WorldWideScience

Sample records for uav operator human

  1. Supervising UAVs : improving operator performance by optimizing the human factor

    NARCIS (Netherlands)

    Breda, L. van; Jansen, C.; Veltman, J.A.

    2005-01-01

    Tele-operated unmanned aerial vehicles (UAVs) have no operators on board and therefore enable extension of the present sensing and communication capabilities in civil and military missions, without unnecessarily endangering personnel or deploying expensive material. One should also realize that

  2. Common Operating Picture: UAV Security Study

    Science.gov (United States)

    2004-01-01

    This initial communication security study is a top-level assessment of basic security issues related to the operation of Unmanned Aerial Vehicles (UAVs) in the National Airspace System (NAS). Security considerations will include information relating to the use of International Civil Aviation Organization (ICAO) Aeronautical Telecommunications Network (ATN) protocols and applications identifying their maturity, as well as the use of IPV4 and a version of mobile IPV6. The purpose of this assessment is to provide an initial analysis of the security implications of introducing UAVs into the NAS.

  3. UAV Swarm Operational Risk Assessment System

    Science.gov (United States)

    2015-09-01

    are detected, clear monitoring is required to track and identify the possible intentions of inbound UAVs. And when a target is identified, enough...armed UAVs (Davis et al. 2014). Although manufacturers in the U.S. and Israel dominate the global UAV market (approximately 75 percent share between

  4. Human-Interaction Challenges in UAV-Based Autonomous Surveillance

    Science.gov (United States)

    Freed, Michael; Harris, Robert; Shafto, Michael G.

    2004-01-01

    Autonomous UAVs provide a platform for intelligent surveillance in application domains ranging from security and military operations to scientific information gathering and land management. Surveillance tasks are often long duration, requiring that any approach be adaptive to changes in the environment or user needs. We describe a decision- theoretic model of surveillance, appropriate for use on our autonomous helicopter, that provides a basis for optimizing the value of information returned by the UAV. From this approach arise a range of challenges in making this framework practical for use by human operators lacking specialized knowledge of autonomy and mathematics. This paper describes our platform and approach, then describes human-interaction challenges arising from this approach that we have identified and begun to address.

  5. A Stepped Frequency CW SAR for Lightweight UAV Operation

    National Research Council Canada - National Science Library

    Morrison, Keith

    2005-01-01

    A stepped-frequency continuous wave (SF-CW) synthetic aperture radar (SAR), with frequency-agile waveforms and real-time intelligent signal processing algorithms, is proposed for operation from a lightweight UAV platform...

  6. Commercial UAV operations in civil airspace

    Science.gov (United States)

    Newcome, Laurence R.

    2000-11-01

    The Federal Aviation Administration is often portrayed as the major impediment to unmanned aerial vehicle expansion into civil government and commercial markets. This paper describes one company's record for successfully negotiating the FAA regulations and obtaining authorizations for several types of UAVs to fly commercial reconnaissance missions in civil airspace. The process and criteria for obtaining such authorizations are described. The mishap records of the Pioneer, Predator and Hunter UAVs are examined in regard to their impact on FAA rule making. The paper concludes with a discussion of the true impediments to UAV penetration of commercial markets to date.

  7. A meta-analysis of human-system interfaces in unmanned aerial vehicle (UAV) swarm management.

    Science.gov (United States)

    Hocraffer, Amy; Nam, Chang S

    2017-01-01

    A meta-analysis was conducted to systematically evaluate the current state of research on human-system interfaces for users controlling semi-autonomous swarms composed of groups of drones or unmanned aerial vehicles (UAVs). UAV swarms pose several human factors challenges, such as high cognitive demands, non-intuitive behavior, and serious consequences for errors. This article presents findings from a meta-analysis of 27 UAV swarm management papers focused on the human-system interface and human factors concerns, providing an overview of the advantages, challenges, and limitations of current UAV management interfaces, as well as information on how these interfaces are currently evaluated. In general allowing user and mission-specific customization to user interfaces and raising the swarm's level of autonomy to reduce operator cognitive workload are beneficial and improve situation awareness (SA). It is clear more research is needed in this rapidly evolving field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. UAVs: Holy Grail for Intel, Panacea for RSTA, or Much Ado about Nothing? UAVs for the Operational Commander

    National Research Council Canada - National Science Library

    Fox, Roy

    1998-01-01

    ..., operational, and tactical objectives. UAVs have supported military operations including the Vietnam War, the 1983 Israeli War, the Gulf War and most recently the United Nations Peace Keeping Operation in Bosnia, to name a few. Although U.S...

  9. Unmanned Aerial Vehicles (UAVs): a new tool in counterterrorism operations?

    Science.gov (United States)

    Dörtbudak, Mehmet F.

    2015-05-01

    Terrorism is not a new phenomenon to the world, yet it remains difficult to define and counter. Countering terrorism requires several measures that must be taken simultaneously; however, counterterrorism strategies of many countries mostly depend on military measures. In the aftermath of the 2001 terrorist attack on the Twin Towers of the World Trade Center, the United States (U.S.) has started and led the campaign of Global War on Terrorism. They have invaded Afghanistan and Iraq and have encountered insurgencies run by terrorist organizations, such as al-Qaeda and its affiliates. The U.S. made the utilization of Air and Space Power very intensively during these operations. In order to implement operations; Intelligence, Surveillance, and Reconnaissance (ISR) assets were used to collect the necessary information. Before the successful insertion of a small number of U.S. Special Operation Force (SOF) teams into Afghanistan, the U.S. Air Force attacked al-Qaeda and Taliban's targets such as infrastructure, airfields, ground forces, command-control facilities etc. As soon as the U.S. troops got on the ground and started to marshal to Kabul, the Air Force supported them by attacking jointly determined targets. The Air Force continued to carry out the missions and played a significant role to achieve the objective of operation during all the time. This is not the only example of utilization of Air and Space Power in counterterrorism and counterinsurgency operations. All around the world, many countries have also made the utilization of Air Power in different missions ranging from ISR to attacking. Thinking that terrorism has a psychological dimension and losing a pilot during operations may result in decreasing the population support to operations, Unmanned Aerial Vehicles (UAVs) started to be used by practitioners and took priority over other assets. Although UAVs have been on the theatre for a long time used for ISR mission in conventional conflicts, with the advent

  10. Using crowd sourcing to combat potentially illegal or dangerous UAV operations

    Science.gov (United States)

    Tapsall, Brooke T.

    2016-10-01

    The UAV (Unmanned Aerial Vehicles) industry is growing exponentially at a pace that policy makers, individual countries and law enforcement agencies are finding difficult to keep up. The UAV market is large, as such the amount of UAVs being operated in potentially dangerous situations is prevalent and rapidly increasing. Media is continually reporting `near-miss' incidents between UAVs and commercial aircraft, UAV breaching security in sensitive areas or invading public privacy. One major challenge for law enforcement agencies is gaining tangible evidence against potentially dangerous or illegal UAV operators due to the rapidity with which UAV operators are able to enter, fly and exit a scene before authorities can arrive or before they can be located. DroneALERT, an application available via the Airport-UAV.com website, allows users to capture potentially dangerous or illegal UAV activity using their mobile device as it the incident is occurring. A short online DroneALERT Incident Report (DIR) is produced, emailed to the user and the Airport-UAV.com custodians. The DIR can be used to aid authorities in their investigations. The DIR contains details such as images and videos, location, time, date of the incident, drone model, its distance and height. By analysing information from the DIR, photos or video, there is a high potential for law enforcement authorities to use this evidence to identify the type of UAV used, triangulate the location of the potential dangerous UAV and operator, create a timeline of events, potential areas of operator exit and to determine the legalities breached. All provides crucial evidence for identifying and prosecuting a UAV operator.

  11. Focus-of-attention for human activity recognition from UAVs

    NARCIS (Netherlands)

    Burghouts, G.J.; Eekeren, A.W.M. van; Dijk, J.

    2014-01-01

    This paper presents a system to extract metadata about human activities from full-motion video recorded from a UAV. The pipeline consists of these components: tracking, motion features, representation of the tracks in terms of their motion features, and classification of each track as one of the

  12. New generation of human machine interfaces for controlling UAV through depth-based gesture recognition

    Science.gov (United States)

    Mantecón, Tomás.; del Blanco, Carlos Roberto; Jaureguizar, Fernando; García, Narciso

    2014-06-01

    New forms of natural interactions between human operators and UAVs (Unmanned Aerial Vehicle) are demanded by the military industry to achieve a better balance of the UAV control and the burden of the human operator. In this work, a human machine interface (HMI) based on a novel gesture recognition system using depth imagery is proposed for the control of UAVs. Hand gesture recognition based on depth imagery is a promising approach for HMIs because it is more intuitive, natural, and non-intrusive than other alternatives using complex controllers. The proposed system is based on a Support Vector Machine (SVM) classifier that uses spatio-temporal depth descriptors as input features. The designed descriptor is based on a variation of the Local Binary Pattern (LBP) technique to efficiently work with depth video sequences. Other major consideration is the especial hand sign language used for the UAV control. A tradeoff between the use of natural hand signs and the minimization of the inter-sign interference has been established. Promising results have been achieved in a depth based database of hand gestures especially developed for the validation of the proposed system.

  13. UAV Research at NASA Langley: Towards Safe, Reliable, and Autonomous Operations

    Science.gov (United States)

    Davila, Carlos G.

    2016-01-01

    Unmanned Aerial Vehicles (UAV) are fundamental components in several aspects of research at NASA Langley, such as flight dynamics, mission-driven airframe design, airspace integration demonstrations, atmospheric science projects, and more. In particular, NASA Langley Research Center (Langley) is using UAVs to develop and demonstrate innovative capabilities that meet the autonomy and robotics challenges that are anticipated in science, space exploration, and aeronautics. These capabilities will enable new NASA missions such as asteroid rendezvous and retrieval (ARRM), Mars exploration, in-situ resource utilization (ISRU), pollution measurements in historically inaccessible areas, and the integration of UAVs into our everyday lives all missions of increasing complexity, distance, pace, and/or accessibility. Building on decades of NASA experience and success in the design, fabrication, and integration of robust and reliable automated systems for space and aeronautics, Langley Autonomy Incubator seeks to bridge the gap between automation and autonomy by enabling safe autonomous operations via onboard sensing and perception systems in both data-rich and data-deprived environments. The Autonomy Incubator is focused on the challenge of mobility and manipulation in dynamic and unstructured environments by integrating technologies such as computer vision, visual odometry, real-time mapping, path planning, object detection and avoidance, object classification, adaptive control, sensor fusion, machine learning, and natural human-machine teaming. These technologies are implemented in an architectural framework developed in-house for easy integration and interoperability of cutting-edge hardware and software.

  14. Easy-to-Use UAV Ground Station Software for Low-Altitude Civil Operations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design and develop easy-to-use Ground Control Station (GCS) software for low-altitude civil Unmanned Aerial Vehicle (UAV) operations. The GCS software...

  15. UAV-guided navigation for ground robot tele-operation in a military reconnaissance environment.

    Science.gov (United States)

    Chen, Jessie Y C

    2010-08-01

    A military reconnaissance environment was simulated to examine the performance of ground robotics operators who were instructed to utilise streaming video from an unmanned aerial vehicle (UAV) to navigate his/her ground robot to the locations of the targets. The effects of participants' spatial ability on their performance and workload were also investigated. Results showed that participants' overall performance (speed and accuracy) was better when she/he had access to images from larger UAVs with fixed orientations, compared with other UAV conditions (baseline- no UAV, micro air vehicle and UAV with orbiting views). Participants experienced the highest workload when the UAV was orbiting. Those individuals with higher spatial ability performed significantly better and reported less workload than those with lower spatial ability. The results of the current study will further understanding of ground robot operators' target search performance based on streaming video from UAVs. The results will also facilitate the implementation of ground/air robots in military environments and will be useful to the future military system design and training community.

  16. Moments of Inertia: Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID)

    Science.gov (United States)

    Haro, Helida C.

    2010-01-01

    The objective of this research effort is to determine the most appropriate, cost efficient, and effective method to utilize for finding moments of inertia for the Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID). A moment is a measure of the body's tendency to turn about its center of gravity (CG) and inertia is the resistance of a body to changes in its momentum. Therefore, the moment of inertia (MOI) is a body's resistance to change in rotation about its CG. The inertial characteristics of an UAV have direct consequences on aerodynamics, propulsion, structures, and control. Therefore, it is imperative to determine the precise inertial characteristics of the DROID.

  17. Moments of Inertia - Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID)

    Science.gov (United States)

    Haro, Helida C.

    2010-01-01

    The objective of this research effort is to determine the most appropriate, cost efficient, and effective method to utilize for finding moments of inertia for the Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID). A moment is a measure of the body's tendency to turn about its center of gravity (CG) and inertia is the resistance of a body to changes in its momentum. Therefore, the moment of inertia (MOI) is a body's resistance to change in rotation about its CG. The inertial characteristics of an UAV have direct consequences on aerodynamics, propulsion, structures, and control. Therefore, it is imperative to determine the precise inertial characteristics of the DROID.

  18. Augmented Reality Tool for the Situational Awareness Improvement of UAV Operators

    Science.gov (United States)

    Ruano, Susana; Cuevas, Carlos; Gallego, Guillermo; García, Narciso

    2017-01-01

    Unmanned Aerial Vehicles (UAVs) are being extensively used nowadays. Therefore, pilots of traditional aerial platforms should adapt their skills to operate them from a Ground Control Station (GCS). Common GCSs provide information in separate screens: one presents the video stream while the other displays information about the mission plan and information coming from other sensors. To avoid the burden of fusing information displayed in the two screens, an Augmented Reality (AR) tool is proposed in this paper. The AR system has two functionalities for Medium-Altitude Long-Endurance (MALE) UAVs: route orientation and target identification. Route orientation allows the operator to identify the upcoming waypoints and the path that the UAV is going to follow. Target identification allows a fast target localization, even in the presence of occlusions. The AR tool is implemented following the North Atlantic Treaty Organization (NATO) standards so that it can be used in different GCSs. The experiments show how the AR tool improves significantly the situational awareness of the UAV operators. PMID:28178189

  19. Diverse Planning for UAV Control and Remote Sensing

    Directory of Open Access Journals (Sweden)

    Jan Tožička

    2016-12-01

    Full Text Available Unmanned aerial vehicles (UAVs are suited to various remote sensing missions, such as measuring air quality. The conventional method of UAV control is by human operators. Such an approach is limited by the ability of cooperation among the operators controlling larger fleets of UAVs in a shared area. The remedy for this is to increase autonomy of the UAVs in planning their trajectories by considering other UAVs and their plans. To provide such improvement in autonomy, we need better algorithms for generating alternative trajectory variants that the UAV coordination algorithms can utilize. In this article, we define a novel family of multi-UAV sensing problems, solving task allocation of huge number of tasks (tens of thousands to a group of configurable UAVs with non-zero weight of equipped sensors (comprising the air quality measurement as well together with two base-line solvers. To solve the problem efficiently, we use an algorithm for diverse trajectory generation and integrate it with a solver for the multi-UAV coordination problem. Finally, we experimentally evaluate the multi-UAV sensing problem solver. The evaluation is done on synthetic and real-world-inspired benchmarks in a multi-UAV simulator. Results show that diverse planning is a valuable method for remote sensing applications containing multiple UAVs.

  20. The role and importance of UAV within the current theaters of operations

    Directory of Open Access Journals (Sweden)

    Niculae MARIN

    2010-06-01

    Full Text Available Current theaters of operations are not limited to battlefields, but they are much morediversified, including the fight against the international terrorism phenomenon, the social conflicts (ofreligious, political, economic and separatist nature within several countries, thus supplying somepolitical-military conflicts within different states and areas of the world. The armed interference mustbe done based on some highly accurate information that must be gathered without endangering thehuman lives. This is the role currently played by the unmanned air vehicles (UAVs; they can performseveral functions: surveillance, information gathering, data storage and their transmission to theground stations, including the function of interference, when needed. This paper presents, within theabove context, the status of the current theaters of operations and of the UAVs performing differentmissions within these theaters, together with their role and importance in warfare operations.

  1. Use of the RoboFlag synthetic task environment to investigate workload and stress responses in UAV operation.

    Science.gov (United States)

    Guznov, Svyatoslav; Matthews, Gerald; Funke, Gregory; Dukes, Allen

    2011-09-01

    Use of unmanned aerial vehicles (UAVs) is an increasingly important element of military missions. However, controlling UAVs may impose high stress and workload on the operator. This study evaluated the use of the RoboFlag simulated environment as a means for profiling multiple dimensions of stress and workload response to a task requiring control of multiple vehicles (robots). It tested the effects of two workload manipulations, environmental uncertainty (i.e., UAV's visual view area) and maneuverability, in 64 participants. The findings confirmed that the task produced substantial workload and elevated distress. Dissociations between the stress and performance effects of the manipulations confirmed the utility of a multivariate approach to assessment. Contrary to expectations, distress and some aspects of workload were highest in the low-uncertainty condition, suggesting that overload of information may be an issue for UAV interface designers. The strengths and limitations of RoboFlag as a methodology for investigating stress and workload responses are discussed.

  2. The contribution of personal and seniority variables to the presence of stress symptoms among Israeli UAV operators.

    Science.gov (United States)

    Gal, Shiri; Shelef, Leah; Oz, Idit; Yavnai, Nirit; Carmon, Erez; Gordon, Shirley

    2016-01-01

    The exposure to war scenes via screens, despite offering a degree of detachment, can be stressful for the operator. The aim of the current study is to examine the existence of anxiety, depression, and post traumatic stress disorder (PTSD) symptoms among unmanned aerial vehicle (UAV) Israeli operators. Participants comprised 41 UAV operators (87.2% male), aged 22-38 ( M age  = 26.05, SD  = 3.54). Most (78.0%) reported having viewed battlefield scenes. All participants completed a total of five questionnaires: Beck Depression Inventory, State-Trait Anxiety Inventory, and three questionnaires of PTSD: Post Trauma Questionnaire (CAPS), the Post-Traumatic Cognition Inventory (CTPI), and the Post-Traumatic Symptom Scale (PSS). Mean scores of depression and anxiety were found significantly lower than diagnosis cut-off points ( p  UAV operators are highly beneficial for preventing psychopathology.

  3. Dynamic Operator Overload Estimation during Supervisory Control of Multiple UAVs

    Science.gov (United States)

    2014-01-01

    Olsen, and C. W. Nielsen, "Validating human-robot interaction schemes in multitasking environments," IEEE Systems, Man, and Cybernetics, vol. 35...Breslow is a cognitive scientist at the Naval Research Laboratory, Code 5515, Washington DC 20375; phone: 301-602-3585; email : len.breslow...nrl.navy.mil Daniel Gartenberg is a Ph.D. student at George Mason University, Fairfax VA; email : dgartenb@masonlive.gmu.edu J. Malcolm McCurry is a research

  4. UAV Research, Operations, and Flight Test at the NASA Dryden Flight Research Center

    Science.gov (United States)

    Cosentino, Gary B.

    2009-01-01

    This slide presentation reviews some of the projects that have extended NASA Dryden's capabilities in designing, testing, and using Unmanned Aerial Vehicles (UAV's). Some of the UAV's have been for Science and experimental applications, some have been for flight research and demonstration purposes, and some have been small UAV's for other customers.

  5. Get-in-the-Zone (GITZ) Transition Display Format for Changing Camera Views in Multi-UAV Operations

    Science.gov (United States)

    2008-12-01

    the multi-UAV operator will witch between dynamic and static missions, each potentially involving very different scenario environments and task...another. Inspired by cinematography techniques to help audiences maintain spatial understanding of a scene across discrete film cuts, use of a

  6. Impact of Prior Flight Experience on Learning Predator UAV Operator Skills

    Science.gov (United States)

    2002-02-01

    UAVs are becoming a mainstay of intelligence , surveillance, and reconnaissance (ISR) information gathering, with the capability of supplying, in...indicators of UAV pilot skill, namely frequency and type of videogame playing, and experience with remote-controlled hobby aircraft. Experience with...indicator, artificial horizon, heading rate indicator, and engine revolutions per minute. The right monitor displays other useful information, such as a

  7. Modeling Multioperator Multi-UAV Operator Attention Allocation Problem Based on Maximizing the Global Reward

    Directory of Open Access Journals (Sweden)

    Yuhang Wu

    2016-01-01

    Full Text Available This paper focuses on the attention allocation problem (AAP in modeling multioperator multi-UAV (MOMU, with the operator model and task properties taken into consideration. The model of MOMU operator AAP based on maximizing the global reward is established and used to allocate tasks to all operators as well as set work time and rest time to each task simultaneously for operators. The proposed model is validated in Matlab simulation environment, using the immune algorithm and dynamic programming algorithm to evaluate the performance of the model in terms of the reward value with regard to the work time, rest time, and task allocation. The result shows that the total reward of the proposed model is larger than the one obtained from previously published methods using local maximization and the total reward of our method has an exponent-like relation with the task arrival rate. The proposed model can improve the operators’ task processing efficiency in the MOMU command and control scenarios.

  8. A Technology Analysis to Support Acquisition of UAVs for Gulf Coalition Forces Operations

    Science.gov (United States)

    2017-06-01

    stamina .  UAV detection range is a sensor related factor that defines the maximum distance at which the sensor can detect targets.  Time between...columns; then, we divide each entry cell in the matrix by its column sum value (Bodin & Gass 2003). The average value in each row of the normalized

  9. UAV Delivery Monitoring System

    Directory of Open Access Journals (Sweden)

    San Khin Thida

    2018-01-01

    Full Text Available UAV-based delivery systems are increasingly being used in the logistics field, particularly to achieve faster last-mile delivery. This study develops a UAV delivery system that manages delivery order assignments, autonomous flight operation, real time control for UAV flights, and delivery status tracking. To manage the delivery item assignments, we apply the concurrent scheduler approach with a genetic algorithm. The present paper describes real time flight data based on a micro air vehicle communication protocol (MAVLink. It also presents the detailed hardware components used for the field tests. Finally, we provide UAV component analysis to choose the suitable components for delivery in terms of battery capacity, flight time, payload weight and motor thrust ratio.

  10. A mini-UAV VTOL Platform for Surveying Applications

    Directory of Open Access Journals (Sweden)

    Kuldeep Rawat

    2014-05-01

    Full Text Available In this paper we discuss implementation of a mini-Unmanned Aerial Vehicle (UAV vertical take-off and landing (VTOL platform for surveying activities related to highway construction. Recent advances in sensor and communication technologies have allowed scaling sizes of unmanned aerial platforms, and explore them for tasks that are economical and safe over populated or inhabited areas. In highway construction the capability of mini-UAVs to survey in hostile and/or hardly accessible areas can greatly reduce human risks. The project focused on developing a cost effective, remotely controlled, fuel powered mini-UAV VTOL (helicopter platform with certain payload capacity and configuration and demonstrated its use in surveying and monitoring activities required for highway planning and construction. With an on-board flight recorder global positioning system (GPS device, memory storage card, telemetry, inertial navigation sensors, and a video camera the mini-UAV can record flying coordinates and relay live video images to a remote ground receiver and surveyor. After all necessary integration and flight tests were done the mini-UAV helicopter was tested to operate and relay video from the areas where construction was underway. The mini-UAV can provide a platform for a range of sensors and instruments that directly support the operational requirements of transportation sector.

  11. Image-based tracking and sensor resource management for UAVs in an urban environment

    Science.gov (United States)

    Samant, Ashwin; Chang, K. C.

    2010-04-01

    Coordination and deployment of multiple unmanned air vehicles (UAVs) requires a lot of human resources in order to carry out a successful mission. The complexity of such a surveillance mission is significantly increased in the case of an urban environment where targets can easily escape from the UAV's field of view (FOV) due to intervening building and line-of-sight obstruction. In the proposed methodology, we focus on the control and coordination of multiple UAVs having gimbaled video sensor onboard for tracking multiple targets in an urban environment. We developed optimal path planning algorithms with emphasis on dynamic target prioritizations and persistent target updates. The command center is responsible for target prioritization and autonomous control of multiple UAVs, enabling a single operator to monitor and control a team of UAVs from a remote location. The results are obtained using extensive 3D simulations in Google Earth using Tangent plus Lyapunov vector field guidance for target tracking.

  12. Online UAV Mission Planning

    NARCIS (Netherlands)

    Evers, L.; Barros, A.I.; Monsuur, H.; Wagelmans, A.P.M.

    2014-01-01

    Unmanned Aerial Vehicles (UAVs) have become an essential asset for military and law enforcement operations. In particular their use for surveillance and reconnaissance tasks has been growing due to the quick developments in the areal systems themselves, sensor technology, and image processing

  13. Feasibility Analysis of UAV Technology to Improve Tactical Surveillance in South Korea’s Rear Area Operations

    Science.gov (United States)

    2017-03-01

    19 Figure 9. South Korea Topography . Source: Wikimedia Commons (2016) .............19 Figure 10. Terrain Map and Terrain Features. Adapted from...the effectiveness of using UAVs to overcome NK’s capability to fire scatterable mines . His study introduces computer modeling and simulation to the...ROKA artillery research about NK’s mine artillery threat, whereas previous efforts had been mostly qualitative analyses. He used more capable UAVs

  14. RAVEN-2: Around-The-World UAV Project

    National Research Council Canada - National Science Library

    Burleigh, Chris

    2003-01-01

    The Raven around-the-world UAV project is part of an on-going effort to build up a significant European capability in the design, construction and operation of large UAVs and manned reconnaissance aircraft...

  15. The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) and its operations from an unmanned aerial vehicle (UAV) during the AROMAT campaign

    Science.gov (United States)

    Merlaud, Alexis; Tack, Frederik; Constantin, Daniel; Georgescu, Lucian; Maes, Jeroen; Fayt, Caroline; Mingireanu, Florin; Schuettemeyer, Dirk; Meier, Andreas Carlos; Schönardt, Anja; Ruhtz, Thomas; Bellegante, Livio; Nicolae, Doina; Den Hoed, Mirjam; Allaart, Marc; Van Roozendael, Michel

    2018-01-01

    The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is a compact remote sensing instrument dedicated to mapping trace gases from an unmanned aerial vehicle (UAV). SWING is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920 g, 27 cm × 12 cm × 8 cm, and 6 W. SWING was developed in parallel with a 2.5 m flying-wing UAV. This unmanned aircraft is electrically powered, has a typical airspeed of 100 km h-1, and can operate at a maximum altitude of 3 km. We present SWING-UAV experiments performed in Romania on 11 September 2014 during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign, which was dedicated to test newly developed instruments in the context of air quality satellite validation. The UAV was operated up to 700 m above ground, in the vicinity of the large power plant of Turceni (44.67° N, 23.41° E; 116 m a. s. l. ). These SWING-UAV flights were coincident with another airborne experiment using the Airborne imaging differential optical absorption spectroscopy (DOAS) instrument for Measurements of Atmospheric Pollution (AirMAP), and with ground-based DOAS, lidar, and balloon-borne in situ observations. The spectra recorded during the SWING-UAV flights are analysed with the DOAS technique. This analysis reveals NO2 differential slant column densities (DSCDs) up to 13±0.6×1016 molec cm-2. These NO2 DSCDs are converted to vertical column densities (VCDs) by estimating air mass factors. The resulting NO2 VCDs are up to 4.7±0.4×1016 molec cm-2. The water vapour DSCD measurements, up to 8±0.15×1022 molec cm-2, are used to estimate a volume mixing ratio of water vapour in the boundary layer of 0.013±0.002 mol mol-1. These geophysical quantities are validated with the coincident measurements.

  16. The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING and its operations from an unmanned aerial vehicle (UAV during the AROMAT campaign

    Directory of Open Access Journals (Sweden)

    A. Merlaud

    2018-01-01

    Full Text Available The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING is a compact remote sensing instrument dedicated to mapping trace gases from an unmanned aerial vehicle (UAV. SWING is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920 g, 27 cm  ×  12 cm  ×  8 cm, and 6 W. SWING was developed in parallel with a 2.5 m flying-wing UAV. This unmanned aircraft is electrically powered, has a typical airspeed of 100 km h−1, and can operate at a maximum altitude of 3 km. We present SWING-UAV experiments performed in Romania on 11 September 2014 during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT campaign, which was dedicated to test newly developed instruments in the context of air quality satellite validation. The UAV was operated up to 700 m above ground, in the vicinity of the large power plant of Turceni (44.67° N, 23.41° E; 116 m a. s. l. . These SWING-UAV flights were coincident with another airborne experiment using the Airborne imaging differential optical absorption spectroscopy (DOAS instrument for Measurements of Atmospheric Pollution (AirMAP, and with ground-based DOAS, lidar, and balloon-borne in situ observations. The spectra recorded during the SWING-UAV flights are analysed with the DOAS technique. This analysis reveals NO2 differential slant column densities (DSCDs up to 13±0.6×1016 molec cm−2. These NO2 DSCDs are converted to vertical column densities (VCDs by estimating air mass factors. The resulting NO2 VCDs are up to 4.7±0.4×1016 molec cm−2. The water vapour DSCD measurements, up to 8±0.15×1022 molec cm−2, are used to estimate a volume mixing ratio of water vapour in the boundary layer of 0.013±0.002 mol mol−1. These geophysical quantities are validated with the coincident measurements.

  17. UAV State Estimation Modeling Techniques in AHRS

    Science.gov (United States)

    Razali, Shikin; Zhahir, Amzari

    2017-11-01

    Autonomous unmanned aerial vehicle (UAV) system is depending on state estimation feedback to control flight operation. Estimation on the correct state improves navigation accuracy and achieves flight mission safely. One of the sensors configuration used in UAV state is Attitude Heading and Reference System (AHRS) with application of Extended Kalman Filter (EKF) or feedback controller. The results of these two different techniques in estimating UAV states in AHRS configuration are displayed through position and attitude graphs.

  18. Bilateral human-robot control for semi-autonomous UAV navigation

    NARCIS (Netherlands)

    Wopereis, Han Willem; Fumagalli, Matteo; Stramigioli, Stefano; Carloni, Raffaella

    2015-01-01

    This paper proposes a semi-autonomous bilateral control architecture for unmanned aerial vehicles. During autonomous navigation, a human operator is allowed to assist the autonomous controller of the vehicle by actively changing its navigation parameters to assist it in critical situations, such as

  19. From random process to chaotic behavior in swarms of UAVs

    OpenAIRE

    Rosalie , Martin; Danoy , Grégoire; Chaumette , Serge; Bouvry , Pascal

    2016-01-01

    International audience; Unmanned Aerial Vehicles (UAVs) applications have seen an important increase in the last decade for both military and civilian applications ranging from fire and high seas rescue to military surveillance and target detection. While this technology is now mature for a single UAV, new methods are needed to operate UAVs in swarms, also referred to as fleets. This work focuses on the mobility management of one single autonomous swarm of UAVs which mission is to cover a giv...

  20. Development of Cloud-Based UAV Monitoring and Management System.

    Science.gov (United States)

    Itkin, Mason; Kim, Mihui; Park, Younghee

    2016-11-15

    Unmanned aerial vehicles (UAVs) are an emerging technology with the potential to revolutionize commercial industries and the public domain outside of the military. UAVs would be able to speed up rescue and recovery operations from natural disasters and can be used for autonomous delivery systems (e.g., Amazon Prime Air). An increase in the number of active UAV systems in dense urban areas is attributed to an influx of UAV hobbyists and commercial multi-UAV systems. As airspace for UAV flight becomes more limited, it is important to monitor and manage many UAV systems using modern collision avoidance techniques. In this paper, we propose a cloud-based web application that provides real-time flight monitoring and management for UAVs. For each connected UAV, detailed UAV sensor readings from the accelerometer, GPS sensor, ultrasonic sensor and visual position cameras are provided along with status reports from the smaller internal components of UAVs (i.e., motor and battery). The dynamic map overlay visualizes active flight paths and current UAV locations, allowing the user to monitor all aircrafts easily. Our system detects and prevents potential collisions by automatically adjusting UAV flight paths and then alerting users to the change. We develop our proposed system and demonstrate its feasibility and performances through simulation.

  1. Development of Cloud-Based UAV Monitoring and Management System

    Directory of Open Access Journals (Sweden)

    Mason Itkin

    2016-11-01

    Full Text Available Unmanned aerial vehicles (UAVs are an emerging technology with the potential to revolutionize commercial industries and the public domain outside of the military. UAVs would be able to speed up rescue and recovery operations from natural disasters and can be used for autonomous delivery systems (e.g., Amazon Prime Air. An increase in the number of active UAV systems in dense urban areas is attributed to an influx of UAV hobbyists and commercial multi-UAV systems. As airspace for UAV flight becomes more limited, it is important to monitor and manage many UAV systems using modern collision avoidance techniques. In this paper, we propose a cloud-based web application that provides real-time flight monitoring and management for UAVs. For each connected UAV, detailed UAV sensor readings from the accelerometer, GPS sensor, ultrasonic sensor and visual position cameras are provided along with status reports from the smaller internal components of UAVs (i.e., motor and battery. The dynamic map overlay visualizes active flight paths and current UAV locations, allowing the user to monitor all aircrafts easily. Our system detects and prevents potential collisions by automatically adjusting UAV flight paths and then alerting users to the change. We develop our proposed system and demonstrate its feasibility and performances through simulation.

  2. Development of Cloud-Based UAV Monitoring and Management System

    Science.gov (United States)

    Itkin, Mason; Kim, Mihui; Park, Younghee

    2016-01-01

    Unmanned aerial vehicles (UAVs) are an emerging technology with the potential to revolutionize commercial industries and the public domain outside of the military. UAVs would be able to speed up rescue and recovery operations from natural disasters and can be used for autonomous delivery systems (e.g., Amazon Prime Air). An increase in the number of active UAV systems in dense urban areas is attributed to an influx of UAV hobbyists and commercial multi-UAV systems. As airspace for UAV flight becomes more limited, it is important to monitor and manage many UAV systems using modern collision avoidance techniques. In this paper, we propose a cloud-based web application that provides real-time flight monitoring and management for UAVs. For each connected UAV, detailed UAV sensor readings from the accelerometer, GPS sensor, ultrasonic sensor and visual position cameras are provided along with status reports from the smaller internal components of UAVs (i.e., motor and battery). The dynamic map overlay visualizes active flight paths and current UAV locations, allowing the user to monitor all aircrafts easily. Our system detects and prevents potential collisions by automatically adjusting UAV flight paths and then alerting users to the change. We develop our proposed system and demonstrate its feasibility and performances through simulation. PMID:27854267

  3. Achieving an Optimal Medium Altitude UAV Force Balance in Support of COIN Operations

    Science.gov (United States)

    2009-02-02

    reports, “The military’s reliance on unmanned aircraft that can witch hunt and sometimes kill insurgents has soared to more than 500,000 hours in the...to be delivered to the end user in real time without intermediate film processing and imagery distribution. In global operations since 2002, US

  4. Models of human operators

    International Nuclear Information System (INIS)

    Knee, H.E.; Schryver, J.C.

    1991-01-01

    Models of human behavior and cognition (HB and C) are necessary for understanding the total response of complex systems. Many such models have come available over the past thirty years for various applications. Unfortunately, many potential model users remain skeptical about their practicality, acceptability, and usefulness. Such hesitancy stems in part to disbelief in the ability to model complex cognitive processes, and a belief that relevant human behavior can be adequately accounted for through the use of commonsense heuristics. This paper will highlight several models of HB and C and identify existing and potential applications in attempt to dispel such notions. (author)

  5. Doppler Effect-Based Automatic Landing Procedure for UAV in Difficult Access Environments

    Directory of Open Access Journals (Sweden)

    Jan M. Kelner

    2017-01-01

    Full Text Available Currently, almost unrestricted access to low-lying areas of airspace creates an opportunity to use unmanned aerial vehicles (UAVs, especially those capable of vertical take-off and landing (VTOL, in transport services. UAVs become increasingly popular for transporting postal items over small, medium, and large distances. It is forecasted that, in the near future, VTOL UAVs with a high take-off weight will also deliver goods to very distant and hard-to-reach locations. Therefore, UAV navigation plays a very important role in the process of carrying out transport services. At present, during the flight phase, drones make use of the integrated global navigation satellite system (GNSS and the inertial navigation system (INS. However, the inaccuracy of GNSS + INS makes it unsuitable for landing and take-off, necessitating the guidance of a human UAV operator during those phases. Available navigation systems do not provide sufficiently high positioning accuracy for an UAV. For this reason, full automation of the landing approach is not possible. This paper puts forward a proposal to solve this problem. The authors show the structure of an autonomous system and a Doppler-based navigation procedure that allows for automatic landing approaches. An accuracy evaluation of the developed solution for VTOL is made on the basis of simulation studies.

  6. Persistent Aerial Tracking system for UAVs

    KAUST Repository

    Mueller, Matthias

    2016-12-19

    In this paper, we propose a persistent, robust and autonomous object tracking system for unmanned aerial vehicles (UAVs) called Persistent Aerial Tracking (PAT). A computer vision and control strategy is applied to a diverse set of moving objects (e.g. humans, animals, cars, boats, etc.) integrating multiple UAVs with a stabilized RGB camera. A novel strategy is employed to successfully track objects over a long period, by ‘handing over the camera’ from one UAV to another. We evaluate several state-of-the-art trackers on the VIVID aerial video dataset and additional sequences that are specifically tailored to low altitude UAV target tracking. Based on the evaluation, we select the leading tracker and improve upon it by optimizing for both speed and performance, integrate the complete system into an off-the-shelf UAV, and obtain promising results showing the robustness of our solution in real-world aerial scenarios.

  7. Persistent Aerial Tracking system for UAVs

    KAUST Repository

    Mueller, Matthias; Sharma, Gopal; Smith, Neil; Ghanem, Bernard

    2016-01-01

    In this paper, we propose a persistent, robust and autonomous object tracking system for unmanned aerial vehicles (UAVs) called Persistent Aerial Tracking (PAT). A computer vision and control strategy is applied to a diverse set of moving objects (e.g. humans, animals, cars, boats, etc.) integrating multiple UAVs with a stabilized RGB camera. A novel strategy is employed to successfully track objects over a long period, by ‘handing over the camera’ from one UAV to another. We evaluate several state-of-the-art trackers on the VIVID aerial video dataset and additional sequences that are specifically tailored to low altitude UAV target tracking. Based on the evaluation, we select the leading tracker and improve upon it by optimizing for both speed and performance, integrate the complete system into an off-the-shelf UAV, and obtain promising results showing the robustness of our solution in real-world aerial scenarios.

  8. Human errors in NPP operations

    International Nuclear Information System (INIS)

    Sheng Jufang

    1993-01-01

    Based on the operational experiences of nuclear power plants (NPPs), the importance of studying human performance problems is described. Statistical analysis on the significance or frequency of various root-causes and error-modes from a large number of human-error-related events demonstrate that the defects in operation/maintenance procedures, working place factors, communication and training practices are primary root-causes, while omission, transposition, quantitative mistake are the most frequent among the error-modes. Recommendations about domestic research on human performance problem in NPPs are suggested

  9. Standing "the Watches" with Armed UAVs

    National Research Council Canada - National Science Library

    McCulloch, Francis

    2002-01-01

    This paper addresses the additional Options available to the operational commander in charge of conducting 'presence and monitoring' missions with the introduction of an armed capability on Unmanned Aerial Vehicles (UAVs...

  10. Cycloidal Propulsion for UAV VTOL Applications

    National Research Council Canada - National Science Library

    Boschma, James

    1998-01-01

    .... This propulsion concept holds significant promise for adaptation to UAV VTOL operations. Thrust levels demonstrated were substantially higher than achievable by the best screw type propellers, and approximately equal to those of high end helicopters...

  11. Roving UAV IED Interdiction System

    Science.gov (United States)

    2011-03-01

    UAVs (Raven, Wasp, and Puma) do not advertise any payload capability, the Tier I operators that Team Bravo contacted claimed small payload...www.ncca.navy.mil/services/inflation.cfm (accessed February 2011). Net Resources International. "Javelin Anti- Armour Missile." Army-Technology.com. 2011. http

  12. Operations of human resources engagement

    OpenAIRE

    Δημητρέλη, Αλεξάνδρα

    2017-01-01

    This current study, attempts to shed light on the relationship between HR Operations and employee engagement by testing the relationship empirically. More specifically, it looks at how employee engagement could be embedded into day-to-day human resources operations. Employee engagement is a topic that is repeatedly being discussed in most of the HR forums, articles and journals in the recent past. Employers recognize that truly engage and motivate employee’s produce impressive levels of in...

  13. Air Force UAVs: The Secret History

    Science.gov (United States)

    2010-07-01

    iA Mitchell Institute Study i Air Force UAVs The Secret History A Mitchell Institute Study July 2010 By Thomas P. Ehrhard Report Documentation Page...DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Air Force UAVs The Secret History 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...opening phases of Operation Enduring Freedom in Afghanistan. By Thomas P. Ehrhard a miTchEll insTiTuTE sTudy July 2010 Air Force UAVs The Secret History

  14. Control of fixed-wing UAV at levelling phase using artificial intelligence

    Science.gov (United States)

    Sayfeddine, Daher

    2018-03-01

    The increase in the share of fly-by-wire and software controlled UAV is explained by the need to release the human-operator and the desire to reduce the degree of influence of the human factor errors that account for 26% of aircraft accidents. An important reason for the introduction of new control algorithms is also the high level of UAV failures due loss of communication channels and possible hacking. This accounts for 17% of the total number of accidents. The comparison with manned flights shows that the frequency of accidents of unmanned flights is 27,000 times higher. This means that the UAV has 1611 failures per million flight hours and only 0.06 failures at the same time for the manned flight. In view of that, this paper studies the flight autonomy of fixed-wing UAV at the levelling phase. Landing parameters of the UAV are described. They will be used to setup a control scheme for an autopilot based on fuzzy logic algorithm.

  15. Research on UAV Intelligent Obstacle Avoidance Technology During Inspection of Transmission Line

    Science.gov (United States)

    Wei, Chuanhu; Zhang, Fei; Yin, Chaoyuan; Liu, Yue; Liu, Liang; Li, Zongyu; Wang, Wanguo

    Autonomous obstacle avoidance of unmanned aerial vehicle (hereinafter referred to as UAV) in electric power line inspection process has important significance for operation safety and economy for UAV intelligent inspection system of transmission line as main content of UAV intelligent inspection system on transmission line. In the paper, principles of UAV inspection obstacle avoidance technology of transmission line are introduced. UAV inspection obstacle avoidance technology based on particle swarm global optimization algorithm is proposed after common obstacle avoidance technologies are studied. Stimulation comparison is implemented with traditional UAV inspection obstacle avoidance technology which adopts artificial potential field method. Results show that UAV inspection strategy of particle swarm optimization algorithm, adopted in the paper, is prominently better than UAV inspection strategy of artificial potential field method in the aspects of obstacle avoidance effect and the ability of returning to preset inspection track after passing through the obstacle. An effective method is provided for UAV inspection obstacle avoidance of transmission line.

  16. Spurious RF signals emitted by mini-UAVs

    Science.gov (United States)

    Schleijpen, Ric (H. M. A.); Voogt, Vincent; Zwamborn, Peter; van den Oever, Jaap

    2016-10-01

    This paper presents experimental work on the detection of spurious RF emissions of mini Unmanned Aerial Vehicles (mini-UAV). Many recent events have shown that mini-UAVs can be considered as a potential threat for civil security. For this reason the detection of mini-UAVs has become of interest to the sensor community. The detection, classification and identification chain can take advantage of different sensor technologies. Apart from the signatures used by radar and electro-optical sensor systems, the UAV also emits RF signals. These RF signatures can be split in intentional signals for communication with the operator and un-intentional RF signals emitted by the UAV. These unintentional or spurious RF emissions are very weak but could be used to discriminate potential UAV detections from false alarms. The goal of this research was to assess the potential of exploiting spurious emissions in the classification and identification chain of mini-UAVs. It was already known that spurious signals are very weak, but the focus was on the question whether the emission pattern could be correlated to the behaviour of the UAV. In this paper experimental examples of spurious RF emission for different types of mini-UAVs and their correlation with the electronic circuits in the UAVs will be shown

  17. Teaching UAVs to Race Using UE4Sim

    KAUST Repository

    Mueller, Matthias

    2017-08-19

    Automating the navigation of unmanned aerial vehicles (UAVs) in diverse scenarios has gained much attention in the recent years. However, teaching UAVs to fly in challenging environments remains an unsolved problem, mainly due to the lack of data for training. In this paper, we develop a photo-realistic simulator that can afford the generation of large amounts of training data (both images rendered from the UAV camera and its controls) to teach a UAV to autonomously race through challenging tracks. We train a deep neural network to predict UAV controls from raw image data for the task of autonomous UAV racing. Training is done through imitation learning enabled by data augmentation to allow for the correction of navigation mistakes. Extensive experiments demonstrate that our trained network (when sufficient data augmentation is used) outperforms state-of-the-art methods and flies more consistently than many human pilots.

  18. Teaching UAVs to Race Using UE4Sim

    KAUST Repository

    Mueller, Matthias; Casser, Vincent; Smith, Neil; Michels, Dominik L.; Ghanem, Bernard

    2017-01-01

    Automating the navigation of unmanned aerial vehicles (UAVs) in diverse scenarios has gained much attention in the recent years. However, teaching UAVs to fly in challenging environments remains an unsolved problem, mainly due to the lack of data for training. In this paper, we develop a photo-realistic simulator that can afford the generation of large amounts of training data (both images rendered from the UAV camera and its controls) to teach a UAV to autonomously race through challenging tracks. We train a deep neural network to predict UAV controls from raw image data for the task of autonomous UAV racing. Training is done through imitation learning enabled by data augmentation to allow for the correction of navigation mistakes. Extensive experiments demonstrate that our trained network (when sufficient data augmentation is used) outperforms state-of-the-art methods and flies more consistently than many human pilots.

  19. Human factors considerations for the integration of unmanned aerial vehicles in the National Airspace System : an analysis of reports submitted to the Aviation Safety Reporting System (ASRS)

    Science.gov (United States)

    2017-06-06

    Successful integration of Unmanned Aerial Vehicle (UAV) operations into the National Airspace System requires the identification and mitigation of operational risks. This report reviews human factors issues that have been identified in operational as...

  20. Robust UAV Mission Planning

    NARCIS (Netherlands)

    Evers, L.; Dollevoet, T.; Barros, A.I.; Monsuur, H.

    2014-01-01

    Unmanned Aerial Vehicles (UAVs) can provide significant contributions to information gathering in military missions. UAVs can be used to capture both full motion video and still imagery of specific target locations within the area of interest. In order to improve the effectiveness of a

  1. Robust UAV mission planning

    NARCIS (Netherlands)

    Evers, L.; Dollevoet, T.; Barros, A.I.; Monsuur, H.

    2011-01-01

    Unmanned Areal Vehicles (UAVs) can provide significant contributions to information gathering in military missions. UAVs can be used to capture both full motion video and still imagery of specific target locations within the area of interest. In order to improve the effectiveness of a reconnaissance

  2. Robust UAV Mission Planning

    NARCIS (Netherlands)

    Evers, L.; Dollevoet, T; Barros, A.I.; Monsuur, H.

    2011-01-01

    Unmanned Aerial Vehicles (UAVs) can provide significant contributions to information gathering in military missions. UAVs can be used to capture both full motion video and still imagery of specific target locations within the area of interest. In order to improve the effectiveness of a

  3. Robust UAV Mission Planning

    NARCIS (Netherlands)

    L. Evers (Lanah); T.A.B. Dollevoet (Twan); A.I. Barros (Ana); H. Monsuur (Herman)

    2011-01-01

    textabstractUnmanned Areal Vehicles (UAVs) can provide significant contributions to information gathering in military missions. UAVs can be used to capture both full motion video and still imagery of specific target locations within the area of interest. In order to improve the effectiveness of a

  4. UAV Trajectory Modeling Using Neural Networks

    Science.gov (United States)

    Xue, Min

    2017-01-01

    Large amount of small Unmanned Aerial Vehicles (sUAVs) are projected to operate in the near future. Potential sUAV applications include, but not limited to, search and rescue, inspection and surveillance, aerial photography and video, precision agriculture, and parcel delivery. sUAVs are expected to operate in the uncontrolled Class G airspace, which is at or below 500 feet above ground level (AGL), where many static and dynamic constraints exist, such as ground properties and terrains, restricted areas, various winds, manned helicopters, and conflict avoidance among sUAVs. How to enable safe, efficient, and massive sUAV operations at the low altitude airspace remains a great challenge. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative works on establishing infrastructure and developing policies, requirement, and rules to enable safe and efficient sUAVs' operations. To achieve this goal, it is important to gain insights of future UTM traffic operations through simulations, where the accurate trajectory model plays an extremely important role. On the other hand, like what happens in current aviation development, trajectory modeling should also serve as the foundation for any advanced concepts and tools in UTM. Accurate models of sUAV dynamics and control systems are very important considering the requirement of the meter level precision in UTM operations. The vehicle dynamics are relatively easy to derive and model, however, vehicle control systems remain unknown as they are usually kept by manufactures as a part of intellectual properties. That brings challenges to trajectory modeling for sUAVs. How to model the vehicle's trajectories with unknown control system? This work proposes to use a neural network to model a vehicle's trajectory. The neural network is first trained to learn the vehicle's responses at numerous conditions. Once being fully trained, given current vehicle states, winds, and desired future trajectory, the neural

  5. Automatic detection of blurred images in UAV image sets

    Science.gov (United States)

    Sieberth, Till; Wackrow, Rene; Chandler, Jim H.

    2016-12-01

    Unmanned aerial vehicles (UAV) have become an interesting and active research topic for photogrammetry. Current research is based on images acquired by an UAV, which have a high ground resolution and good spectral and radiometrical resolution, due to the low flight altitudes combined with a high resolution camera. UAV image flights are also cost effective and have become attractive for many applications including, change detection in small scale areas. One of the main problems preventing full automation of data processing of UAV imagery is the degradation effect of blur caused by camera movement during image acquisition. This can be caused by the normal flight movement of the UAV as well as strong winds, turbulence or sudden operator inputs. This blur disturbs the visual analysis and interpretation of the data, causes errors and can degrade the accuracy in automatic photogrammetric processing algorithms. The detection and removal of these images is currently achieved manually, which is both time consuming and prone to error, particularly for large image-sets. To increase the quality of data processing an automated process is necessary, which must be both reliable and quick. This paper describes the development of an automatic filtering process, which is based upon the quantification of blur in an image. Images with known blur are processed digitally to determine a quantifiable measure of image blur. The algorithm is required to process UAV images fast and reliably to relieve the operator from detecting blurred images manually. The newly developed method makes it possible to detect blur caused by linear camera displacement and is based on human detection of blur. Humans detect blurred images best by comparing it to other images in order to establish whether an image is blurred or not. The developed algorithm simulates this procedure by creating an image for comparison using image processing. Creating internally a comparable image makes the method independent of

  6. UNMANNED AIRCRAFT VEHICLE (UAV IN THE ROMANIAN AIRSPACE. AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    Vasile PRISACARIU

    2014-04-01

    Full Text Available For the last decade the unmanned aircraft vehicle (UAV field has evolved in terms of the sub-branches established in the aerospace industry. At national level the UAV market is still in its infancy but acknowledges an upward trend in the implementation and use of UAVs in civilian and military missions. The achievements of the past decade confirms that Romanian specialists are able to conceive, design and build UAVs at a technological and operational level comparable to the one achieved by large international producers creating the prerequisites of developing a sub-sector for the national aeronautic industry. The current article aims at providing an overview of all activities related to the conception, manufacturing, testing, improving, operating UAVs as these activities evolved within the national airspace filed with brief references to the missions and legislation in this area.

  7. Assessment of an Onboard EO Sensor to Enable Detect-and-Sense Capability for UAVs Operating in a Cluttered Environment

    Science.gov (United States)

    2017-09-01

    rates of accidents. To ensure safe operation in such complex environment , the unmanned systems have to perform accurate and timely detection and...security. C. PROBLEM FORMULATION To ensure the safe operation of unmanned systems in modern complex environment , this thesis strives to answer two...computer vision algorithm work in a complex operating environment with multiple moving objects? This thesis examines the integration of the CV

  8. A Novel Methodology for Improving Plant Pest Surveillance in Vineyards and Crops Using UAV-Based Hyperspectral and Spatial Data.

    Science.gov (United States)

    Vanegas, Fernando; Bratanov, Dmitry; Powell, Kevin; Weiss, John; Gonzalez, Felipe

    2018-01-17

    Recent advances in remote sensed imagery and geospatial image processing using unmanned aerial vehicles (UAVs) have enabled the rapid and ongoing development of monitoring tools for crop management and the detection/surveillance of insect pests. This paper describes a (UAV) remote sensing-based methodology to increase the efficiency of existing surveillance practices (human inspectors and insect traps) for detecting pest infestations (e.g., grape phylloxera in vineyards). The methodology uses a UAV integrated with advanced digital hyperspectral, multispectral, and RGB sensors. We implemented the methodology for the development of a predictive model for phylloxera detection. In this method, we explore the combination of airborne RGB, multispectral, and hyperspectral imagery with ground-based data at two separate time periods and under different levels of phylloxera infestation. We describe the technology used-the sensors, the UAV, and the flight operations-the processing workflow of the datasets from each imagery type, and the methods for combining multiple airborne with ground-based datasets. Finally, we present relevant results of correlation between the different processed datasets. The objective of this research is to develop a novel methodology for collecting, processing, analising and integrating multispectral, hyperspectral, ground and spatial data to remote sense different variables in different applications, such as, in this case, plant pest surveillance. The development of such methodology would provide researchers, agronomists, and UAV practitioners reliable data collection protocols and methods to achieve faster processing techniques and integrate multiple sources of data in diverse remote sensing applications.

  9. A system of UAV application in indoor environment

    DEFF Research Database (Denmark)

    Khosiawan, Yohanes; Nielsen, Izabela Ewa

    2016-01-01

    In recent years, there has been an increased demand in the use of multiple unmanned aerial vehicles (UAVs) in indoor environments such as material handling task in a manufacturing environment and plant/environment monitoring task in a greenhouse. However, there is a lack of work reported on this ......In recent years, there has been an increased demand in the use of multiple unmanned aerial vehicles (UAVs) in indoor environments such as material handling task in a manufacturing environment and plant/environment monitoring task in a greenhouse. However, there is a lack of work reported...... on this topic. This paper presents a detailed study on several UAV systems and UAV scheduling systems. It is followed by a proposed system of UAV application in indoor environment, which comprises components of UAV system addressed in detail; focused on scheduler as the heart of operations. Consequently, system...... architecture of UAV scheduling system is presented and the framework of scheduler component is included. Scheduler component works in a phased manner to provide a systematic abstraction and achieve an efficient computation time. This study serves as a reference guide for UAV application in indoor environment....

  10. Volumetric calculation using low cost unmanned aerial vehicle (UAV) approach

    Science.gov (United States)

    Rahman, A. A. Ab; Maulud, K. N. Abdul; Mohd, F. A.; Jaafar, O.; Tahar, K. N.

    2017-12-01

    Unmanned Aerial Vehicles (UAV) technology has evolved dramatically in the 21st century. It is used by both military and general public for recreational purposes and mapping work. Operating cost for UAV is much cheaper compared to that of normal aircraft and it does not require a large work space. The UAV systems have similar functions with the LIDAR and satellite images technologies. These systems require a huge cost, labour and time consumption to produce elevation and dimension data. Measurement of difficult objects such as water tank can also be done by using UAV. The purpose of this paper is to show the capability of UAV to compute the volume of water tank based on a different number of images and control points. The results were compared with the actual volume of the tank to validate the measurement. In this study, the image acquisition was done using Phantom 3 Professional, which is a low cost UAV. The analysis in this study is based on different volume computations using two and four control points with variety set of UAV images. The results show that more images will provide a better quality measurement. With 95 images and four GCP, the error percentage to the actual volume is about 5%. Four controls are enough to get good results but more images are needed, estimated about 115 until 220 images. All in all, it can be concluded that the low cost UAV has a potential to be used for volume of water and dimension measurement.

  11. Implications of longitude and latitude on the size of solar-powered UAV

    International Nuclear Information System (INIS)

    Rajendran, Parvathy; Smith, Howard

    2015-01-01

    Highlights: • We studied solar irradiance and daylight implication on solar-powered UAV design. • We explored for perpetual UAV flight for 12 cities around the world. • All year round solar-powered UAV operation possible for cities near equatorial line. • Cities in latitudes of ±35° are the optimal for solar-powered UAV. • Longitudinal coordinates and elevation have a minor effect on UAV design. - Abstract: The implication of solar irradiance and daylight duration on the design of a small solar-powered unmanned aerial vehicle (UAV) that is capable of operating perpetually in various cities around the world was investigated. Solar data in 2013 on 12 cities distributed around the world was collected. The effects of the available solar irradiance and daylight of the city on the maximum take-off weight and wing span of a small solar-powered UAV were studied. The analysis indicates that daylight duration is as important as the available solar irradiance to the performance of the solar-powered UAV. Longitudinal coordinates and elevation have a minor effect on the estimation of daylight duration. Areas considerably high in solar irradiance and daylight duration are more conducive to the effective performance of solar-powered UAVs than other areas. Therefore, cities closer to the equator have an advantage in utilizing solar-powered UAVs; where smaller and lighter solar-powered UAV can be designed

  12. A Synthetic Teammate for UAV Applications: A Prospective Look

    National Research Council Canada - National Science Library

    Gluck, Kevin A; Ball, Jerry T; Gunzelmann, Glenn; Krusmark, Michael A; Lyon, Don R; Cooke, Nancy J

    2006-01-01

    This report describes current progress and future plans for research and development in synthetic teammates for applications in training, analysis, and system design for Uninhabited Aerial Vehicle (UAV) operations...

  13. Optimal Dynamic Coverage Infrastructure for Large-Scale Fleets of Reconnaissance UAVs

    OpenAIRE

    Altshuler, Yaniv; Pentland, Alex; Bekhor, Shlomo; Shiftan, Yoram; Bruckstein, Alfred

    2016-01-01

    Current state of the art in the field of UAV activation relies solely on human operators for the design and adaptation of the drones' flying routes. Furthermore, this is being done today on an individual level (one vehicle per operators), with some exceptions of a handful of new systems, that are comprised of a small number of self-organizing swarms, manually guided by a human operator. Drones-based monitoring is of great importance in variety of civilian domains, such as road safety, homelan...

  14. On-line task scheduling and trajectory planning techniques for reconnaissance missions with multiple unmanned aerial vehicles supervised by a single human operator

    Science.gov (United States)

    Ortiz Rubiano, Andres Eduardo

    The problem of a single human operator monitoring multiple UAVs in reconnaissance missions is addressed in this work. In such missions, the operator inspects and classifies targets as they appear on video feeds from the various UAVs. In parallel, the aircraft autonomously execute a flight plan and transmit real-time video of an unknown terrain. The main contribution of this work is the development of a system that autonomously schedules the display of video feeds such that the human operator is able to inspect each target in real time (i.e., no video data is recorded and queued for later inspection). The construction of this non-overlapping schedule is made possible by commanding changes to the flight plan of the UAVs. These changes are constructed such that the impact on the mission time is minimized. The development of this system is addressed in the context of both fixed and arbitrary target inspection times. Under the assumption that the inspection time is constant, a Linear Program (LP) formulation is used to optimally solve the display scheduling problem in the time domain. The LP solution is implemented in the space domain via velocity and trajectory modifications to the flight plan of the UAVs. An online algorithm is proposed to resolve scheduling conflicts between multiple video feeds as targets are discovered by the UAVs. Properties of this algorithm are studied to develop conflict resolution strategies that ensure correctness regardless of the target placement. The effect of such strategies on the mission time is evaluated via numerical simulations. In the context of arbitrary inspection time, the human operator indicates the end of target inspection in real time. A set of maneuvers is devised that enable the operator to inspect each target uninterruptedly and indefinitely. In addition, a cuing mechanism is proposed to increase the situational awareness of the operator and potentially reduce the inspection times. The benefits of operator cuing on mission

  15. Hierarchical path planning and control of a small fixed-wing UAV: Theory and experimental validation

    Science.gov (United States)

    Jung, Dongwon

    2007-12-01

    Recently there has been a tremendous growth of research emphasizing control of unmanned aerial vehicles (UAVs) either in isolation or in teams. As a matter of fact, UAVs increasingly find their way into military and law enforcement applications (e.g., reconnaissance, remote delivery of urgent equipment/material, resource assessment, environmental monitoring, battlefield monitoring, ordnance delivery, etc.). This trend will continue in the future, as UAVs are poised to replace the human-in-the-loop during dangerous missions. Civilian applications of UAVs are also envisioned such as crop dusting, geological surveying, search and rescue operations, etc. In this thesis we propose a new online multiresolution path planning algorithm for a small UAV with limited on-board computational resources. The proposed approach assumes that the UAV has detailed information of the environment and the obstacles only in its vicinity. Information about far-away obstacles is also available, albeit less accurately. The proposed algorithm uses the fast lifting wavelet transform (FLWT) to get a multiresolution cell decomposition of the environment, whose dimension is commensurate to the on-board computational resources. A topological graph representation of the multiresolution cell decomposition is constructed efficiently, directly from the approximation and detail wavelet coefficients. Dynamic path planning is sequentially executed for an optimal path using the A* algorithm over the resulting graph. The proposed path planning algorithm is implemented on-line on a small autopilot. Comparisons with the standard D*-lite algorithm are also presented. We also investigate the problem of generating a smooth, planar reference path from a discrete optimal path. Upon the optimal path being represented as a sequence of cells in square geometry, we derive a smooth B-spline path that is constrained inside a channel that is induced by the geometry of the cells. To this end, a constrained optimization

  16. Monitoring landslide dynamics using timeseries of UAV imagery

    Science.gov (United States)

    de Jong, S. M.; Van Beek, L. P.

