WorldWideScience

Sample records for uco drop columns

  1. Pressure drop effects on selectivity and resolution in packed-column supercritical fluid chromatography

    NARCIS (Netherlands)

    Lou, X.W.; Janssen, J.G.M.; Snijders, H.M.J.; Cramers, C.A.M.G.

    1996-01-01

    The influence of pressure drop on retention, selectivity, plate height and resolution was investigated systematically in packed supercritical fluid chromatography (SFC) using pure carbon dioxide as the mobile phase. Numerical methods developed previously which enabled the prediction of pressure

  2. The effect of spherical hub-nose position on pressure drop in an oscillating water column system for wave energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Z.; Ahmad, N.; Ghazilla, R.A.R.; Yap, H.J.; Ya, T.Y.T.; Passarella, R.; Hasanuddin, I.; Yunus, M. [Malaya Univ. (Malaysia). Centre for Product Design and Manufacturing; Sugiyono [Malaya Univ., (Malaysia). Centre for Product Design and Manufacturing; Gadjah Mada Univ. (Indonesia). Dept. of Mechanical and Industrial Engineering

    2009-07-01

    The use of renewable energy sources as an alternative to conventional fuels was discussed with particular reference to ocean wave energy and its potential to contribute to the energy requirements of coastal nations. Ocean wave energy has been harnessed and converted into electricity using processes and technologies that are environmentally sound. The oscillating water column (OWC) system is considered to be among the most promising technology for harnessing wave energy. This paper presented the results of a study that investigated the pressure drop in an OWC system and the effect of spherical hub-nose position in an annular duct. Computational fluid dynamics (CFD) analysis was used under steady flow conditions for several hub-nose positions to determine the characteristic of pressure drop. The study showed that the hub-nose position influenced the pressure drop in the OWC system. The highest value of the pressure drop in this study occurred when the hub-nose was at the position of 0.0 m relative to the end of the converging cone. The pressure drop decreased when the hub-nose position moved away from the end of converging cone. The lowest value occurred at the position of -0.5 m. It was concluded that despite the numerically small change in pressure drop, this phenomenon should be considered in the design process of the OWC system because of the operational condition of the system at low-pressure pneumatic power. The pressure drop actually reduces the amount of energy that will be converted by the air turbine. 9 refs., 2 tabs., 6 figs.

  3. Thermal expansion of the superconducting ferromagnet UCoGe

    NARCIS (Netherlands)

    Gasparini, A.; Huang, Y.K.; Hartbaum, J.; v. Löhneysen, H.; de Visser, A.

    2010-01-01

    We report measurements of the coefficient of linear thermal expansion, α(T), of the superconducting ferromagnet UCoGe. The data taken on a single-crystalline sample along the orthorhombic crystal axes reveal a pronounced anisotropy with the largest length changes along the b axis. The large values

  4. PENGARUH POROSITAS PACKING STEEL WOOL TERHADAP PRESSURE DROP DIDALAM PACKED BED COLUMN PADA DISTILASI CAMPURAN ETANOL-AMIL-ALKOHOL-AIR

    Directory of Open Access Journals (Sweden)

    Trisna Kumala Dhaniswara

    2016-08-01

    Full Text Available Inventories of petroleum fuels are increasingly depleted and will someday run out. These shortcomings can be overcome by using alternative fuels, such as ethanol. Based on this, it is necessary to research and development of ethanol as a fuel. One way is with a separation in a packed distillation column. This study aims to assess the mass transfer phenomena that occur in the process of distilling a mixture of ethanol-water-amyl alcohol packed in column. In addition, this study aims to optimize temperature and reflux to obtain the highest levels of ethanol. This research method uses packed bed distillation system with the batch process. Feed used is synthetic ethanol, water, and solvent. Solvent used were amyl alcohol. Doing distillation with heating temperature is maintained. Distillation is done in the packing of stainless steel wool. Research carried out in a batch process with a variable temperature of  79°C; 84°C; 91°C; and porosity packing 20%; 30%; 40%; 50%; 60%; 70%; 80%.

  5. Adsorption of Used Cooking Oil (UCO) by using Raw and Modified Kapok Fibre through Esterification

    Science.gov (United States)

    Alias, N. H.; Hasan, S. I. Z.

    2018-05-01

    UCO is one of the domestic wastes in our daily life. Normally, UCO are produced by hawkers, restaurants and household in a large quantity. The UCO usually exist in water mixture and eventually can cause water drainage problem which can lead to the environmental problem. Therefore, in order to overcome this problem, a study was conducted to test the adsorption of RKF and MKF towards the UCO. As for the MKF, the adsorption was tested by using different concentrations of Calcium Oxide (CaO) in percentage during the esterification. The oil removal percentages were calculated for RKF and MKF. Based on the results, it was found that the RKF has adsorbed 25.32g of UCO with a 50.64% of adsorption. As compared to MKF, it was able to increase the hydrophobic properties which resulted more UCO adsorption by 26.78g of UCO with the increment in the adsorption of 53.56% by using CaO of 5 wt% of RKF mass. However, when the percentage of CaO was increased, the UCO adsorption was also increased. The results showed that by using CaO of 10 wt% and 15 wt% of RKF mass, the UCO adsorption was increased to 28.50g (56.84%) and 31.73g (63.46%), respectively. Thus, MKF has higher adsorption of UCO compared to RKF. The highest amount of UCO adsorption has been achieved by using CaO of 15 wt% in the esterification, which was 31.73g corresponded to 63.46%.

  6. PULSE COLUMN

    Science.gov (United States)

    Grimmett, E.S.

    1964-01-01

    This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)

  7. Magnetic properties of the UMn2-UFe2 and UMn2-UCO2 system alloys

    International Nuclear Information System (INIS)

    Meskhishvili, A.I.; Pletyushkin, V.A.; Slovyanskikh, V.K.; Chechernikov, V.I.; Shavishvili, T.M.

    1978-01-01

    The magnetic properties of compounds UMn 2 and UCo 2 , and solid solutions UMn 2 -UFe 2 and UMn 2 -UCo 2 have been examined. It has been established, that in substituting iron ions with manganese ions, the temperature of the ferromagnetic transformation of UFe 2 decreases, and within the region of 50 at.% UFe 2 the ferromagnetic ordering disappears. The Curie-Weiss law holds within a limited temperature range. In the solid solutions of two paramagnets UMn 2 and UCo 2 , which are independent of temperature, at a concentration of 45 to 50 at.% UCo 2 , the magnetic susceptibility and its dependence on temperature attain their maximum values. The results obtained are connected with the collectivization of d-, f-, and s-electrons of an alloy

  8. Magnetic stripes in the UCoGe superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Mora, Pablo de la [Departemento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-542, 04510 Mexico DF, Mexico and Institute de Investigacion en Materiales, Universidad Nacional Autonoma de Mexico, Campus Morelia (Mexico); Navarro, O, E-mail: delamora@unam.m [Instituto de Investigacion en Materiales, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-360, 04510 Mexico DF (Mexico)

    2009-05-01

    The magnetic superconductor UCoGe is analyzed with an electronic structure package, spin-orbit coupling and intra-atomic repulsion (via Hubbard U{sub H}) were included. The possibility of an antiferromagnetic configuration is studied, but it is found to be unstable, also the non-collinear magnetization seems to be ruled out. The magnetization is given mainly by the Co-atoms with M = 0.6 mu{sub B}/f.u. The U-atoms have two magnetic moments; M = 0.07 and 0.32 mu{sub B}/f.u. arranged in an alternated planes along the b-direction forming magnetic stripes.

  9. Advanced Fuel UCO Preparation Technology for HTGR (Characteristics of Carbon Black)

    International Nuclear Information System (INIS)

    Jeong, Kyung Chai; Oh, S. C.; Kim, Y. K.; Cho, M. S.; Kim, W. K.; Kim, Y. M.; Lee, Y. W.; Cho, H. J.; Shin, E. J.

    2010-06-01

    NGNP program for high specification of HTGR nuclear fuel through the GEN IV study is be progressed. Furthermore, because the NGNP program have a highly focused goal like UCO kernel, kernel fabrication and coating types varied which made selection of a US reference fabrication process. In this study, it was evaluated from the reviews on the UO2 and UCO kernel fabrication technologies and its particle characteristics. For improving the UCO qualities, first it was improved the kernel fabrication processes and carbon dispersion method also. New method for carbon dispersion in broth solution was developed, and its characteristics was evaluated from the AGR irradiation tests used the UCO kernel. In fabrication process, also process parameter variation tests in both forming and sintering steps led to an increased understanding of the acceptable ranges for process parameters and additional reduction in required operating times. Another result of this test program was to double the kernel production rate. Following the development tests, approximately 40 kg of natural uranium UCO kernels have been produced for use in coater scale up tests, and approximately 10 kg of low enriched uranium UCO kernels for use in the AGR-2 experiment

  10. Interplay between effects of external pressure and dilution of the U sublattice in UCoAl-based materials

    International Nuclear Information System (INIS)

    Andreev, A.V.; Koyama, K.; Mushnikov, N.V.; Sechovsky, V.; Shiokawa, Y.; Satoh, I.; Watanabe, K.

    2007-01-01

    Substitution of Y for U in the itinerant 5f-electron metamagnet, UCoAl, transforms the system to a ferromagnetic state. Application of external hydrostatic pressure above 0.3 GPa suppresses the ferromagnetism and restores the 'UCoAl-type' metamagnetism back. However, the metamagnetic transition becomes of the second order instead of the first order one in parent UCoAl. This is attributed to enhancement of fluctuations of the U magnetic moment upon dilution of the U sublattice

  11. Two secondary drops

    Indian Academy of Sciences (India)

    Figure shows formation of two secondary drops of unequal size and their merger. The process is same as the earlier process until t= 0.039 Tc with necking occurring at two places, one at the bottom of the column and the other at the middle. The necking at the middle of the liquid column is due to Raleigh instability.

  12. Influence of isoelectronic substitutions on the magnetism of UCoAl

    Czech Academy of Sciences Publication Activity Database

    Andreev, Alexander V.; Mushnikov, N. V.; Diviš, M.; Honda, F.; Sechovský, V.; Goto, T.

    2005-01-01

    Roč. 71, č. 9 (2005), 094437/1-094437/7 ISSN 1098-0121 R&D Projects: GA ČR(CZ) GA202/02/0739; GA ČR(CZ) GA202/03/0550 Keywords : UCoAl * isoelectronic substitution * magnetism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.185, year: 2005

  13. Electrical resistance and magnetoresistance of UCoAl under high pressure

    Czech Academy of Sciences Publication Activity Database

    Honda, F.; Oomi, G.; Andreev, Alexander V.; Sechovský, V.; Shiokawa, Y.

    --, - (2002), s. 126-128 ISSN 0022-3131 R&D Projects: GA ČR GP202/01/D045 Institutional research plan: CEZ:AV0Z1010914 Keywords : UCoAl * non-Fermi liquid * itinerant metamagnetism * electrical resistance * high pressure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.572, year: 2002

  14. Ferromagnetism in 5f-band metamagnet UCoAl induced by Os doping

    Czech Academy of Sciences Publication Activity Database

    Andreev, Alexander V.; Shirasaki, K.; Šebek, Josef; Vejpravová, Jana; Gorbunov, Denis; Havela, L.; Daniš, S.; Yamamura, T.

    2016-01-01

    Roč. 681, Oct (2016), 275-282 ISSN 0925-8388 R&D Projects: GA ČR GA16-03593S Institutional support: RVO:68378271 Keywords : uranium intermetallics * UCoAl * itinerant metamagnetism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.133, year: 2016

  15. Intermediate Compound Preparation Using Modified External Gelation Method and Thermal Treatment Equipment Development for UCO Kernel

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kyung Chai; Eom, Sung Ho; Kim, Yeon Ku; Yeo, Seoung Hwan; Kim, Young Min; Cho, Moon Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    VHTR (Very High Temperature Gas Reactor) fuel technology is being actively developed in the US, China, Japan, and Korea for a Next Generation Nuclear Plant (NGNP). The concept of fuel of a VHTR is based on a sphere kernel of UO{sub 2} or UCO, with multiple coating layers to create a gas-tight particle. The fuel particle of a VHTR in the US is based on microspheres containing a UCO, mixture compound of UO{sub 2} and UC{sub 2} , coated particles with multi carbon layers and a SiC layer. This was first prepared through an internal gelation method at ORNL in the late 1970s. This study presents; (1) C-ADU gel particles were prepared using a modified sol-gel process. The particles fabricated with a KAERI-established gelation and AWD processes showed good sphericity and no cracks were found on the surfaces. (2) High temperature rotating furnace was designed and fabricated in our laboratory, and the maximum operation temperature was about 2000℃. The furnace was equipped with Mo crucible and graphite heating system, and now it is being operated. (3) Well-prepared C-ADU gel particles were converted into UCO compounds using high temperature rotating furnace, and the physical properties of the UCO kernels will be analyzed.

  16. Anomalous spin distribution in the superconducting ferromagnet UCoGe studied by polarized neutron diffraction

    NARCIS (Netherlands)

    Prokeš, K.; de Visser, A.; Huang, Y.K.; Fåk, B.; Ressouche, E.

    2010-01-01

    We report a polarized neutron-diffraction study conducted to reveal the nature of the weak ferromagnetic moment in the superconducting ferromagnet UCoGe. We find that the ordered moment in the normal phase in low magnetic fields (B∥c) is predominantly located at the U atom and has a magnitude of

  17. Microscopic coexistence of ferromagnetism and superconductivity in single-crystal UCoGe

    International Nuclear Information System (INIS)

    Ohta, Tetsuya; Hattori, Taisuke; Ishida, Kenji; Nakai, Yusuke; Osaki, Eisuke; Deguchi, Kazuhiko; Sato, Noriaki K.; Satoh, Isamu

    2010-01-01

    Unambiguous evidence for the microscopic coexistence of ferromagnetism and superconductivity in UCoGe (T Curie -2.5 K and T SC -0.6 K) is reported from 59 Co nuclear quadrupole resonance (NQR). The 59 Co-NQR signal below 1 K indicates ferromagnetism throughout the sample volume, while the nuclear spin-lattice relaxation rate 1/T 1 in the ferromagnetic (FM) phase decreases below T SC due to the opening of the superconducting (SC) gap. The SC state is found to be inhomogeneous, suggestive of a self-induced vortex state, potentially realizable in a FM superconductor. In addition, the 59 Co-NQR spectrum around T Curie shows that the FM transition in UCoGe possesses a first-order character, which is consistent with the theoretical prediction that the low-temperature FM transition in itinerant magnets is generically of first-order. (author)

  18. Determining the minimum required uranium carbide content for HTGR UCO fuel kernels

    International Nuclear Information System (INIS)

    McMurray, Jacob W.; Lindemer, Terrence B.; Brown, Nicholas R.; Reif, Tyler J.; Morris, Robert N.; Hunn, John D.

    2017-01-01

    Highlights: • The minimum required uranium carbide content for HTGR UCO fuel kernels is calculated. • More nuclear and chemical factors have been included for more useful predictions. • The effect of transmutation products, like Pu and Np, on the oxygen distribution is included for the first time. - Abstract: Three important failure mechanisms that must be controlled in high-temperature gas-cooled reactor (HTGR) fuel for certain higher burnup applications are SiC layer rupture, SiC corrosion by CO, and coating compromise from kernel migration. All are related to high CO pressures stemming from O release when uranium present as UO 2 fissions and the O is not subsequently bound by other elements. In the HTGR kernel design, CO buildup from excess O is controlled by the inclusion of additional uranium apart from UO 2 in the form of a carbide, UC x and this fuel form is designated UCO. Here general oxygen balance formulas were developed for calculating the minimum UC x content to ensure negligible CO formation for 15.5% enriched UCO taken to 16.1% actinide burnup. Required input data were obtained from CALPHAD (CALculation of PHAse Diagrams) chemical thermodynamic models and the Serpent 2 reactor physics and depletion analysis tool. The results are intended to be more accurate than previous estimates by including more nuclear and chemical factors, in particular the effect of transmuted Pu and Np oxides on the oxygen distribution as the fuel kernel composition evolves with burnup.

  19. NMR and NQR studies of 5f-band metamagnetic UCoAl and UCo{sub 1-x}T{sub x}Al (T=Fe,Ni)

    Energy Technology Data Exchange (ETDEWEB)

    Kohori, Y. [Graduate School of Science and Technology, Chiba University, Chiba 263-8522 (Japan) and Department of Physics, Faculty of Science, Chiba University, Chiba 263-8522 (Japan)]. E-mail: kohori@faculty.chiba-u.jp; Fukazawa, H. [Graduate School of Science and Technology, Chiba University, Chiba 263-8522 (Japan); Department of Physics, Faculty of Science, Chiba University, Chiba 263-8522 (Japan); Iwamoto, Y. [Division of Cargo and Transportation Science, Kobe University, Kobe 658-0022 (Japan); Kohara, T. [Graduate School of Material Science, University of Hyogo, Hyogo 678-1297 (Japan); Andreev, A.V. [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 18040 Prague 8 (Czech Republic); Sechovsky, V. [Department of Electronic Structures, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic)

    2006-05-01

    The 5f-band system UCoAl, which crystallizes in the hexagonal ZrNiAl-type structure, has the paramagnetic ground state. The magnetic fields H as low as 0.6T oriented along the c-axis induce the metamagnetic transition below 17K. In order to study the magnetic property of UCoAl, we performed {sup 27}Al and {sup 59}Co NMR/NQR measurements in UCoAl, UCo{sub 0.98}Fe{sub 0.02}Al and UCo{sub 0.95}Ni{sub 0.05}Al single crystals. The substitution of Fe stabilizes the ferromagnetic state, and that of Ni stabilizes the paramagnetic state. The nuclear spin-lattice relaxation rate 1/T{sub 1} obtained with the crystal c-axis perpendicular to H is nearly six times larger than the 1/T{sub 1} with the c-axis parallel to H, which reflects the anisotropy of the spin fluctuations of the system.

  20. High-field study of UCo2Si2: Magnetostriction at metamagnetic transition and influence of Fe substitution

    Science.gov (United States)

    Andreev, A. V.; Skourski, Y.; Gorbunov, D. I.; Prokeš, K.

    2018-05-01

    UCo2Si2 (tetragonal crystal structure) is antiferromagnet below TN = 83 K with ferromagnetic basal-plane layers of U magnetic moments oriented parallel to the c axis. The layers are coupled in +-+- sequence along this axis. In fields of 45 T applied along the c axis, UCo2Si2 exhibits very sharp metamagnetic transition to ++- uncompensated antiferromagnetic state. The transition is accompanied by pronounced magnetostriction effects. The crystal expands along the c axis by 1 * 10-4 and shrinks in the basal plane by 0.5 * 10-4 (at 1.5 K) resulting in negligible volume effect. Between 20 K and 40 K the transition changes from the first- to the second-order type. The Fe doping in UCo2Si2 reduces TN from 83 K to 80 K at x = 0.2 in U(Co1-xFex)2Si2. Metamagnetic transition shifts to higher fields (from 45 T at x = 0-56 T for x = 0.2). Magnetization jump over the transition remains practically the same which is in agreement with uranium magnetic moment determined by neutron diffraction on crystal with x = 0.1 as 1.29 μB, i.e. only slightly lower than that in UCo2Si2.

  1. Novel superconducting state in ferromagnetic superconductor UCoGe. Microscopic coexistence of ferromagnetism and superconductivity probed by 59Co-NQR measurements

    International Nuclear Information System (INIS)

    Ishida, Kenji; Hattori, Taisuke; Ihara, Yoshihiko; Nakai, Yusuke; Sato, Noriaki K.; Deguchi, Kazuhiko; Tamura, Nobuyuki; Satoh, Isamu

    2010-01-01

    We have investigated the relationship between ferromagnetism and superconductivity in ferromagnetic superconductor UCoGe from 59 Co nuclear quadrupole resonance (NQR) measurements. Our experimental results indicate the microscopic coexistence of ferromagnetism and superconductivity in UCoGe, and suggest a 'self-induced vortex state' in its superconducting state. We also review NQR experiments, which play an important role in this study. (author)

  2. Pressure-induced quantum phase transition in the itinerant ferromagnet UCoGa

    Czech Academy of Sciences Publication Activity Database

    Míšek, Martin; Prokleška, J.; Opletal, P.; Proschek, P.; Kaštil, Jiří; Kamarád, Jiří; Sechovský, V.

    2017-01-01

    Roč. 7, č. 5 (2017), s. 1-4, č. článku 055712. ISSN 2158-3226 R&D Projects: GA ČR GA16-06422S Institutional support: RVO:68378271 Keywords : quantum phase transition * high pressure * itinerant ferromagnet * UCoGa Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.568, year: 2016 http://aip.scitation.org/doi/10.1063/1.4976300

  3. A USB 2.0 computer interface for the UCO/Lick CCD cameras

    Science.gov (United States)

    Wei, Mingzhi; Stover, Richard J.

    2004-09-01

    The new UCO/Lick Observatory CCD camera uses a 200 MHz fiber optic cable to transmit image data and an RS232 serial line for low speed bidirectional command and control. Increasingly RS232 is a legacy interface supported on fewer computers. The fiber optic cable requires either a custom interface board that is plugged into the mainboard of the image acquisition computer to accept the fiber directly or an interface converter that translates the fiber data onto a widely used standard interface. We present here a simple USB 2.0 interface for the UCO/Lick camera. A single USB cable connects to the image acquisition computer and the camera's RS232 serial and fiber optic cables plug into the USB interface. Since most computers now support USB 2.0 the Lick interface makes it possible to use the camera on essentially any modern computer that has the supporting software. No hardware modifications or additions to the computer are needed. The necessary device driver software has been written for the Linux operating system which is now widely used at Lick Observatory. The complete data acquisition software for the Lick CCD camera is running on a variety of PC style computers as well as an HP laptop.

  4. Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of the production of biodiesel from used cooking oil (UCO)

    International Nuclear Information System (INIS)

    Talens Peiro, L.; Lombardi, L.; Villalba Mendez, G.; Gabarrell i Durany, X.

    2010-01-01

    The paper assesses the life cycle of biodiesel from used cooking oil (UCO). Such life cycle involves 4 stages: 1) collection, 2) pre-treatment, 3) delivery and 4) transesterification of UCO. Generally, UCO is collected from restaurants, food industries and recycling centres by authorised companies. Then, UCO is pre-treated to remove solid particles and water to increase its quality. After that, it is charged in cistern trucks and delivered to the biodiesel facility to be then transesterified with methanol to biodiesel. The production of 1 ton of biodiesel is evaluated by a Life Cycle Assessment (LCA) to assess the environmental impact and by an Exergetic Life Cycle Assessment (ELCA) to account for the exergy input to the system. A detailed list of material and energy inputs is done using data from local companies and completed using Ecoinvent 1.2 database. The results show that the transesterification stage causes 68% of the total environmental impact. The major exergy inputs are uranium and natural gas. If targets set by the Spanish Renewable Energy Plan are achieved, the exergy input for producing biodiesel would be reduced by 8% in the present system and consequently environmental impacts and exergy input reduced up to 36% in 2010.

  5. Study of the magnetic heavy fermions UCoGe and YbRh2Si2 by transport measurements

    International Nuclear Information System (INIS)

    Taupin, Mathieu

    2013-01-01

    Thermal conductivity measurements have been performed at low temperatures and under field in the superconducting ferromagnetic UCoGe and in the weak antiferromagnetic YbRh 2 S i 2. In both systems, the magnetic fluctuations have an important role in their properties, and it appeared that they contribute as a heat channel, seen by thermal conductivity at low temperatures. In UCoGe, the extra contribution due to the magnetic fluctuations have the same field dependence as the one measured by NMR, and, unexpectedly, a new heat channel appears at very low temperatures. Furthermore, thermal conductivity measurements in the superconducting state have confirmed the multi-gap superconductivity of UCoGe. XMCD measurements have also been performed in UCoGe. In YbRh 2 Si 2 , the very low temperature thermal conductivity measurements have shown that an extra contribution appears at very low temperature, which avoids to conclude de n itively about the violation or the validation of the Wiedemann-Franz law at the quantum critical point, even if the results can be interpreted supposing its validation. (author) [fr

  6. Comparative investigation of the solution species [U(CO3)5]6- and the crystal structure of Na6[U(CO3)5].12H2O.

    Science.gov (United States)

    Hennig, Christoph; Ikeda-Ohno, Atsushi; Emmerling, Fanziska; Kraus, Werner; Bernhard, Gert

    2010-04-21

    The limiting U(IV) carbonate species in aqueous solution was investigated by comparing its structure parameters with those of the complex preserved in a crystal structure. The solution species prevails in aqueous solution of 0.05 M U(IV) and 1 M NaHCO(3) at pH 8.3. Single crystals of Na(6)[U(CO(3))(5)].12H(2)O were obtained directly from this mother solution. The U(IV) carbonate complex in the crystal structure was identified as a monomeric [U(CO(3))(5)](6-) anionic complex. The interatomic distances around the U(IV) coordination polyhedron show average distances of U-O = 2.461(8) A, U-C = 2.912(4) A and U-O(dist) = 4.164(6) A. U L(3)-edge EXAFS spectra were collected from the solid Na(6)[U(CO(3))(5)].12H(2)O and the corresponding solution. The first shell of the Fourier transforms (FTs) revealed, in both samples, a coordination of ten oxygen atoms at an average U-O distance of 2.45 +/- 0.02 A, the second shell originates from five carbon atoms with a U-C distance of 2.91 +/- 0.02 A, and the third shell was fit with single and multiple scattering paths of the distal oxygen at 4.17 +/- 0.02 A. These data indicate the identity of the [U(CO(3))(5)](6-) complex in solid and solution state. The high negative charge of the [U(CO(3))(5)](6-) anion is compensated by Na(+) cations. In solid state the Na(+) cations form a bridging network between the [U(CO(3))(5)](6-) units, while in liquid state the Na(+) cations seem to be located close to the anionic complex. The average metal-oxygen distances of the coordination polyhedron show a linear correlation to the radius contraction of the neighbouring actinide(IV) ions and indicate the equivalence of the [An(CO(3))(5)](6-) coordination within the series of thorium, uranium, neptunium and plutonium.

  7. Measurement of kernel swelling and buffer densification in irradiated UCO-TRISO particles

    Energy Technology Data Exchange (ETDEWEB)

    Bower, Gordon R., E-mail: bowegr@inl.gov [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Ploger, Scott A.; Demkowicz, Paul A. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Hunn, John D. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37830-6093 (United States)

    2017-04-01

    Radiation-induced volume changes in the fuel kernels and buffer layers of UCO-TRISO particles irradiated to an average burnup of 16.1% FIMA have been determined. Measurements of particle dimensions were made on polished cross-sections of 56 irradiated particles at several different polish planes. The data were then analyzed to compute the equivalent spherical diameters of the kernels and the various coating layers, and these were compared to the average as-fabricated values to determine changes due to irradiation. The kernel volume was found to have increased by an average of 26 ± 6%. Buffer volume decreased by an average of 39 ± 2% due to densification.

  8. Competition of ground states in URu2Si2 and UCoGe

    International Nuclear Information System (INIS)

    Hassinger, E.

    2010-10-01

    In this thesis, two uranium based heavy fermion compounds are studied under pressure. URu2Si2 has a mysterious ground state below T0 = 17.5 K at ambient pressure. The order parameter has not been identified yet which led to the name 'hidden order' (HO). In addition, below 1.5 K the system becomes superconducting. With pressure, the ground state switches from the HO phase to an antiferromagnetic (AF) phase at a critical pressure and superconductivity is concomitantly suppressed. Shubnikov-de Haas measurements under pressure show that the Fermi surface doesn't change between the two phases. The folding of the Fermi surface which occurs in the high pressure AF phase therefore already happens in the HO phase, indicating a unit cell doubling. Our measurements of the complete angular dependence of the oscillation frequencies test the electronic structure and support new theoretical band structure calculations with rather itinerant 5f electrons. The second part of my research focuses on another uranium compound, UCoGe. It is one of the few known materials where superconductivity (Tsc = 0.6 K) coexists with ferromagnetism (T Curie = 2.8 K). Precise studies of the pressure phase diagram by resistivity, ac calorimetry and ac susceptibility show that the ferromagnetic phase is suppressed at a pressure of about 1 GPa and the superconducting phase extends into the paramagnetic phase induced by pressure. When ferromagnetism is suppressed to the superconducting transition no further distinct ferromagnetic anomalies are observed. Thus, the pressure phase diagram of UCoGe is unique in the class of ferromagnetic superconductors. (author)

  9. Pressure-induced itinerant electron metamagnetism in UCo0.995Os0.005Al ferromagnet

    Science.gov (United States)

    Mushnikov, N. V.; Andreev, A. V.; Arnold, Z.

    2018-05-01

    The effect of external hydrostatic pressure on magnetic properties is studied for the UCo0.995Os0.005Al single crystal. At ambient pressure, the ground state is ferromagnetic. Even lowest applied pressure 0.11 GPa is sufficient to suppress ferromagnetism. A sharp metamagnetic transition is observed only in magnetic fields along the c axis of the crystal, similar to previously studied itinerant electron metamagnet UCoAl. Temperature dependence of the susceptibility for various pressures shows a broad maximum at Tmax 20 K. The experimental data are analyzed with the theory of itinerant electron metamagnetism, which considers anisotropic thermal fluctuations of the uranium magnetic moment. The observed pressure dependence of the susceptibility at Tmax and the temperature for the disappearance of the first-order metamagnetic transition are explained with the theory.

  10. Project Final Report: Ubiquitous Computing and Monitoring System (UCoMS) for Discovery and Management of Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Tzeng, Nian-Feng; White, Christopher D.; Moreman, Douglas

    2012-07-14

    The UCoMS research cluster has spearheaded three research areas since August 2004, including wireless and sensor networks, Grid computing, and petroleum applications. The primary goals of UCoMS research are three-fold: (1) creating new knowledge to push forward the technology forefronts on pertinent research on the computing and monitoring aspects of energy resource management, (2) developing and disseminating software codes and toolkits for the research community and the public, and (3) establishing system prototypes and testbeds for evaluating innovative techniques and methods. Substantial progress and diverse accomplishment have been made by research investigators in their respective areas of expertise cooperatively on such topics as sensors and sensor networks, wireless communication and systems, computational Grids, particularly relevant to petroleum applications.

  11. Structural and magnetic properties of UCo1/3T2/3Al solid solutions (T = Ru, Pt, Rh)

    International Nuclear Information System (INIS)

    Andreev, A. V.; Bordallo, H. N.; Chang, S.; Nakotte, H.; Schultz, A. J.; Sechovsky, V.; Torikachvili, M. S.

    1999-01-01

    We report on neutron diffraction studies of UCo 1/3 T 2/3 Al (T = Ru, Pt, Rh). All three solid solutions form in the hexagonal ZrNiAl structure. The Ru-containing compound is found to be chemically ordered, while the Pt-containing compound is nearly disordered and the Rh-containing compound is purely disordered. All three compounds exhibit long-range magnetic order with rather small U moments

  12. Drop trampoline

    Science.gov (United States)

    Chantelot, Pierre; Coux, Martin; Clanet, Christophe; Quere, David

    2017-11-01

    Superhydrophobic substrates inspired from the lotus leaf have the ability to reflect impacting water drops. They do so very efficiently and contact lasts typically 10 ms for millimetric droplets. Yet unlike a lotus leaf most synthetic substrates are rigid. Focusing on the interplay between substrate flexibility and liquid repellency might allow us to understand the dynamic properties of natural surfaces. We perform liquid marbles impacts at velocity V onto thin ( 0.01 mm) stretched circular PDMS membranes. We obtain contact time reductions of up to 70%. The bouncing mechanism is drastically modified compared to that on a rigid substrate: the marble leaves the substrate while it is still spread in a disk shape as it is kicked upwards by the membrane. We show that the bouncing is controlled by an interplay between the dynamics of the drop and the membrane.

  13. KEY RESULTS FROM IRRADIATION AND POST-IRRADIATION EXAMINATION OF AGR-1 UCO TRISO FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Demkowicz, Paul A.; Hunn, John D.; Petti, David A.; Morris, Robert N.

    2016-11-01

    The AGR-1 irradiation experiment was performed as the first test of tristructural isotropic (TRISO) fuel in the US Advanced Gas Reactor Fuel Development and Qualification Program. The experiment consisted of 72 right cylinder fuel compacts containing approximately 3×105 coated fuel particles with uranium oxide/uranium carbide (UCO) fuel kernels. The fuel was irradiated in the Advanced Test Reactor for a total of 620 effective full power days. Fuel burnup ranged from 11.3 to 19.6% fissions per initial metal atom and time average, volume average irradiation temperatures of the individual compacts ranged from 955 to 1136°C. This paper focuses on key results from the irradiation and post-irradiation examination, which revealed a robust fuel with excellent performance characteristics under the conditions tested and have significantly improved the understanding of UCO coated particle fuel irradiation behavior within the US program. The fuel exhibited a very low incidence of TRISO coating failure during irradiation and post-irradiation safety testing at temperatures up to 1800°C. Advanced PIE methods have allowed particles with SiC coating failure to be isolated and meticulously examined, which has elucidated the specific causes of SiC failure in these specimens. The level of fission product release from the fuel during irradiation and post-irradiation safety testing has been studied in detail. Results indicated very low release of krypton and cesium through intact SiC and modest release of europium and strontium, while also confirming the potential for significant silver release through the coatings depending on irradiation conditions. Focused study of fission products within the coating layers of irradiated particles down to nanometer length scales has provided new insights into fission product transport through the coating layers and the role various fission products may have on coating integrity. The broader implications of these results and the application of

  14. Dropped Ceiling

    OpenAIRE

    Tabet, Rayyane

    2012-01-01

    On December 2nd 1950 the first drop of Saudi oil arrived to Lebanon via the newly constructed Trans-Arabian Pipeline, the world's longest pipeline and the largest American private investment in a foreign land. The 30inch wide structure which spanned 1213 kilometers passing through Saudi Arabia, Jordan, and Syria to end in Lebanon had required 3 years of planning and surveying, 2 years of installation, the fabrication of 256,000 tons of steel tubes, the employment of 30,000 workers, the ratifi...

  15. Imaging the Formation of High-Energy Dispersion Anomalies in the Actinide UCoGa_{5}

    Directory of Open Access Journals (Sweden)

    Tanmoy Das

    2012-11-01

    Full Text Available We use angle-resolved photoemission spectroscopy to image the emergence of substantial dispersion and spectral-weight anomalies in the electronic renormalization of the actinide compound UCoGa_{5} that was presumed to belong to a conventional Fermi-liquid family. Kinks or abrupt breaks in the slope of the quasiparticle dispersion are detected both at low (approximately 130 meV and high (approximately 1 eV binding energies below the Fermi energy, ruling out any significant contribution of phonons. We perform numerical calculations to demonstrate that the anomalies are adequately described by coupling between itinerant fermions and spin fluctuations arising from the particle-hole continuum of the spin-orbit-split 5f states of uranium. These anomalies resemble the “waterfall” phenomenon of the high-temperature copper-oxide superconductors, suggesting that spin fluctuations are a generic route toward multiform electronic phases in correlated materials as different as high-temperature superconductors and actinides.

  16. Interplay between magnetic quantum criticality, Fermi surface and unconventional superconductivity in UCoGe, URhGe and URu2Si2

    International Nuclear Information System (INIS)

    Bastien, Gael

    2017-01-01

    This thesis is concentrated on the ferromagnetic superconductors UCoGe and URhGe and on the hidden order state in URu 2 Si 2 . In the first part the pressure temperature phase diagram of UCoGe was studied up to 10.5 GPa. Ferromagnetism vanishes at the critical pressure pc≅1 GPa. Unconventional superconductivity and non Fermi liquid behavior can be observed in a broad pressure range around pc. The superconducting upper critical field properties were explained by the suppression of the magnetic fluctuations under field. In the second part the Fermi surfaces of UCoGe and URhGe were investigated by quantum oscillations. In UCoGe four Fermi surface pockets were observed. Under magnetic field successive Lifshitz transitions of the Fermi surface have been detected. The observed Fermi surface pockets in UCoGe evolve smoothly with pressure up to 2.5 GPa and do not show any Fermi surface reconstruction at the critical pressure pc. In URhGe, three heavy Fermi surface pockets were detected by quantum oscillations. In the last part the quantum oscillation study in the hidden order state of URu 2 Si 2 shows a strong g factor anisotropy for two Fermi surface pockets, which is compared to the macroscopic g factor anisotropy extracted from the upper critical field study. (author) [fr

  17. Interactions between superconductivity and quantum criticality in CeCoIn5, URhGe and UCoGe

    International Nuclear Information System (INIS)

    Howald, L.

    2011-01-01

    The subject of this thesis is the analyze of the superconducting upper critical field (Hc2) and the interaction between superconductivity and quantum critical points (QCP), for the compounds CeCoIn 5 , URhGe and UCoGe. In CeCoIn 5 , study by mean of resistivity of the Fermi liquid domain allows us to localize precisely the QCP at ambient pressure. This analyze rule out the previously suggested pinning of Hc2(0) at the QCP. In a second part, the evolution of Hc2 under pressure is analyzed. The superconducting dome is unconventional in this compound with two characteristic pressures: at 1.6 GPa, the superconducting transition temperature is maximum but it is at 0.4 GPa that physical properties (maximum of Hc2(0), maximum of the initial slope dHc2/dT, maximum of the specific heat jump DC/C,... ) suggest a QCP. We explain this antagonism with pair-breaking effects in the proximity of the QCP. With these two experiments, we suggest a new phase diagram for CeCoIn 5 . In a third part, measurements of thermal conductivity on URhGe and UCoGe are presented. We obtained the bulk superconducting phase transition and confirmed the unusual curvature of the slope dHc2/dT observed by resistivity. The temperatures and fields dependence of thermal conductivity allow us to identify a non-electronic contribution for heat transport down to the lowest temperature (50 mK) and probably associated with magnon or longitudinal fluctuations. We also identified two different domains in the superconducting region, These domains are compatible with a two bands model for superconductivity. Thermopower measurements on UCoGe reveal a strong anisotropy to current direction and several anomaly under field applied in the b direction. We suggest a Lifshitz transition to explain our observations in these two compounds. (author) [fr

  18. New design for the UCO/Lick Observatory CCD guide camera

    Science.gov (United States)

    Wei, Mingzhi; Stover, Richard J.

    1996-03-01

    A new CCD based field acquisition and telescope guiding camera is being designed and built at UCO/Lick Observatory. Our goal is a camera which is fully computer controllable, compact in size, versatile enough to provide a wide variety of image acquisition modes, and able to operate with a wide variety of CCD detectors. The camera will improve our remote-observing capabilities since it will be easy to control the camera and obtain images over the Observatory computer network. To achieve the desired level of operating flexibility, the design incorporates state-of-the-art technologies such as high density, high speed programmable logic devices and non-volatile static memory. Various types of CCDs can be used in this system without major modification of the hardware or software. Though fully computer controllable, the camera can be operated as a stand-alone unit with most operating parameters set locally. A stand-alone display subsystem is also available. A thermoelectric device is used to cool the CCD to about -45c. Integration times can be varied over a range of 0.1 to 1000 seconds. High speed pixel skipping in both horizontal and vertical directions allows us to quickly access a selected subarea of the detector. Three different read out speeds allow the astronomer to select between high-speed/high-noise and low-speed/low-noise operation. On- chip pixel binning and MPP operation are also selectable options. This system can provide automatic sky level measurement and subtraction to accommodate dynamically changing background levels.

  19. Water hammer with column separation : a historical review

    NARCIS (Netherlands)

    Bergant, A.; Simpson, A.R.; Tijsseling, A.S.

    2006-01-01

    Column separation refers to the breaking of liquid columns in fully filled pipelines. This may occur in a water-hammer event when the pressure in a pipeline drops to the vapor pressure at specific locations such as closed ends, high points or knees (changes in pipe slope). The liquid columns are

  20. Inserciones laborales tempranas: Los jóvenes trabajadores agrícolas en el Valle de Uco, Mendoza, Argentina Early labor markets incorporations: Agricultural young workers in the Uco Valley, Mendoza, Argentina

    Directory of Open Access Journals (Sweden)

    Gabriel I Bober

    2011-06-01

    Full Text Available Este artículo presenta las diferentes formas de inserción laboral de trabajadores jóvenes en el Valle de Uco, en la provincia de Mendoza. Durante las últimas décadas, el Valle de Uco basó su patrón de desarrollo agrícola en un modelo intensivo y empresarial de sus tres principales cultivos: los viñedos, los frutales y las hortalizas. En la actualidad, atraviesa un proceso de profunda reconversión productiva, orientada mayoritariamente hacia el mercado externo, que entre otras consecuencias pasó a modificar el funcionamiento del mercado de trabajo local. En este artículo, se contemplan las diferentes situaciones que llevan al ingreso laboral de los jóvenes en este contexto, según el momento etáreo que atraviesen. Se analiza la relación que este proceso guarda con el tamaño y la estructura de las familias y la situación socio-económica del hogar al que pertenecen. También, se examina el vínculo entre las características de los hogares y la forma de inserción de los jóvenes en el mercado de trabajo, de acuerdo al tipo de ocupación en la que se desempeñan y al destino que le dan a sus ingresos. A partir de la realización de entrevistas en profundidad a trabajadores jóvenes y a informantes clave se pudo dar cuenta de las preferencias de los jóvenes con respecto a distintos tipos de trabajos, con particular énfasis en ciertos trabajos agrícolas y, también en relación a su futuro laboral.This article deals with the different ways that young workers in the Uco Valley, at the province of Mendoza, enter to the agrarian local labour market. During the last decadas, the Uco Valley based its pattern of agricultural development in an intensive business model of its three main crops: vineyards, orchards, and vegetables. Currently, it is undergoing a process of profound restructuring of production, mainly oriented towards foreign markets, which among different consequences has modified the functioning of local labour markets. In

  1. Flow dynamics in distillation columns packed with Dixon rings as used in isotope separation

    International Nuclear Information System (INIS)

    Gilath, C.; Cohen, H.; Wolf, D.

    1977-01-01

    Packed distillation columns are common in isotope separation. The pressure drop serves as an indication for the hydrodynamic state of the column. Models were formulated for flow and pressure drop dynamics in packed distillation columns. These models were confirmed on columns packed with Dixon rings and operated with water for separation of oxygen isotopes. Liquid holdup displacement is very important in isotope separation practice. Experiments proved that distillation columns packed with Dixon rings exhibit a behaviour close to plug flow. (author)

  2. Drop Impact Dynamics with Sessile Drops and Geometries: Spreading, Jetting, and Fragmentation

    Science.gov (United States)

    Tilger, Christopher F.

    The tendency of surface tension to cause small parcels of fluid to form into drops allows convenient packaging, transport, dispersal of liquid phase matter. Liquid drop impacts with solids, liquids, and other drops have realized and additional future applications in biological, manufacturing, heat transfer, and combustion systems. Experiments were conducted to investigate the dynamics of multiple drop collisions, rather than the most-studied phenomenon of single drop impacts. Additional drop impacts were performed on rigid hemispheres representing sessile drops, angled substrates, and into the vertex of two tilted surfaces arranged into a vee shape. A qualitative inspection of drop-sessile drop impacts shows distinct post-impact shapes depending on the offset distance between the drops. At intermediate offset distances, distinct jets issue from the overlap region between the two drops projected areas. These jets are observed to reach their maximum extent at a critical offset distance ratio, epsilon epsilon ˜ 0.75-0.80, with substrate contact angle and W e having a lesser effect. Capillary waves that traverse the sessile drop after collision cause a lower aspect ratio liquid column to emanate from the sessile drop opposite the impact. In order to better understand the jetting phenomenon seen in the offset drop-sessile drop impacts, simpler solid geometries are investigated that elicit a similar behavior. Solid hemispheres do not show the singular jetting observed in the fluidic case, however, a simple vee formed by two intersection planar substrates do jet in a similar fashion to the fluidic case. A geometric model with partnered experiments is developed to describe the bisymmetric spread of an impacting drop on an angled substrate. This geometric model is used to guide a time of arrival based model for various features of the drop impact, which is used to predict jetting in various vee channel experiments.

  3. Ferromagnetic quantum criticality in the uranium-based ternary compounds URhSi, URhAl, and UCoAl

    International Nuclear Information System (INIS)

    Combier, Tristan

    2014-01-01

    In this thesis we explore the ferromagnetic quantum criticality in three uranium-based ternary compounds, by means of thermodynamical and transport measurements on single crystal samples, at low temperature and high pressure. URhSi and URhAl are itinerant ferromagnets, while UCoAl is a paramagnet being close to a ferromagnetic instability. All of them have Ising-type magnetic ordering. In the orthorhombic compound URhSi, we show that the Curie temperature decreases upon applying a magnetic field perpendicular to the easy magnetization axis, and a quantum phase transition is expected around 40 T. In the hexagonal system URhAl, we establish the pressure-temperature phase diagram for the first time, indicating a quantum phase transition around 5 GPa. In the isostructural compound UCoAl, we investigate the metamagnetic transition with measurements of magnetization, Hall effect, resistivity and X-ray magnetic circular dichroism. Some intriguing magnetic relaxation phenomena are observed, with step-like features. Hall effect and resistivity have been measured at dilution temperatures, under hydrostatic pressure up to 2.2 GPa and magnetic field up to 16 T. The metamagnetic transition terminates under pressure and magnetic field at a quantum critical endpoint. In this region, a strong effective mass enhancement occurs, and an intriguing difference between up and down field sweeps appears in transverse resistivity. This may be the signature of a new phase, supposedly linked to the relaxation phenomena observed in magnetic measurements, arising from frustration on the quasi-Kagome lattice of uranium atoms in this crystal structure. (author) [fr

  4. Ferromagnetic quantum critical fluctuations and anomalous coexistence of ferromagnetism and superconductivity in UCoGe revealed by Co-NMR and NQR studies

    International Nuclear Information System (INIS)

    Ohta, Tetsuya; Nakai, Yusuke; Ihara, Yoshihiko; Ishida, Kenji; Deguchi, Kazuhiko; Sato, Noriaki K.; Satoh, Isamu

    2008-01-01

    Co nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) studies were carried out for the recently discovered UCoGe, in which the ferromagnetic and superconducting (SC) transitions are reported to occur at T Curie - 3 K and T S - 0.8 K, in order to investigate the coexistence of ferromagnetism and superconductivity as well as the normal-state and SC properties from a microscopic point of view. From the nuclear spin-lattice relaxation rate 1/T 1 and Knight-shift measurements, we confirm that ferromagnetic fluctuations that possess a quantum critical character are present above T Curie and also the occurrence of a ferromagnetic transition at 2.5 K in our polycrystalline sample. The magnetic fluctuations in the normal state show that UCoGe is an itinerant ferromagnet similar to ZrZn 2 and YCo 2 . The onset SC transition is identified at T S - 0.7 K, below which 1/T 1 arising from 30% of the volume fraction starts to decrease due to the opening of the SC gap. This component of 1/T 1 , which follows a T 3 dependence in the temperature range 0.3-0.1 K, coexists with the magnetic components of 1/T 1 showing a √T dependence below T S . From the NQR measurements in the SC state, we suggest that the self-induced vortex state is realized in UCoGe. (author)

  5. Dynamics of deforming drops

    OpenAIRE

    Bouwhuis, W.

    2015-01-01

    Liquid drops play a dominant role in numerous industrial applications, such as spray coating, spray painting, inkjet printing, lithography processes, and spraying/sprinkling in agriculture or gardening. In all of these examples, the generation, flight, impact, and spreading of drops are separate stages of the corresponding industrial processes, which are all thoroughly studied for many years. This thesis focuses on drop dynamics, impact phenomena, Leidenfrost drops, and pouring flows. Based o...

  6. Single ferromagnetic fluctuations in UCoGe revealed by 73Ge- and 59Co-NMR studies

    Science.gov (United States)

    Manago, Masahiro; Ishida, Kenji; Aoki, Dai

    2018-02-01

    73Ge and 59Co nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements have been performed on a 73Ge-enriched single-crystalline sample of the ferromagnetic superconductor UCoGe in the paramagnetic state. The 73Ge NQR parameters deduced from NQR and NMR are close to those of another isostructural ferromagnetic superconductor URhGe. The Knight shifts of the Ge and Co sites are well scaled to each other when the magnetic field is parallel to the b or c axis. The hyperfine coupling constants of Ge are estimated to be close to those of Co. The large difference of spin susceptibilities between the a and b axes could lead to the different response of the superconductivity and ferromagnetism with the field parallel to these directions. The temperature dependence of the nuclear spin-lattice relaxation rates 1 /T1 at the two sites is similar to each other above 5 K. These results indicate that the itinerant U-5 f electrons are responsible for the ferromagnetism in this compound, consistent with previous studies. The similarities and differences in the three ferromagnetic superconductors are discussed.

  7. Scanning drop sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jian; Xiang, Chengxiang; Gregoire, John

    2017-05-09

    Electrochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  8. Scanning drop sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Shinde, Aniketa A.; Guevarra, Dan W.; Jones, Ryan J.; Marcin, Martin R.; Mitrovic, Slobodan

    2017-05-09

    Electrochemical or electrochemical and photochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  9. Axisymmetric Liquid Hanging Drops

    Science.gov (United States)

    Meister, Erich C.; Latychevskaia, Tatiana Yu

    2006-01-01

    The geometry of drops hanging on a circular capillary can be determined by numerically solving a dimensionless differential equation that is independent on any material properties, which enables one to follow the change of the height, surface area, and contact angle of drops hanging on a particular capillary. The results show that the application…

  10. Turbulence, bubbles and drops

    NARCIS (Netherlands)

    van der Veen, Roeland

    2016-01-01

    In this thesis, several questions related to drop impact and Taylor-Couette turbulence are answered. The deformation of a drop just before impact can cause a bubble to be entrapped. For many applications, such as inkjet printing, it is crucial to control the size of this entrapped bubble. To study

  11. Drop Tower Physics

    Science.gov (United States)

    Dittrich, William A.

    2014-01-01

    The drop towers of yesteryear were used to make lead shot for muskets, as described in "The Physics Teacher" in April 2012. However, modern drop towers are essentially elevators designed so that the cable can "break" on demand, creating an environment with microgravity for a short period of time, currently up to nine seconds at…

  12. Dynamics of deforming drops

    NARCIS (Netherlands)

    Bouwhuis, W.

    2015-01-01

    Liquid drops play a dominant role in numerous industrial applications, such as spray coating, spray painting, inkjet printing, lithography processes, and spraying/sprinkling in agriculture or gardening. In all of these examples, the generation, flight, impact, and spreading of drops are separate

  13. Calculation code PULCO for Purex process in pulsed column

    International Nuclear Information System (INIS)

    Gonda, Kozo; Matsuda, Teruo

    1982-03-01

    The calculation code PULCO, which can simulate the Purex process using a pulsed column as an extractor, has been developed. The PULCO is based on the fundamental concept of mass transfer that the mass transfer within a pulsed column occurs through the interface of liquid drops and continuous phase fluid, and is the calculation code different from conventional ones, by which various phenomena such as the generation of liquid drops, their rising and falling, and the unification of liquid drops actually occurring in a pulsed column are exactly reflected and can be correctly simulated. In the PULCO, the actually measured values of the fundamental quantities representing the extraction behavior of liquid drops in a pulsed column are incorporated, such as the mass transfer coefficient of each component, the diameter and velocity of liquid drops in a pulsed column, the holdup of dispersed phase, and axial turbulent flow diffusion coefficient. The verification of the results calculated with the PULCO was carried out by installing a pulsed column of 50 mm inside diameter and 2 m length with 40 plate stage in a glove box for unirradiated uranium-plutonium mixed system. The results of the calculation and test were in good agreement, and the validity of the PULCO was confirmed. (Kako, I.)

  14. Modeling Stone Columns.

    Science.gov (United States)

    Castro, Jorge

    2017-07-11

    This paper reviews the main modeling techniques for stone columns, both ordinary stone columns and geosynthetic-encased stone columns. The paper tries to encompass the more recent advances and recommendations in the topic. Regarding the geometrical model, the main options are the "unit cell", longitudinal gravel trenches in plane strain conditions, cylindrical rings of gravel in axial symmetry conditions, equivalent homogeneous soil with improved properties and three-dimensional models, either a full three-dimensional model or just a three-dimensional row or slice of columns. Some guidelines for obtaining these simplified geometrical models are provided and the particular case of groups of columns under footings is also analyzed. For the latter case, there is a column critical length that is around twice the footing width for non-encased columns in a homogeneous soft soil. In the literature, the column critical length is sometimes given as a function of the column length, which leads to some disparities in its value. Here it is shown that the column critical length mainly depends on the footing dimensions. Some other features related with column modeling are also briefly presented, such as the influence of column installation. Finally, some guidance and recommendations are provided on parameter selection for the study of stone columns.

  15. Effect of pH and dilution rate on specific production rate of extra cellular metabolites by Lactobacillus salivarius UCO_979C in continuous culture.

    Science.gov (United States)

    Valenzuela, Javier Ferrer; Pinuer, Luis; Cancino, Apolinaria García; Yáñez, Rodrigo Bórquez

    2015-08-01

    The effect of pH and dilution rate on the production of extracellular metabolites of Lactobacillus salivarius UCO_979 was studied. The experiments were carried out in continuous mode, with chemically defined culture medium at a temperature of 37 °C, 200 rpm agitation and synthetic air flow of 100 ml/min. Ethanol, acetic acid, formic acid, lactic acid and glucose were quantified through HPLC, while exopolysaccharide (EPS) was extracted with ethanol and quantified through the Dubois method. The results showed no linear trends for the specific production of lactic acid, EPS, acetic acid and ethanol, while the specific glucose consumption and ATP production rates showed linear trends. There was a metabolic change of the strain for dilution rates below 0.3 h(-1). The pH had a significant effect on the metabolism of the strain, which was evidenced by a higher specific glucose consumption and increased production of ATP at pH 6 compared with that obtained at pH 7. This work shows not only the metabolic capabilities of L. salivarius UCO_979C, but also shows that it is possible to quantify some molecules associated with its current use as gastrointestinal probiotic, especially regarding the production of organic acids and EPS.

  16. Element-specific observation of the ferromagnetic ordering process in UCoAl via soft x-ray magnetic circular dichroism

    Science.gov (United States)

    Takeda, Yukiharu; Saitoh, Yuji; Okane, Tetsuo; Yamagami, Hiroshi; Matsuda, Tatsuma D.; Yamamoto, Etsuji; Haga, Yoshinori; Ōnuki, Yoshichika

    2018-05-01

    We have performed soft x-ray magnetic circular dichroism (XMCD) experiments on the itinerant-electron metamagnet UCoAl at the U 4 d -5 f (N4 ,5) and Co 2 p -3 d (L2 ,3) absorption edges in order to investigate the magnetic properties of the U 5 f and Co 3 d electrons separately. From the line shape of the XMCD spectrum, it is deduced that the orbital magnetic moment of the Co 3 d electrons is unusually large. Through the systematic temperature (T )- and magnetic field (H )-dependent XMCD measurements, we have obtained two types of the magnetization curve as a function of H and T (M-H curve and M-T curve, respectively). The metamagnetic transition from a paramagnetic state to a field-induced ferromagnetic state was clearly observed under 15 K at HM. The value of the HM and its T dependence agree well between the U and Co sites, and the bulk magnetization. Whereas, we have discovered the remarkable differences in the M-H and M-T curves between the U and Co sites. The present findings clearly show that the role of the Co 3 d electrons should be considered more carefully in order to understand the origin of the magnetic ordering in UCoAl.

