WorldWideScience

Sample records for u87-mg glioma cells

  1. Silibinin induces apoptosis via calpain-dependent AIF nuclear translocation in U87MG human glioma cell death

    Directory of Open Access Journals (Sweden)

    Kim Yong K

    2011-04-01

    Full Text Available Abstract Background Silibinin, a natural polyphenolic flavonoid, has been reported to induce cell death in various cancer cell types. However, the molecular mechanism is not clearly defined. Our previous study showed that silibinin induces glioma cell death and its effect was effectively prevented by calpain inhibitor. The present study was therefore undertaken to examine the role of calpain in the silibinin-induced glioma cell death. Methods U87MG cells were grown on well tissue culture plates and cell viability was measured by MTT assay. ROS generation and △ψm were estimated using the fluorescence dyes. PKC activation and Bax expression were measured by Western blot analysis. AIF nuclear translocation was determined by Western blot and immunocytochemistry. Results Silibinin induced activation of calpain, which was blocked by EGTA and the calpain inhibitor Z-Leu-Leu-CHO. Silibinin caused ROS generation and its effect was inhibited by calpain inhibitor, the general PKC inhibitor GF 109203X, the specific PKCδ inhibitor rottlerin, and catalase. Silibinin-induce cell death was blocked by calpain inhibitor and PKC inhibitors. Silibinin-induced PKCδ activation and disruption of △ψm were prevented by the calpain inhibitor. Silibinin induced AIF nuclear translocation and its effect was prevented by calpain inhibitor. Transfection of vector expressing microRNA of AIF prevented the silibinin-induced cell death. Conclusions Silibinin induces apoptotic cell death through a calpain-dependent mechanism involving PKC, ROS, and AIF nuclear translocation in U87MG human glioma cells.

  2. Sublethal dose of irradiation enhances invasion of malignant glioma cells through p53-MMP 2 pathway in U87MG mouse brain tumor model

    International Nuclear Information System (INIS)

    Pei, Jian; Park, In-Ho; Ryu, Hyang-Hwa; Li, Song-Yuan; Li, Chun-Hao; Lim, Sa-Hoe; Wen, Min; Jang, Woo-Youl; Jung, Shin

    2015-01-01

    Glioblastoma is a highly lethal neoplasm that frequently recurs locally after radiotherapy, and most of these recurrences originate from near the irradiated target field. In the present study, we identified the effects of radiation on glioma invasion and p53, TIMP-2, and MMP-2 expression through in vitro and in vivo experiments. The U87MG (wt p53) and U251 (mt p53) human malignant glioma cell lines were prepared, and the U2OS (wt 53) and Saos2 (del p53) osteosarcoma cell lines were used as p53 positive and negative controls. The four cell lines and p53 knock-downed U87MG cells received radiation (2–6 Gy) and were analyzed for expression of p53 and TIMP-2 by Western blot, and MMP-2 activity was detected by zymography. In addition, the effects of irradiation on directional invasion of malignant glioma were evaluated by implanting nude mice with bioluminescent u87-Fluc in vivo followed by MMP-2, p53, and TIMP-2 immunohisto-chemistry and in situ zymography. MMP-2 activity and p53 expression increased in proportional to the radiation dose in cell lines with wt p53, but not in the cell lines with del or mt p53. TIMP-2 expression did not increase in U87MG cells. MMP-2 activity decreased in p53 knock-downed U87MG cells but increased in the control group. Furthermore, radiation enhanced MMP-2 activity and increased tumor margin invasiveness in vivo. Tumor cells invaded by radiation overexpressed MMP-2 and p53 and revealed high gelatinolytic activity compared with those of non-radiated tumor cells. Radiation-induced upregulation of p53 modulated MMP-2 activity, and the imbalance between MMP-2 and TIMP-2 may have an important role in glioblastoma invasion by degrading the extracellular matrix. Bioluminescent “U87-Fluc”was useful for observing tumor formation without sacrifice after implanting tumor cells in the mouse brain. These findings suggest that the radiotherapy involved field for malignant glioma needs to be reconsidered, and that future trials should investigate

  3. Metabolic impact of anti-angiogenic agents on U87 glioma cells.

    Directory of Open Access Journals (Sweden)

    Tanja Mesti

    Full Text Available BACKGROUND: Glioma cells not only secrete high levels of vascular endothelial growth factor (VEGF but also express VEGF receptors (VEGFR, supporting the existence of an autocrine loop. The direct impact on glioma cells metabolism of drugs targeting the VEGF pathway, such as Bevacizumab (Bev or VEGFR Tyrosine Kinase Inhibitor (TKI, is poorly known. MATERIAL AND METHODS: U87 cells were treated with Bev or SU1498, a selective VEGFR2 TKI. VEGFR expression was checked with FACS flow cytometry and Quantitative Real-Time PCR. VEGF secretion into the medium was assessed with an ELISA kit. Metabolomic studies on cells were performed using High Resolution Magic Angle Spinning Spectroscopy (HR-MAS. RESULTS: U87 cells secreted VEGF and expressed low level of VEGFR2, but no detectable VEGFR1. Exposure to SU1498, but not Bev, significantly impacted cell proliferation and apoptosis. Metabolomic studies with HR MAS showed that Bev had no significant effect on cell metabolism, while SU1498 induced a marked increase in lipids and a decrease in glycerophosphocholine. Accordingly, accumulation of lipid droplets was seen in the cytoplasm of SU1498-treated U87 cells. CONCLUSION: Although both drugs target the VEGF pathway, only SU1498 showed a clear impact on cell proliferation, cell morphology and metabolism. Bevacizumab is thus less likely to modify glioma cells phenotype due to a direct therapeutic pressure on the VEGF autocrine loop. In patients treated with VEGFR TKI, monitoring lipids with magnetic resonance spectroscopic (MRS might be a valuable marker to assess drug cytotoxicity.

  4. Resveratrol represses YKL-40 expression in human glioma U87 cells

    International Nuclear Information System (INIS)

    Zhang, Wei; Tamiya, Takashi; Murao, Koji; Zhang, Xiang; Matsumoto, Kensuke; Diah, Suwarni; Okada, Masaki; Miyake, Keisuke; Kawai, Nobuyuki; Fei, Zhou

    2010-01-01

    Glioblastoma multiforme (GBM) is the most malignant intracranial tumour that develops in both adults and children. Microarray gene analyses have confirmed that the human YKL-40 gene is one of the most over-expressed genes in these tumours but not in normal brain tissue. Clinical studies have shown that serum YKL-40 levels are positively correlated with tumour burden in addition to being an independent prognostic factor of a short relapse-free interval as well as short overall survival in patients with various cancers. Our previous study revealed that YKL-40 was closely correlated with the pathological grades of human primary astrocytomas and played a crucial role in glioma cell proliferation. Hence, YKL-40 could be an attractive target in the design of anti-cancer therapies. Cell viability and invasion assays were performed to detect the cell proliferation and invasive ability of U87 cells induced by resveratrol (3, 5, 4'-trihydroxystilbene; Res) or YKL-40 small-interfering RNAs (siRNAs). In addition, the luciferase assay, real-time RT-PCR, western blotting, and ELISA were used to measure YKL-40 promoter activity, mRNA, and protein expression, respectively. The expressions of phosphor-ERK1/2 and ERK1/2 were determined by western blotting. Res inhibited U87 cell proliferation and invasion in vitro and repressed YKL-40 in U87 cells by decreasing the activity of its promoter and reducing mRNA transcription and protein expression in vitro. YKL-40 siRNA treatment also impaired the invasiveness of U87 cells. When U87 cells were cultured with 20 μM PD98059 (an ERK1/2 inhibitor) alone, with 20 μM PD98059 and 100 μM Res, or with 100 μM Res alone for 48 h, YKL-40 protein expression decreased most significantly in the Res-treated group. PD98059 partially reversed the decrease of YKL-40 protein expression induced by Res. Furthermore, phosphor-ERK1/2 expression was reduced by Res treatment in a time-dependent manner. We demonstrated for the first time that Res

  5. The nitric oxide donor JS-K sensitizes U87 glioma cells to repetitive irradiation.

    Science.gov (United States)

    Heckler, Max; Osterberg, Nadja; Guenzle, Jessica; Thiede-Stan, Nina Kristin; Reichardt, Wilfried; Weidensteiner, Claudia; Saavedra, Joseph E; Weyerbrock, Astrid

    2017-06-01

    As a potent radiosensitizer nitric oxide (NO) may be a putative adjuvant in the treatment of malignant gliomas which are known for their radio- and chemoresistance. The NO donor prodrug JS-K (O2-(2.4-dinitrophenyl) 1-[(4-ethoxycarbonyl) piperazin-1-yl] diazen-1-ium-1,2-diolate) allows cell-type specific intracellular NO release via enzymatic activation by glutathione-S-transferases overexpressed in glioblastoma multiforme. The cytotoxic and radiosensitizing efficacy of JS-K was assessed in U87 glioma cells in vitro focusing on cell proliferation, induction of DNA damage, and cell death. In vivo efficacy of JS-K and repetitive irradiation were investigated in an orthotopic U87 xenograft model in mice. For the first time, we could show that JS-K acts as a potent cytotoxic and radiosensitizing agent in U87 cells in vitro. This dose- and time-dependent effect is due to an enhanced induction of DNA double-strand breaks leading to mitotic catastrophe as the dominant form of cell death. However, this potent cytotoxic and radiosensitizing effect could not be confirmed in an intracranial U87 xenograft model, possibly due to insufficient delivery into the brain. Although NO donor treatment was well tolerated, neither a retardation of tumor growth nor an extended survival could be observed after JS-K and/or radiotherapy.

  6. Hypoxic regulation of the expression of genes encoded estrogen related proteins in U87 glioma cells: eff ect of IRE1 inhibition.

    Science.gov (United States)

    Minchenko, D O; Riabovol, O O; Ratushna, O O; Minchenko, O H

    2017-01-01

    The aim of the present study was to examine the effect of inhibition of endoplasmic reticulum stress signaling, mediated by IRE1 (inositol requiring enzyme 1), which is a central mediator of the unfolded protein response on the expression of genes encoded estrogen related proteins (NRIP1/RIP140, TRIM16/EBBP, ESRRA/NR3B1, FAM162A/E2IG5, PGRMC2/PMBP, and SLC39A6/LIV-1) and their hypoxic regulation in U87 glioma cells for evaluation of their possible significance in the control of glioma cells proliferation. The expression of NRIP1, EBBP, ESRRA, E2IG5, PGRMC2, and SLC39A6 genes in U87 glioma cells, transfected by empty vector pcDNA3.1 (control) and cells without IRE1 signaling enzyme function (transfected by dnIRE1) upon hypoxia, was studied by a quantitative polymerase chain reaction. Inhibition of both enzymatic activities (kinase and endoribonuclease) of IRE1 signaling enzyme function up-regulates the expression of EBBP, E2IG5, PGRMC2, and SLC39A6 genes is in U87 glioma cells in comparison with the control glioma cells, with more significant changes for E2IG5 and PGRMC2 genes. At the same time, the expression of NRIP1 and ESRRA genes is strongly down-regulated in glioma cells upon inhibition of IRE1. We also showed that hypoxia increases the expression of E2IG5, PGRMC2, and EBBP genes and decreases NRIP1 and ESRRA genes expression in control glioma cells. Furthermore, the inhibition of IRE1 in U87 glioma cells decreases the eff ect of hypoxia on the expression of E2IG5 and PGRMC2 genes, eliminates hypoxic regulation of NRIP1 gene, and enhances the sensitivity of ESRRA gene to hypoxic condition. Furthermore, the expression of SLC39A6 gene is resistant to hypoxia in both the glioma cells with and without IRE1 signaling enzyme function. Results of this investigation demonstrate that inhibition of IRE1 signaling enzyme function affects the expression of NRIP1, EBBP, ESRRA, E2IG5, PGRMC2, and SLC39A6 genes in U87 glioma cells in gene specific manner and these changes

  7. Down-regulation of 14-3-3β exerts anti-cancer effects through inducing ER stress in human glioma U87 cells: Involvement of CHOP–Wnt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lei; Lei, Hui; Chang, Ming-Ze; Liu, Zhi-Qin [Department of Neurological Disease, Xi' an Central Hospital, Xi' an Jiaotong University, Xi' an, Shaanxi 710000 (China); Bie, Xiao-Hua, E-mail: biexiaohua_xjtu@126.com [Department of Functional Neurosurgery, Xi' an Red Cross Hospital, Xi' an Jiaotong University, Xi' an, Shaanxi 710054 (China)

    2015-07-10

    We previously identified 14-3-3β as a tumor-specific isoform of 14-3-3 protein in astrocytoma, but its functional role in glioma cells and underlying mechanisms are poorly understood. In the present study, we investigated the effects of 14-3-3β inhibition in human glioma U87 cells using specific targeted small interfering RNA (siRNA). The results showed that 14-3-3β is highly expressed in U87 cells but not in normal astrocyte SVGp12 cells. Knockdown of 14-3-3β by Si-14-3-3β transfection significantly decreased the cell viability but increased the LDH release in a time-dependent fashion in U87 cells, and these effects were accompanied with G0/G1 cell cycle arrest and apoptosis. In addition, 14-3-3β knockdown induced ER stress in U87 cells, as evidenced by ER calcium release, increased expression of XBP1S mRNA and induction of ER related pro-apoptotic factors. Down-regulation of 14-3-3β significantly decreased the nuclear localization of β-catenin and inhibited Topflash activity, which was shown to be reversely correlated with CHOP. Furthermore, Si-CHOP and sFRP were used to inhibit CHOP and Wnt, respectively. The results showed that the anti-cancer effects of 14-3-3β knockdown in U87 cells were mediated by increased expression of CHOP and followed inhibition of Wnt/β-catenin pathway. In summary, the remarkable efficiency of 14-3-3β knockdown to induce apoptotic cell death in U87 cells may find therapeutic application for the treatment of glioma patients. - Highlights: • Knockdown of 14-3-3β leads to cytotoxicity in human glioma U87 cells. • Knockdown of 14-3-3β induces cell cycle arrest and apoptosis in U87 cells. • Knockdown of 14-3-3β results in ER stress in U87 cells. • Knockdown of 14-3-3β inhibits Wnt/β-catenin pathway via CHOP activation.

  8. Down-regulation of 14-3-3β exerts anti-cancer effects through inducing ER stress in human glioma U87 cells: Involvement of CHOP–Wnt pathway

    International Nuclear Information System (INIS)

    Cao, Lei; Lei, Hui; Chang, Ming-Ze; Liu, Zhi-Qin; Bie, Xiao-Hua

    2015-01-01

    We previously identified 14-3-3β as a tumor-specific isoform of 14-3-3 protein in astrocytoma, but its functional role in glioma cells and underlying mechanisms are poorly understood. In the present study, we investigated the effects of 14-3-3β inhibition in human glioma U87 cells using specific targeted small interfering RNA (siRNA). The results showed that 14-3-3β is highly expressed in U87 cells but not in normal astrocyte SVGp12 cells. Knockdown of 14-3-3β by Si-14-3-3β transfection significantly decreased the cell viability but increased the LDH release in a time-dependent fashion in U87 cells, and these effects were accompanied with G0/G1 cell cycle arrest and apoptosis. In addition, 14-3-3β knockdown induced ER stress in U87 cells, as evidenced by ER calcium release, increased expression of XBP1S mRNA and induction of ER related pro-apoptotic factors. Down-regulation of 14-3-3β significantly decreased the nuclear localization of β-catenin and inhibited Topflash activity, which was shown to be reversely correlated with CHOP. Furthermore, Si-CHOP and sFRP were used to inhibit CHOP and Wnt, respectively. The results showed that the anti-cancer effects of 14-3-3β knockdown in U87 cells were mediated by increased expression of CHOP and followed inhibition of Wnt/β-catenin pathway. In summary, the remarkable efficiency of 14-3-3β knockdown to induce apoptotic cell death in U87 cells may find therapeutic application for the treatment of glioma patients. - Highlights: • Knockdown of 14-3-3β leads to cytotoxicity in human glioma U87 cells. • Knockdown of 14-3-3β induces cell cycle arrest and apoptosis in U87 cells. • Knockdown of 14-3-3β results in ER stress in U87 cells. • Knockdown of 14-3-3β inhibits Wnt/β-catenin pathway via CHOP activation

  9. Anti-Cancer Effect of Metabotropic Glutamate Receptor 1 Inhibition in Human Glioma U87 Cells: Involvement of PI3K/Akt/mTOR Pathway

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2015-01-01

    Full Text Available Background: Metabotropic glutamate receptors (mGluRs are G-protein-coupled receptors that mediate neuronal excitability and synaptic plasticity in the central nervous system, and emerging evidence suggests a role of mGluRs in the biology of cancer. Previous studies showed that mGluR1 was a potential therapeutic target for the treatment of breast cancer and melanoma, but its role in human glioma has not been determined. Methods: In the present study, we investigated the effects of mGluR1 inhibition in human glioma U87 cells using specific targeted small interfering RNA (siRNA or selective antagonists Riluzole and BAY36-7620. The anti-cancer effects of mGluR1 inhibition were measured by cell viability, lactate dehydrogenase (LDH release, TUNEL staining, cell cycle assay, cell invasion and migration assays in vitro, and also examined in a U87 xenograft model in vivo. Results: Inhibition of mGluR1 significantly decreased the cell viability but increased the LDH release in a dose-dependent fashion in U87 cells. These effects were accompanied with the induction of caspase-dependent apoptosis and G0/G1 cell cycle arrest. In addition, the results of Matrigel invasion and cell tracking assays showed that inhibition of mGluR1 apparently attenuated cell invasion and migration in U87 cells. All these anti-cancer effects were ablated by the mGluR1 agonist L-quisqualic acid. The results of western blot analysis showed that mGluR1 inhibition overtly decreased the phosphorylation of PI3K, Akt, mTOR and P70S6K, indicating the mitigated activation of PI3K/Akt/mTOR pathway. Moreover, the anti-tumor activity of mGluR1 inhibition in vivo was also demonstrated in a U87 xenograft glioma model in athymic nude mice. Conclusion: The remarkable efficiency of mGluR1 inhibition to induce cell death in U87 cells may find therapeutic application for the treatment of glioma patients.

  10. CD133 positive U87 glioma stem cell radiosensitivity and DNA double-strand break repair

    International Nuclear Information System (INIS)

    Li Ping; Zong Tianzhou; Ji Xiaoqin; Lu Xueguan

    2013-01-01

    Objective: To explore the radiosensitivity and DNA double-strand break repair of CD133 + U87 glioma stem cell. Methods: CD133 + and CD133 - cells were isolated from glioma U87 cell lines by flow cytometry sorter system. After irradiated vertically by 4 Gy X-rays, the radiosensitivity of cells was determined by clonogenic assay. The radiation-induced DNA double-strand break repair of CD133 + and CD133 - cells was determined by the neutral comet assay,and the expression of phosphorylated histone H2AX (γ-H2AX) and Rad51 foci were measured by immunofluorescence. Results: The clone forming rate of CD133 + cells was higher than CD133 - cells (t=3.66, P<0.01) with no radiation. The clone forming rate of CD133 + cells irradiated by 4 Gy X-rays has no significant changes compared to that of the non-irradiation cells (t=0.71, P>0.05), but for CD133 - cells, it decreased compared to non-irradiation cells (t=2.91, P<0.05). The tailmoment between CD133 + cells and CD133 - cells had no difference at 0.5 h after irradiation (t=1.44, P>0.05); the tailmoment of CD133 + cells was lower than CD133 - cells at 6 and 24 h after irradiation,respectively (t=5.31 and 8.09, P<0.01). There was no significant difference in the expression of γ-H2AX foci between CD133 + and CD133 - cells at 0.5 and 6 h after irradiation (t=0.12 and 0.99, P>0.05), γ-H2AX foci of CD133 + cells was significantly decreased compared to CD133 - cells at 24 h after irradiation (t=4.99, P<0.01). For Rad 51 foci, there was no difference between CD133 + and CD133 - cells at 0.5 h after irradiation (t=1.12, P>0.05). The expression of Rad 51 foci of CD133 - cells was decreased compared to that of CD133 + cells at 6 and 24 h after irradiation,respectively (t=22.88 and 12.43, P<0.01). And the expression of Rad51 foci of CD133 + cells had no significant changes at 6-24 h after irradiation. Conclusions: Glioma stem cells is more radioresistive than glioma non-stem cells. The probable mechanism is that the DNA double

  11. Frequent Nek1 overexpression in human gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jun [School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai (China); Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Cai, Yu, E-mail: aihaozuqiu22@163.com [School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai (China); Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Liu, Pin [Med-X Research Institute, Shanghai Jiao Tong University, Shanghai (China); Zhao, Weiguo [Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China)

    2016-08-05

    Never in mitosis A (NIMA)-related kinase 1 (Nek1) regulates cell cycle progression to mitosis. Its expression and potential functions in human gliomas have not been studied. Here, our immunohistochemistry (IHC) assay and Western blot assay results showed that Nek1 expression was significantly upregulated in fresh and paraffin-embedded human glioma tissues. Its level in normal brain tissues was low. Nek1 overexpression in human gliomas was correlated with the proliferation marker (Ki-67), tumor grade, Karnofsky performance scale (KPS) and more importantly, patients’ poor survival. Further studies showed that Nek1 expression level was also increased in multiple human glioma cell lines (U251-MG, U87-MG, U118, H4 and U373). Significantly, siRNA-mediated knockdown of Nek1 inhibited glioma cell (U87-MG/U251-MG) growth. Nek1 siRNA also sensitized U87-MG/U251-MG cells to temozolomide (TMZ), causing a profound apoptosis induction and growth inhibition. The current study indicates Nek1 might be a novel and valuable oncotarget of glioma, it is important for glioma cell growth and TMZ-resistance. - Highlights: • Nek1 is upregulated in multiple human glioma tissues and cell lines. • Nek1 overexpression correlates with glioma grades and patients’ KPS score. • Nek1 overexpression correlates with patients’ poor overall survival. • siRNA knockdown of Nek1 inhibits glioma cell growth. • siRNA knockdown of Nek1 sensitizes human glioma cells to temozolomide.

  12. Frequent Nek1 overexpression in human gliomas

    International Nuclear Information System (INIS)

    Zhu, Jun; Cai, Yu; Liu, Pin; Zhao, Weiguo

    2016-01-01

    Never in mitosis A (NIMA)-related kinase 1 (Nek1) regulates cell cycle progression to mitosis. Its expression and potential functions in human gliomas have not been studied. Here, our immunohistochemistry (IHC) assay and Western blot assay results showed that Nek1 expression was significantly upregulated in fresh and paraffin-embedded human glioma tissues. Its level in normal brain tissues was low. Nek1 overexpression in human gliomas was correlated with the proliferation marker (Ki-67), tumor grade, Karnofsky performance scale (KPS) and more importantly, patients’ poor survival. Further studies showed that Nek1 expression level was also increased in multiple human glioma cell lines (U251-MG, U87-MG, U118, H4 and U373). Significantly, siRNA-mediated knockdown of Nek1 inhibited glioma cell (U87-MG/U251-MG) growth. Nek1 siRNA also sensitized U87-MG/U251-MG cells to temozolomide (TMZ), causing a profound apoptosis induction and growth inhibition. The current study indicates Nek1 might be a novel and valuable oncotarget of glioma, it is important for glioma cell growth and TMZ-resistance. - Highlights: • Nek1 is upregulated in multiple human glioma tissues and cell lines. • Nek1 overexpression correlates with glioma grades and patients’ KPS score. • Nek1 overexpression correlates with patients’ poor overall survival. • siRNA knockdown of Nek1 inhibits glioma cell growth. • siRNA knockdown of Nek1 sensitizes human glioma cells to temozolomide.

  13. High epiregulin expression in human U87 glioma cells relies on IRE1α and promotes autocrine growth through EGF receptor

    International Nuclear Information System (INIS)

    Auf, Gregor; Vajkoczy, Peter; Seno, Masaharu; Bikfalvi, Andreas; Minchenko, Dmitri; Minchenko, Oleksandr; Moenner, Michel; Jabouille, Arnaud; Delugin, Maylis; Guérit, Sylvaine; Pineau, Raphael; North, Sophie; Platonova, Natalia; Maitre, Marlène; Favereaux, Alexandre

    2013-01-01

    Epidermal growth factor (EGF) receptors contribute to the development of malignant glioma. Here we considered the possible implication of the EGFR ligand epiregulin (EREG) in glioma development in relation to the activity of the unfolded protein response (UPR) sensor IRE1α. We also examined EREG status in several glioblastoma cell lines and in malignant glioma. Expression and biological properties of EREG were analyzed in human glioma cells in vitro and in human tumor xenografts with regard to the presence of ErbB proteins and to the blockade of IRE1α. Inactivation of IRE1α was achieved by using either the dominant-negative strategy or siRNA-mediated knockdown. EREG was secreted in high amounts by U87 cells, which also expressed its cognate EGF receptor (ErbB1). A stimulatory autocrine loop mediated by EREG was evidenced by the decrease in cell proliferation using specific blocking antibodies directed against either ErbB1 (cetuximab) or EREG itself. In comparison, anti-ErbB2 antibodies (trastuzumab) had no significant effect. Inhibition of IRE1α dramatically reduced EREG expression both in cell culture and in human xenograft tumor models. The high-expression rate of EREG in U87 cells was therefore linked to IRE1α, although being modestly affected by chemical inducers of the endoplasmic reticulum stress. In addition, IRE1-mediated production of EREG did not depend on IRE1 RNase domain, as neither the selective dominant-negative invalidation of the RNase activity (IRE1 kinase active) nor the siRNA-mediated knockdown of XBP1 had significant effect on EREG expression. Finally, chemical inhibition of c-Jun N-terminal kinases (JNK) using the SP600125 compound reduced the ability of cells to express EREG, demonstrating a link between the growth factor production and JNK activation under the dependence of IRE1α. EREG may contribute to glioma progression under the control of IRE1α, as exemplified here by the autocrine proliferation loop mediated in U87 cells by the

  14. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells

    OpenAIRE

    Maimaitili, Aisha; Shu, Zunhua; Cheng, Xiaojiang; Kaheerman, Kadeer; Sikandeer, Alifu; Li, Weimin

    2016-01-01

    The aim of the current study was to investigate the anticancer potential of arctigenin, a natural lignan compound, in malignant gliomas. The U87MG and T98G human glioma cell lines were treated with various concentrations of arctigenin for 48 h and the effects of arctigenin on the aggressive phenotypes of glioma cells were assessed. The results demonstrated that arctigenin dose-dependently inhibited the growth of U87MG and T98G cells, as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphen...

  15. Quercetin-induced downregulation of phospholipase D1 inhibits proliferation and invasion in U87 glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Mi Hee [Department of Molecular Biology, College of Natural Science, Pusan National University, 30 Jangjeon dong, Geumjeong gu, Busan 609-735 (Korea, Republic of); Min, Do Sik, E-mail: minds@pusan.ac.kr [Department of Molecular Biology, College of Natural Science, Pusan National University, 30 Jangjeon dong, Geumjeong gu, Busan 609-735 (Korea, Republic of)

    2011-09-09

    Highlights: {yields} Quercetin, a bioactive flavonoid, suppresses expression and enzymatic activity of phospholipase D1. {yields} Quercetin abolishes NFkB-induced phospholipase D1 expression via inhibition of NFkB transactivation. {yields} Quercetin-induced suppression of phospholipase D1 inhibits invasion and proliferation of human glioma cells. -- Abstract: Phospholipase D (PLD) has been recognized as a regulator of cell proliferation and tumorigenesis, but little is known about the molecules regulating PLD expression. Thus, the identification of small molecules inhibiting PLD expression would be an important advance in PLD-mediated physiology. Quercetin, a ubiquitous bioactive flavonoid, is known to inhibit proliferation and induce apoptosis in a variety of cancer cells. In the present study, we examined the effect of quercetin on the expression of PLD in U87 glioma cells. Quercetin significantly suppressed the expression of PLD1 at the transcriptional level. Moreover, quercetin abolished the protein expression of PLD1 in a time and dose-dependent manner, as well as inhibited PLD activity. Quercetin suppressed NF{kappa}B-induced PLD1 expression via inhibition of NFkB transactivation. Furthermore, quercetin inhibited activation and invasion of metalloproteinase-2 (MMP-2), a key modulator of glioma cell invasion, induced by phosphatidic acid (PA), a product of PLD activity. Taken together these data demonstrate that quercetin abolishes PLD1 expression and subsequently inhibits invasion and proliferation of glioma cells.

  16. Autophagy protein p62/SQSTM1 is involved in HAMLET-induced cell death by modulating apotosis in U87MG cells.

    Science.gov (United States)

    Zhang, Y-B; Gong, J-L; Xing, T-Y; Zheng, S-P; Ding, W

    2013-03-21

    HAMLET is a complex of oleic acids and decalcified α-lactalbumin that was discovered to selectively kill tumor cells both in vitro and in vivo. Autophagy is an important cellular process involved in drug-induced cell death of glioma cells. We treated U87MG human glioma cells with HAMLET and found that the cell viability was significantly decreased and accompanied with the activation of autophagy. Interestingly, we observed an increase in p62/SQSTM1, an important substrate of autophagosome enzymes, at the protein level upon HAMLET treatment for short periods. To better understand the functionality of autophagy and p62/SQSTM1 in HAMLET-induced cell death, we modulated the level of autophagy or p62/SQSTM1 with biochemical or genetic methods. The results showed that inhibition of autophagy aggravated HAMLET-induced cell death, whereas activation of authophagy attenuated this process. Meanwhile, we found that overexpression of wild-type p62/SQSTM1 was able to activate caspase-8, and then promote HAMLET-induced apoptosis, whereas knockdown of p62/SQSTM1 manifested the opposite effect. We further demonstrated that the function of p62/SQSTM1 following HAMLET treatment required its C-terminus UBA domain. Our results indicated that in addition to being a marker of autophagy activation in HAMLET-treated glioma cells, p62/SQSTM1 could also function as an important mediator for the activation of caspase-8-dependent cell death.

  17. Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Bernhart, Eva; Damm, Sabine; Wintersperger, Andrea [Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz (Austria); DeVaney, Trevor [Institute of Biophysics, Medical University of Graz (Austria); Zimmer, Andreas [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens University, Graz (Austria); Raynham, Tony; Ireson, Christopher [Cancer Research Technology Ltd, London (United Kingdom); Sattler, Wolfgang, E-mail: wolfgang.sattler@medunigraz.at [Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz (Austria)

    2013-08-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen. Time-lapse microscopy demonstrated that random cell migration was significantly diminished in response to PRKD2 silencing. The pharmacological PRKD family inhibitor CRT0066101 decreased chemotactic migration and invasion across uncoated or matrigel-coated Transwell inserts. Silencing of PRKD2 attenuated migration and invasion of U87MG cells even more effectively. In terms of downstream signaling, CRT0066101 prevented PRKD2 autophosphorylation and inhibited p44/42 MAPK and to a smaller extent p54/46 JNK and p38 MAPK activation. PRKD2 silencing impaired activation of p44/42 MAPK and p54/46 JNK, downregulated nuclear c-Jun protein levels and decreased c-Jun{sup S73} phosphorylation without affecting the NFκB pathway. Finally, qPCR array analyses revealed that silencing of PRKD2 downregulates mRNA levels of integrin alpha-2 and -4 (ITGA2 and -4), plasminogen activator urokinase (PLAU), plasminogen activator urokinase receptor (PLAUR), and matrix metallopeptidase 1 (MMP1). Findings of the present study identify PRKD2 as a potential target to interfere with glioblastoma cell migration and invasion, two major determinants contributing to recurrence of glioblastoma after multimodality treatment. Highlights: • Sphingosine-1-phosphate induces glioma cell migration and invasion. • Part of the effects is mediated by protein kinase D2 (PRKD2) activation. • Inactivation of PRKD2 attenuates glioblastoma cell migration and invasion. • Both, RNAi and pharmacological inhibition of PRKD2 inhibits MAPK

  18. Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro

    International Nuclear Information System (INIS)

    Bernhart, Eva; Damm, Sabine; Wintersperger, Andrea; DeVaney, Trevor; Zimmer, Andreas; Raynham, Tony; Ireson, Christopher; Sattler, Wolfgang

    2013-01-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen. Time-lapse microscopy demonstrated that random cell migration was significantly diminished in response to PRKD2 silencing. The pharmacological PRKD family inhibitor CRT0066101 decreased chemotactic migration and invasion across uncoated or matrigel-coated Transwell inserts. Silencing of PRKD2 attenuated migration and invasion of U87MG cells even more effectively. In terms of downstream signaling, CRT0066101 prevented PRKD2 autophosphorylation and inhibited p44/42 MAPK and to a smaller extent p54/46 JNK and p38 MAPK activation. PRKD2 silencing impaired activation of p44/42 MAPK and p54/46 JNK, downregulated nuclear c-Jun protein levels and decreased c-Jun S73 phosphorylation without affecting the NFκB pathway. Finally, qPCR array analyses revealed that silencing of PRKD2 downregulates mRNA levels of integrin alpha-2 and -4 (ITGA2 and -4), plasminogen activator urokinase (PLAU), plasminogen activator urokinase receptor (PLAUR), and matrix metallopeptidase 1 (MMP1). Findings of the present study identify PRKD2 as a potential target to interfere with glioblastoma cell migration and invasion, two major determinants contributing to recurrence of glioblastoma after multimodality treatment. Highlights: • Sphingosine-1-phosphate induces glioma cell migration and invasion. • Part of the effects is mediated by protein kinase D2 (PRKD2) activation. • Inactivation of PRKD2 attenuates glioblastoma cell migration and invasion. • Both, RNAi and pharmacological inhibition of PRKD2 inhibits MAPK

  19. Effects of the nitric oxide donor JS-K on the blood-tumor barrier and on orthotopic U87 rat gliomas assessed by MRI.

    Science.gov (United States)

    Weidensteiner, Claudia; Reichardt, Wilfried; Shami, Paul J; Saavedra, Joseph E; Keefer, Larry K; Baumer, Brunhilde; Werres, Anna; Jasinski, Robert; Osterberg, Nadja; Weyerbrock, Astrid

    2013-04-01

    Nitric oxide (NO) released from NO donors can be cytotoxic in tumor cells and can enhance the transport of drugs into brain tumors by altering blood-tumor barrier permeability. The NO donor JS-K [O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate] releases NO upon enzymatic activation selectively in cells overexpressing glutathione-S-transferases (GSTs) such as gliomas. Thus, JS-K-dependent NO effects - especially on cell viability and vascular permeability - were investigated in U87 glioma cells in vitro and in an orthotopic U87 xenograft model in vivo by magnetic resonance imaging (MRI). In vitro experiments showed dose-dependent antiproliferative and cytotoxic effects in U87 cells. In addition, treatment of U87 cells with JS-K resulted in a dose-dependent activation of soluble guanylate cyclase and intracellular accumulation of cyclic guanosine monophosphate (cGMP) which was irreversibly inhibited by the selective inhibitor of soluble guanylate cyclase ODQ (1H-[1,2,4]oxadiazolo(4,3a)quinoxaline-1-one). Using dynamic contrast enhanced MRI (DCE-MRI) as a minimally invasive technique, we demonstrated for the first time a significant increase in the DCE-MRI read-out initial area under the concentration curve (iAUC60) indicating an acute increase in blood-tumor barrier permeability after i.v. treatment with JS-K. Repeated MR imaging of animals with intracranial U87 gliomas under treatment with JS-K (3.5 μmol/kg JS-K 3×/week) and of untreated controls on day 12 and 19 after tumor inoculation revealed no significant changes in tumor growth, edema formation or tumor perfusion. Immunohistochemical workup of the brains showed a significant antiproliferative effect of JS-K in the gliomas. Taken together, in vitro and in vivo data suggest that JS-K has antiproliferative effects in U87 gliomas and opens the blood-tumor barrier by activation of the NO/cGMP signaling pathway. This might be a novel approach to facilitate entry of therapeutic

  20. [Overexpressed miRNA-134b inhibits proliferation and invasion of CD133+ U87 glioma stem cells].

    Science.gov (United States)

    Liu, Yifeng; Zhang, Baochao; Wen, Changming; Wen, Gongling; Zhou, Guoping; Zhang, Jingwei; He, Haifa; Wang, Ning; Li, Wei

    2017-05-01

    Objective To investigate the role of microRNA-134b (miR-134b) in the tumorigenesis of glioma stem cells (GSCs) and the possible molecular mechanism. Methods Real-time quantitative PCR (qRT-PCR) was used to evalate the expression of miR-134b in CD133 + and CD133 - U87 GSCs. A lentiviral vector overexpressing miR-134b in U87 GSCs was constructed, and the effect of miR-134b overexpression on matrix metalloproteinase-2 (MMP-2), MMP-9 and MMP-12 expressions at both mRNA and protein levels were detected by qRT-PCR and Western blotting, respectively. Transwell TM assay was performed to determine the effect of miR-134b overexpression on GSCs invasion ability. Tumor xenograft models in nude mice were established to evaluate the effect of miR-134b overexpression on tumorgenesis in vivo. Results The qRT-PCR showed that, compared with CD133 - cells, miR-134b was significantly down-regulated in CD133 + cells. Cell line over-expressing miR-134b was successfully established, and miR-134b was up-regulated significantly compared with empty vector control. Overexpression of miR-134b remarkably inhibited the invasion of U87 GSCs and the expression of MMP-12. However, overexpression of miR-134b did not affect MMP-2 and MMP-9 expressions. miR-134b also suppressed U87 GSCs xenograft growth in vivo. Tumor volume in tumor xenograft model group was significantly lower than that in control group, and tumor weight decreased by 42% in the former group. Conclusion Overexpression of miR-134b inhibits the growth and invasion of CD133 + GSCs.

  1. [Cell-ELA-based determination of binding affinity of DNA aptamer against U87-EGFRvIII cell].

    Science.gov (United States)

    Tan, Yan; Liang, Huiyu; Wu, Xidong; Gao, Yubo; Zhang, Xingmei

    2013-05-01

    A15, a DNA aptamer with binding specificity for U87 glioma cells stably overexpressing the epidermal growth factor receptor variant III (U87-EGFRvIII), was generated by cell systematic evolution of ligands by exponential enrichment (cell-SELEX) using a random nucleotide library. Subsequently, we established a cell enzyme-linked assay (cell-ELA) to detect the affinity of A15 compared to an EGFR antibody. We used A15 as a detection probe and cultured U87-EGFRvIII cells as targets. Our data indicate that the equilibrium dissociation constants (K(d)) for A15 were below 100 nmol/L and had similar affinity compared to an EGFR antibody for U87-EGFRvIII. We demonstrated that the cell-ELA was a useful method to determine the equilibrium dissociation constants (K(d)) of aptamers generated by cell-SELEX.

  2. CXCR7 is induced by hypoxia and mediates glioma cell migration towards SDF-1α

    International Nuclear Information System (INIS)

    Esencay, Mine; Sarfraz, Yasmeen; Zagzag, David

    2013-01-01

    Glioblastomas, the most common and malignant brain tumors of the central nervous system, exhibit high invasive capacity, which hinders effective therapy. Therefore, intense efforts aimed at improved therapeutics are ongoing to delineate the molecular mechanisms governing glioma cell migration and invasion. In order to perform the studies, we employed optimal cell culture methods and hypoxic conditions, lentivirus-mediated knockdown of protein expression, Western Blot analysis, migration assays and immunoprecipitation. We determined statistical significance by unpaired t-test. In this report, we show that U87MG, LN229 and LN308 glioma cells express CXCR7 and that exposure to hypoxia upregulates CXCR7 protein expression in these cell lines. CXCR7-expressing U87MG, LN229 and LN308 glioma cells migrated towards stromal-derived factor (SDF)-1α/CXCL12 in hypoxic conditions in the Boyden chamber assays. While shRNA-mediated knockdown of CXCR7 expression did not affect the migration of any of the three cell lines in normoxic conditions, we observed a reduction in the migration of LN229 and LN308, but not U87MG, glioma cells towards SDF-1α in hypoxic conditions. In addition, knockdown of CXCR7 expression in LN229 and LN308 glioma cells decreased levels of SDF-1α-induced phosphorylation of ERK1/2 and Akt. Inhibiting CXCR4 in LN229 and LN308 glioma cells that were knocked down for CXCR7 did not further reduce migration towards SDF-1α in hypoxic conditions and did not affect the levels of phosphorylated ERK1/2 and Akt. Analysis of immunoprecipitated CXCR4 from LN229 and LN308 glioma cells revealed co-precipitated CXCR7. Taken together, our findings indicate that both CXCR4 and CXCR7 mediate glioma cell migration towards SDF-1α in hypoxic conditions and support the development of therapeutic agents targeting these receptors

  3. Podoplanin increases migration and angiogenesis in malignant glioma

    OpenAIRE

    Grau, Stefan J; Trillsch, Fabian; Tonn, Joerg-Christian; Goldbrunner, Roland H; Noessner, Elfriede; Nelson, Peter J; von Luettichau, Irene

    2015-01-01

    Expression of podoplanin in glial brain tumors is grade dependent. While serving as a marker for tumor progression and modulating invasion in various neoplasms, little is known about podoplanin function in gliomas. Therefore we stably transfected two human glioma cell lines (U373MG and U87MG) with expression plasmids encoding podoplanin. The efficacy of transfection was confirmed by FACS analysis, PCR and immunocytochemistry. Cells were then sorted for highly podoplanin expressing cells (U373...

  4. Melatonin inhibits proliferation and invasion via repression of miRNA-155 in glioma cells.

    Science.gov (United States)

    Gu, Junyi; Lu, Zhongsheng; Ji, Chenghong; Chen, Yuchao; Liu, Yuzhao; Lei, Zhe; Wang, Longqiang; Zhang, Hong-Tao; Li, Xiangdong

    2017-09-01

    Melatonin, an indolamine mostly synthesized in the pineal gland, exerts the anti-cancer effect by various mechanisms in glioma cells. Our previous study showed that miR-155 promoted glioma cell proliferation and invasion. However, the question of whether melatonin may inhibit glioma by regulating miRNAs has not yet been addressed. In this study, we found that melatonin (100μM, 1μM and 1nM) significantly inhibited the expression of miR-155 in human glioma cell lines U87, U373 and U251. Especially, the lowest expression of miR-155 was detected in 1μM melatonin-treated glioma cells. Melatonin (1μM) inhibits cell proliferation of U87 by promoting cell apoptosis. Nevertheless, melatonin had no effect on cell cycle distribution of U87 cells. Moreover, U87 cells treated with 1μM melatonin presented significantly lower migration and invasion ability when compared with control cells. Importantly, melatonin inhibited c-MYB expression, and c-MYB knockdown reduced miR-155 expression and migration and invasion in U87 cells. Taken together, for the first time, our findings show that melatonin inhibits miR-155 expression and thereby represses glioma cell proliferation, migration and invasion, and suggest that melatonin may downregulate the expression of miR-155 via repression of c-MYB. This will provide a theoretical basis for revealing the anti-glioma mechanisms of melatonin. Copyright © 2017. Published by Elsevier Masson SAS.

  5. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells.

    Science.gov (United States)

    Maimaitili, Aisha; Shu, Zunhua; Cheng, Xiaojiang; Kaheerman, Kadeer; Sikandeer, Alifu; Li, Weimin

    2017-02-01

    The aim of the current study was to investigate the anticancer potential of arctigenin, a natural lignan compound, in malignant gliomas. The U87MG and T98G human glioma cell lines were treated with various concentrations of arctigenin for 48 h and the effects of arctigenin on the aggressive phenotypes of glioma cells were assessed. The results demonstrated that arctigenin dose-dependently inhibited the growth of U87MG and T98G cells, as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and bromodeoxyuridine incorporation assays. Arctigenin exposure also induced a 60-75% reduction in colony formation compared with vehicle-treated control cells. However, arctigenin was not observed to affect the invasiveness of glioma cells. Arctigenin significantly increased the proportion of cells in the G 0 /G 1 phase and reduced the number of cells in the S phase, as compared with the control group (Parctigenin increased the expression levels of p21, retinoblastoma and p53 proteins, and significantly decreased the expression levels of cyclin D1 and cyclin-dependent kinase 4 proteins. Additionally, arctigenin was able to induce apoptosis in glioma cells, coupled with increased expression levels of cleaved caspase-3 and the pro-apoptotic BCL2-associated X protein. Furthermore, arctigenin-induced apoptosis was significantly suppressed by the pretreatment of cells with Z-DEVD-FMK, a caspase-3 inhibitor. In conclusion, the results suggest that arctigenin is able to inhibit cell proliferation and may induce apoptosis and cell cycle arrest at the G 0 /G 1 phase in glioma cells. These results warrant further investigation of the anticancer effects of arctigenin in animal models of gliomas.

  6. Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells

    OpenAIRE

    Lu, Yong; Jiang, Feng; Jiang, Hao; Wu, Kalina; Zheng, Xuguang; Cai, Yizhong; Katakowski, Mark; Chopp, Michael; To, Shing-Shun Tony

    2010-01-01

    Gallic acid, an organic acid, also known as 3,4,5-trihydroxybenzoic acid, is cytotoxic against certain cancer cells, without harming normal cells. The objective of this study is to evaluate whether gallic acid can inhibit glioma cell viability, proliferation, invasion and reduce glioma cell mediated angiogenesis. Treatment of U87 and U251n glioma cells with gallic acid inhibited cell viability in a dose- and time-dependent manner. BrdU and tube formation assays indicated that gallic acid sign...

  7. Methylation of the ATM promoter in glioma cells alters ionizing radiation sensitivity

    International Nuclear Information System (INIS)

    Roy, Kanaklata; Wang, Lilin; Makrigiorgos, G. Mike; Price, Brendan D.

    2006-01-01

    Glioblastomas are among the malignancies most resistant to radiation therapy. In contrast, cells lacking the ATM protein are highly sensitive to ionizing radiation. The relationship between ATM protein expression and radiosensitivity in 3 glioma cell lines was examined. T98G cells exhibited normal levels of ATM protein, whereas U118 and U87 cells had significantly lower levels of ATM and increased (>2-fold) sensitivity to ionizing radiation compared to T98G cells. The ATM promoter was methylated in U87 cells. Demethylation by azacytidine treatment increased ATM protein levels in the U87 cells and decreased their radiosensitivity. In contrast, the ATM promoter in U118 cells was not methylated. Further, expression of exogenous ATM did not significantly alter the radiosensitivity of U118 cells. ATM expression is therefore heterogeneous in the glioma cells examined. In conclusion, methylation of the ATM promoter may account for the variable radiosensitivity and heterogeneous ATM expression in a fraction of glioma cells

  8. Dipeptidyl peptidase IV in two human glioma cell lines

    Directory of Open Access Journals (Sweden)

    A Sedo

    2009-12-01

    Full Text Available There is growing evidence that dipeptidyl peptidase IV [DPP-IV, EC 3.4.14.5] takes part in the metabolism of biologically active peptides participating in the regulation of growth and transformation of glial cells. However, the knowledge on the DPP-IV expression in human glial and glioma cells is still very limited. In this study, using histochemical and biochemical techniques, the DPP-IV activity was demonstrated in two commercially available human glioma cell lines of different transformation degree, as represented by U373 astrocytoma (Grade III and U87 glioblastoma multiforme (Grade IV lines. Higher total activity of the enzyme, as well as its preferential localisation in the plasma membrane, was observed in U87 cells. Compared to U373 population, U87 cells were morphologically more pleiomorphic, they were cycling at lower rate and expressing less Glial Fibrillary Acidic Protein. The data revealed positive correlation between the degree of transformation of cells and activity of DPP-IV. Great difference in expression of this enzyme, together with the phenotypic differences of cells, makes these lines a suitable standard model for further 57 studies of function of this enzyme in human glioma cells.

  9. Polish natural bee honeys are anti-proliferative and anti-metastatic agents in human glioblastoma multiforme U87MG cell line.

    Directory of Open Access Journals (Sweden)

    Justyna Moskwa

    Full Text Available Honey has been used as food and a traditional medicament since ancient times. However, recently many scientists have been concentrating on the anti-oxidant, anti-proliferative, anti-inflammatory and other properties of honey. In this study, we investigated for the first time an anticancer effect of different honeys from Poland on tumor cell line - glioblastoma multiforme U87MG. Anti-proliferative activity of honeys and its interferences with temozolomide were determined by a cytotoxicity test and DNA binding by [H3]-thymidine incorporation. A gelatin zymography was used to conduct an evaluation of metalloproteinases (MMP-2 and MMP-9 expression in U87MG treatment with honey samples. The honeys were previously tested qualitatively (diastase activity, total phenolic content, lead and cadmium content. The data demonstrated that the examined honeys have a potent anti-proliferative effect on U87MG cell line in a time- and dose-dependent manner, being effective at concentrations as low as 0.5% (multifloral light honey - viability 53% after 72 h of incubation. We observed that after 48 h, combining honey with temozolomide showed a significantly higher inhibitory effect than the samples of honey alone. We observed a strong inhibition of MMP-2 and MMP-9 for the tested honeys (from 20 to 56% and from 5 to 58% compared to control, respectively. Our results suggest that Polish honeys have an anti-proliferative and anti-metastatic effect on U87MG cell line. Therefore, natural bee honey can be considered as a promising adjuvant treatment for brain tumors.

  10. The neural stem cell fate determinant TLX promotes tumorigenesis and genesis of cells resembling glioma stem cells.

    Science.gov (United States)

    Park, Hyo-Jung; Kim, Jun-Kyum; Jeon, Hye-Min; Oh, Se-Yeong; Kim, Sung-Hak; Nam, Do-Hyun; Kim, Hyunggee

    2010-11-01

    A growing body of evidence indicates that deregulation of stem cell fate determinants is a hallmark of many types of malignancies. The neural stem cell fate determinant TLX plays a pivotal role in neurogenesis in the adult brain by maintaining neural stem cells. Here, we report a tumorigenic role of TLX in brain tumor initiation and progression. Increased TLX expression was observed in a number of glioma cells and glioma stem cells, and correlated with poor survival of patients with gliomas. Ectopic expression of TLX in the U87MG glioma cell line and Ink4a/Arf-deficient mouse astrocytes (Ink4a/Arf(-/-) astrocytes) induced cell proliferation with a concomitant increase in cyclin D expression, and accelerated foci formation in soft agar and tumor formation in in vivo transplantation assays. Furthermore, overexpression of TLX in Ink4a/Arf(-/-) astrocytes inhibited cell migration and invasion and promoted neurosphere formation and Nestin expression, which are hallmark characteristics of glioma stem cells, under stem cell culture conditions. Our results indicate that TLX is involved in glioma stem cell genesis and represents a potential therapeutic target for this type of malignancy.

  11. Chitosan-alginate 3D scaffolds as a mimic of the glioma tumor microenvironment.

    Science.gov (United States)

    Kievit, Forrest M; Florczyk, Stephen J; Leung, Matthew C; Veiseh, Omid; Park, James O; Disis, Mary L; Zhang, Miqin

    2010-08-01

    Despite recent advances in the understanding of its cell biology, glioma remains highly lethal. Development of effective therapies requires a cost-effective in vitro tumor model that more accurately resembles the in vivo tumor microenvironment as standard two-dimensional (2D) tissue culture conditions do so poorly. Here we report on the use of a three-dimensional (3D) chitosan-alginate (CA) scaffold to serve as an extracellular matrix that promotes the conversion of cultured cancer cells to a more malignant in vivo-like phenotype. Human U-87 MG and U-118 MG glioma cells and rat C6 glioma cells were chosen for the study. In vitro tumor cell proliferation and secretion of factors that promote tumor malignancy, including VEGF, MMP-2, fibronectin, and laminin, were assessed. The scaffolds pre-cultured with U-87 MG and C6 cells were then implanted into nude mice to evaluate tumor growth and blood vessel recruitment compared to the standard 2D cell culture and 3D Matrigel matrix xenograft controls. Our results indicate that while the behavior of C6 cells showed minimal differences due to their highly malignant and invasive nature, U-87 MG and U-118 MG cells exhibited notably higher malignancy when cultured in CA scaffolds. CA scaffolds provide a 3D microenvironment for glioma cells that is more representative of the in vivo tumor, thus can serve as a more effective platform for development and study of anticancer therapeutics. This unique CA scaffold platform may offer a valuable alternative strategy to the time-consuming and costly animal studies for a wide variety of experimental designs. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Hyperthermia radiosensitization in human glioma cells comparison of recovery of polymerase activity, survival, and potentially lethal damage repair

    International Nuclear Information System (INIS)

    Raaphorst, G.P.; Feeley, M.M.

    1994-01-01

    DNA polymerase inactivation is compared to thermal radiosensitization and inhibition of damage recovery in human glioma cells. Two human glioma cell lines (U87MG and U373MG) were exposed to hyperthermia and irradiation. Hyperthermia was given at 43 degrees C and 45 degrees C and DNA polymerase α + δ + ε and β activities were measured. Hyperthermia was given at various times before irradiation and the degree of radiosensitization and polymerase activity was assessed at various times after heating. In addition the ability of cells to undergo repair of potentially lethal radiation damage was assessed for cells irradiated at various times after heating. Polymerase α + δ + ε and polymerase β both recovered after heating but polymerase β was faster and was complete in U373MG but not in the U87MG cell lines after 48 h incubation after heating (45 degrees C, 60 min). Incubation, between hyperthermia and irradiation resulted in a loss of radiosensitization and a loss of inhibition of repair of potentially lethal damage. These changes correlated well with recovery of polymerase β but not with polymerase α + δ + ε. The correlation of polymerase β activity and thermoradiosensitization and its recovery indicate that polymerase β may be one of the mechanisms involved in thermoradiosensitization. 35 refs., 7 figs

  13. Physiological oxygen concentration alters glioma cell malignancy and responsiveness to photodynamic therapy in vitro.

    Science.gov (United States)

    Albert, Ina; Hefti, Martin; Luginbuehl, Vera

    2014-11-01

    The partial pressure of oxygen (pO2) in brain tumors ranges from 5 to 15%. Nevertheless, the majority of in vitro experiments with glioblastoma multiforme (GBM) cell lines are carried out under an atmospheric pO2 of 19 to 21%. Recently, 5-aminolevulinic acid (5-ALA), a precursor of protoporphyrin IX (PpIX), has been introduced to neurosurgery to allow for photodynamic diagnosis and photodynamic therapy (PDT) in high-grade gliomas. Here, we investigate whether low pO2 affects GBM cell physiology, PpIX accumulation, or PDT efficacy. GBM cell lines (U-87 MG and U-251 MG) were cultured under atmospheric (pO2  =  19%) and physiological (pO2  =  9%) oxygen concentrations. PpIX accumulation and localization were investigated, and cell survival and cell death were observed following in vitro PDT. A physiological pO2 of 9% stimulated GBM cell migration, increased hypoxia-inducible factor (HIF)-1 alpha levels, and elevated resistance to camptothecin in U-87 MG cells compared to cultivation at a pO2 of 19%. This oxygen reduction did not alter 5-ALA-induced intracellular PpIX accumulation. However, physiological pO2 changed the responsiveness of U-87 MG but not of U-251 MG cells to in vitro PDT. Around 20% more irradiation light was required to kill U-87 MG cells at physiological pO2, resulting in reduced lactate dehydrogenase (LDH) release (one- to two-fold) and inhibition of caspase 3 activation. Reduction of oxygen concentration from atmospheric to a more physiological level can influence the malignant behavior and survival of GBM cell lines after in vitro PDT. Therefore, precise oxygen concentration control should be considered when designing and performing experiments with GBM cells.

  14. Capacity of ultraviolet-induced DNA repair in human glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Hiroji

    1987-04-01

    A DNA repair abnormality is likely related to an increased incidence of neoplasms in several autosomal recessive diseases such as xeroderma pigmentosum, Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. In human glioma cells, however, there are only a few reports on DNA repair. In this study, an ultraviolet (UV)-induced DNA repair was examined systematically in many human glioma cells. Two human malignant glioma cell lines (MMG-851, U-251-MG) and 7 human glioma cell strains (4, benign; 3, malignant) of short term culture, in which glial fibrillary acidic protein (GFAP) staining were positive, were used. To investigate the capacity of DNA repair, UV sensitivity was determined by colony formation; excision repair by autoradiography and Cytosine Arabinoside (Ara-C) assay; and post-replication repair by the joining rate of newly synthesized DNA. As a result, the colony-forming abilities of malignant glioma cell lines were lower than those of normal human fibroblasts, but no difference was found between two malignant glioma cell lines. The excision repair of the malignant group (2 cell lines and 3 cell strains) was apparently lower than that of the benign group (4 cell strains). In two malignant glioma cell lines, the excision repair of MMG-851 was lower than that of U-251-MG, and the post-replication repair of MMG-851 was higher than that of U-251-MG. These results were considered to correspond well with colony-forming ability. The results indicate that there are some differences in each human malignant glioma cell in its UV-induced DNA repair mechanism, and that the excision repair of the malignant glioma cells is apparently lower than that of the benign glioma cells. These findings may be useful for diagnosis and treatment.

  15. Sulforaphane inhibits invasion via activating ERK1/2 signaling in human glioblastoma U87MG and U373MG cells.

    Directory of Open Access Journals (Sweden)

    Chunliu Li

    Full Text Available Glioblastoma has highly invasive potential, which might result in poor prognosis and therapeutic failure. Hence, the key we study is to find effective therapies to repress migration and invasion. Sulforaphane (SFN was demonstrated to inhibit cell growth in a variety of tumors. Here, we will further investigate whether SFN inhibits migration and invasion and find the possible mechanisms in human glioblastoma U87MG and U373MG cells.First, the optimal time and dose of SFN for migration and invasion study were determined via cell viability and cell morphological assay. Further, scratch assay and transwell invasion assay were employed to investigate the effect of SFN on migration and invasion. Meanwhile, Western blots were used to detect the molecular linkage among invasion related proteins phosphorylated ERK1/2, matrix metalloproteinase-2 (MMP-2 and CD44v6. Furthermore, Gelatin zymography was performed to detect the inhibition of MMP-2 activation. In addition, ERK1/2 blocker PD98059 (25 µM was integrated to find the link between activated ERK1/2 and invasion, MMP-2 and CD44v6.The results showed that SFN (20 µM remarkably reduced the formation of cell pseudopodia, indicating that SFN might inhibit cell motility. As expected, scratch assay and transwell invasion assay showed that SFN inhibited glioblastoma cell migration and invasion. Western blot and Gelatin zymography showed that SFN phosphorylated ERK1/2 in a sustained way, which contributed to the downregulated MMP-2 expression and activity, and the upregulated CD44v6 expression. These molecular interactions resulted in the inhibition of cell invasion.SFN inhibited migration and invasion processes. Furthermore, SFN inhibited invasion via activating ERK1/2 in a sustained way. The accumulated ERK1/2 activation downregulated MMP-2 expression and decreased its activity and upregulated CD44v6. SFN might be a potential therapeutic agent by activating ERK1/2 signaling against human glioblastoma.

  16. Synthesis of dihydropyrimidin-2-one/thione library and cytotoxic activity against the human U138-MG and Rat C6 glioma cell lines

    International Nuclear Information System (INIS)

    Canto, Romulo F.S.; Eifler-Lima, Vera Lucia; Bernardi, Andressa; Battastini, Ana Maria O.; Russowsky, Dennis

    2011-01-01

    Two series of 4-aryl-3,4-dihydropyrimidin-2(1H)-(thio)ones including monastrol (1a), have been synthesized by an environment-friendly methodology based on the combined use of citric acid or oxalic acid and TEOF (triethylorthoformate). The library was evaluated as inhibitor of cell proliferation on two glioma cell lines (human-U138-MG and Rat-C6). The compounds derived from thiourea 1f and 1d were more cytotoxic than monastrol. The compound derived from urea 2d showed the highest cytotoxic activity among the analyzed compounds. (author)

  17. Activation of glioma cells generates immune tolerant NKT cells.

    Science.gov (United States)

    Tang, Bo; Wu, Wei; Wei, Xiaowei; Li, Yang; Ren, Gang; Fan, Wenhai

    2014-12-12

    Therapeutic outcomes of glioma are currently not encouraging. Tumor tolerance plays an important role in the pathogenesis of glioma. It is reported that micro RNAs (miR) are associated with tumor development. This study aims to investigate the role of miR-92a in the development of tolerant natural killer T (NKT) cells. In this study, U87 cells (a human glioma cell line) and primary glioma cells were prepared. The assessment of miR-92a was performed by real time RT-PCR. The expression of interleukin (IL)-10 and IL-6 in NKT cells was evaluated by flow cytometry. Results showed that abundant IL-6(+) IL-10(+) NKT cells were detected in glioma tissue. Cultures of glioma cells and NKT cells induced the expression of IL-6 and IL-10 in NKT cells. Glioma cells expressed miR-92a; the latter played a critical role in the induction of IL-6 and IL-10 expression in NKT cells. The expression of the antitumor molecules, including perforin, Fas ligand, and interferon-γ, was significantly attenuated compared with control NKT cells. The IL-6(+) IL-10(+) NKT cells showed less capability in the induction of apoptosis in glioma cells, but showed the immune suppressor functions on CD8(+) T cell activities. We conclude that glioma-derived miR-92a induces IL-6(+) IL-10(+) NKT cells; this fraction of NKT cells can suppress cytotoxic CD8(+) T cells. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. KDM2B overexpression correlates with poor prognosis and regulates glioma cell growth

    Directory of Open Access Journals (Sweden)

    Wang Y

    2018-01-01

    Full Text Available Yiwei Wang,1 Jin Zang,1 Dongyong Zhang,2 Zhenxiang Sun,1 Bo Qiu,2 Xiaojie Wang1 1Department of Human Anatomy, Shenyang Medical College, Huanggu District, Shenyang City, 2Department of Neurosurgery, First Affiliated Hospital of China Medical University, Heping District, Shenyang City, Liaoning Province, ChinaBackground: Gliomas are one of the most lethal cancers in the human central nervous system. Despite clinical treatment advancements, the prognosis of patients with glioma remains poor. KDM2B is a histone lysine demethylase, which has been observed in multiple tumors. But the concrete role of KDM2B in gliomas remains to be further illustrated.Methods: The KDM2B expression in gliomas was detected with immunohistochemistry and Western blot assay. Furthermore, knockdown of KDM2B in U87 and U251 glioma cell lines, the proliferation capacity was evaluated by cell viability assay, colon formation assay and flow cytometry in vitro. Western blot assay was used to analyze the p21, EZH2 and cyclinD1 changes followed by knockdown of KDM2B.Results: KDM2B was upregulated in tissues of glioma patients, and the expression was correlated to cancer progression. Downregulation of KDM2B in U87 and U251 glioma cell lines inhibited cell proliferation and arrested cell cycle in G0/G1 phase. In addition, silencing KDM2B promoted the upregulation of p21 while reduced the expression of EZH2 and cyclinD1.Conclusion: Taken together, our results revealed that KDM2B might influence gliomas growth and act as a novel therapeutic target for glioma patients.Keywords: EZH2, glioma, KDM2B, P21

  19. Effect of flupirtine on the growth and viability of U373 malignant glioma cells

    International Nuclear Information System (INIS)

    Panchanathan, Elango; Ramanathan, Gnanasambandan; Lakkakula, Bhaskar Venkata Kameswara Subrahmanya

    2013-01-01

    Flupirtine is a non-opioid analgesic without antipyretic or antiphlogistic properties but with favorable tolerability in humans. This analgesic also exhibits neuroprotective activities. Furthermore, flupirtine antagonizes glutamate- and NMDA-induced intracellular levels of Ca 2+ and counteracts the effects of focal cerebral ischemia. Although flupirtine has been used to relieve pain caused by different diseases and clinical procedures, information on the safety and efficacy of flupirtine is limited. The present study was conducted to investigate the neuroprotective effects of flupirtine on U373 malignant glioma (MG) cell lines. Cell viability and cell cycle analysis was performed by MTT assay and flow cytometry, respectively. Variations in the growth of U373 MG cells in 5 mM N-methyl-D-aspartate (NMDA), 1 mM flupirtine, and combined treatment indicated the antagonistic effects of NMDA and flupirtine on MG cell lines. The variation in the percentage of gated cell population in different cell cycle phases showed significant variations after 48 h of treatment. Flupirtine has neuroprotective effect of on U373 MG cells, which limits its use in the pain management of brain tumors. This property warrants further studies using animal models and large-scale clinical trials

  20. Phosphatidylcholine-specific phospholipase C inhibition down- regulates CXCR4 expression and interferes with proliferation, invasion and glycolysis in glioma cells.

    Directory of Open Access Journals (Sweden)

    Laura Mercurio

    Full Text Available The chemokine receptor CXCR4 plays a crucial role in tumors, including glioblastoma multiforme (GBM, the most aggressive glioma. Phosphatidylcholine-specific phospholipase C (PC-PLC, a catabolic enzyme of PC metabolism, is involved in several aspects of cancer biology and its inhibition down-modulates the expression of growth factor membrane receptors interfering with their signaling pathways. In the present work we investigated the possible interplay between CXCR4 and PC-PLC in GBM cells.Confocal microscopy, immunoprecipitation, western blot analyses, and the evaluation of migration and invasion potential were performed on U87MG cells after PC-PLC inhibition with the xanthate D609. The intracellular metabolome was investigated by magnetic resonance spectroscopy; lactate levels and lactate dehydrogenase (LDH activity were analyzed by colorimetric assay.Our studies demonstrated that CXCR4 and PC-PLC co-localize and are associated on U87MG cell membrane. D609 reduced CXCR4 expression, cell proliferation and invasion, interfering with AKT and EGFR activation and expression. Metabolic analyses showed a decrease in intracellular lactate concentration together with a decrement in LDH activity.Our data suggest that inhibition of PC-PLC could represent a new molecular approach in glioma biology not only for its ability in modulating cell metabolism, glioma growth and motility, but also for its inhibitory effect on crucial molecules involved in cancer progression.

  1. Imaging of 99Tcm-labeled new cyclic RGDfK Dimer in nude mice bearing U87MG human glioma xenografts

    International Nuclear Information System (INIS)

    Jin Xiao'an; Shi Jiyun; Liu Yan; Zhu Zhaohui; Jia Bing; Liu Zhaofei; Shi Ximin; Wang Fan; Li Fang

    2010-01-01

    Objective: (1) To evaluate the effect of insertion of two 15-amino-4, 7, 10, 13-tetraoxapentadecanoic (2 PEG 4 ) linkers into cyclic Arg-Gly-Asp (RGD) Dimer E [c(RGDfK)] 2 on receptor binding in vitro, (2) to assess its biodistribution in vivo and (3) to investigate the value of 99 Tc m labeled 2PEG 4 -Dimer for integrin α v β 3 -positive tumors imaging. Methods: The expression of U87 human glioma cells and integrin α v β 3 was determined by immunofluorescence staining. The half-inhibition concentrations (IC 50 ) for 125 I-cyclo (Arg-Gly-Asp-D-Tyr-Lys) (c(RGDyK)) of c (RGDyK), hydrazinonictinamide (HYNIC)-Dimer and HYNIC-2PEG 4 -Dimer binding to integrin α v β 3 were measured. 99 Tc m -HYNIC-Dimer and 99 Tc m -HYNIC-2PEG 4 -Dimer were synthesized using non-SnCl 2 formulation. Biodistribution and imaging studies were performed in nude mice bearing human glioma xenografts. The unpaired t test was used for statistical analysis. Results: The labeling yield of the two radiotracers was more than 95%, and the radiochemical purity was more than 99% through Sep-Pek C18 cartridge. HYNIC-2PEG 4 -Dimer had significantly higher binding affinity of integrin α v β 3 than c(RGDyK) and HYNIC-Dimer (IC 50 =0.8 nmol/L, 27 nmol/L and 2.4 nmol/L, respectively). Biodistribution study showed that 99 Tc m -HYNIC-2PEG 4 -Dimer was mainly excreted via the kidney. The tumor uptake of 99 Tc m -HYNIC-2PEG 4 -Dimer was higher than that of 99 Tc m -HYNIC-Dimer at 2 h post injection ((5.71±0.96) and (2.10±0.50) % ID/g, t =4.80, P 99 Tc m -HYNIC-2PEG 4 -Dimer is a promising radiotracer for integrin α v β 3 -positive tumor imaging. (authors)

  2. OASIS/CREB3L1 is induced by endoplasmic reticulum stress in human glioma cell lines and contributes to the unfolded protein response, extracellular matrix production and cell migration.

    Directory of Open Access Journals (Sweden)

    Ravi N Vellanki

    Full Text Available OASIS is a transcription factor similar to ATF6 that is activated by endoplasmic reticulum stress. In this study we investigated the expression of OASIS in human glioma cell lines and the effect of OASIS knock-down on the ER stress response and cell migration. OASIS mRNA was detected in three distinct glioma cell lines (U373, A172 and U87 and expression levels were increased upon treatment with ER stress-inducing compounds in the U373 and U87 lines. OASIS protein, which is glycosylated on Asn-513, was detected in the U373 and U87 glioma lines at low levels in control cells and protein expression was induced by ER stress. Knock-down of OASIS in human glioma cell lines resulted in an attenuated unfolded protein response to ER stress (reduced GRP78/BiP and GRP94 induction and decreased expression of chondroitin sulfate proteoglycan extracellular matrix proteins, but induction of the collagen gene Col1a1 was unaffected. Cells in which OASIS was knocked-down exhibited altered cell morphology and reduced cell migration. These results suggest that OASIS is important for the ER stress response and maintenance of some extracellular matrix proteins in human glioma cells.

  3. Effect of saw palmetto extract on PI3K cell signaling transduction in human glioma.

    Science.gov (United States)

    Yang, Yang; Hui, Lv; Yuqin, Che; Jie, Li; Shuai, Hou; Tiezhu, Zhou; Wei, Wang

    2014-08-01

    Saw palmetto extract can induce the apoptosis of prostate cancer cells. The aim of the present study was to investigate the effect of saw palmetto extract on the phosphatidylinositol 3-kinase (PI3K)/Akt signaling transduction pathway in human glioma U87 and U251 cell lines. Suspensions of U87 and U251 cells in a logarithmic growth phase were seeded into six-well plates at a density of 10 4 cells/well. In the experimental group, 1 μl/ml saw palmetto extract was added, while the control group was cultured without a drug for 24 h. The expression levels of PI3K, B-cell lymphoma-extra large (Bcl-xL) and p53 were evaluated through western blot analysis. In the experimental group, the U87 and U251 cells exhibited a lower expression level of PI3K protein as compared with the control group (t=6.849; Psaw palmetto extract induces glioma cell growth arrest and apoptosis via decreasing PI3K/Akt signal transduction.

  4. Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Tahmasebi Mirgani M

    2014-01-01

    Full Text Available Maryam Tahmasebi Mirgani,1 Benedetta Isacchi,2 Majid Sadeghizadeh,1,* Fabio Marra,3 Anna Rita Bilia,2,* Seyed Javad Mowla,1 Farhood Najafi,4 Esmael Babaei51Department of Genetics, Tarbiat Modares University, Tehran, Iran; 2Department of Chemistry, University of Florence, Sesto Fiorentino, Italy; 3Department of Experimental and Clinical Medicine, University of Florence, Italy; 4Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran; 5Department of Biology, University of Tabriz, Tabriz, Iran*These authors contributed equally to this workAbstract: Glioblastoma is an invasive tumor of the central nervous system. Tumor recurrence resulting from ineffective current treatments, mainly due to the blood–brain barrier, highlights the need for innovative therapeutic alternatives. The recent availability of nanotechnology represents a novel targeted strategy in cancer therapy. Natural products have received considerable attention for cancer therapy because of general lower side effects. Curcumin is a new candidate for anticancer treatment, but its low bioavailability and water solubility represent the main disadvantages of its use. Here, curcumin was efficiently encapsulated in a nontoxic nanocarrier, termed dendrosome, to overcome these problems. Dendrosomal curcumin was prepared as 142 nm spherical structures with constant physical and chemical stability. The inhibitory role of dendrosomal curcumin on the proliferation of U87MG cells, a cellular model of glioblastoma, was evaluated by considering master genes of pluripotency and regulatory miRNA (microribonucleic acid. Methylthiazol tetrazolium assay and flow cytometry were used to detect the antiproliferative effects of dendrosomal curcumin. Annexin-V-FLUOS and caspase assay were used to quantify apoptosis. Real-time polymerase chain reaction was used to analyze the expression of OCT4 (octamer binding protein 4 gene variants (OCT4A, OCT4B, and OCT4B1, SOX-2 (SRY

  5. Anti-invasive and antiangiogenic effects of MMI-166 on malignant glioma cells

    International Nuclear Information System (INIS)

    Nakabayashi, Hiromichi; Yawata, Toshio; Shimizu, Keiji

    2010-01-01

    The constitutive overexpression of matrix metalloproteinases (MMPs) is frequently observed in malignant tumours. In particular, MMP-2 and MMP-9 have been reported to be closely associated with invasion and angiogenesis in malignant gliomas. Our study aimed to evaluate the antitumour effects of MMI-166 (Nalpha-[4-(2-Phenyl-2H- tetrazole-5-yl) phenyl sulfonyl]-D-tryptophan), a third generation MMP inhibitor, on three human glioma cell lines (T98G, U87MG, and ONS12) in vitro and in vivo. The effects of MMI-166 on the gelatinolytic activity was analysed by gelatine zymography. The anti-invasive effect of MMI-166 was analysed by an in vitro invasion assay. An in vitro angiogenesis assay was also performed. In vitro growth inhibition of glioma cells by MMI-166 was determined by the MTT assay. The effect of MMI-166 on an orthotropic implantation model using athymic mice was also evaluated. Gelatine zymography revealed that MMP-2 and MMP-9 activities were suppressed by MMI-166. The invasion of glioma cells was suppressed by MMI-166. The angiogenesis assay showed that MMI-166 had a suppressive effect on glioma cell-induced angiogenesis. However, MMI-166 did not suppress glioma cell proliferation in the MTT assay. In vivo, MMI-166 suppressed tumour growth in athymic mice implanted orthotropically with T98G cells and showed an inhibitory effect on tumour-induced angiogenesis and tumour growth. This is the first report of the effect of a third generation MMP inhibitor on malignant glioma cells. These results suggest that MMI-166 may have potentially suppressive effects on the invasion and angiogenesis of malignant gliomas

  6. Wnt/β-catenin pathway involvement in ionizing radiation-induced invasion of U87 glioblastoma cells

    International Nuclear Information System (INIS)

    Dong, Zhen; Zhou, Lin; Han, Na; Zhang, Mengxian; Lyu, Xiaojuan

    2015-01-01

    Radiotherapy has been reported to promote the invasion of glioblastoma cells; however, the underlying mechanisms remain unclear. Here, we investigated the role of the Wnt/β-catenin pathway in radiation-induced invasion of glioblastoma cells. U87 cells were irradiated with 3 Gy or sham irradiated in the presence or absence of the Wnt/β-catenin pathway inhibitor XAV 939. Cell invasion was determined by an xCELLigence real-time cell analyser and matrigel invasion assays. The intracellular distribution of β-catenin in U87 cells with or without irradiation was examined by immunofluorescence and Western blotting of nuclear fractions. We next investigated the effect of irradiation on Wnt/β-catenin pathway activity using TOP/FOP flash luciferase assays and quantitative polymerase chain reaction analysis of β-catenin target genes. The expression levels and activities of two target genes, matrix metalloproteinase (MMP)-2 and MMP-9, were examined further by Western blotting and zymography. U87 cell invasiveness was increased significantly by ionizing radiation. Interestingly, ionizing radiation induced nuclear translocation and accumulation of β-catenin. Moreover, we found increased β-catenin/TCF transcriptional activities, followed by up-regulation of downstream genes in the Wnt/β-catenin pathway in irradiated U87 cells. Importantly, inhibition of the Wnt/β-catenin pathway by XAV 939, which promotes degradation of β-catenin, significantly abrogated the pro-invasion effects of irradiation. Mechanistically, XAV 939 suppressed ionizing radiation-triggered up-regulation of MMP-2 and MMP-9, and inhibited the activities of these gelatinases. Our data demonstrate a pivotal role of the Wnt/β-catenin pathway in ionizing radiation-induced invasion of glioblastoma cells, and suggest that targeting β-catenin is a promising therapeutic approach to overcoming glioma radioresistance. (orig.) [de

  7. Nimotuzumab enhances temozolomide?induced growth suppression of glioma cells expressing mutant EGFR in vivo

    OpenAIRE

    Nitta, Yusuke; Shimizu, Saki; Shishido?Hara, Yukiko; Suzuki, Kaori; Shiokawa, Yoshiaki; Nagane, Motoo

    2016-01-01

    Abstract A mutant form of epidermal growth factor receptor (EGFR), EGFRvIII, is common in glioblastoma (GBM) and confers enhanced tumorigenic activity and drug resistance. Nimotuzumab, an anti?EGFR antibody, has shown preclinical and clinical activity to GBM, but its specific activity against EGFRvIII has not been fully investigated. Human glioma U87MG or LNZ308 cells overexpressing either wild?type (wt) EGFR or EGFRvIII were treated with nimotuzumab, temozolomide, or both. Expression and pho...