    2017-12-01

    Landslides are worldwide occurring processes that can have large economic impact and sometimes result in fatalities. Multiple factors are important in landslide processes and can make an area prone to landslide activity. Human factors like drainage and removal of vegetation or land clearing are examples of factors that may cause a landslide. Other environmental factors such as topography and the shear strength of the slope material are more difficult to control. Triggering factors for landslides are typically heavy rainfall events or sometimes by earthquakes or under cutting processes by a river. The collection of data about existing landslides in a given area is important for predicting future landslides in that region. We have setup a monitoring program for landslide using cameras aboard Unmanned Airborne Vehicles. UAV with cameras are able to collect ultra-high resolution images and UAVs can be operated in a very flexible way, they just fit in the back of a car. Here, in this study we used Unmanned Aerial Vehicles to collect a time series of high-resolution images over landslides in France and Australia. The algorithm used to process the UAV images into OrthoMosaics and OrthoDEMs is Structure from Motion (SfM). The process generally results in centimeter precision in the horizontal and vertical direction. Such multi-temporal datasets enable the detection of landslide area, the leading edge slope, temporal patterns and volumetric changes of particular areas of the landslide. We measured and computed surface movement of the landslide using the COSI-Corr image correlation algorithm with ground validation. Our study shows the possibilities of generating accurate Digital Surface Models (DSMs) of landslides using images collected with an Unmanned Aerial Vehicle (UAV). The technique is robust and repeatable such that a substantial time series of datasets can be routinely collected. It is shown that a time-series of UAV images can be used to map landslide movements with

  17. Dynamic Data-Driven UAV Network for Plume Characterization

    Science.gov (United States)

    2016-05-23

    AFRL-AFOSR-VA-TR-2016-0203 Dynamic Data-Driven UAV Network for Plume Characterization Kamran Mohseni UNIVERSITY OF FLORIDA Final Report 05/23/2016...AND SUBTITLE Dynamic Data-Driven UAV Network for Plume Characterization 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-13-1-0090 5c.  PROGRAM ELEMENT...studied a dynamic data driven (DDD) approach to operation of a heterogeneous team of unmanned aerial vehicles ( UAVs ) or micro/miniature aerial

  18. Atmospheric energy harvesting: use of Doppler Wind Lidars on UAVs to extend mission endurance and enable quiet operations

    Science.gov (United States)

    Greco, S.; Emmitt, G. D.; Wood, S. A.; Costello, M.

    2014-10-01

    The investigators are developing a system tool that utilizes both pre-flight information and continuous real-time knowledge and description of the state of the atmosphere and atmospheric energetics by an Airborne Doppler Wind Lidar (ADWL) to provide the autonomous guidance for detailed and adaptive flight path planning by UAS and small manned aircraft. This flight planning and control has the potential to reduce mission dependence upon preflight assumptions, extend flight duration and endurance, enable long periods of quiet operations and allow for the optimum self-routing of the aircraft. The ADWL wind data is used in real-time to detect atmospheric energy features such as thermals, waves, wind shear and others. These detected features are then used with an onboard, weather model driven flight control model to adaptively plan a flight path that optimizes energy harvesting with frequent updates on local changes in the opportunities and atmospheric flow characteristics. We have named this package AEORA for the Atmospheric Energy Opportunity Ranking Algorithm (AEORA).

  19. The Human-Robot Interaction Operating System

    Science.gov (United States)

    Fong, Terrence; Kunz, Clayton; Hiatt, Laura M.; Bugajska, Magda

    2006-01-01

    In order for humans and robots to work effectively together, they need to be able to converse about abilities, goals and achievements. Thus, we are developing an interaction infrastructure called the "Human-Robot Interaction Operating System" (HRI/OS). The HRI/OS provides a structured software framework for building human-robot teams, supports a variety of user interfaces, enables humans and robots to engage in task-oriented dialogue, and facilitates integration of robots through an extensible API.

  20. Aeromagnetic Compensation for UAVs

    Science.gov (United States)

    Naprstek, T.; Lee, M. D.

    2017-12-01

    Aeromagnetic data is one of the most widely collected types of data in exploration geophysics. With the continuing prevalence of unmanned air vehicles (UAVs) in everyday life there is a strong push for aeromagnetic data collection using UAVs. However, apart from the many political and legal barriers to overcome in the development of UAVs as aeromagnetic data collection platforms, there are also significant scientific hurdles, primary of which is magnetic compensation. This is a well-established process in manned aircraft achieved through a combination of platform magnetic de-noising and compensation routines. However, not all of this protocol can be directly applied to UAVs due to fundamental differences in the platforms, most notably the decrease in scale causing magnetometers to be significantly closer to the avionics. As such, the methodology must be suitably adjusted. The National Research Council of Canada has collaborated with Aeromagnetic Solutions Incorporated to develop a standardized approach to de-noising and compensating UAVs, which is accomplished through a series of static and dynamic experiments. On the ground, small static tests are conducted on individual components to determine their magnetization. If they are highly magnetic, they are removed, demagnetized, or characterized such that they can be accounted for in the compensation. Dynamic tests can include measuring specific components as they are powered on and off to assess their potential effect on airborne data. The UAV is then flown, and a modified compensation routine is applied. These modifications include utilizing onboard autopilot current sensors as additional terms in the compensation algorithm. This process has been applied with success to fixed-wing and rotary-wing platforms, with both a standard manned-aircraft magnetometer, as well as a new atomic magnetometer, much smaller in scale.

  1. Human Error Assessmentin Minefield Cleaning Operation Using Human Event Analysis

    Directory of Open Access Journals (Sweden)

    Mohammad Hajiakbari

    2015-12-01

    Full Text Available Background & objective: Human error is one of the main causes of accidents. Due to the unreliability of the human element and the high-risk nature of demining operations, this study aimed to assess and manage human errors likely to occur in such operations. Methods: This study was performed at a demining site in war zones located in the West of Iran. After acquiring an initial familiarity with the operations, methods, and tools of clearing minefields, job task related to clearing landmines were specified. Next, these tasks were studied using HTA and related possible errors were assessed using ATHEANA. Results: de-mining task was composed of four main operations, including primary detection, technical identification, investigation, and neutralization. There were found four main reasons for accidents occurring in such operations; walking on the mines, leaving mines with no action, error in neutralizing operation and environmental explosion. The possibility of human error in mine clearance operations was calculated as 0.010. Conclusion: The main causes of human error in de-mining operations can be attributed to various factors such as poor weather and operating conditions like outdoor work, inappropriate personal protective equipment, personality characteristics, insufficient accuracy in the work, and insufficient time available. To reduce the probability of human error in de-mining operations, the aforementioned factors should be managed properly.

  2. Introduction to UAV systems

    CERN Document Server

    Fahlstrom, Paul

    2012-01-01

    Unmanned aerial vehicles (UAVs) have been widely adopted in the military world over the last decade and the success of these military applications is increasingly driving efforts to establish unmanned aircraft in non-military roles. Introduction to UAV Systems, 4th edition provides a comprehensive introduction to all of the elements of a complete Unmanned Aircraft System (UAS). It addresses the air vehicle, mission planning and control, several types of mission payloads, data links and how they interact with mission performance, and launch and recovery concepts. This

  3. Operational human performance reliability assessment (OHPRA)

    International Nuclear Information System (INIS)

    Haas, P.M.; Swanson, P.J.; Connelly, E.M.

    1993-01-01

    Operational Human Performance Reliability Assessment (OHPRA) is an approach for assessing human performance that is being developed in response to demands from modern process industries for practical and effective tools to assess and improve human performance, and therefore overall system performance and safety. The single most distinguishing feature of the approach is that is defines human performance in open-quotes operationalclose quotes terms. OHPRA is focused not on generation of human error probabilities, but on practical analysis of human performance to aid management in (1) identifying open-quotes fixableclose quotes problems and (2) providing input on the importance and nature of potential improvements. Development of the model in progress uses a unique approach for eliciting expert strategies for assessing performance. A PC-based model incorporating this expertise is planned. A preliminary version of the approach has already been used successfully to identify practical human performance problems in reactor and chemical process plant operations

  4. Human Resources Operational Data Store Core Services

    Data.gov (United States)

    Social Security Administration — This database contains only a very small subset of the Human Resources Operational Data Store data. It supports the SSA Employee and Office Data Retrieval (SEODR)...

  5. UAV Robust Strategy Control Based on MAS

    Directory of Open Access Journals (Sweden)

    Jian Han

    2014-01-01

    Full Text Available A novel multiagent system (MAS has been proposed to integrate individual UAV (unmanned aerial vehicle to form a UAV team which can accomplish complex missions with better efficiency and effect. The MAS based UAV team control is more able to conquer dynamic situations and enhance the performance of any single UAV. In this paper, the MAS proposed and established combines the reacting and thinking abilities to be an initiative and autonomous hybrid system which can solve missions involving coordinated flight and cooperative operation. The MAS uses BDI model to support its logical perception and to classify the different missions; then the missions will be allocated by utilizing auction mechanism after analyzing dynamic parameters. Prim potential algorithm, particle swarm algorithm, and reallocation mechanism are proposed to realize the rational decomposing and optimal allocation in order to reach the maximum profit. After simulation, the MAS has been proved to be able to promote the success ratio and raise the robustness, while realizing feasibility of coordinated flight and optimality of cooperative mission.

  6. Miniature UAVs : An overview

    NARCIS (Netherlands)

    Weimar, P.W.L.; Kerkkamp, J.S.F.; Wiel, R.A.N.; Meiller, P.P.; Bos, J.G.H.

    2014-01-01

    With this book TNO provides an overview of topics related to Miniature Unmanned Aerial Vehicles (MUAVs). Both novices and experts may find this publication valuable. The Netherlands Organisation for Applied Scientific Research TNO conducts research on UAVs and MUAVs, see for example [1], on the

  7. Human reliability analysis of control room operators

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Isaac J.A.L.; Carvalho, Paulo Victor R.; Grecco, Claudio H.S. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Human reliability is the probability that a person correctly performs some system required action in a required time period and performs no extraneous action that can degrade the system Human reliability analysis (HRA) is the analysis, prediction and evaluation of work-oriented human performance using some indices as human error likelihood and probability of task accomplishment. Significant progress has been made in the HRA field during the last years, mainly in nuclear area. Some first-generation HRA methods were developed, as THERP (Technique for human error rate prediction). Now, an array of called second-generation methods are emerging as alternatives, for instance ATHEANA (A Technique for human event analysis). The ergonomics approach has as tool the ergonomic work analysis. It focus on the study of operator's activities in physical and mental form, considering at the same time the observed characteristics of operator and the elements of the work environment as they are presented to and perceived by the operators. The aim of this paper is to propose a methodology to analyze the human reliability of the operators of industrial plant control room, using a framework that includes the approach used by ATHEANA, THERP and the work ergonomics analysis. (author)

  8. USING DISTANCE SENSORS TO PERFORM COLLISION AVOIDANCE MANEUVRES ON UAV APPLICATIONS

    Directory of Open Access Journals (Sweden)

    A. Raimundo

    2017-08-01

    Full Text Available The Unmanned Aerial Vehicles (UAV and its applications are growing for both civilian and military purposes. The operability of an UAV proved that some tasks and operations can be done easily and at a good cost-efficiency ratio. Nowadays, an UAV can perform autonomous missions. It is very useful to certain UAV applications, such as meteorology, vigilance systems, agriculture, environment mapping and search and rescue operations. One of the biggest problems that an UAV faces is the possibility of collision with other objects in the flight area. To avoid this, an algorithm was developed and implemented in order to prevent UAV collision with other objects. “Sense and Avoid” algorithm was developed as a system for UAVs to avoid objects in collision course. This algorithm uses a Light Detection and Ranging (LiDAR, to detect objects facing the UAV in mid-flights. This light sensor is connected to an on-board hardware, Pixhawk’s flight controller, which interfaces its communications with another hardware: Raspberry Pi. Communications between Ground Control Station and UAV are made via Wi-Fi or cellular third or fourth generation (3G/4G. Some tests were made in order to evaluate the “Sense and Avoid” algorithm’s overall performance. These tests were done in two different environments: A 3D simulated environment and a real outdoor environment. Both modes worked successfully on a simulated 3D environment, and “Brake” mode on a real outdoor, proving its concepts.

  9. Using Distance Sensors to Perform Collision Avoidance Maneuvres on Uav Applications

    Science.gov (United States)

    Raimundo, A.; Peres, D.; Santos, N.; Sebastião, P.; Souto, N.

    2017-08-01

    The Unmanned Aerial Vehicles (UAV) and its applications are growing for both civilian and military purposes. The operability of an UAV proved that some tasks and operations can be done easily and at a good cost-efficiency ratio. Nowadays, an UAV can perform autonomous missions. It is very useful to certain UAV applications, such as meteorology, vigilance systems, agriculture, environment mapping and search and rescue operations. One of the biggest problems that an UAV faces is the possibility of collision with other objects in the flight area. To avoid this, an algorithm was developed and implemented in order to prevent UAV collision with other objects. "Sense and Avoid" algorithm was developed as a system for UAVs to avoid objects in collision course. This algorithm uses a Light Detection and Ranging (LiDAR), to detect objects facing the UAV in mid-flights. This light sensor is connected to an on-board hardware, Pixhawk's flight controller, which interfaces its communications with another hardware: Raspberry Pi. Communications between Ground Control Station and UAV are made via Wi-Fi or cellular third or fourth generation (3G/4G). Some tests were made in order to evaluate the "Sense and Avoid" algorithm's overall performance. These tests were done in two different environments: A 3D simulated environment and a real outdoor environment. Both modes worked successfully on a simulated 3D environment, and "Brake" mode on a real outdoor, proving its concepts.

  10. HIL Tuning of UAV for Exploration of Risky Environments

    Directory of Open Access Journals (Sweden)

    C. D. Melita

    2008-11-01

    Full Text Available In this paper the latest results of an HIL architecture, optimized to develop and test UAV platforms are presented. This architecture has been used to realize the different devices involved in the navigation and stability control of the Volcan UAV, a plane designed to operate in volcanic environments. The proposed architecture is strongly modular and flexible and allows the development of avionic hardware and software, testing and tuning the involved algorithms with non-destructive trials. A flight simulator (X-Plane with a suitable plane model and plug-in, has been adopted to simulate the UAV dynamics. The flight simulator, interfaced with the real electronic boards, allows an easy tuning of all the control parameters and data collecting for test and validation. The effectiveness of adopted methodology was confirmed by several flight tests performed subsequently by using the designed avionic modules on the real UAV.

  11. Pathloss Measurements and Modeling for UAVs Connected to Cellular Networks

    DEFF Research Database (Denmark)

    Amorim, Rafhael Medeiros de; Mogensen, Preben Elgaard; Sørensen, Troels Bundgaard

    2017-01-01

    . The measurements were conducted in an operating LTE network (850 MHz), using a commercial cell phone, placed inside the frame of the UAV. Trials were conducted for UAV flying at 5 different heights measured above ground level (20, 40, 60, 80 and 100m) and a pathloss regression line was obtained from results. Then......This paper assess field measurements, as part of the investigation of the suitability of cellular networks for providing connectivity to UAVs (unmanned aerial vehicles). Evaluation is done by means of field measurements obtained in a rural environment in Denmark with an airbone UAV......, downlink (DL) SINR levels obtained during flight measurements are also presented. An important result obtained from the measurents reveal that there is a height-related DL SINR degradation. Three main sources of uncertainty on the pathloss model that could be responsible for the SINR degradation are also...

  12. Possibilities of Use of UAVS for Technical Inspection of Buildings and Constructions

    Science.gov (United States)

    Banaszek, Anna; Banaszek, Sebastian; Cellmer, Anna

    2017-12-01

    In recent years, Unmanned Aerial Vehicles (UAVs) have been used in various sectors of the economy. This is due to the development of new technologies for acquiring and processing geospatial data. The paper presents the results of experiments using UAV, equipped with a high resolution digital camera, for a visual assessment of the technical condition of the building roof and for the inventory of energy infrastructure and its surroundings. The usefulness of digital images obtained from the UAV deck is presented in concrete examples. The use of UAV offers new opportunities in the area of technical inspection due to the detail and accuracy of the data, low operating costs and fast data acquisition.

  13. Prognostics Applied to Electric Propulsion UAV

    Science.gov (United States)

    Goebel, Kai; Saha, Bhaskar

    2013-01-01

    Health management plays an important role in operations of UAV. If there is equipment malfunction on critical components, safe operation of the UAV might possibly be compromised. A technology with particular promise in this arena is equipment prognostics. This technology provides a state assessment of the health of components of interest and, if a degraded state has been found, it estimates how long it will take before the equipment will reach a failure threshold, conditional on assumptions about future operating conditions and future environmental conditions. This chapter explores the technical underpinnings of how to perform prognostics and shows an implementation on the propulsion of an electric UAV. A particle filter is shown as the method of choice in performing state assessment and predicting future degradation. The method is then applied to the batteries that provide power to the propeller motors. An accurate run-time battery life prediction algorithm is of critical importance to ensure the safe operation of the vehicle if one wants to maximize in-air time. Current reliability based techniques turn out to be insufficient to manage the use of such batteries where loads vary frequently in uncertain environments.

  14. Some human performance paradoxes of nuclear operations

    International Nuclear Information System (INIS)

    Otway, H.J.; Misenta, R.

    1980-01-01

    Roughly once a year, an abnormal situation with emergency potential may suddenly break the calm monotony of nuclear-power plant operation. The operating crew, perhaps under-stimulated by monitoring largely automatic processes, may then be expected to make correct inferences and decisions about complex phenomena. However, under stress, the operators may resort to using their 'best-learned responses', inappropriate to the real situation. Recent events at Three Mile Island prompted a variety of suggestions intended to improve operator performance, eg higher qualifications, more pay, or enhanced status. The authors stress the paradoxes of nuclear operation, conclude that some 'intuitively obvious' suggestions might have the opposite effect to that intended, and explore the possibility of introducing frequent, realistic emergency drills. Even this approach raises paradoxes - perhaps the role of the operator should be eliminated, or redefined to allow less human intervention in emergencies. (author)

  15. Operational forecasting of human-biometeorological conditions

    Science.gov (United States)

    Giannaros, T. M.; Lagouvardos, K.; Kotroni, V.; Matzarakis, A.

    2018-03-01

    This paper presents the development of an operational forecasting service focusing on human-biometeorological conditions. The service is based on the coupling of numerical weather prediction models with an advanced human-biometeorological model. Human thermal perception and stress forecasts are issued on a daily basis for Greece, in both point and gridded format. A user-friendly presentation approach is adopted for communicating the forecasts to the public via the worldwide web. The development of the presented service highlights the feasibility of replacing standard meteorological parameters and/or indices used in operational weather forecasting activities for assessing the thermal environment. This is of particular significance for providing effective, human-biometeorology-oriented, warnings for both heat waves and cold outbreaks.

  16. Calculating e-flow using UAV and ground monitoring

    Science.gov (United States)

    Zhao, C. S.; Zhang, C. B.; Yang, S. T.; Liu, C. M.; Xiang, H.; Sun, Y.; Yang, Z. Y.; Zhang, Y.; Yu, X. Y.; Shao, N. F.; Yu, Q.

    2017-09-01

    Intense human activity has led to serious degradation of basin water ecosystems and severe reduction in the river flow available for aquatic biota. As an important water ecosystem index, environmental flows (e-flows) are crucial for maintaining sustainability. However, most e-flow measurement methods involve long cycles, low efficiency, and transdisciplinary expertise. This makes it impossible to rapidly assess river e-flows at basin or larger scales. This study presents a new method to rapidly assessing e-flows coupling UAV and ground monitorings. UAV was firstly used to calculate river-course cross-sections with high-resolution stereoscopic images. A dominance index was then used to identify key fish species. Afterwards a habitat suitability index, along with biodiversity and integrity indices, was used to determine an appropriate flow velocity with full consideration of the fish spawning period. The cross-sections and flow velocity values were then combined into AEHRA, an e-flow assessment method for studying e-flows and supplying-rate. To verify the results from this new method, the widely used Tennant method was employed. The root-mean-square errors of river cross-sections determined by UAV are less than 0.25 m, which constitutes 3-5% water-depth of the river cross-sections. In the study area of Jinan city, the ecological flow velocity (VE) is equal to or greater than 0.11 m/s, and the ecological water depth (HE) is greater than 0.8 m. The river ecosystem is healthy with the minimum e-flow requirements being always met when it is close to large rivers, which is beneficial for the sustainable development of the water ecosystem. In the south river channel of Jinan, the upstream flow mostly meets the minimum e-flow requirements, and the downstream flow always meets the minimum e-flow requirements. The north of Jinan consists predominantly of artificial river channels used for irrigation. Rainfall rarely meets the minimum e-flow and irrigation water requirements

  17. Validating a UAV artificial intelligence control system using an autonomous test case generator

    Science.gov (United States)

    Straub, Jeremy; Huber, Justin

    2013-05-01

    The validation of safety-critical applications, such as autonomous UAV operations in an environment which may include human actors, is an ill posed problem. To confidence in the autonomous control technology, numerous scenarios must be considered. This paper expands upon previous work, related to autonomous testing of robotic control algorithms in a two dimensional plane, to evaluate the suitability of similar techniques for validating artificial intelligence control in three dimensions, where a minimum level of airspeed must be maintained. The results of human-conducted testing are compared to this automated testing, in terms of error detection, speed and testing cost.

  18. Evapotranspiration from UAV Images

    DEFF Research Database (Denmark)

    Nielsen, Helene Hoffmann Munk

    and is thus of importance in both hydrological, agricultural and atmospheric sciences. Still today, accurate measurements of ET are not achieved easily. The state-of the-art method to measure ET, the eddy covariance method, is associated with uncertainties and its footprint, though at the order of around 1...... hectare, varies much with the atmospheric stability and wind conditions. Indirect measurements of ET are obtained with satellite imagery, as a residual of the surface energy balance. Satellite images provide spatially distributed measurements, however high resolution satellite products provide footprints...... of measurements and thus new understandings of ET and its inferred parameters such as crop water stress and heat fluxes in the surface energy balance. However, UAV data collection is a new measuring method and the lightweight sensors are novel instrumentations. Workflows for processing UAV data, and the data...

  19. RECONNAISSANCE MICRO UAV SYSTEM

    Directory of Open Access Journals (Sweden)

    Petr Gabrlik

    2015-12-01

    Full Text Available This paper describes the design and implementation of the Uranus UAV. This quad-rotor flying robot was created to extend the abilities of the hitherto developed with airborne missions. The first part deals with the mathematical model of the robot. Next, the control system is designed, and the proposed hardware as well as the implemented software solution are presented. For integration into the robotic system, a new communication protocol was created and is described here too.

  20. Towards a Biosynthetic UAV

    Science.gov (United States)

    Block, Eli; Byemerwa, Jovita; Dispenza, Ross; Doughty, Benjamin; Gillyard, KaNesha; Godbole, Poorwa; Gonzales-Wright, Jeanette; Hull, Ian; Kannappan, Jotthe; Levine, Alexander; hide

    2014-01-01

    We are currently working on a series of projects towards the construction of a fully biological unmanned aerial vehicle (UAV) for use in scientific and humanitarian missions. The prospect of a biologically-produced UAV presents numerous advantages over the current manufacturing paradigm. First, a foundational architecture built by cells allows for construction or repair in locations where it would be difficult to bring traditional tools of production. Second, a major limitation of current research with UAVs is the size and high power consumption of analytical instruments, which require bulky electrical components and large fuselages to support their weight. By moving these functions into cells with biosensing capabilities - for example, a series of cells engineered to report GFP, green fluorescent protein, when conditions exceed a certain threshold concentration of a compound of interest, enabling their detection post-flight - these problems of scale can be avoided. To this end, we are working to engineer cells to synthesize cellulose acetate as a novel bioplastic, characterize biological methods of waterproofing the material, and program this material's systemic biodegradation. In addition, we aim to use an "amberless" system to prevent horizontal gene transfer from live cells on the material to microorganisms in the flight environment.

  1. Modeling Operations Costs for Human Exploration Architectures

    Science.gov (United States)

    Shishko, Robert

    2013-01-01

    Operations and support (O&S) costs for human spaceflight have not received the same attention in the cost estimating community as have development costs. This is unfortunate as O&S costs typically comprise a majority of life-cycle costs (LCC) in such programs as the International Space Station (ISS) and the now-cancelled Constellation Program. Recognizing this, the Constellation Program and NASA HQs supported the development of an O&S cost model specifically for human spaceflight. This model, known as the Exploration Architectures Operations Cost Model (ExAOCM), provided the operations cost estimates for a variety of alternative human missions to the moon, Mars, and Near-Earth Objects (NEOs) in architectural studies. ExAOCM is philosophically based on the DoD Architecture Framework (DoDAF) concepts of operational nodes, systems, operational functions, and milestones. This paper presents some of the historical background surrounding the development of the model, and discusses the underlying structure, its unusual user interface, and lastly, previous examples of its use in the aforementioned architectural studies.

  2. Automated geographic registration and radiometric correction for UAV-based mosaics

    Science.gov (United States)

    Texas A&M University has been operating a large-scale, UAV-based, agricultural remote-sensing research project since 2015. To use UAV-based images in agricultural production, many high-resolution images must be mosaicked together to create an image of an agricultural field. Two key difficulties to s...

  3. Human factors in nuclear power plant operation

    International Nuclear Information System (INIS)

    Sabri, Z.A.; Husseiny, A.A.

    1980-01-01

    An extensive effort is being devoted to developing a comprehensive human factor program that encompasses establishment of a data base for human error prediction using past operation experience in commercial nuclear power plants. Some of the main results of such an effort are reported including data retrieval and classification systems which have been developed to assist in estimation of operator error rates. Also, statistical methods are developed to relate operator error data to reactor type, age, and specific technical design features. Results reported in this paper are based on an analysis of LER's covering a six-year period for LWR's. Developments presently include a computer data management program, statistical model, and detailed error taxonomy

  4. Research for new UAV capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Canavan, G.H.; Leadabrand, R.

    1996-07-01

    This paper discusses research for new Unmanned Aerial Vehicles (UAV) capabilities. Findings indicate that UAV performance could be greatly enhanced by modest research. Improved sensors and communications enhance near term cost effectiveness. Improved engines, platforms, and stealth improve long term effectiveness.

  5. Cost and effectiveness analysis on unmanned aerial vehicle (UAV) use at border security

    Science.gov (United States)

    Yilmaz, Bahadır.

    2013-06-01

    Drones and Remotely Piloted Vehicles are types of Unmanned Aerial Vehicles. UAVs began to be used with the war of Vietnam, they had a great interest when Israel used them in Bekaa Valley Operations of 1982. UAVs have been used by different countries with different aims with the help of emerging technology and investments. In this article, in the context of areas of UAV usage in national security, benefits and disadvantages of UAVs are put forward. Particularly, it has been evaluated on the basis of cost-effectiveness by focusing the use of UAV in the border security. UAVs have been studied by taking cost analysis, procurement and operational costs into consideration. Analysis of effectiveness has been done with illegal passages of people and drugs from flight times of UAVs. Although the procurement cost of the medium-level UAVs is low, its operational costs are high. For this reason, the idea of less costly alternative systems have been revealed for the border security. As the costs are reduced to acceptable level involving national security and border security in future with high-technology products in their structure, it will continue to be used in an increasing proportion.

  6. UAV observation of newly formed volcanic island, Nishinoshima, Japan, from a ship

    Science.gov (United States)

    Ohminato, T.; Kaneko, T.; Takagi, A.

    2016-12-01

    We conducted an aerial observation at Nishinoshima island, south of Japan, from Jun 7 to Jun 9, 2016 by using an Unmanned Aerial Vehicle (UAV), a radio controlled small helicopter. Takeoff and landing of the UAV was conducted on a ship. Nishinoshima is a small island, 130km west of Chichijima in Ogasawara Islands, Japan. New eruption started in November 2013 in a shallow sea approximately 400 m southeast of the existing Nishinoshima Island. It started from a small islet and evolved with 1-5 × 105 m3/day discharge rate (Maeno et al, 2016). In late December 2013, the islet coalesced with the existing Nishinoshima. In 16 month, the lava field reached 2.6×106 m2and covered almost all of the existing Nishinoshima. Human landing upon the newly formed part of the island has still been prohibited due to the danger of sudden eruptions. Before our mission, some pumice or rock samples had been taken from the island but their amount was not enough to conduct detailed petrological analyses. The evolution of the lava field from the central cone has been well documented by using images taken from satellites and airplanes. However, due to the limited resolution of satellite images or photos taken from distant airplanes, there still be uncertainties in detailed morphological evolution of lava flows. The purpose of our observation includes, 1) sampling of pyroclasts near the central cone in order to investigate the condition of magma chamber and magma ascent process, and 2) taking high resolution 4K images in order to clarify the characteristic morphology of the lava flow covering the island. During the three days operation, we were successfully able to sample 250g of pyroclasts and to take 1.5TB of 4K movies. Conducting UAV's takeoff and landing on a ship was not an easy task. We used a marine research ship, Keifu-Maru, operated by Japan Meteorological Agency. The ship size is 1483 tons. On the ship deck, there are several structures which can interfere with the helicopter

  7. Dragon Drone UAV System

    Science.gov (United States)

    2003-09-02

    TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Dragon Drone UAV System 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 A E R O S Y S T E M S BAI’s Dragon Drone ...the hundreds. BAI’s Dragon Drone system is the result of combining new ideas and emerging technologies with the in-depth knowl- edge gained from real

  8. UAV Based Agricultural Planning and Landslide Monitoring

    Directory of Open Access Journals (Sweden)

    Servet Yaprak

    2017-12-01

    Full Text Available The use of Unmanned Aerial Vehicle (UAV tools has become widespread in map production, land surveying, landslide, erosion monitoring, monitoring of agricultural activities, aerial crop surveying, forest fire detection and monitoring operations. In this study, GEO 2 UAV manufactured by TEKNOMER equipped with SONY A6000 camera has been used. The flight plan have been performed with 100 m altitude, with 80% longitudinal and 60% side overlapping. Ground Control Points (GCPs have been observed with Topcon and Trimble GNSS geodetic receivers. Recorded GNSS signals have been processed with LGO V.8.4 software to get sensitive location information. 985 photos have been taken for the 344 hectares the agricultural area. 291 photos have been taken for 50 hectares the landslide area. All photos were processed by PIX4D software. For the agricultural area, 25 GCPs and for the landslide area, 8 GCPs have been included in the evaluation. 3D images were produced with pixel matching algorithms. As a result, the RMS evaluation was obtained as ±0.054 m for the agricultural area and as ±0.018 m for the landslide area. UAV images have indisputable contributions to the management of catastrophes such as landslides and earthquakes, and it is impossible to make terrestrial measurements in areas where disaster impact continues.

  9. Fault Management Techniques in Human Spaceflight Operations

    Science.gov (United States)

    O'Hagan, Brian; Crocker, Alan

    2006-01-01

    This paper discusses human spaceflight fault management operations. Fault detection and response capabilities available in current US human spaceflight programs Space Shuttle and International Space Station are described while emphasizing system design impacts on operational techniques and constraints. Preflight and inflight processes along with products used to anticipate, mitigate and respond to failures are introduced. Examples of operational products used to support failure responses are presented. Possible improvements in the state of the art, as well as prioritization and success criteria for their implementation are proposed. This paper describes how the architecture of a command and control system impacts operations in areas such as the required fault response times, automated vs. manual fault responses, use of workarounds, etc. The architecture includes the use of redundancy at the system and software function level, software capabilities, use of intelligent or autonomous systems, number and severity of software defects, etc. This in turn drives which Caution and Warning (C&W) events should be annunciated, C&W event classification, operator display designs, crew training, flight control team training, and procedure development. Other factors impacting operations are the complexity of a system, skills needed to understand and operate a system, and the use of commonality vs. optimized solutions for software and responses. Fault detection, annunciation, safing responses, and recovery capabilities are explored using real examples to uncover underlying philosophies and constraints. These factors directly impact operations in that the crew and flight control team need to understand what happened, why it happened, what the system is doing, and what, if any, corrective actions they need to perform. If a fault results in multiple C&W events, or if several faults occur simultaneously, the root cause(s) of the fault(s), as well as their vehicle-wide impacts, must be

  10. Coastal areas mapping using UAV photogrammetry

    Science.gov (United States)

    Nikolakopoulos, Konstantinos G.; Kozarski, Dimitrios; Kogkas, Stefanos

    2017-10-01

    The coastal areas in the Patras Gulf suffer degradation due to the sea action and other natural and human-induced causes. Changes in beaches, ports, and other man made constructions need to be assessed, both after severe events and on a regular basis, to build models that can predict the evolution in the future. Thus, reliable spatial data acquisition is a critical process for the identification of the coastline and the broader coastal zones for geologists and other scientists involved in the study of coastal morphology. High resolution satellite data, airphotos and airborne Lidar provided in the past the necessary data for the coastline monitoring. High-resolution digital surface models (DSMs) and orthophoto maps had become a necessity in order to map with accuracy all the variations in costal environments. Recently, unmanned aerial vehicles (UAV) photogrammetry offers an alternative solution to the acquisition of high accuracy spatial data along the coastline. This paper presents the use of UAV to map the coastline in Rio area Western Greece. Multiple photogrammetric aerial campaigns were performed. A small commercial UAV (DJI Phantom 3 Advance) was used to acquire thousands of images with spatial resolutions better than 5 cm. Different photogrammetric software's were used to orientate the images, extract point clouds, build a digital surface model and produce orthoimage mosaics. In order to achieve the best positional accuracy signalised ground control points were measured with a differential GNSS receiver. The results of this coastal monitoring programme proved that UAVs can replace many of the conventional surveys, with considerable gains in the cost of the data acquisition and without any loss in the accuracy.

  11. UAV Based Imaging for Crop, Weed and Disease Monitoring

    DEFF Research Database (Denmark)

    Garcia Ruiz, Francisco Jose

    Summary Unmanned aerial vehicles (UAV) equipped with cameras have become a powerful technology to collect high resolution remote sensing data from agricultural crops. When equipped with multispectral cameras, light invisible for the human eye may be captured and used to characterize the physiolog......Summary Unmanned aerial vehicles (UAV) equipped with cameras have become a powerful technology to collect high resolution remote sensing data from agricultural crops. When equipped with multispectral cameras, light invisible for the human eye may be captured and used to characterize...... the physiological status of the vegetation. UAV imagery may be divided into three steps (1) spectral characterization of the targets of interest, (2) flight and image acquisition and (3) image processing and interpretation. The overall aims of this study were to improve knowledge in all three steps associated...... with UAV-based remote sensing for practical use in agriculture and to contribute to the incipient research on UAV based remote sensing for agricultural applications. Three case studies were performed to (1) Characterize the spectral signatures of sugar beet (Beta vulgaris L.) and creeping thistle (Cirsium...

  12. High-Fidelity Solar Power Income Modeling for Solar-Electric UAVs: Development and Flight Test Based Verification

    OpenAIRE

    Oettershagen, Philipp

    2017-01-01

    Solar power models are a crucial element of solar-powered UAV design and performance analysis. During the conceptual design phase, their accuracy directly relates to the accuracy of the predicted performance metrics and thus the final design characteristics of the solar-powered UAV. Likewise, during the operations phase of a solar-powered UAV accurate solar power income models are required to predict and assess the solar power system performance. However, the existing literature on solar-powe...

  13. Design of Electric Patrol UAVs Based on a Dual Antenna System

    Directory of Open Access Journals (Sweden)

    Yongjie Zhai

    2018-04-01

    Full Text Available China completed the construction of more than 1.15 million kilometers of transmission lines with conventional voltage levels spanning its vast territory in 2014. This large and complicated power grid structure relies mainly on manual operation and maintenance of lines. Unmanned aerial vehicles (UAVs equipped with high-definition digital video cameras and cameras and GPS positioning systems can conduct autonomous patrols along the grid. However, the presence of electromagnetic fields around high-voltage transmission lines can affect the UAV’s magnetometer, resulting in a wrong heading and thus unsafe flight. In this paper, the traditional method of UAV heading calculation using a magnetometer was analyzed, and a novel method for calculating UAV heading based on dual antennas was proposed. Experimental data showed that the proposed method improves the anti-magnetic interference characteristics of UAVs and increases UAV security and stability for power inspection applications.

  14. An analysis of the development and application of plant protection UAV based on advanced materials

    Science.gov (United States)

    Huang, Yuan-hui; Wei, Neng; Quan, Zhi-cheng; Huang, Yu-rong

    2018-06-01

    The development and application of a number of advanced materials plant protection unmanned aerial vehicle (UAV) is an important part of the comprehensive production of agricultural modernization. The paper is taken as an example of Guangxi No. 1 agricultural service aviation science and Technology Co., Ltd. This paper introduces the internal and external environment of the research and development of the plant protection UAV for the advanced materials of the company. The external environment focuses on the role of the plant protection UAV on the development of the agricultural mechanization; the internal environment focuses on the advantages of the UAV in technology research, market promotion and application, which is imperative. Finally, according to the background of the whole industry, we put forward some suggestions for the developing opportunities and challenges faced by plant protection UAV, hoping to proving some ideas for operators, experts and scholars engaged in agricultural industry.

  15. Survey on the novel hybrid aquatic-aerial amphibious aircraft: Aquatic unmanned aerial vehicle (AquaUAV)

    Science.gov (United States)

    Yang, Xingbang; Wang, Tianmiao; Liang, Jianhong; Yao, Guocai; Liu, Miao

    2015-04-01

    The aquatic unmanned aerial vehicle (AquaUAV), a kind of vehicle that can operate both in the air and the water, has been regarded as a new breakthrough to broaden the application scenario of UAV. Wide application prospects in military and civil field are more than bright, therefore many institutions have focused on the development of such a vehicle. However, due to the significant difference of the physical properties between the air and the water, it is rather difficult to design a fully-featured AquaUAV. Until now, majority of partially-featured AquaUAVs have been developed and used to verify the feasibility of an aquatic-aerial vehicle. In the present work, we classify the current partially-featured AquaUAV into three categories from the scope of the whole UAV field, i.e., the seaplane UAV, the submarine-launched UAV, and the submersible UAV. Then the recent advancements and common characteristics of the three kinds of AquaUAVs are reviewed in detail respectively. Then the applications of bionics in the design of AquaUAV, the transition mode between the air and the water, the morphing wing structure for air-water adaptation, and the power source and the propulsion type are summarized and discussed. The tradeoff analyses for different transition methods between the air and the water are presented. Furthermore, it indicates that applying the bionics into the design and development of the AquaUAV will be essential and significant. Finally, the significant technical challenges for the AquaUAV to change from a conception to a practical prototype are indicated.

  16. Optical and acoustical UAV detection

    Science.gov (United States)

    Christnacher, Frank; Hengy, Sébastien; Laurenzis, Martin; Matwyschuk, Alexis; Naz, Pierre; Schertzer, Stéphane; Schmitt, Gwenael

    2016-10-01

    Recent world events have highlighted that the proliferation of UAVs is bringing with it a new and rapidly increasing threat for national defense and security agencies. Whilst many of the reported UAV incidents seem to indicate that there was no terrorist intent behind them, it is not unreasonable to assume that it may not be long before UAV platforms are regularly employed by terrorists or other criminal organizations. The flight characteristics of many of these mini- and micro-platforms present challenges for current systems which have been optimized over time to defend against the traditional air-breathing airborne platforms. A lot of programs to identify cost-effective measures for the detection, classification, tracking and neutralization have begun in the recent past. In this paper, lSL shows how the performance of a UAV detection and tracking concept based on acousto-optical technology can be powerfully increased through active imaging.

  17. Multimodal UAV detection: study of various intrusion scenarios

    Science.gov (United States)

    Hengy, Sebastien; Laurenzis, Martin; Schertzer, Stéphane; Hommes, Alexander; Kloeppel, Franck; Shoykhetbrod, Alex; Geibig, Thomas; Johannes, Winfried; Rassy, Oussama; Christnacher, Frank

    2017-10-01

    Small unmanned aerial vehicles (UAVs) are becoming increasingly popular and affordable the last years for professional and private consumer market, with varied capacities and performances. Recent events showed that illicit or hostile uses constitute an emergent, quickly evolutionary threat. Recent developments in UAV technologies tend to bring autonomous, highly agile and capable unmanned aerial vehicles to the market. These UAVs can be used for spying operations as well as for transporting illicit or hazardous material (smuggling, flying improvised explosive devices). The scenario of interest concerns the protection of sensitive zones against the potential threat constituted by small drones. In the recent past, field trials were carried out to investigate the detection and tracking of multiple UAV flying at low altitude. Here, we present results which were achieved using a heterogeneous sensor network consisting of acoustic antennas, small FMCW RADAR systems and optical sensors. While acoustics and RADAR was applied to monitor a wide azimuthal area (360°), optical sensors were used for sequentially identification. The localization results have been compared to the ground truth data to estimate the efficiency of each detection system. Seven-microphone acoustic arrays allow single source localization. The mean azimuth and elevation estimation error has been measured equal to 1.5 and -2.5 degrees respectively. The FMCW radar allows tracking of multiple UAVs by estimating their range, azimuth and motion speed. Both technologies can be linked to the electro-optical system for final identification of the detected object.

  18. Establishing a disruptive new capability for NASA to fly UAV's into hazardous conditions

    Science.gov (United States)

    Ely, Jay; Nguyen, Truong; Wilson, Jennifer; Brown, Robert; Laughter, Sean; Teets, Ed; Parker, Allen; Chan, Hon M.; Richards, Lance

    2015-05-01

    A 2015 NASA Aeronautics Mission "Seedling" Proposal is described for a Severe-Environment UAV (SE-UAV) that can perform in-situ measurements in hazardous atmospheric conditions like lightning, volcanic ash and radiation. Specifically, this paper describes the design of a proof-of-concept vehicle and measurement system that can survive lightning attachment during flight operations into thunderstorms. Elements from three NASA centers draw together for the SE-UAV concept. 1) The NASA KSC Genesis UAV was developed in collaboration with the DARPA Nimbus program to measure electric field and X-rays present within thunderstorms. 2) A novel NASA LaRC fiber-optic sensor uses Faraday-effect polarization rotation to measure total lightning electric current on an air vehicle fuselage. 3) NASA AFRC's state-of-the-art Fiber Optics and Systems Integration Laboratory is envisioned to transition the Faraday system to a compact, light-weight, all-fiber design. The SE-UAV will provide in-flight lightning electric-current return stroke and recoil leader data, and serve as a platform for development of emerging sensors and new missions into hazardous environments. NASA's Aeronautics and Science Missions are interested in a capability to perform in-situ volcanic plume measurements and long-endurance UAV operations in various weather conditions. (Figure 1 shows an artist concept of a SE-UAV flying near a volcano.) This paper concludes with an overview of the NASA Aeronautics Strategic Vision, Programs, and how a SE-UAV is envisioned to impact them. The SE-UAV concept leverages high-value legacy research products into a new capability for NASA to fly a pathfinder UAV into hazardous conditions, and is presented in the SPIE DSS venue to explore teaming, collaboration and advocacy opportunities outside NASA.

  19. Establishing a Disruptive New Capability for NASA to Fly UAV's into Hazardous Conditions

    Science.gov (United States)

    Ely, Jay; Nguyen, Truong; Wilson, Jennifer; Brown, Robert; Laughter, Sean; Teets, Ed; Parker, Allen; Chan, Patrick Hon Man; Richards, Lance

    2015-01-01

    A 2015 NASA Aeronautics Mission "Seedling" Proposal is described for a Severe-Environment UAV (SE-UAV) that can perform in-situ measurements in hazardous atmospheric conditions like lightning, volcanic ash and radiation. Specifically, this paper describes the design of a proof-of-concept vehicle and measurement system that can survive lightning attachment during flight operations into thunderstorms. Elements from three NASA centers draw together for the SE-UAV concept. 1) The NASA KSC Genesis UAV was developed in collaboration with the DARPA Nimbus program to measure electric field and X-rays present within thunderstorms. 2) A novel NASA LaRC fiber-optic sensor uses Faraday-effect polarization rotation to measure total lightning electric current on an air vehicle fuselage. 3) NASA AFRC's state-of-the-art Fiber Optics and Systems Integration Laboratory is envisioned to transition the Faraday system to a compact, light-weight, all-fiber design. The SE-UAV will provide in-flight lightning electric-current return stroke and recoil leader data, and serve as a platform for development of emerging sensors and new missions into hazardous environments. NASA's Aeronautics and Science Missions are interested in a capability to perform in-situ volcanic plume measurements and long-endurance UAV operations in various weather conditions. (Figure 1 shows an artist concept of a SE-UAV flying near a volcano.) This paper concludes with an overview of the NASA Aeronautics Strategic Vision, Programs, and how a SE-UAV is envisioned to impact them. The SE-UAV concept leverages high-value legacy research products into a new capability for NASA to fly a pathfinder UAV into hazardous conditions, and is presented in the SPIE DSS venue to explore teaming, collaboration and advocacy opportunities outside NASA.

  20. UAV telemetry communications using ZigBee protocol

    Science.gov (United States)

    Nasution, T. H.; Siregar, I.; Yasir, M.

    2017-10-01

    Wireless communication has been widely used in various fields or disciplines such as agriculture, health, engineering, military, and aerospace so as to support the work in that field. The communication technology is typically used for controlling devices and data monitoring. One development of wireless communication is the widely used telemetry system used to reach areas that cannot be reached by humans using UAV (Unmanned Aerial Vehicle) or unmanned aircraft. In this paper we discuss the design of telemetry system in UAV using ZigBee protocol. From the test obtained the system can work well with visualization displays without pause is 20 data per second with a maximum data length of 120 characters.

  1. Acquisition of Human Operation Characteristics for Kite-based Tethered Flying Robot using Human Operation Data

    OpenAIRE

    Todoroki, Chiaki; Takahashi, Yasutake; Nakamura, Takayuki

    2015-01-01

    This paper shows human skill acquisition systems to control the kite-based tethered flying robot. The kite-based tethered flying robot has been proposed as a flying observation system with long-term activity capability[1]. It is a relatively new system and aimed to complement other information gathering systems using a balloon or an air vehicle. This paper shows some approaches of human operation characteristics acquisition based on fuzzy learning controller, knearest neighbor algorithm, and ...

  2. An Ecological Approach to the Design of UAV Ground Control Station (GCS) Status Displays

    Science.gov (United States)

    Dowell, Susan; Morphew, Ephimia; Shively, Jay

    2003-01-01

    Use of UAVs in military and commercial applications will continue to increase. However, there has been limited research devoted to UAV GCS design. The current study employed an ecological approach to interfac e design. Ecological Interface Design (EID) can be characterized as r epresenting the properties of a system, such that an operator is enco uraged to use skill-based behavior when problem solving. When more ef fortful cognitive processes become necessary due to unfamiliar situations, the application of EID philosophy supports the application of kn owledge-based behavior. With advances toward multiple UAV command and control, operators need GCS interfaces designed to support understan ding of complex systems. We hypothesized that use of EID principles f or the display of UAV status information would result in better opera tor performance and situational awareness, while decreasing workload. Pilots flew a series of missions with three UAV GCS displays of statu s information (Alphanumeric, Ecological, and Hybrid display format). Measures of task performance, Situational Awareness, and workload dem onstrated the benefits of using an ecological approach to designing U AV GCS displays. The application of ecological principles to the design of UAV GCSs is a promising area for improving UAV operations.

  3. Accuracy assessment of topographic mapping using UAV image integrated with satellite images

    International Nuclear Information System (INIS)

    Azmi, S M; Ahmad, Baharin; Ahmad, Anuar

    2014-01-01

    Unmanned Aerial Vehicle or UAV is extensively applied in various fields such as military applications, archaeology, agriculture and scientific research. This study focuses on topographic mapping and map updating. UAV is one of the alternative ways to ease the process of acquiring data with lower operating costs, low manufacturing and operational costs, plus it is easy to operate. Furthermore, UAV images will be integrated with QuickBird images that are used as base maps. The objective of this study is to make accuracy assessment and comparison between topographic mapping using UAV images integrated with aerial photograph and satellite image. The main purpose of using UAV image is as a replacement for cloud covered area which normally exists in aerial photograph and satellite image, and for updating topographic map. Meanwhile, spatial resolution, pixel size, scale, geometric accuracy and correction, image quality and information contents are important requirements needed for the generation of topographic map using these kinds of data. In this study, ground control points (GCPs) and check points (CPs) were established using real time kinematic Global Positioning System (RTK-GPS) technique. There are two types of analysis that are carried out in this study which are quantitative and qualitative assessments. Quantitative assessment is carried out by calculating root mean square error (RMSE). The outputs of this study include topographic map and orthophoto. From this study, the accuracy of UAV image is ± 0.460 m. As conclusion, UAV image has the potential to be used for updating of topographic maps

  4. Falco UAV Low Reynolds Airfoil Design and Testing at Galileo Avionica

    National Research Council Canada - National Science Library

    Cistriani, Luca

    2007-01-01

    UAV operations are examined from a performance and logistic flexibility point of view in order to set up requirements to be input for the multiobjective optimization of a two component simple rotation...

  5. Concept of Indoor 3D-Route UAV Scheduling System

    DEFF Research Database (Denmark)

    Khosiawan, Yohanes; Nielsen, Izabela Ewa; Do, Ngoc Ang Dung

    2016-01-01

    environment. On top of that, the multi-source productive best-first-search concept also supports efficient real-time scheduling in response to uncertain events. Without human intervention, the proposed work provides an automatic scheduling system for UAV routing problem in 3D indoor environment....

  6. The Way Ahead For Maritime UAVS

    National Research Council Canada - National Science Library

    Pearson , II, F. C

    2006-01-01

    .... There is an overarching USN plan for UAVs, but I propose an emphasis should be placed on the close range or tactical UAVs that will directly complement battle space management, increase situational...

  7. Collaborative UAV Exploration of Hostile Environments

    National Research Council Canada - National Science Library

    Luotsinen, Linus J; Gonzalez, Avelino J; Boeloeni, Ladislau

    2004-01-01

    .... UAVs can be lost or significantly damaged during the exploration process. Although employing multiple UAVs can increase the chance of success, their efficiency depends on the collaboration strategies used...

  8. Establishing operational stability--developing human infrastructure.

    Science.gov (United States)

    Gomez, Max A; Byers, Ernest J; Stingley, Preston; Sheridan, Robert M; Hirsch, Joshua A

    2010-12-01

    Over the past year, Toyota has come under harsh scrutiny as a result of several recalls. These well publicized mishaps have not only done damage to Toyota's otherwise sterling reputation for quality but have also called into question the assertions from a phalanx of followers that Toyota's production system (generically referred to as TPS or Lean) is the best method by which to structure one's systems of operation. In this article, we discuss how Toyota, faced with the pressure to grow its business, did not appropriately cadence this growth with the continued development and maintenance of the process capabilities (vis a vis the development of human infrastructure) needed to adequately support that growth. We draw parallels between the pressure Toyota faced to grow its business and the pressure neurointerventional practices face to grow theirs, and offer a methodology to support that growth without sacrificing quality.

  9. The Quality of Quantity: Mini-UAVS As An Alternative UAV Acquisition Strategy at the Army Brigade Level

    Science.gov (United States)

    2002-05-24

    contrast to the Exdrone is the more conventional, and more Spartan, Pointer UAV. Designed by Paul McCready, PhD., the engineer who designed the “ Gossamer ... Albatross ”, the first human powered aircraft to cross the English Channel, the Pointer UAV’s design reflects an engineering philosophy predicated on

  10. Sensor-Oriented Path Planning for Multiregion Surveillance with a Single Lightweight UAV SAR.

    Science.gov (United States)

    Li, Jincheng; Chen, Jie; Wang, Pengbo; Li, Chunsheng

    2018-02-11

    In the surveillance of interested regions by unmanned aerial vehicle (UAV), system performance relies greatly on the motion control strategy of the UAV and the operation characteristics of the onboard sensors. This paper investigates the 2D path planning problem for the lightweight UAV synthetic aperture radar (SAR) system in an environment of multiple regions of interest (ROIs), the sizes of which are comparable to the radar swath width. Taking into account the special requirements of the SAR system on the motion of the platform, we model path planning for UAV SAR as a constrained multiobjective optimization problem (MOP). Based on the fact that the UAV route can be designed in the map image, an image-based path planner is proposed in this paper. First, the neighboring ROIs are merged by the morphological operation. Then, the parts of routes for data collection of the ROIs can be located according to the geometric features of the ROIs and the observation geometry of UAV SAR. Lastly, the route segments for ROIs surveillance are connected by a path planning algorithm named the sampling-based sparse A* search (SSAS) algorithm. Simulation experiments in real scenarios demonstrate that the proposed sensor-oriented path planner can improve the reconnaissance performance of lightweight UAV SAR greatly compared with the conventional zigzag path planner.

  11. Sensor-Oriented Path Planning for Multiregion Surveillance with a Single Lightweight UAV SAR

    Science.gov (United States)

    Li, Jincheng; Chen, Jie; Wang, Pengbo; Li, Chunsheng

    2018-01-01

    In the surveillance of interested regions by unmanned aerial vehicle (UAV), system performance relies greatly on the motion control strategy of the UAV and the operation characteristics of the onboard sensors. This paper investigates the 2D path planning problem for the lightweight UAV synthetic aperture radar (SAR) system in an environment of multiple regions of interest (ROIs), the sizes of which are comparable to the radar swath width. Taking into account the special requirements of the SAR system on the motion of the platform, we model path planning for UAV SAR as a constrained multiobjective optimization problem (MOP). Based on the fact that the UAV route can be designed in the map image, an image-based path planner is proposed in this paper. First, the neighboring ROIs are merged by the morphological operation. Then, the parts of routes for data collection of the ROIs can be located according to the geometric features of the ROIs and the observation geometry of UAV SAR. Lastly, the route segments for ROIs surveillance are connected by a path planning algorithm named the sampling-based sparse A* search (SSAS) algorithm. Simulation experiments in real scenarios demonstrate that the proposed sensor-oriented path planner can improve the reconnaissance performance of lightweight UAV SAR greatly compared with the conventional zigzag path planner. PMID:29439447

  12. Uav-Mapping - a User Report

    Science.gov (United States)

    Mayr, W.

    2011-09-01

    This paper reports on first hand experiences in operating an unmanned airborne system (UAS) for mapping purposes in the environment of a mapping company. Recently, a multitude of activities in UAVs is visible, and there is growing interest in the commercial, industrial, and academic mapping user communities and not only in those. As an introduction, the major components of an UAS are identified. The paper focuses on a 1.1kg UAV which is integrated and gets applied on a day-to-day basis as part of an UAS in standard aerial imaging tasks for more than two years already. We present the unmanned airborne vehicle in some detail as well as the overall system components such as autopilot, ground station, flight mission planning and control, and first level image processing. The paper continues with reporting on experiences gained in setting up constraints such a system needs to fulfill. Further on, operational aspects with emphasis on unattended flight mission mode are presented. Various examples show the applicability of UAS in geospatial tasks, proofing that UAS are capable delivering reliably e.g. orthomosaics, digital surface models and more. Some remarks on achieved accuracies give an idea on obtainable qualities. A discussion about safety features puts some light on important matters when entering unmanned flying activities and rounds up this paper. Conclusions summarize the state of the art of an operational UAS from the point of the view of the author.

  13. UAV-MAPPING – A USER REPORT

    Directory of Open Access Journals (Sweden)

    W. Mayr

    2012-09-01

    Full Text Available This paper reports on first hand experiences in operating an unmanned airborne system (UAS for mapping purposes in the environment of a mapping company. Recently, a multitude of activities in UAVs is visible, and there is growing interest in the commercial, industrial, and academic mapping user communities and not only in those. As an introduction, the major components of an UAS are identified. The paper focuses on a 1.1kg UAV which is integrated and gets applied on a day-to-day basis as part of an UAS in standard aerial imaging tasks for more than two years already. We present the unmanned airborne vehicle in some detail as well as the overall system components such as autopilot, ground station, flight mission planning and control, and first level image processing. The paper continues with reporting on experiences gained in setting up constraints such a system needs to fulfill. Further on, operational aspects with emphasis on unattended flight mission mode are presented. Various examples show the applicability of UAS in geospatial tasks, proofing that UAS are capable delivering reliably e.g. orthomosaics, digital surface models and more. Some remarks on achieved accuracies give an idea on obtainable qualities. A discussion about safety features puts some light on important matters when entering unmanned flying activities and rounds up this paper. Conclusions summarize the state of the art of an operational UAS from the point of the view of the author.

  14. Application Possibility of Smartphone as Payload for Photogrammetric Uav System

    Science.gov (United States)

    Yun, M. H.; Kim, J.; Seo, D.; Lee, J.; Choi, C.

    2012-07-01

    Smartphone can not only be operated under 3G network environment anytime and anyplace but also cost less than the existing photogrammetric UAV since it provides high-resolution image, 3D location and attitude data on a real-time basis from a variety of built-in sensors. This study is aimed to assess the possibility of smartphone as a payload for photogrammetric UAV system. Prior to such assessment, a smartphone-based photogrammetric UAV system application was developed, through which real-time image, location and attitude data was obtained using smartphone under both static and dynamic conditions. Subsequently the accuracy assessment on the location and attitude data obtained and sent by this system was conducted. The smartphone images were converted into ortho-images through image triangulation. The image triangulation was conducted in accordance with presence or absence of consideration of the interior orientation (IO) parameters determined by camera calibration. In case IO parameters were taken into account in the static experiment, the results from triangulation for any smartphone type were within 1.5 pixel (RMSE), which was improved at least by 35% compared to when IO parameters were not taken into account. On the contrary, the improvement effect of considering IO parameters on accuracy in triangulation for smartphone images in dynamic experiment was not significant compared to the static experiment. It was due to the significant impact of vibration and sudden attitude change of UAV on the actuator for automatic focus control within the camera built in smartphone under the dynamic condition. This cause appears to have a negative impact on the image-based DEM generation. Considering these study findings, it is suggested that smartphone is very feasible as a payload for UAV system. It is also expected that smartphone may be loaded onto existing UAV playing direct or indirect roles significantly.

  15. Thrust sensing for small UAVs

    Science.gov (United States)

    Marchman, Christopher Scott

    Unmanned aerial vehicles (UAVs) have become prevalent in both military and civilian applications. UAVs have many size categories from large-scale aircraft to micro air vehicles. The performance, health, and efficiency for UAVs of smaller sizes can be difficult to assess and few associated instrumentation systems have been developed. Thrust measurements on the ground can characterize systems especially when combined with simultaneous motor power measurements. This thesis demonstrates the use of strain measurements to measure the thrust produced by motor/propeller combinations for such small UAVs. A full-bridge Wheatstone circuit and electrical resistance strain gauges were used in conjunction with constant-stress cantilever beams for static tests and dynamic wind tunnel tests. An associated instrumentation module monitored power from the electric motor. Monitoring the thrust data over time can provide insights into optimal propeller and motor selection and early detection of problems such as component failure. The approach provides a system for laboratory or field measurements that can be scaled for a wide range of small UAVs.

  16. Proceedings from Specialists Meeting on human performance in operational events

    International Nuclear Information System (INIS)

    1998-01-01

    This conference on human performance in operational events is composed of 34 papers, grouped in 11 sessions. After an invited contribution on the human factor in the nuclear industry, the sessions are: session 1 (Operational events: Human performance in operational events - how to improve it?, Human performance research strategies for human performance, The development of a model of control room operator cognition), session 2 (Operational response: A study of the recovery from 120 events, Empirical study of the influence of organizational and procedural characteristics on team performance in the emergency situation using plant simulators, Cognitive skills and nuclear power plant operational decision making), session 3 (PSA for Probabilistic Safety Analysis: A sensitivity study of human errors in optimizing surveillance test interval (STI) and allowed outage time (AOT) of standby safety system, Analysis of Parks nuclear power plant personnel activity during safety related event sequences, An EDF project to update the Probabilistic Human Reliability Assessment PHRA methodology), session 4 (modelling with ATHEANA: Atheana, a technique for human error analysis, an overview of its methodological basis, Common elements on operational events across technologies, Results of nuclear power plant application of new technique for human error analysis), session 5 (Regulatory practice: US.NRC Research and analysis activities concerning human reliability assessment and human performance evaluation, Introduction of simulator-based examinations and its effects on the nuclear industry, Regulatory monitoring of human performance in PWR operation in France), session 6 (Simulation: Human performance in Bavarian nuclear power plant as a preventive element, Human performance event database, Crew situation awareness, diagnoses and performance in simulated nuclear power plant process disturbances), session 7 (Operator aids: Development of a plant navigation system, Operation system

  17. Brief communication: Landslide motion from cross correlation of UAV-derived morphological attributes

    Science.gov (United States)

    Peppa, Maria V.; Mills, Jon P.; Moore, Phil; Miller, Pauline E.; Chambers, Jonathan E.