  17. ( Anogeissus leiocarpus ) timber columns

    African Journals Online (AJOL)

    A procedure for designing axially loaded Ayin (Anogeissus leiocarpus) wood column or strut has been investigated. Instead of the usual categorization of columns into short, intermediate and slender according to the value of slenderness ratio, a continuous column formula representing the three categories was derived.

  18. Column Liquid Chromatography.

    Science.gov (United States)

    Majors, Ronald E.; And Others

    1984-01-01

    Reviews literature covering developments of column liquid chromatography during 1982-83. Areas considered include: books and reviews; general theory; columns; instrumentation; detectors; automation and data handling; multidimensional chromatographic and column switching techniques; liquid-solid chromatography; normal bonded-phase, reversed-phase,…

  19. Impact of granular drops

    KAUST Repository

    Marston, J. O.

    2013-07-15

    We investigate the spreading and splashing of granular drops during impact with a solid target. The granular drops are formed from roughly spherical balls of sand mixed with water, which is used as a binder to hold the ball together during free-fall. We measure the instantaneous spread diameter for different impact speeds and find that the normalized spread diameter d/D grows as (tV/D)1/2. The speeds of the grains ejected during the “splash” are measured and they rarely exceed twice that of the impact speed.

  20. Impact of granular drops

    KAUST Repository

    Marston, J. O.; Mansoor, Mohammad M.; Thoroddsen, Sigurdur T

    2013-01-01

    We investigate the spreading and splashing of granular drops during impact with a solid target. The granular drops are formed from roughly spherical balls of sand mixed with water, which is used as a binder to hold the ball together during free-fall. We measure the instantaneous spread diameter for different impact speeds and find that the normalized spread diameter d/D grows as (tV/D)1/2. The speeds of the grains ejected during the “splash” are measured and they rarely exceed twice that of the impact speed.

  1. Lambda-dropping

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    1997-01-01

    Lambda-lifting a functional program transforms it into a set of recursive equations. We present the symmetric transformation: lambda-dropping. Lambda-dropping a set of recursive equations restores block structure and lexical scope.For lack of scope, recursive equations must carry around all...... the parameters that any of their callees might possibly need. Both lambda-lifting and lambda-dropping thus require one to compute a transitive closure over the call graph:• for lambda-lifting: to establish the Def/Use path of each free variable (these free variables are then added as parameters to each...... of the functions in the call path);• for lambda-dropping: to establish the Def/Use path of each parameter (parameters whose use occurs in the same scope as their definition do not need to be passed along in the call path).Without free variables, a program is scope-insensitive. Its blocks are then free...

  2. Small Column Ion Exchange

    International Nuclear Information System (INIS)

    Huff, Thomas

    2010-01-01

    Small Column Ion Exchange (SCIX) leverages a suite of technologies developed by DOE across the complex to achieve lifecycle savings. Technologies are applicable to multiple sites. Early testing supported multiple sites. Balance of SRS SCIX testing supports SRS deployment. A forma Systems Engineering Evaluation (SEE) was performed and selected Small Column Ion Exchange columns containing Crystalline Silicotitanate (CST) in a 2-column lead/lag configuration. SEE considered use of Spherical Resorcinol-Formaldehyde (sRF). Advantages of approach at SRS include: (1) no new buildings, (2) low volume of Cs waste in solid form compared to aqueous strip effluent; and availability of downstream processing facilities for immediate processing of spent resin.

  3. JCE Feature Columns

    Science.gov (United States)

    Holmes, Jon L.

    1999-05-01

    The Features area of JCE Online is now readily accessible through a single click from our home page. In the Features area each column is linked to its own home page. These column home pages also have links to them from the online Journal Table of Contents pages or from any article published as part of that feature column. Using these links you can easily find abstracts of additional articles that are related by topic. Of course, JCE Online+ subscribers are then just one click away from the entire article. Finding related articles is easy because each feature column "site" contains links to the online abstracts of all the articles that have appeared in the column. In addition, you can find the mission statement for the column and the email link to the column editor that I mentioned above. At the discretion of its editor, a feature column site may contain additional resources. As an example, the Chemical Information Instructor column edited by Arleen Somerville will have a periodically updated bibliography of resources for teaching and using chemical information. Due to the increase in the number of these resources available on the WWW, it only makes sense to publish this information online so that you can get to these resources with a simple click of the mouse. We expect that there will soon be additional information and resources at several other feature column sites. Following in the footsteps of the Chemical Information Instructor, up-to-date bibliographies and links to related online resources can be made available. We hope to extend the online component of our feature columns with moderated online discussion forums. If you have a suggestion for an online resource you would like to see included, let the feature editor or JCE Online (jceonline@chem.wisc.edu) know about it. JCE Internet Features JCE Internet also has several feature columns: Chemical Education Resource Shelf, Conceptual Questions and Challenge Problems, Equipment Buyers Guide, Hal's Picks, Mathcad

  4. Distillation Column Flooding Predictor

    Energy Technology Data Exchange (ETDEWEB)

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid

  5. Nuclear reactor control column

    International Nuclear Information System (INIS)

    Bachovchin, D.M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest crosssectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor

  6. Improvements in solvent extraction columns

    International Nuclear Information System (INIS)

    Aughwane, K.R.

    1987-01-01

    Solvent extraction columns are used in the reprocessing of irradiated nuclear fuel. For an effective reprocessing operation a solvent extraction column is required which is capable of distributing the feed over most of the column. The patent describes improvements in solvent extractions columns which allows the feed to be distributed over an increased length of column than was previously possible. (U.K.)

  7. Numerical Simulation of Fluid Dynamics in a Monolithic Column

    Directory of Open Access Journals (Sweden)

    Kazuhiro Yamamoto

    2017-01-01

    Full Text Available As for the measurement of polycyclic aromatic hydrocarbons (PAHs, ultra-performance liquid chromatography (UPLC is used for PAH identification and densitometry. However, when a solvent containing a substance to be identified passes through a column of UPLC, a dedicated high-pressure-proof device is required. Recently, a liquid chromatography instrument using a monolithic column technology has been proposed to reduce the pressure of UPLC. The present study tested five types of monolithic columns produced in experiments. To simulate the flow field, the lattice Boltzmann method (LBM was used. The velocity profile was discussed to decrease the pressure drop in the ultra-performance liquid chromatography (UPLC system.

  8. Experimental observations of anomalous potential drops over ion density cavities

    International Nuclear Information System (INIS)

    Bohm, M.

    1991-08-01

    Experiments are reported showing the plasma potential response when a step voltage is applied over the plasma column between the two plasma sources in a triple plasma machine. The time resolution is sufficient to resolve potential variations caused essentially by the electron motion, and two independent probe methods are used to obtain this time resolution. Depending on the initial conditions two different responses were observed on the time scale of the electron motion. When the initial ion density varies along the plasma column and has a local minimum (that is, forms an ion density cavity), the applied potential drop becomes distributed over the cavity after a few electron transit times. Later the profile steepens to a double layer on the time scale of the ion motion. The width of the cavity is comparable to the length of the plasma column. When the initial density is axially uniform, most of the potential drop instead concentrates to a narrow region at the low potential end of the plasma column after a few electron transit times. On the time scale of the ion motion this potential drop begins to propagate into the plasma as a double layer. The results obtained are consistent with those from numerical simulations with similar boundary conditions. Further experiments are necessary to get conclusive insight into the voltage supporting capability of an ion density cavity. (au) (34 refs.)

  9. Buckling of liquid columns

    NARCIS (Netherlands)

    Habibi, M.; Rahmani, Y.; Bonn, D.; Ribe, N.M.

    2010-01-01

    Under appropriate conditions, a column of viscous liquid falling onto a rigid surface undergoes a buckling instability. Here we show experimentally and theoretically that liquid buckling exhibits a hitherto unsuspected complexity involving three different modes—viscous, gravitational, and

  10. Solvent extraction columns

    International Nuclear Information System (INIS)

    Middleton, P.; Smith, J.R.

    1979-01-01

    In pulsed columns for use in solvent extraction processes, e.g. the reprocessing of nuclear fuel, the horizontal perforated plates inside the column are separated by interplate spacers manufactured from metallic neutron absorbing material. The spacer may be in the form of a spiral or concentric circles separated by radial limbs, or may be of egg-box construction. Suitable neutron absorbing materials include stainless steel containing boron or gadolinium, hafnium metal or alloys of hafnium. (UK)

  11. Dropping out of school

    Directory of Open Access Journals (Sweden)

    M. Teneva

    2017-09-01

    Full Text Available The modern technological society needs educated people who, through their high professionalism, are called upon to create its progress. In this aspect, a serious problem stands out – the dropout from school of a large number of children, adolescents and young people. The object of the research is the premature interruption of training for a large number of Bulgarian students. The subject of the study is the causes that provoke the students’ dropping out of school. The aim is to differentiate the negative factors leading to dropping out of school, and to identify the motivating factors that encourage the individual to return to the educational environment. In order to realize the so set target, a specially designed test-questionnaire has been used. The survey was conducted among students attending evening courses who have left their education for various reasons and are currently back to the school institution. The contingent of the study includes 120 students from the evening schools. The results indicate that the reasons which prompted the students to leave school early differentiate into four groups: family, social, economic, educational, personal. The motivation to return to school has been dictated in the highest degree by the need for realization of the person on the labor market, followed by the possibility for full social functioning.

  12. Drop jumping. II. The influence of dropping height on the biomechanics of drop jumping

    NARCIS (Netherlands)

    Bobbert, M F; Huijing, P A; van Ingen Schenau, G J

    In the literature, athletes preparing for explosive activities are recommended to include drop jumping in their training programs. For the execution of drop jumps, different techniques and different dropping heights can be used. This study was designed to investigate for the performance of bounce

  13. Controlling charge on levitating drops.

    Science.gov (United States)

    Hilger, Ryan T; Westphall, Michael S; Smith, Lloyd M

    2007-08-01

    Levitation technologies are used in containerless processing of materials, as microscale manipulators and reactors, and in the study of single drops and particles. Presented here is a method for controlling the amount and polarity of charge on a levitating drop. The method uses single-axis acoustic levitation to trap and levitate a single, initially neutral drop with a diameter between 400 microm and 2 mm. This drop is then charged in a controllable manner using discrete packets of charge in the form of charged drops produced by a piezoelectric drop-on-demand dispenser equipped with a charging electrode. The magnitude of the charge on the dispensed drops can be adjusted by varying the voltage applied to the charging electrode. The polarity of the charge on the added drops can be changed allowing removal of charge from the trapped drop (by neutralization) and polarity reversal. The maximum amount of added charge is limited by repulsion of like charges between the drops in the trap. This charging scheme can aid in micromanipulation and the study of charged drops and particles using levitation.

  14. Water hammer with column separation : a review of research in the twentieth century

    NARCIS (Netherlands)

    Bergant, A.; Simpson, A.R.; Tijsseling, A.S.

    2004-01-01

    Column separation refers to the breaking of liquid columns in fully filled pipelines. This may occur in a water hammer event when the pressure drops to the vapor pressure at specific locations such as closed ends, high points or knees (changes in pipe slope). A vapor cavity, driven by the inertia of

  15. Assembly for connecting the column ends of two capillary columns

    International Nuclear Information System (INIS)

    Kolb, B.; Auer, M.; Pospisil, P.

    1984-01-01

    In gas chromatography, the column ends of two capillary columns are inserted into a straight capillary from both sides forming annular gaps. The capillary is located in a tee out of which the capillary columns are sealingly guided, and to which carrier gas is supplied by means of a flushing flow conduit. A ''straight-forward operation'' having capillary columns connected in series and a ''flush-back operation'' are possible. The dead volume between the capillary columns can be kept small

  16. First drop dissimilarity in drop-on-demand inkjet devices

    International Nuclear Information System (INIS)

    Famili, Amin; Palkar, Saurabh A.; Baldy, William J. Jr.

    2011-01-01

    As inkjet printing technology is increasingly applied in a broader array of applications, careful characterization of its method of use is critical due to its inherent sensitivity. A common operational mode in inkjet technology known as drop-on-demand ejection is used as a way to deliver a controlled quantity of material to a precise location on a target. This method of operation allows ejection of individual or a sequence (burst) of drops based on a timed trigger event. This work presents an examination of sequences of drops as they are ejected, indicating a number of phenomena that must be considered when designing a drop-on-demand inkjet system. These phenomena appear to be driven by differences between the first ejected drop in a burst and those that follow it and result in a break-down of the linear relationship expected between driving amplitude and drop mass. This first drop, as quantified by high-speed videography and subsequent image analysis, can be different in morphology, trajectory, velocity, and volume from subsequent drops within a burst. These findings were confirmed orthogonally by both volume and mass measurement techniques which allowed quantitation down to single drops.

  17. Columns in Clay

    Science.gov (United States)

    Leenhouts, Robin

    2010-01-01

    This article describes a clay project for students studying Greece and Rome. It provides a wonderful way to learn slab construction techniques by making small clay column capitols. With this lesson, students learn architectural vocabulary and history, understand the importance of classical architectural forms and their influence on today's…

  18. Slender CRC Columns

    DEFF Research Database (Denmark)

    Aarup, Bendt; Jensen, Lars Rom; Ellegaard, Peter

    2005-01-01

    CRC is a high-performance steel fibre reinforced concrete with a typical compressive strength of 150 MPa. Design methods for a number of structural elements have been developed since CRC was invented in 1986, but the current project set out to further investigate the range of columns for which...

  19. Practical column design guide

    CERN Document Server

    Nitsche, M

    2017-01-01

    This book highlights the aspects that need to be considered when designing distillation columns in practice. It discusses the influencing parameters as well as the equations governing them, and presents several numerical examples. The book is intended both for experienced designers and for those who are new to the subject.

  20. Study of hydrodynamic and mass transfer parameters in pulsed sieve-plate columns

    International Nuclear Information System (INIS)

    Safdari, J.

    2001-01-01

    One of the most important liquid-liquid extractor in industry is pulsed column. The pulsed columns are generally classified into the following categories: 1-Pulsed perforated-plate column. 2- Pulsed packed column. The pulsed plate column is differential contactor with the application of mechanical energy and is used for a diverse range of processes. Probably its best known application has been in the nuclear fuel industry. The pulsed plate column consists of a cylindrical shell with settling zones at the top and the bottom of the column. The liquids are fed continuously to the column (flowing counter-currently) and are removed continuously from opposite ends of the column. In this work using a pilot pulsed plate column and two different chemical systems (toluene/acetone/water and n-butyl acetate/acetone/water) various experiments are carried out. In each experiment direction of mass transfer is from organic phase (dispersed phase) into aqueous phase (continuous phase) and the continuous phase is water. The main objects of this thesis are as follow: a- Investigation of effect of operating parameters on dispersed phase hold up, volumetric overall mass transfer coefficients based on dispersed and continuous phase, extraction efficiency, pressure drop of column and flooding velocities (maximum column capacities). Obtained results in this part show that if the calorimetric flow rate of aqueous phase or pulsation intensity increase, hold up, volumetric overall mass transfer coefficients based on both two phases and extraction efficiency will increase and flooding velocities will decrease. Also results show that if volumetric flow rate of organic phase increase, hold up, volumetric mass transfer coefficients based on both two phases and pressure drop will increase and extraction efficiency and flooding velocities will decrease. b- Investigation of effect of internal circulation inside drops in designing pulsed perforated-plate column

  1. Stage wise modeling of liquid-extraction column (RDC)

    International Nuclear Information System (INIS)

    Bastani, B.

    2004-01-01

    Stage wise forward mixing model considering coalescence and re dispersion of drops was used to predict the performance of Rotating Disk Liquid Extraction Contactors. Experimental data previously obtained in two RDC columns of 7-62 cm diameter, 73.6 cm height and 21.9 cm diameter,150 cm height were used to evaluate the model predications. Drops-side mass transfer coefficients were predicted applying Hand los-baron drop model and onley's model was used to predict velocities. According to the results obtained the followings could be concluded: (1) If the height of coalescence and re dispersion i.e.:h=h p Q p / Q could be estimated, the stage wise forward mixing with coalescence and re dispersion model will predict the column height and efficiency with the acceptable accuracy, (2) The stage wise modeling predictions are highly dependent on the number of stages used when the number of stages is less than 10 and (3) Application of continuous phase mass transfer axial dispersion coefficients (k c and E c ) obtained from the solute concentration profile along the column height will predict the column performance more accurately than the Calder bank and moo-young (for K c ) and Kumar-Heartland (for E c ) correlations

  2. Hanging drop crystal growth apparatus

    Science.gov (United States)

    Naumann, Robert J. (Inventor); Witherow, William K. (Inventor); Carter, Daniel C. (Inventor); Bugg, Charles E. (Inventor); Suddath, Fred L. (Inventor)

    1990-01-01

    This invention relates generally to control systems for controlling crystal growth, and more particularly to such a system which uses a beam of light refracted by the fluid in which crystals are growing to detect concentration of solutes in the liquid. In a hanging drop apparatus, a laser beam is directed onto drop which refracts the laser light into primary and secondary bows, respectively, which in turn fall upon linear diode detector arrays. As concentration of solutes in drop increases due to solvent removal, these bows move farther apart on the arrays, with the relative separation being detected by arrays and used by a computer to adjust solvent vapor transport from the drop. A forward scattering detector is used to detect crystal nucleation in drop, and a humidity detector is used, in one embodiment, to detect relative humidity in the enclosure wherein drop is suspended. The novelty of this invention lies in utilizing angular variance of light refracted from drop to infer, by a computer algorithm, concentration of solutes therein. Additional novelty is believed to lie in using a forward scattering detector to detect nucleating crystallites in drop.

  3. Nine Words - Nine Columns

    DEFF Research Database (Denmark)

    Trempe Jr., Robert B.; Buthke, Jan

    2016-01-01

    This book records the efforts of a one-week joint workshop between Master students from Studio 2B of Arkitektskolen Aarhus and Master students from the Harbin Institute of Technology in Harbin, China. The workshop employed nine action words to instigate team-based investigation into the effects o...... as formwork for the shaping of wood veneer. The resulting columns ‘wear’ every aspect of this design pipeline process and display the power of process towards an architectural resolution....

  4. NMFS Water Column Sonar Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water column sonar data are an important component of fishery independent surveys, habitat studies and other research. NMFS water column sonar data are archived here.

  5. Relating pressure tuned coupled column ensembles with the solvation parameter model for tunable selectivity in gas chromatography.

    Science.gov (United States)

    Sharif, Khan M; Kulsing, Chadin; Chin, Sung-Tong; Marriott, Philip J

    2016-07-15

    The differential pressure drop of carrier gas by tuning the junction point pressure of a coupled column gas chromatographic system leads to a unique selectivity of the overall separation, which can be tested using a mixture of compounds with a wide range of polarity. This study demonstrates a pressure tuning (PT) GC system employing a microfluidic Deans switch located at the mid-point of the two capillary columns. This PT system allowed variations of inlet-outlet pressure differences of the two columns in a range of 52-17psi for the upstream column and 31-11psi for the downstream column. Peak shifting (differential migration) of compounds due to PT difference are related to a first order regression equation in a Plackett-Burman factorial study. Increased first (upstream) column pressure drop makes the second column characteristics more significant in the coupled column retention behavior, and conversely increased second (downstream) column pressure drop makes the first column characteristics more apparent; such variation can result in component swapping between polar and non-polar compounds. The coupled column system selectivity was evaluated in terms of linear solvation energy relationship (LSER) parameters, and their relation with different pressure drop effects has been constructed by applying multivariate principle component analysis (PCA). It has been found that the coupled column PT system descriptors provide a result that shows a clear clustering of different pressure settings, somewhat intermediate between those of the two commercial columns. This is equivalent to that obtained from a conventional single-column GC analysis where the interaction energy contributed from the stationary phases can be significantly adjusted by choice of midpoint PT. This result provides a foundation for pressure differentiation for selectivity enhancement. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. 45-FOOT HIGH DROP TOWER

    Data.gov (United States)

    Federal Laboratory Consortium — The Drop Tower is used to simulate and measure the impact shocks that are exerted on parachute loads when they hit the ground. It is also used for HSL static lift to...

  7. CYCLAM - Recycling by a Laser-driven Drop Jet from Waste that Feeds AM

    Science.gov (United States)

    Kaplan, Alexander F. H.; Samarjy, Ramiz S. M.

    Additive manufacturing of metal parts is supplied by powder or wire. Manufacturing of this raw material causes additional costs and environmental impact. A new technique is proposed where the feeding directly originates from a metal sheet, which can even be waste. When cutting is done by laser-induced boiling, melt is continuously ejected downwards underneath the sheet. The ejected melt is deposited as a track on a substrate, enabling additive manufacturing by substrate movement along a desired path. The melt first flows downwards as a column and after a few millimeters separates into drops, here about 500 micrometer in diameter, as observed by high speed imaging. The drops incorporate sequentially and calmly into a long melt pool on the substrate. While steel drops formed regular tracks on steel and aluminium substrates, on copper substrate periodic drops solidified instead. For this new technique, called CYCLAM, the laser beam acts indirectly while the drop jet becomes the main tool. From imaging, properties like the width or fluctuations of the drop jet can be statistically evaluated. Despite oscillation of the liquid column, the divergence of the drop jet remained small, improving the precision and robustness. The melt leaves the cut sheet as a liquid column, 1 to 4 mm in length, which periodically separates drops that are transferred as a liquid jet to the substrate. For very short distance of 2 to 3 mm between the two sheets this liquid column can transfer the melt continuously as a liquid bridge. This phenomenon was observed, as a variant of the technique, but the duration of the bridge was limited by fluid mechanic instabilities.

  8. Elevator frames two columns

    OpenAIRE

    Marín Jiménez, Juan Francisco

    2015-01-01

    This project aims to solve the problem of vertical transport of charges raised by a company with the standard UNE 58-132-91/6. The purpose of this project is the industrial design of a system of load handling by a bi-columned lifting device, tractioned by flat belts and steel cables from a transport level to a different level in order to connect two different assembly lines situated at different heights. The goal of this project is lifting a 780 Kg load at a 2.400 mm height....

  9. Column: Every Last Byte

    Directory of Open Access Journals (Sweden)

    Simson Garfinkel

    2011-06-01

    Full Text Available Inheritance powder is the name that was given to poisons, especially arsenic, that were commonly used in the 17th and early 18th centuries to hasten the death of the elderly. For most of the 17th century, arsenic was deadly but undetectable, making it nearly impossible to prove that someone had been poisoned. The first arsenic test produced a gas—hardly something that a scientist could show to a judge. Faced with a growing epidemic of poisonings, doctors and chemists spent decades searching for something better.(see PDF for full column

  10. Annular pulse column development studies

    International Nuclear Information System (INIS)

    Benedict, G.E.

    1980-01-01

    The capacity of critically safe cylindrical pulse columns limits the size of nuclear fuel solvent extraction plants because of the limited cross-sectional area of plutonium, U-235, or U-233 processing columns. Thus, there is a need to increase the cross-sectional area of these columns. This can be accomplished through the use of a column having an annular cross section. The preliminary testing of a pilot-plant-scale annular column has been completed and is reported herein. The column is made from 152.4-mm (6-in.) glass pipe sections with an 89-mm (3.5-in.) o.d. internal tube, giving an annular width of 32-mm (1.25-in.). Louver plates are used to swirl the column contents to prevent channeling of the phases. The data from this testing indicate that this approach can successfully provide larger-cross-section critically safe pulse columns. While the capacity is only 70% of that of a cylindrical column of similar cross section, the efficiency is almost identical to that of a cylindrical column. No evidence was seen of any non-uniform pulsing action from one side of the column to the other

  11. Column-to-column packing variation of disposable pre-packed columns for protein chromatography.

    Science.gov (United States)

    Schweiger, Susanne; Hinterberger, Stephan; Jungbauer, Alois

    2017-12-08

    In the biopharmaceutical industry, pre-packed columns are the standard for process development, but they must be qualified before use in experimental studies to confirm the required performance of the packed bed. Column qualification is commonly done by pulse response experiments and depends highly on the experimental testing conditions. Additionally, the peak analysis method, the variation in the 3D packing structure of the bed, and the measurement precision of the workstation influence the outcome of qualification runs. While a full body of literature on these factors is available for HPLC columns, no comparable studies exist for preparative columns for protein chromatography. We quantified the influence of these parameters for commercially available pre-packed and self-packed columns of disposable and non-disposable design. Pulse response experiments were performed on 105 preparative chromatography columns with volumes of 0.2-20ml. The analyte acetone was studied at six different superficial velocities (30, 60, 100, 150, 250 and 500cm/h). The column-to-column packing variation between disposable pre-packed columns of different diameter-length combinations varied by 10-15%, which was acceptable for the intended use. The column-to-column variation cannot be explained by the packing density, but is interpreted as a difference in particle arrangement in the column. Since it was possible to determine differences in the column-to-column performance, we concluded that the columns were well-packed. The measurement precision of the chromatography workstation was independent of the column volume and was in a range of±0.01ml for the first peak moment and±0.007 ml 2 for the second moment. The measurement precision must be considered for small columns in the range of 2ml or less. The efficiency of disposable pre-packed columns was equal or better than that of self-packed columns. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  12. Drop Spreading with Random Viscosity

    Science.gov (United States)

    Xu, Feng; Jensen, Oliver

    2016-11-01

    Airway mucus acts as a barrier to protect the lung. However as a biological material, its physical properties are known imperfectly and can be spatially heterogeneous. In this study we assess the impact of these uncertainties on the rate of spreading of a drop (representing an inhaled aerosol) over a mucus film. We model the film as Newtonian, having a viscosity that depends linearly on the concentration of a passive solute (a crude proxy for mucin proteins). Given an initial random solute (and hence viscosity) distribution, described as a Gaussian random field with a given correlation structure, we seek to quantify the uncertainties in outcomes as the drop spreads. Using lubrication theory, we describe the spreading of the drop in terms of a system of coupled nonlinear PDEs governing the evolution of film height and the vertically-averaged solute concentration. We perform Monte Carlo simulations to predict the variability in the drop centre location and width (1D) or area (2D). We show how simulation results are well described (at much lower computational cost) by a low-order model using a weak disorder expansion. Our results show for example how variability in the drop location is a non-monotonic function of the solute correlation length increases. Engineering and Physical Sciences Research Council.

  13. Thermocapillary reorientation of Janus drops

    Science.gov (United States)

    Rosales, Rodolfo; Saenz, Pedro

    2017-11-01

    Janus drops, named after the Ancient Roman two-faced god, are liquid drops formed from two immiscible fluids. Experimental observations indicate that a Janus drop may re-orientate in response to an applied external thermal gradient due to the Marangoni effect. Depending on the angle between the interior interface and the direction of the temperature gradient, disparities in the physical properties of the constituent liquids may lead to asymmetries in the thermocapillary flow. As a result, the drop will move along a curved path until a torque-free configuration is achieved, point after which it will continue on a straight trajectory. Here, we present the results of a theoretical investigation of this realignment phenomenon in the Stokes regime and in the limit of non-deformable interfaces. A 3D semi-analytical method in terms of polar spherical harmonics is developed to characterize and rationalize the hydrodynamic response (forces and torques), flow (velocity and temperature distribution) and trajectory of a Janus drop moving during the temperature-driven reorientation process. Furthermore, we discuss how this phenomenon may be exploited to develop dynamically reconfigurable micro-lenses. This work was partially supported by the US National Science Foundation through Grants DMS-1614043 and DMS-1719637.

  14. Column: File Cabinet Forensics

    Directory of Open Access Journals (Sweden)

    Simson Garfinkel

    2011-12-01

    Full Text Available Researchers can spend their time reverse engineering, performing reverse analysis, or making substantive contributions to digital forensics science. Although work in all of these areas is important, it is the scientific breakthroughs that are the most critical for addressing the challenges that we face.Reverse Engineering is the traditional bread-and-butter of digital forensics research. Companies like Microsoft and Apple deliver computational artifacts (operating systems, applications and phones to the commercial market. These artifacts are bought and used by billions. Some have evil intent, and (if society is lucky, the computers end up in the hands of law enforcement. Unfortunately the original vendors rarely provide digital forensics tools that make their systems amenable to analysis by law enforcement. Hence the need for reverse engineering.(see PDF for full column

  15. Interfacial Instabilities in Evaporating Drops

    Science.gov (United States)

    Moffat, Ross; Sefiane, Khellil; Matar, Omar

    2007-11-01

    We study the effect of substrate thermal properties on the evaporation of sessile drops of various liquids. An infra-red imaging technique was used to record the interfacial temperature. This technique illustrates the non-uniformity in interfacial temperature distribution that characterises the evaporation process. Our results also demonstrate that the evaporation of methanol droplets is accompanied by the formation of wave-trains in the interfacial temperature field; similar patterns, however, were not observed in the case of water droplets. More complex patterns are observed for FC-72 refrigerant drops. The effect of substrate thermal conductivity on the structure of the complex pattern formation is also elucidated.

  16. The possibility of the mixed valence state in the uranium intermetallic compounds: UCoGa5, U2Ru2Sn and U2RuGa8

    International Nuclear Information System (INIS)

    Troc, Robert

    2007-01-01

    The mixed valence (MV) phenomenon has been observed so far in a large number of various compounds but containing only lanthanides. These properties are usually associated with the mixing of the localised f-state and the band states. The usual valence state for magnetic uranium intermetallics is the trivalent state 5f 3 or hybridised 5f 2 6d 1 , both are nearly degenerate in energy and can compete for a stability of the compound. In some cases a gain in an energy minimum may be achieved by very fast fluctuating between these two states with a time of 10 -14 s, which does not allow to yield the ordered state even if the exchange interactions (favourite the U-U distances) would be able for that. The latter cases seem to concern the described here intermetallics: one ternary compound based on Co, UCoGa 5 , and the two uranium ternary compounds based on Ru, namely U 2 Ru 2 Sn and U 2 RuGa 8 which all crystallize in a tetragonal unit cell. All these compounds show a maximum in their temperature dependences of the magnetic susceptibility measured along and perpendicular to the c-axis. Such a behaviour, which is reminiscent of a number of Ce (Sm, Eu) and Yb compounds for which χ(T) has in the past been considered by Sales and Wohlleben (SW) by applying their ICF model or by Lawrance et al. following their scaling procedure. It turned out that these phenomenological models can also be applied to the considered here two Ru-based uranium ternaries from which some reliable energy parameters could be found. In order to further support the mixing valence scenario for the first such cases in uranium compounds presented here, the transport and thermodynamic properties are also discussed. However, some of the most important results confirming the MV state, e.g., in U 2 RuGa 8 , has recently been achieved from the inelastic neutron scattering performed in the Rutherford Appleton Laboratory on the ISIS facility. From these measurements a characteristic gap of 60 meV has been

  17. Compact electron beam focusing column

    Science.gov (United States)

    Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani

    2001-12-01

    A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.

  18. Picobubble column flotation of fine coal

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Tao; Samuel Yu; Xiaohua Zhou; R.Q. Honaker; B.K. Parekh [University of Kentucky, Lexington, KY (United States). Department of Mining Engineering

    2008-01-15

    Froth flotation is widely used in the coal industry to clean -28 mesh (0.6 mm) or -100 mesh (0.15 mm) fine coal. A successful recovery of particles by flotation depends on efficient particle-bubble collision and attachment with minimal subsequent particle detachment from bubble. Flotation is effective in a narrow size range, nominally 10-100 {mu}m, beyond which the flotation efficiency drops sharply. A fundamental analysis has shown that use of picobubbles can significantly improve the flotation recovery of particles by increasing the probability of collision and attachment and reducing the probability of detachment. A specially designed column with a picobubble generator has been developed for enhanced recovery of fine coal particles. Picobubbles were produced based on the hydrodynamic cavitation principle. Experimental results have shown that the use of picobubbles in a 5-cm diameter column flotation increased the combustible recovery of a highly floatable coal by up to 10% and that of a poorly floatable coal by up to 40%, depending on the feed rate, collector dosage, and other flotation conditions. 14 refs.

  19. Fluid flow in drying drops

    NARCIS (Netherlands)

    Gelderblom, Hanneke

    2013-01-01

    When a suspension drop evaporates, it leaves behind a drying stain. Examples of these drying stains encountered in daily life are coffee or tea stains on a table top, mineral rings on glassware that comes out of the dishwasher, or the salt deposits on the streets in winter. Drying stains are also

  20. Pressure drop in contraction flow

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz

    This note is a supplement to Dynamic of Polymeric Liquids (DPL) page 178. DPL gives an equation for the pressure drop in a tapered (and circular) contraction, valid only at low angles. Here the general definition of contraction flow (the Bagley correction) and a more general method to find...

  1. Safety barriers and lighting columns.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1972-01-01

    Problems arising from the sitting of lighting columns on the central reserve are reviewed, and remedial measures such as break-away lighting supports and installation of safety fences on the central reserve on both sides of the lighting columns are examined.

  2. Effect of surfactant on single drop mass transfer for extraction of aromatics from lubricating oils

    Science.gov (United States)

    Izza, H.; Ben Abdessalam, S.; Korichi, M.

    2018-03-01

    Solvent extraction is an effective method for the reduction of the content of aromatic of lubricating oil. Frequently, with phenol, furfural, the NMP (out of N-methyl pyrrolidone). The power solvent and the selectivity can be still to increase while using surfactant as additive which facilitates the separation of phase and increases the yeild in raffinat. Liquid-liquid mass transfer coefficients for single freely rising drops in the presence of surfactant in an extraction column have been investigated. The surfactant used in this study was sodium lauryl ether sulfate (SLES). The experiments were performed by bubbling a solvent as a series of individual drops from the top of the column containing furfural-SLES solution. The column used in this experiment was made from glass with 17 mm inner diameter and a capacity of 125ml. The effects of the concentration of surfactant on the overall coefficient of mass transfer was investigated.

  3. Estimations of temperature deviations in chromatographic columns using isenthalpic plots. I. Theory for isocratic systems.

    Science.gov (United States)

    Tarafder, Abhijit; Iraneta, Pamela; Guiochon, Georges; Kaczmarski, Krzysztof; Poe, Donald P

    2014-10-31

    We propose to use constant enthalpy or isenthalpic diagrams as a tool to estimate the extent of the temperature variations caused by the mobile phase pressure drop along a chromatographic column, e.g. of its cooling in supercritical fluid and its heating in ultra-performance liquid chromatography. Temperature strongly affects chromatographic phenomena. Any of its variations inside the column, whether intended or not, can lead to significant changes in separation performance. Although instruments use column ovens in order to keep constant the column temperature, operating conditions leading to a high pressure drop may cause significant variations of the column temperature, both in the axial and the radial directions, from the set value. Different ways of measuring these temperature variations are available but they are too inconvenient to be employed in many practical situations. In contrast, the thermodynamic plot-based method that we describe here can easily be used with only a ruler and a pencil. They should be helpful in developing methods or in analyzing results in analytical laboratories. Although the most effective application area for this approach should be SFC (supercritical fluid chromatography), it can be applied to any chromatographic conditions in which temperature variations take place along the column due to the pressure drop, e.g. in ultra-high pressure liquid chromatography (UHPLC). The method proposed here is applicable to isocractic conditions only. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Mush Column Magma Chambers

    Science.gov (United States)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  5. Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns.

    Science.gov (United States)

    Harkness, Mark; Fisher, Angela

    2013-08-01

    The interaction between emulsified vegetable oil (EVO) and trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) was observed using two soil columns and subsequent reductive dechlorination of TCE was monitored over a three year period. Dyed TCE DNAPL (~75 g) was emplaced in one column (DNAPL column), while the second was DNAPL-free (plume column). EVO was added to both columns and partitioning of the EVO into the TCE DNAPL was measured and quantified. TCE (1.9 mM) was added to the influent of the plume column to simulate conditions down gradient of a DNAPL source area and the columns were operated independently for more than one year, after which they were connected in series. Initially limited dechlorination of TCE to cDCE was observed in the DNAPL column, while the plume column supported complete reductive dechlorination of TCE to ethene. Upon connection and reamendment of the plume column with EVO, near saturation levels of TCE from the effluent of the DNAPL column were rapidly dechlorinated to c-DCE and VC in the plume column; however, this high rate dechlorination produced hydrochloric acid which overwhelmed the buffering capacity of the system and caused the pH to drop below 6.0. Dechlorination efficiency in the columns subsequently deteriorated, as measured by the chloride production and Dehalococcoides counts, but was restored by adding sodium bicarbonate buffer to the influent groundwater. Robust dechlorination was eventually observed in the DNAPL column, such that the TCE DNAPL was largely removed by the end of the study. Partitioning of the EVO into the DNAPL provided significant operational benefits to the remediation system both in terms of electron donor placement and longevity. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. From nuclei to liquid drops

    Energy Technology Data Exchange (ETDEWEB)

    Menchaca-Rocha, A.; Huidobro, F.; Michaelian, K.; Perez, A.; Rodriguez, V. [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Fisica; Carjan, N. [Bordeaux-1 Univ., 33 - Gradignan (France). Centre d`Etudes Nucleaires

    1995-12-31

    Collisions of symmetric mercury-drop pairs have been studied experimentally as a function of impact parameter, in a relative-velocity range going from a coalescence-dominated region to interactions yielding several residues. The experiments are compared with predictions of a dynamical model used in nuclear physics. The time evolution of the shapes is well reproduced by the simulation. (authors). 8 refs., 3 figs.

  7. The dynamics of Leidenfrost drops

    OpenAIRE

    van Limbeek, Michiel Antonius Jacobus

    2017-01-01

    Temperature control is omnipresent in today’s life: from keeping your fridge cold, maintaining a room at a pleasant temperature or preventing your computer from overheating. Efficient ways of heat transfer are often based on phase change, making use of the high latent heat of evaporation. In the context of spray cooling, liquid drops are impacting a hot plate to ensure a rapid cooling. At some temperature however, no contact occurs between the liquid and the plate, and the heat transfer rate ...

  8. Device for making liquid drops

    International Nuclear Information System (INIS)

    Yamada, Masao; Fukuda, Fumito; Nishikawa, Masana; Ishii, Takeshi.

    1976-01-01

    Object: To provide a device for producing liquid drops in the form of liquefied gases indispensable to make deuterium and tritium ice pellets used as a fusion fuel in a tokamak type fusion reactor. Structure: First, pressure P 1 at the upper surface of liquefied gas in a container and outlet pressure P 2 of a nozzle disposed at the lower part of the container are adjusted into the state of P 1 >= P 2 , and it is preset so that even under such conditions, the liquefied gas from the nozzle is not naturally flown out. Next, a vibration plate disposed within the container is rapidly downwardly advanced toward the nozzle through a predetermined distance. As a result, pressure of the liquefied gas within a depression under the vibration plate rises instantaneously or in a pulse fashion to dissatisfy the aforesaid set condition whereby the liquefied gas may be flown out from the nozzle in the form of liquid drops. In accordance with the present device, it is possible to produce a suitable number of drops at a suitable point. (Yoshihara, H.)

  9. Column-Oriented Database Systems (Tutorial)

    NARCIS (Netherlands)

    D. Abadi; P.A. Boncz (Peter); S. Harizopoulos

    2009-01-01

    textabstractColumn-oriented database systems (column-stores) have attracted a lot of attention in the past few years. Column-stores, in a nutshell, store each database table column separately, with attribute values belonging to the same column stored contiguously, compressed, and densely packed, as

  10. Determination of deuterium concentration by falling drop method

    International Nuclear Information System (INIS)

    Kawai, Hiroshi; Morishima, Hiroshige; Koga, Taeko; Niwa, Takeo; Fujii, Takashi.

    1976-01-01

    Falling drop method for determination of deuterium concentration in water sample was studied. The principle is the same as that developed by Kirshenbaum, I. in 1932. One drop of water sample falls down through a column filled with o-fluorotoluene at temperature of nearly 25 0 C. The falling time is, instead of using a stop-watch, measured with two light pulses led to a photomultiplier with mirrors, which make two pulse marks on moving chart paper. Distance between the two pulse marks is proportional to falling time. Instead of water filled double chambers of constant temperature equipped with heaters, thermostats and propellers for stirring, the column is dipped in circulating water supplied from a ''Thermoelectric'' made by ''Sharp'' company, which can circulate constant temperature water cooled or heated with thermoelements. Variation of the temperature is about 0.01 0 C. The range of deuterium concentration in our case was 20 -- 60D%. Sensitivity increased as the medium temperature decreased and as deuterium concentration of water sample increased. (auth.)

  11. Water Column Sonar Data Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The collection and analysis of water column sonar data is a relatively new avenue of research into the marine environment. Primary uses include assessing biological...

  12. LIQUID-LIQUID EXTRACTION COLUMNS

    Science.gov (United States)

    Thornton, J.D.

    1957-12-31

    This patent relates to liquid-liquid extraction columns having a means for pulsing the liquid in the column to give it an oscillatory up and down movement, and consists of a packed column, an inlet pipe for the dispersed liquid phase and an outlet pipe for the continuous liquid phase located in the direct communication with the liquid in the lower part of said column, an inlet pipe for the continuous liquid phase and an outlet pipe for the dispersed liquid phase located in direct communication with the liquid in the upper part of said column, a tube having one end communicating with liquid in the lower part of said column and having its upper end located above the level of said outlet pipe for the dispersed phase, and a piston and cylinder connected to the upper end of said tube for applying a pulsating pneumatic pressure to the surface of the liquid in said tube so that said surface rises and falls in said tube.

  13. Vortex flow in acoustically levitated drops

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Z.L.; Xie, W.J. [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China); Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2011-08-29

    The internal flow of acoustically levitated water drops is investigated experimentally. This study reveals a kind of vortex flow which rotates in the meridional plane of the levitated drop. The magnitude of fluid velocity is nearly vanishing at the drop center, whereas it increases toward the free surface of a levitated drop until the maximum value of about 80 mm/s. A transition of streamline shapes from concentric circles to ellipses takes place at the distance of about 1.2 mm from the drop center. The fluid velocity distribution is plotted as a function of polar angle for seven characteristic streamlines. -- Highlights: → We experimentally observe the internal flow of acoustically levitated water drops. → We present a fascinating structure of vortex flow inside the levitated water drop. → This vortex flow rotates around the drop center in the meridional plane. → Velocity distribution information of this vortex flow is quantitatively analyzed.

  14. Vortex flow in acoustically levitated drops

    International Nuclear Information System (INIS)

    Yan, Z.L.; Xie, W.J.; Wei, B.

    2011-01-01

    The internal flow of acoustically levitated water drops is investigated experimentally. This study reveals a kind of vortex flow which rotates in the meridional plane of the levitated drop. The magnitude of fluid velocity is nearly vanishing at the drop center, whereas it increases toward the free surface of a levitated drop until the maximum value of about 80 mm/s. A transition of streamline shapes from concentric circles to ellipses takes place at the distance of about 1.2 mm from the drop center. The fluid velocity distribution is plotted as a function of polar angle for seven characteristic streamlines. -- Highlights: → We experimentally observe the internal flow of acoustically levitated water drops. → We present a fascinating structure of vortex flow inside the levitated water drop. → This vortex flow rotates around the drop center in the meridional plane. → Velocity distribution information of this vortex flow is quantitatively analyzed.

  15. Column-Oriented Database Systems (Tutorial)

    OpenAIRE

    Abadi, D.; Boncz, Peter; Harizopoulos, S.

    2009-01-01

    textabstractColumn-oriented database systems (column-stores) have attracted a lot of attention in the past few years. Column-stores, in a nutshell, store each database table column separately, with attribute values belonging to the same column stored contiguously, compressed, and densely packed, as opposed to traditional database systems that store entire records (rows) one after the other. Reading a subset of a table’s columns becomes faster, at the potential expense of excessive disk-head s...

  16. Drag and drop display & builder

    Energy Technology Data Exchange (ETDEWEB)

    Bolshakov, Timofei B.; Petrov, Andrey D.; /Fermilab

    2007-12-01

    The Drag and Drop (DnD) Display & Builder is a component-oriented system that allows users to create visual representations of data received from data acquisition systems. It is an upgrade of a Synoptic Display mechanism used at Fermilab since 2002. Components can be graphically arranged and logically interconnected in the web-startable Project Builder. Projects can be either lightweight AJAX- and SVG-based web pages, or they can be started as Java applications. The new version was initiated as a response to discussions between the LHC Controls Group and Fermilab.

  17. CANFLEX fuel bundle junction pressure drop

    International Nuclear Information System (INIS)

    Chung, H. J.; Chung, C. H.; Jun, J. S.; Hong, S. D.; Chang, S. K.; Kim, B. D.

    1996-11-01

    This report describes the junction pressure drop test results which are to used to determine the alignment angle between bundles to achieve the most probable fuel string pressure drop for randomly aligned bundles for use in the fuel string total pressure drop test. (author). 4 tabs., 17 figs

  18. CANFLEX fuel bundle junction pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. J.; Chung, C. H.; Jun, J. S.; Hong, S. D.; Chang, S. K.; Kim, B. D.

    1996-11-01

    This report describes the junction pressure drop test results which are to used to determine the alignment angle between bundles to achieve the most probable fuel string pressure drop for randomly aligned bundles for use in the fuel string total pressure drop test. (author). 4 tabs., 17 figs.

  19. 49 CFR 178.603 - Drop test.

    Science.gov (United States)

    2010-10-01

    ... used for the hydrostatic pressure or stacking test. Exceptions for the number of steel and aluminum..., non-resilient, flat and horizontal surface. (e) Drop height. Drop heights, measured as the vertical... than flat drops, the center of gravity of the test packaging must be vertically over the point of...

  20. Radiotracer Imaging of Sediment Columns

    Science.gov (United States)

    Moses, W. W.; O'Neil, J. P.; Boutchko, R.; Nico, P. S.; Druhan, J. L.; Vandehey, N. T.

    2010-12-01

    Nuclear medical PET and SPECT cameras routinely image radioactivity concentration of gamma ray emitting isotopes (PET - 511 keV; SPECT - 75-300 keV). We have used nuclear medical imaging technology to study contaminant transport in sediment columns. Specifically, we use Tc-99m (T1/2 = 6 h, Eγ = 140 keV) and a SPECT camera to image the bacteria mediated reduction of pertechnetate, [Tc(VII)O4]- + Fe(II) → Tc(IV)O2 + Fe(III). A 45 mL bolus of Tc-99m (32 mCi) labeled sodium pertechnetate was infused into a column (35cm x 10cm Ø) containing uranium-contaminated subsurface sediment from the Rifle, CO site. A flow rate of 1.25 ml/min of artificial groundwater was maintained in the column. Using a GE Millennium VG camera, we imaged the column for 12 hours, acquiring 44 frames. As the microbes in the sediment were inactive, we expected most of the iron to be Fe(III). The images were consistent with this hypothesis, and the Tc-99m pertechnetate acted like a conservative tracer. Virtually no binding of the Tc-99m was observed, and while the bolus of activity propagated fairly uniformly through the column, some inhomogeneity attributed to sediment packing was observed. We expect that after augmentation by acetate, the bacteria will metabolically reduce Fe(III) to Fe(II), leading to significant Tc-99m binding. Imaging sediment columns using nuclear medicine techniques has many attractive features. Trace quantities of the radiolabeled compounds are used (micro- to nano- molar) and the half-lives of many of these tracers are short (Image of Tc-99m distribution in a column containing Rifle sediment at four times.

  1. Performance evaluation of a rectifier column using gamma column scanning

    Directory of Open Access Journals (Sweden)

    Aquino Denis D.

    2017-12-01

    Full Text Available Rectifier columns are considered to be a critical component in petroleum refineries and petrochemical processing installations as they are able to affect the overall performance of these facilities. It is deemed necessary to monitor the operational conditions of such vessels to optimize processes and prevent anomalies which could pose undesired consequences on product quality that might lead to huge financial losses. A rectifier column was subjected to gamma scanning using a 10-mCi Co-60 source and a 2-inch-long detector in tandem. Several scans were performed to gather information on the operating conditions of the column under different sets of operating parameters. The scan profiles revealed unexpected decreases in the radiation intensity at vapour levels between trays 2 and 3, and between trays 4 and 5. Flooding also occurred during several scans which could be attributed to parametric settings.

  2. Electrohydrodynamics of a viscous drop with inertia.

    Science.gov (United States)

    Nganguia, H; Young, Y-N; Layton, A T; Lai, M-C; Hu, W-F

    2016-05-01

    Most of the existing numerical and theoretical investigations on the electrohydrodynamics of a viscous drop have focused on the creeping Stokes flow regime, where nonlinear inertia effects are neglected. In this work we study the inertia effects on the electrodeformation of a viscous drop under a DC electric field using a novel second-order immersed interface method. The inertia effects are quantified by the Ohnesorge number Oh, and the electric field is characterized by an electric capillary number Ca_{E}. Below the critical Ca_{E}, small to moderate electric field strength gives rise to steady equilibrium drop shapes. We found that, at a fixed Ca_{E}, inertia effects induce larger deformation for an oblate drop than a prolate drop, consistent with previous results in the literature. Moreover, our simulations results indicate that inertia effects on the equilibrium drop deformation are dictated by the direction of normal electric stress on the drop interface: Larger drop deformation is found when the normal electric stress points outward, and smaller drop deformation is found otherwise. To our knowledge, such inertia effects on the equilibrium drop deformation has not been reported in the literature. Above the critical Ca_{E}, no steady equilibrium drop deformation can be found, and often the drop breaks up into a number of daughter droplets. In particular, our Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets are larger in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping flow, and (3) complex distribution of electric stresses for drops with inertia effects. Our results suggest that normal electric pressure may be a useful tool in predicting drop pinch-off in oblate deformations.

  3. Capillary Thinning of Particle-laden Drops

    Science.gov (United States)

    Wagoner, Brayden; Thete, Sumeet; Jahns, Matt; Doshi, Pankaj; Basaran, Osman

    2015-11-01

    Drop formation is central in many applications such as ink-jet printing, microfluidic devices, and atomization. During drop formation, a thinning filament is created between the about-to-form drop and the fluid hanging from the nozzle. Therefore, the physics of capillary thinning of filaments is key to understanding drop formation and has been thoroughly studied for pure Newtonian fluids. The thinning dynamics is, however, altered completely when the fluid contains particles, the physics of which is not well understood. In this work, we explore the impact of solid particles on filament thinning and drop formation by using a combination of experiments and numerical simulations.

  4. Vibration-Induced Climbing of Drops

    Science.gov (United States)

    Brunet, P.; Eggers, J.; Deegan, R. D.

    2007-10-01

    We report an experimental study of liquid drops moving against gravity, when placed on a vertically vibrating inclined plate, which is partially wetted by the drop. The frequency of vibrations ranges from 30 to 200 Hz, and, above a threshold in vibration acceleration, drops experience an upward motion. We attribute this surprising motion to the deformations of the drop, as a consequence of an up or down symmetry breaking induced by the presence of the substrate. We relate the direction of motion to contact angle measurements. This phenomenon can be used to move a drop along an arbitrary path in a plane, without special surface treatments or localized forcing.

  5. Post column derivatisation analyses review. Is post-column derivatisation incompatible with modern HPLC columns?

    Science.gov (United States)

    Jones, Andrew; Pravadali-Cekic, Sercan; Dennis, Gary R; Shalliker, R Andrew

    2015-08-19

    Post Column derivatisation (PCD) coupled with high performance liquid chromatography or ultra-high performance liquid chromatography is a powerful tool in the modern analytical laboratory, or at least it should be. One drawback with PCD techniques is the extra post-column dead volume due to reaction coils used to enable adequate reaction time and the mixing of reagents which causes peak broadening, hence a loss of separation power. This loss of efficiency is counter-productive to modern HPLC technologies, -such as UHPLC. We reviewed 87 PCD methods published from 2009 to 2014. We restricted our review to methods published between 2009 and 2014, because we were interested in the uptake of PCD methods in UHPLC environments. Our review focused on a range of system parameters including: column dimensions, stationary phase and particle size, as well as the geometry of the reaction loop. The most commonly used column in the methods investigated was not in fact a modern UHPLC version with sub-2-micron, (or even sub-3-micron) particles, but rather, work-house columns, such as, 250 × 4.6 mm i.d. columns packed with 5 μm C18 particles. Reaction loops were varied, even within the same type of analysis, but the majority of methods employed loop systems with volumes greater than 500 μL. A second part of this review illustrated briefly the effect of dead volume on column performance. The experiment evaluated the change in resolution and separation efficiency of some weak to moderately retained solutes on a 250 × 4.6 mm i.d. column packed with 5 μm particles. The data showed that reaction loops beyond 100 μL resulted in a very serious loss of performance. Our study concluded that practitioners of PCD methods largely avoid the use of UHPLC-type column formats, so yes, very much, PCD is incompatible with the modern HPLC column. Copyright © 2015. Published by Elsevier B.V.

  6. Second dimension column ensemble pressure tuning in comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Sharif, Khan M; Kulsing, Chadin; Junior, Ademario I da Silva; Marriott, Philip J

    2018-02-09

    A pressure tunable (PT) coupled column ensemble has been implemented for the second dimension ( 2 D) separation in comprehensive two dimensional gas chromatography (GC×PTGC). This process requires two columns to be connected by a pressure junction, as a replacement for a single narrow bore, short column in 2 D. Various 2 D 1 and 2 D 2 columns may be selected to provide complementary selectivity (polarity) compared to the 1 D column. The tunable residence time arising from differential pressure drop in each 2 D column results in a tunable fractional contribution of each column in the 2 D separation. A sample mixture comprising different chemical classes, including alkanes and alcohols, is used to identify the feasibility and extent of selectivity tuning possible in GC×PTGC. The column length is also varied due to the imposed challenge of wraparound in the PT coupled column system as pressures are adjusted in the 2 D separation. Different experimental parameters, stationary phase materials and column lengths have been applied to investigate and understand the separation behaviour of the 2 D PT coupled column GC×GC system. Results are discussed considering analyte retention time, peak width, linear velocity and the contribution of each 2 D column. A specific and unexpected example of GC×GC separation was demonstrated where the peak positions of polar and apolar compounds could almost swap their 2 D retention position by application of PT. Kerosene was analysed as an example of complex sample analysis by GC×PTGC system. This process is shown to be a practical approach for altering different stationary phase selectivities in a single 2 D arrangement in GC×GC. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. NOx retention in scrubbing column

    International Nuclear Information System (INIS)

    Nakazone, A.K.; Costa, R.E.; Lobao, A.S.T.; Matsuda, H.T.; Araujo, B.F.