  8. Poly (ɛ-caprolactone) nanoparticles of carboplatin: Preparation, characterization and in vitro cytotoxicity evaluation in U-87 MG cell lines.

    Science.gov (United States)

    Karanam, Vamshikrishna; Marslin, Gregory; Krishnamoorthy, Balakumar; Chellan, Vijayaraghavan; Siram, Karthik; Natarajan, Tamilselvan; Bhaskar, Balaji; Franklin, Gregory

    2015-06-01

    Carboplatin is a platinum based drug used in the treatment of several malignancies. Due to poor cellular uptake, generally, a larger dose of drug is administered to achieve therapeutic levels, causing harmful side-effects such as hematologic toxicity. In order to enhance the cellular uptake of carboplatin, we have developed carboplatin loaded nanoparticles using the biodegradable polymer poly (ɛ-caprolactone) (PCL). Nanoparticles ranging from the size of 23.77±1.37 to 96.73±2.79 nm with positive zeta potential and moderate entrapment efficiency (54.21±0.98%) were obtained. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) confirmed the spherical morphology and smooth surface of all nanoformulations. The concentrations of PCL and the stabilizer (DMAB) are found to play a role in determining the size and the entrapment efficiency of the nanoparticles. Drug release from nanoparticles followed a biphasic pattern with an initial burst release followed by a sustained release for 10h. Results of in vitro cellular uptake and cytotoxicity studies revealed that carboplatin in the form of PCL-nanoparticles were efficiently up taken and displayed profound cytotoxicity to U-87 MG (human glioma) cells than the free drug. Importantly, unlike the free carboplatin, carboplatin in the form of PCL nanoparticles did not present any haemolytic activity in rat erythrocytes, a major side effect of this chemotherapeutic drug. This suggests that poly (ɛ-caprolactone) nanoencapsulation of carboplatin might be an efficient approach to treat cancer, while reducing carboplatin induced haemolysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. 17-AAG sensitized malignant glioma cells to death-receptor mediated apoptosis.

    Science.gov (United States)

    Siegelin, Markus David; Habel, Antje; Gaiser, Timo

    2009-02-01

    17-AAG is a selective HSP90-inhibitor that exhibited therapeutic activity in cancer. In this study three glioblastoma cell lines (U87, LN229 and U251) were treated with 17-AAG, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or the combination of both. Treatment with subtoxic doses of 17-AAG in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces rapid apoptosis in TRAIL-resistant glioma cells, suggesting that this combined treatment may offer an attractive strategy for treating gliomas. 17-AAG treatment down-regulated survivin through proteasomal degradation. In addition, over-expression of survivin attenuated cytotoxicity induced by the combination of 17-AAG and TRAIL. In summary, survivin is a key regulator of TRAIL-17-AAG mediated cell death in malignant glioma.

  10. Antitumor effects of cannabidiol, a nonpsychoactive cannabinoid, on human glioma cell lines.

    Science.gov (United States)

    Massi, Paola; Vaccani, Angelo; Ceruti, Stefania; Colombo, Arianna; Abbracchio, Maria P; Parolaro, Daniela

    2004-03-01

    Recently, cannabinoids (CBs) have been shown to possess antitumor properties. Because the psychoactivity of cannabinoid compounds limits their medicinal usage, we undertook the present study to evaluate the in vitro antiproliferative ability of cannabidiol (CBD), a nonpsychoactive cannabinoid compound, on U87 and U373 human glioma cell lines. The addition of CBD to the culture medium led to a dramatic drop of mitochondrial oxidative metabolism [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide test] and viability in glioma cells, in a concentration-dependent manner that was already evident 24 h after CBD exposure, with an apparent IC(50) of 25 microM. The antiproliferative effect of CBD was partially prevented by the CB2 receptor antagonist N-[(1S)-endo-1,3,3-trimethylbicyclo[2,2,1]heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528; SR2) and alpha-tocopherol. By contrast, the CB1 cannabinoid receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR141716; SR1), capsazepine (vanilloid receptor antagonist), the inhibitors of ceramide generation, or pertussis toxin did not counteract CBD effects. We also show, for the first time, that the antiproliferative effect of CBD was correlated to induction of apoptosis, as determined by cytofluorimetric analysis and single-strand DNA staining, which was not reverted by cannabinoid antagonists. Finally, CBD, administered s.c. to nude mice at the dose of 0.5 mg/mouse, significantly inhibited the growth of subcutaneously implanted U87 human glioma cells. In conclusion, the nonpsychoactive CBD was able to produce a significant antitumor activity both in vitro and in vivo, thus suggesting a possible application of CBD as an antineoplastic agent.

  11. Single-wall carbon nanohorns (SWNHs) inhibited proliferation of human glioma cells and promoted its apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yunjun [The Military General Hospital of Beijing PLA, Affiliated Bayi Brain Hospital (China); Zhang, Jinqian, E-mail: jingwanghou@yahoo.com.cn [Capital Medical University, Institute of Infectious Diseases, Beijing Ditan Hospital (China); Zhao, Ming [Peking University, Department of Chemical Biology, School of Pharmaceutical Sciences (China); Shi, Zujin [Peking University, Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering (China); Chen, Xin; He, Xihui; Han, Nanyin, E-mail: jingwanghou@sina.com [Peking University, Department of Chemical Biology, School of Pharmaceutical Sciences (China); Xu, Ruxiang, E-mail: everbright999@163.com [The Military General Hospital of Beijing PLA, Affiliated Bayi Brain Hospital (China)

    2013-08-15

    Although single-wall carbon nanohorns (SWNHs) have been demonstrated to accumulate to cytotoxic levels within organs of various animal models and cell types, they have been exploited for cancer therapies. The role of SWNHs in human glioma cell lines was unclear. To address this question, the research about direct role of SWNHs on the growth, proliferation, and apoptosis of human glioma cell lines (U87, U251, and U373) had been performed. Our results indicate that particle size of SWNHs in water is between 342 and 712 nm, the films of SEM show that SWNHs on PS surface are individual particles. SWNHs significantly delayed mitotic entry of human glioma cell lines cells, and inhibited its proliferation in a time- and dose-dependent manner. SWNHs induced a significant increase in G1 phase and inhibition of S phase followed the gradually increasing concentrations. SWNHs in human glioma cell lines cells significantly induced apoptosis followed by their gradually increasing concentrations. The TEM images showed that individual spherical SWNHs particles smaller than 100 nm in diameters were localized inside lysosomes of human glioma cell lines. SWNHs inhibited mitotic entry, growth, and proliferation of human glioma cell lines, and promoted its apoptosis. SWNHs may be a novel opportunity or method for the research on treatment of human glioma.

  12. Single-wall carbon nanohorns (SWNHs) inhibited proliferation of human glioma cells and promoted its apoptosis

    Science.gov (United States)

    Li, Yunjun; Zhang, Jinqian; Zhao, Ming; Shi, Zujin; Chen, Xin; He, Xihui; Han, Nanyin; Xu, Ruxiang

    2013-08-01

    Although single-wall carbon nanohorns (SWNHs) have been demonstrated to accumulate to cytotoxic levels within organs of various animal models and cell types, they have been exploited for cancer therapies. The role of SWNHs in human glioma cell lines was unclear. To address this question, the research about direct role of SWNHs on the growth, proliferation, and apoptosis of human glioma cell lines (U87, U251, and U373) had been performed. Our results indicate that particle size of SWNHs in water is between 342 and 712 nm, the films of SEM show that SWNHs on PS surface are individual particles. SWNHs significantly delayed mitotic entry of human glioma cell lines cells, and inhibited its proliferation in a time- and dose-dependent manner. SWNHs induced a significant increase in G1 phase and inhibition of S phase followed the gradually increasing concentrations. SWNHs in human glioma cell lines cells significantly induced apoptosis followed by their gradually increasing concentrations. The TEM images showed that individual spherical SWNHs particles smaller than 100 nm in diameters were localized inside lysosomes of human glioma cell lines. SWNHs inhibited mitotic entry, growth, and proliferation of human glioma cell lines, and promoted its apoptosis. SWNHs may be a novel opportunity or method for the research on treatment of human glioma.

  13. Sustained Angiopoietin-2 Expression Disrupts Vessel Formation and Inhibits Glioma Growth

    Directory of Open Access Journals (Sweden)

    Ok-Hee Lee

    2006-05-01

    Full Text Available Systematic analyses of the expression of angiogenic regulators in cancer models should yield useful information for the development of novel therapies for malignant gliomas. In this study, we analyzed tumor growth, vascularization, and angiopoietin-2 (Ang2 expression during the development of U-87 MG xenografts. We found that tumoral angiogenesis in this model follows a multistage process characterized by avascular, prolific peripheral angiogenesis, and late vascular phases. On day 4, we observed an area of central necrosis, a peripheral ring of Ang2-positive glioma cells, and reactive Ang2-positive vascular structures in the tumor/brain interface. When the tumor had developed a vascular network, Ang2 was expressed only in peripheral vascular structures. Because Ang2 expression was downmodulated in the late stages of development, probably to maintain a stable tumoral vasculature, we next studied whether sustained Ang2 expression might impair vascular development and, ultimately, tumor growth. Ang2 prevented the formation of capillary-like structures and impaired angiogenesis in a chorioallantoic membrane chicken model. Finally, we tested the effect of sustained Ang2 expression on U-87 MG xenograff development. Ang2 significantly prolonged the survival of intracranial U-87 MG tumor-bearing animals. Examination of Ang2treated xenograffs revealed areas of tumor necrosis and vascular damage. We therefore conclude that deregulated Ang2 expression during gliomagenesis hindered successful angiogenesis and that therapies that sustain Ang2 expression might be effective against malignant gliomas.

  14. Targeting ανβ3 and ανβ5 inhibits photon-induced hypermigration of malignant glioma cells

    International Nuclear Information System (INIS)

    Rieken, Stefan; Habermehl, Daniel; Mohr, Angela; Wuerth, Lena; Lindel, Katja; Weber, Klaus; Debus, Jürgen; Combs, Stephanie E

    2011-01-01

    Sublethal photon irradiation was recently suspected to increase tumor cell motility and promote locoregional recurrence of disease. This study was set up to describe mechanisms underlying increased glioma cell migration through photon irradiation and to analyse the modifiability of photon-altered glioma cell motility by integrin inhibition. Eight μm pore size membranes were coated with vitronectin (VN), collagen I and collagen IV. U87 and Ln229 glioma cells were analysed in migration experiments with and without radiotherapy (RT), serum stimulation and addition of monoclonal antibodies directed to human integrins α ν β 3 and α ν β 5 . Quantitative FACS analysis of integrins was performed in U87 and Ln229 glioma cells following RT. Statistical analysis was performed using Student's t-test. Glioma cell migration is serum-dependent and can be increased by photon RT which leads to enhanced expression of Vn receptor integrins. Blocking of either α ν β 3 or α ν β 5 integrins by antibodies inhibits Vn-based migration of both untreated and photon-irradiated glioma cells. Peripheral glioma cells are at risk of attraction into the adjacent healthy brain by serum components leaking through the blood brain barrier (BBB). Radiation therapy is associated with upregulation of Vn receptor integrins and enhanced glioma cell migration at sublethal doses. This effect can be inhibited by specific integrin blockade. Future therapeutical benefit may be derived from pharmacological integrin inhibition in combination with photon irradiation

  15. Increased betulinic acid induced cytotoxicity and radiosensitivity in glioma cells under hypoxic conditions

    International Nuclear Information System (INIS)

    Bache, Matthias; Taubert, Helge; Vordermark, Dirk; Zschornak, Martin P; Passin, Sarina; Keßler, Jacqueline; Wichmann, Henri; Kappler, Matthias; Paschke, Reinhard; Kaluđerović, Goran N; Kommera, Harish

    2011-01-01

    Betulinic acid (BA) is a novel antineoplastic agent under evaluation for tumor therapy. Because of the selective cytotoxic effects of BA in tumor cells (including gliomas), the combination of this agent with conservative therapies (such as radiotherapy and chemotherapy) may be useful. Previously, the combination of BA with irradiation under hypoxic conditions had never been studied. In this study, the effects of 3 to 30 μM BA on cytotoxicity, migration, the protein expression of PARP, survivin and HIF-1α, as well as radiosensitivity under normoxic and hypoxic conditions were analyzed in the human malignant glioma cell lines U251MG and U343MG. Cytotoxicity and radiosensitivity were analyzed with clonogenic survival assays, migration was analyzed with Boyden chamber assays (or scratch assays) and protein expression was examined with Western blot analyses. Under normoxic conditions, a half maximal inhibitory concentration (IC 50 ) of 23 μM was observed in U251MG cells and 24 μM was observed in U343MG cells. Under hypoxic conditions, 10 μM or 15 μM of BA showed a significantly increased cytotoxicity in U251MG cells (p = 0.004 and p = 0.01, respectively) and U343MG cells (p < 0.05 and p = 0.01, respectively). The combination of BA with radiotherapy resulted in an additive effect in the U343MG cell line under normoxic and hypoxic conditions. Weak radiation enhancement was observed in U251MG cell line after treatment with BA under normoxic conditions. Furthermore, under hypoxic conditions, the incubation with BA resulted in increased radiation enhancement. The enhancement factor, at an irradiation dose of 15 Gy after treatment with 10 or 15 μM BA, was 2.20 (p = 0.02) and 4.50 (p = 0.03), respectively. Incubation with BA led to decreased cell migration, cleavage of PARP and decreased expression levels of survivin in both cell lines. Additionally, BA treatment resulted in a reduction of HIF-1α protein under hypoxic conditions. Our results suggest that BA is capable

  16. MicroRNA-223 Enhances Radiation Sensitivity of U87MG Cells In Vitro and In Vivo by Targeting Ataxia Telangiectasia Mutated

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Liping; Zhu, Ji [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Zaorsky, Nicholas G. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Deng, Yun [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Wu, Xingzhong [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai (China); Liu, Yong [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Liu, Fangqi; Cai, Guoxiang; Gu, Weilie [Department of Colorectal Cancer, Fudan University, Shanghai Cancer Center, Shanghai (China); Shen, Lijun [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Zhang, Zhen, E-mail: zhenzhang6@hotmail.com [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China)

    2014-03-15

    Purpose: Ataxia telangiectasia mutated (ATM) protein is important in the DNA damage response because it repairs radiation-induced damage in cancers. We examined the effect of microRNA-223 (miR-223), a regulator of ATM expression, on radiation sensitivity of cancer cells. Methods and Materials: Human embryonic kidney 293 T (293T) cells were infected with pLL3.7-miR-223 plasmid to generate the pLL3.7-miR-223 and -empty virus (EV) lentivirus (miR-223 and EV). A dual luciferase assay in which the reporter contained wild-type 3′ untranslated region (UTR) of ATM was performed. U87MG cells were infected with miR-223 or EV to establish the overexpressed stable cell lines (U87-223 or U87-EV, respectively). Cells were irradiated in vitro, and dose enhancement ratios at 2 Gy (DER{sub 2}) were calculated. Hind legs of BALB/c athymic mice were injected with U87-223 or U87-EV cells; after 2 weeks, half of the tumors were irradiated. Tumor volumes were tracked for a total of 5 weeks. Results: The dual luciferase reporter assay showed a significant reduction in luciferase activity of 293T cells cotransfected with miR-223 and the ATM 3′UTR compared to that in EV control. Overexpression of miR-223 in U87MG cells showed that ATM expression was significantly downregulated in the U87-223 cells compared to that in U87-EV (ATM/β-actin mRNA 1.0 vs 1.5, P<.05). U87-223 cells were hypersensitive to radiation compared to U87-EV cells in vitro (DER{sub 2} = 1.32, P<.01). Mice injected with miR-223-expressing tumors had almost the same tumors after 3 weeks (1.5 cm{sup 3} vs 1.7 cm{sup 3}). However, irradiation significantly decreased tumor size in miR-223-expressing tumors compared to those in controls (0.033 cm{sup 3} vs 0.829 cm{sup 3}). Conclusions: miR-223 overexpression downregulates ATM expression and sensitizes U87 cells to radiation in vitro and in vivo. MicroRNA-223 may be a novel cancer-targeting therapy, although its cancer- and patient-specific roles are

  17. JS-K, a glutathione S-transferase-activated nitric oxide donor with antineoplastic activity in malignant gliomas.

    Science.gov (United States)

    Weyerbrock, Astrid; Osterberg, Nadja; Psarras, Nikolaos; Baumer, Brunhilde; Kogias, Evangelos; Werres, Anna; Bette, Stefanie; Saavedra, Joseph E; Keefer, Larry K; Papazoglou, Anna

    2012-02-01

    Glutathione S-transferases (GSTs) control multidrug resistance and are upregulated in many cancers, including malignant gliomas. The diazeniumdiolate JS-K generates nitric oxide (NO) on enzymatic activation by glutathione and GST, showing promising NO-based anticancer efficacy. To evaluate the role of NO-based antitumor therapy with JS-K in U87 gliomas in vitro and in vivo. U87 glioma cells and primary glioblastoma cell lines were exposed to JS-K and a variety of inhibitors to study cell death by necrosis, apoptosis, and other mechanisms. GST expression was evaluated by immunocytochemistry, polymerase chain reaction, and Western blot, and NO release from JS-K was studied with a NO assay. The growth-inhibitory effect of JS-K was studied in a U87 xenograft model in vivo. Dose-dependent inhibition of cell proliferation was observed in human U87 glioma cells and primary glioblastoma cells in vitro. Cell death was partially induced by caspase-dependent apoptosis, which could be blocked by Z-VAD-FMK and Q-VD-OPH. Inhibition of GST by sulfasalazine, cGMP inhibition by ODQ, and MEK1/2 inhibition by UO126 attenuated the antiproliferative effect of JS-K, suggesting the involvement of various intracellular death signaling pathways. Response to JS-K correlated with mRNA and protein expression of GST and the amount of NO released by the glioma cells. Growth of U87 xenografts was reduced significantly, with immunohistochemical evidence for increased necrosis and apoptosis and reduced proliferation. Our data show for the first time the potent antiproliferative effect of JS-K in gliomas in vitro and in vivo. These findings warrant further investigation of this novel NO-releasing prodrug in gliomas.

  18. Enhancement of Temozolomide and radiation induced damage in malignant glioma cell lines by 2-deoxy-D-glucose

    International Nuclear Information System (INIS)

    Kumari, Kalyani; Shyam, Sai; Chandrasekhar Sagar, B.K.; Jagath Lal, G.; Kalia, Vijay Kumar

    2014-01-01

    Malignant Gliomas are the most common and aggressive CNS tumors. The current standard treatment includes surgery, followed by Temozolomide (TMZ)-Radiotherapy. It leads to increased survival as compared to radiotherapy alone. However hematological toxicities are also increased by the combination treatments. Therefore, it is important to carry out further preclinical studies, to develop more effective treatment for these tumors. 2-deoxy-D-Glucose (2-DG), an inhibitor of glycolytic energy metabolism, has been shown earlier to differentially inhibit growth and survival of tumor cells in vitro. It also increases tumor regression in experimental models; and has been used in a few clinical studies as radiosensitizer. In the present study, effects of combining 2-DG with TMZ on radiation induced damage were studied in established malignant glioma cell lines (U251MG and U87MG); and primary cultures derived from malignant glioma biopsies. Exponentially growing cells were exposed to drugs and radiation. Drugs were removed 4 hours later and cultures were processed further for different assays of damage. Effects on proliferation response, viability and total cellular damage (TCD; micronuclei + apoptosis) were studied after post-treatment growth for 1, 2, 4 or 6 days. Our results showed that combination of 2-DG with TMZ ± Radiation significantly inhibited tumor cell proliferation up to 6 days, at low drug concentrations in primary as well as in established cell lines. The TCD at 24 and 48 hours after Gamma irradiation was also significantly increased by the combination of drugs as compared to individual treatments. Experiments to study proliferation kinetics by flow cytometry and cell survival are in progress. These studies suggest that 2-DG significantly enhances the cytotoxic effect of TMZ + radiation without increasing toxic side effects. Therefore, combining 2-DG with TMZ+ radiation therapy could be a potential strategy to improve the therapeutic outcome for Malignant

  19. 3-Bromopyruvate inhibits cell proliferation and induces apoptosis in CD133+ population in human glioma.

    Science.gov (United States)

    Xu, Dong-Qiang; Tan, Xiao-Yu; Zhang, Bao-Wei; Wu, Tao; Liu, Ping; Sun, Shao-Jun; Cao, Yin-Guang

    2016-03-01

    The study was aimed to investigate the role of 3-bromopyruvate in inhibition of CD133+ U87 human glioma cell population growth. The results demonstrated that 3-bromopyruvate inhibited the viability of both CD133+ and parental cells derived from U87 human glioma cell line. However, the 3-bromopyruvate-induced inhibition in viability was more prominent in CD133+ cells at 10 μM concentration after 48 h. Treatment of CD133+ cells with 3-bromopyruvate caused reduction in cell population and cell size, membrane bubbling, and degradation of cell membranes. Hoechst 33258 staining showed condensation of chromatin material and fragmentation of DNA in treated CD133+ cells after 48 h. 3-Bromopyruvate inhibited the migration rate of CD133+ cells significantly compared to the parental cells. Flow cytometry revealed that exposure of CD133+ cells to 3-bromopyruvate increased the cell population in S phase from 24.5 to 37.9 % with increase in time from 12 to 48 h. In addition, 3-bromopyruvate significantly enhanced the expression of Bax and cleaved caspase 3 in CD133+ cells compared to the parental cells. Therefore, 3-bromopyruvate is a potent chemotherapeutic agent for the treatment of glioma by targeting stem cells selectively.

  20. Human U87 astrocytoma cell invasion induced by interaction of βig-h3 with integrin α5β1 involves calpain-2.

    Directory of Open Access Journals (Sweden)

    Jie Ma

    Full Text Available It is known that βig-h3 is involved in the invasive process of many types of tumors, but its mechanism in glioma cells has not been fully clarified. Using immunofluorescent double-staining and confocal imaging analysis, and co-immunoprecipitation assays, we found that βig-h3 co-localized with integrin α5β1 in U87 cells. We sought to elucidate the function of this interaction by performing cell invasion assays and gelatin zymography experiments. We found that siRNA knockdowns of βig-h3 and calpain-2 impaired cell invasion and MMP secretion. Moreover, βig-h3, integrins and calpain-2 are known to be regulated by Ca(2+, and they are also involved in tumor cell invasion. Therefore, we further investigated if calpain-2 was relevant to βig-h3-integrin α5β1 interaction to affect U87 cell invasion. Our data showed that βig-h3 co-localized with integrin α5β1 to enhance the invasion of U87 cells, and that calpain-2, is involved in this process, acting as a downstream molecule.

  1. Honokiol induces autophagic cell death in malignant glioma through reactive oxygen species-mediated regulation of the p53/PI3K/Akt/mTOR signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chien-Ju [Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan (China); Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan (China); Chen, Ta-Liang [Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan (China); Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan (China); Tseng, Yuan-Yun [Department of Neurosurgery, Shuang-Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Wu, Gong-Jhe [Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan (China); Hsieh, Ming-Hui [Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan (China); Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan (China); Lin, Yung-Wei [Brain Disease Research Center, Taipei Medical University Wan-Fang Hospital, Taipei, Taiwan (China); Chen, Ruei-Ming, E-mail: rmchen@tmu.edu.tw [Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan (China); Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan (China); Brain Disease Research Center, Taipei Medical University Wan-Fang Hospital, Taipei, Taiwan (China); Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan (China)

    2016-08-01

    Honokiol, an active constituent extracted from the bark of Magnolia officinalis, possesses anticancer effects. Apoptosis is classified as type I programmed cell death, while autophagy is type II programmed cell death. We previously proved that honokiol induces cell cycle arrest and apoptosis of U87 MG glioma cells. Subsequently in this study, we evaluated the effect of honokiol on autophagy of glioma cells and examined the molecular mechanisms. Administration of honokiol to mice with an intracranial glioma increased expressions of cleaved caspase 3 and light chain 3 (LC3)-II. Exposure of U87 MG cells to honokiol also induced autophagy in concentration- and time-dependent manners. Results from the addition of 3-methyladenine, an autophagy inhibitor, and rapamycin, an autophagy inducer confirmed that honokiol-induced autophagy contributed to cell death. Honokiol decreased protein levels of PI3K, phosphorylated (p)-Akt, and p-mammalian target of rapamycin (mTOR) in vitro and in vivo. Pretreatment with a p53 inhibitor or transfection with p53 small interfering (si)RNA suppressed honokiol-induced autophagy by reversing downregulation of p-Akt and p-mTOR expressions. In addition, honokiol caused generation of reactive oxygen species (ROS), which was suppressed by the antioxidant, vitamin C. Vitamin C also inhibited honokiol-induced autophagic and apoptotic cell death. Concurrently, honokiol-induced alterations in levels of p-p53, p53, p-Akt, and p-mTOR were attenuated following vitamin C administration. Taken together, our data indicated that honokiol induced ROS-mediated autophagic cell death through regulating the p53/PI3K/Akt/mTOR signaling pathway. - Highlights: • Exposure of mice with intracranial gliomas to honokiol induces cell apoptosis and autophagy. • Honokiol triggers autophagy of human glioma cells via the PISK/AKT/mTOR signaling pathway. • P53 induces autophagy via regulating the AKT/mTOR pathway in honokiol-treated glioma cells. • ROS participates

  2. T-lymphokine-activated killer cell-originated protein kinase (TOPK) as a prognostic factor and a potential therapeutic target in glioma

    Science.gov (United States)

    Duan, Qiuhong; Yuan, Ping; Xue, Peipei; Lu, Hui; Yan, Meng; Guo, Dongsheng; Xu, Sanpeng; Zhang, Xiaohui; Lin, Xuan; Wang, Yong; Dogan, Soner; Zhang, Jianmin; Zhu, Feng; Ke, Changshu; Liu, Lin

    2018-01-01

    TOPK is overexpressed in various types of cancer and associated with poor outcomes in different types of cancer. In this study, we first found that the expression of T-lymphokine-activated killer cell-originated protein kinase (TOPK) was significantly higher in Grade III or Grade IV than that in Grade II in glioma (P = 0.007 and P < 0.001, respectively). Expression of TOPK was positively correlated with Ki67 (P < 0.001). Knockdown of TOPK significantly inhibited cell growth, colony formation and increased sensitivities to temozolomide (TMZ) in U-87 MG or U-251 cells, while TOPK overexpression promoted cell growth and colony formation in Hs 683 or A-172 cells. Glioma patients expressing high levels of TOPK have poor survival compared with those expressing low levels of TOPK in high-grade or low-grade gliomas (hazard ratio = 0.2995; 95% CI, 0.1262 to 0.7108; P = 0.0063 and hazard ratio = 0.1509; 95% CI, 0.05928 to 0.3842; P < 0.0001, respectively). The level of TOPK was low in TMZ-sensitive patients compared with TMZ-resistant patients (P = 0.0056). In TMZ-resistant population, patients expressing high TOPK have two months’ shorter survival time than those expressing low TOPK. Our findings demonstrated that TOPK might represent as a promising prognostic and predictive factor and potential therapeutic target for glioma. PMID:29487691

  3. TRIM8 downregulation in glioma affects cell proliferation and it is associated with patients survival

    International Nuclear Information System (INIS)

    Micale, Lucia; Fusco, Carmela; Fontana, Andrea; Barbano, Raffaela; Augello, Bartolomeo; De Nittis, Pasquelena; Copetti, Massimiliano; Pellico, Maria Teresa; Mandriani, Barbara; Cocciadiferro, Dario; Parrella, Paola; Fazio, Vito Michele; Dimitri, Lucia Maria Cecilia; D’Angelo, Vincenzo; Novielli, Chiara; Larizza, Lidia; Daga, Antonio; Merla, Giuseppe

    2015-01-01

    Human gliomas are a heterogeneous group of primary malignant brain tumors whose molecular pathogenesis is not yet solved. In this regard, a major research effort has been directed at identifying novel specific glioma-associated genes. Here, we investigated the effect of TRIM8 gene in glioma. TRIM8 transcriptional level was profiled in our own glioma cases collection by qPCR and confirmed in the independent TCGA glioma cohort. The association between TRIM8 expression and Overall Survival and Progression-free Survival in TCGA cohort was determined by using uni-multivariable Cox regression analysis. The effect of TRIM8 on patient glioma cell proliferation was evaluated by performing MTT and clonogenic assays. The mechanisms causing the reduction of TRIM8 expression were explored by using qPCR and in vitro assays. We showed that TRIM8 expression correlates with unfavorable clinical outcome in glioma patients. We found that a restored TRIM8 expression induced a significant reduction of clonogenic potential in U87MG and patient’s glioblastoma cells. Finally we provide experimental evidences showing that miR-17 directly targets the 3′ UTR of TRIM8 and post-transcriptionally represses the expression of TRIM8. Our study provides evidences that TRIM8 may participate in the carcinogenesis and progression of glioma and that the transcriptional repression of TRIM8 might have potential value for predicting poor prognosis in glioma patients. The online version of this article (doi:10.1186/s12885-015-1449-9) contains supplementary material, which is available to authorized users

  4. Wnt/β-catenin pathway involvement in ionizing radiation-induced invasion of U87 glioblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Zhen [Huazhong University of Science and Technology, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Wuhan (China); Zhou, Lin [Huazhong University of Science and Technology, Department of Histoembryology, Tongji Medical College, Wuhan (China); Han, Na; Zhang, Mengxian [Huazhong University of Science and Technology, Department of Oncology, Tongji Hospital, Tongji Medical College, Wuhan (China); Lyu, Xiaojuan [Huazhong University of Science and Technology, Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Wuhan (China)

    2015-08-15

    Radiotherapy has been reported to promote the invasion of glioblastoma cells; however, the underlying mechanisms remain unclear. Here, we investigated the role of the Wnt/β-catenin pathway in radiation-induced invasion of glioblastoma cells. U87 cells were irradiated with 3 Gy or sham irradiated in the presence or absence of the Wnt/β-catenin pathway inhibitor XAV 939. Cell invasion was determined by an xCELLigence real-time cell analyser and matrigel invasion assays. The intracellular distribution of β-catenin in U87 cells with or without irradiation was examined by immunofluorescence and Western blotting of nuclear fractions. We next investigated the effect of irradiation on Wnt/β-catenin pathway activity using TOP/FOP flash luciferase assays and quantitative polymerase chain reaction analysis of β-catenin target genes. The expression levels and activities of two target genes, matrix metalloproteinase (MMP)-2 and MMP-9, were examined further by Western blotting and zymography. U87 cell invasiveness was increased significantly by ionizing radiation. Interestingly, ionizing radiation induced nuclear translocation and accumulation of β-catenin. Moreover, we found increased β-catenin/TCF transcriptional activities, followed by up-regulation of downstream genes in the Wnt/β-catenin pathway in irradiated U87 cells. Importantly, inhibition of the Wnt/β-catenin pathway by XAV 939, which promotes degradation of β-catenin, significantly abrogated the pro-invasion effects of irradiation. Mechanistically, XAV 939 suppressed ionizing radiation-triggered up-regulation of MMP-2 and MMP-9, and inhibited the activities of these gelatinases. Our data demonstrate a pivotal role of the Wnt/β-catenin pathway in ionizing radiation-induced invasion of glioblastoma cells, and suggest that targeting β-catenin is a promising therapeutic approach to overcoming glioma radioresistance. (orig.) [German] Studien haben gezeigt, dass eine Strahlentherapie die Invasivitaet von

  5. Saponin 6 derived from Anemone taipaiensis induces U87 human malignant glioblastoma cell apoptosis via regulation of Fas and Bcl‑2 family proteins.

    Science.gov (United States)

    Ji, Chen-Chen; Tang, Hai-Feng; Hu, Yi-Yang; Zhang, Yun; Zheng, Min-Hua; Qin, Hong-Yan; Li, San-Zhong; Wang, Xiao-Yang; Fei, Zhou; Cheng, Guang

    2016-07-01

    Glioblastoma multiforme (GBM) is the most common and aggressive type of brain tumor, and is associated with a poor prognosis. Saponin 6, derived from Anemone taipaiensis, exerts potent cytotoxic effects against the human hepatocellular carcinoma HepG2 cell line and the human promyelocytic leukemia HL‑60 cell line; however, the effects of saponin 6 on glioblastoma remain unknown. The present study aimed to evaluate the effects of saponin 6 on human U87 malignant glioblastoma (U87 MG) cells. The current study revealed that saponin 6 induced U87 MG cell death in a dose‑ and time‑dependent manner, with a half maximal inhibitory concentration (IC50) value of 2.83 µM after treatment for 48 h. However, saponin 6 was needed to be used at a lesser potency in HT‑22 cells, with an IC50 value of 6.24 µM. Cell apoptosis was assessed by flow cytometry using Annexin V‑fluorescein isothiocyanate/propidium iodide double staining. DNA fragmentation and alterations in nuclear morphology were examined by terminal deoxynucleotidyl transferase‑mediated dUTP nick end labeling and transmission electron microscopy, respectively. The present study demonstrated that treatment with saponin 6 induced cell apoptosis in U87 MG cells, and resulted in DNA fragmentation and nuclear morphological alterations typical of apoptosis. In addition, flow cytometric analysis revealed that saponin 6 was able to induce cell cycle arrest. The present study also demonstrated that saponin 6‑induced apoptosis of U87 MG cells was attributed to increases in the protein expression levels of Fas, Fas ligand, and cleaved caspase‑3, ‑8 and ‑9, and decreases in the levels of B‑cell lymphoma 2. The current study indicated that saponin 6 may exhibit selective cytotoxicity toward U87 MG cells by activating apoptosis via the extrinsic and intrinsic pathways. Therefore, saponin 6 derived from A. taipaiensis may possess therapeutic potential for the treatment of GBM.

  6. HIF-1α inhibition by siRNA or chetomin in human malignant glioma cells: effects on hypoxic radioresistance and monitoring via CA9 expression

    Directory of Open Access Journals (Sweden)

    Bache Matthias

    2010-11-01

    Full Text Available Abstract Background Hypoxia induces activation of the HIF-1 pathway and is an essential characteristic of malignant gliomas. Hypoxia has been linked to tumor progression, therapy resistance and poor prognosis. However, little is known about the impact of HIF-1α inhibition on radioresistance of malignant glioma. Methods In this study, we investigated the effects of the inhibition of HIF-1α on cell survival and radiosensitivity in U251MG and U343MG glioma cells, using two different strategies. HIF-1α inhibition was achieved by siRNA targeting of HIF-1α or via chetomin, a disruptor of interactions between HIF-1α and p300. The inhibition of the HIF-1 pathway was monitored by quantitative real-time PCR and Western blot analyses of the expression levels of HIF-1α and CA9. CA9 expression was investigated as a potential indicator of the efficacy of HIF-1 inhibition and the resulting radiosensitivity of malignant glioma cell lines was determined by clonogenic assay after irradiation under normoxic (2-10 Gy or hypoxic (2-15 Gy conditions. Results Although siRNA and chetomin show distinct modes of action, both attenuated the hypoxia-induced radioresistance of malignant glioma cell lines U251MG (DMF10: 1.35 and 1.18 and U343MG (DMF10: 1.78 and 1.48. However, siRNA and chetomin showed diverse effects on radiosensitivity under normoxic conditions in U251MG (DMF10: 0.86 and 1.35 and U343MG (DMF10: 1.33 and 1.02 cells. Conclusions Results from this in vitro study suggest that inhibition of HIF-1α is a promising strategy to sensitize human malignant gliomas to radiotherapy and that CA9 could serve as an indicator of effective HIF-1-related radiosensitization.

  7. Saponin B, a novel cytostatic compound purified from Anemone taipaiensis, induces apoptosis in a human glioblastoma cell line.

    Science.gov (United States)

    Wang, Yuangang; Tang, Haifeng; Zhang, Yun; Li, Juan; Li, Bo; Gao, Zhenhui; Wang, Xiaoyang; Cheng, Guang; Fei, Zhou

    2013-11-01

    Glioblastoma multiforme (GBM) is one of the most common malignant brain tumors. Saponin B, a novel compound isolated from the medicinal plant, Anemone taipaiensis, has been found to have a strong time- and dose-dependent cytostatic effect on human glioma cells and to suppress the growth of U87MG GBM cells. In this study, we investigated whether saponin B induces the apoptosis of glioblastoma cells and examined the underlying mechanism(s) of action of saponin B. Saponin B significantly suppressed U87MG cell proliferation. Flow cytometric analysis of DNA in the U87MG cells confirmed that saponin B blocked the cell cycle at the S phase. Furthermore, treatment of the U87MG cells with saponin B induced chromatin condensation and led to the formation of apoptotic bodies, as observed under a fluorescence microscope, and Annexin V/PI assay further suggested that phosphatidylserine (PS) externalization was apparent at higher drug concentrations. Treatment with saponin B activated the receptor-mediated pathway of apoptosis, as western blot analysis revealed the activation of Fas-l. Saponin B increased the Bax and caspase-3 ratio and decreased the protein expression of Bcl-2. The results from the present study demonstrate that the novel compound, saponin B, effectively induces the apoptosis of GBM cells and inhibits glioma cell growth and survival. Therefore, saponin B may be a potential candidate for the development of novel cancer therapeutics with antitumor activity against gliomas.

  8. A choline derivate-modified nanoprobe for glioma diagnosis using MRI

    Science.gov (United States)

    Li, Jianfeng; Huang, Shixian; Shao, Kun; Liu, Yang; An, Sai; Kuang, Yuyang; Guo, Yubo; Ma, Haojun; Wang, Xuxia; Jiang, Chen

    2013-04-01

    Gadolinium (Gd) chelate contrast-enhanced magnetic resonance imaging (MRI) is a preferred method of glioma detection and preoperative localisation because it offers high spatial resolution and non-invasive deep tissue penetration. Gd-based contrast agents, such as Gd-diethyltriaminepentaacetic acid (DTPA-Gd, Magnevist), are widely used clinically for tumor diagnosis. However, the Gd-based MRI approach is limited for patients with glioma who have an uncompromised blood-brain barrier (BBB). Moreover, the rapid renal clearance and non-specificity of such contrast agents further hinders their prevalence. We present a choline derivate (CD)-modified nanoprobe with BBB permeability, glioma specificity and a long blood half-life. Specific accumulation of the nanoprobe in gliomas and subsequent MRI contrast enhancement are demonstrated in vitro in U87 MG cells and in vivo in a xenograft nude model. BBB and glioma dual targeting by this nanoprobe may facilitate precise detection of gliomas with an uncompromised BBB and may offer better preoperative and intraoperative tumor localization.

  9. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    Directory of Open Access Journals (Sweden)

    Mao Xinggang

    2010-12-01

    Full Text Available Abstract Background Boron neutron capture therapy (BNCT is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE of BNCT, γ-ray and reactor neutron irradiation. Methods The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical University (FMMU in China. Human glioma cells (the U87, U251, and SHG44 cell lines were irradiated by neutron beams at the XAPR or [60Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [60Co] γ-rays; Group C included cells treated with 8 Gy of [60Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM. The apoptosis rate was detected by flow cytometer (FCM. The level of Bcl-2 and Bax protein was measured by western blot analysis. Results Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [60Co] γ-rays (P 60Co] γ-rays (P P Conclusions Compared with ��-ray and reactor neutron irradiation, a higher RBE can be achieved upon treatment of glioma cells with BNCT. Glioma cell apoptosis induced by

  10. Kaurene diterpene induces apoptosis in U87 human malignant glioblastoma cells by suppression of anti-apoptotic signals and activation of cysteine proteases

    Energy Technology Data Exchange (ETDEWEB)

    Lizarte, F.S. Neto; Tirapelli, D.P.C. [Universidade de São Paulo, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Ambrosio, S.R. [Universidade de Franca, Núcleo de Pesquisa em Ciências e Tecnologia, Franca, SP (Brazil); Tirapelli, C.R. [Universidade de São Paulo, Laboratório de Farmacologia, Departamento de Enfermagem Psiquiátrica e Ciências Humanas, Escola de Enfermagem de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Oliveira, F.M. [Universidade de São Paulo, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Novais, P.C. [Universidade de São Paulo, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Peria, F.M.; Oliveira, H.F. [Universidade de São Paulo, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Carlotti, C.G. Junior; Tirapelli, L.F. [Universidade de São Paulo, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil)

    2013-01-11

    Gliomas are the most common and malignant primary brain tumors in humans. Studies have shown that classes of kaurene diterpene have anti-tumor activity related to their ability to induce apoptosis. We investigated the response of the human glioblastoma cell line U87 to treatment with ent-kaur-16-en-19-oic acid (kaurenoic acid, KA). We analyzed cell survival and the induction of apoptosis using flow cytometry and annexin V staining. Additionally, the expression of anti-apoptotic (c-FLIP and miR-21) and apoptotic (Fas, caspase-3 and caspase-8) genes was analyzed by relative quantification (real-time PCR) of mRNA levels in U87 cells that were either untreated or treated with KA (30, 50, or 70 µM) for 24, 48, and 72 h. U87 cells treated with KA demonstrated reduced viability, and an increase in annexin V- and annexin V/PI-positive cells was observed. The percentage of apoptotic cells was 9% for control cells, 26% for cells submitted to 48 h of treatment with 50 µM KA, and 31% for cells submitted to 48 h of treatment with 70 µM KA. Similarly, in U87 cells treated with KA for 48 h, we observed an increase in the expression of apoptotic genes (caspase-8, -3) and a decrease in the expression of anti-apoptotic genes (miR-21 and c-FLIP). KA possesses several interesting properties and induces apoptosis through a unique mechanism. Further experiments will be necessary to determine if KA may be used as a lead compound for the development of new chemotherapeutic drugs for the treatment of primary brain tumors.

  11. Kaurene diterpene induces apoptosis in U87 human malignant glioblastoma cells by suppression of anti-apoptotic signals and activation of cysteine proteases

    International Nuclear Information System (INIS)

    Lizarte, F.S. Neto; Tirapelli, D.P.C.; Ambrosio, S.R.; Tirapelli, C.R.; Oliveira, F.M.; Novais, P.C.; Peria, F.M.; Oliveira, H.F.; Carlotti, C.G. Junior; Tirapelli, L.F.

    2013-01-01

    Gliomas are the most common and malignant primary brain tumors in humans. Studies have shown that classes of kaurene diterpene have anti-tumor activity related to their ability to induce apoptosis. We investigated the response of the human glioblastoma cell line U87 to treatment with ent-kaur-16-en-19-oic acid (kaurenoic acid, KA). We analyzed cell survival and the induction of apoptosis using flow cytometry and annexin V staining. Additionally, the expression of anti-apoptotic (c-FLIP and miR-21) and apoptotic (Fas, caspase-3 and caspase-8) genes was analyzed by relative quantification (real-time PCR) of mRNA levels in U87 cells that were either untreated or treated with KA (30, 50, or 70 µM) for 24, 48, and 72 h. U87 cells treated with KA demonstrated reduced viability, and an increase in annexin V- and annexin V/PI-positive cells was observed. The percentage of apoptotic cells was 9% for control cells, 26% for cells submitted to 48 h of treatment with 50 µM KA, and 31% for cells submitted to 48 h of treatment with 70 µM KA. Similarly, in U87 cells treated with KA for 48 h, we observed an increase in the expression of apoptotic genes (caspase-8, -3) and a decrease in the expression of anti-apoptotic genes (miR-21 and c-FLIP). KA possesses several interesting properties and induces apoptosis through a unique mechanism. Further experiments will be necessary to determine if KA may be used as a lead compound for the development of new chemotherapeutic drugs for the treatment of primary brain tumors

  12. Recombinant epidermal growth factor-like domain-1 from coagulation factor VII functionalized iron oxide nanoparticles for targeted glioma magnetic resonance imaging.

    Science.gov (United States)

    Liu, Heng; Chen, Xiao; Xue, Wei; Chu, Chengchao; Liu, Yu; Tong, Haipeng; Du, Xuesong; Xie, Tian; Liu, Gang; Zhang, Weiguo

    The highly infiltrative and invasive nature of glioma cells often leads to blurred tumor margins, resulting in incomplete tumor resection and tumor recurrence. Accurate detection and precise delineation of glioma help in preoperative delineation, surgical planning and survival prediction. In this study, recombinant epidermal growth factor-like domain-1, derived from human coagulation factor VII, was conjugated to iron oxide nanoparticles (IONPs) for targeted glioma magnetic resonance (MR) imaging. The synthesized EGF1-EGFP-IONPs exhibited excellent targeting ability toward tissue factor (TF)-positive U87MG cells and human umbilical vein endothelial cells in vitro, and demonstrated persistent and efficient MR contrast enhancement up to 12 h for preclinical glioma models with high targeting specificity in vivo. They hold great potential for clinical translation and developing targeted theranostics against brain glioma.

  13. PEGylated Polyamidoamine dendrimer conjugated with tumor homing peptide as a potential targeted delivery system for glioma.

    Science.gov (United States)

    Jiang, Yan; Lv, Lingyan; Shi, Huihui; Hua, Yabing; Lv, Wei; Wang, Xiuzhen; Xin, Hongliang; Xu, Qunwei

    2016-11-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary central nervous system (CNS) tumor with a short survival time. The failure of chemotherapy is ascribed to the low transport of chemotherapeutics across the Blood Brain Tumor Barrier (BBTB) and poor penetration into tumor tissue. In order to overcome the two barriers, small nanoparticles with active targeted capability are urgently needed for GBM drug delivery. In this study, we proposed PEGylated Polyamidoamine (PAMAM) dendrimer nanoparticles conjugated with glioma homing peptides (Pep-1) as potential glioma targeting delivery system (Pep-PEG-PAMAM), where PEGylated PAMAM dendrimer nanoparticle was utilized as carrier due to its small size and perfect penetration into tumor and Pep-1 was used to overcome BBTB via interleukin 13 receptor α2 (IL-13Rα2) mediated endocytosis. The preliminary availability and safety of Pep-PEG-PAMAM as a nanocarrier for glioma was evaluated. In vitro results indicated that a significantly higher amount of Pep-PEG-PAMAM was endocytosed by U87 MG cells. In vivo fluorescence imaging of U87MG tumor-bearing mice confirmed that the fluorescence intensity at glioma site of targeted group was 2.02 folds higher than that of untargeted group (**p<0.01), and glioma distribution experiment further revealed that Pep-PEG-PAMAM exhibited a significantly enhanced accumulation and improved penetration at tumor site. In conclusion, Pep-1 modified PAMAM was a promising nanocarrier for targeted delivery of brain glioma. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    International Nuclear Information System (INIS)

    Wang, Peng; Zhen, Haining; Jiang, Xinbiao; Zhang, Wei; Cheng, Xin; Guo, Geng; Mao, Xinggang; Zhang, Xiang

    2010-01-01

    Boron neutron capture therapy (BNCT) is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE) of BNCT, γ-ray and reactor neutron irradiation. The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR) and γ-rays were obtained from [ 60 Co] γ source of the Fourth Military Medical University (FMMU) in China. Human glioma cells (the U87, U251, and SHG44 cell lines) were irradiated by neutron beams at the XAPR or [ 60 Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [ 60 Co] γ-rays; Group C included cells treated with 8 Gy of [ 60 Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine)-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT) cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM). The apoptosis rate was detected by flow cytometer (FCM). The level of Bcl-2 and Bax protein was measured by western blot analysis. Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [ 60 Co] γ-rays (P < 0.01). Nuclear condensation was determined using both a fluorescence technique and electron microscopy in all cell lines treated with BPA-BNCT. Furthermore, the cellular apoptotic rates in Group D and Group E treated with

  15. The prosurvival role of autophagy in Resveratrol-induced cytotoxicity in human U251 glioma cells

    International Nuclear Information System (INIS)

    Li, Jun; Qin, Zhenghong; Liang, Zhongqin

    2009-01-01

    Previous study reported that resveratrol has anti-tumor activity. In this study, we investigated the involvement of autophagy in the resveratrol-induced apoptotic death of human U251 glioma cells. The growth inhibition of U251 cells induced by resveratrol was assessed with methyl thiazolyl tetrazolium (MTT). The activation of autophagy and proapoptotic effect were characterized by monodansylcadaverine labeling and Hoechst stain, respectively. Mitochondrialtransmembrane potential (ΔΨm) was measured as a function of drug treatment using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1). The role of autophagy and apoptosis in the resveratrol-induced death of U251 cells was assessed using autophagic and caspase inhibitors. Immunofluorescence, flow cytometry, and Western blot analysis were used to study the apoptotic and autophagic mechanisms. Methyl thiazolyl tetrazolium (MTT) assays indicated that resveratrol decreased the viability of U251 cells in a dose- and time-dependent manner. Flow cytometry analysis indicated that resveratrol increased cell population at sub-G1 phase, an index of apoptosis. Furthermore, resveratrol-induced cell death was associated with a collapse of the mitochondrial membrane potential. The pan-caspase inhibitor Z-VAD-fmk suppressed resveratrol-induced U251 cell death. Resveratrol stimulated autophagy was evidenced by punctuate monodansylcadaverine(MDC) staining and microtubule-associated protein light chain 3 (LC3) immunoreactivty. Resveratrol also increased protein levels of beclin 1 and membrane form LC3 (LC3-II). Autophagy inhibitors 3-methylademine (3-MA) and bafilomycin A1 sensitized the cytotoxicity of resveratrol. Together, these findings indicate that resveratrol induces autophagy in human U251 glioma cells and autophagy suppressed resveratrol-induced apoptosis. This study thus suggests that autophagy inhibitors can increase the cytotoxicity of resveratrol to glioma cells

  16. The role of drebrin in glioma migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Terakawa, Yuzo [The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario (Canada); Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka (Japan); Agnihotri, Sameer; Golbourn, Brian; Nadi, Mustafa; Sabha, Nesrin; Smith, Christian A. [The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario (Canada); Croul, Sidney E. [The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario (Canada); Division of Neuropathology, University Health Network, Department of Laboratory Medicine and Pathobiology (Canada); Rutka, James T., E-mail: james.rutka@sickkids.ca [The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario (Canada); Department of Surgery, University of Toronto, Toronto, Ontario (Canada)

    2013-02-15

    Glioblastoma (GBM) is the most common primary brain tumor in adults. Despite current advances in therapy consisting of surgery followed by chemotherapy and radiation, the overall survival rate still remains poor. Therapeutic failures are partly attributable to the highly infiltrative nature of tumor adjacent to normal brain parenchyma. Recently, evidence is mounting to suggest that actin cytoskeleton dynamics are critical components of the cell invasion process. Drebrin is an actin-binding protein involved in the regulation of actin filament organization, and plays a significant role in cell motility; however, the role of drebrin in glioma cell invasiveness has not yet been fully elucidated. Therefore, this study was aimed to clarify the role of drebrin in glioma cell morphology and cell motility. Here we show that drebrin is expressed in glioma cell lines and in operative specimens of GBM. We demonstrate that stable overexpression of drebrin in U87 cells leads to alterations in cell morphology, and induces increased invasiveness in vitro while knockdown of drebrin in U87 cells by small interfering RNA (siRNA) decreases invasion and migration. In addition, we show that depletion of drebrin by siRNA alters glioma cell morphology in A172 GBM cell line. Our results suggest that drebrin contributes to the maintenance of cell shape, and may play an important role in glioma cell motility. - Highlights: ► Drebrin is an actin-binding protein aberrantly expressed in several cancers. ► Role of drebrin in glioma cell morphology and motility is previously unknown. ► We demonstrate that drebrin is expressed in 40% of glioblastoma specimens. ► Drebrin plays a significant role in modulating glioma cell migration and invasion.

  17. circ-SHKBP1 Regulates the Angiogenesis of U87 Glioma-Exposed Endothelial Cells through miR-544a/FOXP1 and miR-379/FOXP2 Pathways

    Directory of Open Access Journals (Sweden)

    Qianru He

    2018-03-01

    Full Text Available Circular RNAs (circRNAs are a type of endogenous non-coding RNAs, which have been considered to mediate diverse tumorigenesis including angiogenesis. The present study aims to elucidate the potential role and molecular mechanism of circ-SHKBP1 in regulating the angiogenesis of U87 glioma-exposed endothelial cells (GECs. The expression of circ-SHKBP1, but not linear SHKBP1, was significantly upregulated in GECs compared with astrocyte-exposed endothelial cells (AECs. circ-SHKBP1 knockdown inhibited the viability, migration, and tube formation of GECs dramatically. The expressions of miR-379/miR-544a were downregulated in GECs, and circ-SHKBP1 functionally targeted miR-544a/miR-379 in an RNA-induced silencing complex (RISC manner. Dual-luciferase reporter assay demonstrated that forkhead box P1/P2 (FOXP1/FOXP2 were targets of miR-544a/miR-379. The expressions of FOXP1/FOXP2 were upregulated in GECs, and silencing of FOXP1/FOXP2 inhibited the viability, migration, and tube formation of GECs. Meanwhile, FOXP1/FOXP2 promoted angiogenic factor with G patch and FHA domains 1 (AGGF1 expression at the transcriptional level. Furthermore, knockdown of AGGF1 suppressed the viability, migration, and tube formation of GECs via phosphatidylinositol 3-kinase (PI3K/AKT and extracellular signal-regulated kinase (ERK1/2 pathways. Taken together, the present study demonstrated that circ-SHKBP1 regulated the angiogenesis of GECs through miR-544a/FOXP1 and miR-379/FOXP2 pathways, and these findings might provide a potential target and effective strategy for combined therapy of gliomas.

  18. Perfluorocarbon-Loaded Lipid Nanocapsules to Assess the Dependence of U87-Human Glioblastoma Tumor pO2 on In Vitro Expansion Conditions.

    Science.gov (United States)

    Lemaire, Laurent; Nel, Janske; Franconi, Florence; Bastiat, Guillaume; Saulnier, Patrick

    2016-01-01

    Growing tumor cell lines, such as U87-MG glioma cells, under mild hypoxia (3% O2) leads to a ca. 40% reduction in growth rate once implanted in the brain of nude mice, as compared to normoxia (21% O2) grown cells, wherein the former over-express HIF-1 and VEGF-A. Despite developing differently, the tumors have similar: blood perfusion, oxygen consumption, and vascular surface area parameters, whereas the number of blood vessels is nearly doubled in the tumor arising from normoxia cultured cells. Interestingly, tumor oxygen tension, measured using 19F-oximetry, showed that the normoxia grown cells led to tumors characterized by mild hypoxic environment (approximately 4%) conditions, whilst the hypoxia grown cells led to tumors characterized by physioxic environment (approximately 6%) conditions. This reversal in oxygen concentration may be responsible for the apparent paradoxical growth profiles.

  19. A dual function fusion protein of Herpes simplex virus type 1 thymidine kinase and firefly luciferase for noninvasive in vivo imaging of gene therapy in malignant glioma.

    Science.gov (United States)

    Söling, Ariane; Theiss, Christian; Jungmichel, Stephanie; Rainov, Nikolai G

    2004-08-04

    BACKGROUND: Suicide gene therapy employing the prodrug activating system Herpes simplex virus type 1 thymidine kinase (HSV-TK)/ ganciclovir (GCV) has proven to be effective in killing experimental brain tumors. In contrast, glioma patients treated with HSV-TK/ GCV did not show significant treatment benefit, most likely due to insufficient transgene delivery to tumor cells. Therefore, this study aimed at developing a strategy for real-time noninvasive in vivo monitoring of the activity of a therapeutic gene in brain tumor cells. METHODS: The HSV-TK gene was fused to the firefly luciferase (Luc) gene and the fusion construct HSV-TK-Luc was expressed in U87MG human malignant glioma cells. Nude mice with subcutaneous gliomas stably expressing HSV-TK-Luc were subjected to GCV treatment and tumor response to therapy was monitored in vivo by serial bioluminescence imaging. Bioluminescent signals over time were compared with tumor volumes determined by caliper. RESULTS: Transient and stable expression of the HSV-TK-Luc fusion protein in U87MG glioma cells demonstrated close correlation of both enzyme activities. Serial optical imaging of tumor bearing mice detected in all cases GCV induced death of tumor cells expressing the fusion protein and proved that bioluminescence can be reliably used for repetitive and noninvasive quantification of HSV-TK/ GCV mediated cell kill in vivo. CONCLUSION: This approach may represent a valuable tool for the in vivo evaluation of gene therapy strategies for treatment of malignant disease.

  20. Nicotine enhances proliferation, migration, and radioresistance of human malignant glioma cells through EGFR activation

    International Nuclear Information System (INIS)

    Khalil, A.A.; Jameson, M.J.; Broaddus, W.C.; Lin, P.S.; Chung, T.D.

    2013-01-01

    It has been suggested that continued tobacco use during radiation therapy contributes to maintenance of neoplastic growth despite treatment with radiation. Nicotine is a cigarette component that is an established risk factor for many diseases, neoplastic and otherwise. The hypothesis of this work is that nicotine promotes the proliferation, migration, and radioresistance of human malignant glioma cells. The effect of nicotine on cellular proliferation, migration, signaling, and radiation sensitivity were evaluated for malignant glioma U87 and GBM12 cells by use of the AlamarBlue, scratch healing, and clonogenic survival assays. Signal transduction was assessed by immunoblotting for activated EGFR, extracellular regulated kinase (ERK), and AKT. At concentrations comparable with those found in chronic smokers, nicotine induced malignant glioma cell migration, growth, colony formation, and radioresistance. Nicotine increased phosphorylation of EGFR tyr992 , AKT ser473 , and ERK. These molecular effects were reduced by pharmacological inhibitors of EGFR, PI3K, and MEK. It was therefore concluded that nicotine stimulates the malignant behavior of glioma cells in vitro by activation of the EGFR and downstream AKT and ERK pathways. (author)

  1. Dimethyl phenyl piperazine iodide (DMPP) induces glioma regression by inhibiting angiogenesis

    International Nuclear Information System (INIS)

    He, Yan-qing; Li, Yan; Wang, Xiao-yu; He, Xiao-dong; Jun, Li; Chuai, Manli; Lee, Kenneth Ka Ho; Wang, Ju; Wang, Li-jing; Yang, Xuesong

    2014-01-01

    1,1-Dimethyl-4-phenyl piperazine iodide (DMPP) is a synthetic nicotinic acetylcholine receptor (nAChR) agonist that could reduce airway inflammation. In this study, we demonstrated that DMPP could dramatically inhibit glioma size maintained on the chick embryonic chorioallantoic membrane (CAM). We first performed MTT and BrdU incorporation experiments on U87 glioma cells in vitro to understand the mechanism involved. We established that DMPP did not significantly affect U87 cell proliferation and survival. We speculated that DMPP directly caused the tumor to regress by affecting the vasculature in and around the implanted tumor on our chick CAM model. Hence, we conducted detailed analysis of DMPP's inhibitory effects on angiogenesis. Three vasculogenesis and angiogenesis in vivo models were used in the study which included (1) early chick blood islands formation, (2) chick yolk-sac membrane (YSW) and (3) CAM models. The results revealed that DMPP directly suppressed all developmental stages involved in vasculogenesis and angiogenesis – possibly by acting through Ang-1 and HIF-2α signaling. In sum, our results show that DMPP could induce glioma regression grown on CAM by inhibiting vasculogenesis and angiogenesis. - Highlights: ●We demonstrated that DMPP inhibited the growth of glioma cells on chick CAM. ●DMPP did not significantly affect the proliferation and survival of U87 cells. ●We revealed that DMPP suppressed vasculogenesis and angiogenesis in chick embryo. ●Angiogenesis in chick CAM was inhibited by DMPP via most probably Ang-1 and HIF-2α. ●DMPP could be potentially developed as an anti-tumor drug in the future

  2. AS1411-Induced Growth Inhibition of Glioma Cells by Up-Regulation of p53 and Down-Regulation of Bcl-2 and Akt1 via Nucleolin.

    Directory of Open Access Journals (Sweden)

    Ye Cheng

    Full Text Available AS1411 binds nucleolin (NCL and is the first oligodeoxynucleotide aptamer to reach phase I and II clinical trials for the treatment of several cancers. However, the mechanisms by which AS1411 targets and kills glioma cells and tissues remain unclear. Here we report that AS1411 induces cell apoptosis and cycle arrest, and inhibits cell viability by up-regulation of p53 and down-regulation of Bcl-2 and Akt1 in human glioma cells. NCL was overexpressed in both nucleus and cytoplasm in human glioma U87, U251 and SHG44 cells compared to normal human astrocytes (NHA. AS1411 bound NCL and inhibited the proliferation of glioma cells but not NHA, which was accompanied with up-regulation of p53 and down-regulation of Bcl-2 and Akt1. Moreover, AS1411 treatment resulted in the G2/M cell cycle arrest in glioma cells, which was however abolished by overexpression of NCL. Further, AS1411 induced cell apoptosis, which was prevented by silencing of p53 and overexpression of Bcl-2. In addition, AS1411 inhibited the migration and invasion of glioma cells in an Akt1-dependent manner. Importantly, AS1411 inhibited the growth of glioma xenograft and prolonged the survival time of glioma tumor-bearing mice. These results revealed a promising treatment of glioma by oligodeoxynucleotide aptamer.

  3. Radiosensitivity of Patient-Derived Glioma Stem Cell 3-Dimensional Cultures to Photon, Proton, and Carbon Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chiblak, Sara; Tang, Zili [German Cancer Consortium, Heidelberg (Germany); Molecular and Translational Radiation Oncology, Heidelberg Ion Therapy Center, Heidelberg Institute of Radiation Oncology, University of Heidelberg Medical School and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg (Germany); Campos, Benito; Gal, Zoltan; Unterberg, Andreas [Division of Neurological Research, Department of Neurosurgery, University of Heidelberg Medical School, Heidelberg (Germany); Debus, Jürgen [German Cancer Consortium, Heidelberg (Germany); Molecular and Translational Radiation Oncology, Heidelberg Ion Therapy Center, Heidelberg Institute of Radiation Oncology, University of Heidelberg Medical School and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg (Germany); Herold-Mende, Christel [Division of Neurological Research, Department of Neurosurgery, University of Heidelberg Medical School, Heidelberg (Germany); Abdollahi, Amir, E-mail: a.amir@dkfz.de [German Cancer Consortium, Heidelberg (Germany); Molecular and Translational Radiation Oncology, Heidelberg Ion Therapy Center, Heidelberg Institute of Radiation Oncology, University of Heidelberg Medical School and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg (Germany)

    2016-05-01

    Purpose: To investigate the radiosensitivity of primary glioma stem cell (GSC) cultures with different CD133 status in a 3-dimensional (3D) model after photon versus proton versus carbon irradiation. Methods and Materials: Human primary GSC spheroid cultures were established from tumor specimens of six consented glioblastoma patients. Human U87MG was used as a classical glioblastoma radioresistant cell line. Cell suspensions were generated by mechanical dissociation of GSC spheroids and embedded in a semi-solid 3D matrix before irradiation. Spheroid-like colonies were manually counted by microscopy. Cells were also recovered and quantified by fluorescence. CD133 expression and DNA damage were evaluated by flow cytometry. Results: The fraction of CD133{sup +} cells varied between 0.014% and 96% in the six GSC cultures and showed a nonsignificant correlation with plating efficiency and survival fractions. The 4 most photon-radioresistant GSC cultures were NCH644, NCH421k, NCH441, and NCH636. Clonogenic survival for proton irradiation revealed relative biologic effectiveness (RBE) in the range of 0.7-1.20. However, carbon irradiation rendered the photon-resistant GSC cultures sensitive, with average RBE of 1.87-3.44. This effect was partly attributed to impaired capability of GSC to repair carbon ion–induced DNA double-strand breaks as determined by residual DNA repair foci. Interestingly, radiosensitivity of U87 cells was comparable to GSC cultures using clonogenic survival as the standard readout. Conclusions: Carbon irradiation is effective in GSC eradication with similar RBE ranges approximately 2-3 as compared with non-stem GSC cultures (U87). Our data strongly suggest further exploration of GSC using classic radiobiology endpoints such as the here-used 3D clonogenic survival assay and integration of additional GSC-specific markers.

  4. Radiosensitivity of Patient-Derived Glioma Stem Cell 3-Dimensional Cultures to Photon, Proton, and Carbon Irradiation

    International Nuclear Information System (INIS)

    Chiblak, Sara; Tang, Zili; Campos, Benito; Gal, Zoltan; Unterberg, Andreas; Debus, Jürgen; Herold-Mende, Christel; Abdollahi, Amir

    2016-01-01

    Purpose: To investigate the radiosensitivity of primary glioma stem cell (GSC) cultures with different CD133 status in a 3-dimensional (3D) model after photon versus proton versus carbon irradiation. Methods and Materials: Human primary GSC spheroid cultures were established from tumor specimens of six consented glioblastoma patients. Human U87MG was used as a classical glioblastoma radioresistant cell line. Cell suspensions were generated by mechanical dissociation of GSC spheroids and embedded in a semi-solid 3D matrix before irradiation. Spheroid-like colonies were manually counted by microscopy. Cells were also recovered and quantified by fluorescence. CD133 expression and DNA damage were evaluated by flow cytometry. Results: The fraction of CD133"+ cells varied between 0.014% and 96% in the six GSC cultures and showed a nonsignificant correlation with plating efficiency and survival fractions. The 4 most photon-radioresistant GSC cultures were NCH644, NCH421k, NCH441, and NCH636. Clonogenic survival for proton irradiation revealed relative biologic effectiveness (RBE) in the range of 0.7-1.20. However, carbon irradiation rendered the photon-resistant GSC cultures sensitive, with average RBE of 1.87-3.44. This effect was partly attributed to impaired capability of GSC to repair carbon ion–induced DNA double-strand breaks as determined by residual DNA repair foci. Interestingly, radiosensitivity of U87 cells was comparable to GSC cultures using clonogenic survival as the standard readout. Conclusions: Carbon irradiation is effective in GSC eradication with similar RBE ranges approximately 2-3 as compared with non-stem GSC cultures (U87). Our data strongly suggest further exploration of GSC using classic radiobiology endpoints such as the here-used 3D clonogenic survival assay and integration of additional GSC-specific markers.

  5. [RITA combined with temozolomide inhibits the proliferation of human glioblastoma U87 cells].

    Science.gov (United States)

    He, Xiao-Yan; Feng, Xiao-Li; Song, Xin-Pei; Zeng, Huan-Chao; Cao, Zhong-Xu; Xiao, Wei-Wei; Zhang, Bao; Wu, Qing-Hua

    2016-10-20

    To observe the effect of RITA, a small molecule that targets p53, combined with temozolomide (TMZ) on proliferation, colony formation and apoptosis of human glioblastoma U87 cells and explore the underlying mechanism. Cultured U87 cells were treated with RITA (1, 5, 10, 20 µmol/L), TMZ, or RITA+TMZ (half dose) for 24, 48 or 72 h. MTS assay were used to detect the cell proliferation, and the cell proliferation rate and inhibitory rate were calculated. The effect of combined treatments was evaluated by the q value. The expressions of p53, p21 and other apoptosis-associated genes were detected by qRT-PCR and Western blotting; cell apoptosis was assayed using flow cytometry with Annexin V/PI double staining; colony formation of the cells was detected with crystal violet staining. MTS assay showed that RITA at the 4 doses more potently inhibited U87 cell viability than TMZ at 72 h (P=0.000) with inhibitory rates of 25.94%-41.38% and 3.84%-8.20%, respectively. RITA combined with TMZ caused a more significant inhibition of U87 cells (29.21%-52.11%) than RITA (PRITA+TMZ for 48 h resulted in q values exceeding 1.2 and showed an obvious synergistic effect of the drugs. Both RITA and TMZ, especially the latter, significantly increased the expressions of p53, p21, puma, and other apoptosis-associated genes to accelerate apoptosis and inhibit the growth and colony formation of U87 cells, and the effect was more obvious with a combined treatment. RITA inhibits the growth of human glioblastoma cells and enhance their sensitivity to TMZ by up-regulating p53 expression, and when combined, RITA and TMZ show a synergistic effect to cause a stronger cell inhibition.

  6. Dimethyl phenyl piperazine iodide (DMPP) induces glioma regression by inhibiting angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    He, Yan-qing; Li, Yan; Wang, Xiao-yu [Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632 (China); He, Xiao-dong [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Jun, Li [Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China); Chuai, Manli [Division of Cell and Developmental Biology, University of Dundee, Dundee, DD1 5EH (United Kingdom); Lee, Kenneth Ka Ho [Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin (Hong Kong); Wang, Ju [Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China); Wang, Li-jing, E-mail: wanglijing62@163.com [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Yang, Xuesong, E-mail: yang_xuesong@126.com [Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632 (China)

    2014-01-15

    1,1-Dimethyl-4-phenyl piperazine iodide (DMPP) is a synthetic nicotinic acetylcholine receptor (nAChR) agonist that could reduce airway inflammation. In this study, we demonstrated that DMPP could dramatically inhibit glioma size maintained on the chick embryonic chorioallantoic membrane (CAM). We first performed MTT and BrdU incorporation experiments on U87 glioma cells in vitro to understand the mechanism involved. We established that DMPP did not significantly affect U87 cell proliferation and survival. We speculated that DMPP directly caused the tumor to regress by affecting the vasculature in and around the implanted tumor on our chick CAM model. Hence, we conducted detailed analysis of DMPP's inhibitory effects on angiogenesis. Three vasculogenesis and angiogenesis in vivo models were used in the study which included (1) early chick blood islands formation, (2) chick yolk-sac membrane (YSW) and (3) CAM models. The results revealed that DMPP directly suppressed all developmental stages involved in vasculogenesis and angiogenesis – possibly by acting through Ang-1 and HIF-2α signaling. In sum, our results show that DMPP could induce glioma regression grown on CAM by inhibiting vasculogenesis and angiogenesis. - Highlights: ●We demonstrated that DMPP inhibited the growth of glioma cells on chick CAM. ●DMPP did not significantly affect the proliferation and survival of U87 cells. ●We revealed that DMPP suppressed vasculogenesis and angiogenesis in chick embryo. ●Angiogenesis in chick CAM was inhibited by DMPP via most probably Ang-1 and HIF-2α. ●DMPP could be potentially developed as an anti-tumor drug in the future.

  7. Downregulation of HIF-1a sensitizes U251 glioma cells to the temozolomide (TMZ) treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jun-Hai [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Ma, Zhi-Xiong [National Institute of Biological Sciences, Beijing 102206 (China); Huang, Guo-Hao; Xu, Qing-Fu; Xiang, Yan [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Li, Ningning; Sidlauskas, Kastytis [Division of Neuropathology and Department of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1N 3BG (United Kingdom); Zhang, Eric Erquan [National Institute of Biological Sciences, Beijing 102206 (China); Lv, Sheng-Qing, E-mail: lvsq0518@hotmail.com [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China)

    2016-05-01

    Purpose: The aim of this study was to investigate the effect of downregulation of HIF-1α gene on human U251 glioma cells and examine the consequent changes of TMZ induced effects and explore the molecular mechanisms. Methods: U251 cell line stably expressing HIF-1α shRNA was acquired via lentiviral vector transfection. The mRNA and protein expression alterations of genes involved in our study were determined respectively by qRT-PCR and Western blot. Cell proliferation was measured by MTT assay and colony formation assay, cell invasion/migration capacity was determined by transwell invasion assay/wound healing assay, and cell apoptosis was detected by flow cytometry. Results: We successfully established a U251 cell line with highly efficient HIF-1α knockdown. HIF-1a downregulation sensitized U251 cells to TMZ treatment and enhanced the proliferation-inhibiting, invasion/migration-suppressing, apoptosis-inducing and differentiation-promoting effects exerted by TMZ. The related molecular mechanisms demonstrated that expression of O{sup 6}-methylguanine DNA methyltransferase gene (MGMT) and genes of Notch1 pathway were significantly upregulated by TMZ treatment. However, this upregulation was abrogated by HIF-1α knockdown. We further confirmed important regulatory roles of HIF-1α in the expression of MGMT and activation of Notch1 pathways. Conclusion: HIF-1α downregulation sensitizes U251 glioma cells to the temozolomide treatment via inhibiting MGMT expression and Notch1 pathway activation. - Highlights: • TMZ caused more significant proliferation inhibition and apoptosis in U251 cells after downregulating HIF-1α. • Under TMZ treatment, HIF-1 downregulated U251 cells exhibited weaker mobility and more differentiated state. • TMZ caused MGMT over-expression and Notch1 pathway activation, which could be abrogated by HIF-1α downregulation.

