UF 6 . The unique neutronic properties of UF 6 containing highly enriched uranium (HEU) permit 235 U assay using only passive neutron counting. The sample effectively assays itself by self-interrogation. Shipped from enrichment plants and received at fuel fabrication and conversion facilities, 5A UF 6 cylinders hold up to approx.17 kg of 235 U each. Field measurements at the Portsmouth Gaseous Diffusion Plant (GDP) showed an average assay accuracy of 6.8% (1sigma) for 44 cylinders with enrichments from 6 to 98% and with a range of fill heights. Further measurements on 38 cylinders containing 97%-enriched material yielded an accuracy of 2.8% (1sigma). Typical counting times for these measurements were less than 5 min. An in-plant instrument for receipts confirmation measurements of 5A UF 6 cylinders has been developed for the Savannah River Plant. The Receipts Assay Monitor (RAM) is currently being tested and calibrated. It is designed to confirm declared fissile mass in all incoming 5A cylinders containing HEU in the form of UF 6 . One of the computer-controlled features is a removable cadmium liner for the sample cavity. The liner allows a sample fill-height correction, which significantly improves assay accuracy

  7. 18 years experience on UF{sub 6} handling at Japanese nuclear fuel manufacturer

    Energy Technology Data Exchange (ETDEWEB)

    Fujinaga, H.; Yamazaki, N.; Takebe, N. [Japan Nucelar Fuel Conversion Co., Ltd., Ibaraki (Japan)

    1991-12-31

    In the spring of 1991, a leading nuclear fuel manufacturing company in Japan, celebrated its 18th anniversary. Since 1973, the company has produced over 5000 metric ton of ceramic grade UO{sub 2} powder to supply to Japanese fabricators, without major accident/incident and especially with a successful safety record on UF{sub 6} handling. The company`s 18 years experience on nuclear fuel manufacturing reveals that key factors for the safe handling of UF{sub 6} are (1) installing adequate facilities, equipped with safety devices, (2) providing UF{sub 6} handling manuals and executing them strictly, and (3) repeating on and off the job training for operators. In this paper, equipment and the operation mode for UF{sub 6} processing at their facility are discussed.

  8. Electron affinity of UF6. Final report, March 1, 1976--June 30, 1977

    International Nuclear Information System (INIS)

    Rothe, E.W.

    1977-06-01

    Ionization reactions are observed in crossed molecular beams, usually of thermal energy, alkalis and MoF 6 , WF 6 and UF 6 . Previous studies have indicated large electron affinities for these hexafluorides, and this is confirmed here. Ionization at thermal energies proceeds with the alkali dimers, A 2 , for all three hexafluorides, but with alkali atoms, A, only for UF 6 . Several ionization paths are observed, allowing the deduction of molecular energies. A few experiments are done with eV-range beams. Lower limits for the elecron affinities are 4.5, 3.3, 4.9, 4.3 and 1.9 eV for MoF 6 , MoF 5 , WF 6 , UF 6 and UF 5 , respectively. Possible mechanisms are discussed

  9. A simple fabrication of plasmonic surface-enhanced Raman scattering (SERS) substrate for pesticide analysis via the immobilization of gold nanoparticles on UF membrane

    Science.gov (United States)

    Hong, Jangho; Kawashima, Ayato; Hamada, Noriaki

    2017-06-01

    In this study, we developed a facile fabrication method to access a highly reproducible plasmonic surface enhanced Raman scattering substrate via the immobilization of gold nanoparticles on an Ultrafiltration (UF) membrane using a suction technique. This was combined with a simple and rapid analyte concentration and detection method utilizing portable Raman spectroscopy. The minimum detectable concentrations for aqueous thiabendazole standard solution and thiabendazole in orange extract are 0.01 μg/mL and 0.125 μg/g, respectively. The partial least squares (PLS) regression plot shows a good linear relationship between 0.001 and 100 μg/mL of analyte, with a root mean square error of prediction (RMSEP) of 0.294 and a correlation coefficient (R2) of 0.976 for the thiabendazole standard solution. Meanwhile, the PLS plot also shows a good linear relationship between 0.0 and 2.5 μg/g of analyte, with an RMSEP value of 0.298 and an R2 value of 0.993 for the orange peel extract. In addition to the detection of other types of pesticides in agricultural products, this highly uniform plasmonic substrate has great potential for application in various environmentally-related areas.

  10. Membrane Processes Based on Complexation Reactions of Pollutants as Sustainable Wastewater Treatments

    Directory of Open Access Journals (Sweden)

    Teresa Poerio

    2009-11-01

    Full Text Available Water is today considered to be a vital and limited resource due to industrial development and population growth. Developing appropriate water treatment techniques, to ensure a sustainable management, represents a key point in the worldwide strategies. By removing both organic and inorganic species using techniques based on coupling membrane processes and appropriate complexing agents to bind pollutants are very important alternatives to classical separation processes in water treatment. Supported Liquid Membrane (SLM and Complexation Ultrafiltration (CP-UF based processes meet the sustainability criteria because they require low amounts of energy compared to pressure driven membrane processes, low amounts of complexing agents and they allow recovery of water and some pollutants (e.g., metals. A more interesting process, on the application point of view, is the Stagnant Sandwich Liquid Membrane (SSwLM, introduced as SLM implementation. It has been studied in the separation of the drug gemfibrozil (GEM and of copper(II as organic and inorganic pollutants in water. Obtained results showed in both cases the higher efficiency of SSwLM with respect to the SLM system configuration. Indeed higher stability (335.5 vs. 23.5 hours for GEM; 182.7 vs. 49.2 for copper(II and higher fluxes (0.662 vs. 0.302 mmol·h-1·m-2 for GEM; 43.3 vs. 31.0 for copper(II were obtained by using the SSwLM. Concerning the CP-UF process, its feasibility was studied in the separation of metals from waters (e.g., from soil washing, giving particular attention to process sustainability such as water and polymer recycle, free metal and water recovery. The selectivity of the CP-UF process was also validated in the separate removal of copper(II and nickel(II both contained in synthetic and real aqueous effluents. Thus, complexation reactions involved in the SSwLM and the CP-UF processes play a key role to meet the sustainability criteria.

  11. Results of ultrasonic testing evaluations on UF6 storage cylinders

    International Nuclear Information System (INIS)

    Lykins, M.L.

    1997-02-01

    The three site cylinder management program is responsible for the safe storage of the DOE owned UF 6 storage cylinders at PORTS, PGDP and at the K-25 site. To ensure the safe storage of the UF 6 in the cylinders, the structural integrity of the cylinders must be evaluated. This report represents the latest cylinder integrity investigation that utilized wall thickness evaluations to identify thinning due to atmospheric exposure

  12. Surface nanostructuring of thin film composite membranes via grafting polymerization and incorporation of ZnO nanoparticles

    Science.gov (United States)

    Isawi, Heba; El-Sayed, Magdi H.; Feng, Xianshe; Shawky, Hosam; Abdel Mottaleb, Mohamed S.

    2016-11-01

    A new approach for modification of polyamid thin film composite membrane PA(TFC) using synthesized ZnO nanoparticles (ZnO NPs) was shown to enhance the membrane performances for reverse osmosis water desalination. First, active layer of synthesis PA(TFC) membrane was activated with an aqueous solution of free radical graft polymerization of hydrophilic methacrylic acid (MAA) monomer onto the surface of the PA(TFC) membrane resulting PMAA-g-PA(TFC). Second, the PA(TFC) membrane has been developed by incorporation of ZnO NPs into the MAA grafting solution resulting the ZnO NPs modified PMAA-g-PA(TFC) membrane. The surface properties of the synthesized nanoparticles and prepared membranes were investigated using the FTIR, XRD and SEM. Morphology studies demonstrated that ZnO NPs have been successfully incorporated into the active grafting layer over PA(TFC) composite membranes. The zinc leaching from the ZnO NPs modified PMAA-g-PA(TFC) was minimal, as shown by batch tests that indicated stabilization of the ZnO NPs on the membrane surfaces. Compared with the a pure PA(TFC) and PMAA-g-PA(TFC) membranes, the ZnO NPs modified PMAA-g-PA(TFC) was more hydrophilic, with an improved water contact angle (∼50 ± 3°) over the PMAA-g-PA(TFC) (63 ± 2.5°). The ZnO NPs modified PMAA-g-PA(TFC) membrane showed salt rejection of 97% (of the total groundwater salinity), 99% of dissolved bivalent ions (Ca2+, SO42-and Mg2+), and 98% of mono valent ions constituents (Cl- and Na+). In addition, antifouling performance of the membranes was determined using E. coli as a potential foulant. This demonstrates that the ZnO NPs modified PMAA-g-PA(TFC) membrane can significantly improve the membrane performances and was favorable to enhance the selectivity, permeability, water flux, mechanical properties and the bio-antifouling properties of the membranes for water desalination.

  13. UF{sub 6} tiedowns for truck transport - right way/wrong way

    Energy Technology Data Exchange (ETDEWEB)

    Stout, F.W. Jr. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

    1991-12-31

    Tiedown systems for truck transport of UF{sub 6} must be defined and controlled to assure the least risk for hauling the material over the highways. This paper and an associated poster display will present the current status of regulatory criteria for tiedowns, analyze the structural stresses involved in tiedowns for two major UF{sub 6} packaging systems, the 21PF series of overpacks and the 48 in. diameter shipping cylinders, and will present photographs showing some {open_quote}right ways{close_quotes} and some {open_quotes}wrong (or risky) ways{close_quotes} currently used for tiedown systems. Risky tiedown methods must be replaced with safer less risky methods to insure the safe transport of UF{sub 6}.

  14. Enhanced antimony(V) removal using synergistic effects of Fe hydrolytic flocs and ultrafiltration membrane with sludge discharge evaluation.

    Science.gov (United States)

    Ma, Baiwen; Wang, Xing; Liu, Ruiping; Qi, Zenglu; Jefferson, William A; Lan, Huachun; Liu, Huijuan; Qu, Jiuhui

    2017-09-15

    The integration of adsorbents with ultrafiltration (UF) membranes is a promising method for alleviating membrane fouling and reducing land use. However, a number of problems have become apparent concerning the granular adsorbents used currently, such as high running cost, high chance of causing membrane surface damage, low in situ chemical cleaning efficiency, etc. Herein, to overcome these disadvantages, loose in situ hydrolyzed flocs were directly injected into the membrane tank, providing strong adsorption ability at low cost. To test the feasibility of this method, the heavy metal pollutant antimony (Sb (V)) in a water plant was chosen at a test case, which is similar to arsenic and difficult to remove. We found that Fe-based flocs integrated with an UF membrane showed a large potential advantage in removing Sb(V), even after running for 110 days. We demonstrated that the observed slow transmembrane pressure development could be ascribed to the loose floc cake layer formed, even though some extracellular polymeric substances were induced during operation. We also found that the floc cake layer was easily removed by washing with feed water or dissolved by in situ chemical cleaning under strongly acidic conditions, and many primary membrane pores were clearly observed. In addition, a relative long sludge discharge interval was feasible for this technology and the effluent quality was good, including the turbidity, chromaticity and iron concentration. Based on the excellent performance, these flocs integrated with UF membranes indeed show potential for application in water treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Fouling in Membrane Distillation, Osmotic Distillation and Osmotic Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Mourad Laqbaqbi

    2017-03-01

    Full Text Available Various membrane separation processes are being used for seawater desalination and treatment of wastewaters in order to deal with the worldwide water shortage problem. Different types of membranes of distinct morphologies, structures and physico-chemical characteristics are employed. Among the considered membrane technologies, membrane distillation (MD, osmotic distillation (OD and osmotic membrane distillation (OMD use porous and hydrophobic membranes for production of distilled water and/or concentration of wastewaters for recovery and recycling of valuable compounds. However, the efficiency of these technologies is hampered by fouling phenomena. This refers to the accumulation of organic/inorganic deposits including biological matter on the membrane surface and/or in the membrane pores. Fouling in MD, OD and OMD differs from that observed in electric and pressure-driven membrane processes such electrodialysis (ED, membrane capacitive deionization (MCD, reverse osmosis (RO, nanofiltration (NF, ultrafiltration (UF, microfiltration (MF, etc. Other than pore blockage, fouling in MD, OD and OMD increases the risk of membrane pores wetting and reduces therefore the quantity and quality of the produced water or the concentration efficiency of the process. This review deals with the observed fouling phenomena in MD, OD and OMD. It highlights different detected fouling types (organic fouling, inorganic fouling and biofouling, fouling characterization techniques as well as various methods of fouling reduction including pretreatment, membrane modification, membrane cleaning and antiscalants application.

  16. Nanofiltration and Tight Ultrafiltration Membranes for Natural Organic Matter Removal—Contribution of Fouling and Concentration Polarization to Filtration Resistance

    Directory of Open Access Journals (Sweden)

    Joerg Winter

    2017-07-01

    Full Text Available Nanofiltration (NF and tight ultrafiltration (tight UF membranes are a viable treatment option for high quality drinking water production from sources with high concentrations of contaminants. To date, there is limited knowledge regarding the contribution of concentration polarization (CP and fouling to the increase in resistance during filtration of natural organic matter (NOM with NF and tight UF. Filtration tests were conducted with NF and tight UF membranes with molecular weight cut offs (MWCOs of 300, 2000 and 8000 Da, and model raw waters containing different constituents of NOM. When filtering model raw waters containing high concentrations of polysaccharides (i.e., higher molecular weight NOM, the increase in resistance was dominated by fouling. When filtering model raw waters containing humic substances (i.e., lower molecular weight NOM, the increase in filtration resistance was dominated by CP. The results indicate that low MWCO membranes are better suited for NOM removal, because most of the NOM in surface waters consist mainly of humic substances, which were only effectively rejected by the lower MWCO membranes. However, when humic substances are effectively rejected, CP can become extensive, leading to a significant increase in filtration resistance by the formation of a cake/gel layer at the membrane surface. For this reason, cross-flow operation, which reduces CP, is recommended.

  17. Effects of dietary fat on lipid composition of serum and erythrocytes of the swine and in vitro incorporation of fatty acids into erythrocyte membranes

    International Nuclear Information System (INIS)

    Sato, Hiroaki

    1974-01-01

    Changes in ftty acid patterns of lipids in serum and erythrocytes induced by dietary fats and in vitro incorporation of fatty acids into erythrocyte membranes were investigated with pigs. On feeding various diets, it was found that fatty acid composition of serum and erythrocytes could be modified and altered toward the fatty acid pattern of the diet. In vitro, the incorporation of labelled fatty acids into erythrocyte membranes was accelerated by the addition of cofactors such as lysolecithin, CoA and ATP. Dietary fats also had certain effects on the incorporation of fatty acids into erythrocyte membranes. Erythrocytes, collected from the blood of pigs fed corn oil, incorporated and also released more labelled linoleate than those of pigs fed hydrogenated soybean oil. Palmitic acid was more slowly incorporated into erythrocyte membranes than linoleic acid in the pigs fed both a commercial chow and scheduled meals, indicating selective esterification of fatty acids in the erythrocyte membranes. (author)

  18. Thermal plasma reduction of UF6

    International Nuclear Information System (INIS)

    Fincke, J.R.; Swank, W.D.; Haggard, D.C.

    1995-01-01

    This paper describes the experimental demonstration of a process for the direct plasma reduction of depleted uranium hexafluoride to uranium metal. The process exploits the large departures from equilibrium that can be achieved in the rapid supersonic expansion of a totally dissociated and partially ionized mixture of UF 6 , Ar, He, and H 2 . The process is based on the rapid condensation of subcooled uranium vapor and the relatively slow rate of back reaction between metallic uranium and HF to F 2 to reform stable fluorides. The high translational velocities and rapid cooling result in an overpopulation of atomic hydrogen which persists throughout the expansion process. Atomic hydrogen shifts the equilibrium composition by inhibiting the reformation of uranium-fluorine compounds. This process has the potential to reduce the cost of reducing UF 6 to uranium metal with the added benefit of being a virtually waste free process. The dry HF produced is a commodity which has industrial value

  19. Evaluation of a dry process for conversion of U-AVLIS product to UF6. Milestone U361

    International Nuclear Information System (INIS)

    1992-05-01

    A technical and engineering evaluation has been completed for a dry UF 6 production system to convert the product of an initial two-line U-AVLIS plant. The objective of the study has been to develop a better understanding of process design requirements, capital and operating costs, and demonstration requirements for this alternate process. This report summarizes the results of the study and presents various comparisons between the baseline and alternate processes, building on the information contained in UF 6 Product Alternatives Review Committee -- Final Report. It also provides additional information on flowsheet variations for the dry route which may warrant further consideration. The information developed by this study and conceptual design information for the baseline process will be combined with information to be developed by the U-AVLIS program and by industrial participants over the next twelve months to permit a further comparison of the baseline and alternate processes in terms of cost, risk, and compatibility with U-AVLIS deployment schedules and strategies. This comparative information will be used to make a final process flowsheet selection for the initial U-AVLIS plant by March 1993. The process studied is the alternate UF 6 production flowsheet. Process steps are (1) electron-beam distillation to reduce enriched product iron content from about 10 wt % or less, (2) hydrofluorination of the metal to UF 4 , (3) fluorination of UF 4 to UF 6 , (4) cold trap collection of the UF 6 product, (5) UF 6 purification by distillation, and (6) final blending and packaging of the purified UF 6 in cylinders. A preliminary system design has been prepared for the dry UF 6 production process based on currently available technical information. For some process steps, such information is quite limited. Comparisons have been made between this alternate process and the baseline plant process for UF 6 production

  20. Application of ceramic membranes for seawater reverse osmosis (SWRO) pre-treatment

    KAUST Repository

    Hamad, Juma; Ha, Changwon; Kennedy, Maria Dolores; Amy, Gary L.

    2013-01-01

    and particulate fouling materials (algae, suspended and colloidal particles). Also, a pre-treatment barrier reduces organics and provides better feed water quality for RO membranes. MF and UF pre-treatment prior to SWRO provides Low Silt Density Index (SDI) values

  1. Fouling behavior of poly(ether)sulfone ultrafiltration membrane during concentration of whey proteins: Effect of hydrophilic modification using atmospheric pressure argon jet plasma.

    Science.gov (United States)

    Damar Huner, Irem; Gulec, Haci Ali

    2017-12-01

    The aim of the study was to investigate the effects of hydrophilic surface modification via atmospheric pressure jet plasma (ApJPls) on the fouling propensity of polyethersulfone (PES) ultrafiltration (UF) membranes during concentration of whey proteins. The distance from nozzle to substrate surface of 30mm and the exposure period of 5 times were determined as the most effective parameters enabling an increase in ΔG iwi value of the plain membrane from (-) 14.92±0.89mJ/m 2 to (+) 17.57±0.67mJ/m 2 . Maximum hydrophilicity and minimum surface roughness achieved by argon plasma action resulted in better antifouling behavior, while the hydraulic permeability and the initial permeate flux were decreased sharply due to the plasma-induced surface cross-linking. A quite steady state flux was obtained throughout the UF with the ApJPls modified PES membrane. The contribution of R frev to R t , which was 94% for the UF through the plain membrane, decreased to 43% after the plasma treatment. The overall results of this study highlighted the ApJPls modification decreased the fouling propensity of PES membrane without affecting the original protein rejection capability and improved the recovery of initial permeate flux after chemical cleaning. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The Comparing Options for Management: Patient-centered Results for Uterine Fibroids (COMPARE-UF) Registry: Rationale and Design.

    Science.gov (United States)

    Stewart, Elizabeth A; Lytle, Barbara L; Thomas, Laine; Wegienka, Ganesa R; Jacoby, Vanessa; Diamond, Michael P; Nicholson, Wanda K; Anchan, Raymond M; Venable, Sateria; Wallace, Kedra; Marsh, Erica E; Maxwell, George L; Borah, Bijan J; Catherino, William H; Myers, Evan R

    2018-05-08

    To design and establish a uterine fibroid (UF) registry based in the United States (US) to provide comparative effectiveness data regarding UF treatment. We report here the design and initial recruitment for the Comparing Options for Management: Patient-centered Results for Uterine Fibroids (COMPARE-UF) registry (Clinicaltrials.gov, NCT02260752), funded by the Agency for Healthcare Research and Quality (AHRQ) in collaboration with the-Patient-Centered Outcomes Research Institute (PCORI). COMPARE-UF is designed to help answer critical questions about treatment options for women with symptomatic UF. Women undergoing a procedure for UF (hysterectomy, myomectomy [abdominal, hysteroscopic, vaginal and laparoscopic/robotic], endometrial ablation, radiofrequency fibroid ablation, uterine artery embolization, magnetic resonance guided focused ultrasound or progestin-releasing intrauterine device insertion) at one of the COMPARE-UF sites are invited to participate in a prospective registry with three years follow-up for post-procedural outcomes. Enrolled participants provide annual follow-up through an online portal or through traditional phone contact. A central data abstraction center provides information obtained from imaging, operative or procedural notes and pathology reports. Women with uterine fibroids and other stakeholders are a key part of the COMPARE-UF registry and participate at all points from study design to dissemination of results. We built a network of nine clinical sites across the US with expertise in the care of women with UF to capture geographic, racial, ethnic and procedural diversity. Of the initial 2031 women enrolled in COMPARE-UF, 42% are self-identified as Black or African-American and 40% are age 40 years or younger with 16% of participants under age 35. Women undergoing myomectomy comprise the largest treatment group at 46% of all procedures with laparoscopic or robotic myomectomy comprising the largest subset of myomectomies at 19% of all

  3. Ultrafiltration and nanofiltration membrane fouling by natural organic matter: Mechanisms and mitigation by pre-ozonation and pH.

    Science.gov (United States)

    Yu, Wenzheng; Liu, Teng; Crawshaw, John; Liu, Ting; Graham, Nigel

    2018-08-01

    The fouling of ultrafiltration (UF) and nanofiltration (NF) membranes during the treatment of surface waters continues to be of concern and the particular role of natural organic matter (NOM) requires further investigation. In this study the effect of pH and surface charge on membrane fouling during the treatment of samples of a representative surface water (Hyde Park recreational lake) were evaluated, together with the impact of pre-ozonation. While biopolymers in the surface water could be removed by the UF membrane, smaller molecular weight (MW) fractions of NOM were poorly removed, confirming the importance of membrane pore size. For NF membranes the removal of smaller MW fractions (800 Da-10 kDa) was less than expected from their pore size; however, nearly all of the hydrophobic, humic-type substances could be removed by the hydrophilic NF membranes for all MW distributions (greater than 90%). The results indicated the importance of the charge and hydrophilic nature of the NOM. Thus, the hydrophilic NF membrane could remove the hydrophobic organic matter, but not the hydrophilic substances. Increasing charge effects (more negative zeta potentials) with increasing solution pH were found to enhance organics removal and reduce fouling (flux decline), most likely through greater membrane surface repulsion. Pre-ozonation of the surface water increased the hydrophilic fraction and anionic charge of NOM and altered their size distributions. This resulted in a decreased fouling (less flux decline) for the UF and smaller pore NF, but a slight increase in fouling for the larger pore NF. The differences in the NF behavior are believed to relate to the relative sizes of ozonated organic fractions and the NF pores; a similar size of ozonated organic fractions and the NF pores causes significant membrane fouling. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Integrating UF6 Cylinder RF Tracking With Continuous Load Cell Monitoring for Verifying Declared UF6 Feed and Withdrawal Operations Verifying Declared UF6 Feed and Withdrawal Operations

    International Nuclear Information System (INIS)

    Krichinsky, Alan M.; Miller, Paul; Pickett, Chris A.; Richardson, Dave; Rowe, Nathan C.; Whitaker, J. Michael; Younkin, James R.

    2009-01-01

    Oak Ridge National Laboratory is demonstrating the integration of UF6 cylinder tracking, using RF technology, with continuous load cell monitoring (CLCM) at mock UF6 feed and withdrawal (F and W) stations. CLCM and cylinder tracking are two of several continuous-monitoring technologies that show promise in providing integrated safeguards of F and W operations at enrichment plants. Integrating different monitoring technologies allows advanced, automated event processing to screen innocuous events thereby minimizing false alerts to independent inspectors. Traditionally, international inspectors rely on batch verification of material inputs and outputs derived from operator declarations and periodic on-site inspections at uranium enrichment plants or other nuclear processing facilities. Continuously monitoring F and W activities between inspections while providing filtered alerts of significant operational events will substantially increase the amount of valuable information available to inspectors thereby promising to enhance the effectiveness of safeguards and to improve efficiency in conducting on-site inspections especially at large plants for ensuring that all operations are declared.

  5. Progress on Incorporating Zeolites in Matrimid®5218 Mixed Matrix Membranes towards Gas Separation

    Directory of Open Access Journals (Sweden)

    Roberto Castro-Muñoz

    2018-06-01

    Full Text Available Membranes, as perm-selective barriers, have been widely applied for gas separation applications. Since some time ago, pure polymers have been used mainly for the preparation of membranes, considering different kinds of polymers for such preparation. At this point, polyimides (e.g., Matrimid®5218 are probably one of the most considered polymers for this purpose. However, the limitation on the performance relationship of polymeric membranes has promoted their enhancement through the incorporation of different inorganic materials (e.g., zeolites into their matrix. Therefore, the aim of this work is to provide an overview about the progress of zeolite embedding in Matrimid®5218, aiming at the preparation of mixed matrix membranes for gas separation. Particular attention is paid to the relevant experimental results and current findings. Finally, we describe the prospects and future trends in the field.

  6. UF/sub 6/ test loop for evaluation and implementation of international enrichment plant safeguards

    International Nuclear Information System (INIS)

    Cooley, J.N.; Fields, L.W.; Swindle, D.W. Jr.

    1987-01-01

    A functional test loop capable of simulating UF/sub 6/ flows, pressures, and pipe deposits characteristic of gas centrifuge enrichment plant piping has been designed and fabricated by the Enrichment Safeguards Program of Martin Marietta Energy Systems, Inc., for use by the International Atomic Energy Agency (IAEA) at its Safeguards Analytical Laboratory in Seibersdorf, Austria. The purpose of the test loop is twofold: (1) to enable the IAEA to evaluate and to calibrate enrichment safeguards measurement instrumentation to be used in limited frequency-unannounced access (LFUA) inspection strategy measurements at gas centrifuge enrichment plants and (2) to train IAEA inspectors in the use of such instrumentation. The test loop incorporates actual sections of cascade header pipes from the centrifuge enrichment plants subject to IAEA inspections. The test loop is described, applications for its use by the IAEA are detailed, and results from an initial demonstration session using the test loop are summarized. By giving the IAEA the in-house capability to evaluate LFUA inspection strategy approaches, to develop inspection procedures, to calibrate instrumentation, and to train inspectors, the UF/sub 6/ cascade header pipe test loop will contribute to the IAEA's success in implementing LFUA strategy inspections at gas centrifuge enrichment facilities subject to international safeguards inspections

  7. The applicability of fluoride volatility process to producing UF6 from yellow cake

    International Nuclear Information System (INIS)

    Xia Dechang

    2005-01-01

    The schematic diagrams producing UF 6 from yellow cake are showed in this paper. The characteristics and process improvements of the fluoride volatility process are explained. The applicability of the fluoride volatility process to producing UF 6 from yellow cake is discussed. (authors)

  8. Evaluation of tecniques for controlling UF6 release clouds in the GAT environmental chamber

    International Nuclear Information System (INIS)

    Lux, C.J.

    1982-01-01

    Studies designed to characterize the reaction between UF 6 and atmospheric moisture, evaluate environmental variables of UF 6 cloud formation and ultimate cloud fate, and UF 6 release cloud control procedure have been conducted in the 1200 cu. ft. GAT environmental chamber. In earlier chamber experiments, 30 separate UF 6 release tests indicated that variations of atmospheric conditions and sample sizes had no significant effect on UO 2 F 2 particle size distribution, release cloud formation, or cloud settling rates. During the past year, numerous procedures have been evaluated for accelerating UF 6 cloud knockdown in a series of 37 environmental chamber releases. Knockdown procedures included: coarse water spray; air jet; steam spray (electrostatically charged and uncharged); carbon dioxide; Freon-12; fine water mist (uncharged); boric acid mist (charged and uncharged); and an ionized dry air stream. UF 6 hydrolysis cloud settling rates monitored by a laser/powermeter densitometer, indicated the relative effectiveness of various cloud knockdown techniques. Electrostatically charged boric acid/water mist, and electrostatically ionized dry air were both found to be very effective, knocking down the UO 2 F 2 release cloud particles in two to five minutes. Work to adapt these knockdown techniques for use under field conditions is continuing, taking into account recovery of the released uranium as well as nuclear criticality constraints

  9. Fabrication of Functionalized MOFs Incorporated Mixed Matrix Hollow Fiber Membrane for Gas Separation

    Directory of Open Access Journals (Sweden)

    Haitao Zhu

    2017-01-01

    Full Text Available The metal-organic framework (MOFs of MIL-53 was functionalized by aminosilane grafting and then incorporated into Ultem®1000 polymer matrix to fabricate mixed matrix hollow fiber membrane (MMHFM with high separation performance. SEM, XRD, and TGA were performed to characterize the functionalized MIL-53 and prepared MMHFM. The filler particles were embedded in membrane successfully and dispersed well in the polymer matrix. The incorporation of MOFs endowed MMHFM better thermal stability. Moreover, effects of solvent ratio in spinning dope, spinning condition, and testing temperature on gas separation performance of MMHFM were investigated. By optimizing dope composition, air gap distance, and bore fluid composition, MMHFM containing functionalized MIL-53 achieved excellent gas permeance and CO2/N2 selectivity. The CO2 permeance increased from 12.2 GPU for pure Ultem HFM to 30.9 GPU and the ideal CO2/N2 selectivity was enhanced from 25.4 to 34.7 simultaneously. Additionally, gas permeance increased but the selectivity decreased with the temperature increase, which followed the solution-diffusion based transport mechanism.

  10. Application of the HGSYSTEM/UF6 model to simulate atmospheric dispersion of UF6 releases from uranium enrichment plants

    International Nuclear Information System (INIS)

    Goode, W.D. Jr.; Bloom, S.G.; Keith, K.D. Jr.

    1995-01-01

    Uranium hexafluoride is a dense, reactive gas used in Gaseous Diffusion Plants (GDPs) to make uranium enriched in the 235 U isotope. Large quantities of UF 6 exist at the GDPs in the form of in-process gas and as a solid in storage cylinders; smaller amounts exist as hot liquid during transfer operations. If liquid UF 6 is released to the environment, it immediately flashes to a solid and a dense gas that reacts rapidly with water vapor in the air to form solid particles of uranyl fluoride and hydrogen fluoride gas. Preliminary analyses were done on various accidental release scenarios to determine which scenarios must be considered in the safety analyses for the GDPS. These scenarios included gas releases due to failure of process equipment and liquid/gas releases resulting from a breach of transfer piping from a cylinder. A major goal of the calculations was to estimate the response time for mitigating actions in order to limit potential off-site consequences of these postulated releases. The HGSYSTEM/UF 6 code was used to assess the consequences of these release scenarios. Inputs were developed from release calculations which included two-phase, choked flow followed by expansion to atmospheric pressure. Adjustments were made to account for variable release rates and multiple release points. Superpositioning of outputs and adjustments for exposure time were required to evaluate consequences based on health effects due to exposures to uranium and HF at a specific location

  11. Removal of trace organic chemicals and performance of a novel hybrid ultrafiltration-osmotic membrane bioreactor.

    Science.gov (United States)

    Holloway, Ryan W; Regnery, Julia; Nghiem, Long D; Cath, Tzahi Y

    2014-09-16

    A hybrid ultrafiltration-osmotic membrane bioreactor (UFO-MBR) was investigated for over 35 days for nutrient and trace organic chemical (TOrC) removal from municipal wastewater. The UFO-MBR system uses both ultrafiltration (UF) and forward osmosis (FO) membranes in parallel to simultaneously extract clean water from an activated sludge reactor for nonpotable (or environmental discharge) and potable reuse, respectively. In the FO stream, water is drawn by osmosis from activated sludge through an FO membrane into a draw solution (DS), which becomes diluted during the process. A reverse osmosis (RO) system is then used to reconcentrate the diluted DS and produce clean water suitable for direct potable reuse. The UF membrane extracts water, dissolved salts, and some nutrients from the system to prevent their accumulation in the activated sludge of the osmotic MBR. The UF permeate can be used for nonpotable reuse purposes (e.g., irrigation and toilet flushing). Results from UFO-MBR investigation illustrated that the chemical oxygen demand, total nitrogen, and total phosphorus removals were greater than 99%, 82%, and 99%, respectively. Twenty TOrCs were detected in the municipal wastewater that was used as feed to the UFO-MBR system. Among these 20 TOrCs, 15 were removed by the hybrid UFO-MBR system to below the detection limit. High FO membrane rejection was observed for all ionic and nonionic hydrophilic TOrCs and lower rejection was observed for nonionic hydrophobic TOrCs. With the exceptions of bisphenol A and DEET, all TOrCs that were detected in the DS were well rejected by the RO membrane. Overall, the UFO-MBR can operate sustainably and has the potential to be utilized for direct potable reuse applications.

  12. Evaluation of the MF/UF Performance for the Reuse of Sand Filter Backwash Water from Drinking Water Treatment Plants

    Directory of Open Access Journals (Sweden)

    Neda Shirzadi

    2015-05-01

    Full Text Available The aim of this study was to investigate the application of micro-filtration and ultra-filtration membrane systems in order to improve the physical and microbial quality and the reuse of backwash water from the sand filter units in water treatment plants. The backwash water from filters makes up for 3 to 5 percent of the total water treated, which is disposed in most WTPs. However, the treatment and reuse of the backwash water is more admissible from technical and economic viewpoints, especially in view of the present water scarcity. For the purposes of this study, use was made of membrane modules of micro- and ultra-filters on a pilot scale. The micro-filter employed consisted of a polypropylene membrane module with a porosity of 1 micron in size and a fiberglass module with a porosity of 5 microns. The ultra-filter was made of PVC hollow fiber with a molecular weight of 100,000 Dalton. In order to feed the two pilots, backwash water from a sand filter was collected from one of the WTPs in Tehran. After samples were taken from the backwash water, the physical and microbial removal efficiency was periodically evaluated based on the standard method and the micro-filtration, ultra-filtration, and combined MF/UF processes were compared with respect to their performance. The results indicate that the combined MF/UF process is able to decrease turbidity, MPN, COD, TSS, and Fe with efficiency values of 99.9, 100, 61.5, 99.9 and 98.8 percent, respectively. Overall, the findings confirmed the technical capabilities of this method for the recovery and reuse of the effluent produced in the backwashing mechanism of sand filters in WTPs.

  13. Translation and validation of the Uterine Fibroid Symptom and Quality of Life (UFS-QOL questionnaire for the Brazilian Portuguese language

    Directory of Open Access Journals (Sweden)

    Luiz Gustavo Oliveira Brito

    2017-03-01

    Full Text Available ABSTRACT CONTEXT AND OBJECTIVE: Uterine fibroids (UF, also known as leiomyomas, are the most prevalent gynecological tumors. The Uterine Fibroid Symptoms and Quality of Life (UFS-QOL is the only specific questionnaire that assesses symptom intensity and quality-of-life issues for women with symptomatic UF; however, it only exists in the English language. Thus, we aimed to translate and culturally validate the UFS-QOL questionnaire for the Brazilian Portuguese language. DESIGN AND SETTING: Cross-sectional study, Department of Gynecology and Obstetrics, FMRP-USP. METHODS: 113 patients with UF (case group and 55 patients without UF (control group were interviewed using the UFS-QOL questionnaire after translation and cultural adaptation. The Short Form-36 questionnaire was used as a control. Demographic and psychometric variables were analyzed. RESULTS: Women with UF presented higher mean age, body mass index, weight, parity and comorbidities than the control group (P < 0.05. The most prevalent complaints were abnormal uterine bleeding (93.8%, pelvic pain (36.3% and extrinsic compression (10.6% and these presented adequate construct validity regarding UFS-QOL severity (P < 0.05. The UFS-QOL questionnaire presented good internal consistency regarding symptom severity and quality-of-life-related domains (intraclass correlation coefficient, ICC = 0.82/0.88. Structural validity presented correlation coefficients ranging from 0.59 to 0.91. Test-retest comparison did not show differences among the UFS-QOL subscales. After treatment, women with UF presented improvements on all subscales. CONCLUSION: The UFS-QOL questionnaire presented adequate translation to the Brazilian Portuguese language, with good internal consistency, discriminant validity, construct validity, structural validity and responsiveness, along with adequate test-retest results.

  14. Separation of Binary Mixtures of Propylene and Propane by Facilitated Transport through Silver Incorporated Poly(Ether-Block-Amide Membranes

    Directory of Open Access Journals (Sweden)

    Surya Murali R.

    2015-02-01

    Full Text Available The separation of propylene and propane is a challenging task in petroleum refineries due to the similar molecular sizes and physical properties of two gases. Composite Poly(ether-block-amide (Pebax-1657 membranes incorporated with silver tetra fluoroborate (AgBF4 in concentrations of 0-50% of the polymer weight were prepared by solution casting and solvent evaporation technique. The membranes were characterized by Scanning Electron Microscopy (SEM, Fourier Transform InfraRed (FTIR and wide-angle X-ray Diffraction (XRD to study surface and cross-sectional morphologies, effect of incorporation on intermolecular interactions and degree of crystallinity, respectively. Experimental data was measured with an indigenously built high-pressure gas separation manifold having an effective membrane area of 42 cm2. Permeability and selectivity of membranes were determined for three different binary mixtures of propylene-propane at pressures varying in the range 2-6 bar. Selectivity of C3H6/C3H8 enhanced from 2.92 to 17.22 and 2.11 to 20.38 for 50/50 and 66/34 C3H6+C3H8 feed mixtures, respectively, with increasing loading of AgBF4. Pebax membranes incorporated with AgBF4 exhibit strong potential for the separation of C3H6/C3H8 mixtures in petroleum refineries.

  15. Criticality safety review of 2 1/2-, 10-, and 14-ton UF6 cylinders

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1991-10-01

    Currently, UF 6 cylinders designed to contain 2 1/2 tons of UF 6 are classified as Fissile Class 2 packages with a transport index (TI) of 5 for the purpose of transportation. The 10-ton UF 6 cylinders are classified as Fissile Class 1 with no TI assigned for transportation. The 14-ton cylinders, although not certified for transport with enrichments greater than 1 wt % because they have no approved overpack, can be used in on-site operations for enrichments greater than 1 wt %. The maximum 235 U enrichments for these cylinders are 5.0 wt % for the 2 1/2-ton cylinder and 4.5 wt % for the 10- and 14-ton cylinders. This work reviews the suitability for reclassification of the 2 1/2-ton UF 6 packages as Fissile Class 1 with a maximum 235 U enrichment of 5 wt %. Additionally, the 10- and 14-ton cylinders are reviewed to address a change in maximum 235 U enrichment from 4.5 to 5 wt %. Based on this evaluation, the 2 1/2-ton UF 6 cylinders meet the 10 CFR.71 criteria for Fissile Class 1 packages, and no TI is needed for criticality safety purposes; however, a TI may be required based on radiation from the packages. Similarly, the 10- and 14-ton UF 6 packages appear acceptable for a maximum enrichment rating change to 5 wt % 235 U. 11 refs., 13 figs., 7 tabs

  16. Scenarios and analytical methods for UF6 releases at NRC-licensed fuel cycle facilities

    International Nuclear Information System (INIS)

    Siman-Tov, M.; Dykstra, J.; Holt, D.D.; Huxtable, W.P.; Just, R.A.; Williams, W.R.

    1984-06-01

    This report identifies and discusses potential scenarios for the accidental release of UF 6 at NRC-licensed UF 6 production and fuel fabrication facilities based on a literature review, site visits, and DOE enrichment plant experience. Analytical tools needed for evaluating source terms for such releases are discussed, and the applicability of existing methods is reviewed. Accident scenarios are discussed under the broad headings of cylinder failures, UF 6 process system failures, nuclear criticality events, and operator errors and are categorized by location, release source, phase of UF 6 prior to release, release flow characteristics, release causes, initiating events, and UF 6 inventory at risk. At least three types of releases are identified for further examination: (1) a release from a liquid-filled cylinder outdoors, (2) a release from a pigtail or cylinder in a steam chest, (3) an indoor release from either (a) a pigtail or liquid-filled cylinder or (b) other indoor source depending on facility design and operating procedures. Indoor release phenomena may be analyzed to determine input terms for a ventilation model by using a time-dependent homogeneous compartment model or a more complex hydrodynamic model if time-dependent, spatial variations in concentrations, temperature, and pressure are important. Analytical tools for modeling directed jets and explosive releases are discussed as well as some of the complex phenomena to be considered in analyzing UF 6 releases both indoors and outdoors

  17. Silver nanoparticles incorporated into nanostructured biopolymer membranes produced by electrospinning: a study of antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Karen Segala

    2015-12-01

    Full Text Available abstract This study examines the antimicrobial activity of silver nanoparticles incorporated into nanostructured membranes made of cellulose acetate (CA and blends of chitosan/poly-(ethylene oxide, CTS/PEO and prepared by electrospinning. The formation of chemically synthesized Ag nanoparticles (AgNPs was monitored by UV-visible spectroscopy (UV-Vis and characterized by transmission electron microscopy (TEM. The size distribution of the AgNPs was measured by dynamic light scattering (DLS, with an average size of approximately 20 nm. The presence of AgNPs on the surface of electrospun nanofibers was observed by field emission electron microscopy (FEG and confirmed by TEM. The antimicrobial activity of AgNPs incorporated into nanostructured membranes made of CA and CTS/PEO electrospun nanofibers was evaluated in the presence of both Gram-positive bacteria, such as Staphylococcus aureus ATCC 29213 and Propionibacterium acnes ATCC 6919, and Gram-negative bacteria, such as Escherichia coli ATCC 25992 and Pseudomonas aeruginosa ATCC 17933. Microbiological results showed that the presence of AgNPs in CA and CTS/PEO nanostructured membranes has significant antimicrobial activity for the Gram-positive bacteria Escherichia coli and Propionibacterium acnes.

  18. Functionalized membranes for environmental remediation and selective separation

    Science.gov (United States)

    Xiao, Li

    Membrane process including microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) have provided numerous successful applications ranging from drinking water purification, wastewater treatment, to material recovery. The addition of functional moiety in the membranes pores allows such membranes to be used in challenging areas including tunable separations, toxic metal capture, and catalysis. In this work, polyvinylidene fluoride (PVDF) MF membrane was functionalized with temperature responsive (poly(N-isopropylacrylamide), PNIPAAm) and pH responsive (polyacrylic acid, PAA) polymers. It's revealed that the permeation of various molecules (water, salt and dextran) through the membrane can be thermally or pH controlled. The introduction of PAA as a polyelectrolyte offers an excellent platform for the immobilization of metal nanoparticles (NPs) applied for degradation of toxic chlorinated organics with significantly increased longevity and stability. The advantage of using temperature and pH responsive polymers/hydrogels also includes the high reactivity and effectiveness in dechlorination. Further advancement on the PVDF functionalization involved the alkaline treatment to create partially defluorinated membrane (Def-PVDF) with conjugated double bounds allowing for the covalent attachment of different polymers. The PAA-Def-PVDF membrane shows pH responsive behavior on both the hydraulic permeability and solute retention. The sponge-like PVDF (SPVDF) membranes by phase inversion were developed through casting PVDF solution on polyester backing. The SPVDF membrane was demonstrated to have 4 times more surface area than commercial PVDF MF membrane, allowing for enhanced nanoparticles loading for chloro-organics degradation. The advanced functionalization method and process were also validated to be able to be scaled-up through the evaluation of full-scale functionalized membrane provided by Ultura Inc. California, USA. Nanofiltration (NF

  19. Determination of UO2 little quantity in UF4 by X-rays diffraction

    International Nuclear Information System (INIS)

    Costa, M.I.; Sato, I.M.; Imakuma, K.

    1977-01-01

    In the fluorination process, the final product UF 4 contain different levels of UO 2 as a contaminant. A routine method for quantitative analysis by x-ray diffraction has been developed. Standard curves have been plotted using mixtures of UO 2 /UF 4 with measures of intensity of (III) peak of UO 2 by the step scanning process. The integrated intensity versus UO 2 concentration curves present a linear behavior in the range from 0 to 4%. A good reprodutibility of measuring process has been observed through statistical analysis which permits to determine low fractions of UO 2 in UF 4 with +- 0,08% of accuracy [pt

  20. Nanofiltration and Tight Ultrafiltration Membranes for the Recovery of Polyphenols from Agro-Food By-Products

    Directory of Open Access Journals (Sweden)

    Alfredo Cassano

    2018-01-01

    Full Text Available Pressure-driven membrane-based technologies represent a valid approach to reduce the environmental pollution of several agro-food by-products. Recently, in relation to the major interest for natural compounds with biological activities, their use has been also addressed to the recovery, separation and fractionation of phenolic compounds from such by-products. In particular, tight ultrafiltration (UF and nanolfiltration (NF membranes have been recognized for their capability to recover phenolic compounds from several types of agro-food by-products. The separation capability of these membranes, as well as their productivity, depends on multiple factors such as membrane material, molecular weight cut-off (MWCO and operating conditions (e.g., pressure, temperature, feed flow rate, volume reduction factor, etc.. This paper aims at providing a critical overview of the influence of these parameters on the recovery of phenolic compounds from agro-food by-products by using tight UF and NF membranes. The literature data are analyzed and discussed in relation to separation processes, molecule properties, membrane characteristics and other phenomena occurring in the process. Current extraction methodologies of phenolic compounds from raw materials are also introduced in order to drive the implementation of integrated systems for the production of actractive phenolic formulations of potential interest as food antioxidants.

  1. Nanofiltration and Tight Ultrafiltration Membranes for the Recovery of Polyphenols from Agro-Food By-Products.

    Science.gov (United States)

    Cassano, Alfredo; Conidi, Carmela; Ruby-Figueroa, René; Castro-Muñoz, Roberto

    2018-01-24

    Pressure-driven membrane-based technologies represent a valid approach to reduce the environmental pollution of several agro-food by-products. Recently, in relation to the major interest for natural compounds with biological activities, their use has been also addressed to the recovery, separation and fractionation of phenolic compounds from such by-products. In particular, tight ultrafiltration (UF) and nanolfiltration (NF) membranes have been recognized for their capability to recover phenolic compounds from several types of agro-food by-products. The separation capability of these membranes, as well as their productivity, depends on multiple factors such as membrane material, molecular weight cut-off (MWCO) and operating conditions (e.g., pressure, temperature, feed flow rate, volume reduction factor, etc.). This paper aims at providing a critical overview of the influence of these parameters on the recovery of phenolic compounds from agro-food by-products by using tight UF and NF membranes. The literature data are analyzed and discussed in relation to separation processes, molecule properties, membrane characteristics and other phenomena occurring in the process. Current extraction methodologies of phenolic compounds from raw materials are also introduced in order to drive the implementation of integrated systems for the production of actractive phenolic formulations of potential interest as food antioxidants.