    2017-12-01

    Unmanned aerial vehicles (UAVs) can provide observations of high spatio-temporal resolution to enable operational landslide monitoring. In this research, the construction of digital elevation models (DEMs) and orthomosaics from UAV imagery is achieved using structure-from-motion (SfM) photogrammetric procedures. The study examines the additional value that the morphological attribute of openness, amongst others, can provide to surface deformation analysis. Image-cross-correlation functions and DEM subtraction techniques are applied to the SfM outputs. Through the proposed integrated analysis, the automated quantification of a landslide's motion over time is demonstrated, with implications for the wider interpretation of landslide kinematics via UAV surveys.

  18. Geometry correction Algorithm for UAV Remote Sensing Image Based on Improved Neural Network

    Science.gov (United States)

    Liu, Ruian; Liu, Nan; Zeng, Beibei; Chen, Tingting; Yin, Ninghao

    2018-03-01

    Aiming at the disadvantage of current geometry correction algorithm for UAV remote sensing image, a new algorithm is proposed. Adaptive genetic algorithm (AGA) and RBF neural network are introduced into this algorithm. And combined with the geometry correction principle for UAV remote sensing image, the algorithm and solving steps of AGA-RBF are presented in order to realize geometry correction for UAV remote sensing. The correction accuracy and operational efficiency is improved through optimizing the structure and connection weight of RBF neural network separately with AGA and LMS algorithm. Finally, experiments show that AGA-RBF algorithm has the advantages of high correction accuracy, high running rate and strong generalization ability.

  19. Unmanned air vehicle (UAV) ultra-persitence research

    Energy Technology Data Exchange (ETDEWEB)

    Dron, S. B.

    2012-03-01

    Sandia National Laboratories and Northrop Grumman Corporation Integrated Systems, Unmanned Systems (NGIS UMS) collaborated to further ultra-persistence technologies for unmanned air vehicles (UAVs). The greatest shortfalls in UAV capabilities have been repeatedly identified as (1) insufficient flight persistence or 'hang time,' (2) marginal electrical power for running higher power avionics and payload systems, and (3) inadequate communications bandwidth and reach. NGIS UMS requested support from Sandia to develop an ultra-persistent propulsion and power system (UP3S) for potential incorporation into next generation UAV systems. The team members tried to determine which energy storage and power generation concepts could most effectively push UAV propulsion and electrical power capabilities to increase UAV sortie duration from days to months while increasing available electrical power at least two-fold. Primary research and development areas that were pursued included these goals: perform general system engineering and integration analyses; develop initial thermal and electrical power estimates; provide mass, volume, dimensional, and balance estimates; conduct preliminary safety assessments; assess logistics support requirements; perform, preliminary assessments of any security and safeguards; evaluate options for removal, replacement, and disposition of materials; generally advance the potential of the UP3S concept. The effort contrasted and compared eight heat sources technologies, three power conversion, two dual cycle propulsion system configurations, and a single electrical power generation scheme. Overall performance, specific power parameters, technical complexities, security, safety, and other operational features were successfully investigated. Large and medium sized UAV systems were envisioned and operational flight profiles were developed for each concept. Heat source creation and support challenges for domestic and expeditionary operations were

  20. Study on the aerodynamic behavior of a UAV with an applied seeder for agricultural practices

    Science.gov (United States)

    Felismina, Raimundo; Silva, Miguel; Mateus, Artur; Malça, Cândida

    2017-06-01

    It is irrefutable that the use of Unmanned Airborne Vehicle Systems (UAVs) in agricultural tasks and on the analysis of health and vegetative conditions represents a powerful tool in modern agriculture. To contribute to the growth of the agriculture economic sector a seeder to be coupled to any type of UAV was previously developed and designed by the authors. This seeder allows for the deposition of seeds with positional accuracy, i.e., seeds are accurately deposited at pre-established distances between plants [1]. This work aims at analyzing the aerodynamic behavior of UAV/Seeder assembly to determine the suitable inclination - among 0°, 15° and 30° - for its takeoff and for its motion during the seeding operation and, in turn, to define the suitable flight plan that increases the batteries autonomy. For this the ANSYS® FLUENT computational tool was used to simulate a wind tunnel which has as principle the Navier-Stokes differential equations, that designates the fluid flow around the UAV/Seeder assembly. The aerodynamic results demonstrated that for take-off the UAV inclination of 30° is the aerodynamically most favorable position due to the lower aerodynamic drag during the climb. Concerning flying motion during the seeding procedure the UAV inclination of 0° is that which leads to lower UAV/Seeder frontal area and drag coefficient.

  1. Implementation Of Vision-Based Landing Target Detection For VTOL UAV Using Raspberry Pi

    Directory of Open Access Journals (Sweden)

    Ei Ei Nyein

    2017-04-01

    Full Text Available This paper presents development and implementation of a real-time vision-based landing system for VTOL UAV. We use vision for precise target detection and recognition. A UAV is equipped with the onboard raspberry pi camera to take images and raspberry pi platform to operate the image processing techniques. Today image processing is used for various applications in this paper it is used for landing target extraction. And vision system is also used for take-off and landing function in VTOL UAV. Our landing target design is used as the helipad H shape. Firstly the image is captured to detect the target by the onboard camera. Next the capture image is operated in the onboard processor. Finally the alert sound signal is sent to the remote control RC for landing VTOL UAV. The information obtained from vision system is used to navigate a safe landing. The experimental results from real tests are presented.

  2. Identification of human operator performance models utilizing time series analysis

    Science.gov (United States)

    Holden, F. M.; Shinners, S. M.

    1973-01-01

    The results of an effort performed by Sperry Systems Management Division for AMRL in applying time series analysis as a tool for modeling the human operator are presented. This technique is utilized for determining the variation of the human transfer function under various levels of stress. The human operator's model is determined based on actual input and output data from a tracking experiment.

  3. A safe operating space for humanity

    NARCIS (Netherlands)

    Rockström, J.; Steffen, W.; Noone, K.; Scheffer, M.

    2009-01-01

    New approach proposed for defining preconditions for human development Crossing certain biophysical thresholds could have disastrous consequences for humanity Three of nine interlinked planetary boundaries have already been overstepped

  4. The human factor in nuclear reactor operation

    International Nuclear Information System (INIS)

    Bertron, L.

    1982-05-01

    The principal operating characteristics of nuclear power plants are summarized. A description of major hazards relating to operator fallibility in normal and abnormal operating conditions is followed by a specific analysis of control room hazards, shift organization and selection and training of management personnel

  5. Human factors in nuclear power plant operations

    International Nuclear Information System (INIS)

    Swain, A.D.

    1980-08-01

    This report describes some of the human factors problems in nuclear power plants and the technology that can be employed to reduce those problems. Many of the changes to improve the human factors in existing plants are inexpensive, and the expected gain in human reliability is substantial. The human factors technology is well-established and there are practitioners in most countries that have nuclear power plants

  6. Radar sensing via a Micro-UAV-borne system

    Science.gov (United States)

    Catapano, Ilaria; Ludeno, Giovanni; Gennarelli, Gianluca; Soldovieri, Francesco; Rodi Vetrella, Amedeo; Fasano, Giancarmine

    2017-04-01

    -equipped drone. The system is made by a commercial radar system, whose mass, size, power and cost budgets is compatible with the installation on micro-UAV. The radar system has been mounted on a DJI 550 UAV, a flexible hexacopter allowing both complex flight operations and static flight, and has been equipped with small size log-periodic antennas, having a 6 dB gain over the frequency range from 2 GHz to 11 GHz. An ad-hoc signal processing chain has been adopted to process the collected raw data and obtain an image of the investigated scenario providing an accurate target detection and localization. This chain involves a SVD-based noise filter procedure and an advanced data processing approach, which assumes a linear model of the underlying scattering phenomenon. REFERENCES [1] K. Whitehead, C. H. Hugenholtz, "Remote sensing of the environment with small unmanned aircraft systems (UASs), part 1: a review of progress and challenges", J. Unmanned Vehicle Systems, vol.2, pp. 69-85, 2014. [2] K. Ouchi, Recent trend and advance of synthetic aperture radar with selected topics, Remote Sens, vol.5, pp.716-807, 2013. [3] D. Altdor et al., UAV-borne electromagnetic induction and ground-penetrating radar measurements: a feasibility test, 74th Annual Meeting of the Deutsche Geophysikalische Gesellschaft in Karlsruhe, Germany, March 9 - 13, 2014.

  7. Estimating the Rut Depth by UAV Photogrammetry

    Directory of Open Access Journals (Sweden)

    Paavo Nevalainen

    2017-12-01

    Full Text Available The rut formation during forest operations is an undesirable phenomenon. A methodology is being proposed to measure the rut depth distribution of a logging site by photogrammetric point clouds produced by unmanned aerial vehicles (UAV. The methodology includes five processing steps that aim at reducing the noise from the surrounding trees and undergrowth for identifying the trails. A canopy height model is produced to focus the point cloud on the open pathway around the forest machine trail. A triangularized ground model is formed by a point cloud filtering method. The ground model is vectorized using the histogram of directed curvatures (HOC method to produce an overall ground visualization. Finally, a manual selection of the trails leads to an automated rut depth profile analysis. The bivariate correlation (Pearson’s r between rut depths measured manually and by UAV photogrammetry is r = 0.67 . The two-class accuracy a of detecting the rut depth exceeding 20 cm is a = 0.65 . There is potential for enabling automated large-scale evaluation of the forestry areas by using autonomous drones and the process described.

  8. Teaching UAVs to Race With Observational Imitation Learning

    KAUST Repository

    Li, Guohao

    2018-03-03

    Recent work has tackled the problem of autonomous navigation by imitating a teacher and learning an end-to-end policy, which directly predicts controls from raw images. However, these approaches tend to be sensitive to mistakes by the teacher and do not scale well to other environments or vehicles. To this end, we propose a modular network architecture that decouples perception from control, and is trained using Observational Imitation Learning (OIL), a novel imitation learning variant that supports online training and automatic selection of optimal behavior from observing multiple teachers. We apply our proposed methodology to the challenging problem of unmanned aerial vehicle (UAV) racing. We develop a simulator that enables the generation of large amounts of synthetic training data (both UAV captured images and its controls) and also allows for online learning and evaluation. We train a perception network to predict waypoints from raw image data and a control network to predict UAV controls from these waypoints using OIL. Our modular network is able to autonomously fly a UAV through challenging race tracks at high speeds. Extensive experiments demonstrate that our trained network outperforms its teachers, end-to-end baselines, and even human pilots in simulation. The supplementary video can be viewed at https://youtu.be/PeTXSoriflc

  9. Teaching UAVs to Race With Observational Imitation Learning

    KAUST Repository

    Li, Guohao; Mueller, Matthias; Casser, Vincent; Smith, Neil; Michels, Dominik L.; Ghanem, Bernard

    2018-01-01

    Recent work has tackled the problem of autonomous navigation by imitating a teacher and learning an end-to-end policy, which directly predicts controls from raw images. However, these approaches tend to be sensitive to mistakes by the teacher and do not scale well to other environments or vehicles. To this end, we propose a modular network architecture that decouples perception from control, and is trained using Observational Imitation Learning (OIL), a novel imitation learning variant that supports online training and automatic selection of optimal behavior from observing multiple teachers. We apply our proposed methodology to the challenging problem of unmanned aerial vehicle (UAV) racing. We develop a simulator that enables the generation of large amounts of synthetic training data (both UAV captured images and its controls) and also allows for online learning and evaluation. We train a perception network to predict waypoints from raw image data and a control network to predict UAV controls from these waypoints using OIL. Our modular network is able to autonomously fly a UAV through challenging race tracks at high speeds. Extensive experiments demonstrate that our trained network outperforms its teachers, end-to-end baselines, and even human pilots in simulation. The supplementary video can be viewed at https://youtu.be/PeTXSoriflc

  10. Annual Targets UAVS and Range Operations Symposium and Exhibition (48th) Held in New Orleans, Louisiana on October 19-21, 2010

    Science.gov (United States)

    2010-10-21

    Managemen t Office103 SA- TECH 107 20 ’ N or th ro p G ru m m...vehicle requirements • We bring the know how and ability to modify signatures, integrate threat EW payloads, and operate th hi l i l i t Approved for...Energy T &E at Weapons Division Approved for 1 06 Aug 2009 Public Release NAVAIR Public Affairs Office Take - Aways • NAVAIR operates full-service,

  11. UAV-based Radar Sounding of Antarctic Ice

    Science.gov (United States)

    Leuschen, Carl; Yan, Jie-Bang; Mahmood, Ali; Rodriguez-Morales, Fernando; Hale, Rick; Camps-Raga, Bruno; Metz, Lynsey; Wang, Zongbo; Paden, John; Bowman, Alec; Keshmiri, Shahriar; Gogineni, Sivaprasad

    2014-05-01

    We developed a compact radar for use on a small UAV to conduct measurements over the ice sheets in Greenland and Antarctica. It operates at center frequencies of 14 and 35 MHz with bandwidths of 1 MHz and 4 MHz, respectively. The radar weighs about 2 kgs and is housed in a box with dimensions of 20.3 cm x 15.2 cm x 13.2 cm. It transmits a signal power of 100 W at a pulse repletion frequency of 10 kHz and requires average power of about 20 W. The antennas for operating the radar are integrated into the wings and airframe of a small UAV with a wingspan of 5.3 m. We selected the frequencies of 14 and 35 MHz based on previous successful soundings of temperate ice in Alaska with a 12.5 MHz impulse radar [Arcone, 2002] and temperate glaciers in Patagonia with a 30 MHz monocycle radar [Blindow et al., 2012]. We developed the radar-equipped UAV to perform surveys over a 2-D grid, which allows us to synthesize a large two-dimensional aperture and obtain fine resolution in both the along- and cross-track directions. Low-frequency, high-sensitivity radars with 2-D aperture synthesis capability are needed to overcome the surface and volume scatter that masks weak echoes from the ice-bed interface of fast-flowing glaciers. We collected data with the radar-equipped UAV on sub-glacial ice near Lake Whillans at both 14 and 35 MHz. We acquired data to evaluate the concept of 2-D aperture synthesis and successfully demonstrated the first successful sounding of ice with a radar on an UAV. We are planning to build multiple radar-equipped UAVs for collecting fine-resolution data near the grounding lines of fast-flowing glaciers. In this presentation we will provide a brief overview of the radar and UAV, as well as present results obtained at both 14 and 35 MHz. Arcone, S. 2002. Airborne-radar stratigraphy and electrical structure of temperate firn: Bagley Ice Field, Alaska, U.S.A. Journal of Glaciology, 48, 317-334. Blindow, N., C. Salat, and G. Casassa. 2012. Airborne GPR sounding of

  12. The human factor in the operation of nuclear powered submarines

    International Nuclear Information System (INIS)

    Dambier, M.

    1982-05-01

    The conditions characterizing the operation of nuclear powered submarines are described and the precautionary measures suitable to reduce the incidence of human errors and their consequences are explained

  13. The human failure factors during emergency operating

    International Nuclear Information System (INIS)

    Liu Bingji

    1994-01-01

    In the case of emergency operating, operating staff usually are in the limit state of mind, so the operating mistake rate will go up sharply, and the disastrous accidents usually will happen at this moment. So to study and resolve the problem is very important and imperative. Basing on raising the reliability of man-machine system, the psychology and pathology of operating staff under the limit state and the behavior characteristic of operating staff in the emergency operation have been expounded here, and the operating staff's psychological gradation partitioned by foreign experts also has been introduced, and the influence factors of psychology and equipment which lead to the limit state of mind also have been analyzed. In addition, taking the emergency operation of the nuclear power plant as a example, The authors has studied the countermeasures to prevent the limit state from occurring, which includes countermeasures to environment effects, measures to improve the technical equipment and the measures that the operating staff should be taken

  14. Characterization of UAV Performance and Development of a Formation Flight Controller for Multiple Small UAVS

    National Research Council Canada - National Science Library

    McCarthy, Patrick A

    2006-01-01

    ... (UAV). One area of particular interest is using multiple small UAVs cooperatively to improve mission efficiency, as well as perform missions that couldn't be performed using vehicles independently...

  15. Development of a bio-inspired UAV perching system

    Science.gov (United States)

    Xie, Pu

    of animals and human arms approaching to a fixed or moving target for grasping or capturing. The autonomous flight control was also implemented through a PID controller. Autonomous flight performance was proved through simulation in SimMechanics. Finally, the prototyping of our designs were conducted in different generations of our bio-inspired UAV perching system, which include the leg prototype, gripper prototype, and system prototype. Both the machined prototype and 3D printed prototype were tried. The performance of these prototypes was tested through experiments.

  16. Volcanic Plume Measurements with UAV (Invited)

    Science.gov (United States)

    Shinohara, H.; Kaneko, T.; Ohminato, T.

    2013-12-01

    Volatiles in magmas are the driving force of volcanic eruptions and quantification of volcanic gas flux and composition is important for the volcano monitoring. Recently we developed a portable gas sensor system (Multi-GAS) to quantify the volcanic gas composition by measuring volcanic plumes and obtained volcanic gas compositions of actively degassing volcanoes. As the Multi-GAS measures variation of volcanic gas component concentrations in the pumped air (volcanic plume), we need to bring the apparatus into the volcanic plume. Commonly the observer brings the apparatus to the summit crater by himself but such measurements are not possible under conditions of high risk of volcanic eruption or difficulty to approach the summit due to topography etc. In order to overcome these difficulties, volcanic plume measurements were performed by using manned and unmanned aerial vehicles. The volcanic plume measurements by manned aerial vehicles, however, are also not possible under high risk of eruption. The strict regulation against the modification of the aircraft, such as installing sampling pipes, also causes difficulty due to the high cost. Application of the UAVs for the volcanic plume measurements has a big advantage to avoid these problems. The Multi-GAS consists of IR-CO2 and H2O gas analyzer, SO2-H2O chemical sensors and H2 semiconductor sensor and the total weight ranges 3-6 kg including batteries. The necessary conditions of the UAV for the volcanic plumes measurements with the Multi-GAS are the payloads larger than 3 kg, maximum altitude larger than the plume height and installation of the sampling pipe without contamination of the exhaust gases, as the exhaust gases contain high concentrations of H2, SO2 and CO2. Up to now, three different types of UAVs were applied for the measurements; Kite-plane (Sky Remote) at Miyakejima operated by JMA, Unmanned airplane (Air Photo Service) at Shinomoedake, Kirishima volcano, and Unmanned helicopter (Yamaha) at Sakurajima

  17. Cooperative control of UAVs for localization of intermittently emitting mobile targets.

    Science.gov (United States)

    Pack, Daniel J; Delima, Pedro; Toussaint, Gregory J; York, George

    2009-08-01

    Compared with a single platform, cooperative autonomous unmanned aerial vehicles (UAVs) offer efficiency and robustness in performing complex tasks. Focusing on ground mobile targets that intermittently emit radio frequency signals, this paper presents a decentralized control architecture for multiple UAVs, equipped only with rudimentary sensors, to search, detect, and locate targets over large areas. The proposed architecture has in its core a decision logic which governs the state of operation for each UAV based on sensor readings and communicated data. To support the findings, extensive simulation results are presented, focusing primarily on two success measures that the UAVs seek to minimize: overall time to search for a group of targets and the final target localization error achieved. The results of the simulations have provided support for hardware flight tests.

  18. Distributed UAV-Swarm Real-Time Geomatic Data Collection Under Dynamically Changing Resolution Requirements

    Science.gov (United States)

    Almeida, Miguel; Hildmann, Hanno; Solmaz, Gürkan

    2017-08-01

    Unmanned Aerial Vehicles (UAVs) have been used for reconnaissance and surveillance missions as far back as the Vietnam War, but with the recent rapid increase in autonomy, precision and performance capabilities - and due to the massive reduction in cost and size - UAVs have become pervasive products, available and affordable for the general public. The use cases for UAVs are in the areas of disaster recovery, environmental mapping & protection and increasingly also as extended eyes and ears of civil security forces such as fire-fighters and emergency response units. In this paper we present a swarm algorithm that enables a fleet of autonomous UAVs to collectively perform sensing tasks related to environmental and rescue operations and to dynamically adapt to e.g. changing resolution requirements. We discuss the hardware used to build our own drones and the settings under which we validate the proposed approach.

  19. Using Natural Language to Enable Mission Managers to Control Multiple Heterogeneous UAVs

    Science.gov (United States)

    Trujillo, Anna C.; Puig-Navarro, Javier; Mehdi, S. Bilal; Mcquarry, A. Kyle

    2016-01-01

    The availability of highly capable, yet relatively cheap, unmanned aerial vehicles (UAVs) is opening up new areas of use for hobbyists and for commercial activities. This research is developing methods beyond classical control-stick pilot inputs, to allow operators to manage complex missions without in-depth vehicle expertise. These missions may entail several heterogeneous UAVs flying coordinated patterns or flying multiple trajectories deconflicted in time or space to predefined locations. This paper describes the functionality and preliminary usability measures of an interface that allows an operator to define a mission using speech inputs. With a defined and simple vocabulary, operators can input the vast majority of mission parameters using simple, intuitive voice commands. Although the operator interface is simple, it is based upon autonomous algorithms that allow the mission to proceed with minimal input from the operator. This paper also describes these underlying algorithms that allow an operator to manage several UAVs.

  20. Comprehensive UAV agricultural remote-sensing research at Texas A M University

    Science.gov (United States)

    Thomasson, J. Alex; Shi, Yeyin; Olsenholler, Jeffrey; Valasek, John; Murray, Seth C.; Bishop, Michael P.

    2016-05-01

    Unmanned aerial vehicles (UAVs) have advantages over manned vehicles for agricultural remote sensing. Flying UAVs is less expensive, is more flexible in scheduling, enables lower altitudes, uses lower speeds, and provides better spatial resolution for imaging. The main disadvantage is that, at lower altitudes and speeds, only small areas can be imaged. However, on large farms with contiguous fields, high-quality images can be collected regularly by using UAVs with appropriate sensing technologies that enable high-quality image mosaics to be created with sufficient metadata and ground-control points. In the United States, rules governing the use of aircraft are promulgated and enforced by the Federal Aviation Administration (FAA), and rules governing UAVs are currently in flux. Operators must apply for appropriate permissions to fly UAVs. In the summer of 2015 Texas A&M University's agricultural research agency, Texas A&M AgriLife Research, embarked on a comprehensive program of remote sensing with UAVs at its 568-ha Brazos Bottom Research Farm. This farm is made up of numerous fields where various crops are grown in plots or complete fields. The crops include cotton, corn, sorghum, and wheat. After gaining FAA permission to fly at the farm, the research team used multiple fixed-wing and rotary-wing UAVs along with various sensors to collect images over all parts of the farm at least once per week. This article reports on details of flight operations and sensing and analysis protocols, and it includes some lessons learned in the process of developing a UAV remote-sensing effort of this sort.

  1. Ergonomics design and operator training as contributors to human reliability

    International Nuclear Information System (INIS)

    Jackson, A.R.G.; Madden, V.J.; Umbers, I.G.; Williams, J.C.

    1987-01-01

    The safe operation of nuclear reactors depends not only on good physical safety engineering but on the human operators as well. The Central Electricity Generating Board's approach to human reliability includes the following aspects: ergonomics design (task analysis and the development of man-machine interfaces), analysis of human reliability, operational feedback, staff training and assessment, maintenance management, research programmes and management. This paper describes how these combine to achieve the highest practicable level of human reliability, not only for the Sizewell-B pressurized water reactor, but also for the Board's gas-cooled reactors. Examples are used to illustrate the topics considered. (UK)

  2. Design of UAV (Diseño de un UAV)

    OpenAIRE

    Sacristán Estévez, José María

    2016-01-01

    En este proyecto se ha diseñado un dron, un vehículo aéreo no tripulado (UAV en sus siglas inglesas). El propósito de este proyecto es empezar el diseño desde cero hasta poder vender el dron y que sea rentable. Han sido calculados los parámetros necesarios para comenzar el diseño. Se ha comprobado si todas las partes del UAV son capaces de resistir un impacto contra el suelo durante su uso, y se ha buscado la forma más óptima de conseguir los materiales, así de cómo fabricar ciertas partes y ...

  3. Space operations and the human factor

    Science.gov (United States)

    Brody, Adam R.

    1993-10-01

    Although space flight does not put the public at high risk, billions of dollars in hardware are destroyed and the space program halted when an accident occurs. Researchers are therefore applying human-factors techniques similar to those used in the aircraft industry, albeit at a greatly reduced level, to the spacecraft environment. The intent is to reduce the likelihood of catastrophic failure. To increase safety and efficiency, space human factors researchers have simulated spacecraft docking and extravehicular activity rescue. Engineers have also studied EVA suit mobility and aids. Other basic human-factors issues that have been applied to the space environment include antropometry, biomechanics, and ergonomics. Workstation design, workload, and task analysis currently receive much attention, as do habitability and other aspects of confined environments. Much work also focuses on individual payloads, as each presents its own complexities.

  4. Research on erroneous judgement and operation of human at emergency

    International Nuclear Information System (INIS)

    Zhang Li; Huang Shudong; Li Xianyi; Chen Jianhua

    2001-01-01

    The behavior characteristic of human at emergency is analysed, and the root causes and the influencing factors are discussed, which result in erroneous judgement and operation. With experiment on erroneous judgement and operation of human at emergency, the error characteristic values are obtained, then the mathematical models are established. Comparing to foreign data, it is known that there are no marked differences between Chinese and foreigners in percent of erroneous judgement and operation at emergency

  5. UAV Swarming? So What are Those Swarms, What are the Implications, and How Do We Handle Them?

    National Research Council Canada - National Science Library

    Clough, Bruce

    2002-01-01

    ... not. The aerospace research community is working hard at developing UAV control technology that requires as little human supervision as possible, and concepts using swarms are receiving serious attention...

  6. Earthbound Unmanned Autonomous Vehicles (UAVS) As Planetary Science Testbeds

    Science.gov (United States)

    Pieri, D. C.; Bland, G.; Diaz, J. A.; Fladeland, M. M.

    2014-12-01

    Recent advances in the technology of unmanned vehicles have greatly expanded the range of contemplated terrestrial operational environments for their use, including aerial, surface, and submarine. The advances have been most pronounced in the areas of autonomy, miniaturization, durability, standardization, and ease of operation, most notably (especially in the popular press) for airborne vehicles. Of course, for a wide range of planetary venues, autonomy at high cost of both money and risk, has always been a requirement. Most recently, missions to Mars have also featured an unprecedented degree of mobility. Combining the traditional planetary surface deployment operational and science imperatives with emerging, very accessible, and relatively economical small UAV platforms on Earth can provide flexible, rugged, self-directed, test-bed platforms for landed instruments and strategies that will ultimately be directed elsewhere, and, in the process, provide valuable earth science data. While the most direct transfer of technology from terrestrial to planetary venues is perhaps for bodies with atmospheres (and oceans), with appropriate technology and strategy accommodations, single and networked UAVs can be designed to operate on even airless bodies, under a variety of gravities. In this presentation, we present and use results and lessons learned from our recent earth-bound UAV volcano deployments, as well as our future plans for such, to conceptualize a range of planetary and small-body missions. We gratefully acknowledge the assistance of students and colleagues at our home institutions, and the government of Costa Rica, without which our UAV deployments would not have been possible. This work was carried out, in part, at the Jet Propulsion Laboratory of the California Institute of Technology under contract to NASA.

  7. UAV PHOTOGRAMMETRY: BLOCK TRIANGULATION COMPARISONS

    Directory of Open Access Journals (Sweden)

    R. Gini

    2013-08-01

    Full Text Available UAVs systems represent a flexible technology able to collect a big amount of high resolution information, both for metric and interpretation uses. In the frame of experimental tests carried out at Dept. ICA of Politecnico di Milano to validate vector-sensor systems and to assess metric accuracies of images acquired by UAVs, a block of photos taken by a fixed wing system is triangulated with several software. The test field is a rural area included in an Italian Park ("Parco Adda Nord", useful to study flight and imagery performances on buildings, roads, cultivated and uncultivated vegetation. The UAV SenseFly, equipped with a camera Canon Ixus 220HS, flew autonomously over the area at a height of 130 m yielding a block of 49 images divided in 5 strips. Sixteen pre-signalized Ground Control Points, surveyed in the area through GPS (NRTK survey, allowed the referencing of the block and accuracy analyses. Approximate values for exterior orientation parameters (positions and attitudes were recorded by the flight control system. The block was processed with several software: Erdas-LPS, EyeDEA (Univ. of Parma, Agisoft Photoscan, Pix4UAV, in assisted or automatic way. Results comparisons are given in terms of differences among digital surface models, differences in orientation parameters and accuracies, when available. Moreover, image and ground point coordinates obtained by the various software were independently used as initial values in a comparative adjustment made by scientific in-house software, which can apply constraints to evaluate the effectiveness of different methods of point extraction and accuracies on ground check points.

  8. GNSS Software Receiver for UAVs

    DEFF Research Database (Denmark)

    Olesen, Daniel Madelung; Jakobsen, Jakob; von Benzon, Hans-Henrik

    2016-01-01

    This paper describes the current activities of GPS/GNSS Software receiver development at DTU Space. GNSS Software receivers have received a great deal of attention in the last two decades and numerous implementations have already been presented. DTU Space has just recently started development of ...... of our own GNSS software-receiver targeted for mini UAV applications, and we will in in this paper present our current progress and briefly discuss the benefits of Software Receivers in relation to our research interests....

  9. APPLICABILITY ANALYSIS OF ULTRA-LIGHT UAV FOR FLOODING SITE SURVEY IN SOUTH KOREA

    Directory of Open Access Journals (Sweden)

    I. Lee

    2013-05-01

    Full Text Available Recently, UAV (Unmanned Aerial Vehicle is used in a variety of fields such as the military service, fire prevention, traffic supervision, mapping, and etc. The increased demand for UAVs is typically attributed to the low manufacturing and operational costs, flexibility of the platforms to accommodate the consumer’s particular needs and the elimination of the risk to pilots’ lives in difficult missions. But, in South Korea, UAV might be first introduced to military service, and is still in its infancy, just being available for construction site monitoring, landscape photographing, spraying agricultural chemicals, broadcasting fields. This study presents the background and the aim of flood mapping, and presents the possibility analysis of how to use UAV effectively for flooding area. And author tries to overlap UAV image with the flooding area trace surveyed by ground surveys. As a result, it is expected that UAV photogrammetry will contributes to investigating the flooded area by providing images, which is describing the flooded area in near real-time and also making a decision like paying compensation.

  10. Human-factor operating concept for Borssele Nuclear Power Station

    International Nuclear Information System (INIS)

    Wieman, J.L.

    1995-01-01

    The safety level in the operation of a reactor is determined basically by human beings. The Borssele Nuclear Power Station has carried out measures for improving the man-machine interface through training and operating instructions for the shift personnel. The retrofitting of control technology relevant to safety engineering should avoid operating instructions which can cause potential failures. A safety study has shown that the remaining risk following all retrofitting measures remains dependent to the extent of 80% on human factors and that human factors as a whole have a positive effect on reactor safety. (orig.) [de

  11. The Human Operator in Advanced Aerospace Systems

    Science.gov (United States)

    1981-12-15

    a very effective 6.1 program. The neuropsychological area is another area currently showing considerable promise. Research in this area should not...Things are not well in the world today in the most diLect and simple sense of the word. Hunger and death threaten the majority of men. That is why the...people from hunger and disease cannot contradict the source of active good, that which is most humane in man. I believe that mankind will find a rational

  12. Space Toxicology: Human Health during Space Operations

    Science.gov (United States)

    Khan-Mayberry, Noreen; James, John T.; Tyl, ROchelle; Lam, Chiu-Wing

    2010-01-01

    Space Toxicology is a unique and targeted discipline for spaceflight, space habitation and occupation of celestial bodies including planets, moons and asteroids. Astronaut explorers face distinctive health challenges and limited resources for rescue and medical care during space operation. A central goal of space toxicology is to protect the health of the astronaut by assessing potential chemical exposures during spaceflight and setting safe limits that will protect the astronaut against chemical exposures, in a physiologically altered state. In order to maintain sustained occupation in space on the International Space Station (ISS), toxicological risks must be assessed and managed within the context of isolation continuous exposures, reuse of air and water, limited rescue options, and the need to use highly toxic compounds for propulsion. As we begin to explore other celestial bodies in situ toxicological risks, such as inhalation of reactive mineral dusts, must also be managed.

  13. Control room human engineering influences on operator performance

    International Nuclear Information System (INIS)

    Finlayson, F.C.

    1977-01-01

    Three general groups of factors influence operator performance in fulfilling their responsibilities in the control room: (1) control room and control system design, informational data displays (operator inputs) as well as control board design (for operator output); (2) operator characteristics, including those skills, mental, physical, and emotional qualities which are functions of operator selection, training, and motivation; (3) job performance guides, the prescribed operating procedures for normal and emergency operations. This paper presents some of the major results of an evaluation of the effect of human engineering on operator performance in the control room. Primary attention is given to discussion of control room and control system design influence on the operator. Brief observations on the influences of operator characteristics and job performance guides (operating procedures) on performance in the control room are also given. Under the objectives of the study, special emphasis was placed on the evaluation of the control room-operator relationships for severe emergency conditions in the power plant. Consequently, this presentation is restricted largely to material related to emergency conditions in the control room, though it is recognized that human engineering of control systems is of equal (or greater) importance for many other aspects of plant operation

  14. Radio Channel Modelling for UAV Communication over Cellular Networks

    DEFF Research Database (Denmark)

    Amorim, Rafhael Medeiros de; Nguyen, Huan Cong; Mogensen, Preben Elgaard

    2017-01-01

    a commercial UAV. Our results show that path loss exponents decrease as the UAV moves up, approximating freespace propagation for horizontal ranges up to tens of kilometers at UAV heights around 100m. Our findings support the need of heightdependent parameters for describing the propagation channel for UAVs...

  15. Mini UAV as an improvised air threat

    NARCIS (Netherlands)

    Kraker, K.J. de; Wiel, R.A.N. van de

    2013-01-01

    The use of UAVs for military and law enforcement purposes is increasing dramatically. Simultaneously, possible opponents are also developing UAV capabilities that they may deploy for their purposes. For example, a terrorist may deploy a commercially available model airplane or multicopter with an

  16. Landing spot selection for UAV emergency landing

    NARCIS (Netherlands)

    Eendebak, P.T.; Eekeren, A.W.M. van; Hollander, R.J.M. den

    2013-01-01

    We present a robust method for landing zone selection using obstacle detection to be used for UAV emergency landings. The method is simple enough to allow real-time implementation on a UAV system. The method is able to detect objects in the presence of camera movement and motion parallax. Using the

  17. SLIC superpixels for object delineation UAV data

    NARCIS (Netherlands)

    Crommelinck, Sophie Charlotte; Bennett, R.M.; Gerke, Markus; Koeva, M.N.; Yang, M.Y.; Vosselman, G.; Stachniss, C.; Förstner, W.; Schneider, J.

    2017-01-01

    Unmanned aerial vehicles (UAV) are increasingly investigated with regard to their potential to create and update (cadastral) maps. UAVs provide a flexible and low-cost platform for high-resolution data, from which object outlines can be accurately delineated. This delineation could be automated with

  18. Analysis of a UAV that can Hover and Fly Level

    Directory of Open Access Journals (Sweden)

    Çakıcı Ferit

    2016-01-01

    Full Text Available In this study, an unmanned aerial vehicle (UAV with level flight, vertical take-off and landing (VTOL and mode-changing capability is analysed. The platform design combines both multirotor and fixed-wing (FW conventional airplane structures and control surfaces; therefore, named as VTOL-FW. The aircraft is modelled using aerodynamical principles and linear models are constructed utilizing small perturbation theory for trim conditions. The proposed method of control includes implementation of multirotor and airplane mode controllers and design of an algorithm to transition between modes in achieving smooth switching manoeuvres between VTOL and FW flight. Thus, VTOL-FW UAV’s flight characteristics are expected to be improved by enlarging operational flight envelope through enabling mode-transitioning, agile manoeuvres and increasing survivability. Experiments conducted in simulation and real world environments show that, VTOL-FW UAV has both multirotor and airplane characteristics with extra benefits in an enlarged flight envelope.

  19. Assuring human operator alertness at night in power plants

    International Nuclear Information System (INIS)

    Moore-Ede, M.C.

    1988-01-01

    The human body is not designed for peak alertness and performance at night, nor is it well-equipped to cope with the frequent day-night inversions required by rotating shift work schedules. As a result, the human operator can become the weak link in a complex technological operation such as a nuclear power plant. The high degree of dependence on human operator vigilance, decision-making ability and performance that is required in nuclear power plant operations can conflict with the human sleepiness and error-proneness which naturally occur during the night shift or after extended periods without adequate sleep. An opportunity to address these problems has come from a series of major research advances in basic circadian physiology

  20. 14th Biennial conference on reactor operating experience plant operations: The human element

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Separate abstracts were prepared for the papers presented in the following areas of interest: enhancing operator performance; structured approaches to maintenance standards and reliability-centered maintenance; human issues in plant operations and management; test, research, and training reactor utilization; methods and applications of root-cause analysis; emergency operating procedure enhancement programs; test, research, and training reactor upgrades; valve maintenance and diagnostics; recent operating experiences; and current maintenance issues

  1. Uav Positioning and Collision Avoidance Based on RSS Measurements

    Science.gov (United States)

    Masiero, A.; Fissore, F.; Guarnieri, A.; Pirotti, F.; Vettore, A.

    2015-08-01

    In recent years, Unmanned Aerial Vehicles (UAVs) are attracting more and more attention in both the research and industrial communities: indeed, the possibility to use them in a wide range of remote sensing applications makes them a very flexible and attractive solution in both civil and commercial cases (e.g. precision agriculture, security and control, monitoring of sites, exploration of areas difficult to reach). Most of the existing UAV positioning systems rely on the use of the GPS signal. Despite this can be a satisfactory solution in open environments where the GPS signal is available, there are several operating conditions of interest where it is unavailable or unreliable (e.g. close to high buildings, or mountains, in indoor environments). Consequently, a different approach has to be adopted in these cases. This paper considers the use ofWiFi measurements in order to obtain position estimations of the device of interest. More specifically, to limit the costs for the devices involved in the positioning operations, an approach based on radio signal strengths (RSS) measurements is considered. Thanks to the use of a Kalman filter, the proposed approach takes advantage of the temporal dynamic of the device of interest in order to improve the positioning results initially provided by means of maximum likelihood estimations. The considered UAVs are assumed to be provided with communication devices, which can allow them to communicate with each other in order to improve their cooperation abilities. In particular, the collision avoidance problem is examined in this work.

  2. Supporting human performance in operations - principles for new nuclear build

    International Nuclear Information System (INIS)

    Lane, L.; Davey, E.

    2006-01-01

    Operational experience worldwide continues to demonstrate that human performance is a key factor in the ongoing safety, production, and protection of investment in operation of nuclear plants for electricity generation. Human performance in support of plant operational objectives can be influenced by a range of factors, for example: organizational culture and expectations; role assignments, training, and individual and team behaviours; and the support offered by the workplace environment, tools, and task design. This paper outlines a perspective on some of the principles that should be considered for application in the design of new nuclear build to facilitate support for human performance in plant operations. The principles identified focus on but are not limited to the tasks of shift staff, and are derived from the observations and experience of the authors who are experienced with control room operations in current plants. (author)

  3. Supporting human performance in operations - principles for new nuclear build

    Energy Technology Data Exchange (ETDEWEB)

    Lane, L. [Ontario Power Generation, Darlington Nuclear Div., Bowmanville, Ontario (Canada); Davey, E. [Crew Systems Solutions, Deep River, Ontario (Canada)

    2006-07-01

    Operational experience worldwide continues to demonstrate that human performance is a key factor in the ongoing safety, production, and protection of investment in operation of nuclear plants for electricity generation. Human performance in support of plant operational objectives can be influenced by a range of factors, for example: organizational culture and expectations; role assignments, training, and individual and team behaviours; and the support offered by the workplace environment, tools, and task design. This paper outlines a perspective on some of the principles that should be considered for application in the design of new nuclear build to facilitate support for human performance in plant operations. The principles identified focus on but are not limited to the tasks of shift staff, and are derived from the observations and experience of the authors who are experienced with control room operations in current plants. (author)

  4. Human factors in the operation of nuclear power plants

    International Nuclear Information System (INIS)

    Swaton, E.; Neboyan, V.; Lederman, L.

    1987-01-01

    In large and complex interactive systems, human error can contribute substantially to system failures. At nuclear power plants, operational experience demonstrates that human error accounts for a considerable proportion of safety-related incidents. However, experience also shows that human intervention can be very effective if there is a thorough understanding of the situation in the plant. Thus, an efficient interface of man and machine is important not only to prevent human errors but also to assist the operator in coping with unforeseen events. Human reliability can be understood as a qualitative as well as a quantitative term. Qualitatively it can be described as the aim for successful human performance of activities necessary for system reliability and availability. Quantitatively, it refers to data on failure rates or error probabilities that can be used, for example, for probabilistic safety assessments

  5. Research on the NPP human factors engineering operating experience review

    International Nuclear Information System (INIS)

    Ren Xiangchen; Miao Hongxing; Ning Zhonghe

    2006-01-01

    This paper addresses the importance of the human factors engineering (HFE) for the design of nuclear power plant (NPP), especially for the design of human-machine interface in the NPP. It also summarizes the scope and content of the NPP HFE. The function, scope, content and process of the NPP human factors engineering operating experience review (OER) are mainly focused on, and significantly discussed. Finally, it briefly introduces the situation of the studies on the OER in China. (authors)

  6. Modelling the basic error tendencies of human operators

    International Nuclear Information System (INIS)

    Reason, J.

    1988-01-01

    The paper outlines the primary structural features of human cognition: a limited, serial workspace interacting with a parallel distributed knowledge base. It is argued that the essential computational features of human cognition - to be captured by an adequate operator model - reside in the mechanisms by which stored knowledge structures are selected and brought into play. Two such computational 'primitives' are identified: similarity-matching and frequency-gambling. These two retrieval heuristics, it is argued, shape both the overall character of human performance (i.e. its heavy reliance on pattern-matching) and its basic error tendencies ('strong-but-wrong' responses, confirmation, similarity and frequency biases, and cognitive 'lock-up'). The various features of human cognition are integrated with a dynamic operator model capable of being represented in software form. This computer model, when run repeatedly with a variety of problem configurations, should produce a distribution of behaviours which, in total, simulate the general character of operator performance. (author)

  7. Modelling the basic error tendencies of human operators

    International Nuclear Information System (INIS)

    Reason, James

    1988-01-01

    The paper outlines the primary structural features of human cognition: a limited, serial workspace interacting with a parallel distributed knowledge base. It is argued that the essential computational features of human cognition - to be captured by an adequate operator model - reside in the mechanisms by which stored knowledge structures are selected and brought into play. Two such computational 'primitives' are identified: similarity-matching and frequency-gambling. These two retrieval heuristics, it is argued, shape both the overall character of human performance (i.e. its heavy reliance on pattern-matching) and its basic error tendencies ('strong-but-wrong' responses, confirmation, similarity and frequency biases, and cognitive 'lock-up'). The various features of human cognition are integrated with a dynamic operator model capable of being represented in software form. This computer model, when run repeatedly with a variety of problem configurations, should produce a distribution of behaviours which, in toto, simulate the general character of operator performance. (author)

  8. Maritime-Based UAVs: A Key to Success for the Joint Force Commander

    Science.gov (United States)

    2015-05-18

    Arabian Peninsula AOR Area of Responsibility BOO Base of Operations BAMS Broad Area Maritime Surveillance CJCS Chairman of the Joint Chiefs of Staff...Afghanistan and Pakistan.”xx But using these UAVs requires months of diplomatic planning and preparation to negotiate a base of operations ( BOO

  9. A NEW APPROACH TO FAST MOSAIC UAV IMAGES

    Directory of Open Access Journals (Sweden)

    Q. Liu

    2012-09-01

    Full Text Available Unmanned Aerial Vehicles (UAVs have been widely used to acquire high quality terrain images of the areas of interest, particularly when such a task could potentially risk human life or even impossible as the areas cannot be accessed easily by surveyors. Once the images have been obtained, traditional photogrammetric processing process can be used to establish a relative orientation model and then, absolute orientation model with the procedures of space resection and intersection. In many such applications, the geo- referenced images which are stitched together to represent the geospatial relationships for the feature objects are sufficient. A fast or near real-time processing approach for UAV images using GPS/INS data has being investigated for years. One beneficial application of such approach is the capability of quick production of geo-referenced images for various engineering or business activities, such as urban and road planning, the site selection of factories and bridges, etc. In this paper, we have proposed a new fast processing approach for the UAV images collected with an integrated GPS/INS/Vision system. The approach features that the corresponding points between images have been determined, and then coordinate transformation is carried out to implement image stitching. The accuracy of corresponding points normally affects the quality of stitched images, but the results of our experiments revealed that the image stitching errors were obvious even the accuracy of corresponding points was high. The stitching errors could be caused by the changes of surface elevation.

  10. Photovoltaic electric power applied to Unmanned Aerial Vehicles (UAV)

    Science.gov (United States)

    Geis, Jack; Arnold, Jack H.

    1994-01-01

    Photovoltaic electric-powered flight is receiving a great deal of attention in the context of the United States' Unmanned Aerial Vehicle (UAV) program. This paper addresses some of the enabling technical areas and their potential solutions. Of particular interest are the long-duration, high-altitude class of UAV's whose mission it is to achieve altitudes between 60,000 and 100,000 feet, and to remain at those altitudes for prolonged periods performing various mapping and surveillance activities. Addressed herein are studies which reveal the need for extremely light-weight and efficient solar cells, high-efficiency electric motor-driven propeller modules, and power management and distribution control elements. Since the potential payloads vary dramatically in their power consumption and duty cycles, a typical load profile has been selected to provide commonality for the propulsion power comparisons. Since missions vary widely with respect to ground coverage requirements, from repeated orbiting over a localized target to long-distance routes over irregular terrain, we have also averaged the power requirements for on-board guidance and control power, as well as ground control and communication link utilization. In the context of the national technology reinvestment program, wherever possible we modeled components and materials which have been qualified for space and defense applications, yet are compatible with civilian UAV activities. These include, but are not limited to, solar cell developments, electric storage technology for diurnal operation, local and ground communications, power management and distribution, and control servo design. And finally, the results of tests conducted by Wright Laboratory on ultralight, highly efficient MOCVD GaAs solar cells purchased from EPI Materials Ltd. (EML) of the UK are presented. These cells were also used for modeling the flight characteristics of UAV aircraft.

  11. Photovoltaic electric power applied to Unmanned Aerial Vehicles (UAV)

    Science.gov (United States)

    Geis, Jack; Arnold, Jack H.

    1994-09-01

    Photovoltaic electric-powered flight is receiving a great deal of attention in the context of the United States' Unmanned Aerial Vehicle (UAV) program. This paper addresses some of the enabling technical areas and their potential solutions. Of particular interest are the long-duration, high-altitude class of UAV's whose mission it is to achieve altitudes between 60,000 and 100,000 feet, and to remain at those altitudes for prolonged periods performing various mapping and surveillance activities. Addressed herein are studies which reveal the need for extremely light-weight and efficient solar cells, high-efficiency electric motor-driven propeller modules, and power management and distribution control elements. Since the potential payloads vary dramatically in their power consumption and duty cycles, a typical load profile has been selected to provide commonality for the propulsion power comparisons. Since missions vary widely with respect to ground coverage requirements, from repeated orbiting over a localized target to long-distance routes over irregular terrain, we have also averaged the power requirements for on-board guidance and control power, as well as ground control and communication link utilization. In the context of the national technology reinvestment program, wherever possible we modeled components and materials which have been qualified for space and defense applications, yet are compatible with civilian UAV activities. These include, but are not limited to, solar cell developments, electric storage technology for diurnal operation, local and ground communications, power management and distribution, and control servo design. And finally, the results of tests conducted by Wright Laboratory on ultralight, highly efficient MOCVD GaAs solar cells purchased from EPI Materials Ltd. (EML) of the UK are presented. These cells were also used for modeling the flight characteristics of UAV aircraft.

  12. UAV Deployment Exercise for Mapping Purposes: Evaluation of Emergency Response Applications.

    Science.gov (United States)

    Boccardo, Piero; Chiabrando, Filiberto; Dutto, Furio; Tonolo, Fabio Giulio; Lingua, Andrea

    2015-07-02

    Exploiting the decrease of costs related to UAV technology, the humanitarian community started piloting the use of similar systems in humanitarian crises several years ago in different application fields, i.e., disaster mapping and information gathering, community capacity building, logistics and even transportation of goods. Part of the author's group, composed of researchers in the field of applied geomatics, has been piloting the use of UAVs since 2006, with a specific focus on disaster management application. In the framework of such activities, a UAV deployment exercise was jointly organized with the Regional Civil Protection authority, mainly aimed at assessing the operational procedures to deploy UAVs for mapping purposes and the usability of the acquired data in an emergency response context. In the paper the technical features of the UAV platforms will be described, comparing the main advantages/disadvantages of fixed-wing versus rotor platforms. The main phases of the adopted operational procedure will be discussed and assessed especially in terms of time required to carry out each step, highlighting potential bottlenecks and in view of the national regulation framework, which is rapidly evolving. Different methodologies for the processing of the acquired data will be described and discussed, evaluating the fitness for emergency response applications.

  13. UAV Deployment Exercise for Mapping Purposes: Evaluation of Emergency Response Applications

    Directory of Open Access Journals (Sweden)

    Piero Boccardo

    2015-07-01

    Full Text Available Exploiting the decrease of costs related to UAV technology, the humanitarian community started piloting the use of similar systems in humanitarian crises several years ago in different application fields, i.e., disaster mapping and information gathering, community capacity building, logistics and even transportation of goods. Part of the author’s group, composed of researchers in the field of applied geomatics, has been piloting the use of UAVs since 2006, with a specific focus on disaster management application. In the framework of such activities, a UAV deployment exercise was jointly organized with the Regional Civil Protection authority, mainly aimed at assessing the operational procedures to deploy UAVs for mapping purposes and the usability of the acquired data in an emergency response context. In the paper the technical features of the UAV platforms will be described, comparing the main advantages/disadvantages of fixed-wing versus rotor platforms. The main phases of the adopted operational procedure will be discussed and assessed especially in terms of time required to carry out each step, highlighting potential bottlenecks and in view of the national regulation framework, which is rapidly evolving. Different methodologies for the processing of the acquired data will be described and discussed, evaluating the fitness for emergency response applications.

  14. Considerations in Physiological Metric Selection for Online Detection of Operator State: A Case Study

    Science.gov (United States)

    2016-07-17

    multiple unmanned aerial vehicles (UAVs) to decrease demand for operators, safeguard human lives, in- crease efficiency of operations, and increase...often referred to as the “vigilance decrement ” and can occur as a result of monotony or sustained periods of high task-load. The vigilance decrement ... decrements resulting from fatigue may occur even before an operator is aware of them [15] and thus performance measures can be more useful than subjective

  15. Operator role definition and human-system integration

    International Nuclear Information System (INIS)

    Knee, H.E.; Schryver, J.C.

    1989-01-01

    This paper discusses operator role definition and human-system integration from a perspective of systems engineering and allocation of functions. Current and traditional allocation of tasks/functions can no longer by applied to systems that are significantly more sophisticated and dynamic than current system designs. For such advanced and automated designs, explicit attention must be given to the role of the operator in order to facilitate efficient system performance. Furthermore, such systems will include intelligent automated systems which will support the cognitive activities of the operator. If such systems share responsibility and control with the human operator, these computer-based assistants/associates should be viewed as intelligent team members. As such, factors such as trust, intentions, and expectancies, among team members must be considered by the systems designer. Such design considerations are discussed in this paper. This paper also discusses the area of dynamic allocation of functions, and the need for models of the human operator in support of machine forecast of human performance. The Integrated Reactor Operator/System (INTEROPS) model is discussed as an example of a cognitive model capable of functioning beyond a rule-based behavioral structure

  16. EMERGENCY RADIATION SURVEY DEVICE ONBOARD THE UAV

    Directory of Open Access Journals (Sweden)

    S. Bogatov

    2013-08-01

    Full Text Available Radiation survey device (RSD on the base of unmanned aerial vehicle (UAV was developed as an equipment of rescue forces for radiation situation reconnaissance in case of emergency. RSD is multi range radiometer with spectrometer functions capable to work within gamma ray fields of dose rate 10–7 – 10–1 Sievert per hour. UAV md4-1000 (Microdrones GmbH, Germany was selected as the RSD carrier as a reliable vehicle with appropriate properties. Short description of RSD, UAV and developed software features as well as sensitivity assessments for different radiation sources are presented.

  17. Low complexity video encoding for UAV inspection

    DEFF Research Database (Denmark)

    Søgaard, Jacob; Zhang, Ruo; Forchhammer, Søren

    2016-01-01

    In this work we present several methods for fast integer motion estimation of videos recorded aboard an Unmanned Aerial Vehicle (UAV). Different from related work, the field depth is not considered to be consistent. The novel methods designed for low complexity MV prediction in H.264/AVC and anal......In this work we present several methods for fast integer motion estimation of videos recorded aboard an Unmanned Aerial Vehicle (UAV). Different from related work, the field depth is not considered to be consistent. The novel methods designed for low complexity MV prediction in H.264/AVC...... for UAV infrared (IR) video are also provided....

  18. Distributed Flight Controls for UAVs, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Two novel flight control actuation concepts for UAV applications are proposed for research and development, both of which incorporate shape memory alloy (SMA) wires...

  19. UAV Mission Planning: From Robust to Agile

    NARCIS (Netherlands)

    Evers, L.; Barros, A.I.; Monsuur, H.; Wagelmans, A.

    2015-01-01

    Unmanned Aerial Vehicles (UAVs) are important assets for information gathering in Intelligence Surveillance and Reconnaissance (ISR) missions. Depending on the uncertainty in the planning parameters, the complexity of the mission and its constraints and requirements, different planning methods might

  20. Battery Health Management System for Electric UAVs

    Data.gov (United States)

    National Aeronautics and Space Administration — In summary, this paper lays out a novel battery health management technique for application onboard an electric UAV. This technique is also applicable to other...

  1. Aerial photogrammetry procedure optimized for micro uav

    Directory of Open Access Journals (Sweden)

    T. Anai

    2014-06-01

    Full Text Available This paper proposes the automatic aerial photogrammetry procedure optimized for Micro UAV that has ability of autonomous flight. The most important goal of our proposed method is the reducing the processing cost for fully automatic reconstruction of DSM from a large amount of image obtained from Micro UAV. For this goal, we have developed automatic corresponding point generation procedure using feature point tracking algorithm considering position and attitude information, which obtained from onboard GPS-IMU integrated on Micro UAV. In addition, we have developed the automatic exterior orientation and registration procedure from the automatic generated corresponding points on each image and position and attitude information from Micro UAV. Moreover, in order to reconstruct precise DSM, we have developed the area base matching process which considering edge information. In this paper, we describe processing flow of our automatic aerial photogrammetry. Moreover, the accuracy assessment is also described. Furthermore, some application of automatic reconstruction of DSM will be desired.

  2. A Q-Learning Approach to Flocking With UAVs in a Stochastic Environment.

    Science.gov (United States)

    Hung, Shao-Ming; Givigi, Sidney N

    2017-01-01

    In the past two decades, unmanned aerial vehicles (UAVs) have demonstrated their efficacy in supporting both military and civilian applications, where tasks can be dull, dirty, dangerous, or simply too costly with conventional methods. Many of the applications contain tasks that can be executed in parallel, hence the natural progression is to deploy multiple UAVs working together as a force multiplier. However, to do so requires autonomous coordination among the UAVs, similar to swarming behaviors seen in animals and insects. This paper looks at flocking with small fixed-wing UAVs in the context of a model-free reinforcement learning problem. In particular, Peng's Q(λ) with a variable learning rate is employed by the followers to learn a control policy that facilitates flocking in a leader-follower topology. The problem is structured as a Markov decision process, where the agents are modeled as small fixed-wing UAVs that experience stochasticity due to disturbances such as winds and control noises, as well as weight and balance issues. Learned policies are compared to ones solved using stochastic optimal control (i.e., dynamic programming) by evaluating the average cost incurred during flight according to a cost function. Simulation results demonstrate the feasibility of the proposed learning approach at enabling agents to learn how to flock in a leader-follower topology, while operating in a nonstationary stochastic environment.

  3. POTENTIAL OF UAV-BASED LASER SCANNER AND MULTISPECTRAL CAMERA DATA IN BUILDING INSPECTION

    Directory of Open Access Journals (Sweden)

    D. Mader

    2016-06-01

    Full Text Available Conventional building inspection of bridges, dams or large constructions in general is rather time consuming and often cost expensive due to traffic closures and the need of special heavy vehicles such as under-bridge inspection units or other large lifting platforms. In consideration that, an unmanned aerial vehicle (UAV will be more reliable and efficient as well as less expensive and simpler to operate. The utilisation of UAVs as an assisting tool in building inspections is obviously. Furthermore, light-weight special sensors such as infrared and thermal cameras as well as laser scanner are available and predestined for usage on unmanned aircraft systems. Such a flexible low-cost system is realized in the ADFEX project with the goal of time-efficient object exploration, monitoring and damage detection. For this purpose, a fleet of UAVs, equipped with several sensors for navigation, obstacle avoidance and 3D object-data acquisition, has been developed and constructed. This contribution deals with the potential of UAV-based data in building inspection. Therefore, an overview of the ADFEX project, sensor specifications and requirements of building inspections in general are given. On the basis of results achieved in practical studies, the applicability and potential of the UAV system in building inspection will be presented and discussed.

  4. Robot and Human Surface Operations on Solar System Bodies

    Science.gov (United States)

    Weisbin, C. R.; Easter, R.; Rodriguez, G.

    2001-01-01

    This paper presents a comparison of robot and human surface operations on solar system bodies. The topics include: 1) Long Range Vision of Surface Scenarios; 2) Human and Robots Complement Each Other; 3) Respective Human and Robot Strengths; 4) Need More In-Depth Quantitative Analysis; 5) Projected Study Objectives; 6) Analysis Process Summary; 7) Mission Scenarios Decompose into Primitive Tasks; 7) Features of the Projected Analysis Approach; and 8) The "Getting There Effect" is a Major Consideration. This paper is in viewgraph form.

  5. Detection, Location and Grasping Objects Using a Stereo Sensor on UAV in Outdoor Environments

    Directory of Open Access Journals (Sweden)

    Pablo Ramon Soria

    2017-01-01

    Full Text Available The article presents a vision system for the autonomous grasping of objects with Unmanned Aerial Vehicles (UAVs in real time. Giving UAVs the capability to manipulate objects vastly extends their applications, as they are capable of accessing places that are difficult to reach or even unreachable for human beings. This work is focused on the grasping of known objects based on feature models. The system runs in an on-board computer on a UAV equipped with a stereo camera and a robotic arm. The algorithm learns a feature-based model in an offline stage, then it is used online for detection of the targeted object and estimation of its position. This feature-based model was proved to be robust to both occlusions and the presence of outliers. The use of stereo cameras improves the learning stage, providing 3D information and helping to filter features in the online stage. An experimental system was derived using a rotary-wing UAV and a small manipulator for final proof of concept. The robotic arm is designed with three degrees of freedom and is lightweight due to payload limitations of the UAV. The system has been validated with different objects, both indoors and outdoors.

  6. SAR system development for UAV multicopter platforms

    OpenAIRE

    Escartin Martínez, Antonio

    2015-01-01

    SAR system development for UAV multicopter platforms This thesis describes the optimization of a synthetic aperture radar (SAR) at X-band and its integration into an unmanned aerial vehicle (UAV) of type octocopter. For such optimization the SAR system functionality was extended from singlepol to fulpol and it has been optimized at hardware level in order to improve its quality against noise figure. After its integration into the octocopter platform, its features has been used in order to ...

  7. Planetary boundaries: exploring the safe operating space for humanity

    Science.gov (United States)

    Johan Rockström; Will Steffen; Kevin Noone; Asa Persson; F. Stuart Chapin; Eric Lambin; Timothy M. Lenton; Marten Scheffer; Carl Folke; Hans Joachim Schellnhuber; Björn Nykvist; Cynthia A. de Wit; Terry Hughes; Sander van der Leeuw; Henning Rodhe; Sverker Sörlin; Peter K. Snyder; Robert Costanza; Uno Svedin; Malin Falkenmark; Louise Karlberg; Robert W. Corell; Victoria J. Fabry; James Hansen; Brian Walker; Diana Liverman; Katherine Richardson; Paul Crutzen; Jonathan Foley

    2009-01-01

    Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due...

  8. Human factor as operating safety dominant of ATM navigation support

    Directory of Open Access Journals (Sweden)

    Ю.В. Зайцев

    2004-04-01

    Full Text Available  The method of specifying individual psychophysical characteristics of the human higher nervous activity has been studied to match professional fitness. Information processing rate is being estimated considering peculiarities of the nervous system of the operators working in extreme situations, and providing fluent knowledge of Ukrainian, Russian and English.