  8. Effect of microenviroment hypoxia on glioma cells radiosensitivity through cancer stem cell pathway

    International Nuclear Information System (INIS)

    Tong Liumei; Feng Libo; Lu Xueguan; Chen Liesong; Guo Xinwei; Tian Ye

    2010-01-01

    Objective: To investigate the effect of microenviroment hypoxia on glioma cells radiosensitivity through cancer stem pathway, and to explore the related mechanism. Methods: Glioma cell lines SHG44 and U251 were cultured in normoxia (20% O 2 ) or continuous hypoxia (1% O 2 ) for 12 and 24 h. The fraction of glioma cells with positive expression of CD133 was assayed by flow cytometry. The radiosensitivity of glioma cells was determined by clonogenic cell assay. Western blotting was used to investigate the expressions of HIF-1 α and its downstream gene Notch 1. Results: The fraction of glioma cells with positive expression of CD133 was higher after hypoxic culture for 12 and 24 h than that of the corresponding cells cultured in normoxia. Compared to the cells cultured in normoxia, SF 2 (survival fraction at 2 Gy) were enhanced significantly in SHG44 and U251 cells cultured in hypoxia for 12 and 24 h. The OER (oxygen-enhancement ratio) of SHG44 cells in hypoxia for 12 and 24 h was 1.54 and 1.38, respectively. The OER of U251 cells was 1.44 and 1.23, respectively. The radiosensitivity of these two cell line was decreased in hypoxia. The protein expressions of HIF-1 α and Notch 1 genes were elevated more significantly for cells cultured in hypoxia for 12 and 24 h than for those in normoxia. Conclusions: Microenviroment hypoxia could increase the radioresistance of glioma cells through enrichment of cancer stem cells, and HIF-1 α-Notch 1 signal pathway may play an important role in this process. (authors)

  9. Hydroxyapatite nanoparticles inhibit the growth of human glioma cells in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Chu SH

    2012-07-01

    Full Text Available Sheng-Hua Chu,1 Dong-Fu Feng,1 Yan-Bin Ma,1 Zhi-Qiang Li21Department of Neurosurgery, No 3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; 2Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, ChinaAbstract: Hydroxyapatite nanoparticles (nano-HAPs have been reported to exhibit antitumor effects on various human cancers, but the effects of nano-HAPs on human glioma cells remain unclear. The aim of this study was to explore the inhibitory effect of nano-HAPs on the growth of human glioma U251 and SHG44 cells in vitro and in vivo. Nano-HAPs could inhibit the growth of U251 and SHG44 cells in a dose- and time-dependent manner, according to methyl thiazoletetrazolium assay and flow cytometry. Treated with 120 mg/L and 240 mg/L nano-HAPs for 48 hours, typical apoptotic morphological changes were noted under Hoechst staining and transmission electron microscopy. The tumor growth of cells was inhibited after the injection in vivo, and the related side effects significantly decreased in the nano-HAP-and-drug combination group. Because of the function of nano-HAPs, the expression of c-Met, SATB1, Ki-67, and bcl-2 protein decreased, and the expression of SLC22A18 and caspase-3 protein decreased noticeably. The findings indicate that nano-HAPs have an evident inhibitory action and induce apoptosis of human glioma cells in vitro and in vivo. In a drug combination, they can significantly reduce the adverse reaction related to the chemotherapeutic drug 1,3-bis(2-chloroethyl-1-nitrosourea (BCNU.Keywords: glioma, hydroxyapatite nanoparticles, growth mechanism

  10. Low dose radiation enhance the anti-tumor effect of high dose radiation on human glioma cell U251

    International Nuclear Information System (INIS)

    Wang Chang; Wang Guanjun; Tan Yehui; Jiang Hongyu; Li Wei

    2008-01-01

    Objective: To detect the effect on the growth of human glioma cell U251 induced by low dose irradiation and low dose irradiation combined with large dose irradiation. Methods: Human glioma cell line U251 and nude mice carried with human glioma were used. The tumor cells and the mice were treated with low dose, high dose, and low dose combined high dose radiation. Cells growth curve, MTT and flow cytometry were used to detect the proliferation, cell cycle and apoptosis of the cells; and the tumor inhibition rate was used to assess the growth of tumor in vivo. Results: After low dose irradiation, there was no difference between experimental group and control group in cell count, MTT and flow cytometry. Single high dose group and low dose combined high dose group both show significantly the suppressing effect on tumor cells, the apoptosis increased and there was cell cycle blocked in G 2 period, but there was no difference between two groups. In vivo apparent anti-tumor effect in high dose radiation group and the combining group was observed, and that was more significant in the combining group; the prior low dose radiation alleviated the injury of hematological system. There was no difference between single low dose radiation group and control. Conclusions: There is no significant effect on human glioma cell induced by low dose radiation, and low dose radiation could not induce adaptive response. But in vivo experience, low dose radiation could enhance the anti-tumor effect of high dose radiation and alleviated the injury of hematological system. (authors)

  11. Influence of multidrug resistance on 18F-FCH cellular uptake in a glioblastoma model

    International Nuclear Information System (INIS)

    Vanpouille, Claire; Jeune, Nathalie le; Clotagatide, Anthony; Dubois, Francis; Kryza, David; Janier, Marc; Perek, Nathalie

    2009-01-01

    Multidrug resistance, aggressiveness and accelerated choline metabolism are hallmarks of malignancy and have motivated the development of new PET tracers like 18 F-FCH, an analogue of choline. Our aim was to study the relationship of multidrug resistance of cultured glioma cell lines and 18 F-FCH tracer uptake. We used an in vitro multidrug-resistant (MDR) glioma model composed of sensitive parental U87MG and derived resistant cells U87MG-CIS and U87MG-DOX. Aggressiveness, choline metabolism and transport were studied, particularly the expression of choline kinase (CK) and high-affinity choline transporter (CHT1). FCH transport studies were assessed in our glioblastoma model. As expected, the resistant cell lines express P-glycoprotein (Pgp), multidrug resistance-associated protein isoform 1 (MRP1) and elevated glutathione (GSH) content and are also more mobile and more invasive than the sensitive U87MG cells. Our results show an overexpression of CK and CHT1 in the resistant cell lines compared to the sensitive cell lines. We found an increased uptake of FCH (in % of uptake per 200,000 cells) in the resistant cells compared to the sensitive ones (U87MG: 0.89±0.14; U87MG-CIS: 1.27±0.18; U87MG-DOX: 1.33±0.13) in line with accelerated choline metabolism and aggressive phenotype. FCH uptake is not influenced by the two ATP-dependant efflux pumps: Pgp and MRP1. FCH would be an interesting probe for glioma imaging which would not be effluxed from the resistant cells by the classic MDR ABC transporters. Our results clearly show that FCH uptake reflects accelerated choline metabolism and is related to tumour aggressiveness and drug resistance. (orig.)

  12. Altered expression of long non-coding RNAs during genotoxic stress-induced cell death in human glioma cells.

    Science.gov (United States)

    Liu, Qian; Sun, Shanquan; Yu, Wei; Jiang, Jin; Zhuo, Fei; Qiu, Guoping; Xu, Shiye; Jiang, Xuli

    2015-04-01

    Long non-coding RNAs (lncRNAs), a recently discovered class of non-coding genes, are transcribed throughout the genome. Emerging evidence suggests that lncRNAs may be involved in modulating various aspects of tumor biology, including regulating gene activity in response to external stimuli or DNA damage. No data are available regarding the expression of lncRNAs during genotoxic stress-induced apoptosis and/or necrosis in human glioma cells. In this study, we detected a change in the expression of specific candidate lncRNAs (neat1, GAS5, TUG1, BC200, Malat1, MEG3, MIR155HG, PAR5, and ST7OT1) during DNA damage-induced apoptosis in human glioma cell lines (U251 and U87) using doxorubicin (DOX) and resveratrol (RES). We also detected the expression pattern of these lncRNAs in human glioma cell lines under necrosis induced using an increased dose of DOX. Our results reveal that the lncRNA expression patterns are distinct between genotoxic stress-induced apoptosis and necrosis in human glioma cells. The sets of lncRNA expressed during genotoxic stress-induced apoptosis were DNA-damaging agent-specific. Generally, MEG3 and ST7OT1 are up-regulated in both cell lines under apoptosis induced using both agents. The induction of GAS5 is only clearly detected during DOX-induced apoptosis, whereas the up-regulation of neat1 and MIR155HG is only found during RES-induced apoptosis in both cell lines. However, TUG1, BC200 and MIR155HG are down regulated when necrosis is induced using a high dose of DOX in both cell lines. In conclusion, our findings suggest that the distinct regulation of lncRNAs may possibly involve in the process of cellular defense against genotoxic agents.

  13. Sequential Administration of Carbon Nanotubes and Near Infrared Radiation for the Treatment of Gliomas

    Directory of Open Access Journals (Sweden)

    Tiago eSantos

    2014-07-01

    Full Text Available The objective was to use carbon nanotubes (CNT coupled with near infrared radiation (NIR to induce hyperthermia, as a novel non-ionizing radiation treatment for primary brain tumors, glioblastoma multiforme (GBM. In this study we report the therapeutic potential of hyperthermia-induced thermal ablation using the sequential administration of carbon nanotubes and NIR. In vitro studies were performed using glioma tumor cell lines (U251, U87, LN229, T98G. Glioma cells were incubated with CNTs for 24 hours followed by exposure to NIR for 10 minutes. Glioma cells preferentially internalized CNTs, which upon NIR exposure, generated heat, causing necrotic cell death. There were minimal effects to normal cells, which correlate to their minimal uptake of CNTs. Furthermore, this protocol caused cell death to glioma cancer stem cells, and drug-resistant as well as drug-sensitive glioma cells. This sequential hyperthermia therapy was effective in vivo, in the rodent tumor model resulting in tumor shrinkage and no recurrence after only one treatment. In conclusion, this sequence of selective CNT administration followed by NIR activation provides a new approach to the treatment of glioma, particularly drug-resistant gliomas.

  14. Inhibition of autophagy induced by proteasome inhibition increases cell death in human SHG-44 glioma cells.

    Science.gov (United States)

    Ge, Peng-Fei; Zhang, Ji-Zhou; Wang, Xiao-Fei; Meng, Fan-Kai; Li, Wen-Chen; Luan, Yong-Xin; Ling, Feng; Luo, Yi-Nan

    2009-07-01

    The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation. Recent studies suggest that proteasome inhibitors may reduce tumor growth and activate autophagy. Due to the dual roles of autophagy in tumor cell survival and death, the effect of autophagy on the destiny of glioma cells remains unclear. In this study, we sought to investigate whether inhibition of the proteasome can induce autophagy and the effects of autophagy on the fate of human SHG-44 glioma cells. The proteasome inhibitor MG-132 was used to induce autophagy in SHG-44 glioma cells, and the effect of autophagy on the survival of SHG-44 glioma cells was investigated using an autophagy inhibitor 3-MA. Cell viability was measured by MTT assay. Apoptosis and cell cycle were detected by flow cytometry. The expression of autophagy related proteins was determined by Western blot. MG-132 inhibited cell proliferation, induced cell death and cell cycle arrest at G(2)/M phase, and activated autophagy in SHG-44 glioma cells. The expression of autophagy-related Beclin-1 and LC3-I was significantly up-regulated and part of LC3-I was converted into LC3-II. However, when SHG-44 glioma cells were co-treated with MG-132 and 3-MA, the cells became less viable, but cell death and cell numbers at G(2)/M phase increased. Moreover, the accumulation of acidic vesicular organelles was decreased, the expression of Beclin-1 and LC3 was significantly down-regulated and the conversion of LC3-II from LC3-I was also inhibited. Inhibition of the proteasome can induce autophagy in human SHG-44 glioma cells, and inhibition of autophagy increases cell death. This discovery may shed new light on the effect of autophagy on modulating the fate of SHG-44 glioma cells.Acta Pharmacologica Sinica (2009) 30: 1046-1052; doi: 10.1038/aps.2009.71.

  15. Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study.

    Science.gov (United States)

    Colen, Chaim B; Shen, Yimin; Ghoddoussi, Farhad; Yu, Pingyang; Francis, Todd B; Koch, Brandon J; Monterey, Michael D; Galloway, Matthew P; Sloan, Andrew E; Mathupala, Saroj P

    2011-07-01

    Glioblastoma multiforme (GBM) are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs). We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA), a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain) slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion). Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity.

  16. Metabolic Targeting of Lactate Efflux by Malignant Glioma Inhibits Invasiveness and Induces Necrosis: An In Vivo Study

    Directory of Open Access Journals (Sweden)

    Chaim B Colen

    2011-07-01

    Full Text Available Glioblastoma multiforme (GBM are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs. We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA, a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion. Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity.

  17. Proliferation-dependent changes in amino acid transport and glucose metabolism in glioma cell lines

    International Nuclear Information System (INIS)

    Sasajima, Toshio; Miyagawa, Tadashi; Oku, Takamitsu; Gelovani, Juri G.; Finn, Ronald; Blasberg, Ronald

    2004-01-01

    Amino acid imaging is increasingly being used for assessment of brain tumor malignancy, extent of disease, and prognosis. This study explores the relationship between proliferative activity, amino acid transport, and glucose metabolism in three glioma cell lines (U87, Hs683, C6) at different phases of growth in culture. Growth phase was characterized by direct cell counting, proliferation index determined by flow cytometry, and [ 3 H]thymidine (TdR) accumulation, and was compared with the uptake of two non-metabolized amino acids ([ 14 C]aminocyclopentane carboxylic acid (ACPC) and [ 14 C]aminoisobutyric acid (AIB)), and [ 18 F]fluorodeoxyglucose (FDG). Highly significant relationships between cell number (density), proliferation index, and TdR accumulation rate were observed in all cell lines (r>0.99). Influx (K 1 ) of both ACPC and AIB was directly related to cell density, and inversely related to the proliferation index and TdR accumulation in all cell lines. The volume of distribution (V d ) for ACPC and AIB was lowest during rapid growth and highest during the near-plateau growth phase in all cell lines. FDG accumulation in Hs683 and C6 cells was unaffected by proliferation rate, growth phase, and cell density, whereas FDG accumulation was correlated with TdR accumulation, growth phase, and cell density in U87 cells. This study demonstrates that proliferation rate and glucose metabolism are not necessarily co-related in all glioma cell lines. The values of K 1 and V d for ACPC and AIB under different growth conditions suggest that these tumor cell lines can up-regulate amino acid transporters in their cell membranes when their growth conditions become adverse and less than optimal. (orig.)

  18. Metabolic Targeting of Lactate Efflux by Malignant Glioma Inhibits Invasiveness and Induces Necrosis: An In Vivo Study1

    Science.gov (United States)

    Colen, Chaim B; Shen, Yimin; Ghoddoussi, Farhad; Yu, Pingyang; Francis, Todd B; Koch, Brandon J; Monterey, Michael D; Galloway, Matthew P; Sloan, Andrew E; Mathupala, Saroj P

    2011-01-01

    Glioblastoma multiforme (GBM) are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs). We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA), a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain) slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion). Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity. PMID:21750656

  19. Silencing Nrf2 impairs glioma cell proliferation via AMPK-activated mTOR inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Yue [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Wang, Handong, E-mail: njhdwang@hotmail.com [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Wang, Qiang [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Ding, Hui [Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University (Guangzhou), 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Wu, Heming [Department of Neurosurgery, Nanjing Jingdu Hospital, No. 34, Biao 34, Yanggongjing Road, Nanjing 210002, Jiangsu Province (China); Pan, Hao [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China)

    2016-01-15

    Gliomas are the leading cause of death among adults with primary brain malignancies. Treatment for malignant gliomas remains limited, and targeted therapies have been incompletely explored. Nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription regulator for antioxidant and detoxification enzymes, is abundantly expressed in cancer cells. In this study, the role and mechanism of Nrf2 in cancer cell proliferation was investigated in multiple glioma cell lines. We first evaluated the expression patterns of Nrf2 in four glioma cell lines and found all four cell lines expressed Nrf2, but the highest level was observed in U251 cells. We further evaluated the biological functions of Nrf2 in U251 glioma cell proliferation by specific inhibition of Nrf2 using short hairpin RNA (shRNA). We found that Nrf2 depletion inhibited glioma cell proliferation. Nrf2 depletion also decreased colony formation in U251 cells stably expressing Nrf2 shRNA compared to scrambled control shRNA. Moreover, suppression of Nrf2 expression could lead to ATP depletion (with concomitant rise in AMP/ATP ratio) and consequently to AMPK-activated mTOR inhibition. Finally, activation of adenosine monophosphate–activated protein kinase (AMPK) by treated with phenformin, an AMPK agonist, can mimic the inhibitory effect of Nrf2 knockdown in U251 cells. In conclusion, our findings will shed light to the role and mechanism of Nrf2 in regulating glioma proliferation via ATP-depletion-induced AMPK activation and consequent mTOR inhibition, a novel insight into our understanding the role and mechanism of Nrf2 in glioma pathoetiology. To our knowledge, this is also the first report to provide a rationale for the implication of cross-linking between Nrf2 and mTOR signaling.

  20. Growth inhibition and chemosensitization of exogenous nitric oxide released from NONOates in glioma cells in vitro.

    Science.gov (United States)

    Weyerbrock, Astrid; Baumer, Brunhilde; Papazoglou, Anna

    2009-01-01

    Exogenous nitric oxide (NO) from NO donors has cytotoxic, chemosensitizing, and radiosensitizing effects, and increases vascular permeability and blood flow in tumors. Yet little is known about whether these cytotoxic and chemosensitizing effects can be observed in glioma cells at doses that alter tumor physiological characteristics in vivo and whether these effects are tumor selective. The effect of NO released from proline NONOate, diethylamine NONOate, spermine NONOate, and sodium nitrite on cell proliferation, apoptosis, and chemosensitivity to carboplatin of cultured glioma cells was studied in C6, U87 glioma cells, human glioblastoma cells, and human astrocytes and fibroblasts. Although proline NONOate failed to induce cell death, the other NO donors induced growth arrest when present in high concentrations (10(-2) M) in all cell lines. Chemosensitization was observed after concomitant incubation with spermine NONOate and carboplatin in C6 and human glioblastoma cells. There is strong evidence that cell death occurs primarily by necrosis and to a lesser degree by apoptosis. The NO doses, which altered tumor physiology in vivo, were not cytotoxic, indicating that NO alters vascular permeability and cell viability in vivo by different mechanisms. The authors found that NO-generating agents at high concentrations are potent growth inhibitors and might also be useful as chemosensitizers in glioma cells. These data corroborate the theory that the use of NOgenerating agents may play a role in the multimodal treatment of malignant gliomas but that the NO release must be targeted more specifically to tumor cells to improve selectivity and efficacy.

  1. Premature Senescence Induced by Ionizing Radiation Requires AKT Activity and Reactive Oxygen Species in Glioma

    International Nuclear Information System (INIS)

    Lee, Je Jung; Kim, Bong Cho; Yoo, Hee Jung; Lee, Jae Seon

    2010-01-01

    Loss of PTEN, a tumor suppressor gene has frequently observed in human gliomas, which conferred AKT activation and resistance to ionizing radiation (IR) and anti-cancer drugs. Recent reports have shown that AKT activation induces premature senescence through increase of oxygen consumption and inhibition of expression of ROS scavenging enzymes. In this study, we compared cellular response to IR in the PTEN-deficient U87, U251, U373 or PTEN-proficient LN18, LN428 glioma cells

  2. Assessment of the proliferation status of glioblastoma cell and tumour tissue after nanoplatinum treatment

    DEFF Research Database (Denmark)

    Kutwin, Marta; Sawosz, Ewa; Jaworski, Slawomir

    2017-01-01

    nanoparticles (NP-Pt). The aim of the study was to evaluate and compare the antiproliferative properties of NP-Pt and cisplatin against U87 and U118 glioma cell lines and U87 tumour tissue. NP-Pt and cisplatin were incubated with U87 and U118 glioma cells or administered directly into glioma tumour tissue. Cell...... and the migration of cancer cells but also downregulated the level of PCNA protein expression in tumour tissue. Furthermore, NP-Pt caused oxidative DNA damage in tumour tissue to a higher degree than cisplatin. Consequently, NP-Pt can be considered as an effective inhibitor of glioblastoma tumour cell proliferation....... However, the mechanism of action and potential side effects need to be elucidated further...

  3. FK506 Binding Protein Mediates Glioma Cell Growth and Sensitivity to Rapamycin Treatment by Regulating NF-κB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2008-03-01

    Full Text Available FK506 binding protein 5 (FKBP5 belongs to a family of immunophilins named for their ability to bind immunosuppressive drugs, also known as peptidyl-prolyl cis-trans isomerases, and also with chaperones to help protein folding. Using glioma cDNA microarray analysis, we found that FKBP5 was overexpressed in glioma tumors. This finding was further validated by real-time reverse transcription-polymerase chain reaction and Western blot analysis. The roles of FKBP5 in glioma cells were then examined. We found that cell growth was suppressed after FKBP5 expression was inhibited by short interfering RNA transfection and enhanced by FKBP5 overexpression. Electrophoretic mobility shift assay showed that nuclear factor-kappa B (NF-κB and DNA binding was enhanced by FKBP5 overexpression. The expression level of I-kappa B alpha and phosphorylated NF-κB was regulated by the expression of FKBP5. These data suggest that FKBP5 is involved in NF-κB pathway activation in glioma cells. In addition, FKBP5 overexpression in rapamycin-sensitive U87 cells blocked the cells' response to rapamycin treatment, whereas rapamycin-resistant glioma cells, both PTEN-positive and -negative, were synergistically sensitive to rapamycin after FKBP5 was knocked down, suggesting that the FKBP5 regulates glioma cell response to rapamycin treatment. In conclusion, our study demonstrates that FKBP5 plays an important role in glioma growth and chemoresistance through regulating signal transduction of the NF-κB pathway.

  4. GLUT-1-independent infection of the glioblastoma/astroglioma U87 cells by the human T cell leukemia virus type 1

    International Nuclear Information System (INIS)

    Jin Qingwen; Agrawal, Lokesh; VanHorn-Ali, Zainab; Alkhatib, Ghalib

    2006-01-01

    The human glucose transporter protein 1 (GLUT-1) functions as a receptor for human T cell leukemia virus (HTLV). GLUT-1 is a twelve-transmembrane cell surface receptor with six extracellular (ECL) and seven intracellular domains. To analyze HTLV-1 cytotropism, we utilized polyclonal antibodies to a synthetic peptide corresponding to the large extracellular domain of GLUT-1. The antibodies caused significant blocking of envelope (Env)-mediated fusion and pseudotyped virus infection of HeLa cells but had no significant effect on infection of U87 cells. This differential effect correlated with the detection of high-level surface expression of GLUT-1 on HeLa cells and very weak staining of U87 cells. To investigate this in terms of viral cytotropism, we cloned GLUT-1 cDNA from U87 cells and isolated two different versions of cDNA clones: the wild-type sequence (encoding 492 residues) and a mutant cDNA with a 5-base pair deletion (GLUT-1Δ5) between nucleotides 1329 and 1333. The deletion, also detected in genomic DNA, resulted in a frame-shift and premature termination producing a truncated protein of 463 residues. Transfection of the wild-type GLUT-1 but not GLUT-1Δ5 cDNA into CHO cells resulted in efficient surface expression of the human GLUT-1. Co-expression of GLUT-1 with GLUT-1Δ5 produces a trans-inhibition by GLUT-1Δ5 of GLUT-1-mediated HTLV-1 envelope (Env)-mediated fusion. Co-immunoprecipitation experiments demonstrated physical interaction of the wild-type and mutant proteins. Northern blot and RT-PCR analyses demonstrated lower GLUT-1 RNA expression in U87 cells. We propose two mechanisms to account for the impaired cell surface expression of GLUT-1 on U87 cells: low GLUT-1 RNA expression and the formation of GLUT-1/GLUT-1Δ5 heterodimers that are retained intracellularly. Significant RNAi-mediated reduction of endogenous GLUT-1 expression impaired HTLV-1 Env-mediated fusion with HeLa cells but not with U87 cells. We propose a GLUT-1-independent mechanism

  5. FBXW7/hCDC4 controls glioma cell proliferation in vitro and is a prognostic marker for survival in glioblastoma patients

    Directory of Open Access Journals (Sweden)

    Hagedorn Martin

    2007-02-01

    Full Text Available Abstract Background In the quest for novel molecular mediators of glioma progression, we studied the regulation of FBXW7 (hCDC4/hAGO/SEL10, its association with survival of patients with glioblastoma and its potential role as a tumor suppressor gene in glioma cells. The F-box protein Fbxw7 is a component of SCFFbxw7, a Skp1-Cul1-F-box E3 ubiquitin ligase complex that tags specific proteins for proteasome degradation. FBXW7 is mutated in several human cancers and functions as a haploinsufficient tumor suppressor in mice. Any of the identified targets, Cyclin E, c-Myc, c-Jun, Notch1/4 and Aurora-A may have oncogenic properties when accumulated in tumors with FBXW7 loss. Results We tested the expression of FBXW7 in human glioma biopsies by quantitative PCR and compared the transcript levels of grade IV glioma (glioblastoma, G-IV with those of grade II tumors (G-II. In more than 80% G-IV, expression of FBXW7 was significantly reduced. In addition, levels of FBXW7 were correlated with survival indicating a possible implication in tumor aggressiveness. Locus 4q31.3 which carries FBXW7 was investigated by in situ hybridization on biopsy touchprints. This excluded allelic loss as the principal cause for low expression of FBXW7 in G-IV tumors. Two targets of Fbxw7, Aurora-A and Notch4 were preferentially immunodetected in G-IV biopsies. Next, we investigated the effects of FBXW7 misregulation in glioma cells. U87 cells overexpressing nuclear isoforms of Fbxw7 lose the expression of the proliferation markers PCNA and Ki-67, and get counterselected in vitro. This observation fits well with the hypothesis that Fbxw7 functions as a tumor suppressor in astroglial cells. Finally, FBXW7 knockdown in U87 cells leads to defects in mitosis that may promote aneuploidy in progressing glioma. Conclusion Our results show that FBXW7 expression is a prognostic marker for patients with glioblastoma. We suggest that loss of FBXW7 plays an important role in glioma

  6. Local delivery of cancer-cell glycolytic inhibitors in high-grade glioma

    Science.gov (United States)

    Wicks, Robert T.; Azadi, Javad; Mangraviti, Antonella; Zhang, Irma; Hwang, Lee; Joshi, Avadhut; Bow, Hansen; Hutt-Cabezas, Marianne; Martin, Kristin L.; Rudek, Michelle A.; Zhao, Ming; Brem, Henry; Tyler, Betty M.

    2015-01-01

    Background 3-bromopyruvate (3-BrPA) and dichloroacetate (DCA) are inhibitors of cancer-cell specific aerobic glycolysis. Their application in glioma is limited by 3-BrPA's inability to cross the blood-brain-barrier and DCA's dose-limiting toxicity. The safety and efficacy of intracranial delivery of these compounds were assessed. Methods Cytotoxicity of 3-BrPA and DCA were analyzed in U87, 9L, and F98 glioma cell lines. 3-BrPA and DCA were incorporated into biodegradable pCPP:SA wafers, and the maximally tolerated dose was determined in F344 rats. Efficacies of the intracranial 3-BrPA wafer and DCA wafer were assessed in a rodent allograft model of high-grade glioma, both as a monotherapy and in combination with temozolomide (TMZ) and radiation therapy (XRT). Results 3-BrPA and DCA were found to have similar IC50 values across the 3 glioma cell lines. 5% 3-BrPA wafer-treated animals had significantly increased survival compared with controls (P = .0027). The median survival of rats with the 50% DCA wafer increased significantly compared with both the oral DCA group (P = .050) and the controls (P = .02). Rats implanted on day 0 with a 5% 3-BrPA wafer in combination with TMZ had significantly increased survival over either therapy alone. No statistical difference in survival was noted when the wafers were added to the combination therapy of TMZ and XRT, but the 5% 3-BrPA wafer given on day 0 in combination with TMZ and XRT resulted in long-term survivorship of 30%. Conclusion Intracranial delivery of 3-BrPA and DCA polymer was safe and significantly increased survival in an animal model of glioma, a potential novel therapeutic approach. The combination of intracranial 3-BrPA and TMZ provided a synergistic effect. PMID:25053853

  7. Tumor Restrictive Suicide Gene Therapy for Glioma Controlled by the FOS Promoter.

    Directory of Open Access Journals (Sweden)

    Jianqing Pan

    Full Text Available Effective suicide gene delivery and expression are crucial to achieving successful effects in gene therapy. An ideal tumor-specific promoter expresses therapeutic genes in tumor cells with minimal normal tissue expression. We compared the activity of the FOS (FBJ murine osteosarcoma viral oncogene homolog promoter with five alternative tumor-specific promoters in glioma cells and non-malignant astrocytes. The FOS promoter caused significantly higher transcriptional activity in glioma cell lines than all alternative promoters with the exception of CMV. The FOS promoter showed 13.9%, 32.4%, and 70.8% of the transcriptional activity of CMV in three glioma cell lines (U87, U251, and U373. Importantly, however, the FOS promoter showed only 1.6% of the transcriptional activity of CMV in normal astrocytes. We also tested the biologic activity of recombinant adenovirus containing the suicide gene herpes simplex virus thymidine kinase (HSV-tk driven by the FOS promoter, including selective killing efficacy in vitro and tumor inhibition rate in vivo. Adenoviral-mediated delivery of the HSV-tk gene controlled by the FOS promoter conferred a cytotoxic effect on human glioma cells in vitro and in vivo. This study suggests that use of the FOS-tk adenovirus system is a promising strategy for glioma-specific gene therapy but still much left for improvement.

  8. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zi-xuan [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Rao, Wei [Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Huan [Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Nan-ding [Department of Cardiology, Xi' an Traditional Chinese Medicine Hospital, Xi' an, 710032 (China); Si, Jing-Wen; Zhao, Jiao; Li, Jun-chang [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Zong-ren, E-mail: zongren@fmmu.edu.cn [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China)

    2015-02-13

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion.

  9. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    International Nuclear Information System (INIS)

    Shi, Zi-xuan; Rao, Wei; Wang, Huan; Wang, Nan-ding; Si, Jing-Wen; Zhao, Jiao; Li, Jun-chang; Wang, Zong-ren

    2015-01-01

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion

  10. Imaging of a glioma using peripheral benzodiazepine receptor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Starosta-Rubinstein, S.; Ciliax, B.J.; Penney, J.B.; McKeever, P.; Young, A.B.

    1987-02-01

    Two types of benzodiazepine receptors have been demonstrated in mammalian tissues, one which is localized on neuronal elements in brain and the other, on glial cells and in peripheral tissues such as kidney. In vivo administration of /sup 3/H-labeled PK 11195 (1-(2-chlorophenyl-N-methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide) or (/sup 3/H)flunitrazepam with 5 mg of clonazepam per kg to rats with intracranial C6 gliomas resulted in high levels of tritiated-drug binding to the tumor as shown by quantitative autoradiography. Pharmacological studies indicated that the bound drugs labeled the peripheral benzodiazepine binding site. Binding to the peripheral benzodiazepine site was confirmed primarily to malignant cells with little binding to adjacent normal brain tissue or to necrotic tissue. Tumor cell binding was completely inhibited by preadministration of the peripheral benzodiazepine blocking agent PK 11195 at 5 mg/kg. The centrally selective benzodiazepine ligand clonazepam had no effect on PK 11195 binding to the tumor cells. When binding to other tumor cell lines grown in nude mice and nude athymic rats was evaluated, little or no peripheral benzodiazepine binding was detected on human pheochromocytoma (RN1) and neuroblastoma (SK-N-MC, SK-N-SH) tumor cells, respectively. However, high densities of peripheral benzodiazepine binding sites were observed on tumors derived from a human glioma cell line (ATCC HTB 14, U-87 MG). The presence of high concentrations of specific peripheral benzodiazepine receptors on glial tumors suggests that human primary central nervous system tumors could be imaged and diagnosed using peripheral benzodiazepine ligands labeled with positron- or gamma-emitting isotopes.

  11. Berberine enhances inhibition of glioma tumor cell migration and invasiveness mediated by arsenic trioxide

    International Nuclear Information System (INIS)

    Lin, Tseng-Hsi; Kuo, Hsing-Chun; Chou, Fen-Pi; Lu, Fung-Jou

    2008-01-01

    Arsenic trioxide (As 2 O 3 ) exhibits promising anticarcinogenic activity in acute promyelocytic leukemic patients and induces apoptosis in various tumor cells in vitro. Here, we investigated the effect of the natural alkaloid berberine on As 2 O 3 -mediated inhibition of cancer cell migration using rat and human glioma cell lines. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to determine the viability of rat C6 and human U-87 glioma cells after treatment with As 2 O 3 or berberine, and after co-treatment with As 2 O 3 and berberine. The wound scratch and Boyden chamber assays were applied to determine the effect of As 2 O 3 and berberine on the migration capacity and invasiveness of glioma cancer cells. Zymography and Western blot analyses provided information on the effect of As 2 O 3 and berberine on the intracellular translocation and activation of protein kinase C (PKC), and some PKC-related downstream factors. Most assays were performed three times, independently, and data were analyzed using ANOVA. The cell viability studies demonstrated that berberine enhances As 2 O 3 -mediated inhibition of glioma cell growth after 24 h incubation. Untreated control cells formed a confluent layer, the formation of which was inhibited upon incubation with 5 μM As 2 O 3 . The latter effect was even more pronounced in the presence of 10 μM berberine. The As 2 O 3 -mediated reduction in motility and invasion of glioma cells was enhanced upon co-treatment with berberine. Furthermore, it has been reported that PKC isoforms influence the morphology of the actin cytoskeleton, as well as the activation of metalloproteases MT1-MMP and MMP-2, reported to be involved in cancer cell migration. Treatment of glioma cells with As 2 O 3 and berberine significantly decreased the activation of PKC α and ε and led to actin cytoskeleton rearrangements. The levels of two downstream transcription factors, myc and jun, and MT1-MMP and MMP-2 were also

  12. NUMB does not impair growth and differentiation status of experimental gliomas

    International Nuclear Information System (INIS)

    Euskirchen, Philipp; Skaftnesmo, Kai-Ove; Huszthy, Peter C.; Brekkå, Narve; Bjerkvig, Rolf; Jacobs, Andreas H.; Miletic, Hrvoje

    2011-01-01

    The cell fate determinant NUMB orchestrates asymmetric cell division in flies and mammals and has lately been suggested to have a tumor suppressor function in breast and lung cancer. Here, we studied NUMB in the context of malignant gliomas. We used ectopic expression of NUMB in order to inhibit proliferation and induce differentiation in glioma cells by alteration of Notch, Hedgehog and p53 signaling. We found that NUMB is consistently expressed in glioma biopsies with predominance of NUMB2/4 isoforms as determined by isoform-specific real-time PCR and Western blotting. Upon lentiviral overexpression, in vitro proliferation rate and the grade of differentiation as assessed by morphology and expression of neural and glial markers remained unchanged. Orthotopic xenografts of NUMB-transduced human U87 glioma cells could be established in nude rats without impairing engraftment or causing significant changes in morphology based on magnetic resonance imaging (MRI). The previously reported alteration of Hedgehog and p53 signaling by NUMB could not be recapitulated in glioma cells. We thus show that in experimental gliomas, NUMB overexpression most likely does not exert a tumor suppressor function such as seen in epithelial cancers.

  13. Cloning and characterization of human RTVP-1b, a novel splice variant of RTVP-1 in glioma cells

    International Nuclear Information System (INIS)

    Xiang Cunli; Sarid, Ronit; Cazacu, Simona; Finniss, Susan; Lee, Hae-Kyung; Ziv-Av, Amotz; Mikkelsen, Tom; Brodie, Chaya

    2007-01-01

    Here, we report the cloning and characterization of RTVP-1b, a novel splice variant of human RTVP-1, which was isolated from the U87 glioma cell line. Sequence analysis revealed that RTVP-1b contains an additional 71 base exon between exons 2 and 3 that is missing in RTVP-1, leading to a frame-shift and a different putative protein. The deduced protein was 237 amino acids in length, sharing the N-terminal 141 amino acids with RTVP-1. RT-PCR analysis demonstrated that RTVP-1b was expressed in a wide range of tissues and that its expression was different from that of RTVP-1. In contrast, RTVP-1 and RTVP-1b showed similar patterns of expression in astrocytic tumors; highly expressed in glioblastomas as compared to normal brains, low-grade astrocytomas and anaplastic oligodendrogliomas. Overexpression of RTVP-1b increased glioma cell proliferation but did not affect cell migration. Our results suggest that RTVP-1b represents a potential prognostic marker and therapeutic target in gliomas

  14. Knockdown of NF-E2-related factor 2 inhibits the proliferation and growth of U251MG human glioma cells in a mouse xenograft model.

    Science.gov (United States)

    Ji, Xiang-Jun; Chen, Sui-Hua; Zhu, Lin; Pan, Hao; Zhou, Yuan; Li, Wei; You, Wan-Chun; Gao, Chao-Chao; Zhu, Jian-Hong; Jiang, Kuan; Wang, Han-Dong

    2013-07-01

    NF-E2-related factor 2 (Nrf2) is a pivotal transcription factor of cellular responses to oxidative stress and recent evidence suggests that Nrf2 plays an important role in cancer pathobiology. However, the underlying mechanism has yet to be elucidated, particularly in glioma. In the present study, we investigated the role of Nrf2 in the clinical prognosis, cell proliferation and tumor growth of human glioblastoma multiforme (GBM). We detected overexpression of Nrf2 protein levels in GBM compared to normal brain tissues. Notably, higher protein levels of Nrf2 were significantly associated with poorer overall survival and 1-year survival for GBM patients. Furthermore, we constructed the plasmid Si-Nrf2 and transduced it into U251MG cells to downregulate the expression of Nrf2 and established stable Nrf2 knockdown cells. The downregulation of Nrf2 suppressed cell proliferation in vitro and tumor growth in mouse xenograft models. We performed immunohistochemistry staining to detect the protein levels of Nrf2, Ki-67, caspase-3 and CD31 in the xenograft tumors and found that the expression levels of Nrf2 and Ki-67 were much lower in the Si-Nrf2 group compared to the Si-control group. In addition, the number of caspase-3-positive cells was significantly increased in the Si-Nrf2 group. By analysis of microvessel density (MVD) assessed by CD31, the MVD value in the Si-Nrf2 group decreased significantly compared to the Si-control group. These findings indicate that the knockdown of Nrf2 may suppress tumor growth by inhibiting cell proliferation, increasing cell apoptosis and inhibiting angiogenesis. These results highlight the potential of Nrf2 as a candidate molecular target to control GBM cell proliferation and tumor growth.

  15. Dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) for the assessment of Pc 4-sensitized photodynamic therapy of a U87-derived glioma model in the athymic nude rat

    Science.gov (United States)

    Anka, Ali; Thompson, Paul; Mott, Eric; Sharma, Rahul; Zhang, Ruozhen; Cross, Nathan; Sun, Jiayang; Flask, Chris A.; Oleinick, Nancy L.; Dean, David

    2010-02-01

    Introduction: Dynamic Contrast-Enhanced-Magnetic Resonance Imaging (DCE-MRI) may provide a means of tracking the outcome of Pc 4-sensitized photodynamic therapy (PDT) in deeply placed lesions (e.g., brain tumors). We previously determined that 150 μL of gadolinium (Gd-DTPA) produces optimal enhancement of U87-derived intracerebral tumors in an athymic nude rat glioma model. We wish to determine how consistently DCE-MRI enhancement will detect an increase in Gd-enhancement of these tumors following Pc 4-PDT. Methods: We injected 2.5 x 105 U87 cells into the brains of 6 athymic nude rats. After 7-8 days pre-Pc 4 PDT peri-tumor DCE-MRI images were acquired on a 7.0T microMRI scanner before and after administration of 150 μL Gd. DCE-MRI scans were repeated on Days 11, 12, and 13 following Pc 4-PDT (Day 8 or 9). Results: Useful DCE-MRI data were obtained for these animals before and after Pc 4- PDT. In the pre-Pc 4-PDT DCE-MRI scans an average normalized peak Gd enhancement was observed in tumor tissue that was 1.297 times greater than baseline (0.035 Standard Error [SE]). The average normalized peak Gd enhancement in the tumor tissue in the scan following PDT (Day 11) was 1.537 times greater than baseline (0.036 SE), a statistically significant increase in enhancement (p = 0.00584) over the pre-PDT level. Discussion: A 150 μL Gd dose appears to provide an unambiguous increase in signal indicating Pc 4-PDT-induced necrosis of the U87-derived tumor. Our DCEMRI protocol may allow the development of a clinically robust, unambiguous, non-invasive technique for the assessment of PDT outcome.

  16. Gamma-glutamylcyclotransferase promotes the growth of human glioma cells by activating Notch-Akt signaling

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Shang-Hang; Yu, Ning; Liu, Xi-Yao; Tan, Guo-Wei; Wang, Zhan-Xiang, E-mail: md_wzx7189@163.com

    2016-03-18

    Glioma as an aggressive type tumor is rapidly growing and has become one of the leading cause of cancer-related death worldwide. γ-Glutamylcyclotransferase (GGCT) has been shown as a diagnostic marker in various cancers. To reveal whether there is a correlation between GGCT and human glioma, GGCT expression in human glioma tissues and cell lines was first determined. We found that GGCT expression was up-regulated in human glioma tissues and cell lines. Further, we demonstrate that GGCT knockdown inhibits glioma cell T98G and U251 proliferation and colony formation, whereas GGCT overexpression leads to oppose effects. GGCT overexpression promotes the expression of Notch receptors and activates Akt signaling in glioma cells, and Notch-Akt signaling is activated in glioma tissues with high expression of GGCT. Finally, we show that inhibition of Notch-Akt signaling with Notch inhibitor MK-0752 blocks the effects of GGCT on glioma proliferation and colony formation. In conclusion, GGCT plays a critical role in glioma cell proliferation and may be a potential cancer therapeutic target. - Highlights: • GGCT expression is up-regulated in human glioma tissues and cell lines. • GGCT promotes glioma cell growth and colony formation. • GGCT promotes the activation of Notch-Akt signaling in glioma cells and tissues. • Notch inhibition blocks the role of GGCT in human glioma cells.

  17. 68Ga-labeling and in vivo evaluation of a uPAR binding DOTA- and NODAGA-conjugated peptide for PET imaging of invasive cancers

    DEFF Research Database (Denmark)

    Persson, Morten; Madsen, Jacob; Østergaard, Søren

    2012-01-01

    , uPAR binding affinity and cell uptake were determined. To characterize the in vivo properties, dynamic microPET imaging was carried out in nude mice bearing human glioma U87MG tumor xenograft. RESULTS: In vitro experiments revealed uPAR binding affinities in the lower nM range for both conjugated......-AE105-NH(2) was observed. Good stability in phosphate-buffered saline and mouse plasma was observed. High cell uptake was found for both tracers in U87MG tumor cells. Dynamic microPET imaging demonstrated good tumor-to-background ratio for both tracers. Tumor uptake was 2.1% ID/g and 1.3% ID/g 30 min...... positron emission tomography (PET) in human cancer xenograft mice models. Here we introduce (68)Ga-DOTA-AE105-NH(2) and (68)Ga-NODAGA-AE105-NH(2) and evaluate their imaging properties using small-animal PET. METHODS: Synthesis of DOTA-AE105-NH(2) and NODAGA-AE105-NH(2) was based on solid-phase peptide...

  18. Long noncoding RNA CASC2 predicts the prognosis of glioma patients and functions as a suppressor for gliomas by suppressing Wnt/β-catenin signaling pathway

    Directory of Open Access Journals (Sweden)

    Wang R

    2017-07-01

    Full Text Available Ronglin Wang,1,* Yuqian Li,1,* Gang Zhu,1,* Bo Tian,1 Wen Zeng,1 Yang Yang,2 Zhihong Li1 1Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, 2Department of Neurosurgery, The 451th hospital of PLA, Xi’an, Shaanxi, People’s Republic of China *These authors contributed equally to this work Background: Previous studies have demonstrated that long noncoding RNA cancer susceptibility candidate 2 (lncRNA CASC2 is frequently downregulated in several types of tumors and functions as a tumor-suppressive factor. However, the clinical significance and function of CASC2 in human glioma remain largely unknown. The purpose of this study was to identify the clinical values of CASC2, as well as investigate the potential molecular mechanisms in glioma. Methods: This retrospective study first analyzed the expression levels of CASC2 using quantitative real-time polymerase chain reaction. Then, CASC2 expression levels were associated with various clinicopathologic characteristics and the survival rate of patients with glioma. Finally, the function and underlying molecular mechanisms of CASC2 in human glioma were investigated in U251 cell line. Results: By quantitative real-time polymerase chain reaction analysis, our data showed that CASC2 expression was significantly downregulated in glioma tissues and cell lines (U87 and U251 compared to adjacent normal brain tissues or normal human astrocytes. Moreover, its expression negatively correlated with tumor grade in glioma patients. Furthermore, Kaplan–Meier curves with log-rank analysis revealed a close correlation between downregulated CASC2 and shorter survival time in glioma patients. In addition, Cox regression analysis indicated that CASC2 could be considered as an independent risk factor for poor prognosis. Finally, in vitro experiment demonstrated that CASC2 overexpression remarkably suppressed glioma cell proliferation, migration, and invasion through suppressing Wnt

  19. Glioma cells on the run – the migratory transcriptome of 10 human glioma cell lines

    Directory of Open Access Journals (Sweden)

    Holz David

    2008-01-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM is the most common primary intracranial tumor and despite recent advances in treatment regimens, prognosis for affected patients remains poor. Active cell migration and invasion of GBM cells ultimately lead to ubiquitous tumor recurrence and patient death. To further understand the genetic mechanisms underlying the ability of glioma cells to migrate, we compared the matched transcriptional profiles of migratory and stationary populations of human glioma cells. Using a monolayer radial migration assay, motile and stationary cell populations from seven human long term glioma cell lines and three primary GBM cultures were isolated and prepared for expression analysis. Results Gene expression signatures of stationary and migratory populations across all cell lines were identified using a pattern recognition approach that integrates a priori knowledge with expression data. Principal component analysis (PCA revealed two discriminating patterns between migrating and stationary glioma cells: i global down-regulation and ii global up-regulation profiles that were used in a proband-based rule function implemented in GABRIEL to find subsets of genes having similar expression patterns. Genes with up-regulation pattern in migrating glioma cells were found to be overexpressed in 75% of human GBM biopsy specimens compared to normal brain. A 22 gene signature capable of classifying glioma cultures based on their migration rate was developed. Fidelity of this discovery algorithm was assessed by validation of the invasion candidate gene, connective tissue growth factor (CTGF. siRNA mediated knockdown yielded reduced in vitro migration and ex vivo invasion; immunohistochemistry on glioma invasion tissue microarray confirmed up-regulation of CTGF in invasive glioma cells. Conclusion Gene expression profiling of migratory glioma cells induced to disperse in vitro affords discovery of genomic signatures; selected

  20. Investigation of platinum nanoparticle properties against U87 glioblastoma multiforme

    DEFF Research Database (Denmark)

    Kutwin, Marta; Sawosz, Ewa; Jaworski, Slawomir

    2017-01-01

    a harmful influence on viability of U87 glioblastoma multiforme (GBM) cells, but also showed genotoxic properties as well as a pro-apoptotic effect on cancer cells. It was found that NP-Pt decreased the weight and volume of U87 GBM tumor tissue and caused pathomorphological changes in the ultrastructure...

  1. Poly(ADP-ribose) polymerase-independent potentiation of nitrosourea cytotoxicity by 3-aminobenzamide in human malignant glioma cells.

    Science.gov (United States)

    Winter, S; Weller, M

    2000-06-16

    Poly(ADP-ribose) polymerase is a zinc-finger DNA-binding protein that detects specifically DNA strand breaks generated by genotoxic agents and is thought to be involved in DNA repair. Here, we examined the effects of 3-aminobenzamide, a poly(ADP-ribose) polymerase inhibitor, on the chemosensitivity of human malignant glioma cells. 3-Aminobenzamide selectively potentiated the cytotoxicity of the nitrosoureas, nimustine, carmustine and lomustine in 10 of 12 human malignant glioma cell lines. In contrast, 3-aminobenzamide did not modulate the cytotoxic effects of doxorubicine, teniposide, vincristine, camptothecin or cytarabine. The nitrosoureas did not induce poly(ADP-ribose) polymerase activity in the glioma cells. Ectopic expression of truncated poly(ADP-ribose) polymerase containing the poly(ADP-ribose) polymerase DNA-binding domain, which acts as a dominant-negative mutant, in LN-18 or LN-229 cells did not alter the 3-aminobenzamide effect on nitrosourea-mediated cytotoxicity. Thus, 3-aminobenzamide may target another nicotinamide adenine dinucleotide (NAD)-requiring enzyme, but not poly(ADP-ribose) polymerase, when enhancing nitrosourea cytotoxicity in human malignant glioma cells. Carmustine cytotoxicity was associated with a G2/M arrest. Coexposure to carmustine and 3-aminobenzamide overcame this G2/M arrest in T98G cells, which are sensitized to carmustine by 3-aminobenzamide, but not in U251MG cells, which are refractory to 3-aminobenzamide-mediated sensitization to carmustine. Thus, 3-aminobenzamide-mediated sensitization to carmustine cytotoxicity may result from interference with the stable G2/M arrest response to carmustine in human glioma cells.

  2. Fascin-1 knock-down of human glioma cells reduces their microvilli/filopodia while improving their susceptibility to lymphocyte-mediated cytotoxicity

    Science.gov (United States)

    Hoa, Neil T; Ge, Lisheng; Erickson, Kate L; Kruse, Carol A; Cornforth, Andrew N; Kuznetsov, Yurii; McPherson, Alex; Martini, Filippo; Jadus, Martin R

    2015-01-01

    Cancer cells derived from Glioblastoma multiforme possess membranous protrusions allowing these cells to infiltrate surrounding tissue, while resisting lymphocyte cytotoxicity. Microvilli and filopodia are supported by actin filaments cross-linked by fascin. Fascin-1 was genetically silenced within human U251 glioma cells; these knock-down glioma cells lost their microvilli/filopodia. The doubling time of these fascin-1 knock-down cells was doubled that of shRNA control U251 cells. Fascin-1 knock-down cells lost their transmigratory ability responding to interleukin-6 or insulin-like growth factor-1. Fascin-1 silenced U251 cells were more easily killed by cytolytic lymphocytes. Fascin-1 knock-down provides unique opportunities to augment glioma immunotherapy by simultaneously targeting several key glioma functions: like cell transmigration, cell division and resisting immune responses. PMID:25901196

  3. PTEN-induction in U251 glioma cells decreases the expression of insulin-like growth factor binding protein-2

    International Nuclear Information System (INIS)

    Levitt, Randy J.; Georgescu, Maria-Magdalena; Pollak, Michael

    2005-01-01

    PTEN is a tumor suppressor gene whose loss of function is observed in ∼40-50% of human cancers. Although insulin-like growth factor binding protein-2 (IGFBP-2) was classically described as a growth inhibitor, multiple recent reports have shown an association of overexpression and/or high serum levels of IGFBP-2 with poor prognosis of several malignancies, including gliomas. Using an inducible PTEN expression system in the PTEN-null glioma cell line U251, we demonstrate that PTEN-induction is associated with reduced proliferation, increased apoptosis, and a substantial reduction of the high levels of IGFBP-2 expression. The PTEN-induced decrease in IGFBP-2 expression could be mimicked with the PI3-kinase inhibitor LY294002, indicating that the lipid phosphatase activity of PTEN is responsible for the observed effect. However, the rapamycin analog CCI-779 did not affect IGFBP-2 expression, suggesting that the PTEN-induced decrease in IGFBP-2 expression is not attributable to decreased mTOR signalling. Recombinant human IGFBP-2 was unable to rescue U251-PTEN cells from the antiproliferative effects of PTEN, and IGFBP-2 siRNA did not affect the IGF-dependent or -independent growth of this cell line. These results suggest that the clinical data linking IGFBP-2 expression to poor prognosis may arise, at least in part, because high levels of IGFBP-2 expression correlate with loss of function of PTEN, which is well known to lead to aggressive behavior of gliomas. Our results motivate translational research regarding the relationship between IGFBP-2 expression and loss of function of PTEN

  4. The Inhibition of microRNA-128 on IGF-1-Activating mTOR Signaling Involves in Temozolomide-Induced Glioma Cell Apoptotic Death.

    Directory of Open Access Journals (Sweden)

    Peng-Hsu Chen

    Full Text Available Temozolomide (TMZ, an alkylating agent of the imidazotetrazine series, is a first-line chemotherapeutic drug used in the clinical therapy of glioblastoma multiforme, the most common and high-grade primary glioma in adults. Micro (miRNAs, which are small noncoding RNAs, post-transcriptionally regulate gene expressions and are involved in gliomagenesis. However, no studies have reported relationships between TMZ and miRNA gene regulation. We investigated TMZ-mediated miRNA profiles and its molecular mechanisms underlying the induction of glioma cell death. By performing miRNA microarray and bioinformatics analyses, we observed that expression of 248 miRNAs was altered, including five significantly upregulated and 17 significantly downregulated miRNAs, in TMZ-treated U87MG cells. miR-128 expression levels were lower in different glioma cells and strongly associated with poor survival. TMZ treatment significantly upregulated miR-128 expression. TMZ significantly enhanced miR-128-1 promoter activity and transcriptionally regulated miR-128 levels through c-Jun N-terminal kinase 2/c-Jun pathways. The overexpression and knockdown of miR-128 expression significantly affected TMZ-mediated cell viability and apoptosis-related protein expression. Furthermore, the overexpression of miR-128 alone enhanced apoptotic death of glioma cells through caspase-3/9 activation, poly(ADP ribose polymerase degradation, reactive oxygen species generation, mitochondrial membrane potential loss, and non-protective autophagy formation. Finally, we identified that key members in mammalian target of rapamycin (mTOR signaling including mTOR, rapamycin-insensitive companion of mTOR, insulin-like growth factor 1, and PIK3R1, but not PDK1, were direct target genes of miR-128. TMZ inhibited mTOR signaling through miR-128 regulation. These results indicate that miR-128-inhibited mTOR signaling is involved in TMZ-mediated cytotoxicity. Our findings may provide a better understanding

  5. Resveratrol induces cellular senescence with attenuated mono-ubiquitination of histone H2B in glioma cells

    International Nuclear Information System (INIS)

    Gao, Zhen; Xu, Michael S.; Barnett, Tamara L.; Xu, C. Wilson

    2011-01-01

    Research highlights: → Resveratrol induces cellular senescence in glioma cell. → Resveratrol inhibits mono-ubiquitination of histone H2B at K120. → Depletion of RNF20, phenocopies the inhibitory effects of resveratrol. → Mono-ubiquitination of histone H2B at K120 is a novel target of resveratrol. → RNF20 inhibits cellular senescence in proliferating glioma cells. -- Abstract: Resveratrol (3,4',5-trihydroxy-trans-stilbene), a polyphenol naturally occurring in grapes and other plants, has cancer chemo-preventive effects and therapeutic potential. Although resveratrol modulates multiple pathways in tumor cells, how resveratrol or its affected pathways converge on chromatin to mediate its effects is not known. Using glioma cells as a model, we showed here that resveratrol inhibited cell proliferation and induced cellular hypertrophy by transforming spindle-shaped cells to enlarged, irregular and flatten-shaped ones. We further showed that resveratrol-induced hypertrophic cells expressed senescence-associated-β-galactosidase, suggesting that resveratrol-induced cellular senescence in glioma cells. Consistent with these observations, we demonstrated that resveratrol inhibited clonogenic efficiencies in vitro and tumor growth in a xenograft model. Furthermore, we found that acute treatment of resveratrol inhibited mono-ubiquitination of histone H2B at K120 (uH2B) in breast, prostate, pancreatic, lung, brain tumor cells as well as primary human cells. Chronic treatment with low doses of resveratrol also inhibited uH2B in the resveratrol-induced senescent glioma cells. Moreover, we showed that depletion of RNF20, a ubiquitin ligase of histone H2B, inhibited uH2B and induced cellular senescence in glioma cells in vitro, thereby recapitulated the effects of resveratrol. Taken together, our results suggest that uH2B is a novel direct or indirect chromatin target of resveratrol and RNF20 plays an important role in inhibiting cellular senescence programs that are

  6. Resveratrol induces cellular senescence with attenuated mono-ubiquitination of histone H2B in glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhen; Xu, Michael S.; Barnett, Tamara L. [Nevada Cancer Institute, Las Vegas, NV 89135 (United States); Xu, C. Wilson, E-mail: wxu@nvcancer.org [Nevada Cancer Institute, Las Vegas, NV 89135 (United States)

    2011-04-08

    Research highlights: {yields} Resveratrol induces cellular senescence in glioma cell. {yields} Resveratrol inhibits mono-ubiquitination of histone H2B at K120. {yields} Depletion of RNF20, phenocopies the inhibitory effects of resveratrol. {yields} Mono-ubiquitination of histone H2B at K120 is a novel target of resveratrol. {yields} RNF20 inhibits cellular senescence in proliferating glioma cells. -- Abstract: Resveratrol (3,4',5-trihydroxy-trans-stilbene), a polyphenol naturally occurring in grapes and other plants, has cancer chemo-preventive effects and therapeutic potential. Although resveratrol modulates multiple pathways in tumor cells, how resveratrol or its affected pathways converge on chromatin to mediate its effects is not known. Using glioma cells as a model, we showed here that resveratrol inhibited cell proliferation and induced cellular hypertrophy by transforming spindle-shaped cells to enlarged, irregular and flatten-shaped ones. We further showed that resveratrol-induced hypertrophic cells expressed senescence-associated-{beta}-galactosidase, suggesting that resveratrol-induced cellular senescence in glioma cells. Consistent with these observations, we demonstrated that resveratrol inhibited clonogenic efficiencies in vitro and tumor growth in a xenograft model. Furthermore, we found that acute treatment of resveratrol inhibited mono-ubiquitination of histone H2B at K120 (uH2B) in breast, prostate, pancreatic, lung, brain tumor cells as well as primary human cells. Chronic treatment with low doses of resveratrol also inhibited uH2B in the resveratrol-induced senescent glioma cells. Moreover, we showed that depletion of RNF20, a ubiquitin ligase of histone H2B, inhibited uH2B and induced cellular senescence in glioma cells in vitro, thereby recapitulated the effects of resveratrol. Taken together, our results suggest that uH2B is a novel direct or indirect chromatin target of resveratrol and RNF20 plays an important role in inhibiting cellular

  7. Triacetin-based acetate supplementation as a chemotherapeutic adjuvant therapy in glioma.

    Science.gov (United States)

    Tsen, Andrew R; Long, Patrick M; Driscoll, Heather E; Davies, Matthew T; Teasdale, Benjamin A; Penar, Paul L; Pendlebury, William W; Spees, Jeffrey L; Lawler, Sean E; Viapiano, Mariano S; Jaworski, Diane M

    2014-03-15

    Cancer is associated with epigenetic (i.e., histone hypoacetylation) and metabolic (i.e., aerobic glycolysis) alterations. Levels of N-acetyl-L-aspartate (NAA), the primary storage form of acetate in the brain, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis to generate acetate, are reduced in glioma; yet, few studies have investigated acetate as a potential therapeutic agent. This preclinical study sought to test the efficacy of the food additive Triacetin (glyceryl triacetate, GTA) as a novel therapy to increase acetate bioavailability in glioma cells. The growth-inhibitory effects of GTA, compared to the histone deacetylase inhibitor Vorinostat (SAHA), were assessed in established human glioma cell lines (HOG and Hs683 oligodendroglioma, U87 and U251 glioblastoma) and primary tumor-derived glioma stem-like cells (GSCs), relative to an oligodendrocyte progenitor line (Oli-Neu), normal astrocytes, and neural stem cells (NSCs) in vitro. GTA was also tested as a chemotherapeutic adjuvant with temozolomide (TMZ) in orthotopically grafted GSCs. GTA-induced cytostatic growth arrest in vitro comparable to Vorinostat, but, unlike Vorinostat, GTA did not alter astrocyte growth and promoted NSC expansion. GTA alone increased survival of mice engrafted with glioblastoma GSCs and potentiated TMZ to extend survival longer than TMZ alone. GTA was most effective on GSCs with a mesenchymal cell phenotype. Given that GTA has been chronically administered safely to infants with Canavan disease, a leukodystrophy due to ASPA mutation, GTA-mediated acetate supplementation may provide a novel, safe chemotherapeutic adjuvant to reduce the growth of glioma tumors, most notably the more rapidly proliferating, glycolytic and hypoacetylated mesenchymal glioma tumors. © 2013 UICC.

  8. Glutamate/glutamine metabolism coupling between astrocytes and glioma cells: neuroprotection and inhibition of glioma growth.

    Science.gov (United States)

    Yao, Pei-Sen; Kang, De-Zhi; Lin, Ru-Ying; Ye, Bing; Wang, Wei; Ye, Zu-Cheng

    2014-07-18

    Glioma glutamate release has been shown to promote the growth of glioma cells and induce neuronal injuries from epilepsy to neuronal death. However, potential counteractions from normal astrocytes against glioma glutamate release have not been fully evaluated. In this study, we investigated the glutamate/glutamine cycling between glioma cells and astrocytes and their impact on neuronal function. Co-cultures of glioma cells with astrocytes (CGA) in direct contact were established under different mix ratio of astrocyte/glioma. Culture medium conditioned in these CGAs were sampled for HPLC measurement, for neuronal ratiometric calcium imaging, and for neuronal survival assay. We found: (1) High levels of glutaminase expression in glioma cells, but not in astrocytes, glutaminase enables glioma cells to release large amount of glutamate in the presence of glutamine. (2) Glutamate levels in CGAs were directly determined by the astrocyte/glioma ratios, indicating a balance between glioma glutamate release and astrocyte glutamate uptake. (3) Culture media from CGAs of higher glioma/astrocyte ratios induced stronger neuronal Ca(2+) response and more severe neuronal death. (4) Co-culturing with astrocytes significantly reduced the growth rate of glioma cells. These results indicate that normal astrocytes in the brain play pivotal roles in glioma growth inhibition and in reducing neuronal injuries from glioma glutamate release. However, as tumor growth, the protective role of astrocytes gradually succumb to glioma cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma.

    Science.gov (United States)

    Tang, Jiaze; Huang, Ning; Zhang, Xiang; Zhou, Tao; Tan, Ying; Pi, Jiangli; Pi, Li; Cheng, Si; Zheng, Huzhi; Cheng, Yuan

    2017-01-01

    The extent of resection is a significant prognostic factor in glioma patients. However, the maximum safe resection level is difficult to determine due to the inherent infiltrative character of tumors. Recently, fluorescence-guided surgery has emerged as a new technique that allows safe resection of glioma. In this study, we constructed a new kind of quantum dot (QD)-labeled aptamer (QD-Apt) nanoprobe by conjugating aptamer 32 (A32) to the QDs surface, which can specially bind to the tumors. A32 is a single-stranded DNA capable of binding to the epidermal growth factor receptor variant III (EGFRvIII) specially distributed on the surface of glioma cells. To detect the expression of EGFRvIII in human brain tissues, 120 specimens, including 110 glioma tissues and 10 normal brain tissues, were examined by immunohistochemistry, and the results showed that the rate of positive expression of EGFRvIII in the glioma tissues was 41.82%, and 0.00% in normal brain tissues. Besides, the physiochemical properties of QD-Apt nanoparticles (NPs) were thoroughly characterized. Biocompatibility of the NPs was evaluated, and the results suggested that the QD-Apt was nontoxic in vivo and vitro. Furthermore, the use of the QD-Apt in labeling glioma cell lines and human brain glioma tissues, and target gliomas in situ was also investigated. We found that not only could QD-Apt specially bind to the U87-EGFRvIII glioma cells but also bind to human glioma tissues in vitro. Fluorescence imaging in vivo with orthotopic glioma model mice bearing U87-EGFRvIII showed that QD-Apt could penetrate the blood-brain barrier and then selectively accumulate in the tumors through binding to EGFRvIII, and consequently, generate a strong fluorescence, which contributed to the margins of gliomas that were visualized clearly, and thus, help the surgeons realize the maximum safe resection of glioma. In addition, QD-Apt can also be applied in preoperative diagnosis and postoperative examination of glioma

  10. Products of cells from gliomas: VIII. Multiple-well immunoperoxidase assay of immunoreactivity of primary hybridoma supernatants with human glioma and brain tissue and cultured glioma cells.

    Science.gov (United States)

    McKeever, P E; Wahl, R L; Shakui, P; Jackson, G A; Letica, L H; Liebert, M; Taren, J A; Beierwaltes, W H; Hoff, J T

    1990-06-01

    To test the feasibility of primary screening of hybridoma supernatants against human glioma tissue, over 5000 combinations of hybridoma supernatants with glioma tissue, cultured glioma cells, and normal central neural tissue were screened with a new multiple-well (M-well) screening system. This is an immunoperoxidase assay system with visual endpoints for screening 20-30 hybridoma supernatants per single microscope slide. There were extensive differences between specificities to tissue and to cultured glioma cells when both were screened with M-wells and when cultured cells were screened with standard semi-automated fluorescence. Primary M-well screening with glioma tissue detected seven hybridoma supernatants that specifically identified parenchymal cells of glioma tissue and that were not detected with cultured cells. Immunoreactivities of individual supernatants for vascular components (nine supernatants), necrosis (five supernatants), and nuclei (three supernatants) were detected. Other supernatants bound multiple sites on glioma tissue and/or subpopulations of neurons and glia of normal tissue. The results show that primary screening with glioma tissue detects a number of different specificities of hybridoma supernatants to gliomas not detected by conventional screening with cultured cells. These are potentially applicable to diagnosis and therapy.

  11. Cord blood stem cell-mediated induction of apoptosis in glioma downregulates X-linked inhibitor of apoptosis protein (XIAP.

    Directory of Open Access Journals (Sweden)

    Venkata Ramesh Dasari

    2010-07-01

    Full Text Available XIAP (X-linked inhibitor of apoptosis protein is one of the most important members of the apoptosis inhibitor family. XIAP is upregulated in various malignancies, including human glioblastoma. It promotes invasion, metastasis, growth and survival of malignant cells. We hypothesized that downregulation of XIAP by human umbilical cord blood mesenchymal stem cells (hUCBSC in glioma cells would cause them to undergo apoptotic death.We observed the effect of hUCBSC on two malignant glioma cell lines (SNB19 and U251 and two glioma xenograft cell lines (4910 and 5310. In co-cultures of glioma cells with hUCBSC, proliferation of glioma cells was significantly inhibited. This is associated with increased cytotoxicity of glioma cells, which led to glioma cell death. Stem cells induced apoptosis in glioma cells, which was evaluated by TUNEL assay, FACS analyses and immunoblotting. The induction of apoptosis is associated with inhibition of XIAP in co-cultures of hUCBSC. Similar results were obtained by the treatment of glioma cells with shRNA to downregulate XIAP (siXIAP. Downregulation of XIAP resulted in activation of caspase-3 and caspase-9 to trigger apoptosis in glioma cells. Apoptosis is characterized by the loss of mitochondrial membrane potential and upregulation of mitochondrial apoptotic proteins Bax and Bad. Cell death of glioma cells was marked by downregulation of Akt and phospho-Akt molecules. We observed similar results under in vivo conditions in U251- and 5310-injected nude mice brains, which were treated with hUCBSC. Under in vivo conditions, Smac/DIABLO was found to be colocalized in the nucleus, showing that hUCBSC induced apoptosis is mediated by inhibition of XIAP and activation of Smac/DIABLO.Our results indicate that downregulation of XIAP by hUCBSC treatment induces apoptosis, which led to the death of the glioma cells and xenograft cells. This study demonstrates the therapeutic potential of XIAP and hUCBSC to treat malignant

  12. Antiproliferative activity of Eremanthus crotonoides extracts and centratherin demonstrated in brain tumor cell lines

    Directory of Open Access Journals (Sweden)

    Jonathas F. R. Lobo

    2012-12-01

    Full Text Available The genus Eremanthus is recognized by the predominance of sesquiterpene lactones from the furanoheliangolide type, a class of substances extensively tested against cancer cell lines. Thus, the species E. crotonoides (DC. Sch. Bip., Asteraceae, obtained on "restinga" vegetation was evaluated against U251 and U87-MG glioma cell lines using the MTT colorimetric assay. Dichloromethane fraction was cytotoxic to both glioblastoma multiforme cell lines. We then conducted UPLC-PDA-ESI-MS/MS analysis of the dichloromethane fraction, which allowed the identification of the sesquiterpene lactones centratherin and goyazensolide. The isolation of centratherin was performed using chromatographic techniques and the identification of this substance was confirmed according to NMR data. Cytotoxic activity of centratherin alone was also evaluated against both U251 and U87-MG cells, which showed IC50 values comparable with those obtained for the commercial anticancer drug doxorubicin. All the tested samples showed cytotoxic activity against glioblastoma multiforme cells which suggests that E. crotonoides extracts may be important sources of antiproliferative substances and that the centratherin may serve as prototype for developing new antiglioblastoma drugs.

  13. Osteopontin and splice variant expression level in human malignant glioma: Radiobiologic effects and prognosis after radiotherapy

    International Nuclear Information System (INIS)

    Güttler, Antje; Giebler, Maria; Cuno, Peter; Wichmann, Henri; Keßler, Jacqueline; Ostheimer, Christian; Söling, Ariane; Strauss, Christian; Illert, Jörg; Kappler, Matthias; Vordermark, Dirk; Bache, Matthias

    2013-01-01

    Background and purpose: We investigated the role of the hypoxia-associated secreted glycoprotein osteopontin (OPN) in the response of malignant glioma to radiotherapy by characterizing OPN and its splice variants in vitro and in patient material. Material and methods: The effect of siRNA knockdown of OPN splice variants on cellular and radiobiologic behavior was analyzed in U251MG cells using OpnS siRNA (inhibition of all OPN splice variants) and OpnAC siRNA (knockdown only of OPNa and OPNc). OPN and splice variant mRNA levels were quantified in archival material of 41 glioblastoma tumor samples. Plasma OPN was prospectively measured in 33 malignant glioma patients. Results: Inhibition of OPNa and OPNc (OpnAC) reduced clonogenic survival in U251MG cells but did not affect proliferation, migration or apoptosis. Knockdown of all OPN splice variants (OpnS) resulted in an even stronger inhibition of clonogenic survival, while cell proliferation and migration were reduced and rate of apoptosis was increased. Additional irradiation had additive effects with both siRNAs. Plasma OPN increased continuously in malignant glioma patients and was associated with poor survival. Conclusions: OPNb is partially able to compensate the effects of OPNa and OPNc knockdown in U251MG cells. High OPN plasma levels at the end of radiotherapy are associated with poor survival

  14. Polysaccharide peptide isolated from grass-cultured Ganoderma lucidum induces anti-proliferative and pro-apoptotic effects in the human U251 glioma cell line.

    Science.gov (United States)

    Wang, Chunhua; Lin, Dongmei; Chen, Quan; Lin, Shuqian; Shi, Songsheng; Chen, Chunmei

    2018-04-01

    The Ganoderma lucidum ( G. lucidum ) mushroom is one of the most extensively studied functional foods, known for its numerous health benefits, including the inhibition of tumor cell growth. The present study assessed the anti-proliferative and pro-apoptotic activity of a novel G. lucidum polysaccharide peptide (GL-PP) in human glioma U251 cells, which was purified from grass-cultured G. lucidum . GL-PP is a glycopeptide with an average molecular weight of 42,635 Da and a polysaccharide-to-peptide ratio of 88.70:11.30. The polysaccharides were composed of l-arabinose, d-mannose and d-glucose at a molar ratio of 1.329:0.372:2.953 and a total of 17 amino acids were detected. The results of the current study demonstrated that GL-PP significantly inhibited U251 cellular proliferation. The proportion of G 0 /G 1 phase cells and sub-G 1 phase cells significantly increased as the concentration of GL-PP increased, as did the activity of caspase-3. These results indicate that GL-PP directly inhibited human glioma U251 proliferation by inducing cell cycle arrest and promoting apoptosis.

  15. Metabolic remodeling precedes mitochondrial outer membrane permeabilization in human glioma xenograft cells.

    Science.gov (United States)

    Ponnala, Shivani; Chetty, Chandramu; Veeravalli, Krishna Kumar; Dinh, Dzung H; Klopfenstein, Jeffrey D; Rao, Jasti S

    2012-02-01

    Glioma cancer cells adapt to changing microenvironment and shift from mitochondrial oxidative phosphorylation to aerobic glycolysis for their metabolic needs irrespective of oxygen availability. In the present study, we show that silencing MMP-9 in combination with uPAR/cathepsin B switch the glycolytic metabolism of glioma cells to oxidative phosphorylation (OXPHOS) and generate reactive oxygen species (ROS) to predispose glioma cells to mitochondrial outer membrane permeabilization. shRNA for MMP-9 and uPAR (pMU) as well as shRNA for MMP-9 and cathepsin B (pMC) activated complexes of mitochondria involved in OXPHOS and inhibited glycolytic hexokinase expression. The decreased interaction of hexokinase 2 with mitochondria in the treated cells indicated the inhibition of glycolysis activation. Overexpression of Akt reversed the pMU- and pMC-mediated OXPHOS to glycolysis switch. The OXPHOS un-coupler oligomycin A altered the expression levels of the Bcl-2 family of proteins; treatment with pMU or pMC reversed this effect and induced mitochondrial outer membrane permeabilization. In addition, our results show changes in mitochondrial pore transition to release cytochrome c due to changes in the VDAC-Bcl-XL and BAX-BAK interaction with pMU and pMC treatments. Taken together, our results suggest that pMU and pMC treatments switch glioma cells from the glycolytic to the OXPHOS pathway through an inhibitory effect on Akt, ROS induction and an increase of cytosolic cytochrome c accumulation. These results demonstrate the potential of pMU and pMC as therapeutic candidates for the treatment of glioma.

  16. Zinc substituted ferrite nanoparticles with Zn{sub 0.9}Fe{sub 2.1}O{sub 4} formula used as heating agents for in vitro hyperthermia assay on glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Hanini, Amel [Interface Traitement Organisation et Dynamique des Systèmes (TODYS), Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR-7086, 75013, Paris (France); Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, CNRS UMR-8104, INSERM U1016, 75005 Paris (France); Laboratoire de Physiologie Intégrée (LPI), Université de Carthage, 7021, Jarzouna (Tunisia); Lartigue, Lenaic [Matière et Systèmes Complexes (MSC), Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR-7057, 75013, Paris (France); Gavard, Julie [Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, CNRS UMR-8104, INSERM U1016, 75005 Paris (France); Kacem, Kamel [Laboratoire de Physiologie Intégrée (LPI), Université de Carthage, 7021, Jarzouna (Tunisia); Wilhelm, Claire; Gazeau, Florence [Matière et Systèmes Complexes (MSC), Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR-7057, 75013, Paris (France); Chau, François [Interface Traitement Organisation et Dynamique des Systèmes (TODYS), Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR-7086, 75013, Paris (France); and others

    2016-10-15

    In this paper we investigate the ability of zinc rich ferrite nanoparticles to induce hyperthermia on cancer cells using an alternating magnetic field (AMF). First, we synthesized ferrites and then we analyzed their physico-chemical properties by transmission electron microscopy, X-ray diffraction and magnetic and magnetocalorimetric measurements. We found that the polyol-made magnetically diluted particles are of 11 nm in size. They are superparamagnetic at body temperature (310 K) with a low but non-negligible magnetization. Interestingly, as nano-ferrimagnets they exhibit a Curie temperature of 366 K, close to the therapeutic temperature range. Their effect on human healthy endothelial (HUVEC) and malignant glioma (U87-MG) cells was also evaluated using MTT viability assays. Incubated with the two cell lines, at doses ≤100 µg mL{sup −1} and contact times ≤4 h, they exhibit a mild in vitro toxicity. In these same operating biological conditions and coupled to AMF (700 kHz and 34.4 Oe) for 1 h, they rapidly induce a net temperature increase. In the case of tumor cells it reaches 4 K, making the produced particles particularly promising for self-regulated magnetically-induced heating in local glioma therapy. - Highlights: • Highly crystallized monodisperse 11 nm sized Zn{sub 0.9}Fe{sub 2.1}O{sub 4} particles were produced in polyol. • They exhibit a superparamagnetic behavior at 37 °C with a magnetization of 12 emu g{sup −1} at 50 kOe. • Their Curie temperature reaches 88 °C, close to the therapeutic hyperthermia temperatures. • Incubated with glioma cells and exposed to ac-magnetic field they induce a 4 °C temperature increase. • They can be considered as potential self-regulated heating probes for glioma therapy.