  2. Proton conducting membranes prepared by incorporation of organophosphorus acids into alcohol barrier polymers for direct methanol fuel cells

    Science.gov (United States)

    Jiang, Zhongyi; Zheng, Xiaohong; Wu, Hong; Pan, Fusheng

    A novel type of DMFC membrane was developed via incorporation of organophosphorus acids (OPAs) into alcohol barrier materials (polyvinyl alcohol/chitosan, PVA/CS) to simultaneously acquire high proton conductivity and low methanol permeability. Three kinds of OPAs including amino trimethylene phosphonic acid (ATMP), ethylene diamine tetra(methylene phosphonic acid) (EDTMP) and hexamethylene diamine tetra(methylene phosphonic acid) (HDTMP), with different molecular structure and phosphonic acid groups content were added into PVA/CS blends and served the dual functions as proton conductor as well as crosslinker. The as-prepared OPA-doped PVA/CS membranes exhibited remarkably enhanced proton conducting ability, 2-4 times higher than that of the pristine PVA/CS membrane, comparable with that for Nafion ®117 membrane (5.04 × 10 -2 S cm -1). The highest proton conductivities 3.58 × 10 -2, 3.51 × 10 -2 and 2.61 × 10 -2 S cm -1 for ATMP-, EDTMP- and HDTMP-doped membranes, respectively were all achieved at highest initial OPA doping content (23.1 wt.%) at room temperature. The EDTMP-doped PVA/CS membrane with an acid content of 13.9 wt.% showed the lowest methanol permeability of 2.32 × 10 -7 cm 2 s -1 which was 16 times lower than that of Nafion ®117 membrane. In addition, the thermal stability and oxidative durability were both significantly improved by the incorporation of OPAs in comparison with pristine PVA/CS membranes.

  3. Development of laundry drainage treatment system with ceramic ultra filter

    International Nuclear Information System (INIS)

    Kanda, Masanori; Kurahasi, Takafumi

    1995-01-01

    A compact laundry drainage treatment system (UF system hereafter) with a ceramic ultra filter membrane (UF membrane hereafter) has been developed to reduce radioactivity in laundry drainage from nuclear power plants. The UF membrane is made of sintered fine ceramic. The UF membrane has 0.01 μm fine pores, resulting in a durable, heat-resistant, and corrosion-resistant porous ceramic filter medium. A cross-flow system, laundry drainage is filtrated while it flows across the UF membrane, is used as the filtration method. This method creates less caking when compared to other methods. The UF membrane is back washed at regular intervals with permeated water to minimize caking of the filter. The UF membrane and cross-flow system provides long stable filtration. The ceramic UF membrane is strong enough to concentrate suspended solids in laundry drainage up to a weight concentration of 10%. The final concentrated laundry drainage can be treated in an incinerator. The performance of the UF system was checked using radioactive laundry drainage. The decontamination factor of the UF system was 25 or more. The laundry drainage treatment capacity and concentration ratio of the UF system, as well as the service life of the UF membrane were also checked by examination using simulated non-radioactive laundry drainage. Even though laundry drainage was concentrated 1000 times, the UF system showed good permeated water quality and permeated water flux. (author)

  4. Highly Hydrophilic Polyvinylidene Fluoride (PVDF) Ultrafiltration Membranes via Postfabrication Grafting of Surface-Tailored Silica Nanoparticles

    KAUST Repository

    Liang, Shuai

    2013-07-24

    Polyvinylidene fluoride (PVDF) has drawn much attention as a predominant ultrafiltration (UF) membrane material due to its outstanding mechanical and physicochemical properties. However, current applications suffer from the low fouling resistance of the PVDF membrane due to the intrinsic hydrophobic property of the membrane. The present study demonstrates a novel approach for the fabrication of a highly hydrophilic PVDF UF membrane via postfabrication tethering of superhydrophilic silica nanoparticles (NPs) to the membrane surface. The pristine PVDF membrane was grafted with poly(methacrylic acid) (PMAA) by plasma induced graft copolymerization, providing sufficient carboxyl groups as anchor sites for the binding of silica NPs, which were surface-tailored with amine-terminated cationic ligands. The NP binding was achieved through a remarkably simple and effective dip-coating technique in the presence or absence of the N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) cross-linking process. The properties of the membrane prepared from the modification without EDC/NHS cross-linking were comparable to those for the membrane prepared with the EDC/NHS cross-linking. Both modifications almost doubled the surface energy of the functionalized membranes, which significantly improved the wettability of the membrane and converted the membrane surface from hydrophobic to highly hydrophilic. The irreversibly bound layer of superhydrophilic silica NPs endowed the membranes with strong antifouling performance as demonstrated by three sequential fouling filtration runs using bovine serum albumin (BSA) as a model organic foulant. The results suggest promising applications of the postfabrication surface modification technique in various membrane separation areas. © 2013 American Chemical Society.

  5. Analyses of postulated accidental releases of UF6 inside process buildings

    International Nuclear Information System (INIS)

    Oliveira Neto, Jose Messias de; Nunes, Beatriz Guimaraes; Dias, Cristiane

    2009-01-01

    Uranium Hexafluoride is a material used in the various processes which comprise the front end of the nuclear fuel cycle (conversion, enrichment and fuel fabrication). Confinement of UF 6 is a very important safety requirement since this material is highly reactive and presents safety hazards to humans. The present paper discusses the safety relevant aspects of accidental releases of UF 6 inside process confinement buildings. Postulated accidental scenarios are analyzed and their consequences evaluated. Implant releases rates are estimated using computer code predictions. A time dependent homogeneous compartment model is used to predict concentrations of UF 6 , hydrogen fluoride and uranyl fluoride inside a confinement building, as well as to evaluate source terms released to the atmosphere. These source terms can be used as input to atmospheric dispersion models to evaluate consequences to the environment. The results can also be used to define adequate protective measures for emergency situations. (author)

  6. Evaluation of a dry process for conversion of U-AVLIS product to UF{sub 6}. Milestone U361

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-05-01

    A technical and engineering evaluation has been completed for a dry UF{sub 6} production system to convert the product of an initial two-line U-AVLIS plant. The objective of the study has been to develop a better understanding of process design requirements, capital and operating costs, and demonstration requirements for this alternate process. This report summarizes the results of the study and presents various comparisons between the baseline and alternate processes, building on the information contained in UF{sub 6} Product Alternatives Review Committee -- Final Report. It also provides additional information on flowsheet variations for the dry route which may warrant further consideration. The information developed by this study and conceptual design information for the baseline process will be combined with information to be developed by the U-AVLIS program and by industrial participants over the next twelve months to permit a further comparison of the baseline and alternate processes in terms of cost, risk, and compatibility with U-AVLIS deployment schedules and strategies. This comparative information will be used to make a final process flowsheet selection for the initial U-AVLIS plant by March 1993. The process studied is the alternate UF{sub 6} production flowsheet. Process steps are (1) electron-beam distillation to reduce enriched product iron content from about 10 wt % or less, (2) hydrofluorination of the metal to UF{sub 4}, (3) fluorination of UF{sub 4} to UF{sub 6}, (4) cold trap collection of the UF{sub 6} product, (5) UF{sub 6} purification by distillation, and (6) final blending and packaging of the purified UF{sub 6} in cylinders. A preliminary system design has been prepared for the dry UF{sub 6} production process based on currently available technical information. For some process steps, such information is quite limited. Comparisons have been made between this alternate process and the baseline plant process for UF{sub 6} production.

  7. Application of Ultrafiltration in a Paper Mill: Process Water Reuse and Membrane Fouling Analysis

    Directory of Open Access Journals (Sweden)

    Chen Chen

    2015-02-01

    Full Text Available High water consumption is a major environmental problem that the pulp and paper industry is facing. Ultrafiltration (UF can be used to remove the dissolved and colloidal substances (DCS concentrated during the recycling of white water (the process water to facilitate the reuse of white water and reduce fresh water consumption. However, membrane fouling limits the application of UF in this industry. In this study, super-clear filtrate obtained from a fine paper mill was purified with a polyethersulfone (PES ultrafiltration membrane to evaluate the reuse performance of the ultrafiltrate. The membrane foulants were characterized by scanning electron microscopy, energy-dispersive spectrophotometry, attenuated total reflection-fourier transform infrared spectroscopy, and gas chromatography-mass spectrometry. The results indicate that the retention rate of stock and the strength properties of paper increased when the ultrafiltrate was reused in the papermaking process compared to when super-clear filtrate was used. The reversible membrane foulants during ultrafiltration accounted for 85.52% of the total foulants and primarily originated from retention aids, drainage aids, and wet strength resins, while the irreversible adsorptive foulants accounted for 14.48% and mostly came from sizing agents, coating chemicals, and others. Moreover, the presence of dissolved multivalent metal ions, especially Ca2+, accelerated membrane fouling.

  8. Integration of biological method and membrane technology in treating palm oil mill effluent

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yejian; YAN Li; QIAO Xiangli; CHI Lina; NIU Xiangjun; MEI Zhijian; ZHANG Zhenjia

    2008-01-01

    Palm oil industry is the most important agro-industry in Malaysia, but its by-product-palm oil mill effluent (POME), posed a great threat to water environment. In the past decades, several treatment and disposal methods have been proposed and investigated to solve this problem. A two-stage pilot-scale plant was designed and constructed for POME treatment. Anaerobic digestion and aerobic biodegradation constituted the first biological stage, while ultrafiltration (UF) and reverse osmosis (RO) membrane units were combined as the second membrane separation stage. In the anaerobic expanded granular sludge bed (EGSB) reactor, about 43% organic matter in POME was converted into biogas, and COD reduction efficiency reached 93% and 22% in EGSB and the following aerobic reactor, respectively. With the treatment in the first biological stage, suspended solids and oil also decreased to a low degree. All these alleviated the membrane fouling and prolonged the membrane life. In the membrane process unit, almost all the suspended solids were captured by UF membranes, while RO membrane excluded most of the dissolved solids or inorganic salts from RO permeate. After the whole treatment processes, organic matter in POME expressed by BOD and COD was removed almost thoroughly. Suspended solids and color were not detectable in RO permeate any more, and mineral elements only existed in trace amount (except for K and Na). The high-quality effluent was crystal clear and could be used as the boiler feed water.

  9. Review of models used for determining consequences of UF6 release: Model evaluation report. Volume 2

    International Nuclear Information System (INIS)

    Nair, S.K.; Chambers, D.B.; Park, S.H.; Radonjic, Z.R.; Coutts, P.T.; Lewis, C.J.; Hammonds, J.S.; Hoffman, F.O.

    1997-11-01

    Three uranium hexafluoride-(UF 6 -) specific models--HGSYSTEM/UF 6 , Science Application International Corporation, and RTM-96; three dense-gas models--DEGADIS, SLAB, and the Chlorine Institute methodology; and one toxic chemical model--AFTOX--are evaluated on their capabilities to simulate the chemical reactions, thermodynamics, and atmospheric dispersion of UF 6 released from accidents at nuclear fuel-cycle facilities, to support Integrated Safety Analysis, Emergency Response Planning, and Post-Accident Analysis. These models are also evaluated for user-friendliness and for quality assurance and quality control features, to ensure the validity and credibility of the results. Model performance evaluations are conducted for the three UF 6 -specific models, using field data on releases of UF 6 and other heavy gases. Predictions from the HGSYSTEM/UF 6 and SAIC models are within an order of magnitude of the field data, but the SAIC model overpredicts beyond an order of magnitude for a few UF 6 -specific data points. The RTM-96 model provides overpredictions within a factor of 3 for all data points beyond 400 m from the source. For one data set, however, the RTM-96 model severely underpredicts the observations within 200 m of the source. Outputs of the models are most sensitive to the meteorological parameters at large distances from the source and to certain source-specific and meteorological parameters at distances close to the source. Specific recommendations are being made to improve the applicability and usefulness of the three models and to choose a specific model to support the intended analyses. Guidance is also provided on the choice of input parameters for initial dilution, building wake effects, and distance to completion of UF 6 reaction with water

  10. Handling of UF6 in U.S. gaseous diffusion plants

    International Nuclear Information System (INIS)

    Legeay, A.J.

    1978-01-01

    A comprehensive systems analysis of UF 6 handling has been made in the three U.S. gaseous diffusion plants and has resulted in a significant impact on the equipment design and the operating procedures of these facilities. The equipment, facilities, and industrial practices in UF 6 handling operations as they existed in the early 1970's are reviewed with particular emphasis placed on the changes which have been implemented. The changes were applied to the systems and operating methods which evolved from the design, startup, and operation of the Oak Ridge Gaseous Diffusion Plant in 1945

  11. 全膜分离技术及其在电厂化学水处理中的应用%Whole Membrane Separation Technology and Its Application in Chemical Water Treatment of Power Plant

    Institute of Scientific and Technical Information of China (English)

    马福刚

    2011-01-01

    This paper introduces the definition, types and characteristics of membrane separation technology, and application instance of whole membrane separation treatment process (UF-RO-EDI) in power plant boiler feed water treatment.%介绍了膜分离技术的定义、种类、特点以及全膜分离处理工艺(UF-RO-EDI)在电厂锅炉补给水处理中的应用实例.

  12. Filtration behavior of casein glycomacropeptide (CGMP) in an enzymatic membrane reactor: fouling control by membrane selection and threshold flux operation

    DEFF Research Database (Denmark)

    Luo, Jianquan; Morthensen, Sofie Thage; Meyer, Anne S.

    2014-01-01

    . In this study, the filtration performance and fouling behavior during ultrafiltration (UF) of CGMP for the enzymatic production of 3′-sialyllactose were investigated. A 5kDa regenerated cellulose membrane with high anti-fouling performance, could retain CGMP well, permeate 3′-sialyllactose, and was found...... to be the most suitable membrane for this application. Low pH increased CGMP retention but produced more fouling. Higher agitation and lower CGMP concentration induced larger permeate flux and higher CGMP retention. Adsorption fouling and pore blocking by CGMP in/on membranes could be controlled by selecting...... a highly hydrophilic membrane with appropriate pore size. Operating under threshold flux could minimize the concentration polarization and cake/gel/scaling layers, but might not avoid irreversible fouling caused by adsorption and pore blocking. The effects of membrane properties, pH, agitation and CGMP...

  13. Proton conducting membranes prepared by incorporation of organophosphorus acids into alcohol barrier polymers for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhongyi; Zheng, Xiaohong; Wu, Hong; Pan, Fusheng [Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2008-10-15

    A novel type of DMFC membrane was developed via incorporation of organophosphorus acids (OPAs) into alcohol barrier materials (polyvinyl alcohol/chitosan, PVA/CS) to simultaneously acquire high proton conductivity and low methanol permeability. Three kinds of OPAs including amino trimethylene phosphonic acid (ATMP), ethylene diamine tetra(methylene phosphonic acid) (EDTMP) and hexamethylene diamine tetra(methylene phosphonic acid) (HDTMP), with different molecular structure and phosphonic acid groups content were added into PVA/CS blends and served the dual functions as proton conductor as well as crosslinker. The as-prepared OPA-doped PVA/CS membranes exhibited remarkably enhanced proton conducting ability, 2-4 times higher than that of the pristine PVA/CS membrane, comparable with that for Nafion {sup registered} 117 membrane (5.04 x 10{sup -2} S cm{sup -1}). The highest proton conductivities 3.58 x 10{sup -2}, 3.51 x 10{sup -2} and 2.61 x 10{sup -2} S cm{sup -1} for ATMP-, EDTMP- and HDTMP-doped membranes, respectively were all achieved at highest initial OPA doping content (23.1 wt.%) at room temperature. The EDTMP-doped PVA/CS membrane with an acid content of 13.9 wt.% showed the lowest methanol permeability of 2.32 x 10{sup -7} cm{sup 2} s{sup -1} which was 16 times lower than that of Nafion {sup registered} 117 membrane. In addition, the thermal stability and oxidative durability were both significantly improved by the incorporation of OPAs in comparison with pristine PVA/CS membranes. (author)

  14. Enzymatic treatment for controlling irreversible membrane fouling in cross-flow humic acid-fed ultrafiltration

    International Nuclear Information System (INIS)

    Yu, Chien-Hwa; Fang, Lung-Chen; Lateef, Shaik Khaja; Wu, Chung-Hsin; Lin, Cheng-Fang

    2010-01-01

    Exploring reasonable ways to remove foulant is of great importance in order to allow sustainable operation of ultrafiltration (UF) membranes in water/wastewater treatment technology. Compounds of organic and inorganic origin largely contribute to irreversible fouling. This study attempted to remove problem of UF membrane fouling by using four different enzymes including α-amylase, lipase, cellulase and protease. This investigation showed that none of the above mentioned enzymes was found to be effective for the removal of foulant when used alone. However, when these enzymes were used in combination with NaOH and citric acid, about 90% cleaning was achieved. The addition of non-ionic surfactant to the enzymatic solution appears to increase the efficiency of flux recovery by reducing the adhesion of foulant species to the membrane surface through the decrease of contact angle. Field emission gun scanning electron microscopy, Fourier transform infrared spectroscopy and atomic force microscopy (AFM) techniques were employed to qualitatively illustrate the foulant characteristics. The surface roughness through AFM was used to explain the potential mechanism for the enzymatic cleaning.

  15. Enzymatic treatment for controlling irreversible membrane fouling in cross-flow humic acid-fed ultrafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chien-Hwa [Department of Civil and Environment Engineering, Nanya Institute of Technology, Taoyuan, Taiwan (China); Fang, Lung-Chen; Lateef, Shaik Khaja [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan (China); Wu, Chung-Hsin, E-mail: chunghsinwu@yahoo.com.tw [Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, 415 Chien Kung Road, Kaohsiung 807, Taiwan (China); Lin, Cheng-Fang [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan (China)

    2010-05-15

    Exploring reasonable ways to remove foulant is of great importance in order to allow sustainable operation of ultrafiltration (UF) membranes in water/wastewater treatment technology. Compounds of organic and inorganic origin largely contribute to irreversible fouling. This study attempted to remove problem of UF membrane fouling by using four different enzymes including {alpha}-amylase, lipase, cellulase and protease. This investigation showed that none of the above mentioned enzymes was found to be effective for the removal of foulant when used alone. However, when these enzymes were used in combination with NaOH and citric acid, about 90% cleaning was achieved. The addition of non-ionic surfactant to the enzymatic solution appears to increase the efficiency of flux recovery by reducing the adhesion of foulant species to the membrane surface through the decrease of contact angle. Field emission gun scanning electron microscopy, Fourier transform infrared spectroscopy and atomic force microscopy (AFM) techniques were employed to qualitatively illustrate the foulant characteristics. The surface roughness through AFM was used to explain the potential mechanism for the enzymatic cleaning.

  16. Key process parameters involved in the treatment of olive mill wastewater by membrane bioreactor.

    Science.gov (United States)

    Jaouad, Y; Villain-Gambier, M; Mandi, L; Marrot, B; Ouazzani, N

    2018-04-18

    The Olive Mill Wastewater (OMWW) biodegradation in an external ceramic membrane bioreactor (MBR) was investigated with a starting acclimation step with a Ultrafiltration (UF) membrane (150 kDa) and no sludge discharge in order to develop a specific biomass adapted to OMWW biodegradation. After acclimation step, UF was replaced by an Microfiltration (MF) membrane (0.1 µm). Sludge Retention Time (SRT) was set around 25 days and Food to Microorganisms ratio (F/M) was fixed at 0.2 kg COD  kg MLVSS -1  d -1 . At stable state, removal of the main phenolic compounds (hydroxytyrosol and tyrosol) and Chemical Oxygen Demand (COD) were successfully reached (95% both). Considered as a predominant fouling factor, but never quantified in MBR treated OMWW, Soluble Microbial Products (SMP) proteins, polysaccharides and humic substances concentrations were determined (80, 110 and 360 mg L -1 respectively). At the same time, fouling was easily managed due to favourable hydraulic conditions of external ceramic MBR. Therefore, OMWW could be efficiently and durably treated by an MF MBR process under adapted operating parameters.

  17. The determination of UO2 and UF4 in fused fluoride salts

    International Nuclear Information System (INIS)

    Batiste, D.J.; Lee, D.A.

    1989-01-01

    The determination of uranium oxide solubilities in fused fluoride salts is important in the electrolytic preparation of uranium metal. This project was initiated to develop a method for the determination of UO 2 separately from UF 4 in UF 4 -CaF 2 -LiF fused salts. Previous methods used for the determination of UO 2 in fused fluoride salts involved inert gas fusions where oxygen was liberated as CO 2 , and hydrofluorination where oxygen was released as H 2 O; but the special equipment used for these procedures was no longer available. These methods assumed that all of the oxygen liberated was due to UO 2 and does not consider impurities from reagents and other oxygen sources that amount to a bias of approximately 0.3 wt %. This titrimetric method eliminates the bias by selectively extracting the UF 4 with a Na 2 EDTA-H 3 BO 3 solution. The remaining uranium oxide residue is treated and titrated gravimetrically to a potentiometric endpoint with NBS standard K 2 Cr 2 O 7 . An aliquot of the Na 2 EDTA-H 3 BO 3 extract is also titrated gravimetrically to a potentiometric endpoint, this uranium component is determined and calculated as UF 4 . 4 refs., 2 figs., 2 tabs

  18. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z

    Science.gov (United States)

    Kumar, Manish; Grzelakowski, Mariusz; Zilles, Julie; Clark, Mark; Meier, Wolfgang

    2007-01-01

    The permeability and solute transport characteristics of amphiphilic triblock-polymer vesicles containing the bacterial water-channel protein Aquaporin Z (AqpZ) were investigated. The vesicles were made of a block copolymer with symmetric poly-(2-methyloxazoline)-poly-(dimethylsiloxane)-poly-(2-methyloxazoline) (PMOXA15-PDMS110-PMOXA15) repeat units. Light-scattering measurements on pure polymer vesicles subject to an outwardly directed salt gradient in a stopped-flow apparatus indicated that the polymer vesicles were highly impermeable. However, a large enhancement in water productivity (permeability per unit driving force) of up to ≈800 times that of pure polymer was observed when AqpZ was incorporated. The activation energy (Ea) of water transport for the protein-polymer vesicles (3.4 kcal/mol) corresponded to that reported for water-channel-mediated water transport in lipid membranes. The solute reflection coefficients of glucose, glycerol, salt, and urea were also calculated, and indicated that these solutes are completely rejected. The productivity of AqpZ-incorporated polymer membranes was at least an order of magnitude larger than values for existing salt-rejecting polymeric membranes. The approach followed here may lead to more productive and sustainable water treatment membranes, whereas the variable levels of permeability obtained with different concentrations of AqpZ may provide a key property for drug delivery applications. PMID:18077364

  19. HGSYSTEMUF6, Simulating Dispersion Due to Atmospheric Release of Uranium Hexafluoride (UF6)

    International Nuclear Information System (INIS)

    Hanna, G; Chang, J.C.; Zhang, J.X.; Bloom, S.G.; Goode, W.D. Jr; Lombardi, D.A.; Yambert, M.W.

    2001-01-01

    1 - Description of program or function: HGSYSTEMUF6 is a suite of models designed for use in estimating consequences associated with accidental, atmospheric release of Uranium Hexafluoride (UF 6 ) and its reaction products, namely Hydrogen Fluoride (HF), and other non-reactive contaminants which are either negatively, neutrally, or positively buoyant. It is based on HGSYSTEM Version 3.0 of Shell Research LTD., and contains specific algorithms for the treatment of UF 6 chemistry and thermodynamics. HGSYSTEMUF6 contains algorithms for the treatment of dense gases, dry and wet deposition, effects due to the presence of buildings (canyon and wake), plume lift-off, and the effects of complex terrain. The models components of the suite include (1) AEROPLUME/RK, used to model near-field dispersion from pressurized two-phase jet releases of UF6 and its reaction products, (2) HEGADAS/UF6 for simulating dense, ground based release of UF 6 , (3) PGPLUME for simulation of passive, neutrally buoyant plumes (4) UF6Mixer for modeling warm, potentially reactive, ground-level releases of UF 6 from buildings, and (5) WAKE, used to model elevated and ground-level releases into building wake cavities of non-reactive plumes that are either neutrally or positively buoyant. 2 - Methods: The atmospheric release and transport of UF 6 is a complicated process involving the interaction between dispersion, chemical and thermodynamic processes. This process is characterized by four separate stages (flash, sublimation, chemical reaction entrainment and passive dispersion) in which one or more of these processes dominate. The various models contained in the suite are applicable to one or more of these stages. For example, for modeling reactive, multiphase releases of UF 6 , the AEROPLUME/RK component employs a process-splitting scheme which numerically integrates the differential equations governing dispersion, UF 6 chemistry, and thermodynamics. This algorithm is based on the assumption that

  20. Understanding the risk of scaling and fouling in hollow fiber forward osmosis membrane application

    KAUST Repository

    Majeed, Tahir; Phuntsho, Sherub; Jeong, Sanghyun; Zhao, Yanxia; Gao, Baoyu; Shon, Ho Kyong

    2016-01-01

    Fouling studies of forward osmosis (FO) were mostly conducted based on fouling evaluation principals applied to pressure membrane processes such as reverse osmosis (RO)/nanofiltration (NF)/microfiltration (MF)/ultrafiltration (UF). For RO/NF/MF/UF processes, the single flux driving force (hydraulic pressure) remains constant, thus the fouling effect is easily evaluated by comparing flux data with the baseline. Whilst, the scenario of fouling effects for FO process is entirely different from RO/NF/MF/UF processes. Continuously changing driving force (osmotic pressure difference), the changes in concentration polarization associated with the varying draw solution/feed solution concentration and the fouling layer effects collectively influence the FO flux. Thus, usual comparison of the FO flux outcome with the baseline results can not exactly indicate the real affect of membrane fouling, rather presents a misleading cumulative effect. This study compares the existing FO fouling technique with an alternate fouling evaluation approach using two FO set-ups. Scaling and fouling risk for hollow fiber FO was separately investigated using synthetic water samples and model organic foulants as alginate, humic acid and bovine serum albumin. Results indicated that FO flux declines up to 5% and 49% in active layer-feed solution and active layer-draw solution orientations respectively.

  1. Understanding the risk of scaling and fouling in hollow fiber forward osmosis membrane application

    KAUST Repository

    Majeed, Tahir

    2016-06-23

    Fouling studies of forward osmosis (FO) were mostly conducted based on fouling evaluation principals applied to pressure membrane processes such as reverse osmosis (RO)/nanofiltration (NF)/microfiltration (MF)/ultrafiltration (UF). For RO/NF/MF/UF processes, the single flux driving force (hydraulic pressure) remains constant, thus the fouling effect is easily evaluated by comparing flux data with the baseline. Whilst, the scenario of fouling effects for FO process is entirely different from RO/NF/MF/UF processes. Continuously changing driving force (osmotic pressure difference), the changes in concentration polarization associated with the varying draw solution/feed solution concentration and the fouling layer effects collectively influence the FO flux. Thus, usual comparison of the FO flux outcome with the baseline results can not exactly indicate the real affect of membrane fouling, rather presents a misleading cumulative effect. This study compares the existing FO fouling technique with an alternate fouling evaluation approach using two FO set-ups. Scaling and fouling risk for hollow fiber FO was separately investigated using synthetic water samples and model organic foulants as alginate, humic acid and bovine serum albumin. Results indicated that FO flux declines up to 5% and 49% in active layer-feed solution and active layer-draw solution orientations respectively.

  2. Testing of one-inch UF{sub 6} cylinder valves under simulated fire conditions

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, P.G. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31

    Accurate computational models which predict the behavior of UF{sub 6} cylinders exposed to fires are required to validate existing firefighting and emergency response procedures. Since the cylinder valve is a factor in the containment provided by the UF{sub 6} cylinder, its behavior under fire conditions has been a necessary assumption in the development of such models. Consequently, test data is needed to substantiate these assumptions. Several studies cited in this document provide data related to the behavior of a 1-inch UF{sub 6} cylinder valve in fire situations. To acquire additional data, a series of tests were conducted at the Paducah Gaseous Diffusion Plant (PGDP) under a unique set of test conditions. This document describes this testing and the resulting data.

  3. Integrated pyrolucite fluidized bed-membrane hybrid process for improved iron and manganese control in drinking water.

    Science.gov (United States)

    Dashtban Kenari, Seyedeh Laleh; Barbeau, Benoit

    2017-04-15

    Newly developed ceramic membrane technologies offer numerous advantages over the conventional polymeric membranes. This work proposes a new configuration, an integrated pyrolucite fluidized bed (PFB)-ceramic MF/UF hybrid process, for improved iron and manganese control in drinking water. A pilot-scale study was undertaken to evaluate the performance of this process with respect to iron and manganese control as well as membrane fouling. In addition, the fouling of commercially available ceramic membranes in conventional preoxidation-MF/UF process was compared with the hybrid process configuration. In this regard, a series of experiments were conducted under different influent water quality and operating conditions. Fouling mechanisms and reversibility were analyzed using blocking law and resistance-in-series models. The results evidenced that the flux rate and the concentration of calcium and humic acids in the feed water have a substantial impact on the filtration behavior of both membranes. The model for constant flux compressible cake formation well described the rise in transmembrane pressure. The compressibility of the filter cake substantially increased in the presence of 2 mg/L humic acids. The presence of calcium ions caused significant aggregation of manganese dioxide and humic acid which severely impacted the extent of membrane fouling. The PFB pretreatment properly alleviated membrane fouling by removing more than 75% and 95% of iron and manganese, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Rupture of Model 48Y UF6 cylinder and release of uranium hexafluoride. Cylinder overfill, March 12-13, 1986. Investigation of a failed UF6 shipping container. Volume 2

    International Nuclear Information System (INIS)

    1986-06-01

    NUREG-1179, Volume 1, reported on the rupture of a Model 48Y uranium hexafluoride (UF 6 ) cylinder and the subsequent release of UF 6 . At the time of publication, a detailed metallurgical examination of the damaged cylinder was under way and results were not available. Subsequent to the publication of Volume 1, a second incident occurred at the Sequoyah Fuels Corporation facility. On March 13, 1986, a Model 48X cylinder was overfilled during a special one-time draining procedure; however, no release of UF 6 occurred. An Augmented Investigation Team investigated this second incident. This report, NUREG-1179, Volume 2, presents the findings made by the Augmented Investigation Team of the March 13 incident and the report of the detailed metallurgical examination conducted by Battelle Columbus Division of the cylinder damaged on January 4, 1986

  5. Development of AN Active 238UF6 Gas Target

    Science.gov (United States)

    Eckardt, C.; Enders, J.; Freudenberger, M.; Göök, A.; von Neumann-Cosel, P.; Oberstedt, A.; Oberstedt, S.

    2014-09-01

    Detailed studies of the fission process, e.g., the search for parity nonconservation (PNC) effects, the energy dependence of fission modes or the population of fission isomers, depend on high quality data, therefore requiring high luminosities. An active gas target containing uranium may overcome the deterioration of energy and angular resolution caused by large solid target thicknesses. A single Frisch-grid ionization chamber has been built to test a mixture of standard counting gases (e.g., argon) with depleted uranium hexafluoride (238UF6), utilizing a triple alpha source to evaluate signal quality and drift velocity. For mass fractions of up to 4 percent of 238U the drift velocity increases with rising UF6 content, while a good signal quality and energy resolution is preserved.

  6. Fabrication of TiO_2-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment

    International Nuclear Information System (INIS)

    Qian, Yingjia; Chi, Lina; Zhou, Weili; Yu, Zhenjiang; Zhang, Zhongzhi; Zhang, Zhenjia; Jiang, Zheng

    2016-01-01

    Graphical abstract: - Highlights: • Multifunctional TiO_2/PAA/PTFE ultrafiltration membrane was fabricated via tight coating of TiO_2 functional layer onto the plasma-assisted graft of PAA on PTFE. • The high water flux rate, remarkable enhanced ultrafiltration performance and excellent self-cleaning ability were demonstrated. • The formation of COO−Ti bidentate coordination between TiO_2 and PAA was responsible for the successful coating. - Abstract: Surface hydrophilic modification of polymer ultrafiltration membrane using metal oxide represents an effective yet highly challenging solution to improve water flux and antifouling performance. Via plasma-enhanced graft of poly acryl acid (PAA) prior to coating TiO_2, we successfully fixed TiO_2 functional thin layer on super hydrophobic polytetrafluoroethylene (PTFE) ultrafiltration (UF) membranes. The characterization results evidenced TiO_2 attached on the PTFE-based UF membranes through the chelating bidentate coordination between surface-grafted carboxyl group and Ti"4"+. The TiO_2 surface modification may greatly reduce the water contact angle from 115.8° of the PTFE membrane to 35.0° without degradation in 30-day continuous filtration operations. The novel TiO_2/PAA/PTFE membranes also exhibited excellent antifouling and self-cleaning performance due to the intrinsic hydrophilicity and photocatalysis properties of TiO_2, which was further confirmed by the photo-degradation of MB under Xe lamp irradiation.

  7. Technical feasibility study of a low-cost hybrid PAC-UF system for wastewater reclamation and reuse: a focus on feedwater production for low-pressure boilers.

    Science.gov (United States)

    Amosa, Mutiu Kolade; Jami, Mohammed Saedi; Alkhatib, Ma'an Fahmi R; Majozi, Thokozani

    2016-11-01

    This study has applied the concept of the hybrid PAC-UF process in the treatment of the final effluent of the palm oil industry for reuse as feedwater for low-pressure boilers. In a bench-scale set-up, a low-cost empty fruit bunch-based powdered activated carbon (PAC) was employed for upstream adsorption of biotreated palm oil mill effluent (BPOME) with the process conditions: 60 g/L dose of PAC, 68 min of mixing time and 200 rpm of mixing speed, to reduce the feedwater strength, alleviate probable fouling of the membranes and thus improve the process flux (productivity). Three polyethersulfone ultrafiltration membranes of molecular weight cut-off (MWCO) of 1, 5 and 10 kDa were investigated in a cross-flow filtration mode, and under constant transmembrane pressures of 40, 80, and 120 kPa. The permeate qualities of the hybrid processes were evaluated, and it was found that the integrated process with the 1 kDa MWCO UF membrane yielded the best water quality that falls within the US EPA reuse standard for boiler-feed and cooling water. It was also observed that the permeate quality is fit for extended reuse as process water in the cement, petroleum and coal industries. In addition, the hybrid system's operation consumed 37.13 Wh m -3 of energy at the highest applied pressure of 120 kPa, which is far lesser than the typical energy requirement range (0.8-1.0 kWh m -3 ) for such wastewater reclamation.

  8. Modeling and analyses of postulated UF6 release accidents in gaseous diffusion plant

    International Nuclear Information System (INIS)

    Kim, S.H.; Taleyarkhan, R.P.; Keith, K.D.; Schmidt, R.W.; Carter, J.C.; Dyer, R.H.

    1995-10-01

    Computer models have been developed to simulate the transient behavior of aerosols and vapors as a result of a postulated accident involving the release of uranium hexafluoride (UF 6 ) into the process building of a gaseous diffusion plant. UF 6 undergoes an exothermic chemical reaction with moisture (H 2 O) in the air to form hydrogen fluoride (HF) and radioactive uranyl fluoride (UO 2 F 2 ). As part of a facility-wide safety evaluation, this study evaluated source terms consisting of UO 2 F 2 as well as HF during a postulated UF 6 release accident in a process building. In the postulated accident scenario, ∼7900 kg (17,500 lb) of hot UF 6 vapor is released over a 5 min period from the process piping into the atmosphere of a large process building. UO 2 F 2 mainly remains as airborne-solid particles (aerosols), and HF is in a vapor form. Some UO 2 F 2 aerosols are removed from the air flow due to gravitational settling. The HF and the remaining UO 2 F 2 are mixed with air and exhausted through the building ventilation system. The MELCOR computer code was selected for simulating aerosols and vapor transport in the process building. MELCOR model was first used to develop a single volume representation of a process building and its results were compared with those from past lumped parameter models specifically developed for studying UF 6 release accidents. Preliminary results indicate that MELCOR predicted results (using a lumped formulation) are comparable with those from previously developed models

  9. Review of models used for determining consequences of UF{sub 6} release: Model evaluation report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Nair, S.K.; Chambers, D.B.; Park, S.H.; Radonjic, Z.R.; Coutts, P.T.; Lewis, C.J.; Hammonds, J.S.; Hoffman, F.O. [Senes Oak Ridge, Inc., TN (United States). Center for Risk Analysis

    1997-11-01

    Three uranium hexafluoride-(UF{sub 6}-) specific models--HGSYSTEM/UF{sub 6}, Science Application International Corporation, and RTM-96; three dense-gas models--DEGADIS, SLAB, and the Chlorine Institute methodology; and one toxic chemical model--AFTOX--are evaluated on their capabilities to simulate the chemical reactions, thermodynamics, and atmospheric dispersion of UF{sub 6} released from accidents at nuclear fuel-cycle facilities, to support Integrated Safety Analysis, Emergency Response Planning, and Post-Accident Analysis. These models are also evaluated for user-friendliness and for quality assurance and quality control features, to ensure the validity and credibility of the results. Model performance evaluations are conducted for the three UF{sub 6}-specific models, using field data on releases of UF{sub 6} and other heavy gases. Predictions from the HGSYSTEM/UF{sub 6} and SAIC models are within an order of magnitude of the field data, but the SAIC model overpredicts beyond an order of magnitude for a few UF{sub 6}-specific data points. The RTM-96 model provides overpredictions within a factor of 3 for all data points beyond 400 m from the source. For one data set, however, the RTM-96 model severely underpredicts the observations within 200 m of the source. Outputs of the models are most sensitive to the meteorological parameters at large distances from the source and to certain source-specific and meteorological parameters at distances close to the source. Specific recommendations are being made to improve the applicability and usefulness of the three models and to choose a specific model to support the intended analyses. Guidance is also provided on the choice of input parameters for initial dilution, building wake effects, and distance to completion of UF{sub 6} reaction with water.

  10. Scoping study to expedite development of a field deployable and portable instrument for UF6 enrichment assay

    Energy Technology Data Exchange (ETDEWEB)

    Chan, George; Valentine, John D.; Russo, Richard E.

    2017-09-14

    The primary objective of the present study is to identity the most promising, viable technologies that are likely to culminate in an expedited development of the next-generation, field-deployable instrument for providing rapid, accurate, and precise enrichment assay of uranium hexafluoride (UF6). UF6 is typically involved, and is arguably the most important uranium compound, in uranium enrichment processes. As the first line of defense against proliferation, accurate analytical techniques to determine the uranium isotopic distribution in UF6 are critical for materials verification, accounting, and safeguards at enrichment plants. As nuclear fuel cycle technology becomes more prevalent around the world, international nuclear safeguards and interest in UF6 enrichment assay has been growing. At present, laboratory-based mass spectrometry (MS), which offers the highest attainable analytical accuracy and precision, is the technique of choice for the analysis of stable and long-lived isotopes. Currently, the International Atomic Energy Agency (IAEA) monitors the production of enriched UF6 at declared facilities by collecting a small amount (between 1 to 10 g) of gaseous UF6 into a sample bottle, which is then shipped under chain of custody to a central laboratory (IAEA’s Nuclear Materials Analysis Laboratory) for high-precision isotopic assay by MS. The logistics are cumbersome and new shipping regulations are making it more difficult to transport UF6. Furthermore, the analysis is costly, and results are not available for some time after sample collection. Hence, the IAEA is challenged to develop effective safeguards approaches at enrichment plants. In-field isotopic analysis of UF6 has the potential to substantially reduce the time, logistics and expense of sample handling. However, current laboratory-based MS techniques require too much infrastructure and operator expertise for field deployment and operation. As outlined in the IAEA Department of Safeguards Long

  11. Exploring the structure-properties relationships of novel polyamide thin film composite membranes

    DEFF Research Database (Denmark)

    Briceño, Kelly; Javakhishvili, Irakli; Guo, Haofei

    Polysulfone (PSU) is a material widely used in the fabrication of membranes for ultrafiltration and as a support for nanofiltration and reverse osmosis membranes. Interfacial polymerization usually combines amine and acid chloride monomers for the fabrication of thin film composite membranes[1......] . However, only few publications describe it’s usage for the modification of supports for the fabrication of ultrafiltration membranes [2]. This research focuses on the modification of PSU supports to produce new ultrafiltration membranes. The advantages of interfacial polymerization in the fabrication...... of UF membranes includes: Negatively charged PSF surfaces that could be less prone to biofouling Scale up process for the modification of PSU. An alternative to costly and technically challenging processes as in situ interfacial polymerization [3]....

  12. Effect of biological and coagulation pre-treatments to control organic and biofouling potential components of ultrafiltration membrane in the treatment of lake water.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Kajol, Annaduzzaman; Suja, Fatihah; Md Zain, Shahrom

    2017-03-01

    Biological aerated filter (BAF), sand filtration (SF), alum and Moringa oleifera coagulation were investigated as a pre-treatment for reducing the organic and biofouling potential component of an ultrafiltration (UF) membrane in the treatment of lake water. The carbohydrate content was mainly responsible for reversible fouling of the UF membrane compared to protein or dissolved organic carbon (DOC) content. All pre-treatment could effectively reduce these contents and led to improve the UF filterability. Both BAF and SF markedly led to improvement in flux than coagulation processes, and alum gave greater flux than M. oleifera. This was attributed to the effective removal and/or breakdown of high molecular weight (MW) organics by biofilters. BAF led to greater improvement in flux than SF, due to greater breakdown of high MW organics, and this was also confirmed by the attenuated total reflection-Fourier transform infrared spectroscopy analysis. Coagulation processes were ineffective in removing biofouling potential components, whereas both biofilters were very effective as shown by the reduction of low MW organics, biodegradable dissolved organic carbon and assimilable organic carbon contents. This study demonstrated the potential of biological pre-treatments for reducing organic and biofouling potential component and thus improving flux for the UF of lake water treatment.

  13. Fuel cell subassemblies incorporating subgasketed thrifted membranes

    Science.gov (United States)

    Iverson, Eric J.; Pierpont, Daniel M.; Yandrasits, Michael A.; Hamrock, Steven J.; Obradovich, Stephan J.; Peterson, Donald G.

    2016-03-01

    A fuel cell roll good subassembly is described that includes a plurality of individual electrolyte membranes. One or more first subgaskets are attached to the individual electrolyte membranes. Each of the first subgaskets has at least one aperture and the first subgaskets are arranged so the center regions of the individual electrolyte membranes are exposed through the apertures of the first subgaskets. A second subgasket comprises a web having a plurality of apertures. The second subgasket web is attached to the one or more first subgaskets so the center regions of the individual electrolyte membranes are exposed through the apertures of the second subgasket web. The second subgasket web may have little or no adhesive on the subgasket surface facing the electrolyte membrane.

  14. Whole-body voxel phantoms of paediatric patients—UF Series B

    Science.gov (United States)

    Lee, Choonik; Lee, Choonsik; Williams, Jonathan L.; Bolch, Wesley E.

    2006-09-01

    Following the previous development of the head and torso voxel phantoms of paediatric patients for use in medical radiation protection (UF Series A), a set of whole-body voxel phantoms of paediatric patients (9-month male, 4-year female, 8-year female, 11-year male and 14-year male) has been developed through the attachment of arms and legs from segmented CT images of a healthy Korean adult (UF Series B). Even though partial-body phantoms (head-torso) may be used in a variety of medical dose reconstruction studies where the extremities are out-of-field or receive only very low levels of scatter radiation, whole-body phantoms play important roles in general radiation protection and in nuclear medicine dosimetry. Inclusion of the arms and legs is critical for dosimetry studies of paediatric patients due to the presence of active bone marrow within the extremities of children. While the UF Series A phantoms preserved the body dimensions and organ masses as seen in the original patients who were scanned, comprehensive adjustments were made for the Series B phantoms to better match International Commission on Radiological Protection (ICRP) age-interpolated reference body masses, body heights, sitting heights and internal organ masses. The CT images of arms and legs of a Korean adult were digitally rescaled and attached to each phantom of the UF series. After completion, the resolutions of the phantoms for the 9-month, 4-year, 8-year, 11-year and 14-year were set at 0.86 mm × 0.86 mm × 3.0 mm, 0.90 mm × 0.90 mm × 5.0 mm, 1.16 mm × 1.16 mm × 6.0 mm, 0.94 mm × 0.94 mm × 6.00 mm and 1.18 mm × 1.18 mm × 6.72 mm, respectively.

  15. Application of fixed bed trapping technology for the removal of low concentration UF6 from plant gaseous effluent streams

    International Nuclear Information System (INIS)

    Russell, R.G.

    1987-01-01

    For the trapping of UF 6 in nitrogen, NaF > Al 2 O 3 > CaSO 4 . UF 6 inlet concentration has little effect on loading of alumina. Velocity shows an effect on UF 6 loading on alumina, with higher loading at low velocity. There is no significant difference in UF 6 loading between alumina 201A and 202HF. UF 6 outlet concentrations prior to breakthrough were measured to be as low as 2 O 3 until breakthrough (6.6% vs 5.3%), after which NaF experiences more loading (7.5% vs 11.5% at 1 ppM in the outlet). Higher trap loadings at lower pressures for both NaF and Al 2 O 3 . Al 2 O 3 was more efficient than NaF at higher velocities

  16. Thermal reactions of uranium metal, UO 2, U 3O 8, UF 4, and UO 2F 2 with NF 3 to produce UF 6

    Science.gov (United States)

    McNamara, Bruce; Scheele, Randall; Kozelisky, Anne; Edwards, Matthew

    2009-11-01

    This paper demonstrates that NF 3 fluorinates uranium metal, UO 2, UF 4, UO 3, U 3O 8, and UO 2F 2·2H 2O to produce the volatile UF 6 at temperatures between 100 and 550 °C. Thermogravimetric and differential thermal analysis reaction profiles are described that reflect changes in the uranium fluorination/oxidation state, physiochemical effects, and instances of discrete chemical speciation. Large differences in the onset temperatures for each system investigated implicate changes in mode of the NF 3 gas-solid surface interaction. These studies also demonstrate that NF 3 is a potential replacement fluorinating agent in the existing nuclear fuel cycle and in actinide volatility reprocessing.

  17. Self-supported supercapacitor membrane through incorporating MnO2 nanowires into carbon nanotube networks.

    Science.gov (United States)

    Fang, Yueping; Liu, Jianwei; Li, Jun

    2010-08-01

    We report on a study on the development of a self-supported membrane of carbon nanotube (CNT) mixed with MnO2 nanowires as supercapacitors. Both single-walled CNTs (SWCNTs) and multiwalled CNTs (MWCNTs) have been explored to serve as the electrically conductive networks to connect redox active MnO2 nanowires. High-quality alpha-MnO2 nanowires were synthesized using bulk alpha-MnO2 crystals as the precursor by a facile hydrothermal method. The morphology and structure of the as-prepared alpha-MnO2 nanowires were characterized by X-ray and electron diffraction, transmission electron microscopy, and scanning electron microscopy. Supercapacitor membranes were prepared by filtration of mixture solutions of MnO2 nanowires and CNTs at various ratios, forming entangled networks which are self-supported and directly used as supercapacitor electrodes without binders or backing metals. Cyclic voltammetry at various scan rates and charge--discharging measurements are used to characterize the supercapacitance of the CNT-MnO2 nanowire membranes. The specific capacitance has been found to be increased by several times over that of pure CNT membranes after incorporation of MnO2 nanowires.