    1988-07-01

    During the UO 2 dissolution in nitric acid, some different species of NO x are released. The off gas can either be refluxed to the dissolver or be released and retained on special columns. The final composition of the solution is the main parameter to take in account. A process for nitrous gases retention using scubber columns containing H 2 O or diluted HNO 3 is presented. Chemiluminescence measurement was employed to NO x evalution before and after scrubbing. Gas flow, temperature, residence time are the main parameters considered in this paper. For the dissolution of 100g UO 2 in 8M nitric acid, a 6NL/h O 2 flow was the best condition for the NO/NO 2 oxidation with maximum adsorption in the scrubber columns. (author) [pt

  8. Who is dropping your course?

    Science.gov (United States)

    Storrs, Alex; Ghent, C.; Labattaglia, R.

    2011-01-01

    We present an analysis of pre and post instruction instruments in a basic astronomy course. This analysis is built on the Light and Spectroscopy Concept Inventory (LSCI, Bardar et al. 2007). In addition to assessing our student's gain in knowledge of this fundamental topic, we have added some demographic questions. While the primary purpose is to compare the gain in knowledge during a semester of instruction to changes in instruction, we also look at the demographics of students who take the pretest but not the posttest. These students are usually excluded from this type of analysis. We look for trends in the demographic information among students who drop the course, and suggest ways to make the course more palatable. References: Bardar et al., 2007: "Development and Validation of the Light and Spectroscopy Concept Inventory", Astr. Ed. Rev. 5(2), 103-113

  9. Magnetically focused liquid drop radiator

    Science.gov (United States)

    Botts, Thomas E.; Powell, James R.; Lenard, Roger

    1986-01-01

    A magnetically focused liquid drop radiator for application in rejecting rgy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  10. Chromatographic properties PLOT multicapillary columns.

    Science.gov (United States)

    Nikolaeva, O A; Patrushev, Y V; Sidelnikov, V N

    2017-03-10

    Multicapillary columns (MCCs) for gas chromatography make it possible to perform high-speed analysis of the mixtures of gaseous and volatile substances at a relatively large amount of the loaded sample. The study was performed using PLOT MCCs for gas-solid chromatography (GSC) with different stationary phases (SP) based on alumina, silica and poly-(1-trimethylsilyl-1-propyne) (PTMSP) polymer as well as porous polymers divinylbenzene-styrene (DVB-St), divinylbenzene-vinylimidazole (DVB-VIm) and divinylbenzene-ethylene glycol dimethacrylate (DVB-EGD). These MCCs have the efficiency of 4000-10000 theoretical plates per meter (TP/m) and at a column length of 25-30cm can separate within 10-20s multicomponent mixtures of substances belonging to different classes of chemical compounds. The sample amount not overloading the column is 0.03-1μg and depends on the features of a porous layer. Examples of separations on some of the studied columns are considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Sepsis from dropped clips at laparoscopic cholecystectomy

    International Nuclear Information System (INIS)

    Hussain, Sarwat

    2001-01-01

    We report seven patients in whom five dropped surgical clips and two gallstones were visualized in the peritoneal cavity, on radiological studies. In two, subphrenic abscesses and empyemas developed as a result of dropped clips into the peritoneal cavity during or following laparoscopic cholecystectomy. In one of these two, a clip was removed surgically from the site of an abscess. In two other patients dropped gallstones, and in three, dropped clips led to no complications. These were seen incidentally on studies done for other indications. Abdominal abscess secondary to dropped gallstones is a well-recognized complication of laparoscopic cholecystectomy (LC). We conclude that even though dropped surgical clips usually do not cause problems, they should be considered as a risk additional to other well-known causes of post-LC abdominal sepsis

  12. Hydrothermal waves in evaporating sessile drops

    OpenAIRE

    Brutin, D.; Rigollet, F.; Niliot, C. Le

    2009-01-01

    Drop evaporation is a simple phenomena but still unclear concerning the mechanisms of evaporation. A common agreement of the scientific community based on experimental and numerical work evidences that most of the evaporation occurs at the triple line. However, the rate of evaporation is still empirically predicted due to the lack of knowledge on the convection cells which develop inside the drop under evaporation. The evaporation of sessile drop is more complicated than it appears due to the...

  13. Parametric resonance in acoustically levitated water drops

    International Nuclear Information System (INIS)

    Shen, C.L.; Xie, W.J.; Wei, B.

    2010-01-01

    Liquid drops can be suspended in air with acoustic levitation method. When the sound pressure is periodically modulated, the levitated drop is usually forced into an axisymmetric oscillation. However, a transition from axisymmetric oscillation into sectorial oscillation occurs when the modulation frequency approaches some specific values. The frequency of the sectorial oscillation is almost exactly half of the modulation frequency. It is demonstrated that this transition is induced by the parametric resonance of levitated drop. The natural frequency of sectorial oscillation is found to decrease with the increase of drop distortion extent.

  14. Parametric resonance in acoustically levitated water drops

    Energy Technology Data Exchange (ETDEWEB)

    Shen, C.L.; Xie, W.J. [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China); Wei, B., E-mail: bbwei@nwpu.edu.c [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2010-05-10

    Liquid drops can be suspended in air with acoustic levitation method. When the sound pressure is periodically modulated, the levitated drop is usually forced into an axisymmetric oscillation. However, a transition from axisymmetric oscillation into sectorial oscillation occurs when the modulation frequency approaches some specific values. The frequency of the sectorial oscillation is almost exactly half of the modulation frequency. It is demonstrated that this transition is induced by the parametric resonance of levitated drop. The natural frequency of sectorial oscillation is found to decrease with the increase of drop distortion extent.

  15. Nonlinear oscillations of inviscid free drops

    Science.gov (United States)

    Patzek, T. W.; Benner, R. E., Jr.; Basaran, O. A.; Scriven, L. E.

    1991-01-01

    The present analysis of free liquid drops' inviscid oscillations proceeds through solution of Bernoulli's equation to obtain the free surface shape and of Laplace's equation for the velocity potential field. Results thus obtained encompass drop-shape sequences, pressure distributions, particle paths, and the temporal evolution of kinetic and surface energies; accuracy is verified by the near-constant drop volume and total energy, as well as the diminutiveness of mass and momentum fluxes across drop surfaces. Further insight into the nature of oscillations is provided by Fourier power spectrum analyses of mode interactions and frequency shifts.

  16. Drop "impact" on an airfoil surface.

    Science.gov (United States)

    Wu, Zhenlong

    2018-05-17

    Drop impact on an airfoil surface takes place in drop-laden two-phase flow conditions such as rain and icing, which are encountered by wind turbines or airplanes. This phenomenon is characterized by complex nonlinear interactions that manifest rich flow physics and pose unique modeling challenges. In this article, the state of the art of the research about drop impact on airfoil surface in the natural drop-laden two-phase flow environment is presented. The potential flow physics, hazards, characteristic parameters, droplet trajectory calculation, drop impact dynamics and effects are discussed. The most key points in establishing the governing equations for a drop-laden flow lie in the modeling of raindrop splash and water film. The various factors affecting the drop impact dynamics and the effects of drop impact on airfoil aerodynamic performance are summarized. Finally, the principle challenges and future research directions in the field as well as some promising measures to deal with the adverse effects of drop-laden flows on airfoil performance are proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Soft drop jet mass measurement

    CERN Document Server

    Roloff, Jennifer Kathryn; The ATLAS collaboration

    2018-01-01

    Calculations of jet substructure observables that are accurate beyond leading-logarithm accuracy have recently become available. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This poster documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross-section is measured as a function of log( ρ^2), where ρ is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9 ifb of sqrt(s) = 13 TeV proton-proton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations.

  18. Many Drops Make a Lake

    Directory of Open Access Journals (Sweden)

    Chaitanya S. Mudgal

    2014-03-01

    greater knowledge, better skills and disseminate this knowledge through this journal to influence as many physicians and their patients as possible. They have taken the knowledge of their teachers, recognized their giants and are now poised to see further than ever before. My grandmother often used to quote to me a proverb from India, which when translated literally means “Many drops make a lake”. I cannot help but be amazed by the striking similarities between the words of Newton and this Indian saying. Therefore, while it may seem intuitive, I think it must be stated that it is vital for the betterment of all our patients that we recognize our own personal lakes to put our drops of knowledge into. More important is that we recognize that it is incumbent upon each and every one of us to contribute to our collective lakes of knowledge such as ABJS. And finally and perhaps most importantly we need to be utterly cognizant of never letting such lakes of knowledge run dry.... ever.

  19. Modeling of column apparatus processes

    CERN Document Server

    Boyadjiev, Christo; Boyadjiev, Boyan; Popova-Krumova, Petya

    2016-01-01

    This book presents a new approach for the modeling of chemical and interphase mass transfer processes in industrial column apparatuses, using convection-diffusion and average-concentration models. The convection-diffusion type models are used for a qualitative analysis of the processes and to assess the main, small and slight physical effects, and then reject the slight effects. As a result, the process mechanism can be identified. It also introduces average concentration models for quantitative analysis, which use the average values of the velocity and concentration over the cross-sectional area of the column. The new models are used to analyze different processes (simple and complex chemical reactions, absorption, adsorption and catalytic reactions), and make it possible to model the processes of gas purification with sulfur dioxide, which form the basis of several patents.

  20. Studies of column supported towers

    International Nuclear Information System (INIS)

    Chauvel, D.; Costaz, J.-L.

    1991-01-01

    As a result of a research and development programme into the civil engineering of cooling towers launched in 1978 by Electricite de France, very high cooling towers were built at Golfech and Chooz, in France, using column supports. This paper discusses the evolution of this new type of support from classical diagonal supports, presents some of the results of design calculations and survey measurements taken during construction of the shell and analyses the behaviour of the structure. (author)

  1. SPEEDUPtrademark ion exchange column model

    International Nuclear Information System (INIS)

    Hang, T.

    2000-01-01

    A transient model to describe the process of loading a solute onto the granular fixed bed in an ion exchange (IX) column has been developed using the SpeedUptrademark software package. SpeedUp offers the advantage of smooth integration into other existing SpeedUp flowsheet models. The mathematical algorithm of a porous particle diffusion model was adopted to account for convection, axial dispersion, film mass transfer, and pore diffusion. The method of orthogonal collocation on finite elements was employed to solve the governing transport equations. The model allows the use of a non-linear Langmuir isotherm based on an effective binary ionic exchange process. The SpeedUp column model was tested by comparing to the analytical solutions of three transport problems from the ion exchange literature. In addition, a sample calculation of a train of three crystalline silicotitanate (CST) IX columns in series was made using both the SpeedUp model and Purdue University's VERSE-LC code. All test cases showed excellent agreement between the SpeedUp model results and the test data. The model can be readily used for SuperLigtrademark ion exchange resins, once the experimental data are complete

  2. Drop test facility available to private industry

    International Nuclear Information System (INIS)

    Shappert, L.B.; Box, W.D.

    1983-01-01

    In 1978, a virtually unyielding drop test impact pad was constructed at Oak Ridge National Laboratory's (ORNL's) Tower Shielding Facility (TSF) for the testing of heavy shipping containers designed for transporting radioactive materials. Because of the facility's unique capability for drop-testing large, massive shipping packages, it has been identified as a facility which can be made available for non-DOE users

  3. University Drop-Out: An Italian Experience

    Science.gov (United States)

    Belloc, Filippo; Maruotti, Antonello; Petrella, Lea

    2010-01-01

    University students' drop-out is a crucial issue for the universities' efficiency evaluation and funding. In this paper, we analyze the drop-out rate of the Economics and Business faculty of Sapienza University of Rome. We use administrative data on 9,725 undergraduates students enrolled in three-years bachelor programs from 2001 to 2007 and…

  4. Total Site Heat Integration Considering Pressure Drops

    Directory of Open Access Journals (Sweden)

    Kew Hong Chew

    2015-02-01

    Full Text Available Pressure drop is an important consideration in Total Site Heat Integration (TSHI. This is due to the typically large distances between the different plants and the flow across plant elevations and equipment, including heat exchangers. Failure to consider pressure drop during utility targeting and heat exchanger network (HEN synthesis may, at best, lead to optimistic energy targets, and at worst, an inoperable system if the pumps or compressors cannot overcome the actual pressure drop. Most studies have addressed the pressure drop factor in terms of pumping cost, forbidden matches or allowable pressure drop constraints in the optimisation of HEN. This study looks at the implication of pressure drop in the context of a Total Site. The graphical Pinch-based TSHI methodology is extended to consider the pressure drop factor during the minimum energy requirement (MER targeting stage. The improved methodology provides a more realistic estimation of the MER targets and valuable insights for the implementation of the TSHI design. In the case study, when pressure drop in the steam distribution networks is considered, the heating and cooling duties increase by 14.5% and 4.5%.

  5. Why Do Students Drop Advanced Mathematics?

    Science.gov (United States)

    Horn, Ilana

    2004-01-01

    Students, especially black, Latino and Native American youth and students of low socio-economic status drop out of advanced mathematics. Teachers must coordinate their expectations, their knowledge of students and their teaching practices in order to stop struggling students from dropping out of advanced math classes.

  6. Wetting and evaporation of binary mixture drops.

    Science.gov (United States)

    Sefiane, Khellil; David, Samuel; Shanahan, Martin E R

    2008-09-11

    Experimental results on the wetting behavior of water, methanol, and binary mixture sessile drops on a smooth, polymer-coated substrate are reported. The wetting behavior of evaporating water/methanol drops was also studied in a water-saturated environment. Drop parameters (contact angle, shape, and volume) were monitored in time. The effects of the initial relative concentrations on subsequent evaporation and wetting dynamics were investigated. Physical mechanisms responsible for the various types of wetting behavior during different stages are proposed and discussed. Competition between evaporation and hydrodynamic flow are evoked. Using an environment saturated with water vapor allowed further exploration of the controlling mechanisms and underlying processes. Wetting stages attributed to differential evaporation of methanol were identified. Methanol, the more volatile component, evaporates predominantly in the initial stage. The data, however, suggest that a small proportion of methanol remained in the drop after the first stage of evaporation. This residual methanol within the drop seems to influence subsequent wetting behavior strongly.

  7. CPAS Preflight Drop Test Analysis Process

    Science.gov (United States)

    Englert, Megan E.; Bledsoe, Kristin J.; Romero, Leah M.

    2015-01-01

    Throughout the Capsule Parachute Assembly System (CPAS) drop test program, the CPAS Analysis Team has developed a simulation and analysis process to support drop test planning and execution. This process includes multiple phases focused on developing test simulations and communicating results to all groups involved in the drop test. CPAS Engineering Development Unit (EDU) series drop test planning begins with the development of a basic operational concept for each test. Trajectory simulation tools include the Flight Analysis and Simulation Tool (FAST) for single bodies, and the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) simulation for the mated vehicle. Results are communicated to the team at the Test Configuration Review (TCR) and Test Readiness Review (TRR), as well as at Analysis Integrated Product Team (IPT) meetings in earlier and intermediate phases of the pre-test planning. The ability to plan and communicate efficiently with rapidly changing objectives and tight schedule constraints is a necessity for safe and successful drop tests.

  8. Pressure drop in ET-RR-1

    International Nuclear Information System (INIS)

    Khattab, M.; Mina, A.R.

    1990-01-01

    Measurements of pressure drop through a bundle comprising 16 rods and their lower arrangement grid as well as orifices similar to those of ET-RR-1 core have been done. Experiments are carried out under adiabatic turbulent flow conditions at about 35 degree C. Bundle Reynolds number range is 4 x 10 -2 x 10. Orifices of diameters 4.5, 3.25 or 2.5 cm. are mounted underneath the bundle. The bundle and lower grid pressure drop coefficients are 3.75 and 1.8 respectively. Orifices pressure drop coefficients are 2.65, 19.67 and 53.55 respectively. The ratio of bundle pressure drop to that of 4.5 cm. Orifice diameter is 1.415. The pressure drop coefficients are utilizer to calculate flow through bundles. The flow rate per bundle is 39.1, 20.4 or 13.1 m 3 /hr. Depending on orifice diameter

  9. Two generalizations of column-convex polygons

    International Nuclear Information System (INIS)

    Feretic, Svjetlan; Guttmann, Anthony J

    2009-01-01

    Column-convex polygons were first counted by area several decades ago, and the result was found to be a simple, rational, generating function. In this work we generalize that result. Let a p-column polyomino be a polyomino whose columns can have 1, 2, ..., p connected components. Then column-convex polygons are equivalent to 1-convex polyominoes. The area generating function of even the simplest generalization, namely 2-column polyominoes, is unlikely to be solvable. We therefore define two classes of polyominoes which interpolate between column-convex polygons and 2-column polyominoes. We derive the area generating functions of those two classes, using extensions of existing algorithms. The growth constants of both classes are greater than the growth constant of column-convex polyominoes. Rather tight lower bounds on the growth constants complement a comprehensive asymptotic analysis.

  10. Uranium facilitated transport by water-dispersible colloids in field and soil columns

    International Nuclear Information System (INIS)

    Crancon, P.; Pili, E.; Charlet, L.

    2010-01-01

    The transport of uranium through a sandy podzolic soil has been investigated in the field and in column experiments. Field monitoring, numerous years after surface contamination by depleted uranium deposits, revealed a 20 cm deep uranium migration in soil. Uranium retention in soil is controlled by the 238 U initially present in the soil column and 233 U brought by input solution are desorbed. The mobilization process observed experimentally after a drop of ionic strength may account for a rapid uranium migration in the field after a rainfall event, and for the significant uranium concentrations found in deep soil horizons and in groundwater, 1 km downstream from the pollution source.

  11. High-efficiency liquid chromatography on conventional columns and instrumentation by using temperature as a variable I. Experiments with 25 cm x 4.6 mm I.D., 5 microm ODS columns.

    Science.gov (United States)

    Lestremau, François; Cooper, Andrew; Szucs, Roman; David, Frank; Sandra, Pat

    2006-03-24

    High plate numbers were obtained in conventional LC by coupling columns and by using temperature to reduce the viscosity of the mobile phase. At 80 degrees C up to eight columns of 25 cm x 4.6 mm I.D. packed with 5 microm ODS particles could be coupled generating 180,000 effective plates while the pressure drop was only 350bar. For routine work, a set of four columns is preferred. The analysis times on one column operated at 30 degrees C and 1 mL/min flow rate and on four columns at 80 degrees C and 2 mL/min flow rate are the same in isoeluotropic conditions while the resolution is doubled. Multicolumn systems were successfully applied in isocratic and gradient mode for the analysis of pharmaceutical and environmental samples.

  12. 29 CFR 1926.755 - Column anchorage.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Column anchorage. 1926.755 Section 1926.755 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.755 Column anchorage. (a) General requirements for erection stability. (1) All columns shall be anchored by a minimum of 4 anchor...

  13. Adsorption columns for use in radioimmunoassays

    International Nuclear Information System (INIS)

    1976-01-01

    Adsorption columns are provided which can be utilized in radioimmunoassay systems such as those involving the separation of antibody-antigen complexes from free antigens. The preparation of the columns includes the treatment of retaining substrate material to render it hydrophilic, preparation and degassing of the separation material and loading the column

  14. Thermal process of an air column

    International Nuclear Information System (INIS)

    Lee, F.T.

    1994-01-01

    Thermal process of a hot air column is discussed based on laws of thermodynamics. The kinetic motion of the air mass in the column can be used as a power generator. Alternatively, the column can also function as a exhaust/cooler

  15. Drop impact splashing and air entrapment

    KAUST Repository

    Thoraval, Marie-Jean

    2013-03-01

    Drop impact is a canonical problem in fluid mechanics, with numerous applications in industrial as well as natural phenomena. The extremely simple initial configuration of the experiment can produce a very large variety of fast and complex dynamics. Scientific progress was made in parallel with major improvements in imaging and computational technologies. Most recently, high-speed imaging video cameras have opened the exploration of new phenomena occurring at the micro-second scale, and parallel computing allowed realistic direct numerical simulations of drop impacts. We combine these tools to bring a new understanding of two fundamental aspects of drop impacts: splashing and air entrapment. The early dynamics of a drop impacting on a liquid pool at high velocity produces an ejecta sheet, emerging horizontally in the neck between the drop and the pool. We show how the interaction of this thin liquid sheet with the air, the drop or the pool, can produce micro-droplets and bubble rings. Then we detail how the breakup of the air film stretched between the drop and the pool for lower impact velocities can produce a myriad of micro-bubbles.

  16. Drop size measurements in Venturi scrubbers

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Alonso, D.; Azzopardi, B.J. [Nottingham Univ. (United Kingdom). Dept. of Chemical Engineering; Goncalves, J.A.S.; Coury, J.R. [Universidade Federal de Sao Carlos (Brazil). Departamento de Engenharia Quimica

    2001-07-01

    Venturi scrubbers are high efficiency gas cleaners in which suspended particles are removed from gas streams by drops formed by liquid atomisation, usually in the Venturi throat. The size of the drops formed are of fundamental importance to the performance of the equipment, both in terms of pressure drop and dust removal efficiency. In this study, drop sizes in a cylindrical laboratory-scale Venturi scrubber were measured using a laser diffraction technique. Gas velocity and liquid to gas ratios varied from 50 to 90 m/s and 0.5 to 2.0 1/m{sup 3}, respectively. Water was injected using two different arrangements: either as jets in the throat or as a film just upstream of the convergence. Drop size measurements were performed at three positions in the case of jet injection: two located along the throat, and the last one at the end of the diffuser. The present data shows that the Sauter mean diameter of the spray can be well correlated by the equation of Boll et al. (J. Air Pollut. Control Assoc. 24 (1974) 932). Drop size distributions are satisfactorily represented by a Rosin-Rammler function. This paper also provides a simple method for calculating the parameters of the Rosin-Rammler function. As a result of this work, drop sizes in Venturi scrubbers can be estimated with much higher accuracy. (Author)

  17. "Self-Shaping" of Multicomponent Drops.

    Science.gov (United States)

    Cholakova, Diana; Valkova, Zhulieta; Tcholakova, Slavka; Denkov, Nikolai; Smoukov, Stoyan K

    2017-06-13

    In our recent study we showed that single-component emulsion drops, stabilized by proper surfactants, can spontaneously break symmetry and transform into various polygonal shapes during cooling [ Denkov Nature 2015 , 528 , 392 - 395 ]. This process involves the formation of a plastic rotator phase of self-assembled oil molecules beneath the drop surface. The plastic phase spontaneously forms a frame of plastic rods at the oil drop perimeter which supports the polygonal shapes. However, most of the common substances used in industry appear as mixtures of molecules rather than pure substances. Here we present a systematic study of the ability of multicomponent emulsion drops to deform upon cooling. The observed trends can be summarized as follows: (1) The general drop-shape evolution for multicomponent drops during cooling is the same as with single-component drops; however, some additional shapes are observed. (2) Preservation of the particle shape upon freezing is possible for alkane mixtures with chain length difference Δn ≤ 4; for greater Δn, phase separation within the droplet is observed. (3) Multicomponent particles prepared from alkanes with Δn ≤ 4 plastify upon cooling due to the formation of a bulk rotator phase within the particles. (4) If a compound, which cannot induce self-shaping when pure, is mixed with a certain amount of a compound which induces self-shaping, then drops prepared from this mixture can also self-shape upon cooling. (5) Self-emulsification phenomena are also observed for multicomponent drops. In addition to the three recently reported mechanisms of self-emulsification [ Tcholakova Nat. Commun. 2017 , ( 8 ), 15012 ], a new (fourth) mechanism is observed upon freezing for alkane mixtures with Δn > 4. It involves disintegration of the particles due to a phase separation of alkanes upon freezing.

  18. Thyrotoxicosis Presenting as Unilateral Drop Foot.

    Science.gov (United States)

    Hara, Kenju; Miyata, Hajime; Motegi, Takahide; Shibano, Ken; Ishiguro, Hideaki

    2017-01-01

    Neuromuscular disorders associated with hyperthyroidism have several variations in their clinical phenotype, such as ophthalmopathy, periodic paralysis, and thyrotoxic myopathy. We herein report an unusual case of thyrotoxic myopathy presenting as unilateral drop foot. Histopathological examinations of the left tibialis anterior muscle showed marked variation in the fiber size, mild inflammatory cell infiltration, and necrotic and regenerated muscle fibers with predominantly type 1 fiber atrophy. Medical treatment with propylthiouracil resulted in complete improvement of the left drop foot. This case expands the phenotype of thyrotoxicosis and suggests that thyrotoxicosis be considered as a possible cause of unilateral drop foot.

  19. Preparation and characterisation of superheated drop detectors

    International Nuclear Information System (INIS)

    Krishnamoorthy, P.

    1989-01-01

    Basic mechanism of bubble nucleation in superheated drops with respect to minimum energy of radiation and temperature is discussed. Experimental details and techniques for the preparation of Superheated Drop Detectors (SDDs) is explained. For the sample preparation, homogeneous composition of polymer (Morarfloc) and glycerine was used as the host medium and three different refrigerants Mafron-21, Mafron-12 and Mafron-11/12 (50:50) were chosen as the sensitive liquids. A pressure reactor developed at Health and Safety Laboratory is used for dispersing the sensitive liquid drops in the homogeneous composition under pressure. Some of the imporatant detector characteristics were studied. (author). 26 refs., 9 figs., 1 tab

  20. Micro-splashing by drop impacts

    KAUST Repository

    Thoroddsen, Sigurdur T; Takehara, Kohsei; Etoh, Takeharugoji

    2012-01-01

    We use ultra-high-speed video imaging to observe directly the earliest onset of prompt splashing when a drop impacts onto a smooth solid surface. We capture the start of the ejecta sheet travelling along the solid substrate and show how it breaks up immediately upon emergence from the underneath the drop. The resulting micro-droplets are much smaller and faster than previously reported and may have gone unobserved owing to their very small size and rapid ejection velocities, which approach 100 m s-1, for typical impact conditions of large rain drops. We propose a phenomenological mechanism which predicts the velocity and size distribution of the resulting microdroplets. We also observe azimuthal undulations which may help promote the earliest breakup of the ejecta. This instability occurs in the cusp in the free surface where the drop surface meets the radially ejected liquid sheet. © 2012 Cambridge University Press.

  1. Micro-splashing by drop impacts

    KAUST Repository

    Thoroddsen, Sigurdur T.

    2012-07-18

    We use ultra-high-speed video imaging to observe directly the earliest onset of prompt splashing when a drop impacts onto a smooth solid surface. We capture the start of the ejecta sheet travelling along the solid substrate and show how it breaks up immediately upon emergence from the underneath the drop. The resulting micro-droplets are much smaller and faster than previously reported and may have gone unobserved owing to their very small size and rapid ejection velocities, which approach 100 m s-1, for typical impact conditions of large rain drops. We propose a phenomenological mechanism which predicts the velocity and size distribution of the resulting microdroplets. We also observe azimuthal undulations which may help promote the earliest breakup of the ejecta. This instability occurs in the cusp in the free surface where the drop surface meets the radially ejected liquid sheet. © 2012 Cambridge University Press.

  2. Blood drop patterns: Formation and applications.

    Science.gov (United States)

    Chen, Ruoyang; Zhang, Liyuan; Zang, Duyang; Shen, Wei

    2016-05-01

    The drying of a drop of blood or plasma on a solid substrate leads to the formation of interesting and complex patterns. Inter- and intra-cellular and macromolecular interactions in the drying plasma or blood drop are responsible for the final morphologies of the dried patterns. Changes in these cellular and macromolecular components in blood caused by diseases have been suspected to cause changes in the dried drop patterns of plasma and whole blood, which could be used as simple diagnostic tools to identify the health of humans and livestock. However, complex physicochemical driving forces involved in the pattern formation are not fully understood. This review focuses on the scientific development in microscopic observations and pattern interpretation of dried plasma and whole blood samples, as well as the diagnostic applications of pattern analysis. Dried drop patterns of plasma consist of intricate visible cracks in the outer region and fine structures in the central region, which are mainly influenced by the presence and concentration of inorganic salts and proteins during drying. The shrinkage of macromolecular gel and its adhesion to the substrate surface have been thought to be responsible for the formation of the cracks. Dried drop patterns of whole blood have three characteristic zones; their formation as functions of drying time has been reported in the literature. Some research works have applied engineering treatment to the evaporation process of whole blood samples. The sensitivities of the resultant patterns to the relative humidity of the environment, the wettability of the substrates, and the size of the drop have been reported. These research works shed light on the mechanisms of spreading, evaporation, gelation, and crack formation of the blood drops on solid substrates, as well as on the potential applications of dried drop patterns of plasma and whole blood in diagnosis. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  3. Pressure drop in flashing flow through obstructions

    International Nuclear Information System (INIS)

    Weinle, M.E.; Johnston, B.S.

    1985-01-01

    An experiment was designed to investigate the pressure drop for flashing flow across obstructions of different geometries at various flow rates. Tests were run using two different orifices to determine if the two-phase pressure drop could be characterized by the single phase loss coefficient and the general behavior of the two-phase multiplier. For the geometries studied, it was possible to correlate the multiplier in a geometry-independent fashion

  4. Pressure drop in T's in concentric ducts

    International Nuclear Information System (INIS)

    Shock, R.A.W.

    1983-02-01

    A set of experiments has been carried out to measure the pressure drop characteristics of single-phase flow in dividing and joining right-angled T's in a concentric ducting system. These have been compared with measured pressure drops in a simple round tube system. In most tests with the concentric system the number of velocity heads lost is either similar to, or more than, the value for the round tubes. (author)

  5. Hanging drop crystal growth apparatus and method

    Science.gov (United States)

    Carter, Daniel C. (Inventor); Smith, Robbie E. (Inventor)

    1989-01-01

    An apparatus (10) is constructed having a cylindrical enclosure (16) within which a disc-shaped wicking element (18) is positioned. A well or recess (22) is cut into an upper side (24) of this wicking element, and a glass cover plate or slip (28) having a protein drop disposed thereon is sealably positioned on the wicking element (18), with drop (12) being positioned over well or recess (22). A flow of control fluid is generated by a programmable gradient former (16), with this control fluid having a vapor pressure that is selectively variable. This flow of control fluid is coupled to the wicking element (18) where control fluid vapor diffusing from walls (26) of the recess (22) is exposed to the drop (12), forming a vapor pressure gradient between the drop (12) and the control fluid vapor. Initially, this gradient is adjusted to draw solvent from the drop (12) at a relatively high rate, and as the critical supersaturation point is approached (the point at which crystal nucleation occurs), the gradient is reduced to more slowly draw solvent from the drop (12). This allows discrete protein molecules more time to orient themselves into an ordered crystalline lattice, producing protein crystals which, when processed by X-ray crystallography, possess a high degree of resolution.

  6. Free drop impact analysis of shipping cask

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kennedy, J.M.

    1989-01-01

    The WHAMS-2D and WHAMS-3D codes were used to analyze the dynamic response of the RAS/TREAT shielded shipping cask subjected to transient leadings for the purpose of assessing potential damage to the various components that comprise the the cask. The paper describes how these codes can be used to provide and intermediate level of detail between full three-dimensional finite element calculations and hand calculations which are cost effective for design purposes. Three free drops were adressed: (1) a thirty foot axial drop on either end; (2) a thirty foot oblique angle drop with the cask having several different orientations from the vertical with impact on the cask corner; and (3) a thirty foot side drop with simultaneous impact on the lifting trunnion and the bottom end. Results are presented for two models of the side and oblique angle drops; one model includes only the mass of the lapped sleeves of depleted uranium (DU) while the other includes the mass and stiffness of the DU. The results of the end drop analyses are given for models with and without imperfections in the cask. Comparison of the analysis to hand calculations and simplified analyses are given. (orig.)

  7. Drop Performance Test of CRDMs for JRTR

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myoung-Hwan; Cho, Yeong-Garp; Chung, Jong-Ha [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Jung-Hyun [POSCO Plandtec Co. Ltd, Ulsan (Korea, Republic of); Lee, Kwan-Hee [RIST, Pohang (Korea, Republic of)

    2015-10-15

    The drop test results of CRDMs with AC-type electromagnet show that the initial delay times are not satisfied with the requirement, 0.15 seconds. After the replacement of the electromagnet from AC-type to DCtype, the drop times of CARs and accelerations due to the impact of moving parts are satisfied with all requirements. As a result, it is found that four CRDMs to be installed at site have a good drop performance, and meet all performance requirements. A control rod drive mechanism (CRDM) is a device to control the position of a control absorber rod (CAR) in the core by using a stepping motor which is commanded by the reactor regulating system (RRS) to control the reactivity during the normal operation of the reactor. The top-mounted CRDM driven by the stepping motor for Jordan Research and Training Reactor (JRTR) has been developed in KAERI. The CRDM for JRTR has been optimized by the design improvement based on that of the HANARO. It is necessary to verify the performances such as the stepping, drop, endurance, vibration, seismic and structural integrity for active components. Especially, the CAR drop curves are important data for the safety analysis. This paper describes the test results to demonstrate the drop performances of a prototype and 4 CRDMs to be installed at site. The tests are carried out at a test rig simulating the actual reactor's conditions.

  8. Evaluation of Packed Distillation Columns I - Atmospheric Pressure

    National Research Council Canada - National Science Library

    Reynolds, Thaine

    1951-01-01

    .... Four column-packing combinations of the glass columns and four column-packing combinations of the steel columns were investigated at atmospheric pressure using a test mixture of methylcyclohexane...

  9. Oscillating water column structural model

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Guild [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jepsen, Richard Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gordon, Margaret Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.

  10. The Drop Tower Bremen -Experiment Operation

    Science.gov (United States)

    Könemann, Thorben; von Kampen, Peter; Rath, Hans J.

    The idea behind the drop tower facility of the Center of Applied Space Technology and Micro-gravity (ZARM) in Bremen is to provide an inimitable technical opportunity of a daily access to short-term weightlessness on earth. In this way ZARM`s european unique ground-based microgravity laboratory displays an excellent economic alternative for research in space-related conditions at low costs comparable to orbital platforms. Many national and international ex-perimentalists motivated by these prospects decide to benefit from the high-quality and easy accessible microgravity environment only provided by the Drop Tower Bremen. Corresponding experiments in reduced gravity could open new perspectives of investigation methods and give scientists an impressive potential for a future technology and multidisciplinary applications on different research fields like Fundamental Physics, Astrophysics, Fluid Dynamics, Combus-tion, Material Science, Chemistry and Biology. Generally, realizing microgravity experiments at ZARM`s drop tower facility meet new requirements of the experimental hardware and may lead to some technical constraints in the setups. In any case the ZARM Drop Tower Operation and Service Company (ZARM FAB mbH) maintaining the drop tower facility is prepared to as-sist experimentalists by offering own air-conditioned laboratories, clean rooms, workshops and consulting engineers, as well as scientific personal. Furthermore, ZARM`s on-site apartment can be used for accommodations during the experiment campaigns. In terms of approaching drop tower experimenting, consulting of experimentalists is mandatory to successfully accomplish the pursued drop or catapult capsule experiment. For this purpose there will be a lot of expertise and help given by ZARM FAB mbH in strong cooperation to-gether with the experimentalists. However, in comparison to standard laboratory setups the drop or catapult capsule setup seems to be completely different at first view. While defining a

  11. The evaporation of the charged and uncharged water drops

    Indian Academy of Sciences (India)

    Drop evaporation; ventilation coefficient; evaporation-effect of electrical forces. ... to study the effect of ventilation on the rate of evaporation of the millimeter sized ... a ventilated drop to reach its equilibrium temperature increases with the drop ...

  12. Theoretical study on separation of H2/HD by multi-column interlinking cryogenic distillation

    International Nuclear Information System (INIS)

    Xia Xiulong

    2010-01-01

    Multi-column interlinking is an effective separation method adopted for enrichment of trace deuterium and tritium. Conceptual design and proper operating mode were proposed for separation of H2/HD by cryogenic distillation with three interlinking columns,and separation performance were obtained.Enrichment of 20 x 10 x 10 achieved with proper operating mode indicating multi-column interlinking is specially suitable for trace composition enrichment. Pressure and reflux ratio' effect on separation performance were also investigated. As pressure increased from 0.6 atm to 1.5 atm, deuterium stripping efficiency dropped from 99.79% to 99.44%; As reflux ratio increased from 3 to 5, deuterium stripping efficiency increased from 99.67% to 99.81%. (authors)

  13. [Optimize dropping process of Ginkgo biloba dropping pills by using design space approach].

    Science.gov (United States)

    Shen, Ji-Chen; Wang, Qing-Qing; Chen, An; Pan, Fang-Lai; Gong, Xing-Chu; Qu, Hai-Bin

    2017-07-01

    In this paper, a design space approach was applied to optimize the dropping process of Ginkgo biloba dropping pills. Firstly, potential critical process parameters and potential process critical quality attributes were determined through literature research and pre-experiments. Secondly, experiments were carried out according to Box-Behnken design. Then the critical process parameters and critical quality attributes were determined based on the experimental results. Thirdly, second-order polynomial models were used to describe the quantitative relationships between critical process parameters and critical quality attributes. Finally, a probability-based design space was calculated and verified. The verification results showed that efficient production of Ginkgo biloba dropping pills can be guaranteed by operating within the design space parameters. The recommended operation ranges for the critical dropping process parameters of Ginkgo biloba dropping pills were as follows: dropping distance of 5.5-6.7 cm, and dropping speed of 59-60 drops per minute, providing a reference for industrial production of Ginkgo biloba dropping pills. Copyright© by the Chinese Pharmaceutical Association.

  14. Bubble and Drop Nonlinear Dynamics (BDND)

    Science.gov (United States)

    Trinh, E. H.; Leal, L. Gary; Thomas, D. A.; Crouch, R. K.

    1998-01-01

    Free drops and bubbles are weakly nonlinear mechanical systems that are relatively simple to characterize experimentally in 1-G as well as in microgravity. The understanding of the details of their motion contributes to the fundamental study of nonlinear phenomena and to the measurement of the thermophysical properties of freely levitated melts. The goal of this Glovebox-based experimental investigation is the low-gravity assessment of the capabilities of a modular apparatus based on ultrasonic resonators and on the pseudo- extinction optical method. The required experimental task is the accurate measurements of the large-amplitude dynamics of free drops and bubbles in the absence of large biasing influences such as gravity and levitation fields. A single-axis levitator used for the positioning of drops in air, and an ultrasonic water-filled resonator for the trapping of air bubbles have been evaluated in low-gravity and in 1-G. The basic feasibility of drop positioning and shape oscillations measurements has been verified by using a laptop-interfaced automated data acquisition and the optical extinction technique. The major purpose of the investigation was to identify the salient technical issues associated with the development of a full-scale Microgravity experiment on single drop and bubble dynamics.

  15. Cavity optomechanics in a levitated helium drop

    Science.gov (United States)

    Childress, L.; Schmidt, M. P.; Kashkanova, A. D.; Brown, C. D.; Harris, G. I.; Aiello, A.; Marquardt, F.; Harris, J. G. E.

    2017-12-01

    We describe a proposal for a type of optomechanical system based on a drop of liquid helium that is magnetically levitated in vacuum. In the proposed device, the drop would serve three roles: its optical whispering-gallery modes would provide the optical cavity, its surface vibrations would constitute the mechanical element, and evaporation of He atoms from its surface would provide continuous refrigeration. We analyze the feasibility of such a system in light of previous experimental demonstrations of its essential components: magnetic levitation of mm-scale and cm-scale drops of liquid He , evaporative cooling of He droplets in vacuum, and coupling to high-quality optical whispering-gallery modes in a wide range of liquids. We find that the combination of these features could result in a device that approaches the single-photon strong-coupling regime, due to the high optical quality factors attainable at low temperatures. Moreover, the system offers a unique opportunity to use optical techniques to study the motion of a superfluid that is freely levitating in vacuum (in the case of 4He). Alternatively, for a normal fluid drop of 3He, we propose to exploit the coupling between the drop's rotations and vibrations to perform quantum nondemolition measurements of angular momentum.

  16. Drop impact entrapment of bubble rings

    KAUST Repository

    Thoraval, M.-J.

    2013-04-29

    We use ultra-high-speed video imaging to look at the initial contact of a drop impacting on a liquid layer. We observe experimentally the vortex street and the bubble-ring entrapments predicted numerically, for high impact velocities, by Thoraval et al. (Phys. Rev. Lett., vol. 108, 2012, article 264506). These dynamics mainly occur within 50 -s after the first contact, requiring imaging at 1 million f.p.s. For a water drop impacting on a thin layer of water, the entrapment of isolated bubbles starts through azimuthal instability, which forms at low impact velocities, in the neck connecting the drop and pool. For Reynolds number Re above -12 000, up to 10 partial bubble rings have been observed at the base of the ejecta, starting when the contact is -20% of the drop size. More regular bubble rings are observed for a pool of ethanol or methanol. The video imaging shows rotation around some of these air cylinders, which can temporarily delay their breakup into micro-bubbles. The different refractive index in the pool liquid reveals the destabilization of the vortices and the formation of streamwise vortices and intricate vortex tangles. Fine-scale axisymmetry is thereby destroyed. We show also that the shape of the drop has a strong influence on these dynamics. 2013 Cambridge University Press.

  17. Drop Testing Representative Multi-Canister Overpacks

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Spencer D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Morton, Dana K. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    The objective of the work reported herein was to determine the ability of the Multi- Canister Overpack (MCO) canister design to maintain its containment boundary after an accidental drop event. Two test MCO canisters were assembled at Hanford, prepared for testing at the Idaho National Engineering and Environmental Laboratory (INEEL), drop tested at Sandia National Laboratories, and evaluated back at the INEEL. In addition to the actual testing efforts, finite element plastic analysis techniques were used to make both pre-test and post-test predictions of the test MCOs structural deformations. The completed effort has demonstrated that the canister design is capable of maintaining a 50 psig pressure boundary after drop testing. Based on helium leak testing methods, one test MCO was determined to have a leakage rate not greater than 1x10-5 std cc/sec (prior internal helium presence prevented a more rigorous test) and the remaining test MCO had a measured leakage rate less than 1x10-7 std cc/sec (i.e., a leaktight containment) after the drop test. The effort has also demonstrated the capability of finite element methods using plastic analysis techniques to accurately predict the structural deformations of canisters subjected to an accidental drop event.

  18. Picobubble enhanced column flotation of fine coal

    Energy Technology Data Exchange (ETDEWEB)

    Tao, D.; Yu, S.; Parekh, B.K. [University of Kentucky, Lexington, KY (United States). Mining Engineering

    2006-07-01

    The purpose is to study the effectiveness of picobubbles in the column flotation of -28 mesh fine coal particles. A flotation column with a picobubble generator was developed and tested for enhancing the recovery of ultrafine coal particles. The picobubble generator was designed using the hydrodynamic cavitation principle. A metallurgical and a steam coal were tested in the apparatus. The results show that the use of picobubbles in a 2in. flotation column increased the recovery of fine coal by 10 to 30%. The recovery rate varied with feed rate, collector dosage, and other column conditions. 40 refs., 8 figs., 2 tabs.

  19. Thermally stable dexsil-400 glass capillary columns

    International Nuclear Information System (INIS)

    Maskarinec, M.P.; Olerich, G.

    1980-01-01

    The factors affecting efficiency, thermal stability, and reproducibility of Dexsil-400 glass capillary columns for gas chromatography in general, and for polycyclic aromatic hydrocarbons (PAHs) in particular were investigated. Columns were drawn from Kimble KG-6 (soda-lime) glass or Kimox (borosilicate) glass. All silylation was carried out at 200 0 C. Columns were coated according to the static method. Freshly prepared, degassed solutions of Dexsil-400 in pentane or methylene chloride were used. Thermal stability of the Dexsil 400 columns with respect to gas chromatography/mass spectrometry (GC/MS) were tested. Column-to-column variability is a function of each step in the fabrication of the columns. The degree of etching, extent of silylation, and stationary phase film thickness must be carefully controlled. The variability in two Dexsil-400 capillary column prepared by etching, silylation with solution of hexa methyl disilazone (HMDS), and static coating is shown and also indicates the excellent selectivity of Dexsil-400 for the separation of alkylated aromatic compounds. The wide temperature range of Dexsil-400 and the high efficiency of the capillary columns also allow the analysis of complex mixtures with minimal prefractionation. Direct injection of a coal liquefaction product is given. Analysis by GC/MS indicated the presence of parent PAHs, alkylated PAHs, nitrogen and sulfur heterocycles, and their alkylated derivatives. 4 figures

  20. Laser surface wakefield in a plasma column

    International Nuclear Information System (INIS)

    Gorbunov, L.M.; Mora, P.; Ramazashvili, R.R.

    2003-01-01

    The structure of the wakefield in a plasma column, produced by a short intense laser pulse, propagating through a gas affected by tunneling ionization is investigated. It is shown that besides the usual plasma waves in the bulk part of the plasma column [see Andreev et al., Phys. Plasmas 9, 3999 (2002)], the laser pulse also generates electromagnetic surface waves propagating along the column boundary. The length of the surface wake wave substantially exceeds the length of the plasma wake wave and its electromagnetic field extends far outside the plasma column

  1. Ultrasonic characterization of single drops of liquids

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Dipen N. (Los Alamos, NM)

    1998-01-01

    Ultrasonic characterization of single drops of liquids. The present invention includes the use of two closely spaced transducers, or one transducer and a closely spaced reflector plate, to form an interferometer suitable for ultrasonic characterization of droplet-size and smaller samples without the need for a container. The droplet is held between the interferometer elements, whose distance apart may be adjusted, by surface tension. The surfaces of the interferometer elements may be readily cleansed by a stream of solvent followed by purified air when it is desired to change samples. A single drop of liquid is sufficient for high-quality measurement. Examples of samples which may be investigated using the apparatus and method of the present invention include biological specimens (tear drops; blood and other body fluid samples; samples from tumors, tissues, and organs; secretions from tissues and organs; snake and bee venom, etc.) for diagnostic evaluation, samples in forensic investigations, and detection of drugs in small quantities.

  2. Which processes drive observed variations of HCHO columns over India?

    Science.gov (United States)

    Surl, Luke; Palmer, Paul I.; González Abad, Gonzalo

    2018-04-01

    2014 is not significantly different from the 2008 to 2015 mean seasonal variation. There are two main loci for biomass burning (the states of Punjab and Haryana, and northeastern India), which we find makes a significant contribution (up to 1×1015 molec cm-2) to observed HCHO columns only during March and April over northeastern India. The slow production of HCHO from propene oxidation results in a smeared hotspot over Delhi that we resolve only on an annual mean timescale by using a temporal oversampling method. Using a linear regression model to relate GEOS-Chem isoprene emissions to HCHO columns we infer seasonal isoprene emissions over two key forest regions from the OMI HCHO column data. We find that the a posteriori emissions are typically lower than the a priori emissions, with a much stronger reduction of emissions during the monsoon season. We find that this reduction in emissions during monsoon months coincides with a large drop in satellite observations of leaf phenology that recovers in post monsoon months. This may signal a forest-scale response to monsoon conditions.

  3. Liquid toroidal drop under uniform electric field

    Science.gov (United States)

    Zabarankin, Michael

    2017-06-01

    The problem of a stationary liquid toroidal drop freely suspended in another fluid and subjected to an electric field uniform at infinity is addressed analytically. Taylor's discriminating function implies that, when the phases have equal viscosities and are assumed to be slightly conducting (leaky dielectrics), a spherical drop is stationary when Q=(2R2+3R+2)/(7R2), where R and Q are ratios of the phases' electric conductivities and dielectric constants, respectively. This condition holds for any electric capillary number, CaE, that defines the ratio of electric stress to surface tension. Pairam and Fernández-Nieves showed experimentally that, in the absence of external forces (CaE=0), a toroidal drop shrinks towards its centre, and, consequently, the drop can be stationary only for some CaE>0. This work finds Q and CaE such that, under the presence of an electric field and with equal viscosities of the phases, a toroidal drop having major radius ρ and volume 4π/3 is qualitatively stationary-the normal velocity of the drop's interface is minute and the interface coincides visually with a streamline. The found Q and CaE depend on R and ρ, and for large ρ, e.g. ρ≥3, they have simple approximations: Q˜(R2+R+1)/(3R2) and CaE∼3 √{3 π ρ / 2 } (6 ln ⁡ρ +2 ln ⁡[96 π ]-9 )/ (12 ln ⁡ρ +4 ln ⁡[96 π ]-17 ) (R+1 ) 2/ (R-1 ) 2.

  4. The new Drop Tower catapult system

    Science.gov (United States)

    von Kampen, Peter; Kaczmarczik, Ulrich; Rath, Hans J.

    2006-07-01

    The Center of Applied Space Technology and Microgravity (ZARM) was founded in 1985 as an institute of the University Bremen, which focuses on research on gravitational and space-related phenomena. In 1988, the construction of the "Drop Tower" began. Since then, the eye-catching tower with a height of 146 m and its characteristic glass roof has become the emblem of the technology centre in Bremen. The Drop Tower Bremen provides a facility for experiments under conditions of weightlessness. Items are considered weightless, when they are in "free fall", i.e. moving without propulsion within the gravity field of the earth. The height of the tower limits the simple "free fall" experiment period to max. 4.74 s. With the inauguration of the catapult system in December 2004, the ZARM is entering a new dimension. This world novelty will meet scientists' demands of extending the experiment period up to 9.5 s. Since turning the first sod on May 3rd, 1988, the later installation of the catapult system has been taken into account by building the necessary chamber under the tower. The catapult system is located in a chamber 10 m below the base of the tower. This chamber is almost completely occupied by 12 huge pressure tanks. These tanks are placed around the elongation of the vacuum chamber of the drop tube. In its centre there is the pneumatic piston that accelerates the drop capsule by the pressure difference between the vacuum inside the drop tube and the pressure inside the tanks. The acceleration level is adjusted by means of a servo hydraulic breaking system controlling the piston velocity. After only a quarter of a second the drop capsule achieves its lift-off speed of 175 km/h. With this exact speed, the capsule will rise up to the top of the tower and afterwards fall down again into the deceleration unit which has been moved under the drop tube in the meantime. The scientific advantages of the doubled experiment time are obvious: during almost 10 s of high

  5. Shuttlecock Velocity of a Badminton Drop Shot

    Directory of Open Access Journals (Sweden)

    Ampharin Ongvises

    2013-01-01

    Full Text Available In a badminton ‘drop shot’, the shuttlecock is struck by a non-rotating racquet at low speed. In this investigation, a shuttlecock was hit by a badminton racquet in a linear collision, simulating a drop shot. The collision was recorded with high-speed video and the velocities of the racquet and shuttlecock determined. The relationship between the impact velocity of the racquet and the velocity of the shuttlecock as it leaves the badminton racquet after collision was found to be proportional over the range tested.

  6. Shuttlecock Velocity of a Badminton Drop Shot

    Directory of Open Access Journals (Sweden)

    Ampharin Ongvises

    2013-12-01

    Full Text Available In a badminton ‘drop shot’, the shuttlecock is struck by a non-rotating racquet at low speed. In this investigation, a shuttlecock was hit by a badminton racquet in a linear collision, simulating a drop shot. The collision was recorded with high-speed video and the velocities of the racquet and shuttlecock determined. The relationship between the impact velocity of the racquet and the velocity of the shuttlecock as it leaves the badminton racquet after collision was found to be proportional over the range tested.

  7. Column: Factors Affecting Data Decay

    Directory of Open Access Journals (Sweden)

    Kevin Fairbanks

    2012-06-01

    Full Text Available In nuclear physics, the phrase decay rate is used to denote the rate that atoms and other particles spontaneously decompose. Uranium-235 famously decays into a variety of daughter isotopes including Thorium and Neptunium, which themselves decay to others. Decay rates are widely observed and wildly different depending on many factors, both internal and external. U-235 has a half-life of 703,800,000 years, for example, while free neutrons have a half-life of 611 seconds and neutrons in an atomic nucleus are stable.We posit that data in computer systems also experiences some kind of statistical decay process and thus also has a discernible decay rate. Like atomic decay, data decay fluctuates wildly. But unlike atomic decay, data decay rates are the result of so many different interplaying processes that we currently do not understand them well enough to come up with quantifiable numbers. Nevertheless, we believe that it is useful to discuss some of the factors that impact the data decay rate, for these factors frequently determine whether useful data about a subject can be recovered by forensic investigation.(see PDF for full column

  8. Gaseous carbon dioxide absorbing column

    International Nuclear Information System (INIS)

    Harashina, Heihachi.

    1994-01-01

    The absorbing column of the present invention comprises a cyclone to which CO 2 gas and Ca(OH) 2 are blown to form CaCO 3 , a water supply means connected to an upper portion of the cyclone for forming a thin water membrane on the inner wall thereof, and a water processing means connected to a lower portion of the cyclone for draining water incorporating CaCO 3 . If a mixed fluid of CO 2 gas and Ca(OH) 2 is blown in a state where a flowing water membrane is formed on the inner wall of the cyclone, formation of CaCO 3 is promoted also in the inside of the cyclone in addition to the formation of CaCO 3 in the course of blowing. Then, formed CaCO 3 is discharged from the lower portion of the cyclone together with downwardly flowing water. With such procedures, solid contents such as CaCO 3 separated at the inner circumferential wall are sent into the thin water membrane, adsorbed and captured, and the solid contents are successively washed out, so that a phenomenon that the solid contents deposit and grow on the inner wall of the cyclone can be prevented effectively. (T.M.)

  9. Rasch models with exchangeable rows and columns

    DEFF Research Database (Denmark)

    Lauritzen, Steffen Lilholt

    The article studies distributions of doubly infinite binary matrices with exchangeable rows and columns which satify the further property that the probability of any $m \\times n$ submatrix is a function of the row- and column sums of that matrix. We show that any such distribution is a (unique...

  10. The general packed column : an analytical solution

    NARCIS (Netherlands)

    Gielen, J.L.W.

    2000-01-01

    The transient behaviour of a packed column is considered. The column, uniformly packed on a macroscopic scale, is multi-structured on the microscopic level: the solid phase consists of particles, which may differ in incidence, shape or size, and other relevant physical properties. Transport in the

  11. Fringing-field effects in acceleration columns

    International Nuclear Information System (INIS)

    Yavor, M.I.; Weick, H.; Wollnik, H.

    1999-01-01

    Fringing-field effects in acceleration columns are investigated, based on the fringing-field integral method. Transfer matrices at the effective boundaries of the acceleration column are obtained, as well as the general transfer matrix of the region separating two homogeneous electrostatic fields with different field strengths. The accuracy of the fringing-field integral method is investigated

  12. Fundamental Drop Dynamics and Mass Transfer Experiments to Support Solvent Extraction Modeling Efforts

    International Nuclear Information System (INIS)

    Christensen, Kristi; Rutledge, Veronica; Garn, Troy

    2011-01-01

    In support of the Nuclear Energy Advanced Modeling Simulation Safeguards and Separations (NEAMS SafeSep) program, the Idaho National Laboratory (INL) worked in collaboration with Los Alamos National Laboratory (LANL) to further a modeling effort designed to predict mass transfer behavior for selected metal species between individual dispersed drops and a continuous phase in a two phase liquid-liquid extraction (LLE) system. The purpose of the model is to understand the fundamental processes of mass transfer that occur at the drop interface. This fundamental understanding can be extended to support modeling of larger LLE equipment such as mixer settlers, pulse columns, and centrifugal contactors. The work performed at the INL involved gathering the necessary experimental data to support the modeling effort. A custom experimental apparatus was designed and built for performing drop contact experiments to measure mass transfer coefficients as a function of contact time. A high speed digital camera was used in conjunction with the apparatus to measure size, shape, and velocity of the drops. In addition to drop data, the physical properties of the experimental fluids were measured to be used as input data for the model. Physical properties measurements included density, viscosity, surface tension and interfacial tension. Additionally, self diffusion coefficients for the selected metal species in each experimental solution were measured, and the distribution coefficient for the metal partitioning between phases was determined. At the completion of this work, the INL has determined the mass transfer coefficient and a velocity profile for drops rising by buoyancy through a continuous medium under a specific set of experimental conditions. Additionally, a complete set of experimentally determined fluid properties has been obtained. All data will be provided to LANL to support the modeling effort.