  9. Human systems integration in remotely piloted aircraft operations.

    Science.gov (United States)

    Tvaryanas, Anthony P

    2006-12-01

    The role of humans in remotely piloted aircraft (RPAs) is qualitatively different from manned aviation, lessening the applicability of aerospace medicine human factors knowledge derived from traditional cockpits. Aerospace medicine practitioners should expect to be challenged in addressing RPA crewmember performance. Human systems integration (HSI) provides a model for explaining human performance as a function of the domains of: human factors engineering; personnel; training; manpower; environment, safety, and occupational health (ESOH); habitability; and survivability. RPA crewmember performance is being particularly impacted by issues involving the domains of human factors engineering, personnel, training, manpower, ESOH, and habitability. Specific HSI challenges include: 1) changes in large RPA operator selection and training; 2) human factors engineering deficiencies in current RPA ground control station design and their impact on human error including considerations pertaining to multi-aircraft control; and 3) the combined impact of manpower shortfalls, shiftwork-related fatigue, and degraded crewmember effectiveness. Limited experience and available research makes it difficult to qualitatively or quantitatively predict the collective impact of these issues on RPA crewmember performance. Attending to HSI will be critical for the success of current and future RPA crewmembers. Aerospace medicine practitioners working with RPA crewmembers should gain first-hand knowledge of their task environment while the larger aerospace medicine community needs to address the limited information available on RPA-related aerospace medicine human factors. In the meantime, aeromedical decisions will need to be made based on what is known about other aerospace occupations, realizing this knowledge may have only partial applicability.

  10. A Benchmark and Simulator for UAV Tracking

    KAUST Repository

    Mueller, Matthias; Smith, Neil; Ghanem, Bernard

    2016-01-01

    In this paper, we propose a new aerial video dataset and benchmark for low altitude UAV target tracking, as well as, a photorealistic UAV simulator that can be coupled with tracking methods. Our benchmark provides the first evaluation of many state-of-the-art and popular trackers on 123 new and fully annotated HD video sequences captured from a low-altitude aerial perspective. Among the compared trackers, we determine which ones are the most suitable for UAV tracking both in terms of tracking accuracy and run-time. The simulator can be used to evaluate tracking algorithms in real-time scenarios before they are deployed on a UAV “in the field”, as well as, generate synthetic but photo-realistic tracking datasets with automatic ground truth annotations to easily extend existing real-world datasets. Both the benchmark and simulator are made publicly available to the vision community on our website to further research in the area of object tracking from UAVs. (https://ivul.kaust.edu.sa/Pages/pub-benchmark-simulator-uav.aspx.). © Springer International Publishing AG 2016.

  11. A Benchmark and Simulator for UAV Tracking

    KAUST Repository

    Mueller, Matthias

    2016-09-16

    In this paper, we propose a new aerial video dataset and benchmark for low altitude UAV target tracking, as well as, a photorealistic UAV simulator that can be coupled with tracking methods. Our benchmark provides the first evaluation of many state-of-the-art and popular trackers on 123 new and fully annotated HD video sequences captured from a low-altitude aerial perspective. Among the compared trackers, we determine which ones are the most suitable for UAV tracking both in terms of tracking accuracy and run-time. The simulator can be used to evaluate tracking algorithms in real-time scenarios before they are deployed on a UAV “in the field”, as well as, generate synthetic but photo-realistic tracking datasets with automatic ground truth annotations to easily extend existing real-world datasets. Both the benchmark and simulator are made publicly available to the vision community on our website to further research in the area of object tracking from UAVs. (https://ivul.kaust.edu.sa/Pages/pub-benchmark-simulator-uav.aspx.). © Springer International Publishing AG 2016.

  12. Neural network-based optimal adaptive output feedback control of a helicopter UAV.

    Science.gov (United States)

    Nodland, David; Zargarzadeh, Hassan; Jagannathan, Sarangapani

    2013-07-01

    Helicopter unmanned aerial vehicles (UAVs) are widely used for both military and civilian operations. Because the helicopter UAVs are underactuated nonlinear mechanical systems, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via an output feedback for trajectory tracking of a helicopter UAV, using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic and dynamic controllers and an NN observer. The online approximator-based dynamic controller learns the infinite-horizon Hamilton-Jacobi-Bellman equation in continuous time and calculates the corresponding optimal control input by minimizing a cost function, forward-in-time, without using the value and policy iterations. Optimal tracking is accomplished by using a single NN utilized for the cost function approximation. The overall closed-loop system stability is demonstrated using Lyapunov analysis. Finally, simulation results are provided to demonstrate the effectiveness of the proposed control design for trajectory tracking.

  13. Shigaraki UAV-Radar Experiment (ShUREX): overview of the campaign with some preliminary results

    Science.gov (United States)

    Kantha, Lakshmi; Lawrence, Dale; Luce, Hubert; Hashiguchi, Hiroyuki; Tsuda, Toshitaka; Wilson, Richard; Mixa, Tyler; Yabuki, Masanori

    2017-12-01

    The Shigaraki unmanned aerial vehicle (UAV)-Radar Experiment (ShUREX) is an international (USA-Japan-France) observational campaign, whose overarching goal is to demonstrate the utility of small, lightweight, inexpensive, autonomous UAVs in probing and monitoring the lower troposphere and to promote synergistic use of UAVs and very high frequency (VHF) radars. The 2-week campaign lasting from June 1 to June 14, 2015, was carried out at the Middle and Upper Atmosphere (MU) Observatory in Shigaraki, Japan. During the campaign, the DataHawk UAV, developed at the University of Colorado, Boulder, and equipped with high-frequency response cold wire and pitot tube sensors (as well as an iMET radiosonde), was flown near and over the VHF-band MU radar. Measurements in the atmospheric column in the immediate vicinity of the radar were obtained. Simultaneous and continuous operation of the radar in range imaging mode enabled fine-scale structures in the atmosphere to be visualized by the radar. It also permitted the UAV to be commanded to sample interesting structures, guided in near real time by the radar images. This overview provides a description of the ShUREX campaign and some interesting but preliminary results of the very first simultaneous and intensive probing of turbulent structures by UAVs and the MU radar. The campaign demonstrated the validity and utility of the radar range imaging technique in obtaining very high vertical resolution ( 20 m) images of echo power in the atmospheric column, which display evolving fine-scale atmospheric structures in unprecedented detail. The campaign also permitted for the very first time the evaluation of the consistency of turbulent kinetic energy dissipation rates in turbulent structures inferred from the spectral broadening of the backscattered radar signal and direct, in situ measurements by the high-frequency response velocity sensor on the UAV. The data also enabled other turbulence parameters such as the temperature

  14. Applying lessons learned to enhance human performance and reduce human error for ISS operations

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, W.R.

    1998-09-01

    A major component of reliability, safety, and mission success for space missions is ensuring that the humans involved (flight crew, ground crew, mission control, etc.) perform their tasks and functions as required. This includes compliance with training and procedures during normal conditions, and successful compensation when malfunctions or unexpected conditions occur. A very significant issue that affects human performance in space flight is human error. Human errors can invalidate carefully designed equipment and procedures. If certain errors combine with equipment failures or design flaws, mission failure or loss of life can occur. The control of human error during operation of the International Space Station (ISS) will be critical to the overall success of the program. As experience from Mir operations has shown, human performance plays a vital role in the success or failure of long duration space missions. The Department of Energy`s Idaho National Engineering and Environmental Laboratory (INEEL) is developed a systematic approach to enhance human performance and reduce human errors for ISS operations. This approach is based on the systematic identification and evaluation of lessons learned from past space missions such as Mir to enhance the design and operation of ISS. This paper describes previous INEEL research on human error sponsored by NASA and how it can be applied to enhance human reliability for ISS.

  15. Human Factors for Situation Assessment in Grid Operations

    Energy Technology Data Exchange (ETDEWEB)

    Guttromson, Ross T.; Schur, Anne; Greitzer, Frank L.; Paget, Mia L.

    2007-08-08

    Executive Summary Despite advances in technology, power system operators must assimilate overwhelming amounts of data to keep the grid operating. Analyses of recent blackouts have clearly demonstrated the need to enhance the operator’s situation awareness (SA). The long-term objective of this research is to integrate valuable technologies into the grid operator environment that support decision making under normal and abnormal operating conditions and remove non-technical barriers to enable the optimum use of these technologies by individuals working alone and as a team. More specifically, the research aims to identify methods and principles to increase SA of grid operators in the context of system conditions that are representative or common across many operating entities and develop operationally relevant experimental methods for studying technologies and operational practices which contribute to SA. With increasing complexity and interconnectivity of the grid, the scope and complexity of situation awareness have grown. New paradigms are needed to guide research and tool development aimed to enhance and improve operations. In reviewing related research, operating practices, systems, and tools, the present study established a taxonomy that provides a perspective on research and development surrounding power grid situation awareness and clarifies the field of human factors/SA for grid operations. Information sources that we used to identify critical factors underlying SA included interviews with experienced operational personnel, available historical summaries and transcripts of abnormal conditions and outages (e.g., the August 14, 2003 blackout), scientific literature, and operational policies/procedures and other documentation. Our analysis of August 2003 blackout transcripts and interviews adopted a different perspective than previous analyses of this material, and we complemented this analysis with additional interviews. Based on our analysis and a broad

  16. A concept of unmanned aerial vehicles in amphibious operations

    OpenAIRE

    Collins, Kipp A.

    1993-01-01

    Approved for public release; distribution is unlimited. The purpose of this thesis was to perform a conceptual study of using Unmanned Aerial Vehicles (UAVs) in amphibious operations. It focused on the command relations, tasking and critical problems in UAV amphibious operations. This thesis investigated the question of whether using UAVs at sea is a feasible complement to current amphibious operational doctrine and, if so, then what expense is incurred to assets on which it is embarked an...

  17. INTEGRATED ROBOT-HUMAN CONTROL IN MINING OPERATIONS

    Energy Technology Data Exchange (ETDEWEB)

    George Danko

    2005-04-01

    This report contains a detailed description of the work conducted in the first year of the project on Integrated Robot-Human Control in Mining Operations at University of Nevada, Reno. This project combines human operator control with robotic control concepts to create a hybrid control architecture, in which the strengths of each control method are combined to increase machine efficiency and reduce operator fatigue. The kinematics reconfiguration type differential control of the excavator implemented with a variety of ''software machine kinematics'' is the key feature of the project. This software re-configured excavator is more desirable to execute a given digging task. The human operator retains the master control of the main motion parameters, while the computer coordinates the repetitive movement patterns of the machine links. These repetitive movements may be selected from a pre-defined family of trajectories with different transformations. The operator can make adjustments to this pattern in real time, as needed, to accommodate rapidly-changing environmental conditions. A Bobcat{reg_sign} 435 excavator was retrofitted with electro-hydraulic control valve elements. The modular electronic control was tested and the basic valve characteristics were measured for each valve at the Robotics Laboratory at UNR. Position sensors were added to the individual joint control actuators, and the sensors were calibrated. An electronic central control system consisting of a portable computer, converters and electronic driver components was interfaced to the electro-hydraulic valves and position sensors. The machine is operational with or without the computer control system depending on whether the computer interface is on or off. In preparation for emulated mining tasks tests, typical, repetitive tool trajectories during surface mining operations were recorded at the Newmont Mining Corporation's ''Lone Tree'' mine in Nevada.

  18. Unmanned aerial vehicles (UAVs for surveying marine fauna: a dugong case study.

    Directory of Open Access Journals (Sweden)

    Amanda Hodgson

    Full Text Available Aerial surveys of marine mammals are routinely conducted to assess and monitor species' habitat use and population status. In Australia, dugongs (Dugong dugon are regularly surveyed and long-term datasets have formed the basis for defining habitat of high conservation value and risk assessments of human impacts. Unmanned aerial vehicles (UAVs may facilitate more accurate, human-risk free, and cheaper aerial surveys. We undertook the first Australian UAV survey trial in Shark Bay, western Australia. We conducted seven flights of the ScanEagle UAV, mounted with a digital SLR camera payload. During each flight, ten transects covering a 1.3 km(2 area frequently used by dugongs, were flown at 500, 750 and 1000 ft. Image (photograph capture was controlled via the Ground Control Station and the capture rate was scheduled to achieve a prescribed 10% overlap between images along transect lines. Images were manually reviewed post hoc for animals and scored according to sun glitter, Beaufort Sea state and turbidity. We captured 6243 images, 627 containing dugongs. We also identified whales, dolphins, turtles and a range of other fauna. Of all possible dugong sightings, 95% (CI = 90%, 98% were subjectively classed as 'certain' (unmistakably dugongs. Neither our dugong sighting rate, nor our ability to identify dugongs with certainty, were affected by UAV altitude. Turbidity was the only environmental variable significantly affecting the dugong sighting rate. Our results suggest that UAV systems may not be limited by sea state conditions in the same manner as sightings from manned surveys. The overlap between images proved valuable for detecting animals that were masked by sun glitter in the corners of images, and identifying animals initially captured at awkward body angles. This initial trial of a basic camera system has successfully demonstrated that the ScanEagle UAV has great potential as a tool for marine mammal aerial surveys.

  19. Unmanned aerial vehicles (UAVs) for surveying marine fauna: a dugong case study.

    Science.gov (United States)

    Hodgson, Amanda; Kelly, Natalie; Peel, David

    2013-01-01

    Aerial surveys of marine mammals are routinely conducted to assess and monitor species' habitat use and population status. In Australia, dugongs (Dugong dugon) are regularly surveyed and long-term datasets have formed the basis for defining habitat of high conservation value and risk assessments of human impacts. Unmanned aerial vehicles (UAVs) may facilitate more accurate, human-risk free, and cheaper aerial surveys. We undertook the first Australian UAV survey trial in Shark Bay, western Australia. We conducted seven flights of the ScanEagle UAV, mounted with a digital SLR camera payload. During each flight, ten transects covering a 1.3 km(2) area frequently used by dugongs, were flown at 500, 750 and 1000 ft. Image (photograph) capture was controlled via the Ground Control Station and the capture rate was scheduled to achieve a prescribed 10% overlap between images along transect lines. Images were manually reviewed post hoc for animals and scored according to sun glitter, Beaufort Sea state and turbidity. We captured 6243 images, 627 containing dugongs. We also identified whales, dolphins, turtles and a range of other fauna. Of all possible dugong sightings, 95% (CI = 90%, 98%) were subjectively classed as 'certain' (unmistakably dugongs). Neither our dugong sighting rate, nor our ability to identify dugongs with certainty, were affected by UAV altitude. Turbidity was the only environmental variable significantly affecting the dugong sighting rate. Our results suggest that UAV systems may not be limited by sea state conditions in the same manner as sightings from manned surveys. The overlap between images proved valuable for detecting animals that were masked by sun glitter in the corners of images, and identifying animals initially captured at awkward body angles. This initial trial of a basic camera system has successfully demonstrated that the ScanEagle UAV has great potential as a tool for marine mammal aerial surveys.

  20. Detection of Nuclear Sources by UAV Teleoperation Using a Visuo-Haptic Augmented Reality Interface

    Directory of Open Access Journals (Sweden)

    Jacopo Aleotti

    2017-09-01

    Full Text Available A visuo-haptic augmented reality (VHAR interface is presented enabling an operator to teleoperate an unmanned aerial vehicle (UAV equipped with a custom CdZnTe-based spectroscopic gamma-ray detector in outdoor environments. The task is to localize nuclear radiation sources, whose location is unknown to the user, without the close exposure of the operator. The developed detector also enables identification of the localized nuclear sources. The aim of the VHAR interface is to increase the situation awareness of the operator. The user teleoperates the UAV using a 3DOF haptic device that provides an attractive force feedback around the location of the most intense detected radiation source. Moreover, a fixed camera on the ground observes the environment where the UAV is flying. A 3D augmented reality scene is displayed on a computer screen accessible to the operator. Multiple types of graphical overlays are shown, including sensor data acquired by the nuclear radiation detector, a virtual cursor that tracks the UAV and geographical information, such as buildings. Experiments performed in a real environment are reported using an intense nuclear source.

  1. THE HISTORY AND THE EVOLUTION OF UAVs FROM THE BEGINNING TILL THE 70s

    Directory of Open Access Journals (Sweden)

    Vasile PRISACARIU

    2017-04-01

    Full Text Available Unpiloted machines have known an upstanding dependent evolution since those times. The development of UAV produced a change in the concepts regarding the architecture and operations through the evolution of their characteristics and capabilities. Thus, they generated continuous construction designs and a wide range of domains in which UAV’s can be used.

  2. Detection of Nuclear Sources by UAV Teleoperation Using a Visuo-Haptic Augmented Reality Interface.

    Science.gov (United States)

    Aleotti, Jacopo; Micconi, Giorgio; Caselli, Stefano; Benassi, Giacomo; Zambelli, Nicola; Bettelli, Manuele; Zappettini, Andrea

    2017-09-29

    A visuo-haptic augmented reality (VHAR) interface is presented enabling an operator to teleoperate an unmanned aerial vehicle (UAV) equipped with a custom CdZnTe-based spectroscopic gamma-ray detector in outdoor environments. The task is to localize nuclear radiation sources, whose location is unknown to the user, without the close exposure of the operator. The developed detector also enables identification of the localized nuclear sources. The aim of the VHAR interface is to increase the situation awareness of the operator. The user teleoperates the UAV using a 3DOF haptic device that provides an attractive force feedback around the location of the most intense detected radiation source. Moreover, a fixed camera on the ground observes the environment where the UAV is flying. A 3D augmented reality scene is displayed on a computer screen accessible to the operator. Multiple types of graphical overlays are shown, including sensor data acquired by the nuclear radiation detector, a virtual cursor that tracks the UAV and geographical information, such as buildings. Experiments performed in a real environment are reported using an intense nuclear source.

  3. A Survey of Channel Modeling for UAV Communications

    KAUST Repository

    Khuwaja, Aziz Altaf; Chen, Yunfei; Zhao, Nan; Alouini, Mohamed-Slim; Dobbins, Paul

    2018-01-01

    Unmanned aerial vehicles (UAVs) have gained great interest for rapid deployment in both civil and military applications. UAV communication has its own distinctive channel characteristics compared with widely used cellular and satellite systems. Thus, accurate channel characterization is crucial for the performance optimization and design of efficient UAV communication systems. However, several challenges exist in UAV channel modeling. For example, propagation characteristics of UAV channels are still less explored for spatial and temporal variations in non-stationary channels. Also, airframe shadowing has not yet been investigated for small size rotary UAVs. This paper provides an extensive survey on the measurement campaigns launched for UAV channel modeling using low altitude platforms and discusses various channel characterization efforts. We also review the contemporary perspective of UAV channel modeling approaches and outline some future research challenges in this domain.

  4. Review of the current state of UAV regulations

    NARCIS (Netherlands)

    Stöcker, Elvira Claudia; Bennett, Rohan; Nex, Francesco; Gerke, Markus; Zevenbergen, Jaap

    2017-01-01

    UAVs-unmanned aerial vehicles-facilitate data acquisition at temporal and spatial scales that still remain unachievable for traditional remote sensing platforms. However, current legal frameworks that regulate UAVs present significant barriers to research and development. To highlight the

  5. Evaluation and development of unmanned aircraft (UAV) for UDOT needs.

    Science.gov (United States)

    2012-05-01

    This research involved the use of high-resolution aerial photography obtained from Unmanned Aerial Vehicles (UAV) to aid UDOT in monitoring and documenting State Roadway structures and associated issues. Using geo-referenced UAV high resolution aeria...

  6. A Survey of Channel Modeling for UAV Communications

    KAUST Repository

    Khuwaja, Aziz Altaf

    2018-01-23

    Unmanned aerial vehicles (UAVs) have gained great interest for rapid deployment in both civil and military applications. UAV communication has its own distinctive channel characteristics compared with widely used cellular and satellite systems. Thus, accurate channel characterization is crucial for the performance optimization and design of efficient UAV communication systems. However, several challenges exist in UAV channel modeling. For example, propagation characteristics of UAV channels are still less explored for spatial and temporal variations in non-stationary channels. Also, airframe shadowing has not yet been investigated for small size rotary UAVs. This paper provides an extensive survey on the measurement campaigns launched for UAV channel modeling using low altitude platforms and discusses various channel characterization efforts. We also review the contemporary perspective of UAV channel modeling approaches and outline some future research challenges in this domain.

  7. Technological Advances, Human Performance, and the Operation of Nuclear Facilities

    Science.gov (United States)

    Corrado, Jonathan K.

    Many unfortunate and unintended adverse industrial incidents occur across the United States each year, and the nuclear industry is no exception. Depending on their severity, these incidents can be problematic for people, the facilities, and surrounding environments. Human error is a contributing factor in many such incidents. This dissertation first explored the hypothesis that technological changes that affect how operators interact within the systems of the nuclear facilities exacerbate the cost of incidents caused by human error. I conducted a review of nuclear incidents in the United States from 1955 through 2010 that reached Level 3 (serious incident) or higher on the International Nuclear Events Scale (INES). The cost of each incident at facilities that had recently undergone technological changes affecting plant operators' jobs was compared to the cost of events at facilities that had not undergone changes. A t-test determined a statistically significant difference between the two groups, confirming the hypothesis. Next, I conducted a follow-on study to determine the impact of the incorporation of new technologies into nuclear facilities. The data indicated that spending more money on upgrades increased the facility's capacity as well as the number of incidents reported, but the incident severity was minor. Finally, I discuss the impact of human error on plant operations and the impact of evolving technology on the 21st-century operator, proposing a methodology to overcome these challenges by applying the systems engineering process.

  8. Modelling the basic error tendencies of human operators

    Energy Technology Data Exchange (ETDEWEB)

    Reason, J.

    1988-01-01

    The paper outlines the primary structural features of human cognition: a limited, serial workspace interacting with a parallel distributed knowledge base. It is argued that the essential computational features of human cognition - to be captured by an adequate operator model - reside in the mechanisms by which stored knowledge structures are selected and brought into play. Two such computational 'primitives' are identified: similarity-matching and frequency-gambling. These two retrieval heuristics, it is argued, shape both the overall character of human performance (i.e. its heavy reliance on pattern-matching) and its basic error tendencies ('strong-but-wrong' responses, confirmation, similarity and frequency biases, and cognitive 'lock-up'). The various features of human cognition are integrated with a dynamic operator model capable of being represented in software form. This computer model, when run repeatedly with a variety of problem configurations, should produce a distribution of behaviours which, in toto, simulate the general character of operator performance.

  9. Operator error and emotions. Operator error and emotions - a major cause of human failure

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, B.K. [Human Factors Practical Incorporated (Canada); Bradley, M. [Univ. of New Brunswick, Saint John, New Brunswick (Canada); Artiss, W.G. [Human Factors Practical (Canada)

    2000-07-01

    This paper proposes the idea that a large proportion of the incidents attributed to operator and maintenance error in a nuclear or industrial plant are actually founded in our human emotions. Basic psychological theory of emotions is briefly presented and then the authors present situations and instances that can cause emotions to swell and lead to operator and maintenance error. Since emotional information is not recorded in industrial incident reports, the challenge is extended to industry, to review incident source documents for cases of emotional involvement and to develop means to collect emotion related information in future root cause analysis investigations. Training must then be provided to operators and maintainers to enable them to know one's emotions, manage emotions, motivate one's self, recognize emotions in others and handle relationships. Effective training will reduce the instances of human error based in emotions and enable a cooperative, productive environment in which to work. (author)

  10. Operator error and emotions. Operator error and emotions - a major cause of human failure

    International Nuclear Information System (INIS)

    Patterson, B.K.; Bradley, M.; Artiss, W.G.

    2000-01-01

    This paper proposes the idea that a large proportion of the incidents attributed to operator and maintenance error in a nuclear or industrial plant are actually founded in our human emotions. Basic psychological theory of emotions is briefly presented and then the authors present situations and instances that can cause emotions to swell and lead to operator and maintenance error. Since emotional information is not recorded in industrial incident reports, the challenge is extended to industry, to review incident source documents for cases of emotional involvement and to develop means to collect emotion related information in future root cause analysis investigations. Training must then be provided to operators and maintainers to enable them to know one's emotions, manage emotions, motivate one's self, recognize emotions in others and handle relationships. Effective training will reduce the instances of human error based in emotions and enable a cooperative, productive environment in which to work. (author)

  11. Self-assessment of human performance errors in nuclear operations

    International Nuclear Information System (INIS)

    Chambliss, K.V.

    1996-01-01

    One of the most important approaches to improving nuclear safety is to have an effective self-assessment process in place, whose cornerstone is the identification and improvement of human performance errors. Experience has shown that significant events usually have had precursors of human performance errors. If these precursors are left uncorrected or not understood, the symptoms recur and result in unanticipated events of greater safety significance. The Institute of Nuclear Power Operations (INPO) has been championing the cause of promoting excellence in human performance in the nuclear industry. INPO's report, open-quotes Excellence in Human Performance,close quotes emphasizes the importance of several factors that play a role in human performance. They include individual, supervisory, and organizational behaviors; real-time feedback that results in specific behavior to produce safe and reliable performance; and proactive measures that remove obstacles from excellent human performance. Zack Pate, chief executive officer and president of INPO, in his report, open-quotes The Control Room,close quotes provides an excellent discussion of serious events in the nuclear industry since 1994 and compares them with the results from a recent study by the National Transportation Safety Board of airline accidents in the 12-yr period from 1978 to 1990 to draw some common themes that relate to human performance issues in the control room

  12. Human equation in operating a nuclear-power plant

    International Nuclear Information System (INIS)

    Barrett, R.S.

    1982-01-01

    The accident at Three Mile Island has forced the nuclear industry to acknowledge a badly neglected aspect of nuclear-power-plant safety - the human equation. The industry now appears to recognize the importance of operator selection, training, motivation, and licensing, and the need to design a system from the point of view of communication, information retrieval, record keeping, and human factors psychology. As a result, the relatively small initiatives that were begun a few years ago by the EPRI are now being greatly expanded

  13. The human factor in high-tech plant operation

    Energy Technology Data Exchange (ETDEWEB)

    Grassani, E

    1988-02-01

    The article develops a series of considerations on reliability standards applied to operators of technologically complex industrial installations. From research conducted within the field of cognitive psychology, significant indications are emerging relative to professional training within industry, as well as to the functional and human interface characteristics of automated control systems. Recent tragic incidents (Three Mile Island nuclear power plant, Bopal methyl isocynate storage, Mexico City petroleum tank farm and Chernobylsk-4 reactor) have evidenced the greater weight that should be given to human factors in plant safety and reliability assessments and planning.

  14. Human-Automation Allocations for Current Robotic Space Operations

    Science.gov (United States)

    Marquez, Jessica J.; Chang, Mai L.; Beard, Bettina L.; Kim, Yun Kyung; Karasinski, John A.

    2018-01-01

    Within the Human Research Program, one risk delineates the uncertainty surrounding crew working with automation and robotics in spaceflight. The Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI) is concerned with the detrimental effects on crew performance due to ineffective user interfaces, system designs and/or functional task allocation, potentially compromising mission success and safety. Risk arises because we have limited experience with complex automation and robotics. One key gap within HARI, is the gap related to functional allocation. The gap states: We need to evaluate, develop, and validate methods and guidelines for identifying human-automation/robot task information needs, function allocation, and team composition for future long duration, long distance space missions. Allocations determine the human-system performance as it identifies the functions and performance levels required by the automation/robotic system, and in turn, what work the crew is expected to perform and the necessary human performance requirements. Allocations must take into account each of the human, automation, and robotic systems capabilities and limitations. Some functions may be intuitively assigned to the human versus the robot, but to optimize efficiency and effectiveness, purposeful role assignments will be required. The role of automation and robotics will significantly change in future exploration missions, particularly as crew becomes more autonomous from ground controllers. Thus, we must understand the suitability of existing function allocation methods within NASA as well as the existing allocations established by the few robotic systems that are operational in spaceflight. In order to evaluate future methods of robotic allocations, we must first benchmark the allocations and allocation methods that have been used. We will present 1) documentation of human-automation-robotic allocations in existing, operational spaceflight systems; and 2) To

  15. [Characteristics of the Chinese human milk banks' operation].

    Science.gov (United States)

    2017-08-02

    Objective: To assess the operation status of human milk banks in the mainland of China. Method: This retrospective study included a consecutive series of 14 human milk banks in the mainland of China from March 2013 to December 2016. The opened date, condition of donated breast milk, characteristics of donors and clinical application of donated breast milk were analyzed. Result: There were 14 human milk banks successively founded in mainland China from March 2013 to December 2016. The number of human milk banks, the amount of donated breast milk, the number of eligible donors and the times of donation had increased each year. Howere, the operation status among these milk banks varied greatly. Among them, one human milk bank has newly opened without relevant data, 6 banks could accept frozen breast milk, and the remaining 7 banks could only collect breast milk by the nurses in the bank. Among the 3 121 eligible donors, 1 404 (45.0%) donated less than 3 times, 2 553 (81.8%) aged 25 to 35 years, 2 828 (90.6%) had term delivery, 2 409 (77.2%) began donation one month after birth, 1 798 (57.6%) were company employees and housewives and 1 891 (60.6%) had bachelor or higher degree. The use of donor breast milk, the number of recipients and the average received amount of breast milk every person varied greatly among these banks. Conclusion: The human milk banking developed quickly in the mainland of China. Howere, the number of donors and the amount of donated breast milk which could not meet the clinical demands should be improved. And it was urgent to establish the standards or guidelines of the human milk banking as soon as possible in China.

  16. Spurious RF signals emitted by mini-UAVs

    NARCIS (Netherlands)

    Schleijpen, R.; Voogt, V.; Zwamborn, P.; Oever, J. van den

    2016-01-01

    This paper presents experimental work on the detection of spurious RF emissions of mini Unmanned Aerial Vehicles (mini-UAV). Many recent events have shown that mini-UAVs can be considered as a potential threat for civil security. For this reason the detection of mini-UAVs has become of interest to

  17. Interactive analysis of human error factors in NPP operation events

    International Nuclear Information System (INIS)

    Zhang Li; Zou Yanhua; Huang Weigang

    2010-01-01

    Interactive of human error factors in NPP operation events were introduced, and 645 WANO operation event reports from 1999 to 2008 were analyzed, among which 432 were found relative to human errors. After classifying these errors with the Root Causes or Causal Factors, and then applying SPSS for correlation analysis,we concluded: (1) Personnel work practices are restricted by many factors. Forming a good personnel work practices is a systematic work which need supports in many aspects. (2)Verbal communications,personnel work practices, man-machine interface and written procedures and documents play great roles. They are four interaction factors which often come in bundle. If some improvements need to be made on one of them,synchronous measures are also necessary for the others.(3) Management direction and decision process, which are related to management,have a significant interaction with personnel factors. (authors)

  18. Human and organization factors: engineering operating safety into offshore structures

    International Nuclear Information System (INIS)

    Bea, Robert G.

    1998-01-01

    History indicates clearly that the safety of offshore structures is determined primarily by the humans and organizations responsible for these structures during their design, construction, operation, maintenance, and decommissioning. If the safety of offshore structures is to be preserved and improved, then attention of engineers should focus on to how to improve the reliability of the offshore structure 'system,' including the people that come into contact with the structure during its life-cycle. This article reviews and discusss concepts and engineering approaches that can be used in such efforts. Two specific human factor issues are addressed: (1) real-time management of safety during operations, and (2) development of a Safety Management Assessment System to help improve the safety of offshore structures

  19. A Human Proximity Operations System test case validation approach

    Science.gov (United States)

    Huber, Justin; Straub, Jeremy

    A Human Proximity Operations System (HPOS) poses numerous risks in a real world environment. These risks range from mundane tasks such as avoiding walls and fixed obstacles to the critical need to keep people and processes safe in the context of the HPOS's situation-specific decision making. Validating the performance of an HPOS, which must operate in a real-world environment, is an ill posed problem due to the complexity that is introduced by erratic (non-computer) actors. In order to prove the HPOS's usefulness, test cases must be generated to simulate possible actions of these actors, so the HPOS can be shown to be able perform safely in environments where it will be operated. The HPOS must demonstrate its ability to be as safe as a human, across a wide range of foreseeable circumstances. This paper evaluates the use of test cases to validate HPOS performance and utility. It considers an HPOS's safe performance in the context of a common human activity, moving through a crowded corridor, and extrapolates (based on this) to the suitability of using test cases for AI validation in other areas of prospective application.

  20. Two-UAV Intersection Localization System Based on the Airborne Optoelectronic Platform.

    Science.gov (United States)

    Bai, Guanbing; Liu, Jinghong; Song, Yueming; Zuo, Yujia

    2017-01-06

    To address the limitation of the existing UAV (unmanned aerial vehicles) photoelectric localization method used for moving objects, this paper proposes an improved two-UAV intersection localization system based on airborne optoelectronic platforms by using the crossed-angle localization method of photoelectric theodolites for reference. This paper introduces the makeup and operating principle of intersection localization system, creates auxiliary coordinate systems, transforms the LOS (line of sight, from the UAV to the target) vectors into homogeneous coordinates, and establishes a two-UAV intersection localization model. In this paper, the influence of the positional relationship between UAVs and the target on localization accuracy has been studied in detail to obtain an ideal measuring position and the optimal localization position where the optimal intersection angle is 72.6318°. The result shows that, given the optimal position, the localization root mean square error (RMS) will be 25.0235 m when the target is 5 km away from UAV baselines. Finally, the influence of modified adaptive Kalman filtering on localization results is analyzed, and an appropriate filtering model is established to reduce the localization RMS error to 15.7983 m. Finally, An outfield experiment was carried out and obtained the optimal results: σ B = 1.63 × 10 - 4 ( ° ) , σ L = 1.35 × 10 - 4 ( ° ) , σ H = 15.8 ( m ) , σ s u m = 27.6 ( m ) , where σ B represents the longitude error, σ L represents the latitude error, σ H represents the altitude error, and σ s u m represents the error radius.

  1. Data Acquisition (DAQ) system dedicated for remote sensing applications on Unmanned Aerial Vehicles (UAV)

    Science.gov (United States)

    Keleshis, C.; Ioannou, S.; Vrekoussis, M.; Levin, Z.; Lange, M. A.

    2014-08-01

    Continuous advances in unmanned aerial vehicles (UAV) and the increased complexity of their applications raise the demand for improved data acquisition systems (DAQ). These improvements may comprise low power consumption, low volume and weight, robustness, modularity and capability to interface with various sensors and peripherals while maintaining the high sampling rates and processing speeds. Such a system has been designed and developed and is currently integrated on the Autonomous Flying Platforms for Atmospheric and Earth Surface Observations (APAESO/NEA-YΠOΔOMH/NEKΠ/0308/09) however, it can be easily adapted to any UAV or any other mobile vehicle. The system consists of a single-board computer with a dual-core processor, rugged surface-mount memory and storage device, analog and digital input-output ports and many other peripherals that enhance its connectivity with various sensors, imagers and on-board devices. The system is powered by a high efficiency power supply board. Additional boards such as frame-grabbers, differential global positioning system (DGPS) satellite receivers, general packet radio service (3G-4G-GPRS) modems for communication redundancy have been interfaced to the core system and are used whenever there is a mission need. The onboard DAQ system can be preprogrammed for automatic data acquisition or it can be remotely operated during the flight from the ground control station (GCS) using a graphical user interface (GUI) which has been developed and will also be presented in this paper. The unique design of the GUI and the DAQ system enables the synchronized acquisition of a variety of scientific and UAV flight data in a single core location. The new DAQ system and the GUI have been successfully utilized in several scientific UAV missions. In conclusion, the novel DAQ system provides the UAV and the remote-sensing community with a new tool capable of reliably acquiring, processing, storing and transmitting data from any sensor integrated

  2. Improvement of human operator vibroprotection system in the utility machine

    Science.gov (United States)

    Korchagin, P. A.; Teterina, I. A.; Rahuba, L. F.

    2018-01-01

    The article is devoted to an urgent problem of improving efficiency of road-building utility machines in terms of improving human operator vibroprotection system by determining acceptable values of the rigidity coefficients and resistance coefficients of operator’s cab suspension system elements and those of operator’s seat. Negative effects of vibration result in labour productivity decrease and occupational diseases. Besides, structure vibrations have a damaging impact on the machine units and mechanisms, which leads to reducing an overall service life of the machine. Results of experimental and theoretical research of operator vibroprotection system in the road-building utility machine are presented. An algorithm for the program to calculate dynamic impacts on the operator in terms of different structural and performance parameters of the machine and considering combination of external pertrubation influences was proposed.

  3. Applications of human error analysis to aviation and space operations

    International Nuclear Information System (INIS)

    Nelson, W.R.

    1998-01-01

    For the past several years at the Idaho National Engineering and Environmental Laboratory (INEEL) we have been working to apply methods of human error analysis to the design of complex systems. We have focused on adapting human reliability analysis (HRA) methods that were developed for Probabilistic Safety Assessment (PSA) for application to system design. We are developing methods so that human errors can be systematically identified during system design, the potential consequences of each error can be assessed, and potential corrective actions (e.g. changes to system design or procedures) can be identified. These applications lead to different requirements when compared with HR.As performed as part of a PSA. For example, because the analysis will begin early during the design stage, the methods must be usable when only partial design information is available. In addition, the ability to perform numerous ''what if'' analyses to identify and compare multiple design alternatives is essential. Finally, since the goals of such human error analyses focus on proactive design changes rather than the estimate of failure probabilities for PRA, there is more emphasis on qualitative evaluations of error relationships and causal factors than on quantitative estimates of error frequency. The primary vehicle we have used to develop and apply these methods has been a series of prqjects sponsored by the National Aeronautics and Space Administration (NASA) to apply human error analysis to aviation operations. The first NASA-sponsored project had the goal to evaluate human errors caused by advanced cockpit automation. Our next aviation project focused on the development of methods and tools to apply human error analysis to the design of commercial aircraft. This project was performed by a consortium comprised of INEEL, NASA, and Boeing Commercial Airplane Group. The focus of the project was aircraft design and procedures that could lead to human errors during airplane maintenance

  4. Multiple UAV Cooperation for Wildfire Monitoring

    Science.gov (United States)

    Lin, Zhongjie

    Wildfires have been a major factor in the development and management of the world's forest. An accurate assessment of wildfire status is imperative for fire management. This thesis is dedicated to the topic of utilizing multiple unmanned aerial vehicles (UAVs) to cooperatively monitor a large-scale wildfire. This is achieved through wildfire spreading situation estimation based on on-line measurements and wise cooperation strategy to ensure efficiency. First, based on the understanding of the physical characteristics of the wildfire propagation behavior, a wildfire model and a Kalman filter-based method are proposed to estimate the wildfire rate of spread and the fire front contour profile. With the enormous on-line measurements from on-board sensors of UAVs, the proposed method allows a wildfire monitoring mission to benefit from on-line information updating, increased flexibility, and accurate estimation. An independent wildfire simulator is utilized to verify the effectiveness of the proposed method. Second, based on the filter analysis, wildfire spreading situation and vehicle dynamics, the influence of different cooperation strategies of UAVs to the overall mission performance is studied. The multi-UAV cooperation problem is formulated in a distributed network. A consensus-based method is proposed to help address the problem. The optimal cooperation strategy of UAVs is obtained through mathematical analysis. The derived optimal cooperation strategy is then verified in an independent fire simulation environment to verify its effectiveness.

  5. Automatic UAV Image Geo-Registration by Matching UAV Images to Georeferenced Image Data

    Directory of Open Access Journals (Sweden)

    Xiangyu Zhuo

    2017-04-01

    Full Text Available Recent years have witnessed the fast development of UAVs (unmanned aerial vehicles. As an alternative to traditional image acquisition methods, UAVs bridge the gap between terrestrial and airborne photogrammetry and enable flexible acquisition of high resolution images. However, the georeferencing accuracy of UAVs is still limited by the low-performance on-board GNSS and INS. This paper investigates automatic geo-registration of an individual UAV image or UAV image blocks by matching the UAV image(s with a previously taken georeferenced image, such as an individual aerial or satellite image with a height map attached or an aerial orthophoto with a DSM (digital surface model attached. As the biggest challenge for matching UAV and aerial images is in the large differences in scale and rotation, we propose a novel feature matching method for nadir or slightly tilted images. The method is comprised of a dense feature detection scheme, a one-to-many matching strategy and a global geometric verification scheme. The proposed method is able to find thousands of valid matches in cases where SIFT and ASIFT fail. Those matches can be used to geo-register the whole UAV image block towards the reference image data. When the reference images offer high georeferencing accuracy, the UAV images can also be geolocalized in a global coordinate system. A series of experiments involving different scenarios was conducted to validate the proposed method. The results demonstrate that our approach achieves not only decimeter-level registration accuracy, but also comparable global accuracy as the reference images.

  6. Study on the identification of main drivers affecting the performance of human operators during low power and shutdown operation

    International Nuclear Information System (INIS)

    Kim, Ar Ryum; Park, Jinkyun; Kim, Ji Tae; Kim, Jaewhan; Seong, Poong Hyun

    2016-01-01

    Highlights: • The performance of human operator during LPSD operation is significantly important. • Human performance is affected by drivers such as procedure, training, and etc. • Main drivers during LPSD operation at domestic NPPs were suggested. • It is expected that it will be used for estimating human reliability during LPSD operation. - Abstract: In the past, many researchers believed that a reactor during low power and shutdown operation was sufficiently safe. This belief has been changed by the number of accidents during such types of operation, which is significantly high. Also, it was pointed out that one of the main differences between low power and shutdown operation and full power operation is the significance of human action because there are huge amounts of human actions due to extensive maintenance and testing while automatic control and safety functions may be disabled and procedures are insufficient or incomplete. This paper suggests the main drivers in performing human reliability analysis. For this study, we reviewed eight reports relating to human performance during low power and shutdown operation and applied a root cause analysis method for 53 human or human-related events at domestic nuclear power plants to derive the main drivers that affect the occurrence of those events. As a result, several main drivers were derived, such as procedures, training, experience of personnel, and workload/stress. It is expected that these main drivers will be used to perform human reliability analysis for low power and shutdown operation.

  7. Managing Human Performance to Improve Nuclear Facility Operation

    International Nuclear Information System (INIS)

    2013-01-01

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.' One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property'. The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. IAEA Nuclear Energy Series No. NG-G-2.1, Managing Human Resources in the Field of Nuclear Energy, was published in 2009. In that publication, four interrelated objectives of the management of human resources were identified and discussed: ensuring that nuclear industry personnel have the necessary competence for their jobs; effectively organizing work activities; anticipating human resource needs; and monitoring and continually improving performance. This publication addresses the fourth objective and, in particular, summarizes good practices in the area of managing human performance

  8. Human dimensions in cyber operations research and development priorities.

    Energy Technology Data Exchange (ETDEWEB)

    Forsythe, James Chris; Silva, Austin Ray; Stevens-Adams, Susan Marie; Bradshaw, Jeffrey [Institute for Human and Machine Cognition

    2012-11-01

    Within cyber security, the human element represents one of the greatest untapped opportunities for increasing the effectiveness of network defenses. However, there has been little research to understand the human dimension in cyber operations. To better understand the needs and priorities for research and development to address these issues, a workshop was conducted August 28-29, 2012 in Washington DC. A synthesis was developed that captured the key issues and associated research questions. Research and development needs were identified that fell into three parallel paths: (1) human factors analysis and scientific studies to establish foundational knowledge concerning factors underlying the performance of cyber defenders; (2) development of models that capture key processes that mediate interactions between defenders, users, adversaries and the public; and (3) development of a multi-purpose test environment for conducting controlled experiments that enables systems and human performance measurement. These research and development investments would transform cyber operations from an art to a science, enabling systems solutions to be engineered to address a range of situations. Organizations would be able to move beyond the current state where key decisions (e.g. personnel assignment) are made on a largely ad hoc basis to a state in which there exist institutionalized processes for assuring the right people are doing the right jobs in the right way. These developments lay the groundwork for emergence of a professional class of cyber defenders with defined roles and career progressions, with higher levels of personnel commitment and retention. Finally, the operational impact would be evident in improved performance, accompanied by a shift to a more proactive response in which defenders have the capacity to exert greater control over the cyber battlespace.

  9. The Relationship between Human Operators' Psycho-physiological Condition and Human Errors in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Arryum; Jang, Inseok; Kang, Hyungook; Seong, Poonghyun

    2013-01-01

    The safe operation of nuclear power plants (NPPs) is substantially dependent on the performance of the human operators who operate the systems. In this environment, human errors caused by inappropriate performance of operator have been considered to be critical since it may lead serious problems in the safety-critical plants. In order to provide meaningful insights to prevent human errors and enhance the human performance, operators' physiological conditions such as stress and workload have been investigated. Physiological measurements were considered as reliable tools to assess the stress and workload. T. Q. Tran et al. and J. B. Brooking et al pointed out that operators' workload can be assessed using eye tracking, galvanic skin response, electroencephalograms (EEGs), heart rate, respiration and other measurements. The purpose of this study is to investigate the effect of the human operators' tense level and knowledge level to the number of human errors. For this study, the experiments were conducted in the mimic of the main control rooms (MCR) in NPP. It utilized the compact nuclear simulator (CNS) which is modeled based on the three loop Pressurized Water Reactor, 993MWe, Kori unit 3 and 4 in Korea and the subjects were asked to follow the tasks described in the emergency operating procedures (EOP). During the simulation, three kinds of physiological measurement were utilized; Electrocardiogram (ECG), EEG and nose temperature. Also, subjects were divided into three groups based on their knowledge of the plant operation. The result shows that subjects who are tense make fewer errors. In addition, subjects who are in higher knowledge level tend to be tense and make fewer errors. For the ECG data, subjects who make fewer human errors tend to be located in higher tense level area of high SNS activity and low PSNS activity. The results of EEG data are also similar to ECG result. Beta power ratio of subjects who make fewer errors was higher. Since beta power ratio is

  10. UAV applications for thermodynamic profiling: Emphasis on ice fog research

    Science.gov (United States)

    Gultepe, Ismail; Heymsfield, Andrew J.; Fernando, Harindra J. S.; Hoch, Sebastian W.; Ware, Randolph

    2016-04-01

    Ice fog occurs often over the Arctic, cold climatic, and mountainous regions for about 30% of time where temperature (T) can go down to -10°C or below. Ice Nucleation (IN) and cooling processes play an important role by the controlling the intensity of ice fog conditions that affect aviation application, transportation, and local climate. Ice fog can also occur at T above -10°C but close to 0°C it occurs due to freezing of supercooled droplets that include an IN. To better document ice fog conditions, observations from the ice fog events of the Indirect and Semi-Direct Aerosol effects on Climate (ISDAC) project, Barrow, Alaska, Fog Remote Sensing And Modeling (FRAM) project Yellowknife, Northwest Territories, and the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) project, Heber City, Utah, were analyzed.. Measurements difficulties of small ice fog particles at cold temperatures and low-level flying restrictions prevent observations from aircraft within the surface boundary layer. However, unmanned Aerial Vehicles (UAVs) can be operated safely to measure IN number concentration, Relative Humidity with respect to ice (RHi), T, horizontal wind speed (Uh) and direction, and ice crystal spectra less than about 500 micron. Thermodynamic profiling by a Radiometrics Profiling Microwave Radiometer (PMWR) and Vaisala CL51 ceilometer was used to describe ice fog conditions in the vertical and its time development. In this presentation, ice fog characteristics and its thermodynamic environment will be presented using both ground-based and airborne platforms such as a UAV with new sensors. Some examples of measurements from the UAV for future research, and challenges related to both ice fog measurements and visibility parameterization will also be presented.

  11. Feasibility Study for an Autonomous UAV -Magnetometer System -- Final Report on SERDP SEED 1509:2206

    Energy Technology Data Exchange (ETDEWEB)

    Roelof Versteeg; Mark McKay; Matt Anderson; Ross Johnson; Bob Selfridge; Jay Bennett

    2007-09-01

    Large areas across the United States are potentially contaminated with UXO, with some ranges encompassing tens to hundreds of thousands of acres. Technologies are needed which will allow for cost effective wide area scanning with 1) near 100 % coverage and 2) near 100 % detection of subsurface ordnance or features indicative of subsurface ordnance. The current approach to wide area scanning is a multi-level one, in which medium altitude fixed wing optical imaging is used for an initial site assessment. This assessment is followed with low altitude manned helicopter based magnetometry followed by surface investigations using either towed geophysical sensor arrays or man portable sensors. In order to be effective for small UXO detection, the sensing altitude for magnetic site investigations needs to be on the order of 1 – 3 meters. These altitude requirements means that manned helicopter surveys will generally only be feasible in large, open and relatively flat terrains. While such surveys are effective in mapping large areas relatively fast there are substantial mobilization/demobilization, staffing and equipment costs associated with these surveys (resulting in costs of approximately $100-$150/acre). Surface towed arrays provide high resolution maps but have other limitations, e.g. in their ability to navigate rough terrain effectively. Thus, other systems are needed allowing for effective data collection. An UAV (Unmanned Aerial Vehicle) magnetometer platform is an obvious alternative. The motivation behind such a system is that it would be safer for the operators, cheaper in initial and O&M costs, and more effective in terms of site characterization. However, while UAV data acquisition from fixed wing platforms for large (> 200 feet) stand off distances is relatively straight forward, a host of challenges exist for low stand-off distance (~ 6 feet) UAV geophysical data acquisition. The objective of SERDP SEED 1509:2006 was to identify the primary challenges

  12. Human dynamics scaling characteristics for aerial inbound logistics operation

    Science.gov (United States)

    Wang, Qing; Guo, Jin-Li

    2010-05-01

    In recent years, the study of power-law scaling characteristics of real-life networks has attracted much interest from scholars; it deviates from the Poisson process. In this paper, we take the whole process of aerial inbound operation in a logistics company as the empirical object. The main aim of this work is to study the statistical scaling characteristics of the task-restricted work patterns. We found that the statistical variables have the scaling characteristics of unimodal distribution with a power-law tail in five statistical distributions - that is to say, there obviously exists a peak in each distribution, the shape of the left part closes to a Poisson distribution, and the right part has a heavy-tailed scaling statistics. Furthermore, to our surprise, there is only one distribution where the right parts can be approximated by the power-law form with exponent α=1.50. Others are bigger than 1.50 (three of four are about 2.50, one of four is about 3.00). We then obtain two inferences based on these empirical results: first, the human behaviors probably both close to the Poisson statistics and power-law distributions on certain levels, and the human-computer interaction behaviors may be the most common in the logistics operational areas, even in the whole task-restricted work pattern areas. Second, the hypothesis in Vázquez et al. (2006) [A. Vázquez, J. G. Oliveira, Z. Dezsö, K.-I. Goh, I. Kondor, A.-L. Barabási. Modeling burst and heavy tails in human dynamics, Phys. Rev. E 73 (2006) 036127] is probably not sufficient; it claimed that human dynamics can be classified as two discrete university classes. There may be a new human dynamics mechanism that is different from the classical Barabási models.

  13. Micro-Doppler extraction of a small UAV in a non-line-of-sight urban scenario

    Science.gov (United States)

    Gustavsson, Magnus; Andersson, Åsa; Johansson, Tommy; Jonsson, Rolf; Karlsson, Nils; Nilsson, Stefan

    2017-05-01

    The appearance of small UAVs on the commercial market poses a real threat to both civilian safety and to military operations. In open terrain a radar can detect and track even small UAVs at long distances. In an urban environment with limited line-of-sight and strong static and non-static background, this capability can be severely reduced. The radar cross section of these UAVs are normally small compared to the background. However, the rotors of the UAVs produce a characteristic micro-Doppler signature that can be exploited for detection and classification. In this paper, we investigate in an experimental set-up whether it is possible in the radar non-line-of-sight to retrieve the micro-Doppler signature of the UAV rotors. This is done by exploring up to three multipath bounces in the measured signal. The measurements were made with a semi-monostatic single receiver-transmitter radar system operating at X-band in a pulsed single frequency mode. The radar response of the UAV, with plastic and metallic rotors, was measured at several positions inside a 4 m wide corridor with metallic walls. In this paper, data from one line-of-sight and two non-line-ofsight positions are presented. Results show that we are able to detect the micro-Doppler of the rotors and to retrieve the number of revolutions per minute, for both rotor types. Free space Finite-Difference Time-Domain calculations have also been performed on a CAD-model of the UAV rotor to determine the optimal choice of polarization and the short-time Fourier transform filter length.

  14. Human Resources Training Requirement on NPP Operation and Maintenance

    International Nuclear Information System (INIS)

    Nurlaila; Yuliastuti

    2009-01-01

    This paper discussed the human resources requirement on Nuclear Power Plant (NPP) operation and maintenance (O&M) phase related with the training required for O&M personnel. In addition, this paper also briefly discussed the availability of training facilities domestically include with some suggestion to develop the training facilities intended for the near future time in Indonesia. This paper was developed under the assumptions that Indonesia will build twin unit of NPP with capacity 1000 MWe for each using the turnkey contract method. The total of NPP O&M personnel were predicted about 692 peoples which consists of 42 personnel located in the head quarter and the rest 650 people work at NPP site. Up until now, Indonesia had the experience on operating and maintaining the nonnuclear power plant and several research reactors namely Kartini Reactor Yogyakarta, Triga Mark II Reactor Bandung, and GA Siwabessy Reactor Serpong. Beside that, experience on operating and maintaining the NPP in other countries would act as one of the reference to Indonesia in formulating an appropriate strategy to develop NPP human resources particularly in O&M phases. Education and training development program could be done trough the cooperation with vendor candidates. (author)

  15. Identifying Human Factors Issues in Aircraft Maintenance Operations

    Science.gov (United States)

    Veinott, Elizabeth S.; Kanki, Barbara G.; Shafto, Michael G. (Technical Monitor)

    1995-01-01

    Maintenance operations incidents submitted to the Aviation Safety Reporting System (ASRS) between 1986-1992 were systematically analyzed in order to identify issues relevant to human factors and crew coordination. This exploratory analysis involved 95 ASRS reports which represented a wide range of maintenance incidents. The reports were coded and analyzed according to the type of error (e.g, wrong part, procedural error, non-procedural error), contributing factors (e.g., individual, within-team, cross-team, procedure, tools), result of the error (e.g., aircraft damage or not) as well as the operational impact (e.g., aircraft flown to destination, air return, delay at gate). The main findings indicate that procedural errors were most common (48.4%) and that individual and team actions contributed to the errors in more than 50% of the cases. As for operational results, most errors were either corrected after landing at the destination (51.6%) or required the flight crew to stop enroute (29.5%). Interactions among these variables are also discussed. This analysis is a first step toward developing a taxonomy of crew coordination problems in maintenance. By understanding what variables are important and how they are interrelated, we may develop intervention strategies that are better tailored to the human factor issues involved.

  16. Integrated Robot-Human Control in Mining Operations

    Energy Technology Data Exchange (ETDEWEB)

    George Danko

    2007-09-30

    This report contains a detailed description of the work conducted for the project on Integrated Robot-Human Control in Mining Operations at University of Nevada, Reno. This project combines human operator control with robotic control concepts to create a hybrid control architecture, in which the strengths of each control method are combined to increase machine efficiency and reduce operator fatigue. The kinematics reconfiguration type differential control of the excavator implemented with a variety of 'software machine kinematics' is the key feature of the project. This software re-configured excavator is more desirable to execute a given digging task. The human operator retains the master control of the main motion parameters, while the computer coordinates the repetitive movement patterns of the machine links. These repetitive movements may be selected from a pre-defined family of trajectories with different transformations. The operator can make adjustments to this pattern in real time, as needed, to accommodate rapidly-changing environmental conditions. A working prototype has been developed using a Bobcat 435 excavator. The machine is operational with or without the computer control system depending on whether the computer interface is on or off. In preparation for emulated mining tasks tests, typical, repetitive tool trajectories during surface mining operations were recorded at the Newmont Mining Corporation's 'Lone Tree' mine in Nevada. Analysis of these working trajectories has been completed. The motion patterns, when transformed into a family of curves, may serve as the basis for software-controlled machine kinematics transformation in the new human-robot control system. A Cartesian control example has been developed and tested both in simulation and on the experimental excavator. Open-loop control is robustly stable and free of short-term dynamic problems, but it allows for drifting away from the desired motion kinematics of the

  17. Automatic Reverse Engineering of Private Flight Control Protocols of UAVs

    Directory of Open Access Journals (Sweden)

    Ran Ji

    2017-01-01

    Full Text Available The increasing use of civil unmanned aerial vehicles (UAVs has the potential to threaten public safety and privacy. Therefore, airspace administrators urgently need an effective method to regulate UAVs. Understanding the meaning and format of UAV flight control commands by automatic protocol reverse-engineering techniques is highly beneficial to UAV regulation. To improve our understanding of the meaning and format of UAV flight control commands, this paper proposes a method to automatically analyze the private flight control protocols of UAVs. First, we classify flight control commands collected from a binary network trace into clusters; then, we analyze the meaning of flight control commands by the accumulated error of each cluster; next, we extract the binary format of commands and infer field semantics in these commands; and finally, we infer the location of the check field in command and the generator polynomial matrix. The proposed approach is validated via experiments on a widely used consumer UAV.

  18. Automated UAV-based video exploitation using service oriented architecture framework

    Science.gov (United States)

    Se, Stephen; Nadeau, Christian; Wood, Scott

    2011-05-01

    Airborne surveillance and reconnaissance are essential for successful military missions. Such capabilities are critical for troop protection, situational awareness, mission planning, damage assessment, and others. Unmanned Aerial Vehicles (UAVs) gather huge amounts of video data but it is extremely labour-intensive for operators to analyze hours and hours of received data. At MDA, we have developed a suite of tools that can process the UAV video data automatically, including mosaicking, change detection and 3D reconstruction, which have been integrated within a standard GIS framework. In addition, the mosaicking and 3D reconstruction tools have also been integrated in a Service Oriented Architecture (SOA) framework. The Visualization and Exploitation Workstation (VIEW) integrates 2D and 3D visualization, processing, and analysis capabilities developed for UAV video exploitation. Visualization capabilities are supported through a thick-client Graphical User Interface (GUI), which allows visualization of 2D imagery, video, and 3D models. The GUI interacts with the VIEW server, which provides video mosaicking and 3D reconstruction exploitation services through the SOA framework. The SOA framework allows multiple users to perform video exploitation by running a GUI client on the operator's computer and invoking the video exploitation functionalities residing on the server. This allows the exploitation services to be upgraded easily and allows the intensive video processing to run on powerful workstations. MDA provides UAV services to the Canadian and Australian forces in Afghanistan with the Heron, a Medium Altitude Long Endurance (MALE) UAV system. On-going flight operations service provides important intelligence, surveillance, and reconnaissance information to commanders and front-line soldiers.

  19. Transmission Tower Environment Monitoring Using UAV

    International Nuclear Information System (INIS)

    Redzuwan, Redia Mohd; Din, Norashidah Md; Baharuddin, Mohd Zafri; Mustafa, Intan Shafinaz; Omar, Rohayu Che'

    2013-01-01

    Power utility engineers used to conduct ground survey to collect topographic data. Therefore, they can get detailed and accurate information, but these techniques take a lot of labors and expenses, and spending times for the surveying. An attractive solution to the ground survey is using images taken using Unmanned Aerial Vehicle (UAV). Images captured from UAV can be collected quickly and efficiently over the same area covered in the land survey, in a fraction of the time. The purpose of this research is to mosaic the large numbers of spectral images together into a region wide panoramic image which allows experts to analyze the data for transmission tower monitoring purposes.

  20. Classical Photogrammetry and Uav - Selected Ascpects

    Science.gov (United States)

    Mikrut, S.

    2016-06-01

    The UAV technology seems to be highly future-oriented due to its low costs as compared to traditional aerial images taken from classical photogrammetry aircrafts. The AGH University of Science and Technology in Cracow - Department of Geoinformation, Photogrammetry and Environmental Remote Sensing focuses mainly on geometry and radiometry of recorded images. Various scientific research centres all over the world have been conducting the relevant research for years. The paper presents selected aspects of processing digital images made with the UAV technology. It provides on a practical example a comparison between a digital image taken from an airborne (classical) height, and the one made from an UAV level. In his research the author of the paper is trying to find an answer to the question: to what extent does the UAV technology diverge today from classical photogrammetry, and what are the advantages and disadvantages of both methods? The flight plan was made over the Tokarnia Village Museum (more than 0.5 km2) for two separate flights: the first was made by an UAV - System FT-03A built by FlyTech Solution Ltd. The second was made with the use of a classical photogrammetric Cesna aircraft furnished with an airborne photogrammetric camera (Ultra Cam Eagle). Both sets of photographs were taken with pixel size of about 3 cm, in order to have reliable data allowing for both systems to be compared. The project has made aerotriangulation independently for the two flights. The DTM was generated automatically, and the last step was the generation of an orthophoto. The geometry of images was checked under the process of aerotriangulation. To compare the accuracy of these two flights, control and check points were used. RMSE were calculated. The radiometry was checked by a visual method and using the author's own algorithm for feature extraction (to define edges with subpixel accuracy). After initial pre-processing of data, the images were put together, and shown side by side

  1. MODELLING OF DECISION MAKING OF UNMANNED AERIAL VEHICLE'S OPERATOR IN EMERGENCY SITUATIONS

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2017-03-01

    Full Text Available Purpose: lack of recommendation action algorithm of UAV operator in emergency situations; decomposition of the process of decision making (DM by UAV’s Operator in emergency situations; development of the structure of distributed decision support system (DDSS for remotely piloted aircraft; development of a database of local decision support system (DSS operators Remotely Piloted Aircraft Systems (RPAS; working-out of models DM by UAV’s Operator. Methods: Algoritm of actions of UAV operator by Wald criterion, Laplace criterion, Hurwitz criterion. Results: The program "UAV_AS" that gives to UAV operator recommendations on how to act in case of emergency. Discussion: The article deals with the problem of Unmanned Aerial Vehicles (UAV flights for decision of different tasks in emergency situation. Based on statistical data it was analyzing the types of emergencies for unmanned aircraft. Defined sequence of actions UAV operator and in case of emergencies.