  18. Nanodisc-solubilized membrane protein library reflects the membrane proteome.

    Science.gov (United States)

    Marty, Michael T; Wilcox, Kyle C; Klein, William L; Sligar, Stephen G

    2013-05-01

    The isolation and identification of unknown membrane proteins offers the prospect of discovering new pharmaceutical targets and identifying key biochemical receptors. However, interactions between membrane protein targets and soluble ligands are difficult to study in vitro due to the insolubility of membrane proteins in non-detergent systems. Nanodiscs, nanoscale discoidal lipid bilayers encircled by a membrane scaffold protein belt, have proven to be an effective platform to solubilize membrane proteins and have been used to study a wide variety of purified membrane proteins. This report details the incorporation of an unbiased population of membrane proteins from Escherichia coli membranes into Nanodiscs. This solubilized membrane protein library (SMPL) forms a soluble in vitro model of the membrane proteome. Since Nanodiscs contain isolated proteins or small complexes, the SMPL is an ideal platform for interactomics studies and pull-down assays of membrane proteins. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the protein population before and after formation of the Nanodisc library indicates that a large percentage of the proteins are incorporated into the library. Proteomic identification of several prominent bands demonstrates the successful incorporation of outer and inner membrane proteins into the Nanodisc library.

  19. UF{sub 6} cylinder lifting equipment enhancements

    Energy Technology Data Exchange (ETDEWEB)

    Hortel, J.M. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31

    This paper presents numerous enhancements that have been made to the Portsmouth lifting equipment to ensure the safe handling of cylinders containing liquid uranium hexafluoride (UF{sub 6}). The basic approach has been to provide redundancy to all components of the lift path so that any one component failure would not cause the load to drop or cause any undesirable movement.

  20. Non-woven PET fabric reinforced and enhanced the performance of ultrafiltration membranes composed of PVDF blended with PVDF-g-PEGMA for industrial applications

    Science.gov (United States)

    Wang, Shuai; Li, Tong; Chen, Chen; Chen, Sheng; Liu, Baicang; Crittenden, John

    2018-03-01

    Ultrafiltration (UF) membranes composed of poly(vinylidene fluoride) (PVDF) blended with poly(vinylidene fluoride)-graft-poly(ethylene glycol) methyl ether methacrylate (PVDF-g-PEGMA) can present high flux and excellent foulant removal efficiencies under suitable preparation conditions. However, these PVDF/PVDF-g-PEGMA blended membranes cannot be applied industrially because of the insufficient mechanical strength (strength-to-break value of 8.4 ± 0.6 MPa). We incorporated two types of non-woven polyethylene terephthalate (PET) fabrics (thin hydrophobic and thick hydrophilic fabrics) as support layers to improve the mechanical properties of the blended membranes. The thin and thick PET fabrics were able to significantly improve the tensile strength to 23.3 ± 3.7 MPa and 30.1 ± 1.4 MPa, respectively. The PET fabrics had a limited impact on the separation-related membrane performance such as hydrophilicity, foulant rejection, whereas the mechanical strength and pure water flux was improved several folds. The enhanced flux was attributed to the higher surface porosity and wider finger-like voids in the cross-section. The thin PET fabric with larger porosity was able to maintain a consistent toughness simultaneously; thus it is recommended as a support material for this blended membrane.

  1. Method for selectively removing fluorine and fluorine-containing contaminants from gaseous UF/sub 6/. [ClF/sub 3/

    Science.gov (United States)

    Jones, R.L.; Otey, M.G.; Perkins, R.W.

    1980-11-24

    This invention is a method for effecting preferential removal and immobilization of certain gaseous contaminants from gaseous UF/sub 6/. The contaminants include fluorine and fluorides which are more reactive with CaCO/sub 3/ than is UF/sub 6/. The method comprises contacting the contaminant-carrying UF/sub 6/ with particulate CaCO/sub 3/ at a temperature effecting reaction of the contaminant and the CaCO/sub 3/.

  2. Absorption of Ethylene on Membranes Containing Potassium Permanganate Loaded into Alumina-Nanoparticle-Incorporated Alumina/Carbon Nanofibers.

    Science.gov (United States)

    Tirgar, Ashkan; Han, Daewoo; Steckl, Andrew J

    2018-06-06

    Ethylene is a natural aging hormone in plants, and controlling its concentration has long been a subject of research aimed at reducing wastage during packaging, transport, and storage. We report on packaging membranes, produced by electrospinning, that act as efficient carriers for potassium permanganate (PPM), a widely used ethylene oxidant. PPM salt loaded on membranes composed of alumina nanofibers incorporating alumina nanoparticles outperform other absorber systems and oxidize up to 73% of ethylene within 25 min. Membrane absorption of ethylene generated by avocados was totally quenched in 21 h, and a nearly zero ethylene concentration was observed for more than 5 days. By comparison, the control experiments exhibited a concentration of 53% of the initial value after 21 h and 31% on day 5. A high surface area of the alumina nanofiber membranes provides high capacity for ethylene absorption over a long period of time. In combination with other properties, such as planar form, flexibility, ease of handling, and lightweight, these membranes are a highly desirable component of packaging materials engineered to enhance product lifetime.

  3. [Experimental evaluation of the Sysmex UF-1000i for ruling out non-gonococcal urethritis].

    Science.gov (United States)

    Grosso, Shamanta; Bruschetta, Graziano; Camporese, Alessandro

    2012-09-01

    Acute nongonococcal urethritis (NGU) is one of the commonest sexually transmitted infections affecting men and women. The diagnosis of NGU has traditionally required microscopic evidence of urethritis. However, a significant proportion of patients with urethral symptoms do not have microscopic evidence of urethritis. The purpose of the present study was to evaluate the analytical performance of the UF1000i, a recently introduced fluorescence flow cytometer intended for urinalysis purposes which provides new analytical features that seem particularly suitable for microbiological diagnostics, for ruling out NGU or predicting the presence of infection. The Sysmex UF1000i is a flow cytometry analyzer capable of quantifying a lot of particles, including bacteria (BACT) and white blood cells (WBCs). To evaluate the analytical performance of the UF1000i as a method for ruling out NGU, we examined 200 urethral smear samples, collected in a new liquid transport medium (Copan), and compared the UF1000i results with standard culture/molecular and microscopic Gram stain results. With instrument cut-off values of 200 BACT x 10^6/L and 500 WBCs x 10^6/L, we obtained a sensitivity of 84%, a specificity of 82%, and a high negative predictive value (96%). Culture/molecular detection of pathogens remains the gold standard technique for the diagnosis of NGU. However, the Sysmex UF1000i is capable of improving the efficiency of NGU presumptive diagnosis, providing results in a few minutes, with a high negative predictive value and high values of sensitivity.

  4. Exploring the synergetic effects of graphene oxide (GO) and polyvinylpyrrodione (PVP) on poly(vinylylidenefluoride) (PVDF) ultrafiltration membrane performance

    International Nuclear Information System (INIS)

    Chang, Xiaojing; Wang, Zhenxing; Quan, Shuai; Xu, Yanchao; Jiang, Zaixing; Shao, Lu

    2014-01-01

    Graphical abstract: - Highlights: • The synergetic effects of GO and PVP on membrane performance were investigated. • The surface hydrophilicity of membrane was enhanced by the synergistic effects. • The anti-fouling performance was obviously improved in PVDF/GO/PVP membrane. • The optimized performance can be obtained at the stipulated GO and PVP contents. - Abstract: Membrane surface and cross-sectional morphology created during membrane formation is one of the most essential factors determining membrane separation performance. However, the complicated interactions between added nanoparticles and additives influencing membrane morphology and performance during building membrane architectures had been generally neglected. In this study, asymmetric PVDF composite ultrafiltration (UF) membranes containing graphene oxides (GO) were prepared by using N-methyl pyrrolidone (NMP) as solvent and polyvinylpyrrodione (PVP) as the pore forming reagent. In the first time, the effects of mutual interactions between GO and PVP on membranes surface compositions, morphology and performance were investigated in detail. The variation in chemical properties of different membranes and hydrogen bonds in the membrane containing GO and PVP were confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR). Atomic force microscopy (AFM), scanning electron microscopy (SEM), and contact angle (CA) were utilized to clarify the synergetic effects of GO and PVP on morphologies and surface hydrophilicity of membranes. Besides, water flux, bovine serum albumin (BSA) rejection and attenuate coefficient were also determined to investigate filtration performance of various membranes. Compared with pure PVDF membrane, the comprehensive performance of PVDF/GO/PVP membrane has been obviously improved. The surface hydrophilicity and anti-fouling performance were enhanced by the synergistic effects of incorporated GO and

  5. Exploring the synergetic effects of graphene oxide (GO) and polyvinylpyrrodione (PVP) on poly(vinylylidenefluoride) (PVDF) ultrafiltration membrane performance

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Xiaojing [State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemical Engineering and Technology, Harbin Institute of Technology 150001 (China); Research Institute of Aerospace Special Materials and Technology, Beijing 100074 (China); Wang, Zhenxing; Quan, Shuai; Xu, Yanchao; Jiang, Zaixing [State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemical Engineering and Technology, Harbin Institute of Technology 150001 (China); Shao, Lu, E-mail: odysseynus@hotmail.com [State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemical Engineering and Technology, Harbin Institute of Technology 150001 (China)

    2014-10-15

    Graphical abstract: - Highlights: • The synergetic effects of GO and PVP on membrane performance were investigated. • The surface hydrophilicity of membrane was enhanced by the synergistic effects. • The anti-fouling performance was obviously improved in PVDF/GO/PVP membrane. • The optimized performance can be obtained at the stipulated GO and PVP contents. - Abstract: Membrane surface and cross-sectional morphology created during membrane formation is one of the most essential factors determining membrane separation performance. However, the complicated interactions between added nanoparticles and additives influencing membrane morphology and performance during building membrane architectures had been generally neglected. In this study, asymmetric PVDF composite ultrafiltration (UF) membranes containing graphene oxides (GO) were prepared by using N-methyl pyrrolidone (NMP) as solvent and polyvinylpyrrodione (PVP) as the pore forming reagent. In the first time, the effects of mutual interactions between GO and PVP on membranes surface compositions, morphology and performance were investigated in detail. The variation in chemical properties of different membranes and hydrogen bonds in the membrane containing GO and PVP were confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR). Atomic force microscopy (AFM), scanning electron microscopy (SEM), and contact angle (CA) were utilized to clarify the synergetic effects of GO and PVP on morphologies and surface hydrophilicity of membranes. Besides, water flux, bovine serum albumin (BSA) rejection and attenuate coefficient were also determined to investigate filtration performance of various membranes. Compared with pure PVDF membrane, the comprehensive performance of PVDF/GO/PVP membrane has been obviously improved. The surface hydrophilicity and anti-fouling performance were enhanced by the synergistic effects of incorporated GO and

  6. Criticality Safety Evaluation for 30B and 48X UF6 Cylinders for Transportation and Storage

    International Nuclear Information System (INIS)

    Mokhatri, Homami Zahra; Nematollahi, Mohammadreza; Kamyab, Shahabeddin

    2011-01-01

    30B and 48X cylinders are two standard containers have been used for transportation and storage of uranium hexafluoride with 21/2-ton and 10-ton loading capacity, respectively. For the sake of nuclear safety, the long-term safe storage and transportation of the cylinders are necessary to be concerned. Safe limits in handling and storage of 30B and 48X cylinders from the criticality safety considerations, has been investigated in this paper, by using the MCNP.4C code with ENDF/B-VI library data for the neutron cross sections. An infinite array model (with and without over pack) incorporating an internal H/U ratio of 0.088 was then developed to determine the optimal interstitial moderation. The maximum k eff value for the conditions of optimal interstitial moderation with the premise of no water leakage into the UF 6 cylinder has been shown to be 0.79209 ± 0.0011 for the 30B cylinder and 0.7625±0.0013 for 48X cylinder with 5 wt % 235 U enrichment. Based on this evaluation, the 30B and 48X UF 6 cylinders with 5 wt % 235 U enrichment meet the 10 CFR part 71 criteria for Fissile Class I packages, even in the worst case, and has a Transport Index (TI) of zero for criticality safety purposes

  7. The toxic and radiological risk equivalence approach in UF6 transport

    International Nuclear Information System (INIS)

    Ringot, C.; Hamard, J.

    1988-12-01

    After a brief description of the safety in transport of UF 6 , we discuss the equivalence of the radioactive and chemical risks in UF 6 transport regulations. As the concept of low specific activity appears to be ill-suited for a toxic gas, we propose a quantity of material limit designated T 2 (equivalent to A 2 for radioactive substances) for packagings unable to withstand accident conditions (9 m drop, 800 0 C fire environment for 30 minutes). It is proposed that this limit be chosen for the amount of release acceptable after AIEA tests. Different possible scenarios are described, with fire assumed to be the most severe toxic risk situation

  8. Selective transport and incorporation of highly charged metal and metal complex ions in self-assembled polyelectrolyte multilayer membranes

    International Nuclear Information System (INIS)

    Toutianoush, Ali; Tieke, Bernd

    2002-01-01

    The transport of aqueous salts containing mono-, di- and trivalent metal and tetravalent metal complex ions across ultrathin polyvinylammonium/polyvinylsulphate (PVA/PVS) membranes is described. The membranes were prepared by electrostatic layer-by-layer (LBL) assembly of the two polyelectrolytes. Using spectroscopic measurements and permeability studies, it is demonstrated that the transport of copper(II) chloride, lanthanum(III) chloride, barium chloride and potassium hexacyanoferrate(II) is accompanied by the permanent incorporation of the metal and metal complex ions in the membrane. Upon the uptake of copper, lanthanum and hexacyanoferrate ions, the membranes become cross-linked so that the permeation rates of other salts not taken up by the membrane, e.g. sodium chloride, potassium chloride and magnesium chloride, are decreased. The uptake of barium ions leads to a decrease of the cross-linking density of the membrane so that the permeation rate of NaCl is increased. Possible mechanisms for the ion uptake are discussed

  9. Conversion of U3O8 to UF6

    International Nuclear Information System (INIS)

    Bodu, R.L.

    1975-01-01

    Three main processes for the production of UF 6 from the uranium ores (yellow cake) is described. The economic aspects of the conversion - capital cost, operating costs and conversion market and the future of conversion - capacity and prices - are discussed. (HPH) [de

  10. Ceramic Ultrafiltration of Marine Algal Solutions: A Comprehensive Study

    KAUST Repository

    Dramas, Laure

    2014-01-01

    understanding of UF membrane fouling caused by algal organic matter (AOM) is needed, in order to adjust the filtration conditions during algal bloom events. Polymeric MF/UF membranes are already widely used for RO pretreatment, but ceramic UF membranes can also

  11. The importance of pretreatment tailoring on the performance of ultrafiltration membranes to treat two-phase olive mill wastewater

    Directory of Open Access Journals (Sweden)

    Ochando Pulido, J. M.

    2015-03-01

    Full Text Available In this work, the performance of an ultrafiltration (UF membrane in the treatment of the effluents by-produced by olive mills is addressed by applying different pretreatments on the raw effluents. By conducting a photo-catalytic process (UV/TiO2 PC after pH-temperature flocculation (pH-T F higher threshold flux values were observed for all feed stocks than by applying solely the pH-T F process, with an 18.8–34.2% increment. In addition, the performance of the UF membrane was also improved in terms of rejection efficiency, such that higher rejection values were yielded by the membrane for the organic pollutants (RCOD by 48.5 vs. 39.9% and 53.4 vs. 42.0%. The UF membrane performance was also improved in terms of the volume feed recovery factor (VFR, achieving up to 88.2 vs. 87.2% and 90.7 vs. 89.3%. Results in the same line were also observed when the highly polluted olives oil washing wastewater raw stream was previously mixed with the effluent stream coming from the washing of the olives. This permits the UF to permeate, achieving the standard limits to reuse the purified effluent for irrigation purposes (COD values below 1000 mg·L−1, which makes the treatment process cost-effective and results in making the olive oil production process environmentally friendly.En este estudio se aborda el rendimiento de una membrana de ultrafiltración (UF para el tratamiento de los efluentes generados por la industria oleícola, mediante la aplicación de distintos pretratamientos. Tras aplicar un proceso fotocatalítico (UV/TiO2 PC después de una floculación pH-temperatura (pH-T F se observaron flujos límite para todos los efluentes mayores que tras la aplicación únicamente del proceso pH-T F, con incrementos del 18.8–34.2 %. Además, el rendimiento de la membrana de UF mejoró en términos de eficiencia de rechazo, con mayores valores de rechazo respecto de los contaminantes orgánicos (RCOD, 48.5 vs. 39.9 % y 53.4 vs. 42.0 %. El rendimiento de

  12. Biogenic nanosilver incorporated reverse osmosis membrane for antibacterial and antifungal activities against selected pathogenic strains: an enhanced eco-friendly water disinfection approach.

    Science.gov (United States)

    Manjumeena, R; Duraibabu, D; Sudha, J; Kalaichelvan, P T

    2014-01-01

    Reverse osmosis (RO) membranes have been used extensively in water desalination plants, waste water treatment in industries, agricultural farms and drinking water production applications. The objective of this work is to impart antibacterial and antifungal activities to commercially available RO membrane used in water purification systems by incorporating biogenic silver nanoparticles(AgNPs) synthesized using Rosa indica wichuriana hybrid leaf extract. The morphology and surface topography of uncoated and AgNPs-coated RO membrane were studied using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Elemental composition of the AgNPs-coated RO membrane was analyzed by energy-dispersive X-ray spectroscopy (EDAX). The functional groups were identified by Fourier Transform Infrared spectroscopy (FT-IR). Hydrophilicity of the uncoated and AgNPs-coated RO membrane was analyzed using water contact angle measurements. The thermal properties were studied by thermogravimetric analysis (TGA). The AgNPs incorporated RO membrane exhibited good antibacterial and antifungal activities against pathogenic bacterial strains such as E. coli, S. aureus, M. luteus, K. pneumoniae, and P. aeruginosa and fungal strains such as Candida tropicalis, C. krusei, C. glabrata, and C. albicans.

  13. Fabrication of TiO{sub 2}-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Yingjia [School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China); Chi, Lina, E-mail: lnchi@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China); Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Zhou, Weili; Yu, Zhenjiang [School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China); Zhang, Zhongzhi [College of Chemical Engineering, China University of Petroleum, Beijing 102249 (China); Zhang, Zhenjia [School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China); Jiang, Zheng, E-mail: z.jiang@soton.ac.uk [Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2016-01-01

    Graphical abstract: - Highlights: • Multifunctional TiO{sub 2}/PAA/PTFE ultrafiltration membrane was fabricated via tight coating of TiO{sub 2} functional layer onto the plasma-assisted graft of PAA on PTFE. • The high water flux rate, remarkable enhanced ultrafiltration performance and excellent self-cleaning ability were demonstrated. • The formation of COO−Ti bidentate coordination between TiO{sub 2} and PAA was responsible for the successful coating. - Abstract: Surface hydrophilic modification of polymer ultrafiltration membrane using metal oxide represents an effective yet highly challenging solution to improve water flux and antifouling performance. Via plasma-enhanced graft of poly acryl acid (PAA) prior to coating TiO{sub 2}, we successfully fixed TiO{sub 2} functional thin layer on super hydrophobic polytetrafluoroethylene (PTFE) ultrafiltration (UF) membranes. The characterization results evidenced TiO{sub 2} attached on the PTFE-based UF membranes through the chelating bidentate coordination between surface-grafted carboxyl group and Ti{sup 4+}. The TiO{sub 2} surface modification may greatly reduce the water contact angle from 115.8° of the PTFE membrane to 35.0° without degradation in 30-day continuous filtration operations. The novel TiO{sub 2}/PAA/PTFE membranes also exhibited excellent antifouling and self-cleaning performance due to the intrinsic hydrophilicity and photocatalysis properties of TiO{sub 2}, which was further confirmed by the photo-degradation of MB under Xe lamp irradiation.

  14. Alternative method of retesting UF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Christ, R. [Nuclear Crago + Service GmbH, Hanau (Germany)

    1991-12-31

    The paper describes an alternative method to perform the periodic inspection of UF{sub 6} cylinders. The hydraulic test is replaced by ultrasonic checking of wall thickness and by magnetic particle testing of all the weld seams. Information about the legal background, the air leak test and the qualification of inspectors is also given.

  15. Reimiep 87. An interlaboratory U-235 enrichment determination by gamma measurement on solid UF6 sample

    International Nuclear Information System (INIS)

    Aparo, M.; Cresti, P.

    1988-01-01

    Gamma spectroscopy technique, based on the measurement of U 235 186 KeV flux, is now currently used for the determination of Uranium enrichment in different material of nuclear fuel cycle, namely: Uranium metallic, UO 2 pellets, UF 6 liquid or solid. The present paper describes the use of such a technique and the obtained results in determining the U 235 /U atomic isotopic abundance on a certified UF 6 solid sample. The measurements have been carried out in the frame work of the partecipation to the ''UF 6 Interlaboratory Measurements Evaluation Programme'' organized by CBNM/Geel with the support of the ESARDA (European Safeguards Research and Development Association)

  16. Metals, heavy metals and microorganism removal from spent filter backwash water by hybrid coagulation-UF processes

    Directory of Open Access Journals (Sweden)

    Mokhtar Mahdavi

    2018-04-01

    Full Text Available Spent filter backwash water (SFBW reuse has attracted particular attention, especially in countries that experience water scarcity. It can act as a permanent water source until the water treatment plant is working. In this study, the concentrations of Fe, Al, Pb, As, and Cd with total and fecal coliform (TC/FC were investigated in raw and treated SFBW by hybrid coagulation-UF processes. The pilot plant consisted of pre-sedimentation, coagulation, flocculation, clarification, and ultrafiltration (UF units. Poly-aluminum ferric chloride (PAFCL and ferric chloride (FeCl3 were used as pretreatment. The results showed that, at the optimum dose of PAFCl, the average removal of TC and FC was 88 and 79% and with PAFCl-UF process, it reached 100 and 100%, respectively. For FeCl3, removal efficiency of TC and FC were 81 and 72% and by applying FeCl3-UF process, it reached 100 and 100%, respectively. In comparison with FeCl3, PAFCl showed better removal efficiency for Fe, Pb, As, and Cd, except residual Al concentration. Coagulation-UF process could treat SFBW efficiently and treated SFBW could meet the US-EPA drinking water standard. Health risk index values of Fe, AL, Pb, AS, and Cd in treated SFBW indicate no risk of exposure to the use of this water.

  17. Probing the electronic structures of low oxidation-state uranium fluoride molecules UF{sub x}{sup −} (x = 2−4)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei-Li; Jian, Tian; Lopez, Gary V.; Wang, Lai-Sheng, E-mail: lai-sheng-wang@brown.edu [Department of Chemistry, Brown University, Providence, Rhode Island 02912 (United States); Hu, Han-Shi; Li, Jun, E-mail: junli@tsinghua.edu.cn [Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084 (China); William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Su, Jing [Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2013-12-28

    We report the experimental observation of gaseous UF{sub x}{sup −} (x = 2−4) anions, which are investigated using photoelectron spectroscopy and relativistic quantum chemistry. Vibrationally resolved photoelectron spectra are obtained for all three species and the electron affinities of UF{sub x} (x = 2−4) are measured to be 1.16(3), 1.09(3), and 1.58(3) eV, respectively. Significant multi-electron transitions are observed in the photoelectron spectra of U(5f{sup 3}7s{sup 2})F{sub 2}{sup −}, as a result of strong electron correlation effects of the two 7s electrons. The U−F symmetric stretching vibrational modes are resolved for the ground states of all UF{sub x} (x = 2−4) neutrals. Theoretical calculations are performed to qualitatively understand the photoelectron spectra. The entire UF{sub x}{sup −} and UF{sub x} (x = 1−6) series are considered theoretically to examine the trends of U−F bonding and the electron affinities as a function of fluorine coordination. The increased U−F bond lengths and decreased bond orders from UF{sub 2}{sup −} to UF{sub 4}{sup −} indicate that the U−F bonding becomes weaker as the oxidation state of U increases from I to III.

  18. Comparison of two treatments for the removal of selected organic micropollutants and bulk organic matter: conventional activated sludge followed by ultrafiltration versus membrane bioreactor.

    Science.gov (United States)

    Sahar, E; Ernst, M; Godehardt, M; Hein, A; Herr, J; Kazner, C; Melin, T; Cikurel, H; Aharoni, A; Messalem, R; Brenner, A; Jekel, M

    2011-01-01

    The potential of membrane bioreactor (MBR) systems to remove organic micropollutants was investigated at different scales, operational conditions, and locations. The effluent quality of the MBR system was compared with that of a plant combining conventional activated sludge (CAS) followed by ultrafiltration (UF). The MBR and CAS-UF systems were operated and tested in parallel. An MBR pilot plant in Israel was operated for over a year at a mixed liquor suspended solids (MLSS) range of 2.8-10.6 g/L. The MBR achieved removal rates comparable to those of a CAS-UF plant at the Tel-Aviv wastewater treatment plant (WWTP) for macrolide antibiotics such as roxythromycin, clarithromycin, and erythromycin and slightly higher removal rates than the CAS-UF for sulfonamides. A laboratory scale MBR unit in Berlin - at an MLSS of 6-9 g/L - showed better removal rates for macrolide antibiotics, trimethoprim, and 5-tolyltriazole compared to the CAS process of the Ruhleben sewage treatment plant (STP) in Berlin when both were fed with identical quality raw wastewater. The Berlin CAS exhibited significantly better benzotriazole removal and slightly better sulfamethoxazole and 4-tolyltriazole removal than its MBR counterpart. Pilot MBR tests (MLSS of 12 g/L) in Aachen, Germany, showed that operating flux significantly affected the resulting membrane fouling rate, but the removal rates of dissolved organic matter and of bisphenol A were not affected.

  19. Temporary patching of damaged UF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, A.L. [Martin Marietta Energy Systems, Inc., OH (United States)

    1991-12-31

    Patching techniques based on application of epoxy resins have been developed for temporarily repairing UF{sub 6} cylinders which have sustained relatively minor damage and must be safely emptied. The method is considerably faster and simpler than metallurgical weld repairs. Laboratory tests, detailed operational procedures, and case histories of experience at the Portsmouth Gaseous Diffusion Plant are described.

  20. Sucrose purification and repeated ethanol production from sugars remaining in sweet sorghum juice subjected to a membrane separation process.

    Science.gov (United States)

    Sasaki, Kengo; Tsuge, Yota; Kawaguchi, Hideo; Yasukawa, Masahiro; Sasaki, Daisuke; Sazuka, Takashi; Kamio, Eiji; Ogino, Chiaki; Matsuyama, Hideto; Kondo, Akihiko

    2017-08-01

    The juice from sweet sorghum cultivar SIL-05 (harvested at physiological maturity) was extracted, and the component sucrose and reducing sugars (such as glucose and fructose) were subjected to a membrane separation process to purify the sucrose for subsequent sugar refining and to obtain a feedstock for repeated bioethanol production. Nanofiltration (NF) of an ultrafiltration (UF) permeate using an NTR-7450 membrane (Nitto Denko Corporation, Osaka, Japan) concentrated the juice and produced a sucrose-rich fraction (143.2 g L -1 sucrose, 8.5 g L -1 glucose, and 4.5 g L -1 fructose). In addition, the above NF permeate was concentrated using an ESNA3 NF membrane to provide concentrated permeated sugars (227.9 g L -1 ) and capture various amino acids in the juice, enabling subsequent ethanol fermentation without the addition of an exogenous nitrogen source. Sequential batch fermentation using the ESNA3 membrane concentrate provided an ethanol titer and theoretical ethanol yield of 102.5-109.5 g L -1 and 84.4-89.6%, respectively, throughout the five-cycle batch fermentation by Saccharomyces cerevisiae BY4741. Our results demonstrate that a membrane process using UF and two types of NF membranes has the potential to allow sucrose purification and repeated bioethanol production.

  1. UF6 test loop for evaluation and implementation of international enrichment plant safeguards

    International Nuclear Information System (INIS)

    Cooley, J.N.; Fields, L.W.; Swindle, D.W. Jr.

    1987-06-01

    A functional test loop capable of simulating UF 6 flows, pressures, and pipe deposits characteristic of gas centrifuge enrichment plant piping has been designed and fabricated by the Enrichment Safeguards Program of Martin Marietta Energy Systems, Inc., for use by International Atomic Energy Agency (IAEA) at its Safeguards Analytical Laboratory in Seibersdorf, Austria. Purpose of the test loop is twofold: (1) to enable the IAEA to evaluate and to calibrate enrichment safeguards measurement instrumentation to be used in limited frequency-unannounced access (LFUA) inspection strategy measurements at gas centrifuge enrichment plants and (2) to train IAEA inspectors in the use of such instrumentation. The test loop incorporates actual sections of cascade header pipes from the centrifuge enrichment plants subject to IAEA inspections. The test loop is described, applications for its use by the IAEA are detailed, and results from an initial demonstration session using the test loop are summarized

  2. Electrically Cooled Germanium System for Measurements of Uranium Enrichments in UF6 Cylinders

    International Nuclear Information System (INIS)

    Dvornyak, P.; Koestlbauer, M.; Lebrun, A.; Murray, M.; Nizhnik, V.; Saidler, C.; Twomey, T.

    2010-01-01

    Measurements of Uranium enrichment in UF6 cylinders is a significant part of the IAEA Safeguards verification activities at enrichment and conversion plants. Nowadays, one of the main tools for verification of Uranium enrichment in UF6 cylinders used by Safeguards inspectors is the gamma spectroscopy system with HPGe detector cooled with liquid nitrogen. Electrically Cooled Germanium System (ECGS) is a new compact and portable high resolution gamma spectrometric system free from liquid nitrogen cooling, which can be used for the same safeguards applications. It consists of the ORTEC Micro-trans-SPEC HPGe Portable Spectrometer, a special tungsten collimator and UF6 enrichment measurement software. The enrichment of uranium is determined by of quantifying the area of the 185.7 keV peak provided that the measurement is performed with a detector viewing an infinite thickness of material. Prior starting the verification of uranium enrichment at the facility, the ECGS has to be calibrated with a sample of known uranium enrichment, material matrix, container wall thickness and container material. Evaluation of the ECGS capabilities was performed by carrying out a field test on actual enrichment verification of uranium in UF6 cylinder or other forms of uranium under infinite thickness conditions. The results of these evaluations allow to say that the use of ECGS will enhance practicality of the enrichment measurements and support unannounced inspection activities at enrichment and conversion plants. (author)

  3. Contribution of different effluent organic matter fractions to membrane fouling in ultrafiltration of treated domestic wastewater

    KAUST Repository

    Zheng, Xing; Croue, Jean-Philippe

    2012-01-01

    In the present work, effluent organic matter (EfOM) in treated domestic wastewater was separated into hydrophobic neutrals, colloids, hydrophobic acids, transphilic acids and neutrals and hydrophilic compounds. Their contribution to dissolved organic carbon (DOC) was identified. Further characterization was conducted with respect to molecular size and hydrophobicity. Each isolated fraction was dosed into salt solution to identify its fouling potential in ultrafiltration (UF) using a hydrophilized polyethersulfone membrane. The results show that each kind of EfOM leads to irreversible fouling. At similar delivered DOC load to the membrane, colloids present the highest fouling effect in terms of both reversible and irreversible fouling. The hydrophobic organics show much lower reversibility than the biopolymers present. However, as they are of much smaller size than the membrane pore opening, they cannot lead to such severe fouling as biopolymers do. In all of the isolated fractions, hydrophilics show the lowest fouling potential. For either colloids or hydrophobic substances, increasing their content in feedwater leads to worse fouling. The co-effect between biopolymers and other EfOM fractions has also been identified as one of the mechanisms contributing to UF fouling in filtering EfOM-containing waters. © IWA Publishing 2012.

  4. Contribution of different effluent organic matter fractions to membrane fouling in ultrafiltration of treated domestic wastewater

    KAUST Repository

    Zheng, Xing

    2012-12-01

    In the present work, effluent organic matter (EfOM) in treated domestic wastewater was separated into hydrophobic neutrals, colloids, hydrophobic acids, transphilic acids and neutrals and hydrophilic compounds. Their contribution to dissolved organic carbon (DOC) was identified. Further characterization was conducted with respect to molecular size and hydrophobicity. Each isolated fraction was dosed into salt solution to identify its fouling potential in ultrafiltration (UF) using a hydrophilized polyethersulfone membrane. The results show that each kind of EfOM leads to irreversible fouling. At similar delivered DOC load to the membrane, colloids present the highest fouling effect in terms of both reversible and irreversible fouling. The hydrophobic organics show much lower reversibility than the biopolymers present. However, as they are of much smaller size than the membrane pore opening, they cannot lead to such severe fouling as biopolymers do. In all of the isolated fractions, hydrophilics show the lowest fouling potential. For either colloids or hydrophobic substances, increasing their content in feedwater leads to worse fouling. The co-effect between biopolymers and other EfOM fractions has also been identified as one of the mechanisms contributing to UF fouling in filtering EfOM-containing waters. © IWA Publishing 2012.

  5. Identification of effluent organic matter fractions responsible for low-pressure membrane fouling

    KAUST Repository

    Filloux, Emmanuelle

    2012-11-01

    Anion exchange resin (AER), powder activated carbon (PAC) adsorption and ozonation treatments were applied on biologically treated wastewater effluent with the objective to modify the effluent organic matter (EfOM) matrix. Both AER and PAC led to significant total organic carbon (TOC) removal, while the TOC remained nearly constant after ozonation. Liquid Chromatography-Organic Carbon Detection (LC-OCD) analysis showed that the AER treatment preferentially removed high and intermediate molecular weight (MW) humic-like structures while PAC removed low MW compounds. Only a small reduction of the high MW colloids (i.e. biopolymers) was observed for AER and PAC treatments. Ozonation induced a large reduction of the biopolymers and an important increase of the low MW humic substances (i.e. building blocks).Single-cycle microfiltration (MF) and ultrafiltration (UF) tests were conducted using commercially available hollow fibres at a constant flux. After reconcentration to their original organic carbon content, the EfOM matrix modified by AER and PAC treatments exhibited higher UF membrane fouling compared to untreated effluent; result that correlated with the higher concentration of biopolymers. On the contrary, ozonation which induced a significant degradation of the biopolymers led to a minor flux reduction for both UF and MF filtration tests. Based on a single filtration, results indicate that biopolymers play a major role in low pressure membrane fouling and that intermediate and low MW compounds have minor impact. Thus, this approach has shown to be a valid methodology to identify the foulant fractions of EfOM. © 2012 Elsevier Ltd.

  6. Presentation and interpretation of field experiments of gaseous UF6 releases in the atmosphere

    International Nuclear Information System (INIS)

    Crabol, B.; Boulaud, D.; Deville-Cavelin, G.

    1992-01-01

    An experimental programme concerning the behaviour of UF 6 released in gaseous phase in the atmosphere has been conducted in the years 1986-1989 by the french Atomic Energy Commission and Eurodif. Three field tests have been performed on the CEA/CESTA experimental site. These experiments permitted to get informations about the kinetics of the hydrolysis reaction of the UF 6 , the behaviour of the hydrolysis products in the atmosphere and the granulometry of the solid particles

  7. Presentation and interpretation of field experiments of gaseous UF6 releases in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Crabol, B.; Boulaud, D.; Deville-Cavelin, G. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Dept. de Protection de l`Environnement et des Installations; Geisse, C.; Iacona, L. [EURODIF, 26 - Pierrelatte (France)

    1992-12-31

    An experimental programme concerning the behaviour of UF{sub 6} released in gaseous phase in the atmosphere has been conducted in the years 1986-1989 by the french Atomic Energy Commission and Eurodif. Three field tests have been performed on the CEA/CESTA experimental site. These experiments permitted to get informations about the kinetics of the hydrolysis reaction of the UF{sub 6}, the behaviour of the hydrolysis products in the atmosphere and the granulometry of the solid particles.

  8. Characterisation of a re-cast composite Nafion 1100 series of proton exchange membranes incorporating inert inorganic oxide particles

    International Nuclear Information System (INIS)

    Slade, S.M.; Smith, J.R.; Campbell, S.A.; Ralph, T.R.; Ponce de Leon, C.; Walsh, F.C.

    2010-01-01

    A series of cation exchange membranes was produced by impregnating and coating both sides of a quartz web with a Nafion solution (1100 EW, 10%wt in water). Inert filler particles (SiO 2 , ZrO 2 or TiO 2 ; 5-20%wt) were incorporated into the aqueous Nafion solution to produce robust, composite membranes. Ion-exchange capacity/equivalent weight, water take-up, thickness change on hydration and ionic and electrical conductivity were measured in 1 mol dm -3 sulfuric acid at 298 K. The TiO 2 filler significantly impacted on these properties, producing higher water take-up and increased conductivity. Such membranes may be beneficial for proton exchange membrane (PEM) fuel cell operation at low humidification. The PEM fuel cell performance of the composite membranes containing SiO 2 fillers was examined in a Ballard Mark 5E unit cell. While the use of composite membranes offers a cost reduction, the unit cell performance was reduced, in practice, due to drying of the ionomer at the cathode.

  9. Long-term evaluation of fluoroelastomer O-rings in UF6

    International Nuclear Information System (INIS)

    Russell, R.G.; Otey, M.G.; Dippo, G.L.

    1986-01-01

    A major component in the gaseous centrifuge enrichment plant (GCEP) was fluoroelastomer O-rings, which were used to seal the uranium hexafluoride (UF 6 ) gas system. A program utilizing accelerated test conditions was used to help identify the best material out of four selected candidates and to predict the service life of these materials at GCEP conditions. The tests included accelerated temperatures, mechanical stress, and UF 6 exposure. Data were evaluated using the Newman--Keuls 1 ranking system to identify the best material and a zero-order reaction rate equation to help predict service life. This presentation includes a description of the test facility, the materials tested, the types of tests, objectives of the study, service life predictions, and conclusions. The O-rings are predicted to last approx. 30 years, and a high-molecular-weight polymer had the best performance ranking

  10. Surface patterning of polymeric separation membranes and its influence on the filtration performance

    Science.gov (United States)

    Maruf, Sajjad

    Polymeric membrane based separation technologies are crucial for addressing the global issues such as water purification. However, continuous operations of these processes are often hindered by fouling which increases mass transport resistance of the membrane to permeation and thus the energy cost, and eventually replacement of the membrane in the system. In comparison to other anti-fouling strategies, the use of controlled surface topography to mitigate fouling has not been realized mainly due to the lack of methods to create targeted topography on the porous membrane surface. This thesis aims to develop a new methodology to create surface-patterned polymeric separation membrane to improve their anti-fouling characteristics during filtration. First, successful fabrication of sub-micron surface patterns directly on a commercial ultrafiltration (UF) membrane surface using nanoimprint lithographic (NIL) technique was demonstrated. Comprehensive filtration studies revealed that the presence of these sub-micron surface patterns mitigates not only the onset of colloidal particle deposition, but also lowers the rate of growth of cake layer after initial deposition, in comparison with un-patterned membranes. The anti-fouling effects were also observed for model protein solutions. Staged filtration experiments, with backwash cleaning, revealed that the permeate flux of the patterned membrane after protein fouling was considerably higher than that of the pristine or un-patterned membrane. In addition to the surface-patterning of UF membranes, successful fabrication of a surface-patterned thin film composite (TFC) membrane was shown for the first time. A two-step fabrication process was carried out by (1) nanoimprinting a polyethersulfone (PES) support using NIL, and (2) forming a thin dense film atop the PES support via interfacial polymerization (IP). Fouling experiments suggest that the surface patterns alter the hydrodynamics at the membrane-feed interface, which is

  11. Uniform deposition of uranium hexafluoride (UF6): Standardized mass deposits and controlled isotopic ratios using a thermal fluorination method

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, Bruce K.; O’Hara, Matthew J.; Casella, Andrew M.; Carter, Jennifer C.; Addleman, R. Shane; MacFarlan, Paul J.

    2016-07-01

    Abstract: We report a convenient method for the generation of volatile uranium hexafluoride (UF6) from solid uranium oxides and other uranium compounds, followed by uniform deposition of low levels of UF6 onto sampling coupons. Under laminar flow conditions, UF6 is shown to interact with surfaces within the chamber to a highly predictable degree. We demonstrate the preparation of uranium deposits that range between ~0.01 and 470±34 ng∙cm-2. The data suggest the method can be extended to creating depositions at the sub-picogram∙cm-2 level. Additionally, the isotopic composition of the deposits can be customized by selection of the uranium source materials. We demonstrate a layering technique whereby two uranium solids, each with a different isotopic composition, are employed to form successive layers of UF6 on a surface. The result is an ultra-thin deposit of UF6 that bears an isotopic signature that is a composite of the two uranium sources. The reported deposition method has direct application to the development of unique analytical standards for nuclear safeguards and forensics.

  12. Protein fouling in carbon nanotubes enhanced ultrafiltration membrane: Fouling mechanism as a function of pH and ionic strength

    KAUST Repository

    Lee, Jieun; Jeong, Sanghyun; Ye, Yun; Chen, Vicki; Vigneswaran, Saravanamuthu; Leiknes, TorOve; Liu, Zongwen

    2016-01-01

    The protein fouling behavior was investigated in the filtration of the multiwall carbon nanotube (MWCNT) composite membrane and commercial polyethersulfone ultrafiltration (PES-UF) membrane. The effect of solution chemistry such as pH and ionic strength on the protein fouling mechanism was systematically examined using filtration model such as complete pore blocking, intermediate pore blocking and cake layer formation. The results showed that the initial permeate flux pattern and fouling behavior of the MWCNT composite membrane were significantly influenced by pH and ionic strength while the effect of PES-UF membrane on flux was minimal. In a lysozyme (Lys) filtration, the severe pore blocking in the MWCNT membrane was made by the combined effect of intra-foulant interaction (Lys-Lys) and electrostatic repulsion between the membrane surface and the foulant at pH 4.7 and 10.4, and increasing ionic strength where the foulant-foulant interaction and membrane-fouling interaction were weak. In a bovine serum albumin (BSA) filtration, severe pore blocking was reduced by less deposition via the electrostatic interaction between the membrane and foulant at pH 4.7 and 10.4 and increasing ionic strength, at which the interaction between the membrane and BSA became weak. For binary mixture filtration, the protein fouling mechanism was more dominantly affected by foulant-foulant interaction (Lys-BSA, Lys-Lys, and BSA-BSA) at pH 7.0 and increase in ionic strength. This research demonstrates that MWCNT membrane fouling can be alleviated by changing pH condition and ionic strength based on the foulant-foulant interaction and the electrostatic interaction between the membrane and foulant.

  13. Protein fouling in carbon nanotubes enhanced ultrafiltration membrane: Fouling mechanism as a function of pH and ionic strength

    KAUST Repository

    Lee, Jieun

    2016-11-04

    The protein fouling behavior was investigated in the filtration of the multiwall carbon nanotube (MWCNT) composite membrane and commercial polyethersulfone ultrafiltration (PES-UF) membrane. The effect of solution chemistry such as pH and ionic strength on the protein fouling mechanism was systematically examined using filtration model such as complete pore blocking, intermediate pore blocking and cake layer formation. The results showed that the initial permeate flux pattern and fouling behavior of the MWCNT composite membrane were significantly influenced by pH and ionic strength while the effect of PES-UF membrane on flux was minimal. In a lysozyme (Lys) filtration, the severe pore blocking in the MWCNT membrane was made by the combined effect of intra-foulant interaction (Lys-Lys) and electrostatic repulsion between the membrane surface and the foulant at pH 4.7 and 10.4, and increasing ionic strength where the foulant-foulant interaction and membrane-fouling interaction were weak. In a bovine serum albumin (BSA) filtration, severe pore blocking was reduced by less deposition via the electrostatic interaction between the membrane and foulant at pH 4.7 and 10.4 and increasing ionic strength, at which the interaction between the membrane and BSA became weak. For binary mixture filtration, the protein fouling mechanism was more dominantly affected by foulant-foulant interaction (Lys-BSA, Lys-Lys, and BSA-BSA) at pH 7.0 and increase in ionic strength. This research demonstrates that MWCNT membrane fouling can be alleviated by changing pH condition and ionic strength based on the foulant-foulant interaction and the electrostatic interaction between the membrane and foulant.

  14. Synthesis and characterization of ceramic membranes for micro filtration

    International Nuclear Information System (INIS)

    Mohammad Idrees; Lim Yan Ne; Hamdani Saidi

    1996-01-01

    This paper presents the results of a preliminary research work in the development of ceramic membranes by moulding process. The two major objectives were to determine the effect of operating parameters ori- the membrane sheet and membrane characterization. The starting material for the membrane was powdered aluminum oxide and alumina granules. Alumina granules were obtained by spray drying of mixture of alumina with additives and binders under specific conditions. The membrane sheet was produced by mould pressing at various pressures and then sintering at different temperatures. Membrane characterization was done based on microstructure using SEM, pore size distribution, density, and porosity. Strong and porous membranes were produced at pressing force of 120 -140 kN and sintering temperature of 1400 -1500 'C. Pore size and porosity obtained was in the range of 2 -10 μ m, and 13 - 48% respectively. These membranes can be used for, microfiltration at elevated temperature and under extreme environmental condition. They can also be used as porous support for the production qf composite asymmetric UF/hyperfiltration, and gas separation membranes. Further work in the refinement of' pore-size and permeation studies is envisaged

  15. In-situ Growth of Biocidal AgCl Crystals in the Top Layer of Asymmetric Polytriazole Membranes

    KAUST Repository

    Villalobos, Luis Francisco; Chisca, Stefan; Cheng, Hong; Hong, Pei-Ying; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2016-01-01

    Scalable fabrication strategies to concentrate biocidal materials in only the surface of membranes are highly desirable. In this letter, tight-UF polytriazole membranes with a high concentration of biocide silver chloride (AgCl) crystals dispersed in only their top layer are presented. They were made following a simple dual-bath process that is compatible with current commercial membrane casting facilities. These membranes can achieve a 150-fold increase in their antimicrobial character compared to their silver-free counterpart. Moreover, fine-tuning of their properties is straightforward. A change in the silver concentration in one of the baths is enough to tune the permeance, molecular weight cut-off (MWCO) and silver loading of the final membrane.

  16. In-situ Growth of Biocidal AgCl Crystals in the Top Layer of Asymmetric Polytriazole Membranes

    KAUST Repository

    Villalobos, Luis Francisco

    2016-05-06

    Scalable fabrication strategies to concentrate biocidal materials in only the surface of membranes are highly desirable. In this letter, tight-UF polytriazole membranes with a high concentration of biocide silver chloride (AgCl) crystals dispersed in only their top layer are presented. They were made following a simple dual-bath process that is compatible with current commercial membrane casting facilities. These membranes can achieve a 150-fold increase in their antimicrobial character compared to their silver-free counterpart. Moreover, fine-tuning of their properties is straightforward. A change in the silver concentration in one of the baths is enough to tune the permeance, molecular weight cut-off (MWCO) and silver loading of the final membrane.