  17. The combination of cannabidiol and Δ9-tetrahydrocannabinol enhances the anticancer effects of radiation in an orthotopic murine glioma model.

    Science.gov (United States)

    Scott, Katherine A; Dalgleish, Angus G; Liu, Wai M

    2014-12-01

    High-grade glioma is one of the most aggressive cancers in adult humans and long-term survival rates are very low as standard treatments for glioma remain largely unsuccessful. Cannabinoids have been shown to specifically inhibit glioma growth as well as neutralize oncogenic processes such as angiogenesis. In an attempt to improve treatment outcome, we have investigated the effect of Δ(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD) both alone and in combination with radiotherapy in a number of glioma cell lines (T98G, U87MG, and GL261). Cannabinoids were used in two forms, pure (P) and as a botanical drug substance (BDS). Results demonstrated a duration- and dose-dependent reduction in cell viability with each cannabinoid and suggested that THC-BDS was more efficacious than THC-P, whereas, conversely, CBD-P was more efficacious than CBD-BDS. Median effect analysis revealed all combinations to be hyperadditive [T98G 48-hour combination index (CI) at FU50, 0.77-1.09]. Similarly, pretreating cells with THC-P and CBD-P together for 4 hours before irradiation increased their radiosensitivity when compared with pretreating with either of the cannabinoids individually. The increase in radiosensitivity was associated with an increase in markers of autophagy and apoptosis. These in vitro results were recapitulated in an orthotopic murine model for glioma, which showed dramatic reductions in tumor volumes when both cannabinoids were used with irradiation (day 21: 5.5 ± 2.2 mm(3) vs. 48.7 ± 24.9 mm(3) in the control group; P < 0.01). Taken together, our data highlight the possibility that these cannabinoids can prime glioma cells to respond better to ionizing radiation, and suggest a potential clinical benefit for glioma patients by using these two treatment modalities. ©2014 American Association for Cancer Research.

  18. Forkhead box P3 regulates ARHGAP15 expression and affects migration of glioma cells through the Rac1 signaling pathway.

    Science.gov (United States)

    Sun, Zhen; Zhang, Biao; Wang, Chen; Fu, Tao; Li, Lianling; Wu, Qiaoli; Cai, Ying; Wang, Jinhuan

    2017-01-01

    Forkhead box P3 (FOXP3) plays a crucial role in the development and function of regulatory T cells and was recently identified as a tumor suppressor in different cancer types. Forkhead box P3 is expressed in normal brain tissues, but is strongly downregulated or absent in glioblastomas. In order to understand the FOXP3 adjustment mechanisms in glioma cells, we performed a DNA microarray in U87 cells overexpressing FOXP3 and validated the differences using quantitative real-time PCR, Western blot analysis, and immunohistochemistry in vitro and in vivo. We found that FOXP3 can regulate the expression of ARHGAP15. Expression of FOXP3 was also correlated with ARHGAP15 in glioma samples. Overexpression of FOXP3 inhibited glioma cell migration through ARHGAP15 upregulation and Rac1 inactivation. Silencing of FOXP3 promoted migration through ARHGAP15 downregulation and Rac1 activation. ARHGAP15, a GTPase-activating protein for Rac1, inhibits small GTPase signaling in a dual negative manner. We found that there is a correlation between expression of ARHGAP15 and glioma level. The small GTPase Rac1 plays an important role in cell migration. In addition, we found that FOXP3 regulates expression of epithelial-mesenchymal transition markers E-cadherin and N-cadherin, which is important given that epithelial-mesenchymal transition is critically involved in tumor spreading and dissemination. Thus, FOXP3 or ARHGAP15 may serve as a new molecular target for antimetastatic therapies in treating glioma. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  19. The effects of CD147 on the cell proliferation, apoptosis, invasion, and angiogenesis in glioma.

    Science.gov (United States)

    Yin, Haoyuan; Shao, Ying; Chen, Xuan

    2017-01-01

    To analyze the effects of extracellular matrix metalloproteinase inducer (CD147) on glioma proliferation, apoptosis, invasion, and angiogenesis. Tissue samples were obtained from 101 glioma cases while normal brain tissues were obtained from 30 brain injury cases. Immunohistochemical assay was performed to detect the expressions of CD147, CD34, and VEGF in tissue samples. QRT-PCR was performed to detect the relative expression of CD147 mRNA in human glioma cell lines. CD147 siRNA was transfected into glioma cell line U251. Cell proliferation, apoptosis, invasion, and angiogenesis were tested by MTT, flow cytometry, Transwell assay, and vasculogenic mimicry assay, respectively. Expressions of relative proteins were analyzed with western blot. CD147 was positively expressed with the percentage of 0, 37.5, 44.8, 67.9, and 85.7 % in normal tissues and glioma tissues with WHO grades I-IV, respectively, and the scores of MVDand VEGF were associated with the expression of CD147. CD147 was significantly upregulated in the human glioma cell lines (P CD147 suppressed cell proliferation, blocked cell cycle, induced apoptosis, inhibited cell invasion and angiogenesis in glioma cells in vitro. The expression of CD147 was significantly associated with WHO tumor grade and angiogenesis; silencing of CD147 contributed to inhibition of glioma proliferation, invasion, and angiogenesis. Our study provided firm evidence that CD 147 is a potential glioma target for anti-angiogenic therapies.

  20. The cytotoxicity of a 2-chloroethylnitrosourea analog of sarcosinamide in the SK-MG-1 human glioma cell line as a possible indicator for transport

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, V.; Feindel, W.; Panasci, L.C. (Lady Davis Institute for Medical Research, Montreal, Quebec (Canada))

    1989-07-01

    The cytotoxicities of a new sarcosinamide analog of chloroethylnitrosourea (SarCNU) and of BCNU were examined in the glioma cell line SK-MG-1 in the presence or absence of excess concentrations of amino acids and sarcosinamide. The cytotoxicity of SarCNU, but not of BCNU, was significantly reduced in the presence of excess sarcosinamide. The stability of SarCNU was not significantly altered by increasing concentrations of sarcosinamide. In order to investigate the possibility that sarcosinamide inhibits the uptake of SarCNU, the transport of tritiated sarcosinamide was examined in SK-MG-1 cells. The uptake of 3H-sarcosinamide was inhibited by excess, unlabelled sarcosinamide and SarCNU but not by BCNU, glycine or sarcosine. These results suggest the existence of a carrier-mediated transport for sarcosinamide which can accomodate SarCNU in SK-MG-1 cells.

  1. Cytotoxicity and cell-cycle effects of paclitaxel when used as a single agent and in combination with ionizing radiation

    International Nuclear Information System (INIS)

    Gupta, Nalin; Hu, Lily J.; Deen, Dennis F.

    1997-01-01

    Purpose: This study aimed to determine the extent of paclitaxel-induced cytotoxicity and cell-cycle perturbations when used alone and in combination with radiation in human glioma cells. Methods and Materials: The effect of paclitaxel alone on three human glioma cells lines--SF-126, U-87 MG, and U-251 MG--was assessed after 24, 48, 72, or 96 h treatment. For experiments in combination with radiation, cells were exposed to either a long (48-h) or short (8-h) duration of paclitaxel treatment prior to irradiation. Cell survival was determined by clonogenic assay. Cell cycle perturbations were assessed by using flow cytometry to measure the proportion of cells in G 1 , S, and G 2 /M phases. Results: When cells were treated with paclitaxel alone for ≥24 h, cytotoxicity increased up to a threshold dose, after which it plateaued. When treatment duration was ≤24 h, cytotoxicity was appreciably greater in U-251 MG cells than in SF-126 and U-87 MG cells. After 24 h of paclitaxel treatment, cells in plateau phase growth had increased survival compared to cells in log phase growth. In contrast, after 8 h paclitaxel treatment, mitotic cells had reduced survival compared to cells from an asynchronous population. Cell-cycle perturbations were consistent with the presence of a mitotic block after paclitaxel treatment, although changes in other cell-cycle phase fractions varied among cell lines. For experiments in combination with radiation, cytotoxicity was increased when cells were irradiated after 48 h of paclitaxel treatment but not after 8 h of treatment. Conclusion: The duration of paclitaxel treatment and the location of cells in the cell cycle modify the degree of radiation cytotoxicity. The mechanisms of paclitaxel cytotoxicity are likely to be multifactorial because varying effects are seen in different cell lines. Furthermore, it is clear that simply increasing the number of cells in G 2 /M is insufficient in itself to increase the response of cells to radiation

  2. Targeting and killing of glioblastoma with activated T cells armed with bispecific antibodies

    International Nuclear Information System (INIS)

    Zitron, Ian M; Thakur, Archana; Norkina, Oxana; Barger, Geoffrey R; Lum, Lawrence G; Mittal, Sandeep

    2013-01-01

    Since most glioblastomas express both wild-type EGFR and EGFRvIII as well as HER2/neu, they are excellent targets for activated T cells (ATC) armed with bispecific antibodies (BiAbs) that target EGFR and HER2. ATC were generated from PBMC activated for 14 days with anti-CD3 monoclonal antibody in the presence of interleukin-2 and armed with chemically heteroconjugated anti-CD3×anti-HER2/neu (HER2Bi) and/or anti-CD3×anti-EGFR (EGFRBi). HER2Bi- and/or EGFRBi-armed ATC were examined for in vitro cytotoxicity using MTT and 51 Cr-release assays against malignant glioma lines (U87MG, U118MG, and U251MG) and primary glioblastoma lines. EGFRBi-armed ATC killed up to 85% of U87, U118, and U251 targets at effector:target ratios (E:T) ranging from 1:1 to 25:1. Engagement of tumor by EGFRBi-armed ATC induced Th1 and Th2 cytokine secretion by armed ATC. HER2Bi-armed ATC exhibited comparable cytotoxicity against U118 and U251, but did not kill HER2-negative U87 cells. HER2Bi- or EGFRBi-armed ATC exhibited 50—80% cytotoxicity against four primary glioblastoma lines as well as a temozolomide (TMZ)-resistant variant of U251. Both CD133– and CD133+ subpopulations were killed by armed ATC. Targeting both HER2Bi and EGFRBi simultaneously showed enhanced efficacy than arming with a single BiAb. Armed ATC maintained effectiveness after irradiation and in the presence of TMZ at a therapeutic concentration and were capable of killing multiple targets. High-grade gliomas are suitable for specific targeting by armed ATC. These data, together with additional animal studies, may provide the preclinical support for the use of armed ATC as a valuable addition to current treatment regimens

  3. In Vitro Responsiveness of Glioma Cell Lines to Multimodality Treatment With Radiotherapy, Temozolomide, and Epidermal Growth Factor Receptor Inhibition With Cetuximab

    International Nuclear Information System (INIS)

    Combs, Stephanie E.; Schulz-Ertner, Daniela; Roth, Wilfried; Herold-Mende, Christel; Debus, Juergen; Weber, Klaus-Josef

    2007-01-01

    Background: The majority of glioblastoma multiforme (GBM) cells express the epidermal growth factor receptor (EGFR). The present study evaluates the combination of temozolomide (TMZ), EGFR inhibition, and radiotherapy (RT) in GBM cell lines. Methods and Materials: Human GBM cell lines U87, LN229, LN18, NCH 82, and NCH 89 were treated with various combinations of TMZ, RT, and the monoclonal EGFR antibody cetuximab. Responsiveness of glioma cells to the combination treatment was measured by clonogenic survival. Results: Overall, double and triple combinations of RT, TMZ, and cetuximab lead to additive cytotoxic effects (independent toxicity). A notable exception was observed for U87 and LN 18 cell lines, where the combination of TMZ and cetuximab showed substantial antagonism. Interestingly, in these two cell lines, the combination of RT with cetuximab resulted in a substantial increase in cell killing over that expected for independent toxicity. The triple combination with RT, cetuximab, and TMZ was nearly able to overcome the antagonism for the TMZ/cetuximab combination in U87, however only marginally in LN18, GBM cell lines. Conclusion: It appears that EGFR expression is not correlated with cytotoxic effects exerted by cetuximab. Combination treatment with TMZ, cetuximab and radiation resulted in independent toxicity in three out of five cell lines evaluated, the antagonistic effect of the TMZ/cetuximab combination in two cell lines could indicate that TMZ preferentially kills cetuximab-resistant cells, suggesting for some cross-talk between toxicity mechanisms. Expression of EGFR was no surrogate marker for responsiveness to cetuximab, alone or in combination with RT and TMZ

  4. A super gene expression system enhances the anti-glioma effects of adenovirus-mediated REIC/Dkk-3 gene therapy

    Science.gov (United States)

    Oka, Tetsuo; Kurozumi, Kazuhiko; Shimazu, Yosuke; Ichikawa, Tomotsugu; Ishida, Joji; Otani, Yoshihiro; Shimizu, Toshihiko; Tomita, Yusuke; Sakaguchi, Masakiyo; Watanabe, Masami; Nasu, Yasutomo; Kumon, Hiromi; Date, Isao

    2016-09-01

    Reduced expression in immortalized cells/Dickkopf-3 (REIC/Dkk-3) is a tumor suppressor and therapeutic gene in many human cancers. Recently, an adenovirus REIC vector with the super gene expression system (Ad-SGE-REIC) was developed to increase REIC/Dkk-3 expression and enhance therapeutic effects compared with the conventional adenoviral vector (Ad-CAG-REIC). In this study, we investigated the in vitro and in vivo effects of Ad-SGE-REIC on malignant glioma. In U87ΔEGFR and GL261 glioma cells, western blotting confirmed that robust upregulation of REIC/Dkk-3 expression occurred in Ad-SGE-REIC-transduced cells, most notably after transduction at a multiplicity of infection of 10. Cytotoxicity assays showed that Ad-SGE-REIC resulted in a time-dependent and significant reduction in the number of malignant glioma cells attaching to the bottom of culture wells. Xenograft and syngeneic mouse intracranial glioma models treated with Ad-SGE-REIC had significantly longer survival than those treated with the control vector Ad-LacZ or with Ad-CAG-REIC. This study demonstrated the anti-glioma effect of Ad-SGE-REIC, which may represent a promising strategy for the treatment of malignant glioma.

  5. Protective Effects of Mouse Bone Marrow Mesenchymal Stem Cell Soup on Staurosporine Induced Cell Death in PC12 and U87 Cell Lines

    Directory of Open Access Journals (Sweden)

    Hossein Zhaleh

    2016-11-01

    Full Text Available Mouse bone marrow mesenchymal stem cells (mBMSCs soup is promising tool for the treatment of neurodegenerative diseases. mBMSCs soup is easily obtained and is capable of transplantation without rejection. We investigated the effects of mBMSC soup on staurosporine-induced cell death in PC12 and U87 cells lines. The percentage of cell viability, cell death, NO concentration, total neurite length (TNL and fraction of cell differentiation (f% were assessed. Viability assay showed that mBM soup (24 and 48h in time dependent were increased cell viability (p<0.05 and also cell death assay showed that cell death in time dependent were decreased, respectively (p<0.05. TNL and fraction of cell differentiation significantly were increased compared with treatment1 (p<0.05. Our data showed that mBM Soup protects cells, increases cell viability, suppresses cell death and improvement the neurite elongation. We concluded that Mouse bone marrow mesenchymal stem cell soup plays an important protective role in staurosporine-induced cell death in PC12 and U87 cell lines.

  6. Newcastle disease virus triggers autophagy in U251 glioma cells to enhance virus replication.

    Science.gov (United States)

    Meng, Chunchun; Zhou, Zhizhi; Jiang, Ke; Yu, Shengqing; Jia, Lijun; Wu, Yantao; Liu, Yanqing; Meng, Songshu; Ding, Chan

    2012-06-01

    Newcastle disease virus (NDV) can replicate in tumor cells and induce apoptosis in late stages of infection. However, the interaction between NDV and cells in early stages of infection is not well understood. Here, we report that, shortly after infection, NDV triggers the formation of autophagosomes in U251 glioma cells, as demonstrated by an increased number of double-membrane vesicles, GFP-microtubule-associated protein 1 light chain 3 (GFP-LC3) a dot formations, and elevated production of LC3II. Moreover, modulation of NDV-induced autophagy by rapamycin, chloroquine or small interfering RNAs targeting the genes critical for autophagosome formation (Atg5 and Beclin-1) affects virus production, indicating that autophagy may be utilized by NDV to facilitate its own production. Furthermore, the class III phosphatidylinositol 3-kinase (PI3K)/Beclin-1 pathway plays a role in NDV-induced autophagy and virus production. Collectively, our data provide a unique example of a paramyxovirus that uses autophagy to enhance its production.

  7. Immunomodulation of glioma cells after gene therapy: induction of major histocompatibility complex class I but not class II antigen in vitro.

    Science.gov (United States)

    Parsa, A T; Chi, J H; Hurley, P T; Jeyapalan, S A; Bruce, J N

    2001-09-01

    Acquired immunity has been demonstrated in Fischer rats bearing syngeneic 9L tumors after herpes simplex virus (HSV) thymidine kinase (TK) gene transfection and ganciclovir treatment. The nature of this immunity in rats and its relevance to the HSV TK/ganciclovir protocol for human subjects remain to be determined. In this study, levels of major histocompatibility complex (MHC) Class I and II antigen expression were measured before and after HSV TK transfection, in an effort to document immunomodulatory changes caused by gene therapy. Tumor cells from the 9L gliosarcoma cell line, three primary human glioma cultures, and the human glioma cell line U87 MG were transduced with HSV TK vector-containing supernatant from fibroblast-producing cells (titer of 5 x 10(6) colony-forming units/ml) and selected in G418 medium for neomycin resistance. Clones were pooled or individually selected for cell-killing assays with ganciclovir, to confirm TK expression (10(3) cells/well in a 96-well dish). Northern analyses using MHC Class I and Class II complementary deoxyribonucleic acid probes were performed on blots containing total ribonucleic acid from wild-type tumor cells and HSV TK transfectants. A beta-actin complementary deoxyribonucleic acid probe served as an internal control. Cell surface expression was confirmed with flow cytometry. The induction of MHC Class I was tested for cycloheximide and genistein sensitivity. All cell cultures exhibited increases in MHC Class I but not MHC Class II expression, as determined by Northern analysis densitometry and flow cytometry. Cycloheximide treatment did not diminish the up-regulation of MHC Class I after retroviral transfection, implicating a signal transduction pathway that does not require ongoing protein synthesis. Genistein pretreatment of cell cultures did diminish the up-regulation of MHC Class I, implicating a tyrosine kinase in the signaling cascade. Induction of MHC Class I in rat and human glioma cells after HSV TK

  8. Intracellular targeting of mercaptoundecahydrododecaborate (BSH) to malignant glioma by transferrin-PEG liposomes for boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Doi, Atsushi; Miyatake, Shin-ichi; Iida, Kyouko

    2006-01-01

    Malignant glioma is one of the most difficult tumor to control with usual therapies. In our institute, we select boron neutron capture therapy (BNCT) as an adjuvant radiation therapy after surgical resection. This therapy requires the selective delivery of high concentration of 10 B to malignant tumor tissue. In this study, we focused on a tumor-targeting 10 B delivery system (BDS) for BNCT that uses transferrin-conjugated polyethylene-glycol liposome encapsulating BSH (TF-PEG liposome-BSH) and compared 10 B uptake of the tumor among BSH, PEG liposome-BSH and TF-PEG liposome-BSH. In vitro, we analyzed 10 B concentration of the cultured human U87Δ glioma cells incubated in medium containing 20 μg 10 B/ml derived from each BDS by inductively coupled plasma atomic emission spectrometry (ICP-AES). In vivo, human U87Δ glioma-bearing nude mice were administered with each BDS (35mg 10 B/kg) intravenously. We analyzed 10 B concentration of tumor, normal brain and blood by ICP-AES. The TF-PEG liposome-BSH showed higher absolute concentration more than the other BDS. Moreover, TF-PEG liposome-BSH decreased 10 B concentration in blood and normal tissue while it maintained high 10 B concentration in tumor tissue for a couple of days. This showed the TF-PEG liposome-BSH caused the selective delivery of high concentration of 10 B to malignant tumor tissue. The TF-PEG liposome-BSH is more potent BDS for BNCT to obtain absolute high 10 B concentration and good contrast between tumor and normal tissue than BSH and PEG liposome-BSH. (author)

  9. Regulation of DNA repair mechanism in human glioma xenograft cells both in vitro and in vivo in nude mice.

    Science.gov (United States)

    Ponnala, Shivani; Veeravalli, Krishna Kumar; Chetty, Chandramu; Dinh, Dzung H; Rao, Jasti S

    2011-01-01

    Glioblastoma Multiforme (GBM) is the most lethal form of brain tumor. Efficient DNA repair and anti-apoptotic mechanisms are making glioma treatment difficult. Proteases such as MMP9, cathepsin B and urokinase plasminogen activator receptor (uPAR) are over expressed in gliomas and contribute to enhanced cancer cell proliferation. Non-homologous end joining (NHEJ) repair mechanism plays a major role in double strand break (DSB) repair in mammalian cells. Here we show that silencing MMP9 in combination with uPAR/cathepsin B effects NHEJ repair machinery. Expression of DNA PKcs and Ku70/80 at both mRNA and protein levels in MMP9-uPAR (pMU) and MMP9-cathepsin B (pMC) shRNA-treated glioma xenograft cells were reduced. FACS analysis showed an increase in apoptotic peak and proliferation assays revealed a significant reduction in the cell population in pMU- and pMC-treated cells compared to untreated cells. We hypothesized that reduced NHEJ repair led to DSBs accumulation in pMU- and pMC-treated cells, thereby initiating cell death. This hypothesis was confirmed by reduced Ku70/Ku80 protein binding to DSB, increased comet tail length and elevated γH2AX expression in treated cells compared to control. Immunoprecipitation analysis showed that EGFR-mediated lowered DNA PK activity in treated cells compared to controls. Treatment with pMU and pMC shRNA reduced the expression of DNA PKcs and ATM, and elevated γH2AX levels in xenograft implanted nude mice. Glioma cells exposed to hypoxia and irradiation showed DSB accumulation and apoptosis after pMU and pMC treatments compared to respective controls. Our results suggest that pMU and pMC shRNA reduce glioma proliferation by DSB accumulation and increase apoptosis under normoxia, hypoxia and in combination with irradiation. Considering the radio- and chemo-resistant cancers favored by hypoxia, our study provides important therapeutic potential of MMP9, uPAR and cathepsin B shRNA in the treatment of glioma from clinical stand

  10. Regulation of DNA repair mechanism in human glioma xenograft cells both in vitro and in vivo in nude mice.

    Directory of Open Access Journals (Sweden)

    Shivani Ponnala

    Full Text Available Glioblastoma Multiforme (GBM is the most lethal form of brain tumor. Efficient DNA repair and anti-apoptotic mechanisms are making glioma treatment difficult. Proteases such as MMP9, cathepsin B and urokinase plasminogen activator receptor (uPAR are over expressed in gliomas and contribute to enhanced cancer cell proliferation. Non-homologous end joining (NHEJ repair mechanism plays a major role in double strand break (DSB repair in mammalian cells.Here we show that silencing MMP9 in combination with uPAR/cathepsin B effects NHEJ repair machinery. Expression of DNA PKcs and Ku70/80 at both mRNA and protein levels in MMP9-uPAR (pMU and MMP9-cathepsin B (pMC shRNA-treated glioma xenograft cells were reduced. FACS analysis showed an increase in apoptotic peak and proliferation assays revealed a significant reduction in the cell population in pMU- and pMC-treated cells compared to untreated cells. We hypothesized that reduced NHEJ repair led to DSBs accumulation in pMU- and pMC-treated cells, thereby initiating cell death. This hypothesis was confirmed by reduced Ku70/Ku80 protein binding to DSB, increased comet tail length and elevated γH2AX expression in treated cells compared to control. Immunoprecipitation analysis showed that EGFR-mediated lowered DNA PK activity in treated cells compared to controls. Treatment with pMU and pMC shRNA reduced the expression of DNA PKcs and ATM, and elevated γH2AX levels in xenograft implanted nude mice. Glioma cells exposed to hypoxia and irradiation showed DSB accumulation and apoptosis after pMU and pMC treatments compared to respective controls.Our results suggest that pMU and pMC shRNA reduce glioma proliferation by DSB accumulation and increase apoptosis under normoxia, hypoxia and in combination with irradiation. Considering the radio- and chemo-resistant cancers favored by hypoxia, our study provides important therapeutic potential of MMP9, uPAR and cathepsin B shRNA in the treatment of glioma from

  11. Enhanced replication of attenuated HSV-1 in irradiated human glioma xenografts

    International Nuclear Information System (INIS)

    Advani, Sunil J.; Kataoka, Yasushi; Sibley, Greg S.; Song, Paul Y.; Hallahan, Dennis E.; Roizman, Bernard; Weichselbaum, Ralph R.

    1997-01-01

    Purpose: Previously we had shown that combining ionizing radiation (IR) with attenuated replication competent HSV-1 (R3616) significantly increased glioma xenograft eradication compared to IR or virus alone. One hypothesis is that IR induces cell factors that contribute to augment viral replication thereby increasing the efficacy of attenuated HSV-1. The purpose of this study was to examine if IR altered viral replication of attenuated HSV-1 in glioma xenografts Material and Methods: Human U-87MG glioma cells were grown in the hindlimb of athymic mice and grown to >200 mm 3 . Tumors were infected with 2x10 7 plaque forming units (pfu) of R3616 ( γ1 34.5 - ) or R7020 (multimutated, γ1 34.5 + ) on day 0 and irradiated with 20 Gy on day 1 and 25 Gy on day 2. Tumors were harvested 3, 5, 7, and 14 days after viral injection. Tumors were homogenized and sonnicated. Serial dilutions of tumor extract were overlaid on Vero cells to determine the number of pfu. In addition, in-situ hybridization to HSV-1 DNA was performed on tumors harvested at day 7. Results: In-situ hybridization revealed larger numbers of glial cells infected with HSV along with a greater distribution in the irradiated tumors compared to non-irradiated tumors. We next quantified viral particles in infected tumors +/- IR: Conclusion: Herein we demonstrate radiation enhanced viral replication as one of the interactive effects of combining IR and attenuated HSV in treating glioma xenografts and a potential therapeutic motif in the treatment of gliomas. To reduce normal tissue toxicity of HSV in glioma therapy, viruses must be attenuated. However, attenuating the virus compromises its replication and thus its potential efficacy. Our results indicate that IR augments the amount of virus recovered from human glioma xenografts for up to 3 days post IR. The results do not appear to be related to a specific mutation in the herpes genome but rather to herpes viruses in general. Yields of R7020 were greater than R

  12. TGF-β2 initiates autophagy via Smad and non-Smad pathway to promote glioma cells’ invasion

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2017-11-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM is characterized by lethal aggressiveness and patients with GBM are in urgent need for new therapeutic avenues to improve quality of life. Current studies on tumor invasion focused on roles of cytokines in tumor microenvironment and numerous evidence suggests that TGF-β2 is abundant in glioma microenvironment and vital for glioma invasion. Autopagy is also emerging as a critical factor in aggressive behaviors of cancer cells; however, the relationship between TGF-β2 and autophagy in glioma has been poorly understood. Methods U251, T98 and U87 GBM cell lines as well as GBM cells from a primary human specimen were used in vitro and in vivo to evaluate the effect of TGF-β2 on autophagy. Western blot, qPCR, immunofluorescence and transmission-electron microscope were used to detect target molecular expression. Lentivirus and siRNA vehicle were introduced to establish cell lines, as well as mitotracker and seahorse experiment to study the metabolic process in glioma. Preclinical therapeutic efficacy was evaluated in orthotopic xenograft mouse models. Results Here we demonstrated that TGF-β2 activated autophagy in human glioma cell lines and knockdown of Smad2 or inhibition of c-Jun NH2-terminal kinase, attenuated TGF-β2-induced autophagy. TGF-β2-induced autophagy is important for glioma invasion due to the alteration of epithelial-mesenchymal transition and metabolism conversion, particularly influencing mitochondria trafficking and membrane potential (△Ψm. Autopaghy also initiated a feedback on TGF-β2 in glioma by keeping its autocrine loop and affecting Smad2/3/7 expression. A xenograft model provided additional confirmation on combination of TGF-β inhibitor (Galunisertib and autophagy inhibitor (CQ to better “turn off” tumor growth. Conclusion Our findings elucidated a potential mechanism of autophagy-associated glioma invasion that TGF-β2 could initiate autophagy via Smad and non

  13. [Vitamin K3-induced activation of molecular oxygen in glioma cells].

    Science.gov (United States)

    Krylova, N G; Kulagova, T A; Semenkova, G N; Cherenkevich, S N

    2009-01-01

    It has been shown by the method of fluorescent analysis that the rate of hydrogen peroxide generation in human U251 glioma cells under the effect of lipophilic (menadione) or hydrophilic (vikasol) analogues of vitamin K3 was different. Analyzing experimental data we can conclude that menadione underwent one- and two-electron reduction by intracellular reductases in glioma cells. Reduced forms of menadione interact with molecular oxygen leading to reactive oxygen species (ROS) generation. The theoretical model of ROS generation including two competitive processes of one- and two-electron reduction of menadione has been proposed. Rate constants of ROS generation mediated by one-electron reduction process have been estimated.

  14. Selective uptake of boronophenylalanine by glioma stem/progenitor cells

    International Nuclear Information System (INIS)

    Sun, Ting; Zhou, Youxin; Xie, Xueshun; Chen, Guilin; Li, Bin; Wei, Yongxin; Chen, Jinming; Huang, Qiang; Du, Ziwei

    2012-01-01

    The success of boron neutron capture therapy (BNCT) depends on the amount of boron in cells and the tumor/blood and tumor/(normal tissue) boron concentration ratios. For the first time, measurements of boron uptake in both stem/progenitor and differentiated glioma cells were performed along with measurements of boron biodistribution in suitable animal models. In glioma stem/progenitor cells, the selective accumulation of boronophenylalanine (BPA) was lower, and retention of boron after BPA removal was longer than in differentiated glioma cells in vitro. However, boron biodistribution was not statistically significantly different in mice with xenografts. - Highlights: ► Uptake of BPA was analyzed in stem/progenitor and differentiated glioma cells. ► Selective accumulation of BPA was lower in glioma stem/progenitor cells. ► Retention of boron after BPA removal was longer in glioma stem/progenitor cells. ► Boron biodistribution was not statistically different in mice with xenografts.

  15. Impact of pEGFP mediated ING4 gene on growth of glioma U251 ...

    African Journals Online (AJOL)

    Jane

    2011-06-22

    Jun 22, 2011 ... Full Length Research Paper. Impact of pEGFP mediated ING4 gene on growth of glioma U251 cells and its potential molecular mechanism. Yuefei Deng*, Bingxi Lei and Yiying Zhao. Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.

  16. Aldehyde dehydrogenase 1A1 circumscribes high invasive glioma cells and predicts poor prognosis

    Science.gov (United States)

    Xu, Sen-Lin; Liu, Sha; Cui, Wei; Shi, Yu; Liu, Qin; Duan, Jiang-Jie; Yu, Shi-Cang; Zhang, Xia; Cui, You-Hong; Kung, Hsiang-Fu; Bian, Xiu-Wu

    2015-01-01

    Glioma is the most aggressive brain tumor with high invasiveness and poor prognosis. More reliable, sensitive and practical biomarkers to reveal glioma high invasiveness remain to be explored for the guidance of therapy. We herein evaluated the diagnostic and prognostic value of aldehyde dehydrogenase 1A1 (ALDH1A1) in the glioma specimens from 237 patients, and found that ADLH1A1 was frequently overexpressed in the high-grade glioma (WHO grade III-IV) as compared to the low-grade glioma (WHO grade I-II) patients. The tumor cells with ALDH1A1 expression were more abundant in the region between tumor and the borderline of adjacent tissue as compared to the central part of the tumor. ALDH1A1 overexpression was associated with poor differentiation and dismal prognosis. Notably, the overall and disease-free survivals of the patients who had ALDH1A1+ tumor cells sparsely located in the adjacent tissue were much worse. Furthermore, ALDH1A1 expression was correlated with the “classical-like” (CL) subtype as we examined GBM specimens from 72 patients. Multivariate Cox regression analysis revealed that ALDH1A1 was an independent marker for glioma patients’ outcome. Mechanistically, both in vitro and in vivo studies revealed that ALDH1A1+ cells isolated from either a glioblastoma cell line U251 or primary glioblastoma cells displayed significant invasiveness, clonogenicity, and proliferation as compared to ALDH1A1- cells, due to increased levels of mRNA and protein for matrix metalloproteinase 2, 7 and 9 (MMP2, MMP7 and MMP9). These results indicate that ALDH1A1+ cells contribute to the progression of glioma including invasion, proliferation and poor prognosis, and suggest that targeting ALDH1A1 may have important implications for the treatment of highly invasive glioma. PMID:26101711

  17. Autophagy involved in resveratrol increased radiosensitivity in glioma stem cells

    International Nuclear Information System (INIS)

    Long Linmei; Zhang Qingqing; Yang Neng; Ji Wenjun; Song Yunzhen; Zhao Jianghu; Liang Zhongqin

    2012-01-01

    Objective: To investigate the effect of Resveratrol combined with X-ray on radiosensitivity in glioma stem cells. Methods: The proliferation inhibition of glioma stem cells induced by X-rays and Resveratrol was assessed with MTT assay. The activation of proapoptotic effect was characterized by Hoechst 33258 stain. MDC stain and Western blot analysis were used to analyze the autophagy mechanism in X-rays-induced death of glioma stem cells. Results: MTT assay indicated that X-rays and Resveratrol decreased the viability of glioma stem cells (P<0.05); we found the proliferative inhibition of glioma stem cells was declined when we used 3-MA to inhibit autophagy(P<0.05). When the cells were treated by the Resveratrol and x-rays, their spherical shape were changed. Apoptosis was induced in glioma stem cells by combined X-rays and Resveratrol as detected by Hoechst 33258 staining. In addition, autophagy was induced in glioma stem cells in the combined treatment group as detected by MDC staining. Western blotting showed that Bcl-2 expression was decreased. in the combined treatment group (P<0.01), and the LC3-Ⅱ expression was increased in the combined treatment group (P<0.01). Conclusion: Resveratrol can increased the radiation sensitivity of glioma stem cells, the apoptosis and autophagy was induced in the glioma stem cells in the combined treatment X-rays and Resveratrol. Our results suggest that autophagy plays an essential role in the regulation of radiosensitization of glioma stem cells. (authors)

  18. Conditioned Media from Human Adipose Tissue-Derived Mesenchymal Stem Cells and Umbilical Cord-Derived Mesenchymal Stem Cells Efficiently Induced the Apoptosis and Differentiation in Human Glioma Cell Lines In Vitro

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2014-01-01

    Full Text Available Human mesenchymal stem cells (MSCs have an intrinsic property for homing towards tumor sites and can be used as tumor-tropic vectors for tumor therapy. But very limited studies investigated the antitumor properties of MSCs themselves. In this study we investigated the antiglioma properties of two easily accessible MSCs, namely, human adipose tissue-derived mesenchymal stem cells (ASCs and umbilical cord-derived mesenchymal stem cells (UC-MSCs. We found (1 MSC conditioned media can significantly inhibit the growth of human U251 glioma cell line; (2 MSC conditioned media can significantly induce apoptosis in human U251 cell line; (3 real-time PCR experiments showed significant upregulation of apoptotic genes of both caspase-3 and caspase-9 and significant downregulation of antiapoptotic genes such as survivin and XIAP after MSC conditioned media induction in U 251 cells; (4 furthermore, MSCs conditioned media culture induced rapid and complete differentiation in U251 cells. These results indicate MSCs can efficiently induce both apoptosis and differentiation in U251 human glioma cell line. Whereas UC-MSCs are more efficient for apoptosis induction than ASCs, their capability of differentiation induction is not distinguishable from each other. Our findings suggest MSCs themselves have favorable antitumor characteristics and should be further explored in future glioma therapy.

  19. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: enhanced efficacy and intratumoral transport capability.

    Science.gov (United States)

    Dhanikula, Renu Singh; Argaw, Anteneh; Bouchard, Jean-Francois; Hildgen, Patrice

    2008-01-01

    Therapeutic benefit in glial tumors is often limited due to low permeability of delivery systems across the blood-brain barrier (BBB), drug resistance, and poor penetration into the tumor tissue. In an attempt to overcome these hurdles, polyether-copolyester (PEPE) dendrimers were evaluated as drug carriers for the treatment of gliomas. Dendrimers were conjugated to d-glucosamine as the ligand for enhancing BBB permeability and tumor targeting. The efficacy of methotrexate (MTX)-loaded dendrimers was established against U87 MG and U 343 MGa cells. Permeability of rhodamine-labeled dendrimers and MTX-loaded dendrimers across the in vitro BBB model and their distribution into avascular human glioma tumor spheroids was also studied. Glucosylated dendrimers were found to be endocytosed in significantly higher amounts than nonglucosylated dendrimers by both the cell lines. IC 50 of MTX after loading in dendrimers was lower than that of the free MTX, suggesting that loading MTX in PEPE dendrimers increased its potency. Similar higher activity of MTX-loaded glucosylated and nonglucosylated dendrimers was found in the reduction of tumor spheroid size. These MTX-loaded dendrimers were able to kill even MTX-resistant cells highlighting their ability to overcome MTX resistance. In addition, the amount of MTX-transported across BBB was three to five times more after loading in the dendrimers. Glucosylation further increased the cumulative permeation of dendrimers across BBB and hence increased the amount of MTX available across it. Glucosylated dendrimers distributed through out the avascular tumor spheroids within 6 h, while nonglucosylated dendrimers could do so in 12 h. The results show that glucosamine can be used as an effective ligand not only for targeting glial tumors but also for enhanced permeability across BBB. Thus, glucosylated PEPE dendrimers can serve as potential delivery system for the treatment of gliomas.

  20. RhoE interferes with Rb inactivation and regulates the proliferation and survival of the U87 human glioblastoma cell line

    International Nuclear Information System (INIS)

    Poch, Enric; Minambres, Rebeca; Mocholi, Enric; Ivorra, Carmen; Perez-Arago, Amparo; Guerri, Consuelo; Perez-Roger, Ignacio; Guasch, Rosa M.

    2007-01-01

    Rho GTPases are important regulators of actin cytoskeleton, but they are also involved in cell proliferation, transformation and oncogenesis. One of this proteins, RhoE, inhibits cell proliferation, however the mechanism that regulates this effect remains poorly understood. Therefore, we undertook the present study to determine the role of RhoE in the regulation of cell proliferation. For this purpose we generated an adenovirus system to overexpress RhoE in U87 glioblastoma cells. Our results show that RhoE disrupts actin cytoskeleton organization and inhibits U87 glioblastoma cell proliferation. Importantly, RhoE expressing cells show a reduction in Rb phosphorylation and in cyclin D1 expression. Furthermore, RhoE inhibits ERK activation following serum stimulation of quiescent cells. Based in these findings, we propose that RhoE inhibits ERK activation, thereby decreasing cyclin D1 expression and leading to a reduction in Rb inactivation, and that this mechanism is involved in the RhoE-induced cell growth inhibition. Moreover, we also demonstrate that RhoE induces apoptosis in U87 cells and also in colon carcinoma and melanoma cells. These results indicate that RhoE plays an important role in the regulation of cell proliferation and survival, and suggest that this protein may be considered as an oncosupressor since it is capable to induce apoptosis in several tumor cell lines

  1. Experimental radioimmunotherapy of a xenografted human glioma using [sup 131]I-labeled monoclonal antibody to epidermal growth factor receptor

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroshi; Nakazawa, Shozo [Nippon Medical School, Tokyo (Japan); Herlyn, D

    1993-09-01

    [sup 131]I-labeled F (ab')[sub 2] fragments of murine monoclonal antibodies (MAb) 425 specific to the epidermal growth factor receptor expressed on human gliomas were used in experimental human malignant glioma immunotherapy. Two injections of 150 [mu]Ci [sup 131]I-labeled 425 F(ab')[sub 2] achieved growth inhibition of U-87MG human malignant glioma xenografts in nude mice. This radiolabeled specific MAb F(ab')[sub 2] was significantly superior to radiolabeled fragments of an anti-hepatitis virus control MAb A5C3 in influencing tumor growth. However, similar treatment of established human malignant glioma xenografts did not inhibit progressive tumor growth significantly. No clear tumor inhibition was produced by unlabeled MAb 425F(ab')[sub 2]. These studies suggest that [sup 131]I-labeled MAbs have a significant antitumor effect where unmodified antibody is ineffective. Multiple doses of antibody may achieve an increase in labeled MAb concentration in tumors. (author).

  2. Radiosensitization and relative mechanisms of vanillin derivative BVAN08 on human glioma U-251 cells

    International Nuclear Information System (INIS)

    Wang Shubin; Zhang Bo; Sun Weijian; Wang Yu; Liu Xiaodan; Xu Qinzhi; Zhou Pingkun

    2010-01-01

    Objective: To provide more convincing evidences and experimental data for exploring vanillin derivative BVAN08, 6-bromine-5-hydroxy-4-methoxy-benzaldehyde, as a new anticancer drug, and to investigate the effect on the growth, radiosensitization of human glioma cell line U-251 and the relative mechanism. Methods: The effect of BVAN08 on cell proliferation of U-251 and radiosensitivity to 60 Co γ-rays (irradiation dose rate 2.3 Gy/min) were analyzed with MTT and colony-forming ability assay. Change in cellular morphology was observed by using light microscope. Change in cell cycle and apoptosis was detected with flow cytometry. The autophagy was observed by using TEM (irradiation dose rate is transmission electron microscope). DNA-PKcs protein level was detected through Western blot analysis. Results: BVAN08 exhibited a dose- and time-dependent inhibition on the proliferation of U-251 cells during the concentration range of 10-100 mol/L (t=1.83-3.07, P 50 at 48 h and 72 h after administration with BVAN08 were 55.3 and 52.7 mol/L, respectively. Obvious G 2 /M arrest was induced in U-251 cells after 4 h administration with BVAN08, and reached peck at 12 h. The G 2 /M population reached 63.3% in U-251 cells after 12 h administration of 60 μmol/L BVAN08 and kept increasing with the time, while both apoptosis and autophagic cell death were induced. The most effective radiosensitization time for BVAN08 treatment was 12 h before irradiation. The enhancement ratio of radiosensitivity was 3.14 for 20 μmol/L of BVAN08 12 h before 2 Gy irradiation. Conclusions: BVAN08 can induce apoptosis as radiosensitizing effect might be associated with the induction of G 2 /M arrest and inhibition of DNA-PKcs expression. BVAN08 seemed to be a promising radiosensitizing anticancer drug. (authors)

  3. Radioresistance of human glioma spheroids and expression of HSP70, p53 and EGFr

    International Nuclear Information System (INIS)

    Fedrigo, Carlos A; Rocha, Adriana B da; Grivicich, Ivana; Schunemann, Daniel P; Chemale, Ivan M; Santos, Daiane dos; Jacovas, Thais; Boschetti, Patryck S; Jotz, Geraldo P; Filho, Aroldo Braga

    2011-01-01

    Radiation therapy is routinely prescribed for high-grade malignant gliomas. However, the efficacy of this therapeutic modality is often limited by the occurrence of radioresistance, reflected as a diminished susceptibility of the irradiated cells to undergo cell death. Thus, cells have evolved an elegant system in response to ionizing radiation induced DNA damage, where p53, Hsp70 and/or EGFr may play an important role in the process. In the present study, we investigated whether the content of p53, Hsp70 and EGFr are associated to glioblastoma (GBM) cell radioresistance. Spheroids from U-87MG and MO59J cell lines as well as spheroids derived from primary culture of tumor tissue of one GBM patient (UGBM1) were irradiated (5, 10 and 20 Gy), their relative radioresistance were established and the p53, Hsp70 and EGFr contents were immunohistochemically determined. Moreover, we investigated whether EGFr-phospho-Akt and EGFr-MEK-ERK pathways can induce GBM radioresistance using inhibitors of activation of ERK (PD098059) and Akt (wortmannin). At 5 Gy irradiation UGBM1 and U-87MG spheroids showed growth inhibition whereas the MO59J spheroid was relatively radioresistant. Overall, no significant changes in p53 and Hsp70 expression were found following 5 Gy irradiation treatment in all spheroids studied. The only difference observed in Hsp70 content was the periphery distribution in MO59J spheroids. However, 5 Gy treatment induced a significant increase on the EGFr levels in MO59J spheroids. Furthermore, treatment with inhibitors of activation of ERK (PD098059) and Akt (wortmannin) leads to radiosensitization of MO59J spheroids. These results indicate that the PI3K-Akt and MEK-ERK pathways triggered by EGFr confer GBM radioresistance

  4. MTSS1 is epigenetically regulated in glioma cells and inhibits glioma cell motility

    Directory of Open Access Journals (Sweden)

    Daniel Luxen

    2017-02-01

    Full Text Available Epigenetic silencing by DNA methylation in brain tumors has been reported for many genes, however, their function on pathogenesis needs to be evaluated. We investigated the MTSS1 gene, identified as hypermethylated by differential methylation hybridization (DMH. Fifty-nine glioma tissue samples and seven glioma cell lines were examined for hypermethylation of the MTSS1 promotor, MTSS1 expression levels and gene dosage. GBM cell lines were treated with demethylating agents and interrogated for functional consequences of MTSS1 expression after transient transfection. Hypermethylation was significantly associated with IDH1/2 mutation. Comparative SNP analysis indicates higher incidence of loss of heterozygosity of MTSS1 in anaplastic astrocytomas and secondary glioblastomas as well as hypermethylation of the remaining allele. Reversal of promoter hypermethylation results in an increased MTSS1 expression. Cell motility was significantly inhibited by MTSS1 overexpression without influencing cell growth or apoptosis. Immunofluorescence analysis of MTSS1 in human astrocytes indicates co-localization with actin filaments. MTSS1 is down-regulated by DNA methylation in glioblastoma cell lines and is part of the G-CIMP phenotype in primary glioma tissues. Our data on normal astrocytes suggest a function of MTSS1 at focal contact structures with an impact on migratory capacity but no influence on apoptosis or cellular proliferation.

  5. The indolinone MAZ51 induces cell rounding and G2/M cell cycle arrest in glioma cells without the inhibition of VEGFR-3 phosphorylation: involvement of the RhoA and Akt/GSK3β signaling pathways.

    Directory of Open Access Journals (Sweden)

    Joo-Hee Park

    Full Text Available MAZ51 is an indolinone-based molecule originally synthesized as a selective inhibitor of vascular endothelial growth factor receptor (VEGFR-3 tyrosine kinase. This study shows that exposure of two glioma cell lines, rat C6 and human U251MG, to MAZ51 caused dramatic shape changes, including the retraction of cellular protrusions and cell rounding. These changes were caused by the clustering and aggregation of actin filaments and microtubules. MAZ51 also induced G2/M phase cell cycle arrest. This led to an inhibition of cellular proliferation, without triggering significant cell death. These alterations induced by MAZ51 occurred with similar dose- and time-dependent patterns. Treatment of glioma cells with MAZ51 resulted in increased levels of phosphorylated GSK3β through the activation of Akt, as well as increased levels of active RhoA. Interestingly, MAZ51 did not affect the morphology and cell cycle patterns of rat primary cortical astrocytes, suggesting it selectively targeted transformed cells. Immunoprecipitation-western blot analyses indicated that MAZ51 did not decrease, but rather increased, tyrosine phosphorylation of VEGFR-3. To confirm this unanticipated result, several additional experiments were conducted. Enhancing VEGFR-3 phosphorylation by treatment of glioma cells with VEGF-C affected neither cytoskeleton arrangements nor cell cycle patterns. In addition, the knockdown of VEGFR-3 in glioma cells did not cause morphological or cytoskeletal alterations. Furthermore, treatment of VEGFR-3-silenced cells with MAZ51 caused the same alterations of cell shape and cytoskeletal arrangements as that observed in control cells. These data indicate that MAZ51 causes cytoskeletal alterations and G2/M cell cycle arrest in glioma cells. These effects are mediated through phosphorylation of Akt/GSK3β and activation of RhoA. The anti-proliferative activity of MAZ51 does not require the inhibition of VEGFR-3 phosphorylation, suggesting that it is

  6. A Novel Therapeutic Strategy for the Treatment of Glioma, Combining Chemical and Molecular Targeting of Hsp90α

    International Nuclear Information System (INIS)

    Mehta, Adi; Shervington, Leroy; Munje, Chinmay; Shervington, Amal

    2011-01-01

    Hsp90α's vital role in tumour survival and progression, together with its highly inducible expression profile in gliomas and its absence in normal tissue and cell lines validates it as a therapeutic target for glioma. Hsp90α was downregulated using the post-transcriptional RNAi strategy (sihsp90α) and a post-translational inhibitor, the benzoquinone antibiotic 17-AAG. Glioblastoma U87-MG and normal human astrocyte SVGp12 were treated with sihsp90α, 17-AAG and concurrent sihsp90α/17-AAG (combined treatment). Both Hsp90α gene silencing and the protein inhibitor approaches resulted in a dramatic reduction in cell viability. Results showed that sihsp90α, 17-AAG and a combination of sihsp90α/17-AAG, reduced cell viability by 27%, 75% and 88% (p < 0.001), respectively, after 72 h. hsp90α mRNA copy numbers were downregulated by 65%, 90% and 99% after 72 h treatment with sihsp90α, 17-AAG and sihsp90α/17-AAG, respectively. The relationship between Hsp90α protein expression and its client Akt kinase activity levels were monitored following treatment with sihsp90α, 17-AAG and sihsp90α/17-AAG. Akt kinase activity was downregulated as a direct consequence of Hsp90α inhibition. Both Hsp90α and Akt kinase levels were significantly downregulated after 72 h. Although, 17-AAG when used as a single agent reduces the Hsp90α protein and the Akt kinase levels, the efficacy demonstrated by combinatorial treatment was found to be far more effective. Combination treatment reduced the Hsp90α protein and Akt kinase levels to 4.3% and 43%, respectively, after 72 h. hsp90α mRNA expression detected in SVGp12 was negligible compared to U87-MG, also, the combination treatment did not compromise the normal cell viability. Taking into account the role of Hsp90α in tumour progression and the involvement of Akt kinase in cell signalling and the anti-apoptotic pathways in tumours, this double targets treatment infers a novel therapeutic strategy

  7. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    International Nuclear Information System (INIS)

    Sun, Ting; Zhang, Zizhu; Li, Bin; Chen, Guilin; Xie, Xueshun; Wei, Yongxin; Wu, Jie; Zhou, Youxin; Du, Ziwei

    2013-01-01

    Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma

  8. The microRNA-302b-inhibited insulin-like growth factor-binding protein 2 signaling pathway induces glioma cell apoptosis by targeting nuclear factor IA.

    Directory of Open Access Journals (Sweden)

    Chin-Cheng Lee

    Full Text Available MicroRNAs are small noncoding RNAs that post-transcriptionally control the expression of genes involved in glioblastoma multiforme (GBM development. Although miR-302b functions as a tumor suppressor, its role in GBM is still unclear. Therefore, this study comprehensively explored the roles of miR-302b-mediated gene networks in GBM cell death. We found that miR-302b levels were significantly higher in primary astrocytes than in GBM cell lines. miR-302b overexpression dose dependently reduced U87-MG cell viability and induced apoptosis through caspase-3 activation and poly(ADP ribose polymerase degradation. A transcriptome microarray revealed 150 downregulated genes and 380 upregulated genes in miR-302b-overexpressing cells. Nuclear factor IA (NFIA, higher levels of which were significantly related to poor survival, was identified as a direct target gene of miR-302b and was involved in miR-302b-induced glioma cell death. Higher NFIA levels were observed in GBM cell lines and human tumor sections compared with astrocytes and non-tumor tissues, respectively. NFIA knockdown significantly enhanced apoptosis. We found high levels of insulin-like growth factor-binding protein 2 (IGFBP2, another miR-302b-downregulated gene, in patients with poor survival. We verified that NFIA binds to the IGFBP2 promoter and transcriptionally enhances IGFBP2 expression levels. We identified that NFIA-mediated IGFBP2 signaling pathways are involved in miR-302b-induced glioma cell death. The identification of a regulatory loop whereby miR-302b inhibits NFIA, leading to a decrease in expression of IGFBP-2, may provide novel directions for developing therapies to target glioblastoma tumorigenesis.

  9. Efficacy of the HSP90 inhibitor 17-AAG in human glioma cell lines and tumorigenic glioma stem cells.

    Science.gov (United States)

    Sauvageot, Claire Marie-Elisabeth; Weatherbee, Jessica Leigh; Kesari, Santosh; Winters, Susan Elizabeth; Barnes, Jessica; Dellagatta, Jamie; Ramakrishna, Naren Raj; Stiles, Charles Dean; Kung, Andrew Li-Jen; Kieran, Mark W; Wen, Patrick Yung Chih

    2009-04-01

    Glioblastoma multiforme (GBM) arises from genetic and signaling abnormalities in components of signal transduction pathways involved in proliferation, survival, and the cell cycle axis. Studies to date with single-agent targeted molecular therapy have revealed only modest effects in attenuating the growth of these tumors, suggesting that targeting multiple aberrant pathways may be more beneficial. Heat-shock protein 90 (HSP90) is a molecular chaperone that is involved in the conformational maturation of a defined group of client proteins, many of which are deregulated in GBM. 17-allylamino-17-demethoxygeldanamycin (17-AAG) is a well-characterized HSP90 inhibitor that should be able to target many of the aberrant signal transduction pathways in GBM. We assessed the ability of 17-AAG to inhibit the growth of glioma cell lines and glioma stem cells both in vitro and in vivo and assessed its ability to synergize with radiation and/or temozolomide, the standard therapies for GBM. Our results reveal that 17-AAG is able to inhibit the growth of both human glioma cell lines and glioma stem cells in vitro and is able to target the appropriate proteins within these cells. In addition, 17-AAG can inhibit the growth of intracranial tumors and can synergize with radiation both in tissue culture and in intracranial tumors. This compound was not found to synergize with temozolomide in any of our models of gliomas. Our results suggest that HSP90 inhibitors like 17-AAG may have therapeutic potential in GBM, either as a single agent or in combination with radiation.

  10. Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma

    Directory of Open Access Journals (Sweden)

    Tang J

    2017-05-01

    glioma cell lines and human brain glioma tissues, and target gliomas in situ was also investigated. We found that not only could QD-Apt specially bind to the U87-EGFRvIII glioma cells but also bind to human glioma tissues in vitro. Fluorescence imaging in vivo with orthotopic glioma model mice bearing U87-EGFRvIII showed that QD-Apt could penetrate the blood–brain barrier and then selectively accumulate in the tumors through binding to EGFRvIII, and consequently, generate a strong fluorescence, which contributed to the margins of gliomas that were visualized clearly, and thus, help the surgeons realize the maximum safe resection of glioma. In addition, QD-Apt can also be applied in preoperative diagnosis and postoperative examination of glioma. Therefore, these achievements facilitate the use of tumor-targeted fluorescence imaging in the diagnosis, surgical resection, and postoperative examination of glioma. Keywords: quantum dot, aptamer, EGFRvIII, brain glioma, tumor-targeted imaging, extent of resection 

  11. UPA-sensitive ACPP-conjugated nanoparticles for multi-targeting therapy of brain glioma.

    Science.gov (United States)

    Zhang, Bo; Zhang, Yujie; Liao, Ziwei; Jiang, Ting; Zhao, Jingjing; Tuo, Yanyan; She, Xiaojian; Shen, Shun; Chen, Jun; Zhang, Qizhi; Jiang, Xinguo; Hu, Yu; Pang, Zhiqing

    2015-01-01

    Now it is well evidenced that tumor growth is a comprehensive result of multiple pathways, and glioma parenchyma cells and stroma cells are closely associated and mutually compensatory. Therefore, drug delivery strategies targeting both of them simultaneously might obtain more promising therapeutic benefits. In the present study, we developed a multi-targeting drug delivery system modified with uPA-activated cell-penetrating peptide (ACPP) for the treatment of brain glioma (ANP). In vitro experiments demonstrated nanoparticles (NP) decorated with cell-penetrating peptide (CPP) or ACPP could significantly improve nanoparticles uptake by C6 glioma cells and nanoparticles penetration into glioma spheroids as compared with traditional NP and thus enhanced the therapeutic effects of its payload when paclitaxel (PTX) was loaded. In vivo imaging experiment revealed that ANP accumulated more specifically in brain glioma site than NP decorated with or without CPP. Brain slides further showed that ACPP contributed to more nanoparticles accumulation in glioma site, and ANP could co-localize not only with glioma parenchyma cells, but also with stroma cells including neo-vascular cells and tumor associated macrophages. The pharmacodynamics results demonstrated ACPP could significantly improve the therapeutic benefits of nanoparticles by significantly prolonging the survival time of glioma bearing mice. In conclusion, the results suggested that nanoparticles modified with uPA-sensitive ACPP could reach multiple types of cells in glioma tissues and provide a novel strategy for glioma targeted therapy.

  12. Adenoviral vectors expressing fusogenic membrane glycoproteins activated via matrix metalloproteinase cleavable linkers have significant antitumor potential in the gene therapy of gliomas.

    Science.gov (United States)

    Allen, Cory; McDonald, Cari; Giannini, Caterina; Peng, Kah Whye; Rosales, Gabriela; Russell, Stephen J; Galanis, Evanthia

    2004-11-01

    Fusogenic membrane glycoproteins (FMG) such as the gibbon ape leukemia virus envelope (GALV) glycoprotein are potent therapeutic transgenes with potential utility in the gene therapy of gliomas. Transfection of glioma cell lines with FMG expression constructs results in fusion with massive syncytia formation followed by cytotoxic cell death. Nevertheless, ubiquitous expression of the GALV receptor, Pit-1, makes targeting desirable in order to increase the specificity of the observed cytopathic effect. Here we report on use of matrix metalloproteinase (MMP)-cleavable linkers to target the cytotoxicity of FMG-expressing adenoviral vectors against gliomas. Replication-defective adenoviruses (Ad) were constructed expressing the hyperfusogenic version of the GALV glycoprotein linked to a blocking ligand (C-terminal extracellular domain of CD40 ligand) through either an MMP-cleavable linker (AdM40) or a non-cleavable linker (AdN40). Both viruses also co-expressed the green fluorescent protein (GFP) via an internal ribosomal entry site. The glioma cell lines U87, U118, and U251 characterized by zymography and MMP-2 activity assay as high, medium and low MMP expressors, respectively, the MMP-poor cell lines TE671 and normal human astrocytes were infected with AdM40 and AdN40 at different multiplicities of infection (MOIs) from 1-30. Fusion was quantitated by counting both number and size of syncytia. Infection of these cell lines with AdN40 did not result in fusion or cytotoxic cell death, despite the presence of infection, as demonstrated by GFP positivity, therefore indicating that the displayed CD40 ligand blocked GALV-induced fusion. Fusion was restored after infection of glioma cells with AdM40 at an MOI as low as 1 to an extent dependent on MMP expression and coxsackie adenovirus receptor (CAR) expression in the specific cell line. Western immunoblotting demonstrated the presence of the cleaved CD40 ligand in the supernatant of fused glioma cells. Use of the MMP

  13. Molecular and Genetic Determinants of Glioma Cell Invasion

    Directory of Open Access Journals (Sweden)

    Kenta Masui

    2017-12-01

    Full Text Available A diffusely invasive nature is a major obstacle in treating a malignant brain tumor, “diffuse glioma”, which prevents neurooncologists from surgically removing the tumor cells even in combination with chemotherapy and radiation. Recently updated classification of diffuse gliomas based on distinct genetic and epigenetic features has culminated in a multilayered diagnostic approach to combine histologic phenotypes and molecular genotypes in an integrated diagnosis. However, it is still a work in progress to decipher how the genetic aberrations contribute to the aggressive nature of gliomas including their highly invasive capacity. Here we depict a set of recent discoveries involving molecular genetic determinants of the infiltrating nature of glioma cells, especially focusing on genetic mutations in receptor tyrosine kinase pathways and metabolic reprogramming downstream of common cancer mutations. The specific biology of glioma cell invasion provides an opportunity to explore the genotype-phenotype correlation in cancer and develop novel glioma-specific therapeutic strategies for this devastating disease.

  14. Binding of cetuximab to the EGFRvIII deletion mutant and its biological consequences in malignant glioma cells

    International Nuclear Information System (INIS)

    Jutten, Barry; Dubois, Ludwig; Li Younan; Aerts, Hugo; Wouters, Bradly G.; Lambin, Philippe; Theys, Jan; Lammering, Guido

    2009-01-01

    Background and purpose: Despite the clinical use of cetuximab, a chimeric antibody against EGFR, little is known regarding its interaction with EGFRvIII, a frequently expressed deletion mutant of EGFR. Therefore, we investigated the interaction and the functional consequences of cetuximab treatment on glioma cells stably expressing EGFRvIII. Materials and methods: The human glioma cell line U373 genetically modified to express EGFRvIII was used to measure the binding of cetuximab and its internalization using flow cytometry and confocal microscopy. Proliferation and cell survival were analyzed by cell growth and clonogenic survival assays. Results: Cetuximab is able to bind to EGFRvIII and causes an internalization of the receptor and decreases its expression levels. Furthermore, in contrast to EGF, cetuximab was able to activate EGFRvIII which was evidenced by multiple phosphorylation sites and its downstream signaling targets. Despite this activation, the growth rate and the radiosensitivity of the EGFRvIII-expressing glioma cells were not modulated. Conclusions: Cetuximab binds to EGFRvIII and leads to the initial activation, internalization and subsequent downregulation of EGFRvIII, but it does not seem to modulate the proliferation or radiosensitivity of EGFRvIII-expressing glioma cells. Thus, approaches to treat EGFRvIII-expressing glioma cells should be evaluated more carefully.

  15. HIF-2α mediates a marked increase in migration and stemness characteristics in a subset of glioma cells under hypoxia by activating an Oct-4/Sox-2-Mena (INV) axis.

    Science.gov (United States)

    Bhagat, Mohita; Palanichamy, Jayanth Kumar; Ramalingam, Pradeep; Mudassir, Madeeha; Irshad, Khushboo; Chosdol, Kunzang; Sarkar, Chitra; Seth, Pankaj; Goswami, Sumanta; Sinha, Subrata; Chattopadhyay, Parthaprasad

    2016-05-01

    Hypoxia is a salient feature of most solid tumors and plays a central role in tumor progression owing to its multiple contributions to therapeutic resistance, metastasis, angiogenesis and stemness properties. Reports exist in literature about hypoxia increasing stemness characteristics and invasiveness potential of malignant cells. In order to delineate molecular crosstalk among factors driving glioma progression, we used knockdown and overexpression strategies. We have demonstrated that U87MG and A172 glioma cells inherently have a subset of cells with high migratory potential due to migration-inducing Mena transcripts. These cells also have elevated stemness markers (Sox-2 and Oct-4). There was a significant increase of number in this subset of migratory cells on exposure to hypoxia with corresponding elevation (over 1000 fold) in migration-inducing Mena transcripts. We were able to demonstrate that a HIF-2α-Sox-2/Oct-4-Mena (INV) axis that is strongly activated in hypoxia and markedly increases the migratory potential of the cells. Such cells also formed tumor spheres with greater efficiency. We have correlated our in-vitro results with human glioblastoma samples and found that hypoxia, invasiveness and stemness markers correlated well in native tumor samples. This study identifies a novel signaling mechanism mediated by HIF-2α in regulating invasiveness and stemness characteristics, suggesting that under hypoxic conditions, some tumor cells acquire more migratory potential by increased Pan Mena and Mena INV expression as a consequence of this HIF-2α mediated increase in Oct-4 and Sox-2. These properties would help the cells to form a new nidus after local invasion or metastasis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Intermittent induction of HIF-1α produces lasting effects on malignant progression independent of its continued expression.

    Directory of Open Access Journals (Sweden)

    Hyunsung Choi

    Full Text Available Dysregulation of hypoxia-inducible transcription factors HIF-1α and HIF-2α correlates with poor prognosis in human cancers; yet, divergent and sometimes opposing activities of these factors in cancer biology have been observed. Adding to this complexity is that HIF-1α apparently possesses tumor-suppressing activities, as indicated by the loss-of-function mutations or even homozygous deletion of HIF1A in certain human cancers. As a step towards understanding this complexity, we employed 8-week intermittent induction of a stable HIF-1α variant, HIF1α(PP, in various cancer cell lines and examined the effects on malignant progression in xenografts of immunocompromised mice in comparison to those of HIF2α(PP. Although 8-week treatment led to eventual loss of HIF1α(PP expression, treated osteosarcoma U-2 OS cells acquired tumorigenicity in the subcutaneous tissue. Furthermore, the prior treatment resulted in widespread invasion of malignant glioma U-87 MG cells in the mouse brain and sustained growth of U-118 MG glioma cells. The lasting effects of HIF-1α on malignant progression are specific because neither HIF2α(PP nor β-galactosidase yielded similar effects. By contrast, transient expression of HIF1α(PP in U-87 MG cells or constitutive expression of HIF1α(PP but not HIF2α(PP in a patient-derived glioma sphere culture inhibited tumor growth and spread. Our results indicate that intermittent induction of HIF-1α produces lasting effects on malignant progression even at its own expense.

  17. RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript in secondary glioblastomas.

    Science.gov (United States)

    Bao, Zhao-Shi; Chen, Hui-Min; Yang, Ming-Yu; Zhang, Chuan-Bao; Yu, Kai; Ye, Wan-Lu; Hu, Bo-Qiang; Yan, Wei; Zhang, Wei; Akers, Johnny; Ramakrishnan, Valya; Li, Jie; Carter, Bob; Liu, Yan-Wei; Hu, Hui-Min; Wang, Zheng; Li, Ming-Yang; Yao, Kun; Qiu, Xiao-Guang; Kang, Chun-Sheng; You, Yong-Ping; Fan, Xiao-Long; Song, Wei Sonya; Li, Rui-Qiang; Su, Xiao-Dong; Chen, Clark C; Jiang, Tao

    2014-11-01

    Studies of gene rearrangements and the consequent oncogenic fusion proteins have laid the foundation for targeted cancer therapy. To identify oncogenic fusions associated with glioma progression, we catalogued fusion transcripts by RNA-seq of 272 gliomas. Fusion transcripts were more frequently found in high-grade gliomas, in the classical subtype of gliomas, and in gliomas treated with radiation/temozolomide. Sixty-seven in-frame fusion transcripts were identified, including three recurrent fusion transcripts: FGFR3-TACC3, RNF213-SLC26A11, and PTPRZ1-MET (ZM). Interestingly, the ZM fusion was found only in grade III astrocytomas (1/13; 7.7%) or secondary GBMs (sGBMs, 3/20; 15.0%). In an independent cohort of sGBMs, the ZM fusion was found in three of 20 (15%) specimens. Genomic analysis revealed that the fusion arose from translocation events involving introns 3 or 8 of PTPRZ and intron 1 of MET. ZM fusion transcripts were found in GBMs irrespective of isocitrate dehydrogenase 1 (IDH1) mutation status. sGBMs harboring ZM fusion showed higher expression of genes required for PIK3CA signaling and lowered expression of genes that suppressed RB1 or TP53 function. Expression of the ZM fusion was mutually exclusive with EGFR overexpression in sGBMs. Exogenous expression of the ZM fusion in the U87MG glioblastoma line enhanced cell migration and invasion. Clinically, patients afflicted with ZM fusion harboring glioblastomas survived poorly relative to those afflicted with non-ZM-harboring sGBMs (P < 0.001). Our study profiles the shifting RNA landscape of gliomas during progression and reveled ZM as a novel, recurrent fusion transcript in sGBMs. © 2014 Bao et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Antitumor Activity of Rat Mesenchymal Stem Cells during Direct or Indirect Co-Culturing with C6 Glioma Cells.

    Science.gov (United States)

    Gabashvili, A N; Baklaushev, V P; Grinenko, N F; Mel'nikov, P A; Cherepanov, S A; Levinsky, A B; Chehonin, V P

    2016-02-01

    The tumor-suppressive effect of rat mesenchymal stem cells against low-differentiated rat C6 glioma cells during their direct and indirect co-culturing and during culturing of C6 glioma cells in the medium conditioned by mesenchymal stem cells was studied in an in vitro experiment. The most pronounced antitumor activity of mesenchymal stem cells was observed during direct co-culturing with C6 glioma cells. The number of live C6 glioma cells during indirect co-culturing and during culturing in conditioned medium was slightly higher than during direct co-culturing, but significantly differed from the control (C6 glioma cells cultured in medium conditioned by C6 glioma cells). The cytotoxic effect of medium conditioned by mesenchymal stem cells was not related to medium depletion by glioma cells during their growth. The medium conditioned by other "non-stem" cells (rat astrocytes and fibroblasts) produced no tumor-suppressive effect. Rat mesenchymal stem cells, similar to rat C6 glioma cells express connexin 43, the main astroglial gap junction protein. During co-culturing, mesenchymal stem cells and glioma C6 cells formed functionally active gap junctions. Gap junction blockade with connexon inhibitor carbenoxolone attenuated the antitumor effect observed during direct co-culturing of C6 glioma cells and mesenchymal stem cells to the level produced by conditioned medium. Cell-cell signaling mediated by gap junctions can be a mechanism of the tumor-suppressive effect of mesenchymal stem cells against C6 glioma cells. This phenomenon can be used for the development of new methods of cell therapy for high-grade malignant gliomas.

  19. Eckol suppresses maintenance of stemness and malignancies in glioma stem-like cells

    International Nuclear Information System (INIS)

    Hyun, Kyung-Hwan; Yoon, Chang-Hwan; Kim, Rae-Kwon; Lim, Eun-Jung; An, Sungkwan; Park, Myung-Jin; Hyun, Jin-Won; Suh, Yongjoon; Kim, Min-Jung; Lee, Su-Jae

    2011-01-01

    A subpopulation of cancer cells with stem cell properties is responsible for tumor maintenance and progression, and may contribute to resistance to anticancer treatments. Thus, compounds that target cancer stem-like cells could be usefully applied to destroy cancer. In this study, we investigated the effect of Eckol, a phlorotannin compound, on stemness and malignancies in glioma stem-like cells. To determine whether Eckol targets glioma stem-like cells, we examined whether Eckol treatment could change the expression levels of glioma stem-like cell markers and self-renewal-related proteins as well as the sphere forming ability, and the sensitivity to anticancer treatments. Alterations in the malignant properties of sphere-derived cells by Eckol were also investigated by soft-agar colony forming assay, by xenograft assay in nude mice, and by cell invasion assay. Treatment of sphere-forming glioma cells with Eckol effectively decreased the sphere formation as well as the CD133 + cell population. Eckol treatment suppressed expression of the glioma stem-like cell markers and the self-renewal-related proteins without cell death. Moreover, treatment of glioma stem-like cells with Eckol significantly attenuated anchorage-independent growth on soft agar and tumor formation in xenograft mice. Importantly, Eckol treatment effectively reduced the resistance of glioma stem-like cells to ionizing radiation and temozolomide. Treatment of glioma stem-like cells with Eckol markedly blocked both phosphoinositide 3-kinase-Akt and Ras-Raf-1-Erk signaling pathways. These results indicate that the natural phlorotannin Eckol suppresses stemness and malignancies in glioma stem-like cells, and thereby makes glioma stem-like cells more sensitive to anticancer treatments, providing novel therapeutic strategies targeting specifically cancer stem-like cells.

  20. 3-Bromopyruvate antagonizes effects of lactate and pyruvate, synergizes with citrate and exerts novel anti-glioma effects.

    Science.gov (United States)

    El Sayed, S M; El-Magd, R M Abou; Shishido, Y; Chung, S P; Diem, T H; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-02-01

    Oxidative stress-energy depletion therapy using oxidative stress induced by D-amino acid oxidase (DAO) and energy depletion induced by 3-bromopyruvate (3BP) was reported recently (El Sayed et al., Cancer Gene Ther., 19, 1-18, 2012). Even in the presence of oxygen, cancer cells oxidize glucose preferentially to produce lactate (Warburg effect) which seems vital for cancer microenvironment and progression. 3BP is a closely related structure to lactate and pyruvate and may antagonize their effects as a novel mechanism of its action. Pyruvate exerted a potent H(2)O(2) scavenging effect to exogenous H(2)O(2), while lactate had no scavenging effect. 3BP induced H(2)O(2) production. Pyruvate protected against H(2)O(2)-induced C6 glioma cell death, 3BP-induced C6 glioma cell death but not against DAO/D-serine-induced cell death, while lactate had no protecting effect. Lactate and pyruvate protected against 3BP-induced C6 glioma cell death and energy depletion which were overcome with higher doses of 3BP. Lactate and pyruvate enhanced migratory power of C6 glioma which was blocked by 3BP. Pyruvate and lactate did not protect against C6 glioma cell death induced by other glycolytic inhibitors e.g. citrate (inhibitor of phosphofructokinase) and sodium fluoride (inhibitor of enolase). Serial doses of 3BP were synergistic with citrate in decreasing viability of C6 glioma cells and spheroids. Glycolysis subjected to double inhibition using 3BP with citrate depleted ATP, clonogenic power and migratory power of C6 glioma cells. 3BP induced a caspase-dependent cell death in C6 glioma. 3BP was powerful in decreasing viability of human glioblastoma multiforme cells (U373MG) and C6 glioma in a dose- and time-dependent manner.