  2. Review of human factors in operator aids development at ORNL

    International Nuclear Information System (INIS)

    Sides, W.H. Jr.

    1983-01-01

    Three related Oak Ridge National Laboratory (ORNL) projects in the area of human factors in diagnostic aids are described. The goal of the first, sponsored by the Electric Power Research Institute (EPRI RP2184), is to provide guidance to nuclear-utility engineers in the selection and retrofit of computer-generated display systems in nuclear-plant control rooms. The goal of the second, sponsored by the Office of Research of the Nuclear Regulatory Commission (NRC), is to provide the NRC with a preview of some of the operator aids currently under development by industry for the purpose of assessing the applicability of current requirements. The goal of the third, also sponsored by the NRC, is to develop a methodology to determine the proper allocation of function between an operator and an automated system. The status of each project is given, together with the current and expected findings

  3. Regulatory Monitoring of Human Performance in PWR Operation in France

    International Nuclear Information System (INIS)

    LESOT, Jean Pascal; BALLOFFET, Yves

    1998-01-01

    The authors present the main components of an action initiated by the French Safety Authority to assess and possibly correct the way in which EDF takes the human factor into account in its power plants. After a description of the operation of the French Safety Authority, they recall the interest of the authority in human factors, the first steps taken on this issue in the 1990's, briefly describe the response made by EDF on three main themes: man/machine interface, training, changes in work methods and involvement and behaviour of players. They evoke the tools used by EDF to implement the third theme on site, the structures set up by EDF to develop this policy, outline the prerequisites required by the Safety Authority, and indicate the means used by ths authority. They give examples of incidents and associated reactive inspection

  4. Desert RATS 2011: Near-Earth Asteroid Human Exploration Operations

    Science.gov (United States)

    Abercromby, Andrew; Gernhardt, Michael L.; Chappel, Steve

    2012-01-01

    The Desert Research and Technology Studies (D-RATS) 2011 field test involved the planning and execution of a series of exploration scenarios under operational conditions similar to those that would be expected during a human exploration mission to a near-Earth asteroid (NEA). The focus was on understanding the operations tempo during simulated NEA exploration and the implications of communications latency and limited data bandwidth. Anchoring technologies and sampling techniques were not evaluated due to the immaturity of those technologies and the inability to meaningfully test them at D-RATS. Reduced gravity analogs and simulations are being used to fully evaluate Multi-Mission Space Exploration Vehicle (MMSEV) and extravehicular (EVA) operations and interactions in near-weightlessness at a NEA as part of NASA s integrated analogs program. Hypotheses were tested by planning and performing a series of 1-day simulated exploration excursions comparing test conditions all of which involved a single Deep Space Habitat (DSH) and either zero, one, or two MMSEVs; three or four crewmembers; one of two different communications bandwidths; and a 100-second roundtrip communications latency between the field site and Houston. Excursions were executed at the Black Point Lava Flow test site with a Mission Control Center and Science Support Room at Johnson Space Center (JSC) being operated with 100-second roundtrip communication latency to the field. Crews were composed of astronauts and professional field geologists and teams of Mission Operations, Science, and Education & Public Outreach (EPO) experts also supported the mission simulations each day. Data were collected separately from the Crew, Mission Operations, Science, and EPO teams to assess the test conditions from multiple perspectives. For the operations tested, data indicates practically significant benefits may be realized by including at least one MMSEV and by including 4 versus 3 crewmembers in the NEA exploration

  5. Detection of Nuclear Sources by UAV Teleoperation Using a Visuo-Haptic Augmented Reality Interface

    OpenAIRE

    Jacopo Aleotti; Giorgio Micconi; Stefano Caselli; Giacomo Benassi; Nicola Zambelli; Manuele Bettelli; Andrea Zappettini

    2017-01-01

    A visuo-haptic augmented reality (VHAR) interface is presented enabling an operator to teleoperate an unmanned aerial vehicle (UAV) equipped with a custom CdZnTe-based spectroscopic gamma-ray detector in outdoor environments. The task is to localize nuclear radiation sources, whose location is unknown to the user, without the close exposure of the operator. The developed detector also enables identification of the localized nuclear sources. The aim of the VHAR interface is to increase the sit...

  6. Psychological biases affecting human cognitive performance in dynamic operational environments

    International Nuclear Information System (INIS)

    Takano, Kenichi; Reason, J.

    1999-01-01

    In order to identify cognitive error mechanisms observed in the dynamic operational environment, the following materials were analyzed giving special attention to psychological biases, together with possible cognitive tasks and these location, and internal and external performance shaping factors: (a) 13 human factors analyses of US nuclear power plant accidents, (b) 14 cases of Japanese nuclear power plant incidents, and (c) 23 cases collected in simulator experiments. In the resulting analysis, the most frequently identified cognitive process associated with error productions was situation assessment, and following varieties were KB processes and response planning, all of that were the higher cognitive activities. Over 70% of human error cases, psychological bias was affecting to cognitive errors, especially those to higher cognitive activities. In addition, several error occurrence patterns, including relations between cognitive process, biases, and PSFs were identified by the multivariate analysis. According to the identified error patterns, functions that an operator support system have to equip were discussed and specified for design base considerations. (author)

  7. Detection of the power lines in UAV remote sensed images using spectral-spatial methods.

    Science.gov (United States)

    Bhola, Rishav; Krishna, Nandigam Hari; Ramesh, K N; Senthilnath, J; Anand, Gautham

    2018-01-15

    In this paper, detection of the power lines on images acquired by Unmanned Aerial Vehicle (UAV) based remote sensing is carried out using spectral-spatial methods. Spectral clustering was performed using Kmeans and Expectation Maximization (EM) algorithm to classify the pixels into the power lines and non-power lines. The spectral clustering methods used in this study are parametric in nature, to automate the number of clusters Davies-Bouldin index (DBI) is used. The UAV remote sensed image is clustered into the number of clusters determined by DBI. The k clustered image is merged into 2 clusters (power lines and non-power lines). Further, spatial segmentation was performed using morphological and geometric operations, to eliminate the non-power line regions. In this study, UAV images acquired at different altitudes and angles were analyzed to validate the robustness of the proposed method. It was observed that the EM with spatial segmentation (EM-Seg) performed better than the Kmeans with spatial segmentation (Kmeans-Seg) on most of the UAV images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Increasing the UAV data value by an OBIA methodology

    Science.gov (United States)

    García-Pedrero, Angel; Lillo-Saavedra, Mario; Rodriguez-Esparragon, Dionisio; Rodriguez-Gonzalez, Alejandro; Gonzalo-Martin, Consuelo

    2017-10-01

    Recently, there has been a noteworthy increment of using images registered by unmanned aerial vehicles (UAV) in different remote sensing applications. Sensors boarded on UAVs has lower operational costs and complexity than other remote sensing platforms, quicker turnaround times as well as higher spatial resolution. Concerning this last aspect, particular attention has to be paid on the limitations of classical algorithms based on pixels when they are applied to high resolution images. The objective of this study is to investigate the capability of an OBIA methodology developed for the automatic generation of a digital terrain model of an agricultural area from Digital Elevation Model (DEM) and multispectral images registered by a Parrot Sequoia multispectral sensor board on a eBee SQ agricultural drone. The proposed methodology uses a superpixel approach for obtaining context and elevation information used for merging superpixels and at the same time eliminating objects such as trees in order to generate a Digital Terrain Model (DTM) of the analyzed area. Obtained results show the potential of the approach, in terms of accuracy, when it is compared with a DTM generated by manually eliminating objects.

  9. REMOTE SPECTRAL IMAGING USING A LOW COST UAV SYSTEM

    Directory of Open Access Journals (Sweden)

    C. Tsouvaltsidis

    2015-08-01

    Full Text Available The purpose of this scientific survey is to support the research being conducted at York University in the field of spectroscopy and nanosatellites using Argus 1000 micro- spectrometer and low cost unmanned aerial vehicle (UAV system. On the CanX-2 mission, the Argus spectrometer observes reflected infrared solar radiation emitted by Earth surface targets as small as 1.5 km within the 0.9-1.7 μm range. However, limitations in the volume of data due to onboard power constraints and a lack of an onboard camera system make it very difficult to verify these objectives using ground truth. In the last five years that Argus has been in operation, we have made over 200 observations over a series of land and ocean targets. We have recently examined algorithms to improve the geolocation accuracy of the spectrometer payload and began to conduct an analysis of soil health content using Argus spectral data. A field campaign is used to obtain data to assess geolocation accuracy using coastline crossing detection and to obtain airborne bare soil spectra in ground truth form. The payload system used for the field campaign consists of an Argus spectrometer, optical camera, GPS, and attitude sensors, integrated into a low-cost, unmanned aerial vehicle (UAV, which will be presented along with the experimental procedure and field campaign results.

  10. MULTI-TEMPORAL CLASSIFICATION AND CHANGE DETECTION USING UAV IMAGES

    Directory of Open Access Journals (Sweden)

    S. Makuti

    2018-05-01

    Full Text Available In this paper different methodologies for the classification and change detection of UAV image blocks are explored. UAV is not only the cheapest platform for image acquisition but it is also the easiest platform to operate in repeated data collections over a changing area like a building construction site. Two change detection techniques have been evaluated in this study: the pre-classification and the post-classification algorithms. These methods are based on three main steps: feature extraction, classification and change detection. A set of state of the art features have been used in the tests: colour features (HSV, textural features (GLCM and 3D geometric features. For classification purposes Conditional Random Field (CRF has been used: the unary potential was determined using the Random Forest algorithm while the pairwise potential was defined by the fully connected CRF. In the performed tests, different feature configurations and settings have been considered to assess the performance of these methods in such challenging task. Experimental results showed that the post-classification approach outperforms the pre-classification change detection method. This was analysed using the overall accuracy, where by post classification have an accuracy of up to 62.6 % and the pre classification change detection have an accuracy of 46.5 %. These results represent a first useful indication for future works and developments.

  11. UAV Flight Control Based on RTX System Simulation Platform

    Directory of Open Access Journals (Sweden)

    Xiaojun Duan

    2014-03-01

    Full Text Available This paper proposes RTX and Matlab UAV flight control system simulation platform based on the advantages and disadvantages of Windows and real-time system RTX. In the simulation platform, we set the RTW toolbox configuration and modify grt_main.c in order to make simulation platform endowed with online parameter adjustment, fault injection. Meanwhile, we develop the interface of the system simulation platform by CVI, thus it makes effective and has good prospects in application. In order to improve the real-time performance of simulation system, the current computer of real-time simulation mostly use real-time operating system to solve simulation model, as well as dual- framework containing in Host and target machine. The system is complex, high cost, and generally used for the control and half of practical system simulation. For the control system designers, they expect to design control law at a computer with Windows-based environment and conduct real-time simulation. This paper proposes simulation platform for UAV flight control system based on RTX and Matlab for this demand.

  12. POTENTIAL OF UAV BASED CONVERGENT PHOTOGRAMMETRY IN MONITORING REGENERATION STANDARDS

    Directory of Open Access Journals (Sweden)

    U. Vepakomma

    2015-08-01

    Full Text Available Several thousand hectares of forest blocks are regenerating after harvest in Canada. Monitoring their performance over different stages of growth is critical in ensuring future productivity and ecological balance. Tools for rapid evaluation can support timely and reliable planning of interventions. Conventional ground surveys or visual image assessments are either time intensive or inaccurate, while alternate operational remote sensing tools are unavailable. In this study, we test the feasibility and strength of UAV-based photogrammetry with an EO camera on a UAV platform in assessing regeneration performance. Specifically we evaluated stocking, spatial density and height distribution of naturally growing (irregularly spaced stems or planted (regularly spaced stems conifer regeneration in different phases of growth. Standard photogrammetric workflow was applied on the 785 acquired images for 3D reconstruction of the study sites. The required parameters were derived based on automated single stem detection algorithm developed in-house. Comparing with field survey data, preliminary results hold promise. Future studies are planned to expand the scope to larger areas and different stand conditions.

  13. Assessing UAV platform types and optical sensor specifications

    Science.gov (United States)

    Altena, B.; Goedemé, T.

    2014-05-01

    Photogrammetric acquisition with unmanned aerial vehicles (UAV) has grown extensively over the last couple of years. Such mobile platforms and their processing software have matured, resulting in a market which offers off-the-shelf mapping solutions to surveying companies and geospatial enterprises. Different approaches in platform type and optical instruments exist, though its resulting products have similar specifications. To demonstrate differences in acquisitioning practice, a case study over an open mine was flown with two different off-the-shelf UAVs (a fixed-wing and a multi-rotor). The resulting imagery is analyzed to clarify the differences in collection quality. We look at image settings, and stress the fact of photographic experience if manual setting are applied. For mapping production it might be safest to set the camera on automatic. Furthermore, we try to estimate if blur is present due to image motion. A subtle trend seems to be present, for the fast flying platform though its extent is of similar order to the slow moving one. It shows both systems operate at their limits. Finally, the lens distortion is assessed with special attention to chromatic aberration. Here we see that through calibration such aberrations could be present, however detecting this phenomena directly on imagery is not straightforward. For such effects a normal lens is sufficient, though a better lens and collimator does give significant improvement.

  14. Determination of UAV position using high accuracy navigation platform

    Directory of Open Access Journals (Sweden)

    Ireneusz Kubicki

    2016-07-01

    Full Text Available The choice of navigation system for mini UAV is very important because of its application and exploitation, particularly when the installed on it a synthetic aperture radar requires highly precise information about an object’s position. The presented exemplary solution of such a system draws attention to the possible problems associated with the use of appropriate technology, sensors, and devices or with a complete navigation system. The position and spatial orientation errors of the measurement platform influence on the obtained SAR imaging. Both, turbulences and maneuvers performed during flight cause the changes in the position of the airborne object resulting in deterioration or lack of images from SAR. Consequently, it is necessary to perform operations for reducing or eliminating the impact of the sensors’ errors on the UAV position accuracy. You need to look for compromise solutions between newer better technologies and in the field of software. Keywords: navigation systems, unmanned aerial vehicles, sensors integration

  15. Real-time Collision Avoidance and Path Optimizer for Semi-autonomous UAVs.

    Science.gov (United States)

    Hawary, A. F.; Razak, N. A.

    2018-05-01

    Whilst UAV offers a potentially cheaper and more localized observation platform than current satellite or land-based approaches, it requires an advance path planner to reveal its true potential, particularly in real-time missions. Manual control by human will have limited line-of-sights and prone to errors due to careless and fatigue. A good alternative solution is to equip the UAV with semi-autonomous capabilities that able to navigate via a pre-planned route in real-time fashion. In this paper, we propose an easy-and-practical path optimizer based on the classical Travelling Salesman Problem and adopts a brute force search method to re-optimize the route in the event of collisions using range finder sensor. The former utilizes a Simple Genetic Algorithm and the latter uses Nearest Neighbour algorithm. Both algorithms are combined to optimize the route and avoid collision at once. Although many researchers proposed various path planning algorithms, we find that it is difficult to integrate on a basic UAV model and often lacks of real-time collision detection optimizer. Therefore, we explore a practical benefit from this approach using on-board Arduino and Ardupilot controllers by manually emulating the motion of an actual UAV model prior to test on the flying site. The result showed that the range finder sensor provides a real-time data to the algorithm to find a collision-free path and eventually optimized the route successfully.

  16. The Way Ahead For Maritime UAVS

    Science.gov (United States)

    2006-10-23

    of possible contract winners including Scan Eagle, Silver Fox, Wasp, Coyote and the USMC Tier I winner Dragon Eye. Technical data for these UAVs are...Neptune’s engine and avionics are placed above the waterline and the airframe is sealed for flotation as well as providing corrosion/water intrusion

  17. Baseline and Multimodal UAV GCS Interface Design

    Science.gov (United States)

    2013-07-01

    complete a computerized version of the NASA - TLX assessment of perceived mental workload. 2.3 Results The baseline condition ran smoothly and with...System MALE Medium-altitude, Long-endurance NASA - TLX NASA Task Load Index SA Situation Awareness TDT Tucker Davis Technologies UAV Uninhabited Aerial

  18. Interactive Cadastral Boundary Delineation from Uav Data

    Science.gov (United States)

    Crommelinck, S.; Höfle, B.; Koeva, M. N.; Yang, M. Y.; Vosselman, G.

    2018-05-01

    Unmanned aerial vehicles (UAV) are evolving as an alternative tool to acquire land tenure data. UAVs can capture geospatial data at high quality and resolution in a cost-effective, transparent and flexible manner, from which visible land parcel boundaries, i.e., cadastral boundaries are delineable. This delineation is to no extent automated, even though physical objects automatically retrievable through image analysis methods mark a large portion of cadastral boundaries. This study proposes (i) a methodology that automatically extracts and processes candidate cadastral boundary features from UAV data, and (ii) a procedure for a subsequent interactive delineation. Part (i) consists of two state-of-the-art computer vision methods, namely gPb contour detection and SLIC superpixels, as well as a classification part assigning costs to each outline according to local boundary knowledge. Part (ii) allows a user-guided delineation by calculating least-cost paths along previously extracted and weighted lines. The approach is tested on visible road outlines in two UAV datasets from Germany. Results show that all roads can be delineated comprehensively. Compared to manual delineation, the number of clicks per 100 m is reduced by up to 86 %, while obtaining a similar localization quality. The approach shows promising results to reduce the effort of manual delineation that is currently employed for indirect (cadastral) surveying.

  19. Critical infrastructure monitoring using UAV imagery

    Science.gov (United States)

    Maltezos, Evangelos; Skitsas, Michael; Charalambous, Elisavet; Koutras, Nikolaos; Bliziotis, Dimitris; Themistocleous, Kyriacos

    2016-08-01

    The constant technological evolution in Computer Vision enabled the development of new techniques which in conjunction with the use of Unmanned Aerial Vehicles (UAVs) may extract high quality photogrammetric products for several applications. Dense Image Matching (DIM) is a Computer Vision technique that can generate a dense 3D point cloud of an area or object. The use of UAV systems and DIM techniques is not only a flexible and attractive solution to produce accurate and high qualitative photogrammetric results but also is a major contribution to cost effectiveness. In this context, this study aims to highlight the benefits of the use of the UAVs in critical infrastructure monitoring applying DIM. A Multi-View Stereo (MVS) approach using multiple images (RGB digital aerial and oblique images), to fully cover the area of interest, is implemented. The application area is an Olympic venue in Attica, Greece, at an area of 400 acres. The results of our study indicate that the UAV+DIM approach respond very well to the increasingly greater demands for accurate and cost effective applications when provided with, a 3D point cloud and orthomosaic.

  20. NASA Extreme Environment Mission Operations: Science Operations Development for Human Exploration

    Science.gov (United States)

    Bell, Mary S.

    2014-01-01

    The purpose of NASA Extreme Environment Mission Operations (NEEMO) mission 16 in 2012 was to evaluate and compare the performance of a defined series of representative near-Earth asteroid (NEA) extravehicular activity (EVA) tasks under different conditions and combinations of work systems, constraints, and assumptions considered for future human NEA exploration missions. NEEMO 16 followed NASA's 2011 Desert Research and Technology Studies (D-RATS), the primary focus of which was understanding the implications of communication latency, crew size, and work system combinations with respect to scientific data quality, data management, crew workload, and crew/mission control interactions. The 1-g environment precluded meaningful evaluation of NEA EVA translation, worksite stabilization, sampling, or instrument deployment techniques. Thus, NEEMO missions were designed to provide an opportunity to perform a preliminary evaluation of these important factors for each of the conditions being considered. NEEMO 15 also took place in 2011 and provided a first look at many of the factors, but the mission was cut short due to a hurricane threat before all objectives were completed. ARES Directorate (KX) personnel consulted with JSC engineers to ensure that high-fidelity planetary science protocols were incorporated into NEEMO mission architectures. ARES has been collaborating with NEEMO mission planners since NEEMO 9 in 2006, successively building upon previous developments to refine science operations concepts within engineering constraints; it is expected to continue the collaboration as NASA's human exploration mission plans evolve.

  1. Human Mars Landing Site and Impacts on Mars Surface Operations

    Science.gov (United States)

    Hoffman, Stephen J.; Bussey, Ben

    2016-01-01

    This paper describes NASA's initial steps for identifying and evaluating candidate Exploration Zones (EZs) and Regions of Interests (ROIs) for the first human crews that will explore the surface of Mars. NASA's current effort to define the exploration of this planet by human crews, known as the Evolvable Mars Campaign (EMC), provides the context in which these EZs and ROIs are being considered. The EMC spans all aspects of a human Mars mission including launch from Earth, transit to and from Mars, and operations on the surface of Mars. An EZ is a collection of ROIs located within approximately 100 kilometers of a centralized landing site. ROIs are areas relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. The EZ also contains one or more landing sites and a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. With the EMC as a conceptual basis, the EZ model has been refined to a point where specific site selection criteria for scientific exploration and in situ resource utilization can be defined. In 2015 these criteria were distributed to the planetary sciences community and the in situ resource utilization and civil engineering communities as part of a call for EZ proposals. The resulting "First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars" was held in October 2015 during which 47 proposals for EZs and ROIs were presented and discussed. Proposed locations spanned all longitudes and all allowable latitudes (+/- 50 degrees). Proposed justification for selecting one of these EZs also spanned a significant portion of the scientific and resource criteria provided to the community. Several important findings resulted from this Workshop including: (a) a strong consensus that, at a scale of 100 km (radius), multiple places on Mars exist that have both sufficient scientific interest

  2. UNC Nuclear Industries' human-factored approach to the operating or maintenance procedure

    International Nuclear Information System (INIS)

    Nelson, A.A.; Clark, J.E.

    1982-01-01

    The development of Human Factors Engineering (HFE) and UNC Nuclear Industries' (UNC) commitment to minimizing the potential for human error in the performance of operating or maintenance procedures have lead to a procedure upgrade program. Human-factored procedures were developed using information from many sources including, but not limited to, operators, a human factors specialist, engineers and supervisors. This has resulted in the Job Performance Aid (JPA). This paper presents UNC's approach to providing human-factored operating and maintenance procedures

  3. JOINT PROCESSING OF UAV IMAGERY AND TERRESTRIAL MOBILE MAPPING SYSTEM DATA FOR VERY HIGH RESOLUTION CITY MODELING

    Directory of Open Access Journals (Sweden)

    A. Gruen

    2013-08-01

    Full Text Available Both unmanned aerial vehicle (UAV technology and Mobile Mapping Systems (MMS are important techniques for surveying and mapping. In recent years, the UAV technology has seen tremendous interest, both in the mapping community and in many other fields of application. Carrying off-the shelf digital cameras, the UAV can collect high quality aerial optical images for city modeling using photogrammetric techniques. In addition, a MMS can acquire high density point clouds of ground objects along the roads. The UAV, if operated in an aerial mode, has difficulties in acquiring information of ground objects under the trees and along façades of buildings. On the contrary, the MMS collects accurate point clouds of objects from the ground, together with stereo images, but it suffers from system errors due to loss of GPS signals, and also lacks the information of the roofs. Therefore, both technologies are complementary. This paper focuses on the integration of UAV images, MMS point cloud data and terrestrial images to build very high resolution 3D city models. The work we will show is a practical modeling project of the National University of Singapore (NUS campus, which includes buildings, some of them very high, roads and other man-made objects, dense tropical vegetation and DTM. This is an intermediate report. We present work in progress.

  4. A Novel Methodology for Improving Plant Pest Surveillance in Vineyards and Crops Using UAV-Based Hyperspectral and Spatial Data

    Science.gov (United States)

    Vanegas, Fernando; Weiss, John; Gonzalez, Felipe

    2018-01-01

    Recent advances in remote sensed imagery and geospatial image processing using unmanned aerial vehicles (UAVs) have enabled the rapid and ongoing development of monitoring tools for crop management and the detection/surveillance of insect pests. This paper describes a (UAV) remote sensing-based methodology to increase the efficiency of existing surveillance practices (human inspectors and insect traps) for detecting pest infestations (e.g., grape phylloxera in vineyards). The methodology uses a UAV integrated with advanced digital hyperspectral, multispectral, and RGB sensors. We implemented the methodology for the development of a predictive model for phylloxera detection. In this method, we explore the combination of airborne RGB, multispectral, and hyperspectral imagery with ground-based data at two separate time periods and under different levels of phylloxera infestation. We describe the technology used—the sensors, the UAV, and the flight operations—the processing workflow of the datasets from each imagery type, and the methods for combining multiple airborne with ground-based datasets. Finally, we present relevant results of correlation between the different processed datasets. The objective of this research is to develop a novel methodology for collecting, processing, analysing and integrating multispectral, hyperspectral, ground and spatial data to remote sense different variables in different applications, such as, in this case, plant pest surveillance. The development of such methodology would provide researchers, agronomists, and UAV practitioners reliable data collection protocols and methods to achieve faster processing techniques and integrate multiple sources of data in diverse remote sensing applications. PMID:29342101

  5. The Practical Application of Uav-Based Photogrammetry Under Economic Aspects

    Science.gov (United States)

    Sauerbier, M.; Siegrist, E.; Eisenbeiss, H.; Demir, N.

    2011-09-01

    test data from a project featuring an area of interest within the practical range for mini UAVs. While flight planning and flight operation are already quite efficient processes, the bottlenecks identified are mainly related to image processing. Although we used specific software for image processing, the identified gaps in the processing chain today are valid for most commercial photogrammetric software systems on the market. An outlook proposing improvements for a practicable workflow applicable in projects in private economy will be given.

  6. Research on operation and maintenance support system adaptive to human recognition and understanding in human-centered plant

    International Nuclear Information System (INIS)

    Numano, Masayoshi; Matsuoka, Takeshi; Mitomo, N.

    2004-01-01

    As a human-centered plant, advanced nuclear power plant needs appropriate role sharing between human and mobile intelligent agents. Human-machine cooperation for plant operation and maintenance activities is also required with an advanced interface. Plant's maintenance is programmed using mobile robots working under the radiation environments instead of human beings. Operation and maintenance support system adaptive to human recognition and understanding should be developed to establish adequate human and machine interface so as to induce human capabilities to the full and enable human to take responsibility for plan's operation. Plant's operation and maintenance can be cooperative activities between human and intelligent automonous agents having surveillance and control functions. Infrastructure of multi-agent simulation system for the support system has been investigated and developed based on work plans derived from the scheduler. (T. Tanaka)

  7. Orbital Hub: a concept for human spaceflight beyond ISS operations

    Science.gov (United States)

    Jahnke, Stephan S.; Maiwald, Volker; Philpot, Claudia; Quantius, Dominik; Romberg, Oliver; Seboldt, Wolfgang; Vrakking, Vincent; Zeidler, Conrad

    2018-04-01

    The International Space Station (ISS) is the greatest endeavour in low-Earth orbit since the beginning of the space age and the culmination of human outposts like Skylab and Mir. While a clear schedule has yet to be drafted, it is expected that ISS will cease operation in the 2020s. What could be the layout for a human outpost in LEO with lessons learnt from ISS? What are the use cases and applications of such an outpost in the future? The System Analysis Space Segment group of the German Aerospace Center investigated these and other questions and developed the Orbital Hub concept. In this paper an overview is presented of how the overall concept has been derived and its properties and layouts are described. Starting with a workshop involving the science community, the scientific requirements have been derived and Strawman payloads have been defined for use in further design activities. These design activities focused on Concurrent Engineering studies, where besides DLR employees participants from the industry and astronauts were involved. The result is an expandable concept that is composed of two main parts, the Base Platform, home for a permanent crew of up to three astronauts, and the Free Flyer, an uncrewed autonomous research platform. This modular approach provides one major advantage: the decoupling of the habitat and payload leading to increased quality of the micro-gravity environment. The former provides an environment for human physiology experiments, while the latter allows science without the perturbations caused by a crew, e.g. material experiments or Earth observation. The Free Flyer is designed to operate for up to 3 months on its own, but can dock with the space station for maintenance and experiment servicing. It also has a hybrid propulsion system, chemical and electrical, for different applications. The hub's design allows launch with just three launches, as the total mass of all the hub parts is about 60,000 kg. The main focus of the design is

  8. Design of UAV-Embedded Microphone Array System for Sound Source Localization in Outdoor Environments

    Directory of Open Access Journals (Sweden)

    Kotaro Hoshiba

    2017-11-01

    Full Text Available In search and rescue activities, unmanned aerial vehicles (UAV should exploit sound information to compensate for poor visual information. This paper describes the design and implementation of a UAV-embedded microphone array system for sound source localization in outdoor environments. Four critical development problems included water-resistance of the microphone array, efficiency in assembling, reliability of wireless communication, and sufficiency of visualization tools for operators. To solve these problems, we developed a spherical microphone array system (SMAS consisting of a microphone array, a stable wireless network communication system, and intuitive visualization tools. The performance of SMAS was evaluated with simulated data and a demonstration in the field. Results confirmed that the SMAS provides highly accurate localization, water resistance, prompt assembly, stable wireless communication, and intuitive information for observers and operators.

  9. Design of UAV-Embedded Microphone Array System for Sound Source Localization in Outdoor Environments †

    Science.gov (United States)

    Hoshiba, Kotaro; Washizaki, Kai; Wakabayashi, Mizuho; Ishiki, Takahiro; Bando, Yoshiaki; Gabriel, Daniel; Nakadai, Kazuhiro; Okuno, Hiroshi G.

    2017-01-01

    In search and rescue activities, unmanned aerial vehicles (UAV) should exploit sound information to compensate for poor visual information. This paper describes the design and implementation of a UAV-embedded microphone array system for sound source localization in outdoor environments. Four critical development problems included water-resistance of the microphone array, efficiency in assembling, reliability of wireless communication, and sufficiency of visualization tools for operators. To solve these problems, we developed a spherical microphone array system (SMAS) consisting of a microphone array, a stable wireless network communication system, and intuitive visualization tools. The performance of SMAS was evaluated with simulated data and a demonstration in the field. Results confirmed that the SMAS provides highly accurate localization, water resistance, prompt assembly, stable wireless communication, and intuitive information for observers and operators. PMID:29099790

  10. Design of UAV-Embedded Microphone Array System for Sound Source Localization in Outdoor Environments.

    Science.gov (United States)

    Hoshiba, Kotaro; Washizaki, Kai; Wakabayashi, Mizuho; Ishiki, Takahiro; Kumon, Makoto; Bando, Yoshiaki; Gabriel, Daniel; Nakadai, Kazuhiro; Okuno, Hiroshi G

    2017-11-03

    In search and rescue activities, unmanned aerial vehicles (UAV) should exploit sound information to compensate for poor visual information. This paper describes the design and implementation of a UAV-embedded microphone array system for sound source localization in outdoor environments. Four critical development problems included water-resistance of the microphone array, efficiency in assembling, reliability of wireless communication, and sufficiency of visualization tools for operators. To solve these problems, we developed a spherical microphone array system (SMAS) consisting of a microphone array, a stable wireless network communication system, and intuitive visualization tools. The performance of SMAS was evaluated with simulated data and a demonstration in the field. Results confirmed that the SMAS provides highly accurate localization, water resistance, prompt assembly, stable wireless communication, and intuitive information for observers and operators.

  11. Uav-Based 3d Urban Environment Monitoring

    Science.gov (United States)

    Boonpook, Wuttichai; Tan, Yumin; Liu, Huaqing; Zhao, Binbin; He, Lingfeng

    2018-04-01

    Unmanned Aerial Vehicle (UAV) based remote sensing can be used to make three-dimensions (3D) mapping with great flexibility, besides the ability to provide high resolution images. In this paper we propose a quick-change detection method on UAV images by combining altitude from Digital Surface Model (DSM) and texture analysis from images. Cases of UAV images with and without georeferencing are both considered. Research results show that the accuracy of change detection can be enhanced with georeferencing procedure, and the accuracy and precision of change detection on UAV images which are collected both vertically and obliquely but without georeferencing also have a good performance.

  12. Assessing UAVs in Monitoring Crop Evapotranspiration within a Heterogeneous Soil

    Science.gov (United States)

    Rouze, G.; Neely, H.; Morgan, C.; Kustas, W. P.; McKee, L.; Prueger, J. H.; Cope, D.; Yang, C.; Thomasson, A.; Jung, J.

    2017-12-01

    Airborne and satellite remote sensing methods have been developed to provide ET estimates across entire management fields. However, airborne-based ET is not particularly cost-effective and satellite-based ET provides insufficient spatial/temporal information. ET estimations through remote sensing are also problematic where soils are highly variable within a given management field. Unlike airborne/satellite-based ET, Unmanned Aerial Vehicle (UAV)-based ET has the potential to increase the spatial and temporal detail of these measurements, particularly within a heterogeneous soil landscape. However, it is unclear to what extent UAVs can model ET. The overall goal of this project was to assess the capability of UAVs in modeling ET across a heterogeneous landscape. Within a 20-ha irrigated cotton field in Central Texas, low-altitude UAV surveys were conducted throughout the growing season over two soil types. UAVs were equipped with thermal and multispectral cameras to obtain canopy temperature and NDVI, respectively. UAV data were supplemented simultaneously with ground-truth measurements such as Leaf Area Index (LAI) and plant height. Both remote sensing and ground-truth parameters were used to model ET using a Two-Source Energy Balance (TSEB) model. UAV-based estimations of ET and other energy balance components were validated against energy balance measurements obtained from nearby eddy covariance towers that were installed within each soil type. UAV-based ET fluxes were also compared with airborne and satellite (Landsat 8)-based ET fluxes collected near the time of the UAV survey.

  13. Next Generation UAV Based Spectral Systems for Environmental Monitoring

    Data.gov (United States)

    National Aeronautics and Space Administration — At present, UAVs used in environmental monitoring mostly collect low spectral resolution imagery, capable of retrieving canopy greenness or properties related water...

  14. Air Force UAV’s: The Secret History

    Science.gov (United States)

    2010-07-01

    iA Mitchell Institute Study i Air Force UAVs The Secret History A Mitchell Institute Study July 2010 By Thomas P. Ehrhard Report Documentation Page...DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Air Force UAVs The Secret History 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c... The Secret History 2 Air Force UAVs: The Secret History2 air Force uaVs: The secret history Has any airplane in the past decade captured the public

  15. Easy 3D Mapping for Indoor Navigation of Micro UAVs

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Totu, Luminita Cristiana; La Cour-Harbo, Anders

    2017-01-01

    Indoor operation of micro air vehicles (UAS or UAV) is significantly simplified with the availability of some means for indoor localization as well as a sufficiently precise 3D map of the facility. Creation of 3D maps based on the available architectural information should on the one hand provide...... a map of sufficient precision and on the other limit complexity to a manageable level. This paper presents a box based approach for easy generation 3D maps to serve as the basis for indoor navigation of UAS. The basic building block employed is a 3D axis parallel box (APB). Unions of APBs constitute...... with arguments for pivotal design choices and a selection of examples....

  16. An Evaluation of Protocols for UAV Science Applications

    Science.gov (United States)

    Ivancic, William D.; Stewart, David E.; Sullivan, Donald V.; Finch, Patrick E.

    2012-01-01

    This paper identifies data transport needs for current and future science payloads deployed on the NASA Global Hawk Unmanned Aeronautical Vehicle (UAV). The NASA Global Hawk communication system and operational constrains are presented. The Genesis and Rapid Intensification Processes (GRIP) mission is used to provide the baseline communication requirements as a variety of payloads were utilized in this mission. User needs and desires are addressed. Protocols are matched to the payload needs and an evaluation of various techniques and tradeoffs are presented. Such techniques include utilization rate-base selective negative acknowledgement protocols and possible use of protocol enhancing proxies. Tradeoffs of communication architectures that address ease-of-use and security considerations are also presented.

  17. UAV – a useful tool for monitoring woodlands

    Directory of Open Access Journals (Sweden)

    Zmarz Anna

    2014-06-01

    Full Text Available Unmanned aerial systems are in many countries one of the most dynamically developing branches of technology. They have also been recognized and are being utilized by scientists who find remote sensing indispensable in their work. Today, it is increasingly common to find research teams utilizing so-called drones in field research. Unmanned systems are becoming ever more important for environment monitoring by, on the one hand, providing data from inaccessible or remote areas, and, on the other hand, reducing the human costs required by traditional large field teams while also increasing the efficiency of the work. This paper presents the possibility of utilizing UAVs for image data collection in woodland areas.

  18. The optimal design of UAV wing structure

    Science.gov (United States)

    Długosz, Adam; Klimek, Wiktor

    2018-01-01

    The paper presents an optimal design of UAV wing, made of composite materials. The aim of the optimization is to improve strength and stiffness together with reduction of the weight of the structure. Three different types of functionals, which depend on stress, stiffness and the total mass are defined. The paper presents an application of the in-house implementation of the evolutionary multi-objective algorithm in optimization of the UAV wing structure. Values of the functionals are calculated on the basis of results obtained from numerical simulations. Numerical FEM model, consisting of different composite materials is created. Adequacy of the numerical model is verified by results obtained from the experiment, performed on a tensile testing machine. Examples of multi-objective optimization by means of Pareto-optimal set of solutions are presented.

  19. A proposed UAV for indoor patient care.

    Science.gov (United States)

    Todd, Catherine; Watfa, Mohamed; El Mouden, Yassine; Sahir, Sana; Ali, Afrah; Niavarani, Ali; Lutfi, Aoun; Copiaco, Abigail; Agarwal, Vaibhavi; Afsari, Kiyan; Johnathon, Chris; Okafor, Onyeka; Ayad, Marina

    2015-09-10

    Indoor flight, obstacle avoidance and client-server communication of an Unmanned Aerial Vehicle (UAV) raises several unique research challenges. This paper examines current methods and associated technologies adapted within the literature toward autonomous UAV flight, for consideration in a proposed system for indoor healthcare administration with a quadcopter. We introduce Healthbuddy, a unique research initiative towards overcoming challenges associated with indoor navigation, collision detection and avoidance, stability, wireless drone-server communications and automated decision support for patient care in a GPS-denied environment. To address the identified research deficits, a drone-based solution is presented. The solution is preliminary as we develop and refine the suggested algorithms and hardware system to achieve the research objectives.

  20. Vision based systems for UAV applications

    CERN Document Server

    Kuś, Zygmunt

    2013-01-01

    This monograph is motivated by a significant number of vision based algorithms for Unmanned Aerial Vehicles (UAV) that were developed during research and development projects. Vision information is utilized in various applications like visual surveillance, aim systems, recognition systems, collision-avoidance systems and navigation. This book presents practical applications, examples and recent challenges in these mentioned application fields. The aim of the book is to create a valuable source of information for researchers and constructors of solutions utilizing vision from UAV. Scientists, researchers and graduate students involved in computer vision, image processing, data fusion, control algorithms, mechanics, data mining, navigation and IC can find many valuable, useful and practical suggestions and solutions. The latest challenges for vision based systems are also presented.

  1. Technologies Advance UAVs for Science, Military

    Science.gov (United States)

    2010-01-01

    A Space Act Agreement with Goddard Space Flight Center and West Virginia University enabled Aurora Flight Sciences Corporation, of Manassas, Virginia, to develop cost-effective composite manufacturing capabilities and open a facility in West Virginia. The company now employs 160 workers at the plant, tasked with crafting airframe components for the Global Hawk unmanned aerial vehicle (UAV) program. While one third of the company's workforce focuses on Global Hawk production, the rest of the company develops advanced UAV technologies that are redefining traditional approaches to unmanned aviation. Since the company's founding, Aurora s cutting-edge work has been supported with funding from NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs.

  2. Knowledge-based support for design and operational use of human-machine interfaces

    International Nuclear Information System (INIS)

    Johannsen, G.

    1994-01-01

    The possibilities for knowledge support of different human user classes, namely operators, operational engineers and designers of human-machine interfaces, are discussed. Several human-machine interface functionalities are briefly explained. The paper deals with such questions as which type of knowledge is needed for design and operation, how to represent it, where to get it from, how to process it, and how to consider and use it. The relationships between design and operational use are thereby emphasised. (author)

  3. CFD Analysis of UAV Flying Wing

    Directory of Open Access Journals (Sweden)

    Vasile PRISACARIU

    2016-09-01

    Full Text Available Numerical methods for solving equations describing the evolution of 3D fluid experienced a significant development closely related to the progress of information systems. Today, especially in the field of fluid mechanics, numerical simulations allow the study of gas-thermodynamic confirmed by experimental techniques in wind tunnel conditions and actual flight tests for modeling complex aircraft. The article shows a case of numerical analysis of the lifting surface on the UAV type flying wing.

  4. UAV magnetometry in mineral exploration and infrastructure detection

    Science.gov (United States)

    Braun, A.; Parvar, K.; Burns, M.

    2015-12-01

    Magnetic surveys are critical tools in mineral exploration and UAVs have the potential to carry magnetometers. UAV surveys can offer higher spatial resolution than traditional airborne surveys, and higher coverage than terrestrial surveys. However, the main advantage is their ability to sense the magnetic field in 3-D, while most airborne or terrestrial surveys are restricted to 2-D acquisition. This study compares UAV magnetic data from two different UAVs (JIB drone, DJI Phantom 2) and three different magnetometers (GEM GSPM35, Honeywell HMR2300, GEM GST-19). The first UAV survey was conducted using a JIB UAV with a GSPM35 flying at 10-15 m above ground. The survey's goal was to detect intrusive Rhyolite bodies for primary mineral exploration. The survey resulted in a better understanding of the validity/resolution of UAV data and led to improved knowledge about the geological structures in the area. The results further drove the design of a following terrestrial survey. Comparing the UAV data with an available airborne survey (upward continued to 250 m) reveals that the UAV data has superior spatial resolution, but exhibits a higher noise level. The magnetic anomalies related to the Rhyolite intrusions is about 109 nT and translates into an estimated depth of approximately 110 meters. The second survey was conducted using an in-house developed UAV magnetometer system equipped with a DJI Phantom 2 and a Honeywell HMR2300 fluxgate magnetometer. By flying the sensor in different altitudes, the vertical and horizontal gradients can be derived leading to full 3-D magnetic data volumes which can provide improved constraints for source depth/geometry characterization. We demonstrate that a buried steam pipeline was detectable with the UAV magnetometer system and compare the resulting data with a terrestrial survey using a GEM GST-19 Proton Precession Magnetometer.

  5. Analysis of human factor in operation of nuclear power plants

    International Nuclear Information System (INIS)

    Husseiny, A.A.; Sabri, Z.A.

    1980-01-01

    A taxonomy of operator errors is developed here to provide a scheme for compiling data from field experience according to their significance to the operation and their influence on the plant performance. The reversibility of operator actions is taken as the basis of detection of the relevances of errors to the overall operation. In addition, distinction is made between system errors, such as inadequate instrumentation or logistics, and 'operator errors', which indicate that the operator is involved in inducing an operational error rather than being uniquely responsible for an incident. The developed taxonomy can be used for evaluation of the performance of operators during scheduled training programs. Identification of each class of errors would assist in upgrading performance of operators in a given plant and in filing occurrence reports that help in revising safety provisions or operation procedures. The scheme is suitable for sorting and storing failure information in a data library for ease of retrieval by reliability analysis codes. (orig.) [de

  6. Human errors in operation - what to do with them?

    International Nuclear Information System (INIS)

    Michalek, J.

    2009-01-01

    'It is human to make errors!' This saying of our predecessors is still current and will continue to be valid also in the future, until human is a human. Errors cannot be completely eliminated from human activities. In average human makes two simple errors in one hour. For example, how many typing errors do we make while typing on the computer keyboard? How many times we make mistakes in writing the date in the first days of a new year? These errors have no major consequences, however, in certain situations errors of humans are very unpleasant and may be also very costly, they may even endanger human lives. (author)

  7. Fielding An Amphibious UAV: Development, Results, and Lessons Learned

    Science.gov (United States)

    Pisanich, Greg; Morris, Stephen

    2002-01-01

    This report summarizes the work completed on the design and flight-testing of a small, unmanned, amphibious demonstrator aircraft that flies autonomously. The aircraft named ACAT (Autonomous Cargo Amphibious Transport) is intended to be a large cargo carrying unmanned aircraft that operates from water to avoid airspace and airfield conflict issues between manned and unmanned aircraft. To demonstrate the feasibility of this concept, a demonstrator ACAT was designed, built, and flown that has a six-foot wingspan and can fly autonomously from land or water airfield. The demonstrator was designed for a 1-hour duration and 1-mile telemetry range. A sizing code was used to design the smallest demonstrator UAV to achieve these goals. The final design was a six-foot wingspan, twin hull configuration that distributes the cargo weight across the span, reducing the wing structural weight. The demonstrator airframe was constructed from balsa wood, fiberglass, and plywood. A 4-stroke model airplane engine powered by methanol fuel was mounted in a pylon above the wing and powers the ACAT UAV. Initial flight tests from land and water were conducted under manual radio control and confirmed the amphibious capability of the design. Flight avionics that were developed by MLB for production UAVs were installed in the ACAT demonstrator. The flight software was also enhanced to permit autonomous takeoff and landing from water. A complete autonomous flight from ahard runway was successfully completed on July 5, 2001 and consisted of a take-off, rectangular flight pattern, and landing under complete computer control. A completely autonomous flight that featured a water takeoff and landing was completed on October 4, 2001. This report describes these activities in detail and highlights the challenges encountered and solved during the development of the ACAT demonstrator. hard runway was successfully completed on July 5, 2001 and consisted of a take-off, rectangular flight pattern, and

  8. Modeling of a dependence between human operators in advanced main control rooms

    International Nuclear Information System (INIS)

    Lee, Seung Jun; Kim, Jaewhan; Jang, Seung-Cheol; Shin, Yeong Cheol

    2009-01-01

    For the human reliability analysis of main control room (MCR) operations, not only parameters such as the given situation and capability of the operators but also the dependence between the actions of the operators should be considered because MCR operations are team operations. The dependence between operators might be more prevalent in an advanced MCR in which operators share the same information using a computerized monitoring system or a computerized procedure system. Therefore, this work focused on the computerized operation environment of advanced MCRs and proposed a model to consider the dependence representing the recovery possibility of an operator error by another operator. The proposed model estimates human error probability values by considering adjustment values for a situation and dependence values for operators during the same operation using independent event trees. This work can be used to quantitatively calculate a more reliable operation failure probability for an advanced MCR. (author)

  9. Vision-IMU based collaborative control of a blind UAV

    NARCIS (Netherlands)

    Hoogervorst, R.; Stramigioli, Stefano; Wopereis, Han Willem; Fumagalli, Matteo

    2015-01-01

    Position estimation of UAVs is usually done using onboard sensors such as GPS and camera. However, in certain practical situations, the measurements of both the GPS and the onboard camera of the UAV might not always be available or reliable. This paper investigates the possibility to overcome

  10. Cooperative Monocular-Based SLAM for Multi-UAV Systems in GPS-Denied Environments.

    Science.gov (United States)

    Trujillo, Juan-Carlos; Munguia, Rodrigo; Guerra, Edmundo; Grau, Antoni

    2018-04-26

    This work presents a cooperative monocular-based SLAM approach for multi-UAV systems that can operate in GPS-denied environments. The main contribution of the work is to show that, using visual information obtained from monocular cameras mounted onboard aerial vehicles flying in formation, the observability properties of the whole system are improved. This fact is especially notorious when compared with other related visual SLAM configurations. In order to improve the observability properties, some measurements of the relative distance between the UAVs are included in the system. These relative distances are also obtained from visual information. The proposed approach is theoretically validated by means of a nonlinear observability analysis. Furthermore, an extensive set of computer simulations is presented in order to validate the proposed approach. The numerical simulation results show that the proposed system is able to provide a good position and orientation estimation of the aerial vehicles flying in formation.

  11. A MICRO-UAV SYSTEM FOR FOREST MANAGEMENT

    Directory of Open Access Journals (Sweden)

    T. Hormigo

    2013-08-01

    Full Text Available Spin.Works has developed a complete micro-UAV system with the purpose of supporting forest management activities. The aircraft is based on a winged-body design spanning 1.8 m with a maximum take-off weight of 2 kg, and can carry out missions lasting up to 2 h at a cruise speed of about 60 km/h. The corresponding ground station ensures the mission planning functions, real-time flight monitoring and visualization, and serves also as a real-time and post-flight data exploitation platform. A particular emphasis is placed on image processing techniques applied to two operational concepts: a fire detection service and a forest mapping service. The real-time operations related to fire detection consist on object tracking and geo-referencing functions, which can be operated by a user directly over the video stream, enabling the quick estimation of the 3D location (latitude, longitude, altitude of suspected fires. The post-flight processing consists of extracting valuable knowledge from the payload data, in particular tree coverage maps, orthophoto mosaics and Digital Surface Models (DSMs, which can be used for further forest characterization such as wood and cork volume estimation. The system is currently entering initial operations, with expanded operations expected during Q3 2013.

  12. Using infrared HOG-based pedestrian detection for outdoor autonomous searching UAV with embedded system

    Science.gov (United States)

    Shao, Yanhua; Mei, Yanying; Chu, Hongyu; Chang, Zhiyuan; He, Yuxuan; Zhan, Huayi

    2018-04-01

    Pedestrian detection (PD) is an important application domain in computer vision and pattern recognition. Unmanned Aerial Vehicles (UAVs) have become a major field of research in recent years. In this paper, an algorithm for a robust pedestrian detection method based on the combination of the infrared HOG (IR-HOG) feature and SVM is proposed for highly complex outdoor scenarios on the basis of airborne IR image sequences from UAV. The basic flow of our application operation is as follows. Firstly, the thermal infrared imager (TAU2-336), which was installed on our Outdoor Autonomous Searching (OAS) UAV, is used for taking pictures of the designated outdoor area. Secondly, image sequences collecting and processing were accomplished by using high-performance embedded system with Samsung ODROID-XU4 and Ubuntu as the core and operating system respectively, and IR-HOG features were extracted. Finally, the SVM is used to train the pedestrian classifier. Experiment show that, our method shows promising results under complex conditions including strong noise corruption, partial occlusion etc.

  13. INTRODUCING A LOW-COST MINI-UAV FOR THERMAL- AND MULTISPECTRAL-IMAGING

    Directory of Open Access Journals (Sweden)

    J. Bendig

    2012-07-01

    Full Text Available The trend to minimize electronic devices also accounts for Unmanned Airborne Vehicles (UAVs as well as for sensor technologies and imaging devices. Consequently, it is not surprising that UAVs are already part of our daily life and the current pace of development will increase civil applications. A well known and already wide spread example is the so called flying video game based on Parrot's AR.Drone which is remotely controlled by an iPod, iPhone, or iPad (http://ardrone.parrot.com. The latter can be considered as a low-weight and low-cost Mini-UAV. In this contribution a Mini-UAV is considered to weigh less than 5 kg and is being able to carry 0.2 kg to 1.5 kg of sensor payload. While up to now Mini-UAVs like Parrot's AR.Drone are mainly equipped with RGB cameras for videotaping or imaging, the development of such carriage systems clearly also goes to multi-sensor platforms like the ones introduced for larger UAVs (5 to 20 kg by Jaakkolla et al. (2010 for forestry applications or by Berni et al. (2009 for agricultural applications. The problem when designing a Mini-UAV for multi-sensor imaging is the limitation of payload of up to 1.5 kg and a total weight of the whole system below 5 kg. Consequently, the Mini-UAV without sensors but including navigation system and GPS sensors must weigh less than 3.5 kg. A Mini-UAV system with these characteristics is HiSystems' MK-Okto (www.mikrokopter.de. Total weight including battery without sensors is less than 2.5 kg. Payload of a MK-Okto is approx. 1 kg and maximum speed is around 30 km/h. The MK-Okto can be operated up to a wind speed of less than 19 km/h which corresponds to Beaufort scale number 3 for wind speed. In our study, the MK-Okto is equipped with a handheld low-weight NEC F30IS thermal imaging system. The F30IS which was developed for veterinary applications, covers 8 to 13 μm, weighs only 300 g, and is capturing the temperature range between −20 °C and 100 °C. Flying at a height of

  14. Introducing a Low-Cost Mini-Uav for - and Multispectral-Imaging

    Science.gov (United States)

    Bendig, J.; Bolten, A.; Bareth, G.

    2012-07-01

    The trend to minimize electronic devices also accounts for Unmanned Airborne Vehicles (UAVs) as well as for sensor technologies and imaging devices. Consequently, it is not surprising that UAVs are already part of our daily life and the current pace of development will increase civil applications. A well known and already wide spread example is the so called flying video game based on Parrot's AR.Drone which is remotely controlled by an iPod, iPhone, or iPad (http://ardrone.parrot.com). The latter can be considered as a low-weight and low-cost Mini-UAV. In this contribution a Mini-UAV is considered to weigh less than 5 kg and is being able to carry 0.2 kg to 1.5 kg of sensor payload. While up to now Mini-UAVs like Parrot's AR.Drone are mainly equipped with RGB cameras for videotaping or imaging, the development of such carriage systems clearly also goes to multi-sensor platforms like the ones introduced for larger UAVs (5 to 20 kg) by Jaakkolla et al. (2010) for forestry applications or by Berni et al. (2009) for agricultural applications. The problem when designing a Mini-UAV for multi-sensor imaging is the limitation of payload of up to 1.5 kg and a total weight of the whole system below 5 kg. Consequently, the Mini-UAV without sensors but including navigation system and GPS sensors must weigh less than 3.5 kg. A Mini-UAV system with these characteristics is HiSystems' MK-Okto (www.mikrokopter.de). Total weight including battery without sensors is less than 2.5 kg. Payload of a MK-Okto is approx. 1 kg and maximum speed is around 30 km/h. The MK-Okto can be operated up to a wind speed of less than 19 km/h which corresponds to Beaufort scale number 3 for wind speed. In our study, the MK-Okto is equipped with a handheld low-weight NEC F30IS thermal imaging system. The F30IS which was developed for veterinary applications, covers 8 to 13 μm, weighs only 300 g, and is capturing the temperature range between -20 °C and 100 °C. Flying at a height of 100 m, the camera

  15. Applications of UAV Photogrammetric Surveys to Natural Hazard Detection and Cultural Heritage Documentation

    Science.gov (United States)

    Trizzino, Rosamaria; Caprioli, Mauro; Mazzone, Francesco; Scarano, Mario

    2017-04-01

    Unmanned Aerial Vehicle (UAV) systems are increasingly seen as an attractive low-cost alternative or supplement to aerial and terrestrial photogrammetry due to their low cost, flexibility, availability and readiness for duty. In addition, UAVs can be operated in hazardous or temporarily inaccessible locations. The combination of photogrammetric aerial and terrestrial recording methods using a mini UAV (also known as "drone") opens a broad range of applications, such as surveillance and monitoring of the environment and infrastructural assets. In particular, these methods and techniques are of paramount interest for the documentation of cultural heritage sites and areas of natural importance, facing threats from natural deterioration and hazards. In order to verify the reliability of these technologies an UAV survey and a LIDAR survey have been carried out along about 1 km of coast in the Salento peninsula, near the towns of San Foca, Torre dell' Orso and SantAndrea ( Lecce, Southern Italy). This area is affected by serious environmental hazards due to the presence of dangerous rocky cliffs named "falesie". The UAV platform was equipped with a photogrammetric measurement system that allowed us to obtain a mobile mapping of the fractured fronts of dangerous rocky cliffs. UAV-images data have been processed using dedicated software (Agisoft Photoscan). The point clouds obtained from both the UAV and LIDAR surveys have been processed using Cloud Compare software, with the aim of testing the UAV results with respect to the LIDAR ones. The analysis were done using the C2C algorithm which provides good results in terms of Euclidian distances, highlighting differences between the 3D models obtained from both the survey techiques. The total error obtained was of centimeter-order that is a very satisfactory result. In the the 2nd study area, the opportunities of obtaining more detailed documentation of cultural goods throughout UAV survey have been investigated. The study

  16. Weed detection by UAV with camera guided landing sequence

    DEFF Research Database (Denmark)

    Dyrmann, Mads

    UAVs gain more and more currency in agriculture, as they allow for inspection of even remote areas of farmland. Measurements of weed occurrence in fields is one branch of this growing field of research. A problem with UAVs is that they have a limited energy capacity: Consequently, after a short...... flight, they must return to the farm to charge. By installing a landing platform in the field it is possible to have charging facilities close to the area where the UAV is used, providing greater opportunity for autonomous flight in distant fields. A landing platform in the field will also allow...... for greater computing capacity, whereby collected images can be processed and appropriate actions can be taken. The present study uses an entry level UAV with a Pixhawk controller and a GPS specified with an accuracy of 2.5m, meaning that the GPS alone is not sufficient to coordinate the UAV landing. Using...

  17. Energy-Efficient Power Allocation for UAV Cognitive Radio Systems

    KAUST Repository

    Sboui, Lokman

    2018-02-12

    We study the deployment of unmanned aerial vehicles (UAV) based cognitive system in an area covered by the primary network (PN). An UAV shares the spectrum of the PN and aims to maximize its energy efficiency (EE) by optimizing the transmit power. We focus on the case where the UAV simultaneously communicates with the ground receiver (G), under interference limitation, and with another relaying UAV (A), with a minimal required rate. We analytically develop the power allocation framework that maximizes the EE subject to power budget, interference, and minimal rate constraints. In the numerical results, we show that the minimal rate may cause a transmission outage at low power budget values. We also highlighted the existence of optimal altitudes given the UAV location with respect to the different other terminals.

  18. Flocking of quad-rotor UAVs with fuzzy control.

    Science.gov (United States)

    Mao, Xiang; Zhang, Hongbin; Wang, Yanhui

    2018-03-01

    This paper investigates the flocking problem of quad-rotor UAVs. Considering the actual situations, we derived a new simplified quad-rotor UAV model which is more reasonable. Based on the model, the T-S fuzzy model of attitude dynamic equation and the corresponding T-S fuzzy feedback controller are discussed. By introducing a double-loop control construction, we adjust its attitude to realize the position control. Then a flocking algorithm is proposed to achieve the flocking of the quad-rotor UAVs. Compared with the flocking algorithm of the mass point model, we dealt with the collision problem of the quad-rotor UAVs. In order to improve the airspace utilization, a more compact configuration called quasi e-lattice is constructed to guarantee the compact flight of the quad-rotor UAVs. Finally, numerical simulations are provided to illustrate the effectiveness of the obtained theoretical results. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Energy-Efficient Power Allocation for UAV Cognitive Radio Systems

    KAUST Repository

    Sboui, Lokman; Ghazzai, Hakim; Rezki, Zouheir; Alouini, Mohamed-Slim

    2018-01-01

    We study the deployment of unmanned aerial vehicles (UAV) based cognitive system in an area covered by the primary network (PN). An UAV shares the spectrum of the PN and aims to maximize its energy efficiency (EE) by optimizing the transmit power. We focus on the case where the UAV simultaneously communicates with the ground receiver (G), under interference limitation, and with another relaying UAV (A), with a minimal required rate. We analytically develop the power allocation framework that maximizes the EE subject to power budget, interference, and minimal rate constraints. In the numerical results, we show that the minimal rate may cause a transmission outage at low power budget values. We also highlighted the existence of optimal altitudes given the UAV location with respect to the different other terminals.

  20. UAV photogrammetry for topographic monitoring of coastal areas

    Science.gov (United States)

    Gonçalves, J. A.; Henriques, R.

    2015-06-01

    Coastal areas suffer degradation due to the action of the sea and other natural and human-induced causes. Topographical changes in beaches and sand dunes need to be assessed, both after severe events and on a regular basis, to build models that can predict the evolution of these natural environments. This is an important application for airborne LIDAR, and conventional photogrammetry is also being used for regular monitoring programs of sensitive coastal areas. This paper analyses the use of unmanned aerial vehicles (UAV) to map and monitor sand dunes and beaches. A very light plane (SwingletCam) equipped with a very cheap, non-metric camera was used to acquire images with ground resolutions better than 5 cm. The Agisoft Photoscan software was used to orientate the images, extract point clouds, build a digital surface model and produce orthoimage mosaics. The processing, which includes automatic aerial triangulation with camera calibration and subsequent model generation, was mostly automated. To achieve the best positional accuracy for the whole process, signalised ground control points were surveyed with a differential GPS receiver. Two very sensitive test areas on the Portuguese northwest coast were analysed. Detailed DSMs were obtained with 10 cm grid spacing and vertical accuracy (RMS) ranging from 3.5 to 5.0 cm, which is very similar to the image ground resolution (3.2-4.5 cm). Where possible to assess, the planimetric accuracy of the orthoimage mosaics was found to be subpixel. Within the regular coastal monitoring programme being carried out in the region, UAVs can replace many of the conventional flights, with considerable gains in the cost of the data acquisition and without any loss in the quality of topographic and aerial imagery data.