  17. Computational simulation studies of the reduction process of UF4 to metallic uranium

    International Nuclear Information System (INIS)

    Borges, Wesden de Almeida

    2011-01-01

    The production of metallic uranium is essential for production of fuel elements for using in nuclear reactors manufacturing of radioisotopes and radiopharmaceuticals. In IPEN, metallic uranium is produced by magnesiothermical reduction of UF 4 . This reaction is performed in a closed graphite crucible inserted in a sealed metal reactor and no contact with the outside environment. The set is gradually heated in an oven pit, until it reaches the ignition temperature of the reaction (between 600-650 degree C). The modeling of the heating profile of the system can be made using simulation programs by finite element method. Through the thermal profiles in the load, we can have a notion of heating period required for the reaction to occur, allowing the identification of the same group in a greater or smaller yield in metallic uranium production. Thermal properties of UF 4 are estimated, obtaining thermal conductivity and heat capacity using the Flash Laser Method, and for the load UF 4 + Mg, either. The results are compared to laboratory tests to simulate the primary production process. (author)

  18. Avslag på uførepensjon

    Directory of Open Access Journals (Sweden)

    Anders M. Galaasen

    2010-01-01

    Full Text Available Introduksjon: Mens mye er skrevet om hvem som får uførepensjon, foreligger det få vitenskapelige artikler om avslag på søknad om uførepensjon.Mål: Vi har gjennomført en undersøkelse over hvem som får avslag på søknad om uførepensjon og hvorledes det går med dem i en 6-7 års oppfølging.Metoder: Data fra FD-trygd, koplet med Statistisk sentralbyrås demografiske data er brukt for å sammenlikne dem som får avslag med dem som blir innvilget uførepensjon 1993 ut fra alder, kjønn, utdanning, etnisitet og inntekt. Trygdestatus for dem med avslag er så fulgt til 2000.Resultater: Vi har funnet at kvinner oftere får avslag enn menn, at de eldste og yngste sjeldnere får avslag og at de med minst inntekt og ikke-vestlig bakgrunn oftere får avslag, mens avslagsprosenten er omtrent den samme på alle utdanningsnivåer. I en oppfølging frem til 2000 viser det seg at de fleste ender opp med trygdeytelser, og at kjønnsforskjellene ytterligere forsterkes. De få av de yngste som får avslag, er relativt hyppig fortsatt uten ytelser.Konklusjon: Selv om noen av dem som får avslag, klarer å komme tilbake til normalt lønnsarbeid, og derigjennom bidra til økt produktivitet, resulterer avslag oftere kun i en utsettelse av overgang til permanente trygdeytelser. Hva den eventuelle samfunnsøkonomiske gevinsten av en slik utsettelse er, når man også tar i betraktning økt saksbehandling fra NAV, samt utgifter til attføring og rehabilitering, er et spørsmål for videre forskning. Galaasen AM, Bruusgaard D, Claussen B. Denial of disability pension. Nor J Epidemiol 2009; 19 (2: 203-208. ENGLISH SUMMARYIntroduction: While much is written about who gets disability pensions, there are few scientific articles on the denial of disability pension.Objective: We conducted a survey of who is rejected disability pension and how their life situation evolves in a 6- 7-year follow-up.Methods: Data from FD-trygd, coupled with Statistics Norway

  19. Investigation of severe UF membrane fouling induced by three marine algal species

    KAUST Repository

    Merle, Tony; Dramas, Laure; Gutierrez, Leonardo; Garcia-Molina, Veronica; Croue, Jean-Philippe

    2016-01-01

    Index (HIFI) was correlated to their biopolymer content but this correlation is specific for each species. Solution pre-filtration through a 1.2 μm membrane proved that cells and particulate algal organic matter (p-AOM) considerably contribute to fouling

  20. Membrane processes for the treatment of exhausted effluents from leather industry; Processi a membrana per il trattamento degli effluenti esausti dell'industria conciaria

    Energy Technology Data Exchange (ETDEWEB)

    Cassano, A.; Molinari, R.; Drioli, E. [Arcavata di Rende Univ. della Calabria, Arcavata di Rende, CS (Italy). Istituto di Ricerca su Membrane e Modellistica di Reattori Chimici

    2001-03-01

    This paper considers the potentiality of some membrane processes such as ultrafiltration (UF), nano filtration (NF) and reverse osmosis (RO), in the treatment of exhausted effluents produced by the tanning cycle, based on the experimental results of the Research Group. [Italian] In questo studio vengono analizzate le potenzialita' applicative di alcuni processi a membrana, quali ultrafiltrazione (UF), nanofiltrazione (NF) e osmosi inversa (Ol), nel trattamento degli effluenti esausti del ciclo conciario, sulla base di risultati sperimentali del gruppo di ricerca del Cnr-Irmerc.

  1. Theoretical study of relativistic effects in the electronic structure and chemical bonding of UF6

    International Nuclear Information System (INIS)

    Onoe, Jun; Takeuchi, Kazuo; Sekine, Rika; Nakamatsu, Hirohide; Mukoyama, Takeshi; Adachi, Hirohiko.

    1992-01-01

    We have performed the relativistic molecular orbital calculation for the ground state of UF 6 , using the discrete-variational Dirac-Slater method (DV-DS), in order to elucidate the relativistic effects in the electronic structure and chemical bonding. Compared with the electronic structure calculated by the non-relativistic Hartree-Fock-Slater (DV-X α )MO method, not only the direct relativistic effects (spin-orbit splitting etc), but also the indirect effect due to the change in screening core potential charge are shown to be important in the MO level structure. From the U-F bond overlap population analysis, we found that the U-F bond formation can be explained only by the DV-DS, not by the DV-X α . The calculated electronic structure in valence energy region (-20-OeV) and excitation energies in UV region are in agreement with experiments. (author)

  2. MF/UF rejection and fouling potential of algal organic matter from bloom-forming marine and freshwater algae

    KAUST Repository

    Villacorte, Loreen O.; Ekowati, Yuli; Winters, Harvey; Amy, Gary L.; Schippers, Jan Cornelis; Kennedy, Maria Dolores

    2015-01-01

    the latter were poorly rejected. MF (0.4μm and 0.1μm pore size) rejected 14%-56% of biopolymers while conventional UF (100kDa) and tight UF (10kDa) rejected up to 83% and 97%, respectively. The retention of AOM resulted in a rapid increase in trans

  3. Argon/UF6 plasma exhaust gas reconstitution experiments using preheated fluorine and on-line diagnostics. [fissioning uranium plasma core reactor design

    Science.gov (United States)

    Roman, W. C.

    1979-01-01

    The feasibility of employing a flowing, high-temperature, pure fluorine/UF6 regeneration system to efficiently convert a large fraction of the effluent plasma exhaust back to pure UF6 was demonstrated. The custom built T.O.F. mass spectrometer sampling system permitted on-line measurements of the UF6 concentration at different locations in the exhaust system. Negligible amounts ( 100 ppm) of UF6 were detected in the axial bypass exhaust duct and the exhaust ducts downstream of the cryogenic trap system used to collect the UF6, thus verifying the overall system efficiency over a range of operating conditions. Use of a porous Monel duct as part of the exhaust duct system, including provision for injection of pure fluorine, provided a viable technique to eliminate uranium compound residue on the inside surface of the exhaust ducts. Typical uranium compound mass deposition per unit area of duct was 2 micron g/sq cm. This porous duct technique is directly applicable to future uranium compound transfer exhaust systems. Throughout these experiments, additional basic data on the corrosion aspects of hot, pressurized UF6/fluorine were also accumulated.

  4. Analysis of an indirect neutron signature for enhanced UF_6 cylinder verification

    International Nuclear Information System (INIS)

    Kulisek, J.A.; McDonald, B.S.; Smith, L.E.; Zalavadia, M.A.; Webster, J.B.

    2017-01-01

    The International Atomic Energy Agency (IAEA) currently uses handheld gamma-ray spectrometers combined with ultrasonic wall-thickness gauges to verify the declared enrichment of uranium hexafluoride (UF_6) cylinders. The current method provides relatively low accuracy for the assay of "2"3"5U enrichment, especially for natural and depleted UF_6. Furthermore, the current method provides no capability to assay the absolute mass of "2"3"5U in the cylinder due to the localized instrument geometry and limited penetration of the 186-keV gamma-ray signature from "2"3"5U. Also, the current verification process is a time-consuming component of on-site inspections at uranium enrichment plants. Toward the goal of a more-capable cylinder assay method, the Pacific Northwest National Laboratory has developed the hybrid enrichment verification array (HEVA). HEVA measures both the traditional 186-keV direct signature and a non-traditional, high-energy neutron-induced signature (HEVA_N_T). HEVA_N_T enables full-volume assay of UF_6 cylinders by exploiting the relatively larger mean free paths of the neutrons emitted from the UF_6. In this work, Monte Carlo modeling is used as the basis for characterizing HEVA_N_T in terms of the individual contributions to HEVA_N_T from nuclides and hardware components. Monte Carlo modeling is also used to quantify the intrinsic efficiency of HEVA for neutron detection in a cylinder-assay geometry. Modeling predictions are validated against neutron-induced gamma-ray spectra from laboratory measurements and a relatively large population of Type 30B cylinders spanning a range of enrichments. Implications of the analysis and findings on the viability of HEVA for cylinder verification are discussed, such as the resistance of the HEVA_N_T signature to manipulation by the nearby placement of neutron-conversion materials.

  5. Review of models used for determining consequences of UF6 release: Development of model evaluation criteria. Volume 1

    International Nuclear Information System (INIS)

    Nair, S.K.; Chambers, D.B.; Park, S.H.; Hoffman, F.O.

    1997-11-01

    The objective of this study is to examine the usefulness and effectiveness of currently existing models that simulate the release of uranium hexafluoride from UF 6 -handling facilities, subsequent reactions of UF 6 with atmospheric moisture, and the dispersion of UF 6 and reaction products in the atmosphere. The study evaluates screening-level and detailed public-domain models that were specifically developed for UF 6 and models that were originally developed for the treatment of dense gases but are applicable to UF 6 release, reaction, and dispersion. The model evaluation process is divided into three specific tasks: model-component evaluation; applicability evaluation; and user interface and quality assurance and quality control (QA/QC) evaluation. Within the model-component evaluation process, a model's treatment of source term, thermodynamics, and atmospheric dispersion are considered and model predictions are compared with actual observations. Within the applicability evaluation process, a model's applicability to Integrated Safety Analysis, Emergency Response Planning, and Post-Accident Analysis, and to site-specific considerations are assessed. Finally, within the user interface and QA/QC evaluation process, a model's user-friendliness, presence and clarity of documentation, ease of use, etc. are assessed, along with its handling of QA/QC. This document presents the complete methodology used in the evaluation process

  6. Nuclear criticality safety aspects of gaseous uranium hexafluoride (UF6) in the diffusion cascade

    International Nuclear Information System (INIS)

    Huffer, J.E.

    1997-04-01

    This paper determines the nuclear safety of gaseous UF 6 in the current Gaseous Diffusion Cascade and auxiliary systems. The actual plant safety system settings for pressure trip points are used to determine the maximum amount of HF moderation in the process gas, as well as the corresponding atomic number densities. These inputs are used in KENO V.a criticality safety models which are sized to the actual plant equipment. The ENO V.a calculation results confirm nuclear safety of gaseous UF 6 in plant operations

  7. UV dissociation of vibrationally excited UF6

    International Nuclear Information System (INIS)

    Alexandre, M.; Clerc, M.; Gagnon, R.; Gilbert, M.; Isnard, P.; Nectoux, P.; Rigny, P.; Weulersse, J.M.

    1983-01-01

    Before application of laser photodissociation of UF 6 to the separation of uranium isotopes becomes practical, isotopic selectivity should be optimized. We present here results on the cross sections involved in the irradiation of UF 6 simultaneously with infrared and ultraviolet lasers, as a function of wavelengths, fluence and temperature (at 293 K and 105 K, in an adiabatic expansion). The experiment uses a Nd 3+ YAG pumped lithium niobate optical parametric oscillator as a tunable 16 μ light source. Energies of the order of 1 mJ can be obtained with linewidths smaller than 0.1 cm - . The UV source used is based on ND 3+ YAG pumped dye laser and various frequency mixing schemes. At low temperature the frequency variation of the absorbed infrared energy per molecule depends markedly on the IR fluence phisub(IR) with a maximum value varying as phisub(IR)sup(-1/2) and a frequency extension far beyond the low level absorption spectrum. The absorbed vibrational energy leads to a change in the UV cross section comparable with the effect of a rise in temperature. Using this a model is put forward to express the isotopic selectivity 235 U/ 238 U as a function of UV wavelength and IR irradiation conditions. Experimental results agree with this model, and yield to maximum selectivity close to two [fr

  8. Measurement of 235U content and flow of UF6 using delayed neutrons or gamma rays following induced fission

    International Nuclear Information System (INIS)

    Stromswold, D.C.; Peurrung, A.J.; Reeder, P.L.; Perkins, R.W.

    1996-06-01

    Feasibility experiments conducted at Pacific Northwest National Laboratory demonstrate that either delayed neutrons or energetic gamma rays from short-lived fission products can be used to monitor the blending of UF 6 gas streams. A 252 Cf neutron source was used to induce 235 U fission in a sample, and delayed neutrons and gamma rays were measured after the sample moved open-quotes down-stream.close quotes The experiments used a UO 2 powder that was transported down the pipe to simulate the flowing UF 6 gas. Computer modeling and analytic calculation extended the test results to a flowing UF 6 gas system. Neutron or gamma-ray measurements made at two downstream positions can be used to indicate both the 235 U content and UF 6 flow rate. Both the neutron and gamma-ray techniques have the benefits of simplicity and long-term reliability, combined with adequate sensitivity for low-intrusion monitoring of the blending process. Alternatively, measuring the neutron emission rate from (a, n) reactions in the UF 6 provides an approximate measure of the 235 U content without using a neutron source to induce fission

  9. MEMBRANE BIOREACTOR FOR TREATMENT OF RECALCITRANT WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Suprihatin Suprihatin

    2012-02-01

    Full Text Available The low biodegradable wastewaters remain a challenge in wastewater treatment technology. The performance of membrane bioreactor systems with submerged hollow fiber micro- and ultrafiltration membrane modules were examined for purifying recalcitrant wastewaters of leachate of a municipal solid waste open dumping site and effluent of pulp and paper mill. The use of MF and UF membrane bioreactor systems showed an efficient treatment for both types wastewaters with COD reduction of 80-90%. The membrane process achieved the desirable effects of maintaining reasonably high biomass concentration and long sludge retention time, while producing a colloid or particle free effluent. For pulp and paper mill effluent a specific sludge production of 0.11 kg MLSS/kg COD removed was achieved. A permeate flux of about 5 L/m²h could be achieved with the submerged microfiltration membrane. Experiments using ultrafiltration membrane produced relatively low permeate fluxes of 2 L/m²h. By applying periodical backwash, the flux could be improved significantly. It was indicated that the particle or colloid deposition on membrane surface was suppressed by backwash, but reformation of deposit was not effectively be prevented by shear-rate effect of aeration. Particle and colloid started to accumulate soon after backwash. Construction of membrane module and operation mode played a critical role in achieving the effectiveness of aeration in minimizing deposit formation on the membrane surface.

  10. Laboratory and pilot-plant studies on the conversion of uranyl nitrate hexahydrate to UF6 by fluidized-bed processes

    International Nuclear Information System (INIS)

    Youngblood, E.L.; Urza, I.J.; Cathers, G.I.

    1977-06-01

    This report describes laboratory and pilot-plant studies on the conversion of uranyl nitrate hexahydrate (UNH) to UF 6 and on purification of the UF 6 . Experimental laboratory studies on the removal of residual nitrate from uranium trioxide (UO 3 ) calcine and the fluorination of technetium and subsequent sorption on MgF 2 were conducted to support the pilot-plant work. Two engineering-scale pilot plants utilizing fluidized-bed processes were constructed for equipment and process testing of the calcination of UNH to UO 3 and the direct fluorination of UO 3 to UF 6

  11. Transport of natural UF6 in a challenging environment

    International Nuclear Information System (INIS)

    Chollet, P.; Presta, A.

    2004-01-01

    At the entrance of the nuclear fuel cycle, the front-end material transportation takes a major and specific place. After years of stability the landscape of front-end industry is going toward significant changes regarding capacity, implementation of new technologies, imbalance of conversion capacity between geographical areas with increasing volumes of natural UF6 to transport and transport issues such as new regulations and denial of shipments by liners and ports. Facing this evolution the front end-industry is re-organizing its environment to increase robustness of the logistical chain: by being active in industrial organizations such as WNTI and WNA to share technical views and develop licensed standard transport equipment usable worldwide by developing other safe and reliable comprehensive logistics solutions as an alternative to conventional transport means. Our paper will describe the solutions under review to meet nuclear fuel cycle companies expectations: qualification of several robust logistics systems chartered vessels for maritime transport of UF6 specific 20' flat racks for safer handling of 48Y cylinders with future thermal protections

  12. Transport of natural UF6 in a challenging environment

    Energy Technology Data Exchange (ETDEWEB)

    Chollet, P.; Presta, A. [COGEMA Logistics (AREVA Group) (France)

    2004-07-01

    At the entrance of the nuclear fuel cycle, the front-end material transportation takes a major and specific place. After years of stability the landscape of front-end industry is going toward significant changes regarding capacity, implementation of new technologies, imbalance of conversion capacity between geographical areas with increasing volumes of natural UF6 to transport and transport issues such as new regulations and denial of shipments by liners and ports. Facing this evolution the front end-industry is re-organizing its environment to increase robustness of the logistical chain: by being active in industrial organizations such as WNTI and WNA to share technical views and develop licensed standard transport equipment usable worldwide by developing other safe and reliable comprehensive logistics solutions as an alternative to conventional transport means. Our paper will describe the solutions under review to meet nuclear fuel cycle companies expectations: qualification of several robust logistics systems chartered vessels for maritime transport of UF6 specific 20' flat racks for safer handling of 48Y cylinders with future thermal protections.

  13. Validation of the Cristallini Sampling Method for UF6 by High Precision Double-Spike Measurements

    OpenAIRE

    RICHTER STEPHAN; JAKOBSSON ULF; HIESS JOE; AMARAGGI D.

    2017-01-01

    The so-called "Cristallini Method" for sampling of UF6 by adsorption and hydrolysis in alumina pellets inside a fluorothene P-10 tube was developed by the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) several years ago. This method has several advantages compared to the currently used sampling method, for which UF6 is distilled into a stainless steel tube for transportation, with hydrolysis and isotopic analysis being performed after shipping to the analyt...

  14. Statistical analysis of data from accelerated ageing tests of PES UF membranes

    NARCIS (Netherlands)

    Zondervan, Edwin; Zwijnenburg, Arie; Roffel, Brian

    2007-01-01

    In this research, membrane life-time was evaluated by means of accelerated ageing experiments. A pressure pulse unit was used to perform the ageing experiments in an accelerated way. An experimental design has been set up and four ageing factors were varied at two levels. The four ageing factors

  15. The Accuracy of the Sysmex UF-1000i in Urine Bacterial Detection Compared With the Standard Urine Analysis and Culture.

    Science.gov (United States)

    Erdman, Patrick; Anderson, Brian; Zacko, J Christopher; Taylor, Kirk; Donaldson, Keri

    2017-11-01

    - Urinary tract infections are characterized by the presence of microbial pathogens within the urinary tract. They represent one of the most common infections in hospitalized and clinic patients. - To model the parameters of the Sysmex UF-1000i to the gold standard, urine culture, and to compare the detection of dipstick leukocyte esterase and nitrates to urine cultures and UF-1000i results. - Data were compared from urine samples collected in sterile containers for bacterial culture and microscopic analysis. One sample was used to inoculate a 5% sheep blood agar and MacConkey agar plate using a 0.001-mL calibrated loop. The second sample was analyzed by urinalysis-associated microscopy. The media plates were investigated for growth after 18 to 24 hours of aerobic incubation at 37°C. The second sample was analyzed for bacteria and leukocytes with the Sysmex UF-1000i according to the manufacturer's guidelines. Three definitions for culture results, sensitivity, and specificity at different cutoff values were calculated for the UF-1000i. - The negative predictive value for any positive culture in the adult population included in the study was 95.5%, and the negative predictive value for positive cultures containing growth of 100 000 or more colony-forming units was 99.3% using the Sysmex UF-1000i. - Sysmex UF-1000i showed 98% sensitivity and 93.7% specificity with a 95.5% negative predictive value. Thus, a negative screen with the UF-1000i using defined thresholds for white blood cell counts and bacteria was likely to be a true negative, decreasing the need for presumptive antibiotics.

  16. A study of chemical modifications of a Nafion membrane by incorporation of different room temperature ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Martinez de Yuso, M.V.; Rodriguez-Castellon, E. [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Malaga (Spain); Neves, L.A.; Coelhoso, I.M.; Crespo, J.G. [REQUIMTE/CQFB, Departamento de Quimica, Universidade Nova de Lisboa, Caparica (Portugal); Benavente, J. [Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga (Spain)

    2012-08-15

    Surface and bulk chemical changes in a Nafion membrane as a result of room temperature ionic liquids (RTILs) incorporation were determined by X-ray photoelectron spectroscopy (XPS) and elemental analysis, respectively. RTILs with different physicochemical properties were selected. Two imidazolium based RTIL-cations (1-octyl-3-methylimidazolium and 1-butyl-3-methylimidazolium) were used to detect the effect of cation size on membrane modification, while the effect of the RTIL hydrophilic/hydrophobic character was also considered by choosing different anions. Angle resolved XPS measurements (ARXPS) were carried out varying the angle of analysis between 15 and 75 to get elemental information on the Nafion/RTIL-modified membranes interactions for a deepness of around 10 nm. Moreover, changes in the RTIL-modified membranes associated to thermal effect were also considered by analyzing the samples after their heating at 120 C for 24 h. Agreement between both chemical techniques, bulk and destructive elemental analysis and surface and non-destructive XPS, were obtained. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Benchmark calculation of APOLLO-2 and SLAROM-UF in a fast reactor lattice

    International Nuclear Information System (INIS)

    Hazama, T.

    2009-07-01

    A lattice cell benchmark calculation is carried out for APOLLO2 and SLAROM-UF on the infinite lattice of a simple pin cell featuring a fast reactor. The accuracy in k-infinity and reaction rates is investigated in their reference and standard level calculations. In the 1. reference level calculation, APOLLO2 and SLAROM-UF agree with the reference value of k-infinity obtained by a continuous energy Monte Carlo calculation within 50 pcm. However, larger errors are observed in a particular reaction rate and energy range. The major problem common to both codes is in the cross section library of 239 Pu in the unresolved energy range. In the 2. reference level calculation, which is based on the ECCO 1968 group structure, both results of k-infinity agree with the reference value within 100 pcm. The resonance overlap effect is observed by several percents in cross sections of heavy nuclides. In the standard level calculation based on the APOLLO2 library creation methodology, a discrepancy appears by more than 300 pcm. A restriction is revealed in APOLLO2. Its standard cross section library does not have a sufficiently small background cross section to evaluate the self shielding effect on 56 Fe cross sections. The restriction can be removed by introducing the mixture self-shielding treatment recently introduced to APOLLO2. SLAROM-UF original standard level calculation based on the JFS-3 library creation methodology is the best among the standard level calculations. Improvement from the SLAROM-UF standard level calculation is achieved mainly by use of a proper weight function for light or intermediate nuclides. (author)

  18. Actual and Idealized Crystal Field Parameterizations for the Uranium Ions in UF 4

    Science.gov (United States)

    Gajek, Z.; Mulak, J.; Krupa, J. C.

    1993-12-01

    The crystal field parameters for the actual coordination symmetries of the uranium ions in UF 4, C2 and C1, and for their idealizations to D2, C2 v , D4, D4 d , and the Archimedean antiprism point symmetries are given. They have been calculated by means of both the perturbative ab initio model and the angular overlap model and are referenced to the recent results fitted by Carnall's group. The equivalency of some different sets of parameters has been verified with the standardization procedure. The adequacy of several idealized approaches has been tested by comparison of the corresponding splitting patterns of the 3H 4 ground state. Our results support the parameterization given by Carnall. Furthermore, the parameterization of the crystal field potential and the splitting diagram for the symmetryless uranium ion U( C1) are given. Having at our disposal the crystal field splittings for the two kinds of uranium ions in UF 4, U( C2) and U( C1), we calculate the model plots of the paramagnetic susceptibility χ( T) and the magnetic entropy associated with the Schottky anomaly Δ S( T) for UF 4.

  19. Palmitoylation of Sindbis Virus TF Protein Regulates Its Plasma Membrane Localization and Subsequent Incorporation into Virions.

    Science.gov (United States)

    Ramsey, Jolene; Renzi, Emily C; Arnold, Randy J; Trinidad, Jonathan C; Mukhopadhyay, Suchetana

    2017-02-01

    Palmitoylation is a reversible, posttranslational modification that helps target proteins to cellular membranes. The alphavirus small membrane proteins 6K and TF have been reported to be palmitoylated and to positively regulate budding. 6K and TF are isoforms that are identical in their N termini but unique in their C termini due to a -1 ribosomal frameshift during translation. In this study, we used cysteine (Cys) mutants to test differential palmitoylation of the Sindbis virus 6K and TF proteins. We modularly mutated the five Cys residues in the identical N termini of 6K and TF, the four additional Cys residues in TF's unique C terminus, or all nine Cys residues in TF. Using these mutants, we determined that TF palmitoylation occurs primarily in the N terminus. In contrast, 6K is not palmitoylated, even on these shared residues. In the C-terminal Cys mutant, TF protein levels increase both in the cell and in the released virion compared to the wild type. In viruses with the N-terminal Cys residues mutated, TF is much less efficiently localized to the plasma membrane, and it is not incorporated into the virion. The three Cys mutants have minor defects in cell culture growth but a high incidence of abnormal particle morphologies compared to the wild-type virus as determined by transmission electron microscopy. We propose a model where the C terminus of TF modulates the palmitoylation of TF at the N terminus, and palmitoylated TF is preferentially trafficked to the plasma membrane for virus budding. Alphaviruses are a reemerging viral cause of arthritogenic disease. Recently, the small 6K and TF proteins of alphaviruses were shown to contribute to virulence in vivo Nevertheless, a clear understanding of the molecular mechanisms by which either protein acts to promote virus infection is missing. The TF protein is a component of budded virions, and optimal levels of TF correlate positively with wild-type-like particle morphology. In this study, we show that the

  20. Technology Assessment for Proof-of-Concept UF6 Cylinder Unique Identification Task 3.1.2 Report – Survey and Assessment of Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wylie, Joann; Hockert, John

    2014-04-24

    The National Nuclear Security Administration (NNSA) Office of Nonproliferation and International Security’s (NA-24) Next Generation Safeguards Initiative (NGSI) and the nuclear industry have begun to develop approaches to identify and monitor uranium hexafluoride (UF6) cylinders. The NA-24 interest in a global monitoring system for UF6 cylinders relates to its interest in supporting the International Atomic Energy Agency (IAEA) in deterring and detecting diversion of UF6 (e.g., loss of cylinder in transit) and undeclared excess production at conversion and enrichment facilities. The industry interest in a global monitoring system for UF6 cylinders relates to the improvements in operational efficiencies that such a system would provide. This task is part of an effort to survey and assess technologies for a UF6 cylinder to identify candidate technologies for a proof-of-concept demonstration and evaluation for the Cylinder Identification System (CIS).

  1. Presentation and interpretation of field experiments of gaseous UF{sub 6} releases in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Crabol, B.; Boulaud, D.; Deville-Cavelin, G. [CEA/Inst. de Protection et de Surete Nucleaire, Dept. de Protection de l' Environnement et des Installations, Fontenay-aux-Roses (France); Geisse, C.; Iacona, L. [EURODIF/Production, Site de Tricastin, Pierrelatte Cedex (France)

    1992-07-01

    An experimental programme concerning the behaviour of UF{sub 6} released in gaseous phase in the atmosphere has been conducted in the years 1986-1989 by the French Atomic Energy Commission and EURODIF. Three field tests have been performed on the CEA/CESTA experimental site. These experiments permitted to get information about the kinetics of the hydrolysis reaction of the UF{sub 6}, the behaviour of the hydrolysis products in the atmosphere and the granulometry of the solid particles. (author)

  2. Preparation and Characterization of Polymeric-Hybrid PES/TiO2 Hollow Fiber Membranes for Potential Applications in Water Treatment

    Directory of Open Access Journals (Sweden)

    Silvia Simone

    2017-04-01

    Full Text Available In this work, poly(ethersulfone (PES ultrafiltration (UF hollow fibers (HF were modified by introducing TiO2 nanoparticles (TiO2-NPs in the polymeric dope, to endow them with photocatalytic properties. Different dope compositions and spinning conditions for producing “blank” PES UF fibers with suitable properties were investigated. PEO–PPO–PEO (Poly(ethylene glycol-block-poly(propylene glycol-block-poly(ethylene glycol, Pluronic® (Sigma-Aldrich, Milan, Italy was finally selected as the additive and a suitable dope composition was identified. After the detection of an appropriate dope composition and the optimization of the spinning parameters, PES-TiO2 HF was produced. The optimized composition was employed for preparing the mixed matrix HF loaded with TiO2 NPs. The effect of different TiO2 NP (0.3–1 wt % concentrations and bore fluid compositions on the fiber morphology and properties were explored. The morphology of the produced fibers was analyzed by Scanning Electron Microscopy (SEM. Fibers were further characterized by measuring: pore size diameters and thickness, porosity, and pure water permeability (PWP. The photocatalytic activity of the new membranes was also tested by UV light irradiation. The model “foulant” methylene blue (MB was used in order to prove the efficiency of the novel UF membrane for dye photo-degradation.

  3. Modelling of the behaviour of a UF_6 container in a fire

    International Nuclear Information System (INIS)

    Pinton, Eric

    1996-01-01

    This thesis is justified by the safety needs about storage and transport of UF_6 containers. To define their behaviour under fire conditions, a modelling was developed. Before tackling the numerical modelling, a phenomenological interpretation with experimental results of containers inside a furnace (800 C) during a fixed period was carried out. The internal heat transfers were considerably improved with these results. The 2D elaborated model takes into account most of the physical phenomena encountered in this type of situation (boiling, evaporation, condensation, radiant heat transfers through an absorbing gas, convection, pressurisation, thermal contact resistance, UF_6 expansion, solid core sinking in the liquid, elastic and plastic deformations of the steel container). This model was successfully confronted with experiments. (author) [fr

  4. Radiation-Triggered Surveillance for UF6 Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Michael M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    This paper recommends the use of radiation detectors, singly or in sets, to trigger surveillance cameras. Ideally, the cameras will monitor cylinders transiting the process area as well as the process area itself. The general process area will be surveyed to record how many cylinders have been attached and detached to the process between inspections. Rad-triggered cameras can dramatically reduce the quantity of recorded images, because the movement of personnel and equipment not involving UF6 cylinders will not generate a surveillance review file.

  5. Characterisation of a re-cast composite Nafion® 1100 series of proton exchange membranes incorporating inert inorganic oxide particles

    OpenAIRE

    Slade, S.; Smith, James; Campbell, S.; Ralph, T.; Ponce de Leon, C.; Walsh, F.

    2010-01-01

    A series of cation exchange membranes was produced by impregnating and coating both sides of a quartz web with a Nafion® solution (1100 EW, 10%wt in water). Inert filler particles (SiO2, ZrO2 or TiO2; 5–20%wt) were incorporated into the aqueous Nafion® solution to produce robust, composite membranes. Ion-exchange capacity/equivalent weight, water take-up, thickness change on hydration and ionic and electrical conductivity were measured in 1 mol dm−3 sulfuric acid at 298 K. The TiO2 filler sig...

  6. Characterization of natural organic matter treated by iron oxide nanoparticle incorporated ceramic membrane-ozonation process.

    Science.gov (United States)

    Park, Hosik; Kim, Yohan; An, Byungryul; Choi, Heechul

    2012-11-15

    In this study, changes in the physical and structural properties of natural organic matter (NOM) were observed during hybrid ceramic membrane processes that combined ozonation with ultrafiltration ceramic membrane (CM) or with a reactive ceramic membrane (RM), namely, an iron oxide nanoparticles (IONs) incorporated-CM. NOM from feed water and NOM from permeate treated with hybrid ceramic membrane processes were analyzed by employing several NOM characterization techniques. Specific ultraviolet absorbance (SUVA), high-performance size exclusion chromatography (HPSEC) and fractionation analyses showed that the hybrid ceramic membrane process effectively removed and transformed relatively high contents of aromatic, high molecular weight and hydrophobic NOM fractions. Fourier transform infrared spectroscopy (FTIR) and 3-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy revealed that this process caused a significant decrease of the aromaticity of humic-like structures and an increase in electron withdrawing groups. The highest removal efficiency (46%) of hydroxyl radical probe compound (i.e., para-Chlorobenzoic acid (pCBA)) in RM-ozonation process compared with that in CM without ozonation process (8%) revealed the hydroxyl radical formation by the surface-catalyzed reaction between ozone and IONs on the surface of RM. In addition, experimental results on flux decline showed that fouling of RM-ozonation process (15%) was reduced compared with that of CM without ozonation process (30%). These results indicated that the RM-ozonation process enhanced the destruction of NOM and reduced the fouling by generating hydroxyl radicals from the catalytic ozonation in the RM-ozonation process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Heat transfer characteristics of UF6 in a container heated from outer surface. Pt. 1. Thermal hydraulic analysis method taking account of phase change and volume expansion

    International Nuclear Information System (INIS)

    Wataru, Masumi; Gomi, Yoshio; Yamakawa, Hidetsugu; Tsumune, Daisuke

    1995-01-01

    Natural UF6 is transported in a steel container from foreign countries to the enrichment plant in Japan. If the container meets fire accident, it is heated by fire (800degC) and rupture of the container may occur. For the safety point of view, it is necessary to know whether rupture occurs or not. Because UF6 has a radiological and chemical hazards, it is difficult to perform a demonstration test with UF6. So thermal calculation method has to be developed. The rupture is caused by UF6 gaseous pressure or volume expansion of liquid UF6. To know time history of internal pressure and temperature distribution in the container, it is important to evaluate thermal phenomena of UF6. When UF6 is heated, it changes from solid to liquid or gas at low temperature (64degC) and then its volume expands little by little. In this study, thermal calculation method has been developed taking phase change and thermal expansion of UF6 into account. In the calculation, a two-dimensional model is adopted and natural convection of liquid UF6 is analyzed. As a result of this study, numerical solutions have been obtained taking phase change and volume expansion into account. (author)

  8. Thermodynamic assessment of the LiF–ThF{sub 4}–PuF{sub 3}–UF{sub 4} system

    Energy Technology Data Exchange (ETDEWEB)

    Capelli, E. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Department of Radiation Science and Technology, Faculty of Applied Physics, Delft University of Technology, Delft 2629JB (Netherlands); Beneš, O., E-mail: ondrej.benes@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Konings, R.J.M. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Department of Radiation Science and Technology, Faculty of Applied Physics, Delft University of Technology, Delft 2629JB (Netherlands)

    2015-07-15

    The LiF–ThF{sub 4}–PuF{sub 3}–UF{sub 4} system is the reference salt mixture considered for the Molten Salt Fast Reactor (MSFR) concept started with PuF{sub 3}. In order to obtain the complete thermodynamic description of this quaternary system, two binary systems (ThF{sub 4}–PuF{sub 3} and UF{sub 4}–PuF{sub 3}) and two ternary systems (LiF–ThF{sub 4}–PuF{sub 3} and LiF–UF{sub 4}–PuF{sub 3}) have been assessed for the first time. The similarities between CeF{sub 3}/PuF{sub 3} and ThF{sub 4}/UF{sub 4} compounds have been taken into account for the presented optimization as well as in the experimental measurements performed, which have confirmed the temperatures predicted by the model. Moreover, the experimental results and the thermodynamic database developed have been used to identify potential compositions for the MSFR fuel and to evaluate the influence of partial substitution of ThF{sub 4} by UF{sub 4} in the salt.

  9. Radiation dose rates from UF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Friend, P.J. [Urenco, Capenhurst (United Kingdom)

    1991-12-31

    This paper describes the results of many studies, both theoretical and experimental, which have been carried out by Urenco over the last 15 years into radiation dose rates from uranium hexafluoride (UF{sub 6}) cylinders. The contents of the cylinder, its history, and the geometry all affect the radiation dose rate. These factors are all examined in detail. Actual and predicted dose rates are compared with levels permitted by IAEA transport regulations.

  10. Thermodynamic assessment of the LiF–ThF4–PuF3–UF4 system

    NARCIS (Netherlands)

    Capelli, E.; Benes, O.; Konings, R.J.M.

    2015-01-01

    The LiF–ThF4–PuF3–UF4 system is the reference salt mixture considered for the Molten Salt Fast Reactor (MSFR) concept started with PuF3. In order to obtain the complete thermodynamic description of this quaternary system, two binary systems (ThF4–PuF3 and UF4–PuF3) and two ternary systems

  11. Impact of the fouling mechanism on enzymatic depolymerization of xylan in different configurations of membrane reactors

    DEFF Research Database (Denmark)

    Mohd Sueb, Mohd Shafiq Bin; Luo, Jianquan; Meyer, Anne S.

    2017-01-01

    In order to maximize enzymatic xylan depolymerization while simultaneously purifying the resulting monosaccharide (xylose), different ultrafiltration (UF) membrane reactor configurations were evaluated. Initial results showed that the two hydrolytic enzymes required for complete depolymerization...... which hindered enzymatic attack in addition to fouling. Reaction with both enzymes followed by UF was found to be the optimal configuration, providing at least 40% higher xylan hydrolysis than the cascade configuration (involving sequential reaction with each of the enzymes separately......) and the simultaneous reaction-filtration with both enzymes, respectively. This study thus confirmed that the reactor configuration has a crucial impact on the performance of both the reaction and the separation process of xylose during enzymatic xylan degradation, and that the type of fouling mechanism varies...

  12. Analysis of an indirect neutron signature for enhanced UF{sub 6} cylinder verification

    Energy Technology Data Exchange (ETDEWEB)

    Kulisek, J.A., E-mail: Jonathan.Kulisek@pnnl.gov; McDonald, B.S.; Smith, L.E.; Zalavadia, M.A.; Webster, J.B.

    2017-02-21

    The International Atomic Energy Agency (IAEA) currently uses handheld gamma-ray spectrometers combined with ultrasonic wall-thickness gauges to verify the declared enrichment of uranium hexafluoride (UF{sub 6}) cylinders. The current method provides relatively low accuracy for the assay of {sup 235}U enrichment, especially for natural and depleted UF{sub 6}. Furthermore, the current method provides no capability to assay the absolute mass of {sup 235}U in the cylinder due to the localized instrument geometry and limited penetration of the 186-keV gamma-ray signature from {sup 235}U. Also, the current verification process is a time-consuming component of on-site inspections at uranium enrichment plants. Toward the goal of a more-capable cylinder assay method, the Pacific Northwest National Laboratory has developed the hybrid enrichment verification array (HEVA). HEVA measures both the traditional 186-keV direct signature and a non-traditional, high-energy neutron-induced signature (HEVA{sub NT}). HEVA{sub NT} enables full-volume assay of UF{sub 6} cylinders by exploiting the relatively larger mean free paths of the neutrons emitted from the UF{sub 6}. In this work, Monte Carlo modeling is used as the basis for characterizing HEVA{sub NT} in terms of the individual contributions to HEVA{sub NT} from nuclides and hardware components. Monte Carlo modeling is also used to quantify the intrinsic efficiency of HEVA for neutron detection in a cylinder-assay geometry. Modeling predictions are validated against neutron-induced gamma-ray spectra from laboratory measurements and a relatively large population of Type 30B cylinders spanning a range of enrichments. Implications of the analysis and findings on the viability of HEVA for cylinder verification are discussed, such as the resistance of the HEVA{sub NT} signature to manipulation by the nearby placement of neutron-conversion materials.

  13. Ozonation and/or Coagulation - Ceramic Membrane Hybrid for Filtration of Impaired-Quality Source Waters

    KAUST Repository

    Ha, Changwon

    2013-09-01

    When microfiltration (MF) and ultrafiltration (UF) membranes are applied for drinking water treatment/wastewater reuse, membrane fouling is an evitable problem, causing the loss of productivity over time. Polymeric membranes have been often reported to experience rapid and/or problematical fouling, restraining sustainable operation. Ceramic membranes can be effectively employed to treat impaired-quality source waters due to their inherent robustness in terms of physical and chemical stability. This research aimed to identify the effects of coagulation and/or ozonation on ceramic membrane filtration for seawater and wastewater (WW) effluent. Two different types of MF and UF ceramic membranes obtained by sintering (i.e., TAMI made of TiO2+ZrO2) and anodic oxidation process (i.e., AAO made of Al2O3) were employed for bench-scale tests. Precoagulation was shown to play an important role in both enhancing membrane filterability and natural organic matter (NOM) removal efficacy for treating a highorganic surface water. The most critical factors were found to be pH and coagulant dosage with the highest efficiency resulting under low pH and high coagulant dose. Due to the ozone-resistance nature of the ceramic membranes, preozonation allowed the ceramic membranes to be operated at higher flux, especially leading to significant flux improvement when treating seawater in the presence of calcium and magnesium. 4 Dissolved ozone in contact with the TAMI ceramic membrane surface accelerated the formation of hydroxyl (˙OH) radicals in WW effluent treatment. Flux restoration of both ceramic membranes, fouled with seawater and WW effluent, was efficiently achieved by high backwash (BW) pressure and ozone in chemically enhanced backwashing (CEB). Ceramic membranes exhibited a pH-dependent permeate flux while filtering WW effluent, showing reduced fouling with increased pH. On the other hand, for filtering seawater, differences in permeate flux between the two membranes was

  14. Conversion of non-nuclear grade feedstock to UF4

    International Nuclear Information System (INIS)

    Ponelis, A.A.; Slabber, M.N.; Zimmer, C.H.E.

    1987-01-01

    The South African Conversion route is based on the direct feed of ammonium di-uranate produced by any one of a number of different mines. The physical and chemical characteristics of the feedstock can thus vary considerably and influence the conversion rate as well as the final UF 6 product purity. The UF 4 conversion reactor is a Moving Bed Reactor (MBR) with countercurrent flow of the reacting gas phases. Initial problems to continuously operate the MBR were mostly concerned with the physical nature of the UO 3 feed particles. Different approaches to eventually obtain a successful MBR are discussed. Besides obtaining UO 3 feed particles with certain physical attributes, the chemical impurities also have an effect on the operability of the MBR. The influence of the feedstock variables on the reduction and hydrofluorination rates after calcining has largely been determined from laboratory and pilot studies. The effect of chemical impurities such as sodium and potassium on the sinterability of the reacting particles and therefore the optimum temperature range in the MBR is also discussed. Confirmation of the effect of sodium and potassium impurities on the conversion rate has been obtained from large scale reactor operation. (author)

  15. Effects of Additives on the Morphology and Performance of PPTA/PVDF in Situ Blend UF Membrane

    Directory of Open Access Journals (Sweden)

    Hong-Bin Li

    2014-06-01

    Full Text Available Poly(p-phenylene terephtalamide (PPTA, a high-performance polymer with high modulus and good hydrophilicity, is often used as a reinforced material. However, due to its high crystallity, micro-phase separation often occurs in the blends. In this paper, PPTA/poly(vinylidene fluoride (PVDF compatible blend solution was synthesized by in situ polycondensation. Blend ultra-filtration membrane was prepared through the immersion phase inversion process. In order to obtain desired pore structure, the effects of different additives including hydrophilic polymer (polyethylene glycol (PEG, inorganic salt (lithium chloride (LiCl and the surfactant (Tween-80 on the morphology and performance of PPTA/PVDF blend membranes were studied. The membrane formation process was investigated through ternary phase diagram (thermodynamics and viscosities (kinetics analysis. It was found that, with the increasing of LiCl content, a porous membrane structure with long finger-like pores was formed due to the accelerated demixing process which resulted in the increase of porosity and pore diameter as well as the enhancement of water flux and the decline of PEG rejection. When Tween content increased to over 3 wt%, dynamic viscosity became the main factor resulting in a decreased phase separation rate. The transfer of PEG and LiCl molecules onto membrane surface increased the surface hydrophilicity. The effect of Tween content on membrane hydrophilicity was also correlated with the compatibility of blend components.

  16. Nuclear criticality safety aspects of gaseous uranium hexafluoride (UF{sub 6}) in the diffusion cascade

    Energy Technology Data Exchange (ETDEWEB)

    Huffer, J.E. [Parallax, Inc., Atlanta, GA (United States)

    1997-04-01

    This paper determines the nuclear safety of gaseous UF{sub 6} in the current Gaseous Diffusion Cascade and auxiliary systems. The actual plant safety system settings for pressure trip points are used to determine the maximum amount of HF moderation in the process gas, as well as the corresponding atomic number densities. These inputs are used in KENO V.a criticality safety models which are sized to the actual plant equipment. The ENO V.a calculation results confirm nuclear safety of gaseous UF{sub 6} in plant operations..

  17. UF6 Density and Mass Flow Measurements for Enrichment Plants using Acoustic Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Good, Morris S.; Smith, Leon E.; Warren, Glen A.; Jones, Anthony M.; Ramuhalli, Pradeep; Roy, Surajit; Moran, Traci L.; Denslow, Kayte M.; Longoni, Gianluca

    2017-09-01

    A key enabling capability for enrichment plant safeguards being considered by the International Atomic Energy Agency (IAEA) is high-accuracy, noninvasive, unattended measurement of UF6 gas density and mass flow rate. Acoustic techniques are currently used to noninvasively monitor gas flow in industrial applications; however, the operating pressures at gaseous centrifuge enrichment plants (GCEPs) are roughly two orders magnitude below the capabilities of commercial instrumentation. Pacific Northwest National Laboratory is refining acoustic techniques for estimating density and mass flow rate of UF6 gas in scenarios typical of GCEPs, with the goal of achieving 1% measurement accuracy. Proof-of-concept laboratory measurements using a surrogate gas for UF6 have demonstrated signatures sensitive to gas density at low operating pressures such as 10–50 Torr, which were observed over the background acoustic interference. Current efforts involve developing a test bed for conducting acoustic measurements on flowing SF6 gas at representative flow rates and pressures to ascertain the viability of conducting gas flow measurements under these conditions. Density and flow measurements will be conducted to support the evaluation. If successful, the approach could enable an unattended, noninvasive approach to measure mass flow in unit header pipes of GCEPs.

  18. Laboratory and pilot-plant studies on the conversion of uranyl nitrate hexahydrate to UF/sub 6/ by fluidized-bed processes

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, E.L.; Urza, I.J.; Cathers, G.I.

    1977-06-01

    This report describes laboratory and pilot-plant studies on the conversion of uranyl nitrate hexahydrate (UNH) to UF/sub 6/ and on purification of the UF/sub 6/. Experimental laboratory studies on the removal of residual nitrate from uranium trioxide (UO/sub 3/) calcine and the fluorination of technetium and subsequent sorption on MgF/sub 2/ were conducted to support the pilot-plant work. Two engineering-scale pilot plants utilizing fluidized-bed processes were constructed for equipment and process testing of the calcination of UNH to UO/sub 3/ and the direct fluorination of UO/sub 3/ to UF/sub 6/.

  19. Materials considerations for UF6 gas-core reactor. Interim report for preliminary design study

    International Nuclear Information System (INIS)

    Wagner, P.