  1. Gene expression of manganese superoxide dismutase in human glioma cells

    Directory of Open Access Journals (Sweden)

    Novi S. Hardiany

    2010-02-01

    Full Text Available Aim This study analyze the MnSOD gene expression as endogenous antioxidant in human glioma cells compared with leucocyte cells as control.Methods MnSOD gene expression of 20 glioma patients was analyzed by measuring the relative expression of mRNA and enzyme activity of MnSOD in brain and leucocyte cells. The relative expression of mRNA MnSOD was determined by using quantitative Real Time RT-PCR and the enzyme activity of MnSOD using biochemical kit assay (xantine oxidase inhibition. Statistic analysis for mRNA and enzyme activity of MnSOD was performed using Kruskal Wallis test.Results mRNA of MnSOD in glioma cells of 70% sample was 0.015–0.627 lower, 10% was 1.002-1.059 and 20% was 1.409-6.915 higher than in leucocyte cells. Also the specific activity of MnSOD enzyme in glioma cells of 80% sample showed 0,064-0,506 lower and 20% sample was 1.249-2.718 higher than in leucocyte cells.Conclusion MnSOD gene expression in human glioma cells are significantly lower than its expression in leucocytes cells. (Med J Indones 2010; 19:21-5Keywords : MnSOD, glioma, gene expression

  2. Nicotinamide augments the survival and incidence of apoptosis in glioma cells following photodynamic therapy in vitro

    Science.gov (United States)

    Bisland, Stuart K.; Modi, Nayan; Wilson, Brian C.

    2004-10-01

    The ability to customize photodynamic therapy (PDT) parameters with regards to timing and dosing of administered drug and light can be beneficial in determining target specificity and mode of cell death. Sustained, low level PDT or metronomic PDT (mPDT) may afford enhanced apoptotic cell death. This is of particular importance when considering PDT for the treatment of brain tumors as unlike apoptosis, necrotic cell death often leads to inflammation with increased intracranial pressure. The ability, therefore, to 'fine tune' PDT in favour of apoptosis is paramount. We have studied both acute (one time treatment) PDT (aPDT) and mPDT delivery strategies in combination with nicotinamide (NA) in an attempt to maximize the number of tumor cells dieing by apoptosis. Using several different glioma cell lines (9L, U87-MG and CNS-1) we now confirm that NA provides a dose-dependent (0.1-0.5 mM) increase in apoptotic cells following d-aminolevulinic acid-mediated aPDT or mPDT. Furthermore, using the 9L cell line stably transfected with the luciferase gene, NA was shown to delay the depletion of bioluminscence signal in aPDT and mPDT treated cells, inferring that adenosine triphosphate levels are maintained for longer following NA treatment. NA has previously been reported as promoting neuronal and vascular cell survival in normal brain following a number of neurological insults in which reactive oxygen species are implicated including, stroke, Alzheimer's disease and toxin-induced lesions. It is likely that the effects of NA reflect its capacity as an antioxidant as well as its ability to inhibit poly (adenosine diphosphate-ribose) polymerase-mediated depletion of ATP. Our results indicate that NA may prove therapeutically advantageous when used in combination with PDT treatment of brain tumors.

  3. Feasibility of a novel positive feedback effect of 131I-promoted Bac-Egr1-hNIS expression in malignant glioma via baculovirus

    International Nuclear Information System (INIS)

    Guo Rui; Tian Lipeng; Han Bing; Xu Haoping; Zhang Miao; Li Biao

    2011-01-01

    Purpose: As intracellular iodine is released rapidly, increased expression of sodium/iodide symporter (NIS) is required for effective radioiodine treatment of tumor. As Egr1 promoter is activated by 131 I and may promote human NIS (hNIS) expression, hNIS also induces 131 I uptake and activates Egr1, so the existence of a positive feedback effect of 131 I-promoted Egr1-hNIS expression is possible. Our purpose was to investigate the possible existence of this positive feedback effect through a series of in vitro pioneer studies. Method: Recombinant baculovirus (Bac-Egr1-hNIS) encoding the hNIS gene under the control of a radiation-inducible Egrl promoter was constructed. To test 131 I-promoted hNIS expression, human malignant glioma U87 cells were transfected with Bac-Egr1-hNIS, stimulated with or without 131 I; the expression of hNIS protein was detected by immunofluorescence and flow cytometry test. In addition, the uptake and efflux of 131 I were determined after the incubation of Bac-Egr1-hNIS-transfected U87 cells with or without 131 I. Results: Immunocytochemical staining and flow cytometry test showed a higher hNIS protein expression in Bac-Egr1-hNIS-transfected U87 cells with 131 I stimulation than in cells without stimulation. Bac-Egr1-hNIS-transfected U87 cells accumulated up to about 4.05 times of 131 I after 131 I stimulation. The amount of 131 I uptake in both groups showed a baculovirus dose-dependent manner. However, rapid efflux of radioactivity was observed in both groups, with 50% lost during the first 2 min after the 131 I-containing medium had been replaced by a nonradioactive medium. Conclusion: Our results indicated that an improved transgene expression of 131 I-stimulated hNIS in U87 cells using a baculovirus vector containing the Egr1 promoter is possible, and the increased expression of hNIS is responsible for a higher 131 I uptake. It might provide a reference for the existence of a positive feedback effect in 131 I-promoted Bac-Egr1-h

  4. Exploring the regulatory role of isocitrate dehydrogenase mutant protein on glioma stem cell proliferation.

    Science.gov (United States)

    Lu, H-C; Ma, J; Zhuang, Z; Qiu, F; Cheng, H-L; Shi, J-X

    2016-08-01

    Glioma is the most lethal form of cancer that originates mostly from the brain and less frequently from the spine. Glioma is characterized by abnormal regulation of glial cell differentiation. The severity of the glioma was found to be relaxed in isocitrate dehydrogenase 1 (IDH1) mutant. The present study focused on histological discrimination and regulation of cancer stem cell between IDH1 mutant and in non-IDH1 mutant glioma tissue. Histology, immunohistochemistry and Western blotting techniques are used to analyze the glioma nature and variation in glioma stem cells that differ between IDH1 mutant and in non-IDH1 mutant glioma tissue. The aggressive form of non-IDH1 mutant glioma shows abnormal cellular histological variation with prominent larger nucleus along with abnormal clustering of cells. The longer survival form of IDH1 mutant glioma has a control over glioma stem cell proliferation. Immunohistochemistry with stem cell markers, CD133 and EGFRvIII are used to demonstrate that the IDH1 mutant glioma shows limited dependence on cancer stem cells and it shows marked apoptotic signals in TUNEL assay to regulate abnormal cells. The non-IDH1 mutant glioma failed to regulate misbehaving cells and it promotes cancer stem cell proliferation. Our finding supports that the IDH1 mutant glioma has a regulatory role in glioma stem cells and their survival.

  5. Transfer of the sodium/iodide symporter gene into gliomas for radioiodine therapy in vitro

    International Nuclear Information System (INIS)

    Tan Jian; Li Wei; Liu Xiaohua; Xiao Qian; Jia Qiang; Li Ning

    2008-01-01

    Objective: The most frequent brain tumors are the gliomas. Glioblastomas are largely incurable secondary, to their rapid, aggressive and diffusely infiltrative growth pattern and hypervascularity. This study aimed at investigating the possibility of transecting human sodium/iodide symporter (hNIS) gene into human glioma cell lines to facilitate radioactive iodide treatment in vitro. Methods: Transecting hNIS gene into human glioma cell lines U251 was performed by recombinant expression plasmids with lipofectamine 2000-plasmid complexes. The hNIS gene cell lines with stable expression (hNIS-U251) were selected through G418 antibiotic constraint. The hNIS-U251 gene cell lines were then evaluated for their biologic functions, including 125 I uptake assay, 125 I influx-course, 125 I-efflux-course, 131 I inhibitory effect on cellular proliferation by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyhe-trazolium bromide (MTT) assay and flow cytometer. Results: We were successful in transecting hNIS gene into human glioma cell lines by recombinant expression plasmids, and were able to obtain hNIS gene cell lines (hNIS-U251) with stable expression. The hNIS-U251 cell lines could intake and bind radioactive iodide by hNIS gene. The uptakes of 125 I were 117 fold higher in hNIS-U251 cell lines than U251 cell lines [(50 469.88 ± 997.29), (432.92 ± 89.28) counts·min -1 , respectively]. And the proliferation index of hNIS-U251 cell lines was lower than U251 cell lines after incubating with 131 I. Conclusion: The hNIS gene with stable gene expression (hNIS- U251) cell lines could be labeled by 131 I with a high efficiency, thereby may function effectively in the treatment of glioma-related brain tumors. (authors)

  6. Identification of molecular pathways facilitating glioma cell invasion in situ.

    Directory of Open Access Journals (Sweden)

    Ido Nevo

    Full Text Available Gliomas are mostly incurable secondary to their diffuse infiltrative nature. Thus, specific therapeutic targeting of invasive glioma cells is an attractive concept. As cells exit the tumor mass and infiltrate brain parenchyma, they closely interact with a changing micro-environmental landscape that sustains tumor cell invasion. In this study, we used a unique microarray profiling approach on a human glioma stem cell (GSC xenograft model to explore gene expression changes in situ in Invading Glioma Cells (IGCs compared to tumor core, as well as changes in host cells residing within the infiltrated microenvironment relative to the unaffected cortex. IGCs were found to have reduced expression of genes within the extracellular matrix compartment, and genes involved in cell adhesion, cell polarity and epithelial to mesenchymal transition (EMT processes. The infiltrated microenvironment showed activation of wound repair and tissue remodeling networks. We confirmed by protein analysis the downregulation of EMT and polarity related genes such as CD44 and PARD3 in IGCs, and EFNB3, a tissue-remodeling agent enriched at the infiltrated microenvironment. OLIG2, a proliferation regulator and glioma progenitor cell marker upregulated in IGCs was found to function in enhancing migration and stemness of GSCs. Overall, our results unveiled a more comprehensive picture of the complex and dynamic cell autonomous and tumor-host interactive pathways of glioma invasion than has been previously demonstrated. This suggests targeting of multiple pathways at the junction of invading tumor and microenvironment as a viable option for glioma therapy.

  7. Targeting the erythropoietin receptor on glioma cells reduces tumour growth

    International Nuclear Information System (INIS)

    Peres, Elodie A.; Valable, Samuel; Guillamo, Jean-Sebastien; Marteau, Lena; Bernaudin, Jean-Francois; Roussel, Simon; Lechapt-Zalcman, Emmanuele; Bernaudin, Myriam; Petit, Edwige

    2011-01-01

    Hypoxia has been shown to be one of the major events involved in EPO expression. Accordingly, EPO might be expressed by cerebral neoplastic cells, especially in glioblastoma, known to be highly hypoxic tumours. The expression of EPOR has been described in glioma cells. However, data from the literature remain descriptive and controversial. On the basis of an endogenous source of EPO in the brain, we have focused on a potential role of EPOR in brain tumour growth. In the present study, with complementary approaches to target EPO/EPOR signalling, we demonstrate the presence of a functional EPO/EPOR system on glioma cells leading to the activation of the ERK pathway. This EPO/EPOR system is involved in glioma cell proliferation in vitro. In vivo, we show that the down-regulation of EPOR expression on glioma cells reduces tumour growth and enhances animal survival. Our results support the hypothesis that EPOR signalling in tumour cells is involved in the control of glioma growth.

  8. Downregulation of the long non-coding RNA taurine-upregulated gene 1 inhibits glioma cell proliferation and invasion and promotes apoptosis.

    Science.gov (United States)

    Zhao, Zhijun; Wang, Bin; Hao, Junhai; Man, Weitao; Chang, Yongkai; Ma, Shunchang; Hu, Yeshuai; Liu, Fusheng; Yang, Jun

    2018-03-01

    Expression of the long non-coding RNA taurine-upregulated gene 1 (TUG1) is associated with various aggressive tumors. The present study aimed to investigate the biological function of TUG1 in regulating apoptosis, proliferation, invasion and cell cycle distribution in human glioma U251 cells. Lentivirus-mediated TUG1-specific microRNA was transfected into U251 cells to abrogate the expression of TUG1. Flow cytometry analysis was used to examine the cell cycle distribution and apoptosis of U251 cells. Cellular proliferation was examined using Cell Counting Kit-8 (CCK-8) assays and invasion was examined by Transwell assays. The apoptotic rate of cells in the TUG1-knockdown group was significantly higher than in the negative control (NC) group (11.58 vs. 9.14%, PTUG1-knockdown group was lower compared with that of the NC group. A Transwell invasion assay was performed, which revealed that the number of invaded cells from the TUG1-knockdown group was the less compared with that of the NC group. In addition, the G 0 /G 1 phase population was significantly increased within the treated group (44.85 vs. 38.45%, PTUG1 may inhibit proliferation and invasion, and promote glioma U251 cell apoptosis. In addition, knockdown of TUG1 may have an effect on cell cycle arrest. The data presented in the current study indicated that TUG1 may be a novel therapeutic target for glioma.

  9. Xenograft transplantation of human malignant astrocytoma cells into immunodeficient rats: an experimental model of glioblastoma.

    Science.gov (United States)

    Miura, Flávio Key; Alves, Maria Jose Ferreira; Rocha, Mussya Cisotto; da Silva, Roseli; Oba-Shinjo, Sueli Mieko; Marie, Suely Kazue Nagahashi

    2010-03-01

    Astrocytic gliomas are the most common intracranial central nervous system neoplasias, accounting for about 60% of all primary central nervous system tumors. Despite advances in the treatment of gliomas, no effective therapeutic approach is yet available; hence, the search for a more realistic model to generate more effective therapies is essential. To develop an experimental malignant astrocytoma model with the characteristics of the human tumor. Primary cells from subcutaneous xenograft tumors produced with malignant astrocytoma U87MG cells were inoculated intracerebrally by stereotaxis into immunosuppressed (athymic) Rowett rats. All four injected animals developed non-infiltrative tumors, although other glioblastoma characteristics, such as necrosis, pseudopalisading cells and intense mitotic activity, were observed. A malignant astrocytoma intracerebral xenograft model with poorly invasive behavior was achieved in athymic Rowett rats. Tumor invasiveness in an experimental animal model may depend on a combination of several factors, including the cell line used to induce tumor formation, the rat strains and the status of the animal's immune system.

  10. Overexpressed KDM5B is associated with the progression of glioma and promotes glioma cell growth via downregulating p21

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Bin [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Hu, Zhiqiang, E-mail: zhiqhutg@126.com [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Huang, Hui; Zhu, Guangtong; Xiao, Zhiyong [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Wan, Weiqing; Zhang, Peng; Jia, Wang; Zhang, Liwei [Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050 (China)

    2014-11-07

    Highlights: • KDM5B is overexpressed in glioma samples. • KDM5B stimulated proliferation of glioma cells. • Inhibition of p21contributes to KDM5B-induced proliferation. - Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Upregulation of lysine (K)-specific demethylase 5B (KDM5B) has been reported in a variety of malignant tumors. However, the impact of KDM5B in glioma remains unclear. The objective of this study was to investigate the expression and prognostic value of KDM5B in glioma. In clinical glioma samples, we found that KDM5B expression was significantly upregulated in cancer lesions compared with normal brain tissues. Kaplan–Meier analysis showed that patients with glioma and higher KDM5B expression tend to have shorter overall survival time. By silencing or overexpressing KDM5B in glioma cells, we found that KDM5B could promote cell growth both in vitro and in vivo. Moreover, we demonstrated that KDM5B promoted glioma proliferation partly via regulation of the expression of p21. Our study provided evidence that KDM5B functions as a novel tumor oncogene in glioma and may be a potential therapeutic target for glioma management.

  11. Differential induction of p53-mediated apoptosis in medulloblastomas and gliomas correlates with their ability to induce bax

    International Nuclear Information System (INIS)

    Shu, H.-K.G.; Furman, Felix; Dee, Suzanne; Israel, Mark A.

    1997-01-01

    Purpose/Objective: Medulloblastoma cell lines readily undergo a p53-mediated apoptosis following exposure to ionizing radiation, while glioma cell lines do not undergo significant levels of apoptosis following irradiation. This study attempts to define some of the molecular events that characterize the differential ability medulloblastomas and gliomas to undergo radiation-induced apoptosis. Materials and Methods: The medulloblastoma cell lines D283 and D341 and the glioma cell lines U87, U343 and U563 were used in this study. All five cell lines were confirmed to have a wild type p53 by their ability to induce p21 protein levels and to undergo a cell-cycle arrest in G1 following treatment with ionizing radiation. Also, 3 clonal derivatives of D283 were used. Two of the clones were derived following transfection with an expression plasmid containing a dominant negative mutant p53 (Arg175 --> His) expressed from the CMV promoter (D283/53.6 and D283/53.7), while the remaining clone was derived following transfection with that same expression plasmid without mutant p53 (D283/vec). All irradiation experiments were performed on Phillips RT-250 X-ray unit using 250 Kvp X-rays. In each case, 5 Gy of ionizing radiation was given at a dose rate of 250 cGy/minute. Apoptosis was quantitated by staining fixed cells with propidium iodide and determining the percentage of cells with subdiploid DNA content by flow cytometry. Northern blot analysis was performed using standard methods. Results: The D283 and D341 cell lines exhibited a significant induction of apoptosis when assayed 2 days following treatment with radiation while the U87, U343 and U563 cell lines displayed only minimal induction of apoptosis when assayed following treatment at that time. RNA was prepared from the different cell lines that were unirradiated, 6 hours or 24 hours post-irradiation. Northern blots were made of the total RNAs and probed for bax, bcl-2 and bcl-x mRNA. This analysis detected no significant

  12. Investigation of adhesion and mechanical properties of human glioma cells by single cell force spectroscopy and atomic force microscopy.

    Science.gov (United States)

    Andolfi, Laura; Bourkoula, Eugenia; Migliorini, Elisa; Palma, Anita; Pucer, Anja; Skrap, Miran; Scoles, Giacinto; Beltrami, Antonio Paolo; Cesselli, Daniela; Lazzarino, Marco

    2014-01-01

    Active cell migration and invasion is a peculiar feature of glioma that makes this tumor able to rapidly infiltrate into the surrounding brain tissue. In our recent work, we identified a novel class of glioma-associated-stem cells (defined as GASC for high-grade glioma--HG--and Gasc for low-grade glioma--LG) that, although not tumorigenic, act supporting the biological aggressiveness of glioma-initiating stem cells (defined as GSC for HG and Gsc for LG) favoring also their motility. Migrating cancer cells undergo considerable molecular and cellular changes by remodeling their cytoskeleton and cell interactions with surrounding environment. To get a better understanding about the role of the glioma-associated-stem cells in tumor progression, cell deformability and interactions between glioma-initiating stem cells and glioma-associated-stem cells were investigated. Adhesion of HG/LG-cancer cells on HG/LG-glioma-associated stem cells was studied by time-lapse microscopy, while cell deformability and cell-cell adhesion strengths were quantified by indentation measurements by atomic force microscopy and single cell force spectroscopy. Our results demonstrate that for both HG and LG glioma, cancer-initiating-stem cells are softer than glioma-associated-stem cells, in agreement with their neoplastic features. The adhesion strength of GSC on GASC appears to be significantly lower than that observed for Gsc on Gasc. Whereas, GSC spread and firmly adhere on Gasc with an adhesion strength increased as compared to that obtained on GASC. These findings highlight that the grade of glioma-associated-stem cells plays an important role in modulating cancer cell adhesion, which could affect glioma cell migration, invasion and thus cancer aggressiveness. Moreover this work provides evidence about the importance of investigating cell adhesion and elasticity for new developments in disease diagnostics and therapeutics.

  13. The radiosensitivity of glioblastoma cell lines after hypoxia-induced Bax expression

    International Nuclear Information System (INIS)

    Chen, J.K.; Hu, L.J.; Kong, E.L.; Lamborn, K.R.; Deen, D.F.

    2003-01-01

    Full text: Radiation therapy is the most effective treatment after surgery for patients with malignant gliomas. However, the hypoxic cells exclusive to tumor tissue have proven resistant to both radiotherapy and many forms of chemotherapy. In order to specifically target these hypoxic cells, U-251 MG and U-87 MG human glioblastoma cells were stably transfected with constructs containing the suicide gene Bax under the regulation of nine copies of hypoxia-responsive elements (HREs). During hypoxia, the transcriptional complex hypoxia-inducible-factor 1 (HIF-1) binds to HRE and facilitates the transcription of downstream genes. Previously, hypoxia-induced Bax expression in transfected U-251 and U-87 clone cells has been shown to increase cell killing. The benefits of the gene therapy could be further expanded if Bax also acted to increase the sensitivity of these clone cells to radiation. To determine whether this was the case, parent and clone cells were irradiated with graded doses of X-rays under hypoxic conditions. These cells were then left hypoxic for varying durations of time, after which they were incubated for two weeks under aerated conditions to assay for clonogenic cell survival. After less than an hour under hypoxia, both U-251 and U-87 clone cells appeared significantly more sensitive to radiation than their respective parent cells. However, after longer amounts of time under anoxia, higher surviving fractions were found in each clone that were consistent with those of their respective parent cell line, showing that potentially lethal damage repair (PLDR) had occurred in the clone cells. Parent cells did not exhibit PLDR. Results are inconclusive at this point in time. Western blot analyses detailing the amount of Bax expression at each time point as well as further research exploring different durations of hypoxia will be necessary to reveal the nature of the correlation between Bax expression and radiosensitivity. Supported by NS-42927 and CA-85356

  14. Interference with the HSF1/HSP70/BAG3 Pathway Primes Glioma Cells to Matrix Detachment and BH3 Mimetic-Induced Apoptosis.

    Science.gov (United States)

    Antonietti, Patrick; Linder, Benedikt; Hehlgans, Stephanie; Mildenberger, Iris C; Burger, Michael C; Fulda, Simone; Steinbach, Joachim P; Gessler, Florian; Rödel, Franz; Mittelbronn, Michel; Kögel, Donat

    2017-01-01

    Malignant gliomas exhibit a high intrinsic resistance against stimuli triggering apoptotic cell death. HSF1 acts as transcription factor upstream of HSP70 and the HSP70 co-chaperone BAG3 that is overexpressed in glioblastoma. To specifically target this resistance mechanism, we applied the selective HSF1 inhibitor KRIBB11 and the HSP70/BAG3 interaction inhibitor YM-1 in combination with the pan-Bcl-2 inhibitor AT-101. Here, we demonstrate that lentiviral BAG3 silencing significantly enhances AT-101-induced cell death and reactivates effector caspase-mediated apoptosis in U251 glioma cells with high BAG3 expression, whereas these sensitizing effects were less pronounced in U343 cells expressing lower BAG3 levels. KRIBB11 decreased protein levels of HSP70, BAG3, and the antiapoptotic Bcl-2 protein Mcl-1, and both KRIBB11 and YM-1 elicited significantly increased mitochondrial dysfunction, effector caspase activity, and apoptotic cell death after combined treatment with AT-101 and ABT-737. Depletion of BAG3 also led to a pronounced loss of cell-matrix adhesion, FAK phosphorylation, and in vivo tumor growth in an orthotopic mouse glioma model. Furthermore, it reduced the plating efficiency of U251 cells in three-dimensional clonogenic assays and limited clonogenic survival after short-term treatment with AT-101. Collectively, our data suggest that the HSF1/HSP70/BAG3 pathway plays a pivotal role for overexpression of prosurvival Bcl-2 proteins and cell death resistance of glioma. They also support the hypothesis that interference with BAG3 function is an effective novel approach to prime glioma cells to anoikis. Mol Cancer Ther; 16(1); 156-68. ©2016 AACR. ©2016 American Association for Cancer Research.

  15. Astrocytes protect glioma cells from chemotherapy and upregulate survival genes via gap junctional communication.

    Science.gov (United States)

    Lin, Qingtang; Liu, Zhao; Ling, Feng; Xu, Geng

    2016-02-01

    Gliomas are the most common type of primary brain tumor. Using current standard treatment regimens, the prognosis of patients with gliomas remains poor, which is predominantly due to the resistance of glioma cells to chemotherapy. The organ microenvironment has been implicated in the pathogenesis and survival of tumor cells. Thus, the aim of the present study was to test the hypothesis that astrocytes (the housekeeping cells of the brain microenvironment) may protect glioma cells from chemotherapy and to investigate the underlying mechanism. Immunofluorescent and scanning electron microscopy demonstrated that glioma cells were surrounded and infiltrated by activated astrocytes. In vitro co-culture of glioma cells with astrocytes significantly reduced the cytotoxic effects on glioma cells caused by various chemotherapeutic agents, as demonstrated by fluorescein isothiocyanate-propidium iodide flow cytometry. Transwell experiments indicated that this protective effect was dependent on physical contact and the gap junctional communication (GJC) between astrocytes and glioma cells. Microarray expression profiling further revealed that astrocytes upregulated the expression levels of various critical survival genes in the glioma cells via GJC. The results of the present study indicated that the organ microenvironment may affect the biological behavior of tumor cells and suggest a novel mechanism of resistance in glioma cells, which may be of therapeutic relevance clinically.

  16. Visualisation of an nsPEF induced calcium wave using the genetically encoded calcium indicator GCaMP in U87 human glioblastoma cells.

    Science.gov (United States)

    Carr, Lynn; Bardet, Sylvia M; Arnaud-Cormos, Delia; Leveque, Philippe; O'Connor, Rodney P

    2018-02-01

    Cytosolic, synthetic chemical calcium indicators are typically used to visualise the rapid increase in intracellular calcium ion concentration that follows nanosecond pulsed electric field (nsPEF) application. This study looks at the application of genetically encoded calcium indicators (GECIs) to investigate the spatiotemporal nature of nsPEF-induced calcium signals using fluorescent live cell imaging. Calcium responses to 44kV/cm, 10ns pulses were observed in U87-MG cells expressing either a plasma membrane targeted GECI (GCaMP5-G), or one cytosolically expressed (GCaMP6-S), and compared to the response of cells loaded with cytosolic or plasma membrane targeted chemical calcium indicators. Application of 100 pulses, to cells containing plasma membrane targeted indicators, revealed a wave of calcium across the cell initiating at the cathode side. A similar spatial wave was not observed with cytosolic indicators with mobile calcium buffering properties. The speed of the wave was related to pulse application frequency and it was not propagated by calcium induced calcium release. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Radiation effects on human glia and glioma cells in vitro

    International Nuclear Information System (INIS)

    Nilsson, S.

    1983-01-01

    The radiosensitivity of human glia and glioma cells has been studied in vitro, and a new cloning method has been developed to overcome the difficulties due to the very low cloning efficiency of these cells. The cells were confined to small palladium areas surrounded by agarose, which increased the cell density, but kept the clones separated. Using this method, the glia cells were found to be very sensitive to gamma irradiation (D 0 =1.0-1.5 Gy and n=1) in comparision with the glioma cells (D 0 =1.5-2.5 Gy and n=3.5). The induction and repair of DNA strand breaks were studied with two DNA unwinding techniques. No differences between the two cell-lines were detected when induction and fast repair were studied with the single-labelling method, while the glioma cells showed less unrepaired DNA strand breaks than the glia cells after 1, 2 and 3 hours, when the double-labelling method was used. Detachment, attachment and growth kinetics were studied using the palladium-agarose cloning method. All of the glioma cell-lines studied, detached and attached themselves at rates higher than the normal diploid glia cell-lines. All of the cell-lines contained clones with different properties. Some clones were rapidly growing, others maintained a nearly constant number of cells or even decreased. The effects of chronic hypoxia were tested in a few experiments. Low oxygen tension in the culture medium reduced the rate of growth and the DNA synthesis of the glioma cells. The present study indicates that cultured human glioma cells are less radiosensitive than cultured glia cells. The palladium-agarose technique, enable studying growth kinetics detachment, attachment and radiosensitivity in a quantitative manner for cells with low cloning efficiency. (author)

  18. Targeting of human glioma xenografts in vivo utilizing radiolabeled antibodies

    International Nuclear Information System (INIS)

    Williams, J.A.; Wessels, B.W.; Wharam, M.D.; Order, S.E.; Wanek, P.M.; Poggenburg, J.K.; Klein, J.L.

    1990-01-01

    Radiolabeled antibodies provide a potential basis for selective radiotherapy of human gliomas. We have measured tumor targeting by radiolabeled monoclonal and polyclonal antibodies directed against neuroectodermal and tumor-associated antigens in nude mice bearing human glioma xenografts. Monoclonal P96.5, a mouse IgG2a immunoglobulin, defines an epitope of a human melanoma cell surface protein, and specifically binds the U-251 human glioma as measured by immunoperoxidase histochemistry. 111In-radiolabeled P96.5 specifically targets the U-251 human glioma xenograft and yields 87.0 microCuries (microCi) of tumor activity per gram per 100 microCi injected activity compared to 4.5 microCi following administration of radiolabeled irrelevant monoclonal antibody. Calculations of targeting ratios demonstrate deposited dose to be 11.6 times greater with radiolabeled P96.5 administration compared to irrelevant monoclonal antibody. The proportion of tumor dose found in normal organs is less than 10%, further supporting specific targeting of the human glioma xenograft by this antibody. Monoclonal antibody ZME018, which defines a second melanoma-associated antigen, and polyclonal rabbit antiferritin, which defines a tumor-associated antigen, demonstrate positive immunoperoxidase staining of the tumor, but comparatively decreased targeting. When compared to the 111In-radiolabeled antibody, 90Y-radiolabeled P96.5 demonstrates comparable tumor targeting and percentages of tumor dose found in normal organs. To test the therapeutic potential of 90Y-radiolabeled P96.5, tumors and normal sites were implanted with miniature thermoluminescent dosimeters (TLD). Seven days following administration of 100 microCi 90Y-radiolabeled P96.5, average absorbed doses of 3770, 980, 353, and 274 cGy were observed in tumor, liver, contralateral control site, and total body, respectively

  19. Intraoperative neuropathology of glioma recurrence: cell detection and classification

    Science.gov (United States)

    Abas, Fazly S.; Gokozan, Hamza N.; Goksel, Behiye; Otero, Jose J.; Gurcan, Metin N.

    2016-03-01

    Intraoperative neuropathology of glioma recurrence represents significant visual challenges to pathologists as they carry significant clinical implications. For example, rendering a diagnosis of recurrent glioma can help the surgeon decide to perform more aggressive resection if surgically appropriate. In addition, the success of recent clinical trials for intraoperative administration of therapies, such as inoculation with oncolytic viruses, may suggest that refinement of the intraoperative diagnosis during neurosurgery is an emerging need for pathologists. Typically, these diagnoses require rapid/STAT processing lasting only 20-30 minutes after receipt from neurosurgery. In this relatively short time frame, only dyes, such as hematoxylin and eosin (H and E), can be implemented. The visual challenge lies in the fact that these patients have undergone chemotherapy and radiation, both of which induce cytological atypia in astrocytes, and pathologists are unable to implement helpful biomarkers in their diagnoses. Therefore, there is a need to help pathologists differentiate between astrocytes that are cytologically atypical due to treatment versus infiltrating, recurrent, neoplastic astrocytes. This study focuses on classification of neoplastic versus non-neoplastic astrocytes with the long term goal of providing a better neuropathological computer-aided consultation via classification of cells into reactive gliosis versus recurrent glioma. We present a method to detect cells in H and E stained digitized slides of intraoperative cytologic preparations. The method uses a combination of the `value' component of the HSV color space and `b*' component of the CIE L*a*b* color space to create an enhanced image that suppresses the background while revealing cells on an image. A composite image is formed based on the morphological closing of the hue-luminance combined image. Geometrical and textural features extracted from Discrete Wavelet Frames and combined to classify

  20. Regulation of Glioma Cell Migration by Seri ne-Phosphorylated P3111

    Directory of Open Access Journals (Sweden)

    Wendy S. McDonough

    2005-09-01

    Full Text Available P311, an 8-kDa polypeptide, was previously shown to be highly expressed in invasive glioma cells. Here, we report the functional characteristics of P311 with regard to influencing glioma cell migration. P311 is constitutively serine-phosphorylated; decreased phosphorylation is observed in migration-activated glioma cells. The primary amino acid sequence of P311 indicates a putative serine phosphorylation site (S59 near the PEST domain. Site-directed mutagenesis of S59A retarded P311 degradation, induced glioma cell motility. In contrast, S59D mutation resulted in the rapid degradation of P311, reduced glioma cell migration. Coimmunoprecipitation coupled with matrixassisted laser desorption/ionization time-of-flight mass spectrometry analysis identified Filamin A as a binding partner of P311, immunofluorescence studies showed that both proteins colocalized at the cell periphery. Moreover, P311-induced cell migration was abrogated by inhibition of β1 integrin function using TACβ1A, a dominant-negative inhibitor of β1 integrin signaling, suggesting that P311 acts downstream of β1 signaling. Finally, overexpression of P311 or P311 S59A mutant protein activates Raci GTPase; small interfering RNA-mediated depletion of Raci suppresses P311-induced motility. Collectively, these results suggest a role for levels of P311 in regulating glioma motility, invasion through the reorganization of actin cytoskeleton at the cell periphery.

  1. Generation of HIV-1 primary isolates representative of plasma variants using the U87.CD4 cell line

    NARCIS (Netherlands)

    Heeregrave, Edwin J.; Ampofo, William K.; Tetteh, John K. A.; Ofori, Michael; Ofori, Sampson B.; Shah, Akram S.; Pollakis, Georgios; Paxton, William A.

    2010-01-01

    In order to obtain HIV-1 primary isolates in settings with limited access to donor PBMCs, a culture method was developed where patient PBMCs infected with HIV-1 were cultured together with U87.CD4 cells. Using this non-laborious method, it is possible to harvest virus solely on the basis of syncytia

  2. “...those left behind.” Biology and Oncology of Invasive Glioma Cells

    Directory of Open Access Journals (Sweden)

    Michael E Berens

    1999-08-01

    Full Text Available Although significant technical advances in surgical and radiation treatment for brain tumors have emerged in recent years, their impact on clinical outcome for patients has been disappointing. A fundamental source of the management challenge presented by glioma patients is the insidious propensity of the malignant cells to invade into adjacent normal brain. Invasive tumor cells escape surgical removal and geographically dodge lethal radiation exposure. Recent improved understanding of the biochemistry and molecular determinants of glioma cell invasion provide valuable insight to the underlying biological features of the disease, as well as illuminating possible new therapeutic targets. Heightened commitment to migrate and invade is accompanied by a glioma cell's reduced proliferative activity. The microenvironmental manipulations coincident to invasion and migration may also impact the glioma cell's response to cytotoxic treatments. These collateral aspects of the glioma cell invasive phenotype should be further explored and exploited as novel antiglioma therapies.

  3. G Protein-Coupled Receptor 87 (GPR87 Promotes Cell Proliferation in Human Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xia Zhang

    2015-10-01

    Full Text Available G protein-coupled receptor 87 (GPR87 is a newly deorphanized member of the cell surface molecule G protein-coupled receptor family. GPR signaling was shown to play a role in promotion of cell growth and survival, metastasis, and drug resistance. The overexpression of GPR87 has also been reported in many malignant tumors including bladder cancer. The aim of the present study is to examine the effect of silencing GPR87 expression with a replication-deficient recombinant adenoviral vector expressing short hairpin RNA targeting GPR87 (Ad-shGPR87 and to explore the underlying molecular mechanisms in bladder cancer cells. Six GPR87-expressing human bladder cancer cells, HT1197, HT1376, J82, RT112, TCCSUP and UMUC3, were used. Infection with Ad-shGPR87 effectively downregulated the GPR87 expression, and significantly reduced the percentage of viable cells in 4 of 6 cell lines as detected by an MTT assay. Significant inhibition on cell proliferation with Ad-shGPR87 was observed in the wild-type p53 bladder cancer cell lines (HT1197, RT112, TCCSUP and UMUC3, but not in the mutant p53 cells (HT1376 and J82. As represented by a wild-type p53 RT112 cell, Ad-shGPR87 infection significantly enhanced p53 and p21 expression and caused caspase-dependent apoptosis. Furthermore, the treatment with Ad-shGPR87 exerted a significant antitumor effect against the GPR87-expressing RT112 xenografts. GPR87 appeared to be a promising target for gene therapy, and Ad-shGPR87 had strong antitumor effects, specifically anti-proliferative and pro-apoptotic effects, against GPR87-expressing human bladder cancer cells.

  4. Nimotuzumab enhances temozolomide-induced growth suppression of glioma cells expressing mutant EGFR in vivo

    International Nuclear Information System (INIS)

    Nitta, Yusuke; Shimizu, Saki; Shishido-Hara, Yukiko; Suzuki, Kaori; Shiokawa, Yoshiaki; Nagane, Motoo

    2016-01-01

    A mutant form of epidermal growth factor receptor (EGFR), EGFRvIII, is common in glioblastoma (GBM) and confers enhanced tumorigenic activity and drug resistance. Nimotuzumab, an anti-EGFR antibody, has shown preclinical and clinical activity to GBM, but its specific activity against EGFRvIII has not been fully investigated. Human glioma U87MG or LNZ308 cells overexpressing either wild-type (wt) EGFR or EGFRvIII were treated with nimotuzumab, temozolomide, or both. Expression and phosphorylation status of molecules were determined by Western blot analysis. Methylation status of promoter region of O 6 -methylguanine-DNA methyltransferase (MGMT) was detected by methylation-specific PCR. Antitumor activity was tested using nude mice bearing either subcutaneous or intracerebral xenografts along with analyses of EGFR phosphorylation status, proliferation, apoptosis, and vessel density. Nimotuzumab treatment resulted in reduction of EGFRvIII tyrosine phosphorylation with a decrease in Akt phosphorylation that was greater than that of wtEGFR. Correspondingly, antitumor effects, growth suppression and survival elongation, were more significant in mice bearing either subcutaneous or intracerebral tumor expressing EGFRvIII than in those expressing wtEGFR. These effects were markedly increased when temozolomide was combined with nimotuzumab. The post-treatment recurrent brain tumors exhibited a decrease in expression of the mismatch repair (MMR) proteins, MSH6 and MLH1, but their methylated MGMT status did not changed. Nimotuzumab has in vivo antitumor activity against GBM, especially those expressing EGFRvIII, when combined with temozolomide. This could provide a basis for preselection of patients with GBM by EGFR status who might benefit from the nimotuzumab and temozolomide combination therapy

  5. Errantum: Treatment of human astrocytoma U87 cells with silicon dioxide nanoparticles lowers their survival and alters their expression of mitochondrial and cell signaling proteins

    Directory of Open Access Journals (Sweden)

    Lai JCK

    2010-12-01

    Full Text Available Lai JCK, Ananthakrishnan G, Jandhyam S, et al. Treatment of human astrocytoma U87 cells with silicon dioxide nanoparticles lowers their survival and alters their expression of mitochondrial and cell signaling proteins. Int J Nanomedicine. 2010;5:715–723.The wrong image was used in Figure 5 on page 719.

  6. Upregulation of B23 promotes tumor cell proliferation and predicts poor prognosis in glioma

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jianguo [Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu Province (China); Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province (China); Sun, Jie; Yang, Liu; Yan, Yaohua; Shi, Wei; Shi, Jinlong; Huang, Qingfeng; Chen, Jian [Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province (China); Lan, Qing, E-mail: lanqingsj@163.com [Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu Province (China)

    2015-10-09

    B23 (also known as Nucleophosmin, NPM, numatrin or NO38) is a ubiquitously expressed phosphoprotein belonging to the nucleoplasmin family of chaperones. In this study we intended to investigate the clinical significance of B23 expression in human glioma and its biological function in glioma cells. Western blot and immunohistochemistry analysis showed that B23 was overexpressed in glioma tissues and glioma cell lines. In addition, the expression level of B23 was positively correlated with glioma pathological grade and Ki-67 expression. Kaplan–Meier analysis revealed that a higher B23 expression in patients with glioma was associated with a poorer prognosis. In vitro, after the release of glioma cell lines from serum starvation, the expression of B23 was upregulated, as well as PCNA (Proliferating Cell Nuclear Antigen) and cyclin A. In addition, knockdown of B23 by small interfering RNA transfection diminished the expression of PCNA, cyclin D1 and arrested cell growth at G1 phase. Taken together, our results implied that B23 could be a candidate prognostic biomarker as well as a potential therapeutical target of glioma. - Highlights: • B23 expression increased as the malignant degree of glioma increased, which was consistent with Ki-67 expression. • High expression of B23 could be a strong determinant of poor prognosis in glioma. • B23 may be involved in the proliferation of glioma in a cell-cycle-dependent pathway. • Knockdown of B23 expression by siRNA could affect the progression of glioma. • B23 may be a potential prognosis biomarker and a possible therapeutic target for glioma.

  7. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy.

    Science.gov (United States)

    Maurer, Gabriele D; Brucker, Daniel P; Bähr, Oliver; Harter, Patrick N; Hattingen, Elke; Walenta, Stefan; Mueller-Klieser, Wolfgang; Steinbach, Joachim P; Rieger, Johannes

    2011-07-26

    Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic) diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2), 3-oxoacid-CoA transferase 1 (OXCT1) and acetyl-CoA acetyltransferase 1 (ACAT1) were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α) pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic agents that efficiently target non-oxidative pathways.

  8. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy

    International Nuclear Information System (INIS)

    Maurer, Gabriele D; Brucker, Daniel P; Bähr, Oliver; Harter, Patrick N; Hattingen, Elke; Walenta, Stefan; Mueller-Klieser, Wolfgang; Steinbach, Joachim P; Rieger, Johannes

    2011-01-01

    Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic) diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2), 3-oxoacid-CoA transferase 1 (OXCT1) and acetyl-CoA acetyltransferase 1 (ACAT1) were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α) pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic agents that efficiently target non-oxidative pathways

  9. Optimal gadolinium dose level for magnetic resonance imaging (MRI) contrast enhancement of U87-derived tumors in athymic nude rats for the assessment of photodynamic therapy

    Science.gov (United States)

    Cross, Nathan; Varghai, Davood; Flask, Chris A.; Feyes, Denise K.; Oleinick, Nancy L.; Dean, David

    2009-02-01

    This study aims to determine the effect of varying gadopentetate dimeglumine (Gd-DTPA) dose on Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) tracking of brain tumor photodynamic therapy (PDT) outcome. Methods: We injected 2.5 x 105 U87 cells (derived from human malignant glioma) into the brains of six athymic nude rats. After 9, 12, and 13 days DCE-MRI images were acquired on a 9.4 T micro-MRI scanner before and after administration of 100, 150, or 200 μL of Gd-DTPA. Results: Tumor region normalized DCE-MRI scan enhancement at peak was: 1.217 over baseline (0.018 Standard Error [SE]) at the 100 μL dose, 1.339 (0.013 SE) at the 150 μL dose, and 1.287 (0.014 SE) at the 200 μL dose. DCE-MRI peak tumor enhancement at the 150 μL dose was significantly greater than both the 100 μL dose (p DTPA dose provided the greatest T1 weighted contrast enhancement, while minimizing negative T2* effects, in DCE-MRI scans of U87-derived tumors. Maximizing Gd-DTPA enhancement in DCE-MRI scans may assist development of a clinically robust (i.e., unambiguous) technique for PDT outcome assessment.

  10. Autotaxin inhibition with PF8380 enhances the radiosensitivity of human and murine glioblastoma cell lines

    Directory of Open Access Journals (Sweden)

    Sandeep R Bhave

    2013-09-01

    Full Text Available Purpose: Glioblastoma multiforme (GBM is an aggressive primary brain tumor that is radio-resistant and recurs despite aggressive surgery, chemo and radiotherapy. Autotaxin (ATX is over expressed in various cancers including GBM and is implicated in tumor progression, invasion, and angiogenesis. Using the ATX specific inhibitor, PF-8380, we studied ATX as a potential target to enhance radiosensitivity in GBM.Methods and Materials: Mouse GL-261 and Human U87MG cells were used as GBM cell models. Clonogenic survival assays and tumor transwell invasion assays were performed using PF-8380 to evaluate role of ATX in survival and invasion. Radiation dependent activation of Akt was analyzed by immunoblotting. Tumor induced angiogenesis was studied using the dorsal skin-fold model in Gl-261. Heterotopic mouse GL-261 tumors were used to evaluate the efficacy of PF-8380 as a radiosensitizer.Results: Pretreatment of GL-261 and U87-MG cells with 1µM PF-8380 followed by 4Gy irradiation resulted in decreased clonogenic survival, decreased migration (33% in GL-261;P = 0.002 and 17.9% in U87; P = 0.012 decreased invasion (35.6% in GL-261; P = 0.0037 and 31.8% in U87; P = 0.002, and attenuated radiation induced Akt phosphorylation. In the tumor window model inhibition of ATX abrogated radiation-induced tumor neovascularization (65%; P=0.011. In a heterotopic mouse GL-261 tumors untreated mice took 11.2 days to reach a tumor volume of 7000 mm3 , however combination of PF-8380 (10mg/kg with irradiation (5 fractions of 2Gy took more than 32 days to reach a tumor volume of 7000 mm3 .Conclusion: Inhibition of ATX by PF8380 led to decreased invasion and enhanced radiosensitization of glioma cells. Radiation induced activation of Akt was abrogated by inhibition of ATX. Furthermore, inhibition of ATX led to diminished tumor vascularity and delayed tumor growth. These results suggest that inhibition of ATX may ameliorate glioblastoma response to radiotherapy.

  11. Convection enhanced delivery of panobinostat (LBH589-loaded pluronic nano-micelles prolongs survival in the F98 rat glioma model

    Directory of Open Access Journals (Sweden)

    Singleton WG

    2017-02-01

    Full Text Available WG Singleton,1,2 AM Collins,3 AS Bienemann,1 CL Killick-Cole,1 HR Haynes,4 DJ Asby,1 CP Butts,5 MJ Wyatt,1 NU Barua,1,2 SS Gill1,2 1Functional Neurosurgery Research Group, School of Clinical Sciences, University of Bristol, 2Department of Neurosurgery, North Bristol NHS Trust, 3Bristol Centre for Functional Nanomaterials, School of Physics, HH Wills Physics Laboratory, 4Brain Tumour Research Group, School of Clinical Sciences, 5School of Chemistry, University of Bristol, Bristol, UKBackground: The pan-histone deacetylase inhibitor panobinostat is a potential therapy for malignant glioma, but it is water insoluble and does not cross the blood–brain barrier when administered systemically. In this article, we describe the in vitro and in vivo efficacy of a novel water-soluble nano-micellar formulation of panobinostat designed for administration by convection enhanced delivery (CED.Materials and methods: The in vitro efficacy of panobinostat-loaded nano-micelles against rat F98, human U87-MG and M059K glioma cells and against patient-derived glioma stem cells was measured using a cell viability assay. Nano-micelle distribution in rat brain was analyzed following acute CED using rhodamine-labeled nano-micelles, and toxicity was assayed using immunofluorescent microscopy and synaptophysin enzyme-linked immunosorbent assay. We compared the survival of the bioluminescent syngenic F98/Fischer344 rat glioblastoma model treated by acute CED of panobinostat-loaded nano-micelles with that of untreated and vehicle-only-treated controls.Results: Nano-micellar panobinostat is cytotoxic to rat and human glioma cells in vitro in a dose-dependent manner following short-time exposure to drug. Fluorescent rhodamine-labelled nano-micelles distribute with a volume of infusion/volume of distribution (Vi/Vd ratio of four and five respectively after administration by CED. Administration was not associated with any toxicity when compared to controls. CED of

  12. Effective conversion of irinotecan to SN-38 after intratumoral drug delivery to an intracranial murine glioma model in vivo. Laboratory investigation.

    Science.gov (United States)

    Wang, Weijun; Ghandi, Alex; Liebes, Leonard; Louie, Stan G; Hofman, Florence M; Schönthal, Axel H; Chen, Thomas C

    2011-03-01

    Irinotecan (CPT-11), a topoisomerase I inhibitor, is a cytotoxic agent with activity against malignant gliomas and other tumors. After systemic delivery, CPT-11 is converted to its active metabolite, SN-38, which displays significantly higher cytotoxic potency. However, the achievement of therapeutically effective plasma levels of CPT-11 and SN-38 is seriously complicated by variables that affect drug metabolism in the liver. Thus the capacity of CPT-11 to be converted to the active SN38 intratumorally in gliomas was addressed. For in vitro studies, 2 glioma cell lines, U87 and U251, were tested to determine the cytotoxic effects of CPT-11 and SN-38 in a dose-dependent manner. In vivo studies were performed by implanting U87 intracranially into athymic/nude mice. For a period of 2 weeks, SN-38, CPT-11, or vehicle was administered intratumorally by means of an osmotic minipump. One series of experiments measured the presence of SN-38 or CPT-11 in the tumor and surrounding brain tissues after 2 weeks' exposure to the drug. In a second series of experiments, after 2 weeks' exposure to the drug, the animals were maintained, in the absence of drug, until death. The survival curves were then calculated. The results show that the animals that had CPT-11 delivered intratumorally by the minipump expressed SN-38 in vivo. Furthermore, both CPT-11 and SN-38 accumulated at higher levels in tumor tissues compared with uninvolved brain. Intratumoral delivery of CPT-11 or SN-38 extended the average survival time of tumor-bearing animals from 22 days to 46 and 65 days, respectively. These results demonstrate that intratumorally administered CPT-11 can be effectively converted to SN-38 and this method of drug delivery is effective in extending the survival time of animals bearing malignant gliomas.

  13. STAT6 expression in glioblastoma promotes invasive growth

    International Nuclear Information System (INIS)

    Merk, Barbara C; Owens, Jennifer L; Lopes, Maria-Beatriz S; Silva, Corinne M; Hussaini, Isa M

    2011-01-01

    Glioblastoma (GBM) is a highly aggressive malignant primary brain tumor, characterized by rapid growth, diffuse infiltration of cells into both adjacent and remote brain regions, and a generalized resistance to currently available treatment modalities. Recent reports in the literature suggest that Signal Transducers and Activators of Transcription (STATs) play important roles in the regulation of GBM pathophysiology. STAT6 protein expression was analyzed by Western blotting in GBM cell lines and by immunohistochemistry in a tissue microarray (TMA) of glioma patient tissues. We utilized shRNA against STAT6 to investigate the effects of prolonged STAT6 depletion on the growth and invasion of two STAT6-positive GBM cell lines. Cell proliferation was assessed by measuring 3 H-Thymidine uptake over time. Invasion was measured using an in vitro transwell assay in which cells invade through a type IV collagen matrix toward a chemoattractant (Fetal Bovine Serum). Cells were then stained and counted. Kaplan-Meyer survival curves were generated to show the correlation between STAT6 gene expression and patient survival in 343 glioma patients and in a subset of patients with only GBM. Gene expression microarray and clinical data were acquired from the Rembrandt [1] public data depository (https://caintegrator.nci.nih.gov/rembrandt/). Lastly, a genome-wide expression microarray analysis was performed to compare gene expression in wild-type GBM cells to expression in stable STAT6 knockdown clones. STAT6 was expressed in 2 GBM cell lines, U-1242MG and U-87MG, and in normal astrocytes (NHA) but not in the U-251MG GBM cell line. In our TMA study, STAT6 immunostaining was visible in the majority of astrocytomas of all grades (I-IV) but not in normal brain tissue. In positive cells, STAT6 was localized exclusively in the nuclei over 95% of the time. STAT6-deficient GBM cells showed a reduction in 3 H-Thymidine uptake compared to the wild-type. There was some variation among the

  14. Nanosecond pulsed electric fields depolarize transmembrane potential via voltage-gated K+, Ca2+ and TRPM8 channels in U87 glioblastoma cells.

    Science.gov (United States)

    Burke, Ryan C; Bardet, Sylvia M; Carr, Lynn; Romanenko, Sergii; Arnaud-Cormos, Delia; Leveque, Philippe; O'Connor, Rodney P

    2017-10-01

    Nanosecond pulsed electric fields (nsPEFs) have a variety of applications in the biomedical and biotechnology industries. Cancer treatment has been at the forefront of investigations thus far as nsPEFs permeabilize cellular and intracellular membranes leading to apoptosis and necrosis. nsPEFs may also influence ion channel gating and have the potential to modulate cell physiology without poration of the membrane. This phenomenon was explored using live cell imaging and a sensitive fluorescent probe of transmembrane voltage in the human glioblastoma cell line, U87 MG, known to express a number of voltage-gated ion channels. The specific ion channels involved in the nsPEF response were screened using a membrane potential imaging approach and a combination of pharmacological antagonists and ion substitutions. It was found that a single 10ns pulsed electric field of 34kV/cm depolarizes the transmembrane potential of cells by acting on specific voltage-sensitive ion channels; namely the voltage and Ca2 + gated BK potassium channel, L- and T-type calcium channels, and the TRPM8 transient receptor potential channel. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Senescence from glioma stem cell differentiation promotes tumor growth

    International Nuclear Information System (INIS)

    Ouchi, Rie; Okabe, Sachiko; Migita, Toshiro; Nakano, Ichiro; Seimiya, Hiroyuki

    2016-01-01

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.

  16. Senescence from glioma stem cell differentiation promotes tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, Rie [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Okabe, Sachiko; Migita, Toshiro [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Nakano, Ichiro [Department of Neurosurgery, Comprehensive Cancer Center, University of Alabama at Birmingham, 1824 6th Avenue South, Birmingham, AL 35233 (United States); Seimiya, Hiroyuki, E-mail: hseimiya@jfcr.or.jp [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan)

    2016-02-05

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.

  17. Interleukin-13 conjugated quantum dots for identification of glioma initiating cells and their extracellular vesicles.

    Science.gov (United States)

    Madhankumar, A B; Mrowczynski, Oliver D; Patel, Suhag R; Weston, Cody L; Zacharia, Brad E; Glantz, Michael J; Siedlecki, Christopher A; Xu, Li-Chong; Connor, James R

    2017-08-01

    Cadmium selenide (CdSe) based quantum dots modified with polyethylene glycol and chemically linked to interleukin-13 (IL13) were prepared with the aim of identifying the high affinity receptor (IL13Rα2) which is expressed in glioma stem cells and exosomes secreted by these cancer stem cells. IL13 conjugated quantum dots (IL13QD) were thoroughly characterized for their physicochemical properties including particle size and surface morphology. Furthermore, the specific binding of the IL13QD to glioma cells and to glioma stem cells (GSC) was verified using a competitive binding study. The exosomes were isolated from the GSC conditioned medium and the expression of IL13Rα2 in the GSC and exosomes was verified. The binding property of IL13QD to the tumor associated exosomes was initially confirmed by transmission electron microscopy. The force of attraction between the quantum dots and U251 glioma cells and the exosomes was investigated by atomic force microscopy, which indicated a higher force of binding interaction between the IL13QD and IL13Rα2 expressing glioma cells and exosomes secreted by glioma stem cells. Flow cytometry of the IL13QD and exosomes from the culture media and cerebrospinal fluid (CSF) of patients with glioma tumors indicated a distinctly populated complex pattern different from that of non-targeted quantum dots and bovine serum albumin (BSA) conjugated quantum dots confirming specific binding potential of the IL13QD to the tumor associated exosomes. The results of this study demonstrate that IL13QD can serve as an ex vivo marker for glioma stem cells and exosomes that can inform diagnosis and prognosis of patients harboring malignant disease. Functionalized quantum dots are flexible semiconductor nanomaterials which have an immense application in biomedical research. In particular, when they are functionalized with biomolecules like proteins or antibodies, they have the specialized ability to detect the expression of receptors and antigens in

  18. Combinatorial therapy with adenoviral-mediated PTEN and a PI3K inhibitor suppresses malignant glioma cell growth in vitro and in vivo by regulating the PI3K/AKT signaling pathway.

    Science.gov (United States)

    Nan, Yang; Guo, Liyun; Song, Yunpeng; Wang, Le; Yu, Kai; Huang, Qiang; Zhong, Yue

    2017-08-01

    Glioblastoma is a highly invasive and challenging tumor of the central nervous system. The mutation/deletion of the tumor suppressor phosphatase and tensin homolog (PTEN) gene is the main genetic change identified in glioblastomas. PTEN plays a critical role in tumorigenesis and has been shown to be an important therapeutic target. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 is commonly used to inhibit glioma cell growth via regulation of the PI3K/AKT signaling pathway. In this study, we examined the growth inhibitory effects of a combinatorial therapy of adenoviral-mediated PTEN (Ad-PTEN) and LY294002 on LN229 and U251 glioma cells in vitro and on tumor xenografts in vivo. In vitro, LN229 and U251 glioma cells were treated by combinatorial therapy with Ad-PTEN and LY294002. The growth ability was determined by MTT assay. The cell cycle distribution was analyzed by flow cytometry. Cell invasive ability was analyzed by transwell invasion assay and cell apoptosis analysis via FITC-Annexin V analysis. In vivo, U251 subcutaneous glioblastoma xenograft was used to assay anti-tumor effect of combinatorial therapy with Ad-PTEN and LY294002 by mean volume of tumors, immunohistochemistry and TUNEL method. The combinatorial treatment clearly suppressed cell proliferation, arrested the cell cycle, reduced cell invasion and promoted cell apoptosis compared with the Ad-PTEN or LY294002 treatment alone. The treatment worked by inhibiting the PI3K/AKT pathway. In addition, the growth of U251 glioma xenografts treated with the combination of Ad-PTEN and LY294002 was significantly inhibited compared with those treated with Ad-PTEN or LY294002 alone. Our data indicated that the combination of Ad-PTEN and LY294002 effectively suppressed the malignant growth of human glioma cells in vitro and in tumor xenografts, suggesting a promising new approach for glioma gene therapy that warrants further investigation.

  19. Insulin-like Growth Factor Binding Protein 7 Mediates Glioma Cell Growth and Migration

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2008-12-01

    Full Text Available Insulin-like growth factor binding protein 7 (IGFBP-7 is the only member of the IGFBP superfamily that binds strongly to insulin, suggesting that IGFBP-7 may have different functions from other IGFBPs. Unlike other IGFBPs, the expression and functions of IGFBP-7 in glioma tumors have not been reported. Using cDNA microarray analysis, we found that expression of IGFBP-7 correlated with the grade of glioma tumors and the overall patient survival. This finding was further validated by real-time reverse transcription-polymerase chain reaction and Western blot analysis. We used RNAi to examine the role of IGFBP-7 in glioma cells, inhibiting IGFBP-7 expression by short interfering RNA transfection. Cell proliferation was suppressed after IGFBP-7 expression was inhibited for 5 days, and glioma cell growth was stimulated consistently by the addition of recombinant IGFBP-7 protein. Moreover, glioma cell migration was attenuated by IGFBP-7 depletion but enhanced by IGFBP-7 overexpression and addition. Overexpression of AKT1 in IGFBP-7-overxpressed cells attenuated the IGFBP-7-promoted migration and further enhanced inhibition of IGFBP-7 depletion on the migration. Phosphorylation of AKT and Erk1/2 was also inversely regulated by IGFBP-7 expression. These two factors together suggest that IGFBP-7 can regulate glioma cell migration through the AKT-ERK pathway, thereby playing an important role in glioma growth and migration.

  20. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy

    Directory of Open Access Journals (Sweden)

    Mueller-Klieser Wolfgang

    2011-07-01

    Full Text Available Abstract Background Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. Methods To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. Results The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2, 3-oxoacid-CoA transferase 1 (OXCT1 and acetyl-CoA acetyltransferase 1 (ACAT1 were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. Conclusion In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic

  1. Influence of blood-brain barrier permeability on O-(2-{sup 18}F-fluoroethyl)-L-tyrosine uptake in rat gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Stegmayr, Carina; Bandelow, Ulrike; Oliveira, Dennis; Lohmann, Philipp; Willuweit, Antje; Galldiks, Norbert; Luebke, Joachim H.R. [Institute of Neuroscience and Medicine, Forschungszentrum Juelich, Juelich (Germany); Filss, Christian; Ermert, Johannes; Langen, Karl-Josef [Institute of Neuroscience and Medicine, Forschungszentrum Juelich, Juelich (Germany); RWTH/University Hospital Aachen, Department of Nuclear Medicine and Neurology, Aachen (Germany); Shah, N. Jon [Institute of Neuroscience and Medicine, Forschungszentrum Juelich, Juelich (Germany); RWTH/University Hospital Aachen, Department of Nuclear Medicine and Neurology, Aachen (Germany); Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Aachen (Germany)

    2017-03-15

    O-(2-{sup 18}F-fluoroethyl)-L-tyrosine ({sup 18}F-FET) is an established tracer for the diagnosis of brain tumors with PET. This study investigates the influence of blood-brain barrier (BBB) permeability on {sup 18}F-FET uptake in two rat glioma models and one human xenograft model. F98 glioma, 9L gliosarcoma or human U87 glioblastoma cells were implanted into the striatum of 56 Fischer or RNU rats. Thereafter, animals were divided into a control group and a group receiving injections of the glucocorticoid dexamethasone (Dex). After 12-13 days of tumor growth animals received injection of Evans blue dye (EBD) to visualize BBB disturbance and underwent {sup 18}F-FET PET followed by autoradiography. Time activity curves, standardized uptake values (SUV) and Tumor-to-brain ratios (TBR) of {sup 18}F-FET uptake [18-61 min post injection (p.i.)] were evaluated using a volume-of-Interest (VOI) analysis. BBB disturbance was quantitatively evaluated by EBD fluorescence. The membrane gaps of blood vessel endothelial tight junctions were measured using electron microscopy to visualize ultrastructural BBB alterations in one untreated and one Dex treated F98 glioma. Data were analyzed by two-way ANOVAs. In Dex treated animals EBD extravasation was significantly reduced in 9L (P < 0.001) and U87 (P = 0.008) models and showed a trend in F98 models (P = 0.053). In contrast, no significant differences of {sup 18}F-FET uptake were observed between Dex treated animals and control group except a decrease of the TBR in the 9L tumor model in PET (P < 0.01). Ultrastructural evaluation of tumor blood vessel endothelia revealed significant reduction of the cleft diameter between endothelial cells after Dex treatment in F98 model (P = 0.010). Despite a considerable reduction of BBB permeability in rat gliomas after Dex treatment, no relevant changes of {sup 18}F-FET uptake were noted in this experimental study. Thus, {sup 18}F-FET uptake in gliomas appears to be widely independent of the

  2. RAD18 mediates resistance to ionizing radiation in human glioma cells

    International Nuclear Information System (INIS)

    Xie, Chen; Wang, Hongwei; Cheng, Hongbin; Li, Jianhua; Wang, Zhi; Yue, Wu

    2014-01-01

    Highlights: • RAD18 is an important mediator of the IR-induced resistance in glioma cell lines. • RAD18 overexpression confers resistance to IR-mediated apoptosis. • The elevated expression of RAD18 is associated with recurrent GBM who underwent IR therapy. - Abstract: Radioresistance remains a major challenge in the treatment of glioblastoma multiforme (GBM). RAD18 a central regulator of translesion DNA synthesis (TLS), has been shown to play an important role in regulating genomic stability and DNA damage response. In the present study, we investigate the relationship between RAD18 and resistance to ionizing radiation (IR) and examined the expression levels of RAD18 in primary and recurrent GBM specimens. Our results showed that RAD18 is an important mediator of the IR-induced resistance in GBM. The expression level of RAD18 in glioma cells correlates with their resistance to IR. Ectopic expression of RAD18 in RAD18-low A172 glioma cells confers significant resistance to IR treatment. Conversely, depletion of endogenous RAD18 in RAD18-high glioma cells sensitized these cells to IR treatment. Moreover, RAD18 overexpression confers resistance to IR-mediated apoptosis in RAD18-low A172 glioma cells, whereas cells deficient in RAD18 exhibit increased apoptosis induced by IR. Furthermore, knockdown of RAD18 in RAD18-high glioma cells disrupts HR-mediated repair, resulting in increased accumulation of DSB. In addition, clinical data indicated that RAD18 was significantly higher in recurrent GBM samples that were exposed to IR compared with the corresponding primary GBM samples. Collectively, our findings reveal that RAD18 may serve as a key mediator of the IR response and may function as a potential target for circumventing IR resistance in human GBM

  3. Mesenchymal Stem Cells Isolated From Human Gliomas Increase Proliferation and Maintain Stemness of Glioma Stem Cells Through the IL-6/gp130/STAT3 Pathway.

    Science.gov (United States)

    Hossain, Anwar; Gumin, Joy; Gao, Feng; Figueroa, Javier; Shinojima, Naoki; Takezaki, Tatsuya; Priebe, Waldemar; Villarreal, Diana; Kang, Seok-Gu; Joyce, Celine; Sulman, Erik; Wang, Qianghu; Marini, Frank C; Andreeff, Michael; Colman, Howard; Lang, Frederick F

    2015-08-01

    Although mesenchymal stem cells (MSCs) have been implicated as stromal components of several cancers, their ultimate contribution to tumorigenesis and their potential to drive cancer stem cells, particularly in the unique microenvironment of human brain tumors, remain largely undefined. Consequently, using established criteria, we isolated glioma-associated-human MSCs (GA-hMSCs) from fresh human glioma surgical specimens for the first time. We show that these GA-hMSCs are nontumorigenic stromal cells that are phenotypically similar to prototypical bone marrow-MSCs. Low-passage genomic sequencing analyses comparing GA-hMSCs with matched tumor-initiating glioma stem cells (GSCs) suggest that most GA-hMSCs (60%) are normal cells recruited to the tumor (group 1 GA-hMSCs), although, rarely (10%), GA-hMSCs may differentiate directly from GSCs (group 2 GA-hMSCs) or display genetic patterns intermediate between these groups (group 3 GA-hMSCs). Importantly, GA-hMSCs increase proliferation and self-renewal of GSCs in vitro and enhance GSC tumorigenicity and mesenchymal features in vivo, confirming their functional significance within the GSC niche. These effects are mediated by GA-hMSC-secreted interleukin-6, which activates STAT3 in GSCs. Our results establish GA-hMSCs as a potentially new stromal component of gliomas that drives the aggressiveness of GSCs, and point to GA-hMSCs as a novel therapeutic target within gliomas. © 2015 AlphaMed Press.

  4. Systemic T Cells Immunosuppression of Glioma Stem Cell-Derived Exosomes Is Mediated by Monocytic Myeloid-Derived Suppressor Cells.

    Directory of Open Access Journals (Sweden)

    Rossana Domenis

    Full Text Available A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression, proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs. Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression.

  5. Synergistic anti-glioma effect of a coloaded nano-drug delivery system

    Directory of Open Access Journals (Sweden)

    Xu H

    2016-12-01

    Full Text Available Huae Xu,1,* Feng Jia,2,* Pankaj Kumar Singh,3 Shu Ruan,4 Hao Zhang,5,* Xiaolin Li5 1Department of Pharmacy, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 2Department of Neurosurgery, Yancheng City No 1 People’s Hospital, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng, People’s Republic of China; 3Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 4Department of Endocrinology, Yancheng Third Hospital, The Affiliated Hospital of Southeast University Medical College, Yancheng, 5Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, People’s Republic of China *These authors contributed equally to this work Abstract: The anti-glioma effect of temozolomide (Tem is sometimes undermined by the emerging resistance. Recently, resveratrol (Res, herbal medicine extracted from grape seeds, has been demonstrated for its potential use in chemosensitization. In the current study, both these drugs were loaded simultaneously into nanoparticles with methoxy poly(ethylene glycol-poly epsilon caprolactone (mPEG-PCL as drug carriers in order to achieve better antitumor efficiency. Tem/Res-coloaded mPEG-PCL nanoparticles were constructed, characterized, and tested for antitumor effect on glioma cells by using in vitro and xenograft model system. The nanoparticle constructs were satisfactory with drug loading content (Res =~12.4%; Tem =~9.3% and encapsulation capacity of >85% for both the drugs. In addition, the coencapsulation led to better in vitro stability of the nanoparticles than Tem-loaded nanoparticles. An in vitro uptake study demonstrated a high uptake efficiency of the nanoparticles by glioma cells. The synergistic antitumor effect against glioma cells was observed in the combinational treatment of Res and Tem. Tem/Res-coloaded nanoparticles induced higher apoptosis in U87 glioma cells as

  6. Fenofibrate dose not protect glioma cells from irradiation

    International Nuclear Information System (INIS)

    Ro, Jae Lim; Kim, Won Dong; Park, Woo Yoon

    2012-01-01

    Fenofibrate(FF) is a ligand for peroxisome proliferator-activated receptor (PPAR) α and used clinically as a hypolipidemic drug. FF has been reported to have a radioprotective effect of newborn cells in the dentate gyrus 1) and inhibit radiation-induced microglial pro-inflammatory response 2). However, if FF also protect tumor cells, it can not be used clinically during radiotherapy. Thus, we're interested in whether FF has an radioprotective effect of brain tumor cells or not Although the radiosensitive G0/G1 phase cells were increased, radiosensitization by FF was not observed in three human glioma cells. This may be due to counterbalance of radiosensitizing and radioprotecting proteins increased by FF. Taken together, FF neither radiosensitize nor radioprotect glioma cells, so it can be used to protect normal neural cells from radiation damage

  7. Type I collagen gene suppresses tumor growth and invasion of malignant human glioma cells

    Directory of Open Access Journals (Sweden)

    Miyata Teruo

    2007-06-01

    Full Text Available Abstract Background Invasion is a hallmark of a malignant tumor, such as a glioma, and the progression is followed by the interaction of tumor cells with an extracellular matrix (ECM. This study examined the role of type I collagen in the invasion of the malignant human glioma cell line T98G by the introduction of the human collagen type I α1 (HCOL1A1 gene. Results The cells overexpressing HCOL1A1 were in a cluster, whereas the control cells were scattered. Overexpression of HCOL1A1 significantly suppressed the motility and invasion of the tumor cells. The glioma cell growth was markedly inhibited in vitro and in vivo by the overexpression of HCOL1A1; in particular, tumorigenicity completely regressed in nude mice. Furthermore, the HCOL1A1 gene induced apoptosis in glioma cells. Conclusion These results indicate that HCOL1A1 have a suppressive biological function in glioma progression and that the introduction of HCOL1A1 provides the basis of a novel therapeutic approach for the treatment of malignant human glioma.

  8. Atypical nuclear localization of VIP receptors in glioma cell lines and patients

    Energy Technology Data Exchange (ETDEWEB)

    Barbarin, Alice; Séité, Paule [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France); Godet, Julie [Laboratoire d’anatomie et de cytologie pathologiques, CHU de Poitiers, 2 rue de la Milétrie, 86000 Poitiers (France); Bensalma, Souheyla; Muller, Jean-Marc [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France); Chadéneau, Corinne, E-mail: corinne.chadeneau@univ-poitiers.fr [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France)

    2014-11-28

    Highlights: • The VIP receptor VPAC1 contains a putative NLS signal. • VPAC1 is predominantly nuclear in GBM cell lines but not VPAC2. • Non-nuclear VPAC1/2 protein expression is correlated with glioma grade. • Nuclear VPAC1 is observed in 50% of stage IV glioma (GBM). - Abstract: An increasing number of G protein-coupled receptors, like receptors for vasoactive intestinal peptide (VIP), are found in cell nucleus. As VIP receptors are involved in the regulation of glioma cell proliferation and migration, we investigated the expression and the nuclear localization of the VIP receptors VPAC1 and VPAC2 in this cancer. First, by applying Western blot and immunofluorescence detection in three human glioblastoma (GBM) cell lines, we observed a strong nuclear staining for the VPAC1 receptor and a weak nuclear VPAC2 receptor staining. Second, immunohistochemical staining of VPAC1 and VPAC2 on tissue microarrays (TMA) showed that the two receptors were expressed in normal brain and glioma tissues. Expression in the non-nuclear compartment of the two receptors significantly increased with the grade of the tumors. Analysis of nuclear staining revealed a significant increase of VPAC1 staining with glioma grade, with up to 50% of GBM displaying strong VPAC1 nuclear staining, whereas nuclear VPAC2 staining remained marginal. The increase in VPAC receptor expression with glioma grades and the enhanced nuclear localization of the VPAC1 receptors in GBM might be of importance for glioma progression.

  9. Glioma cell fate decisions mediated by Dll1-Jag1-Fringe in Notch1 signaling pathway.

    Science.gov (United States)

    Shi, Xiaofei; Wang, Ruiqi

    2017-09-21

    The Notch family of proteins plays a vital role in determining cell fates, such as proliferation, differentiation, and apoptosis. It has been shown that Notch1 and its ligands, Dll1 and Jag1, are overexpressed in many glioma cell lines and primary human gliomas. The roles of Notch1 in some cancers have been firmly established, and recent data implicate that it plays important roles in glioma cell fate decisions. This paper focuses on devising a specific theoretical framework that incorporates Dll1, Jag1, and Fringe in Notch1 signaling pathway to explore their functional roles of these proteins in glioma cells in the tumorigenesis and progression of human gliomas, and to study how glioma cell fate decisions are modulated by both trans-activation and cis-inhibition. This paper presents a computational model for Notch1 signaling pathway in glioma cells. Based on the bifurcation analysis of the model, we show that how the glioma cell fate decisions are modulated by both trans-activation and cis-inhibition mediated by the Fringe protein, providing insight into the design and control principles of the Notch signaling system and the gliomas. This paper presents a computational model for Notch1 signaling pathway in glioma cells based on intertwined dynamics with cis-inhibition and trans-activation involving the proteins Notch1, Dll1, Jag1, and Fringe. The results show that how the glioma cell fate transitions are performed by the Notch1 signaling. Transition from grade III ∼ IV with significantly high Notch1 to grade I ∼ II with high Notch1, and then to normal cells by repressing the Fringe levels or decreasing the strength of enhancement induced by Fringe.

  10. SEMI–MATURE DENDRITIC CELLS AS A POTENTIAL BASIS FOR THE INDUCTION OF ANTI–TUMOR RESPONSE IN PATIENTS WITH MALIGNANT GLIOMAS

    Directory of Open Access Journals (Sweden)

    O. Yu. Leplina

    2005-01-01

    Full Text Available Abstract. The comparative analysis of phenotypical and functional features of dendritic cells (DCs, generated in presence of GM–CSF and IFNα from blood monocytes of patients with malignant gliomas (MG and healthy donors, was carried out in this research. The potential value of the DC–based immunotherapy in the induction of anti–tumor response in patients with MG was also examined. Our results show that within generated DCs of healthy donors 90 and 52% cells expressed correspondingly HLA–DR and CD86, only 17–18% cells were CD14+monocytes, whereas 38% cells exhibited the phenotype of mature CD83+ dendritic cells. The both monocyte conditioned medium (MCM, 30% v/v and Leukinferon® (250 IU of IFNα were comparably efficient as maturation–induced stimuli. Despite monocyte’s disturbances in malignant gliomas, the analogous population of DCs was efficiently generated in all examined patients with MG. However, the percentage of mature CD83+DCs was significantly decreased compared to that in healthy donors (24 vs 38%, and these data strongly suggest the delay maturation of DCs in MG. Nevertheless the patient’s DCs showed the allostimulatory activity, comparable with healthy donor’s DCs, and 52–62% cells maintained the ability for the receptor–dependent en–docytosis. Moreover, the patient’s DCs effectively presented bacterial and tumor–associated antigens (TAA. Immunotherapy with autologous DCs allowed to induce the TAA–specific immune reactions, both in skin test in vivo and in vitro, in 50% patients with MG. (Med. Immunol., 2005, vol.7, № 4, pp. 365–374

  11. Culture conditions tailored to the cell of origin are critical for maintaining native properties and tumorigenicity of glioma cells.