  1. Budget Uav Systems for the Prospection of - and Medium-Scale Archaeological Sites

    Science.gov (United States)

    Ostrowski, W.; Hanus, K.

    2016-06-01

    One of the popular uses of UAVs in photogrammetry is providing an archaeological documentation. A wide offer of low-cost (consumer) grade UAVs, as well as the popularity of user-friendly photogrammetric software allowing obtaining satisfying results, contribute to facilitating the process of preparing documentation for small archaeological sites. However, using solutions of this kind is much more problematic for larger areas. The limited possibilities of autonomous flight makes it significantly harder to obtain data for areas too large to be covered during a single mission. Moreover, sometimes the platforms used are not equipped with telemetry systems, which makes navigating and guaranteeing a similar quality of data during separate flights difficult. The simplest solution is using a better UAV, however the cost of devices of such type often exceeds the financial capabilities of archaeological expeditions. The aim of this article is to present methodology allowing obtaining data for medium scale areas using only a basic UAV. The proposed methodology assumes using a simple multirotor, not equipped with any flight planning system or telemetry. Navigating of the platform is based solely on live-view images sent from the camera attached to the UAV. The presented survey was carried out using a simple GoPro camera which, from the perspective of photogrammetric use, was not the optimal configuration due to the fish eye geometry of the camera. Another limitation is the actual operational range of UAVs which in the case of cheaper systems, rarely exceeds 1 kilometre and is in fact often much smaller. Therefore the surveyed area must be divided into sub-blocks which correspond to the range of the drone. It is inconvenient since the blocks must overlap, so that they will later be merged during their processing. This increases the length of required flights as well as the computing power necessary to process a greater number of images. These issues make prospection highly

  2. BUDGET UAV SYSTEMS FOR THE PROSPECTION OF SMALL- AND MEDIUM-SCALE ARCHAEOLOGICAL SITES

    Directory of Open Access Journals (Sweden)

    W. Ostrowski

    2016-06-01

    Full Text Available One of the popular uses of UAVs in photogrammetry is providing an archaeological documentation. A wide offer of low-cost (consumer grade UAVs, as well as the popularity of user-friendly photogrammetric software allowing obtaining satisfying results, contribute to facilitating the process of preparing documentation for small archaeological sites. However, using solutions of this kind is much more problematic for larger areas. The limited possibilities of autonomous flight makes it significantly harder to obtain data for areas too large to be covered during a single mission. Moreover, sometimes the platforms used are not equipped with telemetry systems, which makes navigating and guaranteeing a similar quality of data during separate flights difficult. The simplest solution is using a better UAV, however the cost of devices of such type often exceeds the financial capabilities of archaeological expeditions. The aim of this article is to present methodology allowing obtaining data for medium scale areas using only a basic UAV. The proposed methodology assumes using a simple multirotor, not equipped with any flight planning system or telemetry. Navigating of the platform is based solely on live-view images sent from the camera attached to the UAV. The presented survey was carried out using a simple GoPro camera which, from the perspective of photogrammetric use, was not the optimal configuration due to the fish eye geometry of the camera. Another limitation is the actual operational range of UAVs which in the case of cheaper systems, rarely exceeds 1 kilometre and is in fact often much smaller. Therefore the surveyed area must be divided into sub-blocks which correspond to the range of the drone. It is inconvenient since the blocks must overlap, so that they will later be merged during their processing. This increases the length of required flights as well as the computing power necessary to process a greater number of images. These issues make

  3. Synthesis of Control Algorithm for a Leaderheaded UAVs Group

    Directory of Open Access Journals (Sweden)

    I. O. Samodov

    2015-01-01

    Full Text Available Currently, a defense sphere uses unmanned aerial vehicles (UAVs. UAVs have several advantages over manned aircrafts such as small size, reduced combat losses of personnel, etc. In addition, in threat environment, it is necessary to arrange both bringing together distant from each other UAVs in a group and their undetected in radar fields compact flying in terms of the joint flight security.However, the task to control a UAVs group is much more difficult than to control a single UAV, since it is necessary not only to control the aircraft, but also take into account the relative position of objects in the group.To solve this problem two ways are possible: using a network exchange between members of the group on the "everyone with everyone" principle and organizing the leader-headed flight.The aim of the article is to develop and study a possible option of the UAVs group control with arranging a leader-headed flight to provide the undetected in radar fields compact flying in terms of the joint flight security.The article develops a universal algorithm to control leader-headed group, based on a new modification of the statistical theory of optimal control. It studies effectiveness of the algorithm. While solving this task, a flight of seven UAVs was simulated in the horizontal plane in a rectangular coordinate system. Control time, linear errors of desired alignment of UAV, and control errors with respect to angular coordinates are used as measures of merit.The study results of the algorithm to control a leader-headed group of UAVs confirmed that it is possible to fulfill tasks of flying free-of-collision group of UAVs with essentially reduced computational costs.

  4. An Efficient Genetic Algorithm for Routing Multiple UAVs under Flight Range and Service Time Window Constraints

    OpenAIRE

    KARAKAYA, Murat; SEVİNÇ, Ender

    2017-01-01

    Recently using Unmanned Aerial Vehicles (UAVs) either for military or civilian purposes is getting popularity. However, UAVs have their own limitations which require adopted approaches to satisfy the Quality of Service (QoS) promised by the applications depending on effective use of UAVs. One of the important limitations of the UAVs encounter is the flight range. Most of the time, UAVs have very scarce energy resources and, thus, they have relatively short flight ranges. Besides, for the appl...

  5. Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) from an Unmanned Aerial Vehicle (UAV): Results from the 2014 AROMAT campaign

    Science.gov (United States)

    Merlaud, Alexis; Tack, Frederik; Constantin, Daniel; Fayt, Caroline; Maes, Jeroen; Mingireanu, Florin; Mocanu, Ionut; Georgescu, Lucian; Van Roozendael, Michel

    2015-04-01

    The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is an instrument dedicated to atmospheric trace gas retrieval from an Unmanned Aerial Vehicle (UAV). The payload is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920 g, 27x12x12 cm3, and 6 W. The custom-built 2.5 m flying wing UAV is electrically powered, has a typical airspeed of 100 km/h, and can operate at a maximum altitude of 3 km. Both the payload and the UAV were developed in the framework of a collaboration between the Belgian Institute for Space Aeronomy (BIRA-IASB) and the Dunarea de Jos University of Galati, Romania. We present here SWING-UAV test flights dedicated to NO2 measurements and performed in Romania on 10 and 11 September 2014, during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign. The UAV performed 5 flights in the vicinity of the large thermal power station of Turceni (44.67° N, 23.4° E). The UAV was operated in visual range during the campaign, up to 900 m AGL , downwind of the plant and crossing its exhaust plume. The spectra recorded on flight are analyzed with the Differential Optical Absorption Spectroscopy (DOAS) method. The retrieved NO2 Differential Slant Column Densities (DSCDs) are up to 1.5e17 molec/cm2 and reveal the horizontal gradients around the plant. The DSCDs are converted to vertical columns and compared with coincident car-based DOAS measurements. We also present the near-future perspective of the SWING-UAV observation system, which includes flights in 2015 above the Black Sea to quantify ship emissions, the addition of SO2 as a target species, and autopilot flights at higher altitudes to cover a typical satellite pixel extent (10x10 km2).

  6. Integrated Human-Robotic Missions to the Moon and Mars: Mission Operations Design Implications

    Science.gov (United States)

    Mishkin, Andrew; Lee, Young; Korth, David; LeBlanc, Troy

    2007-01-01

    For most of the history of space exploration, human and robotic programs have been independent, and have responded to distinct requirements. The NASA Vision for Space Exploration calls for the return of humans to the Moon, and the eventual human exploration of Mars; the complexity of this range of missions will require an unprecedented use of automation and robotics in support of human crews. The challenges of human Mars missions, including roundtrip communications time delays of 6 to 40 minutes, interplanetary transit times of many months, and the need to manage lifecycle costs, will require the evolution of a new mission operations paradigm far less dependent on real-time monitoring and response by an Earthbound operations team. Robotic systems and automation will augment human capability, increase human safety by providing means to perform many tasks without requiring immediate human presence, and enable the transfer of traditional mission control tasks from the ground to crews. Developing and validating the new paradigm and its associated infrastructure may place requirements on operations design for nearer-term lunar missions. The authors, representing both the human and robotic mission operations communities, assess human lunar and Mars mission challenges, and consider how human-robot operations may be integrated to enable efficient joint operations, with the eventual emergence of a unified exploration operations culture.

  7. State-Of in Uav Remote Sensing Survey - First Insights Into Applications of Uav Sensing Systems

    Science.gov (United States)

    Aasen, H.

    2017-08-01

    UAVs are increasingly adapted as remote sensing platforms. Together with specialized sensors, they become powerful sensing systems for environmental monitoring and surveying. Spectral data has great capabilities to the gather information about biophysical and biochemical properties. Still, capturing meaningful spectral data in a reproducible way is not trivial. Since a couple of years small and lightweight spectral sensors, which can be carried on small flexible platforms, have become available. With their adaption in the community, the responsibility to ensure the quality of the data is increasingly shifted from specialized companies and agencies to individual researchers or research teams. Due to the complexity of the data acquisition of spectral data, this poses a challenge for the community and standardized protocols, metadata and best practice procedures are needed to make data intercomparable. In November 2016, the ESSEM COST action Innovative optical Tools for proximal sensing of ecophysiological processes (OPTIMISE; http://optimise.dcs.aber.ac.uk/) held a workshop on best practices for UAV spectral sampling. The objective of this meeting was to trace the way from particle to pixel and identify influences on the data quality / reliability, to figure out how well we are currently doing with spectral sampling from UAVs and how we can improve. Additionally, a survey was designed to be distributed within the community to get an overview over the current practices and raise awareness for the topic. This talk will introduce the approach of the OPTIMISE community towards best practises in UAV spectral sampling and present first results of the survey (http://optimise.dcs.aber.ac.uk/uav-survey/). This contribution briefly introduces the survey and gives some insights into the first results given by the interviewees.

  8. Human factors in operational maintenance on future naval vessels

    NARCIS (Netherlands)

    Post, W.M.; Schreurs, J.C.; Rakhorst-Oudendijk, M.L.W.; Badon Ghijben, N.A.; Diggelen, J. van

    2014-01-01

    The increasing complexity of operational maintenance on naval platforms and the need to sustain this also in battle conditions are in conflict with the requirement for crew reduction. This asks for a new approach. The Netherlands MoD knows how to develop technical solutions for operational

  9. The Parrot UAV Controlled by PID Controllers

    OpenAIRE

    Koszewnik Andrzej

    2014-01-01

    The paper presents the process of modeling and designing control laws for four-rotor type of the Parrot UAV. The state space model is obtained by using several phenomena like gyroscopic effects for rigid bodies, propellers and rotors. The obtained model has been used to design PID control laws for roll, pitch, yaw angle and altitude, respectively. The numerical simulations of the closed loop model are shown that system in satisfy way stabilize flight of the quadro-rotor in all considered dire...

  10. The Parrot UAV Controlled by PID Controllers

    Directory of Open Access Journals (Sweden)

    Koszewnik Andrzej

    2014-08-01

    Full Text Available The paper presents the process of modeling and designing control laws for four-rotor type of the Parrot UAV. The state space model is obtained by using several phenomena like gyroscopic effects for rigid bodies, propellers and rotors. The obtained model has been used to design PID control laws for roll, pitch, yaw angle and altitude, respectively. The numerical simulations of the closed loop model are shown that system in satisfy way stabilize flight of the quadro-rotor in all considered directions.

  11. Video change detection for fixed wing UAVs

    Science.gov (United States)

    Bartelsen, Jan; Müller, Thomas; Ring, Jochen; Mück, Klaus; Brüstle, Stefan; Erdnüß, Bastian; Lutz, Bastian; Herbst, Theresa

    2017-10-01

    In this paper we proceed the work of Bartelsen et al.1 We present the draft of a process chain for an image based change detection which is designed for videos acquired by fixed wing unmanned aerial vehicles (UAVs). From our point of view, automatic video change detection for aerial images can be useful to recognize functional activities which are typically caused by the deployment of improvised explosive devices (IEDs), e.g. excavations, skid marks, footprints, left-behind tooling equipment, and marker stones. Furthermore, in case of natural disasters, like flooding, imminent danger can be recognized quickly. Due to the necessary flight range, we concentrate on fixed wing UAVs. Automatic change detection can be reduced to a comparatively simple photogrammetric problem when the perspective change between the "before" and "after" image sets is kept as small as possible. Therefore, the aerial image acquisition demands a mission planning with a clear purpose including flight path and sensor configuration. While the latter can be enabled simply by a fixed and meaningful adjustment of the camera, ensuring a small perspective change for "before" and "after" videos acquired by fixed wing UAVs is a challenging problem. Concerning this matter, we have performed tests with an advanced commercial off the shelf (COTS) system which comprises a differential GPS and autopilot system estimating the repetition accuracy of its trajectory. Although several similar approaches have been presented,23 as far as we are able to judge, the limits for this important issue are not estimated so far. Furthermore, we design a process chain to enable the practical utilization of video change detection. It consists of a front-end of a database to handle large amounts of video data, an image processing and change detection implementation, and the visualization of the results. We apply our process chain on the real video data acquired by the advanced COTS fixed wing UAV and synthetic data. For the

  12. Remote sensing from UAVs for hydrological monitoring

    DEFF Research Database (Denmark)

    Bandini, Filippo; Garcia, Monica; Bauer-Gottwein, Peter

    compared to other technologies: compared to field based techniques, remote sensing with UAVs is a non-destructive technique, less time consuming, ensures a reduced time between acquisition and interpretation of data and gives the possibility to access remote and unsafe areas. Compared to full...... will be able to record the spectral signatures of water and land surfaces with a pixel resolution of around 15 cm, whereas the thermal camera will sense water and land surface temperature with a resolution of 40 cm. Post-processing of data from the thermal camera will allow retrieving vegetation and soil...

  13. Photogrammetric Measurements in Fixed Wing Uav Imagery

    Science.gov (United States)

    Gülch, E.

    2012-07-01

    Several flights have been undertaken with PAMS (Photogrammetric Aerial Mapping System) by Germap, Germany, which is briefly introduced. This system is based on the SmartPlane fixed-wing UAV and a CANON IXUS camera system. The plane is equipped with GPS and has an infrared sensor system to estimate attitude values. A software has been developed to link the PAMS output to a standard photogrammetric processing chain built on Trimble INPHO. The linking of the image files and image IDs and the handling of different cases with partly corrupted output have to be solved to generate an INPHO project file. Based on this project file the software packages MATCH-AT, MATCH-T DSM, OrthoMaster and OrthoVista for digital aerial triangulation, DTM/DSM generation and finally digital orthomosaik generation are applied. The focus has been on investigations on how to adapt the "usual" parameters for the digital aerial triangulation and other software to the UAV flight conditions, which are showing high overlaps, large kappa angles and a certain image blur in case of turbulences. It was found, that the selected parameter setup shows a quite stable behaviour and can be applied to other flights. A comparison is made to results from other open source multi-ray matching software to handle the issue of the described flight conditions. Flights over the same area at different times have been compared to each other. The major objective was here to see, on how far differences occur relative to each other, without having access to ground control data, which would have a potential for applications with low requirements on the absolute accuracy. The results show, that there are influences of weather and illumination visible. The "unusual" flight pattern, which shows big time differences for neighbouring strips has an influence on the AT and DTM/DSM generation. The results obtained so far do indicate problems in the stability of the camera calibration. This clearly requests a usage of GCPs for all

  14. Colour-based Object Detection and Tracking for Autonomous Quadrotor UAV

    International Nuclear Information System (INIS)

    Kadouf, Hani Hunud A; Mustafah, Yasir Mohd

    2013-01-01

    With robotics becoming a fundamental aspect of modern society, further research and consequent application is ever increasing. Aerial robotics, in particular, covers applications such as surveillance in hostile military zones or search and rescue operations in disaster stricken areas, where ground navigation is impossible. The increased visual capacity of UAV's (Unmanned Air Vehicles) is also applicable in the support of ground vehicles to provide supplies for emergency assistance, for scouting purposes or to extend communication beyond insurmountable land or water barriers. The Quadrotor, which is a small UAV has its lift generated by four rotors and can be controlled by altering the speeds of its motors relative to each other. The four rotors allow for a higher payload than single or dual rotor UAVs, which makes it safer and more suitable to carry camera and transmitter equipment. An onboard camera is used to capture and transmit images of the Quadrotor's First Person View (FPV) while in flight, in real time, wirelessly to a base station. The aim of this research is to develop an autonomous quadrotor platform capable of transmitting real time video signals to a base station for processing. The result from the image analysis will be used as a feedback in the quadrotor positioning control. To validate the system, the algorithm should have the capacity to make the quadrotor identify, track or hover above stationary or moving objects

  15. AirSTAR: A UAV Platform for Flight Dynamics and Control System Testing

    Science.gov (United States)

    Jordan, Thomas L.; Foster, John V.; Bailey, Roger M.; Belcastro, Christine M.

    2006-01-01

    As part of the NASA Aviation Safety Program at Langley Research Center, a dynamically scaled unmanned aerial vehicle (UAV) and associated ground based control system are being developed to investigate dynamics modeling and control of large transport vehicles in upset conditions. The UAV is a 5.5% (seven foot wingspan), twin turbine, generic transport aircraft with a sophisticated instrumentation and telemetry package. A ground based, real-time control system is located inside an operations vehicle for the research pilot and associated support personnel. The telemetry system supports over 70 channels of data plus video for the downlink and 30 channels for the control uplink. Data rates are in excess of 200 Hz. Dynamic scaling of the UAV, which includes dimensional, weight, inertial, actuation, and control system scaling, is required so that the sub-scale vehicle will realistically simulate the flight characteristics of the full-scale aircraft. This testbed will be utilized to validate modeling methods, flight dynamics characteristics, and control system designs for large transport aircraft, with the end goal being the development of technologies to reduce the fatal accident rate due to loss-of-control.

  16. UAV Remote Sensing Surveillance of a Mine Tailings Impoundment in Sub-Arctic Conditions

    Directory of Open Access Journals (Sweden)

    Anssi Rauhala

    2017-12-01

    Full Text Available Mining typically involves extensive areas where environmental monitoring is spatially sporadic. New remote sensing techniques and platforms such as Structure from Motion (SfM and unmanned aerial vehicles (UAVs may offer one solution for more comprehensive and spatially continuous measurements. We conducted UAV campaigns in three consecutive summers (2015–2017 at a sub-Arctic mining site where production was temporarily suspended. The aim was to monitor a 0.5 km2 tailings impoundment and measure potential subsidence of tailings. SfM photogrammetry was used to produce yearly topographical models of the tailings surface, which allowed the amount of surface displacement between years to be tracked. Ground checkpoints surveyed in stable areas of the impoundment were utilized in assessing the vertical accuracy of the models. Observed surface displacements were linked to a combination of erosion, tailings settlement, and possible compaction of the peat layer underlying the tailings. The accuracy obtained indicated that UAV-assisted monitoring of tailings impoundments is sufficiently accurate for supporting impoundment management operations and for tracking surface displacements in the decimeter range.

  17. Parametric analysis of a down-scaled turbo jet engine suitable for drone and UAV propulsion

    Science.gov (United States)

    Wessley, G. Jims John; Chauhan, Swati

    2018-04-01

    This paper presents a detailed study on the need for downscaling gas turbine engines for UAV and drone propulsion. Also, the procedure for downscaling and the parametric analysis of a downscaled engine using Gas Turbine Simulation Program software GSP 11 is presented. The need for identifying a micro gas turbine engine in the thrust range of 0.13 to 4.45 kN to power UAVs and drones weighing in the range of 4.5 to 25 kg is considered and in order to meet the requirement a parametric analysis on the scaled down Allison J33-A-35 Turbojet engine is performed. It is evident from the analysis that the thrust developed by the scaled engine and the Thrust Specific Fuel Consumption TSFC depends on pressure ratio, mass flow rate of air and Mach number. A scaling factor of 0.195 corresponding to air mass flow rate of 7.69 kg/s produces a thrust in the range of 4.57 to 5.6 kN while operating at a Mach number of 0.3 within the altitude of 5000 to 9000 m. The thermal and overall efficiency of the scaled engine is found to be 67% and 75% respectively for a pressure ratio of 2. The outcomes of this analysis form a strong base for further analysis, design and fabrication of micro gas turbine engines to propel future UAVs and drones.

  18. Extracting Objects for Aerial Manipulation on UAVs Using Low Cost Stereo Sensors

    Directory of Open Access Journals (Sweden)

    Pablo Ramon Soria

    2016-05-01

    Full Text Available Giving unmanned aerial vehicles (UAVs the possibility to manipulate objects vastly extends the range of possible applications. This applies to rotary wing UAVs in particular, where their capability of hovering enables a suitable position for in-flight manipulation. Their manipulation skills must be suitable for primarily natural, partially known environments, where UAVs mostly operate. We have developed an on-board object extraction method that calculates information necessary for autonomous grasping of objects, without the need to provide the model of the object’s shape. A local map of the work-zone is generated using depth information, where object candidates are extracted by detecting areas different to our floor model. Their image projections are then evaluated using support vector machine (SVM classification to recognize specific objects or reject bad candidates. Our method builds a sparse cloud representation of each object and calculates the object’s centroid and the dominant axis. This information is then passed to a grasping module. Our method works under the assumption that objects are static and not clustered, have visual features and the floor shape of the work-zone area is known. We used low cost cameras for creating depth information that cause noisy point clouds, but our method has proved robust enough to process this data and return accurate results.

  19. Comparisons between high-resolution profiles of squared refractive index gradient M2 measured by the Middle and Upper Atmosphere Radar and unmanned aerial vehicles (UAVs during the Shigaraki UAV-Radar Experiment 2015 campaign

    Directory of Open Access Journals (Sweden)

    H. Luce

    2017-03-01

    Full Text Available New comparisons between the square of the generalized potential refractive index gradient M2, estimated from the very high-frequency (VHF Middle and Upper Atmosphere (MU Radar, located at Shigaraki, Japan, and unmanned aerial vehicle (UAV measurements are presented. These comparisons were performed at unprecedented temporal and range resolutions (1–4 min and  ∼  20 m, respectively in the altitude range  ∼  1.27–4.5 km from simultaneous and nearly collocated measurements made during the ShUREX (Shigaraki UAV-Radar Experiment 2015 campaign. Seven consecutive UAV flights made during daytime on 7 June 2015 were used for this purpose. The MU Radar was operated in range imaging mode for improving the range resolution at vertical incidence (typically a few tens of meters. The proportionality of the radar echo power to M2 is reported for the first time at such high time and range resolutions for stratified conditions for which Fresnel scatter or a reflection mechanism is expected. In more complex features obtained for a range of turbulent layers generated by shear instabilities or associated with convective cloud cells, M2 estimated from UAV data does not reproduce observed radar echo power profiles. Proposed interpretations of this discrepancy are presented.

  20. Applications of UAVs to Measurement and Monitoring of Anthropogenic Contamination of an Urban Wildlife Preserve

    Science.gov (United States)

    Higa, E.; Valencia, D.; Hunt, A.

    2017-12-01

    Over the past decade, the use of unmanned aerial vehicles (UAV's) has seen unprecedented growth in diverse research areas due to advances in UAV hardware and reduced total operating costs. These developments have given environmental investigators a new aerial data acquisition technique that can be used to not only survey large areas of terrain in a time-efficient and cost-effective manner but can be used to gather previously almost unattainable air quality data. Vertically resolved profiles of air pollutant data can be readily constructed. This project's goal is to produce a time resolved (seasonal) aerial survey of a 150-acre section from a 1300-acre ecologically diverse park of bottomland forests, wetlands and prairies. This ecosystem provides abundant habitats for a diverse wildlife community. This section was chosen due to its close proximity to the city landfill located 0.5 miles due north from the chosen section. The process of collecting UAV aerial images at a constant altitude of ( 200ft) on a bi-monthly basis (for a period of 6 months) has commenced. The UAV has been fitted with a custom made mount to secure an Ultrafine Particle (UFP) counter; this is providing information on UFP levels over the study area as a proxy for airborne particle inputs to the site. Sediment samples will be taken from several runoff ponds within the survey area to evaluate possible anthropogenic contamination of the park . Post processing imaging software, DroneDeploy, is being used to create an orthomosaic, topographic surface and 3D model that can be integrated with GIS platforms to create a comprehensive and cohesive multi-layered data set. Data sets of this nature will provide information on temporally constrained sources of runoff material to the pond areas in the preserve.

  1. Review of the Current State of UAV Regulations

    Directory of Open Access Journals (Sweden)

    Claudia Stöcker

    2017-05-01

    Full Text Available UAVs—unmanned aerial vehicles—facilitate data acquisition at temporal and spatial scales that still remain unachievable for traditional remote sensing platforms. However, current legal frameworks that regulate UAVs present significant barriers to research and development. To highlight the importance, impact, and diversity of UAV regulations, this paper provides an exploratory investigation of UAV regulations on the global scale. For this, the methodological approach consists of a research synthesis of UAV regulations, including a thorough literature review and a comparative analysis of national regulatory frameworks. Similarities and contrasting elements in the various national UAV regulations are explored including their statuses from the perspectives of past, present, and future trends. Since the early 2000s, countries have gradually established national legal frameworks. Although all UAV regulations have one common goal—minimizing the risks to other airspace users and to both people and property on the ground—the results reveal distinct variations in all the compared variables. Furthermore, besides the clear presence of legal frameworks, market forces such as industry design standards and reliable information about UAVs as public goods are expected to shape future developments.

  2. Slic Superpixels for Object Delineation from Uav Data

    Science.gov (United States)

    Crommelinck, S.; Bennett, R.; Gerke, M.; Koeva, M. N.; Yang, M. Y.; Vosselman, G.

    2017-08-01

    Unmanned aerial vehicles (UAV) are increasingly investigated with regard to their potential to create and update (cadastral) maps. UAVs provide a flexible and low-cost platform for high-resolution data, from which object outlines can be accurately delineated. This delineation could be automated with image analysis methods to improve existing mapping procedures that are cost, time and labor intensive and of little reproducibility. This study investigates a superpixel approach, namely simple linear iterative clustering (SLIC), in terms of its applicability to UAV data. The approach is investigated in terms of its applicability to high-resolution UAV orthoimages and in terms of its ability to delineate object outlines of roads and roofs. Results show that the approach is applicable to UAV orthoimages of 0.05 m GSD and extents of 100 million and 400 million pixels. Further, the approach delineates the objects with the high accuracy provided by the UAV orthoimages at completeness rates of up to 64 %. The approach is not suitable as a standalone approach for object delineation. However, it shows high potential for a combination with further methods that delineate objects at higher correctness rates in exchange of a lower localization quality. This study provides a basis for future work that will focus on the incorporation of multiple methods for an interactive, comprehensive and accurate object delineation from UAV data. This aims to support numerous application fields such as topographic and cadastral mapping.

  3. Output feedback control of a quadrotor UAV using neural networks.

    Science.gov (United States)

    Dierks, Travis; Jagannathan, Sarangapani

    2010-01-01

    In this paper, a new nonlinear controller for a quadrotor unmanned aerial vehicle (UAV) is proposed using neural networks (NNs) and output feedback. The assumption on the availability of UAV dynamics is not always practical, especially in an outdoor environment. Therefore, in this work, an NN is introduced to learn the complete dynamics of the UAV online, including uncertain nonlinear terms like aerodynamic friction and blade flapping. Although a quadrotor UAV is underactuated, a novel NN virtual control input scheme is proposed which allows all six degrees of freedom (DOF) of the UAV to be controlled using only four control inputs. Furthermore, an NN observer is introduced to estimate the translational and angular velocities of the UAV, and an output feedback control law is developed in which only the position and the attitude of the UAV are considered measurable. It is shown using Lyapunov theory that the position, orientation, and velocity tracking errors, the virtual control and observer estimation errors, and the NN weight estimation errors for each NN are all semiglobally uniformly ultimately bounded (SGUUB) in the presence of bounded disturbances and NN functional reconstruction errors while simultaneously relaxing the separation principle. The effectiveness of proposed output feedback control scheme is then demonstrated in the presence of unknown nonlinear dynamics and disturbances, and simulation results are included to demonstrate the theoretical conjecture.

  4. Optimal trajectory planning for a UAV glider using atmospheric thermals

    Science.gov (United States)

    Kagabo, Wilson B.

    An Unmanned Aerial Vehicle Glider (UAV glider) uses atmospheric energy in its different forms to remain aloft for extended flight durations. This UAV glider's aim is to extract atmospheric thermal energy and use it to supplement its battery energy usage and increase the mission period. Given an infrared camera identified atmospheric thermal of known strength and location; current wind speed and direction; current battery level; altitude and location of the UAV glider; and estimating the expected altitude gain from the thermal, is it possible to make an energy-efficient based motivation to fly to an atmospheric thermal so as to achieve UAV glider extended flight time? For this work, an infrared thermal camera aboard the UAV glider takes continuous forward-looking ground images of "hot spots". Through image processing a candidate atmospheric thermal strength and location is estimated. An Intelligent Decision Model incorporates this information with the current UAV glider status and weather conditions to provide an energy-based recommendation to modify the flight path of the UAV glider. Research, development, and simulation of the Intelligent Decision Model is the primary focus of this work. Three models are developed: (1) Battery Usage Model, (2) Intelligent Decision Model, and (3) Altitude Gain Model. The Battery Usage Model comes from the candidate flight trajectory, wind speed & direction and aircraft dynamic model. Intelligent Decision Model uses a fuzzy logic based approach. The Altitude Gain Model requires the strength and size of the thermal and is found a priori.

  5. Flight safety measurements of UAVs in congested airspace

    Directory of Open Access Journals (Sweden)

    Xiang Jinwu

    2016-10-01

    Full Text Available Describing spatial safety status is crucial for high-density air traffic involving multiple unmanned aerial vehicles (UAVs in a complex environment. A probabilistic approach is proposed to measure safety situation in congested airspace. The occupancy distribution of the airspace is represented with conflict probability between spatial positions and UAV. The concept of a safety envelope related to flight performance and response time is presented first instead of the conventional fixed-size protected zones around aircraft. Consequently, the conflict probability is performance-dependent, and effects of various UAVs on safety can be distinguished. The uncertainty of a UAV future position is explicitly accounted for as Brownian motion. An analytic approximate algorithm for the conflict probability is developed to decrease the computational consumption. The relationship between safety and flight performance are discussed for different response times and prediction intervals. To illustrate the applications of the approach, an experiment of three UAVs in formation flight is performed. In addition, an example of trajectory planning is simulated for one UAV flying over airspace where five UAVs exist. The validation of the approach shows its potential in guaranteeing flight safety in highly dynamic environment.

  6. A method of fast mosaic for massive UAV images

    Science.gov (United States)

    Xiang, Ren; Sun, Min; Jiang, Cheng; Liu, Lei; Zheng, Hui; Li, Xiaodong

    2014-11-01

    With the development of UAV technology, UAVs are used widely in multiple fields such as agriculture, forest protection, mineral exploration, natural disaster management and surveillances of public security events. In contrast of traditional manned aerial remote sensing platforms, UAVs are cheaper and more flexible to use. So users can obtain massive image data with UAVs, but this requires a lot of time to process the image data, for example, Pix4UAV need approximately 10 hours to process 1000 images in a high performance PC. But disaster management and many other fields require quick respond which is hard to realize with massive image data. Aiming at improving the disadvantage of high time consumption and manual interaction, in this article a solution of fast UAV image stitching is raised. GPS and POS data are used to pre-process the original images from UAV, belts and relation between belts and images are recognized automatically by the program, in the same time useless images are picked out. This can boost the progress of finding match points between images. Levenberg-Marquard algorithm is improved so that parallel computing can be applied to shorten the time of global optimization notably. Besides traditional mosaic result, it can also generate superoverlay result for Google Earth, which can provide a fast and easy way to show the result data. In order to verify the feasibility of this method, a fast mosaic system of massive UAV images is developed, which is fully automated and no manual interaction is needed after original images and GPS data are provided. A test using 800 images of Kelan River in Xinjiang Province shows that this system can reduce 35%-50% time consumption in contrast of traditional methods, and increases respond speed of UAV image processing rapidly.

  7. Human Factors Analysis of Pipeline Monitoring and Control Operations: Final Technical Report

    Science.gov (United States)

    2008-11-26

    The purpose of the Human Factors Analysis of Pipeline Monitoring and Control Operations project was to develop procedures that could be used by liquid pipeline operators to assess and manage the human factors risks in their control rooms that may adv...

  8. Stereo Vision Guiding for the Autonomous Landing of Fixed-Wing UAVs: A Saliency-Inspired Approach

    Directory of Open Access Journals (Sweden)

    Zhaowei Ma

    2016-03-01

    Full Text Available It is an important criterion for unmanned aerial vehicles (UAVs to land on the runway safely. This paper concentrates on stereo vision localization of a fixed-wing UAV's autonomous landing within global navigation satellite system (GNSS denied environments. A ground stereo vision guidance system imitating the human visual system (HVS is presented for the autonomous landing of fixed-wing UAVs. A saliency-inspired algorithm is presented and developed to detect flying UAV targets in captured sequential images. Furthermore, an extended Kalman filter (EKF based state estimation is employed to reduce localization errors caused by measurement errors of object detection and pan-tilt unit (PTU attitudes. Finally, stereo-vision-dataset-based experiments are conducted to verify the effectiveness of the proposed visual detection method and error correction algorithm. The compared results between the visual guidance approach and differential GPS-based approach indicate that the stereo vision system and detection method can achieve the better guiding effect.

  9. The use of UAVs for monitoring land degradation

    Science.gov (United States)

    Themistocleous, Kyriacos

    2017-10-01

    Land degradation is one of the causes of desertification of drylands in the Mediterranean. UAVs can be used to monitor and document the various variables that cause desertification in drylands, including overgrazing, aridity, vegetation loss, etc. This paper examines the use of UAVs and accompanying sensors to monitor overgrazing, vegetation stress and aridity in the study area. UAV images can be used to generate digital elevation models (DEMs) to examine the changes in microtopography as well as ortho-photos were used to detect changes in vegetation patterns. The combined data of the digital elevation models and the orthophotos can be used to identify the mechanisms for desertification in the study area.

  10. Current development of UAV sense and avoid system

    Science.gov (United States)

    Zhahir, A.; Razali, A.; Mohd Ajir, M. R.

    2016-10-01

    As unmanned aerial vehicles (UAVs) are now gaining high interests from civil and commercialised market, the automatic sense and avoid (SAA) system is currently one of the essential features in research spotlight of UAV. Several sensor types employed in current SAA research and technology of sensor fusion that offers a great opportunity in improving detection and tracking system are presented here. The purpose of this paper is to provide an overview of SAA system development in general, as well as the current challenges facing UAV researchers and designers.

  11. Derivation of main drivers affecting the possibility of human errors during low power and shutdown operation

    International Nuclear Information System (INIS)

    Kim, Ar Ryum; Seong, Poong Hyun; Park, Jin Kyun; Kim, Jae Whan

    2016-01-01

    In order to estimate the possibility of human error and identify its nature, human reliability analysis (HRA) methods have been implemented. For this, various HRA methods have been developed so far: techniques for human error rate prediction (THERP), cause based decision tree (CBDT), the cognitive reliability and error analysis method (CREAM) and so on. Most HRA methods have been developed with a focus on full power operation of NPPs even though human performance may more largely affect the safety of the system during low power and shutdown (LPSD) operation than it would when the system is in full power operation. In this regard, it is necessary to conduct a research for developing HRA method to be used in LPSD operation. For the first step of the study, main drivers which affect the possibility of human error have been developed. Drivers which are commonly called as performance shaping factors (PSFs) are aspects of the human's individual characteristics, environment, organization, or task that specifically decrements or improves human performance, thus respectively increasing or decreasing the likelihood of human errors. In order to estimate the possibility of human error and identify its nature, human reliability analysis (HRA) methods have been implemented. For this, various HRA methods have been developed so far: techniques for human error rate prediction (THERP), cause based decision tree (CBDT), the cognitive reliability and error analysis method (CREAM) and so on. Most HRA methods have been developed with a focus on full power operation of NPPs even though human performance may more largely affect the safety of the system during low power and shutdown (LPSD) operation than it would when the system is in full power operation. In this regard, it is necessary to conduct a research for developing HRA method to be used in LPSD operation. For the first step of the study, main drivers which affect the possibility of human error have been developed. Drivers which

  12. Derivation of main drivers affecting the possibility of human errors during low power and shutdown operation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ar Ryum; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of); Park, Jin Kyun; Kim, Jae Whan [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In order to estimate the possibility of human error and identify its nature, human reliability analysis (HRA) methods have been implemented. For this, various HRA methods have been developed so far: techniques for human error rate prediction (THERP), cause based decision tree (CBDT), the cognitive reliability and error analysis method (CREAM) and so on. Most HRA methods have been developed with a focus on full power operation of NPPs even though human performance may more largely affect the safety of the system during low power and shutdown (LPSD) operation than it would when the system is in full power operation. In this regard, it is necessary to conduct a research for developing HRA method to be used in LPSD operation. For the first step of the study, main drivers which affect the possibility of human error have been developed. Drivers which are commonly called as performance shaping factors (PSFs) are aspects of the human's individual characteristics, environment, organization, or task that specifically decrements or improves human performance, thus respectively increasing or decreasing the likelihood of human errors. In order to estimate the possibility of human error and identify its nature, human reliability analysis (HRA) methods have been implemented. For this, various HRA methods have been developed so far: techniques for human error rate prediction (THERP), cause based decision tree (CBDT), the cognitive reliability and error analysis method (CREAM) and so on. Most HRA methods have been developed with a focus on full power operation of NPPs even though human performance may more largely affect the safety of the system during low power and shutdown (LPSD) operation than it would when the system is in full power operation. In this regard, it is necessary to conduct a research for developing HRA method to be used in LPSD operation. For the first step of the study, main drivers which affect the possibility of human error have been developed. Drivers

  13. VISION BASED OBSTACLE DETECTION IN UAV IMAGING

    Directory of Open Access Journals (Sweden)

    S. Badrloo

    2017-08-01

    Full Text Available Detecting and preventing incidence with obstacles is crucial in UAV navigation and control. Most of the common obstacle detection techniques are currently sensor-based. Small UAVs are not able to carry obstacle detection sensors such as radar; therefore, vision-based methods are considered, which can be divided into stereo-based and mono-based techniques. Mono-based methods are classified into two groups: Foreground-background separation, and brain-inspired methods. Brain-inspired methods are highly efficient in obstacle detection; hence, this research aims to detect obstacles using brain-inspired techniques, which try to enlarge the obstacle by approaching it. A recent research in this field, has concentrated on matching the SIFT points along with, SIFT size-ratio factor and area-ratio of convex hulls in two consecutive frames to detect obstacles. This method is not able to distinguish between near and far obstacles or the obstacles in complex environment, and is sensitive to wrong matched points. In order to solve the above mentioned problems, this research calculates the dist-ratio of matched points. Then, each and every point is investigated for Distinguishing between far and close obstacles. The results demonstrated the high efficiency of the proposed method in complex environments.

  14. Control system design for UAV trajectory tracking

    Science.gov (United States)

    Wang, Haitao; Gao, Jinyuan

    2006-11-01

    In recent years, because of the emerging requirements for increasing autonomy, the controller of uninhabited air vehicles must be augmented with a very sophisticated autopilot design which is capable of tracking complex and agile maneuvering trajectory. This paper provides a simplified control system framework to solve UAV maneuvering trajectory tracking problem. The flight control system is divided into three subsystems including command generation, transformation and allocation. According to the kinematics equations of the aircraft, flight path angle commands can be generated by desired 3D position from path planning. These commands are transformed to body angular rates through direct nonlinear mapping, which is simpler than common multi-loop method based on time scale separation assumption. Then, by using weighted pseudo-inverse method, the control surface deflections are allocated to follow body angular rates from the previous step. In order to improve the robustness, a nonlinear disturbance observer-based approach is used to compensate the uncertainty of system. A 6DOF nonlinear UAV model is controlled to demonstrate the performance of the trajectory tracking control system. Simulation results show that the control strategy is easy to be realized and the precision of tracking is satisfying.

  15. Unmanned aerial vehicles (UAVs) in pest management: Progress in the development of a UAV-deployed mating disruption system for Wisconsin cranberries

    Science.gov (United States)

    Unmanned aerial vehicles (UAVs) represent a powerful new tool for agriculture. Currently, UAVs are used almost exclusively as crop reconnaissance devices (“eyes in the sky”), not as pest control delivery systems. Research in Wisconsin cranberries is taking UAVs in a new direction. The Steffan and Lu...

  16. PERFORMANCE OF HUMAN RESOURCE MANAGEMENT IN AN INTERNATIONALLY OPERATING COMPANY

    Directory of Open Access Journals (Sweden)

    Ladislav Mura

    2012-02-01

    Full Text Available In our days, society is greatly influenced and altered by the process of internationalization andglobalization. Globalization refers to a whole set of changes, not to one single dimensional change.The process of internationalization puts a special and high importance on the work of humanresources managers. In order to remain successful and competitive in the international businessenvironment, companies have to pay close attention to cultural factors. These may considerablydiffer among workers in multinational companies. We are taking a careful look at human resourcemanagement in this new age, and especially at the impact of globalization and internationalization.Our case study is built on the company MOL, specifically on some of the activities it develops in thefield of human resource management: training programmes, personnel motivation, careerdevelopment. We highlight some of the critical aspects of human resources management at MOL,and see what lessons are being learned and what conclusions we can draw.

  17. SUSI 62 A ROBUST AND SAFE PARACHUTE UAV WITH LONG FLIGHT TIME AND GOOD PAYLOAD

    Directory of Open Access Journals (Sweden)

    H. P. Thamm

    2012-09-01

    Full Text Available In many research areas in the geo-sciences (erosion, land use, land cover change, etc. or applications (e.g. forest management, mining, land management etc. there is a demand for remote sensing images of a very high spatial and temporal resolution. Due to the high costs of classic aerial photo campaigns, the use of a UAV is a promising option for obtaining the desired remote sensed information at the time it is needed. However, the UAV must be easy to operate, safe, robust and should have a high payload and long flight time. For that purpose, the parachute UAV SUSI 62 was developed. It consists of a steel frame with a powerful 62 cm3 2- stroke engine and a parachute wing. The frame can be easily disassembled for transportation or to replace parts. On the frame there is a gimbal mounted sensor carrier where different sensors, standard SLR cameras and/or multi-spectral and thermal sensors can be mounted. Due to the design of the parachute, the SUSI 62 is very easy to control. Two different parachute sizes are available for different wind speed conditions. The SUSI 62 has a payload of up to 8 kg providing options to use different sensors at the same time or to extend flight duration. The SUSI 62 needs a runway of between 10 m and 50 m, depending on the wind conditions. The maximum flight speed is approximately 50 km/h. It can be operated in a wind speed of up to 6 m/s. The design of the system utilising a parachute UAV makes it comparatively safe as a failure of the electronics or the remote control only results in the UAV coming to the ground at a slow speed. The video signal from the camera, the GPS coordinates and other flight parameters are transmitted to the ground station in real time. An autopilot is available, which guarantees that the area of investigation is covered at the desired resolution and overlap. The robustly designed SUSI 62 has been used successfully in Europe, Africa and Australia for scientific projects and also for

  18. Radiation protection for human interplanetary spaceflight and planetary surface operations

    Energy Technology Data Exchange (ETDEWEB)

    Clark, B.C. [Armed Forces Radiobiology Research Inst., Bethesda, MD (United States)]|[DLR Inst. of Aerospace Medicine, Cologne (Germany)]|[NASA, Goddard Space Flight Center, Greenbelt, MD (United States)

    1993-12-31

    Radiation protection issues are reviewed for five categories of radiation exposure during human missions to the moon and Mars: trapped radiation belts, galactic cosmic rays, solar flare particle events, planetary surface emissions, and on-board radiation sources. Relative hazards are dependent upon spacecraft and vehicle configurations, flight trajectories, human susceptibility, shielding effectiveness, monitoring and warning systems, and other factors. Crew cabins, interplanetary mission modules, surface habitats, planetary rovers, and extravehicular mobility units (spacesuits) provide various degrees of protection. Countermeasures that may be taken are reviewed relative to added complexity and risks that they could entail, with suggestions for future research and analysis.

  19. Planetary Boundaries: Exploring the Safe Operating Space for Humanity

    DEFF Research Database (Denmark)

    Richardson, Katherine; Rockström, Johan; Steffen, Will

    2009-01-01

    boundaries are rough, first estimates only, surrounded by large uncertainties and knowledge gaps. Filling these gaps will require major advancements in Earth System and resilience science. The proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance...... and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development. Planetary boundaries define, as it were, the boundaries of the "planetary playing field" for humanity if we want to be sure...

  20. 40 CFR 26.1603 - Operation of the Human Studies Review Board.

    Science.gov (United States)

    2010-07-01

    ... appropriate for the scientific and ethical review of human research, including research ethics, biostatistics... scientific and ethical aspects of research proposals and reports of completed research with human subjects... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Operation of the Human Studies Review...

  1. A Framework for Human Performance Criteria for Advanced Reactor Operational Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Jacques V Hugo; David I Gertman; Jeffrey C Joe

    2014-08-01

    This report supports the determination of new Operational Concept models needed in support of the operational design of new reactors. The objective of this research is to establish the technical bases for human performance and human performance criteria frameworks, models, and guidance for operational concepts for advanced reactor designs. The report includes a discussion of operating principles for advanced reactors, the human performance issues and requirements for human performance based upon work domain analysis and current regulatory requirements, and a description of general human performance criteria. The major findings and key observations to date are that there is some operating experience that informs operational concepts for baseline designs for SFR and HGTRs, with the Experimental Breeder Reactor-II (EBR-II) as a best-case predecessor design. This report summarizes the theoretical and operational foundations for the development of a framework and model for human performance criteria that will influence the development of future Operational Concepts. The report also highlights issues associated with advanced reactor design and clarifies and codifies the identified aspects of technology and operating scenarios.

  2. Modeling human-machine interactions for operations room layouts

    Science.gov (United States)

    Hendy, Keith C.; Edwards, Jack L.; Beevis, David

    2000-11-01

    The LOCATE layout analysis tool was used to analyze three preliminary configurations for the Integrated Command Environment (ICE) of a future USN platform. LOCATE develops a cost function reflecting the quality of all human-human and human-machine communications within a workspace. This proof- of-concept study showed little difference between the efficacy of the preliminary designs selected for comparison. This was thought to be due to the limitations of the study, which included the assumption of similar size for each layout and a lack of accurate measurement data for various objects in the designs, due largely to their notional nature. Based on these results, the USN offered an opportunity to conduct a LOCATE analysis using more appropriate assumptions. A standard crew was assumed, and subject matter experts agreed on the communications patterns for the analysis. Eight layouts were evaluated with the concepts of coordination and command factored into the analysis. Clear differences between the layouts emerged. The most promising design was refined further by the USN, and a working mock-up built for human-in-the-loop evaluation. LOCATE was applied to this configuration for comparison with the earlier analyses.

  3. Operational safety related human engineering research in Finland

    International Nuclear Information System (INIS)

    Haapanen, P.; Wahlstroem, B.

    1984-01-01

    Human errors contribute considerably to the total risk of the nuclear power plants as was clearly demonstrated at the TMI-accident in 1979. This fact was recognized early in Finland and a comprehensive research program was established in the second half of the 1970s. This paper gives a short description of some research projects in this program. (author)

  4. Human reliability assessment on the basis of operating experience

    International Nuclear Information System (INIS)

    Straeter, O.

    1997-01-01

    For development of methodology, available models for qualitative assessment of human errors (e.g. by Swain, Hacker, Rasmussen) and a variety of known systematic approaches for quantitiative assessment of inadequate human action (e.g. THERP, ASEP, HCR, SLIM) were taken as a basis to establish a job specification, which in turn was used for developing a method for acquisition, characterisation and evaluation of errors. This method encompasses the two processes of event analysis and event evaluation: The first step comprises analysis of events by analysis of information describing the conditions and scenarios of relevance to the inadequate human action examined. In addition to the description of process sequences, information is taken into account on possible conditions that may bring about failure. As an assessment of human reliability requires manifold approaches for evaluation, a connectionistic procedure was developed for evaluation of the compilation of events based on a debate about various approaches from the domain of artificial intelligence (AI). This procedure yields both qualitative and quantitative information through a homogenous approach. (orig./GL) [de

  5. Precise Positioning of Uavs - Dealing with Challenging Rtk-Gps Measurement Conditions during Automated Uav Flights

    Science.gov (United States)

    Zimmermann, F.; Eling, C.; Klingbeil, L.; Kuhlmann, H.

    2017-08-01

    For some years now, UAVs (unmanned aerial vehicles) are commonly used for different mobile mapping applications, such as in the fields of surveying, mining or archeology. To improve the efficiency of these applications an automation of the flight as well as the processing of the collected data is currently aimed at. One precondition for an automated mapping with UAVs is that the georeferencing is performed directly with cm-accuracies or better. Usually, a cm-accurate direct positioning of UAVs is based on an onboard multi-sensor system, which consists of an RTK-capable (real-time kinematic) GPS (global positioning system) receiver and additional sensors (e.g. inertial sensors). In this case, the absolute positioning accuracy essentially depends on the local GPS measurement conditions. Especially during mobile mapping applications in urban areas, these conditions can be very challenging, due to a satellite shadowing, non-line-of sight receptions, signal diffraction or multipath effects. In this paper, two straightforward and easy to implement strategies will be described and analyzed, which improve the direct positioning accuracies for UAV-based mapping and surveying applications under challenging GPS measurement conditions. Based on a 3D model of the surrounding buildings and vegetation in the area of interest, a GPS geometry map is determined, which can be integrated in the flight planning process, to avoid GPS challenging environments as far as possible. If these challenging environments cannot be avoided, the GPS positioning solution is improved by using obstruction adaptive elevation masks, to mitigate systematic GPS errors in the RTK-GPS positioning. Simulations and results of field tests demonstrate the profit of both strategies.

  6. UAV Low Altitude Photogrammetry for Power Line Inspection

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    2017-01-01

    Full Text Available When the distance between an obstacle and a power line is less than the discharge distance, a discharge arc can be generated, resulting in the interruption of power supplies. Therefore, regular safety inspections are necessary to ensure the safe operation of power grids. Tall vegetation and buildings are the key factors threatening the safe operation of extra high voltage transmission lines within a power line corridor. Manual or laser intensity direction and ranging (LiDAR based inspections are time consuming and expensive. To make safety inspections more efficient and flexible, a low-altitude unmanned aerial vehicle (UAV remote-sensing platform, equipped with an optical digital camera, was used to inspect power line corridors. We propose a semi-patch matching algorithm based on epipolar constraints, using both the correlation coefficient (CC and the shape of its curve to extract three dimensional (3D point clouds for a power line corridor. We use a stereo image pair from inter-strip to improve power line measurement accuracy by transforming the power line direction to an approximately perpendicular to epipolar line. The distance between the power lines and the 3D point cloud is taken as a criterion for locating obstacles within the power line corridor automatically. Experimental results show that our proposed method is a reliable, cost effective, and applicable way for practical power line inspection and can locate obstacles within the power line corridor with accuracy better than ±0.5 m.

  7. Small VTOL UAV Acoustics Measurement and Prediction, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Interest in civilian use of small Unmanned Aerial Vehicles (UAVs) with Vertical Takeoff and Landing (VTOL) capability has increased greatly in recent years, and is...

  8. Fleet Protection Using a Small UAV Based IR Sensor

    National Research Council Canada - National Science Library

    Buss, James R; Ax, Jr, George R

    2005-01-01

    A study was performed to define candidate electro-optical and infrared (EO/IR) sensor configurations and assess their potential utility as small UAV-based sensors surveilling a perimeter around surface fleet assets...

  9. Adaptive Levels of Autonomy (ALOA) for UAV Supervisory Control

    National Research Council Canada - National Science Library

    Johnson, Rubin; Leen, Michael; Goldberg, Dan; Chiu, Michael

    2005-01-01

    .... To demonstrate the architecture and LOA implementation, we designed a prototype Multi-UAV Control Station Emulator research test bed, by building on existing ORCA-developed software components...

  10. Tracking, aiming, and hitting the UAV with ordinary assault rifle

    Science.gov (United States)

    Racek, František; Baláž, Teodor; Krejčí, Jaroslav; Procházka, Stanislav; Macko, Martin

    2017-10-01

    The usage small-unmanned aerial vehicles (UAVs) is significantly increasing nowadays. They are being used as a carrier of military spy and reconnaissance devices (taking photos, live video streaming and so on), or as a carrier of potentially dangerous cargo (intended for destruction and killing). Both ways of utilizing the UAV cause the necessity to disable it. From the military point of view, to disable the UAV means to bring it down by a weapon of an ordinary soldier that is the assault rifle. This task can be challenging for the soldier because he needs visually detect and identify the target, track the target visually and aim on the target. The final success of the soldier's mission depends not only on the said visual tasks, but also on the properties of the weapon and ammunition. The paper deals with possible methods of prediction of probability of hitting the UAV targets.

  11. Development Of Linear Quadratic Regulator Design For Small UAV System

    Directory of Open Access Journals (Sweden)

    Cho Zin Myint

    2015-08-01

    Full Text Available The aim of this paper is to know the importance role of stability analysis for both unmanned aircraft system and for all control system. The objective of paper is to develop a method for dynamic stability analysis of the design process. These are categorized intoTo design model and stability analysis of UAV based on the forces and moment equations of aircraft dynamic model To choose the suitable controller for desired altitude of a particular UAV model To analyze the stability condition for aircraft using mathematical modeling and MATLAB. In this paper the analytical model of the longitudinal dynamic of flying wing UAV has been developed using aerodynamic data. The stability characteristics of UAV can be achieved from the system transfer function with LQR controller.

  12. Multi‐angular observations of vegetation indices from UAV cameras

    DEFF Research Database (Denmark)

    Sobejano-Paz, Veronica; Wang, Sheng; Jakobsen, Jakob

    Unmanned aerial vehicles (UAVs) are found as an alternative to the classical manned aerial photogrammetry, which can be used to obtain environmental data or as a complementary solution to other methods (Nex and Remondino, 2014). Although UAVs have coverage limitations, they have better resolution...... (Berni et al., 2009), hyper spectral camera (Burkart et al., 2015) and photometric elevation mapping sensor (Shahbazi et al., 2015) among others. Therefore, UAVs can be used in many fields such as agriculture, forestry, archeology, architecture, environment and traffic monitoring (Nex and Remondino, 2014......). In this study, the UAV used is a hexacopter s900 equipped with a Global Positioning System (GPS) and two cameras; a digital RGB photo camera and a multispectral camera (MCA), with a resolution of 5472 x 3648 pixels and 1280 x 1024 pixels, respectively. In terms of applications, traditional methods using...

  13. Chemical Microsensor Instrument for UAV Airborne Atmospheric Measurements, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The rapid expansion of available UAV types and increased mission capability (payload, flight duration, and system cost reductions) offers wide range of potential...

  14. Using LTE Networks for UAV Command and Control Link

    DEFF Research Database (Denmark)

    Nguyen, Huan Cong; Amorim, Rafhael Medeiros de; Wigard, Jeroen

    2017-01-01

    In this paper we investigate the ability of Long-Term Evolution (LTE) network to provide coverage for Unmanned Aerial Vehicles (UAVs) in a rural area, in particular for the Command and Control (C2) downlink. The study takes into consideration the dependency of the large-scale path loss on the hei......In this paper we investigate the ability of Long-Term Evolution (LTE) network to provide coverage for Unmanned Aerial Vehicles (UAVs) in a rural area, in particular for the Command and Control (C2) downlink. The study takes into consideration the dependency of the large-scale path loss...... on the height of the UAV, which is derived from actual measurements, and a real-world cellular network layout and configuration. The results indicate that interference is the dominant factor limiting the cellular coverage for UAVs in the downlink: outage level increases from 4.2% at 1.5 m height to 51.7% at 120...

  15. Multidepot UAV Routing Problem with Weapon Configuration and Time Window

    Directory of Open Access Journals (Sweden)

    Tianren Zhou

    2018-01-01

    Full Text Available In recent wars, there is an increasing trend that unmanned aerial vehicles (UAVs are utilized to conduct military attacking missions. In this paper, we investigate a novel multidepot UAV routing problem with consideration of weapon configuration in the UAV and the attacking time window of the target. A mixed-integer linear programming model is developed to jointly optimize three kinds of decisions: the weapon configuration strategy in the UAV, the routing strategy of target, and the allocation strategy of weapons to targets. An adaptive large neighborhood search (ALNS algorithm is proposed for solving the problem, which is tested by randomly generated instances covering the small, medium, and large sizes. Experimental results confirm the effectiveness and robustness of the proposed ALNS algorithm.

  16. Human Performance in Continuous Operations. Volume 3. Technical Documentation

    Science.gov (United States)

    1980-03-01

    completed for the U. S. Commander, V Corps. Artillery, by Manning (1978). Manning collected information which bears on the following three questions: 0 Can...performance data were not collected in these pre- liminary studies. Field Studies of Continuous Tank OperationsLI __ _ _ __ _ _ _ To simulate a combat...on routine, monotonous tasks tends A show rapid and severe decrement after peri- odk of more than 24 hours without sleep. I Increasing task complexity

  17. Computerized aids and human factors in nuclear power plant operation

    International Nuclear Information System (INIS)

    Bastl, W.

    1988-01-01

    When guiding a complex process and associated intermeshed systems in a nuclear power plant, a primary issue consists of the call for excellent information. Technically speaking, today's centralized control rooms are at the end of a development phase which has been governed by the introduction of remote information and remote control systems. But by centralization, an information overload problem arose, and it has been solved by dividing panels according to systems, operational phases and specific tasks. In addition, the overview and relationship of systems have been visualized by mimic diagrams. It is attempted to make transparent the technical back-ground of the processes and systems to be controlled, thus to provide the necessary basis for understanding the problems of operators. Practical examples are used for the purpose. The information dilemma, the systems for high level information, automation and information, plant safety and information, and the problem of where to go from here are described. Computerized operator aids must be discussed along assistance in information and assistance in automatic control. (Kako, I.)

  18. Human error mode identification for NPP main control room operations using soft controls

    International Nuclear Information System (INIS)

    Lee, Seung Jun; Kim, Jaewhan; Jang, Seung-Cheol

    2011-01-01

    The operation environment of main control rooms (MCRs) in modern nuclear power plants (NPPs) has considerably changed over the years. Advanced MCRs, which have been designed by adapting digital and computer technologies, have simpler interfaces using large display panels, computerized displays, soft controls, computerized procedure systems, and so on. The actions for the NPP operations are performed using soft controls in advanced MCRs. Soft controls have different features from conventional controls. Operators need to navigate the screens to find indicators and controls and manipulate controls using a mouse, touch screens, and so on. Due to these different interfaces, different human errors should be considered in the human reliability analysis (HRA) for advanced MCRs. In this work, human errors that could occur during operation executions using soft controls were analyzed. This work classified the human errors in soft controls into six types, and the reasons that affect the occurrence of the human errors were also analyzed. (author)

  19. Autonomous Control of a Quadrotor UAV Using Fuzzy Logic

    Science.gov (United States)

    Sureshkumar, Vijaykumar

    UAVs are being increasingly used today than ever before in both military and civil applications. They are heavily preferred in "dull, dirty or dangerous" mission scenarios. Increasingly, UAVs of all kinds are being used in policing, fire-fighting, inspection of structures, pipelines etc. Recently, the FAA gave its permission for UAVs to be used on film sets for motion capture and high definition video recording. The rapid development in MEMS and actuator technology has made possible a plethora of UAVs that are suited for commercial applications in an increasingly cost effective manner. An emerging popular rotary wing UAV platform is the Quadrotor A Quadrotor is a helicopter with four rotors, that make it more stable; but more complex to model and control. Characteristics that provide a clear advantage over other fixed wing UAVs are VTOL and hovering capabilities as well as a greater maneuverability. It is also simple in construction and design compared to a scaled single rotorcraft. Flying such UAVs using a traditional radio Transmitter-Receiver setup can be a daunting task especially in high stress situations. In order to make such platforms widely applicable, a certain level of autonomy is imperative to the future of such UAVs. This thesis paper presents a methodology for the autonomous control of a Quadrotor UAV using Fuzzy Logic. Fuzzy logic control has been chosen over conventional control methods as it can deal effectively with highly nonlinear systems, allows for imprecise data and is extremely modular. Modularity and adaptability are the key cornerstones of FLC. The objective of this thesis is to present the steps of designing, building and simulating an intelligent flight control module for a Quadrotor UAV. In the course of this research effort, a Quadrotor UAV is indigenously developed utilizing the resources of an online open source project called Aeroquad. System design is comprehensively dealt with. A math model for the Quadrotor is developed and a

  20. Geomorphological mapping of shallow landslides using UAVs

    Science.gov (United States)

    Fiorucci, Federica; Giordan, Daniele; Dutto, Furio; Rossi, Mauro; Guzzetti, Fausto

    2015-04-01

    The mapping of event shallow landslides is a critical activity, due to the large number of phenomena, mostly with small dimension, affecting extensive areas. This is commonly done through aerial photo-interpretation or through field surveys. Nowadays, landslide maps can be realized exploiting other methods/technologies: (i) airborne LiDARs, (ii) stereoscopic satellite images, and (iii) unmanned aerial vehicles (UAVs). In addition to the landslide maps, these methods/technologies allow the generation of updated Digital Terrain Models (DTM). In December 2013, in the Collazzone area (Umbria, Central Italy), an intense rainfall event triggered a large number of shallow landslides. To map the landslides occurred in the area, we exploited data and images obtained through (A) an airborne LiDAR survey, (B) a remote controlled optocopter (equipped with a Canon EOS M) survey, and (C) a stereoscopic satellite WorldView II MS. To evaluate the mapping accuracy of these methods, we select two landslides and we mapped them using a GPS RTK instrumentation. We consider the GPS survey as the benchmark being the most accurate system. The results of the comparison allow to highlight pros and cons of the methods/technologies used. LiDAR can be considered the most accurate system and in addition it allows the extraction and the classification of the digital surface models from the surveyed point cloud. Conversely, LiDAR requires additional time for the flight planning, and specific data analysis user capabilities. The analysis of the satellite WorldView II MS images facilitates the landslide mapping over large areas, but at the expenses of a minor resolution to detect the smaller landslides and their boundaries. UAVs can be considered the cheapest and fastest solution for the acquisition of high resolution ortho-photographs on limited areas, and the best solution for a multi-temporal analysis of specific landslide phenomena. Limitations are due to (i) the needs of optimal climatic

  1. Human factor in the operation of the Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Kostiha, Frantisek; Pleskac, Frantisek

    2009-01-01

    The human factor, i.e. the action of man within complex technical systems, has been in the focus of the Dukovany NPP management constantly. The paper gives an overview of the plant strategy regarding human factor issues, such as training, human factor prevention methods and practices to improve the resistance of the system to human error, the use of information systems, and operational feedback from the role of the human factor and influence of the operators on the initiation, development and resulting level of severity of operational events. The method of monitoring and assessment of the quality of human performance at the Dukovany plant on an ongoing basis aimed at a constant improvement is highlighted. (orig.)