    1977-04-01

    The limiting materials problem in a high-temperature UF 6 core reactor is the corrosion of the core containment vessel. The UF 6 , the lower fluorides of uranium, and the fluorine that exist at the anticipated reactor operating conditions (1000 K and about one atmosphere UF 6 ) are all corrosive. Because of this, the materials evaluation effort for this reactor design study has concentrated on the identification of a viable system for the containment vessel that meets both the materials and neutronic requirements. A study of the literature has revealed that the most promising corrosion-resistant candidates are Ni or Ni-Al alloys. One of the conclusions of this work is that the containment vessel use a nickel liner or clad since the use of Ni as a structural member is precluded by its relative blackness to thermal neutrons. Estimates of corrosion rates of Ni and Ni-Al alloys, the effects of the pressure and temperature of F 2 on the corrosion rates, calculated equilibrium gas compositions at reactor core operating conditions, suggested methods of fabrication, and recommendations for future research and development are included

  20. A 1D coordination polymer of UF{sub 5} with HCN as a ligand

    Energy Technology Data Exchange (ETDEWEB)

    Scheibe, Benjamin; Rudel, Stefan S.; Buchner, Magnus R.; Kraus, Florian [Fachbereich Chemie, Philipps-Universitaet Marburg (Germany); Karttunen, Antti J. [Department of Chemistry, Aalto University (Finland)

    2017-01-05

    β-Uranium(V) fluoride was reacted with liquid anhydrous hydrogen cyanide to obtain a 1D coordination polymer with the composition {sup 1}{sub ∞}[UF{sub 5}(HCN){sub 2}], {sup 1}{sub ∞}[UF{sub 4/1}F{sub 2/2}-(HCN){sub 2/1}], revealed by single-crystal X-ray structure determination. The reaction system was furthermore studied by means of vibrational and NMR spectroscopy, as well as by quantum chemical calculations. The compound presents the first described polymeric HCN Lewis adduct and the first HCN adduct of a uranium fluoride. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Scoping study to expedite development of a field deployable and portable instrument for UF6 enrichment assay

    OpenAIRE

    Chan, CYG; Valentine, JD; Russo, RE

    2017-01-01

    The primary objective of the present study is to identity the most promising, viable technologies that are likely to culminate in an expedited development of the next-generation, field-deployable instrument for providing rapid, accurate, and precise enrichment assay of uranium hexafluoride (UF6). UF6 is typically involved, and is arguably the most important uranium compound, in uranium enrichment processes. As the first line of defense against proliferation, accurate analytical techniques t...

  2. Performance of Hollow Fiber Ultrafiltration Membranes in the Clarification of Blood Orange Juice

    Directory of Open Access Journals (Sweden)

    Carmela Conidi

    2015-12-01

    Full Text Available The clarification of blood orange juice by ultrafiltration (UF was investigated by using three hollow fiber membrane modules characterized by different membrane materials (polysulfone (PS and polyacrylonitrile (PAN and molecular weight cut-off (MWCO (50 and 100 kDa. The performance of selected membranes was investigated in terms of productivity and selectivity towards total anthocyanin content (TAC, total phenolic content (TPC, and total antioxidant activity (TAA. All selected membranes allowed a good preservation of antioxidant compounds; however, the most suitable membrane for the clarification of the juice was found to be the PS 100 kDa membrane. In optimized operating conditions this membrane exhibited steady-state fluxes of 7.12 L/m2h, higher than those measured for other investigated membranes. Rejections towards TPC and TAA were of the order of 17.5% and 15%, respectively. These values were lower than those determined for PS 50 kDa and PAN 50 kDa membranes. In addition, the PS 100 kDa membrane exhibited a lower rejection (7.3% towards TAC when compared to the PS 50 kDa membrane (9.2%.

  3. Sampling and characterization of aerosols formed in the atmospheric hydrolysis of UF6

    International Nuclear Information System (INIS)

    Bostick, W.D.; McCulla, W.H.; Pickrell, P.W.; Branam, D.A.

    1983-01-01

    When gaseous UF 6 is released into the atmosphere, it rapidly reacts with ambient moisture to form an aerosol of uranyl fluoride and HF. As part of our Safety Analysis program, we have performed several experimental releases of UF 6 (from natural uranium) in contained volumes in order to investigate techniques for sampling and characterizing the aerosol materials. The aggregrate particle morphology and size distribution have been found to be dependent upon several conditions, including the relative humidity at the time of the release and the elapse time after the release. Aerosol composition and settling rate have been investigated using isokinetic samplers for the separate collection of UO 2 F 2 and HF, and via laser spectroscopic remote sensing (Mie scatter and infrared spectroscopy). 8 references

  4. Ultra-low field NMR for detection and characterization of 235 UF6

    Energy Technology Data Exchange (ETDEWEB)

    Espy, Michelle A [Los Alamos National Laboratory; Magnelind, Per E [Los Alamos National Laboratory; Matlashov, Andrei N [Los Alamos National Laboratory; Urbaitis, Algis V [Los Alamos National Laboratory; Volegov, Petr L [Los Alamos National Laboratory

    2009-01-01

    We have demonstrated the first ultra-low field (ULF) nuclear magnetic resonance measurements of uranium hexafluoride (UF{sub 6}), both depleted and 70% enriched, which is used in the uranium enrichment process. A sensitive non-invasive detection system would have an important role in non-proliferation surveillance. A two-frequency technique was employed to remove the transients induced by rapidly switching off the 50 mT pre-polarization field. A mean transverse relaxation time T{sub 2} of 24 ms was estimated for the un-enriched UF{sub 6} sample measured at a mean temperature of 80 C. Nuclear magnetic resonance at ULF has several advantages including the ability to measure through metal, such as pipes, and simple magnetic field generation hardware. We present here recent data and discuss the potential for non-proliferation monitoring of enrichment and flow velocity.

  5. Membrane Fouling Potential of Secondary Effluent Organic Matter (EfOM) from Conventional Activated Sludge Process

    KAUST Repository

    Wei, Chunhai; Amy, Gary L.

    2012-01-01

    Secondary effluent organic matter (EfOM) from a conventional activated sludge process was filtered through constant-pressure dead-end filtration tests with a sequential ultrafiltration (UF, molecular weight cut-off (MWCO) of 10k Dalton) and nanofiltration (NF, MWCO of 200 Dalton) array to investigate its membrane fouling potential. Advanced analytical methods including liquid chromatography with online carbon detection (LC-OCD) and fluorescent excitation-emission matrix (F-EEM) were employed for EfOM characterization. EfOM consisted of humic substances and building blocks, low molecular weight (LMW) neutrals, biopolymers (mainly proteins) and hydrophobic organics according to the sequence of their organic carbon fractions. The UF rejected only biopolymers and the NF rejected most humics and building blocks and a significant part of LMW neutrals. Simultaneous occurrence of cake layer and standard blocking during the filtration process of both UF and NF was identified according to constant-pressure filtration equations, which was possibly caused by the heterogeneous nature of EfOM with a wide MW distribution (several ten to several million Dalton). Thus the corresponding two fouling indices (kc for cake layer and ks for standard blocking) from UF and NF could characterize the fouling potential of macromolecular biopolymers and low to intermediate MW organics (including humics, building blocks, LMW neutrals), respectively. Compared with macromolecular biopolymers, low to intermediate MW organics exhibited a much higher fouling potential due to their lower molecular weight and higher concentration.

  6. THERMOPHYSICAL PROPERTIES AND WATER ACTIVITY OF TRANSFERRED CHEESE (UF

    Directory of Open Access Journals (Sweden)

    Mohsen Dalvi Esfahan

    2015-06-01

    Full Text Available Few data are available on the thermophysical properties of cheese in the ripening process.The main objective of this work was to investigate the effects of brining and temperature on the thermophysical properties, i.e., thermal conductivity, specific heat, density and water activity of UF cheese and finally we measure surface heat transfer coefficient .Then we develop models for thermophysical properties based on physical and multiple regression concept .

  7. Membrane fusion between baculovirus budded virus-enveloped particles and giant liposomes generated using a droplet-transfer method for the incorporation of recombinant membrane proteins.

    Science.gov (United States)

    Nishigami, Misako; Mori, Takaaki; Tomita, Masahiro; Takiguchi, Kingo; Tsumoto, Kanta

    2017-07-01

    Giant proteoliposomes are generally useful as artificial cell membranes in biochemical and biophysical studies, and various procedures for their preparation have been reported. We present here a novel preparation technique that involves the combination of i) cell-sized lipid vesicles (giant unilamellar vesicles, GUVs) that are generated using the droplet-transfer method, where lipid monolayer-coated water-in-oil microemulsion droplets interact with oil/water interfaces to form enclosed bilayer vesicles, and ii) budded viruses (BVs) of baculovirus (Autographa californica nucleopolyhedrovirus) that express recombinant transmembrane proteins on their envelopes. GP64, a fusogenic glycoprotein on viral envelopes, is activated by weak acids and is thought to cause membrane fusion with liposomes. Using confocal laser scanning microscopy (CLSM), we observed that the single giant liposomes fused with octadecyl rhodamine B chloride (R18)-labeled wild-type BV envelopes with moderate leakage of entrapped soluble compounds (calcein), and the fusion profile depended on the pH of the exterior solution: membrane fusion occurred at pH ∼4-5. We further demonstrated that recombinant transmembrane proteins, a red fluorescent protein (RFP)-tagged GPCR (corticotropin-releasing hormone receptor 1, CRHR1) and envelope protein GP64 could be partly incorporated into membranes of the individual giant liposomes with a reduction of the pH value, though there were also some immobile fluorescent spots observed on their circumferences. This combination may be useful for preparing giant proteoliposomes containing the desired membranes and inner phases. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Fabrication and Characterization of Chitosan Nanoparticle-Incorporated Quaternized Poly(Vinyl Alcohol) Composite Membranes as Solid Electrolytes for Direct Methanol Alkaline Fuel Cells

    International Nuclear Information System (INIS)

    Li, Pin-Chieh; Liao, Guan–Ming; Kumar, S. Rajesh; Shih, Chao-Ming; Yang, Chun-Chen; Wang, Da-Ming; Lue, Shingjiang Jessie

    2016-01-01

    Highlights: • Preparation of chitosan nanoparticles from bulk to enhance the degree of deacetylation. • The incorporation of chitosan nanoparticles into a QPVA matrix to form a nanocomposite membrane. • The nanocomposite constructed into thin-film membranes using the solution casting method. • To improve permeability, glutaraldehyde was cross-linked with the nanocomposite membranes. • A direct methanol alkaline fuel cell was studied at different temperatures. - Abstract: In this study, we designed a method for the preparation of chitosan nanoparticles incorporated into a quaternized poly(vinyl alcohol) (QPVA) matrix for direct methanol alkaline fuel cells (DMAFCs). The structural and morphological properties of the prepared nanocomposites were studied using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscope (TEM) and dynamic laser-light scattering (DLS). The crystallinity of the nanocomposite solid electrolytes containing 0 and 10% chitosan nanoparticles were investigated using differential scanning calorimetry (DSC). The electrochemical measurement of resulting nanocomposite membranes were analyzed according to the following parameters: methanol permeability, liquid uptakes, ionic conductivity and cell performances. The composite membranes with 10% chitosan nanoparticles in a QPVA matrix (CQPVA) show suppressed methanol permeability and higher ionic conductivity than pristine QPVA. In addition, the glutaraldehyde cross-linked nanocomposite film exhibited improvement on the methanol barrier property at 80 °C. The peak power density of the DMAFCs reached 67 mW cm −2 when fed into 1 M of methanol in 6 M of KOH.

  9. A new method to determine the skin thickness of asymmetric UF-membranes using colloidal gold particles

    NARCIS (Netherlands)

    Cuperus, Folkert Petrus; Bargeman, Derk; Smolders, C.A.

    1990-01-01

    In this paper a new method is presented for the determination of the skin thickness of asymmetric ultrafiltration membranes. The method is based on the use of well-defined, uniformly sized colloidal gold particles, permeated from the sublayer side of the membrane, combined with electron microscopic

  10. Spectroscopic properties of K5Li2UF10

    International Nuclear Information System (INIS)

    Karbowiak, M.; Gajek, Z.; Drozdzynski, J.

    2005-01-01

    A new uranium (III) fluoro-complex of the formula K 5 Li 2 UF 10 has been synthesised and characterised by X-ray powder diffraction and electronic absorption spectra measurements. The compound crystallises in the orthorhombic system, space group Pnma, with a = 20.723, b = 7.809, c = 6.932 A, V = 1121.89 A 3 , Z = 4 and is isostructural with its K 5 Li 2 NdF 10 and K 5 Li 2 LaF 10 analogous. The absorption spectrum of a polycrystalline sample of K 5 Li 2 UF 10 was recorded at 4.2 K in the 3500-45,000 cm -1 range and is discussed. The observed crystal-field levels were assigned and fitted to parameters of the simplified angular overlap model (AOM) and next to those of a semi-empirical Hamiltonian, which was representing the combined atomic and one-electron crystal-field interactions. The starting values of the AOM parameters were obtained from ab initio calculations. The analysis of the spectra enabled the assignment of 71 crystal-field levels of U 3+ with a relatively small r.m.s. deviation of 37 cm -1 . The total splitting of 714 cm -1 was calculated for the 4 I 9/2 ground multiplet

  11. Spectroscopic properties of K 5Li 2UF 10

    Science.gov (United States)

    Karbowiak, M.; Gajek, Z.; Drożdżyński, J.

    2005-04-01

    A new uranium (III) fluoro-complex of the formula K 5Li 2UF 10 has been synthesised and characterised by X-ray powder diffraction and electronic absorption spectra measurements. The compound crystallises in the orthorhombic system, space group Pnma, with a = 20.723, b = 7.809, c = 6.932 Å, V = 1121.89 Å 3, Z = 4 and is isostructural with its K 5Li 2NdF 10 and K 5Li 2LaF 10 analogous. The absorption spectrum of a polycrystalline sample of K 5Li 2UF 10 was recorded at 4.2 K in the 3500-45,000 cm -1 range and is discussed. The observed crystal-field levels were assigned and fitted to parameters of the simplified angular overlap model (AOM) and next to those of a semi-empirical Hamiltonian, which was representing the combined atomic and one-electron crystal-field interactions. The starting values of the AOM parameters were obtained from ab initio calculations. The analysis of the spectra enabled the assignment of 71 crystal-field levels of U 3+ with a relatively small r.m.s. deviation of 37 cm -1. The total splitting of 714 cm -1 was calculated for the 4I 9/2 ground multiplet.

  12. Survey of technological trends in functional membrane materials; Kinosei makuzai ni kansuru gijutsu doko chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-03-01

    Materials for membranes with novel functions are surveyed. The survey is focused on 10 subjects, which are high-performance RO (reverse osmosis)/UF (ultrafiltration) membranes; development of an energy-efficient secondary treatment system for urban wastewater using pollution-free membranes; high-performance ion exchange membranes; artificial lung membranes; hydrogen separation membranes (hydrogen as energy); development of an energy-efficient combustion system using gas separation membranes (oxygen-enriched membranes); organic matter separation membranes; enzyme-aided chemical reaction membranes and their application; development of a distilling ship; and functional membranes making use of photosynthesis. Discussed in this connection are the outlines of the technologies, the need of their development, methods and contents of the development efforts, and the effects and impacts of their development. The survey further concerns the particulars of the trends in novel technologies about functional membrane materials development, covering gas separation and liquid separation technologies; chemical reaction membranes; and enzyme-aided chemical reaction membranes and their application systems. As for their application, the survey covers the field of application of desalinated or ultrapure water; field of application of food fermentation technologies; industrial wastewater, valuable materials recovery, and urban wastewater treatment; and application to medical systems. (NEDO)

  13. Storage and uses alternatives of depleted UF6

    International Nuclear Information System (INIS)

    Marques, S.; Dotto, R.M.

    1988-01-01

    The U-enrichment of the Angra-1 pellets (Brazil) have generated about 792 ton of depleted-U, which is nowadays beeing stored by URENCO. The possible sending of this compound to Brazil, added to the fact that in the future, NUCLEI (Nuclebras Enriquecimento Isotopico) itself will generate it, reopens the discussion of the destination of this compound. In this context, the necessity, interest and viability aspects of a reconvertion plant of UF 6 in Brazil are getting important and are, in what follows, breafly discussed. (author) [pt

  14. Effect of operating conditions on the performances of multichannel ceramic UF membranes for textile mercerization wastewater treatment.

    Science.gov (United States)

    Zebić Avdičević, Maja; Košutić, Krešimir; Dobrović, Slaven

    2017-01-01

    Textile wastewaters are rated as one of the most polluting in all industrial sectors, and membrane separation is the most promising technology for their treatment and reuse of auxiliary chemicals. This study evaluates the performance of three types of tubular ceramic ultrafiltration membranes differing by mean pore size (1, 2 and 500 kDa) treating textile mercerization wastewater from a textile mill at different operating conditions: cross-flow velocity (CFV) and temperature. Acceptable results were obtained with 1 kDa ceramic membrane, with rejection efficiencies 92% for suspended solids, 98% for turbidity, 98% for color and 53% for total organic carbon at 20°C and 3 m s -1 CFV. Highest fouling effect was observed for 500 kDa membrane and lowest CFV. According to the observed results, 1 kDa membrane could be used for the treatment of wastewater from the textile mercerization process in terms of permeate quality.

  15. Cleaning efficiency enhancement by ultrasounds for membranes used in dairy industries.

    Science.gov (United States)

    Luján-Facundo, M J; Mendoza-Roca, J A; Cuartas-Uribe, B; Álvarez-Blanco, S

    2016-11-01

    Membrane cleaning is a key point for the implementation of membrane technologies in the dairy industry for proteins concentration. In this study, four ultrafiltration (UF) membranes with different molecular weight cut-offs (MWCOs) (5, 15, 30 and 50kDa) and materials (polyethersulfone and ceramics) were fouled with three different whey model solutions: bovine serum albumin (BSA), BSA plus CaCl2 and whey protein concentrate solution (Renylat 45). The purpose of the study was to evaluate the effect of ultrasounds (US) on the membrane cleaning efficiency. The influence of ultrasonic frequency and the US application modes (submerging the membrane module inside the US bath or applying US to the cleaning solution) were also evaluated. The experiments were performed in a laboratory plant which included the US equipment and the possibility of using two membrane modules (flat sheet and tubular). The fouling solution that caused the highest fouling degree for all the membranes was Renylat 45. Results demonstrated that membrane cleaning with US was effective and this effectiveness increased at lower frequencies. Although no significant differences were observed between the two different US applications modes tested, slightly higher cleaning efficiencies values placing the membrane module at the bottom of the tank were achieved. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Renewable energy powered membrane technology. 2. The effect of energy fluctuations on performance of a photovoltaic hybrid membrane system.

    Science.gov (United States)

    Richards, B S; Capão, D P S; Schäfer, A I

    2008-06-15

    This paper reports on the performance fluctuations during the operation of a batteryless hybrid ultrafiltration--nanofiltration/reverse osmosis (UF-NF/RO) membrane desalination system powered by photovoltaics treating brackish groundwater in outback Australia. The renewable energy powered membrane (RE-membrane) system is designed to supply clean drinking water to a remote community of about 50 inhabitants. The performance of the RE-membrane system over four different solar days is summarized using four different NF membranes (BW30, NF90, ESPA4, TFC-S), and examined in more detail for the BW30 membrane. On an Australian spring day, the system produced 1.1 m3 of permeate with an average conductivity of 0.28 mS x cm(-1), recovering 28% of the brackish (8.29 mS x cm(-1) conductivity) feedwater with an average specific energy consumption of 2.3 kWh x m(-3). The RE-membrane system tolerated large fluctuations in solar irradiance (500--1200 W x m(-2)), resulting in only small increases in the permeate conductivity. When equipped with the NF90 (cloudy day) and ESPA4 (rainy day) membranes, the system was still able to produce 1.36 m(-3) and 0.85 m(-3) of good quality permeate, respectively. The TFC-S membrane was not able to produce adequate water quality from the bore water tested. It is concluded that batteryless operation is a simple and robust way to operate such systems under conditions ranging from clear skies to medium cloud cover.

  17. A plasma membrane localization signal in the HIV-1 envelope cytoplasmic domain prevents localization at sites of vesicular stomatitis virus budding and incorporation into VSV virions.

    Science.gov (United States)

    Johnson, J E; Rodgers, W; Rose, J K

    1998-11-25

    Previous studies showed that the HIV-1 envelope (Env) protein was not incorporated into vesicular stomatitis virus (VSV) virions unless its cytoplasmic tail was replaced with that of the VSV glycoprotein (G). To determine whether the G tail provided a positive incorporation signal for Env, or if sequences in the Env tail prevented incorporation, we generated mutants of Env with its 150-amino-acid tail shortened to 29, 10, or 3 amino acids (Envtr mutants). Cells infected with VSV recombinants expressing these proteins or an Env-G tail hybrid showed similar amounts of Env protein at the surface. The Env-G tail hybrid or the Envtr3 mutant were incorporated at the highest levels into budding VSV virions. In contrast, the Envtr29 or Envtr10 mutants were incorporated poorly. These results defined a signal preventing incorporation within the 10 membrane-proximal amino acids of the Env tail. Confocal microscopy revealed that this signal functioned by causing localization of human immunodeficiency virus type 1 Env to plasma membrane domains distinct from the VSV budding sites, where VSV proteins were concentrated. Copyright 1998 Academic Press.

  18. Uniform deposition of uranium hexafluoride (UF6): Standardized mass deposits and controlled isotopic ratios using a thermal fluorination method.

    Science.gov (United States)

    McNamara, Bruce K; O'Hara, Matthew J; Casella, Andrew M; Carter, Jennifer C; Addleman, R Shane; MacFarlan, Paul J

    2016-07-01

    We report a convenient method for the generation of volatile uranium hexafluoride (UF6) from solid uranium oxides and other U compounds, followed by uniform deposition of low levels of UF6 onto sampling coupons. Under laminar flow conditions, UF6 is shown to interact with surfaces within a fixed reactor geometry to a highly predictable degree. We demonstrate the preparation of U deposits that range between approximately 0.01 and 500ngcm(-2). The data suggest the method can be extended to creating depositions at the sub-picogramcm(-2) level. The isotopic composition of the deposits can be customized by selection of the U source materials and we demonstrate a layering technique whereby two U solids, each with a different isotopic composition, are employed to form successive layers of UF6 on a surface. The result is an ultra-thin deposit that bears an isotopic signature that is a composite of the two U sources. The reported deposition method has direct application to the development of unique analytical standards for nuclear safeguards and forensics. Further, the method allows access to very low atomic or molecular coverages of surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Potential detection systems for monitoring UF6 releases

    International Nuclear Information System (INIS)

    Beck, D.E.; Bostick, W.D.; Armstrong, D.P.; McNeely, J.R.; Stockdale, J.A.D.

    1994-09-01

    In the near future, the Nuclear Regulatory Commission (NRC) will begin to regulate the gaseous diffusion plants. Them is a concern that the smoke detectors currently used for uranium hexafluoride (UF 6 ) release detection will not meet NRC safety system requirements such as high reliability and rapid response. The NRC's position is that licensees should utilize state-of-the-art equipment such as hydrogen fluoride (HF) detectors that would provide more dependable detection of a UF 6 release. A survey of the literature and current vendor information was undertaken to define the state-of-the-art and commercial availability of HF (or other appropriate) detection systems. For the purpose of this report, classification of the available HF detection systems is made on the basis of detection principle (e.g., calorimetric, electrochemical, separational, or optical). Emphasis is also placed on whether the device is primarily sensitive to response from a point source (e.g., outleakage in the immediate vicinity of a specific set of components), or whether the device is potentially applicable to remote sensing over a larger area. Traditional HF point source monitoring typically uses gas sampling tubes or coated paper tapes with color developing indicator, portable and small area HF monitors are often based upon electrochemical or extractive/separational systems; and remote sensing by optical systems holds promise for indoor and outdoor large area monitoring (including plant boundary/ambient air monitoring)

  20. Depleted UF6 Management Information Network - A resource for the public,

    Science.gov (United States)

    Depleted UF6 Management Information Network Web Site is an online repository of information about the U.S ) and DUF6, research and development efforts for beneficial uses of DU, DOE's program for management of line DUF6 Guide DUF6 Guide line Introductory information about depleted uranium: how it is created

  1. A study of the internal humidification of an integrated PEMFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Choi, K H; Lee, T H [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Chemical Engineering; Park, D J; Rho, Y W; Kho, Y T [KOGAS R and D Center, Kyunggi (Korea, Republic of)

    1998-07-15

    An integrated proton exchange membrane fuel-cell (PFMFC) system has been developed with an internal humidifier within the stack. Research is concentrated on selecting a membrane with low cost and good water permeability because, to date, high-cost membranes (e.g., as Nafion) have been used. The gas and water permeability of several membranes were measured. A low-cost ultra filtration (UF) membrane shows better characteristics for the internal humidifier and cell performance than the others. Also, saturated water vapour permeating through the UF membrane can be supplied at the stack from the internal humidifier. The internal humidifier using UF membrane is thought to be a satisfactory humidifier for a PEMPC. (orig.)

  2. The Effect of Reactive Ionic Liquid or Plasticizer Incorporation on the Physicochemical and Transport Properties of Cellulose Acetate Propionate-Based Membranes

    Directory of Open Access Journals (Sweden)

    Edyta Rynkowska

    2018-01-01

    Full Text Available Pervaporation is a membrane-separation technique which uses polymeric and/or ceramic membranes. In the case of pervaporation processes applied to dehydration, the membrane should transport water molecules preferentially. Reactive ionic liquid (RIL (3-(1,3-diethoxy-1,3-dioxopropan-2-yl-1-methyl-1H-imidazol-3-ium was used to prepare novel dense cellulose acetate propionate (CAP based membranes, applying the phase-inversion method. The designed polymer-ionic liquid system contained ionic liquid partially linked to the polymeric structure via the transesterification reaction. The various physicochemical, mechanical, equilibrium and transport properties of CAP-RIL membranes were determined and compared with the properties of CAP membranes modified with plasticizers, i.e., tributyl citrate (TBC and acetyl tributyl citrate (ATBC. Thermogravimetric analysis (TGA testified that CAP-RIL membranes as well as CAP membranes modified with TBC and ATBC are thermally stable up to at least 120 °C. Tensile tests of the membranes revealed improved mechanical properties reflected by reduced brittleness and increased elongation at break achieved for CAP-RIL membranes in contrast to pristine CAP membranes. RIL plasticizes the CAP matrix, and CAP-RIL membranes possess preferable mechanical properties in comparison to membranes with other plasticizers investigated. The incorporation of RIL into CAP membranes tuned the surface properties of the membranes, enhancing their hydrophilic character. Moreover, the addition of RIL into CAP resulted in an excellent improvement of the separation factor, in comparison to pristine CAP membranes, in pervaporation dehydration of propan-2-ol. The separation factor β increased from ca. 10 for pristine CAP membrane to ca. 380 for CAP-16.7-RIL membranes contacting an azeotropic composition of water-propan-2-ol mixture (i.e., 12 wt % water.

  3. Incorporation of zinc for fabrication of low-cost spinel-based composite ceramic membrane support to achieve its stabilization.

    Science.gov (United States)

    Li, Lingling; Dong, Xinfa; Dong, Yingchao; Zhu, Li; You, Sheng-Jie; Wang, Ya-Fen

    2015-04-28

    In order to reduce environment risk of zinc, a spinel-based porous membrane support was prepared by the high-temperature reaction of zinc and bauxite mineral. The phase evolution process, shrinkage, porosity, mechanical property, pore size distribution, gas permeation flux and microstructure were systematically studied. The XRD results, based on a Zn/Al stoichiometric composition of 1/2, show a formation of ZnAl2O4 structure starting from 1000°C and then accomplished at 1300°C. For spinel-based composite membrane, shrinkage and porosity are mainly influenced by a combination of an expansion induced by ZnAl2O4 formation and a general densification due to amorphous liquid SiO2. The highest porosity, as high as 44%, is observed in ZnAl4 membrane support among all the investigated compositions. Compared with pure bauxite (Al), ZnAl4 composite membrane support is reinforced by ZnAl2O4 phase and inter-locked mullite crystals, which is proved by the empirical strength-porosity relationships. Also, an increase in average pore diameter and gas flux can be observed in ZnAl4. A prolonged leaching experiment reveals the zinc can be successfully incorporated into ceramic membrane support via formation of ZnAl2O4, which has substantially better resistance toward acidic attack. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. EFFICIENCY OF ULTRAFILTRATION CERAMIC MEMBRANES FOR TOXIC ELEMENTS REMOVAL FROM WASTEWATERS

    Directory of Open Access Journals (Sweden)

    S. Alami Younssi

    2010-07-01

    Full Text Available The preparation and characterization of porous ceramics multilayer ultrafiltration membrane is described. The first step consisted to prepare high-quality macroporous support in Moroccan clay. The choice of this material is based on its natural abundance and thermal stability.The microporous interlayer was then prepared by slip casting from zirconia commercial powders and finally the active UF toplayers was obtained by sol-gel route using ZnAl2O4 and TiO2 mixed sols. The performance of ultrafiltration membrane (TiO2 (50�20– ZnAl2O4 (50� was evaluated by pores diameter, water flux, thickness and molecular weight cut off (MWCO. The water permeability measured for this composite membrane is 9.42 L/(m2•h•bar, the thickness is less than 700 nm, the pore diameter is centered near 5 nm and the MWCO was about 4500 Da.

  5. Estimating the concentration of gold nanoparticles incorporated on natural rubber membranes using multi-level starlet optimal segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, A. F. de, E-mail: siqueiraaf@gmail.com; Cabrera, F. C., E-mail: flavioccabrera@yahoo.com.br [UNESP – Univ Estadual Paulista, Dep de Física, Química e Biologia (Brazil); Pagamisse, A., E-mail: aylton@fct.unesp.br [UNESP – Univ Estadual Paulista, Dep de Matemática e Computação (Brazil); Job, A. E., E-mail: job@fct.unesp.br [UNESP – Univ Estadual Paulista, Dep de Física, Química e Biologia (Brazil)

    2014-12-15

    This study consolidates multi-level starlet segmentation (MLSS) and multi-level starlet optimal segmentation (MLSOS) techniques for photomicrograph segmentation, based on starlet wavelet detail levels to separate areas of interest in an input image. Several segmentation levels can be obtained using MLSS; after that, Matthews correlation coefficient is used to choose an optimal segmentation level, giving rise to MLSOS. In this paper, MLSOS is employed to estimate the concentration of gold nanoparticles with diameter around 47  nm, reduced on natural rubber membranes. These samples were used for the construction of SERS/SERRS substrates and in the study of the influence of natural rubber membranes with incorporated gold nanoparticles on the physiology of Leishmania braziliensis. Precision, recall, and accuracy are used to evaluate the segmentation performance, and MLSOS presents an accuracy greater than 88 % for this application.

  6. RESPEITO À CIDADANIA: PROVENDO ACESSIBILIDADE WEB NA UNIVERSIDADE FEDERAL DE SERGIPE (UFS

    Directory of Open Access Journals (Sweden)

    Quelita Araújo Diniz da Silva

    2012-03-01

    Full Text Available O acesso à informação facilitado pelas Tecnologias de Informação e Comunicação (TIC é um dos principais elementos da sociedade do conhecimento, sendo visto como possibilidade de inclusão social. Entretanto, alguns indivíduos possuem necessidades, permanentes ou temporárias, que os limitam no acesso às informações disponibilizadas, mantendo-os à periferia da sociedade. Este trabalho tem como objetivo discutir a acessibilidade na Web, discutindo os principais padrões, as diretrizes e técnicas para o projeto de webapps acessíveis. Como também, expor o conceito de tecnologias assistivas e como elas adequam às funcionalidades computacionais ao internauta com necessidades especiais auxiliando-o na navegação. Por fim, descrever um estudo de caso realizado no site da POSGRAP – UFS objetivando viabilizar à comunidade Sergipana à inclusão provendo acessibilidade aos produtos e serviços da UFS.

  7. The regulations and the problems of their implementation in UF6 transport

    International Nuclear Information System (INIS)

    Devillers, C.; Grenier, M.; Ringot, C.; Warniez, P.

    1988-12-01

    UF 6 is currently transported in packagings which were developed in the sixties - standardized and used all over the world, these packagings perform their duty adequately. Nevertheless, the growing amounts of UF 6 and the changes in the regulations now raises the problem of compliance of these packagings with the latter. The problems which deserve special attention are: selection of the packaging type in terms of the origin and the enrichment, design of valve covers, behaviour at low temperatures, regulatory requirements in handling, tying down cleaning and unloading, allowable dose rate increase in case of minor mishaps, behaviour in fire, taking into account the toxicity, identification of special features required in the case of controlled moderation of fissile packages, transport conditions of empty packagings containing heels. In this paper are reviewed the results of this analysis, which is limited to the case of transport using cylinders of 48Y and 30B

  8. Computer simulation of cooling properties of UF5 hot-clusters in argon

    International Nuclear Information System (INIS)

    Okamoto, Tsuyoshi; Ohno, Fubito

    1999-01-01

    Brownian collision-coalescence models have been proposed by many researchers to describe a cluster or a particle growth process. In these mathematical models, the effect of a cluster temperature on a sticking probability is not included, although the cluster temperature is one of the most important factors which determines the particle growth rate at the incipient stage of coagulation. A hot-cluster consisting of 30 UF 5 molecules is formed in a computer and is bombarded with argon atoms. Measuring a kinetic energy of argon atom scattered from the hot-cluster, the cluster temperature can be estimated by molecular dynamics simulations. It is concluded that the hot-cluster is rapidly cooled under the conditions of molecular laser isotope separation (MLIS) process, so that the cluster-argon system can reach its thermal equilibrium state. Therefore, in the analysis of the dynamics of clustering process, the temperature of UF 5 molecular cluster may be set equal to that of argon gas. (author)

  9. Fouling Characteristics of Dissolved Organic Matter in Papermaking Process Water on Polyethersulfone Ultrafiltration Membranes

    Directory of Open Access Journals (Sweden)

    Wenpeng Su

    2015-07-01

    Full Text Available In the papermaking industry, closure of process water (whitewater circuits has been used to reduce fresh water consumption. Membrane separation technology has potential for use in treating process water for recirculation. The purpose of this study was to reveal the fouling characteristics of a polyethersulfone (PES ultrafiltration membrane caused by dissolved organic matter (DOM in process water. Ultrafiltration membranes (UF and DAX ion exchange resins were applied to characterize the molecular weight (MW and hydrophilicity distribution of DOM. The interactions between various fractions of DOM and a PES ultrafiltration membrane were investigated. The membrane fouling characteristics were elucidated by examining the filtration resistances and linearized Herman’s blocking models. The results demonstrated that the membrane was fouled significantly by much of the MW distribution. The membrane was fouled more significantly by the low MW fraction rather than the high MW fraction. The filtration resistances and the fitted equation of Hermia’s laws indicated that hydrophilic organics were the main foulants. The hydrophilic organics partially block the membrane pores and form intermediate blocking, reducing the effective filtration area, while the hydrophobic organics form a gel layer or cake on the surface of the membrane.

  10. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes

    KAUST Repository

    Yoon, Jaekyung

    2009-09-01

    Rejection characteristics of chromate, arsenate, and perchlorate were examined for one reverse osmosis (RO, LFC-1), two nanofiltration (NF, ESNA, and MX07), and one ultrafiltration (UF and GM) membranes that are commercially available. A bench-scale cross-flow flat-sheet filtration system was employed to determine the toxic ion rejection and the membrane flux. Both model and natural waters were used to prepare chromate, arsenate, and perchlorate solutions (approximately 100 μg L-1 for each anion) in mixtures in the presence of other salts (KCl, K2SO4, and CaCl2); and at varying pH conditions (4, 6, 8, and 10) and solution conductivities (30, 60, and 115 mS m-1). The rejection of target ions by the membranes increases with increasing solution pH due to the increasingly negative membrane charge with synthetic model waters. Cr(VI), As(V), and ClO4 - rejection follows the order LFC-1 (>90%) > MX07 (25-95%) ≅ ESNA (30-90%) > GM (3-47%) at all pH conditions. In contrast, the rejection of target ions by the membranes decreases with increasing solution conductivity due to the decreasingly negative membrane charge. Cr(VI), As(V), and ClO4 - rejection follows the order CaCl2 < KCl ≅ K2SO4 at constant pH and conductivity conditions for the NF and UF membranes tested. For natural waters the LFC-1 RO membrane with a small pore size (0.34 nm) had a significantly greater rejection for those target anions (>90%) excluding NO3 - (71-74%) than the ESNA NF membrane (11-56%) with a relatively large pore size (0.44 nm), indicating that size exclusion is at least partially responsible for the rejection. The ratio of solute radius (ri,s) to effective membrane pore radius (rp) was employed to compare ion rejection. For all of the ions, the rejection is higher than 70% when the ri,s/rp ratio is greater than 0.4 for the LFC-1 membrane, while for di-valent ions (CrO4 2 -, SO4 2 -, and HAsSO4 2 -) the rejection (38-56%) is fairly proportional to the ri,s/rp ratio (0.32-0.62) for the ESNA

  11. Field test of methane fermentation incorporating with membrane module for sewage sludge. Bunrimaku wo fukugoshita gesui odei no methane hakko

    Energy Technology Data Exchange (ETDEWEB)

    Kiriyama, K.; Tanaka, Y. (Ebara Corp., Tokyo (Japan)); Adachi, T. (Nitto Denko Corp., Osaka (Japan))

    1993-02-01

    Field test results of methane fermentation incorporating with a membrane module were reported for sewage sludge. The methane fermentation was conducted at 25[degree]C using only raw sludge charged from a suspended solid (SS) separating device until the mid-stage of experiments and adding gradually concentrated backwash of a biological aerated filter after the mid-stage. As a result, the reduction rate of volatile SS (VSS) charged into the reactor increased from 76.8% to 84.8% until the mid-stage, while from 52% to 70% even after the mid-stage giving the effect of the membrane module. Stable operation of the membrane module was achieved at 20,000-25,000 mg/l in SS concentration at its inlet and 0.6 m/s in membrane linear velocity, together with the easy recovery of flux by back washing. The power consumption in membrane separation at 23,000 mg/l in SS concentration was estimated to be 2.15 kWh per m[sup 3] of permeant at both motor and pump efficiencies of 1.0, suggesting possible energy saving. 3 refs., 9 figs., 2 tabs.

  12. Flux and Passage Enhancement in Hemodialysis by Incorporating Compound Additive into PVDF Polymer Matrix

    Directory of Open Access Journals (Sweden)

    Qinglei Zhang

    2016-10-01

    Full Text Available In this study, Polyvinylidene fluoride (PVDF hollow fiber hemodialysis membranes were prepared by non-solvent induced phase separation (NIPS with compound addtive. The compound additive was made with polyvinyl pyrrolidone (PVP and Poly ethylene glycol (PEG. The results showed that the modified PVDF membrane had better separation performance than virgin PVDF membrane. The UF flux of modified PVDF membrane can reach 684 L·h−1·m−2 and lysozyme (LZM passage is 72.6% while virgin PVDF membrane is 313 L·h−1·m−2 and 53.2%. At the same time, the biocompatibility of PVDF membranes was also improved. Compared with commercial polysulfone hemodialysis membrane (Fresenius F60S membrane, the modified PVDF membrane had better mechanical and separation performance. The stress and tensile elongation of modified PVDF membrane was 0.94 MPa and 352% while Fresenius F60S membrane was 0.79 MPa and 59%. The LZM passage reached 72.6% while Fresenius F60S membrane was 54.4%. It was proven that the modified PVDF membrane showed better hydrophilicity, antithrombogenicity, less BSA adsorption, and lower hemolytic ratio and adhesion of platelets. Water contact angle and BSA adsorption of the modified PVDF membrane are 38° and 45 mg/m2 while Fresenius F60S membrane are 64° and 235 mg/m2. Prothrombin time (PT and activated partial thromboplastin time (APTT of the modified PVDF membrane are 56.5 s and 25.8 s while Fresenius F60S membrane is 35.7 s and 16.6 s. However, further biocompatibility evaluation is needed to obtain a more comprehensive conclusion.

  13. Emergency preparedness and response in case of a fire accident with (UF6) packages tracking Suez Canal

    International Nuclear Information System (INIS)

    Salama, M.

    2004-01-01

    Egypt has a unique problem - the Suez Canal. Radioactive cargo passing regularly through the canal carrying new and spent reactor fuel. Moreover there are also about 1000 metric tons of uranium hexaflouride (UF6) passing through the canal every year. In spite of all precautions taken in the transportation, accidents with packages containing (UF 6 ) and shipped through the Suez Canal, accidents may arise even though the probability is minimal. These accidents, may be accompanied by injuries or death of persons and damage to property. Due to the radiation and criticality hazards of (UF 6 ) and its high risk of chemical toxicity. The probability of a fire accident with a cargo carrying (UF 6 ) during its crossing the Suez Canal can cause serious chemical toxic and radiological hazards, particularly if the accident occurred close or near to one of the three densely populated cities (Port-Said, Ismailia, and Suez), which are located along the Suez Canal, west bank. The government of Egypt has elaborated a national radiological emergency plan inorder to face probable radiological accidents, which may be arised inside the country. Arrangements have been also elaborated for the medical care of any persons who, might be injured or contaminated, or who, have been exposed to severe radiation doses. The motivation of the present paper was undertaken to visualize a fire accident scenario occurring in industrial packages containing UF6 on board of a Cargo crossing the Suez Canal near Port-Said City. The accident scenario and emergency response actions taken during the different phases of the accident are going to be presented and discussed. The proposed emergency response actions taken to face the accident are going to be also presented. The work presented had revealed the importance of public awareness will be needed for populations located in densely populated areas along Suez Canal bank inorder to react timely and effectively to avoid the toxic and radiological hazards

  14. A Mock UF6 Feed and Withdrawal System for Testing Safeguards Monitoring Systems and Strategies Intended for Nuclear Fuel Enrichment and Processing Plants

    International Nuclear Information System (INIS)

    Krichinsky, Alan M.; Bates, Bruce E.; Chesser, Joel B.; Koo, Sinsze; Whitaker, J. Michael

    2009-01-01

    This report describes an engineering-scale, mock UF6 feed and withdrawal (F and W) system, its operation, and its intended uses. This system has been assembled to provide a test bed for evaluating and demonstrating new methodologies that can be used in remote, unattended, continuous monitoring of nuclear material process operations. These measures are being investigated to provide independent inspectors improved assurance that operations are being conducted within declared parameters, and to increase the overall effectiveness of safeguarding nuclear material. Testing applicable technologies on a mock F and W system, which uses water as a surrogate for UF6, enables thorough and cost-effective investigation of hardware, software, and operational strategies before their direct installation in an industrial nuclear material processing environment. Electronic scales used for continuous load-cell monitoring also are described as part of the basic mock F and W system description. Continuous monitoring components on the mock F and W system are linked to a data aggregation computer by a local network, which also is depicted. Data collection and storage systems are described only briefly in this report. The mock UF 6 F and W system is economical to operate. It uses a simple process involving only a surge tank between feed tanks and product and withdrawal (or waste) tanks. The system uses water as the transfer fluid, thereby avoiding the use of hazardous UF 6 . The system is not tethered to an operating industrial process involving nuclear materials, thereby allowing scenarios (e.g., material diversion) that cannot be conducted otherwise. These features facilitate conducting experiments that yield meaningful results with a minimum of expenditure and quick turnaround time. Technologies demonstrated on the engineering-scale system lead to field trials (described briefly in this report) for determining implementation issues and performance of the monitoring technologies under

  15. ULTRAFILTRATION AS PRETREATMENT OF REVERSE OSMOSIS: LOW FOULING ULTRAFILTRATION MEMBRANE PREPARED FROM POLYETHERSULFONE–AMPHIPHILIC BLOCK COPOLYMER BLEND

    Directory of Open Access Journals (Sweden)

    Heru Susanto

    2012-02-01

    Full Text Available This paper demonstrates the preparation of polyethersulfone (PES ultrafiltration (UF membranes via wet phase inversion method using either poly(ethylene oxide-b-poly(propylene oxide-b- poly(ethylene oxide (Pluronic®, Plu or polyethylene glycol (PEG as hydrophilic modifier. Their effects on membrane structure as well as the resulting membrane performance and their stability in membrane polymer matrix were systematically investigated. The investigated membrane characteristics include surface hydrophilicity (by contact angle, surface chemistry (by FTIR spectroscopy and water flux measurement. Visualization of membrane surface and cross section morphology was also done by scanning electron microscopy. The membrane performance was examined by investigation of adsorptive fouling and ultrafiltration using solution of bovine serum albumin as the model system. The stability of additive was examined by incubating the membrane in water (40oC for up to 10 days. The results show that modification effects on membrane characteristic and low fouling behavior were clearly observed. Further, amphiphilic Pluronic generally showed better performance than PEG.   

  16. Membrane processes for the reuse of car washing wastewater

    Directory of Open Access Journals (Sweden)

    Deniz Uçar

    2018-04-01

    Full Text Available This study investigates alternative treatments of car wash effluents. The car wash wastewater was treated by settling, filtration, and membrane filtration processes. During settling, total solid concentration decreased rapidly within the first 2 hours and then remained constant. Chemical oxygen demand (COD and conductivity were decreased by 10% and 4%, respectively. After settling, wastewater was filtered throughout a 100 μm filter. It was found that filtration had a negligible effect on COD removal. Finally, wastewater was filtered by four ultrafiltration membranes of varying molecular weight cutoff (MWCO (1, 5, 10 and 50 kDa and one nanofiltration membrane (NF270, MWCO = 200–400 Da. The permeate COD concentrations varied between 64.5 ± 3.2 and 85.5 ± 4.3 mg L−1 depending on UF pore size. When the NF270 nanofiltration membrane was used, the permeate COD concentration was 8.1 ± 0.4 mg L−1 corresponding to 97% removal. FeCl3 precipitation and activated carbon adsorption techniques were also applied to the retentate and 60–76% COD removals were obtained for activated carbon adsorption and FeCl3 precipitation, respectively.

  17. Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases

    Science.gov (United States)

    Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Baker, Richard W [Palo Alto, CA

    2011-10-11

    Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.

  18. Fracture mechanics performance of UF6 containers

    International Nuclear Information System (INIS)

    Gonzalez, M.E.; Iorio, A.F.; Crespi, J.C.

    1993-01-01

    The main purpose of this work was to determine the fracture mechanics performance of UF 6 transport cylinders type ANSI N14.1.30B, which was made from ASTM A 516 Grade 70 steel. It was assumed an internal surface axial crack subjected to stresses due to service, proof and transport accident loads. The KUMAR-GERMAN-SHIH elastoplastic methodology gave adequate results for crack depth estimation. The results validate the leak-before-break criteria for service and proof conditions but not for accident ones. In the last case a non-destructive examination must be done in order to assure the absence of defects larger than one third of the cylinder wall thickness. (Author)

  19. Calculational criticality analyses of 10- and 20-MW UF6 freezer/sublimer vessels

    International Nuclear Information System (INIS)

    Jordan, W.C.

    1993-02-01

    Calculational criticality analyses have been performed for 10- and 20-MW UF 6 freezer/sublimer vessels. The freezer/sublimers have been analyzed over a range of conditions that encompass normal operation and abnormal conditions. The effects of HF moderation of the UF 6 in each vessel have been considered for uranium enriched between 2 and 5 wt % 235 U. The results indicate that the nuclearly safe enrichments originally established for the operation of a 10-MW freezer/sublimer, based on a hydrogen-to-uranium moderation ratio of 0.33, are acceptable. If strict moderation control can be demonstrated for hydrogen-to-uranium moderation ratios that are less than 0.33, then the enrichment limits for the 10-MW freezer/sublimer may be increased slightly. The calculations performed also allow safe enrichment limits to be established for a 20-NM freezer/sublimer under moderation control

  20. Biosynthetic incorporation of [75Se]selenomethionine: a new method for labelling lymphocyte membrane antigens

    International Nuclear Information System (INIS)

    Dosseto, M.; Rohner, C.; Pierres, M.; Goridis, C.