    Science.gov (United States)

    Ledur, Pítia F; Liu, Chong; He, Hua; Harris, Alexandra R; Minussi, Darlan C; Zhou, Hai-Yan; Shaffrey, Mark E; Asthagiri, Ashok; Lopes, Maria Beatriz S; Schiff, David; Lu, Yi-Cheng; Mandell, James W; Lenz, Guido; Zong, Hui

    2016-10-01

    Cell culture plays a pivotal role in cancer research. However, culture-induced changes in biological properties of tumor cells profoundly affect research reproducibility and translational potential. Establishing culture conditions tailored to the cancer cell of origin could resolve this problem. For glioma research, it has been previously shown that replacing serum with defined growth factors for neural stem cells (NSCs) greatly improved the retention of gene expression profile and tumorigenicity. However, among all molecular subtypes of glioma, our laboratory and others have previously shown that the oligodendrocyte precursor cell (OPC) rather than the NSC serves as the cell of origin for the proneural subtype, raising questions regarding the suitability of NSC-tailored media for culturing proneural glioma cells. OPC-originated mouse glioma cells were cultured in conditions for normal OPCs or NSCs, respectively, for multiple passages. Gene expression profiles, morphologies, tumorigenicity, and drug responsiveness of cultured cells were examined in comparison with freshly isolated tumor cells. OPC media-cultured glioma cells maintained tumorigenicity, gene expression profiles, and morphologies similar to freshly isolated tumor cells. In contrast, NSC-media cultured glioma cells gradually lost their OPC features and most tumor-initiating ability and acquired heightened sensitivity to temozolomide. To improve experimental reproducibility and translational potential of glioma research, it is important to identify the cell of origin, and subsequently apply this knowledge to establish culture conditions that allow the retention of native properties of tumor cells. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Heterogeneity in 2-deoxy-D-glucose-induced modifications in energetics and radiation responses of human tumor cell lines

    International Nuclear Information System (INIS)

    Dwarkanath, Bilikere S.; Zolzer, Frido; Chandana, Sudhir; Bauch, Thomas; Adhikari, Jawahar S.; Muller, Wolfgang U.; Streffer, Christian; Jain, Viney

    2001-01-01

    Purpose: The glucose analog and glycolytic inhibitor, 2-deoxy-D-glucose (2-DG), has been shown to differentially enhance the radiation damage in tumor cells by inhibiting the postirradiation repair processes. The present study was undertaken to examine the relationship between 2-DG-induced modification of energy metabolism and cellular radioresponses and to identify the most relevant parameter(s) for predicting the tumor response to the combined treatment of radiation + 2-DG. Methods and Materials: Six human tumor cell lines (glioma: BMG-1 and U-87, squamous cell carcinoma: 4451 and 4197, and melanoma: MeWo and Be-11) were investigated. Cells were exposed to 2 Gy of Co-60 γ-rays or 250 kVP X-rays and maintained under liquid-holding conditions 2-4 h to facilitate repair. 2-DG (5 mM, equimolar with glucose) that was added at the time of irradiation was present during the liquid holding. Glucose utilization, lactate production (enzymatic assays), and adenine nucleotides (high performance liquid chromatography and capillary isotachophoresis) were investigated as parameters of energy metabolism. Induction and repair of DNA damage (comet assay), cytogenetic damage (micronuclei formation), and cell death (macrocolony assay) were analyzed as parameters of radiation response. Results: The glucose consumption and lactate production of glioma cell lines (BMG-1 and U-87) were nearly 2-fold higher than the squamous carcinoma cell lines (4197 and 4451). The ATP content varied from 3.0 to 6.5 femto moles/cell among these lines, whereas the energy charge (0.86-0.90) did not show much variation. Presence of 2-DG inhibited the rate of glucose usage and glycolysis by 30-40% in glioma cell lines and by 15-20% in squamous carcinoma lines, while ATP levels reduced by nearly 40% in all the four cell lines. ATP:ADP ratios decreased to a greater extent (∼40%) in glioma cells than in squamous carcinoma 4451 and MeWo cells; in contrast, presence of 2-DG reduced ADP:AMP ratios by 3-fold in

  13. Glioma Cells in the Tumor Periphery Have a Stem Cell Phenotype

    DEFF Research Database (Denmark)

    Munthe, Sune; Petterson, Stine Asferg; Dahlrot, Rikke Hedegaard

    2016-01-01

    and a panel of markers was used. The panel comprised of six stem cell-related markers (CD133, Musashi-1, Bmi-1, Sox-2, Nestin and Glut-3), a proliferation marker (Ki-67) as well as a chemo-resistance marker (MGMT). Computer-based automated classifiers were designed to measure the mIDH1 positive nucleus area......-fraction of the chosen markers. Moreover, orthotopic glioblastoma xenografts from five different patient-derived spheroid cultures were obtained and the tumor cells identified by human specific immunohistochemical markers. The results showed that tumor cells in the periphery of patient gliomas expressed stem cell...... in the periphery of patient gliomas have a stem cell phenotype, although it is less pronounced than in the tumor core. Novel therapies aiming at preventing recurrence should therefore take tumor stemness into account. Migrating cells in orthotopic glioblastoma xenografts preserve expression and stem cell markers...

  14. Combination of Heavy-ion radiotherapy and p53-gene therapy by radio-sensitizing promoter for glioma

    International Nuclear Information System (INIS)

    Oga, Masaru; Koshikawa, Nobuko; Takenaga, Keizo; Iwadate, Yasuo; Nojima, Kumie

    2005-01-01

    In this study we have investigated the anti-tumor effect of the combination of heavy-ion radiotherapy, inducing p53-independent apoptosis, and p53-gene therapy, inducing p53-dependent apoptosis for glioma. To enhance the p53-dependent apoptosis, we chose the strategy to utilize the heavy-ion irradiation itself as a ''trigger'' by using radio-sensitizing promoter-E9ns-2/CMV chimeric promoter (Scott et al:2003) in p53-gene therapy. First, EGFP reporter gene with E9ns-2/CMV chimeric promoter was transfected in C6 rat glioma cell-line and the transfected-cell bulk was irradiated at dose of 3, 5, 10 Gy respectively with charged carbon particle (290 MeV/nucleon). The light upregulation of EGFP was observed in 24 hours after 5 Gy irradiation. On the basis of this result, p53 gene with E9ns-2/CMV chimeric promoter was transfected in p53-mutant U373MG human glioma cell-line and the transfected-cell bulk was irradiated at dose of 5 Gy. There was, however, no obvious p53-upregulation at any time-point, so far. Further investigation is needed to clarify the appropriate experimental system. (author)

  15. Comparison of radiosensitization by 41 deg. C hyperthermia during low dose rate irradiation and during pulsed simulated low dose rate irradiation in human glioma cells

    International Nuclear Information System (INIS)

    Raaphorst, G. Peter; Ng, Cheng E.; Shahine, Bilal

    1999-01-01

    Purpose: Long duration mild hyperthermia has been shown to be an effective radiosensitizer when given concurrently with low dose rate irradiation. Pulsed simulated low dose rate (PSLDR) is now being used clinically, and we have set out to determine whether concurrent mild hyperthermia can be an effective radiosensitizer for the PSLDR protocol. Materials and Methods: Human glioma cells (U-87MG) were grown to plateau phase and treated in plateau phase in order to minimize cell cycle redistribution during protracted treatments. Low dose rate (LDR) irradiation and 41 deg. C hyperthermia were delivered by having a radium irradiator inside a temperature-controlled incubator. PSLDR was given using a 150 kVp X-ray unit and maintaining the cells at 41 deg. C between irradiations. The duration of irradiation and concurrent heating depended on total dose and extended up to 48 h. Results: When 41 deg. C hyperthermia was given currently with LDR or PSLDR, the thermal enhancement ratios (TER) were about the same if the average dose rate for PSLDR was the same as for LDR. At higher average dose rates for PSLDR the TERs became less. Conclusions: Our data show that concurrent mild hyperthermia can be an effective sensitizer for PSLDR. This sensitization can be as effective as for LDR if the same average dose rate is used and the TER increases with decreasing dose rate. Thus mild hyperthermia combined with PSLDR may be an effective clinical protocol

  16. Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Yuqing; Zhou, Fengbiao; Chen, Hong; Cui, Chunhong; Liu, Dan [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Li, Qiuping [Zhongshan Hospital of Fudan University, Shanghai 200032 (China); Yang, Zhiyuan; Wu, Guoqiang [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Sun, Shuhui [Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Gu, Jianxin [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Institutes of Biomedical Sciences of Fudan University, Shanghai 200032 (China); Wei, Yuanyan, E-mail: yywei@fudan.edu.cn [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Jiang, Jianhai, E-mail: jianhaijiang@fudan.edu.cn [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China)

    2010-07-09

    Sox2, a master transcription factor, contributes to the generation of induced pluripotent stem cells and plays significant roles in sustaining the self-renewal of neural stem cells and glioma-initiating cells. Understanding the functional differences of Sox2 between glioma-initiating cells and normal neural stem cells would contribute to therapeutic approach for treatment of brain tumors. Here, we first demonstrated that Sox2 could contribute to the self-renewal and proliferation of glioma-initiating cells. The following experiments showed that Sox2 was activated at translational level in a subset of human glioma-initiating cells compared with the normal neural stem cells. Further investigation revealed there was a positive correlation between Sox2 and eukaryotic initiation factor 4E (eIF4E) in glioma tissues. Down-regulation of eIF4E decreased Sox2 protein level without altering its mRNA level in glioma-initiating cells, indicating that Sox2 was activated by eIF4E at translational level. Furthermore, eIF4E was presumed to regulate the expression of Sox2 by its 5' untranslated region (5' UTR) sequence. Our results suggest that the eIF4E-Sox2 axis is a novel mechanism of unregulated self-renewal of glioma-initiating cells, providing a potential therapeutic target for glioma.

  17. Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells

    International Nuclear Information System (INIS)

    Ge, Yuqing; Zhou, Fengbiao; Chen, Hong; Cui, Chunhong; Liu, Dan; Li, Qiuping; Yang, Zhiyuan; Wu, Guoqiang; Sun, Shuhui; Gu, Jianxin; Wei, Yuanyan; Jiang, Jianhai

    2010-01-01

    Sox2, a master transcription factor, contributes to the generation of induced pluripotent stem cells and plays significant roles in sustaining the self-renewal of neural stem cells and glioma-initiating cells. Understanding the functional differences of Sox2 between glioma-initiating cells and normal neural stem cells would contribute to therapeutic approach for treatment of brain tumors. Here, we first demonstrated that Sox2 could contribute to the self-renewal and proliferation of glioma-initiating cells. The following experiments showed that Sox2 was activated at translational level in a subset of human glioma-initiating cells compared with the normal neural stem cells. Further investigation revealed there was a positive correlation between Sox2 and eukaryotic initiation factor 4E (eIF4E) in glioma tissues. Down-regulation of eIF4E decreased Sox2 protein level without altering its mRNA level in glioma-initiating cells, indicating that Sox2 was activated by eIF4E at translational level. Furthermore, eIF4E was presumed to regulate the expression of Sox2 by its 5' untranslated region (5' UTR) sequence. Our results suggest that the eIF4E-Sox2 axis is a novel mechanism of unregulated self-renewal of glioma-initiating cells, providing a potential therapeutic target for glioma.

  18. STAT6 expression in glioblastoma promotes invasive growth

    Directory of Open Access Journals (Sweden)

    Silva Corinne M

    2011-05-01

    Full Text Available Abstract Background Glioblastoma (GBM is a highly aggressive malignant primary brain tumor, characterized by rapid growth, diffuse infiltration of cells into both adjacent and remote brain regions, and a generalized resistance to currently available treatment modalities. Recent reports in the literature suggest that Signal Transducers and Activators of Transcription (STATs play important roles in the regulation of GBM pathophysiology. Methods STAT6 protein expression was analyzed by Western blotting in GBM cell lines and by immunohistochemistry in a tissue microarray (TMA of glioma patient tissues. We utilized shRNA against STAT6 to investigate the effects of prolonged STAT6 depletion on the growth and invasion of two STAT6-positive GBM cell lines. Cell proliferation was assessed by measuring 3H-Thymidine uptake over time. Invasion was measured using an in vitro transwell assay in which cells invade through a type IV collagen matrix toward a chemoattractant (Fetal Bovine Serum. Cells were then stained and counted. Kaplan-Meyer survival curves were generated to show the correlation between STAT6 gene expression and patient survival in 343 glioma patients and in a subset of patients with only GBM. Gene expression microarray and clinical data were acquired from the Rembrandt 1 public data depository (https://caintegrator.nci.nih.gov/rembrandt/. Lastly, a genome-wide expression microarray analysis was performed to compare gene expression in wild-type GBM cells to expression in stable STAT6 knockdown clones. Results STAT6 was expressed in 2 GBM cell lines, U-1242MG and U-87MG, and in normal astrocytes (NHA but not in the U-251MG GBM cell line. In our TMA study, STAT6 immunostaining was visible in the majority of astrocytomas of all grades (I-IV but not in normal brain tissue. In positive cells, STAT6 was localized exclusively in the nuclei over 95% of the time. STAT6-deficient GBM cells showed a reduction in 3H-Thymidine uptake compared to the wild

  19. Substance P induces rapid and transient membrane blebbing in U373MG cells in a p21-activated kinase-dependent manner.

    Directory of Open Access Journals (Sweden)

    John Meshki

    Full Text Available U373MG astrocytoma cells endogenously express the full-length neurokinin 1 receptor (NK1R. Substance P (SP, the natural ligand for NK1R, triggers rapid and transient membrane blebbing and we report that these morphological changes have different dynamics and intracellular signaling as compared to the changes that we have previously described in HEK293-NK1R cells. In both cell lines, the SP-induced morphological changes are Gq-independent, and they require the Rho, Rho-associated coiled-coil kinase (ROCK signaling pathway. Using confocal microscopy we have demonstrated that tubulin is phosphorylated subsequent to cell stimulation with SP and that tubulin accumulates inside the blebs. Colchicine, a tubulin polymerization inhibitor, blocked SP-induced blebbing in U373MG but not in HEK293-NK1R cells. Although p21-activated kinase (PAK is expressed in both cell lines, SP induced rapid phosphorylation of PAK in U373MG, but failed to phosphorylate PAK in HEK293-NK1R cells. The cell-permeable Rho inhibitor C3 transferase inhibited SP-induced PAK phosphorylation, but the ROCK inhibitor Y27632 had no effect on PAK phosphorylation, suggesting that Rho activates PAK in a ROCK-independent manner. Our study demonstrates that SP triggers rapid changes in cell morphology mediated by distinct intracellular signaling mechanisms in U373MG versus HEK293-NK1R cells.

  20. Effective internalization of U251-MG-secreted exosomes into cancer cells and characterization of their lipid components.

    Science.gov (United States)

    Toda, Yuki; Takata, Kazuyuki; Nakagawa, Yuko; Kawakami, Hikaru; Fujioka, Shusuke; Kobayashi, Kazuya; Hattori, Yasunao; Kitamura, Yoshihisa; Akaji, Kenichi; Ashihara, Eishi

    2015-01-16

    Exosomes, the natural vehicles of various biological molecules, have been examined in several research fields including drug delivery. Although understanding of the biological functions of exosomes has increased, how exosomes are transported between cells remains unclear. We hypothesized that cell tropism is important for effective exosomal intercellular communication and that parental cells regulate exosome movement by modulating constituent exosomal molecules. Herein, we demonstrated the strong translocation of glioblastoma-derived exosomes (U251exo) into their parental (U251) cells, breast cancer (MDA-MB-231) cells, and fibrosarcoma (HT-1080). Furthermore, disruption of proteins of U251exo by enzymatic treatment did not affect their uptake. Therefore, we focused on lipid molecules of U251exo with the expectation that they are crucial for effective incorporation of U251exo by cancer cells. Phosphatidylethanolamine was identified as a unique lipid component of U251-MG cell-derived extracellular vesicles. From these results, valuable insight is provided into the targeting of U251exo to cancer cells, which will help to develop a cancer-targeted drug delivery system. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Synergism between arsenite and proteasome inhibitor MG132 over cell death in myeloid leukaemic cells U937 and the induction of low levels of intracellular superoxide anion

    International Nuclear Information System (INIS)

    Lombardo, Tomás; Cavaliere, Victoria; Costantino, Susana N.; Kornblihtt, Laura; Alvarez, Elida M.; Blanco, Guillermo A.

    2012-01-01

    Increased oxygen species production has often been cited as a mechanism determining synergism on cell death and growth inhibition effects of arsenic-combined drugs. However the net effect of drug combination may not be easily anticipated solely from available knowledge of drug-induced death mechanisms. We evaluated the combined effect of sodium arsenite with the proteasome inhibitor MG132, and the anti-leukaemic agent CAPE, on growth-inhibition and cell death effect in acute myeloid leukaemic cells U937 and Burkitt's lymphoma-derived Raji cells, by the Chou–Talalay method. In addition we explored the association of cytotoxic effect of drugs with changes in intracellular superoxide anion (O 2 − ) levels. Our results showed that combined arsenite + MG132 produced low levels of O 2 − at 6 h and 24 h after exposure and were synergic on cell death induction in U937 cells over the whole dose range, although the combination was antagonistic on growth inhibition effect. Exposure to a constant non-cytotoxic dose of 80 μM hydrogen peroxide together with arsenite + MG132 changed synergism on cell death to antagonism at all effect levels while increasing O 2 − levels. Arsenite + hydrogen peroxide also resulted in antagonism with increased O 2 − levels in U937 cells. In Raji cells, arsenite + MG132 also produced low levels of O 2 − at 6 h and 24 h but resulted in antagonism on cell death and growth inhibition. By contrast, the combination arsenite + CAPE showed high levels of O 2 − production at 6 h and 24 h post exposure but resulted in antagonism over cell death and growth inhibition effects in U937 and Raji cells. We conclude that synergism between arsenite and MG132 in U937 cells is negatively associated to O 2 − levels at early time points after exposure. -- Highlights: ► Arsenic combined cytotoxic and anti-proliferative effects by Chou–Talalay method. ► Cytotoxic effect associated with superoxide levels as assessed by flow cytometry. ► Synergism

  2. Transmigration of neural stem cells across the blood brain barrier induced by glioma cells.

    Directory of Open Access Journals (Sweden)

    Mónica Díaz-Coránguez

    Full Text Available Transit of human neural stem cells, ReNcell CX, through the blood brain barrier (BBB was evaluated in an in vitro model of BBB and in nude mice. The BBB model was based on rat brain microvascular endothelial cells (RBMECs cultured on Millicell inserts bathed from the basolateral side with conditioned media (CM from astrocytes or glioma C6 cells. Glioma C6 CM induced a significant transendothelial migration of ReNcells CX in comparison to astrocyte CM. The presence in glioma C6 CM of high amounts of HGF, VEGF, zonulin and PGE2, together with the low abundance of EGF, promoted ReNcells CX transmigration. In contrast cytokines IFN-α, TNF-α, IL-12p70, IL-1β, IL-6, IL-8 and IL-10, as well as metalloproteinases -2 and -9 were present in equal amounts in glioma C6 and astrocyte CMs. ReNcells expressed the tight junction proteins occludin and claudins 1, 3 and 4, and the cell adhesion molecule CRTAM, while RBMECs expressed occludin, claudins 1 and 5 and CRTAM. Competing CRTAM mediated adhesion with soluble CRTAM, inhibited ReNcells CX transmigration, and at the sites of transmigration, the expression of occludin and claudin-5 diminished in RBMECs. In nude mice we found that ReNcells CX injected into systemic circulation passed the BBB and reached intracranial gliomas, which overexpressed HGF, VEGF and zonulin/prehaptoglobin 2.

  3. Transmigration of neural stem cells across the blood brain barrier induced by glioma cells.

    Science.gov (United States)

    Díaz-Coránguez, Mónica; Segovia, José; López-Ornelas, Adolfo; Puerta-Guardo, Henry; Ludert, Juan; Chávez, Bibiana; Meraz-Cruz, Noemi; González-Mariscal, Lorenza

    2013-01-01

    Transit of human neural stem cells, ReNcell CX, through the blood brain barrier (BBB) was evaluated in an in vitro model of BBB and in nude mice. The BBB model was based on rat brain microvascular endothelial cells (RBMECs) cultured on Millicell inserts bathed from the basolateral side with conditioned media (CM) from astrocytes or glioma C6 cells. Glioma C6 CM induced a significant transendothelial migration of ReNcells CX in comparison to astrocyte CM. The presence in glioma C6 CM of high amounts of HGF, VEGF, zonulin and PGE2, together with the low abundance of EGF, promoted ReNcells CX transmigration. In contrast cytokines IFN-α, TNF-α, IL-12p70, IL-1β, IL-6, IL-8 and IL-10, as well as metalloproteinases -2 and -9 were present in equal amounts in glioma C6 and astrocyte CMs. ReNcells expressed the tight junction proteins occludin and claudins 1, 3 and 4, and the cell adhesion molecule CRTAM, while RBMECs expressed occludin, claudins 1 and 5 and CRTAM. Competing CRTAM mediated adhesion with soluble CRTAM, inhibited ReNcells CX transmigration, and at the sites of transmigration, the expression of occludin and claudin-5 diminished in RBMECs. In nude mice we found that ReNcells CX injected into systemic circulation passed the BBB and reached intracranial gliomas, which overexpressed HGF, VEGF and zonulin/prehaptoglobin 2.

  4. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  5. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    International Nuclear Information System (INIS)

    Chang, Cheng-Yi; Kuan, Yu-Hsiang; Ou, Yen-Chuan; Li, Jian-Ri; Wu, Chih-Cheng; Pan, Pin-Ho; Chen, Wen-Ying; Huang, Hsuan-Yi; Chen, Chun-Jung

    2014-01-01

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK

  6. Bex2 regulates cell proliferation and apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase pathway

    International Nuclear Information System (INIS)

    Zhou, Xiuping; Meng, Qingming; Xu, Xuebin; Zhi, Tongle; Shi, Qiong; Wang, Yong; Yu, Rutong

    2012-01-01

    Highlights: ► The expression levels of Bex2 markedly increased in glioma tissues. ► Bex2 over-expression promoted cell proliferation, while its down-regulation inhibited cell growth. ► Bex2 down-regulation promoted cell apoptosis via JNK/c-Jun signaling pathway. -- Abstract: The function of Bex2, a member of the Brain Expressed X-linked gene family, in glioma is controversial and its mechanism is largely unknown. We report here that Bex2 regulates cell proliferation and apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase (JNK) pathway. The expression level of Bex2 is markedly increased in glioma tissues. We observed that Bex2 over-expression promotes cell proliferation, while down-regulation of Bex2 inhibits cell growth. Furthermore, Bex2 down-regulation promotes cell apoptosis and activates the JNK pathway; these effects were abolished by administration of the JNK specific inhibitor, (SP600125). Thus, Bex2 may be an important player during the development of glioma.

  7. Pediatric glioma stem cells: biologic strategies for oncolytic HSV virotherapy

    Directory of Open Access Journals (Sweden)

    Gregory K Friedman

    2013-02-01

    Full Text Available While glioblastoma multiforme (GBM is the most common adult malignant brain tumor, GBMs in childhood represent less than 10% of pediatric malignant brain tumors and are phenotypically and molecularly distinct from adult GBMs. Similar to adult patients, outcomes for children with high-grade gliomas (HGGs remain poor. Furthermore, the significant morbidity and mortality yielded by pediatric GBM is compounded by neurotoxicity for the developing brain caused by current therapies. Poor outcomes have been attributed to a subpopulation of chemotherapy and radiotherapy resistant cells, termed ‘glioma stem cells’ (GSCs, ‘glioma progenitor cells’, or ‘glioma-initiating cells', which have the ability to initiate and maintain the tumor and to repopulate the recurring tumor after conventional therapy. Future innovative therapies for pediatric HGGs must be able to eradicate these therapy-resistant GSCs. Oncolytic herpes simplex viruses, genetically engineered to be safe for normal cells and to express diverse foreign anti-tumor therapeutic genes, have been demonstrated in preclinical studies to infect and kill GSCs and tumor cells equally while sparing normal brain cells. In this review, we discuss the unique aspects of pediatric GSCs, including markers to identify them, the microenvironment they reside in, signaling pathways that regulate them, mechanisms of cellular resistance, and approaches to target GSCs, with a focus on the promising therapeutic, genetically engineered oncolytic herpes simplex virus (HSV.

  8. Cytotoxic effect of menadione and sodium orthovanadate in combination on human glioma cells.

    Science.gov (United States)

    Delwar, Zahid M; Avramidis, Dimitrios; Follin, Elna; Hua, Yan; Siden, Åke; Cruz, Mabel; Paulsson, Kajsa M; Yakisich, Juan Sebastian

    2012-08-01

    Gliomas are the most common primary brain tumor, and their treatment is still a challenge. Here, we evaluated the antiproliferative effect of a novel combination of two potent oxidative stress enhancers: menadione (M) and sodium orthovanadate (SO). We observed both short-term and prolonged growth inhibitory effects of M or SO alone as well as in combination (M:SO) on DBTRG.05MG human glioma cells. A stronger antiproliferative effect was observed in the short-term proliferation assay with the M:SO combination compared to either investigated agent alone. In the long-term proliferation assay, a 10-day exposure to M:SO at concentrations of 10 μM:17.5 μM or 17.5 μM:10 μM was enough to kill 100% of the cells; no cell regrowth was observed after re-incubation in drug-free media. When used in combination, the single concentration of M and SO could be decreased by 2.5- to 5-fold of those used for each experimental drug alone and still obtain a similar antiproliferative effect. The underlying molecular mechanism was investigated by co-incubating M:SO with dithiothreitol (DTT) and genistein. Both substances partially neutralized the effects of the M:SO combination, showing additive effects. This observation suggests a role of oxidative stress and tyrosine kinase stimulation in the M:SO cytotoxic effect. Our results indicate that M:SO combination is an attractive alternative for glioma treatment that encourages further study. The neutralizing effects of genistein and DTT reveal a possibility for their use in the minimization of potential M:SO systemic toxicity.

  9. TGF-β promotes glioma cell growth via activating Nodal expression through Smad and ERK1/2 pathways

    International Nuclear Information System (INIS)

    Sun, Jing; Liu, Su-zhi; Lin, Yan; Cao, Xiao-pan; Liu, Jia-ming

    2014-01-01

    Highlights: •TGF-β promoted Nodal expression in glioma cells. •TGF-β promoted Nodal expression via activating Smad and ERK1/2 pathways. •TGF-β promotes glioma cell growth via activating Nodal expression. -- Abstract: While there were certain studies focusing on the mechanism of TGF-β promoting the growth of glioma cells, the present work revealed another novel mechanism that TGF-β may promote glioma cell growth via enhancing Nodal expression. Our results showed that Nodal expression was significantly upregulated in glioma cells when TGF-β was added, whereas the TGF-β-induced Nodal expression was evidently inhibited by transfection Smad2 or Smad3 siRNAs, and the suppression was especially significant when the Smad3 was downregulated. Another, the attenuation of TGF-β-induced Nodal expression was observed with blockade of the ERK1/2 pathway also. Further detection of the proliferation, apoptosis, and invasion of glioma cells indicated that Nodal overexpression promoted the proliferation and invasion of tumor cells and inhibited their apoptosis, resembling the effect of TGF-β addition. Downregulation of Nodal expression via transfection Nodal-specific siRNA in the presence of TGF-β weakened the promoting effect of the latter on glioma cells growth, and transfecting Nodal siRNA alone in the absence of exogenous TGF-β more profoundly inhibited the growth of glioma cells. These results demonstrated that while both TGF-β and Nodal promoted glioma cells growth, the former might exert such effect by enhancing Nodal expression, which may form a new target for glioma therapy

  10. Sirt2 suppresses glioma cell growth through targeting NF-κB–miR-21 axis

    International Nuclear Information System (INIS)

    Li, Ya’nan; Dai, Dongwei; Lu, Qiong; Fei, Mingyu; Li, Mengmeng; Wu, Xi

    2013-01-01

    Highlights: •Sirt2 expression is down-regulated in human glioma tissues and cell lines. •Sirt2 regresses glioma cell growth and colony formation via inducing apoptosis. •miR-21 is essential for the functions of Sirt2 in glioma cells. •Sirt2 deacetylates p65 to decrease miR-21 expression. -- Abstract: Sirtuins are NAD + -dependent deacetylases that regulate numerous cellular processes including aging, DNA repair, cell cycle, metabolism, and survival under stress conditions. The roles of sirtuin family members are widely studied in carcinogenesis. However, their roles in glioma remain unclear. Here we report that Sir2 was under expressed in human glioma tissues and cell lines. We found that Sirt2 overexpression decreased cell proliferation and colony formation capacity. In addition, Sirt2 overexpression induced cellular apoptosis via up-regulating cleaved caspase 3 and Bax, and down-regulating anti-apoptotic protein Bcl-2. Sirt2 knockdown obtained opposing results. We showed that Sirt2 overexpression inhibited miR-21 expression, and Sirt2 was not sufficient to reduce cell proliferation and colony formation as well as to induce apoptosis when miR-21 was knocked down in glioma cells. Mechanically, we demonstrated that Sirt2 deacetylated p65 at K310 and blocked p65 binding to the promoter region of miR-21, thus regressing the transcription of miR-21. In summary, Sirt2 is critical in human glioma via NF-κB–miR-21 pathway and Sirt2 activator may serve as candidate drug for glioma therapy

  11. EGFR and its mutant EGFRvIII as modulators of tumor cell radiosensitivity

    International Nuclear Information System (INIS)

    Lammering, G.; Hewit, T.H.; Contessa, J.N.; Hawkins, W.; Lin, P.S.; Valerie, K.; Mikkelsen, R.; Dent, P.; Schmidt-Ullrich, R.K.

    2001-01-01

    Purpose: Exposure of human carcinoma and malignant glioma cells to ionizing radiation (IR)activates EGFR,which as a consequence mediates a cytoprotective response. We have demonstrated that expression of a dominant negative mutant, EGFR-CD533 disrupts this cytoprotective response, resulting in significant radiosensitization. During studies of in vivo radiosensitization with intratumoral delivery of the Adenovirus (Ad) vector, Ad-EGFR-CD533, it became apparent that xenografts from human carcinoma and malignant glioma cells invariably expressed the constitutively active EGFR mutant, EGFRvIII. This mutant EGFRvIII is frequently found in vivo in glioblastoma, breast, prostate, lung and ovarian carcinoma, but does not appear to be expressed in tumor cells under in vitro conditions. The functional consequences of EGFRvIII expression on tumor cell radiation responses are currently unknown. We have therefore investigated in a transient transfection cell system the responses of EGFRvIII and downstream signal transduction pathways to IR. In addition, the capacity of EGFR-CD533 to disrupt the function of EGFRvIII was tested. Materials and Methods: The MDA-MB-231, U-87 MG and U-373 MG cell lines were established as tumors and then intratumorally transduced with Ad-EGFR-CD533 or Ad-LacZ (control vector). The transduction efficiency was > 40% in MDA-MB-231 tumors and reached > 70% in the glioma xenografts. Radiosensitivity was measured by ex vivo colony formation and growth delay assays. The functional consequences of EGFRvIII expression on cellular IR responses were studied in transiently transfected Chinese hamster ovary (CHO) cells because tumor cells do not express EGFRvIII in vitro. Transfection with null vectors and vectors encoding either EGFRvIII or EGFR were performed and similar protein expression levels were verified by Western blot analyses. Results: The radiosensitivity of Ad-EGFR-CD533 transduced tumors was significantly increased compared with Ad-LacZ transduced

  12. ER stress inducer tunicamycin suppresses the self-renewal of glioma-initiating cell partly through inhibiting Sox2 translation.

    Science.gov (United States)

    Xing, Yang; Ge, Yuqing; Liu, Chanjuan; Zhang, Xiaobiao; Jiang, Jianhai; Wei, Yuanyan

    2016-06-14

    Glioma-initiating cells possess tumor-initiating potential and are relatively resistant to conventional chemotherapy and irradiation. Therefore, their elimination is an essential factor for the development of efficient therapy. Here, we report that endoplasmic reticulum (ER) stress inducer tunicamycin inhibits glioma-initiating cell self-renewal as determined by neurosphere formation assay. Moreover, tunicamycin decreases the efficiency of glioma-initiating cell to initiate tumor formation. Although tunicamycin induces glioma-initiating cell apoptosis, apoptosis inhibitor z-VAD-fmk only partly abrogates the reduction in glioma-initiating cell self-renewal induced by tunicamycin. Indeed, tunicamycin reduces the expression of self-renewal regulator Sox2 at translation level. Overexpression of Sox2 obviously abrogates the reduction in glioma-initiating cell self-renewal induced by tunicamycin. Taken together, tunicamycin suppresses the self-renewal and tumorigenic potential of glioma-initiating cell partly through reducing Sox2 translation. This finding provides a cue to potential effective treatment of glioblastoma through controlling stem cells.

  13. Effect of inhibition of the ROCK isoform on RT2 malignant glioma cells.

    Science.gov (United States)

    Inaba, Nobuharu; Ishizawa, Sho; Kimura, Masaki; Fujioka, Kouki; Watanabe, Michiko; Shibasaki, Toshiaki; Manome, Yoshinobu

    2010-09-01

    Malignant glioma is one of the most intractable diseases in the human body. Rho-kinase (ROCK) is overexpressed and has been proposed as the main cause for the refractoriness of the disease. Since efficacious treatment is required, this study investigated the effect of inhibition of ROCK isoforms. The short hairpin RNA transcription vector was transfected into the RT2 rat glioma cell line and the characteristics of the cells were investigated. The effect of nimustine hydrochloride (ACNU) anti-neoplastic agent on cells was also measured. Inhibition of ROCK isoforms did not alter cell growth. Cell cycle analysis revealed that ROCK1 down-regulation reduced the G(0) phase population and ROCK2 down-regulation reduced the G(2)/M phase population. When ROCK1-down-regulated cells were exposed to ACNU, they demonstrated susceptibility to the agent. The roles of ROCK1 and ROCK2 may be different in glioma cells. Furthermore, the combination of ROCK1 down-regulation and an anti-neoplastic agent may be useful for the therapy of malignant glioma.

  14. Synergism between arsenite and proteasome inhibitor MG132 over cell death in myeloid leukaemic cells U937 and the induction of low levels of intracellular superoxide anion

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, Tomás [Laboratorio de Immunotoxicologia (LaITO), IDEHU-CONICET, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires (UBA), Buenos Aires (Argentina); Cavaliere, Victoria; Costantino, Susana N. [Laboratorio de Inmunología Tumoral (LIT), IDEHU-CONICET, Facultad de Farmacia y Bioquímica, UBA, Buenos Aires (Argentina); Kornblihtt, Laura [Servicio de Hematología, Hospital de Clínicas, José de San Martín (UBA), Buenos Aires (Argentina); Alvarez, Elida M. [Laboratorio de Inmunología Tumoral (LIT), IDEHU-CONICET, Facultad de Farmacia y Bioquímica, UBA, Buenos Aires (Argentina); Blanco, Guillermo A., E-mail: gblanco@ffyb.uba.ar [Laboratorio de Immunotoxicologia (LaITO), IDEHU-CONICET, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires (UBA), Buenos Aires (Argentina)

    2012-02-01

    Increased oxygen species production has often been cited as a mechanism determining synergism on cell death and growth inhibition effects of arsenic-combined drugs. However the net effect of drug combination may not be easily anticipated solely from available knowledge of drug-induced death mechanisms. We evaluated the combined effect of sodium arsenite with the proteasome inhibitor MG132, and the anti-leukaemic agent CAPE, on growth-inhibition and cell death effect in acute myeloid leukaemic cells U937 and Burkitt's lymphoma-derived Raji cells, by the Chou–Talalay method. In addition we explored the association of cytotoxic effect of drugs with changes in intracellular superoxide anion (O{sub 2}{sup −}) levels. Our results showed that combined arsenite + MG132 produced low levels of O{sub 2}{sup −} at 6 h and 24 h after exposure and were synergic on cell death induction in U937 cells over the whole dose range, although the combination was antagonistic on growth inhibition effect. Exposure to a constant non-cytotoxic dose of 80 μM hydrogen peroxide together with arsenite + MG132 changed synergism on cell death to antagonism at all effect levels while increasing O{sub 2}{sup −} levels. Arsenite + hydrogen peroxide also resulted in antagonism with increased O{sub 2}{sup −} levels in U937 cells. In Raji cells, arsenite + MG132 also produced low levels of O{sub 2}{sup −} at 6 h and 24 h but resulted in antagonism on cell death and growth inhibition. By contrast, the combination arsenite + CAPE showed high levels of O{sub 2}{sup −} production at 6 h and 24 h post exposure but resulted in antagonism over cell death and growth inhibition effects in U937 and Raji cells. We conclude that synergism between arsenite and MG132 in U937 cells is negatively associated to O{sub 2}{sup −} levels at early time points after exposure. -- Highlights: ► Arsenic combined cytotoxic and anti-proliferative effects by Chou–Talalay method. ► Cytotoxic effect

  15. Pankiller effect of prolonged exposure to menadione on glioma cells: potentiation by vitamin C.

    Science.gov (United States)

    Vita, Marina F; Nagachar, Nivedita; Avramidis, Dimitrios; Delwar, Zahid M; Cruz, Mabel H; Siden, Åke; Paulsson, Kajsa M; Yakisich, Juan Sebastian

    2011-12-01

    Menadione (Vitamin K3) has anti-tumoral effects against a wide range of cancer cells. Its potential toxicity to normal cells and narrow therapeutic range limit its use as single agent but in combination with radiation or other anti-neoplastic agents can be of therapeutic use. In this paper, we first evaluated the early (within 3 h) effect of menadione on ongoing DNA replication. In normal rat cerebral cortex mini-units menadione showed an age dependent anti-proliferative effect. In tissue mini-units prepared from newborn rats, menadione inhibited ongoing DNA replication with an IC (50) of approximately 10 μM but 50 μM had no effect on mini-units from prepared adult rat tissue. The effect of short (72 h) and prolonged exposure (1-2 weeks) to menadione alone in the DBTRG.05MG human glioma cells line and in combination with vitamin C was studied. After short period of exposure data show that menadione alone or in combination with vitamin C provided similar concentration-response curves (and IC(50) values). Prolonged exposure to these drugs was evaluated by their ability to kill 100% of glioma cells and prevent regrowth when cells are re-incubated in drug-free media. In this long-term assay, menadione:vitamin C at a ratio 1:100 showed higher anti-proliferative activity when compared to each drug alone and allowed to reduce each drug concentration between 2.5 to 5-fold. Similar anti-proliferative effect was demonstrated in 8 patient derived glioblastoma cell cultures. Our data should be able to encourage further advanced studies on animal models to evaluate the potential use of this combination therapy for glioma treatment.

  16. In vitro cytotoxicity of SiO2 or ZnO nanoparticles with different sizes and surface charges on U373MG human glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Kim JE

    2014-12-01

    Full Text Available Jung-Eun Kim,1,* Hyejin Kim,1,* Seong Soo A An,2 Eun Ho Maeng,3 Meyoung-Kon Kim,4 Yoon-Jae Song1 1Department of Life Science, 2Department of Bionano Technology, Gachon University, Seongnam-Si, South Korea; 3Korea Testing and Research Institute, Seoul, South Korea; 4Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, South Korea *These authors contributed equally to this work Abstract: Silicon dioxide (SiO2 and zinc oxide (ZnO nanoparticles are widely used in various applications, raising issues regarding the possible adverse effects of these metal oxide nanoparticles on human cells. In this study, we determined the cytotoxic effects of differently charged SiO2 and ZnO nanoparticles, with mean sizes of either 100 or 20 nm, on the U373MG human glioblastoma cell line. The overall cytotoxicity of ZnO nanoparticles against U373MG cells was significantly higher than that of SiO2 nanoparticles. Neither the size nor the surface charge of the ZnO nanoparticles affected their cytotoxicity against U373MG cells. The 20 nm SiO2 nanoparticles were more toxic than the 100 nm nanoparticles against U373MG cells, but the surface charge had little or no effect on their cytotoxicity. Both SiO2 and ZnO nanoparticles activated caspase-3 and induced DNA fragmentation in U373MG cells, suggesting the induction of apoptosis. Thus, SiO2 and ZnO nanoparticles appear to exert cytotoxic effects against U373MG cells, possibly via apoptosis. Keyword: apoptosis

  17. The role of p97 in iron metabolism in human brain glioma cells

    International Nuclear Information System (INIS)

    Xia Chunlin; Chen Guiwen; Qian Zhongming

    2000-01-01

    Objective: To investigate the role of p97 (melanotransferrin) in iron uptake in human brain glioma cells . Methods: Human brain glioma cell lines, GBM and BT325 were incubated in the medium containing 59 Fe-Citrate. The cells were treated with phosphatidylinositol-phospholipase C (PI-PLC) and pronase. The iron uptake of the cells was expressed as relative iron uptake level according to the cpm measured by the gamma scintillation counter. Results: 59 Fe uptake of the cells was significantly declined with the certain concentration of PI-PCL. 59 Fe uptake of the cells treated with pronase tended to coincide with that of the cells treated without pronase in the increasing concentration of PI-PLC. Conclusion: p97 expresses a high level and plays an important role in iron uptake in human brain glioma cells

  18. Studies on the relationship between the radiation resistance and glutathione content of human and rodent cells after treatment with dexamethasone in vitro

    International Nuclear Information System (INIS)

    Millar, B.C.; Jinks, S.

    1985-01-01

    a 20 pre-treatment of human cells from normal (foetal lung) or malignant origin (glioma, lines U118 MG and U251 MG and bladder carcinoma, line EJ) with dexamethasone failed to increase their radiation resistance in vitro despite a 2-fold increase in the GSH content of a glioma cell line, U251 MG, and a small but significant increase in the GSH content of EJ bladder carcinoma cells. In contrast, there was a correlation between an increase in radiation resistance and an elevated GSH content of rodent cells (Chinese hamster lung, line V-79-379A; ovary, line CHO; rat hepatoma line HTC, and mouse neuroblastoma, line NB413A) after a similar pre-treatment. The results suggest that enhancement of radiation resistance cannot be directly ascribed to an elevated GSH content in steroid-treated cells. On the bases of these data it is unlikely that the efficacy of radiotherapy will be diminished amongst patients receiving concomitant treatment with dexamethasone. However, in vivo testing is required to confirm these findings. (author)

  19. CD44 Interacts with HIF-2α to Modulate the Hypoxic Phenotype of Perinecrotic and Perivascular Glioma Cells

    DEFF Research Database (Denmark)

    Johansson, Elinn; Grassi, Elisa S.; Pantazopoulou, Vasiliki

    2017-01-01

    Hypoxia-inducible factors enhance glioma stemness, and glioma stem cells have an amplified hypoxic response despite residing within a perivascular niche. Still, little is known about differential HIF regulation in stem versus bulk glioma cells. We show that the intracellular domain of stem cell...... marker CD44 (CD44ICD) is released at hypoxia, binds HIF-2α (but not HIF-1α), enhances HIF target gene activation, and is required for hypoxia-induced stemness in glioma. In a glioma mouse model, CD44 was restricted to hypoxic and perivascular tumor regions, and in human glioma, a hypoxia signature...... correlated with CD44. The CD44ICD was sufficient to induce hypoxic signaling at perivascular oxygen tensions, and blocking CD44 cleavage decreased HIF-2α stabilization in CD44-expressing cells. Our data indicate that the stem cell marker CD44 modulates the hypoxic response of glioma cells and that the pseudo-hypoxic...

  20. Overexpression of ceramide synthase 1 increases C18-ceramide and leads to lethal autophagy in human glioma

    Science.gov (United States)

    Wang, Zheng; Wen, Lijun; Zhu, Fei; Wang, Yanping; Xie, Qing; Chen, Zijun; Li, Yunsen

    2017-01-01

    Ceramide synthase 1 (CERS1) is the most highly expressed CERS in the central nervous system, and ceramide with an 18-carbon–containing fatty acid chain (C18-ceramide) in the brain plays important roles in signaling and sphingolipid development. However, the roles of CERS1 and C18-ceramide in glioma are largely unknown. In the present study, measured by electrospray ionization linear ion trap mass spectrometry, C18-ceramide was significantly lower in glioma tumor tissues compared with controls (P overexpression of CERS1, which has been shown to specifically induce the generation of C18-ceramide. Overexpression of CERS1 or adding exogenous C18-ceramide inhibited cell viability and induced cell death by activating endoplasmic reticulum stress, which induced lethal autophagy and inhibited PI3K/AKT signal pathway in U251 and A172 glioma cells. Moreover, overexpression of CERS1 or adding exogenous C18-ceramide increased the sensitivity of U251 and A172 glioma cells to teniposide (VM-26). Thus, the combined therapy of CERS1/C18-ceramide and VM-26 may be a novel therapeutic strategy for the treatment of human glioma. PMID:29262618

  1. Monstrous cell in malignant gliomas. In relation to radiation and chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ogashiwa, M; Takeuchi, K; Akai, K [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1981-06-01

    The pathological effects of irradiation and chemotherapy have been studied in 9 autopsy cases of malignant and low grade gliomas. The brains have been examined by means of the complete study technique. Many histological features have been related to surgery, grading of histological classification of gliomas, irradiation and chemotherapy. Following irradiation and chemotherapy, in addition to increased necrosis and vascular response, a variety of characteristic changes were observed in cell and nuclear morphology with prominent formation of monstrous cells in all of 5 malignant gliomas treated with nitrosourea. These monstrous cells had irregular and hyperchromatic multinuclei and showed cytoplasmic degeneration. These cells which had no direct relationship to vessels distributed both in the periphery of tumor or necrosis and in the white matter remote from the main tumor. These changes were more pronounced in autopsy than in biopsy. The features showed here indicate that the monstrous cells may appear due to the result of inhibition of tumor cell division at the late mitotic phase after irradiation and chemotherapy.

  2. Improved Intratumoral Oxygenation Through Vascular Normalization Increases Glioma Sensitivity to Ionizing Radiation

    International Nuclear Information System (INIS)

    McGee, Mackenzie C.; Hamner, J. Blair; Williams, Regan F.; Rosati, Shannon F.; Sims, Thomas L.; Ng, Catherine Y.; Gaber, M. Waleed; Calabrese, Christopher; Wu Jianrong; Nathwani, Amit C.; Duntsch, Christopher; Merchant, Thomas E.; Davidoff, Andrew M.

    2010-01-01

    Purpose: Ionizing radiation, an important component of glioma therapy, is critically dependent on tumor oxygenation. However, gliomas are notable for areas of necrosis and hypoxia, which foster radioresistance. We hypothesized that pharmacologic manipulation of the typically dysfunctional tumor vasculature would improve intratumoral oxygenation and, thus, the antiglioma efficacy of ionizing radiation. Methods and Materials: Orthotopic U87 xenografts were treated with either continuous interferon-β (IFN-β) or bevacizumab, alone, or combined with cranial irradiation (RT). Tumor growth was assessed by quantitative bioluminescence imaging; the tumor vasculature using immunohistochemical staining, and tumor oxygenation using hypoxyprobe staining. Results: Both IFN-β and bevaziumab profoundly affected the tumor vasculature, albeit with different cellular phenotypes. IFN-β caused a doubling in the percentage of area of perivascular cell staining, and bevacizumab caused a rapid decrease in the percentage of area of endothelial cell staining. However, both agents increased intratumoral oxygenation, although with bevacizumab, the effect was transient, being lost by 5 days. Administration of IFN-β or bevacizumab before RT was significantly more effective than any of the three modalities as monotherapy or when RT was administered concomitantly with IFN-β or bevacizumab or 5 days after bevacizumab. Conclusion: Bevacizumab and continuous delivery of IFN-β each induced significant changes in glioma vascular physiology, improving intratumoral oxygenation and enhancing the antitumor activity of ionizing radiation. Additional investigation into the use and timing of these and other agents that modify the vascular phenotype, combined with RT, is warranted to optimize cytotoxic activity.

  3. Estradiol Receptors Regulate Differential Connexin 43 Expression in F98 and C6 Glioma Cell Lines.

    Directory of Open Access Journals (Sweden)

    Zahra Moinfar

    Full Text Available Glioma is the most common malignant primary brain tumour with male preponderance and poor prognosis. Glioma cells express variable amounts of connexin 43 (Cx43 and estrogen receptors (ERs. Both, Cx43 and ERs, play important roles in cell proliferation and migration. Therefore, we investigated the effects of 17-ß estradiol (E2 on Cx43 expression in two glioma cell lines with variable native expression of Cx43.F98 and C6 rat glioma cells were cultured for 24 h in the presence of 10 nM or 100 nM E2, and the E2-antagonist, Fulvestrant. An MTT assay was performed to evaluate cell viability. ERα, ERβ and Cx43 protein expressions were analysed by western blotting and Cx43 mRNA expression was analysed by real-time polymerase chain reaction. To quantify cell migration, an exclusive zone migration assay was used. Functional coupling of cells via gap junctions was examined using whole-cell patch-clamp technique.E2 reduced Cx43 expression in C6 cells, but increased Cx43 expression in F98 cultures. These effects were mediated via ERs. Moreover, E2 promoted C6 cell migration, but it did not affect F98 cell migration. The expression level of ERα was found to be high in C6, but low in F98 cells. ERβ was exclusively expressed in C6 cells. In addition, E2 treatment induced a significant decrease of ERβ in C6 cultures, while it decreased ERα expression in F98 glioma cells.These findings show that E2 differentially modulates Cx43 expression in F98 and C6 glioma cells, likely due to the differential expression of ERs in each of these cell lines. Our findings point to the molecular mechanisms that might contribute to the gender-specific differences in the malignancy of glioma and could have implications for therapeutic strategies against glioma.

  4. Radiosensitivity and TP 53, EGFR amplification and LOH10 analysis of primary glioma cell cultures

    NARCIS (Netherlands)

    Gerlach, Bärbel; Harder, Anna H.; Hulsebos, Theo J. M.; Leenstra, Sieger; Slotman, Berend J.; Vandertop, W. Peter; Hartmann, Karl-Axel; Sminia, Peter

    2002-01-01

    Aim: Determination of in-vitro radiosensitivity and genetic alterations of cell cultures derived from human glioma biopsy tissue and established glioma cell lines. Material and Methods: Fresh brain tumor specimens of six patients were processed to early passage cell cultures. In addition the cell

  5. TLR9 expression in glioma tissues correlated to glioma progression and the prognosis of GBM patients

    International Nuclear Information System (INIS)

    Wang, Chao; Cao, Shouqiang; Yan, Ying; Ying, Qiao; Jiang, Tao; Xu, Ke; Wu, Anhua

    2010-01-01

    Our study aims to evaluate the expression of TLR9 in glioma tissues, examine the association between TLR9 expression, clinicopathological variables, and glioma patient outcome, we further characterized the direct effects of TLR9 agonist CpG ODN upon the proliferation and invasion of glioma cells in vitro. RT-PCR and immunofluorescence were used to determine the expression of TLR9 in glioma cell lines and clinical glioma samples. Tissue microarry and immunohistochemistry were applied to evaluated TLR9 expression in 292 newly diagnosed glioma and 13 non-neoplastic brain tissues. We further investigated the effect of CpG ODN on the proliferation and invasion of glioma cells in vitro with MTT assays and matrigel transwell assay respectively. RT-PCR showed that TLR9 expressed in all the glioma samples and glioma cell lines we examined. The tissue array analysis indicated that TLR9 expression is correlated with malignancy of glioma (p < 0.01). Multivariate Cox regression analysis revealed that TLR9 expression is an independent prognostic factor for PFS of GBM patients(P = 0.026). TLR9 agonist CpG ODN has no significant effect on glioma proliferation, but matrigel transwell analysis showed that TLR9 agonist CpG ODN can significantly enhance glioma invasion in vitro. Our data indicated that TLR9 expression increases according to the histopathological grade of glioma, and the TLR9 expression level is related to the PFS of GBM patients. In addition, our findings warrant caution in the directly injection of TLR9 agonist CpG ODN into glioma tissues for the glioma immunotherapy

  6. Saw Palmetto Extract Inhibits Metastasis and Antiangiogenesis through STAT3 Signal Pathway in Glioma Cell.

    Science.gov (United States)

    Ding, Hong; Shen, Jinglian; Yang, Yang; Che, Yuqin

    2015-01-01

    Signal transducer and activator of transcription factor 3 (STAT3) plays an important role in the proliferation and angiogenesis in human glioma. Previous research indicated that saw palmetto extract markedly inhibited the proliferation of human glioma cells through STAT3 signal pathway. But its effect on tumor metastasis and antiangiogenesis is not clear. This study is to further clear the impact of saw palmetto extract on glioma cell metastasis, antiangiogenesis, and its mechanism. TUNEL assay indicated that the apoptotic cells in the saw palmetto treated group are higher than that in the control group (p saw palmetto extract inhibits the proliferation of human glioma. Meanwhile pSTAT3 is lower in the experimental group and CD34 is also inhibited in the saw palmetto treated group. This means that saw palmetto extract could inhibit the angiogenesis in glioma. We found that saw palmetto extract was an important phytotherapeutic drug against the human glioma through STAT3 signal pathway. Saw palmetto extract may be useful as an adjunctive therapeutic agent for treatment of individuals with glioma and other types of cancer in which STAT3 signaling is activated.

  7. MicroRNAs let-7b/i suppress human glioma cell invasion and migration by targeting IKBKE directly

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Yuan; Hao, Shaobo [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052 (China); Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government (China); Ye, Minhua [Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006 (China); Zhang, Anling [Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052 (China); Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government (China); Nan, Yang [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Wang, Guangxiu; Jia, Zhifan [Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052 (China); Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government (China); Yu, Kai; Guo, Lianmei [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Pu, Peiyu [Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052 (China); Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government (China); Huang, Qiang, E-mail: huangqiang209@163.com [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Zhong, Yue, E-mail: zhongyue2457@sina.com [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China)

    2015-03-06

    We demonstrated that IKBKE is overexpressed in human gliomas and that the downregulation of IKBKE markedly inhibits the proliferative and invasive abilities of glioma cells, which is consistent with the results reported by several different research groups. Therefore, IKBKE represents a promising therapeutic target for the treatment of glioma. In the present study, we verified that the microRNAs let-7b and let-7i target IKBKE through luciferase assays and found that let-7b/i mimics can knock down IKBKE and upregulate E-cadherin through western blot analysis. Moreover, the expression levels of let-7b/i were significantly lower in glioma cell lines than that in normal brain tissues, as determined by quantitative real-time PCR. Furthermore, let-7b/i inhibit the invasion and migration of glioma cells, as determined through wound healing and Transwell assays. The above-mentioned data suggest that let-7b/i inhibit the invasive ability of glioma cells by directly downregulating IKBKE and indirectly upregulating E-cadherin. - Highlights: • Let-7b and let-7i are downregulated in glioma cell lines. • IKBKE is a target gene of let-7b/i. • Let-7b/i inhibit the invasion and migration of glioma cells. • Let-7b/i upregulate E-cadherin by downregulating IKBKE.

  8. MicroRNAs let-7b/i suppress human glioma cell invasion and migration by targeting IKBKE directly

    International Nuclear Information System (INIS)

    Tian, Yuan; Hao, Shaobo; Ye, Minhua; Zhang, Anling; Nan, Yang; Wang, Guangxiu; Jia, Zhifan; Yu, Kai; Guo, Lianmei; Pu, Peiyu; Huang, Qiang; Zhong, Yue

    2015-01-01

    We demonstrated that IKBKE is overexpressed in human gliomas and that the downregulation of IKBKE markedly inhibits the proliferative and invasive abilities of glioma cells, which is consistent with the results reported by several different research groups. Therefore, IKBKE represents a promising therapeutic target for the treatment of glioma. In the present study, we verified that the microRNAs let-7b and let-7i target IKBKE through luciferase assays and found that let-7b/i mimics can knock down IKBKE and upregulate E-cadherin through western blot analysis. Moreover, the expression levels of let-7b/i were significantly lower in glioma cell lines than that in normal brain tissues, as determined by quantitative real-time PCR. Furthermore, let-7b/i inhibit the invasion and migration of glioma cells, as determined through wound healing and Transwell assays. The above-mentioned data suggest that let-7b/i inhibit the invasive ability of glioma cells by directly downregulating IKBKE and indirectly upregulating E-cadherin. - Highlights: • Let-7b and let-7i are downregulated in glioma cell lines. • IKBKE is a target gene of let-7b/i. • Let-7b/i inhibit the invasion and migration of glioma cells. • Let-7b/i upregulate E-cadherin by downregulating IKBKE

  9. Effects of irradiation on the expression of the adhesion molecules (NCAM, ICAM-1) by glioma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Ryuya; Tanaka, Ryuichi; Yoshida, Seiichi [Niigata Univ. (Japan). Brain Research Inst.

    1993-11-01

    The expression of the intercellular adhesion molecule-1 (ICAM-1) and neural cell adhesion molecule (NCAM) by glioma cell lines was investigated. The effects of interferon (IFN)-[gamma] or irradiation on the expression was also assessed. Two glioma cell lines showed more than 75% NCAM-positive cells. After treatment with IFN-[gamma] or irradiation, another three cell lines were induced to show more than 50% positive cells. Three glioma cell lines showed more than 50% ICAM-1-positive cells. After treatment with IFN-[gamma], another two cell lines were induced to show more than 50% positive cells. After treatment with irradiation, one more cell line was induced to show more than 50% positive cells. ICAM-1 and NCAM expression by glioma cell lines is susceptible to modulation by IFN-[gamma] or irradiation. (author).

  10. MiR-26b Mimic Inhibits Glioma Proliferation In Vitro and In Vivo Suppressing COX-2 Expression.

    Science.gov (United States)

    Chen, Zheng-Gang; Zheng, Chuan-Yi; Cai, Wang-Qing; Li, Da-Wei; Ye, Fu-Yue; Zhou, Jian; Wu, Ran; Yang, Kun

    2017-08-11

    Glioma is the most common malignant tumor of the nervous system. Studies have shown the microRNA (miR)-26b/cyclooxygenase (COX)-2 axis in the development and progression in many tumor cells. Our study aims to investigate the effect and mechanism of miR-26b/COX-2 axis in glioma. Decreased expression of miR-26b with increased level of COX-2 was found in glioma tissues compared with matched normal tissues. A strong negative correlation was observed between the level of miR-26b and COX-2 in 30 glioma tissues. The miR-26b was then overexpressed by transfecting miR-26b mimic into U-373 cells. The invasive cell number and wounld closing rate were reduced in U-373 cells transfected with miR-26b mimic. Besides, COX2 siRNA enhanced the effect of miR-26b mimic in suppressing the expression of p-ERK1 and p-JNK. Finally, the in vivo experiment revealed that miR-26b mimic transfection strongly reduced the tumor growth, tumor volume and the expression of matrix metalloproteinase (MMP)-2, MMP-9). Taken together, our research indicated a miR-26b/COX-2/ERK/JNK axis in regulating the motility of glioma in vitro and in vivo, providing a new sight for treatment of glioma.

  11. Roles of sphingosine-1-phosphate (S1P) receptors in malignant behavior of glioma cells. Differential effects of S1P2 on cell migration and invasiveness

    International Nuclear Information System (INIS)

    Young, Nicholas; Van Brocklyn, James R.

    2007-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive lipid that signals through a family of five G-protein-coupled receptors, termed S1P 1-5 . S1P stimulates growth and invasiveness of glioma cells, and high expression levels of the enzyme that forms S1P, sphingosine kinase-1, correlate with short survival of glioma patients. In this study we examined the mechanism of S1P stimulation of glioma cell proliferation and invasion by either overexpressing or knocking down, by RNA interference, S1P receptor expression in glioma cell lines. S1P 1 , S1P 2 and S1P 3 all contribute positively to S1P-stimulated glioma cell proliferation, with S1P 1 being the major contributor. Stimulation of glioma cell proliferation by these receptors correlated with activation of ERK MAP kinase. S1P 5 blocks glioma cell proliferation, and inhibits ERK activation. S1P 1 and S1P 3 enhance glioma cell migration and invasion. S1P 2 inhibits migration through Rho activation, Rho kinase signaling and stress fiber formation, but unexpectedly, enhances glioma cell invasiveness by stimulating cell adhesion. S1P 2 also potently enhances expression of the matricellular protein CCN1/Cyr61, which has been implicated in tumor cell adhesion, and invasion as well as tumor angiogenesis. A neutralizing antibody to CCN1 blocked S1P 2 -stimulated glioma invasion. Thus, while S1P 2 decreases glioma cell motility, it may enhance invasion through induction of proteins that modulate glioma cell interaction with the extracellular matrix

  12. Curcumin Encapsulated into Methoxy Poly(Ethylene Glycol) Poly(ε-Caprolactone) Nanoparticles Increases Cellular Uptake and Neuroprotective Effect in Glioma Cells.

    Science.gov (United States)

    Marslin, Gregory; Sarmento, Bruno Filipe Carmelino Cardoso; Franklin, Gregory; Martins, José Alberto Ribeiro; Silva, Carlos Jorge Ribeiro; Gomes, Andreia Ferreira Castro; Sárria, Marisa Passos; Coutinho, Olga Maria Fernandes Pereira; Dias, Alberto Carlos Pires

    2017-03-01

    Curcumin is a natural polyphenolic compound isolated from turmeric ( Curcuma longa ) with well-demonstrated neuroprotective and anticancer activities. Although curcumin is safe even at high doses in humans, it exhibits poor bioavailability, mainly due to poor absorption, fast metabolism, and rapid systemic elimination. To overcome these issues, several approaches, such as nanoparticle-mediated targeted delivery, have been undertaken with different degrees of success. The present study was conducted to compare the neuroprotective effect of curcumin encapsulated in poly( ε -caprolactone) and methoxy poly(ethylene glycol) poly( ε -caprolactone) nanoparticles in U251 glioblastoma cells. Prepared nanoparticles were physically characterized by laser doppler anemometry, transmission electron microscopy, and X-ray diffraction. The results from laser doppler anemometry confirmed that the size of poly( ε -caprolactone) and poly(ethylene glycol) poly( ε -caprolactone) nanoparticles ranged between 200-240 nm for poly( ε -caprolactone) nanoparticles and 30-70 nm for poly(ethylene glycol) poly( ε -caprolactone) nanoparticles, and transmission electron microscopy images revealed their spherical shape. Treatment of U251 glioma cells and zebrafish embryos with poly( ε -caprolactone) and poly(ethylene glycol) poly( ε -caprolactone) nanoparticles loaded with curcumin revealed efficient cellular uptake. The cellular uptake of poly(ethylene glycol) poly( ε -caprolactone) nanoparticles was higher in comparison to poly( ε -caprolactone) nanoparticles. Moreover, poly(ethylene glycol) poly( ε -caprolactone) di-block copolymer-loaded curcumin nanoparticles were able to protect the glioma cells against tBHP induced-oxidative damage better than free curcumin. Together, our results show that curcumin-loaded poly(ethylene glycol) poly( ε -caprolactone) di-block copolymer nanoparticles possess significantly stronger neuroprotective effect in U251 human glioma cells compared to

  13. MicroRNA in Human Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mengfeng, E-mail: limf@mail.sysu.edu.cn [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Li, Jun [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Liu, Lei; Li, Wei [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Yang, Yi [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Yuan, Jie [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Key Laboratory of Functional Molecules from Oceanic Microorganisms (Sun Yat-sen University), Department of Education of Guangdong Province, Guangzhou 510080 (China)

    2013-10-23

    Glioma represents a serious health problem worldwide. Despite advances in surgery, radiotherapy, chemotherapy, and targeting therapy, the disease remains one of the most lethal malignancies in humans, and new approaches to improvement of the efficacy of anti-glioma treatments are urgently needed. Thus, new therapeutic targets and tools should be developed based on a better understanding of the molecular pathogenesis of glioma. In this context, microRNAs (miRNAs), a class of small, non-coding RNAs, play a pivotal role in the development of the malignant phenotype of glioma cells, including cell survival, proliferation, differentiation, tumor angiogenesis, and stem cell generation. This review will discuss the biological functions of miRNAs in human glioma and their implications in improving clinical diagnosis, prediction of prognosis, and anti-glioma therapy.

  14. MicroRNA in Human Glioma

    International Nuclear Information System (INIS)

    Li, Mengfeng; Li, Jun; Liu, Lei; Li, Wei; Yang, Yi; Yuan, Jie

    2013-01-01

    Glioma represents a serious health problem worldwide. Despite advances in surgery, radiotherapy, chemotherapy, and targeting therapy, the disease remains one of the most lethal malignancies in humans, and new approaches to improvement of the efficacy of anti-glioma treatments are urgently needed. Thus, new therapeutic targets and tools should be developed based on a better understanding of the molecular pathogenesis of glioma. In this context, microRNAs (miRNAs), a class of small, non-coding RNAs, play a pivotal role in the development of the malignant phenotype of glioma cells, including cell survival, proliferation, differentiation, tumor angiogenesis, and stem cell generation. This review will discuss the biological functions of miRNAs in human glioma and their implications in improving clinical diagnosis, prediction of prognosis, and anti-glioma therapy

  15. Critical role of the FERM domain in Pyk2 stimulated glioma cell migration

    International Nuclear Information System (INIS)

    Lipinski, Christopher A.; Tran, Nhan L.; Dooley, Andrea; Pang, Yuan-Ping; Rohl, Carole; Kloss, Jean; Yang, Zhongbo; McDonough, Wendy; Craig, David; Berens, Michael E.; Loftus, Joseph C.

    2006-01-01

    The strong tendency of malignant glioma cells to invade locally into surrounding normal brain precludes effective surgical resection, reduces the efficacy of radiotherapy, and is associated with increased resistance to chemotherapy regimens. We report that the N-terminal FERM domain of Pyk2 regulates its promigratory function. A 3-dimensional model of the Pyk2 FERM domain was generated and mutagenesis studies identified residues essential for Pyk2 promigratory function. Model-based targeted mutations within the FERM domain decreased Pyk2 phosphorylation and reduced the capacity of Pyk2 to stimulate glioma cell migration but did not significantly alter the intracellular distribution of Pyk2. Expression of autonomous Pyk2 FERM domain fragments containing analogous mutations exhibited reduced capacity to inhibit glioma cell migration and Pyk2 phosphorylation relative to expression of an autonomous wild type FERM domain fragment. These results indicate that the FERM domain plays an important role in regulating the functional competency of Pyk2 as a promigratory factor in glioma

  16. The effect of γ-tocopherol on proliferation, integrin expression, adhesion, and migration of human glioma cells

    International Nuclear Information System (INIS)

    Samandari, Elika; Visarius, Theresa; Zingg, Jean-Marc; Azzi, Angelo

    2006-01-01

    The effect of vitamin E on proliferation, integrin expression, adhesion, and migration in human glioma cells has been studied. γ-tocopherol at 50 μM concentration exerted more inhibitory effect than α-tocopherol at the same concentration on glioma cell proliferation. Integrin α5 and β1 protein levels were increased upon both α- and γ-tocopherol treatments. In parallel, an increase in the α5β1 heterodimer cell surface expression was observed. The tocopherols inhibited glioma cell-binding to fibronectin where γ-tocopherol treatment induced glioma cell migration. Taken together, the data reported here are consistent with the notion that the inhibition of glioma cell proliferation induced by tocopherols may be mediated, at least in part, by an increase in integrin α5 and β1 expression. Cell adhesion is also negatively affected by tocopherols, despite a small increase in the surface appearance of the α5β1 heterodimer. Cell migration is stimulated by γ-tocopherol. It is concluded that α5 and β1 integrin expression and surface appearance are not sufficient to explain all the observations and that other integrins or in general other factors may be associated with these events

  17. Nitrosoureas inhibit the stathmin-mediated migration and invasion of malignant glioma cells.

    Science.gov (United States)

    Liang, Xing-Jie; Choi, Yong; Sackett, Dan L; Park, John K

    2008-07-01

    Malignant gliomas are the most common primary intrinsic brain tumors and are highly lethal. The widespread migration and invasion of neoplastic cells from the initial site of tumor formation into the surrounding brain render these lesions refractory to definitive surgical treatment. Stathmin, a microtubule-destabilizing protein that mediates cell cycle progression, can also regulate directed cell movement. Nitrosoureas, traditionally viewed as DNA alkylating agents, can also covalently modify proteins such as stathmin. We therefore sought to establish a role for stathmin in malignant glioma cell motility, migration, and invasion and determine the effects of nitrosoureas on these cell movement-related processes. Scratch wound-healing recovery, Boyden chamber migration, Matrigel invasion, and organotypic slice invasion assays were performed before and after the down-regulation of cellular stathmin levels and in the absence and presence of sublethal nitrosourea ([1-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea]; CCNU) concentrations. We show that decreases in stathmin expression lead to significant decreases in malignant glioma cell motility, migration, and invasion. CCNU, at a concentration of 10 micromol/L, causes similar significant decreases, even in the absence of any effects on cell viability. The direct inhibition of stathmin by CCNU is likely a contributing factor. These findings suggest that the inhibition of stathmin expression and function may be useful in limiting the spread of malignant gliomas within the brain, and that nitrosoureas may have therapeutic benefits in addition to their antiproliferative effects.

  18. Nitrosoureas Inhibit the Stathmin Mediated Migration and Invasion of Malignant Glioma Cells

    Science.gov (United States)

    Liang, Xing-Jie; Choi, Yong; Sackett, Dan L.; Park, John K.

    2008-01-01

    Malignant gliomas are the most common primary intrinsic brain tumors and are highly lethal. The widespread migration and invasion of neoplastic cells from the initial site of tumor formation into the surrounding brain render these lesions refractory to definitive surgical treatment. Stathmin, a microtubule destabilizing protein that mediates cell cycle progression, can also regulate directed cell movement. Nitrosoureas, traditionally viewed as DNA alkylating agents, can also covalently modify proteins such as stathmin. We therefore sought to establish a role for stathmin in malignant glioma cell motility, migration, and invasion and determine the effects of nitrosoureas on these cell movement related processes. Scratch-wound healing recovery, Boyden chamber migration, Matrigel invasion, and organotypic slice invasion assays were performed before and after the down regulation of cellular stathmin levels and in the absence and presence of sub-lethal nitrosourea (CCNU; [1-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea]) concentrations. We demonstrate that decreases in stathmin expression lead to significant decreases in malignant glioma cell motility, migration, and invasion. CCNU, at a concentration of 10 μM, causes similar significant decreases, even in the absence of any effects on cell viability. The direct inhibition of stathmin by CCNU is likely a contributing factor. These findings suggest that the inhibition of stathmin expression and function may be useful in limiting the spread of malignant gliomas within the brain and that nitrosoureas may have therapeutic benefits in addition to their anti-proliferative effects. PMID:18593927

  19. Saw Palmetto Extract Inhibits Metastasis and Antiangiogenesis through STAT3 Signal Pathway in Glioma Cell

    Directory of Open Access Journals (Sweden)

    Hong Ding

    2015-01-01

    Full Text Available Signal transducer and activator of transcription factor 3 (STAT3 plays an important role in the proliferation and angiogenesis in human glioma. Previous research indicated that saw palmetto extract markedly inhibited the proliferation of human glioma cells through STAT3 signal pathway. But its effect on tumor metastasis and antiangiogenesis is not clear. This study is to further clear the impact of saw palmetto extract on glioma cell metastasis, antiangiogenesis, and its mechanism. TUNEL assay indicated that the apoptotic cells in the saw palmetto treated group are higher than that in the control group (p<0.05. The apoptosis related protein is detected and the results revealed that saw palmetto extract inhibits the proliferation of human glioma. Meanwhile pSTAT3 is lower in the experimental group and CD34 is also inhibited in the saw palmetto treated group. This means that saw palmetto extract could inhibit the angiogenesis in glioma. We found that saw palmetto extract was an important phytotherapeutic drug against the human glioma through STAT3 signal pathway. Saw palmetto extract may be useful as an adjunctive therapeutic agent for treatment of individuals with glioma and other types of cancer in which STAT3 signaling is activated.

  20. LncRNA TUG1 acts as a tumor suppressor in human glioma by promoting cell apoptosis.

    Science.gov (United States)

    Li, Jun; Zhang, Meng; An, Gang; Ma, Qingfang

    2016-03-01

    Previous studies have revealed multiple functional roles of long non-coding RNA taurine upregulated gene 1 in different types of malignant tumors, except for human glioma. Here, it was designed to study the potential function of taurine upregulated gene 1 in glioma pathogenesis focusing on its regulation on cell apoptosis. The expression of taurine upregulated gene 1 in glioma tissues was detected by quantitative RT-PCR and compared with that in adjacent normal tissues. Further correlation analysis was conducted to show the relationship between taurine upregulated gene 1 expression and different clinicopathologic parameters. Functional studies were performed to investigate the influence of taurine upregulated gene 1 on apoptosis and cell proliferation by using Annexin V/PI staining and cell counting kit-8 assays, respectively. And, caspase activation and Bcl-2 expression were analyzed to explore taurine upregulated gene 1-induced mechanism. taurine upregulated gene 1 expression was significantly inhibited in glioma and showed significant correlation with WHO Grade, tumor size and overall survival. Further experiments revealed that the dysregulation of taurine upregulated gene 1 affected the apoptosis and cell proliferation of glioma cells. Moreover, taurine upregulated gene 1 could induce the activation of caspase-3 and-9, with inhibited expression of Bcl-2, implying the mechanism in taurine upregulated gene 1-induced apoptosis. taurine upregulated gene 1 promoted cell apoptosis of glioma cells by activating caspase-3 and -9-mediated intrinsic pathways and inhibiting Bcl-2-mediated anti-apoptotic pathways, acting as a tumor suppressor in human glioma. This study provided new insights for the function of taurine upregulated gene 1 in cancer biology, and suggested a potent application of taurine upregulated gene 1 overexpression for glioma therapy. © 2016 by the Society for Experimental Biology and Medicine.

  1. ROS accumulation and IGF-IR inhibition contribute to fenofibrate/PPARα -mediated inhibition of Glioma cell motility in vitro

    Directory of Open Access Journals (Sweden)

    Del Valle Luis

    2010-06-01

    Full Text Available Abstract Background Glioblastomas are characterized by rapid cell growth, aggressive CNS infiltration, and are resistant to all known anticancer regimens. Recent studies indicate that fibrates and statins possess anticancer potential. Fenofibrate is a potent agonist of peroxisome proliferator activated receptor alpha (PPARα that can switch energy metabolism from glycolysis to fatty acid β-oxidation, and has low systemic toxicity. Fenofibrate also attenuates IGF-I-mediated cellular responses, which could be relevant in the process of glioblastoma cell dispersal. Methods The effects of fenofibrate on Glioma cell motility, IGF-I receptor (IGF-IR signaling, PPARα activity, reactive oxygen species (ROS metabolism, mitochondrial potential, and ATP production were analyzed in human glioma cell lines. Results Fenofibrate treatment attenuated IGF-I signaling responses and repressed cell motility of LN-229 and T98G Glioma cell lines. In the absence of fenofibrate, specific inhibition of the IGF-IR had only modest effects on Glioma cell motility. Further experiments revealed that PPARα-dependent accumulation of ROS is a strong contributing factor in Glioma cell lines responses to fenofibrate. The ROS scavenger, N-acetyl-cysteine (NAC, restored cell motility, improved mitochondrial potential, and increased ATP levels in fenofibrate treated Glioma cell lines. Conclusions Our results indicate that although fenofibrate-mediated inhibition of the IGF-IR may not be sufficient in counteracting Glioma cell dispersal, PPARα-dependent metabolic switch and the resulting ROS accumulation strongly contribute to the inhibition of these devastating brain tumor cells.