  2. Seismic-load-induced human errors and countermeasures using computer graphics in plant-operator communication

    International Nuclear Information System (INIS)

    Hara, Fumio

    1988-01-01

    This paper remarks the importance of seismic load-induced human errors in plant operation by delineating the characteristics of the task performance of human beings under seismic loads. It focuses on man-machine communication via multidimensional data like that conventionally displayed on large panels in a plant control room. It demonstrates a countermeasure to human errors using a computer graphics technique that conveys the global state of the plant operation to operators through cartoon-like, colored graphs in the form of faces that, with different facial expressions, show the plant safety status. (orig.)

  3. A Natural Interaction Interface for UAVs Using Intuitive Gesture Recognition

    Science.gov (United States)

    Chandarana, Meghan; Trujillo, Anna; Shimada, Kenji; Allen, Danette

    2016-01-01

    The popularity of unmanned aerial vehicles (UAVs) is increasing as technological advancements boost their favorability for a broad range of applications. One application is science data collection. In fields like Earth and atmospheric science, researchers are seeking to use UAVs to augment their current portfolio of platforms and increase their accessibility to geographic areas of interest. By increasing the number of data collection platforms UAVs will significantly improve system robustness and allow for more sophisticated studies. Scientists would like be able to deploy an available fleet of UAVs to fly a desired flight path and collect sensor data without needing to understand the complex low-level controls required to describe and coordinate such a mission. A natural interaction interface for a Ground Control System (GCS) using gesture recognition is developed to allow non-expert users (e.g., scientists) to define a complex flight path for a UAV using intuitive hand gesture inputs from the constructed gesture library. The GCS calculates the combined trajectory on-line, verifies the trajectory with the user, and sends it to the UAV controller to be flown.

  4. Contour Detection for UAV-Based Cadastral Mapping

    Directory of Open Access Journals (Sweden)

    Sophie Crommelinck

    2017-02-01

    Full Text Available Unmanned aerial vehicles (UAVs provide a flexible and low-cost solution for the acquisition of high-resolution data. The potential of high-resolution UAV imagery to create and update cadastral maps is being increasingly investigated. Existing procedures generally involve substantial fieldwork and many manual processes. Arguably, multiple parts of UAV-based cadastral mapping workflows could be automated. Specifically, as many cadastral boundaries coincide with visible boundaries, they could be extracted automatically using image analysis methods. This study investigates the transferability of gPb contour detection, a state-of-the-art computer vision method, to remotely sensed UAV images and UAV-based cadastral mapping. Results show that the approach is transferable to UAV data and automated cadastral mapping: object contours are comprehensively detected at completeness and correctness rates of up to 80%. The detection quality is optimal when the entire scene is covered with one orthoimage, due to the global optimization of gPb contour detection. However, a balance between high completeness and correctness is hard to achieve, so a combination with area-based segmentation and further object knowledge is proposed. The localization quality exhibits the usual dependency on ground resolution. The approach has the potential to accelerate the process of general boundary delineation during the creation and updating of cadastral maps.

  5. Heterogeneous CPU-GPU moving targets detection for UAV video

    Science.gov (United States)

    Li, Maowen; Tang, Linbo; Han, Yuqi; Yu, Chunlei; Zhang, Chao; Fu, Huiquan

    2017-07-01

    Moving targets detection is gaining popularity in civilian and military applications. On some monitoring platform of motion detection, some low-resolution stationary cameras are replaced by moving HD camera based on UAVs. The pixels of moving targets in the HD Video taken by UAV are always in a minority, and the background of the frame is usually moving because of the motion of UAVs. The high computational cost of the algorithm prevents running it at higher resolutions the pixels of frame. Hence, to solve the problem of moving targets detection based UAVs video, we propose a heterogeneous CPU-GPU moving target detection algorithm for UAV video. More specifically, we use background registration to eliminate the impact of the moving background and frame difference to detect small moving targets. In order to achieve the effect of real-time processing, we design the solution of heterogeneous CPU-GPU framework for our method. The experimental results show that our method can detect the main moving targets from the HD video taken by UAV, and the average process time is 52.16ms per frame which is fast enough to solve the problem.

  6. Rancang Bangun Prototype Unmanned Aerial Vehicle (UAV dengan Tiga Rotor

    Directory of Open Access Journals (Sweden)

    Darmawan Rasyid Hadi Saputra

    2013-03-01

    Full Text Available Unmanned Aerial Vehicle atau yang biasa dikenal dengan istilah UAV  merupakan sebuah sistem penerbangan/ pesawat tanpa pilot yang berada di dalam pesawat tersebut. UAV dapat dikendalikan dengan menggunakan remote dari jarak jauh, diprogram dengan perintah tertentu, atau bahkan dengan sistem pengendalian otomatis yang lebih kompleks. Aplikasi dari teknologi UAV pun beragam mulai dari tugas militer hingga pengamatan udara. Dalam penelitian ini, sebuah UAV akan dikembangkan dengan tiga buah rotor dan satu buah motor servo di bagian belakang UAV. Perancangan model menggunakan software CATIA dengan batasan dimensi (panjang × lebar maksimum 75 × 75 cm dan massa < 2 kg. Analisis struktur rangka dilakukan untuk menguji kekuatan rangka ketika terbang dan membawa beban, dengan menggunakan metode elemen hingga dan kriteria kegagalan Von-Misses. Dalam proses pengerjaan, rancangan dari CATIA dan analisis yang telah dilakukan dalam perancangan tersebut akan digunakan. Hasil yang didapat berupa UAV yang memiliki struktur rangka dengan defleksi maksimum 3,67 mm pada rangka tengah yang berbahan acrylic. Dalam pengujian di lapangan, UAV dapat melakukan gerak roll, pitch, dan yaw yang dikendalikan melalui remote control. Waktu operasi maksimum yang dapat dilakukan adalah selama 7 menit 43 detik.

  7. The human factors and job task analysis in nuclear power plant operation

    International Nuclear Information System (INIS)

    Stefanescu, Petre; Mihailescu, Nicolae; Dragusin, Octavian

    1999-01-01

    After a long period of time, during the development of the NPP technology, where the plant hardware has been considered to be the main factor for a safe, reliable and economic operation, the industry is now changing to an adequate responsibility of plant hardware and operation. Since the human factors has been not discussed methodically so far, there is still a lack of improved classification systems for human errors as well as a lack of methods for the systematic approach in designing the operator's working system, as for instance by using the job task analysis (J.T.A.). The J.T.A. appears to be an adequate method to study the human factor in the nuclear power plant operation, enabling an easy conversion to operational improvements. While the results of the analysis of human errors tell 'what' is to be improved, the J.T.A. shows 'how' to improve, for increasing the quality of the work and the safety of the operator's working system. The paper analyses the issue of setting the task and displays four criteria used to select aspects in NPP operation which require special consideration as personal training, design of control room, content and layout of the procedure manual, or organizing the operating personnel. The results are given as three tables giving: 1- Evaluation of deficiencies in the Working System; 2- Evaluation of the Deficiencies of Operator's Disposition; 3- Evaluation of the Mental Structure of Operation

  8. The Quality of Quantity: Mini-UAVS As An Alternative UAV Acquisition Strategy at the Army Brigade Level

    National Research Council Canada - National Science Library

    Weed, Shawn

    2002-01-01

    This monograph asks should the U.S. Army alter its current UAV acquisition strategy for maneuver brigades from one in which limited numbers of high capability systems are acquired, in favor of another that fields a large quantity...

  9. Operational characteristics optimization of human-computer system

    Directory of Open Access Journals (Sweden)

    Zulquernain Mallick

    2010-09-01

    Full Text Available Computer operational parameters are having vital influence on the operators efficiency from readability viewpoint. Four parameters namely font, text/background color, viewing angle and viewing distance are analyzed. The text reading task, in the form of English text, was presented on the computer screen to the participating subjects and their performance, measured in terms of number of words read per minute (NWRPM, was recorded. For the purpose of optimization, the Taguchi method is used to find the optimal parameters to maximize operators’ efficiency for performing readability task. Two levels of each parameter have been considered in this study. An orthogonal array, the signal-to-noise (S/N ratio and the analysis of variance (ANOVA were employed to investigate the operators’ performance/efficiency. Results showed that Times Roman font, black text on white background, 40 degree viewing angle and 60 cm viewing distance, the subjects were quite comfortable, efficient and read maximum number of words per minute. Text/background color was dominant parameter with a percentage contribution of 76.18% towards the laid down objective followed by font type at 18.17%, viewing distance 7.04% and viewing angle 0.58%. Experimental results are provided to confirm the effectiveness of this approach.

  10. INTEGRATED ROBOT-HUMAN CONTROL IN MINING OPERATIONS

    Energy Technology Data Exchange (ETDEWEB)

    George Danko

    2006-04-01

    This report describes the results of the 2nd year of a research project on the implementation of a novel human-robot control system for hydraulic machinery. Sensor and valve re-calibration experiments were conducted to improve open loop machine control. A Cartesian control example was tested both in simulation and on the machine; the results are discussed in detail. The machine tests included open-loop as well as closed-loop motion control. Both methods worked reasonably well, due to the high-quality electro-hydraulic valves used on the experimental machine. Experiments on 3-D analysis of the bucket trajectory using marker tracking software are also presented with the results obtained. Open-loop control is robustly stable and free of short-term dynamic problems, but it allows for drifting away from the desired motion kinematics of the machine. A novel, closed-loop control adjustment provides a remedy, while retaining much of the advantages of the open-loop control based on kinematics transformation. Additional analysis of previously recorded, three-dimensional working trajectories of the bucket of large mine shovels was completed. The motion patterns, when transformed into a family of curves, serve as the basis for software-controlled machine kinematics transformation in the new human-robot control system.

  11. Urban forest topographical mapping using UAV LIDAR

    Science.gov (United States)

    Putut Ash Shidiq, Iqbal; Wibowo, Adi; Kusratmoko, Eko; Indratmoko, Satria; Ardhianto, Ronni; Prasetyo Nugroho, Budi

    2017-12-01

    Topographical data is highly needed by many parties, such as government institution, mining companies and agricultural sectors. It is not just about the precision, the acquisition time and data processing are also carefully considered. In relation with forest management, a high accuracy topographic map is necessary for planning, close monitoring and evaluating forest changes. One of the solution to quickly and precisely mapped topography is using remote sensing system. In this study, we test high-resolution data using Light Detection and Ranging (LiDAR) collected from unmanned aerial vehicles (UAV) to map topography and differentiate vegetation classes based on height in urban forest area of University of Indonesia (UI). The semi-automatic and manual classifications were applied to divide point clouds into two main classes, namely ground and vegetation. There were 15,806,380 point clouds obtained during the post-process, in which 2.39% of it were detected as ground.

  12. Autonomous Chemical Vapour Detection by Micro UAV

    Directory of Open Access Journals (Sweden)

    Kent Rosser

    2015-12-01

    Full Text Available The ability to remotely detect and map chemical vapour clouds in open air environments is a topic of significant interest to both defence and civilian communities. In this study, we integrate a prototype miniature colorimetric chemical sensor developed for methyl salicylate (MeS, as a model chemical vapour, into a micro unmanned aerial vehicle (UAV, and perform flights through a raised MeS vapour cloud. Our results show that that the system is capable of detecting MeS vapours at low ppm concentration in real-time flight and rapidly sending this information to users by on-board telemetry. Further, the results also indicate that the sensor is capable of distinguishing “clean” air from “dirty”, multiple times per flight, allowing us to look towards autonomous cloud mapping and source localization applications. Further development will focus on a broader range of integrated sensors, increased autonomy of detection and improved engineering of the system.

  13. The Relationship between Human Operators' Psycho-physiological Condition and Human Errors in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Arryum; Jang, Inseok; Kang, Hyungook; Seong, Poonghyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The safe operation of nuclear power plants (NPPs) is substantially dependent on the performance of the human operators who operate the systems. In this environment, human errors caused by inappropriate performance of operator have been considered to be critical since it may lead serious problems in the safety-critical plants. In order to provide meaningful insights to prevent human errors and enhance the human performance, operators' physiological conditions such as stress and workload have been investigated. Physiological measurements were considered as reliable tools to assess the stress and workload. T. Q. Tran et al. and J. B. Brooking et al pointed out that operators' workload can be assessed using eye tracking, galvanic skin response, electroencephalograms (EEGs), heart rate, respiration and other measurements. The purpose of this study is to investigate the effect of the human operators' tense level and knowledge level to the number of human errors. For this study, the experiments were conducted in the mimic of the main control rooms (MCR) in NPP. It utilized the compact nuclear simulator (CNS) which is modeled based on the three loop Pressurized Water Reactor, 993MWe, Kori unit 3 and 4 in Korea and the subjects were asked to follow the tasks described in the emergency operating procedures (EOP). During the simulation, three kinds of physiological measurement were utilized; Electrocardiogram (ECG), EEG and nose temperature. Also, subjects were divided into three groups based on their knowledge of the plant operation. The result shows that subjects who are tense make fewer errors. In addition, subjects who are in higher knowledge level tend to be tense and make fewer errors. For the ECG data, subjects who make fewer human errors tend to be located in higher tense level area of high SNS activity and low PSNS activity. The results of EEG data are also similar to ECG result. Beta power ratio of subjects who make fewer errors was higher. Since beta

  14. Surface Support Systems for Co-Operative and Integrated Human/Robotic Lunar Exploration

    Science.gov (United States)

    Mueller, Robert P.

    2006-01-01

    Human and robotic partnerships to realize space goals can enhance space missions and provide increases in human productivity while decreasing the hazards that the humans are exposed to. For lunar exploration, the harsh environment of the moon and the repetitive nature of the tasks involved with lunar outpost construction, maintenance and operation as well as production tasks associated with in-situ resource utilization, make it highly desirable to use robotic systems in co-operation with human activity. A human lunar outpost is functionally examined and concepts for selected human/robotic tasks are discussed in the context of a lunar outpost which will enable the presence of humans on the moon for extended periods of time.

  15. Development of a Pilot Program for Human Factors Management in Operating Nuclear Power plants

    International Nuclear Information System (INIS)

    Lee, Jung-Woon; Lee, Yong-Hee; Jang, Tong-Il; Kim, Dae-Ho

    2007-01-01

    The human factors of operating NPPs have been reviewed as a part of Periodic Safety Reviews (PSRs). This human factors PSR covers a wide range of human factors including control room man-machine interfaces (MMIs), procedures, working conditions, qualification, training, information requirements and workload. Korea Atomic Energy Research Institute (KAERI) has performed human factors PSRs from the first PSR for Kori 1. It was determined in 2005 that for a Continuous Operation of the Korean NPPs an enhanced PSR should be performed and issues raised from the PSRs should be resolved. From the results of the PSR for Kori 1, several safety enhancement issues related to human factors were raised. KAERI is working on a resolution of some of the human factors issues for the Korea Hydro and Nuclear Power Co. (KHNP). As a part of the resolution, we are developing a human factors management program (HFMP) for Kori 1. This paper introduces the status of our development of HFMP

  16. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP.

    Science.gov (United States)

    Deng, Li; Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency.

  17. Human Factors Issues When Operating Underwater Remotely Operated Vehicles and Autonomous Underwater Vehicles

    Science.gov (United States)

    2011-03-01

    etiquette (Parasuraman & Miller, 2004). Through natural and intuitive communication, Johnson et al., (2007) hope that this interface will instill greater...and etiquette in high criticality automated systems. Communications of the ACM, 47(4), 51-55. Parasuraman, R., & Riley, V. (1997). Humans and... protocols for underwater wireless communications. IEEE Communications Magazine, pp. 97-102. Quazi, A. H., & Konrad, W. L. (1982, March 1982). Underwater

  18. Development of Open source-based automatic shooting and processing UAV imagery for Orthoimage Using Smart Camera UAV

    Science.gov (United States)

    Park, J. W.; Jeong, H. H.; Kim, J. S.; Choi, C. U.

    2016-06-01

    Recently, aerial photography with unmanned aerial vehicle (UAV) system uses UAV and remote controls through connections of ground control system using bandwidth of about 430 MHz radio Frequency (RF) modem. However, as mentioned earlier, existing method of using RF modem has limitations in long distance communication. The Smart Camera equipments's LTE (long-term evolution), Bluetooth, and Wi-Fi to implement UAV that uses developed UAV communication module system carried out the close aerial photogrammetry with the automatic shooting. Automatic shooting system is an image capturing device for the drones in the area's that needs image capturing and software for loading a smart camera and managing it. This system is composed of automatic shooting using the sensor of smart camera and shooting catalog management which manages filmed images and information. Processing UAV imagery module used Open Drone Map. This study examined the feasibility of using the Smart Camera as the payload for a photogrammetric UAV system. The open soure tools used for generating Android, OpenCV (Open Computer Vision), RTKLIB, Open Drone Map.

  19. Development of Open source-based automatic shooting and processing UAV imagery for Orthoimage Using Smart Camera UAV

    Directory of Open Access Journals (Sweden)

    J. W. Park

    2016-06-01

    Full Text Available Recently, aerial photography with unmanned aerial vehicle (UAV system uses UAV and remote controls through connections of ground control system using bandwidth of about 430 MHz radio Frequency (RF modem. However, as mentioned earlier, existing method of using RF modem has limitations in long distance communication. The Smart Camera equipments’s LTE (long-term evolution, Bluetooth, and Wi-Fi to implement UAV that uses developed UAV communication module system carried out the close aerial photogrammetry with the automatic shooting. Automatic shooting system is an image capturing device for the drones in the area’s that needs image capturing and software for loading a smart camera and managing it. This system is composed of automatic shooting using the sensor of smart camera and shooting catalog management which manages filmed images and information. Processing UAV imagery module used Open Drone Map. This study examined the feasibility of using the Smart Camera as the payload for a photogrammetric UAV system. The open soure tools used for generating Android, OpenCV (Open Computer Vision, RTKLIB, Open Drone Map.

  20. Modeling of human operator dynamics in simple manual control utilizing time series analysis. [tracking (position)

    Science.gov (United States)

    Agarwal, G. C.; Osafo-Charles, F.; Oneill, W. D.; Gottlieb, G. L.

    1982-01-01

    Time series analysis is applied to model human operator dynamics in pursuit and compensatory tracking modes. The normalized residual criterion is used as a one-step analytical tool to encompass the processes of identification, estimation, and diagnostic checking. A parameter constraining technique is introduced to develop more reliable models of human operator dynamics. The human operator is adequately modeled by a second order dynamic system both in pursuit and compensatory tracking modes. In comparing the data sampling rates, 100 msec between samples is adequate and is shown to provide better results than 200 msec sampling. The residual power spectrum and eigenvalue analysis show that the human operator is not a generator of periodic characteristics.

  1. Liquid Pipeline Operator's Control Room Human Factors Risk Assessment and Management Guide

    Science.gov (United States)

    2008-11-26

    The purpose of this guide is to document methodologies, tools, procedures, guidance, and instructions that have been developed to provide liquid pipeline operators with an efficient and effective means of managing the human factors risks in their con...

  2. Maintenance of the Photovolatic Plants Using UAV Equipped with Low-cost GNSS RTK Receiver

    DEFF Research Database (Denmark)

    Bilal, Muhammad; Prasad, Ramjee; Nisi, Marco

    2017-01-01

    of low-cost GNSS RTK receiver, is the maintenance of photovoltaic (PV) plants using Unmanned Aerial Vehicle (UAV). This paper proposes a solution that aims at automating the maintenance of PV plant with enhanced reliability in a time and cost effective manner, which otherwise requires intermediate human...... intervention. The paper presents the architectural concept, system design, and end-to-end algorithm that plays a pivotal role in enabling the automatic report generation of PV plant status. Preliminary results of the proof-of-concept shows the feasibility of the proposed solution....

  3. Exploring Naval Tactics with UAVs in an Island Complex Using Agent-Based Simulation

    National Research Council Canada - National Science Library

    Lalis, Vasileios

    2007-01-01

    The benefits of Unmanned Aerial Vehicles (UAV) at sea are undisputed. The amount and speed of the incoming information from a UAV, combined with its maneuverability and time-on-task capability, are assets to any navy...

  4. Development Situation, Trend and Countermeasure of Consumer-level UAV Market in China

    Directory of Open Access Journals (Sweden)

    Kang Yu-Lei

    2017-01-01

    Full Text Available This paper is based on the status of Chinese consumer-level UAV(Unmanned Aerial Vehicle market. According to the main problems in Chinese consumer-level UAV market, the author analyses the trends of Chinese consumer-level UAV market. Then, the author put forward some suggestions to develop Chinese consumer-level UAV market. In 21st century, the research and development expenditure presents the explosive growth in Chinese consumer-level UAV market. From the year of 2012, DJI released their first consumer-level UAV product. Amazon, Facebook, Google and other companies have announced their entry into the UAV market. In 2016, Huawei also announced that it will enter the UAV market.

  5. UAV formation control design with obstacle avoidance in dynamic three-dimensional environment.

    Science.gov (United States)

    Chang, Kai; Xia, Yuanqing; Huang, Kaoli

    2016-01-01

    This paper considers the artificial potential field method combined with rotational vectors for a general problem of multi-unmanned aerial vehicle (UAV) systems tracking a moving target in dynamic three-dimensional environment. An attractive potential field is generated between the leader and the target. It drives the leader to track the target based on the relative position of them. The other UAVs in the formation are controlled to follow the leader by the attractive control force. The repulsive force affects among the UAVs to avoid collisions and distribute the UAVs evenly on the spherical surface whose center is the leader-UAV. Specific orders or positions of the UAVs are not required. The trajectories of avoidance obstacle can be obtained through two kinds of potential field with rotation vectors. Every UAV can choose the optimal trajectory to avoid the obstacle and reconfigure the formation after passing the obstacle. Simulations study on UAV are presented to demonstrate the effectiveness of proposed method.

  6. Perception-based Co-evolutionary Reinforcement Learning for UAV Sensor Allocation

    National Research Council Canada - National Science Library

    Berenji, Hamid

    2003-01-01

    .... A Perception-based reasoning approach based on co-evolutionary reinforcement learning was developed for jointly addressing sensor allocation on each individual UAV and allocation of a team of UAVs...

  7. Transformational change: creating a safe operating space for humanity

    Directory of Open Access Journals (Sweden)

    Clive A. McAlpine

    2015-03-01

    Full Text Available Many ecologists and environmental scientists witnessing the scale of current environmental change are becoming increasingly alarmed about how humanity is pushing the boundaries of the Earth's systems beyond sustainable levels. The world urgently needs global society to redirect itself toward a more sustainable future: one that moves intergenerational equity and environmental sustainability to the top of the political agenda, and to the core of personal and societal belief systems. Scientific and technological innovations are not enough: the global community, individuals, civil society, corporations, and governments, need to adjust their values and beliefs to one in which sustainability becomes the new global paradigm society. We argue that the solution requires transformational change, driven by a realignment of societal values, where individuals act ethically as an integral part of an interconnected society and biosphere. Transition management provides a framework for achieving transformational change, by giving special attention to reflective learning, interaction, integration, and experimentation at the level of society, thereby identifying the system conditions and type of changes necessary for enabling sustainable transformation.

  8. Comparing the performance of expert user heuristics and an integer linear program in aircraft carrier deck operations.

    Science.gov (United States)

    Ryan, Jason C; Banerjee, Ashis Gopal; Cummings, Mary L; Roy, Nicholas

    2014-06-01

    Planning operations across a number of domains can be considered as resource allocation problems with timing constraints. An unexplored instance of such a problem domain is the aircraft carrier flight deck, where, in current operations, replanning is done without the aid of any computerized decision support. Rather, veteran operators employ a set of experience-based heuristics to quickly generate new operating schedules. These expert user heuristics are neither codified nor evaluated by the United States Navy; they have grown solely from the convergent experiences of supervisory staff. As unmanned aerial vehicles (UAVs) are introduced in the aircraft carrier domain, these heuristics may require alterations due to differing capabilities. The inclusion of UAVs also allows for new opportunities for on-line planning and control, providing an alternative to the current heuristic-based replanning methodology. To investigate these issues formally, we have developed a decision support system for flight deck operations that utilizes a conventional integer linear program-based planning algorithm. In this system, a human operator sets both the goals and constraints for the algorithm, which then returns a proposed schedule for operator approval. As a part of validating this system, the performance of this collaborative human-automation planner was compared with that of the expert user heuristics over a set of test scenarios. The resulting analysis shows that human heuristics often outperform the plans produced by an optimization algorithm, but are also often more conservative.

  9. Integration of functions within STUAS operator crew on board royal Netherlands Navy ships

    NARCIS (Netherlands)

    Maanen, P.P. van; Holleman, B.; Kerbusch, P.; Kleij, R. van der; Smets, N.; Smit, S.; Rakhorst-Oudendijk, M.

    2014-01-01

    Many reasons exist for the military to favor unmanned systems and future missions are envisioned that require longer, more diverse and more frequent deployment of UAVs with increased mission precision. This will also result in a much higher demand on operator crews working with UAVs. With the

  10. The mapping and preparation of human resources for NPP’S operation and maintenance in Indonesia

    International Nuclear Information System (INIS)

    Moch-Djoko Birmano; Yohanes Dwi Anggoro

    2013-01-01

    The preparation of the competent human resources (HRs) is one of the basic infrastructure of NPP’s development. IAEA recommends that at the initial activity in preparation of human resources for NPP is doing Business Process Mapping by identifying the knowledge, skills and abilities of required human resources to carry out the operation and maintenance of NPPs. This study aims to mapping and preparing of human resources for NPP’s operation and maintenance in Indonesia. The method used are mapping business processes at operation and maintenance stage of NPP, identifying positions, conducting surveys with questionnaires and calculations, and data analysis. Surveys and questionnaires to determine the level of technical competence of personnel in BATAN at operation and maintenance stage. Analysis using the Method of Gap Analysis with human resources Competency Standards Criteria based on technical competence qualifications. This study uses the assumption that the nuclear power plant will be built 2 units (twin) and start operation in 2027. The results showed that from the aspect of education, BATAN able to meet the needs of human resources at 53.64 to 73.75%. While from the aspect of training and specific work experience, participation level of BATAN’s human resources is still very low of IAEA requirements. This case caused because young human resources in BATAN who have educational qualifications, experience, training and technical certifications in the field of operation and maintenance of nuclear power plants is still limited. Based on this, there should be preparation of NPP’s human resources with establish NPP’s human resources development program based on required qualifications. (author)

  11. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP

    Directory of Open Access Journals (Sweden)

    Li Deng

    2015-01-01

    Full Text Available In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming, using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model’s input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators’ operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency.

  12. Behavioral simulation of a nuclear power plant operator crew for human-machine system design

    International Nuclear Information System (INIS)

    Furuta, K.; Shimada, T.; Kondo, S.

    1999-01-01

    This article proposes an architecture of behavioral simulation of an operator crew in a nuclear power plant including group processes and interactions between the operators and their working environment. An operator model was constructed based on the conceptual human information processor and then substantiated as a knowledge-based system with multiple sets of knowledge base and blackboard, each of which represents an individual operator. From a trade-off between reality and practicality, we adopted an architecture of simulation that consists of the operator, plant and environment models in order to consider operator-environment interactions. The simulation system developed on this framework and called OCCS was tested using a scenario of BWR plant operation. The case study showed that operator-environment interactions have significant effects on operator crew performance and that they should be considered properly for simulating behavior of human-machine systems. The proposed architecture contributed to more realistic simulation in comparison with an experimental result, and a good prospect has been obtained that computer simulation of an operator crew is feasible and useful for human-machine system design. (orig.)

  13. Comparing the subjective task difficulty of human operators with task description levels

    International Nuclear Information System (INIS)

    Park, Jin Kyun; Jung, Won Dea; Yang, Joon Eon

    2011-01-01

    Without the loss of generality, it is reasonable to say that an operating procedure consists of many steps including detailed descriptions that provide necessary information in conducting the required tasks safely and effectively. In this regard, since it is widely perceived that procedures are effective for reducing the occurrence of human performance related problems, the use of procedures is very popular in large process control systems including nuclear power plants (NPPs), commercial airplanes and railway systems. However, the secure of an operational safety by using an operating procedure can be accomplished only if human operators are able to effectively obtain necessary information from it. In other words, it is hard to expect the reduction of human performance related problems, if task descriptions are so ambiguous or incomplete that human operators feel an undue difficulty in identifying 'what have to be done' and 'how to do it' from procedures. Unfortunately, it seems that a systematic method that can be used to distinguish the proper level of task descriptions is rare. For this reason, Park et al. developed a decision chart that could be helpful for characterizing the level of task descriptions. In this study, in order to ensure the appropriateness of the suggested decision chart, more detailed investigations were conducted with the support of human operators who are working as the operating personnel of NPPs

  14. Best practice guidelines for the operation of a donor human milk bank in an Australian NICU.

    Science.gov (United States)

    Hartmann, B T; Pang, W W; Keil, A D; Hartmann, P E; Simmer, K

    2007-10-01

    Until the establishment of the PREM Bank (Perron Rotary Express Milk Bank) donor human milk banking had not occurred in Australia for the past 20 years. In re-establishing donor human milk banking in Australia, the focus of the PREM Bank has been to develop a formal and consistent approach to safety and quality in processing during the operation of the human milk bank. There is currently no existing legislation in Australia that specifically regulates the operation of donor human milk banks. For this reason the PREM Bank has utilised existing and internationally recognised management practices for managing hazards during food production. These tools (specifically HACCP) have been used to guide the development of Standard Operating Procedures and Good Manufacturing Practice for the screening of donors and processing of donor human milk. Donor screening procedures are consistent with those recommended by other human milk banks operating internationally, and also consistent with the requirements for blood and tissue donation in Australia. Controlled documentation and record keep requirements have also been developed that allow complete traceability from individual donation to individual feed dispensed to recipient and maintain a record of all processing and storage conditions. These operational requirements have been developed to reduce any risk associated with feeding pasteurised donor human milk to hospitalised preterm or ill infants to acceptable levels.

  15. The role of human performance in the safety complex plants' operation

    International Nuclear Information System (INIS)

    Preda, Irina Aida; Lazar, Roxana Elena; Croitoru, Cornelia

    1999-01-01

    According to statistics, about 20-30% from the failures occurred in the plants are caused directly or indirectly by human errors. Furthermore, it was established that 10-15% of the global failures are related with the human errors. These are mainly due to the wrong actions, maintenance errors, and misinterpretation of instruments. The human performance is influenced by: professional ability, complexity and danger to the plant experience in the working place, level of skills, events in personal and/or professional life, discipline, social ambience, somatic health. The human performances' assessment in the probabilistic safety assessment offers the possibility of evaluation of human contribution to the events sequences outcome. Not all the human errors have impact on the system. A human error may be recovered before the unwanted consequences had been occurred on system. This paper presents the possibilities to use the probabilistic method (event tree, fault tree) to identify the solutions for human reliability improved in order to minimize the risk in industrial plants' operation. Also, the human error types and their causes are defined and the 'decision tree method' as technique in our analysis for human reliability assessment is presented. The exemplification of human error analysis method was achieved based on operation data for Valcea Heavy Water Pilot Plant. As initiating event for the accident state 'the steam supply interruption' event has been considered. The human errors' contribution was analysed for the accident sequence with the worst consequences. (authors)

  16. EVALUATION OF THE QUALITY OF ACTION CAMERAS WITH WIDE-ANGLE LENSES IN UAV PHOTOGRAMMETRY

    OpenAIRE

    Hastedt, H.; Ekkel, T.; Luhmann, T.

    2016-01-01

    The application of light-weight cameras in UAV photogrammetry is required due to restrictions in payload. In general, consumer cameras with normal lens type are applied to a UAV system. The availability of action cameras, like the GoPro Hero4 Black, including a wide-angle lens (fish-eye lens) offers new perspectives in UAV projects. With these investigations, different calibration procedures for fish-eye lenses are evaluated in order to quantify their accuracy potential in UAV photogrammetry....

  17. The human factor in operation and maintenance of complex high-reliability systems

    International Nuclear Information System (INIS)

    Ryan, T.G.

    1989-01-01

    Human factors issues in probabilistic risk assessment (PRAs) of complex high-reliability systems are addressed. These PRAs influence system operation and technical support programs such as maintainability, test, and surveillance. Using the U.S. commercial nuclear power industry as the setting, the paper addresses the manner in which PRAs currently treat human performance, the state of quantification methods and source data for analyzing human performance, and the role of human factors specialist in the analysis. The paper concludes with a presentation of TALENT, an emerging concept for fully integrating broad-based human factors expertise into the PRA process, is presented. 47 refs

  18. 78 FR 20696 - NASA Advisory Council; Human Exploration and Operations Committee; Research Subcommittee; Meeting

    Science.gov (United States)

    2013-04-05

    ... topics: --Overview of Research in Space Life and Physical Sciences --Space Station and Future Exploration... Exploration and Operations Committee; Research Subcommittee; Meeting AGENCY: National Aeronautics and Space... of the Research Subcommittee of the Human Exploration and Operations Committee (HEOC) of the NASA...

  19. The design and operation of the THORP central control room: a human factors perspective

    International Nuclear Information System (INIS)

    Reed, Julie.

    1996-01-01

    The new Thermal Oxide Reprocessing Plant (THORP) at British Nuclear Fuels (BNFL) Sellafield Site is now operational. This paper describes the Central Control Room (CCR), focusing on the control system components. Throughout the design, commissioning and operation of THORP, human factors played an important part. (author)

  20. Objective ARX Model Order Selection for Multi-Channel Human Operator Identification

    NARCIS (Netherlands)

    Roggenkämper, N; Pool, D.M.; Drop, F.M.; van Paassen, M.M.; Mulder, M.

    2016-01-01

    In manual control, the human operator primarily responds to visual inputs but may elect to make use of other available feedback paths such as physical motion, adopting a multi-channel control strategy. Hu- man operator identification procedures generally require a priori selection of the model

  1. Human actions treatment in the Juragua NPP pre-operational PSA

    International Nuclear Information System (INIS)

    Ferro Fernandez, R.

    1996-01-01

    The human reliability analysis is an important part of the Probabilistic Safety Analysis (PSA). Because Juragua NPP PSA has been accomplished during construction stage of the plant, no specific operational procedures nor experience for human reliability analysis task taking into account the worlds current methodologies in this field and the actual situation of the plant. This papers describes the approach we followed

  2. The application of micro UAV in construction project

    Science.gov (United States)

    Kaamin, Masiri; Razali, Siti Nooraiin Mohd; Ahmad, Nor Farah Atiqah; Bukari, Saifullizan Mohd; Ngadiman, Norhayati; Kadir, Aslila Abd; Hamid, Nor Baizura

    2017-10-01

    In every outstanding construction project, there is definitely have an effective construction management. Construction management allows a construction project to be implemented according to plan. Every construction project must have a progress development works that is usually created by the site engineer. Documenting the progress of works is one of the requirements in construction management. In a progress report it is necessarily have a visual image as an evidence. The conventional method used for photographing on the construction site is by using common digital camera which is has few setback comparing to Micro Unmanned Aerial Vehicles (UAV). Besides, site engineer always have a current issues involving limitation of monitoring on high reach point and entire view of the construction site. The purpose of this paper is to provide a concise review of Micro UAV technology in monitoring the progress on construction site through visualization approach. The aims of this study are to replace the conventional method of photographing on construction site using Micro UAV which can portray the whole view of the building, especially on high reach point and allows to produce better images, videos and 3D model and also facilitating site engineer to monitor works in progress. The Micro UAV was flown around the building construction according to the Ground Control Points (GCPs) to capture images and record videos. The images taken from Micro UAV have been processed generate 3D model and were analysed to visualize the building construction as well as monitoring the construction progress work and provides immediate reliable data for project estimation. It has been proven that by using Micro UAV, a better images and videos can give a better overview of the construction site and monitor any defects on high reach point building structures. Not to be forgotten, with Micro UAV the construction site progress is more efficiently tracked and kept on the schedule.

  3. The UAV take-off and landing system used for small areas of mobile vehicles

    Science.gov (United States)

    Ren, Tian-Yu; Duanmu, Qing-Duo; Wu, Bo-Qi

    2018-03-01

    In order to realize an UAV formation cluster system based on the current GPS and the fault and insufficiency of Beidou integrated navigation system in strong jamming environment. Due to the impact of the compass on the plane crash, navigation system error caused by the mobile area to help reduce the need for large landing sites and not in the small fast moving area to achieve the reality of the landing. By using Strapdown inertial and all-optical system to form Composite UAV flight control system, the photoelectric composite strapdown inertial coupling is realized, and through the laser and microwave telemetry link compound communication mechanism, using all-optical strapdown inertial and visual navigation system to solve the deviation of take-off and landing caused by electromagnetic interference, all-optical bidirectional data link realizes two-way position correction of landing site and aircraft, thus achieves the accurate recovery of UAV formation cluster in the mobile narrow area which the traditional navigation system can't realize. This system is a set of efficient unmanned aerial vehicle Group Take-off/descending system, which is suitable for many tasks, and not only realizes the reliable continuous navigation under the complex electromagnetic interference environment, moreover, the intelligent flight and Take-off and landing of unmanned aerial vehicles relative to the fast moving and small recovery sites in complex electromagnetic interference environment can not only improve the safe operation rate of unmanned aerial vehicle, but also guarantee the operation safety of the aircraft, and the more has important social value for the application foreground of the aircraft.

  4. Human Error and the International Space Station: Challenges and Triumphs in Science Operations

    Science.gov (United States)

    Harris, Samantha S.; Simpson, Beau C.

    2016-01-01

    Any system with a human component is inherently risky. Studies in human factors and psychology have repeatedly shown that human operators will inevitably make errors, regardless of how well they are trained. Onboard the International Space Station (ISS) where crew time is arguably the most valuable resource, errors by the crew or ground operators can be costly to critical science objectives. Operations experts at the ISS Payload Operations Integration Center (POIC), located at NASA's Marshall Space Flight Center in Huntsville, Alabama, have learned that from payload concept development through execution, there are countless opportunities to introduce errors that can potentially result in costly losses of crew time and science. To effectively address this challenge, we must approach the design, testing, and operation processes with two specific goals in mind. First, a systematic approach to error and human centered design methodology should be implemented to minimize opportunities for user error. Second, we must assume that human errors will be made and enable rapid identification and recoverability when they occur. While a systematic approach and human centered development process can go a long way toward eliminating error, the complete exclusion of operator error is not a reasonable expectation. The ISS environment in particular poses challenging conditions, especially for flight controllers and astronauts. Operating a scientific laboratory 250 miles above the Earth is a complicated and dangerous task with high stakes and a steep learning curve. While human error is a reality that may never be fully eliminated, smart implementation of carefully chosen tools and techniques can go a long way toward minimizing risk and increasing the efficiency of NASA's space science operations.

  5. Operational Roles, Aircrew Systems and Human Factors in Future High Performance Aircraft

    Science.gov (United States)

    1980-03-01

    sensory, muscular , and cognitive capacities in responding to all of the mission stresses. To ensure accomplishment of operational missions, the...no more effective than its human operators: in that sense the system is merely an extension of the operator’s sensory, muscular and cognitive...autoriser la. res- -piration on surpres ot A fort Sradient d’une part, assurer un rapport de prossioar. - tant In distension pulnonairo lors d’uno

  6. Multiple Event Localization in a Sparse Acoustic Sensor Network Using UAVs as Data Mules

    Science.gov (United States)

    2012-12-01

    the events to arrive in different orders at the sensors. Consequently , simple rules to group the ToAs from an event at different sensors, such as...a Microhard radio to forward the ToAs to the mule-UAV. Two Procerus Unicorn UAVs were used with different payloads. The imaging- UAV was equipped

  7. Effects of Hearing Protection Device Attenuation on Unmanned Aerial Vehicle (UAV) Audio Signatures

    Science.gov (United States)

    2016-03-01

    UAV ) Audio Signatures by Melissa Bezandry, Adrienne Raglin, and John Noble Approved for public release; distribution...Research Laboratory Effects of Hearing Protection Device Attenuation on Unmanned Aerial Vehicle ( UAV ) Audio Signatures by Melissa Bezandry...Aerial Vehicle ( UAV ) Audio Signatures 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Melissa Bezandry

  8. Human performance in an operational event - how to improve it? An initiative in a French NPP

    International Nuclear Information System (INIS)

    Meslin, M.

    1998-01-01

    In the case of the Saint-Laurent-des-Eaux French nuclear power station, the author comments the elements and principles of human factor policy which have been implemented, the organizational implications of this implementation (building up of an internal human factors network), and briefly evokes studies and initiatives aimed at improving the quality of operation from a general point of view and through projects aiming at analyzing and at a valorisation of human reliability in activities dealing with reactor operation. He also comments the perception and appropriation of quality in the different departments

  9. Blue limits of the Blue Planet : An exploratory analysis of safe operating spaces for human water use under deep uncertainty

    NARCIS (Netherlands)

    Kwakkel, J.H.; Timmermans, J.S.

    2012-01-01

    In the Nature article ‘A safe operating space for humanity’, Rockström et al. (2009) introduce the concept of a safe operating space for humanity. A safe operating space is the space for human activities that will not push the planet out of the ‘Holocene state’ that has seen human civilizations

  10. A quantitative impact analysis of sensor failures on human operator's decision making in nuclear power plants

    International Nuclear Information System (INIS)

    Seong, Poong Hyun

    2004-01-01

    In emergency or accident situations in nuclear power plants, human operators take important roles in generating appropriate control signals to mitigate accident situation. In human reliability analysis (HRA) in the framework of probabilistic safety assessment (PSA), the failure probabilities of such appropriate actions are estimated and used for the safety analysis of nuclear power plants. Even though understanding the status of the plant is basically the process of information seeking and processing by human operators, it seems that conventional HRA methods such as THERP, HCR, and ASEP does not pay a lot of attention to the possibilities of providing wrong information to human operators. In this paper, a quantitative impact analysis of providing wrong information to human operators due to instrument faults or sensor failures is performed. The quantitative impact analysis is performed based on a quantitative situation assessment model. By comparing the situation in which there are sensor failures and the situation in which there are not sensor failures, the impact of sensor failures can be evaluated quantitatively. It is concluded that the impact of sensor failures are quite significant at the initial stages, but the impact is gradually reduced as human operators make more and more observations. Even though the impact analysis is highly dependent on the situation assessment model, it is expected that the conclusions made based on other situation assessment models with be consistent with the conclusion made in this paper. (author)

  11. Human Behavior and Performance Support for ISS Operations and Astronaut Selections: NASA Operational Psychology for Six-Crew Operations

    Science.gov (United States)

    VanderArk, Steve; Sipes, Walter; Holland, Albert; Cockrell, Gabrielle

    2010-01-01

    The Behavioral Health and Performance group at NASA Johnson Space Center provides psychological support services and behavioral health monitoring for ISS astronauts and their families. The ISS began as an austere outpost with minimal comforts of home and minimal communication capabilities with family, friends, and colleagues outside of the Mission Control Center. Since 1998, the work of international partners involved in the Space Flight Human Behavior and Performance Working Group has prepared high-level requirements for behavioral monitoring and support. The "buffet" of services from which crewmembers can choose has increased substantially. Through the process of development, implementation, reviewing effectiveness and modifying as needed, the NASA and Wyle team have proven successful in managing the psychological health and well being of the crews and families with which they work. Increasing the crew size from three to six brought additional challenges. For the first time, all partners had to collaborate at the planning and implementation level, and the U.S. served as mentor to extrapolate their experiences to the others. Parity in available resources, upmass, and stowage had to be worked out. Steady progress was made in improving off-hours living and making provisions for new technologies within a system that has difficulty moving quickly on certifications. In some respect, the BHP support team fell victim to its previous successes. With increasing numbers of crewmembers in training, requests to engage our services spiraled upward. With finite people and funds, a cap had to placed on many services to ensure that parity could be maintained. The evolution of NASA BHP services as the ISS progressed from three- to six-crew composition will be reviewed, and future challenges that may be encountered as the ISS matures in its assembly-complete state will be discussed.

  12. Analysis of operational events by ATHEANA framework for human factor modelling

    International Nuclear Information System (INIS)

    Bedreaga, Luminita; Constntinescu, Cristina; Doca, Cezar; Guzun, Basarab

    2007-01-01

    In the area of human reliability assessment, the experts recognise the fact that the current methods have not represented correctly the role of human in prevention, initiating and mitigating the accidents in nuclear power plants. The nature of this deficiency appears because the current methods used in modelling of human factor have not taken into account the human performance and reliability such as it has been observed in the operational events. ATHEANA - A Technique for Human Error ANAlysis - is a new methodology for human analysis that has included the specific data of operational events and also psychological models for human behaviour. This method has included new elements such as the unsafe action and error mechanisms. In this paper we present the application of ATHEANA framework in the analysis of operational events that appeared in different nuclear power plants during 1979-2002. The analysis of operational events has consisted of: - identification of the unsafe actions; - including the unsafe actions into a category, omission ar commission; - establishing the type of error corresponding to the unsafe action: slip, lapse, mistake and circumvention; - establishing the influence of performance by shaping the factors and some corrective actions. (authors)

  13. Human factors review of electric power dispatch control centers. Volume 4. Operator information needs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.J.; Najaf-Zadeh, K.; Darlington, H.T.; McNair, H.D.; Seidenstein, S.; Williams, A.R.

    1982-10-01

    Human factors is a systems-oriented interdisciplinary specialty concerned with the design of systems, equipment, facilities and the operational environment. An important aspect leading to the design requirements is the determination of the information requirements for electric power dispatch control centers. There are significant differences between the system operator's actions during normal and degraded states of power system operation, and power system restoration. This project evaluated the information the operator requires for normal power system and control system operations and investigates the changes of information required by the operator as the power system and/or the control system degrades from a normal operating state. The Phase II study, published in two volumes, defines power system states and control system conditions to which operator information content can be related. This volume presents detailed data concerning operator information needs that identify the needs for and the uses of power system information by a system operator in conditions ranging from normal through degraded operation. The study defines power system states and control system conditions to which operator information content can be related, and it identifies the requisite information as consistent with current industry practice so as to aid control system designers. Training requirements are also included for planning entry-level and follow-on training for operators.

  14. Application Of Reinforcement Learning In Heading Control Of A Fixed Wing UAV Using X-Plane Platform

    Directory of Open Access Journals (Sweden)

    Kimathi

    2017-02-01

    Full Text Available Heading control of an Unmanned Aerial Vehicle UAV is a vital operation of an autopilot system. It is executed by employing a design of control algorithms that control its direction and navigation. Most commonly available autopilots exploit Proportional-Integral-Derivative PID based heading controllers. In this paper we propose an online adaptive reinforcement learning heading controller. The autopilot heading controller will be designed in MatlabSimulink for controlling a UAV in X-Plane test platform. Through this platform the performance of the controller is shown using real time simulations. The performance of this controller is compared to that of a PID controller. The results show that the proposed method performs better than a well tuned PID controller.

  15. The role of human performance in safe operation of complex plants

    International Nuclear Information System (INIS)

    Preda, Irina Aida; Lazar, Roxana Elena; Croitoru, Cornelia

    1999-01-01

    According to statistics, about 20-30% from the failures occurring in plants are caused directly or indirectly by human errors. Furthermore, it was established that 10-15 percents of the global failures are related to the human errors. These are mainly due to the wrong actions, maintenance errors, and misinterpretation of instruments. The human performance is influenced by: professional ability, complexity and danger of the plant, experience in the same working place, level of skills, events in personal and/or professional life, discipline, social ambience and somatic health. The human performances assessment in the probabilistic safety assessment offers the possibility of evaluation for human contribution to the events sequences outcome. A human error may be recovered before the unwanted consequences had been occurred on system. This paper presents the possibilities to use the probabilistic methods (event tree, fault tree) to identify the solution for human reliability improvement in order to minimise the risk in industrial plant operation. Also, are defined the human error types and their causes and the 'decision tree method' is presented as technique in our analyses for human reliability assessment. The exemplification of human error analysis method was achieved based on operation data for Valcea heavy water pilot plant. (authors)

  16. An UAV scheduling and planning method for post-disaster survey

    Science.gov (United States)

    Li, G. Q.; Zhou, X. G.; Yin, J.; Xiao, Q. Y.

    2014-11-01

    Annually, the extreme climate and special geological environments lead to frequent natural disasters, e.g., earthquakes, floods, etc. The disasters often bring serious casualties and enormous economic losses. Post-disaster surveying is very important for disaster relief and assessment. As the Unmanned Aerial Vehicle (UAV) remote sensing with the advantage of high efficiency, high precision, high flexibility, and low cost, it is widely used in emergency surveying in recent years. As the UAVs used in emergency surveying cannot stop and wait for the happening of the disaster, when the disaster happens the UAVs usually are working at everywhere. In order to improve the emergency surveying efficiency, it is needed to track the UAVs and assign the emergency surveying task for each selected UAV. Therefore, a UAV tracking and scheduling method for post-disaster survey is presented in this paper. In this method, Global Positioning System (GPS), and GSM network are used to track the UAVs; an emergency tracking UAV information database is built in advance by registration, the database at least includes the following information, e.g., the ID of the UAVs, the communication number of the UAVs; when catastrophe happens, the real time location of all UAVs in the database will be gotten using emergency tracking method at first, then the traffic cost time for all UAVs to the disaster region will be calculated based on the UAVs' the real time location and the road network using the nearest services analysis algorithm; the disaster region is subdivided to several emergency surveying regions based on DEM, area, and the population distribution map; the emergency surveying regions are assigned to the appropriated UAV according to shortest cost time rule. The UAVs tracking and scheduling prototype is implemented using SQLServer2008, ArcEnginge 10.1 SDK, Visual Studio 2010 C#, Android, SMS Modem, and Google Maps API.

  17. Building a High-Precision 2D Hydrodynamic Flood Model Using UAV Photogrammetry and Sensor Network Monitoring

    Directory of Open Access Journals (Sweden)

    Jakub Langhammer

    2017-11-01

    Full Text Available This paper explores the potential of the joint application of unmanned aerial vehicle (UAV-based photogrammetry and an automated sensor network for building a hydrodynamic flood model of a montane stream. UAV-based imagery was used for three-dimensional (3D photogrammetric reconstruction of the stream channel, achieving a resolution of 1.5 cm/pixel. Automated ultrasonic water level gauges, operating with a 10 min interval, were used as a source of hydrological data for the model calibration, and the MIKE 21 hydrodynamic model was used for building the flood model. Three different horizontal schematizations of the channel—an orthogonal grid, curvilinear grid, and flexible mesh—were used to evaluate the effect of spatial discretization on the results. The research was performed on Javori Brook, a montane stream in the Sumava (Bohemian Forest Mountains, Czech Republic, Central Europe, featuring a fast runoff response to precipitation events and that is located in a core zone of frequent flooding. The studied catchments have been, since 2007, equipped with automated water level gauges and, since 2013, under repeated UAV monitoring. The study revealed the high potential of these data sources for applications in hydrodynamic modeling. In addition to the ultra-high levels of spatial and temporal resolution, the major contribution is in the method’s high operability, enabling the building of highly detailed flood models even in remote areas lacking conventional monitoring. The testing of the data sources and model setup indicated the limitations of the UAV reconstruction of the stream bathymetry, which was completed by the geodetic-grade global navigation satellite system (GNSS measurements. The testing of the different model domain schematizations did not indicate the substantial differences that are typical for conventional low-resolution data, proving the high reliability of the tested modeling workflow.

  18. Development of a quantitative safety assessment method for nuclear I and C systems including human operators

    International Nuclear Information System (INIS)

    Kim, Man Cheol

    2004-02-01

    Conventional PSA (probabilistic safety analysis) is performed in the framework of event tree analysis and fault tree analysis. In conventional PSA, I and C systems and human operators are assumed to be independent for simplicity. But, the dependency of human operators on I and C systems and the dependency of I and C systems on human operators are gradually recognized to be significant. I believe that it is time to consider the interdependency between I and C systems and human operators in the framework of PSA. But, unfortunately it seems that we do not have appropriate methods for incorporating the interdependency between I and C systems and human operators in the framework of Pasa. Conventional human reliability analysis (HRA) methods are not developed to consider the interdependecy, and the modeling of the interdependency using conventional event tree analysis and fault tree analysis seem to be, event though is does not seem to be impossible, quite complex. To incorporate the interdependency between I and C systems and human operators, we need a new method for HRA and a new method for modeling the I and C systems, man-machine interface (MMI), and human operators for quantitative safety assessment. As a new method for modeling the I and C systems, MMI and human operators, I develop a new system reliability analysis method, reliability graph with general gates (RGGG), which can substitute conventional fault tree analysis. RGGG is an intuitive and easy-to-use method for system reliability analysis, while as powerful as conventional fault tree analysis. To demonstrate the usefulness of the RGGG method, it is applied to the reliability analysis of Digital Plant Protection System (DPPS), which is the actual plant protection system of Ulchin 5 and 6 nuclear power plants located in Republic of Korea. The latest version of the fault tree for DPPS, which is developed by the Integrated Safety Assessment team in Korea Atomic Energy Research Institute (KAERI), consists of 64

  19. The dependence level analysis between the human actions in NPP Operation

    International Nuclear Information System (INIS)

    Farcasiu, M.; Nitoi, M.; Apostol, M.; Florescu, G.; Prisecaru, Ilie

    2009-01-01

    The Human Reliability Analysis (HRA) is an important method in Probabilistic Safety Assessment (PSA) studies and offers desirability for concrete improvement of the man - machine - organization interfaces, reliability and safety. An important step in HRA is the dependence level analysis between the human actions performed by the same person or between the actions performed by different persons, step in quantitative analysis of the human errors probabilities. The purpose of this paper is to develop a model to analyze the dependence level between human actions for Nuclear Power Plant (NPP) operation. The model estimates the conditional human error probabilities (CHEP) and joint human error probabilities (JHEP). The achieved sensitivity analyses determine human performance sensibility to systematic variations for dependence level between human actions. The human error probabilities estimated in this paper are adequate values for integration both in HRA and in PSA realized for NPP. This type of analysis helps in finding and analyzing the ways of reducing the likelihood of human errors, so that the impact of human factor to systems availability, reliability and safety can be realistically estimated. In order to demonstrate the usability of this model an analysis is performed upon the dependences between the necessary human actions in mitigating the consequences of LOCA events, particularly for the case of Cernavoda NPP. (authors)

  20. Application of Unmanned Air Vehicles (UAV) in monitoring of terrestrial habitats

    DEFF Research Database (Denmark)

    Sørensen, Peter Borgen; Strandberg, Beate; Bak, Jesper Leth

    2015-01-01

    I the last years there have been high focus on UAVs (drones) for many civil purposes and UAVs are also increasingly used for ecological data gathering. This presentation will first make an appetizer to show the new possibilities of using UAVs. The traditional concept of separating “data......” that are “real” from “models” that are “simulations” has to be refined in the area of field investigations, in order to utilize UAVs to make a revolution in data and understanding about the terrestrial habitats. However, this is not straightforward, and the presentation will line up the obstacles for using UAVs...

  1. Human factors in surgery: from Three Mile Island to the operating room.

    Science.gov (United States)

    D'Addessi, Alessandro; Bongiovanni, Luca; Volpe, Andrea; Pinto, Francesco; Bassi, PierFrancesco

    2009-01-01

    Human factors is a definition that includes the science of understanding the properties of human capability, the application of this understanding to the design and development of systems and services, the art of ensuring their successful applications to a program. The field of human factors traces its origins to the Second World War, but Three Mile Island has been the best example of how groups of people react and make decisions under stress: this nuclear accident was exacerbated by wrong decisions made because the operators were overwhelmed with irrelevant, misleading or incorrect information. Errors and their nature are the same in all human activities. The predisposition for error is so intrinsic to human nature that scientifically it is best considered as inherently biologic. The causes of error in medical care may not be easily generalized. Surgery differs in important ways: most errors occur in the operating room and are technical in nature. Commonly, surgical error has been thought of as the consequence of lack of skill or ability, and is the result of thoughtless actions. Moreover the 'operating theatre' has a unique set of team dynamics: professionals from multiple disciplines are required to work in a closely coordinated fashion. This complex environment provides multiple opportunities for unclear communication, clashing motivations, errors arising not from technical incompetence but from poor interpersonal skills. Surgeons have to work closely with human factors specialists in future studies. By improving processes already in place in many operating rooms, safety will be enhanced and quality increased.

  2. Lightweight Hyperspectral Mapping System and a Novel Photogrammetric Processing Chain for UAV-based Sensing

    Science.gov (United States)

    Suomalainen, Juha; Franke, Jappe; Anders, Niels; Iqbal, Shahzad; Wenting, Philip; Becker, Rolf; Kooistra, Lammert

    2014-05-01

    We have developed a lightweight Hyperspectral Mapping System (HYMSY) and a novel processing chain for UAV based mapping. The HYMSY consists of a custom pushbroom spectrometer (range 450-950nm, FWHM 9nm, ~20 lines/s, 328 pixels/line), a consumer camera (collecting 16MPix raw image every 2 seconds), a GPS-Inertia Navigation System (GPS-INS), and synchronization and data storage units. The weight of the system at take-off is 2.0kg allowing us to mount it on a relatively small octocopter. The novel processing chain exploits photogrammetry in the georectification process of the hyperspectral data. At first stage the photos are processed in a photogrammetric software producing a high-resolution RGB orthomosaic, a Digital Surface Model (DSM), and photogrammetric UAV/camera position and attitude at the moment of each photo. These photogrammetric camera positions are then used to enhance the internal accuracy of GPS-INS data. These enhanced GPS-INS data are then used to project the hyperspectral data over the photogrammetric DSM, producing a georectified end product. The presented photogrammetric processing chain allows fully automated georectification of hyperspectral data using a compact GPS-INS unit while still producingin UAV use higher georeferencing accuracy than would be possible using the traditional processing method. During 2013, we have operated HYMSY on 150+ octocopter flights at 60+ sites or days. On typical flight we have produced for a 2-10ha area: a RGB orthoimagemosaic at 1-5cm resolution, a DSM in 5-10cm resolution, and hyperspectral datacube at 10-50cm resolution. The targets have mostly consisted of vegetated targets including potatoes, wheat, sugar beets, onions, tulips, coral reefs, and heathlands,. In this poster we present the Hyperspectral Mapping System and the photogrammetric processing chain with some of our first mapping results.

  3. Computational fluid dynamic (CFD) analysis on ALUDRA SR-10 UAV with parachute recovery system

    Science.gov (United States)

    Saim, R.; Mohd, S.; Shamsudin, S. S.; Zulkifli, M. F.; Omar, Z.; Subari@Rahmat, Z.; Masrom, M. F. Mohd; Zaki, Y.