    1981-01-01

    A novel approach for radiolabelling lymphocyte membrane antigens is described. This technique is based on the use of the γ-emitting amino acid analogue [ 75 Se]selenomethionine. Human HLA-A, B, C and DR heavy and light chains and mouse Ia antigens were efficiently labelled by this technique and were precipitated with monoclonal antibodies. Approximately the same radioactivity was incorporated into the HLA-A, B, C chains whether [ 75 Se]selenomethionine, [ 35 S]methionine or [ 3 H]leucine were used as precursors. Easily detectable as a γ-emitter, [ 75 Se]selenomethionine thus constitutes a useful biosynthetic label of lymphocyte surface antigens. The same method was used to label immunoglobulins produced by hybridomas and to determine the nature of the secreted light chains. (Auth.)

  1. Selectivity of NF membrane for treatment of liquid waste containing uranium

    International Nuclear Information System (INIS)

    Oliveira, Elizabeth E.M.; Barbosa, Celina C.R.; Afonso, Julio C.

    2013-01-01

    The performance of two nanofiltration membranes were investigated for treatment of liquid waste containing uranium through two conditions permeation: permeation test and concentration test of the waste. In the permeation test solution permeated returned to the feed tank after collected samples each 3 hours. In the test of concentration the permeated was collected continuously until 90% reduction of the feed volume. The liquid waste ('carbonated water') was obtained during conversion of UF 6 to UO 2 in the cycle of nuclear fuel. This waste contains uranium concentration on average 7.0 mg L -1 , and not be eliminated to the environmental. The waste was permeated using a cross-flow membrane cell in the pressure of the 1.5 MPa. The selectivity of the membranes for separation of uranium was between 83% and 90% for both tests. In the concentration tests the waste was concentrated around for 5 times. The surface layer of the membranes was evaluated before and after the tests by infrared spectroscopy (ATR-FTIR), field emission microscopy (FESEM) and atomic force spectroscopy (AFM). The membrane separation process is a technique feasible to and very satisfactory for treatment the liquid waste. (author)

  2. Quality assurance in the transport of UF{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Ravenscroft, N.L. [Edlow International Company, Washington, DC (United States)

    1991-12-31

    Edlow International`s primary business is the international transportation of radioactive materials. Therefore, Edlow has the responsibility to ensure that shipments are performed in compliance with regulatory requirements. In this regard, Edlow maintains a Quality Assurance (QA) Program. A major part of this Program is the establishment and use of QA Procedures. This paper addresses QA procedural requirements and how they are applied to a routine international shipment of low enriched UF{sub 6}. Only the major requirements for scheduling shipments will be addressed.

  3. Release of UF6 from a ruptured model 48Y cylinder at Sequoyah Fuels Corporation Facility: lessons-learned report

    International Nuclear Information System (INIS)

    1986-08-01

    The uranium hexafluoride (UF 6 ) release of January 4, 1986, at the Sequoyah Fuels Corporation facility has been reviewed by a NRC Lessons-Learned Group. A Model 48Y cylinder containing UF 6 ruptured upon being heated after it was grossly overfilled. The UF 6 released upon rupture of the cylinder reacted with airborne moisture to produce hydrofluoric acid (HF) and uranyl fluoride (UO 2 F 2 ). One individual died from exposure to airborne HF and several others were injured. There were no significant immediate effects from exposure to uranyl fluoride. This supplement report contains NRC's response to the recommendations made in NUREG-1198 by the Lessons Learned Group. In developing a response to each of the recommendations, the staff considered actions that should be taken: (1) for the restart of the Sequoyah Fuels Facility; (2) to make near-term improvement; and (3) to improve the regulatory framework

  4. Rupture of Model 48Y UF6 cylinder and release of uranium hexafluoride, Sequoyah Fuels Facility, Gore, Oklahoma, January 4, 1986. Volume 1

    International Nuclear Information System (INIS)

    1986-02-01

    At 11:30 a.m. on January 4, 1986, a Model 48Y UF 6 cylinder filled with uranium hexafluoride (UF 6 ) ruptured while it was being heated in a steam chest at the Sequoyah Fuels Conversion Facility near Gore, Oklahoma. One worker died because he inhaled hydrogen fluoride fumes, a reaction product of UF 6 and airborne moisture. Several other workers were injured by the fumes, but none seriously. Much of the facility complex and some offsite areas to the south were contaminated with hydrogen fluoride and a second reaction product, uranyl fluoride. The interval of release was approximately 40 minutes. The cylinder, which had been overfilled, ruptured while it was being heated because of the expansion of UF 6 as it changed from the solid to the liquid phase. The maximum safe capacity for the cylinder is 27,560 pounds of product. Evidence indicates that it was filled with an amount exceeding this limit. 18 figs

  5. A coagulation-powdered activated carbon-ultrafiltration - Multiple barrier approach for removing toxins from two Australian cyanobacterial blooms

    International Nuclear Information System (INIS)

    Dixon, Mike B.; Richard, Yann; Ho, Lionel; Chow, Christopher W.K.; O'Neill, Brian K.; Newcombe, Gayle

    2011-01-01

    Cyanobacteria are a major problem for the world wide water industry as they can produce metabolites toxic to humans in addition to taste and odour compounds that make drinking water aesthetically displeasing. Removal of cyanobacterial toxins from drinking water is important to avoid serious illness in consumers. This objective can be confidently achieved through the application of the multiple barrier approach to drinking water quality and safety. In this study the use of a multiple barrier approach incorporating coagulation, powdered activated carbon (PAC) and ultrafiltration (UF) was investigated for the removal of intracellular and extracellular cyanobacterial toxins from two naturally occurring blooms in South Australia. Also investigated was the impact of these treatments on the UF flux. In this multibarrier approach, coagulation was used to remove the cells and thus the intracellular toxin while PAC was used for extracellular toxin adsorption and finally the UF was used for floc, PAC and cell removal. Cyanobacterial cells were completely removed using the UF membrane alone and when used in conjunction with coagulation. Extracellular toxins were removed to varying degrees by PAC addition. UF flux deteriorated dramatically during a trial with a very high cell concentration; however, the flux was improved by coagulation and PAC addition.

  6. Evaluation of the treatability of a winery distillery (vinasse) wastewater by UASB, anoxic-aerobic UF-MBR and chemical precipitation/adsorption.

    Science.gov (United States)

    Petta, Luigi; De Gisi, Sabino; Casella, Patrizia; Farina, Roberto; Notarnicola, Michele

    2017-10-01

    A multi-stage pilot-scale treatment cycle consisting of an Upflow Anaerobic Sludge Blanket reactor (UASB) followed by an anoxic-aerobic Ultra Filtration Membrane Bio Reactor (UF-MBR) and a post treatment based on chemical precipitation with lime or adsorption on Granular Activated Carbons (GAC), was applied in order to evaluate the treatment feasibility of a real winery distillery wastewater at laboratory and bench scale. The wastewater was classified as high strength with acidic pH (3.8), and concentrations of 44,600, 254, 604 and 660 mg/l for COD tot , total nitrogen, total phosphorous and phenols, respectively. The UASB reactor was operated at Organic Loading Rates (OLR) in the range 3.0-11.5 kgCOD tot /m 3 /d achieving treatment efficiency up to 97%, with an observed methane production of 340 L of CH 4 /kgCOD. The MBR system was operated with an organic load in the range 0.070-0.185 kgCOD/kgVSS/d, achieving a removal up to 48%, 67% and 65% of the influent COD, total nitrogen and phenols, respectively. The combination of UASB and UF-MBR treatment units was not effective in phosphate and colour removal assigning to further chemical precipitation and adsorption processes, respectively, their complete removal in order to comply with legal standards for wastewater discharge. Subsequently, the optimization of the investigated treatment chain was assessed by applying a chemical precipitation step upstream and downstream the UASB reactor, and a related treatment unit cost assessment is presented in view of a further technological scale-up. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Hydraulic breakage of tanks for the transport of uranium hexafluoride (UF6)

    International Nuclear Information System (INIS)

    Biaggio, A.L.; Lee Gonzales, H.M.; Lopez Vietri, J.R.; Novo, R.G.

    1987-01-01

    To begin with, the tank models that are proposed by the international norms for the transport and storage of hexafluoride of uranium (UF 6 ) are briefly described. The operations related to the transport in its different forms are also described, particularly those that can produce the hydraulic breakage of tanks during its course or in later stages, when incorrectly performed. With reference to those operations, the most important physicochemical properties of UF 6 as for safety are analyzed. A quantitative evaluation of the deviations of parameters that are controlled during the heating of tanks, comparing them with the normative nominal values, is performed. Adopting some simplifying hypothesis, a general study, applicable to all tank models proposed by norms, is carried out to determine the temperature at which the hydraulic breakage takes place when they are heated in closed-valve conditions. A curve is obtained by plotting the hydraulic breakage temperature against the filling degree. To conclude, the values obtained are compared with the results of other theoretical studies on this subject. (Author)

  8. Emergency preparedness and response in case of a fire accident with (UF{sub 6}) packages tracking Suez Canal

    Energy Technology Data Exchange (ETDEWEB)

    Salama, M. [National Center for Nuclear Safety and Radiation Control (NCNSRC), Nasr City, Cairo (Egypt)

    2004-07-01

    Egypt has a unique problem - the Suez Canal. Radioactive cargo passing regularly through the canal carrying new and spent reactor fuel. Moreover there are also about 1000 metric tons of uranium hexaflouride (UF6) passing through the canal every year. In spite of all precautions taken in the transportation, accidents with packages containing (UF{sub 6}) and shipped through the Suez Canal, accidents may arise even though the probability is minimal. These accidents, may be accompanied by injuries or death of persons and damage to property. Due to the radiation and criticality hazards of (UF{sub 6}) and its high risk of chemical toxicity. The probability of a fire accident with a cargo carrying (UF{sub 6}) during its crossing the Suez Canal can cause serious chemical toxic and radiological hazards, particularly if the accident occurred close or near to one of the three densely populated cities (Port-Said, Ismailia, and Suez), which are located along the Suez Canal, west bank. The government of Egypt has elaborated a national radiological emergency plan inorder to face probable radiological accidents, which may be arised inside the country. Arrangements have been also elaborated for the medical care of any persons who, might be injured or contaminated, or who, have been exposed to severe radiation doses. The motivation of the present paper was undertaken to visualize a fire accident scenario occurring in industrial packages containing UF6 on board of a Cargo crossing the Suez Canal near Port-Said City. The accident scenario and emergency response actions taken during the different phases of the accident are going to be presented and discussed. The proposed emergency response actions taken to face the accident are going to be also presented. The work presented had revealed the importance of public awareness will be needed for populations located in densely populated areas along Suez Canal bank inorder to react timely and effectively to avoid the toxic and radiological

  9. Membrane processing technology in the food industry: food processing, wastewater treatment, and effects on physical, microbiological, organoleptic, and nutritional properties of foods.

    Science.gov (United States)

    Kotsanopoulos, Konstantinos V; Arvanitoyannis, Ioannis S

    2015-01-01

    Membrane processing technology (MPT) is increasingly used nowadays in a wide range of applications (demineralization, desalination, stabilization, separation, deacidification, reduction of microbial load, purification, etc.) in food industries. The most frequently applied techniques are electrodialysis (ED), reverse osmosis (RO), nanofiltration (NF), ultrafiltration (UF), and microfiltration (MF). Several membrane characteristics, such as pore size, flow properties, and the applied hydraulic pressure mainly determine membranes' potential uses. In this review paper the basic membrane techniques, their potential applications in a large number of fields and products towards the food industry, the main advantages and disadvantages of these methods, fouling phenomena as well as their effects on the organoleptic, qualitative, and nutritional value of foods are synoptically described. Some representative examples of traditional and modern membrane applications both in tabular and figural form are also provided.

  10. The coronavirus spike protein : mechanisms of membrane fusion and virion incorporation

    NARCIS (Netherlands)

    Bosch, B.J.

    2004-01-01

    The coronavirus spike protein is a membrane-anchored glycoprotein responsible for virus-cell attachment and membrane fusion, prerequisites for a successful virus infection. In this thesis, two aspects are described regarding the molecular biology of the coronavirus spike protein: its membrane fusion

  11. Biological evaluation of silver nanoparticles incorporated into chitosan-based membranes

    NARCIS (Netherlands)

    Shao, J.; Yu, N.; Kolwijck, E.; Wang, B.; Tan, K.W.; Jansen, J.A.; Walboomers, X.F.; Yang, F.

    2017-01-01

    AIM: To evaluate the antibacterial potential and biological performance of silver nanoparticles in chitosan-based membranes. MATERIALS & METHODS: Electrospun chitosan/poly(ethylene oxide) membranes with different amounts of silver nanoparticles were evaluated for antibacterial properties and

  12. A probabilistic safety analysis of UF{sub 6} handling at the Portsmouth Gaseous Diffusion Plant

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, G.J.; Lewis, S.R.; Summitt, R.L. [Safety and Reliability Optimization Services (SAROS), Inc., Knoxville, TN (United States)

    1991-12-31

    A probabilistic safety study of UF{sub 6} handling activities at the Portsmouth Gaseous Diffusion Plant has recently been completed. The analysis provides a unique perspective on the safety of UF{sub 6} handling activities. The estimated release frequencies provide an understanding of current risks, and the examination of individual contributors yields a ranking of important plant features and operations. Aside from the probabilistic results, however, there is an even more important benefit derived from a systematic modeling of all operations. The integrated approach employed in the analysis allows the interrelationships among the equipment and the required operations to be explored in depth. This paper summarizes the methods used in the study and provides an overview of some of the technical insights that were obtained. Specific areas of possible improvement in operations are described.

  13. Paramagnetic relaxation enhancement of membrane proteins by incorporation of the metal-chelating unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Ho; Wang, Vivian S.; Radoicic, Jasmina; Angelis, Anna A. De; Berkamp, Sabrina; Opella, Stanley J., E-mail: sopella@ucsd.edu [University of California, San Diego, Department of Chemistry and Biochemistry (United States)

    2015-04-15

    The use of paramagnetic constraints in protein NMR is an active area of research because of the benefits of long-range distance measurements (>10 Å). One of the main issues in successful execution is the incorporation of a paramagnetic metal ion into diamagnetic proteins. The most common metal ion tags are relatively long aliphatic chains attached to the side chain of a selected cysteine residue with a chelating group at the end where it can undergo substantial internal motions, decreasing the accuracy of the method. An attractive alternative approach is to incorporate an unnatural amino acid that binds metal ions at a specific site on the protein using the methods of molecular biology. Here we describe the successful incorporation of the unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA) into two different membrane proteins by heterologous expression in E. coli. Fluorescence and NMR experiments demonstrate complete replacement of the natural amino acid with HQA and stable metal chelation by the mutated proteins. Evidence of site-specific intra- and inter-molecular PREs by NMR in micelle solutions sets the stage for the use of HQA incorporation in solid-state NMR structure determinations of membrane proteins in phospholipid bilayers.

  14. Forward osmosis - a novel membrane process for concentration of low level radioactive wastes

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Bindal, R.C.; Tewari, P.K.

    2013-01-01

    Forward osmosis (FO) is an emerging membrane process in which osmotic pressure differential across a semi-permeable membrane between the solution to be concentrated (feed) and a concentrated solution of high osmotic pressure (draw solution) than the feed is used to effect separation of water from dissolved solutes. With time, feed stream gets concentrated with dilution of draw solution and this technology recently being used as more energy efficient alternative to reverse osmosis (RO) in some of the application areas, particularly for the concentration of low volume high value products. The use of pressure driven membrane processes like reverse osmosis (RO) and ultrafiltration (UF) are already demonstrated in the treatment of radioactive laundry, laboratory effluents and some other applications in nuclear industry. The application of FO membrane process to concentrate simulated inactive ammonium-diuranate (ADU) filtered effluent solution (by mixing uranyl nitrate and ammonium nitrate) using indigenously developed cellulose acetate (CA) and thin-film composite polyamide (TFCP) membranes has been published recently from our laboratory. In this presentation, we briefly discuss our views on possibility of using FO membrane process with proper selection of membrane for concentration of low level radioactive wastes generated in various steps of nuclear fuel cycle in most effective way. (author)

  15. LX-17 and ufTATB Data for Corner-Turning, Failure and Detonation

    Energy Technology Data Exchange (ETDEWEB)

    Souers, P C; Lauderbach, L; Garza, R; Vitello, P; Hare, D E

    2010-02-03

    Data is presented for the size (diameter) effect for ambient and cold confined LX-17, unconfined ambient LX-17, and confined ambient ultrafine TATB. Ambient, cold and hot double cylinder corner-turning data for LX-17, PBX 9502 and ufTATB is presented. Transverse air gap crossing in ambient LX-17 is studied with time delays given for detonations that cross.

  16. Evaluating the Efficiency of Different Microfiltration and Ultrafiltration Membranes Used as Pre-treatment for Reverse Osmosis Desalination of Red Sea Water

    KAUST Repository

    AlMashharawi, Samer

    2011-07-01

    With the increase in population density throughout the world and the growing water demand, innovative methods of providing safe drinking water are of a very high priority. In 2002, the United Nations stated in their millennium declaration that one of their priority goals was “To reduce by half, by the year 2015, the proportion of people who are unable to reach or to afford safe drinking water” [1]. This goal was set with high standards and requires a great deal of water treatment related research in the coming years. Since 1990’s, drinking water treatment via membrane filtration has been widely accepted as a feasible alternative to conventional drinking water treatment. Nowadays, membrane processes are used for separation applications in many industrial applications. Over the past two decades, there has been a rapid growth in the use of low-pressure membrane for drinking water production. These membrane systems are increasingly being accepted as feasible and sustainable technologies for drinking water treatment. Like any innovative process, it has limitations; the primary limitation is membrane fouling, a phenomenon of particles accumulation on the membrane surface and inside its pores. It has the ability to reduce the permeate flux so that higher pumping intensity is required to maintain a consistent volume of product and increasing the cleaning frequency. This project has investigated the rate of reduction in the flux and the increase of pumping intensity using different membranes. Low pressure membranes with three different pore sizes (0.1μm MF, 100kDa UF, and 50kDa UF) have been tested. Eight different filtration configurations have been applied to the membranes including the variation of coagulant (FeCl3) addition aiming mitigation fouling impact in order to maintain consistent permeate flux, while monitoring several water quality parameters before and after treatment such as turbidity, SDI15, total organic carbon (TOC) and particle size distribution

  17. Influence of photo-induced superhydrophilicity of titanium dioxide nanoparticles on the anti-fouling performance of ultrafiltration membranes

    Energy Technology Data Exchange (ETDEWEB)

    Madaeni, S.S., E-mail: smadaeni@yahoo.com [Membrane Research Center, Department of Chemical Engineering, Razi University, Tagh Bostan, 67149 Kermanshah (Iran, Islamic Republic of); Ghaemi, N. [Membrane Research Center, Department of Chemical Engineering, Razi University, Tagh Bostan, 67149 Kermanshah (Iran, Islamic Republic of); Department of Chemical Engineering, Kermanshah University of Technology, Kermanshah (Iran, Islamic Republic of); Alizadeh, A. [Nanoscience and Nanotechnology Research Centre (NNRC), Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Joshaghani, M. [Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of)

    2011-05-01

    Fouling is one of the most present prominent problems in almost all membrane processes. An increase in the membrane hydrophilicity is one of the effective ways to improve the membrane resistance to fouling. In this research, TiO{sub 2} nanoparticles were deposited on the surface of composite ultrafiltration (UF) membrane, and then irradiated by ultraviolet (UV) light. The coating of the membrane surface with TiO{sub 2} nanoparticles and radiation with (UV) light led to the considerable increase of hydrophilicity on the membrane surface. The deposition of TiO{sub 2} nanoparticles was carried out through coordinance bonds with OH functional groups of the polymer on the membrane surface. The flux through a coated and (UV) light radiated membrane was increased to a large extent compared to a virgin membrane. In this research, the effect of different concentrations of TiO{sub 2} nanoparticles in the presence and absence of (UV) irradiation was investigated, and the role of increasing of hydrophilicity on the anti-fouling property of membranes was studied. In order to characterize the membranes FTIR, XRD, SEM, water contact angle and cross-flow filtration were employed. This procedure is a useful technique for improvement of hydrophilicity to decrease (increase) fouling (anti-fouling performance) and enhance the permeation of membranes.

  18. Economical and neutronic performance of HYLIFE-II with mixture of 90% flibe + 10% UF4 (or ThF4)

    International Nuclear Information System (INIS)

    Uenalan, Sebahattin

    2004-01-01

    This work investigated the neutronics behavior and the economics of the HYLIFE-II reactor with ThF 4 and UF 4 , which produces an electrical power of 1 GW from the fusion power of 2.857 GW during the operation period of 30 years. The use of ThF 4 and UF 4 is realized by a mixture zone consisted of 90% flibe (Li 2 BeF 4 ) and 10% fuel, instead of 100% flibe coolant. The mixture compositions are selected as 90% flibe + 10% UF 4 , 90% flibe + 10% ThF 4 and 90% flibe + 5% UF 4 + 5% ThF 4 . The capacity factor of the reactor is 0.75. The mixtures, with zone thickness of 65 cm were circulated with periods of 20.22, 19.89 and 20.11 s during the operation period of 30 years, respectively. In addition, for flibe + UF 4 , power stabilization by means of plutonium separation from the mixture was applied. The use of fuel materials in the HYLIFE-II reactor resulted in high energy production, sufficient tritium breeding, significant fissile fuel breeding and low radiation damage in the first wall. The average values of tritium breeding ratio over 30 years are between 1.08 and 1.12, higher than 1.0 indicating sufficient tritium breeding. Generally, the mixtures with ThF 4 show better performance than the mixture with UF 4 in terms of more energy production and significant fissile fuel breeding. The neutronic performance of the reactor increases with the operational period. However, the stabilization process performed after operation for 6 years causes all neutronic values to remain nearly constant during the followed operation time. At the 6th year of operation, the power production, which is ∼1540 MW(electric) at startup, reached the electrical power of 2 GW for flibe + UF 4 . The power production without the separation process reached ∼3500 MW(electric) for the mixtures with ThF 4 and ∼3000 MW(electric) for the mixture with UF 4 . At the end of the operation period, helium production values in the first wall, made of Hastelloy, are calculated as 590 ppm without the

  19. Sensibilization of escherichia coli cells by cholesterol incorporated into their membrane

    International Nuclear Information System (INIS)

    Breslev, S.E.; Rozenberg, O.A.; Noskin, L.A.; Stepanova, I.M.; Beketova, A.G.; Loshakova, L.V.; Kovaleva, I.G.

    1984-01-01

    It has been established earlier that a level of cell radiosensitivity is defined by membrane viscosity changing in a wide temperature range. Therefore in epsilon coli cells of a natural type lethal doses of gamma rays are increased approximately a 3.5 times at 45 deg C, as compared to 4 deg C. Cholesterol changing a phase state of membrane lipids was used as a modifying factor. Liposomes were used with the goal of effective bacteria transfer to a membrane. It is established that liposomes without cholesterol do not affect their radioresistance and an increase of its content leads to resistance decrease. The effect is attained only at a sufficient long time of incubation of cells with liposomes (10-16 h). At 4 deg C lipids of E. coli membrane are in a solid-crystalline state independently on pholesterol presence, because of this, radiosensitivity does not change. Temperature increase up to 45 deg C transfer a part of lipids to a liquid-crystalline state, thus decreasing membrane viscosity. In this case cholesterol manifests itself. The authors explain viscosity increase with a violation in functioning of those enzyme systems, which activity is connected with membrane structural state, including enzymes of DNA repair. The authors assume that the radiosensibilization effect of cholesterol introduction into a bacterial membrane in high-temperature cell irradiation is explained by this phenomenon

  20. Study on UF6 condensing receiving system improvement

    International Nuclear Information System (INIS)

    Zhang Zhenxing; Li Yingfeng; Li Zhenfeng; He Ping; Wang Yanping; Tian Yushan

    2012-01-01

    In order to improve receiving capacity of UF 6 condensing system, the pressure release mode is changed through modifying gas phase inlet of the first-grade condenser, thus pressure release time is reduced from 13.1 h to 8.1 h. Be- cause of improvement of utility condensers of the two product lines, both the flexibility of feeding nitrogen and the emergency capacity of condensers are improved greatly. And modification of fluid transferring and sampling system make the remains in system transfer flexibly. The practise shows that metal direct recovery rises to the extent, and capacity of the first-grade condensing receiving system improves 8.4%, which strongly guarantees fluorination production safely, continuously and stably run. (authors)

  1. The approach of toxic and radiological risk equivalence in UF6 transport

    International Nuclear Information System (INIS)

    Ringot, C.; Hamard, J.

    1989-01-01

    After a brief description of the present situation concerning the safety of the transport of UF6 and the new regulation project which is being developed under the behalf of IAEA, the equivalence of radioactive and chemical risks is considered for UF6 transport regulations. The concept of low specific activity appearing misfitting to toxic gas, it is proposed a quantity limit of material, T 2 (equivalent to A 2 for radioactive materials), for packagings which do not resist to accidental conditions, (9 m drop, 800 0 C, 30 minutes fire environment). It is proposed that this limit is chosen as the release rate which is acceptable after the IAEA tests for packages having a capacity higher than T 2 kilograms. The fire being considered as the most severe situation for the toxic risk, different possible scenarios are described. This approach of risk equivalence leads to impose that the packaging resists a 800 0 C - 30 minutes fire and that in this condition the release is less than T 2 . The problem of the behaviour of the shell and the openings (in particular the valve) is raised in this context [fr

  2. Characterization of the solid, airborne materials created when UF6 reacts with moist air flowing in single-pass mode

    International Nuclear Information System (INIS)

    Pickrell, P.W.

    1985-10-01

    A series of experiments has been performed in which UF 6 was released into flowing air in order to characterize the solid particulate material produced under non-static conditions. In two of the experiments, the aerosol was allowed to stagnate in a static chamber after release and examined further but in the other experiments characterization was done only on material collected a few seconds after release. Transmission electron microscopy and mass measurement by cascaded impactor were used to characterize the aerosol particles which were usually single spheroids with little agglomeration in evidence. The goal of the work is to determine the chemistry and physics of the UF 6 -atmospheric moisture reaction under a variety of conditions so that information about resulting species and product morphologies is available for containment and removal (knockdown) studies as well as for dispersion plume modeling and toxicology studies. This report completes the milestone for reporting the information obtained from releases of UF 6 into flowing rather than static air. 26 figs., 3 tabs

  3. Application of ceramic membranes for seawater reverse osmosis (SWRO) pre-treatment

    KAUST Repository

    Hamad, Juma

    2013-05-30

    Low-pressure (microfiltration/ultrafiltration (MF/UF)) membranes are being increasingly used as pre-treatment, prior to seawater reverse osmosis (SWRO). The objective of pre-treatment before reverse osmosis (RO) membranes is to remove undesirable and particulate fouling materials (algae, suspended and colloidal particles). Also, a pre-treatment barrier reduces organics and provides better feed water quality for RO membranes. MF and UF pre-treatment prior to SWRO provides Low Silt Density Index (SDI) values recommended for RO operation. Ceramic membranes are more attractive as they made of more chemically resistant materials, which allow for more stable operation and aggressive backwashing (BW) and cleaning. A pilot plant with a monolith ceramic MF membrane (0.1 μm pore size) from METAWATER was used to carry out the study. Red Sea water pumped from a distance of 700 m offshore from Thuwal (Kingdom of Saudi Arabia) was used as feed water. The pilot plant was operated automatically at constant flux of 150 LMH that involved BW, air flushing and forward flushing at the end of filtration cycle. Seawater permeates were used for hydraulic BW, while sodium hypochlorite, citric acid and sodium hydroxide were used for chemical cleaning (CIP) to restore the membrane permeability after use. Filtration cycles of 2.5 h were adopted for initial experiments. Aggressive BW flux of 1,800 LMH for 15 s, air flushing of 4 bars for 10 s and forward flushing of 300 LMH for 40 s were applied for regular membrane hydraulic cleaning. The increase of membrane resistances over time was monitored. Further studies were also performed by using Anopore ceramic membranes AAO100 (pore sizes of 0.1 μm) using a constant pressure bench-scale set-up. The feed water and permeate were analysed using an SDI unit, flow cytometre (FCM) and liquid chromatography with organic carbon detection (LC-OCD). The results showed that ceramic membrane filtration reduced the SDI15 of seawater from 6.1 to 2.1 which

  4. Qualification for Safeguards Purposes of UF6 Sampling using Alumina – Results of the Evaluation Campaign of ABACC-Cristallini Method

    OpenAIRE

    ESTAEBAN ADOLFO; GAUTIER EDUARDO; MACHADO DA SILVA LUIS; FERNANDEZ MORENO SONIA; RENHA JR GERALDO; DIAS FABIO; PEREIRA DE OLIVEIRA JUNIOR OLIVIO; AMMARAGGI DAVID; MASON PETER; SORIANO MICHAEL; CROATTO PAUL; ZULEGER EVELYN; GIAQUINTO JOSEPH; HEXEL COLE; VERCOUTER THOMAS

    2017-01-01

    The procedure currently used to sample material from process lines in uranium enrichment plants consists of collecting the uranium hexafluoride (UF6) in gaseous phase by desublimation inside a metal sampling cylinder cooled with liquid nitrogen or in certain facilities in a fluorothene P-10 tube type. The ABACC-Cristallini method (A-C method) has been proposed to collect the UF6 (gas) by adsorption in alumina (Al2O3) in the form of uranyl fluoride (UO2F2) (solid). This method uses a fluor...

  5. A Role of Sp1 Binding Motifs in Basal and Large T-Antigen-Induced Promoter Activities of Human Polyomavirus HPyV9 and Its Variant UF-1

    Directory of Open Access Journals (Sweden)

    Ugo Moens

    2017-11-01

    Full Text Available Human polyomavirus 9 (HPyV9 was originally detected in the serum of a renal transplant patient. Seroepidemiological studies showed that ~20–50% of the human population have antibodies against this virus. HPyV9 has not yet been associated with any disease and little is known about the route of infection, transmission, host cell tropism, and genomic variability in circulating strains. Recently, the HPyV9 variant UF-1 with an eight base-pair deletion, a thirteen base-pair insertion and with point mutations, creating three putative Sp1 binding sites in the late promoter was isolated from an AIDS patient. Transient transfection studies with a luciferase reporter plasmid driven by HPyV9 or UF1 promoter demonstrated that UF1 early and late promoters were stronger than HPyV9 promoters in most cell lines, and that the UF1 late promoter was more potently activated by HPyV9 large T-antigen (LTAg. Mutation of two Sp1 motifs strongly reduced trans-activation of the late UF1 promoter by HPyV9 LTAg in HeLa cells. In conclusion, the mutations in the UF1 late promoter seem to strengthen its activity and its response to stimulation by HPyV9 LTAg in certain cells. It remains to be investigated whether these promoter changes have an influence on virus replication and affect the possible pathogenic properties of the virus.

  6. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  7. Experimental determination of the thickness of aluminum cascade pipes in the presence of UF{sub 6} gas during enrichment measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, M.L., E-mail: lombardi@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos NM 87545 (United States); Favalli, A.; Goda, J.M.; Ianakiev, K.D.; MacArthur, D.W.; Moss, C.E. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos NM 87545 (United States)

    2012-04-21

    We present a method of determining the wall thickness of a pipe in a Gas Centrifuge Enrichment Plant (GCEP) when an empty pipe measurement is not feasible. Our method uses an X-ray tube for transmission measurements and a lanthanum bromide (LaBr{sub 3}) scintillation detector on the opposite side of the pipe. Two filters, molybdenum (K-edge 20.0 keV) and palladium (K-edge 24.35 keV) are used to transform the bremsstrahlung spectra produced by the X-ray tube into more useful, sharply peaked, spectra. The maximum energies of the peaks are determined by the K-edges of the filters. The attenuation properties of the uranium hexafluoride (UF{sub 6}) gas allow us to determine wall thickness by looking at the ratio of selected regions of interest (ROIs) of the Mo and Pd transmitted spectra. While the attenuation factor at these two transmission energies in the UF{sub 6} gas is nearly equal, attenuation in the aluminum pipe wall at these two energies differs by a factor of about 60. This difference allows measurement of attenuation in the pipe independent of attenuation in the UF{sub 6} gas. Feasibility studies were performed using analytical calculations, and filter thicknesses were optimized. In order to experimentally validate our attenuation measurement method, a UF{sub 6} source with variable enrichment and pipe thickness was built. We describe the experimental procedure used to verify our previous calculations and present recent results.

  8. Membrane fouling mechanism of biofilm-membrane bioreactor (BF-MBR): Pore blocking model and membrane cleaning.

    Science.gov (United States)

    Zheng, Yi; Zhang, Wenxiang; Tang, Bing; Ding, Jie; Zheng, Yi; Zhang, Zhien

    2018-02-01

    Biofilm membrane bioreactor (BF-MBR) is considered as an important wastewater treatment technology that incorporates advantages of both biofilm and MBR process, as well as can alleviate membrane fouling, with respect to the conventional activated sludge MBR. But, to be efficient, it necessitates the establishment of proper methods for the assessment of membrane fouling. Four Hermia membrane blocking models were adopted to quantify and evaluate the membrane fouling of BF-MBR. The experiments were conducted with various operational conditions, including membrane types, agitation speeds and transmembrane pressure (TMP). Good agreement between cake formation model and experimental data was found, confirming the validity of the Hermia models for assessing the membrane fouling of BF-MBR and that cake layer deposits on membrane. Moreover, the influences of membrane types, agitation speeds and transmembrane pressure on the Hermia pore blocking coefficient of cake layer were investigated. In addition, the permeability recovery after membrane cleaning at various operational conditions was studied. This work confirms that, unlike conventional activated sludge MBR, BF-MBR possesses a low degree of membrane fouling and a higher membrane permeability recovery after cleaning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. P-T-x phase diagrams of MeF-UF4(Me=Li-Cs) systems

    International Nuclear Information System (INIS)

    Korenev, Yu.M.; Rykov, A.N.; Varkov, M.V.; Novoselova, A.V.

    1988-01-01

    Vapor composition and general pressure at three-phase equilibria in the MeF-UF 4 (Me=Li-Cs) systems are calculated using the values of independent component activities obtained earlier together with the data on fusibility diagrams. P-T and T-x projections of phase diagrams of these systems are constructed

  10. Numerical Simulation of Particle Distribution in Capillary Membrane during Backwash

    Directory of Open Access Journals (Sweden)

    Anik Keller

    2013-09-01

    Full Text Available The membrane filtration with inside-out dead-end driven UF-/MF- capillary membranes is an effective process for particle removal in water treatment. Its industrial application increased in the last decade exponentially. To date, the research activities in this field were aimed first of all at the analysis of filtration phenomena disregarding the influence of backwash on the operation parameters of filtration plants. However, following the main hypothesis of this paper, backwash has great potential to increase the efficiency of filtration. In this paper, a numerical approach for a detailed study of fluid dynamic processes in capillary membranes during backwash is presented. The effect of particle size and inlet flux on the backwash process are investigated. The evaluation of these data concentrates on the analysis of particle behavior in the cross sectional plane and the appearance of eventually formed particle plugs inside the membrane capillary. Simulations are conducted in dead-end filtration mode and with two configurations. The first configuration includes a particle concentration of 10% homogeneously distributed within the capillary and the second configuration demonstrates a cake layer on the membrane surface with a packing density of 0:6. Analyzing the hydrodynamic forces acting on the particles shows that the lift force plays the main role in defining the particle enrichment areas. The operation parameters contribute in enhancing the lift force and the heterogeneity to anticipate the clogging of the membrane.

  11. Enhanced biofouling resistance of polyethersulfone membrane surface modified with capsaicin derivative and itaconic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China); Gao, Xueli, E-mail: gxl_ouc@126.com [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China); Wang, Qun; Sun, Haijing; Wang, Xiaojuan [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China); Gao, Congjie, E-mail: gaocjie@ouc.edu.cn [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China)

    2015-11-30

    Graphical abstract: - Highlights: • PES membrane was modified with a capsaicin derivative. • UV-assisted graft polymerization was carried out on membrane surface. • The capsaicin derivative modified membrane shows better antibiofouling property. - Abstract: The culprit of biofouling is the reproduction of viable microorganisms on the membrane surface. Recently, functionalization of membrane surface with natural antibacterial agents has drawn great attention. This work presents the fabrication of antibiofouling polyethersulfone (PES) ultrafiltration (UF) membranes by UV-assisted photo grafting of capsaicin derivative (N-(4-hydroxy-3-methoxy-benzyl)-acrylamide, HMBA) and itaconic acid (IA) on the surface of PES membrane. Results of FTIR-ATR, water static contact angle (WSCA) and atomic force microscopy (AFM) analysis confirmed the successful grafting of HMBA and IA on the membrane surface. We investigated the antifouling and antibacterial properties of these membranes using BSA and Escherichia coli as the test model, respectively. During a 150-min test, the modified membranes show much lower flux decline (42.7% for PES-g-1H0I, 22.2% for PES-g-1H1I and 7.7% for PES-g-1H5I) when compared with the pristine membrane (flux declined by 77%). The modified membranes exhibit excellent antibacterial activity (nearly 100%) when UV irradiation time was 6 min. The morphological study suggested that the E. coli on the pristine membrane showed a regular and smooth surface while that on the modified membrane was disrupted, which validated the antibacterial activity of the modified membranes.

  12. Enhanced biofouling resistance of polyethersulfone membrane surface modified with capsaicin derivative and itaconic acid

    International Nuclear Information System (INIS)

    Wang, Jian; Gao, Xueli; Wang, Qun; Sun, Haijing; Wang, Xiaojuan; Gao, Congjie

    2015-01-01

    Graphical abstract: - Highlights: • PES membrane was modified with a capsaicin derivative. • UV-assisted graft polymerization was carried out on membrane surface. • The capsaicin derivative modified membrane shows better antibiofouling property. - Abstract: The culprit of biofouling is the reproduction of viable microorganisms on the membrane surface. Recently, functionalization of membrane surface with natural antibacterial agents has drawn great attention. This work presents the fabrication of antibiofouling polyethersulfone (PES) ultrafiltration (UF) membranes by UV-assisted photo grafting of capsaicin derivative (N-(4-hydroxy-3-methoxy-benzyl)-acrylamide, HMBA) and itaconic acid (IA) on the surface of PES membrane. Results of FTIR-ATR, water static contact angle (WSCA) and atomic force microscopy (AFM) analysis confirmed the successful grafting of HMBA and IA on the membrane surface. We investigated the antifouling and antibacterial properties of these membranes using BSA and Escherichia coli as the test model, respectively. During a 150-min test, the modified membranes show much lower flux decline (42.7% for PES-g-1H0I, 22.2% for PES-g-1H1I and 7.7% for PES-g-1H5I) when compared with the pristine membrane (flux declined by 77%). The modified membranes exhibit excellent antibacterial activity (nearly 100%) when UV irradiation time was 6 min. The morphological study suggested that the E. coli on the pristine membrane showed a regular and smooth surface while that on the modified membrane was disrupted, which validated the antibacterial activity of the modified membranes.

  13. Palm Oil Mill Effluent Treatment Through Combined Process Adsorption and Membrane Filtration

    Directory of Open Access Journals (Sweden)

    Muhammad Said

    2016-08-01

    Full Text Available The growth in palm oil production also leads to an Increase in the production of palm oil mill effluent (POME. Nowadays, POME was treated using an open lagoon but this method is ineffectiveness in complying with the standards for water disposal. Therefore, efficient and cohesive treatment system is highly desired to ensure the final discharge of the treated water meets the effluent discharge standards. Initially, the POME was treated through adsorption, followed by UF membranes roomates were intended to reduce COD, TSS and turbidity up to 88%, 99%, and 98%, while the final treatment of RO membranes can reduce BOD, COD and color up to 92%, 98% and 99%. To determine the optimum condition of the RO membrane, response surface methodology (RSM was used. The results showed there was correlation between all key variables. POME concentration, trans-membrane pressure, pH and time would give significant effects in reducing the parameters in POME treatment with the optimum condition of 15.77% for POME concentration, 3.73 for pH, 0.5 bar trans-membrane pressure and 5 hours for filtration time. To predict COD removal, the results were analyzed by applying the artificial neural network (ANN to derive a mathematical model.

  14. On the Recent Use of Membrane Technology for Olive Mill Wastewater Purification

    Directory of Open Access Journals (Sweden)

    Javier Miguel Ochando-Pulido

    2015-09-01

    Full Text Available Many reclamation treatments as well as integrated processes for the purification of olive mill wastewaters (OMW have already been proposed and developed but not led to completely satisfactory results, principally due to complexity or cost-ineffectiveness. The olive oil industry in its current status, composed of little and dispersed factories, cannot stand such high costs. Moreover, these treatments are not able to abate the high concentration of dissolved inorganic matter present in these highly polluted effluents. In the present work, a review on the actual state of the art concerning the treatment and disposal of OMW by membranes is addressed, comprising microfiltration (MF, ultrafiltration (UF, nanofiltration (NF, and reverse osmosis (RO, as well as membrane bioreactors (MBR and non-conventional membrane processes such as vacuum distillation (VD, osmotic distillation (OD and forward osmosis (FO. Membrane processes are becoming extensively used to replace many conventional processes in the purification of water and groundwater as well as in the reclamation of wastewater streams of very diverse sources, such as those generated by agro-industrial activities. Moreover, a brief insight into inhibition and control of fouling by properly-tailored pretreatment processes upstream the membrane operation and the use of the critical and threshold flux theories is provided.

  15. Standard test method for determination of bromine and chlorine in UF6 and uranyl nitrate by X-Ray fluorescence (XRF) spectroscopy

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This method covers the determination of bromine (Br) and chlorine (Cl) in uranium hexafluoride (UF6) and uranyl nitrate solution. The method as written covers the determination of bromine in UF6 over the concentration range of 0.2 to 8 μg/g, uranium basis. The chlorine in UF6 can be determined over the range of 4 to 160 μg/g, uranium basis. Higher concentrations may be covered by appropriate dilutions. The detection limit for Br is 0.2 μg/g uranium basis and for Cl is 4 μg/g uranium basis. 1.2 This standard may involve hazardous materials, operations and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  16. Preparation and characterization of poly (methyl methacrylate) and sulfonated poly (ether ether ketone) blend ultrafiltration membranes for protein separation applications

    International Nuclear Information System (INIS)

    Arthanareeswaran, G.; Thanikaivelan, P.; Raajenthiren, M.

    2009-01-01

    Poly (methyl methacrylate) (PMMA) and poly (methyl methacrylate)/sulfonated poly (ether ether ketone) (SPEEK) blend membranes were prepared by phase inversion technique in various composition using N,N'-dimethylformamide as solvent. The prepared membranes were characterized in terms of pure water flux, water content, porosity and thermal stability. The addition of SPEEK to the casting solution resulted in membranes with high pure water flux, water content, porosity and slightly low thermal stability. The cross sectional views of the blend membranes under electron microscope confirm the porosity and water flux results. The effect of the addition of SPEEK into the PMMA matrix on the extent of bovine serum albumin (BSA) separation was studied. It was found that the permeate flux increased significantly while the rejection of BSA from aqueous solution reduced moderately during ultrafiltration (UF) process. The effect was attributed to the increase in porosity and charge of the membrane due to the addition of SPEEK into the PMMA blend solution

  17. Mixed-matrix membranes with enhanced antifouling activity: probing the surface-tailoring potential of Tiron and chromotropic acid for nano-TiO2

    Science.gov (United States)

    Pal, Avishek; Dey, T. K.; Debnath, A. K.; Bhushan, Bharat; Sahu, A. K.; Bindal, R. C.; Kar, Soumitra

    2017-09-01

    Mixed-matrix membranes (MMMs) were developed by impregnating organofunctionalized nanoadditives within fouling-susceptible polysulfone matrix following the non-solvent induced phase separation (NIPS) method. The facile functionalization of nanoparticles of anatase TiO2 (nano-TiO2) by using two different organoligands, viz. Tiron and chromotropic acid, was carried out to obtain organofunctionalized nanoadditives, FT-nano-TiO2 and FC-nano-TiO2, respectively. The structural features of nanoadditives were evaluated by X-ray diffraction, X-ray photoelectron spectroscopy, Raman and Fourier transform infrared spectroscopy, which established that Tiron leads to the blending of chelating and bridging bidentate geometries for FT-nano-TiO2, whereas chromotropic acid produces bridging bidentate as well as monodentate geometries for FC-nano-TiO2. The surface chemistry of the studied membranes, polysulfone (Psf): FT-nano-TiO2 UF and Psf: FC-nano-TiO2 UF, was profoundly influenced by the benign distributions of the nanoadditives enriched with distinctly charged sites (-SO3 -H+ ), as evidenced by superior morphology, improved topography, enhanced surface hydrophilicity and altered electrokinetic features. The membranes exhibited enhanced solvent throughputs, viz. 3500-4000 and 3400-4300 LMD at 1 bar of transmembrane pressure, without significant compromise in their rejection attributes. The flux recovery ratios and fouling resistive behaviours of MMMs towards bovine serum albumin indicated that the nanoadditives could impart stable and appreciable antifouling activity, potentially aiding in a sustainable ultrafiltration performance.

  18. Mixed-matrix membranes with enhanced antifouling activity: probing the surface-tailoring potential of Tiron and chromotropic acid for nano-TiO2.

    Science.gov (United States)

    Pal, Avishek; Dey, T K; Debnath, A K; Bhushan, Bharat; Sahu, A K; Bindal, R C; Kar, Soumitra

    2017-09-01

    Mixed-matrix membranes (MMMs) were developed by impregnating organofunctionalized nanoadditives within fouling-susceptible polysulfone matrix following the non-solvent induced phase separation (NIPS) method. The facile functionalization of nanoparticles of anatase TiO 2 (nano-TiO 2 ) by using two different organoligands, viz . Tiron and chromotropic acid, was carried out to obtain organofunctionalized nanoadditives, F T -nano-TiO 2 and F C -nano-TiO 2 , respectively. The structural features of nanoadditives were evaluated by X-ray diffraction, X-ray photoelectron spectroscopy, Raman and Fourier transform infrared spectroscopy, which established that Tiron leads to the blending of chelating and bridging bidentate geometries for F T -nano-TiO 2 , whereas chromotropic acid produces bridging bidentate as well as monodentate geometries for F C -nano-TiO 2 . The surface chemistry of the studied membranes, polysulfone (Psf): F T -nano-TiO 2 UF and Psf: F C -nano-TiO 2 UF, was profoundly influenced by the benign distributions of the nanoadditives enriched with distinctly charged sites ([Formula: see text]), as evidenced by superior morphology, improved topography, enhanced surface hydrophilicity and altered electrokinetic features. The membranes exhibited enhanced solvent throughputs, viz . 3500-4000 and 3400-4300 LMD at 1 bar of transmembrane pressure, without significant compromise in their rejection attributes. The flux recovery ratios and fouling resistive behaviours of MMMs towards bovine serum albumin indicated that the nanoadditives could impart stable and appreciable antifouling activity, potentially aiding in a sustainable ultrafiltration performance.