  2. Saw Palmetto Extract Inhibits Metastasis and Antiangiogenesis through STAT3 Signal Pathway in Glioma Cell

    OpenAIRE

    Ding, Hong; Shen, Jinglian; Yang, Yang; Che, Yuqin

    2015-01-01

    Signal transducer and activator of transcription factor 3 (STAT3) plays an important role in the proliferation and angiogenesis in human glioma. Previous research indicated that saw palmetto extract markedly inhibited the proliferation of human glioma cells through STAT3 signal pathway. But its effect on tumor metastasis and antiangiogenesis is not clear. This study is to further clear the impact of saw palmetto extract on glioma cell metastasis, antiangiogenesis, and its mechanism. TUNEL ass...

  3. MicroRNA-195 inhibits the proliferation of human glioma cells by directly targeting cyclin D1 and cyclin E1.

    Directory of Open Access Journals (Sweden)

    Wang Hui

    Full Text Available Glioma proliferation is a multistep process during which a sequence of genetic and epigenetic alterations randomly occur to affect the genes controlling cell proliferation, cell death and genetic stability. microRNAs are emerging as important epigenetic modulators of multiple target genes, leading to abnormal cellular signaling involving cellular proliferation in cancers.In the present study, we found that expression of miR-195 was markedly downregulated in glioma cell lines and human primary glioma tissues, compared to normal human astrocytes and matched non-tumor associated tissues. Upregulation of miR-195 dramatically reduced the proliferation of glioma cells. Flow cytometry analysis showed that ectopic expression of miR-195 significantly decreased the percentage of S phase cells and increased the percentage of G1/G0 phase cells. Overexpression of miR-195 dramatically reduced the anchorage-independent growth ability of glioma cells. Furthermore, overexpression of miR-195 downregulated the levels of phosphorylated retinoblastoma (pRb and proliferating cell nuclear antigen (PCNA in glioma cells. Conversely, inhibition of miR-195 promoted cell proliferation, increased the percentage of S phase cells, reduced the percentage of G1/G0 phase cells, enhanced anchorage-independent growth ability, upregulated the phosphorylation of pRb and PCNA in glioma cells. Moreover, we show that miR-195 inhibited glioma cell proliferation by downregulating expression of cyclin D1 and cyclin E1, via directly targeting the 3'-untranslated regions (3'-UTR of cyclin D1 and cyclin E1 mRNA. Taken together, our results suggest that miR-195 plays an important role to inhibit the proliferation of glioma cells, and present a novel mechanism for direct miRNA-mediated suppression of cyclin D1 and cyclin E1 in glioma.

  4. mir-300 promotes self-renewal and inhibits the differentiation of glioma stem-like cells

    KAUST Repository

    Zhang, Daming

    2014-01-28

    MicroRNAs (miRNAs) are small noncoding RNAs that have been critically implicated in several human cancers. miRNAs are thought to participate in various biological processes, including proliferation, cell cycle, apoptosis, and even the regulation of the stemness properties of cancer stem cells. In this study, we explore the potential role of miR-300 in glioma stem-like cells (GSLCs). We isolated GSLCs from glioma biopsy specimens and identified the stemness properties of the cells through neurosphere formation assays, multilineage differentiation ability analysis, and immunofluorescence analysis of glioma stem cell markers. We found that miR-300 is commonly upregulated in glioma tissues, and the expression of miR-300 was higher in GSLCs. The results of functional experiments demonstrated that miR-300 can enhance the self-renewal of GSLCs and reduce differentiation toward both astrocyte and neural fates. In addition, LZTS2 is a direct target of miR-300. In conclusion, our results demonstrate the critical role of miR-300 in GSLCs and its functions in LZTS2 inhibition and describe a new approach for the molecular regulation of tumor stem cells. © 2014 Springer Science+Business Media.

  5. Sensitivity of C6 Glioma Cells Carrying the Human Poliovirus Receptor to Oncolytic Polioviruses.

    Science.gov (United States)

    Sosnovtseva, A O; Lipatova, A V; Grinenko, N F; Baklaushev, V P; Chumakov, P M; Chekhonin, V P

    2016-10-01

    A humanized line of rat C6 glioma cells expressing human poliovirus receptor was obtained and tested for the sensitivity to oncolytic effects of vaccine strains of type 1, 2, and 3 polioviruses. Presentation of the poliovirus receptor on the surface of C6 glioma cells was shown to be a necessary condition for the interaction of cells with polioviruses, but insufficient for complete poliovirus oncolysis.

  6. MicroRNA-145 is downregulated in glial tumors and regulates glioma cell migration by targeting connective tissue growth factor.

    Science.gov (United States)

    Lee, Hae Kyung; Bier, Ariel; Cazacu, Simona; Finniss, Susan; Xiang, Cunli; Twito, Hodaya; Poisson, Laila M; Mikkelsen, Tom; Slavin, Shimon; Jacoby, Elad; Yalon, Michal; Toren, Amos; Rempel, Sandra A; Brodie, Chaya

    2013-01-01

    Glioblastomas (GBM), the most common and aggressive type of malignant glioma, are characterized by increased invasion into the surrounding brain tissues. Despite intensive therapeutic strategies, the median survival of GBM patients has remained dismal over the last decades. In this study we examined the expression of miR-145 in glial tumors and its function in glioma cells. Using TCGA analysis and real-time PCR we found that the expression of miR-145/143 cluster was downregulated in astrocytic tumors compared to normal brain specimens and in glioma cells and glioma stem cells (GSCs) compared to normal astrocytes and neural stem cells. Moreover, the low expression of both miR-145 and miR-143 in GBM was correlated with poor patient prognosis. Transfection of glioma cells with miR-145 mimic or transduction with a lentivirus vector expressing pre-miR 145 significantly decreased the migration and invasion of glioma cells. We identified connective tissue growth factor (CTGF) as a novel target of miR-145 in glioma cells; transfection of the cells with this miRNA decreased the expression of CTGF as determined by Western blot analysis and the expression of its 3'-UTR fused to luciferase. Overexpression of a CTGF plasmid lacking the 3'-UTR and administration of recombinant CTGF protein abrogated the inhibitory effect of miR-145 on glioma cell migration. Similarly, we found that silencing of CTGF decreased the migration of glioma cells. CTGF silencing also decreased the expression of SPARC, phospho-FAK and FAK and overexpression of SPARC abrogated the inhibitory effect of CTGF silencing on cell migration. These results demonstrate that miR-145 is downregulated in glial tumors and its low expression in GBM predicts poor patient prognosis. In addition miR-145 regulates glioma cell migration by targeting CTGF which downregulates SPARC expression. Therefore, miR-145 is an attractive therapeutic target for anti-invasive treatment of astrocytic tumors.

  7. MicroRNA-145 is downregulated in glial tumors and regulates glioma cell migration by targeting connective tissue growth factor.

    Directory of Open Access Journals (Sweden)

    Hae Kyung Lee

    Full Text Available Glioblastomas (GBM, the most common and aggressive type of malignant glioma, are characterized by increased invasion into the surrounding brain tissues. Despite intensive therapeutic strategies, the median survival of GBM patients has remained dismal over the last decades. In this study we examined the expression of miR-145 in glial tumors and its function in glioma cells. Using TCGA analysis and real-time PCR we found that the expression of miR-145/143 cluster was downregulated in astrocytic tumors compared to normal brain specimens and in glioma cells and glioma stem cells (GSCs compared to normal astrocytes and neural stem cells. Moreover, the low expression of both miR-145 and miR-143 in GBM was correlated with poor patient prognosis. Transfection of glioma cells with miR-145 mimic or transduction with a lentivirus vector expressing pre-miR 145 significantly decreased the migration and invasion of glioma cells. We identified connective tissue growth factor (CTGF as a novel target of miR-145 in glioma cells; transfection of the cells with this miRNA decreased the expression of CTGF as determined by Western blot analysis and the expression of its 3'-UTR fused to luciferase. Overexpression of a CTGF plasmid lacking the 3'-UTR and administration of recombinant CTGF protein abrogated the inhibitory effect of miR-145 on glioma cell migration. Similarly, we found that silencing of CTGF decreased the migration of glioma cells. CTGF silencing also decreased the expression of SPARC, phospho-FAK and FAK and overexpression of SPARC abrogated the inhibitory effect of CTGF silencing on cell migration. These results demonstrate that miR-145 is downregulated in glial tumors and its low expression in GBM predicts poor patient prognosis. In addition miR-145 regulates glioma cell migration by targeting CTGF which downregulates SPARC expression. Therefore, miR-145 is an attractive therapeutic target for anti-invasive treatment of astrocytic tumors.

  8. Cytolytic effects of autologous lymphokine-activated killer cells on organotypic multicellular spheroids of gliomas in vitro

    NARCIS (Netherlands)

    Kaaijk, P.; Troost, D.; Dast, P. K.; van den Berg, F.; Leenstra, S.; Bosch, D. A.

    1995-01-01

    Knowledge about lymphokine-activated killer (LAK) cell infiltration and LAK cell cytotoxicity is essential to improve the effectiveness of LAK cell therapy against gliomas. In the present study, organotypic multicellular spheroids (OMS) of glioma tissue were used as a culture model to study the

  9. The chemopreventive properties of chlorogenic acid reveal a potential new role for the microsomal glucose-6-phosphate translocase in brain tumor progression

    Directory of Open Access Journals (Sweden)

    Desgagnés Julie

    2006-03-01

    Full Text Available Abstract Background Chlorogenic acid (CHL, the most potent functional inhibitor of the microsomal glucose-6-phosphate translocase (G6PT, is thought to possess cancer chemopreventive properties. It is not known, however, whether any G6PT functions are involved in tumorigenesis. We investigated the effects of CHL and the potential role of G6PT in regulating the invasive phenotype of brain tumor-derived glioma cells. Results RT-PCR was used to show that, among the adult and pediatric brain tumor-derived cells tested, U-87 glioma cells expressed the highest levels of G6PT mRNA. U-87 cells lacked the microsomal catalytic subunit glucose-6-phosphatase (G6Pase-α but expressed G6Pase-β which, when coupled to G6PT, allows G6P hydrolysis into glucose to occur in non-glyconeogenic tissues such as brain. CHL inhibited U-87 cell migration and matrix metalloproteinase (MMP-2 secretion, two prerequisites for tumor cell invasion. Moreover, CHL also inhibited cell migration induced by sphingosine-1-phosphate (S1P, a potent mitogen for glioblastoma multiform cells, as well as the rapid, S1P-induced extracellular signal-regulated protein kinase phosphorylation potentially mediated through intracellular calcium mobilization, suggesting that G6PT may also perform crucial functions in regulating intracellular signalling. Overexpression of the recombinant G6PT protein induced U-87 glioma cell migration that was, in turn, antagonized by CHL. MMP-2 secretion was also inhibited by the adenosine triphosphate (ATP-depleting agents 2-deoxyglucose and 5-thioglucose, a mechanism that may inhibit ATP-mediated calcium sequestration by G6PT. Conclusion We illustrate a new G6PT function in glioma cells that could regulate the intracellular signalling and invasive phenotype of brain tumor cells, and that can be targeted by the anticancer properties of CHL.

  10. Synthesis and evaluation of an 18F-labeled pyrimidine-pyridine amine for targeting CXCR4 receptors in gliomas

    International Nuclear Information System (INIS)

    Demoin, Dustin Wayne; Shindo, Masahiro; Zhang, Hanwen; Edwards, Kimberly J.; Serganova, Inna; Pillarsetty, Naga Vara Kishore; Lewis, Jason S.; Blasberg, Ronald G.

    2016-01-01

    Introduction: Chemokine receptor-4 (CXCR4, fusin, CD184) is expressed on several tissues involved in immune regulation and is upregulated in many diseases including malignant gliomas. A radiolabeled small molecule that readily crosses the blood–brain barrier can aid in identifying CXCR4-expressing gliomas and monitoring CXCR4-targeted therapy. In the current work, we have synthesized and evaluated an [ 18 F]-labeled small molecule based on a pyrimidine–pyridine amine for its ability to target CXCR4. Experimental: The nonradioactive standards and the nitro precursor used in this study were prepared using established methods. An HPLC method was developed to separate the nitro-precursor from the nonradioactive standard and radioactive product. The nitro-precursor was radiolabeled with 18 F under inert, anhydrous conditions using the [ 18 F]-kryptofix 2.2.2 complex to form the desired N-(4-(((6-[ 18 F]fluoropyridin-2-yl)amino)methyl)benzyl)pyrimidin-2-amine ([ 18 F]-3). The purified radiolabeled compound was used in serum stability, partition coefficient, cellular uptake, and in vivo cancer targeting studies. Results: [ 18 F]-3 was synthesized in 4–10% decay-corrected yield (to start of synthesis). [ 18 F]-3 (t R ≈ 27 min) was separated from the precursor (t R ≈ 30 min) using a pentafluorophenyl column with an isocratic solvent system. [ 18 F]-3 displayed acceptable serum stability over 2 h. The amount of [ 18 F]-3 bound to the plasma proteins was determined to be > 97%. The partition coefficient (LogD 7.4 ) is 1.4 ± 0.5. Competitive in vitro inhibition indicated 3 does not inhibit uptake of 67 Ga-pentixafor. Cell culture media incubation and ex vivo urine analysis indicate rapid metabolism of [ 18 F]-3 into hydrophilic metabolites. Thus, in vitro uptake of [ 18 F]-3 in CXCR4 overexpressing U87 cells (U87 CXCR4) and U87 WT indicated no specific binding. In vivo studies in mice bearing U87 CXCR4 and U87 WT tumors on the left and right shoulders were carried

  11. Zero-valent Fe confined mesoporous silica nanocarriers (Fe(0) @ MCM-41) for targeting experimental orthotopic glioma in rats

    Science.gov (United States)

    Shevtsov, M. A.; Parr, M. A.; Ryzhov, V. A.; Zemtsova, E. G.; Arbenin, A. Yu; Ponomareva, A. N.; Smirnov, V. M.; Multhoff, G.

    2016-01-01

    Mesoporous silica nanoparticles (MSNs) impregnated with zero-valent Fe (Fe(0) @ MCM-41) represent an attractive nanocarrier system for drug delivery into tumor cells. The major goal of this work was to assess whether MSNs can penetrate the blood-brain barrier in a glioblastoma rat model. Synthesized MSNs nanomaterials were characterized by energy dispersive X-ray spectroscopy, measurements of X-ray diffraction, scanning electron microscopy and Mössbauer spectroscopy. For the detection of the MSNs by MR and for biodistribution studies MSNs were labeled with zero-valent Fe. Subsequent magnetometry and nonlinear-longitudinal-response-M2 (NLR-M2) measurements confirmed the MR negative contrast enhancement properties of the nanoparticles. After incubation of different tumor (C6 glioma, U87 glioma, K562 erythroleukemia, HeLa cervix carcinoma) and normal cells such as fibroblasts and peripheral blood mononuclear cells (PBMCs) MSNs rapidly get internalized into the cytosol. Intracellular residing MSNs result in an enhanced cytotoxicity as Fe(0) @ MCM-41 promote the reactive oxygen species production. MRI and histological studies indicated an accumulation of intravenously injected Fe(0) @ MCM-41 MSNs in orthotopic C6 glioma model. Biodistribution studies with measurements of second harmonic of magnetization demonstrated an increased and dose-dependent retention of MSNs in tumor tissues. Taken together, this study demonstrates that MSNs can enter the blood-brain barrier and accumulate in tumorous tissues. PMID:27386761

  12. Killing of Brain Tumor Cells by Hypoxia-Responsive Element Mediated Expression of BAX

    Directory of Open Access Journals (Sweden)

    Hangjun Ruan

    1999-11-01

    Full Text Available The presence of radioresistant hypoxic cells in human brain tumors limits the overall effectiveness of conventional fractionated radiation therapy. Tumor-specific therapies that target hypoxic cells are clearly needed. We have investigated the expression of suicide genes under hypoxia by a hypoxia-responsive element (HRE, which can be activated through hypoxia-inducible factor-1 (HIF-1. We transfected plasmids containing multiple copies of HIRE into U-87 MG and U-251 MG-NCI human brain tumor cells and tested their ability to induce LacZ gene expression under anoxia. Gene expression under anoxia versus oxia was increased about 12-fold for U-87 MG cells and about fourfold for U-251 MG-NCI cells. At intermediate hypoxic conditions, increased LacZ gene expression in U-87 MG cells was induced by the plasmid that contained three HREs, but not by the plasmid with two HREs. Lastly, when we placed a suicide gene BAX under the control of HREs, cells transfected with the BAX plasmids were preferentially killed through apoptosis under anoxia. Our studies demonstrate that HRE-regulated gene expression is active in brain tumor cells, and that the amount of increased gene expression obtained is dependent on the cell line, the HIRE copy number, and the degree of hypoxia.

  13. Inhibitory effect of calcium channel blockers on proliferation of human glioma cells in vitro

    International Nuclear Information System (INIS)

    Kunert-Radek, J.; Stepien, H.; Lyson, K.; Pawlikowski, M.; Radek, A.

    1989-01-01

    The effects of 2 specific calcium channel blockers, verapamil and nimodipine, on the proliferation of human glioma tumour cells were investigated in vitro. Tumour tissues for primary cell cultures were obtained bioptically from 3 patients with the histopathological diagnosis of glioblastoma. The [ 3 H]-thymidine incorporation into glioma tumour cells DNA was used as a sensitive index of the cell proliferation. It was found that varapamil (10 4 -10 5 M) and nimodipine (10 4 -10 6 M) significantly inhibited the [ 3 H]-thymidine uptake in a dose-related manner. The inhibitory effect of both calcium channel antagonists was reversed by stimultancous addition of calcium chloride (5x10 3 M). These results indicate that verapamil and nimodipine may exert an antiproliferative effect on glioma cells growth acting through a blokade of specific voltage-dependent calcium channels. (author)

  14. Effects of liposome-adriamycin (L-ADM) and thermotherapy on glioma cells: an experimental study

    OpenAIRE

    Zheng-hua SHI; Jian-ning ZHANG

    2013-01-01

    Objective  To observe the effects of liposome-adriamycin (L-ADM) and thermotherapy on proliferation and apoptosis of SWO-38 glioma cells. Methods  The SWO-38 glioma cells were cultivated in vitro. The effects of thermotherapy (43℃), ADM chemotherapy, L-ADM chemotherapy, thermotherapy + ADM chemotherapy, and thermotherapy + L-ADM chemotherapy on the cell proliferation and apoptosis were observed. The working concentration of ADM and L-ADM, and the cell proliferation rate were determined by MTT...

  15. Combination of heavy-ion radiotherapy and p53-gene therapy by radio- and hypoxia-sensitizing promoter for glioma

    International Nuclear Information System (INIS)

    Oga, Masaru; Koshikawa, Nobuko; Takenaga, Keizo; Iwadate, Yasuo; Nojima, Kumie

    2006-01-01

    In this study we have started to investigate the anti-tumor effect of the combination of heavy-ion radiotherapy, inducing p53-independent apoptosis, and p53-gene therapy, inducing p53-dependent apoptosis for glioma. To enhance the p53-dependent apoptosis, we chose the strategy to utilize the heavy-ion irradiation itself as a ''trigger'' by using radio-sensitizing E 9ns-2 /cytomegalovirus (CMV) chimeric promoter (Scott et al: 2003) in p53-gene therapy. Our study in the first year, however, suggested the uselessness of E 9ns-2 /CMV chimeric promoter. Then we applied E 9ns-2 /Epo5/CMV-radio and hypoxia-sensitizing chimeric promoter to amplify p53 gene exopression. P53 gene with E 9ns2 /Epo5/CMV chimeric promoter was transfected in p53-mutant U373MG human glioma cell-line and the transfected-cell bulk was irradiated at dose of 1 Gy of high linear energy transfer (LET)-carbon ion beam or low-LET X-ray under various hypoxic conditions. The result suggested the possible role of 1 Gy of high LET-carbon ion beam as a ''useful trigger'' to enhance a selective anti-tumor effect toward glioma under hypoxic condition through amplification of p53 gene expression. (author)

  16. Resveratrol Represses Pokemon Expression in Human Glioma Cells.

    Science.gov (United States)

    Yang, Yutao; Cui, Jiajun; Xue, Feng; Overstreet, Anne-Marie; Zhan, Yiping; Shan, Dapeng; Li, Hui; Li, Hui; Wang, Yongjun; Zhang, Mengmeng; Yu, Chunjiang; Xu, Zhi-Qing David

    2016-03-01

    POK erythroid myeloid ontogenic factor (Pokemon), an important proto-oncoprotein, is a transcriptional repressor that regulates the expression of many genes and plays an important role in tumorigenesis. Resveratrol (RSV), a natural polyphenolic compound, has many beneficial biological effects on health. In this study, we investigated the role of Pokemon in RSV-induced biological effects and the effect of RSV on the expression of Pokemon in glioma cells. We found that overexpression of Pokemon decreased RSV-induced cell apoptosis, senescence, and anti-proliferative effects. Moreover, we showed that RSV could efficiently decrease the activity of the Pokemon promoter and the expression of Pokemon. Meanwhile, RSV also inhibited Sp1 DNA binding activity to the Pokemon promoter; whereas, it did not influence the expression and nuclear translocation of Sp1. In addition, we found that RSV could increase the recruitment of HDAC1, but decreased p300 to the Pokemon promoter. Taken together, all these results extended our understanding on the anti-cancer mechanism of RSV in glioma cells.

  17. Tumor initiating cells in malignant gliomas: biology and implications for therapy.

    Science.gov (United States)

    Hadjipanayis, Costas G; Van Meir, Erwin G

    2009-04-01

    A rare subpopulation of cells within malignant gliomas, which shares canonical properties with neural stem cells (NSCs), may be integral to glial tumor development and perpetuation. These cells, also known as tumor initiating cells (TICs), have the ability to self-renew, develop into any cell in the overall tumor population (multipotency), and proliferate. A defining property of TICs is their ability to initiate new tumors in immunocompromised mice with high efficiency. Mounting evidence suggests that TICs originate from the transformation of NSCs and their progenitors. New findings show that TICs may be more resistant to chemotherapy and radiation than the bulk of tumor cells, thereby permitting recurrent tumor formation and accounting for the failure of conventional therapies. The development of new therapeutic strategies selectively targeting TICs while sparing NSCs may provide for more effective treatment of malignant gliomas.

  18. Induction of cell death by graphene in Arabidopsis thaliana (Columbia ecotype) T87 cell suspensions

    International Nuclear Information System (INIS)

    Begum, Parvin; Fugetsu, Bunshi

    2013-01-01

    Highlights: • This study was set up to explore potential influence of graphene on T87 cells. • Fragmented nuclei, membrane damage, mitochondrial dysfunction were observed. • ROS increased, ROS are key mediators in the cell death signaling pathway. • Translocation of graphene into cells and an endocytosis-like structure was observed. • Graphene entering into the cells by endocytosis. -- Abstract: The toxicity of graphene on suspensions of Arabidopsis thaliana (Columbia ecotype) T87 cells was investigated by examining the morphology, mitochondrial dysfunction, reactive oxygen species generation (ROS), and translocation of graphene as the toxicological endpoints. The cells were grown in Jouanneau and Péaud-Lenoel (JPL) media and exposed to graphene at concentrations 0–80 mg/L. Morphological changes were observed by scanning electron microscope and the adverse effects such as fragmented nuclei, membrane damage, mitochondrial dysfunction was observed with fluorescence microscopy by staining with Hoechst 33342/propidium iodide and succinate dehydrogenase (mitochondrial bioenergetic enzyme). Analysis of intracellular ROS by 2′,7′-dichlorofluorescein diacetate demonstrated that graphene induced a 3.3-fold increase in ROS, suggesting that ROS are key mediators in the cell death signaling pathway. Transmission electron microscopy verified the translocation of graphene into cells and an endocytosis-like structure was observed which suggested graphene entering into the cells by endocytosis. In conclusion, our results show that graphene induced cell death in T87 cells through mitochondrial damage mediated by ROS

  19. A computational model incorporating neural stem cell dynamics reproduces glioma incidence across the lifespan in the human population.

    Directory of Open Access Journals (Sweden)

    Roman Bauer

    Full Text Available Glioma is the most common form of primary brain tumor. Demographically, the risk of occurrence increases until old age. Here we present a novel computational model to reproduce the probability of glioma incidence across the lifespan. Previous mathematical models explaining glioma incidence are framed in a rather abstract way, and do not directly relate to empirical findings. To decrease this gap between theory and experimental observations, we incorporate recent data on cellular and molecular factors underlying gliomagenesis. Since evidence implicates the adult neural stem cell as the likely cell-of-origin of glioma, we have incorporated empirically-determined estimates of neural stem cell number, cell division rate, mutation rate and oncogenic potential into our model. We demonstrate that our model yields results which match actual demographic data in the human population. In particular, this model accounts for the observed peak incidence of glioma at approximately 80 years of age, without the need to assert differential susceptibility throughout the population. Overall, our model supports the hypothesis that glioma is caused by randomly-occurring oncogenic mutations within the neural stem cell population. Based on this model, we assess the influence of the (experimentally indicated decrease in the number of neural stem cells and increase of cell division rate during aging. Our model provides multiple testable predictions, and suggests that different temporal sequences of oncogenic mutations can lead to tumorigenesis. Finally, we conclude that four or five oncogenic mutations are sufficient for the formation of glioma.

  20. DNA lability induced by nimustine and ramustine in rat glioma cells.

    Science.gov (United States)

    Mineura, K; Fushimi, S; Itoh, Y; Kowada, M

    1988-01-01

    The DNA labile sites induced by two nitrosoureas, nimustine (ACNU) and ramustine (MCNU) synthesised in Japan, have been examined in highly reiterated DNA sequences of rat glioma cells. Reiterated fragments of 167 and 203 base pairs (bp), obtained after Hind III and Hae III restriction endonuclease digestion of rat glioma cells DNA, were used as target DNA sequences to determine the labile sites. In vitro reaction with ACNU and MCNU resulted in scission products corresponding to the locations of guanine. Subsequent piperidine hydrolysis produced more frequent breaks of the phosphodiester bonds at guanine positions, thus forming alkali-labile sites. Images PMID:3236017

  1. Effects of signal transducer and activator of transcription 3 RNAi on content of reactive oxygen species and DNA damage in glioma cell

    International Nuclear Information System (INIS)

    Gao Ling; Li Fengsheng; Dong Bo; Liu Lihui; Liu Qingjie; Chen Xiaohua; Mao Bingzhi

    2011-01-01

    Objective: To investigate the effects of signal transducer and activator of transcription 3 (STAT3) RNAi on the content of reactive oxygen species (ROS) and the DNA damage in glioma cells. Methods: Glioma cells of the line U251 cells were cultured and transfected with STAT3 RNAi plasmid (pSilencer2.1-STAT3, STAT3 group) and pSilencer2.1-GFP (GFP control group) respectively. Part of the U251 cells were irradiated with γ-rays of 60 Co as positive control group of smear phenomenon. The levels of ROS and malondialdehyde (MDA) in the cells were detected 24, 48, and 72 h later by flow cytometry and fluorescence chamoluminescence analyzer, respectively. The DNA damage in the transfected U251 cells was examined by using single cell gel electrophoresis assay, and the cell cycle distribution was examined using FACS PI staining 12, 24, and 36 h later. Results: At 24 h after the transfection, the ROS level of the siSTAT3-transfected cells was 8.91 times that of the control group (F=89.296, P<0.05), and returned to the normal level 48 h later. There were not significant differences in the MDA level of the cells 24, 48, and 72 h later between the siSTAT3 group and siGFP group. Compared with the 8 Gy irradiation positive group with obvious smear phenomenon, smear phenomenon was shown in part of the cells in the siSTAT3 group 6 h later, became less 12 h later, and disappeared completely 24 h later. Compared with the control group,lag of S stage rate was 17.22% and the lag of G 2 /M stage rate was 6.4% 12 h later in the siSTAT-transfected group,and the G 0 /G 1 stage lag rate was 18.44% 24 h later, and the lag of S stage rate was 17.99% 36 h later. Conclusions: Inhibition of STAT3 results in the change of oxido reduction status in glioma cells, as well as damage and reparation of DNA. (authors)

  2. Conditioned Medium from Adipose-Derived Stem Cells (ADSCs) Promotes Epithelial-to-Mesenchymal-Like Transition (EMT-Like) in Glioma Cells In vitro.

    Science.gov (United States)

    Iser, Isabele C; Ceschini, Stefanie M; Onzi, Giovana R; Bertoni, Ana Paula S; Lenz, Guido; Wink, Márcia R

    2016-12-01

    Mesenchymal stem cells (MSCs) have recently been described to home to brain tumors and to integrate into the tumor-associated stroma. Understanding the communication between cancer cells and MSCs has become fundamental to determine whether MSC-tumor interactions should be exploited as a vehicle for therapeutic agents or considered a target for intervention. Therefore, we investigated whether conditioned medium from adipose-derived stem cells (ADSCs-CM) modulate glioma tumor cells by analyzing several cell biology processes in vitro. C6 rat glioma cells were treated with ADSCs-CM, and cell proliferation, cell cycle, cell viability, cell morphology, adhesion, migration, and expression of epithelial-mesenchymal transition (EMT)-related surface markers were analyzed. ADSCs-CM did not alter cell viability, cell cycle, and growth rate of C6 glioma cells but increased their migratory capacity. Moreover, C6 cells treated with ADSC-CM showed reduced adhesion and underwent changes in cell morphology. Up-regulation of EMT-associated markers (vimentin, MMP2, and NRAS) was also observed following treatment with ADSC-CM. Our findings demonstrate that the paracrine factors released by ADSCs are able to modulate glioma cell biology. Therefore, ADSC-tumor cell interactions in a tumor microenvironment must be considered in the design of clinical application of stem cell therapy. Graphical Abstract Factors released by adipose-derived stem cells (ADSCs) may modulate the biology of C6 glioma cells. When C6 cells are exposed to a conditioned medium from adipose-derived stem cells (ADSCs-CM), some of these cells can undergo an EMT-like process and trans-differentiate into cells with a more mesenchymal phenotype, characterized by enhanced expression of EMT-related surface markers, reduced cell adhesion capacity, increased migratory capacity, as well as changes in cell and nuclei morphology.

  3. Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells

    Directory of Open Access Journals (Sweden)

    Sharma Kamal

    2008-12-01

    Full Text Available Abstract Background Effective transvascular delivery of nanoparticle-based chemotherapeutics across the blood-brain tumor barrier of malignant gliomas remains a challenge. This is due to our limited understanding of nanoparticle properties in relation to the physiologic size of pores within the blood-brain tumor barrier. Polyamidoamine dendrimers are particularly small multigenerational nanoparticles with uniform sizes within each generation. Dendrimer sizes increase by only 1 to 2 nm with each successive generation. Using functionalized polyamidoamine dendrimer generations 1 through 8, we investigated how nanoparticle size influences particle accumulation within malignant glioma cells. Methods Magnetic resonance and fluorescence imaging probes were conjugated to the dendrimer terminal amines. Functionalized dendrimers were administered intravenously to rodents with orthotopically grown malignant gliomas. Transvascular transport and accumulation of the nanoparticles in brain tumor tissue was measured in vivo with dynamic contrast-enhanced magnetic resonance imaging. Localization of the nanoparticles within glioma cells was confirmed ex vivo with fluorescence imaging. Results We found that the intravenously administered functionalized dendrimers less than approximately 11.7 to 11.9 nm in diameter were able to traverse pores of the blood-brain tumor barrier of RG-2 malignant gliomas, while larger ones could not. Of the permeable functionalized dendrimer generations, those that possessed long blood half-lives could accumulate within glioma cells. Conclusion The therapeutically relevant upper limit of blood-brain tumor barrier pore size is approximately 11.7 to 11.9 nm. Therefore, effective transvascular drug delivery into malignant glioma cells can be accomplished by using nanoparticles that are smaller than 11.7 to 11.9 nm in diameter and possess long blood half-lives.

  4. Transfection of glioma cells with the neural-cell adhesion molecule NCAM

    DEFF Research Database (Denmark)

    Edvardsen, K; Pedersen, P H; Bjerkvig, R

    1994-01-01

    The tumor growth and the invasive capacity of a rat glioma cell line (BT4Cn) were studied after transfection with the human transmembrane 140-kDa isoform of the neural-cell adhesion molecule, NCAM. After s.c. injection, the NCAM-transfected cells showed a slower growth rate than the parent cell...... of the injection site, with a sharply demarcated border between the tumor and brain tissue. In contrast, the parental cell line showed single-cell infiltration and more pronounced destruction of normal brain tissue. Using a 51Cr-release assay, spleen cells from rats transplanted with BT4Cn tumor cells generally...

  5. Initial in vitro and in vivo assessment of Au@DTDTPA-RGD nanoparticles for Gd-MRI and 68Ga-PET dual modality imaging

    International Nuclear Information System (INIS)

    Tsoukalas, Charalmpos; Laurent, Gautier; Jiménez Sánchez, Gloria; Tsotakos, Theodoros; Bazzi, Rana; Stellas, Dimitris; Anagnostopoulos, Constantinos; Moulopoulos, Lia; Koutoulidis, Vasilis; Paravatou-Petsotas, Maria; Xanthopoulos, Stavros; Roux, Stephane; Bouziotis, Penelope

    2015-01-01

    Gadolinium chelate coated gold nanoparticles (Au@DTDTPA) can be applied as contrast agents for both in vivo X-ray and magnetic resonance imaging. In this work, our aim was to radiolabel and evaluate this gold nanoparticle with Ga-68, in order to produce a dual modality PET/MRI imaging probe. For a typical preparation of 68Ga-labeled nanoparticles, the Au@DTDTPA nanoparticles (Au@DTDTPA/Au@DTDTPA-RGD) were mixed with ammonium acetate buffer, pH 5 and 40 MBq of 68Ga eluate. The mixture was then incubated for 45 min at 65 ÅãC. Radiochemical purity was determined by ITLC. In vitro stability of both radiolabeled species was assessed in saline and serum. In vitro cell binding experiments were performed on integrin ανβ3 receptor-positive U87MG cancer cells. Non-specific Au@DTDTPA was used for comparison. Ex vivo biodistribution studies and in vivo PET and MRI imaging studies in U87MG tumor-bearing SCID mice followed. The Au@DTDTPA nanoparticles were labeled with Gallium-68 at high radiochemical yield (>95%) and were stable at RT, and in the presence of serum, for up to 3 h. The cell binding assay on U87MG glioma cells proved that 68Ga-cRGD-Au@DTDTPA had specific recognition for these cells. Biodistribution studies in U87MG tumor-bearing SCID mice showed that the tumor to muscle ratio increased from 1 to 2 h p.i. (3,71 ± 0.22 and 4,69 ± 0.09 respectively), showing a clear differentiation between the affected and the non-affected tissue. The acquired PET and MRI images were in accordance to the ex vivo biodistribution results. The preliminary results of this study warrant the need for further development of Au@DTDTPA nanoparticles radiolabeled with Ga-68, as possible dual-modality PET/MRI imaging agents.

  6. Initial in vitro and in vivo assessment of Au@DTDTPA-RGD nanoparticles for Gd-MRI and 68Ga-PET dual modality imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tsoukalas, Charalmpos [National Center for Scientific Research ' Demokritos' (Greece); Laurent, Gautier; Jiménez Sánchez, Gloria [Université de Franche-Comté, Institut UTINAM (France); Tsotakos, Theodoros [National Center for Scientific Research ' Demokritos' (Greece); Bazzi, Rana [Université de Franche-Comté, Institut UTINAM (France); Stellas, Dimitris; Anagnostopoulos, Constantinos [Biomedical Research Foundation, Academy of Athens (Greece); Moulopoulos, Lia; Koutoulidis, Vasilis [Department of Radiology, Areteion Hospital, University of Athens Medical School (Greece); Paravatou-Petsotas, Maria; Xanthopoulos, Stavros [National Center for Scientific Research ' Demokritos' (Greece); Roux, Stephane [Université de Franche-Comté, Institut UTINAM (France); Bouziotis, Penelope [National Center for Scientific Research ' Demokritos' (Greece)

    2015-05-18

    Gadolinium chelate coated gold nanoparticles (Au@DTDTPA) can be applied as contrast agents for both in vivo X-ray and magnetic resonance imaging. In this work, our aim was to radiolabel and evaluate this gold nanoparticle with Ga-68, in order to produce a dual modality PET/MRI imaging probe. For a typical preparation of 68Ga-labeled nanoparticles, the Au@DTDTPA nanoparticles (Au@DTDTPA/Au@DTDTPA-RGD) were mixed with ammonium acetate buffer, pH 5 and 40 MBq of 68Ga eluate. The mixture was then incubated for 45 min at 65 ÅãC. Radiochemical purity was determined by ITLC. In vitro stability of both radiolabeled species was assessed in saline and serum. In vitro cell binding experiments were performed on integrin ανβ3 receptor-positive U87MG cancer cells. Non-specific Au@DTDTPA was used for comparison. Ex vivo biodistribution studies and in vivo PET and MRI imaging studies in U87MG tumor-bearing SCID mice followed. The Au@DTDTPA nanoparticles were labeled with Gallium-68 at high radiochemical yield (>95%) and were stable at RT, and in the presence of serum, for up to 3 h. The cell binding assay on U87MG glioma cells proved that 68Ga-cRGD-Au@DTDTPA had specific recognition for these cells. Biodistribution studies in U87MG tumor-bearing SCID mice showed that the tumor to muscle ratio increased from 1 to 2 h p.i. (3,71 ± 0.22 and 4,69 ± 0.09 respectively), showing a clear differentiation between the affected and the non-affected tissue. The acquired PET and MRI images were in accordance to the ex vivo biodistribution results. The preliminary results of this study warrant the need for further development of Au@DTDTPA nanoparticles radiolabeled with Ga-68, as possible dual-modality PET/MRI imaging agents.

  7. Determination of the synthesis of uptake of α2-macroglobulin by cultured human glioma cells

    International Nuclear Information System (INIS)

    Druskova, E.; Bizik, J.; Grofova, M.

    1994-01-01

    Using immunological techniques, the synthesis of α 2 -macroglobulin was studied in established cell lines derived from human glioblastomas multiform. α 2 -Macroglobulin was detected in cytoplasm and in the culture medium of the analyzed cell lines. Radioimmunoprecipitation, revealed a protein with Mr corresponding to α 2 -macroglobulin in the medium conditioned by U-118MG and U-343MG cells. On the other hand, using immunoblot analysis, α 2 -macroglobulin was detected in all of the analyzed lines. In immunofluorescence test, α 2 -macroglobulin was determined also in all four cell lines, but with different staining pattern. Conditioned culture medium of U-536MG cells with the lowest level of α 2 -macroglobulin exerted the lowest mitogenic activity for human fibroblasts. (author)

  8. RasGRP3 regulates the migration of glioma cells via interaction with Arp3

    Science.gov (United States)

    Lee, Hae Kyung; Finniss, Susan; Cazacu, Simona; Xiang, Cunli; Poisson, Laila M.; Blumberg, Peter M.; Brodie, Chaya

    2015-01-01

    Glioblastoma (GBM), the most aggressive primary brain tumors, are highly infiltrative. Although GBM express high Ras activity and Ras proteins have been implicated in gliomagenesis, Ras-activating mutations are not frequent in these tumors. RasGRP3, an important signaling protein responsive to diacylglycerol (DAG), increases Ras activation. Here, we examined the expression and functions of RasGRP3 in GBM and glioma cells. RasGRP3 expression was upregulated in GBM specimens and glioma stem cells compared with normal brains and neural stem cells, respectively. RasGRP3 activated Ras and Rap1 in glioma cells and increased cell migration and invasion partially via Ras activation. Using pull-down assay and mass spectroscopy we identified the actin-related protein, Arp3, as a novel interacting protein of RasGRP3. The interaction of RasGRP3 and Arp3 was validated by immunofluorescence staining and co-immunoprecipitation, and PMA, which activates RasGRP3 and induces its translocation to the peri-nuclear region, increased the association of Arp3 and RasGRP3. Arp3 was upregulated in GBM, regulated cell spreading and migration and its silencing partially decreased these effects of RasGRP3 in glioma cells. In summary, RasGRP3 acts as an important integrating signaling protein of the DAG and Ras signaling pathways and actin polymerization and represents an important therapeutic target in GBM. PMID:25682201

  9. Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas

    Directory of Open Access Journals (Sweden)

    Torres-Trejo Alejandro

    2007-12-01

    Full Text Available Abstract Background The prognosis for malignant gliomas remains dismal. We addressed the safety, feasibility and preliminary clinical activity of the vaccinations using autologous glioma cells and interleukin (IL-4 gene transfected fibroblasts. Methods In University of Pittsburgh Cancer Institute (UPCI protocol 95-033, adult participants with recurrent glioblastoma multiforme (GBM or anaplastic astrocytoma (AA received gross total resection (GTR of the recurrent tumors, followed by two vaccinations with autologous fibroblasts retrovirally transfected with TFG-IL4-Neo-TK vector admixed with irradiated autologous glioma cells. In UPCI 99-111, adult participants with newly diagnosed GBM or AA, following GTR and radiation therapy, received two intradermal vaccinations with the TFG-IL4-Neo-TK-transfected fibroblasts admixed with type-1 dendritic cells (DC loaded with autologous tumor lysate. The participants were evaluated for occurrence of adverse events, immune response, and clinical response by radiological imaging. Results and Discussion In UPCI 95-033, only 2 of 6 participants received the vaccinations. Four other participants were withdrawn from the trial because of tumor progression prior to production of the cellular vaccine. However, both participants who received two vaccinations demonstrated encouraging immunological and clinical responses. Biopsies from the local vaccine sites from one participant displayed IL-4 dose-dependent infiltration of CD4+ as well as CD8+ T cells. Interferon (IFN-γ Enzyme-Linked Immuno-SPOT (ELISPOT assay in another human leukocyte antigen (HLA-A2+ participant demonstrated systemic T-cell responses against an HLA-A2-restricted glioma-associated antigen (GAA epitope EphA2883–891. Moreover, both participants demonstrated clinical and radiological improvement with no evidence of allergic encephalitis, although both participants eventually succumbed with the tumor recurrence. In 99-111, 5 of 6 enrolled participants

  10. DNA fingerprinting of glioma cell lines and considerations on similarity measurements.

    Science.gov (United States)

    Bady, Pierre; Diserens, Annie-Claire; Castella, Vincent; Kalt, Stefanie; Heinimann, Karl; Hamou, Marie-France; Delorenzi, Mauro; Hegi, Monika E

    2012-06-01

    Glioma cell lines are an important tool for research in basic and translational neuro-oncology. Documentation of their genetic identity has become a requirement for scientific journals and grant applications to exclude cross-contamination and misidentification that lead to misinterpretation of results. Here, we report the standard 16 marker short tandem repeat (STR) DNA fingerprints for a panel of 39 widely used glioma cell lines as reference. Comparison of the fingerprints among themselves and with the large DSMZ database comprising 9 marker STRs for 2278 cell lines uncovered 3 misidentified cell lines and confirmed previously known cross-contaminations. Furthermore, 2 glioma cell lines exhibited identity scores of 0.8, which is proposed as the cutoff for detecting cross-contamination. Additional characteristics, comprising lack of a B-raf mutation in one line and a similarity score of 1 with the original tumor tissue in the other, excluded a cross-contamination. Subsequent simulation procedures suggested that, when using DNA fingerprints comprising only 9 STR markers, the commonly used similarity score of 0.8 is not sufficiently stringent to unambiguously differentiate the origin. DNA fingerprints are confounded by frequent genetic alterations in cancer cell lines, particularly loss of heterozygosity, that reduce the informativeness of STR markers and, thereby, the overall power for distinction. The similarity score depends on the number of markers measured; thus, more markers or additional cell line characteristics, such as information on specific mutations, may be necessary to clarify the origin.

  11. Study of interaction of GNR with glioblastoma cells

    Science.gov (United States)

    Hole, Arti; Cardoso-Avila, P. E.; Sridharan, Sangita; Sahu, Aditi; Nair, Jyothi; Dongre, Harsh; Goda, Jayant S.; Sawant, Sharada; Dutt, Shilpee; Pichardo-Molina, J. L.; Murali Krishna, C.

    2018-01-01

    Radiation resistance is one of the major causes of recurrence and failure of radiotherapy. Different methods have been used to increase the efficacy of radiation therapy and at the same time restrict the radiation resistivity. From last few years nanoparticles have played a key role in the enhancement of radiosensitization. The densely packed nanoparticles can selectively scatter or absorb the high radiations, which allow better targeting of cellular components within the tumor hence resulting in increased radiation damage to the cancer cells. Glioblastoma multiforme (GBM) is one of the highly radioresistant brain cancer. Current treatment methods are surgical resection followed by concurrent chemo and radiation therapy. In this study we have used in-house engineered gold nano rodes (GNR) and analyzed their effect on U-87MG cell lines. MTT assay was employed to determine the cytotoxic concentration of the nanoparticles. Raman spectroscopy was used to analyze the effect of gold nanoparticles on glioma cells, which was followed by transmission electron microscopic examinations to visualize their cellular penetration. Our data shows that GNR were able to penetrate the cells and induce cytotoxicity at the concentration of 198 μM as determined by MTT assay at 24 post GNP treatment. Additionally, we show that Raman spectroscopy, could classify spectra between untreated and cells treated with nanoparticles. Taken together, this study shows GNR penetration and cytotoxicity in glioma cells thereby providing a rationale to use them in cancer therapeutics. Future studies will be carried out to study the biological activity of the formulation as a radiosensitizer in GBM.

  12. Treatment Resistance Mechanisms of Malignant Glioma Tumor Stem Cells

    International Nuclear Information System (INIS)

    Schmalz, Philip G.R.; Shen, Michael J.; Park, John K.

    2011-01-01

    Malignant gliomas are highly lethal because of their resistance to conventional treatments. Recent evidence suggests that a minor subpopulation of cells with stem cell properties reside within these tumors. These tumor stem cells are more resistant to radiation and chemotherapies than their counterpart differentiated tumor cells and may underlie the persistence and recurrence of tumors following treatment. The various mechanisms by which tumor stem cells avoid or repair the damaging effects of cancer therapies are discussed

  13. Soluble Tie2 overrides the heightened invasion induced by anti-angiogenesis therapies in gliomas.

    Science.gov (United States)

    Cortes-Santiago, Nahir; Hossain, Mohammad B; Gabrusiewicz, Konrad; Fan, Xuejun; Gumin, Joy; Marini, Frank C; Alonso, Marta M; Lang, Frederick; Yung, W K; Fueyo, Juan; Gomez-Manzano, Candelaria

    2016-03-29

    Glioblastoma recurrence after treatment with the anti-vascular endothelial growth factor (VEGF) agent bevacizumab is characterized by a highly infiltrative and malignant behavior that renders surgical excision and chemotherapy ineffective. Our group has previously reported that Tie2-expressing monocytes (TEMs) are aberrantly present at the tumor/normal brain interface after anti-VEGF therapies and their significant role in the invasive outgrowth of these tumors. Here, we aimed to further understand the mechanisms leading to this pro-invasive tumor microenvironment. Examination of a U87MG xenogeneic glioma model and a GL261 murine syngeneic model showed increased tumor expression of angiopoietin 2 (Ang2), a natural ligand of Tie2, after anti-angiogenesis therapies targeting VEGF or VEGF receptor (VEGFR), as assessed by immunohistochemical analysis, immunofluorescence analysis, and enzyme-linked immunosorbent assays of tumor lysates. Migration and gelatinolytic assays showed that Ang2 acts as both a chemoattractant of TEMs and an enhancing signal for their tumor-remodeling properties. Accordingly, in vivo transduction of Ang2 into intracranial gliomas increased recruitment of TEMs into the tumor. To reduce invasive tumor outgrowth after anti-angiogenesis therapy, we targeted the Ang-Tie2 axis using a Tie2 decoy receptor. Using syngeneic models, we observed that overexpression of soluble Tie2 within the tumor prevented the recruitment of TEMs to the tumor and the development of invasion after anti-angiogenesis treatment. Taken together, these data indicate an active role for the Ang2-Tie2 pathway in invasive glioma recurrence after anti-angiogenesis treatment and provide a rationale for testing the combined targeting of VEGF and Ang-Tie2 pathways in patients with glioblastoma.

  14. Human gliomas contain morphine

    DEFF Research Database (Denmark)

    Olsen, Peter; Rasmussen, Mads; Zhu, Wei

    2005-01-01

    BACKGROUND: Morphine has been found in cancer cell lines originating from human and animal cells. Thus, it became important to demonstrate whether or not actual tumours contain this opiate alkaloid. MATERIAL/METHODS: Human glioma tissues were biochemically treated to isolate and separate endogeno...... of the solutions used in the study nor was it present as a residual material in blank HPLC runs. CONCLUSIONS: Morphine is present in human gliomas, suggesting that it may exert an action that effects tumour physiology/pathology.......BACKGROUND: Morphine has been found in cancer cell lines originating from human and animal cells. Thus, it became important to demonstrate whether or not actual tumours contain this opiate alkaloid. MATERIAL/METHODS: Human glioma tissues were biochemically treated to isolate and separate endogenous...

  15. Microglia immunophenotyping in gliomas

    Science.gov (United States)

    Annovazzi, Laura; Mellai, Marta; Bovio, Enrica; Mazzetti, Samanta; Pollo, Bianca; Schiffer, Davide

    2018-01-01

    Microglia, once assimilated to peripheral macrophages, in gliomas has long been discussed and currently it is hypothesized to play a pro-tumor role in tumor progression. Uncertain between M1 and M2 polarization, it exchanges signals with glioma cells to create an immunosuppressive microenvironment and stimulates cell proliferation and migration. Four antibodies are currently used for microglia/macrophage identification in tissues that exhibit different cell forms and cell localization. The aim of the present work was to describe the distribution of the different cell forms and to deduce their significance on the basis of what is known on their function from the literature. Normal resting microglia, reactive microglia, intermediate and bumpy forms and macrophage-like cells can be distinguished by Iba1, CD68, CD16 and CD163 and further categorized by CD11b, CD45, c-MAF and CD98. The number of microglia/macrophages strongly increased from normal cortex and white matter to infiltrating and solid tumors. The ramified microglia accumulated in infiltration areas of both high- and low-grade gliomas, when hypertrophy and hyperplasia occur. In solid tumors, intermediate and bumpy forms prevailed and there is a large increase of macrophage-like cells in glioblastoma. The total number of microglia cells did not vary among the three grades of malignancy, but macrophage-like cells definitely prevailed in high-grade gliomas and frequently expressed CD45 and c-MAF. CD98+ cells were present. Microglia favors tumor progression, but many aspects suggest that the phagocytosing function is maintained. CD98+ cells can be the product of fusion, but also of phagocytosis. Microglia correlated with poorer survival in glioblastoma, when considering CD163+ cells, whereas it did not change prognosis in isocitrate dehydrogenase-mutant low grade gliomas. PMID:29399160

  16. Elemental characterization of individual glia and glioma cells in the nuclear microprobe

    International Nuclear Information System (INIS)

    Lindh, U.

    1982-01-01

    To investigate whether variations in levels of microelements are reflected at the cellular level, a study of cultured cells was undertaken. For elemental characterization were chosen human glia and glioma cell lines. The cells were freeze-dried and about 1000 cells of each line were analyzed in the nuclear microprobe with a probe diameter of 10 μm. Scanning of the specimens under the beam made possible heat reduction and the X-ray spectrum induced was continuously recorded and subsequently processed in the computer. Elemental maps of the cells were then generated and the information from each member of the cell populations could be considered as well as the population statistics. Mass determination was accomplished by means of the bremsstrahlung continuum intensity. The main feature resulting from the characterization was that the glioma cells in average held appreciably higher contents of copper and zinc than did the glia cells. (orig.)

  17. Low dose ionizing radiation responses and knockdown of ATM kinase activity in glioma stem cells

    International Nuclear Information System (INIS)

    Lim, Y.C.; Roberts, T.; Day, B.; Kozlov, S.; Walker, D.; Lavin, M.; Harding, A.

    2009-01-01

    Genesis of new cells in the mammalian brain has previously been regarded as a negligible event; an assumption that long limited our understanding in the development of neoplasias. The recent discovery of perpetual lineages derived from neural stem cells has resulted in a new approach to studying the cellular behaviour of potential cancer stem cells in the brain. Glioblastoma multiforme (GBM), the most aggressive and lethal brain tumour is derived from a group of cancerous stem cells known as glioma stem cells. GBM cells are impervious to conventional therapies such as surgical resection and ionizing radiation because of their pluripotent and radioresistant properties. Thus in our study, we aim to investigate whether a combination of chemo- and radio- therapies is an effective treatment for glioma stem cells. The study utilizes a specific kinase inhibitor (ATMi) of the ATM (Ataxia-telangiectasia mutated) protein which is an essential protein in DNA-damage responses. In the presence of both low dose radiation and ATMi, glioma stem cells have rapid onset of cell death and reduction in growth. Since DNA damage can be inherited through cell division, accumulated DNA breaks in later generations may also lead to cell death. The limitation of conventional radiation therapy is that administration of fractionated (low) doses to reduce any potential harm to the surrounding healthy cells in the brain outweighs the benefits of high radiation doses to induce actual arrest in the propagation of malignant cells. Our study demonstrates a benefit in using low dose radiation combined with chemotherapy resulting in a reduction in malignancy of glioma stem cells. (author)

  18. Quantitative proteomics and transcriptomics reveals metabolic differences in attracting and non-attracting human-in-mouse glioma stem cell xenografts and stromal cells

    Directory of Open Access Journals (Sweden)

    Norelle C. Wildburger

    2015-09-01

    Full Text Available Bone marrow-derived human mesenchymal stem cells (BM-hMSCs show promise as cell-based delivery vehicles for anti-glioma therapeutics, due to innate tropism for gliomas. However, in clinically relevant human-in-mouse glioma stem cell xenograft models, BM-hMSCs tropism is variable. We compared the proteomic profile of cancer and stromal cells in GSCXs that attract BM-hMSCs (“attractors” with those to do not (“non-attractors” to identify pathways that may modulate BM-hMSC homing, followed by targeted transcriptomics. The results provide the first link between fatty acid metabolism, glucose metabolism, ROS, and N-glycosylation patterns in attractors. Reciprocal expression of these pathways in the stromal cells suggests microenvironmental cross-talk.

  19. Effects of irradiation on cytokine production in glioma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Ryuya; Tanaka, Ryuichi; Yoshida, Seiichi [Niigata Univ. (Japan). Brain Research Inst.

    1993-11-01

    The effects of irradiation on cytokine production in glioma cell lines, NP1, NP2 and NP3, were studied. Culture supernatants were collected after 6, 24, 48 or 72 hours and the concentrations of interleukin (IL)-6 and IL-8 measured by enzyme-linked immunosorbent assay. Spontaneous and IL-1[beta]-stimulated productions were analyzed. Some cells were given a single dose of Lineac irradiation (10 or 20 Gy). Production of IL-6 (with or without IL-1[beta] stimulation) increased gradually to a maximum after 72 hours, more in the 20 Gy-irradiated cells than 10 Gy cells (p<0.01). Production of IL-8 increased gradually to a maximum after 48 or 72 hours. Spontaneous production of IL-8 increased more in 20 Gy-irradiated cells than 10 Gy cells after 6 and 24 hours (p<0.01), but increased more in 10 Gy cells than 20 Gy cells after 48 and 72 hours (p<0.01). The production of IL-8 stimulated by IL-1[beta] increased more in 10 Gy cells than 20 Gy cells 24 hours later (p<0.01). IL-6 and IL-8 production differed in the response to irradiation. Our data suggest that bidirectional communication between the immune system and glioma cells changes after radiotherapy. (author).

  20. PERK silence inhibits glioma cell growth under low glucose stress by blockage of p-AKT and subsequent HK2's mitochondria translocation

    KAUST Repository

    Hou, Xu; Liu, Yaohua; Liu, Huailei; Chen, Xin; Liu, Min; Che, Hui; Guo, Fei; Wang, Chunlei; Zhang, Daming; Wu, Jianing; Chen, Xiaofeng; Shen, Chen; Li, Chenguang; Peng, Fei; Bi, Yunke; Yang, Zhuowen; Yang, Guang; Ai, Jing; Gao, Xin; Zhao, Shiguang

    2015-01-01

    Glioma relies on glycolysis to obtain energy and sustain its survival under low glucose microenvironment in vivo. The mechanisms on glioma cell glycolysis regulation are still unclear. Signaling mediated by Double-stranded RNA-activated protein kinase (PKR) - like ER kinase (PERK) is one of the important pathways of unfolded protein response (UPR) which is comprehensively activated in cancer cells upon the hypoxic and low glucose stress. Here we show that PERK is significantly activated in human glioma tissues. PERK silencing results in decreased glioma cell viability and ATP/lactate production upon low glucose stress, which is mediated by partially blocked AKT activation and subsequent inhibition of Hexokinase II (HK2)'s mitochondria translocation. More importantly, PERK silenced glioma cells show decreased tumor formation capacity. Our results reveal that PERK activation is involved in glioma glycolysis regulation and may be a potential molecular target for glioma treatment.

  1. PERK silence inhibits glioma cell growth under low glucose stress by blockage of p-AKT and subsequent HK2's mitochondria translocation

    KAUST Repository

    Hou, Xu

    2015-03-12

    Glioma relies on glycolysis to obtain energy and sustain its survival under low glucose microenvironment in vivo. The mechanisms on glioma cell glycolysis regulation are still unclear. Signaling mediated by Double-stranded RNA-activated protein kinase (PKR) - like ER kinase (PERK) is one of the important pathways of unfolded protein response (UPR) which is comprehensively activated in cancer cells upon the hypoxic and low glucose stress. Here we show that PERK is significantly activated in human glioma tissues. PERK silencing results in decreased glioma cell viability and ATP/lactate production upon low glucose stress, which is mediated by partially blocked AKT activation and subsequent inhibition of Hexokinase II (HK2)\\'s mitochondria translocation. More importantly, PERK silenced glioma cells show decreased tumor formation capacity. Our results reveal that PERK activation is involved in glioma glycolysis regulation and may be a potential molecular target for glioma treatment.

  2. D-amino acid oxidase gene therapy sensitizes glioma cells to the antiglycolytic effect of 3-bromopyruvate.

    Science.gov (United States)

    El Sayed, S M; Abou El-Magd, R M; Shishido, Y; Chung, S P; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-01-01

    Glioma tumors are refractory to conventional treatment. Glioblastoma multiforme is the most aggressive type of primary brain tumors in humans. In this study, we introduce oxidative stress-energy depletion (OSED) therapy as a new suggested treatment for glioblastoma. OSED utilizes D-amino acid oxidase (DAO), which is a promising therapeutic protein that induces oxidative stress and apoptosis through generating hydrogen peroxide (H2O2). OSED combines DAO with 3-bromopyruvate (3BP), a hexokinase II (HK II) inhibitor that interferes with Warburg effect, a metabolic alteration of most tumor cells that is characterized by enhanced aerobic glycolysis. Our data revealed that 3BP induced depletion of energetic capabilities of glioma cells. 3BP induced H2O2 production as a novel mechanism of its action. C6 glioma transfected with DAO and treated with D-serine together with 3BP-sensitized glioma cells to 3BP and decreased markedly proliferation, clonogenic power and viability in a three-dimensional tumor model with lesser effect on normal astrocytes. DAO gene therapy using atelocollagen as an in vivo transfection agent proved effective in a glioma tumor model in Sprague-Dawley (SD) rats, especially after combination with 3BP. OSED treatment was safe and tolerable in SD rats. OSED therapy may be a promising therapeutic modality for glioma.

  3. Elevated chemokine CC-motif receptor-like 2 (CCRL2) promotes cell migration and invasion in glioblastoma.

    Science.gov (United States)

    Yin, Fengqiong; Xu, Zhenhua; Wang, Zifeng; Yao, Hong; Shen, Zan; Yu, Fang; Tang, Yiping; Fu, Dengli; Lin, Sheng; Lu, Gang; Kung, Hsiang-Fu; Poon, Wai Sang; Huang, Yunchao; Lin, Marie Chia-Mi

    2012-12-14

    Chemokine CC-motif receptor-like 2 (CCRL2) is a 7-transmembrane G protein-coupled receptor which plays a key role in lung dendritic cell trafficking to peripheral lymph nodes. The function and expression of CCRL2 in cancer is not understood at present. Here we report that CCRL2 expression level is elevated in human glioma patient samples and cell lines. The magnitude of increase is positively associated with increasing tumor grade, with the highest level observed in grade IV glioblastoma. By gain-of-function and loss-of-function studies, we further showed that CCRL2 did not regulate the growth of human glioblatoma U87 and U373 cells. Importantly, we demonstrated that over-expression of CCRL2 significantly enhanced the migration rate and invasiveness of the glioblastoma cells. Taken together, these results suggest for the first time that elevated CCRL2 in glioma promotes cell migration and invasion. The potential roles of CCRL2 as a novel therapeutic target and biomarker warrant further investigations. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Demethoxycurcumin Retards Cell Growth and Induces Apoptosis in Human Brain Malignant Glioma GBM 8401 Cells

    Directory of Open Access Journals (Sweden)

    Tzuu-Yuan Huang

    2012-01-01

    Full Text Available Demethoxycurcumin (DMC; a curcumin-related demethoxy compound has been recently shown to display antioxidant and antitumor activities. It has also produced a potent chemopreventive action against cancer. In the present study, the antiproliferation (using the MTT assay, DMC was found to have cytotoxic activities against GBM 8401 cell with IC50 values at 22.71 μM and induced apoptosis effects of DMC have been investigated in human brain malignant glioma GBM 8401 cells. We have studied the mitochondrial membrane potential (MMP, DNA fragmentation, caspase activation, and NF-κB transcriptional factor activity. By these approaches, our results indicated that DMC has produced an inhibition of cell proliferation as well as the activation of apoptosis in GBM 8401 cells. Both effects were observed to increase in proportion with the dosage of DMC treatment, and the apoptosis was induced by DMC in human brain malignant glioma GBM 8401 cells via mitochondria- and caspase-dependent pathways.

  5. Glioma cell death induced by irradiation or alkylating agent chemotherapy is independent of the intrinsic ceramide pathway.

    Directory of Open Access Journals (Sweden)

    Dorothee Gramatzki

    Full Text Available Resistance to genotoxic therapy is a characteristic feature of glioma cells. Acid sphingomyelinase (ASM hydrolyzes sphingomyelin to ceramide and glucosylceramide synthase (GCS catalyzes ceramide metabolism. Increased ceramide levels have been suggested to enhance chemotherapy-induced death of cancer cells.Microarray and clinical data for ASM and GCS in astrocytomas WHO grade II-IV were acquired from the Rembrandt database. Moreover, the glioblastoma database of the Cancer Genome Atlas network (TCGA was used for survival data of glioblastoma patients. For in vitro studies, increases in ceramide levels were achieved either by ASM overexpression or by the GCS inhibitor DL-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP in human glioma cell lines. Combinations of alkylating chemotherapy or irradiation and ASM overexpression, PPMP or exogenous ceramide were applied in parental cells. The anti-glioma effects were investigated by assessing proliferation, metabolic activity, viability and clonogenicity. Finally, viability and clonogenicity were assessed in temozolomide (TMZ-resistant cells upon treatment with PPMP, exogenous ceramide, alkylating chemotherapy, irradiation or their combinations.Interrogations from the Rembrandt and TCGA database showed a better survival of glioblastoma patients with low expression of ASM or GCS. ASM overexpression or PPMP treatment alone led to ceramide accumulation but did not enhance the anti-glioma activity of alkylating chemotherapy or irradiation. PPMP or exogenous ceramide induced acute cytotoxicity in glioblastoma cells. Combined treatments with chemotherapy or irradiation led to additive, but not synergistic effects. Finally, no synergy was found when TMZ-resistant cells were treated with exogenous ceramide or PPMP alone or in combination with TMZ or irradiation.Modulation of intrinsic glioma cell ceramide levels by ASM overexpression or GCS inhibition does not enhance the anti-glioma activity of

  6. Radiosensitive effect of hypoxia-inducible factor 1α inhibitor YC-1 on hypoxic glioma SHG44 cell line

    International Nuclear Information System (INIS)

    Guo Xinwei; Lu Xueguan; Tong Liumei; Zong Tianzhou; Chen Liesong

    2011-01-01

    Objective: To investigate the radiosensitive effect of hypoxia-inducible factor 1α (HIF-1α) inhibitor YC-1 on hypoxic glioma SHG44 cell line and its related mechanism. Methods: Glioma SHG44 cell line was cultured in normoxic (20% O 2 ), continuous hypoxia (1% O 2 ) for 12 h and 24 h, continuous hypoxia plus YC-1 was performed for 12 h and 24 h, respectively. The expression of HIF-1α was assessed by Western blot. The radiosensitivity was evaluated by the survival curve, and the sublethal damage repair (SLDR) ability was measured by dose-fraction experiment. Results: HIF-1α protein levels of glioma SHG44 cells were significantly increased after hypoxic cultures for 12 h and 24 h than those of the corresponding cells cultured in normoxic, while the radiosensitivity was lower. The OER (oxygen-enhancement ratio) of SHG44 cells in hypoxia for 12 h and 24 h were 1.22 and 1.37, respectively. By the further statistical analysis it was found that SLDR ability of glioma SHG44 was increased at hypoxia, and when irradiation was carried one at the interval of 8, 10, 12 h it was statistically significant (P<0.05). HIF-1α protein levels of glioma SHG44 cells cultured in hypoxia plus YC-1 for 12 h and 24 h were decreased significantly compared to the corresponding cells cultured in hypoxia only, while the radiosensitivity was significantly increased. the EF (enhancement factor) of YC-1 for glioma SHG44 cells at hypoxia for 12 h and 24 h was 1.27. By the further statistical analysis it was also found that SLDR ability was decreased significantly for hypoxic SHG44 cells which was co-cultured with YC-1, and at the interval of 8, 10, 12 h irradiation was statistically significant (P<0.05). Conclusion: YC-1 can increase the radiosensitivity of hypoxic glioma SHG44 cell line, and its mechanism is related to SLDR inhibited by YC-1. (authors)

  7. Cyclic hexapeptide-conjugated nanoparticles enhance curcumin delivery to glioma tumor cells and tissue

    Directory of Open Access Journals (Sweden)

    Zhang X

    2017-08-01

    Full Text Available Xuemei Zhang,1–3 Xuejuan Li,1,4 Hongchen Hua,1 Aiping Wang,1 Wanhui Liu,1–3 Youxin Li,1–3 Fenghua Fu,1–3 Yanan Shi,5 Kaoxiang Sun1 1School of Pharmacy, Yantai University, Yantai, Shandong Province, People’s Republic of China; 2State Key Laboratory of Long-acting and Targeting Drug Delivery System, Yantai, Shandong Province, People’s Republic of China; 3Luye Pharmaceutical Co., Ltd., Shandong Province, People’s Republic of China; 4National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Shandong Province, People’s Republic of China; 5School of Pharmacy, Binzhou Medical University, Shandong Province, People’s Republic of China Abstract: Glioma has one of the highest mortality rates among primary brain tumors. The clinical treatment for glioma is very difficult due to its infiltration and specific growth locations. To achieve improved drug delivery to a brain tumor, we report the preparation and in vitro and in vivo evaluation of curcumin nanoparticles (Cur-NPs. The cyclic hexapeptide c(RGDf(N-meVK-C (cHP has increased affinity for cells that overexpress integrins and was designed to target Cur-NPs to tumors. Functional polyethyleneglycol-modified poly(D,L-lactide-co-glycolide (PEG-PLGA conjugated to cHP was synthesized, and targeted Cur-NPs were prepared using a self-assembly nanoprecipitation process. The physicochemical properties and the in vitro cytotoxicity, accuracy, and penetration capabilities of Cur-NPs targeting cells with high levels of integrin expression were investigated. The in vivo targeting and penetration capabilities of the NPs were also evaluated against glioma in rats using in vivo imaging equipment. The results showed that the in vitro cytotoxicity of the targeted cHP-modified curcumin nanoparticles (cHP/Cur-NPs was higher than that of either free curcumin or non-targeted Cur-NPs due to the superior ability of the cHP/Cur-NPs to target tumor cells

  8. Molecular analysis of ex-vivo CD133+ GBM cells revealed a common invasive and angiogenic profile but different proliferative signatures among high grade gliomas

    Directory of Open Access Journals (Sweden)

    Garcia Juan L

    2010-08-01

    Full Text Available Abstract Background Gliomas are the most common type of primary brain tumours, and in this group glioblastomas (GBMs are the higher-grade gliomas with fast progression and unfortunate prognosis. Two major aspects of glioma biology that contributes to its awful prognosis are the formation of new blood vessels through the process of angiogenesis and the invasion of glioma cells. Despite of advances, two-year survival for GBM patients with optimal therapy is less than 30%. Even in those patients with low-grade gliomas, that imply a moderately good prognosis, treatment is almost never curative. Recent studies have demonstrated the existence of a small fraction of glioma cells with characteristics of neural stem cells which are able to grow in vitro forming neurospheres and that can be isolated in vivo using surface markers such as CD133. The aim of this study was to define the molecular signature of GBM cells expressing CD133 in comparison with non expressing CD133 cells. This molecular classification could lead to the finding of new potential therapeutic targets for the rationale treatment of high grade GBM. Methods Eight fresh, primary and non cultured GBMs were used in order to study the gene expression signatures from its CD133 positive and negative populations isolated by FACS-sorting. Dataset was generated with Affymetrix U133 Plus 2 arrays and analysed using the software of the Affymetrix Expression Console. In addition, genomic analysis of these tumours was carried out by CGH arrays, FISH studies and MLPA; Results Gene expression analysis of CD133+ vs. CD133- cell population from each tumour showed that CD133+ cells presented common characteristics in all glioblastoma samples (up-regulation of genes involved in angiogenesis, permeability and down-regulation of genes implicated in cell assembly, neural cell organization and neurological disorders. Furthermore, unsupervised clustering of gene expression led us to distinguish between two groups

  9. Experimental study on the killing effects of 125IUdR to human glioma cells in vitro

    International Nuclear Information System (INIS)

    Li Jinquan; Bao Yaodong; Zhou Dai; Cui Gang; Wang Bocheng; Jiang Yimin; Wang Haiqiu; Wu Yiwei

    2001-01-01

    The 125 IUdR-uptake profile and the cytocidal effects of 125 IUdR on human cerebral glioma (SHG44) cells were estimated after incubation with 125 IUdR. The killing effects of 125 IUdR comparing with Na 125 I on SHG44 were estimated by colony forming method. The results showed that the amounts of 125 IUdR uptake by SHG44 were growing with the rate of dose of 125 IUdR in the medium, relation factor r = 0.9917. Also the concentration of 125 IUdR uptake by SHG44 was time-dependent, relation factor r = 0.9859. As the concentration in SHG44 growing, the inhibition effects became stronger, relation factor r = - 0.9736. The LD 50 was 8.7 +- 0.12 kBq/ml. The concentration of radioactivity ingestion was significantly stronger in 125 IUdR group than that in Na 125 I group. The surviving fraction was significantly different between in the 125 IUdR group and in Na 125 I group at the concentration point 9.0 kBq/ml. 125 IUdR may be incorporated in SHG44 cell, and the concentration of 125 IUdR ingestion by SHG44 was influenced with the dose in the medium and the culturing time. The prohibitive effects of 125 IUdR on SHG44 cell were obvious. The prohibition effects were significantly stronger in 125 IUdR group than that in Na 125 I group. 125 IUdR may be a kind of potential drug in the therapy of human cerebral glioma

  10. Mesenchymal stem cells derived from adipose tissue vs bone marrow: in vitro comparison of their tropism towards gliomas.

    Directory of Open Access Journals (Sweden)

    Courtney Pendleton

    Full Text Available INTRODUCTION: Glioblastoma is the most common primary malignant brain tumor, and is refractory to surgical resection, radiation, and chemotherapy. Human mesenchymal stem cells (hMSC may be harvested from bone marrow (BMSC and adipose (AMSC tissue. These cells are a promising avenue of investigation for the delivery of adjuvant therapies. Despite extensive research into putative mechanisms for the tumor tropism of MSCs, there remains no direct comparison of the efficacy and specificity of AMSC and BMSC tropism towards glioma. METHODS: Under an IRB-approved protocol, intraoperative human Adipose MSCs (hAMSCs were established and characterized for cell surface markers of mesenchymal stem cell origin in conjunction with the potential for tri-lineage differentiation (adipogenic, chondrogenic, and osteogenic. Validated experimental hAMSCs were compared to commercially derived hBMSCs (Lonza and hAMSCs (Invitrogen for growth responsiveness and glioma tropism in response to glioma conditioned media obtained from primary glioma neurosphere cultures. RESULTS: Commercial and primary culture AMSCs and commercial BMSCs demonstrated no statistically significant difference in their migration towards glioma conditioned media in vitro. There was statistically significant difference in the proliferation rate of both commercial AMSCs and BMSCs as compared to primary culture AMSCs, suggesting primary cultures have a slower growth rate than commercially available cell lines. CONCLUSIONS: Adipose- and bone marrow-derived mesenchymal stem cells have similar in vitro glioma tropism. Given the well-documented ability to harvest larger numbers of AMSCs under local anesthesia, adipose tissue may provide a more efficient source of MSCs for research and clinical applications, while minimizing patient morbidity during cell harvesting.

  11. Transcriptional differences between normal and glioma-derived glial progenitor cells identify a core set of dysregulated genes.