  13. Center column design of the PLT

    International Nuclear Information System (INIS)

    Citrolo, J.; Frankenberg, J.

    1975-01-01

    The center column of the PLT machine is a secondary support member for the toroidal field coils. Its purpose is to decrease the bending moment at the nose of the coils. The center column design was to have been a stainless steel casting with the toroidal field coils grouped around the casting at installation, trapping it in place. However, the castings developed cracks during fabrication and were unsuitable for use. Installation of the coils proceeded without the center column. It then became necessary to redesign a center column which would be capable of installation with the toroidal field coils in place. The final design consists of three A-286 forgings. This paper discusses the final center column design and the influence that new knowledge, obtained during the power tests, had on the new design

  14. Admittance Scanning for Whole Column Detection.

    Science.gov (United States)

    Stamos, Brian N; Dasgupta, Purnendu K; Ohira, Shin-Ichi

    2017-07-05

    Whole column detection (WCD) is as old as chromatography itself. WCD requires an ability to interrogate column contents from the outside. Other than the obvious case of optical detection through a transparent column, admittance (often termed contactless conductance) measurements can also sense changes in the column contents (especially ionic content) from the outside without galvanic contact with the solution. We propose here electromechanically scanned admittance imaging and apply this to open tubular (OT) chromatography. The detector scans across the column; the length resolution depends on the scanning velocity and the data acquisition frequency, ultimately limited by the physical step resolution (40 μm in the present setup). Precision equal to this step resolution was observed for locating an interface between two immiscible liquids inside a 21 μm capillary. Mechanically, the maximum scanning speed was 100 mm/s, but at 1 kHz sampling rate and a time constant of 25 ms, the highest practical scan speed (no peak distortion) was 28 mm/s. At scanning speeds of 0, 4, and 28 mm/s, the S/N for 180 pL (zone length of 1.9 mm in a 11 μm i.d. column) of 500 μM KCl injected into water was 6450, 3850, and 1500, respectively. To facilitate constant and reproducible contact with the column regardless of minor variations in outer diameter, a double quadrupole electrode system was developed. Columns of significant length (>1 m) can be readily scanned. We demonstrate its applicability with both OT and commercial packed columns and explore uniformity of retention along a column, increasing S/N by stopped-flow repeat scans, etc. as unique applications.

  15. Acoustic forcing of a liquid drop

    Science.gov (United States)

    Lyell, M. J.

    1992-01-01

    The development of systems such as acoustic levitation chambers will allow for the positioning and manipulation of material samples (drops) in a microgravity environment. This provides the capability for fundamental studies in droplet dynamics as well as containerless processing work. Such systems use acoustic radiation pressure forces to position or to further manipulate (e.g., oscillate) the sample. The primary objective was to determine the effect of a viscous acoustic field/tangential radiation pressure forcing on drop oscillations. To this end, the viscous acoustic field is determined. Modified (forced) hydrodynamic field equations which result from a consistent perturbation expansion scheme are solved. This is done in the separate cases of an unmodulated and a modulated acoustic field. The effect of the tangential radiation stress on the hydrodynamic field (drop oscillations) is found to manifest as a correction to the velocity field in a sublayer region near the drop/host interface. Moreover, the forcing due to the radiation pressure vector at the interface is modified by inclusion of tangential stresses.

  16. 49 CFR 178.965 - Drop test.

    Science.gov (United States)

    2010-10-01

    ... Large Packaging design types and performed periodically as specified in § 178.955(e) of this subpart. (b... § 178.960(d). (d) Test method. (1) Samples of all Large Packaging design types must be dropped onto a... be restored to the upright position for observation. (2) Large Packaging design types with a capacity...

  17. Predicting Students Drop Out: A Case Study

    Science.gov (United States)

    Dekker, Gerben W.; Pechenizkiy, Mykola; Vleeshouwers, Jan M.

    2009-01-01

    The monitoring and support of university freshmen is considered very important at many educational institutions. In this paper we describe the results of the educational data mining case study aimed at predicting the Electrical Engineering (EE) students drop out after the first semester of their studies or even before they enter the study program…

  18. Modeling merging behavior at lane drops.

    Science.gov (United States)

    2015-02-01

    In work-zone configurations where lane drops are present, merging of traffic at the taper presents an operational concern. In : addition, as flow through the work zone is reduced, the relative traffic safety of the work zone is also reduced. Improvin...

  19. Pressure drops in low pressure local boiling

    International Nuclear Information System (INIS)

    Courtaud, Michel; Schleisiek, Karl

    1969-01-01

    For prediction of flow reduction in nuclear research reactors, it was necessary to establish a correlation giving the pressure drop in subcooled boiling for rectangular channels. Measurements of pressure drop on rectangular channel 60 and 90 cm long and with a coolant gap of 1,8 and 3,6 mm were performed in the following range of parameters. -) 3 < pressure at the outlet < 11 bars abs; -) 25 < inlet temperature < 70 deg. C; -) 200 < heat flux < 700 W/cm 2 . It appeared that the usual parameter, relative length in subcooled boiling, was not sufficient to correlate experimental pressure losses on the subcooled boiling length and that there was a supplementary influence of pressure, heat flux and subcooling. With an a dimensional parameter including these terms a correlation was established with an error band of ±10%. With a computer code it was possible to derive the relation giving the overall pressure drop along the channel and to determine the local gradients of pressure drop. These local gradients were then correlated with the above parameter calculated in local conditions. 95 % of the experimental points were computed with an accuracy of ±10% with this correlation of gradients which can be used for non-uniform heated channels. (authors) [fr

  20. Predicting students drop out : a case study

    NARCIS (Netherlands)

    Dekker, G.W.; Pechenizkiy, M.; Vleeshouwers, J.M.; Barnes, T.; Desmarais, M.; Romero, C.; Ventura, S.

    2009-01-01

    The monitoring and support of university freshmen is considered very important at many educational institutions. In this paper we describe the results of the educational data mining case study aimed at predicting the Electrical Engineering (EE) students drop out after the first semester of their

  1. Potential drop sensors for sodium loops

    International Nuclear Information System (INIS)

    Selvaraj, R.

    1978-11-01

    Potential drop sensors to detect the presence or the absence of sodium in pipe lines are described. These are very handy during loop charging and dumping operations. Their suitability to detect level surges and to monitor continuous level of liquid metals in certain applications is discussed. (author)

  2. The liquid drop nature of nucleoli.

    Science.gov (United States)

    Marko, John F

    2012-03-01

    Nucleoli are prominent subnuclear organelles, and are known to be hubs of ribosome synthesis. A recent study of Brangwynne et al. reports that the nucleoli of Xenopus oocytes display "liquid drop" behavior, suggesting that nucleolar structure may be driven by rather simple physical principles.

  3. Biomechanical analysis of drop and countermovement jumps

    NARCIS (Netherlands)

    Bobbert, M. F.; Mackay, M.T.; Schinkelshoek, D.; Huijing, P. A.; van Ingen Schenau, G. J.

    For 13 subjects the performance of drop jumps from a height of 40 cm (DJ) and of countermovement jumps (CMJ) was analysed and compared. From force plate and cine data biomechanical variables including forces, moments, power output and amount of work done were calculated for hip, knee and ankle

  4. The stability of cylindrical pendant drops

    CERN Document Server

    McCuan, John

    2018-01-01

    The author considers the stability of certain liquid drops in a gravity field satisfying a mixed boundary condition. He also considers as special cases portions of cylinders that model either the zero gravity case or soap films with the same kind of boundary behavior.

  5. Scaling the drop size in coflow experiments

    International Nuclear Information System (INIS)

    Castro-Hernandez, E; Gordillo, J M; Gundabala, V; Fernandez-Nieves, A

    2009-01-01

    We perform extensive experiments with coflowing liquids in microfluidic devices and provide a closed expression for the drop size as a function of measurable parameters in the jetting regime that accounts for the experimental observations; this expression works irrespective of how the jets are produced, providing a powerful design tool for this type of experiments.

  6. Scaling the drop size in coflow experiments

    Energy Technology Data Exchange (ETDEWEB)

    Castro-Hernandez, E; Gordillo, J M [Area de Mecanica de Fluidos, Universidad de Sevilla, Avenida de los Descubrimientos s/n, 41092 Sevilla (Spain); Gundabala, V; Fernandez-Nieves, A [School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)], E-mail: jgordill@us.es

    2009-07-15

    We perform extensive experiments with coflowing liquids in microfluidic devices and provide a closed expression for the drop size as a function of measurable parameters in the jetting regime that accounts for the experimental observations; this expression works irrespective of how the jets are produced, providing a powerful design tool for this type of experiments.

  7. Goose droppings as food for reindeer

    NARCIS (Netherlands)

    van der Wal, R; Loonen, MJJE

    Feeding conditions for Svalbard reindeer, Rangifer tarandus platyrhynchus, on Spitsbergen are generally poor, owing to low availability of forage. We report on coprophagy: the use of goose faeces as an alternative food source for reindeer. Fresh droppings from Barnacle Geese, Branta leucopsis,

  8. Drop impact entrapment of bubble rings

    KAUST Repository

    Thoraval, M.-J.; Takehara, K.; Etoh, T.G.; Thoroddsen, Sigurdur T

    2013-01-01

    We use ultra-high-speed video imaging to look at the initial contact of a drop impacting on a liquid layer. We observe experimentally the vortex street and the bubble-ring entrapments predicted numerically, for high impact velocities, by Thoraval et

  9. Ultra high pressure liquid chromatography. Column permeability and changes of the eluent properties.

    Science.gov (United States)

    Gritti, Fabrice; Guiochon, Georges

    2008-04-11

    The behavior of four similar liquid chromatography columns (2.1mm i.d. x 30, 50, 100, and 150 mm, all packed with fine particles, average d(p) approximately 1.7 microm, of bridged ethylsiloxane/silica hybrid-C(18), named BEH-C(18)) was studied in wide ranges of temperature and pressure. The pressure and the temperature dependencies of the viscosity and the density of the eluent (pure acetonitrile) along the columns were also derived, using the column permeabilities and applying the Kozeny-Carman and the heat balance equations. The heat lost through the external surface area of the chromatographic column was directly derived from the wall temperature of the stainless steel tube measured with a precision of +/-0.2 degrees C in still air and +/-0.1 degrees C in the oven compartment. The variations of the density and viscosity of pure acetonitrile as a function of the temperature and pressure was derived from empirical correlations based on precise experimental data acquired between 298 and 373 K and at pressures up to 1.5 kbar. The measurements were made with the Acquity UPLC chromatograph that can deliver a maximum flow rate of 2 mL/min and apply a maximum column inlet pressure of 1038 bar. The average Kozeny-Carman permeability constant of the columns was 144+/-3.5%. The temperature hence the viscosity and the density profiles of the eluent along the column deviate significantly from linear behavior under high-pressure gradients. For a 1000 bar pressure drop, we measured DeltaT=25-30 K, (Deltaeta/eta) approximately 100%, and (Deltarho/rho) approximately 10%. These results show that the radial temperature profiles are never fully developed within 1% for any of the columns, even under still-air conditions. This represents a practical advantage regarding the apparent column efficiency at high flow rates, since the impact of the differential analyte velocity between the column center and the column wall is not maximum. The interpretation of the peak profiles recorded in

  10. Annual Occurrence of Meteorite-Dropping Fireballs

    Science.gov (United States)

    Konovalova, Natalia; Jopek, Tadeusz J.

    2016-07-01

    The event of Chelyabinsk meteorite has brought about change the earlier opinion about limits of the sizes of potentially dangerous asteroidal fragments that crossed the Earth's orbit and irrupted in the Earth's atmosphere making the brightest fireball. The observations of the fireballs by fireball networks allows to get the more precise data on atmospheric trajectories and coordinates of predicted landing place of the meteorite. For the reason to search the periods of fireball activity is built the annual distribution of the numbers of meteorites with the known fall dates and of the meteorite-dropping fireballs versus the solar longitude. The resulting profile of the annual activity of meteorites and meteorite-dropping fireballs shows several periods of increased activity in the course of the year. The analysis of the atmospheric trajectories and physical properties of sporadic meteorite-dropping fireballs observed in Tajikistan by instrumental methods in the summer‒autumn periods of increased fireballs activity has been made. As a result the structural strength, the bulk density and terminal mass of the studied fireballs that can survive in the Earth atmosphere and became meteorites was obtained. From the photographic IAU MDC_2003 meteor database and published sources based on the orbit proximity as determined by D-criterion of Southworth and Hawkins the fireballs that could be the members of group of meteorite-dropping fireballs, was found. Among the near Earth's objects (NEOs) the searching for parent bodies for meteorite-dropping fireballs was made and the evolution of orbits of these objects in the past on a long interval of time was investigated.

  11. Effect of IX column maintenance on carbon-14 concentration in moderator systems

    International Nuclear Information System (INIS)

    Gallagher, C.L.; Tripple, A.W.

    2006-01-01

    The radionuclide 14 C is produced in CANDU reactors primarily by the (n,α) reaction with 17 O. Because of high neutron fluxes in the core, the majority of the 14 C (94.5%) is produced in the moderator. In the moderator system, 14 C is present mainly as CO 2 in the cover gas in dynamic equilibrium with dissolved carbonates, bicarbonates and CO 2 in the moderator water. Emissions of 14 C from reactors occur through venting or leakage of the cover gas. By controlling the dissolved carbonates in the moderator water with an ion exchange (IX) purification system, the amount of 14 C in the cover gas is minimized and thus the emissions of 14 C can be reduced. A study was conducted to measure the 14 C concentrations in the moderator system at Gentilly 2 in order to determine the effectiveness of the purification system in removing 14 C. Moderator water samples were obtained from the inlet and outlet of the purification system from 2004 January 14 to July 12, covering the operation of two IX columns (IX-1 and IX-3). The moderator water samples contained high levels of tritium (∼2 TBq·L -1 ). As both tritium and 14 C are β-radiation emitters, direct counting of moderator water for 14 C is impossible as the signal due to tritium dominates over that of other β-emitters. Therefore, a procedure developed by Caron et al. was used in this study, which involved acidifying the sample to release the dissolved 14 CO 2 as gas and collecting the 14 CO 2 in a base (NaOH), which could then be measured by liquid scintillation counting to determine the 14 C concentration. Both of the IX columns started with 14 C removal efficiencies of about 95%. The efficiency began to decrease almost immediately with the IX-1 column dropping to 80% efficiency after ∼1115 hours. This drop in efficiency also led to an increase in the inlet concentration over time. IX-1 column was removed from service after ∼1745 hours with a 14 C removal efficiency of ∼31%. IX-3 column was then placed in service

  12. Collapse of tall granular columns in fluid

    Science.gov (United States)

    Kumar, Krishna; Soga, Kenichi; Delenne, Jean-Yves

    2017-06-01

    Avalanches, landslides, and debris flows are geophysical hazards, which involve rapid mass movement of granular solids, water, and air as a multi-phase system. In order to describe the mechanism of immersed granular flows, it is important to consider both the dynamics of the solid phase and the role of the ambient fluid. In the present study, the collapse of a granular column in fluid is studied using 2D LBM - DEM. The flow kinematics are compared with the dry and buoyant granular collapse to understand the influence of hydrodynamic forces and lubrication on the run-out. In the case of tall columns, the amount of material destabilised above the failure plane is larger than that of short columns. Therefore, the surface area of the mobilised mass that interacts with the surrounding fluid in tall columns is significantly higher than the short columns. This increase in the area of soil - fluid interaction results in an increase in the formation of turbulent vortices thereby altering the deposit morphology. It is observed that the vortices result in the formation of heaps that significantly affects the distribution of mass in the flow. In order to understand the behaviour of tall columns, the run-out behaviour of a dense granular column with an initial aspect ratio of 6 is studied. The collapse behaviour is analysed for different slope angles: 0°, 2.5°, 5° and 7.5°.

  13. Field Applications of Gamma Column Scanning Technology

    International Nuclear Information System (INIS)

    Aquino, Denis D.; Mallilin, Janice P.; Nuñez, Ivy Angelica A.; Bulos, Adelina DM.

    2015-01-01

    The Isotope Techniques Section (ITS) under the Nuclear Service Division (NSD) of the Philippine Nuclear Research Institute (PNRI) conducts services, research and development on radioisotope and sealed source application in the industry. This aims to benefit the manufacturing industries such as petroleum, petrochemical, chemical, energy, waste, column treatment plant, etc. through on line inspection and troubleshooting of a process vessel, column or pipe that could optimize the process operation and increase production efficiency. One of the most common sealed source techniques for industrial applications is the gamma column scanning technology. Gamma column scanning technology is an established technique for inspection, analysis and diagnosis of industrial columns for process optimization, solving operational malfunctions and management of resources. It is a convenient non-intrusive, cost effective and cost-efficient technique to examine inner details of an industrial process vessel such as a distillation column while it is in operation. The Philippine Nuclear Research Institute (PNRI) recognize the importance and benefits of this technology and has implemented activities to make gamma column scanning locally available to benefit the Philippine industries. Continuous effort for capacity building is being pursued thru the implementation of in-house and on-the-job training abroad and upgrading of equipment. (author)

  14. Dynamic effects of diabatization in distillation columns

    DEFF Research Database (Denmark)

    Bisgaard, Thomas; Huusom, Jakob Kjøbsted; Abildskov, Jens

    2013-01-01

    The dynamic effects of diabatization in distillation columns are investigated in simulation emphasizing the heat-integrated distillation column (HIDiC). A generic, dynamic, first-principle model has been formulated, which is flexible enough to describe various diabatic distillation configurations....... Dynamic Relative Gain Array and Singular Value Analysis have been applied in a comparative study of a conventional distillation column and a HIDiC. The study showed increased input-output coupling due to diabatization. Feasible SISO control structures for the HIDiC were also found and control...

  15. Dynamic Effects of Diabatization in Distillation Columns

    DEFF Research Database (Denmark)

    Bisgaard, Thomas; Huusom, Jakob Kjøbsted; Abildskov, Jens

    2012-01-01

    The dynamic eects of diabatization in distillation columns are investigated in simulation with primary focus on the heat-integrated distillation column (HIDiC). A generic, dynamic, rst-principle model has been formulated, which is exible to describe various diabatic distillation congurations....... Dynamic Relative Gain Array and Singular Value Analysis have been applied in a comparative study of a conventional distillation column and a HIDiC. The study showed increased input-output coupling due to diabatization. Feasible SISO control structures for the HIDiC were also found. Control...

  16. Column-oriented database management systems

    OpenAIRE

    Možina, David

    2013-01-01

    In the following thesis I will present column-oriented database. Among other things, I will answer on a question why there is a need for a column-oriented database. In recent years there have been a lot of attention regarding a column-oriented database, even if the existence of a columnar database management systems dates back in the early seventies of the last century. I will compare both systems for a database management – a colum-oriented database system and a row-oriented database system ...

  17. Coalescence collision of liquid drops I: Off-center collisions of equal-size drops

    Directory of Open Access Journals (Sweden)

    Alejandro Acevedo-Malavé

    2011-09-01

    Full Text Available The Smoothed Particle Hydrodynamics method (SPH is used here to model off-center collisions of equal-size liquid drops in a three-dimensional space. In this study the Weber number is calculated for several conditions of the droplets dynamics and the velocity vector fields formed inside the drops during the collision process are shown. For the permanent coalescence the evolution of the kinetic and internal energy is shown and also the approaching to equilibrium of the resulting drop. Depending of the Weber number three possible outcomes for the collision of droplets is obtained: permanent coalescence, flocculation and fragmentation. The fragmentation phenomena are modeled and the formation of small satellite drops can be seen. The ligament that is formed follows the “end pinching” mechanism and it is transformed into a flat structure.

  18. Absorption column working study for iodine formed in spent fuel reprocessing plant gaseous effluents: hydrodynamic and mass transfer

    International Nuclear Information System (INIS)

    Vignau, B.

    1986-09-01

    The hydrodynamic and matter transfer parameters has been studied on absorption columns destined to trap iodine issued of spent fuel reprocessing plants. These columns have different packing - Raschig rings (glass, ceramic, PVC, steel) - Berl saddles (ceramic) - Weaved metallic thread (steel). The effect of dimension and of packing structure on gas pressure drop and on liquid holdup has been evaluated. The partial transfer coefficients of I 2 -Air-NaOH system has been the object of an experimental study. This system can be simulated by CO 2 -Air-NaOH system [fr

  19. Height determination at the transfer unit in isotopic distillation of hydrogen on type B7 ordered column packing

    International Nuclear Information System (INIS)

    Pop, F.; Croitoru, C.; Peculea, M.

    2001-01-01

    Owing to the low pressure drop implied by ordered column packings these are often utilized for vacuum distillations and separation of mixtures in which the important component occurs at a very low concentration, as for instance is the case of water, deuterium or oxygen isotopic distillation. The paper presents a model for determination of the height of transfer unit (HTU) in the hydrogen isotopic distillation installation, equipped with ordered column packing of B7 type. The computed values for HUT based on the analogy between heat, moment and mass transfer, were compared with the experimental data

  20. Investigating the formation of acid mine drainage of Toledo pyrite concentrate using column cells

    Science.gov (United States)

    Aguila, Diosa Marie

    2018-01-01

    Acid mine drainage (AMD) is an inevitable problem in mining and has adverse effects in water quality. Studying AMD formation will be valuable in controlling the composition of mine waters and in planning the rehabilitation method for a mine. In this research, kinetics of AMD formation of Toledo pyrite was studied using two column experiments. The mechanisms of AMD formation and the effects of various factors on pH drop were first studied. Another column test was done for validation and to study the role of Fe2+/Fe3+ ratio in the change of leachate pH. The first experiment revealed that time and particle size are the most significant factors. It was also observed that the sudden pH drop during the starting hours was due to cracks formed from beneficiation, and the formation of Fe(OH)3. The laddered behavior of pH thereafter was due to decrease in formation of Fe(OH)3, and the precipitates in pyrite surface that lowered the surface area available for pyrite oxidation. The results of the second experiment validated the laddered behavior of pH. It was also observed that particle size distribution and pyrite surface were affected by the change in pH. Fe2+/Fe3+ ratio of leachate generally decreased as pH dropped.

  1. Drop evaporation and triple line dynamics

    Science.gov (United States)

    Sobac, Benjamin; Brutin, David; Gavillet, Jerome; Université de Provence Team; Cea Liten Team

    2011-03-01

    Sessile drop evaporation is a phenomenon commonly came across in nature or in industry with cooling, paintings or DNA mapping. However, the evaporation of a drop deposited on a substrate is not completely understood due to the complexity of the problem. Here we investigate, with several nano-coating of the substrate (PTFE, SiOx, SiOc and CF), the influence of the dynamic of the triple line on the evaporation process. The experiment consists in analyzing simultaneously the motion of the triple line, the kinetics of evaporation, the internal thermal motion and the heat and mass transfer. Measurements of temperature, heat-flux and visualizations with visible and infrared cameras are performed. The dynamics of the evaporative heat flux appears clearly different depending of the motion of the triple line

  2. How drops start sliding over solid surfaces

    Science.gov (United States)

    Gao, Nan; Geyer, Florian; Pilat, Dominik W.; Wooh, Sanghyuk; Vollmer, Doris; Butt, Hans-Jürgen; Berger, Rüdiger

    2018-02-01

    It has been known for more than 200 years that the maximum static friction force between two solid surfaces is usually greater than the kinetic friction force--the force that is required to maintain the relative motion of the surfaces once the static force has been overcome. But the forces that impede the lateral motion of a drop of liquid on a solid surface are not as well characterized, and there is a lack of understanding about liquid-solid friction in general. Here, we report that the lateral adhesion force between a liquid drop and a solid can also be divided into a static and a kinetic regime. This striking analogy with solid-solid friction is a generic phenomenon that holds for liquids of different polarities and surface tensions on smooth, rough and structured surfaces.

  3. A pressure drop model for PWR grids

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dong Seok; In, Wang Ki; Bang, Je Geon; Jung, Youn Ho; Chun, Tae Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    A pressure drop model for the PWR grids with and without mixing device is proposed at single phase based on the fluid mechanistic approach. Total pressure loss is expressed in additive way for form and frictional losses. The general friction factor correlations and form drag coefficients available in the open literatures are used to the model. As the results, the model shows better predictions than the existing ones for the non-mixing grids, and reasonable agreements with the available experimental data for mixing grids. Therefore it is concluded that the proposed model for pressure drop can provide sufficiently good approximation for grid optimization and design calculation in advanced grid development. 7 refs., 3 figs., 3 tabs. (Author)

  4. Coupling slots without shunt impedance drop

    International Nuclear Information System (INIS)

    Balleyguier, P.

    1996-01-01

    It is well known that coupling slots between adjacent cells in a π-mode structure reduce shunt impedance per unit length with respect to single cell cavities. To design optimized coupling slots, one has to answer the following question: for a given coupling factor, what shape, dimension, position and number of slots lead to the lowest shunt impedance drop? A numerical study using the 3D code MAFIA has been carried out. The aim was to design the 352 MHz cavities for the high intensity proton accelerator of the TRISPAL project. The result is an unexpected set of four 'petal' slots. Such slots should lead to a quasi-negligible drop in shunt impedance: about -1% on average, for particle velocity from 0.4 c to 0.8 c. (author)

  5. A pressure drop model for PWR grids

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dong Seok; In, Wang Ki; Bang, Je Geon; Jung, Youn Ho; Chun, Tae Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A pressure drop model for the PWR grids with and without mixing device is proposed at single phase based on the fluid mechanistic approach. Total pressure loss is expressed in additive way for form and frictional losses. The general friction factor correlations and form drag coefficients available in the open literatures are used to the model. As the results, the model shows better predictions than the existing ones for the non-mixing grids, and reasonable agreements with the available experimental data for mixing grids. Therefore it is concluded that the proposed model for pressure drop can provide sufficiently good approximation for grid optimization and design calculation in advanced grid development. 7 refs., 3 figs., 3 tabs. (Author)

  6. Hospital executive compensation act dropped from ballot

    Directory of Open Access Journals (Sweden)

    Robbins RA

    2016-08-01

    Full Text Available The Hospital Executive Compensation Act did not qualify for the November 8, 2016 ballot in Arizona as a state statute (1. The Service Employees International Union (SEIU dropped the initiative just before arguments were to begin in a lawsuit that challenged the legality of signature gatherers who failed to register with the state. The measure would have limited total pay for executives, administrators and managers of healthcare facilities and entities to the annual salary of the President of the United States. A similar measure in California was also dropped by the SEIU in 2014. Supporters of the proposal said it would decrease escalating healthcare costs. Opponents of the measure, including the Arizona Chamber of Commerce who filed the suit challenging the proposition, alleged that it would lead to poorer healthcare. However, a survey conducted by the Southwest Journal of Pulmonary and Critical Care showed that most supported the measure and felt that it would not lead to poorer healthcare (2.

  7. Semisupervised Community Detection by Voltage Drops

    Directory of Open Access Journals (Sweden)

    Min Ji

    2016-01-01

    Full Text Available Many applications show that semisupervised community detection is one of the important topics and has attracted considerable attention in the study of complex network. In this paper, based on notion of voltage drops and discrete potential theory, a simple and fast semisupervised community detection algorithm is proposed. The label propagation through discrete potential transmission is accomplished by using voltage drops. The complexity of the proposal is OV+E for the sparse network with V vertices and E edges. The obtained voltage value of a vertex can be reflected clearly in the relationship between the vertex and community. The experimental results on four real networks and three benchmarks indicate that the proposed algorithm is effective and flexible. Furthermore, this algorithm is easily applied to graph-based machine learning methods.

  8. Sessile Drop Evaporation and Leidenfrost Phenomenon

    OpenAIRE

    A. K. Mozumder; M. R. Ullah; A. Hossain; M. A. Islam

    2010-01-01

    Problem statement: Quenching and cooling are important process in manufacturing industry for controlling the mechanical properties of materials, where evaporation is a vital mode of heat transfer. Approach: This study experimentally investigated the evaporation of sessile drop for four different heated surfaces of Aluminum, Brass, Copper and Mild steel with a combination of four different liquids as Methanol, Ethanol, Water and NaCl solution. The time of evaporation for the droplet on the hot...

  9. Liquid drop parameters for hot nuclei

    International Nuclear Information System (INIS)

    Guet, C.; Strumberger, E.; Brack, M.

    1988-01-01

    Using the semiclassical extended Thomas-FERMI (ETF) density variational method, we derived selfconsistently the liquid drop model (LDM) coefficients for the free energy of hot nuclear systems from a realistic effective interaction (Skyrme SkM*). We expand the temperature (T) dependence of these coefficients up to the second order in T and test their application to the calculation of the fission barriers of the nuclei 208 Pb and 240 Pu

  10. Impact of water drops on small targets

    Science.gov (United States)

    Rozhkov, A.; Prunet-Foch, B.; Vignes-Adler, M.

    2002-10-01

    The collision of water drops against small targets was studied experimentally by means of a high-speed photography technique. The drop impact velocity was about 3.5 m/s. Drop diameters were in the range of 2.8-4.0 mm. The target was a stainless steel disk of 3.9 mm diameter. The drop spread beyond the target like a central cap surrounded by a thin, slightly conical lamella bounded by a thicker rim. By mounting a small obstacle near the target, surface-tension driven Mach waves in the flowing lamella were generated, which are formally equivalent to the familiar compressibility driven Mach waves in gas dynamics. From the measurement of the Mach angle, the values of some flow parameters could be obtained as functions of time, which provided insight into the flow structure. The liquid flowed from the central cap to the liquid rim through the thin lamella at constant momentum flux. At a certain stage of the process, most of the liquid accumulated in the rim and the internal part of the lamella became metastable. In this situation, a rupture wave propagating through the metastable internal part of the lamella caused the rim to retract while forming outwardly directed secondary jets. The jets disintegrated into secondary droplets due to the Savart-Plateau-Rayleigh instability. Prior to the end of the retraction, an internal circular wave of rupture was formed. It originated at the target and then it propagated to meet the retracting rim. Their meeting resulted in a crown of tiny droplets. A theoretical analysis of the ejection process is proposed.

  11. The jet mass distribution after Soft Drop

    Science.gov (United States)

    Marzani, Simone; Schunk, Lais; Soyez, Gregory

    2018-02-01

    We present a first-principle computation of the mass distribution of jets which have undergone the grooming procedure known as Soft Drop. This calculation includes the resummation of the large logarithms of the jet mass over its transverse momentum, up to next-to-logarithmic accuracy, matched to exact fixed-order results at next-to-leading order. We also include non-perturbative corrections obtained from Monte-Carlo simulations and discuss analytic expressions for hadronisation and Underlying Event effects.

  12. Family of columns isospectral to gravity-loaded columns with tip force: A discrete approach

    Science.gov (United States)

    Ramachandran, Nirmal; Ganguli, Ranjan

    2018-06-01

    A discrete model is introduced to analyze transverse vibration of straight, clamped-free (CF) columns of variable cross-sectional geometry under the influence of gravity and a constant axial force at the tip. The discrete model is used to determine critical combinations of loading parameters - a gravity parameter and a tip force parameter - that cause onset of dynamic instability in the CF column. A methodology, based on matrix-factorization, is described to transform the discrete model into a family of models corresponding to weightless and unloaded clamped-free (WUCF) columns, each with a transverse vibration spectrum isospectral to the original model. Characteristics of models in this isospectral family are dependent on three transformation parameters. A procedure is discussed to convert the isospectral discrete model description into geometric description of realistic columns i.e. from the discrete model, we construct isospectral WUCF columns with rectangular cross-sections varying in width and depth. As part of numerical studies to demonstrate efficacy of techniques presented, frequency parameters of a uniform column and three types of tapered CF columns under different combinations of loading parameters are obtained from the discrete model. Critical combinations of these parameters for a typical tapered column are derived. These results match with published results. Example CF columns, under arbitrarily-chosen combinations of loading parameters are considered and for each combination, isospectral WUCF columns are constructed. Role of transformation parameters in determining characteristics of isospectral columns is discussed and optimum values are deduced. Natural frequencies of these WUCF columns computed using Finite Element Method (FEM) match well with those of the given gravity-loaded CF column with tip force, hence confirming isospectrality.

  13. Unbonded Prestressed Columns for Earthquake Resistance

    Science.gov (United States)

    2012-05-01

    Modern structures are able to survive significant shaking caused by earthquakes. By implementing unbonded post-tensioned tendons in bridge columns, the damage caused by an earthquake can be significantly lower than that of a standard reinforced concr...

  14. PRTR ion exchange vault column sampling

    International Nuclear Information System (INIS)

    Cornwell, B.C.

    1995-01-01

    This report documents ion exchange column sampling and Non Destructive Assay (NDA) results from activities in 1994, for the Plutonium Recycle Test Reactor (PRTR) ion exchange vault. The objective was to obtain sufficient information to prepare disposal documentation for the ion exchange columns found in the PRTR Ion exchange vault. This activity also allowed for the monitoring of the liquid level in the lower vault. The sampling activity contained five separate activities: (1) Sampling an ion exchange column and analyzing the ion exchange media for purpose of waste disposal; (2) Gamma and neutron NDA testing on ion exchange columns located in the upper vault; (3) Lower vault liquid level measurement; (4) Radiological survey of the upper vault; and (5) Secure the vault pending waste disposal

  15. Sporadic frame dropping impact on quality perception

    Science.gov (United States)

    Pastrana-Vidal, Ricardo R.; Gicquel, Jean Charles; Colomes, Catherine; Cherifi, Hocine

    2004-06-01

    Over the past few years there has been an increasing interest in real time video services over packet networks. When considering quality, it is essential to quantify user perception of the received sequence. Severe motion discontinuities are one of the most common degradations in video streaming. The end-user perceives a jerky motion when the discontinuities are uniformly distributed over time and an instantaneous fluidity break is perceived when the motion loss is isolated or irregularly distributed. Bit rate adaptation techniques, transmission errors in the packet networks or restitution strategy could be the origin of this perceived jerkiness. In this paper we present a psychovisual experiment performed to quantify the effect of sporadically dropped pictures on the overall perceived quality. First, the perceptual detection thresholds of generated temporal discontinuities were measured. Then, the quality function was estimated in relation to a single frame dropping for different durations. Finally, a set of tests was performed to quantify the effect of several impairments distributed over time. We have found that the detection thresholds are content, duration and motion dependent. The assessment results show how quality is impaired by a single burst of dropped frames in a 10 sec sequence. The effect of several bursts of discarded frames, irregularly distributed over the time is also discussed.

  16. High-Speed Interferometry Under Impacting Drops

    KAUST Repository

    Langley, Kenneth R.; Li, Erqiang; Thoroddsen, Sigurdur T

    2017-01-01

    Over the last decade the rapid advances in high-speed video technology, have opened up to study many multi-phase fluid phenomena, which tend to occur most rapidly on the smallest length-scales. One of these is the entrapment of a small bubble under a drop impacting onto a solid surface. Here we have gone from simply observing the presence of the bubble to detailed imaging of the formation of a lubricating air-disc under the drop center and its subsequent contraction into the bubble. Imaging the full shape-evolution of the air-disc has required μm and sub-μs space and time resolutions. Time-resolved 200 ns interferometry with monochromatic light, has allowed us to follow individual fringes to obtain absolute air-layer thicknesses, based on the eventual contact with the solid. We can follow the evolution of the dimple shape as well as the compression of the gas. The improved imaging has also revealed new levels of detail, like the nature of the first contact which produces a ring of micro-bubbles, highlighting the influence of nanometric surface roughness. Finally, for impacts of ultra-viscous drops we see gliding on ~100 nm thick rarified gas layers, followed by extreme wetting at numerous random spots.

  17. High-Speed Interferometry Under Impacting Drops

    KAUST Repository

    Langley, Kenneth R.

    2017-08-31

    Over the last decade the rapid advances in high-speed video technology, have opened up to study many multi-phase fluid phenomena, which tend to occur most rapidly on the smallest length-scales. One of these is the entrapment of a small bubble under a drop impacting onto a solid surface. Here we have gone from simply observing the presence of the bubble to detailed imaging of the formation of a lubricating air-disc under the drop center and its subsequent contraction into the bubble. Imaging the full shape-evolution of the air-disc has required μm and sub-μs space and time resolutions. Time-resolved 200 ns interferometry with monochromatic light, has allowed us to follow individual fringes to obtain absolute air-layer thicknesses, based on the eventual contact with the solid. We can follow the evolution of the dimple shape as well as the compression of the gas. The improved imaging has also revealed new levels of detail, like the nature of the first contact which produces a ring of micro-bubbles, highlighting the influence of nanometric surface roughness. Finally, for impacts of ultra-viscous drops we see gliding on ~100 nm thick rarified gas layers, followed by extreme wetting at numerous random spots.

  18. Eye-Drops for Activation of DREADDs

    Directory of Open Access Journals (Sweden)

    William T. Keenan

    2017-11-01

    Full Text Available Designer Receptors Exclusively Activated by Designer Drugs (DREADDs are an important tool for modulating and understanding neural circuits. Depending on the DREADD system used, DREADD-targeted neurons can be activated or repressed in vivo following a dose of the DREADD agonist clozapine-N-oxide (CNO. Because DREADD experiments often involve behavioral assays, the method of CNO delivery is important. Currently, the most common delivery method is intraperitoneal (IP injection. IP injection is both a fast and reliable technique, but it is painful and stressful particularly when many injections are required. We sought an alternative CNO delivery paradigm, which would retain the speed and reliability of IP injections without being as invasive. Here, we show that CNO can be effectively delivered topically via eye-drops. Eye-drops robustly activated DREADD-expressing neurons in the brain and peripheral tissues and does so at the same dosages as IP injection. Eye-drops provide an easier, less invasive and less stressful method for activating DREADDs in vivo.

  19. Ultrasonic characterization of single drops of liquids

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, D.N.

    1998-04-14

    Ultrasonic characterization of single drops of liquids is disclosed. The present invention includes the use of two closely spaced transducers, or one transducer and a closely spaced reflector plate, to form an interferometer suitable for ultrasonic characterization of droplet-size and smaller samples without the need for a container. The droplet is held between the interferometer elements, whose distance apart may be adjusted, by surface tension. The surfaces of the interferometer elements may be readily cleansed by a stream of solvent followed by purified air when it is desired to change samples. A single drop of liquid is sufficient for high-quality measurement. Examples of samples which may be investigated using the apparatus and method of the present invention include biological specimens (tear drops; blood and other body fluid samples; samples from tumors, tissues, and organs; secretions from tissues and organs; snake and bee venom, etc.) for diagnostic evaluation, samples in forensic investigations, and detection of drugs in small quantities. 5 figs.

  20. Capacity of columns with splice imperfections

    International Nuclear Information System (INIS)

    Popov, E.P.; Stephen, R.M.

    1977-01-01

    To study the behavior of spliced columns subjected to tensile forces simulating situations which may develop in an earthquake, all of the spliced specimens were tested to failure in tension after first having been subjected to large compressive loads. The results of these tests indicate that the lack of perfect contact at compression splices of columns may not be important, provided that the gaps are shimmed and welding is used to maintain the sections in alignment

  1. Gas Chromatograph Method Optimization Trade Study for RESOLVE: 20-meter Column v. 8-meter Column

    Science.gov (United States)

    Huz, Kateryna

    2014-01-01

    RESOLVE is the payload on a Class D mission, Resource Prospector, which will prospect for water and other volatile resources at a lunar pole. The RESOLVE payload's primary scientific purpose includes determining the presence of water on the moon in the lunar regolith. In order to detect the water, a gas chromatograph (GC) will be used in conjunction with a mass spectrometer (MS). The goal of the experiment was to compare two GC column lengths and recommend which would be best for RESOLVE's purposes. Throughout the experiment, an Inficon Fusion GC and an Inficon Micro GC 3000 were used. The Fusion had a 20m long column with 0.25mm internal diameter (Id). The Micro GC 3000 had an 8m long column with a 0.32mm Id. By varying the column temperature and column pressure while holding all other parameters constant, the ideal conditions for testing with each column length in their individual instrument configurations were determined. The criteria used for determining the optimal method parameters included (in no particular order) (1) quickest run time, (2) peak sharpness, and (3) peak separation. After testing numerous combinations of temperature and pressure, the parameters for each column length that resulted in the most optimal data given my three criteria were selected. The ideal temperature and pressure for the 20m column were 95 C and 50psig. At this temperature and pressure, the peaks were separated and the retention times were shorter compared to other combinations. The Inficon Micro GC 3000 operated better at lower temperature mainly due to the shorter 8m column. The optimal column temperature and pressure were 70 C and 30psig. The Inficon Micro GC 3000 8m column had worse separation than the Inficon Fusion 20m column, but was able to separate water within a shorter run time. Therefore, the most significant tradeoff between the two column lengths was peak separation of the sample versus run time. After performing several tests, it was concluded that better

  2. The handedness of historiated spiral columns.

    Science.gov (United States)

    Couzin, Robert

    2017-09-01

    Trajan's Column in Rome (AD 113) was the model for a modest number of other spiral columns decorated with figural, narrative imagery from antiquity to the present day. Most of these wind upwards to the right, often with a congruent spiral staircase within. A brief introductory consideration of antique screw direction in mechanical devices and fluted columns suggests that the former may have been affected by the handedness of designers and the latter by a preference for symmetry. However, for the historiated columns that are the main focus of this article, the determining factor was likely script direction. The manner in which this operated is considered, as well as competing mechanisms that might explain exceptions. A related phenomenon is the reversal of the spiral in a non-trivial number of reproductions of the antique columns, from Roman coinage to Renaissance and baroque drawings and engravings. Finally, the consistent inattention in academic literature to the spiral direction of historiated columns and the repeated publication of erroneous earlier reproductions warrants further consideration.

  3. Interpretation of the lime column penetration test

    International Nuclear Information System (INIS)

    Liyanapathirana, D S; Kelly, R B

    2010-01-01

    Dry soil mix (DSM) columns are used to reduce the settlement and to improve the stability of embankments constructed on soft clays. During construction the shear strength of the columns needs to be confirmed for compliance with technical assumptions. A specialized blade shaped penetrometer known as the lime column probe, has been developed for testing DSM columns. This test can be carried out as a pull out resistance test (PORT) or a push in resistance test (PIRT). The test is considered to be more representative of average column shear strength than methods that test only a limited area of the column. Both PORT and PIRT tests require empirical correlations of measured resistance to an absolute measure of shear strength, in a similar manner to the cone penetration test. In this paper, finite element method is used to assess the probe factor, N, for the PORT test. Due to the large soil deformations around the probe, an Arbitrary Lagrangian Eulerian (ALE) based finite element formulation has been used. Variation of N with rigidity index and the friction at the probe-soil interface are investigated to establish a range for the probe factor.

  4. Mass transfer model liquid phase catalytic exchange column simulation applicable to any column composition profile

    Energy Technology Data Exchange (ETDEWEB)

    Busigin, A. [NITEK USA Inc., Ocala, FL (United States)

    2015-03-15

    Liquid Phase Catalytic Exchange (LPCE) is a key technology used in water detritiation systems. Rigorous simulation of LPCE is complicated when a column may have both hydrogen and deuterium present in significant concentrations in different sections of the column. This paper presents a general mass transfer model for a homogenous packed bed LPCE column as a set of differential equations describing composition change, and equilibrium equations to define the mass transfer driving force within the column. The model is used to show the effect of deuterium buildup in the bottom of an LPCE column from non-negligible D atom fraction in the bottom feed gas to the column. These types of calculations are important in the design of CECE (Combined Electrolysis and Catalytic Exchange) water detritiation systems.

  5. Development of spent salt treatment technology by zeolite column system. Performance evaluation of zeolite column

    International Nuclear Information System (INIS)

    Miura, Hidenori; Uozumi, Koichi

    2009-01-01

    At electrorefining process, fission products(FPs) accumulate in molten salt. To avoid influence on heating control by decay heat and enlargement of FP amount in the recovered fuel, FP elements must be removed from the spent salt of the electrorefining process. For the removal of the FPs from the spent salt, we are investigating the availability of zeolite column system. For obtaining the basic data of the column system, such as flow property and ion-exchange performance while high temperature molten salt is passing through the column, and experimental apparatus equipped with fraction collector was developed. By using this apparatus, following results were obtained. 1) We cleared up the flow parameter of column system with zeolite powder, such as flow rate control by argon pressure. 2) Zeolite 4A in the column can absorb cesium that is one of the FP elements in molten salt. From these results, we got perspective on availability of the zeolite column system. (author)

  6. Structural Decoupling and Disturbance Rejection in a Distillation Column

    DEFF Research Database (Denmark)

    Bahar, Mehrdad; Jantzen, Jan; Commault, C.

    1996-01-01

    Introduction, distillation column model, input-output decoupling, disturbance rejection, concluding remarks, references.......Introduction, distillation column model, input-output decoupling, disturbance rejection, concluding remarks, references....

  7. Column Selection for Biomedical Analysis Supported by Column Classification Based on Four Test Parameters.

    Science.gov (United States)

    Plenis, Alina; Rekowska, Natalia; Bączek, Tomasz

    2016-01-21

    This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis.

  8. Uranium facilitated transport by water-dispersible colloids in field and soil columns

    Energy Technology Data Exchange (ETDEWEB)

    Crancon, P.; Pili, E. [CEA Bruyeres-le-Chatel, DIF, 91 (France); Charlet, L. [Univ Grenoble 1, Lab Geophys Interne and Tectonophys LGIT OSUG, CNRS, UJF, UMR5559, F-38041 Grenoble 9 (France)

    2010-07-01

    The transport of uranium through a sandy podsolic soil has been investigated in the field and in column experiments. Field monitoring, numerous years after surface contamination by depleted uranium deposits, revealed a 20 cm deep uranium migration in soil. Uranium retention in soil is controlled by the {<=} 50 {mu}m mixed humic and clayey coatings in the first 40 cm i.e. in the E horizon. Column experiments of uranium transport under various conditions were run using isotopic spiking. After 100 pore volumes elution, 60% of the total input uranium is retained in the first 2 cm of the column. Retardation factor of uranium on E horizon material ranges from 1300 (column) to 3000 (batch). In parallel to this slow uranium migration, we experimentally observed a fast elution related to humic colloids of about 1-5% of the total-uranium input, transferred at the mean pore-water velocity through the soil column. In order to understand the effect of rain events, ionic strength of the input solution was sharply changed. Humic colloids are retarded when ionic strength increases, while a major mobilization of humic colloids and colloid-borne uranium occurs as ionic strength decreases. Isotopic spiking shows that both {sup 238}U initially present in the soil column and {sup 233}U brought by input solution are desorbed. The mobilization process observed experimentally after a drop of ionic strength may account for a rapid uranium migration in the field after a rainfall event, and for the significant uranium concentrations found in deep soil horizons and in groundwater, 1 km downstream from the pollution source. (authors)

  9. Uranium facilitated transport by water-dispersible colloids in field and soil columns

    Energy Technology Data Exchange (ETDEWEB)

    Crancon, P., E-mail: pierre.crancon@cea.fr [CEA, DAM, DIF, F-91297 Arpajon (France); Pili, E. [CEA, DAM, DIF, F-91297 Arpajon (France); Charlet, L. [Laboratoire de Geophysique Interne et Tectonophysique (LGIT-OSUG), University of Grenoble-I, UMR5559-CNRS-UJF, BP53, 38041 Grenoble cedex 9 (France)

    2010-04-01

    The transport of uranium through a sandy podzolic soil has been investigated in the field and in column experiments. Field monitoring, numerous years after surface contamination by depleted uranium deposits, revealed a 20 cm deep uranium migration in soil. Uranium retention in soil is controlled by the < 50 {mu}m mixed humic and clayey coatings in the first 40 cm i.e. in the E horizon. Column experiments of uranium transport under various conditions were run using isotopic spiking. After 100 pore volumes elution, 60% of the total input uranium is retained in the first 2 cm of the column. Retardation factor of uranium on E horizon material ranges from 1300 (column) to 3000 (batch). In parallel to this slow uranium migration, we experimentally observed a fast elution related to humic colloids of about 1-5% of the total-uranium input, transferred at the mean porewater velocity through the soil column. In order to understand the effect of rain events, ionic strength of the input solution was sharply changed. Humic colloids are retarded when ionic strength increases, while a major mobilization of humic colloids and colloid-borne uranium occurs as ionic strength decreases. Isotopic spiking shows that both {sup 238}U initially present in the soil column and {sup 233}U brought by input solution are desorbed. The mobilization process observed experimentally after a drop of ionic strength may account for a rapid uranium migration in the field after a rainfall event, and for the significant uranium concentrations found in deep soil horizons and in groundwater, 1 km downstream from the pollution source.

  10. Critical look at South Africa’s Green Drop Programme

    CSIR Research Space (South Africa)

    Ntombela, Cebile

    2016-10-01

    Full Text Available (WSAs) in the controversial wastewater services sector. In particular, we focus on DWS’s incentive-based mechanism, the National Green Drop Certification Programme (Green Drop Programme), and evaluate the achievements and challenges associated with its...

  11. Experimental Study on Pressure Drop and Flow Dispersion in Packed Bed of Natural Zeolite

    Directory of Open Access Journals (Sweden)

    Ruya Petric Marc

    2018-01-01

    Full Text Available The use of conventional correlation for pressure drop and dispersion coefficient calculation may result in inaccurate values for zeolite packed bed as the correlations are generally developed for regularly shaped and uniformly sized particles. To support the research on the application of modified natural zeolite as tar cracking catalyst, the research on the hydrodynamic behaviour of zeolite packed bed has been conducted. Experiments were carried out using a glass column with diameter of 37.8 mm. Natural zeolite with particle size of about 2.91 to 6.4 mm was applied as packing material in the column, and the bed height was varied at 9, 19 and 29 cm. Air was used as the fluid that flows through the bed and nitrogen was used as a tracer for residence time distribution determination. Air flow rates were in the range of 20 to 100 mL/s which correspond to the laminar-transitional flow regime. The pressure drops through the bed were in the range of 1.7 to 95.6 Pa, depending on the air flow rate and bed height. From these values, the parameters in the Ergun equation were estimated, taking into account the contribution by wall effect when the ratio of column to particle diameter is low. The viscous and inertial term constants in the Ergun equation calculated ranges from 179 to 199 and 1.41 to 1.47 respectively while the particle sphericity ranges from 0.56 to 0.59. The reactor Peclet number were determined to range from 5.2 to 5.5, which indicated significant deviation from a plug flow condition.

  12. Recent advances in column switching sample preparation in bioanalysis.

    Science.gov (United States)

    Kataoka, Hiroyuki; Saito, Keita

    2012-04-01

    Column switching techniques, using two or more stationary phase columns, are useful for trace enrichment and online automated sample preparation. Target fractions from the first column are transferred online to a second column with different properties for further separation. Column switching techniques can be used to determine the analytes in a complex matrix by direct sample injection or by simple sample treatment. Online column switching sample preparation is usually performed in combination with HPLC or capillary electrophoresis. SPE or turbulent flow chromatography using a cartridge column and in-tube solid-phase microextraction using a capillary column have been developed for convenient column switching sample preparation. Furthermore, various micro-/nano-sample preparation devices using new polymer-coating materials have been developed to improve extraction efficiency. This review describes current developments and future trends in novel column switching sample preparation in bioanalysis, focusing on innovative column switching techniques using new extraction devices and materials.

  13. ADVANCED DIAGNOSTIC TECHNIQUES FOR THREE-PHASE SLURRY BUBBLE COLUMN REACTORS(SBCR)

    Energy Technology Data Exchange (ETDEWEB)

    M.H. Al-Dahhan; L.S. Fan; M.P. Dudukovic

    2002-07-25

    This report summarizes the accomplishment made during the third year of this cooperative research effort between Washington University, Ohio State University and Air Products and Chemicals. Data processing of the performed Computer Automated Radioactive Particle Tracking (CARPT) experiments in 6 inch column using air-water-glass beads (150 {micro}m) system has been completed. Experimental investigation of time averaged three phases distribution in air-Therminol LT-glass beads (150 {micro}m) system in 6 inch column has been executed. Data processing and analysis of all the performed Computed Tomography (CT) experiments have been completed, using the newly proposed CT/Overall gas holdup methodology. The hydrodynamics of air-Norpar 15-glass beads (150 {micro}m) have been investigated in 2 inch slurry bubble column using Dynamic Gas Disengagement (DGD), Pressure Drop fluctuations, and Fiber Optic Probe. To improve the design and scale-up of bubble column reactors, a correlation for overall gas holdup has been proposed based on Artificial Neural Network and Dimensional Analysis.

  14. THE PERFORMANCE ANALYSIS OF A PACKED COLUMN : CALIBRATION OF AN ORIFICE

    Directory of Open Access Journals (Sweden)

    Aynur ŞENOL

    2003-01-01

    Full Text Available Investigations to develop data for this study were made using a pilot scale glass column of 9 cm inside diameter randomly filled to a depth of 1.90 cm with a Raschig type ring at a slightly modified geometry. The geometrical characteristics of packing are: the total area of a single particle ad = 2.3 cm2; specific area ap = 10.37 cm2/cm3; voidage ? = 0.545 m3/m3. The efficiency tests were run using trichloroethylene/n-heptane system under total reflux conditions. Using the modified versions of the Eckert flooding model and the Bravo effective area (ae approach, as well as the Onda wetted area (aw and individual mass transfer coefficient models, it has been attempted to estimate the packing efficiency theoretically. This article also deals with the design strategies attributed to a randomly packed column. Emphasis is mainly placed on the way to formulate an algorithm of designing a pilot scale column through the models being attributed to the film theory. Using the column dry pressure drop properties based on the air flowing it has been achieved a generalized flow rate approach for calibrating of an orifice through which the air passes.

  15. Distortion of plasma due to installation of an orifice in helium discharge positive column

    International Nuclear Information System (INIS)

    Moslehi- Fard, M.; Bidadi, H.; Khorram, S.; Sobhanian, S.; Muradov, A.H.; Jallali, H.; Shirin Pour, M.