  19. Role for chlamydial inclusion membrane proteins in inclusion membrane structure and biogenesis.

    Directory of Open Access Journals (Sweden)

    Jeffrey Mital

    Full Text Available The chlamydial inclusion membrane is extensively modified by the insertion of type III secreted effector proteins. These inclusion membrane proteins (Incs are exposed to the cytosol and share a common structural feature of a long, bi-lobed hydrophobic domain but little or no primary amino acid sequence similarity. Based upon secondary structural predictions, over 50 putative inclusion membrane proteins have been identified in Chlamydia trachomatis. Only a limited number of biological functions have been defined and these are not shared between chlamydial species. Here we have ectopically expressed several C. trachomatis Incs in HeLa cells and find that they induce the formation of morphologically distinct membranous vesicular compartments. Formation of these vesicles requires the bi-lobed hydrophobic domain as a minimum. No markers for various cellular organelles were observed in association with these vesicles. Lipid probes were incorporated by the Inc-induced vesicles although the lipids incorporated were dependent upon the specific Inc expressed. Co-expression of Inc pairs indicated that some colocalized in the same vesicle, others partially overlapped, and others did not associate at all. Overall, it appears that Incs may have an intrinsic ability to induce membrane formation and that individual Incs can induce membranous structures with unique properties.

  20. Ion-conducting membranes

    Science.gov (United States)

    Masel, Richard I.; Sajjad, Syed Dawar; Gao, Yan; Liu, Zengcai; Chen, Qingmei

    2017-12-26

    An anion-conducting polymeric membrane comprises a terpolymer of styrene, vinylbenzyl-R.sub.s and vinylbenzyl-R.sub.x. R.sub.s is a positively charged cyclic amine group. R.sub.x is at least one constituent selected from the group consisting Cl, OH and a reaction product between an OH or Cl and a species other than a simple amine or a cyclic amine. The total weight of the vinylbenzyl-R.sub.x groups is greater than 0.3% of the total weight of the membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

  1. Ceramic Ultrafiltration of Marine Algal Solutions: A Comprehensive Study

    KAUST Repository

    Dramas, Laure

    2014-09-01

    Algal bloom can significantly impact reverse osmosis desalination process and reduce the drinking water production. In 2008, a major bloom event forced several UAE reverse osmosis plants to stop their production, and in this context, a better understanding of UF membrane fouling caused by algal organic matter (AOM) is needed, in order to adjust the filtration conditions during algal bloom events. Polymeric MF/UF membranes are already widely used for RO pretreatment, but ceramic UF membranes can also be an alternative for the filtration of marine algal solutions. The fouling potential of the Red Sea and the Arabian Sea, sampled at different seasons, along with four algal monocultures grown in laboratory, and one mesocosm experiment in the Red Sea was investigated. Algal solutions induce a stronger and more irreversible fouling than terrestrial humic solution, toward ceramic membrane. During algal bloom events, this fouling is enhanced and becomes even more problematic at the decline phase of the bloom, for a similar initial DOC. Three main mechanisms are involved: the formation of a cake layer at the membrane surface; the penetration of the algal organic matter (AOM) in the pore network of the membrane; the strong adhesion of AOM with the membrane surface. The last mechanism is species-specific and metal-oxide specific. In order to understand the stronger ceramic UF fouling at the decline phase, AOM quality was analyzed every two days. During growth, AOM is getting enriched in High Molecular Weight (HMW) structures (> 200 kDa), which are mainly composed by proteins and polysaccharides, and these compounds seem to be responsible for the stronger fouling at decline phase. In order to prevent the fouling of ceramic membrane, coagulation-flocculation (CF) using ferric chloride was implemented prior to filtration. It permits a high removal of HMW compounds and greatly reduces the fouling potential of the algal solution. During brief algal bloom events, CF should be

  2. Release of UF6 from a ruptured Model 48Y cylinder at Sequoyah Fuels Corporation Facility: lessons-learned report

    International Nuclear Information System (INIS)

    1986-06-01

    The uranium hexafluoride (UF 6 ) release of January 4, 1986, at the Sequoyah Fuels Corporation facility has been reviewed by a NRC Lessons-Learned Group. A Model 48Y cylinder containing UF 6 ruptured upon being heated after it was grossly overfilled. The Uf 6 released upon rupture of the cylinder reacted with airborne moisture to produce hydrofluoric acid (HF) and uranyl fluoride (UO 2 F 2 ). One individual died from exposure to airborne HF and several others were injured. There were no significant immediate effects from exposure to uranyl fluoride. This report of the Lessons-Learned Group presents discussions and recommendations on the process, operation and design of the facility, as well as on the responses of the licensee, NRC, and other local, state and federal agencies to the incident. It also provides recommendations in the areas of NRC licensing and inspection of fuel facility and certain other NMSS licensees. The implementation of some recommendations will depend on decisions to be made regarding the scope of NRC responsibilities with respect to those aspects of the design and operation of such facilities that are not directly related to radiological safety

  3. A nuclear criticality safety assessment of the loss of moderation control in 2 1/2 and 10-ton cylinders containing enriched UF6

    International Nuclear Information System (INIS)

    Newvahner, R.L.; Pryor, W.A.

    1991-01-01

    Moderation control for maintaining nuclear criticality safety in 2-1/2-ton, 10-ton, and 14-ton cylinders containing enriched uranium hexafluoride (UF 6 ) has been used safely within the nuclear industry for over thirty years, and is dependent on cylinder integrity and containment. This assessment evaluates the loss of moderation control by the breaching of containment and entry of water into the cylinders. The first objective of this study was to estimate the required amounts of water entering these large UF 6 cylinders to react with, and to moderate the uranium compounds sufficiently to cause criticality. Hypothetical accident situations were modeled as a uranyl fluoride (UO 2 F 2 ) slab above a UF 6 hemicylinder, and a UO 2 sphere centered within a UF 6 hemicylinder. These situations were investigated by computational analyses utilizing the KENO V.a Monte Carlo Computer Code. The results were used to estimate both the masses of water required for criticality, and the limiting masses of water that could be considered safe. The second objective of the assessment was to calculate the time available for emergency control actions before a criticality would occur, i.e., a ''safetime,'' for various sources of water and different size openings in a breached cylinder. In the situations considered, except the case for a fire hose, the safetime appears adequate for emergency control actions. The assessment shows that current practices for handling moderation controlled cylinders of low enriched UF 6 , along with the continuation of established personnel training programs, ensure nuclear criticality safety for routine and emergency operations. 2 refs., 5 figs., 1 tab

  4. Estimation of time to rupture in a fire using 6FIRE, a lumped parameter UF6 cylinder transient heat transfer/stress analysis model

    International Nuclear Information System (INIS)

    Williams, W.R.; Anderson, J.C.

    1995-01-01

    The transportation of UF 6 is subject to regulations requiring the evaluation of packaging under a sequence of hypothetical accident conditions including exposure to a 30-min 800 degree C (1475 degree F) fire [10 CFR 71.73(c)(3)]. An issue of continuing interest is whether bare cylinders can withstand such a fire without rupturing. To address this issue, a lumped parameter heat transfer/stress analysis model (6FIRE) has been developed to simulate heating to the point of rupture of a cylinder containing UF 6 when it is exposed to a fire. The model is described, then estimates of time to rupture are presented for various cylinder types, fire temperatures, and fill conditions. An assessment of the quantity of UF 6 released from containment after rupture is also presented. Further documentation of the model is referenced

  5. UF6 reconversion experience by means of Sumitomo ADU process at JCO

    International Nuclear Information System (INIS)

    Ogawa, H.; Yamazaki, N.

    1994-01-01

    Since 1973, Japan Nuclear Fuel Conversion Co., Ltd. (JCO), a leading company in Japan on nuclear fuel manufacturing, has been involved in UF 6 reconversion to ceramic grade uranium dioxide (UO 2 ) for LWR fuel by means of the original ADU process developed by Sumitomo Metal Mining Co., Ltd.. This paper deals with the details of the Sumitomo ADU process as well as the performance results of it, especially from the standpoint of product quality

  6. Dynamics of microbial communities in an integrated ultrafiltration–reverse osmosis desalination pilot plant located at the Arabian Gulf

    KAUST Repository

    Hong, Pei-Ying

    2015-08-27

    This study demonstrated the use of high-throughput sequencing to assess the efficacy of an integrated ultrafiltration (UF)–reverse osmosis (RO) desalination pilot plant located at the Arabian Gulf, and to identify potential microbial-associated problems that may arise in this plant. When integrated into the desalination treatment system, the UF membranes were able to serve as a good pretreatment strategy to delay RO fouling by achieving up to 1.96-log removal of cells from the seawater. Consequently, the differential pressure of the RO membrane remained around 1 bar for the entire six-month study, suggesting no significant biofouling performance issue identified for this RO system. Examples of microbial populations effectively removed by the UF membranes from the feed waters included Nitrosoarchaeum limnia and phototrophic eukaryotes. Microbial-associated problems observed in this pilot plant included the presence of Pseudomonas spp. in coexistence with Desulfovibrio spp. These two bacterial populations can reduce sulfate and produce hydrogen sulfide, which would in turn cause corrosion problems or compromise membrane integrities. Chemical-enhanced backwashing (CEB) can be used as an effective strategy to minimize the associated microbial problems by removing bacterial populations including sulfate reducers from the UF membranes.

  7. Dynamics of microbial communities in an integrated ultrafiltration–reverse osmosis desalination pilot plant located at the Arabian Gulf

    KAUST Repository

    Hong, Pei-Ying; Moosa, Nasir; Mink, Justine

    2015-01-01

    This study demonstrated the use of high-throughput sequencing to assess the efficacy of an integrated ultrafiltration (UF)–reverse osmosis (RO) desalination pilot plant located at the Arabian Gulf, and to identify potential microbial-associated problems that may arise in this plant. When integrated into the desalination treatment system, the UF membranes were able to serve as a good pretreatment strategy to delay RO fouling by achieving up to 1.96-log removal of cells from the seawater. Consequently, the differential pressure of the RO membrane remained around 1 bar for the entire six-month study, suggesting no significant biofouling performance issue identified for this RO system. Examples of microbial populations effectively removed by the UF membranes from the feed waters included Nitrosoarchaeum limnia and phototrophic eukaryotes. Microbial-associated problems observed in this pilot plant included the presence of Pseudomonas spp. in coexistence with Desulfovibrio spp. These two bacterial populations can reduce sulfate and produce hydrogen sulfide, which would in turn cause corrosion problems or compromise membrane integrities. Chemical-enhanced backwashing (CEB) can be used as an effective strategy to minimize the associated microbial problems by removing bacterial populations including sulfate reducers from the UF membranes.

  8. Influence of UF4 physico-chemical properties on the assessment of the chronic exposure to this compound

    International Nuclear Information System (INIS)

    Ansoborlo, E.; Chalabreysse, J.

    1990-01-01

    A method was developed in order to assess uranium exposure hazards at work stations based on the industrial experience acquired by Comurhex Malvesi at Narbonne. Applied to uranium tetrafluoride (UF 4 ) the method involves 4 steps: 1. characterization of the industrial compound, including its physico-chemical properties (density, surface area, X-ray spectrum and uranium enrichment); 2. assessment of work station concentrations and particle size distribution (AMAD); 3. In vitro biological solubility with different synthetic fluids such as Gamble solutions with different gases or compounds added (oxygen or superoxide ions O 2 - ) in order to determine the solubility class D, W or Y; 4. workers' monitoring by routine measurements of urinary excretion completed, if necessary, by fecal excretion and γ-spectrometry. Results and present data on UF 4 are presented. 3 tabs., 4 figs [fr

  9. Developments of solid materials for UF6 sampling

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Nicholas [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hebden, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Savina, Joseph [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-11-15

    This project demonstrated that a device using majority Commercial Off the Shelf (COTS) components could be used to collect uranium hexafluoride samples safely from gaseous or solid sources. The device was based on the successful Cristallini method developed by ABACC over the past 10 years. The system was designed to capture and store the UF6 as an inert fluoride salt to ease transportation regulations. In addition, the method was considerably faster than traditional cryogenic methods, collected enough material to perform analyses without undue waste, and could be used either inside a facility or in the storage yard.

  10. Valorisation of tuna processing waste biomass for recovery of functional and antioxidant peptides using enzymatic hydrolysis and membrane fractionation process.

    Science.gov (United States)

    Saidi, Sami; Ben Amar, Raja

    2016-10-01

    The enzymatic hydrolysis using Prolyve BS coupled to membrane process (Ultrafiltration (UF) and nanofiltration (NF)) is a means of biotransformation of tuna protein waste to Tuna protein hydrolysate (TPH) with higher added values. This method could be an effective solution for the production of bioactive compounds used in various biotechnological applications and minimizing the pollution problems generated by the seafood processing industries. The amino acid composition, functional and antioxidant properties of produced TPH were evaluated. The results show that the glutamic acid, aspartic acid, glycine, alaline, valine and leucine were the major amino acids detected in the TPH profile. After membrane fractionation process, those major amino acids were concentrated in the NF retentate (NFR). The NFR and NF permeate (NFP) have a higher protein solubility (>95 %) when compared to TPH (80 %). Higher oil and water binding capacity were observed in TPH and higher emulsifying and foam stability was found in UF retentate. The NFP showed the highest DPPH radical scavenging activity (65 %). The NFR contained antioxidant amino acid (30.3 %) showed the highest superoxide radical and reducing power activities. The TPH showed the highest iron chelating activity (75 %) compared to other peptide fractions. The effect of the membrane fractionation on the molecular weight distribution of the peptide and their bioactivities was underlined. We concluded that the TPH is a valuable source of bioactive peptides and their peptide fractions may serve as useful ingredients for application in food industry and formulation of nutritional products.

  11. Microporous Silica Based Membranes for Desalination

    Directory of Open Access Journals (Sweden)

    João C. Diniz da Costa

    2012-09-01

    Full Text Available This review provides a global overview of microporous silica based membranes for desalination via pervaporation with a focus on membrane synthesis and processing, transport mechanisms and current state of the art membrane performance. Most importantly, the recent development and novel concepts for improving the hydro-stability and separating performance of silica membranes for desalination are critically examined. Research into silica based membranes for desalination has focussed on three primary methods for improving the hydro-stability. These include incorporating carbon templates into the microporous silica both as surfactants and hybrid organic-inorganic structures and incorporation of metal oxide nanoparticles into the silica matrix. The literature examined identified that only metal oxide silica membranes have demonstrated high salt rejections under a variety of feed concentrations, reasonable fluxes and unaltered performance over long-term operation. As this is an embryonic field of research several target areas for researchers were discussed including further improvement of the membrane materials, but also regarding the necessity of integrating waste or solar heat sources into the final process design to ensure cost competitiveness with conventional reverse osmosis processes.

  12. Removal of radionuclides in drinking water by membrane treatment using ultrafiltration, reverse osmosis and electrodialysis reversal

    International Nuclear Information System (INIS)

    Montaña, M.; Camacho, A.; Serrano, I.; Devesa, R.; Matia, L.; Vallés, I.

    2013-01-01

    A pilot plant had been built to test the behaviour of ultrafiltration (UF), reverse osmosis (RO), and electrodialysis reversal (EDR) in order to improve the quality of the water supplied to Barcelona metropolitan area from the Llobregat River. This paper presents results from two studies to reduce natural radioactivity. The results from the pilot plant with four different scenarios were used to design the full-scale treatment plant built (SJD WTP). The samples taken at different steps of the treatment were analysed to determine gross alpha, gross beta and uranium activity. The results obtained revealed a significant improvement in the radiological water quality provided by both membrane techniques (RO and EDR showed removal rates higher than 60%). However, UF did not show any significant removal capacity for gross alpha, gross beta or uranium activities. RO was better at reducing the radiological parameters studied and this treatment was selected and applied at the full scale treatment plant. The RO treatment used at the SJD WTP reduced the concentration of both gross alpha and gross beta activities and also produced water of high quality with an average removal of 95% for gross alpha activity and almost 93% for gross beta activity at the treatment plant. -- Highlights: ► A study with a pilot plant using different membranes technologies was made. ► Big reduction on natural uranium and 40 K by reverse osmosis was found. ► Pilot plant and full-scale treatment plant behave similarly

  13. Thermodynamic assessment of the LiF–NaF–BeF{sub 2}–ThF{sub 4}–UF{sub 4} system

    Energy Technology Data Exchange (ETDEWEB)

    Capelli, E.; Beneš, O., E-mail: ondrej.benes@ec.europa.eu; Konings, R.J.M.

    2014-06-01

    The present study describes the full thermodynamic assessment of the LiF–NaF–BeF{sub 2}–ThF{sub 4}–UF{sub 4} system which is one of the key systems considered for a molten salt reactor fuel. The work is an extension of the previously assessed LiF–NaF–ThF{sub 4}–UF{sub 4} system with addition of BeF{sub 2} which is characterized by very low neutron capture cross section and a relatively low melting point. To extend the database the binary BeF{sub 2}–ThF{sub 4} and BeF{sub 2}–UF{sub 4} systems were optimized and the novel data were used for the thermodynamic assessment of BeF{sub 2} containing ternary systems for which experimental data exist in the literature. The obtained database is used to optimize the molten salt reactor fuel composition and to assess its properties with the emphasis on the melting behaviour.

  14. Impact of ultrafiltration and nanofiltration of an industrial fish protein hydrolysate on its bioactive properties.

    Science.gov (United States)

    Picot, Laurent; Ravallec, Rozenn; Fouchereau-Péron, Martine; Vandanjon, Laurent; Jaouen, Pascal; Chaplain-Derouiniot, Maryse; Guérard, Fabienne; Chabeaud, Aurélie; Legal, Yves; Alvarez, Oscar Martinez; Bergé, Jean-Pascal; Piot, Jean-Marie; Batista, Irineu; Pires, Carla; Thorkelsson, Gudjon; Delannoy, Charles; Jakobsen, Greta; Johansson, Inez; Bourseau, Patrick

    2010-08-30

    Numerous studies have demonstrated that in vitro controlled enzymatic hydrolysis of fish and shellfish proteins leads to bioactive peptides. Ultrafiltration (UF) and/or nanofiltration (NF) can be used to refine hydrolysates and also to fractionate them in order to obtain a peptide population enriched in selected sizes. This study was designed to highlight the impact of controlled UF and NF on the stability of biological activities of an industrial fish protein hydrolysate (FPH) and to understand whether fractionation could improve its content in bioactive peptides. The starting fish protein hydrolysate exhibited a balanced amino acid composition, a reproducible molecular weight (MW) profile, and a low sodium chloride content, allowing the study of its biological activity. Successive fractionation on UF and NF membranes allowed concentration of peptides of selected sizes, without, however, carrying out sharp separations, some MW classes being found in several fractions. Peptides containing Pro, Hyp, Asp and Glu were concentrated in the UF and NF retentates compared to the unfractionated hydrolysate and UF permeate, respectively. Gastrin/cholecystokinin-like peptides were present in the starting FPH, UF and NF fractions, but fractionation did not increase their concentration. In contrast, quantification of calcitonin gene-related peptide (CGRP)-like peptides demonstrated an increase in CGRP-like activities in the UF permeate, relative to the starting FPH. The starting hydrolysate also showed a potent antioxidant and radical scavenging activity, and a moderate angiotensin-converting enzyme (ACE)-1 inhibitory activity, which were not increased by UF and NF fractionation. Fractionation of an FPH using membrane separation, with a molecular weight cut-off adapted to the peptide composition, may provide an effective means to concentrate CGRP-like peptides and peptides enriched in selected amino acids. The peptide size distribution observed after UF and NF fractionation

  15. Self diffusion and spectral modifications of a membrane protein, the Rubrivivax gelatinosus LH2 complex, incorporated into a monoolein cubic phase.

    OpenAIRE

    Tsapis, N; Reiss-Husson, F; Ober, R; Genest, M; Hodges, R S; Urbach, W

    2001-01-01

    The light-harvesting complex LH2 from a purple bacterium, Rubrivivax gelatinosus, has been incorporated into the Q230 cubic phase of monoolein. We measured the self-diffusion of LH2 in detergent solution and in the cubic phase by fluorescence recovery after photobleaching. We investigated also the absorption and fluorescence properties of this oligomeric membrane protein in the cubic phase, in comparison with its beta-octyl glucoside solution. In these experiments, native LH2 and LH2 labeled ...

  16. The state-of-the-practice in low enriched UF6 isotopic measurements in the European Community: results of REIMEP UF6

    International Nuclear Information System (INIS)

    Bolle, W. de; Damen, R.; Bievre, P. de; Nagel, W.; Meyer, H.; Lycke, W.; Wolters, W.H.

    1991-01-01

    After the interruption of the SALE programme, CBNM has established a Regular European Interlaboratory Measurement Evaluation Programme (REIMEP) with the support of the ESARDA Working Group for techniques and standards for destructive analysis (WGDA), the ESARDA Working Group for techniques and standards for non-destructive analysis (WGNDA) and the IAEA. On the basis of a questionnaire with answers from 41 laboratories, 36 laboratories have announced their interest for such a programme. In this paper we report on the 1986/87 round of the programme establishing the measurement capability or State Of the Practice in UF 6 isotopic measurements by methods left at the discretion of the participants (thermal ionization mass spectrometry, electron impact mass spectrometry and gamma-ray spectrometry). Pictures of the State Of the Practice are presented as graphs displaying participants results

  17. A nuclear criticality safety assessment of the loss of moderation control in 2 1/2 and 10-ton cylinders containing enriched UF{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Newvahner, R.L. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States); Pryor, W.A. [PAI Corp., Oak Ridge, TN (United States)

    1991-12-31

    Moderation control for maintaining nuclear criticality safety in 2 {1/2}-ton, 10-ton, and 14-ton cylinders containing enriched uranium hexafluoride (UF{sub 6}) has been used safely within the nuclear industry for over thirty years, and is dependent on cylinder integrity and containment. This assessment evaluates the loss of moderation control by the breaching of containment and entry of water into the cylinders. The first objective of this study was to estimate the required amounts of water entering these large UF{sub 6} cylinders to react with, and to moderate the uranium compounds sufficiently to cause criticality. Hypothetical accident situations were modeled as a uranyl fluoride (UO{sub 2}F{sub 2}) slab above a UF{sub 6} hemicylinder, and a UO{sub 2}F{sub 2} sphere centered within a UF{sub 6} hemicylinder. These situations were investigated by computational analyses utilizing the KENO V.a Monte Carlo Computer Code. The results were used to estimate both the masses of water required for criticality, and the limiting masses of water that could be considered safe. The second objective of the assessment was to calculate the time available for emergency control actions before a criticality would occur, i.e., a {open_quotes}safetime{close_quotes}, for various sources of water and different size openings in a breached cylinder. In the situations considered, except the case for a fire hose, the safetime appears adequate for emergency control actions. The assessment shows that current practices for handling moderation controlled cylinders of low enriched UF{sub 6}, along with the continuation of established personnel training programs, ensure nuclear criticality safety for routine and emergency operations.

  18. UF6 fissile mass flow simulation at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; March-Leuba, J.; Valentine, T.E.; Mattingly, J.K.; Uckan, T.; McEvers, J.A.

    1997-01-01

    Basis for measuring fissile mass flow in slurries, liquid, and gaseous streams is activation of a fissile stream by neutrons and then detection of delayed radiation from resulting fission products. This paper describes recent simulation measurements with the first prototype of the system for fissile mass flow measurements with HEU UF 6 gas for use in blenddown facilities. Theory was only 15% higher than actual measured; thus calibration factor would be 0.85. This simulation of HEU gas flow confirms well the understanding of the physical phenomena associated with this measurement system

  19. A realidade da pesquisa no DEN/UFS

    Directory of Open Access Journals (Sweden)

    Delvair de Brito Alves

    1998-12-01

    Full Text Available Esta pesquisa trata do processo de pesquisar no Departamento de Enfermagem e Nutrição da Universidade Federal de Sergipe - DEN/UFS. Ela foi desenvolvida a partir de entrevistas semi estruturadas realizadas com as docentes. Dos materiais obtidos, apresentamos concepções das docentes sobre grupos, linhas e projetos de pesquisa; a produção científica docente e discente; dificuldades e possibilidades relativas à atividade de pesquisar; estratégias que esse Departamento vem utilizando para o desenvolvimento da pesquisa, para a capacitação docente e formação de pesquisadores, além da inserção de estudantes (de graduação e de pós graduação no "mundo científico". Ela conclui pela necessidade de aprofundamento dessa atividade e pela divulgação e aplicação dos seus resultados na prática de enfermagem.

  20. Incorporation of systematic uncertainties in statistical decision rules

    International Nuclear Information System (INIS)

    Wichers, V.A.

    1994-02-01

    The influence of systematic uncertainties on statistical hypothesis testing is an underexposed subject. Systematic uncertainties cannot be incorporated in hypothesis tests, but they deteriorate the performance of these tests. A wrong treatment of systematic uncertainties in verification applications in safeguards leads to false assessment of the strength of the safeguards measure, and thus undermines the safeguards system. The effects of systematic uncertainties on decision errors in hypothesis testing are analyzed quantitatively for an example from the safeguards practice. (LEU-HEU verification of UF 6 enrichment in centrifuge enrichment plants). It is found that the only proper way to tackle systematic uncertainties is reduction to sufficiently low levels; criteria for these are proposed. Although conclusions were obtained from study of a single practical application, it is believed that they hold generally: for all sources of systematic uncertainties, all statistical decision rules, and all applications. (orig./HP)

  1. CISG DEL II og Værneting i UfR 1998.1092 ØLK

    DEFF Research Database (Denmark)

    Lookofsky, Joseph

    1998-01-01

    I UfR 1998.1092 ØLK anvender en dansk domstol reglerne om købsaftalers indgåelse i CISG-konventionens del II. Det sker for at afgøre, om der er værneting i Danmark efter EF-domskonventionens artikel 5, nr. 1, når sagsøgte bestrider, at der er indgået en købsaftale. Sagen sætter fokus på behovet...

  2. Changing rooster sperm membranes to facilitate cryopreservation

    Science.gov (United States)

    Cryopreservation damages rooster sperm membranes. Part of this damage is due to membrane transitioning from the fluid to the gel state as temperature is reduced. This damage may be prevented by increasing membrane fluidity at low temperatures by incorporating cholesterol or unsaturated lipids into t...

  3. Spectroscopic properties of K{sub 5}Li{sub 2}UF{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Karbowiak, M. [Faculty of Chemistry, University of WrocIaw, ul. F. Joliot-Curie 14, 50-383 WrocIaw (Poland)]. E-mail: karb@wchuwr.chem.uni.wroc.pl; Gajek, Z. [W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 WrocIaw (Poland); Drozdzynski, J. [Faculty of Chemistry, University of WrocIaw, ul. F. Joliot-Curie 14, 50-383 WrocIaw (Poland)

    2005-04-04

    A new uranium (III) fluoro-complex of the formula K{sub 5}Li{sub 2}UF{sub 10} has been synthesised and characterised by X-ray powder diffraction and electronic absorption spectra measurements. The compound crystallises in the orthorhombic system, space group Pnma, with a = 20.723, b = 7.809, c = 6.932 A, V = 1121.89 A{sup 3}, Z = 4 and is isostructural with its K{sub 5}Li{sub 2}NdF{sub 10} and K{sub 5}Li{sub 2}LaF{sub 10} analogous. The absorption spectrum of a polycrystalline sample of K{sub 5}Li{sub 2}UF{sub 10} was recorded at 4.2 K in the 3500-45,000 cm{sup -1} range and is discussed. The observed crystal-field levels were assigned and fitted to parameters of the simplified angular overlap model (AOM) and next to those of a semi-empirical Hamiltonian, which was representing the combined atomic and one-electron crystal-field interactions. The starting values of the AOM parameters were obtained from ab initio calculations. The analysis of the spectra enabled the assignment of 71 crystal-field levels of U{sup 3+} with a relatively small r.m.s. deviation of 37 cm{sup -1}. The total splitting of 714 cm{sup -1} was calculated for the {sup 4}I{sub 9/2} ground multiplet.

  4. Direct Capture of Functional Proteins from Mammalian Plasma Membranes into Nanodiscs.

    Science.gov (United States)

    Roy, Jahnabi; Pondenis, Holly; Fan, Timothy M; Das, Aditi

    2015-10-20

    Mammalian plasma membrane proteins make up the largest class of drug targets yet are difficult to study in a cell free system because of their intransigent nature. Herein, we perform direct encapsulation of plasma membrane proteins derived from mammalian cells into a functional nanodisc library. Peptide fingerprinting was used to analyze the proteome of the incorporated proteins in nanodiscs and to further demonstrate that the lipid composition of the nanodiscs directly affects the class of protein that is incorporated. Furthermore, the functionality of the incorporated membrane proteome was evaluated by measuring the activity of membrane proteins: Na(+)/K(+)-ATPase and receptor tyrosine kinases. This work is the first report of the successful establishment and characterization of a cell free functional library of mammalian membrane proteins into nanodiscs.

  5. Releases of UF6 to the atmosphere after a potential fire in a cylinder storage yard

    International Nuclear Information System (INIS)

    Lombardi, D.A.; Williams, W.R.; Anderson, J.C.

    1997-01-01

    Uranium hexafluoride (UF 6 ), a toxic material, is stored in just over 6200 cylinders at the K-25 site in Oak Ridge, Tennessee. The safety analysis report (SAR) for cylinder yard storage operations at the plant required the development of accident scenarios for the potential release of UF 6 to the atmosphere. In accordance with DOE standards and guidance, the general approach taken in this SAR was to examine the functions and contents of the cylinder storage yards to determine whether safety-significant hazards were present for workers in the immediate vicinity, workers on-site, the general public off-site, or the environment. and to evaluate the significance of any hazards that were found. A detailed accident analysis was performed to determine a set of limiting accidents that have potential for off-site consequences. One of the limiting accidents identified in the SAR was the rupture of a cylinder engulfed in a fire

  6. Analysis of enriched HF-UF6 systems. Influence by impurity and density upon the value of the multiplication

    International Nuclear Information System (INIS)

    Acosta, N.B.; Canavese, S.I.; Lopez, M.L.

    1990-01-01

    The purpose of this paper is analyzing the influence of impurity in hydrogen fluoride and in density variation (UF 6 -HF) upon the value of the effective multiplication factor (Kef) in enriched uranium hexafluoride and hydrogen fluoride systems. The identification of the values of such multiplication factors were performed by means of the Monte-Carlo (MONK V.II) code, which is specific for criticality problems. Diverse systems were considered by keeping the same geometry and varying the density value and the impurity percentages, while the assumptions made for each model were described on a case-by-case basis. Also, systems with and without water infinite reflector were evaluated. Finally, an analysis is made of the influence of each parameter upon the effective multiplication factor, in the postulated enriched UF 6 -HF systems. (Author) [es

  7. Validation of Cristallini Sampling Method for UF6 by High Precision Double-Spike Measurements Collaboration between JRC-G.2, Team METRO and SGAS/IAEA

    OpenAIRE

    RICHTER Stephan; HIESS Joe; JAKOBSSON Ulf

    2016-01-01

    The so-called "Cristallini Method" for sampling of UF6 by adsorption and hydrolysis in alumina pellets inside a fluorothene P-10 tube has been developed by the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) several years ago [1]. This method has several advantages compared to the currently used sampling method, for which UF6 is distilled into a stainless steel tube for transportation, with hydrolysis and isotopic analysis being performed after shipping to t...

  8. Characterization and Evaluation of the Improved Performance of Modified Reverse Osmosis Membranes by Incorporation of Various Organic Modifiers and SnO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Kh. M. AL-Sheetan

    2015-01-01

    Full Text Available Reverse osmosis (RO membranes modified with SnO2 nanoparticles of varied concentrations (0.001–0.1 wt.% were developed via in situ interfacial polymerization (IP of trimesoyl chloride (TMC and m-phenylenediamine (MPD on nanoporous polysulfone supports. The nanoparticles dispersed in the dense nodular polyamide on the polysulfone side. The effects of IP reaction time and SnO2 loading on membrane separation performance were studied. The modified reverse osmosis membranes were characterized by scanning electron microscopy (SEM, X-ray diffractometer (XRD, energy dispersive X-ray spectroscopy (EDX, transmission electron microscopy (TEM, contact angle measurement, and atomic force microscopy (AFM. The synthesized SnO2 nanoparticles size varies between 10 and 30 nm. The results exhibited a smooth membrane surface and average surface roughness from 31 to 68 nm. Moreover, hydrophilicity was enhanced and contact angle decreased. The outcomes showed that an IP reaction time was essential to form a denser SnO2-polyamide layer for higher salt rejection, the developed reverse osmosis membranes with the incorporation of the SnO2 nanoparticles were examined by measuring permeate fluxes and salt rejection, and the permeate flux increased from 26 to 43.4 L/m2·h, while salt rejection was high at 98% (2000 ppm NaCl solution at 225 psi (1.55 MPa, 25°C.

  9. Biodegradation behavior of natural organic matter (NOM) in a biological aerated filter (BAF) as a pretreatment for ultrafiltration (UF) of river water

    KAUST Repository

    Huang, Guocheng

    2011-04-15

    In this study, biodegradation of natural organic matter (NOM) in a biological aerated filter (BAF) as pretreatment of UF treating river water was investigated. Photometric measurement, three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy and liquid chromatography with online organic carbon detector (LC-OCD) were used to investigate the fate of NOM fractions in the BAF+UF process. Results showed that the BAF process could effectively remove particles and parts of dissolved organic matter, which led to a lower NOM loading in the UF system, but different NOM fractions showed different biodegradation potentials. Further biodegradation batch experiments confirmed this observation and identified that polysaccharides and proteins (quantified using photometric methods) contained a large proportion of readily biodegradable matter while humic substances were mainly composed of inert organic substances. According to EEM measurements, it is evident that protein-like substances were more readily eliminated by microorganisms than humic-like substances. LC-OCD data also supported the phenomena that the polysaccharides and large-size proteins were more degradable than humic substances. © 2011 Springer-Verlag.

  10. Surfactant-Assisted Perovskite Nanofillers Incorporated in Quaternized Poly (Vinyl Alcohol Composite Membrane as an Effective Hydroxide-Conducting Electrolyte

    Directory of Open Access Journals (Sweden)

    Selvaraj Rajesh Kumar

    2017-05-01

    Full Text Available Perovskite LaFeO3 nanofillers (0.1% are incorporated into a quaternized poly(vinyl alcohol (QPVA matrix for use as hydroxide-conducting membranes in direct alkaline methanol fuel cells (DAMFCs. The as-synthesized LaFeO3 nanofillers are amorphous and functionalized with cetyltrimethylammonium bromide (CTAB surfactant. The annealed LaFeO3 nanofillers are crystalline without CTAB. The QPVA/CTAB-coated LaFeO3 composite membrane shows a defect-free structure while the QPVA/annealed LaFeO3 film has voids at the interfaces between the soft polymer and rigid nanofillers. The QPVA/CTAB-coated LaFeO3 composite has lower methanol permeability and higher ionic conductivity than the pure QPVA and QPVA/annealed LaFeO3 films. We suggest that the CTAB-coated LaFeO3 provides three functions to the polymeric composite: increasing polymer free volume, ammonium group contributor, and plasticizer to enhance the interfacial compatibility. The composite containing CTAB-coated LaFeO3 results in superior cell performance. A maximum power density of 272 mW cm−2 is achieved, which is among the highest power outputs reported for DAMFCs in the literature.

  11. Efficacy of bacterial bioremediation: Demonstration of complete incorporation of hydrocarbons into membrane phospholipids from Rhodococcus hydrocarbon degrading bacteria by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, R.P.; Blumer, E.N.; Emmett, M.R.; Marshall, A.G.

    2000-02-01

    The authors present a method and example to establish complete incorporation of hydrocarbons into membrane phospholipids of putatively bioremediative bacteria. Bacteria are grown on minimal media containing a specified carbon source, either natural abundance or enriched. After extraction (but no other prior separation) of the membrane lipids, electrospray ionization yields a negative-ion FT-ICR mass spectrum containing prominent phospholipid parent ions. If {sup 13}C-enriched hydrocarbon incorporation is complete, then the mass of the parent ion will increase by n Da, in which n is the number of its constituent carbon atoms; moreover, the {sup 13}C isotopic distribution pattern will be reversed. The identities of the constituent fatty acids and polar headgroup are obtained by collisional dissociation (MS/MS), and their extent of {sup 13}C incorporation determined individually. The method is demonstrated for Rhodococcus rhodochrous (ATCC No. 53968), for which all 44 carbons of a representative phosphatidylinositol are shown to derive from the hydrocarbon source. Interestingly, although only C{sub 16} and C{sub 18} alkanes are provided in the growth medium, the bacteria synthesize uniformly enriched C16:0 and C19:0 fatty acids.

  12. Four-port gas separation membrane module assembly

    Science.gov (United States)

    Wynn, Nicholas P.; Fulton, Donald A.; Lokhandwala, Kaaeid A.; Kaschemekat, Jurgen

    2010-07-20

    A gas-separation membrane assembly, and a gas-separation process using the assembly. The assembly incorporates multiple gas-separation membranes in an array within a single vessel or housing, and is equipped with two permeate ports, enabling permeate gas to be withdrawn from both ends of the membrane module permeate pipes.

  13. Method of absorbing UF6 from gaseous mixtures in alkamine absorbents

    International Nuclear Information System (INIS)

    Lafferty, R.H.; Smiley, S.H.; Radimer, K.J.

    1976-01-01

    A method is described for recovering UF 6 from gaseous mixtures by absorption in a liquid. The liquid absorbent must have a relatively low viscosity and at least one component of the absorbent is an alkamine having less than 3 carbon atoms bonded to the amino nitrogen, less than 2 of the carbon atoms other than those bonded to the amino nitrogen are free of the hydroxy radical and precipitate the absorbed uranium from the absorbent. At least one component of the absorbent is chosen from the group consisting of ethanolamine, diethanolamine, and 3-methyl-3-amino-propane-diol-1,2

  14. Finite element modelling of fire situations in UF6 transport containers

    International Nuclear Information System (INIS)

    Basombrio, F.G.

    1996-01-01

    In this report we describe some runs made with the code FASES2. They concern different situations associated to fires originated by accidents in the transport of containers filled with UF6. Such situations have been inspired in cases taken from the current literature, and related to numerical modelling or experiments. We aim to consign the most relevant aspects of such runs, with the future purpose of comparing them with the predictions made with simpler lumped models. In such a way, it will be possible to calibrate the simple models with the results coming from detailed models. (author). 6 refs., 12 figs

  15. EDTA fouling in dead-end ultrafiltration of low level radioactive wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Lixia [Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055 (China); Zhang, Xue [Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Zhao, Xuan, E-mail: zhxinet@mail.tsinghua.edu.cn [Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Hu, Hongying [Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084 (China); State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055 (China)

    2015-12-15

    Highlights: • EDTA in LLRW caused unrecoverable UF membrane fouling. • The rejection of nuclides by UF was significantly enhanced with EDTA addition. • The nuclide (except Ag) deposition on membrane increased with EDTA addition. • Reducing EDTA in the feed water or alkaline/ultrasonic washing were suggested. - Abstract: EDTA is widely used as a detergent, and finally enters into wastewater. The influence of EDTA on ultrafiltration of low level radioactive wastewater (LLRW) was investigated under different operation conditions. As the main organic pollutant, EDTA led to unrecoverable membrane fouling and the normalized flux decreased from 100% to 85% depending on its concentration. The clogging caused by EDTA increased the surface roughness of the membrane, leading to the flux reduction. Both nuclide rejections and depositions on the membrane surfaces were enhanced with EDTA addition, due to the strong complexation of the nuclides with EDTA. However, Ag deposition on the membrane decreased slightly in the presence of EDTA, which may be caused by the stronger attraction of Ag to the unmodified membrane than that to the EDTA-modified one. Transmembrane pressure (TMP) and molecular weight cut off (MWCO) of membranes had negligible effects on membrane fouling, while the nuclide rejections by membrane and the depositions of nuclides on membrane both decreased significantly when the TMP increased to 0.2 MPa and MWCO increased from 5 kDa to 30 kDa. Based on these results, it clearly showed that EDTA even at a low concentration had strong effects on the performance of UF treating LLRW. Therefore, it is suggested for industrial application that pretreatments to reduce EDTA or alkaline/ultrasonic washing involved in UF process were necessary to reduce the nuclide depositions on the membrane surfaces and irradiation dose of membrane surface.

  16. Finite element modelling of fire situations in UF6 transport containers; Modelado por elementos finitos de situaciones de incendio en contenedores para el transporte de UF6

    Energy Technology Data Exchange (ETDEWEB)

    Basombrio, F G

    1997-12-31

    In this report we describe some runs made with the code FASES2. They concern different situations associated to fires originated by accidents in the transport of containers filled with UF6. Such situations have been inspired in cases taken from the current literature, and related to numerical modelling or experiments. We aim to consign the most relevant aspects of such runs, with the future purpose of comparing them with the predictions made with simpler lumped models. In such a way, it will be possible to calibrate the simple models with the results coming from detailed models. (author). 6 refs., 12 figs.

  17. Enhanced Proton Conductivity of Sulfonated Hybrid Poly(arylene ether ketone) Membranes by Incorporating an Amino-Sulfo Bifunctionalized Metal-Organic Framework for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Ru, Chunyu; Li, Zhenhua; Zhao, Chengji; Duan, Yuting; Zhuang, Zhuang; Bu, Fanzhe; Na, Hui

    2018-03-07

    Novel side-chain-type sulfonated poly(arylene ether ketone) (SNF-PAEK) containing naphthalene and fluorine moieties on the main chain was prepared in this work, and a new amino-sulfo-bifunctionalized metal-organic framework (MNS, short for MIL-101-NH 2 -SO 3 H) was synthesized via a hydrothermal technology and postmodification. Then, MNS was incorporated into a SNF-PAEK matrix as an inorganic nanofiller to prepare a series of organic-inorganic hybrid membranes (MNS@SNF-PAEK-XX). The mechanical property, methanol resistance, electrochemistry, and other properties of MNS@SNF-PAEK-XX hybrid membranes were characterized in detail. We found that the mechanical strength and methanol resistances of these hybrid membranes were improved by the formation of an ionic cross-linking structure between -NH 2 of MNS and -SO 3 H on the side chain of SNF-PAEK. Particularly, the proton conductivity of these hybrid membranes increased obviously after the addition of MNS. MNS@SNF-PAEK-3% exhibited the proton conductivity of 0.192 S·cm -1 , which was much higher than those of the pristine membrane (0.145 S·cm -1 ) and recast Nafion (0.134 S·cm -1 ) at 80 °C. This result indicated that bifunctionalized MNS rearranged the microstructure of hybrid membranes, which could accelerate the transfer of protons. The hybrid membrane (MNS@SNF-PAEK-3%) showed a better direct methanol fuel cell performance with a higher peak power density of 125.7 mW/cm 2 at 80 °C and a higher open-circuit voltage (0.839 V) than the pristine membrane.

  18. Computer-optimized γ-NDA geometries for uranium enrichment verification of gaseous UF6

    International Nuclear Information System (INIS)

    Wichers, V.A.; Aaldijk, J.K.; Betue, P.A.C. de; Harry, R.J.S.

    1993-05-01

    An improved collimator pair of novel design tailored for deposit independent enrichment verification of gaseous UF 6 at low pressures in cascade-to-header pipes of small diameters in centrifuge enrichment plants is presented. The designs are adapted for use in a dual-geometry arrangement for simultaneous measurements with both detection geometries. The average measurement time with the dual-geometry arrangement is approximately half an hour for deposit-to-gas activity ratios as high as 20. (orig.)

  19. Effect of Gamma Irradiation on Blends Based on Thermoset or Thermoplast Polymers for Using in Some Useful Applications

    International Nuclear Information System (INIS)

    EMAN MOHAMED SHEHATA, E.M.

    2013-01-01

    Modification of polymers via blending and gamma irradiation crosslinking opens the door for solving many industrial problems and broad the application and markets for the products of modified materials. From this point of view, the present work is divided into two main parts. The first part is dealing with the preparation and characterization of alkaline polymer electrolyte membrane based on polyethylene oxide and polyvinylpyrrolidone. The alkaline polymer electrolyte membranes were prepared by two different techniques: immersing the irradiated prepared membranes in different concentration of KOH solutions, and addition of various amounts of KOH to (PEO/PVP) mixture solution during the preparation step. Exposing the prepared membranes to different gamma irradiation doses causes an improvement in the membranes properties such as water solubility and thermal properties. The structure and morphology of the prepared polymer membranes were studied by FTIR spectroscopy and scanning electron microscope. Furthermore, the ionic conductivity of alkaline (PEO/PVP) electrolyte membranes was calculated from Ac impedance spectra. The results obtained showed that the membranes prepared by immersion technique have better properties than the membranes prepared by addition technique. Concerning the second part, urea formaldehyde (UF) as a thermoset amino resin, was modified by exposing to different gamma irradiation doses and blending with various amounts of vinyl acetate versatic ester latex (VAcVe). Gamma irradiation induced the crosslinking of pure UF and (UF/VAcVe) blends. The change in the structure of pure UF and (UF/VAcVe) blends before and after irradiation was investigated by FTIR spectroscopy. Moreover, physical properties such as insoluble fraction percent, water absorption behavior, and effect of dilute acid and alkali were studied. Thermal and mechanical properties were investigated in terms of thermogravimetric analysis and compacting strength measurement. The results

  20. Zwitterionic materials for antifouling membrane surface construction.

    Science.gov (United States)

    He, Mingrui; Gao, Kang; Zhou, Linjie; Jiao, Zhiwei; Wu, Mengyuan; Cao, Jialin; You, Xinda; Cai, Ziyi; Su, Yanlei; Jiang, Zhongyi

    2016-08-01

    Membrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with equivalent positive and negative charged groups, are well known for their superior antifouling properties and have been broadly utilized to construct antifouling surfaces for medical devices, biosensors and marine coatings applications. In recent years, zwitterionic materials have been more and more frequently utilized for constructing antifouling membrane surfaces. In this review, the antifouling mechanisms of zwitterionic materials as well as their biomimetic prototypes in cell membranes will be discussed, followed by the survey of common approaches to incorporate zwitterionic materials onto membrane surfaces including surface grafting, surface segregation, biomimetic adhesion, surface coating and so on. The potential applications of these antifouling membranes are also embedded. Finally, we will present a brief perspective on the future development of zwitterionic materials modified antifouling membranes. Membrane fouling is a severe problem hampering the application of membrane separation technology. The properties of membrane surfaces play a critical role in membrane fouling and antifouling behavior/performance. Antifouling membrane surface construction has evolved as a hot research issue for the development of membrane processes. Zwitterionic modification of membrane surfaces has been recognized as an effective strategy to resist membrane fouling. This review summarizes the antifouling mechanisms of zwitterionic materials inspired by cell membranes as well as the popular approaches to incorporate them onto membrane surfaces. It can help form a comprehensive knowledge about the principles and methods of modifying membrane surfaces with zwitterionic materials. Finally, we propose the possible future research directions of zwitterionic materials modified antifouling membranes. Copyright © 2016 Acta Materialia Inc

  1. Ultrafiltration Membrane Fouling and the Effect of Ion Exchange Resins

    KAUST Repository

    Jamaly, Sanaa

    2011-12-01

    Membrane fouling is a challenging process for the ultrafiltration membrane during wastewater treatment. This research paper determines the organic character of foulants of different kinds of wastewater before and after adding some ion exchange resins. Two advanced organic characterization methods are compared in terms of concentration of dissolved organic carbons: The liquid chromatography with organic carbon (LC-OCD) and Shimadzu total organic carbon (TOC). In this study, two secondary wastewater effluents were treated using ultrafiltration membrane. To reduce fouling, pretreatment using some adsorbents were used in the study. Six ion exchange resins out of twenty were chosen to compare the effect of adsorbents on fouling membrane. Based on the percent of dissolved organic carbon’s removal, three adsorbents were determined to be the most efficient (DOWEX Marathon 11 anion exchange resin, DOWEX Optipore SD2 polymeric adsorbent, and DOWEX PSR2 anion exchange), and three other ones were determined to the least efficient (DOWEX Marathon A2 anion exchange resin, DOWEX SAR anion exchange resin, and DOWEX Optipore L493 polymeric adsorbent). Organic characterization for feed, permeate, and backwash samples were tested using LC-OCD and TOC to better understand the characteristics of foulants to prevent ultrafiltration membrane fouling. The results suggested that the polymeric ion exchange resin, DOWEX SD2, reduced fouling potential for both treated wastewaters. All the six ion exchange resins removed more humic fraction than other organic fractions in different percent, so this fraction is not the main for cause for UF membrane fouling. The fouling of colloids was tested before and after adding calcium. There is a severe fouling after adding Ca2+ to effluent colloids.