    2017-09-01

    In an operation, belly landing is mostly applied as recovery method especially on research Unmanned Aerial Vehicle (UAV) such as Aludra SR-10. This type of landing method may encounter tough landing on hard soil and gravel which create high impact load on the aircraft. The impact may cause structural or system damage which costly to be repaired. Nowadays, Parachute Recovery System (PRS) recently used in numerous different tasks such as landing purpose to replace belly landing technique. Parachute use in this system to slow down flying or falling UAV to a safe landing by opening the canopy to increase aerodynamic drag. This paper was described the Computational Fluid Dynamic (CFD) analysis on ALUDRA SR-10 model with two different conditions i.e. the UAV equipped with and without parachute in order to identify the changes of aerodynamic characteristics. This simulation studies using solid models of aircraft and hemisphere parachute and was carried out by using ANSYS 16.0 Fluent under steady and turbulent flow and was modelled using the k-epsilon (k-ε) turbulence model. This simulation was limited to determine the drag force and drag coefficient. The obtained result showed that implementation of parachute increase 0.25 drag coefficient of the aircraft that is from 0.93 to 1.18. Subsequent to the reduction of descent rate caused by the parachute, the drag force of the aircraft increase by 0.76N. These increasing of drag force of the aircraft will produce lower terminal velocity which is expected to reduce the impact force on the aircraft during landing.

  4. EVALUATION OF A NOVEL UAV-BORNE TOPO-BATHYMETRIC LASER PROFILER

    Directory of Open Access Journals (Sweden)

    G. Mandlburger

    2016-06-01

    Full Text Available We present a novel topo-bathymetric laser profiler. The sensor system (RIEGL BathyCopter comprises a laser range finder, an Inertial Measurement Unit (IMU, a Global Navigation Satellite System (GNSS receiver, a control unit, and digital cameras mounted on an octocopter UAV (RiCOPTER. The range finder operates on the time-of-flight measurement principle and utilizes very short laser pulses (<1 ns in the green domain of the spectrum (λ=532 nm for measuring distances to both the water surface and the river bottom. For assessing the precision and accuracy of the system an experiment was carried out in October 2015 at a pre-alpine river (Pielach in Lower Austria. A 200 m longitudinal section and 12 river cross sections were measured with the BathyCopter sensor system at a flight altitude of 15-20 m above ground level and a measurement rate of 4 kHz. The 3D laser profiler points were compared with independent, quasi-simultaneous data acquisitions using (i the RIEGL VUX1-UAV lightweight topographic laser scanning system (bare earth, water surface and (ii terrestrial survey (river bed. Over bare earth the laser profiler heights have a std. dev. of 3 cm, the water surface height appears to be underestimated by 5 cm, and river bottom heights differ from the reference measurements by 10 cm with a std. dev. of 13 cm. When restricting the comparison to laser profiler bottom points and reference measurements with a lateral offset below 1 m, the values improve to 4 cm bias with a std. dev. of 6 cm. We report additionally on challenges in comparing UAV-borne to terrestrial profiles. Based on the accuracy and the small footprint (3.5 cm at the water surface we concluded that the acquired 3D points can potentially serve as input data (river bed geometry, grain roughness and validation data (water surface, water depth for hydrodynamic-numerical models.

  5. Interface technology based on human cognition and understanding for the operation and maintenance of advanced human cooperative plants

    International Nuclear Information System (INIS)

    Numano, Masayoshi; Niwa, Yasuyuki; Itoh, Hiroko; Miyazaki, Keiko; Fukuto, Junji; Okazaki, Tadatsugi; Matsukura, Hiroshi; Tanaka, Kunihiko; Matsuoka, Takeshi; Liu, Qiao; Mitomo, Nobuo

    2006-01-01

    'Development of Intelligent Systems Technology for Advanced Human Cooperative Plants' was implemented as 'Nuclear Energy Fundamentals Crossover Research' by 3 institutes (The Institute of Physical and Chemical Research; RIKEN, National Institute of Advanced Industrial Science and Technology; AIST and National Maritime Research Institute; NMRI). Aiming at appropriate interaction between human and agents in Digital Maintenance Field which spreads widely in time and space, NMRI developed technologies on contraction of plant information, generalization and intuition of the information through visual presentation. Intuitive presentation gave on-site information for identifying the source of abnormalities to human operators. And a human-machine cooperation infrastructure for plant maintenance was proposed and developed, where an overview display was used to show position and state information of all the agents in the plant and each agent view was used to show the corresponding agent's information in detail. A part of this technology was implemented in a demonstration program. Two agents were developed to support human operators' plant maintenance activities in this program. This demonstration showed the effectiveness of human-agent cooperation for early plant abnormality detection. (author)

  6. Detection of Citrus Trees from Uav Dsms

    Science.gov (United States)

    Ok, A. O.; Ozdarici-Ok, A.

    2017-05-01

    This paper presents an automated approach to detect citrus trees from digitals surface models (DSMs) as a single source. The DSMs in this study are generated from Unmanned Aerial Vehicles (UAVs), and the proposed approach first considers the symmetric nature of the citrus trees, and it computes the orientation-based radial symmetry in an efficient way. The approach also takes into account the local maxima (LM) information to verify the output of the radial symmetry. Our contributions in this study are twofold: (i) Such an integrated approach (symmetry + LM) has not been tested to detect (citrus) trees (in orchards), and (ii) the validity of such an integrated approach has not been experienced for an input, e.g. a single DSM. Experiments are performed on five test patches. The results reveal that our approach is capable of counting most of the citrus trees without manual intervention. Comparison to the state-of-the-art reveals that the proposed approach provides notable detection performance by providing the best balance between precision and recall measures.

  7. Applied Integrated Design in Composite UAV Development

    Science.gov (United States)

    Vasić, Zoran; Maksimović, Stevan; Georgijević, Dragutin

    2018-04-01

    This paper presents a modern approach to integrated development of Unmanned Aerial Vehicle made of laminated composite materials from conceptual design, through detail design, strength and stiffness analyses, definition and management of design and production data, detailed tests results and other activities related to development of laminated composite structures with main of its particularities in comparison to metal structures. Special attention in this work is focused to management processes of product data during life cycle of an UAV and experimental tests of its composite wing. Experience shows that the automation management processes of product data during life cycle, as well as processes of manufacturing, are inevitable if a company wants to get cheaper and quality composite aircraft structures. One of the most effective ways of successful management of product data today is Product Life cycle Management (PLM). In terms of the PLM, a spectrum of special measures and provisions has to be implemented when defining fiber-reinforced composite material structures in comparison to designing with metals which is elaborated in the paper.

  8. UAVs Use for the Support of Emergency Response Teams Specific Missions

    Directory of Open Access Journals (Sweden)

    Sorin-Gabriel CONSTANTINESCU

    2013-03-01

    Full Text Available This article presents various methods of implementation for a new technology concerning the assessment and coordination of emergency situations, which is based upon the usage of Unmanned Aerial Vehicles (UAVs. The UAV platform is equipped with optical electronic sensors and other types of sensors, being an aerial surveillance device as efficient as any other classically piloted platform. While currently being in service as military operations support for various operation theaters, they can also be used for assisting emergency response teams, providing full national coverage. For these special response teams, the ability to carry out overview, surveillance or information gathering activities and locating fixed or mobile targets are key components for the successful accomplishment of their missions, which have the purpose of saving lives and properties and of limiting the damage done to the surrounding environment. More concretely, the presented scenarios are: response in emergency situations, extinguishing of large-scale fires, testing of chemically, biologically or radioactively polluted areas and assessment of natural disasters.

  9. PERANCANGAN SISTEM TRANSFER DAYA NIRKABEL UNTUK UNMANNED AERIAL VEHICLE (UAV MICRO JENIS QUADCOPTER

    Directory of Open Access Journals (Sweden)

    Setyawan Wahyu Pratomo

    2016-11-01

    Full Text Available Dalam Unmanned Aerial Vehicle ( UAV jenis Quadcopter, sumber catu daya berupa baterai yang hanya mampu bekerja 10-15 menit di udara merupakan permasalahan tersendiri bagi performa Quadcopter. Sedangkan perfomansi dari Quadcopter pada ketinggian yang susah dijangkau, diharapkan peran operator yang selama ini harus mengkoneksikan secara manual kabel charging ke baterai bisa digantikan oleh sistem secara otomatis ketika baterai akan habis. Untuk itu dalam paper ini membahas suatu perancangan sistem transfer daya nirkabel untuk Quadcopter mengisi ulang baterai tanpa bantuan operator dan tidak harus dilakukan pendaratan di atas tanah. Proses isi ulang ( charging baterai bisa dilakukan di atas gedung maupun di landasan yang telah terpasang transfer daya nirkabel. Tujuannya adalah meningkatkan performansi kerja Quadcopter di udara sesuai dengan kegunaanya. Dari perancangan sistem transfer daya nirkabel untuk Unmanned Aerial Vehicle ( UAV jenis Quadcopter mengisi ulang ( charging baterai, diperoleh hasil efisiensi transfer daya terbaik sebesar 62,24% dengan jarak efektif 10 cm. Frekuensi sistem transfer daya nirkabel diperoleh dari rangkaian Colpitss Oscillator sebesar 333,1 KHz dengan menerapkan prinsip induksi elektromagnetik.

  10. A Synthetic Teammate for UAV Applications: A Prospective Look

    National Research Council Canada - National Science Library

    Gluck, Kevin A; Ball, Jerry T; Gunzelmann, Glenn; Krusmark, Michael A; Lyon, Don R; Cooke, Nancy J

    2006-01-01

    ..., computational cognitive process modeling of aircraft maneuvering and reconnaissance missions, verbal interaction between human operators and synthetic entities, and the formal analysis of team skill...

  11. Mini-Uav LIDAR for Power Line Inspection

    Science.gov (United States)

    Teng, G. E.; Zhou, M.; Li, C. R.; Wu, H. H.; Li, W.; Meng, F. R.; Zhou, C. C.; Ma, L.

    2017-09-01

    Light detection and ranging (LIDAR) system based on unmanned aerial vehicles (UAVs) recently are in rapid advancement, meanwhile portable and flexible mini-UAV-borne laser scanners have been a hot research field, especially for the complex terrain survey in the mountains and other areas. This study proposes a power line inspection system solution based on mini-UAV-borne LIDAR system-AOEagle, developed by Academy of Opto-Electronics, Chinese Academy of Sciences, which mounted on a Multi-rotor unmanned aerial vehicle for complex terrain survey according to real test. Furthermore, the point cloud data was explored to validate its applicability for power line inspection, in terms of corridor and line laser point clouds; deformation detection of power towers, etc. The feasibility and advantages of AOEagle have been demonstrated by the promising results based on the real-measured data in the field of power line inspection.

  12. Uav Photogrammetry: a Practical Solution for Challenging Mapping Projects

    Science.gov (United States)

    Saadatseresht, M.; Hashempour, A. H.; Hasanlou, M.

    2015-12-01

    We have observed huge attentions to application of unmanned aerial vehicle (UAV) in aerial mapping since a decade ago. Though, it has several advantages for handling time/cost/quality issues, there are a dozen of challenges in working with UAVs. In this paper, we; as the Robotic Photogrammetry Research Group (RPRG), will firstly review these challenges then show its advantages in three special practical projects. For each project, we will share our experiences through description of the UAV specifications, flight settings and processing steps. At the end, we will illustrate final result of each project and show how this technology could make unbelievable benefits to clients including 3D city realistic model in decimetre level, ultra high quality map production in several centimetre level, and accessing to a high risk and rough relief area for mapping aims.

  13. Hurricane Harvey Building Damage Assessment Using UAV Data

    Science.gov (United States)

    Yeom, J.; Jung, J.; Chang, A.; Choi, I.

    2017-12-01

    Hurricane Harvey which was extremely destructive major hurricane struck southern Texas, U.S.A on August 25, causing catastrophic flooding and storm damages. We visited Rockport suffered severe building destruction and conducted UAV (Unmanned Aerial Vehicle) surveying for building damage assessment. UAV provides very high resolution images compared with traditional remote sensing data. In addition, prompt and cost-effective damage assessment can be performed regardless of several limitations in other remote sensing platforms such as revisit interval of satellite platforms, complicated flight plan in aerial surveying, and cloud amounts. In this study, UAV flight and GPS surveying were conducted two weeks after hurricane damage to generate an orthomosaic image and a DEM (Digital Elevation Model). 3D region growing scheme has been proposed to quantitatively estimate building damages considering building debris' elevation change and spectral difference. The result showed that the proposed method can be used for high definition building damage assessment in a time- and cost-effective way.

  14. UAV FOR GEODATA ACQUISITION IN AGRICULTUREAL AND FORESTAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    P. Reidelstürz

    2012-09-01

    The airframe´s wingspan is about 3,45m weighting 4.2 kg, ready to fly. The hand launchable UAV can start from any place in agricultural regions. The wing is configured with flaps, allowing steep approaches and short landings using a „butterfly“ brake configuration. In spite of the lightweight configuration the UAV yet proves its worth under windy baltic wether situations by collecting regular sharp images of fields under wind speed up to 15m/s (Beaufort 6 –7. In further projects the development of further payload modules and a user friendly flight planning tool is scheduled considering different payload – and airframe requirements for different precision farming purposes and forest applications. Data processing and workflow will be optimized. Cooperation with further partners to establish UAV systems in agricultural, forest and geodata aquisition is desired.

  15. D Modeling with Photogrammetry by Uavs and Model Quality Verification

    Science.gov (United States)

    Barrile, V.; Bilotta, G.; Nunnari, A.

    2017-11-01

    This paper deals with a test lead by Geomatics laboratory (DICEAM, Mediterranea University of Reggio Calabria), concerning the application of UAV photogrammetry for survey, monitoring and checking. The study case relies with the surroundings of the Department of Agriculture Sciences. In the last years, such area was interested by landslides and survey activities carried out to take the phenomenon under control. For this purpose, a set of digital images were acquired through a UAV equipped with a digital camera and GPS. Successively, the processing for the production of a 3D georeferenced model was performed by using the commercial software Agisoft PhotoScan. Similarly, the use of a terrestrial laser scanning technique allowed to product dense cloud and 3D models of the same area. To assess the accuracy of the UAV-derived 3D models, a comparison between image and range-based methods was performed.

  16. IMPROVING CONTROL ROOM DESIGN AND OPERATIONS BASED ON HUMAN FACTORS ANALYSES OR HOW MUCH HUMAN FACTORS UPGRADE IS ENOUGH ?

    Energy Technology Data Exchange (ETDEWEB)

    HIGGINS,J.C.; OHARA,J.M.; ALMEIDA,P.

    2002-09-19

    THE JOSE CABRERA NUCLEAR POWER PLANT IS A ONE LOOP WESTINGHOUSE PRESSURIZED WATER REACTOR. IN THE CONTROL ROOM, THE DISPLAYS AND CONTROLS USED BY OPERATORS FOR THE EMERGENCY OPERATING PROCEDURES ARE DISTRIBUTED ON FRONT AND BACK PANELS. THIS CONFIGURATION CONTRIBUTED TO RISK IN THE PROBABILISTIC SAFETY ASSESSMENT WHERE IMPORTANT OPERATOR ACTIONS ARE REQUIRED. THIS STUDY WAS UNDERTAKEN TO EVALUATE THE IMPACT OF THE DESIGN ON CREW PERFORMANCE AND PLANT SAFETY AND TO DEVELOP DESIGN IMPROVEMENTS.FIVE POTENTIAL EFFECTS WERE IDENTIFIED. THEN NUREG-0711 [1], PROGRAMMATIC, HUMAN FACTORS, ANALYSES WERE CONDUCTED TO SYSTEMATICALLY EVALUATE THE CR-LA YOUT TO DETERMINE IF THERE WAS EVIDENCE OF THE POTENTIAL EFFECTS. THESE ANALYSES INCLUDED OPERATING EXPERIENCE REVIEW, PSA REVIEW, TASK ANALYSES, AND WALKTHROUGH SIMULATIONS. BASED ON THE RESULTS OF THESE ANALYSES, A VARIETY OF CONTROL ROOM MODIFICATIONS WERE IDENTIFIED. FROM THE ALTERNATIVES, A SELECTION WAS MADE THAT PROVIDED A REASONABLEBALANCE BE TWEEN PERFORMANCE, RISK AND ECONOMICS, AND MODIFICATIONS WERE MADE TO THE PLANT.

  17. Intification and modelling of flight characteristics for self-build shock flyer type UAV

    Science.gov (United States)

    Rashid., Z. A.; Dardin, A. S. F. Syed.; Azid, A. A.; Ahmad, K. A.

    2018-02-01

    The development of an autonomous Unmanned Aerial Vehicle (UAV) requires a fundamentals studies of the UAV's flight characteristic. The aim of this study is to identify and model the flight characteristic of a conventional fixed-wing type UAV. Subsequence to this, the mode of flight of the UAV can be investigated. One technique to identify the characteristic of a UAV is a flight test where it required specific maneuvering to be executed while measuring the attitude sensor. In this study, a simple shock flyer type UAV was used as the aircraft. The result shows that the modeled flight characteristic has a significant relation with actual values but the fitting value is rather small. It is suggested that the future study is conducted with an improvement of the physical UAV, data filtering and better system identification methods.

  18. Characteristic analysis on UAV-MIMO channel based on normalized correlation matrix.

    Science.gov (United States)

    Gao, Xi jun; Chen, Zi li; Hu, Yong Jiang

    2014-01-01

    Based on the three-dimensional GBSBCM (geometrically based double bounce cylinder model) channel model of MIMO for unmanned aerial vehicle (UAV), the simple form of UAV space-time-frequency channel correlation function which includes the LOS, SPE, and DIF components is presented. By the methods of channel matrix decomposition and coefficient normalization, the analytic formula of UAV-MIMO normalized correlation matrix is deduced. This formula can be used directly to analyze the condition number of UAV-MIMO channel matrix, the channel capacity, and other characteristic parameters. The simulation results show that this channel correlation matrix can be applied to describe the changes of UAV-MIMO channel characteristics under different parameter settings comprehensively. This analysis method provides a theoretical basis for improving the transmission performance of UAV-MIMO channel. The development of MIMO technology shows practical application value in the field of UAV communication.

  19. Energy-Efficient Systems Eliminate Icing Danger for UAVs

    Science.gov (United States)

    2010-01-01

    Ames Research Center engineer Leonard Haslim invented an anti-icing t echnology called an electroexpulsive separation system, which uses m echanical force to shatter potentially dangerous ice buildup on an ai rcraft surface. Temecula, California-based Ice Management Systems (no w known as IMS-ESS) licensed the technology from Ames and has discov ered a niche market for the lightweight, energy-efficient technology: unmanned aerial vehicles (UAVs). IMS-ESS systems now prevent damagi ng ice accumulation on military UAVs, allowing the vehicles to carry out crucial missions year round.

  20. Cloud Water Content Sensor for Sounding Balloons and Small UAVs

    Science.gov (United States)

    Bognar, John A.

    2009-01-01

    A lightweight, battery-powered sensor was developed for measuring cloud water content, which is the amount of liquid or solid water present in a cloud, generally expressed as grams of water per cubic meter. This sensor has near-zero power consumption and can be flown on standard sounding balloons and small, unmanned aerial vehicles (UAVs). The amount of solid or liquid water is important to the study of atmospheric processes and behavior. Previous sensing techniques relied on strongly heating the incoming air, which requires a major energy input that cannot be achieved on sounding balloons or small UAVs.

  1. Considerations of Human Factors in the Design and Operation of Research Reactors

    International Nuclear Information System (INIS)

    Shokr, A.M.

    2015-01-01

    The feedback from the severe accidents occurred at nuclear power plants showed that safety of nuclear installations does not depend only on technical matters but also on human performance. Human errors can initiate an event or can make , by intervention, the event consequences worse. Human factors are of a particular importance for research reactors since the status of these facilities change frequently and the operators have an easy access to the reactor core and to the associated experimental facilities. This paper discusses the experience with human factors and their impact on the safety of research reactors and application of technical and administrative provisions to address these factors in the design and operation phases of research reactors for continuous improvements in safety and performance of these facilities

  2. Tele-operated search robot for human detection using histogram of oriented objects

    Science.gov (United States)

    Cruz, Febus Reidj G.; Avendaño, Glenn O.; Manlises, Cyrel O.; Avellanosa, James Jason G.; Abina, Jyacinth Camille F.; Masaquel, Albert M.; Siapno, Michael Lance O.; Chung, Wen-Yaw

    2017-02-01

    Disasters such as typhoons, tornadoes, and earthquakes are inevitable. Aftermaths of these disasters include the missing people. Using robots with human detection capabilities to locate the missing people, can dramatically reduce the harm and risk to those who work in such circumstances. This study aims to: design and build a tele-operated robot; implement in MATLAB an algorithm for the detection of humans; and create a database of human identification based on various positions, angles, light intensity, as well as distances from which humans will be identified. Different light intensities were made by using Photoshop to simulate smoke, dust and water drops conditions. After processing the image, the system can indicate either a human is detected or not detected. Testing with bodies covered was also conducted to test the algorithm's robustness. Based on the results, the algorithm can detect humans with full body shown. For upright and lying positions, detection can happen from 8 feet to 20 feet. For sitting position, detection can happen from 2 feet to 20 feet with slight variances in results because of different lighting conditions. The distances greater than 20 feet, no humans can be processed or false negatives can occur. For bodies covered, the algorithm can detect humans in cases made under given circumstances. On three positions, humans can be detected from 0 degrees to 180 degrees under normal, with smoke, with dust, and with water droplet conditions. This study was able to design and build a tele-operated robot with MATLAB algorithm that can detect humans with an overall precision of 88.30%, from which a database was created for human identification based on various conditions, where humans will be identified.

  3. NKA/KRU project on operator training, control room designing and human reliability. Summary report

    International Nuclear Information System (INIS)

    1981-06-01

    A Nordic integrated project on human reliability in the conditions of new advanced technology seeks to establish: - The actual repertoire of activities and tasks performed by the operating staff of a nuclear power plant and its dependence on the present and future levels of automation. - The knowledge required for these activities and appropriate means for training plant operators and for competence evaluation and retraining in coping with the rare events. - Models of human operator performance; how do operators read information and make decisions under normal and abnormal plant conditions and how does their performance depend upon control room design. - The typical limits of human capabilities and mechanisms of human errors as they are represented in existing records of incidents and accidents in industrial plants. - The use of process computers for improved design of data presentation and operator support systems, especially for disturbance analysis and diagnosis during infrequent plant disturbance. - Development of experimental techniques to validate research results and proposals for improved man/machine interfaces and other computer-based support systems. (EG)

  4. Humans and Autonomy: Implications of Shared Decision Making for Military Operations

    Science.gov (United States)

    2017-01-01

    before such systems become part of large-scale operational environments. Effects of emotional response to autonomous systems, ethical software constraints...consolidation and software constructs to represent emotions and temperament to make the robotic agent more accessible to its human teammate (Kelley 2014...agent’s human-like qualities (Rao and Georgeff 1995; Chen and Barnes 2014). Two recent ARL-sponsored projects demonstrate progress toward more- mature

  5. Organizing to Understand: How to Operate Effectively in the Human Domain

    Science.gov (United States)

    2015-05-21

    was both entering and creating when it overthrew Saddam Hussein and dismantled the Iraqi government and security forces. The research examines the...sponsored initiative to help tactical and operational level commanders understand the human terrain, the “social, ethnographic , cultural, economic, and...as an intelligence function within TRADOC “as the primary and enduring social science-based human domain research , analysis, and training capability

  6. Organisational arrangement of human resources management in organisations operating in Slovakia and Czech Republic

    Directory of Open Access Journals (Sweden)

    Zdenko Stacho

    2013-01-01

    Full Text Available A necessary condition of effective functioning of human resources management in an organisation is the creation of adequate organisational conditions including the existence of a human resources management department, its size, composition and responsibility, which are formed following particular conditions of the given organisation. Competitive environment of organisations operating in Slovakia and Czech Republic is growing with the process of world economy globalisation, and it brings the need of flexibility in management, and therefore we have to get used to changes also in the sphere of human resources management, and learn to cope with new impulses and situations. At present, that predominantly includes spreading effects of global financial and economic crisis, influencing all spheres of life in Slovakia and in Czech Republic too. Handling this situation presupposes flexibility in assessment of changes in environment where organisations operate, ability to detect all positive as well as negative impacts and situations, and formulation of measures to enhance their own position sensibly and cautiously. Due to the need of focusing of organisations on comprehensive arrangement of human resources management, in questionnaire researches, we focused on finding out whether and to what extent organisations operating in Slovakia (n = 340 and in Czech Republic (n = 109 focus on human resources management arrangement. The objective of the article is to compare results in the sphere of human resources in organisations operating in Slovak and Czech Republics. The results show that 67% organisations in Slovakia and only 43% in the Czech Republic had a human resources management department which realised followed human resources management functions and personnel strategy.

  7. Vertical and Horizontal Measurements of Ambient Ozone over a Gas and Oil Production Area using a UAV Platform

    Science.gov (United States)

    Jensen, A.; Gowing, I.; Martin, R. S.

    2013-12-01

    During the 2013 wintertime Uintah Basin Ozone Study (UBOS13), an autonomous unmanned aerial vehicle (UAV) platform, coupled with an on-board UV ozone monitor, flew several spatial profiles near the location (Horse Pool) of other concentrated measurements by other co-investigators. The airframe, part of the Utah Water Research Laboratory's (UWRL) AggieAir UAV program, consisted of a custom-built, battery-operated plane with and 2.4 m (8 ft) wing span and a 12.7 cm x 12.7 cm x 30.5 cm payload bay with a carrying capacity of approximately 2.0 kg. With the current power system, the fully-loaded AggieAir UAV can fly for approximately 45 minutes at a nominal airspeed of 13.4 m/s (30 mph). The system can be operated either in manual control or be flown autonomously following preprogrammed waypoints via a built in GPS system. The AggieAir UAV systems were primarily designed for photographic and telemetry tracking projects. For the UBOS13 flights, a 2B Technologies Model 205 Ozone (O3) monitor was modified for minimal weight optimization, wrapped with lightweight insulation and secured into the UAV payload bay. Additionally, HOBO Model H08-001-02 shielded temperature/datalogger was secured to the exterior of the UAV from parallel thermal profile determination. During the study period, three demonstration flight profiles were obtained on February 17 and 18, 2013: two vertical 'curtain' profiles and a pair of 'stacked' horizontal profiles. As recorded by numerous ground-based monitoring sites, the ozone during the UAV test periods was characterized by initial trends of daytime O3 maximums over 130 ppb, followed by a meteorological front partially ventilating the Basin on the evening of Feb. 17th leading to decreased O3 minimums around 40 ppb. However, the ground level O3 rebuilt quickly to ground level maximums approaching 100 ppb. The vertical 'curtain' flown on the evening of Feb. 17th only reached a maximum elevation of about 2160 m ASL (600 m AGL) due to encountering

  8. Use of eye tracking equipment for human reliability analysis applied to complex system operations

    International Nuclear Information System (INIS)

    Pinheiro, Andre Ricardo Mendonça; Prado, Eugenio Anselmo Pessoa do; Martins, Marcelo Ramos

    2017-01-01

    This article will discuss the preliminary results of an evaluation methodology for the analysis and quantification of manual character errors (human), by monitoring cognitive parameters and skill levels in the operation of a complex control system based on parameters provided by a eye monitoring equipment (Eye Tracker). The research was conducted using a simulator (game) that plays concepts of operation of a nuclear reactor with a split sample for evaluation of aspects of learning, knowledge and standard operating within the context addressed. bridge operators were monitored using the EYE TRACKING, eliminating the presence of the analyst in the evaluation of the operation, allowing the analysis of the results by means of multivariate statistical techniques within the scope of system reliability. The experiments aim to observe state change situations such as stops and scheduled departures, incidents assumptions and common operating characteristics. Preliminary results of this research object indicate that technical and cognitive aspects can contribute to improving the reliability of the available techniques in human reliability, making them more realistic both in the context of quantitative approaches to regulatory and training purposes, as well as reduced incidence of human error. (author)

  9. Intelligent Systems Approach for Automated Identification of Individual Control Behavior of a Human Operator

    Science.gov (United States)

    Zaychik, Kirill B.; Cardullo, Frank M.

    2012-01-01

    Results have been obtained using conventional techniques to model the generic human operator?s control behavior, however little research has been done to identify an individual based on control behavior. The hypothesis investigated is that different operators exhibit different control behavior when performing a given control task. Two enhancements to existing human operator models, which allow personalization of the modeled control behavior, are presented. One enhancement accounts for the testing control signals, which are introduced by an operator for more accurate control of the system and/or to adjust the control strategy. This uses the Artificial Neural Network which can be fine-tuned to model the testing control. Another enhancement takes the form of an equiripple filter which conditions the control system power spectrum. A novel automated parameter identification technique was developed to facilitate the identification process of the parameters of the selected models. This utilizes a Genetic Algorithm based optimization engine called the Bit-Climbing Algorithm. Enhancements were validated using experimental data obtained from three different sources: the Manual Control Laboratory software experiments, Unmanned Aerial Vehicle simulation, and NASA Langley Research Center Visual Motion Simulator studies. This manuscript also addresses applying human operator models to evaluate the effectiveness of motion feedback when simulating actual pilot control behavior in a flight simulator.

  10. The human factor and organization to support nuclear power plant operators

    International Nuclear Information System (INIS)

    Naumov, V.I.

    1993-01-01

    Analysis reveals three basic factors which affect the safety of nuclear power reactors: (1) Internal physical properties of the reactor which provide self protection under breakdown and accident conditions; (2) The reliability of technical systems which provide monitoring, control, accident prevention, heat release, and localization of hazardous products during accidents; (3) Reliability of the reactor control personnel. The last of these factors is usually called the human factor. From published data, this factor makes a large contribution to the downtime and accident statistics at nuclear power plants: from 30 to 80% in various countries. Today the importance of the human factor in operating a nuclear power units is rather well recognized. Current ideas on how to increase the reliability of a human operator are reflected in IAEA recommendations and domestic official documents. The concept of 'a culture of safety' is introduced. Basic types of actions to increase the reliability of personnel who control a nuclear reactor are discussed, including: (1) The qualifying and psychological selection and the training of candidates on the operator's obligations. (2) The automation of routine operations which do not require the operator's intellect. (3) Perfecting the work place, information input to the operator, and the organization of the controls

  11. Use of eye tracking equipment for human reliability analysis applied to complex system operations

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Andre Ricardo Mendonça; Prado, Eugenio Anselmo Pessoa do; Martins, Marcelo Ramos, E-mail: andrericardopinheiro@usp.br, E-mail: eugenio.prado@labrisco.usp.br, E-mail: mrmatins@usp.br [Universidade de Sao Paulo (LABRISCO/USP), Sao Paulo, SP (Brazil). Lab. de Análise, Avaliação e Gerenciamento de Risco

    2017-07-01

    This article will discuss the preliminary results of an evaluation methodology for the analysis and quantification of manual character errors (human), by monitoring cognitive parameters and skill levels in the operation of a complex control system based on parameters provided by a eye monitoring equipment (Eye Tracker). The research was conducted using a simulator (game) that plays concepts of operation of a nuclear reactor with a split sample for evaluation of aspects of learning, knowledge and standard operating within the context addressed. bridge operators were monitored using the EYE TRACKING, eliminating the presence of the analyst in the evaluation of the operation, allowing the analysis of the results by means of multivariate statistical techniques within the scope of system reliability. The experiments aim to observe state change situations such as stops and scheduled departures, incidents assumptions and common operating characteristics. Preliminary results of this research object indicate that technical and cognitive aspects can contribute to improving the reliability of the available techniques in human reliability, making them more realistic both in the context of quantitative approaches to regulatory and training purposes, as well as reduced incidence of human error. (author)

  12. Evaluating rapid ground sampling and scaling estimated plant cover using UAV imagery up to Landsat for mapping arctic vegetation

    Science.gov (United States)

    Nelson, P.; Paradis, D. P.

    2017-12-01

    The small stature and spectral diversity of arctic plant taxa presents challenges in mapping arctic vegetation. Mapping vegetation at the appropriate scale is needed to visualize effects of disturbance, directional vegetation change or mapping of specific plant groups for other applications (eg. habitat mapping). Fine spatial grain of remotely sensed data (ca. 10 cm pixels) is often necessary to resolve patches of many arctic plant groups, such as bryophytes and lichens. These groups are also spectrally different from mineral, litter and vascular plants. We sought to explore method to generate high-resolution spatial and spectral data to explore better mapping methods for arctic vegetation. We sampled ground vegetation at seven sites north or west of tree-line in Alaska, four north of Fairbanks and three northwest of Bethel, respectively. At each site, we estimated cover of plant functional types in 1m2 quadrats spaced approximately every 10 m along a 100 m long transect. Each quadrat was also scanned using a field spectroradiometer (PSR+ Spectral Evolution, 400-2500 nm range) and photographed from multiple perspectives. We then flew our small UAV with a RGB camera over the transect and at least 50 m on either side collecting on imagery of the plot, which were used to generate a image mosaic and digital surface model of the plot. We compare plant functional group cover ocular estimated in situ to post-hoc estimation, either automated or using a human observer, using the quadrat photos. We also compare interpolated lichen cover from UAV scenes to estimated lichen cover using a statistical models using Landsat data, with focus on lichens. Light and yellow lichens are discernable in the UAV imagery but certain lichens, especially dark colored lichens or those with spectral signatures similar to graminoid litter, present challenges. Future efforts will focus on integrating UAV-upscaled ground cover estimates to hyperspectral sensors (eg. AVIRIS ng) for better combined

  13. Intraoperative intrinsic optical imaging of human somatosensory cortex during neurosurgical operations.

    Science.gov (United States)

    Sato, Katsushige; Nariai, Tadashi; Momose-Sato, Yoko; Kamino, Kohtaro

    2017-07-01

    Intrinsic optical imaging as developed by Grinvald et al. is a powerful technique for monitoring neural function in the in vivo central nervous system. The advent of this dye-free imaging has also enabled us to monitor human brain function during neurosurgical operations. We briefly describe our own experience in functional mapping of the human somatosensory cortex, carried out using intraoperative optical imaging. The maps obtained demonstrate new additional evidence of a hierarchy for sensory response patterns in the human primary somatosensory cortex.

  14. Human-Centered Design and Evaluation of Haptic Cueing for Teleoperation of Multiple Mobile Robots.

    Science.gov (United States)

    Son, Hyoung Il; Franchi, Antonio; Chuang, Lewis L; Kim, Junsuk; Bulthoff, Heinrich H; Giordano, Paolo Robuffo

    2013-04-01

    In this paper, we investigate the effect of haptic cueing on a human operator's performance in the field of bilateral teleoperation of multiple mobile robots, particularly multiple unmanned aerial vehicles (UAVs). Two aspects of human performance are deemed important in this area, namely, the maneuverability of mobile robots and the perceptual sensitivity of the remote environment. We introduce metrics that allow us to address these aspects in two psychophysical studies, which are reported here. Three fundamental haptic cue types were evaluated. The Force cue conveys information on the proximity of the commanded trajectory to obstacles in the remote environment. The Velocity cue represents the mismatch between the commanded and actual velocities of the UAVs and can implicitly provide a rich amount of information regarding the actual behavior of the UAVs. Finally, the Velocity+Force cue is a linear combination of the two. Our experimental results show that, while maneuverability is best supported by the Force cue feedback, perceptual sensitivity is best served by the Velocity cue feedback. In addition, we show that large gains in the haptic feedbacks do not always guarantee an enhancement in the teleoperator's performance.

  15. UAV Inspection of Electrical Transmission Infrastructure with Path Conformance Autonomy and Lidar-Based Geofences NASA Report on UTM Reference Mission Flights at Southern Company Flights November 2016

    Science.gov (United States)

    Moore, Andrew J.; Schubert, Matthew; Rymer, Nicholas; Balachandran, Swee; Consiglio, Maria; Munoz, Cesar; Smith, Joshua; Lewis, Dexter; Schneider, Paul

    2017-01-01

    sensing capability of a novel airborne UV detector was verified with a standard ground-based instrument. Flights with this sensor showed that UAV measurement operations and recording methods are viable. With improved sensor range, UAVs equipped with compact UV sensors could serve as the detection elements in a self-diagnosing power grid. (3) Simplification of rich lidar maps to polyhedral obstacle maps reduces data volume by orders of magnitude, so that computation with the resultant maps in real time is possible. This enables real-time obstacle avoidance autonomy. Stable navigation may be feasible in the GPS-deprived environment near transmission lines by a UAV that senses ground structures and compares them to these simplified maps. (4) A new, formally verified path conformance software system that runs onboard a UAV was demonstrated in flight for the first time. It successfully maneuvered the aircraft after a sudden lateral perturbation that models a gust of wind, and processed lidar-derived polyhedral obstacle maps in real time. (5) Tracking of the UAV in the national airspace using the NASA UTM technology was a key safety component of this reference mission, since the flights were conducted beneath the landing approach to a heavily used runway. Comparison to autopilot tracking showed that UTM tracking accurately records the UAV position throughout the flight path.

  16. Real-Time 3d Reconstruction from Images Taken from AN Uav

    Science.gov (United States)

    Zingoni, A.; Diani, M.; Corsini, G.; Masini, A.

    2015-08-01

    We designed a method for creating 3D models of objects and areas from two aerial images acquired from an UAV. The models are generated automatically and in real-time, and consist in dense and true-colour reconstructions of the considered areas, which give the impression to the operator to be physically present within the scene. The proposed method only needs a cheap compact camera, mounted on a small UAV. No additional instrumentation is necessary, so that the costs are very limited. The method consists of two main parts: the design of the acquisition system and the 3D reconstruction algorithm. In the first part, the choices for the acquisition geometry and for the camera parameters are optimized, in order to yield the best performance. In the second part, a reconstruction algorithm extracts the 3D model from the two acquired images, maximizing the accuracy under the real-time constraint. A test was performed in monitoring a construction yard, obtaining very promising results. Highly realistic and easy-to-interpret 3D models of objects and areas of interest were produced in less than one second, with an accuracy of about 0.5m. For its characteristics, the designed method is suitable for video-surveillance, remote sensing and monitoring, especially in those applications that require intuitive and reliable information quickly, as disasters monitoring, search and rescue and area surveillance.

  17. Designing and Testing a UAV Mapping System for Agricultural Field Surveying

    Directory of Open Access Journals (Sweden)

    Martin Peter Christiansen

    2017-11-01

    Full Text Available A Light Detection and Ranging (LiDAR sensor mounted on an Unmanned Aerial Vehicle (UAV can map the overflown environment in point clouds. Mapped canopy heights allow for the estimation of crop biomass in agriculture. The work presented in this paper contributes to sensory UAV setup design for mapping and textual analysis of agricultural fields. LiDAR data are combined with data from Global Navigation Satellite System (GNSS and Inertial Measurement Unit (IMU sensors to conduct environment mapping for point clouds. The proposed method facilitates LiDAR recordings in an experimental winter wheat field. Crop height estimates ranging from 0.35–0.58 m are correlated to the applied nitrogen treatments of 0–300 kg N ha . The LiDAR point clouds are recorded, mapped, and analysed using the functionalities of the Robot Operating System (ROS and the Point Cloud Library (PCL. Crop volume estimation is based on a voxel grid with a spatial resolution of 0.04 × 0.04 × 0.001 m. Two different flight patterns are evaluated at an altitude of 6 m to determine the impacts of the mapped LiDAR measurements on crop volume estimations.

  18. Performance evaluation of optical channel transmission between UAVs and Ground Stations

    Directory of Open Access Journals (Sweden)

    Hatziefremidis Antonis

    2016-01-01

    Full Text Available Free space optical (FSO communications links is a promising solution for the provision of high data rate point to point communications. In particular deploying FSO technology for mobile links between Unmanned Aerial Vehicles (UAVs and fixed Ground Stations (GS introduces several interesting challenges. In this paper, we investigate the ability of a mobile FSO system to operate in different atmospheric conditions. Specifically, we characterize the quality of the optical channel with a proper model in terms of Bit Error Rate (BER and average Signal to Noise Ratio (SNR and we report a detailed optical amplification model able to support a constant Quality of Service for different distances from 1 km up to 35 km at 10 Gbps with 1550 nm wavelength. An extensive comparative analysis among different FSO configurations links considering the altitude of the UAV, the wavelength and the atmospheric conditions is provided. The results show that there is degradation at the BER over a slanted path compared to a horizontal path at the same conditions.

  19. Designing and Testing a UAV Mapping System for Agricultural Field Surveying.

    Science.gov (United States)

    Christiansen, Martin Peter; Laursen, Morten Stigaard; Jørgensen, Rasmus Nyholm; Skovsen, Søren; Gislum, René

    2017-11-23

    A Light Detection and Ranging (LiDAR) sensor mounted on an Unmanned Aerial Vehicle (UAV) can map the overflown environment in point clouds. Mapped canopy heights allow for the estimation of crop biomass in agriculture. The work presented in this paper contributes to sensory UAV setup design for mapping and textual analysis of agricultural fields. LiDAR data are combined with data from Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU) sensors to conduct environment mapping for point clouds. The proposed method facilitates LiDAR recordings in an experimental winter wheat field. Crop height estimates ranging from 0.35-0.58 m are correlated to the applied nitrogen treatments of 0-300 kg N ha . The LiDAR point clouds are recorded, mapped, and analysed using the functionalities of the Robot Operating System (ROS) and the Point Cloud Library (PCL). Crop volume estimation is based on a voxel grid with a spatial resolution of 0.04 × 0.04 × 0.001 m. Two different flight patterns are evaluated at an altitude of 6 m to determine the impacts of the mapped LiDAR measurements on crop volume estimations.

  20. Multiscale Documentation and Monitoring of L'aquila Historical Centre Using Uav Photogrammetry

    Science.gov (United States)

    Dominici, D.; Alicandro, M.; Rosciano, E.; Massimi, V.

    2017-05-01

    Nowadays geomatic techniques can guarantee not only a precise and accurate survey for the documentation of our historical heritage but also a solution to monitor its behaviour over time after, for example, a catastrophic event (earthquakes, landslides, ecc). Europe is trying to move towards harmonized actions to store information on cultural heritage (MIBAC with the ICCS forms, English heritage with the MIDAS scheme, etc) but it would be important to provide standardized methods in order to perform measuring operations to collect certified metric data. The final result could be a database to support the entire management of the cultural heritage and also a checklist of "what to do" and "when to do it". The wide range of geomatic techniques provides many solutions to acquire, to organize and to manage data at a multiscale level: high resolution satellite images can provide information in a short time during the "early emergency" while UAV photogrammetry and laser scanning can provide digital high resolution 3D models of buildings, ortophotos of roofs and facades and so on. This paper presents some multiscale survey case studies using UAV photogrammetry: from a minor historical village (Aielli) to the centre of L'Aquila (Santa Maria di Collemaggio Church) from the post-emergency to now. This choice has been taken not only to present how geomatics is an effective science for modelling but also to present a complete and reliable way to perform conservation and/or restoration through precise monitoring techniques, as shown in the third case study.

  1. Corn and sorghum phenotyping using a fixed-wing UAV-based remote sensing system

    Science.gov (United States)

    Shi, Yeyin; Murray, Seth C.; Rooney, William L.; Valasek, John; Olsenholler, Jeff; Pugh, N. Ace; Henrickson, James; Bowden, Ezekiel; Zhang, Dongyan; Thomasson, J. Alex

    2016-05-01

    Recent development of unmanned aerial systems has created opportunities in automation of field-based high-throughput phenotyping by lowering flight operational cost and complexity and allowing flexible re-visit time and higher image resolution than satellite or manned airborne remote sensing. In this study, flights were conducted over corn and sorghum breeding trials in College Station, Texas, with a fixed-wing unmanned aerial vehicle (UAV) carrying two multispectral cameras and a high-resolution digital camera. The objectives were to establish the workflow and investigate the ability of UAV-based remote sensing for automating data collection of plant traits to develop genetic and physiological models. Most important among these traits were plant height and number of plants which are currently manually collected with high labor costs. Vegetation indices were calculated for each breeding cultivar from mosaicked and radiometrically calibrated multi-band imagery in order to be correlated with ground-measured plant heights, populations and yield across high genetic-diversity breeding cultivars. Growth curves were profiled with the aerial measured time-series height and vegetation index data. The next step of this study will be to investigate the correlations between aerial measurements and ground truth measured manually in field and from lab tests.

  2. The Development of an UAV Borne Direct Georeferenced Photogrammetric Platform for Ground Control Point Free Applications

    Directory of Open Access Journals (Sweden)

    Chien-Hsun Chu

    2012-07-01

    Full Text Available To facilitate applications such as environment detection or disaster monitoring, the development of rapid low cost systems for collecting near real time spatial information is very critical. Rapid spatial information collection has become an emerging trend for remote sensing and mapping applications. In this study, a fixed-wing Unmanned Aerial Vehicle (UAV-based spatial information acquisition platform that can operate in Ground Control Point (GCP free environments is developed and evaluated. The proposed UAV based photogrammetric platform has a Direct Georeferencing (DG module that includes a low cost Micro Electro Mechanical Systems (MEMS Inertial Navigation System (INS/ Global Positioning System (GPS integrated system. The DG module is able to provide GPS single frequency carrier phase measurements for differential processing to obtain sufficient positioning accuracy. All necessary calibration procedures are implemented. Ultimately, a flight test is performed to verify the positioning accuracy in DG mode without using GCPs. The preliminary results of positioning accuracy in DG mode illustrate that horizontal positioning accuracies in the x and y axes are around 5 m at 300 m flight height above the ground. The positioning accuracy of the z axis is below 10 m. Therefore, the proposed platform is relatively safe and inexpensive for collecting critical spatial information for urgent response such as disaster relief and assessment applications where GCPs are not available.

  3. Method of Geometric Connected Disk Cover Problem for UAV realy network deployment

    Directory of Open Access Journals (Sweden)

    Chuang Liu

    2017-01-01

    Full Text Available Aiming at the problem of the effective connectivity of a large number of mobile combat units in the future aeronautic swarm operation, this paper proposes an idea of using UAV(Unmanned Aerial Vehicle to build, and studies the deployment of the network. User coverage and network connectivity are important for a relay network planning which are studied separately in traditional ways. In order to effectively combine these two factors while the network’s survivability is taken into account. Firstly, the concept of node aggregation degree is proposed. Secondly, a performance evaluation parameter for UAV relay network is proposed based on node aggregation degree, then analyzes the lack of deterministic deployment and presents one a PSO (VFA-PSO deployment algorithm based on virtual force. Finally, compared with the existing algorithms, the validity and stability of the algorithm are verified. The experimental results show that the VFA-PSO algorithm can effectively improve the network coverage and the survivability of the network under the premise of ensuring the network connectivity, and has better deployment effect.

  4. UAV-Borne photogrammetry: a low cost 3D surveying methodology for cartographic update

    Directory of Open Access Journals (Sweden)

    Caroti Gabriella

    2017-01-01

    Full Text Available Territorial management requires the most possible up-to-date mapping support of the status quo. Regional scale cartography update cycle is in the medium term (10 to 15 years: therefore, in the intervening time between updates relevant Authorities must provide timely updates for new works or territorial changes. Required surveys can exploit several technologies: ground-based GPS, Terrestrial Laser Scanning (TLS, traditional topography, or, in the case of wider areas, airborne photogrammetry or laser scanning. In recent years UAV-based photogrammetry is becoming increasingly widespread as a versatile, low-cost surveying system for small to medium areas. This surveying methodology was used to generate, in order, a dense point cloud, a high resolution Digital Surface Model (DSM and an orthophotograph of a newly built marina by the mouth of the Arno river in Pisa, Italy, which is not yet included in cartography. Surveying activities took place while the construction site was in operation. Case study issues surfaced in the course of the survey are presented and discussed, suggesting ‘good practice’ rules which, if followed in the survey planning step, can lessen unwanted effects due to criticalities. Besides, results of quality analysis of orthophotographs generated by UAV-borne images are also presented. Such results are discussed in view of a possible use of orthophotographs in updating medium- to large-scale cartography and checked against existing blueprints.

  5. Remote Marker-Based Tracking for UAV Landing Using Visible-Light Camera Sensor.

    Science.gov (United States)

    Nguyen, Phong Ha; Kim, Ki Wan; Lee, Young Won; Park, Kang Ryoung

    2017-08-30

    Unmanned aerial vehicles (UAVs), which are commonly known as drones, have proved to be useful not only on the battlefields where manned flight is considered too risky or difficult, but also in everyday life purposes such as surveillance, monitoring, rescue, unmanned cargo, aerial video, and photography. More advanced drones make use of global positioning system (GPS) receivers during the navigation and control loop which allows for smart GPS features of drone navigation. However, there are problems if the drones operate in heterogeneous areas with no GPS signal, so it is important to perform research into the development of UAVs with autonomous navigation and landing guidance using computer vision. In this research, we determined how to safely land a drone in the absence of GPS signals using our remote maker-based tracking algorithm based on the visible light camera sensor. The proposed method uses a unique marker designed as a tracking target during landing procedures. Experimental results show that our method significantly outperforms state-of-the-art object trackers in terms of both accuracy and processing time, and we perform test on an embedded system in various environments.

  6. The remote sensing data from your UAV probably isn't scientific, but it should be!

    Science.gov (United States)

    McKee, Mac

    2017-05-01

    The application of unmanned autonomous vehicles (UAVs), or "drones", to generate data to support better decisions for agricultural management and farm operations is a relatively new technology that is now beginning to enter the market. This potentially disruptive technology is still in its infancy and must mature in ways that the current market cannot clearly foresee and probably does not fully understand. Major technical and regulatory hurdles must be overcome before the full potential of this remote sensing technology can be realized in agricultural applications. Further, and most importantly, buyers and sellers in today's market must both gain a deeper understanding of the potential that this technology might achieve and the technical challenges that must be met before advances that will bring significant market value will be possible. A lack of understanding of some of the basic concepts of remote sensing can translate into poor decisions regarding the acquisition and deployment of UAVs in agriculture. This paper focuses on some of the details of remote sensing that few growers, and, indeed, few university researchers fully understand.

  7. Data-Driven Modeling of Target Human Behavior in Military Operations

    Science.gov (United States)

    2014-03-12

    Military Operations Elizabeth Mezzacappa, Ph.D. Gordon Cooke, MEME Gladstone Reid, MSBMS Robert DeMarco, MSBMS Charles Sheridan BA John...stress, and human behavior modeling and simulation issues. GORDON COOKE, MEME , is a Principal Investigator at the TBRL. He was also a Chief

  8. Effects of a Co-operative Learning Strategy on Ninth-Graders' Understanding of Human Nutrition.

    Science.gov (United States)

    Soyibo, Kola; Evans, Hermel G.

    2002-01-01

    Looks at the effect of teaching strategies on a group's attitude toward biology and understanding human nutrition. Used an experimental group that participated in co-operative learning and a control group taught using the lecture method. Involves ninth graders (n=156) from two high schools in Jamaica. (Author/YDS)

  9. On the energetics of the walking gait of a human operator using a passive exoskeleton apparatus

    Science.gov (United States)

    Lavrovskii, E. K.

    2015-01-01

    We study the energy expenditures and the peak values of control torques which a human operator must apply in the process of exoskeleton displacement for various types of regular, plane, and single-support gaits. The obtained results allow us to estimate the performance of the passive exoskeleton apparatus.

  10. Human Error Probabilites (HEPs) for generic tasks and Performance Shaping Factors (PSFs) selected for railway operations

    DEFF Research Database (Denmark)

    Thommesen, Jacob; Andersen, Henning Boje

    This report describes an HRA (Human Reliability Assessment) of six generic tasks and four Perfor-mance Shaping Factors (PSFs) targeted at railway operations commissioned by Banedanmark. The selection and characterization of generic tasks and PSFs are elaborated by DTU Management in close...

  11. Human factors in the design and operation of reactor-safety systems

    International Nuclear Information System (INIS)

    Brookes, M.J.

    1982-01-01

    This chapter examines the degree to which poor design of instruments may have contributed to the TMI accident. Among the issues to be considered are: details of the instrumentation; the relation between poor systems design and errors of judgement; and ways to design the control-room operator-machine interface so that human errors are avoided or minimized

  12. AI techniques for optimizing multi-objective reservoir operation upon human and riverine ecosystem demands

    Science.gov (United States)

    Tsai, Wen-Ping; Chang, Fi-John; Chang, Li-Chiu; Herricks, Edwin E.

    2015-11-01

    Flow regime is the key driver of the riverine ecology. This study proposes a novel hybrid methodology based on artificial intelligence (AI) techniques for quantifying riverine ecosystems requirements and delivering suitable flow regimes that sustain river and floodplain ecology through optimizing reservoir operation. This approach addresses issues to better fit riverine ecosystem requirements with existing human demands. We first explored and characterized the relationship between flow regimes and fish communities through a hybrid artificial neural network (ANN). Then the non-dominated sorting genetic algorithm II (NSGA-II) was established for river flow management over the Shihmen Reservoir in northern Taiwan. The ecosystem requirement took the form of maximizing fish diversity, which could be estimated by the hybrid ANN. The human requirement was to provide a higher satisfaction degree of water supply. The results demonstrated that the proposed methodology could offer a number of diversified alternative strategies for reservoir operation and improve reservoir operational strategies producing downstream flows that could meet both human and ecosystem needs. Applications that make this methodology attractive to water resources managers benefit from the wide spread of Pareto-front (optimal) solutions allowing decision makers to easily determine the best compromise through the trade-off between reservoir operational strategies for human and ecosystem needs.

  13. Operation, Safety and Human: Critical Factors for the Success of Railway Transportation

    NARCIS (Netherlands)

    Rajabali Nejad, Mohammadreza; Martinetti, Alberto; van Dongen, Leonardus Adriana Maria

    2016-01-01

    This paper focuses on three categories of performance indicators for railway transportation: the excellence of operation, system safety and human factors. These are among the most critical indicators for delivering high quality services. This paper discusses the main issues, challenges and future

  14. The Human Bathtub: Safety and Risk Predictions Including the Dynamic Probability of Operator Errors

    International Nuclear Information System (INIS)

    Duffey, Romney B.; Saull, John W.

    2006-01-01

    Reactor safety and risk are dominated by the potential and major contribution for human error in the design, operation, control, management, regulation and maintenance of the plant, and hence to all accidents. Given the possibility of accidents and errors, now we need to determine the outcome (error) probability, or the chance of failure. Conventionally, reliability engineering is associated with the failure rate of components, or systems, or mechanisms, not of human beings in and interacting with a technological system. The probability of failure requires a prior knowledge of the total number of outcomes, which for any predictive purposes we do not know or have. Analysis of failure rates due to human error and the rate of learning allow a new determination of the dynamic human error rate in technological systems, consistent with and derived from the available world data. The basis for the analysis is the 'learning hypothesis' that humans learn from experience, and consequently the accumulated experience defines the failure rate. A new 'best' equation has been derived for the human error, outcome or failure rate, which allows for calculation and prediction of the probability of human error. We also provide comparisons to the empirical Weibull parameter fitting used in and by conventional reliability engineering and probabilistic safety analysis methods. These new analyses show that arbitrary Weibull fitting parameters and typical empirical hazard function techniques cannot be used to predict the dynamics of human errors and outcomes in the presence of learning. Comparisons of these new insights show agreement with human error data from the world's commercial airlines, the two shuttle failures, and from nuclear plant operator actions and transient control behavior observed in transients in both plants and simulators. The results demonstrate that the human error probability (HEP) is dynamic, and that it may be predicted using the learning hypothesis and the minimum

  15. Detection of Sensor Faults in Small Helicopter UAVs Using Observer/Kalman Filter Identification

    Directory of Open Access Journals (Sweden)

    Guillermo Heredia

    2011-01-01

    Full Text Available Reliability is a critical issue in navigation of unmanned aerial vehicles (UAVs since there is no human pilot that can react to any abnormal situation. Due to size and cost limitations, redundant sensor schemes and aeronautical-grade navigation sensors used in large aircrafts cannot be installed in small UAVs. Therefore, other approaches like analytical redundancy should be used to detect faults in navigation sensors and increase reliability. This paper presents a sensor fault detection and diagnosis system for small autonomous helicopters based on analytical redundancy. Fault detection is accomplished by evaluating any significant change in the behaviour of the vehicle with respect to the fault-free behaviour, which is estimated by using an observer. The observer is obtained from input-output experimental data with the Observer/Kalman Filter Identification (OKID method. The OKID method is able to identify the system and an observer with properties similar to a Kalman filter, directly from input-output experimental data. Results are similar to the Kalman filter, but, with the proposed method, there is no need to estimate neither system matrices nor sensor and process noise covariance matrices. The system has been tested with real helicopter flight data, and the results compared with other methods.

  16. Human Factors Guidance for Control Room and Digital Human-System Interface Design and Modification, Guidelines for Planning, Specification, Design, Licensing, Implementation, Training, Operation and Maintenance

    Energy Technology Data Exchange (ETDEWEB)

    R. Fink, D. Hill, J. O' Hara

    2004-11-30

    Nuclear plant operators face a significant challenge designing and modifying control rooms. This report provides guidance on planning, designing, implementing and operating modernized control rooms and digital human-system interfaces.

  17. Human Factors Guidance for Control Room and Digital Human-System Interface Design and Modification. Guidelines for Planning, Specification, Design, Licensing, Implementation, Training, Operation and Maintenance

    International Nuclear Information System (INIS)

    Fink, R.; Hill, D.; O'Hara, J.

    2004-01-01

    Nuclear plant operators face a significant challenge designing and modifying control rooms. This report provides guidance on planning, designing, implementing and operating modernized control rooms and digital human-system interfaces

  18. EDF EPR project: operating principles validation and human factor engineering program

    International Nuclear Information System (INIS)

    Lefebvre, B.; Berard, E.; Arpino, J.-M.

    2005-01-01

    This article describes the specificities of the operating principles chosen by EDF for the EPR project as a result of an extensive Human Factor Engineering program successfully implemented in an industrial project context. The design process and its achievements benefit of the EDF experience feedback not only in term of NPP operation - including the fully computerized control room of the N4-serie - but also in term of NPP designer. The elements exposed hereafter correspond to the basic design phase of EPR HMI which has been completed and successfully validated by the end of 2003. The article aims to remind the context of the project which basically consists in designing a modern and efficient HMI taking into account the operating needs while relying on proven and reliable technologies. The Human Factor Engineering program implemented merges these both aspects by : 1) being fully integrated within the project activities and scheduling; 2) efficiently taking into account the users needs as well as the feasibility constraints by relying on a multidisciplinary design team including HF specialists, I and C specialists, Process specialists and experienced operator representatives. The resulting design process makes a wide use of experience feedback and experienced operator knowledge to complete largely the existing standards for providing a fully useable and successful design method in an industrial context. The article underlines the design process highlights that largely contribute to the successful implementation of a Human Factor Engineering program for EPR. (authors)

  19. Classifying human operator functional state based on electrophysiological and performance measures and fuzzy clustering method.

    Science.gov (United States)

    Zhang, Jian-Hua; Peng, Xiao-Di; Liu, Hua; Raisch, Jörg; Wang, Ru-Bin

    2013-12-01

    The human operator's ability to perform their tasks can fluctuate over time. Because the cognitive demands of the task can also vary it is possible that the capabilities of the operator are not sufficient to satisfy the job demands. This can lead to serious errors when the operator is overwhelmed by the task demands. Psychophysiological measures, such as heart rate and brain activity, can be used to monitor operator cognitive workload. In this paper, the most influential psychophysiological measures are extracted to characterize Operator Functional State (OFS) in automated tasks under a complex form of human-automation interaction. The fuzzy c-mean (FCM) algorithm is used and tested for its OFS classification performance. The results obtained have shown the feasibility and effectiveness of the FCM algorithm as well as the utility of the selected input features for OFS classification. Besides being able to cope with nonlinearity and fuzzy uncertainty in the psychophysiological data it can provide information about the relative importance of the input features as well as the confidence estimate of the classification results. The OFS pattern classification method developed can be incorporated into an adaptive aiding system in order to enhance the overall performance of a large class of safety-critical human-machine cooperative systems.

  20. UAV MONITORING FOR ENVIROMENTAL MANAGEMENT IN GALAPAGOS ISLANDS

    Directory of Open Access Journals (Sweden)

    D. Ballaria

    2016-06-01

    Full Text Available In the Galapagos Islands, where 97% of the territory is protected and ecosystem dynamics are highly vulnerable, timely and accurate information is key for decision making. An appropriate monitoring system must meet two key features: on one hand, being able to capture information in a systematic and regular basis, and on the other hand, to quickly gather information on demand for specific purposes. The lack of such a system for geographic information limits the ability of Galapagos Islands’ institutions to evaluate and act upon environmental threats such as invasive species spread and vegetation degradation. In this context, the use of UAVs (unmanned aerial vehicles for capturing georeferenced images is a promising technology for environmental monitoring and management. This paper explores the potential of UAV images for monitoring degradation of littoral vegetation in Puerto Villamil (Isabela Island, Galapagos, Ecuador. Imagery was captured using two camera types: Red Green Blue (RGB and Infrarred Red Green (NIR. First, vegetation presence was identified through NDVI. Second, object-based classification was carried out for characterization of vegetation vigor. Results demonstrates the feasibility of UAV technology for base-line studies and monitoring on the amount and vigorousness of littoral vegetation in the Galapagos Islands. It is also showed that UAV images are not only useful for visual interpretation and object delineation, but also to timely produce useful thematic information for environmental management.