    2003-01-01

    Complicated potential structure formed at a constriction of positive column of a DC discharge with heated cathode in He at low discharge currents is investigated. According to the potential structure, electrons and ions are accelerated by the electric field and their energy distribution functions acquire multi humped shapes. Additional maximums on distribution function quickly disappear due to collisions and radial losses. The nature of current passing through the potential structure is cleared up on the base of measured distributions. Attempt was made to calculate potential drop in DL tacking into account electron energy distribution variations

  16. The jet mass distribution after Soft Drop

    Energy Technology Data Exchange (ETDEWEB)

    Marzani, Simone [Universita di Genova, Dipartimento di Fisica, Genoa (Italy); INFN, Sezione di Genova (Italy); Schunk, Lais [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Soyez, Gregory [IPhT, CEA Saclay, CNRS UMR 3681, Gif-Sur-Yvette (France)

    2018-02-15

    We present a first-principle computation of the mass distribution of jets which have undergone the grooming procedure known as Soft Drop. This calculation includes the resummation of the large logarithms of the jet mass over its transverse momentum, up to next-to-logarithmic accuracy, matched to exact fixed-order results at next-to-leading order. We also include non-perturbative corrections obtained from Monte-Carlo simulations and discuss analytic expressions for hadronisation and Underlying Event effects. (orig.)

  17. Drop Calibration of Accelerometers for Shock Measurement

    Science.gov (United States)

    2011-08-01

    important that the screen is clear, the records displayed are crisp and values are easily read. The current DSO, used within the Division, in the...Capacitor ≤ ± 0.01% ξc Tolerance of capacitor Drop Mass Reading ≤ ± 0.083 %  dm 0.1g over 120g (typically) Reference Mass Reading ≤ ± 0.1 % rm...Therefore m has uncertainty components due to rm ,  dm and ξrme. The random component is  222 dmrmm  (6.8) and once again  dsodc

  18. Drops on hydrophobic surfaces & vibrated fluid surfaces

    DEFF Research Database (Denmark)

    Wind-Willassen, Øistein

    in the literature. Furthermore, we quantify the energy associated with center of mass translation and internal fluid motion. The model predicts trajectories for tracer particles deposited inside the drop, and satisfactorily describes the sliding motion of steadily accelerating droplets. The model can be used...... numerically, and the results are compared to experiments. We provide, again, the most detailed regime diagram of the possible orbits depending on the forcing and the rotation rate of the fluid bath. We highlight each class of orbit, and analyze in depth the wobbling state, precessing orbits, wobble...

  19. Partial coalescence from bubbles to drops

    KAUST Repository

    Zhang, F. H.

    2015-10-07

    The coalescence of drops is a fundamental process in the coarsening of emulsions. However, counter-intuitively, this coalescence process can produce a satellite, approximately half the size of the original drop, which is detrimental to the overall coarsening. This also occurs during the coalescence of bubbles, while the resulting satellite is much smaller, approximately 10 %. To understand this difference, we have conducted a set of coalescence experiments using xenon bubbles inside a pressure chamber, where we can continuously raise the pressure from 1 up to 85 atm and thereby vary the density ratio between the inner and outer fluid, from 0.005 up to unity. Using high-speed video imaging, we observe a continuous increase in satellite size as the inner density is varied from the bubble to emulsion-droplet conditions, with the most rapid changes occurring as the bubble density grows up to 15 % of that of the surrounding liquid. We propose a model that successfully relates the satellite size to the capillary wave mode responsible for its pinch-off and the overall deformations from the drainage. The wavelength of the primary wave changes during its travel to the apex, with the instantaneous speed adjusting to the local wavelength. By estimating the travel time of this wave mode on the bubble surface, we also show that the model is consistent with the experiments. This wavenumber is determined by both the global drainage as well as the interface shapes during the rapid coalescence in the neck connecting the two drops or bubbles. The rate of drainage is shown to scale with the density of the inner fluid. Empirically, we find that the pinch-off occurs when 60 % of the bubble fluid has drained from it. Numerical simulations using the volume-of-fluid method with dynamic adaptive grid refinement can reproduce these dynamics, as well as show the associated vortical structure and stirring of the coalescing fluid masses. Enhanced stirring is observed for cases with second

  20. Contributions to reversed-phase column selectivity: III. Column hydrogen-bond basicity.

    Science.gov (United States)

    Carr, P W; Dolan, J W; Dorsey, J G; Snyder, L R; Kirkland, J J

    2015-05-22

    Column selectivity in reversed-phase chromatography (RPC) can be described in terms of the hydrophobic-subtraction model, which recognizes five solute-column interactions that together determine solute retention and column selectivity: hydrophobic, steric, hydrogen bonding of an acceptor solute (i.e., a hydrogen-bond base) by a stationary-phase donor group (i.e., a silanol), hydrogen bonding of a donor solute (e.g., a carboxylic acid) by a stationary-phase acceptor group, and ionic. Of these five interactions, hydrogen bonding between donor solutes (acids) and stationary-phase acceptor groups is the least well understood; the present study aims at resolving this uncertainty, so far as possible. Previous work suggests that there are three distinct stationary-phase sites for hydrogen-bond interaction with carboxylic acids, which we will refer to as column basicity I, II, and III. All RPC columns exhibit a selective retention of carboxylic acids (column basicity I) in varying degree. This now appears to involve an interaction of the solute with a pair of vicinal silanols in the stationary phase. For some type-A columns, an additional basic site (column basicity II) is similar to that for column basicity I in primarily affecting the retention of carboxylic acids. The latter site appears to be associated with metal contamination of the silica. Finally, for embedded-polar-group (EPG) columns, the polar group can serve as a proton acceptor (column basicity III) for acids, phenols, and other donor solutes. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. ON THE ORIGIN OF THE HIGH COLUMN DENSITY TURNOVER IN THE H I COLUMN DENSITY DISTRIBUTION

    International Nuclear Information System (INIS)

    Erkal, Denis; Gnedin, Nickolay Y.; Kravtsov, Andrey V.

    2012-01-01

    We study the high column density regime of the H I column density distribution function and argue that there are two distinct features: a turnover at N H I ≈ 10 21 cm –2 , which is present at both z = 0 and z ≈ 3, and a lack of systems above N H I ≈ 10 22 cm –2 at z = 0. Using observations of the column density distribution, we argue that the H I-H 2 transition does not cause the turnover at N H I ≈ 10 21 cm –2 but can plausibly explain the turnover at N H I ∼> 10 22 cm –2 . We compute the H I column density distribution of individual galaxies in the THINGS sample and show that the turnover column density depends only weakly on metallicity. Furthermore, we show that the column density distribution of galaxies, corrected for inclination, is insensitive to the resolution of the H I map or to averaging in radial shells. Our results indicate that the similarity of H I column density distributions at z = 3 and 0 is due to the similarity of the maximum H I surface densities of high-z and low-z disks, set presumably by universal processes that shape properties of the gaseous disks of galaxies. Using fully cosmological simulations, we explore other candidate physical mechanisms that could produce a turnover in the column density distribution. We show that while turbulence within giant molecular clouds cannot affect the damped Lyα column density distribution, stellar feedback can affect it significantly if the feedback is sufficiently effective in removing gas from the central 2-3 kpc of high-redshift galaxies. Finally, we argue that it is meaningful to compare column densities averaged over ∼ kpc scales with those estimated from quasar spectra that probe sub-pc scales due to the steep power spectrum of H I column density fluctuations observed in nearby galaxies.

  2. A stochastic view on column efficiency.

    Science.gov (United States)

    Gritti, Fabrice

    2018-03-09

    A stochastic model of transcolumn eddy dispersion along packed beds was derived. It was based on the calculation of the mean travel time of a single analyte molecule from one radial position to another. The exchange mechanism between two radial positions was governed by the transverse dispersion of the analyte across the column. The radial velocity distribution was obtained by flow simulations in a focused-ion-beam scanning electron microscopy (FIB-SEM) based 3D reconstruction from a 2.1 mm × 50 mm column packed with 2 μm BEH-C 18 particles. Accordingly, the packed bed was divided into three coaxial and uniform zones: (1) a 1.4 particle diameter wide, ordered, and loose packing at the column wall (velocity u w ), (2) an intermediate 130 μm wide, random, and dense packing (velocity u i ), and (3) the bulk packing in the center of the column (velocity u c ). First, the validity of this proposed stochastic model was tested by adjusting the predicted to the observed reduced van Deemter plots of a 2.1 mm × 50 mm column packed with 2 μm BEH-C 18 fully porous particles (FPPs). An excellent agreement was found for u i  = 0.93u c , a result fully consistent with the FIB-SEM observation (u i  = 0.95u c ). Next, the model was used to measure u i  = 0.94u c for 2.1 mm × 100 mm column packed with 1.6 μm Cortecs-C 18 superficially porous particles (SPPs). The relative velocity bias across columns packed with SPPs is then barely smaller than that observed in columns packed with FPPs (+6% versus + 7%). u w =1.8u i is measured for a 75 μm × 1 m capillary column packed with 2 μm BEH-C 18 particles. Despite this large wall-to-center velocity bias (+80%), the presence of the thin and ordered wall packing layer has no negative impact on the kinetic performance of capillary columns. Finally, the stochastic model of long-range eddy dispersion explains why analytical (2.1-4.6 mm i.d.) and capillary (columns can all be

  3. A-DROP: A predictive model for the formation of oil particle aggregates (OPAs)

    Science.gov (United States)

    Zhao, Lin; Boufadel, Michel C.; Geng, Xiaolong; Lee, Kenneth; King, Thomas; Robinson, Brian; Fitzpatrick, Faith A.

    2016-01-01

    Oil–particle interactions play a major role in removal of free oil from the water column. We present a new conceptual–numerical model, A-DROP, to predict oil amount trapped in oil–particle aggregates. A new conceptual formulation of oil–particle coagulation efficiency is introduced to account for the effects of oil stabilization by particles, particle hydrophobicity, and oil–particle size ratio on OPA formation. A-DROP was able to closely reproduce the oil trapping efficiency reported in experimental studies. The model was then used to simulate the OPA formation in a typical nearshore environment. Modeling results indicate that the increase of particle concentration in the swash zone would speed up the oil–particle interaction process; but the oil amount trapped in OPAs did not correspond to the increase of particle concentration. The developed A-DROP model could become an important tool in understanding the natural removal of oil and developing oil spill countermeasures by means of oil–particle aggregation.

  4. Continuous-flow column study of reductive dehalogenation of PCE upon bioaugmentation with the Evanite enrichment culture

    Science.gov (United States)

    Azizian, Mohammad F.; Behrens, Sebastian; Sabalowsky, Andrew; Dolan, Mark E.; Spormann, Alfred M.; Semprini, Lewis

    2008-08-01

    A continuous-flow anaerobic column experiment was conducted to evaluate the reductive dechlorination of tetrachloroethene (PCE) in Hanford aquifer material after bioaugmentation with the Evanite (EV) culture. An influent PCE concentration of 0.09 mM was transformed to vinyl chloride (VC) and ethene (ETH) within a hydraulic residence time of 1.3 days. The experimental breakthrough curves were described by the one-dimensional two-site-nonequilibrium transport model. PCE dechlorination was observed after bioaugmentation and after the lactate concentration was increased from 0.35 to 0.67 mM. At the onset of reductive dehalogenation, cis-dichloroethene (c-DCE) concentrations in the column effluent exceeded the influent PCE concentration indicating enhanced PCE desorption and transformation. When the lactate concentration was increased to 1.34 mM, c-DCE reduction to vinyl chloride (VC) and ethene (ETH) occurred. Spatial rates of PCE and VC transformation were determined in batch-incubated microcosms constructed with aquifer samples obtained from the column. PCE transformation rates were highest in the first 5 cm from the column inlet and decreased towards the column effluent. Dehalococcoides cell numbers dropped from ˜ 73.5% of the total Bacterial population in the original inocula, to about 0.5% to 4% throughout the column. The results were consistent with estimates of electron donor utilization, with 4% going towards dehalogenation reactions.

  5. Spent Nuclear Fuel (SNF) Bounding Drop Support Calculations

    International Nuclear Information System (INIS)

    CHENAULT, D.M.

    1999-01-01

    This report evaluates different drop heights, concrete and other impact media to which the transport package and/or the MCO is dropped. A prediction method is derived for estimating the resultant impact factor for determining the bounding drop case for the SNF Project

  6. Underwater sound produced by individual drop impacts and rainfall

    DEFF Research Database (Denmark)

    Pumphrey, Hugh C.; Crum, L. A.; Jensen, Leif Bjørnø

    1989-01-01

    An experimental study of the underwater sound produced by water drop impacts on the surface is described. It is found that sound may be produced in two ways: first when the drop strikes the surface and, second, when a bubble is created in the water. The first process occurs for every drop...

  7. Drop test of reinforced concrete slab onto storage cask

    International Nuclear Information System (INIS)

    Kato, Y.; Hattori, S.; Ito, C.; Sirai, K.; Ozaki, S.; Kato, O.

    1993-01-01

    In this research, drop tests onto full-scale casks considering the specifications of a falling object (weight, construction, drop height, etc.) demonstrate and evaluate the integrity of casks in case a heavy object drops into the storage facilities. (J.P.N.)

  8. Vertebral Column Resection for Rigid Spinal Deformity.

    Science.gov (United States)

    Saifi, Comron; Laratta, Joseph L; Petridis, Petros; Shillingford, Jamal N; Lehman, Ronald A; Lenke, Lawrence G

    2017-05-01

    Broad narrative review. To review the evolution, operative technique, outcomes, and complications associated with posterior vertebral column resection. A literature review of posterior vertebral column resection was performed. The authors' surgical technique is outlined in detail. The authors' experience and the literature regarding vertebral column resection are discussed at length. Treatment of severe, rigid coronal and/or sagittal malalignment with posterior vertebral column resection results in approximately 50-70% correction depending on the type of deformity. Surgical site infection rates range from 2.9% to 9.7%. Transient and permanent neurologic injury rates range from 0% to 13.8% and 0% to 6.3%, respectively. Although there are significant variations in EBL throughout the literature, it can be minimized by utilizing tranexamic acid intraoperatively. The ability to correct a rigid deformity in the spine relies on osteotomies. Each osteotomy is associated with a particular magnitude of correction at a single level. Posterior vertebral column resection is the most powerful posterior osteotomy method providing a successful correction of fixed complex deformities. Despite meticulous surgical technique and precision, this robust osteotomy technique can be associated with significant morbidity even in the most experienced hands.

  9. Effect of backmixing on pulse column performance

    International Nuclear Information System (INIS)

    Miao, Y.W.

    1979-05-01

    A critical survey of the published literature concerning dispersed phase holdup and longitudinal mixing in pulsed sieve-plate extraction columns has been made to assess the present state-of-the-art in predicting these two parameters, both of which are of critical importance in the development of an accurate mathematical model of the pulse column. Although there are many conflicting correlations of these variables as a function of column geometry, operating conditions, and physical properties of the liquid systems involved it has been possible to develop new correlations which appear to be useful and which are consistent with much of the available data over the limited range of variables most likely to be encountered in plant sized equipment. The correlations developed were used in a stagewise model of the pulse column to predict product concentrations, solute inventory, and concentration profiles in a column for which limited experimental data were available. Reasonable agreement was obtained between the mathematical model and the experimental data. Complete agreement, however, can only be obtained after a correlation for the extraction efficiency has been developed. The correlation of extraction efficiency was beyond the scope of this work

  10. Model of an Evaporating Drop Experiment

    Science.gov (United States)

    Rodriguez, Nicolas

    2017-11-01

    A computational model of an experimental procedure to measure vapor distributions surrounding sessile drops is developed to evaluate the uncertainty in the experimental results. Methanol, which is expected to have predominantly diffusive vapor transport, is chosen as a validation test for our model. The experimental process first uses a Fourier transform infrared spectrometer to measure the absorbance along lines passing through the vapor cloud. Since the measurement contains some errors, our model allows adding random noises to the computational integrated absorbance to mimic this. Then the resulting data are interpolated before passing through a computed tomography routine to generate the vapor distribution. Next, the gradients of the vapor distribution are computed along a given control volume surrounding the drop so that the diffusive flux can be evaluated as the net rate of diffusion out of the control volume. Our model of methanol evaporation shows that the accumulated errors of the whole experimental procedure affect the diffusive fluxes at different control volumes and are sensitive to how the noisy data of integrated absorbance are interpolated. This indicates the importance of investigating a variety of data fitting methods to choose which is best to present the data. Trinity University Mach Fellowship.

  11. Vlasov simulations of parallel potential drops

    Directory of Open Access Journals (Sweden)

    H. Gunell

    2013-07-01

    Full Text Available An auroral flux tube is modelled from the magnetospheric equator to the ionosphere using Vlasov simulations. Starting from an initial state, the evolution of the plasma on the flux tube is followed in time. It is found that when applying a voltage between the ends of the flux tube, about two thirds of the potential drop is concentrated in a thin double layer at approximately one Earth radius altitude. The remaining part is situated in an extended region 1–2 Earth radii above the double layer. Waves on the ion timescale develop above the double layer, and they move toward higher altitude at approximately the ion acoustic speed. These waves are seen both in the electric field and as perturbations of the ion and electron distributions, indicative of an instability. Electrons of magnetospheric origin become trapped between the magnetic mirror and the double layer during its formation. At low altitude, waves on electron timescales appear and are seen to be non-uniformly distributed in space. The temporal evolution of the potential profile and the total voltage affect the double layer altitude, which decreases with an increasing field aligned potential drop. A current–voltage relationship is found by running several simulations with different voltages over the system, and it agrees with the Knight relation reasonably well.

  12. Mathematical modeling of alcohol distillation columns

    Directory of Open Access Journals (Sweden)

    Ones Osney Pérez

    2011-04-01

    Full Text Available New evaluation modules are proposed to extend the scope of a modular simulator oriented to the sugar cane industry, called STA 4.0, in a way that it can be used to carry out x calculation and analysis in ethanol distilleries. Calculation modules were developed for the simulation of the columns that are combined in the distillation area. Mathematical models were supported on materials and energy balances, equilibrium relations and thermodynamic properties of the ethanol-water system. Ponchon-Savarit method was used for the evaluation of the theoretical stages in the columns. A comparison between the results using Ponchon- Savarit method and those obtained applying McCabe-Thiele method was done for a distillation column. These calculation modules for ethanol distilleries were applied to a real case for validation.

  13. Inert carriers for column extraction chromatography

    International Nuclear Information System (INIS)

    Katykhin, G.S.

    1978-01-01

    Inert carriers used in column extraction chromatography are reviewed. Such carriers are devided into two large groups: hydrophilic carriers which possess high surface energy and are well wetted only with strongly polar liquids (kieselguhrs, silica gels, glasses, cellulose, Al 2 O 3 ) and water-repellent carriers which possess low surface energy and are well wetted with various organic solvents (polyethylene, polytetrafluorethylene polytrifluorochlorethylene). Properties of various carriers are presented: structure, chemical and radiation stability, adsorption properties, extracting agent capacity. The effect of structure and sizes of particles on the efficiency of chromatography columns is considered. Ways of immovable phase deposition on the carrier and the latter's regeneration. Peculiarities of column packing for preparative and continuous chromatography are discussed

  14. Computational analysis of ozonation in bubble columns

    International Nuclear Information System (INIS)

    Quinones-Bolanos, E.; Zhou, H.; Otten, L.

    2002-01-01

    This paper presents a new computational ozonation model based on the principle of computational fluid dynamics along with the kinetics of ozone decay and microbial inactivation to predict the performance of ozone disinfection in fine bubble columns. The model can be represented using a mixture two-phase flow model to simulate the hydrodynamics of the water flow and using two transport equations to track the concentration profiles of ozone and microorganisms along the height of the column, respectively. The applicability of this model was then demonstrated by comparing the simulated ozone concentrations with experimental measurements obtained from a pilot scale fine bubble column. One distinct advantage of this approach is that it does not require the prerequisite assumptions such as plug flow condition, perfect mixing, tanks-in-series, uniform radial or longitudinal dispersion in predicting the performance of disinfection contactors without carrying out expensive and tedious tracer studies. (author)

  15. CUB DI (Deionization) column control system

    International Nuclear Information System (INIS)

    Seino, K.C.

    1999-01-01

    For the old MR (Main Ring), deionization was done with two columns in CUB, using an ion exchange process. Typically 65 GPM of LCW flew through a column, and the resistivity was raised from 3 Mohm-cm to over 12 Mohm-cm. After a few weeks, columns lost their effectiveness and had to be regenerated in a process involving backwashing and adding hydrochloric acid and sodium hydroxide. For normal MR operations, LCW returned from the ring and passed through the two columns in parallel for deionization, although the system could have been operated satisfactorily with only one in use. A 3000 gallon reservoir (the Spheres) provided a reserve of LCW for allowing water leaks and expansions in the MR. During the MI (Main Injector) construction period, the third DI column was added to satisfy requirements for the MI. When the third column was added, the old regeneration controller was replaced with a new controller based on an Allen-Bradley PLC (i.e., SLC-5/04). The PLC is widely used and well documented, and therefore it may allow us to modify the regeneration programs in the future. In addition to the above regeneration controller, the old control panels (which were used to manipulate pumps and valves to supply LCW in Normal mode and to do Int. Recir. (Internal Recirculation) and Makeup) were replaced with a new control system based on Sixtrak Gateway and I/O modules. For simplicity, the new regeneration controller is called as the US Filter system, and the new control system is called as the Fermilab system in this writing

  16. Vertical vibration and shape oscillation of acoustically levitated water drops

    International Nuclear Information System (INIS)

    Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B.

    2014-01-01

    We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.

  17. Vertical vibration and shape oscillation of acoustically levitated water drops

    Energy Technology Data Exchange (ETDEWEB)

    Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2014-09-08

    We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.

  18. Deformed liquid marbles: Freezing drop oscillations with powders

    KAUST Repository

    Marston, Jeremy; Zhu, Y.; Vakarelski, Ivan Uriev; Thoroddsen, Sigurdur T

    2012-01-01

    In this work we show that when a liquid drop impacts onto a fine-grained hydrophobic powder, the final form of the drop can be very different from the spherical form with which it impacts. In all cases, the drop rebounds due to the hydrophobic nature of the powder. However, we find that above a critical impact speed, the drop undergoes a permanent deformation to a highly non-spherical shape with a near-complete coverage of powder, which then freezes the drop oscillations during rebound. © 2012 Elsevier B.V.

  19. Deformed liquid marbles: Freezing drop oscillations with powders

    KAUST Repository

    Marston, Jeremy

    2012-09-01

    In this work we show that when a liquid drop impacts onto a fine-grained hydrophobic powder, the final form of the drop can be very different from the spherical form with which it impacts. In all cases, the drop rebounds due to the hydrophobic nature of the powder. However, we find that above a critical impact speed, the drop undergoes a permanent deformation to a highly non-spherical shape with a near-complete coverage of powder, which then freezes the drop oscillations during rebound. © 2012 Elsevier B.V.

  20. Operation of the annular pulsed column, (2)

    International Nuclear Information System (INIS)

    Takahashi, Keiki; Tsukada, Takeshi

    1988-01-01

    The heat of reaction generated form the uranium extraction is considered to from the temperature profile inside the pulsed column. A simulation code was developed to estimate the temperature profile, considering heat generation and counter-current heat transfer. The temperature profiles calculated using this code was found to depend on both the position of the extraction zone and the operating condition. The reported experimental result was fairly represented by this simulation code. We consider that this presented simulation code is capable of providing with the temperature profile in the pulsed column and useful for the monitoring of the uranium extraction zone. (author)

  1. Distillation columns inspection through gamma scanning

    International Nuclear Information System (INIS)

    Garcia, Marco

    1999-09-01

    The application of nuclear energy is very wide and it allows the saving of economic resources since the investigation of a certain process is carried out without stop the plant. The gamma scanning of oil c racking c olumns are practical examples, they allow to determine the hydraulic operation of the inspected columns. A source of Co-60 22mCi and a detector with a crystal of INa(TI) are used. This paper shows the results got from a profile carried out in a column distillation

  2. Performance of RC columns with partial length corrosion

    International Nuclear Information System (INIS)

    Wang Xiaohui; Liang Fayun

    2008-01-01

    Experimental and analytical studies on the load capacity of reinforced concrete (RC) columns with partial length corrosion are presented, where only a fraction of the column length was corroded. Twelve simply supported columns were eccentrically loaded. The primary variables were partial length corrosion in tensile or compressive zone and the corrosion level within this length. The failure of the corroded column occurs in the partial length, mainly developed from or located nearby or merged with the longitudinal corrosion cracks. For RC column with large eccentricity, load capacity of the column is mainly influenced by the partial length corrosion in tensile zone; while for RC column with small eccentricity, load capacity of the column greatly decreases due to the partial length corrosion in compressive zone. The destruction of the longitudinally mechanical integrality of the column in the partial length leads to this great reduction of the load capacity of the RC column

  3. Drop dynamics on a stretched viscoelastic filament: An experimental study

    Science.gov (United States)

    Peixinho, Jorge; Renoult, Marie-Charlotte; Crumeyrolle, Olivier; Mutabazi, Innocent

    2016-11-01

    Capillary pressure can destabilize a thin liquid filament during breakup into a succession of drops. Besides, the addition of a linear, high molecular weight, flexible and soluble polymer is enough to modify the morphology of this instability. In the time period preceding the breakup, the development of beads-on-a-string structures where drops are connected by thin threads is monitored. The drops dynamics involve drop formation, drop migration and drop coalescence. Experiments using a high-speed camera on stretched bridges of viscoelastic polymeric solutions were conducted for a range of viscosities and polymer concentrations. The rheological properties of the solutions are also quantified through conventional shear rheology and normal stress difference. The overall goal of this experimental investigation is to gain more insight into the formation and time evolution of the drops. The project BIOENGINE is co-financed by the European Union with the European regional development fund and by the Normandie Regional Council.

  4. Liquid-gas mass transfer at drop structures

    DEFF Research Database (Denmark)

    Matias, Natércia; Nielsen, Asbjørn Haaning; Vollertsen, Jes

    2017-01-01

    -water mass transfer, little is known about hydrogen sulfide emission under highly turbulent conditions (e.g., drop structures, hydraulic jumps). In this study, experimental work was carried out to analyze the influence of characteristics of drops on reaeration. Physical models were built, mimicking typical...... sewer drop structures and allowing different types of drops, drop heights, tailwater depths and flow rates. In total, 125 tests were performed. Based on their results, empirical expressions translating the relationship between the mass transfer of oxygen and physical parameters of drop structures were...... established. Then, by applying the two-film theory with two-reference substances, the relation to hydrogen sulfide release was defined. The experiments confirmed that the choice of the type of drop structure is critical to determine the uptake/emission rates. By quantifying the air-water mass transfer rates...

  5. Calculation of drop course of control rod assembly in PWR

    International Nuclear Information System (INIS)

    Zhou Xiaojia; Mao Fei; Min Peng; Lin Shaoxuan

    2013-01-01

    The validation of control rod drop performance is an important part of safety analysis of nuclear power plant. Development of computer code for calculating control rod drop course will be useful for validating and improving the design of control rod drive line. Based on structural features of the drive line, the driving force on moving assembly was analyzed and decomposed, the transient value of each component of the driving force was calculated by choosing either theoretical method or numerical method, and the simulation code for calculating rod cluster control assembly (RCCA) drop course by time step increase was achieved. The analysis results of control rod assembly drop course calculated by theoretical model and numerical method were validated by comparing with RCCA drop test data of Qinshan Phase Ⅱ 600 MW PWR. It is shown that the developed RCCA drop course calculation code is suitable for RCCA in PWR and can correctly simulate the drop course and the stress of RCCA. (authors)

  6. Scalability of pre-packed preparative chromatography columns with different diameters and lengths taking into account extra column effects.

    Science.gov (United States)

    Schweiger, Susanne; Jungbauer, Alois

    2018-02-16

    Small pre-packed columns are commonly used to estimate the optimum run parameters for pilot and production scale. The question arises if the experiments obtained with these columns are scalable, because there are substantial changes in extra column volume when going from a very small scale to a benchtop column. In this study we demonstrate the scalability of pre-packed disposable and non-disposable columns of volumes in the range of 0.2-20 ml packed with various media using superficial velocities in the range of 30-500 cm/h. We found that the relative contribution of extra column band broadening to total band broadening was not only high for columns with small diameters, but also for columns with a larger volume due to their wider diameter. The extra column band broadening can be more than 50% for columns with volumes larger than 10 ml. An increase in column diameter leads to high additional extra column band broadening in the filter, frits, and adapters of the columns. We found a linear relationship between intra column band broadening and column length, which increased stepwise with increases in column diameter. This effect was also corroborated by CFD simulation. The intra column band broadening was the same for columns packed with different media. An empirical engineering equation and the data gained from the extra column effects allowed us to predict the intra, extra, and total column band broadening just from column length, diameter, and flow rate. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  7. Convolutional Codes with Maximum Column Sum Rank for Network Streaming

    OpenAIRE

    Mahmood, Rafid; Badr, Ahmed; Khisti, Ashish

    2015-01-01

    The column Hamming distance of a convolutional code determines the error correction capability when streaming over a class of packet erasure channels. We introduce a metric known as the column sum rank, that parallels column Hamming distance when streaming over a network with link failures. We prove rank analogues of several known column Hamming distance properties and introduce a new family of convolutional codes that maximize the column sum rank up to the code memory. Our construction invol...

  8. Optimization and simulation of tandem column supercritical fluid chromatography separations using column back pressure as a unique parameter.

    Science.gov (United States)

    Wang, Chunlei; Tymiak, Adrienne A; Zhang, Yingru

    2014-04-15

    Tandem column supercritical fluid chromatography (SFC) has demonstrated to be a useful technique to resolve complex mixtures by serially coupling two columns of different selectivity. The overall selectivity of a tandem column separation is the retention time weighted average of selectivity from each coupled column. Currently, the method development merely relies on extensive screenings and is often a hit-or-miss process. No attention is paid to independently adjust retention and selectivity contributions from individual columns. In this study, we show how tandem column SFC selectivity can be optimized by changing relative dimensions (length or inner diameter) of the coupled columns. Moreover, we apply column back pressure as a unique parameter for SFC optimization. Continuous tuning of tandem column SFC selectivity is illustrated through column back pressure adjustments of the upstream column, for the first time. In addition, we show how and why changing coupling order of the columns can produce dramatically different separations. Using the empirical mathematical equation derived in our previous study, we also demonstrate a simulation of tandem column separations based on a single retention time measurement on each column. The simulation compares well with experimental results and correctly predicts column order and back pressure effects on the separations. Finally, considerations on instrument and column hardware requirements are discussed.

  9. Pendent_Drop: An ImageJ Plugin to Measure the Surface Tension from an Image of a Pendent Drop

    Directory of Open Access Journals (Sweden)

    Adrian Daerr

    2016-01-01

    Full Text Available The pendent drop method for surface tension measurement consists in analysing the shape of an axisymmetric drop hanging from a capillary tube. This software is an add-on for the public domain image processing software ImageJ which matches a theoretical profile to the contour of a pendent drop, either interactively or by automatically minimising the mismatch. It provides an estimate of the surface tension, drop volume and surface area from the best matching parameters. It can be used in a headless setup. It is hosted on http://fiji.sc/List_of_update_sites with the source code on https://github.com/adaerr/pendent-drop

  10. Crack formation and prevention in colloidal drops

    Science.gov (United States)

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A.; Kim, So Youn; Weon, Byung Mook

    2015-08-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.

  11. Bubble and Drop Nonlinear Dynamics experiment

    Science.gov (United States)

    2003-01-01

    The Bubble and Drop Nonlinear Dynamics (BDND) experiment was designed to improve understanding of how the shape and behavior of bubbles respond to ultrasound pressure. By understanding this behavior, it may be possible to counteract complications bubbles cause during materials processing on the ground. This 12-second sequence came from video downlinked from STS-94, July 5 1997, MET:3/19:15 (approximate). The BDND guest investigator was Gary Leal of the University of California, Santa Barbara. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced fluid dynamics experiments will be a part of investigations plarned for the International Space Station. (189KB JPEG, 1293 x 1460 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300163.html.

  12. Load drop evaluation for TWRS FSAR

    Energy Technology Data Exchange (ETDEWEB)

    Julyk, L.J.; Ralston, G.L.

    1996-09-30

    Operational or remediation activities associated with existing underground high-level waste storage tank structures at the Hanford Site often require the installation/removal of various equipment items. To gain tank access for installation or removal of this equipment, large concrete cover blocks must be removed and reinstalled in existing concrete pits above the tanks. An accidental drop of the equipment or cover blocks while being moved over the tanks that results in the release of contaminants to the air poses a potential risk to onsite workers or to the offsite public. To minimize this potential risk, the use of critical lift hoisting and rigging procedures and restrictions on lift height are being considered during development of the new tank farm Basis for Interim Operation and Final Safety Analysis Report. The analysis contained herein provides information for selecting the appropriate lift height restrictions for these activities.

  13. Drop Impact on a Solid Surface

    KAUST Repository

    Josserand, C.

    2015-09-22

    © Copyright 2016 by Annual Reviews. All rights reserved. A drop hitting a solid surface can deposit, bounce, or splash. Splashing arises from the breakup of a fine liquid sheet that is ejected radially along the substrate. Bouncing and deposition depend crucially on the wetting properties of the substrate. In this review, we focus on recent experimental and theoretical studies, which aim at unraveling the underlying physics, characterized by the delicate interplay of not only liquid inertia, viscosity, and surface tension, but also the surrounding gas. The gas cushions the initial contact; it is entrapped in a central microbubble on the substrate; and it promotes the so-called corona splash, by lifting the lamella away from the solid. Particular attention is paid to the influence of surface roughness, natural or engineered to enhance repellency, relevant in many applications.

  14. Drop Impact on to Moving Liquid Pools

    Science.gov (United States)

    Muñoz-Sánchez, Beatriz Natividad; Castrejón-Pita, José Rafael; Castrejón-Pita, Alfonso Arturo; Hutchings, Ian M.

    2014-11-01

    The deposition of droplets on to moving liquid substrates is an omnipresent situation both in nature and industry. A diverse spectrum of phenomena emerges from this simple process. In this work we present a parametric experimental study that discerns the dynamics of the impact in terms of the physical properties of the fluid and the relative velocity between the impacting drop and the moving liquid pool. The behaviour ranges from smooth coalescence (characterized by little mixing) to violent splashing (generation of multiple satellite droplets and interfacial vorticity). In addition, transitional regimes such as bouncing and surfing are also found. We classify the system dynamics and show a parametric diagram for the conditions of each regime. This work was supported by the EPSRC (Grant EP/H018913/1), the Royal Society, Becas Santander Universidades and the International Relationships Office of the University of Extremadura.

  15. Influence of pressure on the properties of chromatographic columns. II. The column hold-up volume.

    Science.gov (United States)

    Gritti, Fabrice; Martin, Michel; Guiochon, Georges

    2005-04-08

    The effect of the local pressure and of the average column pressure on the hold-up column volume was investigated between 1 and 400 bar, from a theoretical and an experimental point of view. Calculations based upon the elasticity of the solids involved (column wall and packing material) and the compressibility of the liquid phase show that the increase of the column hold-up volume with increasing pressure that is observed is correlated with (in order of decreasing importance): (1) the compressibility of the mobile phase (+1 to 5%); (2) in RPLC, the compressibility of the C18-bonded layer on the surface of the silica (+0.5 to 1%); and (3) the expansion of the column tube (columns packed with the pure Resolve silica (0% carbon), the derivatized Resolve-C18 (10% carbon) and the Symmetry-C18 (20% carbon) adsorbents, using water, methanol, or n-pentane as the mobile phase. These solvents have different compressibilities. However, 1% of the relative increase of the column hold-up volume that was observed when the pressure was raised is not accounted for by the compressibilities of either the solvent or the C18-bonded phase. It is due to the influence of the pressure on the retention behavior of thiourea, the compound used as tracer to measure the hold-up volume.

  16. Effect of Bilineaster Drop on Neonatal Hyperbilirubinemia

    Directory of Open Access Journals (Sweden)

    Zahra Ameli

    2017-01-01

    Full Text Available Background: Hyperbilirubinemia is considered one of the most prevalent problems in newborns. Phototherapy, exchange transfusion, and herbal medicine are common therapeutic approaches for preventing any neurologic damage in infants with neonatal jaundice. However, herbal medicine is less commonly used. Aim: This study aimed to investigate the effect of bilineaster drop on neonatal hyperbilirubinemia. Method: This study was a randomized clinical trial conducted on 98 term neonates (aged 2-14 days with neonatal jaundice admitted to Ghaem Hospital of Mashhad, Iran, during 2015. These newborns were randomly assigned into intervention (phototherapy and bilineaster drop and control (only phototherapy groups. Total and direct serum bilirubin levels were measured at the time of admission and then 12, 24, 36, and 48 h after treatment. Data were analyzed using independent t-test and repeated measures ANOVA through Stata software (Version 12. Results: The mean ages of the newborns at the time of admission were 6.2 ±2.5 and 6.04 ±2.4 days in the intervention and control groups, respectively. The intervention group showed higher reduction in mean duration of hospital stay, readmission rate, and bilirubin levels 12 and 24 h after the intervention, compared to the control group (P>0.001. However, the two groups demonstrated no statistically significant difference 36 h and 48 h after the intervention (P=0.06, P=0.22, respectively. Repeated measures ANOVA indicated that the intervention had no significant effect on the reduction trend of bilirubin levels (P=0.10 [total], P=0.06 [indirect] in both groups. Nonetheless, bilirubin levels significantly diminished in both groups over time (P

  17. Pulsing flow in trickle bed columns

    NARCIS (Netherlands)

    Blok, Jan Rudolf

    1981-01-01

    In the operation of a packed column with cocurrent downflow of gas and liquid (trickle bed) several flowpatterns can be observed depending on the degree of interaction between gas and liquid. At low liquid and gas flow rates - low interaction - gascontinuous flow occurs. In this flowregime, the

  18. Revive your columns with cyclic distillation

    NARCIS (Netherlands)

    Kiss, Anton A.; Bîldea, Costin Sorin

    2015-01-01

    The process intensification (PI) technique involves changing a tower?s internals and operating mode and the separate movement of the liquid and vapor phases. This can significantly increase column throughput and reduce energy requirements, while improving separation performance. PI is a set of

  19. Robust Geometric Control of a Distillation Column

    DEFF Research Database (Denmark)

    Kymmel, Mogens; Andersen, Henrik Weisberg

    1987-01-01

    A frequency domain method, which makes it possible to adjust multivariable controllers with respect to both nominal performance and robustness, is presented. The basic idea in the approach is that the designer assigns objectives such as steady-state tracking, maximum resonance peaks, bandwidth, m...... is used to examine and improve geometric control of a binary distillation column....

  20. On Row Rank Equal Column Rank

    Science.gov (United States)

    Khalili, Parviz

    2009-01-01

    We will prove a well-known theorem in Linear Algebra, that is, for any "m x n" matrix the dimension of row space and column space are the same. The proof is based on the subject of "elementary matrices" and "reduced row-echelon" form of a matrix.

  1. On Stability of a Bubble Column

    Czech Academy of Sciences Publication Activity Database

    Růžička, Marek

    2013-01-01

    Roč. 91, č. 2 (2013), s. 191-203 ISSN 0263-8762 R&D Projects: GA ČR GA104/07/1110 Institutional support: RVO:67985858 Keywords : bubble column * flow regimes * steady solution Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.281, year: 2013

  2. Thermal Analysis of LANL Ion Exchange Column

    International Nuclear Information System (INIS)

    Laurinat, J.E.

    1999-01-01

    This document reports results from an ion exchange column heat transfer analysis requested by Los Alamos National Laboratory (LANL). The object of the analysis is to demonstrate that the decay heat from the Pu-238 will not cause resin bed temperatures to increase to a level where the resin significantly degrades

  3. Column Stores as an IR Prototyping Tool

    NARCIS (Netherlands)

    H.F. Mühleisen (Hannes); T. Samar (Thaer); J.J.P. Lin (Jimmy); A.P. de Vries (Arjen)

    2014-01-01

    textabstract. We make the suggestion that instead of implementing custom index structures and query evaluation algorithms, IR researchers should simply store document representations in a column-oriented relational database and write ranking models using SQL. For rapid prototyping, this is

  4. Single column and two-column H-D-T distillation experiments at TSTA

    International Nuclear Information System (INIS)

    Yamanishi, T.; Yoshida, H.; Hirata, S.; Naito, T.; Naruse, Y.; Sherman, R.H.; Bartlit, J.R.; Anderson, J.L.

    1988-01-01

    Cryogenic distillation experiments were peformed at TSTA with H-D-T system by using a single column and a two-column cascade. In the single column experiment, fundamental engineering data such as the liquid holdup and the HETP were measured under a variety of operational condtions. The liquid holdup in the packed section was about 10 /approximately/ 15% of its superficial volume. The HETP values were from 4 to 6 cm, and increased slightly with the vapor velocity. The reflux ratio had no effect on the HETP. For the wo-colunn experiemnt, dynamic behavior of the cascade was observed. 8 refs., 7 figs., 2 tabs

  5. The central column structure in SPHEX

    International Nuclear Information System (INIS)

    Duck, R.C.; French, P.A.; Browning, P.K.; Cunningham, G.; Gee, S.J.; al-Karkhy, A.; Martin, R.; Rusbridge, M.G.

    1994-01-01

    SPHEX is a gun injected spheromak in which a magnetised Marshall gun generates and maintains an approximately axisymmetric toroidal plasma within a topologically spherical flux conserving vessel. The central column has been defined as a region of high mean floating potential, f > up to ∼ 150 V, aligned with the geometric axis of the device. It has been suggested that this region corresponds to the open magnetic flux which is connected directly to the central electrode of the gun and links the toroidal annulus (in which f > ∼ 0 V). Poynting vector measurements have shown that the power required to drive toroidal current in the annulus is transmitted out of the column by the coherent 20 kHz mode which pervades the plasma. Measurements of the MHD dynamo in the column indicate an 'antidynamo' electric field due to correlated fluctuations in v and B at the 20 kHz mode frequency which is consistent with the time-averaged Ohm's Law. On shorting the gun electrodes, the density in the column region decays rapidly leaving a 'hole' of radius R c ∼ 7 cm. This agrees with the estimated dimension of the open flux from mean internal B measurements and axisymmetric force-free equilibrium modelling, but is considerably smaller than the radius of ∼ 13 cm inferred from the time-averaged potential. In standard operating conditions the gun delivers a current of I G ∼ 60 kA at V G ∼ 500 V for ∼ 1 ms, driving a toroidal current of I t ∼ 60 kA. Ultimately we wish to understand the mechanism which drives toroidal current in the annulus; the central column is of interest because of the crucial role it plays in this process. (author) 8 refs., 6 figs

  6. Marangoni Flow Induced Evaporation Enhancement on Binary Sessile Drops.

    Science.gov (United States)

    Chen, Pin; Harmand, Souad; Ouenzerfi, Safouene; Schiffler, Jesse

    2017-06-15

    The evaporation processes of pure water, pure 1-butanol, and 5% 1-butanol aqueous solution drops on heated hydrophobic substrates are investigated to determine the effect of temperature on the drop evaporation behavior. The evolution of the parameters (contact angle, diameter, and volume) during evaporation measured using a drop shape analyzer and the infrared thermal mapping of the drop surface recorded by an infrared camera were used in investigating the evaporation process. The pure 1-butanol drop does not show any thermal instability at different substrate temperatures, while the convection cells created by the thermal Marangoni effect appear on the surface of the pure water drop from 50 °C. Because 1-butanol and water have different surface tensions, the infrared video of the 5% 1-butanol aqueous solution drop shows that the convection cells are generated by the solutal Marangoni effect at any substrate temperature. Furthermore, when the substrate temperature exceeds 50 °C, coexistence of the thermal and solutal Marangoni flows is observed. By analyzing the relation between the ratio of the evaporation rate of pure water and 1-butanol aqueous solution drops and the Marangoni number, a series of empirical equations for predicting the evaporation rates of pure water and 1-butanol aqueous solution drops at the initial time as well as the equations for the evaporation rate of 1-butanol aqueous solution drop before the depletion of alcohol are derived. The results of these equations correspond fairly well to the experimental data.

  7. Influence of ties on the behavior of short reinforced concrete columns strengthened by external CFRP

    Directory of Open Access Journals (Sweden)

    Sarsam Kaiss

    2018-01-01

    Full Text Available An experimental study was carried out to investigate the behavior of normal strength reinforce concret (RC circular short column strengthned with “carbon fiber reinforced polymer (CFRP sheets”. Three series comprising totally of (15 specimens loaded until failure under concentric compresion load. Strengthening was varied by changing the number of CFRP strips, spacing and wrapping methods. The findings of this research can be summarized as follows: for the columns without CFRP, the influence of the tie spacing was significant: compared with 130 mm tie spacing, dropping the spacing to 100 mm and 70 mm increased the load carrying capacity by 18% and 26%, respectively. The columns with less internal confinement (lesser amount of ties were strengthened more significantly by the CFRP than the ones with greater amount of internal ties. As an example of the varying effectiveness of the fully wrapped CFRP, the column with ties at 130 mm was strengthened by 90% with the CFRP. In contrast, the ones with 70 mm spaced ties only increased in strength with CFRP by 66%. Compared with the control specimen (no CFRP, the same amount of CFRP when used as hoop strips led to more strengthening than using CFRP as a spiral strip- the former led to nearly 9% more strengthening than the latter in the case of 130 mm spaced internal steel ties. In the case of 100 mm internal steel ties, the difference (between the hoops & spiral CFRP strengthening is close to 4%. In contrast, there is no difference between the two methods of strengthening in the heavily tied columns (70 mm tied spacing.

  8. Column, particularly extraction column, for fission and/or breeder materials

    International Nuclear Information System (INIS)

    Vietzke, H.; Pirk, H.

    1980-01-01

    An absorber rod with a B 4 C insert is situated in the long extraction column for a uranyl nitrate solution or a plutonium nitrate solution. The geometrical dimensions are designed for a high throughput with little corrosion. (DG) [de

  9. DROpS: an object of learning in computer simulation of discrete events

    Directory of Open Access Journals (Sweden)

    Hugo Alves Silva Ribeiro

    2015-09-01

    Full Text Available This work presents the “Realistic Dynamics Of Simulated Operations” (DROpS, the name given to the dynamics using the “dropper” device as an object of teaching and learning. The objective is to present alternatives for professors teaching content related to simulation of discrete events to graduate students in production engineering. The aim is to enable students to develop skills related to data collection, modeling, statistical analysis, and interpretation of results. This dynamic has been developed and applied to the students by placing them in a situation analogous to a real industry, where various concepts related to computer simulation were discussed, allowing the students to put these concepts into practice in an interactive manner, thus facilitating learning

  10. HETP evaluation of structured packing distillation column

    Directory of Open Access Journals (Sweden)

    A. E. Orlando Jr.

    2009-09-01

    Full Text Available Several tests with a hydrocarbon mixture of known composition (C8-C14, obtained from DETEN Chemistry S.A., have been performed in a laboratory distillation column, having 40mm of nominal diameter and 2.2m high, with internals of Sulzer DX gauze stainless steel structured packing. The main purpose of this work was to evaluate HETP of a structured packing laboratory scale distillation column, operating continuously. Six HETP correlations available in the literature were compared in order to find out which is the most appropriate for structured packing columns working with medium distillates. Prior to the experimental tests, simulation studies using commercial software PRO/II® were performed in order to establish the optimum operational conditions for the distillation, especially concerning operating pressure, top and bottom temperatures, feed location and reflux ratio. The results of PRO/II® were very similar to the analysis of the products obtained during continuous operation, therefore permitting the use of the properties calculated by that software on the theoretical models investigated. The theoretical models chosen for HETP evaluation were: Bravo, Rocha and Fair (1985; Rocha, Bravo and Fair (1993, 1996; Brunazzi and Pagliant (1997; Carlo, Olujić and Pagliant (2006; Olujić et al., (2004. Modifications concerning calculation of specific areas were performed on the correlations in order to fit them for gauze packing HETP evaluation. As the laboratory distillation column was operated continuously, different HETP values were found by the models investigated for each section of the column. The low liquid flow rates in the top section of the column are a source of error for HETP evaluation by the models; therefore, more reliable HETP values were found in the bottom section, in which liquid flow rates were much greater. Among the theoretical models, Olujić et al. (2004 has shown good results relative to the experimental tests. In addition, the

  11. Drop Test Results of CRDM under Seismic Loads

    International Nuclear Information System (INIS)

    Choi, Myoung-Hwan; Cho, Yeong-Garp; Kim, Gyeong-Ho; Sun, Jong-Oh; Huh, Hyung

    2016-01-01

    This paper describes the test results to demonstrate the drop performance of CRDM under seismic loads. The top-mounted CRDM driven by the stepping motor for Jordan Research and Training Reactor (JRTR) has been developed in KAERI. The CRDM for JRTR has been optimized by the design improvement based on that of the HANARO. It is necessary to verify the drop performance under seismic loads such as operating basis earthquake (OBE) and safe shutdown earthquake (SSE). Especially, the CAR drop times are important data for the safety analysis. confirm the drop performance under seismic loads. The delay of drop time at Rig no. 2 due to seismic loads is greater than that at Rig no. 3. The total pure drop times under seismic loads are estimated as 1.169 and 1.855, respectively

  12. Ballistic Jumping Drops on Superhydrophobic Surfaces via Electrostatic Manipulation.

    Science.gov (United States)

    Li, Ning; Wu, Lei; Yu, Cunlong; Dai, Haoyu; Wang, Ting; Dong, Zhichao; Jiang, Lei

    2018-02-01

    The ballistic ejection of liquid drops by electrostatic manipulating has both fundamental and practical implications, from raindrops in thunderclouds to self-cleaning, anti-icing, condensation, and heat transfer enhancements. In this paper, the ballistic jumping behavior of liquid drops from a superhydrophobic surface is investigated. Powered by the repulsion of the same kind of charges, water drops can jump from the surface. The electrostatic acting time for the jumping of a microliter supercooled drop only takes several milliseconds, even shorter than the time for icing. In addition, one can control the ballistic jumping direction precisely by the relative position above the electrostatic field. The approach offers a facile method that can be used to manipulate the ballistic drop jumping via an electrostatic field, opening the possibility of energy efficient drop detaching techniques in various applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Drop Impact on Textile Material: Effect of Fabric Properties

    Directory of Open Access Journals (Sweden)

    Romdhani Zouhaier

    2014-09-01

    Full Text Available This paper presents an experimental study of impact of water drop on a surface in a spreading regime with no splashing. Three surfaces were studied: virgin glass, coating film and woven cotton fabric at different construction parameters. All experiments were carried out using water drop with the same free fall high. Digidrop with high-resolution camera is used to measure the different parameters characterising this phenomenon. Results show an important effect of the height of the free fall on the drop profile and the spreading behaviour. An important drop deformation at the surface impact was observed. Then, fabric construction as the weft count deeply affects the drop impact. For plain weave, an increase of weft count causes a decrease in penetration and increase in the spreading rate. The same result was obtained for coated fabric. Therefore, the impact energy was modified and the drop shape was affected, which directly influenced the spreading rate.

  14. Drop Test Results of CRDM under Seismic Loads

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myoung-Hwan; Cho, Yeong-Garp; Kim, Gyeong-Ho; Sun, Jong-Oh; Huh, Hyung [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This paper describes the test results to demonstrate the drop performance of CRDM under seismic loads. The top-mounted CRDM driven by the stepping motor for Jordan Research and Training Reactor (JRTR) has been developed in KAERI. The CRDM for JRTR has been optimized by the design improvement based on that of the HANARO. It is necessary to verify the drop performance under seismic loads such as operating basis earthquake (OBE) and safe shutdown earthquake (SSE). Especially, the CAR drop times are important data for the safety analysis. confirm the drop performance under seismic loads. The delay of drop time at Rig no. 2 due to seismic loads is greater than that at Rig no. 3. The total pure drop times under seismic loads are estimated as 1.169 and 1.855, respectively.

  15. Experimental Setup For Study of Drop Deformation In Air Flow

    Directory of Open Access Journals (Sweden)

    Basalaev Sergey

    2017-01-01

    Full Text Available Experimental study for study of deformation of drops in air flow is considered. Experimental setup includes a module for obtaining the drops, an air flow system and measuring system. Module for formation of drops is in the form of vertically arranged dropper with capillary with the possibility of formation of fixed drops. Air flow supply system comprises an air pump coupled conduit through a regulating valve with a cylindrical pipe, installed coaxially with dropper. The measuring system includes the video camera located with possibility of visualization of drop and the Pitot gage for measurement of flow rate of air located in the output section of branch pipe. This experimental setup allows to provide reliable and informative results of the investigation of deformation of drops in the air flow.

  16. Levitation of a drop over a film flow

    Science.gov (United States)

    Sreenivas, K. R.; de, P. K.; Arakeri, Jaywant H.

    1999-02-01

    A vertical jet of water impinging on a horizontal surface produces a radial film flow followed by a circular hydraulic jump. We report a phenomenon where fairly large (1 ml) drops of liquid levitate just upstream of the jump on a thin air layer between the drop and the film flow. We explain the phenomenon using lubrication theory. Bearing action both in the air film and the water film seems to be necessary to support large drops. Horizontal support is given to the drop by the hydraulic jump. A variety of drop shapes is observed depending on the volume of the drop and liquid properties. We show that interaction of the forces due to gravity, surface tension, viscosity and inertia produces these various shapes.

  17. A study of fungi on droppings of certain birds

    Directory of Open Access Journals (Sweden)

    C. S. Singh

    2014-08-01

    Full Text Available Droppings of fowl, owl, parrot, pigeon and sparrow were asepticaly collected in sterilized bottles from different places at Gorakhpur, 54 fungi were isolated. The number of fungi was more in the pigeon showing considerable decrease in the fowl and the sparrow. In the parrot and the owl, however. the fungi were egual in number. The number of Phycomycetes was almost the same on droppings of all birds, from parrot only one species could be isolated. A larger number of Ascomyteces was recorded from fowl, less from pigeon and owl and the least (two each on sparrow and parrot droppings. The Basidiomycetes, represented by two species only, were recorded on owl and pigeon droppings. Pigeon droppings yielded the largest number of Deuteromycetes. They were egual in numbers on owl and parrot while on fowl and sparrow their number was comparatively less. Mycelia sterilia, though poor in their numbers, were recorded on all the bird droppings excepting owl.

  18. Evaporation of a sessile water drop and a drop of aqueous salt solution.

    Science.gov (United States)

    Misyura, S Y

    2017-11-07

    The influence of various factors on the evaporation of drops of water and aqueous salt solution has been experimentally studied. Typically, in the studies of drop evaporation, only the diffusive vapor transfer, radiation and the molecular heat conduction are taken into account. However, vapor-gas convection plays an important role at droplet evaporation. In the absence of droplet boiling, the influence of gas convection turns out to be the prevailing factor. At nucleate boiling, a prevailing role is played by bubbles generation and vapor jet discharge at a bubble collapse. The gas convection behavior for water and aqueous salt solution is substantially different. With a growth of salt concentration over time, the influence of the convective component first increases, reaches an extremum and then significantly decreases. At nucleate boiling in a salt solution it is incorrect to simulate the droplet evaporation and the heat transfer in quasi-stationary approximation. The evaporation at nucleate boiling in a liquid drop is divided into several characteristic time intervals. Each of these intervals is characterized by a noticeable change in both the evaporation rate and the convection role.