  2. Flux, rejection and fouling during microfiltration and ultrafiltration of sugar palm sap using a pilot plant scale

    Directory of Open Access Journals (Sweden)

    Wanichapichart, P.

    2006-07-01

    Full Text Available The possibility of using a pilot plant scale microfiltration (MF and ultrafiltration (UF to clarify and reduce number of bacteria, yeast and mould of sugar palm sap was studied. The membrane used was multi channel tubular ceramic membrane (ZrO2-TiO2 with membrane pore size 0.2 and 0.1 μm and molecular weight cut off (MWCO 300 and 50 kDa for microfiltration and ultrafiltration respectively. The experiment was carried out to investigate the rejection of the components in sugar palm sap, permeate flux and fouling characteristics. The results showed that the turbidity, the total solid, the viscosity and the numbers of bacteria, yeast and mould in the permeate obtained by MF and UF were reduced significantly compared to those of fresh sugar palm sap. The total soluble solid, total sugar, reducing sugar and pH were not affected by MF and UF. The permeate fluxes for all membranes were reduced greatly as the volume concentration ratio (VCR increased due to severe fouling. The irreversible fouling on membrane surface and/or inside the membrane tended to increase with increasing membrane pore size or MWCO. The result also suggested that protein and small particle in the sugar palm sap were probably responsible for the internal fouling of large pore size membrane. According to the physical, chemical and microorganism quality results, both MF and UF showed the potential use for improving the quality of sugar palm sap but flux reduction due to fouling was a major problem affecting the process performance.

  3. Metabolism of fatty acids in rat brain in microsomal membranes

    International Nuclear Information System (INIS)

    Aeberhard, E.E.; Gan-Elepano, M.; Mead, J.F.

    1980-01-01

    Using a technique in which substrate fatty acids are incorporated into microsomal membranes followd by comparison of their rates of desaturation or elongation with those of exogenous added fatty acids it has been found that the desaturation rate is more rapid for the membrane-bound substrate than for the added fatty acid. Moreover, the product of the membrane-bound substrate is incorporated into membrane phospholipid whereas the product of the exogenous substrate is found in di- and triacyl glycerols and in free fatty acids as well. These and other findings point to a normal sequence of reaction of membrane liqids with membrane-bound substrates involving transfer of fatty acid from phospholipid to the coupled enzyme systems without ready equilibration with the free fatty acid pool

  4. Impact of monoolein on aquaporin1-based supported lipid bilayer membranes

    International Nuclear Information System (INIS)

    Wang, Zhining; Wang, Xida; Ding, Wande; Wang, Miaoqi; Gao, Congjie; Qi, Xin

    2015-01-01

    Aquaporin (AQP) based biomimetic membranes have attracted considerable attention for their potential water purification applications. In this paper, AQP1 incorporated biomimetic membranes were prepared and characterized. The morphology and structure of the biomimetic membranes were characterized by in situ atomic force microscopy (AFM), infrared absorption spectroscopy, fluorescence microscopy, and contact angle measurements. The nanofiltration performance of the AQP1 incorporated membranes was investigated at 4 bar by using 2 g l −1 NaCl as feed solution. Lipid mobility plays an important role in the performance of the AQP1 incorporated supported lipid bilayer (SLB) membranes. We demonstrated that the lipid mobility is successfully tuned by the addition of monoolein (MO). Through in situ AFM and fluorescence recovery after photo-bleaching (FRAP) measurements, the membrane morphology and the molecular mobility were studied. The lipid mobility increased in the sequence DPPC < DPPC/MO (R MO = 5/5) < DOPC/MO (R MO = 5/5) < DOPC, which is consistent with the flux increment and salt rejection. This study may provide some useful insights for improving the water purification performance of biomimetic membranes. (paper)

  5. Field-effect detection using phospholipid membranes -Topical Review

    Directory of Open Access Journals (Sweden)

    Chiho Kataoka-Hamai and Yuji Miyahara

    2010-01-01

    Full Text Available The application of field-effect devices to biosensors has become an area of intense research interest. An attractive feature of field-effect sensing is that the binding or reaction of biomolecules can be directly detected from a change in electrical signals. The integration of such field-effect devices into cell membrane mimics may lead to the development of biosensors useful in clinical and biotechnological applications. This review summarizes recent studies on the fabrication and characterization of field-effect devices incorporating model membranes. The incorporation of black lipid membranes and supported lipid monolayers and bilayers into semiconductor devices is described.

  6. Development of Ultrafiltration Membrane-Separation Technology for Energy-Efficient Water Treatment and Desalination Process

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Woosoon [Univ. of Nevada, Las Vegas, NV (United States); Bae, Chulsung [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2016-10-28

    The growing scarcity of fresh water is a major political and economic challenge in the 21st century. Compared to thermal-based distillation technique of water production, pressure driven membrane-based water purification process, such as ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO), can offer more energy-efficient and environmentally friendly solution to clean water production. Potential applications also include removal of hazardous chemicals (i.e., arsenic, pesticides, organics) from water. Although those membrane-separation technologies have been used to produce drinking water from seawater (desalination) and non-traditional water (i.e., municipal wastewater and brackish groundwater) over the last decades, they still have problems in order to be applied in large-scale operations. Currently, a major huddle of membrane-based water purification technology for large-scale commercialization is membrane fouling and its resulting increases in pressure and energy cost of filtration process. Membrane cleaning methods, which can restore the membrane properties to some degree, usually cause irreversible damage to the membranes. Considering that electricity for creating of pressure constitutes a majority of cost (~50%) in membrane-based water purification process, the development of new nano-porous membranes that are more resistant to degradation and less subject to fouling is highly desired. Styrene-ethylene/butylene-styrene (SEBS) block copolymer is one of the best known block copolymers that induces well defined morphologies. Due to the polarity difference of aromatic styrene unit and saturated ethylene/butylene unit, these two polymer chains self-assemble each other and form different phase-separated morphologies depending on the ratios of two polymer chain lengths. Because the surface of SEBS is hydrophobic which easily causes fouling of membrane, incorporation of ionic group (e,g, sulfonate) to the polymer is necessary to reduces fouling

  7. Photocuring of stimulus responsive membranes for controlled-release of drugs having different molecular weights

    International Nuclear Information System (INIS)

    Ng, Loo-Teck; Nakayama, Hiroshi; Kaetsu, Isao; Uchida, Kumao

    2005-01-01

    Intelligent drug delivery membranes were prepared by photocuring poly(acrylic acid) coatings onto poly(2-hydroxyethyl methacrylate) membranes each with model drugs of different molecular weights being incorporated. pH-responsive release behaviours of the model drugs which included sodium salicylate, nicotinamide, nicotinic acid, methylene blue, brilliant green and crystal violet were investigated. Only the membrane with methylene blue incorporated showed a clear pH-responsive release and other drug-incorporated membranes showed no intelligent behaviour. These phenomena were explained in terms of the difference in diffusivity of drugs through polymer matrices of the membranes attributable to the difference in the molecular weights of drugs

  8. Photocuring of stimulus responsive membranes for controlled-release of drugs having different molecular weights

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Loo-Teck [School of Science, Food and Horticulture, University of Western Sydney, Locked bag 1797, Penrith South DC, NSW 1797 (Australia)]. E-mail: l.ng@uws.edu.au; Nakayama, Hiroshi [Department of Nuclear Engineering, Faculty of Science and technology, Kinki University, Kowakae, 3-4-1, Higashi-Osaka 577-8502 (Japan); Kaetsu, Isao [Department of Nuclear Engineering, Faculty of Science and technology, Kinki University, Kowakae, 3-4-1, Higashi-Osaka 577-8502 (Japan)]. E-mail: kaetsu@ned.kindai.ac.jp; Uchida, Kumao [Department of Nuclear Engineering, Faculty of Science and technology, Kinki University, Kowakae, 3-4-1, Higashi-Osaka 577-8502 (Japan)

    2005-06-01

    Intelligent drug delivery membranes were prepared by photocuring poly(acrylic acid) coatings onto poly(2-hydroxyethyl methacrylate) membranes each with model drugs of different molecular weights being incorporated. pH-responsive release behaviours of the model drugs which included sodium salicylate, nicotinamide, nicotinic acid, methylene blue, brilliant green and crystal violet were investigated. Only the membrane with methylene blue incorporated showed a clear pH-responsive release and other drug-incorporated membranes showed no intelligent behaviour. These phenomena were explained in terms of the difference in diffusivity of drugs through polymer matrices of the membranes attributable to the difference in the molecular weights of drugs.

  9. Role of contaminants in the fluorination of β-UO3 to UF4 by freon-12

    International Nuclear Information System (INIS)

    Girgis, B.S.; Rofail, N.H.

    1992-01-01

    Ammonium uranate was precipitated from uranyl nitrate or sulphate by NH 3 gas or urea, and decomposed to β-UO 3 by calcination at 623 or 773 K. Oxides contaminated by high contents of nitrates (non-washed uranate) displayed higher conversion to UF 4 in comparison to the respective pre-washed uranate. Products of thermal treatment at 623 K were also more reactive towards fluorination, which was ascribed to the highly-disordered, loosely bound, high surface area products. The presence of residual nitrate, and probably ammonium, ions help in the partial reduction to lower oxides and in preventing recrystallization of the reaction solids. Ammonium uranate precipitated from uranyl sulphate and decomposed at 623 K is more easily fluorinated than the product decomposed at 773 K; it is also better product for fluorination than the uranate precipitated from uranyl nitrate. The complete conversion to UF 4 i attained after 45 min with the uranate precipitated from uranyl sulphate and treated at 623 K, but it needs 120 min with the product formed from uranyl nitrate and decomposed at the same temperature. (orig.)

  10. Photolabeling of brain membrane proteins by lysergic acid diethylamide

    International Nuclear Information System (INIS)

    Mahon, A.C.; Hartig, P.R.

    1982-01-01

    3 H-Lysergic acid diethylamide ( 3 H-LSD) is irreversibly incorporated into bovine caudate membranes during ultraviolet light illumination. The incorporated radioligand apparently forms a covalent bond with a sub-population of the membrane proteins. Although the photolabeling pattern differs significantly from the Coomassie blue staining pattern on SDS gels, the photolabeling is apparently not specific for LSD binding sites associated with neurotransmitter receptors. 3 H-LSD photolabeling can occur during prolonged exposure of membrane samples to room lighting and thus may introduce artifacts into receptor binding assays

  11. High Concentration Protein Ultrafiltration: a Comparative Fouling Assessment

    Science.gov (United States)

    Lim, Y. P.; Mohammad, A. W.

    2018-05-01

    In this paper, the predominant fouling mechanism via pH manipulation in gelatin ultrafiltration (UF) at constant operating pressure was studied. Two 30 kDa molecular weight cut off (MWCO) UF membranes with different hydrophilic/hydrophobic properties were tested at solution pH near gelatin isoelectric point (IEP), pH below and above gelatin’s IEP. The resistance-in-series model was used to determine quantitatively the contribution of each filtration resistance occurred during gelatin UF. The governing fouling mechanisms were investigated using classical blocking laws. The results demonstrated that concentration polarization remain as dominant fouling resistance in gelatin UF, but exceptional case was observed at pH away from gelatin’s IEP, showing that combined reversible and irreversible fouling resistances contributed around 57% and 37%, respectively to the overall fouling resistances. Under all experimental condition tested, permeate flux decline was accurately predicted by all the models studied. Fouling profile was fitted well with “Standard Blocking”, “Intermediate Blocking” and “Cake Filtration” model for regenerated cellulose acetate (RCA) membrane and “Cake Filtration” model for polyethersulphone (PES) membrane.

  12. 235U enrichment determination on UF6 cylinders with CZT detectors

    Science.gov (United States)

    Berndt, Reinhard; Mortreau, Patricia

    2018-04-01

    Measurements of uranium enrichment in UF6 transit cylinders are an important nuclear safeguards verification task, which is performed using a non-destructive assay method, the traditional enrichment meter, which involves measuring the count rate of the 186 keV gamma ray. This provides a direct measure of the 235U enrichment. Measurements are typically performed using either high-resolution detectors (Germanium) with e-cooling and battery operation, or portable devices equipped with low resolution detectors (NaI). Despite good results being achieved when measuring Low Enriched Uranium in 30B type cylinders and natural uranium in 48Y type containers using both detector systems, there are situations, which preclude the use of one or both of these systems. The focus of this work is to address some of the recognized limitations in relation to the current use of the above detector systems by considering the feasibility of an inspection instrument for 235U enrichment measurements on UF6 cylinders using the compact and light Cadmium Zinc Telluride (CZT) detectors. In the present work, test measurements were carried out, under field conditions and on full-size objects, with different CZT detectors, in particular for situations where existing systems cannot be used e.g. for stacks of 48Y type containers with depleted uranium. The main result of this study shows that the CZT detectors, actually a cluster of four μCZT1500 micro spectrometers provide as good results as the germanium detector in the ORTEC Micro-trans SPEC HPGe Portable spectrometer, and most importantly in particular for natural and depleted uranium in 48Y cylinders.

  13. Electrochemical separation of uranium in the molten system LiF-NaF-KF-UF4

    Science.gov (United States)

    Korenko, M.; Straka, M.; Szatmáry, L.; Ambrová, M.; Uhlíř, J.

    2013-09-01

    This article is focused on the electrochemical investigation (cyclic voltammetry and related studies) of possible reduction of U4+ ions to metal uranium in the molten system LiF-NaF-KF(eut.)-UF4 that can provide basis for the electrochemical extraction of uranium from molten salts. Two-step reduction mechanism for U4+ ions involving one electron exchange in soluble/soluble U4+/U3+ system and three electrons exchange in the second step were found on the nickel working electrode. Both steps were found to be reversible and diffusion controlled. Based on cyclic voltammetry, the diffusion coefficients of uranium ions at 530 °C were found to be D(U4+) = 1.64 × 10-5 cm2 s-1 and D(U3+) 1.76 × 10-5 cm2 s-1. Usage of the nickel spiral electrode for electrorefining of uranium showed fairly good feasibility of its extraction. However some oxidant present during the process of electrorefining caused that the solid deposits contained different uranium species such as UF3, UO2 and K3UO2F5.

  14. Can Stabilization and Inhibition of Aquaporins Contribute to Future Development of Biomimetic Membranes?

    Science.gov (United States)

    To, Janet; Torres, Jaume

    2015-08-10

    In recent years, the use of biomimetic membranes that incorporate membrane proteins, i.e., biomimetic-hybrid membranes, has increased almost exponentially. Key membrane proteins in these systems have been aquaporins, which selectively permeabilize cellular membranes to water. Aquaporins may be incorporated into synthetic lipid bilayers or to more stable structures made of block copolymers or solid-state nanopores. However, translocation of aquaporins to these alien environments has adverse consequences in terms of performance and stability. Aquaporins incorporated in biomimetic membranes for use in water purification and desalination should also withstand the harsh environment that may prevail in these conditions, such as high pressure, and presence of salt or other chemicals. In this respect, modified aquaporins that can be adapted to these new environments should be developed. Another challenge is that biomimetic membranes that incorporate high densities of aquaporin should be defect-free, and this can only be efficiently ascertained with the availability of completely inactive mutants that behave otherwise like the wild type aquaporin, or with effective non-toxic water channel inhibitors that are so far inexistent. In this review, we describe approaches that can potentially be used to overcome these challenges.

  15. Can Stabilization and Inhibition of Aquaporins Contribute to Future Development of Biomimetic Membranes?

    Directory of Open Access Journals (Sweden)

    Janet To

    2015-08-01

    Full Text Available In recent years, the use of biomimetic membranes that incorporate membrane proteins, i.e., biomimetic-hybrid membranes, has increased almost exponentially. Key membrane proteins in these systems have been aquaporins, which selectively permeabilize cellular membranes to water. Aquaporins may be incorporated into synthetic lipid bilayers or to more stable structures made of block copolymers or solid-state nanopores. However, translocation of aquaporins to these alien environments has adverse consequences in terms of performance and stability. Aquaporins incorporated in biomimetic membranes for use in water purification and desalination should also withstand the harsh environment that may prevail in these conditions, such as high pressure, and presence of salt or other chemicals. In this respect, modified aquaporins that can be adapted to these new environments should be developed. Another challenge is that biomimetic membranes that incorporate high densities of aquaporin should be defect-free, and this can only be efficiently ascertained with the availability of completely inactive mutants that behave otherwise like the wild type aquaporin, or with effective non-toxic water channel inhibitors that are so far inexistent. In this review, we describe approaches that can potentially be used to overcome these challenges.

  16. Monitoring the mass of UF6 gas and uranium deposits in aluminium pipes using X-ray fluorescence and X-ray transmission gauges

    International Nuclear Information System (INIS)

    Packer, T.W.; Smith, S.M.

    1984-12-01

    In order to determine the enrichment of UF 6 gas in centrifuge plant pipework it is necessary to measure the mass of the gas (pressure) and the mass per unit area of any uranium deposited on the pipe. This paper shows that it is possible to determine the pressure of the UF 6 gas in pipes 120 mm in diameter using an energy-dispersive X-ray fluorescence spectrometer. Results are also given of transmission measurements made using a low power X-ray generator operated at two different applied voltages. A method of using the two measurements to determine the mass per unit area of deposited uranium is described. (author)

  17. Specific interaction of postsynaptic densities with membrane rafts isolated from synaptic plasma membranes.

    Science.gov (United States)

    Liu, Qian; Yao, Wei-Dong; Suzuki, Tatsuo

    2013-06-01

    Postsynaptic membrane rafts are believed to play important roles in synaptic signaling, plasticity, and maintenance. We recently demonstrated the presence, at the electron microscopic level, of complexes consisting of membrane rafts and postsynaptic densities (PSDs) in detergent-resistant membranes (DRMs) prepared from synaptic plasma membranes (SPMs) ( Suzuki et al., 2011 , J Neurochem, 119, 64-77). To further explore these complexes, here we investigated the nature of the binding between purified SPM-DRMs and PSDs in vitro. In binding experiments, we used SPM-DRMs prepared after treating SPMs with n-octyl-β-d-glucoside, because at concentrations of 1.0% or higher it completely separates SPM-DRMs and PSDs, providing substantially PSD-free unique SPM-DRMs as well as DRM-free PSDs. PSD binding to PSD-free DRMs was identified by mass spectrometry, Western blotting, and electron microscopy. PSD proteins were not incorporated into SPMs, and significantly less PSD proteins were incorporated into DRMs prepared from liver membranes, providing in vitro evidence that binding of PSDs to DRMs is specific and suggestion of the presence of specific interacting molecules. These specific interactions may have important roles in synaptic development, function, and plasticity in vivo. In addition, the binding system we developed may be a good tool to search for binding molecules and binding mechanisms between PSDs and rafts.

  18. Emergency preparedness and response in case of a fire accident with UF6 packages traversing the Suez Canal

    International Nuclear Information System (INIS)

    Salama, M.

    2004-01-01

    Egypt has a unique problem, the Suez Canal. Radioactive cargo passes regularly through the canal carrying new and spent reactor fuel. There are also about 1000 metric tonnes of uranium hexafluoride (UF 6 ) passing through the canal every year. In spite of all the precautions taken in the transport, accidents with packages containing UF 6 shipped through the Suez Canal may arise, even though the probability is minimal. Such accidents may be accompanied by injuries to or death of persons and damage to property including radiation and criticality hazards and high chemical toxicity, particularly if the accident occurred close to one of the three densely populated cities (Port Said, Ismailia and Suez), which are located along the west bank of the Suez Canal. The government of Egypt has established a national radiological emergency plan in order to deal with any radiological accidents which may arise inside the country. This paper considers the effect of a fire accident to industrial packages containing UF 6 on board a cargo ship passing along the Suez Canal near Port Said City. The accident scenario and emergency response actions taken during the different phases of the accident are presented and discussed. The paper highlights the importance of public awareness for populations located in densely populated areas along the bank of the Suez Canal, in order to react in a timely and effective way to avoid the toxic and radiological hazards resulting from such a type of accident. The possibility of upgrading the capabilities of civil defence and fire-fighting personnel is also discussed (author)

  19. Ultrafiltration technology with a ceramic membrane for reactive dye removal: optimization of membrane performance.

    Science.gov (United States)

    Alventosa-deLara, E; Barredo-Damas, S; Alcaina-Miranda, M I; Iborra-Clar, M I

    2012-03-30

    An ultrafiltration (UF) ceramic membrane was used to decolorize Reactive Black 5 (RB5) solutions at different dye concentrations (50 and 500 mg/L). Transmembrane pressure (TMP) and cross-flow velocity (CFV) were modified to study their influence on initial and steady-state permeate flux (J(p)) and dye rejection (R). Generally, J(p) increased with higher TMP and CFV and lower feed concentration, up to a maximum steady-state J(p) of 266.81 L/(m(2)h), obtained at 3 bar, 3m/s and 50mg/L. However, there was a TMP value (which changed depending on operating CFV and concentration) beyond which slight or no further increase in steady-state J(p) was observed. Similarly, the higher the CFV was, the more slightly the steady-state J(p) increased. Furthermore, the effectiveness of ultrafiltration treatment was evaluated through dye rejection coefficient. The results showed significant dye removals, regardless of the tested conditions, with steady-state R higher than 79.8% for the 50mg/L runs and around 73.2% for the 500 mg/L runs. Finally response surface methodology (RSM) was used to optimize membrane performance. At 50mg/L, a TMP of 4 bar and a CFV of 2.53 m/s were found to be the conditions giving the highest steady-state J(p), 255.86 L/(m(2)h), and the highest R, 95.2% simultaneously. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Experimental Investigations of Direct and Converse Flexoelectric Effect in Bilayer Lipid Membranes.

    Science.gov (United States)

    Todorov, Angelio Todorov

    Flexoelectric coefficients (direct and converse), electric properties (capacitance and resistivity) and mechanical properties (thickness and elastic coefficients) have been determined for bilayer lipid membranes (BLMs) prepared from egg yolk lecithin (EYL), glycerol monoleate (GMO), phosphatidyl choline (PC) and phosphatidyl serine (PS) as a function of frequency, pH and surface charge modifiers. Direct flexoelectric effect manifested itself in the development of microvolt range a.c. potential (U_{f}) upon subjecting one side of a BLM to an oscillating hydrostatic pressure, in the 100-1000 Hz range. Operationally, the flexoelectric coefficient (f) is expressed by the ratio between U_{f} and the change of curvature (c) which accompanied the flexing of the membrane. Membrane curvature was determined by means of either the electric method (capacitance microphone effect) or by the newly developed method of stroboscopic interferometry. Real-time stroboscopic interferometry coupled with simultaneous electric measurements, provided a direct method for the determination of f. Two different frequency regimes of f were recognized. At low frequencies (300 Hz), associated with free mobility of the surfactant, f-values of 24.1 times 10^{-19} and 0.87 times 10^ {-19} Coulombs were obtained for PC and GMO BLMs. At high frequencies (>300 Hz), associated with blocked mobility of the surfactant, f-values of 16.5 times 10^ {-19} and 0.30 times 10^{-19} Coulombs were obtained for PC and GMO BLMs. The theoretically calculated value for the GMO BLM oscillating at high frequency (0.12 times 10^{-19 } Coulombs) agreed well with that determined experimentally (0.3 times 10 ^{-19} Coulombs). For charged bovine brain PS BLM the observed flexocoefficient was f = 4.0 times 10^{ -18} Coulombs. Converse flexoelectric effect manifested itself in voltage-induced BLM curvature. Observations were carried out on uranyl acetate (UA) stabilized PS BLM under a.c. excitation. Frequency dependence of f

  1. Membrane technology for treating of waste nanofluids coolant: A review

    Science.gov (United States)

    Mohruni, Amrifan Saladin; Yuliwati, Erna; Sharif, Safian; Ismail, Ahmad Fauzi

    2017-09-01

    The treatment of cutting fluids wastes concerns a big number of industries, especially from the machining operations to foster environmental sustainability. Discharging cutting fluids, waste through separation technique could protect the environment and also human health in general. Several methods for the separation emulsified oils or oily wastewater have been proposed as three common methods, namely chemical, physicochemical and mechanical and membrane technology application. Membranes are used into separate and concentrate the pollutants in oily wastewater through its perm-selectivity. Meanwhile, the desire to compensate for the shortcomings of the cutting fluid media in a metal cutting operation led to introduce the using of nanofluids (NFs) in the minimum quantity lubricant (MQL) technique. NFs are prepared based on nanofluids technology by dispersing nanoparticles (NPs) in liquids. These fluids have potentially played to enhance the performance of traditional heat transfer fluids. Few researchers have studied investigation of the physical-chemical, thermo-physical and heat transfer characteristics of NFs for heat transfer applications. The use of minimum quantity lubrication (MQL) technique by NFs application is developed in many metal cutting operations. MQL did not only serve as a better alternative to flood cooling during machining operation and also increases better-finished surface, reduces impact loads on the environment and fosters environmental sustainability. Waste coolant filtration from cutting tools using membrane was treated by the pretreated process, coagulation technique and membrane filtration. Nanomaterials are also applied to modify the membrane structure and morphology. Polyvinylidene fluoride (PVDF) is the better choice in coolant wastewater treatment due to its hydrophobicity. Using of polyamide nanofiltration membranes BM-20D and UF-PS-100-100, 000, it resulted in the increase of permeability of waste coolant filtration. Titanium dioxide

  2. Polycyclic aromatic hydrocarbons in model bacterial membranes - Langmuir monolayer studies.

    Science.gov (United States)

    Broniatowski, Marcin; Binczycka, Martyna; Wójcik, Aneta; Flasiński, Michał; Wydro, Paweł

    2017-12-01

    High molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) are persistent organic pollutants which due to their limited biodegradability accumulate in soils where their increased presence can lead to the impoverishment of the decomposer organisms. As very hydrophobic PAHs easily penetrate cellular membranes of soil bacteria and can be incorporated therein, changing the membrane fluidity and other functions which in consequence can lead to the death of the organism. The structure and size of PAH molecule can be crucial for its membrane activity; however the correlation between PAH structure and its interaction with phospholipids have not been investigated so far. In our studies we applied phospholipid Langmuir monolayers as model bacterial membranes and investigated how the incorporation of six structurally different PAH molecules change the membrane texture and physical properties. In our studies we registered surface pressure and surface potential isotherms upon the monolayer compression, visualized the monolayer texture with the application of Brewster angle microscopy and searched the ordering of the film-forming molecules with molecular resolution with the application of grazing incidence X-ray diffraction (GIXD) method. It turned out that the phospholipid-PAH interactions are strictly structure dependent. Four and five-ring PAHs of the angular or cluster geometry can be incorporated into the model membranes changing profoundly their textures and fluidity; whereas linear or large cluster PAHs cannot be incorporated and separate from the lipid matrix. The observed phenomena were explained based on structural similarities of the applied PAHs with membrane steroids and hopanoids. Copyright © 2017. Published by Elsevier B.V.

  3. Development of a UF{sub 6} cylinder transient heat transfer/stress analysis model

    Energy Technology Data Exchange (ETDEWEB)

    Williams, W.R. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

    1991-12-31

    A heat transfer/stress analysis model is being developed to simulate the heating to a point of rupture of a cylinder containing UF{sub 6} when it is exposed to a fire. The assumptions underlying the heat transfer portion of the model, which has been the focus of work to date, will be discussed. A key aspect of this model is a lumped parameter approach to modeling heat transfer. Preliminary results and future efforts to develop an integrated thermal/stress model will be outlined.

  4. Thermodynamic properties of UF sub 6 measured with a ballistic piston compressor

    Science.gov (United States)

    Sterritt, D. E.; Lalos, G. T.; Schneider, R. T.

    1973-01-01

    From experiments performed with a ballistic piston compressor, certain thermodynamic properties of uranium hexafluoride were investigated. Difficulties presented by the nonideal processes encountered in ballistic compressors are discussed and a computer code BCCC (Ballistic Compressor Computer Code) is developed to analyze the experimental data. The BCCC unfolds the thermodynamic properties of uranium hexafluoride from the helium-uranium hexafluoride mixture used as the test gas in the ballistic compressor. The thermodynamic properties deduced include the specific heat at constant volume, the ratio of specific heats for UF6, and the viscous coupling constant of helium-uranium hexafluoride mixtures.

  5. The latest make-up water treatment plant for power plants

    International Nuclear Information System (INIS)

    Yokomizo, Yuichi

    1997-01-01

    As the change of the outside environment surrounding power stations, the strengthening of the environmental standard of water quality and the upgrading of required water quality standard are described. The reduction of colloidal silica in thermal power plant water and the reduction of iron and organic chlorine in PWR water are necessary. Recently it became difficult to secure water for power stations, and in dry season, the water for power stations is sometimes cut for securing livelihood and agricultural water. For the means of securing stable water source, the installation of seawater desalting plants increased. The types, the constitution of the plants and the operation performance are reported. Recently the water treatment technology using MF, UF and RO membranes has become to be adopted. The relation of the substances to be removed to the range of filtration of respective membranes is shown. The conventional method is the combination of coagulative sedimentation, filtration and ion exchange resin, but the membrane technology uses UF and RO membranes. The technical features of UF (ultrafiltration) and RO (reverse osmosis) membrane facilities and deaerating membrane are explained. (K.I.)

  6. The Modified Fouling Index Ultrafiltration constant flux for assessing particulate/colloidal fouling of RO systems

    KAUST Repository

    Salinas-Rodriguez, Sergio G.

    2015-02-18

    Reliable methods for measuring and predicting the fouling potential of reverse osmosis (RO) feed water are important in preventing and diagnosing fouling at the design stage, and for monitoring pre-treatment performance during plant operation. The Modified Fouling Index Ultrafiltration (MFI-UF) constant flux is a significant development with respect to assessing the fouling potential of RO feed water. This research investigates (1) the variables influencing the MFI-UF test at constant flux filtration (membrane pore size, membrane material, flux rate); and (2) the application of MFI-UF into pre-treatment assessment and RO fouling estimation. The dependency of MFI on flux, means that to assess accurately particulate fouling in RO systems, the MFI should be measured at a flux similar to a RO system (close to 20 L/m2/h) or extrapolated from higher fluxes. The two studied membrane materials showed reproducible results; 10% for PES membranes and 6.3% for RC membranes. Deposition factors (amount of particles that remain on the surface of membrane) were measured in a full-scale plant ranging between 0.2 and 0.5. The concept of “safe MFI” is presented as a guideline for assessing pre-treatment for RO systems.

  7. Evaluation of nanofiltration membranes for treatment of liquid radioactive waste

    International Nuclear Information System (INIS)

    Oliveira, Elizabeth Eugenio de Mello

    2013-01-01

    The physicochemical behavior of two nanofiltration membranes for treatment of a low-level radioactive liquid waste (carbonated water) was investigated through static, dynamic and concentration tests. This waste was produced during conversion of uranium hexafluoride (UF 6 ) to uranium dioxide (UO 2 ) in the cycle of nuclear fuel. This waste contains about 7.0 mg L -1 of uranium and cannot be discarded to the environment without an adequate treatment. In static tests membrane samples were immersed in the waste for 24 to 5000 h. Their transport properties (hydraulic permeability, permeate flux, sulfate and chloride ions rejection) were evaluated before and after immersion in the waste using a permeation flux front system under 0.5 MPa. The selective layer (polyamide) was characterized by zeta potential, contact angle, scanning electron microscopy for field emission, atomic force microscopy, infrared spectroscopy, x-ray fluorescence and thermogravimetric analysis before and after static tests. In dynamic tests the waste was permeated under 0.5 MPa, and the membranes showed rejection to uranium above 85% were obtained. The short-term static tests (24-72 h) showed that the selective layer and surface charge of the membranes were not chemical changed, according infrared spectra data. After 5000 h a coating layer was released from the membranes, poly(vinyl alcohol), PVA. After this loss the rejection for uranium decreased. Permeation and concentration of the waste were carried out in permeation flux tangential system under 1.5 MPa. The rejection of uranium was around 90% for permeation tests. In concentration tests the permeated was collected continuously until about 80% reduction of the feed volume. The rejection of uranium was of the 97%. The nanofiltration membranes tested were efficient to concentrate the uranium from the waste. (author)

  8. Conceptual design for the field test and evaluation of the gas-phase UF6 enrichment meter

    International Nuclear Information System (INIS)

    Strittmatter, R.B.; Leavitt, J.N.; Slice, R.W.

    1980-12-01

    An in-line enrichment monitor is being developed to provide real-time enrichment data for the gas-phase UF 6 feed stream of an enrichment plant. Data from proof-of-principle measurements using a laboratory prototype system are presented. A conceptual design for an enrichment monitor to be field tested and evaluated at the Oak Ridge Gaseous Diffusion Plant is reported

  9. Lignin-based membranes for electrolyte transference

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao; Garcia-Valls, Ricard [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona (Spain); Benavente, Juana [Department of Applied Fisics, Faculty of Science, University of Malaga, Malaga (Spain)

    2005-08-18

    Homogeneous PSf-LS membranes are formed by incorporating Lignosulfonate (LS) into the Polysulfone (PSf) network. LS obtained from sulfite pulping process contains sulfonic acid groups that will act as proton transport media. PSf-LS membranes were characterized by reflectance Infrared and scanning electron microscopy. LS showed significant influence on membrane morphology. Higher LS concentration caused a decrease in macrovoid formation and induced larger pores. Precipitation temperature was investigated as influencing parameter. Proton fluxes through PSf-LS membranes were measured by transport experiments. Impedance analysis confirmed that PSf-LS membranes possess ion conductivity. The selected PSf-LS membranes exhibited high selectivity for proton over methanol, which indicates their potential applicability in direct methanol fuel cell (DMFC). (author)

  10. Optimization of the isotopic analysis of UF6 by quadrupole mass spectrometry technique

    International Nuclear Information System (INIS)

    Porto, Peterson

    2006-01-01

    In the present work a procedure for determination of the isotopic ratio 238 U/ 235 U in UF 6 samples was established using a quadrupole mass spectrometer with ionization by electron impact and ion detection by Faraday cup or electron multiplier. For this, the following items were optimized in the spectrometer: the parameters in the ion source that provided the most intense peak, with good shape, for the corresponding mass of the most abundant isotope; the resolution that reduced the non linear effects and the number of analytic cycles that reduced the uncertainty in the results. The measurement process was characterized with respect to the effects of mass discrimination, linearity and memory effect. The mass discrimination showed to be linearly dependent of the sample pressure in the batch volume, for the pressure ranges from 0.15 to 0.30 mbar and from 0.30 to 0.40 mbar. The spectrometer was shown linear in the measurement of isotopic ratios between 0.005 and 0.045. The memory factor for the ion source and for the introduction system were, respectively, 1.000 ± 0.001 and 1.003 ± 0.003; the first one can be ignored, the second one can be eliminated by washing the batch volume with the new sample. A methodology for routine analysis of UF 6 samples and the determination of the uncertainties were set up in details as well. (author)

  11. The COMURHEX 2 project. Investing in UF6 long-term security of supply

    International Nuclear Information System (INIS)

    Bouzon, Pierre; Lacombe, Philippe; Durante, Pierre; Teyssier, Patrick

    2008-01-01

    The front-end nuclear fuel supply chain for LWRs encompasses four major industrial stages that are mining and concentration, conversion, enrichment, and eventually fuel fabrication. The different stages involve uranium in different chemical and physical forms. Enrichment of the 235-U fissile isotope requires gaseous UF6. As the standard output of mine is U3O8, referred to as ''yellow cake'', a purely chemical stage is therefore needed to fluorinate U3O8 and turn it into UFe: this is the conversion stage. U3O8 inventories management is thus performed at the conversion sites.Purification of the mining concentrates is also needed prior to actual conversion into UFe. This step is important because the front-end supply chain facilities have strict specifications concerning impurities. The conversion stage may involve intermediary products, namely UO3 and/or UF4, depending on the industrial scheme implemented. With the Comurhex 2 project, AREVA is not only shaping the future of conversion market and contributing to the security of supply of its customers, but it is also developing innovative techniques and reorganizing the conversion process steps. Providing such guaranteed and valuable conversion supply with a brand new plant is our strong commitment to a sustainable nuclear fuel cycle. And AREVA is the first that has launched such a project, looking further ahead. The three main axes of sustainable development, economical, social, and environmental, are truly taken into account in the development of the new project.

  12. Structure and physical properties of bio membranes and model membranes

    International Nuclear Information System (INIS)

    Tibor Hianik

    2006-01-01

    Bio membranes belong to the most important structures of the cell and the cell organelles. They play not only structural role of the barrier separating the external and internal part of the membrane but contain also various functional molecules, like receptors, ionic channels, carriers and enzymes. The cell membrane also preserves non-equilibrium state in a cell which is crucial for maintaining its excitability and other signaling functions. The growing interest to the bio membranes is also due to their unique physical properties. From physical point of view the bio membranes, that are composed of lipid bilayer into which are incorporated integral proteins and on their surface are anchored peripheral proteins and polysaccharides, represent liquid s crystal of smectic type. The bio membranes are characterized by anisotropy of structural and physical properties. The complex structure of bio membranes makes the study of their physical properties rather difficult. Therefore several model systems that mimic the structure of bio membranes were developed. Among them the lipid monolayers at an air-water interphase, bilayer lipid membranes, supported bilayer lipid membranes and liposomes are most known. This work is focused on the introduction into the physical word of the bio membranes and their models. After introduction to the membrane structure and the history of its establishment, the physical properties of the bio membranes and their models are stepwise presented. The most focus is on the properties of lipid monolayers, bilayer lipid membranes, supported bilayer lipid membranes and liposomes that were most detailed studied. This lecture has tutorial character that may be useful for undergraduate and graduate students in the area of biophysics, biochemistry, molecular biology and bioengineering, however it contains also original work of the author and his co-worker and PhD students, that may be useful also for specialists working in the field of bio membranes and model

  13. Model of mouth-to-mouth transfer of bacterial lipoproteins through inner membrane LolC, periplasmic LolA, and outer membrane LolB

    OpenAIRE

    Okuda, Suguru; Tokuda, Hajime

    2009-01-01

    Outer membrane-specific lipoproteins in Escherichia coli are released from the inner membrane by an ATP-binding cassette transporter, the LolCDE complex, which causes the formation of a soluble complex with a periplasmic molecular chaperone, LolA. LolA then transports lipoproteins to the outer membrane where an outer membrane receptor, LolB, incorporates lipoproteins into the outer membrane. The molecular mechanisms underlying the Lol-dependent lipoprotein sorting have been clarified in detai...

  14. Temperature evaluation of UF6 and cluster detection in nozzle expansion using low-resolution infrared absorption spectroscopy

    International Nuclear Information System (INIS)

    Sbampato, M.E.; Antunes, L.M.D.; Miranda, S.F.; Sena, S.C.; Santos, A.M.

    1998-01-01

    The continuous supersonic expansion of pure gaseous UF 6 and mixtures of UF 6 with argon and nitrogen through a bidimensional nozzle was studied using low-resolution infrared spectroscopy in the ν 3 absorption band region. The experiments were carried out in order to calculate the molecular temperature of the beam and also to verify cluster formation in the expansion. The molecular beam temperature evaluation was based on the measurements of the low-resolution bandwidth, which were compared to simulated spectra results. The temperatures were also evaluated using the measured pressure at the end of the nozzle by a Pitot tube. In the conditions where no cluster formation was observed the calculated theoretical temperatures using an equilibrium expansion model are in good agreement with the data obtained through the analysis of the experimental spectra and through the Pitot tube pressure measurement. Cluster formation was observed for temperatures below about 120 K. In these conditions the infrared spectra showed shoulders in the region above 630 cm -1 and a shoulder or band between 616 and 600 cm -1 . (orig.)

  15. Performance evaluation of an side-stream anaerobic membrane bioreactor: Synthetic and alcoholic beverage industry wastewater

    Directory of Open Access Journals (Sweden)

    Nurdan BÜYÜKKAMACI

    2016-06-01

    Full Text Available The treatment performance of a laboratory-scale anaerobic membrane bioreactor (AnMBR using high strength wastewater was evaluated. The AnMBR model system consisted of an up-flow anaerobic sludge blanket reactor (UASB and an ultrafiltration (UF membrane. Its performance was first examined using molasses based synthetic wastewater at different hydraulic retention times (1-3 days and organic loading rates (5-15 kg COD/m3.day. As a result of the experimental studies, maximum treatment efficiency with respect to COD reduction (95% was achieved at 7.5 kg COD/m3.day OLR (CODinfluent=15.000 mg/L, HRT=2 days applications. When OLR was increased to 15 kg COD/m3.day, system performance decreased sharply. Similarly, methane gas production decreased by increasing OLR. After then, feed was changed to real wastewater, which was alcoholic beverage industry effluent. At this study, maximum COD removal efficiency of the system and maximum methane gas production was 88% and 74%, respectively.

  16. Structural Study and Modification of Support Layer for Forward Osmosis Membranes

    KAUST Repository

    Shi, Meixia

    2016-06-01

    Water scarcity is a serious global issue, due to the increasing population and developing economy, and membrane technology is an essential way to address this problem. Forward osmosis (FO) is an emerging membrane process, due to its low energy consumption (not considering the draw solute regeneration). A bottleneck to advance this technology is the design of the support layer for FO membranes to minimize the internal concentration polarization. In this dissertation, we focus on the structural study and modification of the support layer for FO membranes. Firstly, we digitally reconstruct different membrane morphologies in 3D and propose a method for predicting performance in ultrafiltration operations. Membranes with analogous morphologies are later used as substrate for FO membranes. Secondly, we experimentally apply substrates with different potentially suitable morphologies as an FO support layer. We investigate their FO performance after generating a selective polyamide layer on the top, by interfacial polymerization. Among the different substrates we include standard asymmetric porous membranes prepared from homopolymers, such as polysulfone. Additionally block copolymer membrane and Anodisc alumina membrane are chosen based on their exceptional structures, with cylindrical pores at least in part. 3D digitally reconstructed porous substrates, analogous to those investigated for ultrafiltration, are then used to model the performance in FO operation. Finally, we analyze the effect of intermediate layers between the porous substrate and the interfacial polymerized layer. We investigate two materials including chitosan and hydrogel. The main results are the following. Pore-scale modeling for digital membrane generation effectively predicts the velocity profile in different layers of the membrane and the performance in UF experiments. Flow simulations confirm the advantage of finger-like substrates over sponge-like ones, when high water permeance is sought

  17. Mixed-matrix membrane adsorbers for protein separation

    NARCIS (Netherlands)

    Avramescu, M.E.; Borneman, Z.; Wessling, M.

    2003-01-01

    The separation of two similarly sized proteins, bovine serum albumin (BSA) and bovine hemoglobin (Hb) was carried out using a new type of ion-exchange mixed-matrix adsorber membranes. The adsorber membranes were prepared by incorporation of various types of Lewatit ion-exchange resins into an

  18. Biocompatibility studies of polyacrylonitrile membranes modified with carboxylated polyetherimide

    Energy Technology Data Exchange (ETDEWEB)

    Senthilkumar, S.; Rajesh, S.; Jayalakshmi, A.; Mohan, D., E-mail: mohantarun@gmail.com

    2013-10-15

    Poly (ether-imide) (PEI) was carboxylated and used as the hydrophilic modification agent for the preparation of polyacrylonitrile (PAN) membranes. Membranes were prepared with different blend compositions of PAN and CPEI by diffusion induced precipitation. The modified membranes were characterized by thermo gravimetric analysis (TGA), mechanical analysis, scanning electron microscopy (SEM) and contact angle measurement to understand the influence of CPEI on the properties of the membranes. The biocompatibility studies exhibited reduced plasma protein adsorption, platelet adhesion and thrombus formation on the modified membrane surface. The complete blood count (CBC) results of CPEI incorporated membranes showed stable CBC values and significant decrease in the complement activation were also observed. In addition to good cytocompatibility, monocytes cultured on these modified membranes exhibited improved functional profiles in 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Thus it could be concluded that PAN/CPEI membranes with excellent biocompatibility can be useful for hemodialysis. Highlights: • Carboxylated PEI was prepared and utilized as hydrophilic modification agent. • CPEI incorporated into PAN to improved biocompatibility and cyto compatibility • Biocompatibility of membranes was correlated with morphology and hydrophilicity. • Antifouling studies of the PAN/CPEI membranes was studied by BSA as model foulant.

  19. Portable load-cell based system for weighing UF6 cylinders

    International Nuclear Information System (INIS)

    Fainberg, A.; Gordon, D.; Dermendjiev, E.; Terrey, D.; Mitchell, R.

    1982-01-01

    A load-cell-based portable weighing system which is capable of verifying the weights of 2.2 tonne 30-inch UF 6 cylinders has been developed by the US National Bureau of Standards (NBS). This system weighs about 13 kg and has an attainable accuracy of about 1 kg. After an initial calibration at NBS, the system is ready for use in the field. Approximately 5 to 10 minutes are needed for assembly, and, if an overhead crane has access to all cylinders to be weighed, from 10 to 15 weighings may be performed in one hour. During the past year the system has been tested at several facilities around the world with satisfactory results and with favorable comments from the facility operators. Results of several tests are presented in this paper

  20. Om direktørers fuldmagt på baggrund af UfR 2012.2533 H

    DEFF Research Database (Denmark)

    Andersen, Lennart Lynge; Schaumburg-Muller, Peer

    2012-01-01

    Den bemyndigelse, en adm. direktør - og den øvrige direktion - har til (bl.a.) at fastsætte løn- og ansættelsesvilkår for selskabets medarbejdere har hverken i den arbejdsretlige, selskabsretlige eller den aftaleretlige teori og praksis påkaldt sig megen opmærksomhed gennem årene. Højesterets dom...... af 2. maj 2012 (UfR 2012.2533 H) omhandler netop dette forhold, og afgørelsen må af flere grunde anses for principiel....