  19. Studying the field induced breakup of acoustically levitated drops

    Science.gov (United States)

    Warschat, C.; Riedel, J.

    2017-10-01

    Coulomb fission of charged droplets (The terms drop and droplet are often used synonymous. Throughout this manuscript, to avoid confusion, the terms drop and droplet will be used for liquid spheres with radii in the millimeter range and the micrometer range, respectively. In our experiments, the first correspond to the parent drop while the latter describes the ejected progeny droplets.) is a well-studied natural phenomenon. Controlled droplet fission is already successfully employed in several technological applications. Still, since the occurring surface rupture relies on the exact understanding and description of the liquid gas boundary, some details are still under debate. Most empirical systematic studies observe falling micrometer droplets passing through the electric field inside a plate capacitor. This approach, although easily applicable and reliable, limits the experimental degrees of freedom regarding the observable time and the maximum size of the drops and can only be performed in consecutive individual observations of different subsequent drops. Here we present a novel setup to study the field induced breakup of acoustically levitated drops. The design does not bear any restrictions towards the temporal window of observation, and allows handling of drops of a tunable radius ranging from 10 μm to several millimeters and a real-time monitoring of one single drop. Our comprehensive study includes a time resolved visual inspection, laser shadowgraphy, laser induced fluorescence imaging, and ambient mass spectrometric interrogation of the nascent Taylor cone. The results shown for a millimeter sized drop, previously inaccessible for Coulomb fission experiments, are mostly comparable with previous results for smaller drops. The major difference is the time scale and the threshold potential of the drop rupture. Both values, however, resemble theoretically extrapolations to the larger radius. The technique allows for a systematic study of breakup behavior of

  20. Electromagnetic Drop Scale Scattering Modelling for Dynamic Statistical Rain Fields

    OpenAIRE

    Hipp, Susanne

    2015-01-01

    This work simulates the scattering of electromagnetic waves by a rain field. The calculations are performed for the individual drops and accumulate to a time signal dependent on the dynamic properties of the rain field. The simulations are based on the analytical Mie scattering model for spherical rain drops and the simulation software considers the rain characteristics drop size (including their distribution in rain), motion, and frequency and temperature dependent permittivity. The performe...

  1. Self-excited hydrothermal waves in evaporating sessile drops

    OpenAIRE

    Sefiane K.; Moffat J.R.; Matar O.K.; Craster R.V.

    2008-01-01

    Pattern formation driven by the spontaneous evaporation of sessile drops of methanol, ethanol, and FC-72 using infrared thermography is observed and, in certain cases, interpreted in terms of hydrothermal waves. Both methanol and ethanol drops exhibit thermal wave trains, whose wave number depends strongly on the liquid volatililty and substrate thermal conductivity. The FC- 72 drops develop cellular structures whose size is proportional to the local thickness. Prior to this work, hydrotherma...

  2. Drop-out from a psychodynamic group psychotherapy outpatient unit.

    Science.gov (United States)

    Jensen, Hans Henrik; Mortensen, Erik Lykke; Lotz, Martin

    2014-11-01

    BACKGROUND. Drop-out from psychotherapy is common and represents a considerable problem in clinical practice and research. Aim. To explore pre-treatment predictors of early and late drop-out from psychodynamic group therapy in a public outpatient unit for non-psychotic disorders in Denmark. Methods. Naturalistic design including 329 patients, the majority with mood, neurotic and personality disorders referred to 39-session group therapy. Predictors were socio-demographic and clinical variables, self-reported symptoms (Symptom Check List-90-Revised) and personality style (Millon Clinical Multiaxial Inventory-II). Drop-out was classified into early and late premature termination excluding patients who dropped out for external reasons. Results. Drop-out comprised 20.6% (68 patients) of the sample. Logistic regression revealed social functioning, vocational training, alcohol problems and antisocial behavior to be related to drop-out. However, early drop-outs had prominent agoraphobic symptoms, lower interpersonal sensitivity and compulsive personality features, and late drop-outs cognitive and somatic anxiety symptoms and antisocial personality features. Clinical and psychological variables accounted for the major part of variance in predictions of drop-out, which ranged from 15.6% to 19.5% (Nagelkerke Pseudo R-Square). Conclusion. Social functioning was consistently associated with drop-out, but personality characteristics and anxiety symptoms differentiated between early and late drop-out. Failure to discriminate between stages of premature termination may explain some of the inconsistencies in the drop-out literature. Clinical implications. Before selection of patients to time-limited psychodynamic groups, self-reported symptoms should be thoroughly considered. Patients with agoraphobic symptoms should be offered alternative treatment. Awareness of and motivation to work with interpersonal issues may be essential for compliance with group therapy.

  3. Analysis of DCI cask drop test onto reinforced concrete pad

    International Nuclear Information System (INIS)

    Ito, C.; Kato, Y.; Hattori, S.; Shirai, K.; Misumi, M.; Ozaki, S.

    1993-01-01

    In a cask-storage facility, a cask may be subjected to an impact load as a result of a free drop onto the floor because of cask mishandling. We performed drop tests of casks onto a reinforced concrete (RC) slab representing the floor of a facility as well as simulation analysis [Kato et al]. This paper describes the details of the FEM analysis and calculated results and compares them with the drop test results. (J.P.N.)

  4. Reducing Variability in Stress Drop with Root-Mean Acceleration

    Science.gov (United States)

    Crempien, J.; Archuleta, R. J.

    2012-12-01

    Stress drop is a fundamental property of the earthquake source. For a given tectonic region stress drop is assumed to be constant allowing for the scaling of earthquake spectra. However, the variability of the stress drop, either for worldwide catalogs or regional catalogs, is quite large. The variability around the median value is on the order of 1.5 in log10 units. One question that continues to pervade the analysis of stress drop is whether this variability is an inherent characteristic of the Earth or is an artifact of the determination of stress drop via the use of the spectral analysis. It is simple to see that the stress drop determined by seismic moment times corner frequency cubed that errors in the corner frequency will strongly influence the variability in the stress drop. To avoid this strong dependence on corner frequency cubed, we have examined the determination of stress drop based on the approach proposed by Hanks (1979), namely using the root-mean-square acceleration. The stress drop determined using rms acceleration may be advantageous because the stress drop is only affected by the square root of the corner frequency. To test this approach we have determined stress drops for the 2000 Tottori earthquake and its aftershocks. We use both the classic method of fitting to a spectrum as well as using rms acceleration. For a preliminary analysis of eight aftershocks and the mainshock we find that the variability in stress drop is reduced by about a factor of two. This approach needs more careful analysis of more events, which will be shown at the meeting.

  5. [Stability of physical state on compound hawthorn dropping pills].

    Science.gov (United States)

    Zhang, Wei; Chen, Hong-Yan; Jiang, Jian-Lan

    2008-11-01

    To evaluate the stability of physical state with accelerate test and dropping in process before and after on compound hawthorn dropping pills. Scanning electron microscope, TG-DTA, FT-IR and XRD were used. The active components presented amorphous, tiny crystal and molecular state in dropping pills, and it had no obvious reaction between PEG 4000 and active components. With time prolonging, a little of active components changed from amorphous state to tiny crystal or molecular state. Solid dispersion improved the stability and dissolution of compound hawthorn dropping pills.

  6. Theory of magnetostriction of electron-hole drops in Ge

    International Nuclear Information System (INIS)

    Markiewicz, R.S.

    1978-01-01

    A large mass of electron-hole liquid (γ drop) formed in a strain-induced potential well in Ge is known to distort its shape significantly in a magnetic field B > or approx. = 1 kG. It is shown in this paper that the shape change can be understood in detail as due to a ''recombination current'' of electron-hole pairs needed to replace those pairs which recombine in the drop volume. The Lorentz force deflects this current and produces a macroscopic dipole current loop inside the drop. The drop then changes shape to minimize its total energy, including magnetic, strain, and surface energies. While the drop usually flattens along the field direction, both para- and diamagnetic effects (elongated drops) are found to be possible, depending on excitation conditions, in accord with experiment. Similar effects are predicted to occur in small drops in unstrained Ge. This paper presents a magnetohydrodynamic theory of the magnetostriction which takes into account density variations which occur in the strain well and in high magnetic fields. A simpler theory is given for the special case in which the drop may be considered incompressible (small drops and moderate fields). Effects of carrier mass anisotropy and fluid viscosity are taken into consideration

  7. Ground Motion Prediction Equations Empowered by Stress Drop Measurement

    Science.gov (United States)

    Miyake, H.; Oth, A.

    2015-12-01

    Significant variation of stress drop is a crucial issue for ground motion prediction equations and probabilistic seismic hazard assessment, since only a few ground motion prediction equations take into account stress drop. In addition to average and sigma studies of stress drop and ground motion prediction equations (e.g., Cotton et al., 2013; Baltay and Hanks, 2014), we explore 1-to-1 relationship for each earthquake between stress drop and between-event residual of a ground motion prediction equation. We used the stress drop dataset of Oth (2013) for Japanese crustal earthquakes ranging 0.1 to 100 MPa and K-NET/KiK-net ground motion dataset against for several ground motion prediction equations with volcanic front treatment. Between-event residuals for ground accelerations and velocities are generally coincident with stress drop, as investigated by seismic intensity measures of Oth et al. (2015). Moreover, we found faster attenuation of ground acceleration and velocities for large stress drop events for the similar fault distance range and focal depth. It may suggest an alternative parameterization of stress drop to control attenuation distance rate for ground motion prediction equations. We also investigate 1-to-1 relationship and sigma for regional/national-scale stress drop variation and current national-scale ground motion equations.

  8. Allelic drop-out probabilities estimated by logistic regression

    DEFF Research Database (Denmark)

    Tvedebrink, Torben; Eriksen, Poul Svante; Asplund, Maria

    2012-01-01

    We discuss the model for estimating drop-out probabilities presented by Tvedebrink et al. [7] and the concerns, that have been raised. The criticism of the model has demonstrated that the model is not perfect. However, the model is very useful for advanced forensic genetic work, where allelic drop-out...... is occurring. With this discussion, we hope to improve the drop-out model, so that it can be used for practical forensic genetics and stimulate further discussions. We discuss how to estimate drop-out probabilities when using a varying number of PCR cycles and other experimental conditions....

  9. Motion of a drop driven by substrate vibrations

    Science.gov (United States)

    Brunet, P.; Eggers, J.; Deegan, R. D.

    2009-01-01

    We report an experimental study of liquid drops moving against gravity, when placed on a vertically vibrating inclined plate, which is partially wet by the drop. Frequency of vibrations ranges from 30 to 200 Hz, and above a threshold in vibration acceleration, drops experience an upward motion. We attribute this surprising motion to the deformations of the drop, as a consequence of an up/down symmetry-breaking induced by the presence of the substrate. We relate the direction of motion to contact angle measurements.

  10. Career drop outs of young elite athletes

    Directory of Open Access Journals (Sweden)

    Petra Fišer

    2007-12-01

    Full Text Available The main problem of the study was to examine the characteristics of sports career drop outs of young elite sportswomen and their adaptation to the post-sport life. The sample included 20 ex-young elite sportswomen, who had brought their successful sport careers to an end before the age of 19. We used a modified interview about sports career termination (Cecić Erpič, 1998 for the investigation of the characteristics of their sports careers. To examine the caracteristics of sport careers we used frequency analysis and cluster analysis. The results showed that the participants mostly stated more than one reason for the termination of their career. The most common reasons for career termination were: lack of motivation, bad relations with trainers or co-competitors and dedication to school or education. After the end of a sports career most of the young sportswomen stayed actively in touch with sport, either as trainers, judges, or they remained engaged in sports for recreation.

  11. The viruses of wild pigeon droppings.

    Directory of Open Access Journals (Sweden)

    Tung Gia Phan

    Full Text Available Birds are frequent sources of emerging human infectious diseases. Viral particles were enriched from the feces of 51 wild urban pigeons (Columba livia from Hong Kong and Hungary, their nucleic acids randomly amplified and then sequenced. We identified sequences from known and novel species from the viral families Circoviridae, Parvoviridae, Picornaviridae, Reoviridae, Adenovirus, Astroviridae, and Caliciviridae (listed in decreasing number of reads, as well as plant and insect viruses likely originating from consumed food. The near full genome of a new species of a proposed parvovirus genus provisionally called Aviparvovirus contained an unusually long middle ORF showing weak similarity to an ORF of unknown function from a fowl adenovirus. Picornaviruses found in both Asia and Europe that are distantly related to the turkey megrivirus and contained a highly divergent 2A1 region were named mesiviruses. All eleven segments of a novel rotavirus subgroup related to a chicken rotavirus in group G were sequenced and phylogenetically analyzed. This study provides an initial assessment of the enteric virome in the droppings of pigeons, a feral urban species with frequent human contact.

  12. GENDER, DEBT, AND DROPPING OUT OF COLLEGE.

    Science.gov (United States)

    Dwyer, Rachel E; Hodson, Randy; McLoud, Laura

    2013-02-01

    For many young Americans, access to credit has become critical to completing a college education and embarking on a successful career path. Young people increasingly face the trade-off of taking on debt to complete college or foregoing college and taking their chances in the labor market without a college degree. These trade-offs are gendered by differences in college preparation and support and by the different labor market opportunities women and men face that affect the value of a college degree and future difficulties they may face in repaying college debt. We examine these new realities by studying gender differences in the role of debt in the pivotal event of graduating from college using the 1997 cohort of the national longitudinal Survey of youth. In this article, we find that women and men both experience slowing and even diminishing probabilities of graduating when carrying high levels of debt, but that men drop out at lower levels of debt than do women. We conclude by theorizing that high levels of debt are one of the mechanisms that sort women and men into different positions in the social stratification system.

  13. That's one small drop for Mankind...

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    In August, the members of an ISOLDE project called LOI88 successfully employed a new technique to study the interaction of metal ions in a liquid. It’s the first time that specific ions have been studied in a liquid medium - a technical achievement that opens promising doors for biochemistry.   In the heart of the LOI88 experiment: this is the point where the metal ions (from the left) enter the drop.  “More than half of the proteins in the human body contain metal ions such as magnesium, zinc and copper,” explains Monika Stachura, a biophysicist at the University of Copenhagen and the LOI88 project leader. “We know that these elements are crucial to a protein’s structure and function but their behaviour and interactions are not known in detail.” Detecting these ions directly in  a body-like environment is problematic as their closed atomic shells make them invisible to most spectroscopic techniques. However, using ...

  14. Mitigating oil spills in the water column

    International Nuclear Information System (INIS)

    Barry, Edward; Libera, Joseph A.; Mane, Anil University; Avila, Jason R.; DeVitis, David

    2017-01-01

    The scale and scope of uncontrolled oil spills can be devastating. Diverse marine environments and fragile ecologies are some of the most susceptible to the many ill effects, while the economic costs can be crippling. A notoriously difficult challenge with no known technological solution is the successful removal of oil dispersed in the water column. Here, we address this problem through cheap and reusable oil sorbents based on the chemical modification of polymer foams. Interfacial chemistry was optimized and subsequently tested in a simulated marine environment at the National Oil Spill Response Research & Renewable Energy Test Facility, Ohmsett. We find favorable performance for surface oil mitigation and, for the first time, demonstrate the advanced sorbent's efficiency and efficacy at pilot scale in extraction of crude oil and refined petroleum products dispersed in the water column. As a result, this is a potentially disruptive technology, opening a new field of environmental science focused on sub-surface pollutant sequestration.

  15. Assembly procedure for column cutting platform

    International Nuclear Information System (INIS)

    Routh, R.D.

    1995-01-01

    This supporting document describes the assembly procedure for the Column Cutting Platform and Elevation Support. The Column Cutting Platform is a component of the 241-SY-101 Equipment Removal System. It is set up on the deck of the Strongback Trailer to provide work access to cut off the upper portion of the Mitigation Pump Assembly (MPA). The Elevation Support provides support for the front of the Storage Container with the Strongback at an inclined position. The upper portion of the MPA must be cut off to install the Containment Caps on the Storage Container. The storage Container must be maintained in an inclined position until the Containment Caps are installed to prevent any residual liquids from migrating forward in the Storage Container

  16. Modeling of Crystalline Silicotitanate Ion Exchange Columns

    International Nuclear Information System (INIS)

    Walker, D.D.

    1999-01-01

    Non-elutable ion exchange is being considered as a potential replacement for the In-Tank Precipitation process for removing cesium from Savannah River Site (SRS) radioactive waste. Crystalline silicotitanate (CST) particles are the reference ion exchange medium for the process. A major factor in the construction cost of this process is the size of the ion exchange column required to meet product specifications for decontaminated waste. To validate SRS column sizing calculations, SRS subcontracted two reknowned experts in this field to perform similar calculations: Professor R. G. Anthony, Department of Chemical Engineering, Texas A ampersand 038;M University, and Professor S. W. Wang, Department of Chemical Engineering, Purdue University. The appendices of this document contain reports from the two subcontractors. Definition of the design problem came through several meetings and conference calls between the participants and SRS personnel over the past few months. This document summarizes the problem definition and results from the two reports

  17. Insights from the pollination drop proteome and the ovule transcriptome of Cephalotaxus at the time of pollination drop production.

    Science.gov (United States)

    Pirone-Davies, Cary; Prior, Natalie; von Aderkas, Patrick; Smith, Derek; Hardie, Darryl; Friedman, William E; Mathews, Sarah

    2016-05-01

    Many gymnosperms produce an ovular secretion, the pollination drop, during reproduction. The drops serve as a landing site for pollen, but also contain a suite of ions and organic compounds, including proteins, that suggests diverse roles for the drop during pollination. Proteins in the drops of species of Chamaecyparis, Juniperus, Taxus, Pseudotsuga, Ephedra and Welwitschia are thought to function in the conversion of sugars, defence against pathogens, and pollen growth and development. To better understand gymnosperm pollination biology, the pollination drop proteomes of pollination drops from two species of Cephalotaxus have been characterized and an ovular transcriptome for C. sinensis has been assembled. Mass spectrometry was used to identify proteins in the pollination drops of Cephalotaxus sinensis and C. koreana RNA-sequencing (RNA-Seq) was employed to assemble a transcriptome and identify transcripts present in the ovules of C. sinensis at the time of pollination drop production. About 30 proteins were detected in the pollination drops of both species. Many of these have been detected in the drops of other gymnosperms and probably function in defence, polysaccharide metabolism and pollen tube growth. Other proteins appear to be unique to Cephalotaxus, and their putative functions include starch and callose degradation, among others. Together, the proteins appear either to have been secreted into the drop or to occur there due to breakdown of ovular cells during drop production. Ovular transcripts represent a wide range of gene ontology categories, and some may be involved in drop formation, ovule development and pollen-ovule interactions. The proteome of Cephalotaxus pollination drops shares a number of components with those of other conifers and gnetophytes, including proteins for defence such as chitinases and for carbohydrate modification such as β-galactosidase. Proteins likely to be of intracellular origin, however, form a larger component of drops

  18. Sheath and arc-column voltages in high-pressure arc discharges

    International Nuclear Information System (INIS)

    Benilov, M S; Benilova, L G; Li Heping; Wu Guiqing

    2012-01-01

    Electrical characteristics of a 1 cm-long free-burning atmospheric-pressure argon arc are calculated by means of a model taking into account the existence of a near-cathode space-charge sheath and the discrepancy between the electron and heavy-particle temperatures in the arc column. The computed arc voltage exhibits a variation with the arc current I similar to the one revealed by the experiment and exceeds experimental values by no more than approximately 2 V in the current range 20-175 A. The sheath contributes about two-thirds or more of the arc voltage. The LTE model predicts a different variation of the arc voltage with I and underestimates the experimental values appreciably for low currents but by no more than approximately 2 V for I ≳ 120 A. However, the latter can hardly be considered as a proof of unimportance of the space-charge sheath at high currents: the LTE model overestimates both the resistance of the bulk of the arc column and the resistance of the part of the column that is adjacent to the cathode, and this overestimation to a certain extent compensates for the neglect of the voltage drop in the sheath. Furthermore, if the latter resistance were evaluated in the framework of the LTE model in an accurate way, then the overestimation would be still much stronger and the obtained voltage would significantly exceed those observed in the experiment.

  19. Simulation of water column separation in Francis pump-turbine draft tube

    International Nuclear Information System (INIS)

    Nicolet, C; Alligne, S; Bergant, A; Avellan, F

    2012-01-01

    The paper presents the modelling, simulation and analysis of the transient behaviour of a 340 MW pump-turbine in case of emergency shutdown in turbine mode with focus on possible draft tube water column separation. The model of a pumped storage power plant with simplified layout is presented. This model includes a penstock feeding one 340MW pump-turbine with the related rotating inertia and a tailrace tunnel. The model of the tailrace tunnel allowing for water column separation simulation is introduced. The simulation results of the transient behaviour of the pump-turbine in case of emergency shutdown in generating mode, with and without downstream water column separation model are presented for different degree of severity triggered by the submergence and the tailrace tunnel length. The amplitudes of the pressure peaks induced by the cavity collapse are analysed with respect to the pressure drop magnitude and tailrace dimensions. The maximum and minimum pressure amplitudes obtained along the tailrace tunnel are analysed for different test case conditions.

  20. Optimization of the isotope separation in columns

    International Nuclear Information System (INIS)

    Kaminskij, V.A.; Vetsko, V.M.; Tevzadze, G.A.; Devdariani, O.A.; Sulaberidze, G.A.

    1982-01-01

    The general method for the multi-parameter optimization of cascade plants of packed columns is proposed. As an optimization effectiveness function a netcost of the isotopic product is selected. The net cost is comprehensively characterizing the sum total of capital costs for manufacturing the products as well as determining the choice of the most effective directions for capital investments and rational limits of improvement of the products quality. The method is based on main representations of the cascade theory, such as the ideal flow profile and form efficiency as well as mathematical model of the packed column specifying the bonds between its geometric and operating parameters. As a result, the isotopic products cost function could be bound with such parameters as the equilibrium stage height, ultimate packing capacity, its element dimensions, column diameter. It is concluded that the suggested approach to the optimization of isotope separation processes is rather a general one. It permits to solve a number of special problems, such as estimation of advisability of using heat-pump circuits and determining the rational automation level. Besides, by means of the method suggested one can optimize the process conditions with regard to temperature and pressure

  1. Employing anatomical knowledge in vertebral column labeling

    Science.gov (United States)

    Yao, Jianhua; Summers, Ronald M.

    2009-02-01

    The spinal column constitutes the central axis of human torso and is often used by radiologists to reference the location of organs in the chest and abdomen. However, visually identifying and labeling vertebrae is not trivial and can be timeconsuming. This paper presents an approach to automatically label vertebrae based on two pieces of anatomical knowledge: one vertebra has at most two attached ribs, and ribs are attached only to thoracic vertebrae. The spinal column is first extracted by a hybrid method using the watershed algorithm, directed acyclic graph search and a four-part vertebra model. Then curved reformations in sagittal and coronal directions are computed and aggregated intensity profiles along the spinal cord are analyzed to partition the spinal column into vertebrae. After that, candidates for rib bones are detected using features such as location, orientation, shape, size and density. Then a correspondence matrix is established to match ribs and vertebrae. The last vertebra (from thoracic to lumbar) with attached ribs is identified and labeled as T12. The rest of vertebrae are labeled accordingly. The method was tested on 50 CT scans and successfully labeled 48 of them. The two failed cases were mainly due to rudimentary ribs.

  2. Local buckling of composite channel columns

    Science.gov (United States)

    Szymczak, Czesław; Kujawa, Marcin

    2018-05-01

    The investigation concerns local buckling of compressed flanges of axially compressed composite channel columns. Cooperation of the member flange and web is taken into account here. The buckling mode of the member flange is defined by rotation angle a flange about the line of its connection with the web. The channel column under investigation is made of unidirectional fibre-reinforced laminate. Two approaches to member orthotropic material modelling are performed: the homogenization with the aid of theory of mixture and periodicity cell or homogenization upon the Voigt-Reuss hypothesis. The fundamental differential equation of local buckling is derived with the aid of the stationary total potential energy principle. The critical buckling stress corresponding to a number of buckling half-waves is assumed to be a minimum eigenvalue of the equation. Some numerical examples dealing with columns are given here. The analytical results are compared with the finite element stability analysis carried out by means of ABAQUS software. The paper is focused on a close analytical solution of the critical buckling stress and the associated buckling mode while the web-flange cooperation is assumed.

  3. Study and modeling of the dispersed phase behavior in a pulsed column: application to an oxalic precipitation process

    International Nuclear Information System (INIS)

    Amokrane, Abdenour

    2014-01-01

    The thesis focuses on the study and modeling of a pulsed column used in liquid-liquid extraction operations in the nuclear industry and which is otherwise considered for continuous precipitation operations in emulsion. Modeling the behavior of the dispersed phase in the column is undertaken in this manuscript. First, we began by modeling the continuous phase mean velocity and turbulence fields, which are responsible for transport, breakage and coalescence of the drops. The model developed, validated by PIV measurements, predicts turbulence in a satisfying way. Modeling the residence time distribution (RTD) of the drops by a Lagrangian approach is then achieved. This model is validated on measurements taken by a shadow-graph technique. The simulation results are in good agreement with the experimental ones. To model the droplet size distributions (DSD) in the column, we used the population balance equations (PBE) that we have coupled with the computational fluid dynamics equations (CFD). A continuously stirred tank reactor (CSTR) with an optical sensor is used, at first, to acquire the DSD representative of our liquid-liquid system. Through a 0D modeling of the flow in the CSTR, and solving the inverse problem, we have determined the breakage and coalescence kernels relevant for our system, to be used in the PBE. These kernels were then used to predict the DSD in the pulsed column by a coupled CFD-PBE model based on the QMOM method. Finally, a validation of the coupled CFD-PBE model is made from DSD in good agreement with the experimental data both qualitatively and quantitatively. The validated model is then used to study the emulsion sensitivity to the column operating conditions. (author) [fr

  4. Design of pulsed perforated-plate columns for industrial scale mass transfer applications - present experience and the need for a model based approach

    International Nuclear Information System (INIS)

    Roy, Amitava

    2010-01-01

    Mass transfer is a vital unit operation in the processing of spent nuclear fuel in the backend of closed fuel cycle and Pulsed perforated plate extraction columns are used as mass transfer device for more than five decades. The pulsed perforated plate column is an agitated differential contactor, which has wide applicability due to its simplicity, high mass transfer efficiency, high through put, suitability for maintenance free remote operation, ease of cleaning/decontamination and cost effectiveness. Design of pulsed columns are based on a model proposed to describe the hydrodynamics and mass transfer. In equilibrium stage model, the HETS values are obtained from pilot plant experiments and then scaled empirically to design columns for industrial application. The dispersion model accounts for mass transfer kinetics and back-mixing. The drop population balance model can describe complex hydrodynamics of dispersed phase, that is, drop formation, break-up and drop-to-drop interactions. In recent years, significant progress has been made to model pulsed columns using CFD, which provides complete mathematical description of hydrodynamics in terms of spatial distribution of flow fields and 3D visualization. Under the condition of pulsation, the poly-dispersed nature of turbulent droplet swarm renders modeling difficult. In the absence of industry acceptance of proposed models, the conventional chemical engineering practice is to use HETS-NTS concept or HTU-NTU approach to design extraction columns. The practicability of HTU-NTU approach has some limitations due to the lack of experimental data on individual film mass transfer coefficients. Presently, the HETS-NTS concept has been used for designing the columns, which has given satisfactory performance. The design objective is mainly to arrive at the diameter and height of the mass transfer section for a specific plate geometry, fluid properties and pulsing condition to meet the intended throughput (capacity) and mass

  5. Adiabatic packed column supercritical fluid chromatography using a dual-zone still-air column heater.

    Science.gov (United States)

    Helmueller, Shawn C; Poe, Donald P; Kaczmarski, Krzysztof

    2018-02-02

    An approach to conducting SFC separations under pseudo-adiabatic condition utilizing a dual-zone column heater is described. The heater allows for efficient separations at low pressures above the critical temperature by imposing a temperature profile along the column wall that closely matches that for isenthalpic expansion of the fluid inside the column. As a result, the efficiency loss associated with the formation of radial temperature gradients in this difficult region can be largely avoided in packed analytical scale columns. For elution of n-octadecylbenzene at 60 °C with 5% methanol modifier and a flow rate of 3 mL/min, a 250 × 4.6-mm column packed with 5-micron Kinetex C18 particles began to lose efficiency (8% decrease in the number of theoretical plates) at outlet pressures below 142 bar in a traditional forced air oven. The corresponding outlet pressure for onset of excess efficiency loss was decreased to 121 bar when the column was operated in a commercial HPLC column heater, and to 104 bar in the new dual-zone heater operated in adiabatic mode, with corresponding increases in the retention factor for n-octadecylbenzene from 2.9 to 6.8 and 14, respectively. This approach allows for increased retention and efficient separations of otherwise weakly retained analytes. Applications are described for rapid SFC separation of an alkylbenzene mixture using a pressure ramp, and isobaric separation of a cannabinoid mixture. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Ductility of reinforced concrete columns confined with stapled strips

    International Nuclear Information System (INIS)

    Tahir, M.F.; Khan, Q.U.Z.; Shabbir, F.; Sharif, M.B.; Ijaz, N.

    2015-01-01

    Response of three 150x150x450mm short reinforced concrete (RC) columns confined with different types of confining steel was investigated. Standard stirrups, strips and stapled strips, each having same cross-sectional area, were employed as confining steel around four comer column bars. Experimental work was aimed at probing into the affect of stapled strip confinement on post elastic behavior and ductility level under cyclic axial load. Ductility ratios, strength enhancement factor and core concrete strengths were compared to study the affect of confinement. Results indicate that strength enhancement in RC columns due to strip and stapled strip confinement was not remarkable as compared to stirrup confined column. It was found that as compared to stirrup confined column, stapled strip confinement enhanced the ductility of RC column by 183% and observed axial capacity of stapled strip confined columns was 41 % higher than the strip confined columns. (author)

  7. EX0904 Water Column Summary Report and Profile Data Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A complete set of water column profile data and CTD Summary Report (if generated) generated by the Okeanos Explorer during EX0904: Water Column Exploration Field...

  8. Total sleep time severely drops during adolescence.

    Directory of Open Access Journals (Sweden)

    Damien Leger

    Full Text Available UNLABELLED: Restricted sleep duration among young adults and adolescents has been shown to increase the risk of morbidities such as obesity, diabetes or accidents. However there are few epidemiological studies on normal total sleep time (TST in representative groups of teen-agers which allow to get normative data. PURPOSE: To explore perceived total sleep time on schooldays (TSTS and non schooldays (TSTN and the prevalence of sleep initiating insomnia among a nationally representative sample of teenagers. METHODS: Data from 9,251 children aged 11 to 15 years-old, 50.7% of which were boys, as part of the cross-national study 2011 HBSC were analyzed. Self-completion questionnaires were administered in classrooms. An estimate of TSTS and TSTN (week-ends and vacations was calculated based on specifically designed sleep habits report. Sleep deprivation was estimated by a TSTN - TSTS difference >2 hours. Sleep initiating nsomnia was assessed according to International classification of sleep disorders (ICSD 2. Children who reported sleeping 7 hours or less per night were considered as short sleepers. RESULTS: A serious drop of TST was observed between 11 yo and 15 yo, both during the schooldays (9 hours 26 minutes vs. 7 h 55 min.; p<0.001 and at a lesser extent during week-ends (10 h 17 min. vs. 9 h 44 min.; p<0.001. Sleep deprivation concerned 16.0% of chidren aged of 11 yo vs. 40.5% of those of 15 yo (p<0.001. Too short sleep was reported by 2.6% of the 11 yo vs. 24.6% of the 15 yo (p<0.001. CONCLUSION: Despite the obvious need for sleep in adolescence, TST drastically decreases with age among children from 11 to 15 yo which creates significant sleep debt increasing with age.

  9. On axial temperature gradients due to large pressure drops in dense fluid chromatography.

    Science.gov (United States)

    Colgate, Sam O; Berger, Terry A

    2015-03-13

    The effect of energy degradation (Degradation is the creation of net entropy resulting from irreversibility.) accompanying pressure drops across chromatographic columns is examined with regard to explaining axial temperature gradients in both high performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC). The observed effects of warming and cooling can be explained equally well in the language of thermodynamics or fluid dynamics. The necessary equivalence of these treatments is reviewed here to show the legitimacy of using whichever one supports the simpler determination of features of interest. The determination of temperature profiles in columns by direct application of the laws of thermodynamics is somewhat simpler than applying them indirectly by solving the Navier-Stokes (NS) equations. Both disciplines show that the preferred strategy for minimizing the reduction in peak quality caused by temperature gradients is to operate columns as nearly adiabatically as possible (i.e. as Joule-Thomson expansions). This useful fact, however, is not widely familiar or appreciated in the chromatography community due to some misunderstanding of the meaning of certain terms and expressions used in these disciplines. In fluid dynamics, the terms "resistive heating" or "frictional heating" have been widely used as synonyms for the dissipation function, Φ, in the NS energy equation. These terms have been widely used by chromatographers as well, but often misinterpreted as due to friction between the mobile phase and the column packing, when in fact Φ describes the increase in entropy of the system (dissipation, ∫TdSuniv>0) due to the irreversible decompression of the mobile phase. Two distinctly different contributions to the irreversibility are identified; (1) ΔSext, viscous dissipation of work done by the external surroundings driving the flow (the pump) contributing to its warming, and (2) ΔSint, entropy change accompanying decompression of

  10. Cross flow cyclonic flotation column for coal and minerals beneficiation

    Science.gov (United States)

    Lai, Ralph W.; Patton, Robert A.

    2000-01-01

    An apparatus and process for the separation of coal from pyritic impurities using a modified froth flotation system. The froth flotation column incorporates a helical track about the inner wall of the column in a region intermediate between the top and base of the column. A standard impeller located about the central axis of the column is used to generate a centrifugal force thereby increasing the separation efficiency of coal from the pyritic particles and hydrophillic tailings.

  11. Behaviour of FRP confined concrete in square columns

    OpenAIRE

    Diego Villalón, Ana de; Arteaga Iriarte, Ángel; Fernandez Gomez, Jaime Antonio; Perera Velamazán, Ricardo; Cisneros, Daniel

    2015-01-01

    A significant amount of research has been conducted on FRP-confined circular columns, but much less is known about rectangular/square columns in which the effectiveness of confinement is much reduced. This paper presents the results of experimental investigations on low strength square concrete columns confined with FRP. Axial compression tests were performed on ten intermediate size columns. The tests results indicate that FRP composites can significantly improve the bearing capacity and duc...

  12. Modalization in the Political Column of Tempo Magazine

    OpenAIRE

    Rahmah, Maria Betti Sinaga and

    2017-01-01

    The study focuses on analyzing the use of modalization in the Political Column of Tempo Magazine. The objectives were to find out the type of modalization and to describe the use of modalization in the Political Column of Tempo magazine. The data were taken from Political Column of Tempo magazine published in June and July 2017. The source of data was Political Column in Tempo magazine. The data analysis applied descriptive qualitative research. There were 135 clauses which contained Modaliza...

  13. Numerical Simulations of Settlement of Jet Grouting Columns

    Directory of Open Access Journals (Sweden)

    Juzwa Anna

    2016-03-01

    Full Text Available The paper presents the comparison of results of numerical analyses of interaction between group of jet grouting columns and subsoil. The analyses were conducted for single column and groups of three, seven and nine columns. The simulations are based on experimental research in real scale which were carried out by authors. The final goal for the research is an estimation of an influence of interaction between columns working in a group.

  14. Experimental study of heat transfer and pressure drops for ammonia flowing inside a long tube

    International Nuclear Information System (INIS)

    Malek, A.; Colin, R.

    1985-01-01

    This report presents the results of the experimental study of heat transfer coefficients and pressure drops for boiling ammonia in a long tube. The scope of the tests discussed here corresponds to temperatures ranging from 30 to 70 0 C. This touches on various forthcoming applications, including binary cycles of nuclear power plants, as well as miscellaneous energy recovery cycles (heat pumps, geothermal energy, etc.). The results reported here of ammonia evaporators in the temperature range mentionned for two heat exchanger configurations: vertical and horizontal tubes. The correlations expressing the heat transfer coefficients cover the experimental results with a scatter of about +- 0.15% for the three parameters investigated: mass flow rate, heat load, and saturation pressure. As for pressure drops in two-phase flow, an equation expressing the weight of a column of liquid/vapour mixture is satisfactorily compared with the experimental results obtained here. The calculation of this weight is highly important for heat exchanger design, because it helps to predict the recirculation rate in the case of natural circulation. For some cases of evaporators, the calculation of this weight serves to predict the boiling lag in the lower part of the evaporator, which could give rise to low heat transfer coefficient [fr

  15. Evaluation of Sodium Sulphacetamide drops in the Treatment of ...

    African Journals Online (AJOL)

    Sodium sulphacetamide eye drops had been used successfully in the past in the treatment of ophthalmia neonatorium (ON) but its use has decreased remarkably in recent time. The efficacy of 10 percent sodium sulphacetamide eye drops in the treatment of ON was prospectively evaluated in 68 neonates seen in our ...

  16. Summary of Skoda JS rod drop measurements analysis

    International Nuclear Information System (INIS)

    Svarny, J.; Krysl, V.

    1999-01-01

    A summary is presented of the Skoda JS rod drop reactivity measurements analysis provided during last two years based on control rod worth measurements by the outer ion chambers. Standard analysis based on comparisons of dynamics macrocode MOBY-DICK-SK and experimental data is extended to the 8-th group delayed neutron structure and new features of rod drop process are investigated. (author)

  17. Fabrication and Operation of Microfluidic Hanging-Drop Networks.

    Science.gov (United States)

    Misun, Patrick M; Birchler, Axel K; Lang, Moritz; Hierlemann, Andreas; Frey, Olivier

    2018-01-01

    The hanging-drop network (HDN) is a technology platform based on a completely open microfluidic network at the bottom of an inverted, surface-patterned substrate. The platform is predominantly used for the formation, culturing, and interaction of self-assembled spherical microtissues (spheroids) under precisely controlled flow conditions. Here, we describe design, fabrication, and operation of microfluidic hanging-drop networks.

  18. Why Did They Not Drop Out? Narratives from Resilient Students

    Science.gov (United States)

    Lessard, Anne; Fortin, Laurier; Marcotte, Diane; Potvin, Pierre; Royer, Egide

    2009-01-01

    There is much to be learned from students who were at-risk for dropping out of school but persevered and graduated. The purpose of the study on which this article is based, was to describe how students who were at-risk for dropping out of school persevered and graduated. The voices of two students are introduced, highlighting the challenges they…

  19. Pressure Drop of Chamfer on Spacer Grid Strap

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Euijae; Kim, Kanghoon; Kim, Kyounghong; Nahm, Keeyil [KEPCO Nuclear Fuel Co., Daejeon (Korea, Republic of)

    2014-05-15

    A swirl flow and cross flow are generated by the spacer grid with mixing vane that enhances the thermal performance and critical heat flux (CHF). The additional pressure drop makes it difficult to meet acceptance criteria for overall pressure drop in fuel assembly depending upon the pump capacity. The chamfer on the end of spacer grid strap is one solution to reduce additional pressure drop without any adverse effect on flow fields. In this research, the pressure drop tests for spacer grid with and without chamfer were carried out at the hydraulic test facility. The result can be applied to develop high performance nuclear fuel assemblies for Pressurized Water Reactor (PWR) plants. The pressure drop tests for 5x5 spacer grid with and without chamfer as well as 6x6 spacer grid with and without chamfer were carried out at the INFINIT test facility. The Reynolds number ranged about from 16000 to 75000. The sweep-up and sweep-down test showed that the direction of sweep did not affect the pressure drop. The chamfer on spacer grid strap reduced the pressure drop due to the decreased in ratio of inlet area to outlet area. The pressure loss coefficient for spacer grid with chamfer was by up to 13.8 % lower than that for spacer grid without chamfer. Hence, the chamfer on spacer grid strap was one of effective ways to reduce the pressure drop.

  20. Delayed frost growth on jumping-drop superhydrophobic surfaces.

    Science.gov (United States)

    Boreyko, Jonathan B; Collier, C Patrick

    2013-02-26

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an interdrop frost wave. The growth of this interdrop frost front is shown to be up to 3 times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of interdrop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an interdrop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser minimized frost formation relative to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by limiting the success of interdrop ice bridge formation.

  1. From nuclear reactions to liquid-drop collisions

    International Nuclear Information System (INIS)

    Menchaca R, A.; Huidobro, F.; Martinez D, A.; Michaelian, K.; Perez, A.; Rodriguez, V.; Carjan, N.

    1997-01-01

    A review of the experimental and theoretical situation in coalescence and fragmentation studies of binary liquid-drop collisions is given, putting in perspective our own contributions, which include experiments with mercury and oil drops and the application of a nuclear reaction model, specifically modified by us for the macroscopic case. (Author)

  2. The origin of star-shaped oscillations of Leidenfrost drops

    Science.gov (United States)

    Ma, Xiaolei; Burton, Justin C.

    We experimentally investigate the oscillations of Leidenfrost drops of water, liquid nitrogen, ethanol, methanol, acetone and isopropyl alcohol. The drops levitate on a cushion of evaporated vapor over a hot, curved surface which keeps the drops stationary. We observe star-shaped modes along the periphery of the drop, with mode numbers n = 2 to 13. The number of observed modes is sensitive to the properties of the liquid. The pressure oscillation frequency in the vapor layer under the drop is approximately twice that of the drop frequency, which is consistent with a parametric forcing mechanism. However, the Rayleigh and thermal Marangoni numbers are of order 10,000, indicating that convection should play a dominating role as well. Surprisingly, we find that the wavelength and frequency of the oscillations only depend on the thickness of the liquid, which is twice the capillary length, and do not depend on the mode number, substrate temperature, or the substrate curvature. This robust behavior suggests that the wavelength for the oscillations is set by thermal convection inside the drop, and is less dependent on the flow in the vapor layer under the drop

  3. Student Drop-Out from German Higher Education Institutions

    Science.gov (United States)

    Heublein, Ulrich

    2014-01-01

    28% of students of any one year currently give up their studies in bachelor degree programmes at German higher education institutions. Drop-out is to be understood as the definite termination in the higher education system without obtaining an academic degree. The drop-out rate is thereby calculated with the help of statistical estimation…

  4. Fundamentals and applications of fast micro-drop impact

    NARCIS (Netherlands)

    Visser, C.W.

    2014-01-01

    3D-printing, biofabrication, diesel engines, and spray cleaning all depend on controlled drop impact. However, surprisingly, these drops have received scarce attention so far. This is mainly due to their small size and high impact velocity, which makes visualizing the impact a challenge. This thesis

  5. Drop shape visualization and contact angle measurement on curved surfaces.

    Science.gov (United States)

    Guilizzoni, Manfredo

    2011-12-01

    The shape and contact angles of drops on curved surfaces is experimentally investigated. Image processing, spline fitting and numerical integration are used to extract the drop contour in a number of cross-sections. The three-dimensional surfaces which describe the surface-air and drop-air interfaces can be visualized and a simple procedure to determine the equilibrium contact angle starting from measurements on curved surfaces is proposed. Contact angles on flat surfaces serve as a reference term and a procedure to measure them is proposed. Such procedure is not as accurate as the axisymmetric drop shape analysis algorithms, but it has the advantage of requiring only a side view of the drop-surface couple and no further information. It can therefore be used also for fluids with unknown surface tension and there is no need to measure the drop volume. Examples of application of the proposed techniques for distilled water drops on gemstones confirm that they can be useful for drop shape analysis and contact angle measurement on three-dimensional sculptured surfaces. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Generic versus brand-name North American topical glaucoma drops.

    Science.gov (United States)

    Mammo, Zaid N; Flanagan, John G; James, David F; Trope, Graham E

    2012-02-01

    To determine whether brand-name glaucoma drops differ from generic equivalents in bottle design, viscosity, surface tension, and volume in North America. Experimental study. We studied 5 bottles each of 11 kinds of glaucoma drops. Density-based calculations of drop volume were assessed using 0.1 mg analytic balance. Viscosity was measured using rotational rheometery. Bottle tip diameter was measured using 0.05 mm Vernier calipers. Surface tension was measured using a Fisher Scientific (Ottawa, ON) tensiometer. For the American brand-name Timoptic XE, the average drop volume was 38 ± 3.1 μL versus 24 ± 1.5 μL of Timolol GFS (p brand-name Timoptic XE, the average drop volume was 42 ± 4.0 μL versus 25 ± 2 μL of timolol maleate EX (p brand-name Timoptic drop volume was 28 ± 1.4 μL versus 35 ± 1.9 μL Apo-Timop (p brand-name Timoptic delivered significantly smaller drop volumes than generic Apo-Timop. Careful consideration should be given to drop viscosity and bottle design when generic ophthalmic products are evaluated for interchangeability and market entry. Copyright © 2012 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  7. Complex cooling water systems optimization with pressure drop consideration

    CSIR Research Space (South Africa)

    Gololo, KV

    2012-12-01

    Full Text Available Pressure drop consideration has shown to be an essential requirement for the synthesis of a cooling water network where reuse/recycle philosophy is employed. This is due to an increased network pressure drop associated with additional reuse...

  8. column frame for design of reinforced concrete sway frames

    African Journals Online (AJOL)

    adminstrator

    design of slender reinforced concrete columns in sway frames according .... concrete,. Ac = gross cross-sectional area of the columns. Step 3: Effective Buckling Length Factors. The effective buckling length factors of columns in a sway frame shall be computed by .... shall have adequate resistance to failure in a sway mode ...

  9. Behavior of reinforced concrete columns strenghtened by partial jacketing

    Directory of Open Access Journals (Sweden)

    D. B. FERREIRA

    Full Text Available This article presents the study of reinforced concrete columns strengthened using a partial jacket consisting of a 35mm self-compacting concrete layer added to its most compressed face and tested in combined compression and uniaxial bending until rupture. Wedge bolt connectors were used to increase bond at the interface between the two concrete layers of different ages. Seven 2000 mm long columns were tested. Two columns were cast monolithically and named PO (original column e PR (reference column. The other five columns were strengthened using a new 35 mm thick self-compacting concrete layer attached to the column face subjected to highest compressive stresses. Column PO had a 120mm by 250 mm rectangular cross section and other columns had a 155 mm by 250mm cross section after the strengthening procedure. Results show that the ultimate resistance of the strengthened columns was more than three times the ultimate resistance of the original column PO, indicating the effectiveness of the strengthening procedure. Detachment of the new concrete layer with concrete crushing and steel yielding occurred in the strengthened columns.

  10. 46 CFR 174.085 - Flooding on column stabilized units.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Flooding on column stabilized units. 174.085 Section 174... Units § 174.085 Flooding on column stabilized units. (a) Watertight compartments that are outboard of... of the unit, must be assumed to be subject to flooding as follows: (1) When a column is subdivided...

  11. Drop tests of the Three Mile Island knockout canister

    International Nuclear Information System (INIS)

    Box, W.D.; Aaron, W.S.; Shappert, L.B.; Childress, P.C.; Quinn, G.J.; Smith, J.V.

    1987-01-01

    A type of Three Mile Island Unit 2 (TMI-2) defueling canister, called a ''knockout'' canister, was subjected to a series of drop tests at the Oak Ridge National Laboratory's Drop Test Facility. These tests confirmed the structural integrity of internal fixed neutron poisons in support of a request for NRC licensing of this type of canister for the shipment of TMI-2 reactor fuel debris to the Idaho National Engineering Laboratory (INEL) for the Core Examination R and D Program. This report presents the data generated and the results obtained from a series of four drop tests that included two drops with the test assembly in the vertical position and two drops with the assembly in the horizontal position

  12. Building micro-soccer-balls with evaporating colloidal fakir drops

    Science.gov (United States)

    Gelderblom, Hanneke; Marín, Álvaro G.; Susarrey-Arce, Arturo; van Housselt, Arie; Lefferts, Leon; Gardeniers, Han; Lohse, Detlef; Snoeijer, Jacco H.

    2013-11-01

    Drop evaporation can be used to self-assemble particles into three-dimensional microstructures on a scale where direct manipulation is impossible. We present a unique method to create highly-ordered colloidal microstructures in which we can control the amount of particles and their packing fraction. To this end, we evaporate colloidal dispersion drops from a special type of superhydrophobic microstructured surface, on which the drop remains in Cassie-Baxter state during the entire evaporative process. The remainders of the drop consist of a massive spherical cluster of the microspheres, with diameters ranging from a few tens up to several hundreds of microns. We present scaling arguments to show how the final particle packing fraction of these balls depends on the drop evaporation dynamics, particle size, and number of particles in the system.

  13. Electrowetting-on-dielectrics for manipulation of oil drops and gas bubbles in aqueous-shell compound drops.

    Science.gov (United States)

    Li, Jiang; Wang, Yixuan; Chen, Haosheng; Wan, Jiandi

    2014-11-21

    We present the manipulation of oil, organic and gaseous chemicals by electrowetting-on-dielectric (EWOD) technology using aqueous-shell compound drops. We demonstrate that the transport and coalescence of viscous oil drops, the reaction of bromine with styrene in benzene solution, and the reaction of red blood cells with carbon monoxide bubbles can be accomplished using this method.

  14. Hydrodynamic Study Of Column Bioleaching Processes

    Directory of Open Access Journals (Sweden)

    Sadowski Zygmunt

    2015-06-01

    Full Text Available The modelling of flow leaching solution through the porous media has been considered. The heap bioleaching process can be tested using the column experimental equipment. This equipment was employed to the hydrodynamic studies of copper ore bioleaching. The copper ore (black shale ore with the support, inertial materials (glass small balls and polyethylene beads was used to the bioleaching tests. The packed beds were various composition, the ore/support ratio was changed. The correlation between the bed porosity and bioleaching kinetics, and copper recovery was investigated.

  15. Column leaching from biomass combustion ashes

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard

    2015-01-01

    The utilization of biomass combustion ashes for forest soil liming and fertilizing has been addressed in literature. Though, a deep understanding of the ash chemical composition and leaching behavior is necessary to predict potential benefits and environmental risks related to this practice....... In this study, a fly ash sample from an operating Danish power plant based on wood biomass was collected, chemically characterized and investigated for its leaching release of nutrients and heavy metals. A column leaching test was employed. The strongly alkaline pH of all the collected eluates suggested...

  16. Design of Steel Beam-Column Connections

    Directory of Open Access Journals (Sweden)

    Bogatinoski Z.

    2014-05-01

    Full Text Available In this paper a theoretical and experimental research of the steel beam-column connections is presented. Eight types of specimens were being researched, composed of rigid and semi-rigid connections from which 4 connections are with IPE - profile and 4 connections with tube's section for the beam. From the numerical analysis of the researched models, and especially from the experimental research at the Laboratory for Structures in the Faculty of Mechanical Engineering - Skopje, specific conclusions were received that ought to have theoretical and practical usage for researchers in this area of interest.

  17. Buckling driven debonding in sandwich columns

    DEFF Research Database (Denmark)

    Østergaard, Rasmus Christian

    2008-01-01

    results from two mechanisms: (a) interaction of local debond buckling and global buckling and (b) the development of a damaged zone at the debond crack tip. Based on the pronounced imperfection sensitivity, the author predicts that an experimental measurement of the strength of sandwich structures may......A compression loaded sandwich column that contains a debond is analyzed using a geometrically non-linear finite element model. The model includes a cohesive zone along one face sheet/core interface whereby the debond can extend by interface crack growth. Two geometrical imperfections are introduced...

  18. Dynamic Deformation and Collapse of Granular Columns

    Science.gov (United States)

    Uenishi, K.; Tsuji, K.; Doi, S.

    2009-12-01

    Large dynamic deformation of granular materials may be found in nature not only in the failure of slopes and cliffs — due to earthquakes, rock avalanches, debris flows and landslides — but also in earthquake faulting itself. Granular surface flows often consist of solid grains and intergranular fluid, but the effect of the fluid may be usually negligible because the volumetric concentration of grains is in many cases high enough for interparticle forces to dominate momentum transport. Therefore, the investigation of dry granular flow of a mass might assist in further understanding of the above mentioned geophysical events. Here, utilizing a high-speed digital video camera system, we perform a simple yet fully-controlled series of laboratory experiments related to the collapse of granular columns. We record, at an interval of some microseconds, the dynamic transient granular mass flow initiated by abrupt release of a tube that contains dry granular materials. The acrylic tube is partially filled with glass beads and has a cross-section of either a fully- or semi-cylindrical shape. Upon sudden removal of the tube, the granular solid may fragment under the action of its own weight and the particles spread on a rigid horizontal plane. This study is essentially the extension of the previous ones by Lajeunesse et al. (Phys. Fluids 2004) and Uenishi and Tsuji (JPGU 2008), but the striped layers of particles in a semi-cylindrical tube, newly introduced in this contribution, allow us to observe the precise particle movement inside the granular column: The development of slip lines inside the column and the movement of particles against each other can be clearly identified. The major controlling parameters of the spreading dynamics are the initial aspect ratio of the granular (semi-)cylindrical column, the frictional properties of the horizontal plane (substrate) and the size of beads. We show the influence of each parameter on the average flow velocity and final radius

  19. A review of oscillating water columns.

    Science.gov (United States)

    Heath, T V

    2012-01-28

    This paper considers the history of oscillating water column (OWC) systems from whistling buoys to grid-connected power generation systems. The power conversion from the wave resource through to electricity via pneumatic and shaft power is discussed in general terms and with specific reference to Voith Hydro Wavegen's land installed marine energy transformer (LIMPET) plant on the Scottish island of Islay and OWC breakwater systems. A report on the progress of other OWC systems and power take-off units under commercial development is given, and the particular challenges faced by OWC developers reviewed.

  20. Preinjector for Linac 1, accelerating column

    CERN Multimedia

    1974-01-01

    For a description of the Linac 1 preinjector, please see first 7403070X. High up on the wall of the Faraday cage (7403073X) is this drum-shaped container of the ion source (7403083X). It is mounted at the HV end of the accelerating column through which the ions (usually protons; many other types of ions in the course of its long history) proceed through the Faraday cage wall to the low-energy end (at ground potential) of Linac 1. The 520 kV accelerating voltage was supplied by a SAMES generator (7403074X).

  1. Column studies on BTEX biodegradation under microaerophilic and denitrifying conditions

    International Nuclear Information System (INIS)

    Hutchins, S.R.; Moolenaar, S.W.; Rhodes, D.E.

    1992-01-01

    Two column tests were conducted using aquifer material to simulate the nitrate field demonstration project carried out earlier at Traverse City, Michigan. The objectives were to better define the effect nitrate addition had on biodegradation of benzene, toluene, ethylbenzene, xylenes, and trimethylbenzenes (BTEX) in the field study, and to determine whether BTEX removal can be enhanced by supplying a limited amount of oxygen as a supplemental electron acceptor. Columns were operated using limited oxygen, limited oxygen plus nitrate, and nitrate alone. In the first column study, benzene was generally recalcitrant compared to the alkylbenzenes (TEX), although some removal did occur. In the second column study, nitrate was deleted from the feed to the column originally receiving nitrate alone and added to the feed of the column originally receiving limited oxygen alone. Although the requirement for nitrate for optimum TEX removal was clearly demonstrated in these columns, there were significant contributions by biotic and abiotic processes other than denitrification which could not be quantified

  2. Effect of humidity on the filter pressure drop

    International Nuclear Information System (INIS)

    Vendel, J.; Letourneau, P.

    1995-01-01

    The effects of humidity on the filter pressure drop have been reported in some previous studies in which it is difficult to draw definite conclusions. These studies show contradictory effects of humidity on the pressure drop probably due to differences in the hygroscopicity of the test aerosols. The objective of this paper is to present experimental results on the evolution of the filter pressure drop versus mass loading, for different test aerosols and relative humidities. Present results are compared to those found in various publication. An experimental device has been designed to measure filter pressure drop as the function of the areal density for relative humidity varying in the range of 9 % to 85 %. Experiments have been conducted with hygroscopic: (CsOH) and nonhygroscopic aerosols (TiO 2 ). Cesium hydroxyde (CsOH) of size of 2 μ M AMMD has been generated by an ultrasonic generator and the 0.7 μm AMMD titanium oxyde has been dispersed by a open-quotes turn-tableclose quotes generator. As it is noted in the BISWAS'publication [3], present results show, in the case of nonhygroscopic aerosols, a linear relationship of pressure drop to mass loading. For hygroscopic aerosols two cases must be considered: for relative humidity below the deliquescent point of the aerosol, the relationship of pressure drop to mass loading remains linear; above the deliquescent point, the results show a sudden increase in the pressure drop and the mass capacity of the filter is drastically reduced

  3. Electric generation and ratcheted transport of contact-charged drops

    Science.gov (United States)

    Cartier, Charles A.; Graybill, Jason R.; Bishop, Kyle J. M.

    2017-10-01

    We describe a simple microfluidic system that enables the steady generation and efficient transport of aqueous drops using only a constant voltage input. Drop generation is achieved through an electrohydrodynamic dripping mechanism by which conductive drops grow and detach from a grounded nozzle in response to an electric field. The now-charged drops are transported down a ratcheted channel by contact charge electrophoresis powered by the same voltage input used for drop generation. We investigate how the drop size, generation frequency, and transport velocity depend on system parameters such as the liquid viscosity, interfacial tension, applied voltage, and channel dimensions. The observed trends are well explained by a series of scaling analyses that provide insight into the dominant physical mechanisms underlying drop generation and ratcheted transport. We identify the conditions necessary for achieving reliable operation and discuss the various modes of failure that can arise when these conditions are violated. Our results demonstrate that simple electric inputs can power increasingly complex droplet operations with potential opportunities for inexpensive and portable microfluidic systems.

  4. Measurement of an Evaporating Drop on a Reflective Substrate

    Science.gov (United States)

    Chao, David F.; Zhang, Nengli

    2004-01-01

    A figure depicts an apparatus that simultaneously records magnified ordinary top-view video images and laser shadowgraph video images of a sessile drop on a flat, horizontal substrate that can be opaque or translucent and is at least partially specularly reflective. The diameter, contact angle, and rate of evaporation of the drop as functions of time can be calculated from the apparent diameters of the drop in sequences of the images acquired at known time intervals, and the shadowgrams that contain flow patterns indicative of thermocapillary convection (if any) within the drop. These time-dependent parameters and flow patterns are important for understanding the physical processes involved in the spreading and evaporation of drops. The apparatus includes a source of white light and a laser (both omitted from the figure), which are used to form the ordinary image and the shadowgram, respectively. Charge-coupled-device (CCD) camera 1 (with zoom) acquires the ordinary video images, while CCD camera 2 acquires the shadowgrams. With respect to the portion of laser light specularly reflected from the substrate, the drop acts as a plano-convex lens, focusing the laser beam to a shadowgram on the projection screen in front of CCD camera 2. The equations for calculating the diameter, contact angle, and rate of evaporation of the drop are readily derived on the basis of Snell s law of refraction and the geometry of the optics.

  5. Inverse Leidenfrost effect: self-propelling drops on a bath

    Science.gov (United States)

    Gauthier, Anais; van der Meer, Devaraj; Lohse, Detlef; Physics of Fluids Team

    2017-11-01

    When deposited on very hot solid, volatile drops can levitate over a cushion of vapor, in the so-called Leidenfrost state. This phenomenon can also be observed on a hot bath and similarly to the solid case, drops are very mobile due to the absence of contact with the substrate that sustains them. We discuss here a situation of ``inverse Leidenfrost effect'' where room-temperature drops levitate on a liquid nitrogen pool - the vapor is generated here by the bath sustaining the relatively hot drop. We show that the drop's movement is not random: the liquid goes across the bath in straight lines, a pattern only disrupted by elastic bouncing on the edges. In addition, the drops are initially self-propelled; first at rest, they accelerate for a few seconds and reach velocities of the order of a few cm/s, before slowing down. We investigate experimentally the parameters that affect their successive acceleration and deceleration, such as the size and nature of the drops and we discuss the origin of this pattern.

  6. Effect of humidity on the filter pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Vendel, J.; Letourneau, P. [Institut de Protection et de Surete Nucleaire, Gif-sur-Yvette (France)

    1995-02-01

    The effects of humidity on the filter pressure drop have been reported in some previous studies in which it is difficult to draw definite conclusions. These studies show contradictory effects of humidity on the pressure drop probably due to differences in the hygroscopicity of the test aerosols. The objective of this paper is to present experimental results on the evolution of the filter pressure drop versus mass loading, for different test aerosols and relative humidities. Present results are compared to those found in various publication. An experimental device has been designed to measure filter pressure drop as the function of the areal density for relative humidity varying in the range of 9 % to 85 %. Experiments have been conducted with hygroscopic: (CsOH) and nonhygroscopic aerosols (TiO{sub 2}). Cesium hydroxyde (CsOH) of size of 2 {mu} M AMMD has been generated by an ultrasonic generator and the 0.7 {mu}m AMMD titanium oxyde has been dispersed by a {open_quotes}turn-table{close_quotes} generator. As it is noted in the BISWAS`publication [3], present results show, in the case of nonhygroscopic aerosols, a linear relationship of pressure drop to mass loading. For hygroscopic aerosols two cases must be considered: for relative humidity below the deliquescent point of the aerosol, the relationship of pressure drop to mass loading remains linear; above the deliquescent point, the results show a sudden increase in the pressure drop and the mass capacity of the filter is drastically reduced.

  7. Application of Proteomics to the Study of Pollination Drops

    Directory of Open Access Journals (Sweden)

    Natalie Prior

    2013-04-01

    Full Text Available Premise of the study: Pollination drops are a formative component in gymnosperm pollen-ovule interactions. Proteomics offers a direct method for the discovery of proteins associated with this early stage of sexual reproduction. Methods: Pollination drops were sampled from eight gymnosperm species: Chamaecyparis lawsoniana (Port Orford cedar, Ephedra monosperma, Ginkgo biloba, Juniperus oxycedrus (prickly juniper, Larix ×marschlinsii, Pseudotsuga menziesii (Douglas-fir, Taxus ×media, and Welwitschia mirabilis. Drops were collected by micropipette using techniques focused on preventing sample contamination. Drop proteins were separated using both gel and gel-free methods. Tandem mass spectrometric methods were used including a triple quadrupole and an Orbitrap. Results: Proteins are present in all pollination drops. Consistency in the protein complement over time was shown in L. ×marschlinsii. Representative mass spectra from W. mirabilis chitinase peptide and E. monosperma serine carboxypeptidase peptide demonstrated high quality results. We provide a summary of gymnosperm pollination drop proteins that have been discovered to date via proteomics. Discussion: Using proteomic methods, a dozen classes of proteins have been identified to date. Proteomics presents a way forward in deepening our understanding of the biological function of pollination drops.

  8. Spinal column damage from water ski jumping

    International Nuclear Information System (INIS)

    Horne, J.; Cockshott, W.P.; Shannon, H.S.

    1987-01-01

    We conducted a radiographic survey of 117 competitive water ski jumpers to determine whether this sport can cause spinal column damage and, if so, whether damage is more likely to occur in those who participate during the period of spinal growth and development (age 15 years or younger). We found a high prevalence of two types of abnormality: Scheuermann (adolescent) spondylodystrophy (present in 26% of the skiers) and vertebral body wedging (present in 34%). The prevalence of adolescent spondylodystrophy increased with the number of years of participation in the sport before age 15 years or less. Of those in this age group who had skied for 5 years or more, 57 showed adolescent spondylodystrophy; of those in the same age group who had skied for 9 years or more, 100% were affected. Wedged vertebrae increased as time of participation increased, regardless of the age at which exposure began. We conclude that competitive water ski jumping may damage the spinal column and that consideration should be given to regulating this sport, particularly for children. (orig.)

  9. Spinal column damage from water ski jumping.

    Science.gov (United States)

    Horne, J; Cockshott, W P; Shannon, H S

    1987-01-01

    We conducted a radiographic survey of 117 competitive water ski jumpers to determine whether this sport can cause spinal column damage and, if so, whether damage is more likely to occur in those who participate during the period of spinal growth and development (age 15 years or younger). We found a high prevalence of two types of abnormality: Scheuermann (adolescent) spondylodystrophy (present in 26% of the skiers) and vertebral body wedging (present in 34%). The prevalence of adolescent spondylodystrophy increased with the number of years of participation in the sport before age 15 years or less. Of those in this age group who had skied for 5 years or more, 57 showed adolescent spondylodystrophy; of those in the same age group who had skied for 9 years or more, 100% were affected. Wedged vertebrae increased as time of participation increased, regardless of the age at which exposure began. We conclude that competitive water ski jumping may damage the spinal column and that consideration should be given to regulating this sport, particularly for children.

  10. Spinal column damage from water ski jumping

    Energy Technology Data Exchange (ETDEWEB)

    Horne, J.; Cockshott, W.P.; Shannon, H.S.

    1987-11-01

    We conducted a radiographic survey of 117 competitive water ski jumpers to determine whether this sport can cause spinal column damage and, if so, whether damage is more likely to occur in those who participate during the period of spinal growth and development (age 15 years or younger). We found a high prevalence of two types of abnormality: Scheuermann (adolescent) spondylodystrophy (present in 26% of the skiers) and vertebral body wedging (present in 34%). The prevalence of adolescent spondylodystrophy increased with the number of years of participation in the sport before age 15 years or less. Of those in this age group who had skied for 5 years or more, 57 showed adolescent spondylodystrophy; of those in the same age group who had skied for 9 years or more, 100% were affected. Wedged vertebrae increased as time of participation increased, regardless of the age at which exposure began. We conclude that competitive water ski jumping may damage the spinal column and that consideration should be given to regulating this sport, particularly for children. (orig.)

  11. Hydrogen isotope exchange in metal hydride columns

    International Nuclear Information System (INIS)

    Wiswall, R.; Reilly, J.; Bloch, F.; Wirsing, E.

    1977-01-01

    Several metal hydrides were shown to act as chromatographic media for hydrogen isotopes. The procedure was to equilibrate a column of hydride with flowing hydrogen, inject a small quantity of tritium tracer, and observe its elution behavior. Characteristic retention times were found. From these and the extent of widening of the tritium band, the heights equivalent to a theoretical plate could be calculated. Values of around 1 cm were obtained. The following are the metals whose hydrides were studied, together with the temperature ranges in which chromatographic behavior was observed: vanadium, 0 to 70 0 C; zirconium, 500 to 600 0 C; LaNi 5 , -78 to +30 0 C; Mg 2 Ni, 300 to 375 0 C; palladium, 0 to 70 0 C. A dual-temperature isotope separation process based on hydride chromatography was demonstrated. In this, a column was caused to cycle between two temperatures while being supplied with a constant stream of tritium-traced hydrogen. Each half-cycle was continued until ''breakthrough,'' i.e., until the tritium concentration in the effluent was the same as that in the feed. Up to that point, the effluent was enriched or depleted in tritium, by up to 20%

  12. Improved focusing-and-deflection columns

    International Nuclear Information System (INIS)

    Mui, P.H.; Szilagyi, M.

    1995-01-01

    Our earlier design procedures for constructing quadrupole columns are further expanded to include octupole corrector units and ''octupole'' deflectors with no third-order harmonics. The additional complications are finer partitioning of the plates and increased number of voltage controllers. Two sample designs, one having only the additional octupole deflectors and one having both the deflectors and the correctors, are presented and compared to our previous quadrupole system. The additional octupole components are shown to be capable of increasing the current density from 30% to more than 300% for a four-plate system, designed to focus and scan the electron beam over a circular area of 0.25 mm radius. The electron beam is assumed to have an initial divergence of ±2.3 mrad, an initial energy of 6 kV, a total energy spread of 1 eV, and a final acceleration of 30 keV. These systems are then slightly reoptimized for a superficial comparison with the commercially available column by Micrion Corporation. The numerical results indicate a potential for substantial improvements, demonstrating the power of this design procedure. Finally, a discussion is presented on how the individual components can interact with each other to reduce the various aberrations. copyright 1995 American Vacuum Society

  13. Synthesis of focusing-and-deflection columns

    International Nuclear Information System (INIS)

    Szilagyi, M.; Mui, P.H.

    1995-01-01

    Szilagyi and Szep have demonstrated that focusing lenses of high performances can be constructed from a column of circular plate electrodes. Later, Szilagyi modified that system to include dipole, quadrupole, and octupole components by partitioning each plate into eight equal sectors. It has already been shown that the additional quadrupole components can indeed bring about substantial improvements in the focusing of charged particle beams. In this article, that design procedure is expanded to construct columns capable of both focusing and deflecting particle beams by just introducing additional dipole components. In this new design, the geometry of the system remains unchanged. The only extra complication is the demand for more individual controls of the sector voltages. Two sample designs, one for negative ions and one for electrons, are presented showing that in both cases a ±2.3 mrad diverging beam can be focused down to a spot of less than 50 nm in radius over a scanning circular area of radius 0.25 mm. The details of the two systems are given in Sec. IV along with the source conditions. The performance of the negative ion system is found to be comparable to the published data. For the relativistic electron system, the interaction of individual components to reduce various aberrations is investigated. copyright 1995 American Vacuum Society

  14. Two-column sequential injection chromatography for fast isocratic separation of two analytes of greatly differing chemical properties.

    Science.gov (United States)

    Šatínský, Dalibor; Chocholouš, Petr; Válová, Olga; Hanusová, Lucia; Solich, Petr

    2013-09-30

    This paper deals with a novel approach to separate two analytes with different chemical properties and different lipophilicity. The newly described methodology is based on the two column system that was used for isocratic separation of two analytes with very different lipophilicity-dexamethasone and cinchocaine. Simultaneous separation of model compounds cinchocaine and dexamethasone was carried under the following conditions in two-column sequential injection chromatography system (2-C SIC). A 25×4.6 mm C-18 monolithic column was used in the first dimension for retention and separation of dexamethasone with mobile phase acetonitrile:water 30:70 (v/v), flow rate 0.9 mL min(-1) and consumption of 1.7 mL. A 10×4.6 mm C-18 monolithic column with 5×4.6 mm C-18 precolumn was used in the second dimension for retention and separation of cinchocaine using mobile phase acetonitrile:water 60:40 (v/v), flow rate 0.9 mL min(-1) and consumption 1.5 mL. Whole analysis time including both mobile phase's aspirations and both column separations was performed in less than 4 min. The method was fully validated and used for determination of cinchocaine and dexamethasone in pharmaceutical otic drops. The developed 2-C SIC method was compared with HPLC method under the isocratic conditions of separation on monolithic column (25×4.6 mm C-18). Spectrophotometric detection of both compounds was performed at wavelength 240 nm. System repeatability and method precision were found in the range (0.39-3.12%) for both compounds. Linearity of determination was evaluated in the range 50-500 μg mL(-1) and coefficients of determination were found to be r(2)=0.99912 for dexamethasone and r(2)=0.99969 for cinchocaine. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. A novel back-up control structure to manage nonroutine steam upsets in industrial methanol distillation columns

    DEFF Research Database (Denmark)

    Udugama, Isuru A.; Zander, Cornina; Mansouri, Seyed Soheil

    2017-01-01

    Industrial methanol production plants have extensive heat integration to achieve energy efficient operations where steam generated from these heat integration operations are used to provide reboiler duty for methanol distillation columns that purify crude methanol produced into industrial AA grade...... supervisory layer to control the column during these non-routine process upsets. These control schemes were tested against realistic reboiler duty disturbances that can occur in an industrial process. The tests revealed that both the MPC and supervisory systems control structures are able to regulate...... the process, even during sudden drops in reboiler duty. However, the cost of implementation and the relative simplicity will likely favour the implementation of the supervisory control structure in an industrial environment....

  16. An analysis of pipe degradation shape using potential drop method

    International Nuclear Information System (INIS)

    Jegal, S.; Lee, S. H.

    1999-01-01

    The Potential Drop (PD) method, one of NDE (Non-Destructive Evaluation) method is used to analyze the thickness distribution of pipes degraded by FAC (Flow Accelerated Corrosion). A DCPD (Direct Current Potential Drop) system which can measure PD for direct current was made, and the specimens with line defects and cylinder type defects have been used for experiments to prove the theory of Potential Drop method and to find out the effects of each factors. The experiment to find out defect distributions has been performed and it is found that PD method can analyze almost correct position of defects

  17. Ready-made allogeneic ABO-specific serum eye drops

    DEFF Research Database (Denmark)

    Harritshøj, Lene Holm; Nielsen, Connie; Ullum, Henrik

    2014-01-01

    serum treatment. CONCLUSION: Ready-made ABO-identical allogeneic serum eye drops were straightforwardly produced, quality-assured and registered as a safe standard blood product for the treatment of certain cases of severe dry eye disease. Therapeutic efficacy was comparable to previous reports......PURPOSE: To overcome problems and delays of the preparation of autologous serum eye drops, a production line of ABO-specific allogeneic serum eye drops from male blood donors was set up in a blood bank. Feasibility, clinical routine, safety and efficacy were evaluated in a cohort of patients...

  18. Controlling Vapor Pressure In Hanging-Drop Crystallization

    Science.gov (United States)

    Carter, Daniel C.; Smith, Robbie

    1988-01-01

    Rate of evaporation adjusted to produce larger crystals. Device helps to control vapor pressure of water and other solvents in vicinity of hanging drop of solution containing dissolved enzyme protein. Well of porous frit (sintered glass) holds solution in proximity to drop of solution containing protein or enzyme. Vapor from solution in frit controls evaporation of solvent from drop to control precipitation of protein or enzyme. With device, rate of nucleation limited to decrease number and increase size (and perhaps quality) of crystals - large crystals of higher quality needed for x-ray diffraction studies of macromolecules.

  19. Analysis of an Electrostatic MEMS Squeeze-film Drop Ejector

    Directory of Open Access Journals (Sweden)

    Edward P. Furlani

    2009-10-01

    Full Text Available We present an analysis of an electrostatic drop-on-demand MEMS fluid ejector. The ejector consists of a microfluidic chamber with a piston that is suspended a few microns beneath a nozzle plate. A drop is ejected when a voltage is applied between the orifice plate and the piston. This produces an electrostatic force that moves the piston towards the nozzle. The moving piston generates a squeeze-film pressure distribution that causes drop ejection. We discuss the operating physics of the ejector and present a lumped-element model for predicting its performance. We calibrate the model using coupled structural-fluidic CFD analysis.

  20. Internal flow of acoustically levitated drops undergoing sectorial oscillations

    International Nuclear Information System (INIS)

    Shen, C.L.; Xie, W.J.; Yan, Z.L.; Wei, B.

    2010-01-01

    We present the experimental observation and theoretical analysis of fluid flow in acoustically levitated water drop undergoing sectorial oscillations. The fluid always flows between the extended sections and the compressed sections. The magnitude of fluid velocity decreases from the equatorial fringe to the centre of levitated drop. The maximum fluid velocity is 60-160 mm/s and the Reynolds number of the oscillations is estimated to be 137-367. The internal flow of the drop is analyzed as potential flow, and the fluid velocity is found to be horizontal. In the equatorial plane, the calculated stream lines and velocity profiles agree well with the experimental observations.

  1. Ultrasonic defect sizing using decibel drop methods. III

    International Nuclear Information System (INIS)

    Mills, C.; Goszczynski, J.; Mitchell, A.B.

    1988-03-01

    An earlier study on the use of ultrasonic decibel drop sizing methods for determining the length and vertical extent of flaws in welded steel sections was based on the scanning of machined flaws and fabrication flaws. The present study utilized the techniques developed to perform a similar study of the type of flaws expected to develop during service (e.g. fatigue cracks). The general findings are that: a) the use of decibel drops of less than 14 dB generally undersize the length of fatigue cracks; and b) the use of decibel drop methods to determine vertical extent is questionable

  2. The effects of carbide column to swelling potential and Atterberg limit on expansive soil with column to soil drainage

    Science.gov (United States)

    Muamar Rifa'i, Alfian; Setiawan, Bambang; Djarwanti, Noegroho

    2017-12-01

    The expansive soil is soil that has a potential for swelling-shrinking due to changes in water content. Such behavior can exert enough force on building above to cause damage. The use of columns filled with additives such as Calcium Carbide is done to reduce the negative impact of expansive soil behavior. This study aims to determine the effect of carbide columns on expansive soil. Observations were made on swelling and spreading of carbides in the soil. 7 Carbide columns with 5 cm diameter and 20 cm height were installed into the soil with an inter-column spacing of 8.75 cm. Wetting is done through a pipe at the center of the carbide column for 20 days. Observations were conducted on expansive soil without carbide columns and expansive soil with carbide columns. The results showed that the addition of carbide column could reduce the percentage of swelling by 4.42%. Wetting through the center of the carbide column can help spread the carbide into the soil. The use of carbide columns can also decrease the rate of soil expansivity. After the addition of carbide column, the plasticity index value decreased from 71.76% to 4.3% and the shrinkage index decreased from 95.72% to 9.2%.

  3. Heat Transfer Analysis for a Fixed CST Column

    International Nuclear Information System (INIS)

    Lee, S.Y.

    2004-01-01

    In support of a small column ion exchange (SCIX) process for the Savannah River Site waste processing program, a transient two-dimensional heat transfer model that includes the conduction process neglecting the convection cooling mechanism inside the crystalline silicotitanate (CST) column has been constructed and heat transfer calculations made for the present design configurations. For this situation, a no process flow condition through the column was assumed as one of the reference conditions for the simulation of a loss-of-flow accident. A series of the modeling calculations has been performed using a computational heat transfer approach. Results for the baseline model indicate that transit times to reach 130 degrees Celsius maximum temperature of the CST-salt solution column are about 96 hours when the 20-in CST column with 300 Ci/liter heat generation source and 25 degrees Celsius initial column temperature is cooled by natural convection of external air as a primary heat transfer mechanism. The modeling results for the 28-in column equipped with water jacket systems on the external wall surface of the column and water coolant pipe at the center of the CST column demonstrate that the column loaded with 300 Ci/liter heat source can be maintained non-boiling indefinitely. Sensitivity calculations for several alternate column sizes, heat loads of the packed column, engineered cooling systems, and various ambient conditions at the exterior wall of the column have been performed under the reference conditions of the CST-salt solution to assess the impact of those parameters on the peak temperatures of the packed column for a given transient time. The results indicate that a water-coolant pipe at the center of the CST column filled with salt solution is the most effective one among the potential design parameters related to the thermal energy dissipation of decay heat load. It is noted that the cooling mechanism at the wall boundary of the column has significant

  4. Investigating the Effect of Column Geometry on Separation Efficiency using 3D Printed Liquid Chromatographic Columns Containing Polymer Monolithic Phases.

    Science.gov (United States)

    Gupta, Vipul; Beirne, Stephen; Nesterenko, Pavel N; Paull, Brett

    2018-01-16

    Effect of column geometry on the liquid chromatographic separations using 3D printed liquid chromatographic columns with in-column polymerized monoliths has been studied. Three different liquid chromatographic columns were designed and 3D printed in titanium as 2D serpentine, 3D spiral, and 3D serpentine columns, of equal length and i.d. Successful in-column thermal polymerization of mechanically stable poly(BuMA-co-EDMA) monoliths was achieved within each design without any significant structural differences between phases. Van Deemter plots indicated higher efficiencies for the 3D serpentine chromatographic columns with higher aspect ratio turns at higher linear velocities and smaller analysis times as compared to their counterpart columns with lower aspect ratio turns. Computational fluid dynamic simulations of a basic monolithic structure indicated 44%, 90%, 100%, and 118% higher flow through narrow channels in the curved monolithic configuration as compared to the straight monolithic configuration at linear velocities of 1, 2.5, 5, and 10 mm s -1 , respectively. Isocratic RPLC separations with the 3D serpentine column resulted in an average 23% and 245% (8 solutes) increase in the number of theoretical plates as compared to the 3D spiral and 2D serpentine columns, respectively. Gradient RPLC separations with the 3D serpentine column resulted in an average 15% and 82% (8 solutes) increase in the peak capacity as compared to the 3D spiral and 2D serpentine columns, respectively. Use of the 3D serpentine column at a higher flow rate, as compared to the 3D spiral column, provided a 58% reduction in the analysis time and 74% increase in the peak capacity for the isocratic separations of the small molecules and the gradient separations of proteins, respectively.

  5. Column properties and flow profiles of a flat, wide column for high-pressure liquid chromatography.

    Science.gov (United States)

    Mriziq, Khaled S; Guiochon, Georges

    2008-04-11

    The design and the construction of a pressurized, flat, wide column for high-performance liquid chromatography (HPLC) are described. This apparatus, which is derived from instruments that implement over-pressured thin layer chromatography, can carry out only uni-dimensional chromatographic separations. However, it is intended to be the first step in the development of more powerful instruments that will be able to carry out two-dimensional chromatographic separations, in which case, the first separation would be a space-based separation, LC(x), taking place along one side of the bed and the second separation would be a time-based separation, LC(t), as in classical HPLC but proceeding along the flat column, not along a tube. The apparatus described consists of a pressurization chamber made of a Plexiglas block and a column chamber made of stainless steel. These two chambers are separated by a thin Mylar membrane. The column chamber is a cavity which is filled with a thick layer (ca. 1mm) of the stationary phase. Suitable solvent inlet and outlet ports are located on two opposite sides of the sorbent layer. The design allows the preparation of a homogenous sorbent layer suitable to be used as a chromatographic column, the achievement of effective seals of the stationary phase layer against the chamber edges, and the homogenous flow of the mobile phase along the chamber. The entire width of the sorbent layer area can be used to develop separations or elute samples. The reproducible performance of the apparatus is demonstrated by the chromatographic separations of different dyes. This instrument is essentially designed for testing detector arrays to be used in a two-dimensional LC(x) x LC(t) instrument. The further development of two-dimension separation chromatographs based on the apparatus described is sketched.

  6. Life-long accumulation of 137Cs and 40K in the vertebral column of a cow

    International Nuclear Information System (INIS)

    Pichl, Elke; Rabitsch, Herbert

    2013-01-01

    We have investigated the accumulation of 137 Cs and 40 K in all the tissues and organs of an adult slaughtered Austrian “mountain pasture cow”. In this paper we present measured 137 Cs- and 40 K-activity concentrations in different tissues of the vertebral bodies, in their other bony components and in all the vertebrae forming the vertebral column. Data are also given for activity concentrations of adherent tissues, and for activities of both the components and the whole vertebral column. The dairy cow was born in a highly contaminated region of Styria, Austria, at the time of the radioactive fallout following the Chernobyl accident. Both radionuclides were incorporated during life-long ingestion and their accumulation in all the vertebrae up to the day of slaughtering was determined by high-purity germanium detectors. Our results show considerable variations of 137 Cs- and 40 K-activity concentrations in the components of a certain vertebra, within vertebrae of a particular region, and between vertebrae of different regions of the vertebral column. Particularly, the courses of 137 Cs- and 40 K-activity concentrations in trabecular bone, cortical bone and intervertebral discs of thoracic vertebral bodies are subdivided by a strong drop into two sections. Mean values of 137 Cs-concentration in vertebral bodies of these subsections vary by a factor 4. Compared with corresponding quantities for the skeleton, total mass, as well as total 137 Cs- and 40 K-activities of the whole vertebral column came to 14%, and approximately 38% for each 137 Cs and 40 K, respectively. - Highlights: ► We show non-uniform distributions of 137 Cs and 40 K in components of vertebra. ► Any sample of one component of vertebra cannot be represent the remainder. ► No drop in concentrations in thoracic vertebral arches, spinous or transverse processes.

  7. Strengthening of Steel Columns under Load: Torsional-Flexural Buckling

    Directory of Open Access Journals (Sweden)

    Martin Vild

    2016-01-01

    Full Text Available The paper presents experimental and numerical research into the strengthening of steel columns under load using welded plates. So far, the experimental research in this field has been limited mostly to flexural buckling of columns and the preload had low effect on the column load resistance. This paper focuses on the local buckling and torsional-flexural buckling of columns. Three sets of three columns each were tested. Two sets corresponding to the base section (D and strengthened section (E were tested without preloading and were used for comparison. Columns from set (F were first preloaded to the load corresponding to the half of the load resistance of the base section (D. Then the columns were strengthened and after they cooled, they were loaded to failure. The columns strengthened under load (F had similar average resistance as the columns welded without preloading (E, meaning the preload affects even members susceptible to local buckling and torsional-flexural buckling only slightly. This is the same behaviour as of the tested columns from previous research into flexural buckling. The study includes results gained from finite element models of the problem created in ANSYS software. The results obtained from the experiments and numerical simulations were compared.

  8. Materials performance in prototype Thermal Cycling Absorption Process (TCAP) columns

    International Nuclear Information System (INIS)

    Clark, E.A.

    1992-01-01

    Two prototype Thermal Cycling Absorption Process (TCAP) columns have been metallurgically examined after retirement, to determine the causes of failure and to evaluate the performance of the column container materials in this application. Leaking of the fluid heating and cooling subsystems caused retirement of both TCAP columns, not leaking of the main hydrogen-containing column. The aluminum block design TCAP column (AHL block TCAP) used in the Advanced Hydride Laboratory, Building 773-A, failed in one nitrogen inlet tube that was crimped during fabrication, which lead to fatigue crack growth in the tube and subsequent leaking of nitrogen from this tube. The Third Generation stainless steel design TCAP column (Third generation TCAP), operated in 773-A room C-061, failed in a braze joint between the freon heating and cooling tubes (made of copper) and the main stainless steel column. In both cases, stresses from thermal cycling and local constraint likely caused the nucleation and growth of fatigue cracks. No materials compatibility problems between palladium coated kieselguhr (the material contained in the TCAP column) and either aluminum or stainless steel column materials were observed. The aluminum-stainless steel transition junction appeared to be unaffected by service in the AHL block TCAP. Also, no evidence of cracking was observed in the AHL block TCAP in a location expected to experience the highest thermal shock fatigue in this design. It is important to limit thermal stresses caused by constraint in hydride systems designed to work by temperature variation, such as hydride storage beds and TCAP columns

  9. Refreshment topics II: Design of distillation columns

    Directory of Open Access Journals (Sweden)

    Milojević Svetomir

    2006-01-01

    Full Text Available For distillation column design it is necessary to define all the variable parameters such as component concentrations in different streams temperatures, pressures, mass and energy flow, which are used to represent the separation process of some specific system. They are related to each other according to specific laws, and if the number of such parameters exceeds the number of their relationships, in order to solve a problem some of them must be specified in advance or some constraints assumed for the mass balance, the balance of energy, phase equilibria or chemical equilibria. Knowledge of specific elements which are the constituents of a distillation unit must be known to define the number of design parameters as well as some additional apparati also necessary to realize the distilation. Each separate apparatus might be designed and constructed only if all the necessary and variable parameters for such a unit are defined. This is the right route to solve a distilation unit in many different cases. The construction of some distillation unit requires very good knowledge of mass, heat and momentum transfer phenomena. Moreover, the designer needs to know which kind of apparatus will be used in the distillation unit to realize a specific production process. The most complicated apparatus in a rectification unit is the distillation column. Depending on the complexity of the separation process one, two or more columns are often used. Additional equipment are heat exchangers (reboilers, condensers, cooling systems, heaters, separators, tanks for reflux distribution, tanks and pumps for feed transportation, etc. Such equipment is connected by pipes and valves, and for the normal operation of a distillation unit other instruments for measuring the flow rate, temperature and pressure are also required. Problems which might arise during the determination and selection of such apparati and their number requires knowledge of the specific systems which must

  10. Liquid drops attract or repel by the inverted Cheerios effect.

    Science.gov (United States)

    Karpitschka, Stefan; Pandey, Anupam; Lubbers, Luuk A; Weijs, Joost H; Botto, Lorenzo; Das, Siddhartha; Andreotti, Bruno; Snoeijer, Jacco H

    2016-07-05

    Solid particles floating at a liquid interface exhibit a long-ranged attraction mediated by surface tension. In the absence of bulk elasticity, this is the dominant lateral interaction of mechanical origin. Here, we show that an analogous long-range interaction occurs between adjacent droplets on solid substrates, which crucially relies on a combination of capillarity and bulk elasticity. We experimentally observe the interaction between droplets on soft gels and provide a theoretical framework that quantitatively predicts the interaction force between the droplets. Remarkably, we find that, although on thick substrates the interaction is purely attractive and leads to drop-drop coalescence, for relatively thin substrates a short-range repulsion occurs, which prevents the two drops from coming into direct contact. This versatile interaction is the liquid-on-solid analog of the "Cheerios effect." The effect will strongly influence the condensation and coarsening of drops on soft polymer films, and has potential implications for colloidal assembly and mechanobiology.

  11. Non-isothermal spreading of liquid drops on horizontal plates

    International Nuclear Information System (INIS)

    Ehrhard, P.; Davis, S.H.

    1990-05-01

    A viscous-liquid drop spreads on a smooth horizontal surface, which is uniformly heated or cooled. Lubrication theory is used to study thin drops subject to capillary, thermocapillary and gravity forces, and a variety of contact-angle-versus-speed conditions. It is found for isothermal drops that gravity is very important at large times and determines the power law for unlimited spreading. Predictions compare well with the experimental data on isothermal spreading for both two-dimensional and axisymmetric configurations. It is found that heating (cooling) retards (augments) the spreading process. When the advancing contact angle is zero, heating will cause the drop to spread only finitely far. For positive advancing contact angles, sufficient cooling will cause unlimited spreading. Thus, the heat transfer serves as a sentitive control on the spreading. (orig.) [de

  12. Satellite Formation during Coalescence of Unequal Size Drops

    KAUST Repository

    Zhang, F. H.

    2009-03-12

    The coalescence of a drop with a flat liquid surface pinches off a satellite from its top, in the well-known coalescence cascade, whereas the coalescence of two equally sized drops does not appear to leave such a satellite. Herein we perform experiments to identify the critical diameter ratio of two drops, above which a satellite is produced during their coalescence. We find that the critical parent ratio is as small as 1.55, but grows monotonically with the Ohnesorge number. The daughter size is typically about 50% of the mother drop. However, we have identified novel pinch-off dynamics close to the critical size ratio, where the satellite does not fully separate, but rather goes directly into a second stage of the coalescence cascade, thus generating a much smaller satellite droplet.

  13. Modeling merging behavior at lane drops : [tech transfer summary].

    Science.gov (United States)

    2015-02-01

    A better understanding of the merging behavior of drivers will lead : to the development of better lane-drop traffic-control plans and : strategies, which will provide better guidance to drivers for safer : merging.

  14. Determination of the viscosity by spherical drop using nuclear tecniques

    International Nuclear Information System (INIS)

    Silva, F.V. da; Qassim, R.Y.; Souza, Roberto de; Rio de Janeiro Univ.

    1983-01-01

    The measurements of the drop limit velocity of a Sphere in a fluid using a radiotracer method are analyzed. The dynamic process involved was observed, identifying the density and viscosity of the fluid. (E.G.) [pt

  15. Drop performance test and evaluation for HANARO shutoff units

    International Nuclear Information System (INIS)

    Jung, Y. H.; Cho, Y. K.; Lee, J. H.; Choi, Y. S.; Woo, J. S.

    2004-01-01

    The function of the shutoff units of the HANARO is to rapidly insert the shutoff rod into the reactor core for safe shutdown of reactor. This paper describes drop performance test and evaluation for a shutoff unit for the technical verification of lifetime extension and localization of the HANARO shutoff units. We have performed preliminary drop performance tests for a shutoff unit at 1/2-core test loop and analyzed through the comparison with the test results performed during design verification test and the results of the periodic performance test in HANARO. It shows that the results of the local fabrication, installation and alignment for the shutoff unit meet the basic performance requirements, Furthermore, the performance evaluation method of the periodic drop test of the HANARO shutoff units is a conservative method comparing with the real drop time

  16. The effect of dropping impact on bruising pomegranate fruit

    Directory of Open Access Journals (Sweden)

    M Mohammad Shafie

    2016-04-01

    Full Text Available Introduction: The pomegranate journey from orchard to supermarket is very complex and pomegranates are subjected to the variety of static and dynamic loads that could result in this damage and bruise occurring. Bruise area and bruise volume are the most important parameters to evaluate fruit damage occurred in harvest and postharvest stages. The bruising is defined as damage to fruit flesh usually with no abrasion of the peel. The two different types of dynamic loading which can physically cause fruit bruising are impact and vibration. The impact and vibration loadings may occur during picking or sorting as the pomegranates are dropped into storage bins and during transportation. The focus of this work was on the impact loading as this appeared to be the most prevalent. In view of the limitations of conventional testing methods (ASTM D3332 Standard Test Methods for Mechanical Shock Fragility of Products, the method and procedure for determining dropping bruise boundary of fruit were also established by adapting free-fall dropping tests. Materials and Methods: After the ‘Malas-e-Saveh’ pomegranates had been selected, they were numbered, and the weight and dimension of each sample were measured and recorded. Firmness in cheek region of each fruit was also measured. Fruit firmness was determined by measuring the maximum force during perforating the sample to a depth of 10 mm at a velocity of 100 mm min-1 with an 8 mm diameter cylindrical penetrometer mounted onto a STM-5 Universal Testing Machine (SANTAM, Design CO. LTD., England. Free-fall dropping tests with a series of drop heights (6, 7, 10, 15, 30 and 60 cm were conducted on fresh ‘Malas-e-Saveh’ pomegranates. Three samples were used for each dropping height, and each sample was subjected to impact on two different positions. Before the test was started, it was necessary to control the sample's drop position. The cheek of sample was placed on the fruit holder. An aluminum plate mounted

  17. Self-excited hydrothermal waves in evaporating sessile drops

    Science.gov (United States)

    Sefiane, K.; Moffat, J. R.; Matar, O. K.; Craster, R. V.

    2008-08-01

    Pattern formation driven by the spontaneous evaporation of sessile drops of methanol, ethanol, and FC-72 using infrared thermography is observed and, in certain cases, interpreted in terms of hydrothermal waves. Both methanol and ethanol drops exhibit thermal wave trains, whose wave number depends strongly on the liquid volatililty and substrate thermal conductivity. The FC-72 drops develop cellular structures whose size is proportional to the local thickness. Prior to this work, hydrothermal waves have been observed in the absence of evaporation in shallow liquid layers subjected to an imposed temperature gradient. In contrast, here both the temperature gradients and the drop thickness vary spatially and temporally and are a natural consequence of the evaporation process.

  18. Electrostatic charging and levitation of helium II drops

    International Nuclear Information System (INIS)

    Niemela, J.J.

    1997-01-01

    Liquid Helium II drops, of diameter 1 mm or less, are charged with positive helium ions and subsequently levitated by static electric fields. Stable levitation was achieved for drops of order 100-150 micrometers in diameter. The suspended drops could be translated to arbitrary positions within the levitator using additional superimposed DC electric fields, and also could be made to oscillate stably about their average positions by means of an applied time-varying electric field. A weak corona discharge was used to produce the necessary ions for levitation. A novel superfluid film flow device, developed for the controlled deployment of large charged drops, is described. Also discussed is an adjustable electric fountain that requires only a field emission tip operating at modest potentials, and works in both Helium I and Helium II

  19. Origin and dynamics of vortex rings in drop splashing.

    Science.gov (United States)

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-09-04

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row of vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.

  20. Sludge pipe flow pressure drop prediction using composite power ...

    African Journals Online (AJOL)

    Sludge pipe flow pressure drop prediction using composite power-law friction ... Water SA. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue ... When predicting pressure gradients for the flow of sludges in pipes, the ...

  1. Dropped fuel damage prediction techniques and the DROPFU code

    International Nuclear Information System (INIS)

    Mottershead, K.J.; Beardsmore, D.W.; Money, G.

    1995-01-01

    During refuelling, and fuel handling, at UK Advanced Gas Cooled Reactor (AGR) stations it is recognised that the accidental dropping of fuel is a possibility. This can result in dropping individual fuel elements, a complete fuel stringer, or a whole assembly. The techniques for assessing potential damage have been developed over a number of years. This paper describes how damage prediction techniques have subsequently evolved to meet changing needs. These have been due to later fuel designs and the need to consider drops in facilities outside the reactor. The paper begins by briefly describing AGR fuel and possible dropped fuel scenarios. This is followed by a brief summary of the damage mechanisms and the assessment procedure as it was first developed. The paper then describes the additional test work carried out, followed by the detailed numerical modelling. Finally, the paper describes the extensions to the practical assessment methods. (author)

  2. Bird nesting and droppings control on highway structures.

    Science.gov (United States)

    2010-10-01

    This report provides a comprehensive literature survey of permanent and temporary deterrents to nesting and roosting, a : discussion of risks to human health and safety from exposure to bird nests and droppings and recommended protective measures, : ...

  3. Magnetohydrodynamic pressure drop in a quickly changing magnetic field

    International Nuclear Information System (INIS)

    Xu, Z.Y.; Chen, J.M.; Qian, J.P.; Jiang, W.H.; Pan, C.J.; Li, W.Z.

    1995-01-01

    The magnetohydrodynamic (MHD) pressure drop of 22 Na 78 K flow in a circular duct was measured under a quickly changing magnetic field. The MHD pressure drop reduced with time as the magnetic field strength decreased. However, the dimensionless pressure drop gradient varied with the interaction parameter and had a higher value in the middle of the range of values of the interaction parameter. Therefore, a quickly changing magnetic field is harmful to the structural material in a liquid metal self-cooled blanket of a fusion reactor, since the greater pressure drop gradient may cause a larger stress in the blanket. This is even more harmful if the magnetic field strength decreases very quickly or its distribution in space is greatly non-uniform. (orig.)

  4. Satellite Formation during Coalescence of Unequal Size Drops

    KAUST Repository

    Zhang, F. H.; Li, E. Q.; Thoroddsen, Sigurdur T

    2009-01-01

    The coalescence of a drop with a flat liquid surface pinches off a satellite from its top, in the well-known coalescence cascade, whereas the coalescence of two equally sized drops does not appear to leave such a satellite. Herein we perform experiments to identify the critical diameter ratio of two drops, above which a satellite is produced during their coalescence. We find that the critical parent ratio is as small as 1.55, but grows monotonically with the Ohnesorge number. The daughter size is typically about 50% of the mother drop. However, we have identified novel pinch-off dynamics close to the critical size ratio, where the satellite does not fully separate, but rather goes directly into a second stage of the coalescence cascade, thus generating a much smaller satellite droplet.

  5. Rotavirus and the Vaccine (Drops) to Prevent It

    Science.gov (United States)

    ... Resources Maternal Immunization Resources Related Links Vaccines & Immunizations Rotavirus and the Vaccine (Drops) to Prevent It Language: ... the vaccine. Why should my child get the rotavirus vaccine? The rotavirus vaccine: Protects your child from ...

  6. 24 hydrocarbon degradation in poultry droppings and cassava peels

    African Journals Online (AJOL)

    OLUWOLE AKINNAGBE

    2009-01-01

    Jan 1, 2009 ... This greenhouse study was aimed at determining the potentials of poultry droppings (PD) and cassava peels ... shift in the composition of bacterial community to ..... Oil and Gas Journal. pp. ... Prentice-Hall of India Private Ltd.

  7. Drop-out rate and drop-out reasons among promising Norwegian track and field athletes: a 25 year study

    OpenAIRE

    Enoksen, Eystein

    2011-01-01

    © Eystein Enoksen, 2011 The aim of the present study was to identify the total drop-out rate and drop-out reasons for a group of promising track and field athletes. 202 males and 98 females, aged 16 ±2 years, took part in this study. Questionnaires were administrated in 1975, 1983, and 1989. In-depth interviews were conducted in 1989 and in 2000. A chi-square test was administrated to test the difference between males and females dropping out and to test the most significant reasons influe...

  8. Impact of ultra-viscous drops: air-film gliding and extreme wetting

    KAUST Repository

    Langley, Kenneth; Li, Erqiang; Thoroddsen, Sigurdur T

    2017-01-01

    water drop, the viscous-dominated flow in the thin air layer counteracts the inertia of the drop liquid. For highly viscous drops the viscous stresses within the liquid also affect the interplay between the drop and the gas. Here the drop also forms a

  9. Retention of nitrous gases in scrubber columns

    International Nuclear Information System (INIS)

    Nakazone, A.K.; Costa, R.C.; Lobao, A.S.T.; Matsuda, H.T.; Araujo, B.F. de

    1988-01-01

    During the UO 2 dissolution in nitric acid, some different species of NO (sub)x are released. The off gas can either be refluxed to the dissolver or be released and retained on special colums. The final composition of the solution is the main parameter to take in account. A process for nitrous gases retention using scrubber colums containing H 2 O or diluted HNO 3 is presented. Chemiluminescence measurement was employed to NO x evaluation before and after scrubing. Gas flow, temperature, residence time are the main parameters considered in this paper. For the dissolution of 100g UO 2 in 8M nitric acid, a 6NL/h O 2 flow was the best condition for the NO/NO 2 oxidation with maximum absorption in the scrubber columns. (author) [pt

  10. Education and training column: the learning collaborative.

    Science.gov (United States)

    MacDonald-Wilson, Kim L; Nemec, Patricia B

    2015-03-01

    This column describes the key components of a learning collaborative, with examples from the experience of 1 organization. A learning collaborative is a method for management, learning, and improvement of products or processes, and is a useful approach to implementation of a new service design or approach. This description draws from published material on learning collaboratives and the authors' experiences. The learning collaborative approach offers an effective method to improve service provider skills, provide support, and structure environments to result in lasting change for people using behavioral health services. This approach is consistent with psychiatric rehabilitation principles and practices, and serves to increase the overall capacity of the mental health system by structuring a process for discovering and sharing knowledge and expertise across provider agencies. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  11. [Lateral column lengthening osteotomy of calcaneus].

    Science.gov (United States)

    Hintermann, B

    2015-08-01

    Lengthening of the lateral column for adduction of forefoot and restoration of the medial arch. Stabilization of the ankle joint complex. Supple flatfoot deformity (posterior tibial tendon dysfunction stage II). Instability of the medial ankle joint complex (superficial deltoid and spring ligament). Posttraumatic valgus and pronation deformity of the foot. Rigid flatfoot deformity (posterior tibial tendon dysfunction stage III and IV). Talocalcaneal and naviculocalcaneal coalition. Osteoarthritis of calcaneocuboid joint. Exposition of calcaneus at sinus tarsi. Osteotomy through sinus tarsi and widening until desired correction of the foot is achieved. Insertion of bone graft. Screw fixation. Immobilization in a cast for 6 weeks. Weight-bearing as tolerated from the beginning. In the majority of cases, part of hindfoot reconstruction. Reliable and stable correction. Safe procedure with few complications.

  12. Yield stress independent column buckling curves

    DEFF Research Database (Denmark)

    Stan, Tudor‐Cristian; Jönsson, Jeppe

    2017-01-01

    of the yield stress is to some inadequate degree taken into account in the Eurocode by specifying that steel grades of S460 and higher all belong to a common set of “raised” buckling curves. This is not satisfying as it can be shown theoretically that the current Eurocode formulation misses an epsilon factor......Using GMNIA and shell finite element modelling of steel columns it is ascertained that the buckling curves for given imperfections and residual stresses are not only dependent on the relative slenderness ratio and the cross section shape but also on the magnitude of the yield stress. The influence...... in the definition of the normalised imperfection magnitudes. By introducing this factor it seems that the GMNIA analysis and knowledge of the independency of residual stress levels on the yield stress can be brought together and give results showing consistency between numerical modelling and a simple modified...

  13. Calculation of a TBP extraction column

    International Nuclear Information System (INIS)

    Lima Soares, M.L. de.

    1973-01-01

    Problems involving the number of stages in an extraction column and the equipment needed in most aqueous methods of reprocessing of nuclear fuels were studied. A solution for the separation of uranium from fission products in a feed solution that contains these components plus nitric acid, thorium and protactinium is obtained. The program has peculiarities such as treatment of tracer components; acceptance of decontamination and recuperation factors better than the set values for the solution; occurrence of niaxima concentrations; change of key component; criterion for ending of section; corrections for interaction; input data not including concentration estimates of the raffinate and organic extract; set of limitations for the concentrations based on input data to help convergence

  14. Experimental validation of pulsed column inventory estimators

    International Nuclear Information System (INIS)

    Beyerlein, A.L.; Geldard, J.F.; Weh, R.; Eiben, K.; Dander, T.; Hakkila, E.A.

    1991-01-01

    Near-real-time accounting (NRTA) for reprocessing plants relies on the timely measurement of all transfers through the process area and all inventory in the process. It is difficult to measure the inventory of the solvent contractors; therefore, estimation techniques are considered. We have used experimental data obtained at the TEKO facility in Karlsruhe and have applied computer codes developed at Clemson University to analyze this data. For uranium extraction, the computer predictions agree to within 15% of the measured inventories. We believe this study is significant in demonstrating that using theoretical models with a minimum amount of process data may be an acceptable approach to column inventory estimation for NRTA. 15 refs., 7 figs

  15. Analysis of the rod drop accident for Angra-1

    International Nuclear Information System (INIS)

    Veloso, M.A.; Atayde, P.A.

    1989-01-01

    The aim of this work is to present a rod drop accident analysis for the third cycle of the Angra-1 nuclear power plant operating in the automatic control mode. In this analysis all possible configurations for dropped rods caused by a single failure in the controller circuits have been considered. The dropped rod worths, power distributions and excore detector tilts were determined by using the Siemens/KWU neutronic code system, in particular the MEDIUM2, PINPOW and DETILT codes. The transient behaviour of the plant during the rod drop event was simulated with the SACI2/MOD0 code, developed at CDTN. Determinations related to the DNBR design limit were conducted by utilizing the CDTN PANTERA-1P subchannel code. The transient analysis indicated that for dropped rod worths greater than about 425 pcm reactor trip from negative neutron flux rate will take place independently of core conditions. In the range from 0 to 425 pcm large power overshoots may occur as a consequence of the automatic control system action. The magnitude of the maximum power peaking during the event increases with the dropped rod worth, as far as the control bank is able to compensate the initial reactivity decrease. Thermal-hydraulic evaluations carried out with the PANTERA-1P code show that for all the relevant dropped rod worths the minimum DNBR will remain above a limit value of 1.365. Even if this conservative limit is met, the calculated nuclear power peaking factors, F N AH , will be at least 6% higher than the allowable F N AH -values. Therefore, the DNBR design margin will be preserved at the event of rod drop. (author)

  16. Refrigeration. Two-Phase Flow. Flow Regimes and Pressure Drop

    DEFF Research Database (Denmark)

    Knudsen, Hans-Jørgen Høgaard

    2002-01-01

    The note gives the basic definitions used in two-phase flow. Flow regimes and flow regimes map are introduced. The different contributions to the pressure drop are stated together with an imperical correlation from the litterature.......The note gives the basic definitions used in two-phase flow. Flow regimes and flow regimes map are introduced. The different contributions to the pressure drop are stated together with an imperical correlation from the litterature....

  17. Air-drop blood supply in the French Army.

    Science.gov (United States)

    Javaudin, Olivier; Baillon, A; Varin, N; Martinaud, C; Pouget, T; Civadier, C; Clavier, B; Sailliol, A

    2018-02-12

    Haemorrhagic shock remains the leading cause of preventable death in overseas and austere settings. Transfusion of blood components is critical in the management of this kind of injury. For French naval and ground military units, this supply often takes too long considering the short shelf-life of red blood cell concentrates (RBCs) and the limited duration of transport in cooling containers (five to six days). Air-drop supply could be an alternative to overcome these difficulties on the condition that air-drop does not cause damage to blood units. After a period of study and technical development of packaging, four air-drops at medium and high altitudes were performed with an aircraft of the French Air Force. After this, one air-drop was carried out at medium altitude with 10 RBCs and 10 French lyophilised plasma (FLYP). A second air-drop was performed with a soldier carrying one FLYP unit at 12 000 feet. For these air-drops real blood products were used, and quality control testing and temperature monitoring were performed. The temperatures inside the containers were within the normal ranges. Visual inspection indicated that transfusion packaging and dumped products did not undergo deterioration. The quality control data on RBCs and FLYP, including haemostasis, suggested no difference before and after air-drop. The operational implementation of the air-drop of blood products seems to be one of the solutions for the supply of blood products in military austere settings or far forward on battlefield, allowing safe and early transfusion. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Leidenfrost drops cooling surfaces: theory and interferometric measurement

    OpenAIRE

    Van Limbeek, Michiel A. J.; Klein Schaarsberg, Martin H.; Sobac, Benjamin; Rednikov, Alexey; Sun, Chao; Colinet, Pierre; Lohse, Detlef

    2017-01-01

    When a liquid drop is placed on a highly superheated surface, it can be levitated by its own vapour. This remarkable phenomenon is referred to as the Leidenfrost effect. The thermally insulating vapour film results in a severe reduction of the heat transfer rate compared to experiments at lower surface temperatures, where the drop is in direct contact with the solid surface. A commonly made assumption is that this solid surface is isothermal, which is at least questionable for materials of lo...

  19. Active structuring of colloidal armour on liquid drops

    OpenAIRE

    Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Fossum, Jon Otto

    2013-01-01

    Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-fieldassisted convective assembly of jammed colloidal ‘ribbons’, electro-rheological colloidal chains confined to a...

  20. Nectar and pollination drops: how different are they?

    Science.gov (United States)

    Nepi, Massimo; von Aderkas, Patrick; Wagner, Rebecca; Mugnaini, Serena; Coulter, Andrea; Pacini, Ettore

    2009-08-01

    Pollination drops and nectars (floral nectars) are secretions related to plant reproduction. The pollination drop is the landing site for the majority of gymnosperm pollen, whereas nectar of angiosperm flowers represents a common nutritional resource for a large variety of pollinators. Extrafloral nectars also are known from all vascular plants, although among the gymnosperms they are restricted to the Gnetales. Extrafloral nectars are not generally involved in reproduction but serve as 'reward' for ants defending plants against herbivores (indirect defence). Although very different in their task, nectars and pollination drops share some features, e.g. basic chemical composition and eventual consumption by animals. This has led some authors to call these secretions collectively nectar. Modern techniques that permit chemical analysis and protein characterization have very recently added important information about these sugary secretions that appear to be much more than a 'reward' for pollinating (floral nectar) and defending animals (extrafloral nectar) or a landing site for pollen (pollination drop). Nectar and pollination drops contain sugars as the main components, but the total concentration and the relative proportions are different. They also contain amino acids, of which proline is frequently the most abundant. Proteomic studies have revealed the presence of common functional classes of proteins such as invertases and defence-related proteins in nectar (floral and extrafloral) and pollination drops. Invertases allow for dynamic rearrangement of sugar composition following secretion. Defence-related proteins provide protection from invasion by fungi and bacteria. Currently, only few species have been studied in any depth. The chemical composition of the pollination drop must be investigated in a larger number of species if eventual phylogenetic relationships are to be revealed. Much more information can be provided from further proteomic studies of both

  1. Drop detachment and motion on fuel cell electrode materials.

    Science.gov (United States)

    Gauthier, Eric; Hellstern, Thomas; Kevrekidis, Ioannis G; Benziger, Jay

    2012-02-01

    Liquid water is pushed through flow channels of fuel cells, where one surface is a porous carbon electrode made up of carbon fibers. Water drops grow on the fibrous carbon surface in the gas flow channel. The drops adhere to the superficial fiber surfaces but exhibit little penetration into the voids between the fibers. The fibrous surfaces are hydrophobic, but there is a substantial threshold force necessary to initiate water drop motion. Once the water drops begin to move, however, the adhesive force decreases and drops move with minimal friction, similar to motion on superhydrophobic materials. We report here studies of water wetting and water drop motion on typical porous carbon materials (carbon paper and carbon cloth) employed in fuel cells. The static coefficient of friction on these textured surfaces is comparable to that for smooth Teflon. But the dynamic coefficient of friction is several orders of magnitude smaller on the textured surfaces than on smooth Teflon. Carbon cloth displays a much smaller static contact angle hysteresis than carbon paper due to its two-scale roughness. The dynamic contact angle hysteresis for carbon paper is greatly reduced compared to the static contact angle hysteresis. Enhanced dynamic hydrophobicity is suggested to result from the extent to which a dynamic contact line can track topological heterogeneities of the liquid/solid interface.

  2. Drop tests of the Three Mile Island knockout canister

    International Nuclear Information System (INIS)

    Box, W.D.; Aaron, W.S.; Shappert, L.B.; Childress, P.C.; Quinn, G.J.; Smith, J.V.

    1986-09-01

    A type of Three Mile Island Unit 2 (TMI-2) defueling canister, called a ''knockout'' canister, was subjected to a series of drop tests at the Oak Ridge National Laboratory's Drop Test Facility. These tests were designed to confirm the structural integrity of internal fixed neutron poisons in support of a request for NRC licensing of this type of canister for the shipment of TMI-2 reactor fuel debris to the Idaho National Engineering Laboratory (INEL) for the Core Examination R and D Program. Work conducted at the Oak Ridge National Laboratory included (1) precise physical measurements of the internal poison rod configuration before assembly, (2) canister assembly and welding, (3) nondestructive examination (an initial hydrostatic pressure test and an x-ray profile of the internals before and after each drop test), (4) addition of a simulated fuel load, (5) instrumentation of the canister for each drop test, (6) fabrication of a cask simulation vessel with a developed and tested foam impact limiter, (7) use of refrigeration facilities to cool the canister to well below freezing prior to three of the drops, (8) recording the drop test with still, high-speed, and normal-speed photography, (9) recording the accelerometer measurements during impact, (10) disassembly and post-test examination with precise physical measurements, and (11) preparation of the final report

  3. Filter aids influence on pressure drop across a filtration system

    Science.gov (United States)

    Hajar, S.; Rashid, M.; Nurnadia, A.; Ammar, M. R.; Hasfalina, C. M.

    2017-06-01

    Filter aids is commonly used to reduce pressure drop across air filtration system as it helps to increase the efficiency of filtration of accumulated filter cake. Filtration velocity is one of the main parameters that affect the performance of filter aids material. In this study, a formulated filter aids consisting of PreKot™ and activated carbon mixture (designated as PrekotAC) was tested on PTFE filter media under various filtration velocities of 5, 6, and 8 m/min at a constant material loading of 0.2 mg/mm2. Results showed that pressure drop is highly influenced by filtration velocity where higher filtration velocity leads to a higher pressure drop across the filter cake. It was found that PrekotAC performed better in terms of reducing the pressure drop across the filter cake even at the highest filtration velocity. The diversity in different particle size distribution of non-uniform particle size in the formulated PrekotAC mixture presents a higher permeability causes a lower pressure drop across the accumulated filter cake. The finding suggests that PrekotAC is a promising filter aids material that helps reducing the pressure drop across fabric filtration system.

  4. Vortex-ring-induced large bubble entrainment during drop impact

    KAUST Repository

    Thoraval, Marie-Jean

    2016-03-29

    For a limited set of impact conditions, a drop impacting onto a pool can entrap an air bubble as large as its own size. The subsequent rise and rupture of this large bubble plays an important role in aerosol formation and gas transport at the air-sea interface. The large bubble is formed when the impact crater closes up near the pool surface and is known to occur only for drops that are prolate at impact. Herein we use experiments and numerical simulations to show that a concentrated vortex ring, produced in the neck between the drop and the pool, controls the crater deformations and pinchoff. However, it is not the strongest vortex rings that are responsible for the large bubbles, as they interact too strongly with the pool surface and self-destruct. Rather, it is somewhat weaker vortices that can deform the deeper craters, which manage to pinch off the large bubbles. These observations also explain why the strongest and most penetrating vortex rings emerging from drop impacts are not produced by oblate drops but by more prolate drop shapes, as had been observed in previous experiments.

  5. Drop formation of black liquor spraying; Mustalipeaen pisaroituminen

    Energy Technology Data Exchange (ETDEWEB)

    Fogelholm, C J; Kankkunen, A; Nieminen, K; Laine, J; Miikkulainen, P [Helsinki Univ. of Technology, Otaniemi (Finland): Lab. of Energy Technology and Environmental Protection

    1997-10-01

    Black liquor is a spent liquor of the pulp and paper industry. It is burned in kraft recovery boilers for chemical and energy recovery. The high dry solids content and viscosity of black liquor require a high spraying temperature. This affects the performance of the boiler. Kraft recovery boiler deposit formation, emissions and chemical recovery are strongly affected by the drop size and the velocity of the black liquor spray formed by a splashplate nozzle. The sheet breakup mechanism is studied with a system based on a video and image-analysis. The drop size of mill-scale nozzles was measured also with an image-analysis-system. Measurements were carried out in a spray test chamber. The sheet breakup mechanism and drop size tests were carried out both below and over the boiling point of black liquor. Special attention was paid to the effect of flashing on drop formation. Temperature increase normally decreases drop size. In the temperature where the wavy-sheet disintegration changes to perforated-sheet disintegration the drop size increases. Spray velocity rises when the temperature is increased above the boiling point. (orig.)

  6. Visualization study of film drops produced by bubble bursting

    International Nuclear Information System (INIS)

    Ma Chao; Bo Hanliang

    2012-01-01

    The phenomenon that bubble bursting results in drops production is common in the steam generator of the nuclear power plant, and the fine drops generated by this way is one of the most important source of the drop entrainment in the vapor stream. The visualization experiment about the film drops produced by the bursting bubbles at a free water surface was studied using a high-speed video camera. The results show that the bubble cap breaks up in a single point, within the limits of bubble size in the experiment at present. The whole process can be distinguished into four successive stages: A primary inertial drainage, the bubble cap puncture at the foot or on the top, the film rolls-up and the liquid ring appearing with the hole expanding, and fine film drops emission under the effect of destabilization of a Rayleigh-Taylor type. The expression about the bubble radius and the film drops number is obtain by fitting the experiment data at the bubble radius range from 3-25 mm. The result trend agrees well with the previous work. (authors)

  7. Afterlife of a Drop Impacting a Liquid Pool

    Science.gov (United States)

    Saha, Abhishek; Wei, Yanju; Tang, Xiaoyu; Law, Chung K.

    2017-11-01

    Drop impact on liquid pool is ubiquitous in industrial processes, such as inkjet printing and spray coating. While merging of drop with the impacted liquid surface is essential to facilitate the printing and coating processes, it is the afterlife of this merged drop and associated mixing which control the quality of the printed or coated surface. In this talk we will report an experimental study on the structural evolution of the merged droplet inside the liquid pool. First, we will analyze the depth of the crater created on the pool surface by the impacted drop for a range of impact inertia, and we will derive a scaling relation and the associated characteristic time-scale. Next, we will focus on the toroidal vortex formed by the moving drop inside the liquid pool and assess the characteristic time and length scales of the penetration process. The geometry of the vortex structure which qualitatively indicates the degree of mixedness will also be discussed. Finally, we will present the results from experiments with various viscosities to demonstrate the role of viscous dissipation on the geometry and structure formed by the drop. This work is supported by the Army Research Office and the Xerox Corporation.

  8. Ultrasonic defect-sizing using decibel drop methods. I

    International Nuclear Information System (INIS)

    Murphy, R.V.

    1987-03-01

    Results are reported of a study performed to investigate the accuracy and repeatability of various ultrasonic decibel (dB) drop sizing methods in determining the length, vertical extent and orientation of artificial and real weld flaws in thin steel sections. Seven artificial flaws and nine real weld flaws were examined; over 200 data plots were produced. The general findings are: a) length and vertical extent are assessed most accurately when using a 14 dB drop from the maximum indication amplitude; b) decibel drops less that 14 dB generally undersize flaws while decibel drops greater than 14 dB generally oversize flaws; c) flaws which are smaller than the width of the sound beam cannot be assessed accurately using dB drop methods; d) large flaws are assessed most accurately when the sound beam strikes the flaws at near normal incidence; e) the vertical extent and orientation of large flaws are plotted most accurately using the beam centre line method as opposed to the beam profile method; and, f) the limitations of dB-drop-sizing methods have considerable ramifications for CAN3-N285.4-M83 and ASME XI evaluation criteria

  9. Water Penetration through a Superhydrophobic Mesh During a Drop Impact

    Science.gov (United States)

    Ryu, Seunggeol; Sen, Prosenjit; Nam, Youngsuk; Lee, Choongyeop

    2017-01-01

    When a water drop impacts a mesh having submillimeter pores, a part of the drop penetrates through the mesh if the impact velocity is sufficiently large. Here we show that different surface wettability, i.e., hydrophobicity and superhydrophobicity, leads to different water penetration dynamics on a mesh during drop impact. We show, despite the water repellence of a superhydrophobic surface, that water can penetrate a superhydrophobic mesh more easily (i.e., at a lower impact velocity) over a hydrophobic mesh via a penetration mechanism unique to a superhydrophobic mesh. On a superhydrophobic mesh, the water penetration can occur during the drop recoil stage, which appears at a lower impact velocity than the critical impact velocity for water penetration right upon impact. We propose that this unique water penetration on a superhydrophobic mesh can be attributed to the combination of the hydrodynamic focusing and the momentum transfer from the water drop when it is about to bounce off the surface, at which point the water drop retrieves most of its kinetic energy due to the negligible friction on superhydrophobic surfaces.

  10. Autologous serum eye drops for dry eye

    Science.gov (United States)

    Pan, Qing; Angelina, Adla; Marrone, Michael; Stark, Walter J; Akpek, Esen K

    2017-01-01

    Background Theoretically, autologous serum eye drops (AS) offer a potential advantage over traditional therapies on the assumption that AS not only serve as a lacrimal substitute to provide lubrication but contain other biochemical components that allow them to mimic natural tears more closely. Application of AS has gained popularity as second-line therapy for patients with dry eye. Published studies on this subject indicate that autologous serum could be an effective treatment for dry eye. Objectives We conducted this review to evaluate the efficacy and safety of AS given alone or in combination with artificial tears as compared with artificial tears alone, saline, placebo, or no treatment for adults with dry eye. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register) (2016, Issue 5), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to July 2016), Embase (January 1980 to July 2016), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to July 2016), the ISRCTN registry (www.isrctn.com/editAdvancedSearch), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We also searched the Science Citation Index Expanded database (December 2016) and reference lists of included studies. We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 5 July 2016. Selection criteria We included randomized controlled trials (RCTs) that compared AS versus artificial tears for treatment of adults with dry eye. Data collection and analysis Two review authors independently screened all titles and abstracts and assessed full-text reports of potentially eligible trials. Two review authors extracted data and assessed risk of bias and characteristics of included

  11. Novel field emission SEM column with beam deceleration technology

    Energy Technology Data Exchange (ETDEWEB)

    Jiruše, Jaroslav; Havelka, Miloslav; Lopour, Filip

    2014-11-15

    A novel field-emission SEM column has been developed that features Beam Deceleration Mode, high-probe current and ultra-fast scanning. New detection system in the column is introduced to detect true secondary electron signal. The resolution power at low energy was doubled for conventional SEM optics and moderately improved for immersion optics. Application examples at low landing energies include change of contrast, imaging of non-conductive samples and thin layers. - Highlights: • A novel field-emission SEM column has been developed. • Implemented beam deceleration improves the SEM resolution at 1 keV two times. • New column maintains high analytical potential and wide field of view. • Detectors integrated in the column allow gaining true SE and BE signal separately. • Performance of the column is demonstrated on low energy applications.

  12. Novel field emission SEM column with beam deceleration technology

    International Nuclear Information System (INIS)

    Jiruše, Jaroslav; Havelka, Miloslav; Lopour, Filip

    2014-01-01

    A novel field-emission SEM column has been developed that features Beam Deceleration Mode, high-probe current and ultra-fast scanning. New detection system in the column is introduced to detect true secondary electron signal. The resolution power at low energy was doubled for conventional SEM optics and moderately improved for immersion optics. Application examples at low landing energies include change of contrast, imaging of non-conductive samples and thin layers. - Highlights: • A novel field-emission SEM column has been developed. • Implemented beam deceleration improves the SEM resolution at 1 keV two times. • New column maintains high analytical potential and wide field of view. • Detectors integrated in the column allow gaining true SE and BE signal separately. • Performance of the column is demonstrated on low energy applications

  13. Rain drop size densities over land and over sea

    Science.gov (United States)

    Bumke, Karl

    2010-05-01

    A detailed knowledge of rain drop size densities is an essential presumption with respect to remote sensing of precipitation. Since maritime and continental aerosol is significantly different yielding to differences in cloud drop size densities, maritime and continental rain drop size densities may be different, too. In fact only a little is known about differences in rain drop size densities between land and sea due to a lack of suitable data over the sea. To fill in this gap measurements were performed during the recent 10 years at different locations in Germany and on board of research vessels over the Baltic Sea, the North Sea, Atlantic, Indian, and Pacific Ocean. Measurements were done by using an optical disdrometer (ODM 470, Großklaus et al., 1998), which is designed especially to perform precipitation measurements on moving ships and under high wind speeds. Temporal resolution of measurements is generally 1 minute, total number of time series is about 220000. To investigate differences in drop size densities over land and over sea measurements have been divided into four classes on the basis of prevailing continental or maritime influence: land measurements, coastal measurements, measurements in areas of semi-enclosed seas, and open sea measurements. In general differences in drop size densities are small between different areas. A Kolmogoroff Smirnoff test does not give any significant difference between drop size densities over land, coastal areas, semi-enclosed, and open seas at an error rate of 5%. Thus, it can be concluded that there are no systematic differences between maritime and continental drop size densities. The best fit of drop size densities is an exponential decay curve, N(D ) = 6510m -3mm -1mm0.14h- 0.14×R-0.14×exp(- 4.4mm0.25h-0.25×R- 0.25×D mm -1), it is estimated by using the method of least squares. N(D) is the drop size density normalized by the resolution of the optical disdrometer, D the diameter of rain drops in mm, and R the

  14. Many Drops Interactions I: Simulation of Coalescence, Flocculation and Fragmentation of Multiple Colliding Drops with Smoothed Particle Hydrodynamics

    Directory of Open Access Journals (Sweden)

    Alejandro Acevedo-Malavé

    2012-06-01

    Full Text Available Smoothed Particle Hydrodynamics (SPH is a Lagrangian mesh-free formalism and has been useful to model continuous fluid. This formalism is employed to solve the Navier-Stokes equations by replacing the fluid with a set of particles. These particles are interpolation points from which properties of the fluid can be determined. In this study, the SPH method is applied to simulate the hydrodynamics interaction of many drops, showing some settings for the coalescence, fragmentation and flocculation problem of equally sized liquid drops in three-dimensional spaces. For small velocities the drops interact only through their deformed surfaces and the flocculation of the droplets arises. This result is very different if the collision velocity is large enough for the fragmentation of droplets takes place. We observe that for velocities around 15 mm/ms the coalescence of droplets occurs. The velocity vector fields formed inside the drops during the collision process are shown.

  15. Circular Raft Footings Strengthened by Stone Columns under Static Loads

    OpenAIRE

    R. Ziaie Moayed; B. Mohammadi-Haji

    2016-01-01

    Stone columns have been widely employed to improve the load-settlement characteristics of soft soils. The results of two small scale displacement control loading tests on stone columns were used in order to validate numerical finite element simulations. Additionally, a series of numerical calculations of static loading have been performed on strengthened raft footing to investigate the effects of using stone columns on bearing capacity of footings. The bearing capacity of single and group of ...

  16. Estimation of bearing capacity of floating group of stone columns

    OpenAIRE

    Fattah, Mohammed Y.; Al-Neami, Mohammed A.; Shamel Al-Suhaily, Ahmed

    2017-01-01

    Stone column is one of the ground improvement techniques. This technique has a proven performance, short time schedule, durability, constructability and low costs. The stone column technique has been used as a method of reinforcement of soft ground over the past 30 years. The bearing capacity of the stone column still has high level of uncertainties because the existing formulas for the estimation of the bearing capacity are general and do not take into consideration the type of the stone col...

  17. Uncertain Buckling Load and Reliability of Columns with Uncertain Properties

    DEFF Research Database (Denmark)

    Köylüoglu, H. U.; Nielsen, Søren R. K.; Cakmak, A. S.

    Continuous and finite element methods are utilized to determine the buckling load of columns with material and geometrical uncertainties considering deterministic, stochastic and interval models for the bending rigidity of columns. When the bending rigidity field is assumed to be deterministic, t....... for structural design, the lower bound is of crucial interest. The buckling load of fixed-free, simple-supported, pinned-fixed, fixed-fixed columns and a sample frame are calculated....

  18. The design of a new concept chromatography column.

    Science.gov (United States)

    Camenzuli, Michelle; Ritchie, Harald J; Ladine, James R; Shalliker, R Andrew

    2011-12-21

    Active Flow Management is a new separation technique whereby the flow of mobile phase and the injection of sample are introduced to the column in a manner that allows migration according to the principles of the infinite diameter column. A segmented flow outlet fitting allows for the separation of solvent or solute that elutes along the central radial section of the column from that of the sample or solvent that elutes along the wall region of the column. Separation efficiency on the analytical scale is increased by 25% with an increase in sensitivity by as much as 52% compared to conventional separations.

  19. Simulation of startup period of hydrogen isotope separation distillation column

    International Nuclear Information System (INIS)

    Sazonov, A.B.; Kagramanov, Z.G.; Magomedbekov, Eh.P.

    2003-01-01

    Kinetic procedure for the mathematical simulation of start-up regime of rectification columns for molecular hydrogen isotope separation was developed. Nonstationary state (start-up period) of separating column for rectification of multi-component mixture was calculated. Full information on equilibrium and kinetic physicochemical properties of components in separating mixtures was used for the calculations. Profile of concentration of components by height of column in task moment of time was calculated by means of differential equilibriums of nonstationary mass transfer. Calculated results of nonstationary state of column by the 2 m height, 30 mm diameter during separation of the mixture: 5 % protium, 70 % deuterium, 25 % tritium were illustrated [ru

  20. Response of steel box columns in fire conditions

    Directory of Open Access Journals (Sweden)

    Mahmood Yahyai

    2017-05-01

    Full Text Available Effect of elevated temperatures on the mechanical properties of steel, brings the importance of investigating the effect of fire on the steel structures anxiously. Columns, as the main load-carrying part of a structure, can be highly vulnerable to the fire. In this study, the behavior of steel gravity columns with box cross section exposed to fire has been investigated. These kinds of columns are widely used in common steel structures design in Iran. In current study, the behavior of such columns in fire conditions is investigated through the finite element method. To perform this, the finite element model of a steel column which has been previously tested under fire condition, was prepared. Experimental loading and boundary conditions were considered in the model and was analyzed. Results were validated by experimental data and various specimens of gravity box columns were designed according to the Iran’s steel buildings code, and modeled and analyzed using Abaqus software. The effect of width to thickness ratio of column plates, the load ratio and slenderness on the ultimate strength of the column was investigated, and the endurance time was estimated under ISO 834 standard fire curve. The results revealed that an increase in width to thickness ratio and load ratio leads to reduction of endurance time and the effect of width to thickness ratio on the ultimate strength of the column decreases with temperature increase.

  1. Applicability of hydroxylamine nitrate reductant in pulse-column contactors

    International Nuclear Information System (INIS)

    Reif, D.J.

    1983-05-01

    Uranium and plutonium separations were made from simulated breeder reactor spent fuel dissolver solution with laboratory-sized pulse column contactors. Hydroxylamine nitrate (HAN) was used for reduction of plutonium (1V). An integrated extraction-partition system, simulating a breeder fuel reprocessing flowsheet, carried out a partial partition of uranium and plutonium in the second contactor. Tests have shown that acceptable coprocessing can be ontained using HAN as a plutonium reductant. Pulse column performance was stable even though gaseous HAN oxidation products were present in the column. Gas evolution rates up to 0.27 cfm/ft 2 of column cross section were tested and found acceptable

  2. Evaluation of Controller Tuning Methods Applied to Distillation Column Control

    DEFF Research Database (Denmark)

    Nielsen, Kim; W. Andersen, Henrik; Kümmel, Professor Mogens

    A frequency domain approach is used to compare the nominal performance and robustness of dual composition distillation column control tuned according to Ziegler-Nichols (ZN) and Biggest Log Modulus Tuning (BLT) for three binary distillation columns, WOBE, LUVI and TOFA. The scope of this is to ex......A frequency domain approach is used to compare the nominal performance and robustness of dual composition distillation column control tuned according to Ziegler-Nichols (ZN) and Biggest Log Modulus Tuning (BLT) for three binary distillation columns, WOBE, LUVI and TOFA. The scope...

  3. Performance of zeolite scavenge column in Xe monitoring system

    International Nuclear Information System (INIS)

    Wang Qian; Wang Hongxia; Li Wei; Bian Zhishang

    2010-01-01

    In order to improve the performance of zeolite scavenge column, its ability of removal of humidity and carbon dioxide was studied by both static and dynamic approaches. The experimental results show that various factors, including the column length and diameter, the mass of zeolite, the content of water in air, the temperature rise during adsorption, and the activation effectiveness all effect the performance of zeolite column in scavenging humanity and carbon dioxide. Based on these results and previous experience, an optimized design of the zeolite column is made for use in xenon monitoring system. (authors)

  4. Partial strengthening of R.C square columns using CFRP

    Directory of Open Access Journals (Sweden)

    Ahmed Shaban Abdel-Hay

    2014-12-01

    An experimental program was undertaken testing ten square columns 200 × 200 × 2000 mm. One of them was a control specimen and the other nine specimens were strengthened with CFRP. The main parameters studied in this research were the compressive strength of the upper part, the height of the upper poor concrete part, and the height of CFRP wrapped part of column. The experimental results including mode of failure, ultimate load, concrete strain, and fiber strains were analyzed. The main conclusion of this research was, partial strengthening of square column using CFRP can be permitted and gives good results of the column carrying capacity.

  5. Mini-columns for Conducting Breakthrough Experiments. Design and Construction

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ware, Stuart Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-11

    Experiments with moderately and strongly sorbing radionuclides (i.e., U, Cs, Am) have shown that sorption between experimental solutions and traditional column materials must be accounted for to accurately determine stationary phase or porous media sorption properties (i.e., sorption site density, sorption site reaction rate coefficients, and partition coefficients or Kd values). This report details the materials and construction of mini-columns for use in breakthrough columns to allow for accurate measurement and modeling of sorption parameters. Material selection, construction techniques, wet packing of columns, tubing connections, and lessons learned are addressed.

  6. Comparison and Analysis of Steel Frame Based on High Strength Column and Normal Strength Column

    Science.gov (United States)

    Liu, Taiyu; An, Yuwei

    2018-01-01

    The anti-seismic performance of high strength steel has restricted its industrialization in civil buildings. In order to study the influence of high strength steel column on frame structure, three models are designed through MIDAS/GEN finite element software. By comparing the seismic performance and economic performance of the three models, the three different structures are comprehensively evaluated to provide some references for the development of high strength steel in steel structure.

  7. Diffusion Processes in the Positive Column in a longitudinal magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, B [Royal Institute of Technology, Stockholm (Sweden)

    1958-07-01

    The purpose of the present investigation is to study diffusion across a magnetic field in a configuration which is free from short-circuiting effects such as those described by Simon. It provides the possibility of deciding whether collision or 'drain' diffusion is operative. For the purpose a long cylindrical plasma column with a homogeneous magnetic field along the axis has been chosen. The theoretical treatment is given. On the basis of the collision diffusion theory Tonks, Rokhlin, Cummings and Tonks and Fataliev have pointed out that a longitudinal magnetic field will reduce the losses of particles to the walls. Consequently, when the magnetic field is present, a lower electron temperature and a smaller potential drop along the plasma column should be required to sustain a certain ion density. The present experiment forms an extension of that of Bickerton and von Engel into a range where the Schottky theory is applicable in the absence of a magnetic field and where the applied magnetic field is still made strong enough to influence the electron temperature.

  8. Elution of Uranium and Calculation of Plate Number on the Column of Silica-TBP

    International Nuclear Information System (INIS)

    Endang Susiantini; Indra Suryawan

    2007-01-01

    Separation process of 99 Mo resulted of irradiated uranyl nitrate with an accelerator as the neutron source by the chromatographic extraction using column containing kiesel gel-TBP will be developed. Kiesel gel (silica) was used as an inert subpart, TBP as a phase stationary and simulated used natural uranyl nitrate of 200-300 g/l with the acidity of 2 N as the mobile phase. The inert support was made by means of kiesel-gel (silica) hydrophobization to change hydrophilic silica to hydrophobic silica, so that it could be impregnated by TBP. Uranium which has been attached to TBP would be eluted by dilute acid at acidity of 0.05; 0.1; 0.2 N HNO 3 ; Warm DW and cool DW. By using 0.1 N HNO 3 eluent and warm DW the uranium attached to silica-TBP could be eluted perfectly and more quickly than the three others eluent. Uranium concentration which were absorbed and eluted were analysed titrimetrically by using titan method and it was used to calculate Plate Number (N). The value of N obtained for the column which the inert support of 8 cm in height, 1 cm in diameter, 10 drops per minute by using of 0.1 N HNO 3 eluent was 300.6. (author)

  9. A Low-Cost Automated Test Column to Estimate Soil Hydraulic Characteristics in Unsaturated Porous Media

    Directory of Open Access Journals (Sweden)

    J. Salas-García

    2017-01-01

    Full Text Available The estimation of soil hydraulic properties in the vadose zone has some issues, such as accuracy, acquisition time, and cost. In this study, an inexpensive automated test column (ATC was developed to characterize water flow in a homogeneous unsaturated porous medium by the simultaneous estimation of three hydraulic state variables: water content, matric potential, and water flow rates. The ATC includes five electrical resistance probes, two minitensiometers, and a drop counter, which were tested with infiltration tests using the Hydrus-1D model. The results show that calibrations of electrical resistance probes reasonably match with similar studies, and the maximum error of calibration of the tensiometers was 4.6% with respect to the full range. Data measured by the drop counter installed in the ATC exhibited a high consistency with the electrical resistance probes, which provides an independent verification of the model and indicates an evaluation of the water mass balance. The study results show good performance of the model against the infiltration tests, which suggests a robustness of the methodology developed in this study. An extension to the applicability of this system could be successfully used in low-budget projects in large-scale field experiments, which may be correlated with resistivity changes.

  10. On-column reduction of catecholamine quinones in stainless steel columns during liquid chromatography.

    Science.gov (United States)

    Xu, R; Huang, X; Kramer, K J; Hawley, M D

    1995-10-10

    The chromatographic behavior of quinones derived from the oxidation of dopamine and N-acetyldopamine has been studied using liquid chromatography (LC) with both a diode array detector and an electrochemical detector that has parallel dual working electrodes. When stainless steel columns are used, an anodic peak for the oxidation of the catecholamine is observed at the same retention time as a cathodic peak for the reduction of the catecholamine quinone. In addition, the anodic peak exhibits a tail that extends to a second anodic peak for the catecholamine. The latter peak occurs at the normal retention time of the catecholamine. The origin of this phenomenon has been studied and metallic iron in the stainless steel components of the LC system has been found to reduce the quinones to their corresponding catecholamines. The simultaneous appearance of a cathodic peak for the reduction of catecholamine quinone and an anodic peak for the oxidation of the corresponding catecholamine occurs when metallic iron in the exit frit reduces some of the quinones as the latter exits the column. This phenomenon is designated as the "concurrent anodic-cathodic response." It is also observed for quinones of of 3,4-dihydroxybenzoic acid and probably occurs with o- or p-quinones of other dihydroxyphenyl compounds. The use of nonferrous components in LC systems is recommended to eliminate possible on-column reduction of quinones.

  11. X-38 Drop Model: Landing Sequence Collage from Cessna Drop Test

    Science.gov (United States)

    1995-01-01

    This sequence of photographs shows a 4-foot-long model of NASA's X-38 gliding to earth after being dropped from a Cessna aircraft in late 1995. The model was used to test the ram-air parafoil landing system, which could allow for accurate and controlled landings of an emergency Crew Return Vehicle spacecraft returning to earth. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to

  12. Surfactant-Enhanced Benard Convection on an Evaporating Drop

    Science.gov (United States)

    Nguyen, Van X.; Stebe, Kathleen J.

    2001-11-01

    Surfactant effects on an evaporating drop are studied experimentally. Using a fluorescent probe, the distribution and surface phase of the surfactant is directly imaged throughout the evaporation process. From these experiments, we identify conditions in which surfactants promote surface tension-driven Benard instabilities in aqueous systems. The drops under study contain finely divided particles, which act as tracers in the flow, and form well-defined patterns after the drop evaporates. Two flow fields have been reported in this system. The first occurs because the contact line becomes pinned by solid particles at the contact line region. In order for the contact line to remain fixed, an outward flow toward the ring results, driving further accumulation at the contact ring. A ‘coffee ring’ of particles is left as residue after the drop evaporates[1]. The second flow is Benard convection, driven by surface tension gradients on the drop[2,3]. In our experiments, an insoluble monolayer of pentadecanoic acid is spread at the interface of a pendant drop. The surface tension is recorded, and the drop is deposited on a well-defined solid substrate. Fluorescent images of the surface phase of the surfactant are recorded as the drop evaporates. The surfactant monolayer assumes a variety of surface states as a function of the area per molecule at the interface: surface gaseous, surface liquid expanded, and surface liquid condensed phases[4]. Depending upon the surface state of the surfactant as the drop evaporates, transitions of residue patterns left by the particles occur, from the coffee ring pattern to Benard cells to irregular patterns, suggesting a strong resistance to outward flow are observed. The occurrence of Benard cells on a surfactant-rich interface occurs when the interface is in LE-LC coexistence. Prior research concerning surfactant effects on this instability predict that surfactants are strongly stabilizing[5]. The mechanisms for this change in behavior

  13. Calculation method for control rod dropping time in reactor

    International Nuclear Information System (INIS)

    Nogami, Takeki; Kato, Yoshifumi; Ishino, Jun-ichi; Doi, Isamu.

    1996-01-01

    If a control rod starts dropping, the dropping speed is rapidly increased, then settled substantially constant, rapidly decreased when it reaches a dash pot. A second detection signal generated by removing an AC component from a first detection signal is differentiated twice. The time when the maximum value among the twice differentiated values is generated is determined as a time when the control rods starts dropping. The time when minimum value among the twice differentiated values is generated is determined as a time when the control rod reaches the dash pot of the reactor. The measuring time within a range from the time when the control rod starts dropping to the time when the control rod reaches the dash pot of the reactor is determined. As a result, processing for the calculation of the dropping start time and dash pot reaching time of the control rod can be automatized. Further, it is suffice to conduct differentiation twice till the reaching time, which can facilitate the processing thereby enabling to determine a reliable time range. (N.H.)

  14. Electrohydrodynamics of suspension of liquid drops in AC fields

    Science.gov (United States)

    Abdul Halim, Md.; Esmaeeli, Asghar

    2012-11-01

    Manipulation of liquid drops by an externally applied electric field is currently the focus of increased attention because of its relevance in a broad range of industrial processes. The effect of a uniform DC electric field on a solitary drop is well studied; however, less is know about the impact of electric field on suspension of liquid drops, and very little information is available on the impact of AC field on a single or a suspension of drops. Here we report the results of Direct Numerical Simulations of electrohydrodynamics of suspension of liquid drops. The governing equations are solved using a front tracking/finite difference technique, in conjunction with Taylor's leaky dielectric model. The imposed electric potential comprises of two parts, a time-independent base and a time-dependent part. The goal is to explore the relative importance of these two components in setting the statistically steady state behavior of the suspension. To this end, we report the results of three sets of simulations, where (i) the time-dependent part act as a perturbation on the base potential, (ii) the two components are of the same order, and (iii) the time-dependent part is much larger than the base potential. The problem is studied as a function of the governing nondimensional parameters.

  15. 9 m side drop test of scale model

    International Nuclear Information System (INIS)

    Ku, Jeong-Hoe; Chung, Seong-Hwan; Lee, Ju-Chan; Seo, Ki-Seog

    1993-01-01

    A type B(U) shipping cask had been developed in KAERI for transporting PWR spent fuel. Since the cask is to transport spent PWR fuel, it must be designed to meet all of the structural requirements specified in domestic packaging regulations and IAEA safety series No.6. This paper describes the side drop testing of a one - third scale model cask. The crush and deformations of the shock absorbing covers directly control the deceleration experiences of the cask during the 9 m side drop impact. The shock absorbing covers greatly mitigated the inertia forces of the cask body due to the side drop impact. Compared with the side drop test and finite element analysis, it was verified that the 1/3 scale model cask maintain its structural integrity of the model cask under the side drop impact. The test and analysis results could be used as the basic data to evaluate the structural integrity of the real cask. (J.P.N.)

  16. Scaling during capillary thinning of particle-laden drops

    Science.gov (United States)

    Thete, Sumeet; Wagoner, Brayden; Basaran, Osman

    2017-11-01

    A fundamental understanding of drop formation is crucial in many applications such as ink-jet printing, microfluidic devices, and atomization. During drop formation, the about-to-form drop is connected to the fluid hanging from the nozzle via a thinning filament. Therefore, the physics of capillary thinning of filaments is key to understanding drop formation and has been thoroughly studied for pure Newtonian fluids using theory, simulations, and experiments. In some of the applications however, the forming drop and hence the thinning filament may contain solid particles. The thinning dynamics of such particle-laden filaments differs radically from that of particle-free filaments. Moreover, our understanding of filament thinning in the former case is poor compared to that in the latter case despite the growing interest in pinch-off of particle-laden filaments. In this work, we go beyond similar studies and experimentally explore the impact of solid particles on filament thinning by measuring both the radial and axial scalings in the neck region. The results are summarized in terms of a phase diagram of capillary thinning of particle-laden filaments.

  17. Electrohydrodynamics of drops in strong electric fields: Simulations and theory

    Science.gov (United States)

    Saintillan, David; Das, Debasish

    2016-11-01

    Weakly conducting dielectric liquid drops suspended in another dielectric liquid exhibit a wide range of dynamical behaviors when subject to an applied uniform electric field contingent on field strength and material properties. These phenomena are best described by the much celebrated Maylor-Taylor leaky dielectric model that hypothesizes charge accumulation on the drop-fluid interface and prescribes a balance between charge relaxation, the jump in Ohmic currents and charge convection by the interfacial fluid flow. Most previous numerical simulations based on this model have either neglected interfacial charge convection or restricted themselves to axisymmetric drops. In this work, we develop a three-dimensional boundary element method for the complete leaky dielectric model to systematically study the deformation and dynamics of liquid drops in electric fields. The inclusion of charge convection in our simulation permits us to investigate drops in the Quincke regime, in which experiments have demonstrated symmetry-breaking bifurcations leading to steady electrorotation. Our simulation results show excellent agreement with existing experimental data and small deformation theories. ACSPRF Grant 53240-ND9.

  18. A Novel Virus Causes Scale Drop Disease in Lates calcarifer.

    Directory of Open Access Journals (Sweden)

    Ad de Groof

    2015-08-01

    Full Text Available From 1992 onwards, outbreaks of a previously unknown illness have been reported in Asian seabass (Lates calcarifer kept in maricultures in Southeast Asia. The most striking symptom of this emerging disease is the loss of scales. It was referred to as scale drop syndrome, but the etiology remained enigmatic. By using a next-generation virus discovery technique, VIDISCA-454, sequences of an unknown virus were detected in serum of diseased fish. The near complete genome sequence of the virus was determined, which shows a unique genome organization, and low levels of identity to known members of the Iridoviridae. Based on homology of a series of putatively encoded proteins, the virus is a novel member of the Megalocytivirus genus of the Iridoviridae family. The virus was isolated and propagated in cell culture, where it caused a cytopathogenic effect in infected Asian seabass kidney and brain cells. Electron microscopy revealed icosahedral virions of about 140 nm, characteristic for the Iridoviridae. In vitro cultured virus induced scale drop syndrome in Asian seabass in vivo and the virus could be reisolated from these infected fish. These findings show that the virus is the causative agent for the scale drop syndrome, as each of Koch's postulates is fulfilled. We have named the virus Scale Drop Disease Virus. Vaccines prepared from BEI- and formalin inactivated virus, as well as from E. coli produced major capsid protein provide efficacious protection against scale drop disease.

  19. Drop splashing: the role of surface wettability and liquid viscosity

    Science.gov (United States)

    Almohammadi, Hamed; Amirfazli, Alidad; -Team

    2017-11-01

    There are seemingly contradictory results in the literature about the role of surface wettability and drop viscosity for the splashing behavior of a drop impacting onto a surface. Motivated by such issues, we conducted a systematic experimental study where splashing behavior for a wide range of the liquid viscosity (1-100 cSt) and surface wettability (hydrophilic to hydrophobic) are examined. The experiments were performed for the liquids with both low and high surface tensions ( 20 and 72 mN/m). We found that the wettability affects the splashing threshold at high or low contact angle values. At the same drop velocity, an increase of the viscosity (up to 4 cSt) promotes the splashing; while, beyond such value, any increase in viscosity shows the opposite effect. It is also found that at a particular combination of liquid surface tension and viscosity (e.g. silicone oil, 10 cSt), an increase in the drop velocity changes the splashing to spreading. We relate such behaviors to the thickness, shape, and the velocity of the drop's lamella. Finally, to predict the splashing, we developed an empirical correlation which covers all of the previous reported data, hence clarifying the ostensible existing contradictions.

  20. Naturally Occurring Egg Drop Syndrome Infection in Turkeys

    Directory of Open Access Journals (Sweden)

    Z. Biđin

    2007-01-01

    Full Text Available A decrease in the egg quality, production, fertility and hatchability without serious clinical signs of illness was recorded in turkey fl ocks in Croatia at the beginning of 2002. It was assumed that the egg drop syndrome virus might be one of the etiological agents responsible for the abnormalities in the egg production. The systematic serological monitoring, using a haemagglutination inhibition test, showed that the antibodies to the egg drop syndrome virus existed in 94.4 and 55.1% of the sera analysed in 2002 and 2003, respectively. The haemagglutination inhibition titres ranged from 16 to 128. The sera samples were randomly collected from 11 - to 46-week-old hens from the affected fl ocks. The serological evidence of the egg drop syndrome virus infection was confirmed by detection of the presence of the virus genome in the turkey sera by the polymerase chain reaction. Vaccination of the 18- and 25-week-old turkey hens against the egg drop syndrome virus started in March 2003. After this period, the presence of antibodies to the egg drop syndrome virus (the haemagglutination inhibition titres between 16 and 256 was found in 96.7% of the analysed sera, while the egg production reached normal or higher values for the Nicholas hybrid line of turkeys.

  1. A PIV Study of Drop-interface Coalescence with Surfactants

    Science.gov (United States)

    Weheliye, Weheliye Hashi; Dong, Teng; Angeli, Panagiota

    2017-11-01

    In this work, the coalescence of a drop with an aqueous-organic interface was studied by Particle Image Velocimetry (PIV). The effect of surfactants on the drop surface evolution, the vorticity field and the kinetic energy distribution in the drop during coalescence were investigated. The coalescence took place in an acrylic rectangular box with 79% glycerol solution at the bottom and Exxsol D80 oil above. The glycerol solution drop was generated through a nozzle fixed at 2cm above the aqueous/oil interface and was seeded with Rhodamine particles. The whole process was captured by a high-speed camera. Different mass ratios of non-ionic surfactant Span80 to oil were studied. The increase of surfactant concentration promoted deformation of the interface before the rupture of the trapped oil film. At the early stages after film rupture, two counter-rotating vortices appeared at the bottom of the drop which then travelled to the upper part. The propagation rates, as well as the intensities of the vortices decreased at high surfactant concentrations. At early stages, the kinetic energy was mainly distributed near the bottom part of the droplet, while at later stages it was distributed near the upper part of the droplet. Programme Grant MEMPHIS, Chinese Scholarship Council (CSC).

  2. Research on combustion of black-liquor drops

    International Nuclear Information System (INIS)

    Macek, A.

    1999-01-01

    Black liquor, the major by-product of the kraft process for production of pulp, is one of the most important industrial fuels. It is burned in recovery boilers in the form of large spray drops (mm), with the objective of simultaneous recovery of heat and chemicals (sodium and sulfur). Even though black-liquor combustion in boilers has been practised for over half a century, research efforts toward improvement of combustion efficiency and abatement of environmental emissions are much more recent. The present paper addresses a specific aspect of that research, namely, elucidation of processes which occur during combustion of black-liquor drops in boiler-gas streams. The paper (a) gives a brief description of the kraft process, (b) reviews the experimental and theoretical (modeling) research advances on combustion of kraft-liquor drops during the 1980s and 1990s, (c) re-examines the results of an earlier combustion study in which black-liquor drops were observed in free flight at temperatures near those in recovery boilers, and (d) recommends input for the modeling of in-flight combustion of kraft-liquor drops in recovery boilers. (author)

  3. Temperature of Steel Columns under Natural Fire

    Directory of Open Access Journals (Sweden)

    F. Wald

    2004-01-01

    Full Text Available Current fire design models for time-temperature development within structural elements as well as for structural behaviour are based on isolated member tests subjected to standard fire regimes, which serve as a reference heating, but do not model natural fire. Only tests on a real structure under a natural fire can evaluate future models of the temperature developments in a fire compartment, of the transfer of heat into the structure and of the overall structural behaviour under fire.To study overall structural behaviour, a research project was conducted on an eight storey steel frame building at the  Cardington Building Research Establishment laboratory on January 16, 2003. A fire compartment 11×7 m was prepared on the fourth floor. A fire load of 40 kg/m2 was applied with 100 % permanent mechanical load and 65 % of imposed load. The paper summarises the experimental programme and shows the temperature development of the gas in the fire compartment and of the fire protected columns bearing the unprotected floors.

  4. Selective detachment process in column flotation froth

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R.Q.; Ozsever, A.V.; Parekh, B.K. [University of Kentucky, Lexington, KY (United States). Dept. of Mining Engineering

    2006-05-15

    The selectivity in flotation columns involving the separation of particles of varying degrees of floatability is based on differential flotation rates in the collection zone, reflux action between the froth and collection zones, and differential detachment rates in the froth zone. Using well-known theoretical models describing the separation process and experimental data, froth zone and overall flotation recovery values were quantified for particles in an anthracite coal that have a wide range of floatability potential. For highly floatable particles, froth recovery had a very minimal impact on overall recovery while the recovery of weakly floatable material was decreased substantially by reductions in froth recovery values. In addition, under carrying-capacity limiting conditions, selectivity was enhanced by the preferential detachment of the weakly floatable material. Based on this concept, highly floatable material was added directly into the froth zone when treating the anthracite coal. The enriched froth phase reduced the product ash content of the anthracite product by five absolute percentage points while maintaining a constant recovery value.

  5. SPR Hydrostatic Column Model Verification and Validation.

    Energy Technology Data Exchange (ETDEWEB)

    Bettin, Giorgia [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lord, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rudeen, David Keith [Gram, Inc. Albuquerque, NM (United States)

    2015-10-01

    A Hydrostatic Column Model (HCM) was developed to help differentiate between normal "tight" well behavior and small-leak behavior under nitrogen for testing the pressure integrity of crude oil storage wells at the U.S. Strategic Petroleum Reserve. This effort was motivated by steady, yet distinct, pressure behavior of a series of Big Hill caverns that have been placed under nitrogen for extended period of time. This report describes the HCM model, its functional requirements, the model structure and the verification and validation process. Different modes of operation are also described, which illustrate how the software can be used to model extended nitrogen monitoring and Mechanical Integrity Tests by predicting wellhead pressures along with nitrogen interface movements. Model verification has shown that the program runs correctly and it is implemented as intended. The cavern BH101 long term nitrogen test was used to validate the model which showed very good agreement with measured data. This supports the claim that the model is, in fact, capturing the relevant physical phenomena and can be used to make accurate predictions of both wellhead pressure and interface movements.

  6. GPR Diagnostics of columns in archaeological contexts

    Science.gov (United States)

    Soldovieri, Francesco; Masini, Nicola; Persico, Raffaele; Catapano, Ilaria

    2017-04-01

    In the last decade the use of Ground Penetrating radar (GPR) applied to cultural heritage has been strongly increasing thanks to both technological development of sensors and softwares for data processing and cultural reasons such as the increasing awareness of conservators and archaeologist of the benefits of this method in terms of reduction of costs and time and risk associated with restoration works. This made GPR a mature technique for investigating different types of works of art and building elements of historical interest, including masonry structures, frescoes, mosaics [1-3], in the context of scientific projects, decision support activities aimed at the diagnosis of decay pathologies, and educational activities. One of the most complex building elements to be investigated by GPR are the columns both for the geometry of the object and for the several expected features to be detected including fractures, dishomogeneities and metallic connection elements. The work deals with the Ground Penetrating Radar diagnostic surveys at the prestigious archaeological site of Pompei. In particular, GPR surveys were carried out in two different areas, Palestra Grande and Tempio di Giove. The first campaign was carried out also as educational activity of the "International School "GEOPHYSICS AND REMOTE SENSING FOR ARCHAEOLOGY". The School aimed at giving the opportunity to scholars, PhD students, researchers and specialists in Geophysics, Remote Sensing and Archaeology to deepen their knowledge and expertise with geophysical and remote sensing techniques for archaeology and cultural heritage documentation and management. This survey was carried on two kinds of columns, with circular and rectangular section in order to detect possible hidden defects affecting their integrity. The second survey was carried out at Tempio di Giove, on request of the Soprintendenza Pompei, in order to gain information about the presence of reinforcement structures, which may be put inside the

  7. Water column methanotrophy controlled by a rapid oceanographic switch

    NARCIS (Netherlands)

    Steinle, L.; Graves, C.A.; Treude, T.; Ferré, B.; Biastoch, A.; Bussmann, I.; Berndt, C.; Krastel, S.; James, R.H.; Behrens, E.; Böning, C.W.; Greinert, J.; Sapart, C.-J.; Scheinert, M.; Sommer, S.; Lehmann, M.F.; Niemann, H.

    2015-01-01

    From the seabed to the water column, where it may be consumed by aerobic methanotrophic bacteria. The size and activity of methanotrophic communities, which determine the amount of methane consumed in the water column,are thought to be mainly controlled by nutrient and redoxdynamics3–7. Here, we

  8. Comparison of monolithic silica and polymethacrylate capillary columns for LC

    Czech Academy of Sciences Publication Activity Database

    Moravcová, D.; Jandera, P.; Urban, J.; Planeta, Josef

    2004-01-01

    Roč. 27, 10-11 (2004), s. 789-800 ISSN 1615-9306 R&D Projects: GA ČR(CZ) GA203/02/0023 Keywords : monolithic column s * capillary HPLC * column testing Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.927, year: 2004

  9. Alpha-contained laboratory scale pulse column facility for SRL

    International Nuclear Information System (INIS)

    Reif, D.J.; Cadieux, J.R.; Fauth, D.J.; Thompson, M.C.

    1980-01-01

    For studying solvent extraction processes, a laboratory-sized pulse column facility was constructed at the Savannah River Laboratory. This facility, in conjunction with existing miniature mixer-settler equipment and the centrifugal contactor facility currently under construction at SRL, provides capability for cross comparison of solvent extraction technology. This presentation describes the design and applications of the Pulse Column Facility at SRL

  10. Hydrodynamic chromatography of polystyrene microparticles in micropillar array columns

    NARCIS (Netherlands)

    Op de Beeck, Jeff; de Malsche, Wim; Vangelooven, Joris; Gardeniers, Johannes G.E.; Desmet, Gert

    2010-01-01

    We report on the possibility to perform HDC in micropillar array columns and the potential advantages of such a system. The HDC performance of a pillar array column with pillar diameter = 5 μm and an interpillar distance of 2.5 μm has been characterized using both a low MW tracer (FITC) and

  11. Simulators of tray distillation columns as tools for interpreting ...

    African Journals Online (AJOL)

    ... at 0.05 m intervals were determined from top to the bottom of simulators of tray distillation columns exposed to 20 mCi of 137 Cs. Signals generated from the simulators were identical with the experimental signals obtained from the Stabilizer Column of the crude oil distillation unit at the Tema Oil Refinery Ghana Limited.

  12. Ultrasonic testing device having an adjustable water column

    Science.gov (United States)

    Roach, Dennis P.; Neidigk, Stephen O.; Rackow, Kirk A.; Duvall, Randy L.

    2015-09-01

    An ultrasonic testing device having a variable fluid column height is disclosed. An operator is able to adjust the fluid column height in real time during an inspection to to produce optimum ultrasonic focus and separate extraneous, unwanted UT signals from those stemming from the area of interest.

  13. Dynamic stability of a lightly damped column trapped by a ...

    African Journals Online (AJOL)

    In this paper we initiate an analytical approach for determining the dynamic buckling load of a finite viscously damped column acted upon by a harmonically slowly varying explicitly time dependent load. The viscous damping is considered light and the column rests on an elastic foundation that produces a nonlinear ...

  14. Localized giant cell tumors in the spinal column radiologic presentation

    International Nuclear Information System (INIS)

    Fernandez Echeverria, M.A.; Parra Blanco, J.A.; Pagola Serrano, M.A.; Mellado Santos, J.M.; Bueno Lopez, J.; Gonzalez Tutor, A.

    1994-01-01

    Given the uncommonness of the location of giant cell tumors (GCT) in the spinal column and the limited number of studies published, we present a case of GCT located in the spinal column, which involved both vertebral bodies and partially destroyed the adjacent rib. (Author)

  15. Monitoring aged reversed-phase high performance liquid chromatography columns

    NARCIS (Netherlands)

    Bolck, A; Smilde, AK; Bruins, CHP

    1999-01-01

    In this paper, a new approach for the quality assessment of routinely used reversed-phase high performance liquid chromatography columns is presented. A used column is not directly considered deteriorated when changes in retention occur. If attention is paid to the type and magnitude of the changes,

  16. Nondestructive evaluation of warm mix asphalt through resonant column testing.

    Science.gov (United States)

    2014-02-01

    Non-destructive testing has been used for decades to characterize engineering properties of hot-mix asphalt. Among such tests is the resonant column (RC) test, which is commonly used to characterize soil materials. The resonant column device at Penn ...

  17. Retrofit of distillation columns in biodiesel production plants

    International Nuclear Information System (INIS)

    Nguyen, Nghi; Demirel, Yasar

    2010-01-01

    Column grand composite curves and the exergy loss profiles produced by the Column-Targeting Tool of the Aspen Plus simulator are used to assess the performance of the existing distillation columns, and reduce the costs of operation by appropriate retrofits in a biodiesel production plant. Effectiveness of the retrofits is assessed by means of thermodynamics and economic improvements. We have considered a biodiesel plant utilizing three distillation columns to purify biodiesel (fatty acid methyl ester) and byproduct glycerol as well as reduce the waste. The assessments of the base case simulation have indicated the need for modifications for the distillation columns. For column T202, the retrofits consisting of a feed preheating and reflux ratio modification have reduced the total exergy loss by 47%, while T301 and T302 columns exergy losses decreased by 61% and 52%, respectively. After the retrofits, the overall exergy loss for the three columns has decreased from 7491.86 kW to 3627.97 kW. The retrofits required a fixed capital cost of approximately $239,900 and saved approximately $1,900,000/year worth of electricity. The retrofits have reduced the consumption of energy considerably, and leaded to a more environmentally friendly operation for the biodiesel plant considered.

  18. Dynamics and Control of Distillation Columns - A Critical Survey

    Directory of Open Access Journals (Sweden)

    Sigurd Skogestad

    1997-07-01

    Full Text Available Distillation column dynamics and control have been viewed by many as a very mature or even dead field. However, as is discussed in this paper significant new results have appeared over the last 5-10 years. These results include multiple steady states and instability in simple columns with ideal thermodynamics (which was believed to be impossible, the understanding of the difference between various control configurations and the systematic transformation between these, the feasibility of using the distillate-bottom structure, for control (which was believed to be impossible, the importance of flow dynamics for control studies, the fundamental problems in identifying models from open-loops responses, the use of simple regression estimators to estimate composition from temperatures, and an improved general understanding of the dynamic behavior of distillation columns which includes a better understanding of the fundamental difference between internal and external flow, simple formulas for estimating the dominant time constant, and a derivation of the linearizing effect of logarithmic transformations. These issues apply to all columns, even for ideal mixtures and simple columns with only two products. In addition, there have been significant advances for cases with complex thermodynamics and complex column configurations. These include the behavior and control of azeotropic distillation columns, and the possible complex dynamics of nonideal mixtures and of interlinked columns. However, both for the simple and more complex cases there are still a number of areas where further research is needed.

  19. Gas chromatographic column for the Viking 1975 molecular analysis experiment

    Science.gov (United States)

    Novotny, M.; Hayes, J. M.; Bruner, F.; Simmonds, P. G.

    1975-01-01

    A gas chromatographic column has been developed for use in the remote analysis of the Martian surface. The column, which utilizes a liquid-modified organic adsorbent (Tenax) as the stationary phase, provides efficient transmission and resolution of nanogram quantities of organic materials in the presence of millionfold excesses of water and carbon dioxide.

  20. Cow-in-a-Column – A Synthetic Food Replicator

    Data.gov (United States)

    National Aeronautics and Space Administration — The project tested the concept for combining waste degradation and food production in a single reactor or column, i.e., a "Cow-in-a-Column".  The inputs could...