    Science.gov (United States)

    Auvergne, Romane M; Sim, Fraser J; Wang, Su; Chandler-Militello, Devin; Burch, Jaclyn; Al Fanek, Yazan; Davis, Danielle; Benraiss, Abdellatif; Walter, Kevin; Achanta, Pragathi; Johnson, Mahlon; Quinones-Hinojosa, Alfredo; Natesan, Sridaran; Ford, Heide L; Goldman, Steven A

    2013-06-27

    Glial progenitor cells (GPCs) are a potential source of malignant gliomas. We used A2B5-based sorting to extract tumorigenic GPCs from human gliomas spanning World Health Organization grades II-IV. Messenger RNA profiling identified a cohort of genes that distinguished A2B5+ glioma tumor progenitor cells (TPCs) from A2B5+ GPCs isolated from normal white matter. A core set of genes and pathways was substantially dysregulated in A2B5+ TPCs, which included the transcription factor SIX1 and its principal cofactors, EYA1 and DACH2. Small hairpin RNAi silencing of SIX1 inhibited the expansion of glioma TPCs in vitro and in vivo, suggesting a critical and unrecognized role of the SIX1-EYA1-DACH2 system in glioma genesis or progression. By comparing the expression patterns of glioma TPCs with those of normal GPCs, we have identified a discrete set of pathways by which glial tumorigenesis may be better understood and more specifically targeted. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Improving Seroreactivity-Based Detection of Glioma

    Directory of Open Access Journals (Sweden)

    Nicole Ludwig

    2009-12-01

    Full Text Available Seroreactivity profiling emerges as valuable technique for minimal invasive cancer detection. Recently, we provided first evidence for the applicability of serum profiling of glioma using a limited number of immunogenic antigens. Here, we screened 57 glioma and 60 healthy sera for autoantibodies against 1827 Escherichia coli expressed clones, including 509 in-frame peptide sequences. By a linear support vector machine approach, we calculated mean specificity, sensitivity, and accuracy of 100 repetitive classifications. We were able to differentiate glioma sera from sera of the healthy controls with a specificity of 90.28%, a sensitivity of 87.31% and an accuracy of 88.84%. We were also able to differentiate World Health Organization grade IV glioma sera from healthy sera with a specificity of 98.45%, a sensitivity of 80.93%, and an accuracy of 92.88%. To rank the antigens according to their information content, we computed the area under the receiver operator characteristic curve value for each clone. Altogether, we found 46 immunogenic clones including 16 in-frame clones that were informative for the classification of glioma sera versus healthy sera. For the separation of glioblastoma versus healthy sera, we found 91 informative clones including 26 in-frame clones. The best-suited in-frame clone for the classification glioma sera versus healthy sera corresponded to the vimentin gene (VIM that was previously associated with glioma. In the future, autoantibody signatures in glioma not only may prove useful for diagnosis but also offer the prospect for a personalized immune-based therapy.

  13. Molecular Therapeutic Targets for Glioma Angiogenesis

    Directory of Open Access Journals (Sweden)

    Shingo Takano

    2010-01-01

    Full Text Available Due to the prominent angiogenesis that occurs in malignant glioma, antiangiogenic therapy has been attempted. There have been several molecular targets that are specific to malignant gliomas, as well as more broadly in systemic cancers. In this review, I will focus on some topics related to molecular therapeutic targets for glioma angiogenesis. First, important angiogenic factors that could be considered molecular targets are VEGF, VEGF-induced proteins on endothelial cells, tissue factor, osteopontin, v3 integrin, and thymidine phosphorylase as well as endogenous inhibitors, soluble Flt1, and thrombospondin 1. Second, hypoxic areas are also decreased by metronomic CPT11 treatment as well as temozolomide. Third, glioma-derived endothelial cells that are genetically and functionally distinct from normal endothelial cells should be targeted, for example, with SDF-1 and CXCR7 chemokine. Fourth, endothelial progenitor cells (EPCs likely contribute towards glioma angiogenesis in the brain and could be useful as a drug delivery tool. Finally, blockade of delta-like 4 (Dll4 results in a nonfunctioning vasculature and could be another important target distinct from VEGF.

  14. 5-Aminolevulinic acid-mediated sonosensitization of rat RG2 glioma cells in vitro

    Directory of Open Access Journals (Sweden)

    Krzysztof Bilmin

    2016-10-01

    Full Text Available Sonodynamic therapy (SDT is a promising technique based on the ability of certain substances, called sonosensitizers, to sensitize cancer cells to non-thermal effects of low-energy ultrasound waves, allowing their destruction. Sonosensitization is thought to induce cell death by direct physical effects such as cavitation and acoustical streaming as well as by complementary chemical reactions generating oxygen free radicals. One of the promising sonosensitizers is 5-aminolevulinic acid (ALA which upon selective uptake by cancer cells is metabolized and accumulated as protoporphyrin IX. The objective of the study was to describe ALA-mediated sonodynamic effects in vitro on a rat RG2 glioma cell line. Glioma cells, seeded at the bottom of 96-well plates and incubated with ALA (10 µg/ml for 6 h, were exposed to the sinusoidal US pulses with a resonance frequency of 1 MHz, 1000 µs duration, 0.4 duty-cycle, and average acoustic power varying from 2 W to 6 W. Ultrasound waves were generated by a flat circular piezoelectric transducer with a diameter of 25 mm. Cell viability was determined by MTT assay. Structural cellular changes were visualized with a fluorescence microscope. Signs of cytotoxicity such as a decrease in cell viability, chromatin condensation and apoptosis were found. ALA-mediated SDT evokes cytotoxic effects of low intensity US on rat RG2 glioma cells in vitro . This cell line is indicated for further preclinical assessment of SDT in in vivo conditions.

  15. Development of pure Mg open-cell foams as structured CO{sub 2} captor

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, I.A., E-mail: iafiguera@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Cd. Universitaria, C.P. 04510 México, D.F. (Mexico); Suarez, M.A.; Velasco-Castro, M.; Pfeiffer, H.; Alcántar-Vázquez, B.; González, G. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Cd. Universitaria, C.P. 04510 México, D.F. (Mexico); Alfonso, I. [Instituto de Investigaciones en Materiales, Unidad Morelia, Universidad Nacional Autónoma de México, Campus Morelia UNAM, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, C.P. 58190 Morelia, Michoacán (Mexico); Lara-Rodríguez, G.A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Cd. Universitaria, C.P. 04510 México, D.F. (Mexico)

    2015-12-10

    Highlights: • The CO{sub 2} capture capacity of the open-cell Mg foams was studied at low temperatures. • Open-cell Mg foams with pore size of 350 μm were used for the CO{sub 2} capture study. • The highest amount of CO{sub 2} captured was obtained at 60 °C and 80% of relative humidity. • A CO{sub 2} capture capacity of 0.87 mmol/g was obtained for the open-cell Mg foams. • The oxidized open-cell Mg foams can be used as CO{sub 2} captors. - Abstract: The CO{sub 2} capture capacity of the superficial oxide layer formed in pure open-cell Mg foams was studied at low temperatures (40–60 °C) varying the relative humidity from 40 to 80%. Mg foam samples with pore size of 350 μm and surface area of 5.4 m{sup 2}/g were used for these analyses. Optical microscopy and X-ray diffraction techniques were used to characterize the cell structure and the superficial oxide formed in the cell-foams, respectively. The final products formed after the CO{sub 2}–H{sub 2}O capture experiments were identified by scanning electron microscopy and attenuated total reflexion-Fourier transform infrared spectroscopy (ATR-FTIR). The MgCO{sub 3} and other products, formed after CO{sub 2} + H{sub 2}O capture process, were thermally decomposed, to quantify the amount of CO{sub 2} captured by the superficial MgO layer using standard thermogravimetric analysis. The results showed that the highest amount of CO{sub 2} captured was obtained at 60 °C and 80% of relative humidity, with a CO{sub 2} capture capacity of 0.87 mmol/g, which is comparable with others CO{sub 2} MgO-based captors. The considerable CO{sub 2} capture capacity at low temperatures supports the potential of the pure open-cell Mg foams to be used as structured CO{sub 2} captors.

  16. MiR-18a regulates the proliferation, migration and invasion of human glioblastoma cell by targeting neogenin

    International Nuclear Information System (INIS)

    Song, Yichen; Wang, Ping; Zhao, Wei; Yao, Yilong; Liu, Xiaobai; Ma, Jun; Xue, Yixue; Liu, Yunhui

    2014-01-01

    MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identified as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma. - Highlights: • MiR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines. • Neogenin was identified as the target gene of miR-18a. • Neogenin expressions were decreased along with the rising pathological grades of glioblastoma. • Inhibition of miR-18a suppressed biological behavior of glioma cells by up-regulating neogenin

  17. MiR-18a regulates the proliferation, migration and invasion of human glioblastoma cell by targeting neogenin

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yichen, E-mail: jeff200064017@163.com [Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004 (China); Wang, Ping, E-mail: pingwang8000@163.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Zhao, Wei, E-mail: 15669746@qq.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Yao, Yilong, E-mail: yaoyilong_322@163.com [Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004 (China); Liu, Xiaobai, E-mail: paganizonda1991@qq.com [The 96th Class, 7-year Program, China Medical University, Shenyang, Liaoning Province 110001 (China); Ma, Jun, E-mail: majun_724@163.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Xue, Yixue, E-mail: xueyixue888@163.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Liu, Yunhui, E-mail: liuyh@sj-hospital.org [Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004 (China)

    2014-05-15

    MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identified as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma. - Highlights: • MiR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines. • Neogenin was identified as the target gene of miR-18a. • Neogenin expressions were decreased along with the rising pathological grades of glioblastoma. • Inhibition of miR-18a suppressed biological behavior of glioma cells by up-regulating neogenin.

  18. Irradiation With Carbon Ion Beams Induces Apoptosis, Autophagy, and Cellular Senescence in a Human Glioma-Derived Cell Line

    International Nuclear Information System (INIS)

    Jinno-Oue, Atsushi; Shimizu, Nobuaki; Hamada, Nobuyuki; Wada, Seiichi; Tanaka, Atsushi; Shinagawa, Masahiko; Ohtsuki, Takahiro; Mori, Takahisa; Saha, Manujendra N.; Hoque, Ariful S.; Islam, Salequl; Kogure, Kimitaka; Funayama, Tomoo; Kobayashi, Yasuhiko

    2010-01-01

    Purpose: We examined biological responses of human glioma cells to irradiation with carbon ion beams (C-ions). Methods and Materials: A human glioma-derived cell line, NP-2, was irradiated with C-ions. Apoptotic cell nuclei were stained with Hoechst 33342. Induction of autophagy was examined either by staining cells with monodansylcadaverine (MDC) or by Western blotting to detect conversion of microtuble-associated protein light chain 3 (MAP-LC3) (LC3-I) to the membrane-bound form (LC3-II). Cellular senescence markers including induction of senescence-associated β-galactosidase (SA-β-gal) were examined. The mean telomere length of irradiated cells was determined by Southern blot hybridization. Expression of tumor suppressor p53 and cyclin/cyclin-dependent kinase inhibitor p21 WAF1/CIP1 in the irradiated cells was analyzed by Western blotting. Results: When NP-2 cells were irradiated with C-ions at 6 Gy, the major population of the cells died of apoptosis and autophagy. The residual fraction of attached cells ( WAF1/CIP1 was induced in NP-2 cells after irradiation. Furthermore, we found that irradiation with C-ions induced cellular senescence in a human glioma cell line lacking functional p53. Conclusions: Irradiation with C-ions induced apoptosis, autophagy, and cellular senescence in human glioma cells.

  19. Response-predictive gene expression profiling of glioma progenitor cells in vitro.

    Directory of Open Access Journals (Sweden)

    Sylvia Moeckel

    Full Text Available High-grade gliomas are amongst the most deadly human tumors. Treatment results are disappointing. Still, in several trials around 20% of patients respond to therapy. To date, diagnostic strategies to identify patients that will profit from a specific therapy do not exist.In this study, we used serum-free short-term treated in vitro cell cultures to predict treatment response in vitro. This approach allowed us (a to enrich specimens for brain tumor initiating cells and (b to confront cells with a therapeutic agent before expression profiling.As a proof of principle we analyzed gene expression in 18 short-term serum-free cultures of high-grade gliomas enhanced for brain tumor initiating cells (BTIC before and after in vitro treatment with the tyrosine kinase inhibitor Sunitinib. Profiles from treated progenitor cells allowed to predict therapy-induced impairment of proliferation in vitro.For the tyrosine kinase inhibitor Sunitinib used in this dataset, the approach revealed additional predictive information in comparison to the evaluation of classical signaling analysis.

  20. The anti-tumor effect of ACNU and x-irradiation on mouse glioma

    International Nuclear Information System (INIS)

    Nakagawa, Hidemitsu; Hori, Masaharu; Hasegawa, Hiroshi; Mogami, Heitaro; Hayakawa, Toru.

    1979-01-01

    Anti-tumor activities of 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea hydrochloride (ACNU) and x-irradiation on methylcholanthrene induced glioma in C 57 BL mice were studied in vitro and in vivo. In vitro experiments using cultured glioma cells (MGB cells), the synchronization of cell cycle was done by excess addition of thymidine, and the anti-tumor cell effect were investigated by mean of determinations of DNA synthesis, mitotic index and the number of the living cells following the treatments. As the results, it appeared obvious that ACNU was most effective on MGB cells in S phase and x-irradiation in M phase. As to the combined therapy of ACNU and x-irradiation, the anti-tumor effect was most remarkable when the cells were treated by x-irradiation in the G 2 , M phase, which were hervested by addition of ACNU 44 hours before irradiation. However simultaneous treatment of ACNU and x-irradiation on the cells in G 1 phase was not so remarkable. In vivo experiments the anti-tumor effect of ACNU and x-irradiation on subcutaneously or intracranially transplanted glioma in mice was investigated. Either ACNU 10 mg/kg or local x-irradiation 1240 rads showed inhibitory effect on the tumor growth and prolonged the survival time of the tumor bearing mice. The combination therapy was more effective than ACNU or x-irradiation alone, particularly combination therapy of ACNU and repeated small doses irradiation of x-ray was remarkably effective. Evidence obtained indicated that the combination therapy of ACNU and x-irradiation have synergistic anti-tumor effect on experimental mouse glioma. (author)

  1. The change of p16 gene expression in glioma cell line C6 after radiation with gamma knife

    International Nuclear Information System (INIS)

    Zhao Xingli; Zhao Conghai; Tian Yu

    2002-01-01

    Objective: T observe the change of expression of p16 gene product, P16 protein, after treated by gamma knife on glioma cell line C6. Methods: Glioma C6 cells proliferated in vitro, treated by γ-knife in dose of 5.00 and 6.22 Gy, respectively. P16 protein was detected by immunohistochemical technique and image analysis. Results: The P16 protein in glioma C6 cells was notably increased after treatment with γ knife (P < 0.01). The grey number in C6 group (control group) was 167.1 +- 6.2 and was 155.4 +- 2.0 and 124.9 +- 7.1, respectively, in 5.00 Gy and 6.22 Gy gamma knife treated group. Conclusion: It is suggests that one of the mechanisms of glioma cell C6 apoptosis induced by γ-knife radiation may be associated with activation of p16 gene and increase of P16 protein expression

  2. Effects of irradiation and cisplatin on human glioma spheroids: inhibition of cell proliferation and cell migration

    NARCIS (Netherlands)

    Fehlauer, Fabian; Muench, Martina; Rades, Dirk; Stalpers, Lukas J. A.; Leenstra, Sieger; van der Valk, Paul; Slotman, Ben; Smid, Ernst J.; Sminia, Peter

    2005-01-01

    Investigation of cell migration and proliferation of human glioma cell line spheroids (CLS) and evaluation of morphology, apoptosis, and immunohistochemical expression of MIB-1, p53, and p21 of organotypic muticellular spheroids (OMS) following cisplatin (CDDP) and irradiation (RT). Spheroids of the

  3. CRISPR/Cas9-Mediated Knockin Application in Cell Therapy: A Non-viral Procedure for Bystander Treatment of Glioma in Mice

    Directory of Open Access Journals (Sweden)

    Oscar Meca-Cortés

    2017-09-01

    Full Text Available The use of non-viral procedures, together with CRISPR/Cas9 genome-editing technology, allows the insertion of single-copy therapeutic genes at pre-determined genomic sites, overcoming safety limitations resulting from random gene insertions of viral vectors with potential for genome damage. In this study, we demonstrate that combination of non-viral gene delivery and CRISPR/Cas9-mediated knockin via homology-directed repair can replace the use of viral vectors for the generation of genetically modified therapeutic cells. We custom-modified human adipose mesenchymal stem cells (hAMSCs, using electroporation as a transfection method and CRISPR/Cas9-mediated knockin for the introduction and stable expression of a 3 kb DNA fragment including the eGFP (selectable marker and a variant of the herpes simplex virus 1 thymidine kinase genes (therapeutic gene, under the control of the human elongation factor 1 alpha promoter in exon 5 of the endogenous thymidine kinase 2 gene. Using a U87 glioma model in SCID mice, we show that the therapeutic capacity of the new CRISPR/Cas9-engineered hAMSCs is equivalent to that of therapeutic hAMSCs generated by introduction of the same therapeutic gene by transduction with a lentiviral vector previously published by our group. This strategy should be of general use to other applications requiring genetic modification of therapeutic cells. Keywords: CRISPR/Cas9, cell therapy, mesenchymal stem cells, bystander suicide therapy, glioblastoma, non-invasive bioluminescence imaging, CRISPR/Cas9, CRISPR/Cas9 knockin

  4. Nonviral gene therapy in vivo with PAM-RG4/apoptin as a potential brain tumor therapeutic.

    Science.gov (United States)

    An, Songhie; Nam, Kihoon; Choi, Sunghyun; Bai, Cheng Z; Lee, Yan; Park, Jong-Sang

    2013-01-01

    Glioma is still one of the most complicated forms of brain tumor to remove completely due to its location and the lack of an efficient means to specifically eliminate tumor cells. For these reasons, this study has examined the effectiveness of a nonviral gene therapy approach utilizing a tumor-selective killer gene on a brain tumor xenograft model. The therapeutic apoptin gene was recombined into the JDK plasmid and delivered into human brain tumor cells (U87MG) by using a polyamidoamine dendrimer with an arginine surface (PAM-RG4). Studies in vitro showed that the PAM-RG4/apoptin plasmid polyplex exhibited a particularly high transfection activity of .40%. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, 4',6-Diamidino-2-phenylindole (DAPI) TUNEL assay, DAPI staining, and caspase-3 activity assay verified that the tumor cells had undergone apoptosis induced by apoptin. For in vivo studies, the polyplex was injected into tumors, which were induced by injecting U87MG cells intradermally into nude mice. Based on hematoxylin and eosin staining, epidermal growth factor receptor immunohistochemistry results and tumor volume measurement results, tumor growth was effectively inhibited and no specific edema, irritation, or other harm to the skin was observed after polyplex injection. The in vivo expression of apoptin and the induction of apoptosis were verified by reverse-transcription polymerase chain reaction analysis, TUNEL assay, and DAPI staining. The PAM-RG4/apoptin gene polyplex is a strong candidate for brain tumor therapeutics because of the synergistic effect of the carrier's high transfection efficiency (35%-40%) in glioma cells and the selective apoptosis-inducing activity of apoptin in tumor cells.

  5. The relationship between Cho/NAA and glioma metabolism: implementation for margin delineation of cerebral gliomas.

    Science.gov (United States)

    Guo, Jun; Yao, Chengjun; Chen, Hong; Zhuang, Dongxiao; Tang, Weijun; Ren, Guang; Wang, Yin; Wu, Jinsong; Huang, Fengping; Zhou, Liangfu

    2012-08-01

    The marginal delineation of gliomas cannot be defined by conventional imaging due to their infiltrative growth pattern. Here we investigate the relationship between changes in glioma metabolism by proton magnetic resonance spectroscopic imaging ((1)H-MRSI) and histopathological findings in order to determine an optimal threshold value of choline/N-acetyl-aspartate (Cho/NAA) that can be used to define the extent of glioma spread. Eighteen patients with different grades of glioma were examined using (1)H-MRSI. Needle biopsies were performed under the guidance of neuronavigation prior to craniotomy. Intraoperative magnetic resonance imaging (MRI) was performed to evaluate the accuracy of sampling. Haematoxylin and eosin, and immunohistochemical staining with IDH1, MIB-1, p53, CD34 and glial fibrillary acidic protein (GFAP) antibodies were performed on all samples. Logistic regression analysis was used to determine the relationship between Cho/NAA and MIB-1, p53, CD34, and the degree of tumour infiltration. The clinical threshold ratio distinguishing tumour tissue in high-grade (grades III and IV) glioma (HGG) and low-grade (grade II) glioma (LGG) was calculated. In HGG, higher Cho/NAA ratios were associated with a greater probability of higher MIB-1 counts, stronger CD34 expression, and tumour infiltration. Ratio threshold values of 0.5, 1.0, 1.5 and 2.0 appeared to predict the specimens containing the tumour with respective probabilities of 0.38, 0.60, 0.79, 0.90 in HGG and 0.16, 0.39, 0.67, 0.87 in LGG. HGG and LGG exhibit different spectroscopic patterns. Using (1)H-MRSI to guide the extent of resection has the potential to improve the clinical outcome of glioma surgery.

  6. Glioma-secreted soluble factors stimulate microglial activation: The role of interleukin-1β and tumor necrosis factor-α.

    Science.gov (United States)

    Hwang, Ji-Sun; Jung, Eun-Hye; Kwon, Mi-Youn; Han, Inn-Oc

    2016-09-15

    We aimed to elucidate the effect of soluble factors secreted by glioma on microglial activation. Conditioned medium (CM) from glioma cells, CRT-MG and C6, significantly induced nitric oxide (NO) production and stimulated the mRNA expression of inducible NO synthase (iNOS), interleukin (IL)-1beta, IL-6, tumor necrosis factor-alpha (TNF-α) and cyclooxygenase 2 (COX-2) in BV2 cells. Glioma CM stimulated p38 mitogen-activated protein kinase (MAPK) phosphorylation, and a p38 MAPK inhibitor, SB203580, suppressed CM-induced NO production in BV2 cells. In addition, CM stimulated nuclear factor-kappaB (NF-κB) DNA binding and transcriptional activity, which was repressed by SB203580. Gliomas displayed higher mRNA expression and release of TNF-α and IL-1β than primary astrocyte cells. Neutralization of TNF-α and IL-1β in C6-CM using a neutralizing antibody inhibited NO/iNOS expression in BV-2 cells. These results indicate potential contribution of diffusible tumor-derived factors to regulate microglial activation and subsequent tumor microenvironment. Copyright © 2016. Published by Elsevier B.V.

  7. Nonviral gene therapy in vivo with PAM-RG4/apoptin as a potential brain tumor therapeutic

    Directory of Open Access Journals (Sweden)

    An S

    2013-02-01

    Full Text Available Songhie An,* Kihoon Nam,* Sunghyun Choi, Cheng Z Bai, Yan Lee, Jong-Sang ParkDepartment of Chemistry, Seoul National University, Seoul, Republic of Korea*These authors contributed equally to this workBackground: Glioma is still one of the most complicated forms of brain tumor to remove completely due to its location and the lack of an efficient means to specifically eliminate tumor cells. For these reasons, this study has examined the effectiveness of a nonviral gene therapy approach utilizing a tumor-selective killer gene on a brain tumor xenograft model.Methods and results: The therapeutic apoptin gene was recombined into the JDK plasmid and delivered into human brain tumor cells (U87MG by using a polyamidoamine dendrimer with an arginine surface (PAM-RG4. Studies in vitro showed that the PAM-RG4/apoptin plasmid polyplex exhibited a particularly high transfection activity of >40%. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL assay, 4´,6-Diamidino-2-phenylindole (DAPI TUNEL assay, DAPI staining, and caspase-3 activity assay verified that the tumor cells had undergone apoptosis induced by apoptin. For in vivo studies, the polyplex was injected into tumors, which were induced by injecting U87MG cells intradermally into nude mice. Based on hematoxylin and eosin staining, epidermal growth factor receptor immunohistochemistry results and tumor volume measurement results, tumor growth was effectively inhibited and no specific edema, irritation, or other harm to the skin was observed after polyplex injection. The in vivo expression of apoptin and the induction of apoptosis were verified by reverse-transcription polymerase chain reaction analysis, TUNEL assay, and DAPI staining.Conclusion: The PAM-RG4/apoptin gene polyplex is a strong candidate for brain tumor therapeutics because of the synergistic effect of the carrier's high transfection efficiency (35%–40% in glioma cells and the selective apoptosis-inducing activity of

  8. Long non-coding RNA TUG1 acts as a miR-26a sponge in human glioma cells.

    Science.gov (United States)

    Li, Jun; An, Gang; Zhang, Meng; Ma, Qingfang

    2016-09-02

    Long non-coding RNA taurine upregulated gene 1 (TUG1) acts as an important regulator in cancer pathogenesis; however, its functional mechanism in glioma development remains unclear. This study aims to explore the potential function of TUG1 in glioma by sponging miR-26a. The expression of TUG1, miR-26a, and phosphatase and tensin homolog (PTEN) in 20 paired glioma tissues was detected by quantitative real-time PCR and subjected to correlation analysis. Bioinformatics analysis was performed by using DIANA Tools. Abnormal TUG1 expression was conducted in two glioma cells to analyze its regulation on miR-26a and PTEN using real-time PCR, western blot, and luciferase reporter assay. TUG1 expression was confirmed to be upregulated in glioma tissues, and showed an inverse correlation with downregulated miR-26a. TUG1 could negatively regulate the expression of miR-26a in glioma cells. The bioinformatics prediction revealed putative miR-26a binding sites within TUG1 transcripts. Further experiments demonstrated the positive regulation of TUG1 on the miR-26a target, PTEN, wherein TUG1 could inhibit the negative regulation of miR-26a on PTEN by binding its 3'UTR. Additionally, the expression of PTEN was also upregulated in glioma tissues, showing a positive or negative correlation with TUG1 or miR-26a, respectively. TUG1 could serve as a miR-26a sponge in human glioma cells, contributing to the upregulation of PTEN. This study revealed a new TUG1/miR-26a/PTEN regulatory mechanism and provided a further understanding of the tumor-suppressive role of TUG1 in glioma development. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Undersulfation of proteoglycans and proteins alter C6 glioma cells proliferation, adhesion and extracellular matrix organization.

    Science.gov (United States)

    Mendes de Aguiar, Claudia B N; Garcez, Ricardo Castilho; Alvarez-Silva, Marcio; Trentin, Andréa Gonçalves

    2002-11-01

    Proteoglycans are considered to be important molecule in cell-microenvironment interactions. They are overexpressed in neoplastic cells modifying their growth and migration in hosts. In this work we verified that undersulfation of proteoglycans and other sulfated molecules, induced by sodium chlorate treatment, inhibited C6 glioma cells proliferation in a dose-dependent way. This effect was restored by the addition of exogenous heparin. We could not detect significant cell mortality in our culture condition. The treatment also impaired in a dose-dependent manner, C6 cell adhesion to extracellular matrix (ECM) proteins (collagen IV, laminin and fibronectin). In addition, sodium chlorate treatment altered C6 glioma cell morphology, from the fibroblast-like to a more rounded one. This effect was accompanied by increased synthesis of fibronectin and alterations in its extracellular network organization. However, we could not observe modifications on laminin organization and synthesis. The results suggest an important connection between sulfation degree with important tumor functions, such as proliferation and adhesion. We suggest that proteoglycans may modulate the glioma microenvironment network during tumor cell progression and invasion.

  10. Preclinical evaluation of an {sup 18}F-trifluoroborate methionine derivative for glioma imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiangyu [Medical School of Southeast University, Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Nanjing (China); National Institutes of Health (NIH), Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD (United States); Liu, Zhibo; Zhang, Huimin; Li, Zhu; Niu, Gang; Chen, Xiaoyuan [National Institutes of Health (NIH), Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD (United States); Munasinghe, Jeeva P. [NIH, Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, Bethesda, MD (United States); Teng, Gaojun [Medical School of Southeast University, Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Nanjing (China)

    2018-04-15

    {sup 11}C-methionine (MET) is one of the most commonly used amino acid tracers for PET imaging of brain tumors. In this study, we report an {sup 18}F-labeled boron-derived methionine analogue, denoted as {sup 18}F-B-MET, as a potential substitute of {sup 11}C-MET for glioma PET imaging. {sup 19}F-B-MET was synthesized from readily available chemicals according to our previous publication. For kit development, {sup 19}F-B-MET was aliquoted in quantities of 10 nmol for on-demand one-step labeling. The {sup 18}F-labeling was performed by {sup 18}F-{sup 19}F isotope exchange, and quality control was performed by both HPLC and radio-TLC. Uptake of the tracer was determined in GL26, C6 and U87 tumor cells. PET imaging and the biodistribution assay were performed on mice bearing subcutaneous or orthotopic C6 and U87 tumor xenografts. Starting with 740-1110 MBq {sup 18}F-fluoride, >370 MBq of {sup 18}F-B-MET was obtained in 25 min (n = 5) with >99% purity and high specific activity (>37 GBq/μmol). {sup 18}F-B-MET demonstrated excellent in vitro stability with <1% decomposition after incubation with plasma for 2 h. In vitro cell uptake assay showed that {sup 18}F-B-MET accumulated in tumor cells in a time dependent manner and could be competitively inhibited by natural methionine and other L-type transporter transported amino acids. In vivo biodistribution and imaging studies showed high tumor accumulation (2.99 ± 0.23 %ID/g, n = 6) compared with low uptake of brain (0.262 ± 0.05 %ID/g, n = 6) at 60 min after injection in a subcutaneous C6 tumor model. Orthotropic C6 and U87 tumors were clearly visualized with high tumor to brain ratios at 60 min post-injection, corroborating with tumor L-type amino acid transporter 1 (LAT-1) expression levels. {sup 18}F-B-MET was radiolabeled with high yield in a one-step labeling process, showed excellent pharmacokinetic properties in vivo, with high tumor-to-brain contrast. (orig.)

  11. LuIII parvovirus selectively and efficiently targets, replicates in, and kills human glioma cells.

    Science.gov (United States)

    Paglino, Justin C; Ozduman, Koray; van den Pol, Anthony N

    2012-07-01

    Because productive infection by parvoviruses requires cell division and is enhanced by oncogenic transformation, some parvoviruses may have potential utility in killing cancer cells. To identify the parvovirus(es) with the optimal oncolytic effect against human glioblastomas, we screened 12 parvoviruses at a high multiplicity of infection (MOI). MVMi, MVMc, MVM-G17, tumor virus X (TVX), canine parvovirus (CPV), porcine parvovirus (PPV), rat parvovirus 1A (RPV1A), and H-3 were relatively ineffective. The four viruses with the greatest oncolytic activity, LuIII, H-1, MVMp, and MVM-G52, were tested for the ability, at a low MOI, to progressively infect the culture over time, causing cell death at a rate higher than that of cell proliferation. LuIII alone was effective in all five human glioblastomas tested. H-1 progressively infected only two of five; MVMp and MVM-G52 were ineffective in all five. To investigate the underlying mechanism of LuIII's phenotype, we used recombinant parvoviruses with the LuIII capsid replacing the MVMp capsid or with molecular alteration of the P4 promoter. The LuIII capsid enhanced efficient replication and oncolysis in MO59J gliomas cells; other gliomas tested required the entire LuIII genome to exhibit enhanced infection. LuIII selectively infected glioma cells over normal glial cells in vitro. In mouse models, human glioblastoma xenografts were selectively infected by LuIII when administered intratumorally; LuIII reduced tumor growth by 75%. LuIII also had the capacity to selectively infect subcutaneous or intracranial gliomas after intravenous inoculation. Intravenous or intracranial LuIII caused no adverse effects. Intracranial LuIII caused no infection of mature mouse neurons or glia in vivo but showed a modest infection of developing neurons.

  12. CYTOKINESIS-BLOCK MICRONUCLEUS ASSAY IN HUMAN GLIOMA CELLS EXPOSED TO RADIATION

    Directory of Open Access Journals (Sweden)

    Jerzy Slowinski

    2011-05-01

    Full Text Available Biological tests are efficient in reflecting the biological influences of several types of generally harmful exposures. The micronucleus assay is widely used in genotoxicity studies or studies on genomic damage in general. We present methodological aspects of cytokinesis-block micronucleus assay performed in human gliomas irradiated in vitro. Eight human glioblastoma cell lines obtained from DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Germany were gamma-irradiated (60Co over a dose range of 0-10 Gy. Cytokinesis-block micronucleus assay was performed to quantitate cytogenetic damage. The cells were fixed directly on dishes, stained with fluorochrome DAPI and evaluated under fluorescent and phase contrast microscope. The micronucleus frequency was expressed as a micronuclei (MN per binucleated cell (BNC ratio, calculated after scoring at least 100 BNC per dish. The frequency of spontaneous MN ranged from 0.17 to 0.613 (mean: 0.29 ± 0.14. After irradiation increase of MN frequency in the range of 0.312 - 2.241 (mean: 0.98 ± 0.68 was found at 10 Gy. Gliomas are extremely heterogenous in regard to cytogenetic effects of irradiation, as shown in this study by cytokinesis-block micronucleus assay. This test is easily performed on irradiated glioma cell lines and can assist in determining their radiosensitivity. However, in order to obtain reliable and reproducible results, precise criteria for MN scoring must be strictly followed. Simultaneous use of fluorescent and phase contrast equipment improves imaging of morphological details and can further optimize MN scoring.

  13. Fisetin suppresses ADAM9 expression and inhibits invasion of glioma cancer cells through increased phosphorylation of ERK1/2.

    Science.gov (United States)

    Chen, Chien-Min; Hsieh, Yi-Hsien; Hwang, Jin-Ming; Jan, Hsun-Jin; Hsieh, Shu-Ching; Lin, Shin-Huey; Lai, Chung-Yu

    2015-05-01

    Fisetin (3,3',4',7-tetrahydroxyflavone) is a naturally occurring flavonoid which is widely distributed in plants. It has been reported to possess some anticancer and anti-invasive capabilities. We set out to explore the effects of fisetin on antimetastatic and its mechanism of action in GBM8401 cells. The results indicated that fisetin exhibited effective inhibition of cell migration and inhibited the invasion of GBM8401 cells under non-cytotoxic concentrations. To identify the potential targets of fisetin, human proteinase antibody array analysis was performed, and the results indicated that the fisetin treatment inhibited the expression of ADAM9 protein and mRNA, which are known to contribute to the progression of glioma cancer. Our results showed that fisetin phosphorylated ERK1/2 in a sustained way that contributed to the inhibited ADAM9 protein and mRNA expression determined by Western blot and RT-PCR. Moreover, inhibition of ERK1/2 by U0126 or transfection with the siERK plasmid significantly abolished the fisetin-inhibited migration and invasion through activation of the ERK1/2 pathway. In summary, our results suggest that fisetin might be a potential therapeutic agent against human glioma cells based on its capacity to activate ERK1/2 and to inhibit ADAM9 expression.

  14. In vitro anti-tubulin effects of mebendazole and fenbendazole on canine glioma cells.

    Science.gov (United States)

    Lai, S R; Castello, S A; Robinson, A C; Koehler, J W

    2017-12-01

    Benzimidazole anthelmintics have reported anti-neoplastic effects both in vitro and in vivo. The purpose of this study was to evaluate the in vitro chemosensitivity of three canine glioma cell lines to mebendazole and fenbendazole. The mean inhibitory concentration (IC 50 ) (±SD) obtained from performing the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay after treating J3T, G06-A, and SDT-3G cells for 72 h with mebendazole were 0.030 ± 0.003, 0.080 ± 0.015 and 0.030 ± 0.006 μM respectively, while those for fenbendazole were 0.550  ± 0.015, 1.530 ± 0.159 and 0.690 ± 0.095 μM; treatment of primary canine fibroblasts for 72 h at IC 50 showed no significant effect. Immunofluorescence studies showed disruption of tubulin after treatment. Mebendazole and fenbendazole are cytotoxic in canine glioma cell lines in vitro and may be good candidates for treatment of canine gliomas. Further in vivo studies are required. © 2017 John Wiley & Sons Ltd.

  15. Enrichment of glioma stem cell-like cells on 3D porous scaffolds composed of different extracellular matrix.

    Science.gov (United States)

    Wang, Xuanzhi; Dai, Xingliang; Zhang, Xinzhi; Li, Xinda; Xu, Tao; Lan, Qing

    2018-04-15

    Cancer stem cells (CSCs), being tumor-initiating with self-renewal capacity and heterogeneity, are most likely the cause of tumor resistance, reoccurrence and metastasis. To further investigate the role of CSCs in tumor biology, there is a need to develop an effective culture system to grow, maintain and enrich CSCs. Three-dimensional (3D) cell culture model has been widely used in tumor research and drug screening. Recently, researchers have begun to utilize 3D models to culture cancer cells for CSCs enrichment. In this study, glioma cell line was cultured with 3D porous chitosan (CS) scaffolds or chitosan-hyaluronic acid (CS-HA) scaffolds to explore the possibility of glioma stem cells (GSCs)-like cells enrichment, to study the morphology, gene expression, and in vivo tumorigenicity of 3D scaffolds cells, and to compare results to 2D controls. Results showed that glioma cells on both CS and CS-HA scaffolds could form tumor cell spheroids and increased the expression of GSCs biomarkers compared to conventional 2D monolayers. Furthermore, cells in CS-HA scaffolds had higher expression levels of epithelial-to-mesenchymal transition (EMT)-related gene. Specifically, the in vivo tumorigenicity capability of CS-HA scaffold cultured cells was greater than 2D cells or CS scaffold cultured cells. It is indicated that the chemical composition of scaffold plays an important role in the enrichment of CSCs. Our results suggest that CS-HA scaffolds have a better capability to enrich GSCs-like cells and can serve as a simple and effective way to cultivate and enrich CSCs in vitro to support the study of CSCs biology and development of novel anti-cancer therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Survival of irradiated glia and glioma cells studied with a new cloning technique

    International Nuclear Information System (INIS)

    Nilsson, S.; Carlsson, J.; Larsson, B.; Ponten, J.

    1980-01-01

    A method allowing cloning of monolayer cultured cells with a low plating efficiency was developed. Cells were grown in several small palladium squares to obtain a high cell density. These squares were surrounded by non-adhesive agarose to prevent large distance migration and thereby mixing of the clones. By using easily-cloned hamster cells for comparison it was found that the survival curves were similar to the curves obtained with conventional cloning. The new method was used to compare the radiosensitivity of cultured human glia and glioma cells which both have a low plating efficiency ( 0 -values (1.5 to 2.5 Gy) and large shoulders (extrapolation numbers around 5) indicating that they were rather resistant and had a high capacity for accumulation of sublethal damage. The survival curves for glia cells had lower D 0 -values (1.3 to 1.5 Gy) and no shoulders at all, indicating that they were more sensitive than the glioma cells. (author)

  17. Light-controlled inhibition of malignant glioma by opsin gene transfer

    Science.gov (United States)

    Yang, F; Tu, J; Pan, J-Q; Luo, H-L; Liu, Y-H; Wan, J; Zhang, J; Wei, P-F; Jiang, T; Chen, Y-H; Wang, L-P

    2013-01-01

    Glioblastomas are aggressive cancers with low survival rates and poor prognosis because of their highly proliferative and invasive capacity. In the current study, we describe a new optogenetic strategy that selectively inhibits glioma cells through light-controlled membrane depolarization and cell death. Transfer of the engineered opsin ChETA (engineered Channelrhodopsin-2 variant) gene into primary human glioma cells or cell lines, but not normal astrocytes, unexpectedly decreased cell proliferation and increased mitochondria-dependent apoptosis, upon light stimulation. These optogenetic effects were mediated by membrane depolarization-induced reductions in cyclin expression and mitochondrial transmembrane potential. Importantly, the ChETA gene transfer and light illumination in mice significantly inhibited subcutaneous and intracranial glioma growth and increased the survival of the animals bearing the glioma. These results uncover an unexpected effect of opsin ion channels on glioma cells and offer the opportunity for the first time to treat glioma using a light-controllable optogenetic approach. PMID:24176851

  18. Implications of Rho GTPase signaling in glioma cell invasion and tumor progression

    Directory of Open Access Journals (Sweden)

    Shannon Patricia Fortin Ensign

    2013-10-01

    Full Text Available Glioblastoma (GB is the most malignant of primary adult brain tumors, characterized by a highly locally-invasive cell population, as well as abundant proliferative cells, neoangiogenesis, and necrosis. Clinical intervention with chemotherapy or radiation may either promote or establish an environment for manifestation of invasive behavior. Understanding the molecular drivers of invasion in the context of glioma progression may be insightful in directing new treatments for patients with GB. Here, we review current knowledge on Rho family GTPases, their aberrant regulation in GB, and their effect on GB cell invasion and tumor progression. Rho GTPases are modulators of cell migration through effects on actin cytoskeleton rearrangement; in non-neoplastic tissue, expression and activation of Rho GTPases are normally under tight regulation. In GB, Rho GTPases are deregulated, often via hyperactivity or overexpression of their activators, Rho GEFs. Downstream effectors of Rho GTPases have been shown to promote invasiveness and, importantly, glioma cell survival. The study of aberrant Rho GTPase signaling in GB is thus an important investigation of cell invasion as well as treatment resistance and disease progression.

  19. Immunohistochemical detection and correlation between MHC antigen and cell-mediated immune system in recurrent glioma by APAAP method.

    Science.gov (United States)

    Miyagi, K; Ingram, M; Techy, G B; Jacques, D B; Freshwater, D B; Sheldon, H

    1990-09-01

    As part of an on-going clinical trial of immunotherapy for recurrent malignant gliomas, using alkaline phosphatase-anti-alkaline phosphatase method with monoclonal antibodies, we investigated the correlation between expression of the major histocompatibility complex (MHC) and the subpopulation of tumor-infiltrating lymphocytes (TILs) in 38 glioma specimens (20 grade IV, 11 grade III, and 7 grade II) from 33 patients. Thirty specimens (78.9%) were positive to class I MHC antigen and 20 (52.6%) were positive to class II MHC antigen. The correlations between class I MHC antigen expression and the number of infiltrating T8 (p less than 0.01), and also between class II MHC antigen expression and the number of infiltrating T4 (p less than 0.05) were significant. We conclude that TILs are the result of immunoreaction (host-defense mechanism). 31.6% of specimens had perivascular infiltration of T cells. The main infiltrating lymphocyte subset in moderate to marked perivascular cuffing was T4. Our results may indicate that lack of MHC antigen on the glioma cell surface has a share in the poor immunogenicity in glioma-bearing patients. In addition, considering the effector/target ratio, the number of infiltrating lymphocytes against glioma cells was too small, so the immunological intervention seems to be essential in glioma therapy. Previous radiation therapy and chemotherapy, including steroid therapy, did not influence lymphocyte and macrophage infiltration.

  20. Monitoring Oxygen Levels in Orthotopic Human Glioma Xenograft Following Carbogen Inhalation and Chemotherapy by Implantable Resonator Based Oximetry

    Science.gov (United States)

    Hou, Huagang; Nemani, Venkata Krishnamurthy; Du, Gaixin; Montano, Ryan; Song, Rui; Gimi, Barjor; Swartz, Harold M.; Eastman, Alan; Khan, Nadeem

    2014-01-01

    Hypoxia is a critical hallmark of glioma, and significantly compromises treatment efficacy. Unfortunately, techniques for monitoring glioma pO2 to facilitate translational research are lacking. Furthermore, poor prognoses of patients with malignant glioma, in particular glioblastoma multiforme, warrant effective strategies that can inhibit hypoxia and improve treatment outcome. EPR oximetry using implantable resonators was implemented for monitoring pO2 in normal cerebral tissue and U251 glioma in mice. Breathing carbogen (95% O2 + 5% CO2) was tested for hyperoxia in the normal brain and glioma xenografts. A new strategy to inhibit glioma growth by rationally combining gemcitabine and MK-8776, a cell cycle checkpoint inhibitor, was also investigated. The mean pO2 of left and right hemisphere were approximately 56 – 69 mmHg in the normal cerebral tissue of mice. The mean baseline pO2 of U251 glioma on the first and fifth day of measurement was 21.9 ± 3.7 and 14.1 ± 2.4 mmHg, respectively. The mean brain pO2 including glioma increased by at least 100% on carbogen inhalation, although the response varied between the animals over days. Treatment with gemcitabine + MK-8776 significantly increased pO2 and inhibited glioma growth assessed by MRI. In conclusion, EPR oximetry with implantable resonators can be used to monitor the efficacy of carbogen inhalation and chemotherapy on orthotopic glioma in mice. The increase in glioma pO2 of mice breathing carbogen can be used to improve treatment outcome. The treatment with gemcitabine + MK-8776 is a promising strategy that warrants further investigation. PMID:25111969

  1. Monitoring oxygen levels in orthotopic human glioma xenograft following carbogen inhalation and chemotherapy by implantable resonator-based oximetry.

    Science.gov (United States)

    Hou, Huagang; Krishnamurthy Nemani, Venkata; Du, Gaixin; Montano, Ryan; Song, Rui; Gimi, Barjor; Swartz, Harold M; Eastman, Alan; Khan, Nadeem

    2015-04-01

    Hypoxia is a critical hallmark of glioma, and significantly compromises treatment efficacy. Unfortunately, techniques for monitoring glioma pO2 to facilitate translational research are lacking. Furthermore, poor prognosis of patients with malignant glioma, in particular glioblastoma multiforme, warrant effective strategies that can inhibit hypoxia and improve treatment outcome. EPR oximetry using implantable resonators was implemented for monitoring pO2 in normal cerebral tissue and U251 glioma in mice. Breathing carbogen (95% O2 + 5% CO2 ) was tested for hyperoxia in the normal brain and glioma xenografts. A new strategy to inhibit glioma growth by rationally combining gemcitabine and MK-8776, a cell cycle checkpoint inhibitor, was also investigated. The mean pO2 of left and right hemisphere were ∼56-69 mmHg in the normal cerebral tissue of mice. The mean baseline pO2 of U251 glioma on the first and fifth day of measurement was 21.9 ± 3.7 and 14.1 ± 2.4 mmHg, respectively. The mean brain pO2 including glioma increased by at least 100% on carbogen inhalation, although the response varied between the animals over days. Treatment with gemcitabine + MK-8776 significantly increased pO2 and inhibited glioma growth assessed by MRI. In conclusion, EPR oximetry with implantable resonators can be used to monitor the efficacy of carbogen inhalation and chemotherapy on orthotopic glioma in mice. The increase in glioma pO2 of mice breathing carbogen can be used to improve treatment outcome. The treatment with gemcitabine + MK-8776 is a promising strategy that warrants further investigation. © 2014 UICC.

  2. In vivo imaging of tumor vascular endothelial cells

    Science.gov (United States)

    Zhao, Dawen; Stafford, Jason H.; Zhou, Heling; Thorpe, Philip E.

    2013-02-01

    Phosphatidylserine (PS), normally restricted to the inner leaflet of the plasma membrane, becomes exposed on the outer surface of viable (non-apoptotic) endothelial cells in tumor blood vessels, probably in response to oxidative stresses present in the tumor microenvironment. In the present study, we optically imaged exposed PS on tumor vasculature in vivo using PGN635, a novel human monoclonal antibody that targets PS. PGN635 F(ab')2 was labeled with the near infrared (NIR) dye, IRDye 800CW. Human glioma U87 cells or breast cancer MDA-MB-231 cells were implanted subcutaneously or orthotopically into nude mice. When the tumors reached ~5 mm in diameter, 800CW- PGN635 was injected via a tail vein and in vivo dynamic NIR imaging was performed. For U87 gliomas, NIR imaging allowed clear detection of tumors as early as 4 h later, which improved over time to give a maximal tumor/normal ratio (TNR = 2.9 +/- 0.5) 24 h later. Similar results were observed for orthotopic MDA-MB-231 breast tumors. Localization of 800CW-PGN635 to tumors was antigen specific since 800CW-Aurexis, a control probe of irrelevant specificity, did not localize to the tumors, and pre-administration of unlabeled PGN635 blocked the uptake of 800CW-PGN635. Fluorescence microscopy confirmed that 800CW-PGN635 was binding to PS-positive tumor vascular endothelium. Our studies suggest that tumor vasculature can be successfully imaged in vivo to provide sensitive tumor detection.

  3. Antiangiogenic Therapy and Mechanisms of Tumor Resistance in Malignant Glioma

    Directory of Open Access Journals (Sweden)

    Ruman Rahman

    2010-01-01

    Full Text Available Despite advances in surgery, radiation therapy, and chemotherapeutics, patients with malignant glioma have a dismal prognosis. The formations of aberrant tumour vasculature and glioma cell invasion are major obstacles for effective treatment. Angiogenesis is a key event in the progression of malignant gliomas, a process involving endothelial cell proliferation, migration, reorganization of extracellular matrix and tube formation. Such processes are regulated by the homeostatic balance between proangiogenic and antiangiogenic factors, most notably vascular endothelial growth factors (VEGFs produced by glioma cells. Current strategies targeting VEGF-VEGF receptor signal transduction pathways, though effective in normalizing abnormal tumor vasculature, eventually result in tumor resistance whereby a highly infiltrative and invasive phenotype may be adopted. Here we review recent anti-angiogenic therapy for malignant glioma and highlight implantable devices and nano/microparticles as next-generation methods for chemotherapeutic delivery. Intrinsic and adaptive modes of glioma resistance to anti-angiogenic therapy will be discussed with particular focus on the glioma stem cell paradigm.

  4. ALDH1A3: A Marker of Mesenchymal Phenotype in Gliomas Associated with Cell Invasion.

    Directory of Open Access Journals (Sweden)

    Wenlong Zhang

    Full Text Available Aldehyde dehydrogenases (ALDH is a family of enzymes including 19 members. For now, ALDH activity had been wildly used as a marker of cancer stem cells (CSCs. But biological functions of relevant isoforms and their clinical applications are still controversial. Here, we investigate the clinical significance and potential function of ALDH1A3 in gliomas. By whole-genome transcriptome microarray and mRNA sequencing analysis, we compared the expression of ALDH1A3 in high- and low- grade gliomas as well as different molecular subtypes. Microarray analysis was performed to identify the correlated genes of ALDH1A3. We further used Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG pathways analysis to explore the biological function of ALDH1A3. Finally, by mRNA knockdown we revealed the relationship between ALDH1A3 and the ability of tumor invasion. ALDH1A3 overexpression was significantly associated with high grade as well as the higher mortality of gliomas in survival analysis. ALDH1A3 was characteristically highly expressed in Mesenchymal (Mes subtype gliomas. Moreover, we found that ALDH1A3 was most relevant to extracellular matrix organization and cell adhesion biological process, and the ability of tumor invasion was suppressed after ALDH1A3 knockdown in vitro. In conclusion, ALDH1A3 can serve as a novel marker of Mes phenotype in gliomas with potential clinical prognostic value. The expression of ALDH1A3 is associated with tumor cell invasion.

  5. The experimental investigation of glioma-trophic capacity of human umbilical cord-derived mesenchymal stem cells after intraventricular administration

    Directory of Open Access Journals (Sweden)

    FAN Cun-gang

    2013-07-01

    Full Text Available Objective To explore the glioma-trophic migration capacity of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs by intraventricular administration. Methods The umbilical cord tissue were obtained during full-term pregnancy cesarean section under sterile conditions. This study was approved by Ethics Committee and got the informed consent of patient. The hUC-MSCs were isolated by trypsin and collagenase digestion, followed by adherent culture methods. The characteristics of isolated hUC-MSCs were demonstrated by cell morphylogy, phenotype analysis and multi-differentiation potentials into adipocytes, osteoblasts and neural cells. Then the hUC-MSCs were labeled with CM-DiI and injected into contralateral ventricle of glioma of the C6 glioma-bearing Sprague-Dawley (SD rats. Two weeks later, the rats were sacrificed and the brains were taken out to examine the migration and distribution of hUC-MSCs in the tumor bed, at the interface of tumor and cerebral parenchyma as well as the tumor satelites infiltrating into the normal brain. Results The hUC-MSCs demonstrated plastic-adherent characterization and homogeneous fibroblastic-like morphylogy in culture, expression of specific surface phenotypes of MSCs (CD13, CD29, CD44, CD90 but not endothelial or hematopoietic markers (CD14, CD31, CD34, CD38, CD45, CD133, and muti-differentiatiation potentials into Oil red O stained adipocytes, Alizarin red S stained osteoblasts, neuron-specific enolase (NSE-positive neurons and glial fibrillary acidic protein (GFAP-positive astrocytes in permissive inducive conditions. Importantly, after labeled hUC-MSCs injection into contralateral ventricle of glioma, the hUC-MSCs migrated from initial injection site to the glioma mass and along the interface of tumor and brain, and some of them "chasing" the glioma satellites infiltrated into the normal parenchyma. Conclusion The hUC-MSCs possess prominent tumor-specific targeting capacity and extensive intratumoral

  6. Structure and thermal properties of as-fabricated U-7Mo/Mg and U-10Mo/Mg low-enriched uranium research reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kulakov, Mykola, E-mail: mykola.kulakov@cnl.ca [Fuel Development Branch, Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0 Canada (Canada); Saoudi, Mouna [Fuel Development Branch, Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0 Canada (Canada); Piro, Markus H.A. [Fuel and Fuel Channel Safety Branch, Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0 Canada (Canada); Donaberger, Ronald L. [Canadian Neutron Beam Centre, Chalk River, ON K0J 1J0 Canada (Canada)

    2017-02-15

    Aluminum-clad U-7Mo/Mg and U-10Mo/Mg pin-type mini-elements (with a core uranium loading of 4.5 gU/cm{sup 3}) have been fabricated at the Canadian Nuclear Laboratories for experimental tests and ultimately for use in research and test reactors. In this study, the microstructure and phase composition of unirradiated U-7Mo/Mg and U-10Mo/Mg fuel cores were analyzed using optical and scanning electron microscopy, and neutron powder diffraction. Thermal properties were characterized using a combination of experimental measurements and thermodynamic calculations. The thermal diffusivity was measured using the laser flash method. The temperature-dependent specific heat capacities were calculated based on the linear rule of mixture using the weight fraction of different crystalline phases and their specific heat capacity values taken from the literature. The thermal conductivity was then calculated using the measured thermal diffusivity, the measured density and the calculated specific heat capacity. The resulting thermal conductivity is practically identical for both types of fuel. The in-reactor temperatures were predicted using conjugate heat transfer simulations. - Highlights: • Neutron diffraction analysis shows that most of the γ-U(Mo) phase was retained in as-fabricated U-7Mo/Mg and U-10Mo/Mg fuel cores. • The experimental thermal conductivity of both types of fuel is practically identical. • Based on conjugate heat transfer simulations, under normal operating conditions, the in-reactor fuel centreline temperature is about 510 K.

  7. Stem-like tumor-initiating cells isolated from IL13Rα2 expressing gliomas are targeted and killed by IL13-zetakine-redirected T Cells.

    Science.gov (United States)

    Brown, Christine E; Starr, Renate; Aguilar, Brenda; Shami, Andrew F; Martinez, Catalina; D'Apuzzo, Massimo; Barish, Michael E; Forman, Stephen J; Jensen, Michael C

    2012-04-15

    To evaluate IL13Rα2 as an immunotherapeutic target for eliminating glioma stem-like cancer initiating cells (GSC) of high-grade gliomas, with particular focus on the potential of genetically engineered IL13Rα2-specific primary human CD8(+) CTLs (IL13-zetakine(+) CTL) to target this therapeutically resistant glioma subpopulation. A panel of low-passage GSC tumor sphere (TS) and serum-differentiated glioma lines were expanded from patient glioblastoma specimens. These glioblastoma lines were evaluated for expression of IL13Rα2 and for susceptibility to IL13-zetakine(+) CTL-mediated killing in vitro and in vivo. We observed that although glioma IL13Rα2 expression varies between patients, for IL13Rα2(pos) cases this antigen was detected on both GSCs and more differentiated tumor cell populations. IL13-zetakine(+) CTL were capable of efficient recognition and killing of both IL13Rα2(pos) GSCs and IL13Rα2(pos) differentiated cells in vitro, as well as eliminating glioma-initiating activity in an orthotopic mouse tumor model. Furthermore, intracranial administration of IL13-zetakine(+) CTL displayed robust antitumor activity against established IL13Rα2(pos) GSC TS-initiated orthotopic tumors in mice. Within IL13Rα2 expressing high-grade gliomas, this receptor is expressed by GSCs and differentiated tumor populations, rendering both targetable by IL13-zetakine(+) CTLs. Thus, our results support the potential usefullness of IL13Rα2-directed immunotherapeutic approaches for eradicating therapeutically resistant GSC populations. ©2012 AACR.

  8. Ruta graveolens L. induces death of glioblastoma cells and neural progenitors, but not of neurons, via ERK 1/2 and AKT activation.

    Directory of Open Access Journals (Sweden)

    Maria Teresa Gentile

    Full Text Available Glioblastoma multiforme is a highly aggressive brain tumor whose prognosis is very poor. Due to early invasion of brain parenchyma, its complete surgical removal is nearly impossible, and even after aggressive combined treatment (association of surgery and chemo- and radio-therapy five-year survival is only about 10%. Natural products are sources of novel compounds endowed with therapeutic properties in many human diseases, including cancer. Here, we report that the water extract of Ruta graveolens L., commonly known as rue, induces death in different glioblastoma cell lines (U87MG, C6 and U138 widely used to test novel drugs in preclinical studies. Ruta graveolens' effect was mediated by ERK1/2 and AKT activation, and the inhibition of these pathways, via PD98058 and wortmannin, reverted its antiproliferative activity. Rue extract also affects survival of neural precursor cells (A1 obtained from embryonic mouse CNS. As in the case of glioma cells, rue stimulates the activation of ERK1/2 and AKT in A1 cells, whereas their blockade by pharmacological inhibitors prevents cell death. Interestingly, upon induction of differentiation and cell cycle exit, A1 cells become resistant to rue's noxious effects but not to those of temozolomide and cisplatin, two alkylating agents widely used in glioblastoma therapy. Finally, rutin, a major component of the Ruta graveolens water extract, failed to cause cell death, suggesting that rutin by itself is not responsible for the observed effects. In conclusion, we report that rue extracts induce glioma cell death, discriminating between proliferating/undifferentiated and non-proliferating/differentiated neurons. Thus, it can be a promising tool to isolate novel drugs and also to discover targets for therapeutic intervention.

  9. Preclinical investigation of ibrutinib, a Bruton's kinase tyrosine (Btk) inhibitor, in suppressing glioma tumorigenesis and stem cell phenotypes

    Science.gov (United States)

    Wei, Li; Su, Yu-Kai; Lin, Chien-Min; Chao, Tsu-Yi; Huang, Shang-Pen; Huynh, Thanh-Tuan; Jan, Hsun-Jin; Whang-Peng, Jacqueline; Chiou, Jeng-Fong; Wu, Alexander T.H.; Hsiao, Michael

    2016-01-01

    Standard interventions for glioma include surgery, radiation and chemotherapies but the prognosis for malignant cases such as glioblastoma multiforme remain grim. Even with targeted therapeutic agent, bevacitumab, malignant glioma often develops resistance and recurrence. Thus, developing alternative interventions (therapeutic targets, biomarkers) is urgently required. Bruton's tyrosine kinase (Btk) has been long implicated in B cell malignancies but surprisingly it has recently been shown to also play a tumorigenic role in solid tumors such as ovarian and prostate cancer. Bioinformatics data indicates that Btk is significantly higher in clinical glioma samples as compared to normal brain cells and Btk expression level is associated with stage progression. This prompts us to investigate the potential role of Btk as a therapeutic target for glioma. Here, we demonstrate Btk expression is associated with GBM tumorigenesis. Down-regulation of Btk in GBM cell lines showed a significantly reduced abilities in colony formation, migration and GBM sphere-forming potential. Mechanistically, Btk-silenced cells showed a concomitant reduction in the expression of CD133 and Akt/mTOR signaling. In parallel, Ibrutinib (a Btk inhibitor) treatment led to a similar anti-tumorigenic response. Using xenograft mouse model, tumorigenesis was significantly reduced in Btk-silenced or ibrutinib-treated mice as compared to control counterparts. Finally, our glioma tissue microarray analysis indicated a higher Btk staining in the malignant tumors than less malignant and normal brain tissues. Collectively, Btk may represent a novel therapeutic target for glioma and ibrunitib may be used as an adjuvant treatment for malignant GBM. PMID:27564106

  10. TGF-b and a specific TGF-b inhibitor regulate pericentrin B and MYH9 in glioma cell lines

    Directory of Open Access Journals (Sweden)

    Óscar Álzate

    2006-01-01

    Full Text Available Malignant gliomas are heterogeneous, highly invasive vascular tumours. The multifunctional cytokine, transforming growth factor-beta (TGF-P, is expressed by grade III/IV gliomas and promotes tumour angiogenesis, invasión and immune escape. It has been shown previously that a small TGF-P receptor type I (TGF-(3-RI molecule inhibitor (SB-431542 blocks TGF-(3-mediated signal transduction, induction of angiogenic factor expression and cellular motility. As glioma cell lines display differential sensitivity to TGF-P, it was expected that they would also be differentially impacted by disruption of TGF-P signalling. Differential in gel expression (DIGE analysis and mass spectrometry was used in this work for determining protein regulation effects of both TGF-P and SB-431542 on human glioma cell lines. It was found that pericentrin B and non muscle myosin were differentially expressed in fragments which likely resulted from protease activation by the tumour growth mechanism. These results suggest that both pericentrin B and non-muscle myosin might be potential glioma biomarkers. Key words: DIGE, proteomics, glioma, TGF-P, mass spectrometry, non muscle myosin, pericentrin B.

  11. Isotope ratio 87Sr/86Sr in limestones from Bambui group, Brazil (MG)

    International Nuclear Information System (INIS)

    Kawashita, K.; Mizusaki, A.M.P.; Kiang, C.H.

    1987-01-01

    The Sr composition of ancient seawater can be estimated from the analysis of carbonate rocks and, in some cases, used to estimate the age of the analyzed carbonate. The normalized 87Sr/86Sr ratios in calcium carbonate fractions from 14 core samples in the Bambui Group near Montalvania, MG, were found to range between .7077 and .7280. The higher values are attributable to Sr isotopic exchange between silicate and carbonate phases during diagenesis. The ratio of .7077 obtained in two pure calcium carbonate samples is here suggested as the best aproximation for the 87Sr/86Sr value for the Bambui sea. This ratio is compatible with an age of about 700 Ma., estimated from the published 87Sr/86Sr curve of Veizer and others, an age in accordance with Quadros recent (1987, in preparation) identification of marine acritarchs from the latest Precambrian (Vendian). (author) [pt

  12. Glioblastoma Inhibition by Cell Surface Immunoglobulin Protein EWI-2, In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Tatiana V. Kolesnikova

    2009-01-01

    Full Text Available EWI-2, a cell surface IgSF protein, is highly expressed in normal human brain but is considerably diminished in glioblastoma tumors and cell lines. Moreover, loss of EWI-2 expression correlated with a shorter survival time in human glioma patients, suggesting that EWI-2 might be a natural inhibitor of glioblastoma. In support of this idea, EWI-2 expression significantly impaired both ectopic and orthotopic tumor growth in nude mice in vivo. In vitro assays provided clues regarding EWI-2 functions. Expression of EWI-2 in T98G and/or U87-MG malignant glioblastoma cell lines failed to alter two-dimensional cell proliferation but inhibited glioblastoma colony formation in soft agar and caused diminished cell motility and invasion. At the biochemical level, EWI-2 markedly affects the organization of four molecules (tetraspanin proteins CD9 and CD81 and matrix metalloproteinases MMP-2 and MT1-MMP, which play key roles in the biology of astrocytes and gliomas. EWI-2 causes CD9 and CD81 to become more associated with each other, whereas CD81 and other tetraspanins become less associated with MMP-2 and MT1-MMP. We propose that EWI-2 inhibition of glioblastoma growth in vivo is at least partly explained by the capability of EWI-2 to inhibit growth and/or invasion in vitro. Underlying these functional effects, EWI-2 causes a substantial molecular reorganization of multiple molecules (CD81, CD9, MMP-2, and MT1-MMP known to affect proliferation and/or invasion of astrocytes and/or glioblastomas.

  13. miR-21 Is Linked to Glioma Angiogenesis

    DEFF Research Database (Denmark)

    Hermansen, Simon Kjær; Nielsen, Boye Schnack; Aaberg-Jessen, Charlotte

    2016-01-01

    MicroRNA-21 (miR-21) is the most consistently over-expressed microRNA (miRNA) in malignant gliomas. We have previously reported that miR-21 is upregulated in glioma vessels and subsets of glioma cells. To better understand the role of miR-21 in glioma angiogenesis and to characterize miR-21......-localized with the hypoxia- and angiogenesis-associated markers HIF-1α (p=0.0020) and VEGF (p=0.0096), whereas the putative miR-21 target, PTEN, was expressed independently of miR-21. Expression of stem cell markers Oct4, Sox2 and CD133 was not associated with miR-21. In six glioblastoma cultures, miR-21 did not correlate...... with the six markers. These findings suggest that miR-21 is linked to glioma angiogenesis, that miR-21 is unlikely to regulate PTEN, and that miR-21-positive tumor cells do not possess stem cell characteristics....

  14. Overexpression of high molecular weight FGF-2 forms inhibits glioma growth by acting on cell-cycle progression and protein translation

    International Nuclear Information System (INIS)

    Lemiere, Sylvie; Azar, Rania; Belloc, Francis; Guersel, Demir; Pyronnet, Stephane; Bikfalvi, Andreas; Auguste, Patrick

    2008-01-01

    In order to clarify the role of HMW FGF-2 in glioma development and angiogenesis, we over-expressed different human FGF-2 isoforms in C6 rat glioma cell line using a tetracycline-regulated expression system. Phenotypic modifications were analyzed in vitro and compared to untransfected cells or to cells over-expressing 18 kDa FGF-2 or all FGF-2 isoforms. In particular, we demonstrate that HMW FGF-2 has unique features in inhibiting glioma cell proliferation. HMW FGF-2 expressing cells showed a cell-cycle arrest at the G2M, demonstrating a role of HMW FGF-2 in controlling the entry in mitosis. Moreover, hydroxyurea was ineffective in blocking cells at the G1S boundary when HMW FGF-2 was expressed. We also show that the HMW FGF-2 isoforms inhibit 4E-BP1 phosphorylation at critical sites restoring the translation inhibitory activity of 4E-BP1. In vivo, inhibition of tumor growth was observed when cells expressed HMW FGF-2. This indicates that HMW FGF-2 inhibits tumor growth in glioma cells by acting on cell-cycle progression and protein translation

  15. β-Elemene Selectively Inhibits the Proliferation of Glioma Stem-Like Cells Through the Downregulation of Notch1.

    Science.gov (United States)

    Feng, Hai-Bin; Wang, Jing; Jiang, Hao-Ran; Mei, Xin; Zhao, Yi-Ying; Chen, Fu-Rong; Qu, Yue; Sai, Ke; Guo, Cheng-Cheng; Yang, Qun-Ying; Zhang, Zong-Ping; Chen, Zhong-Ping

    2017-03-01

    Glioma is the most frequent primary central nervous system tumor. Although the current first-line medicine, temozolomide (TMZ), promotes patient survival, drug resistance develops easily. Thus, it is important to investigate novel therapeutic reagents to solidify the treatment effect. β-Elemene (bELE) is a compound from a Chinese herb whose anticancer effect has been shown in various types of cancer. However, its role in the inhibition of glioma stem-like cells (GSLCs) has not yet been reported. We studied both the in vitro and the in vivo inhibitory effect of bELE and TMZ in GSLCs and parental cells and their combined effects. The molecular mechanisms were also investigated. We also optimized the delivery methods of bELE. We found that bELE selectively inhibits the proliferation and sphere formation of GSLCs, other than parental glioma cells, and TMZ exerts its effects on parental cells instead of GSLCs. The in vivo data confirmed that the combination of bELE and TMZ worked better in the xenografts of GSLCs, mimicking the situation of tumorigenesis of human cancer. Notch1 was downregulated with bELE treatment. Our data also demonstrated that the continuous administration of bELE produces an ideal effect to control tumor progression. Our findings have demonstrated, for the first time, that bELE could compensate for TMZ to kill both GSLCs and nonstem-like cancer cells, probably improving the prognosis of glioma patients tremendously. Notch1 might be a downstream target of bELE. Therefore, our data shed light on improving the outcomes of glioma patients by combining bELE and TMZ. Stem Cells Translational Medicine 2017;6:830-839. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  16. Transient increase in neuronal chloride concentration by neuroactive amino acids released from glioma cells

    Directory of Open Access Journals (Sweden)

    Cristina eBertollini

    2012-11-01

    Full Text Available Neuronal chloride concentration ([Cl-]i is known to be dynamically modulated and alterations in Cl- homeostasis may occur in the brain at physiological and pathological conditions, being also likely involved in glioma-related seizures. However, the mechanism leading to changes in neuronal [Cl-]i during glioma invasion are still unclear. To characterize the potential effect of glioma released soluble factors on neuronal [Cl-]i, we used genetically encoded CFP/YFP-based ratiometric Cl-Sensor transiently expressed in cultured hippocampal neurons. Exposition of neurons to glioma conditioned medium (GCM caused rapid and transient elevation of [Cl-]i, resulting in the increase of fluorescence ratio, which was strongly reduced by blockers of ionotropic glutamate receptors APV and NBQX. Furthermore, in HEK cells expressing GluR1-AMPA receptors, GCM activated ionic current with efficacy similar to those caused by glutamate, supporting the notion that GCM contains glutamate or glutamatergic agonists, which cause neuronal depolarization, activation of NMDA and AMPA/KA receptors leading to elevation of [Cl-]i. Chromatographic analysis of the GCM showed that it contained several aminoacids, including glutamate, whose release from glioma cells did not occur via the most common glial mechanisms of transport, or in response to hypoosmotic stress. GCM also contained glycine, whose action contrasted the glutamate effect. Indeed, strychnine application significantly increased GCM-induced depolarization and [Cl-]i rise. GCM-evoked [Cl-]i elevation was not inhibited by antagonists of Cl- transporters and significantly reduced in the presence of anion channels blocker NPPB, suggesting that Cl-selective channels are a major route for GCM-induced Cl- influx. Altogether, these data show that glioma released aminoacids may dynamically alter Cl- equilibrium in surrounding neurons, deeply interfering with their inhibitory balance, likely leading to physiological and

  17. Genetic polymorphisms of DNA double-strand break repair pathway genes and glioma susceptibility

    International Nuclear Information System (INIS)

    Zhao, Peng; Zou, Peng; Zhao, Lin; Yan, Wei; Kang, Chunsheng; Jiang, Tao; You, Yongping

    2013-01-01

    Genetic variations in DNA double-strand break repair genes can influence the ability of a cell to repair damaged DNA and alter an individual’s susceptibility to cancer. We studied whether polymorphisms in DNA double-strand break repair genes are associated with an increased risk of glioma development. We genotyped 10 potentially functional single nucleotide polymorphisms (SNPs) in 7 DNA double-strand break repair pathway genes (XRCC3, BRCA2, RAG1, XRCC5, LIG4, XRCC4 and ATM) in a case–control study including 384 glioma patients and 384 cancer-free controls in a Chinese Han population. Genotypes were determined using the OpenArray platform. In the single-locus analysis there was a significant association between gliomas and the LIG4 rs1805388 (Ex2 +54C>T, Thr9Ile) TT genotype (adjusted OR, 3.27; 95% CI, 1.87-5.71), as well as the TC genotype (adjusted OR, 1.62; 95% CI, 1.20-2.18). We also found that the homozygous variant genotype (GG) of XRCC4 rs1805377 (IVS7-1A>G, splice-site) was associated with a significantly increased risk of gliomas (OR, 1.77; 95% CI, 1.12-2.80). Interestingly, we detected a significant additive and multiplicative interaction effect between the LIG4 rs1805388 and XRCC4 rs1805377 polymorphisms with an increasing risk of gliomas. When we stratified our analysis by smoking status, LIG4 rs1805388 was associated with an increased glioma risk among smokers. These results indicate for the first time that LIG4 rs1805388 and XRCC4 rs1805377, alone or in combination, are associated with a risk of gliomas

  18. Antitumor Activity and Mechanism of a Reverse Transcriptase Inhibitor, Dapivirine, in Glioblastoma.

    Science.gov (United States)

    Liu, Weiwen; Song, Xian-Lu; Zhao, Shan-Chao; He, Minyi; Wang, Hai; Chen, Ziyang; Xiang, Wei; Yi, Guozhong; Qi, Songtao; Liu, Yawei

    2018-01-01

    Dapivirine is one of reverse transcriptase inhibitors (RTIs). It is the prototype of diarylpyrimidines (DAPY), formerly known as TMC120 or DAPY R147681 (IUPAC name: 4- [[4-(2, 4, 6-trimethylphenyl) amino]-2-pyrimidinyl] amino]-benzonitrile; CAS no.244767-67-7). The purpose of this study is to investigate the antitumor activity of dapivirine, one of the RTIs, on U87 glioblastoma (GBM) cells in vitro and in vivo . U87 GBM cells were cultured and treated with or without dapivirine. Cell viability was evaluated by CCK-8 (Cell Counting Kit 8, CCK-8) assay; apoptosis was analyzed by flow cytometry; cell migration was evaluated by Boyden Chamber assay; Western blotting was performed to detect proteins related to apoptosis, epithelial-to-mesenchymal transition and autophagy. PathScan intracellular signaling array kit was used to detect important and well-characterized signaling molecules. Tumor xenograft model in nude mice was used to evaluate the antitumorigenic effect in vivo . Dapivirine weakened proliferation of glioma cells and induced the apoptosis of U87 glioblastoma cells. Furthermore, dapivirine regulated autophagy and induced Akt, Bad and SAPK/JNK activations. Moreover, the inhibition of glioma cell growth by dapivirine was also observed in nude mice in vivo . In summary, in our study dapivirine exposure induces stress, resulting in JNK and PI3K/Akt pathway activation through diminished inhibition of the apoptosis and autophagy cascade in U87 GBM cells, which inhibits cell growth in vitro and in vivo .

  19. In vitro and in vivo effects of graphene oxide and reduced graphene oxide on glioblastoma

    Directory of Open Access Journals (Sweden)

    Jaworski S

    2015-02-01

    Full Text Available Sławomir Jaworski,1 Ewa Sawosz,1 Marta Kutwin,1 Mateusz Wierzbicki,1 Mateusz Hinzmann,1 Marta Grodzik,1 Anna Winnicka,2 Ludwika Lipinska,3 Karolina Włodyga,1 Andrè Chwalibog41Warsaw University of Life Science, Faculty of Animal Science, Division of Biotechnology and Biochemistry of Nutrition, 2Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 3Institute of Electronic Materials Technology, Warsaw, Poland; 4University of Copenhagen, Department of Veterinary Clinical and Animal Sciences, Copenhagen, DenmarkAbstract: Graphene and its related counterparts are considered the future of advanced nanomaterials owing to their exemplary properties. However, information about their toxicity and biocompatibility is limited. The objective of this study is to evaluate the toxicity of graphene oxide (GO and reduced graphene oxide (rGO platelets, using U87 and U118 glioma cell lines for an in vitro model and U87 tumors cultured on chicken embryo chorioallantoic membrane for an in vivo model. The in vitro investigation consisted of structural analysis of GO and rGO platelets using transmission elec­tron microscopy, evaluation of cell morphology and ultrastructure, assessment of cell viability by XTT assay, and investigation of cell proliferation by BrdU assay. Toxicity in U87 glioma tumors was evaluated by calculation of weight and volume of tumors and analyses of ultrastructure, histology, and protein expression. The in vitro results indicate that GO and rGO enter glioma cells and have different cytotoxicity. Both types of platelets reduced cell viability and proliferation with increasing doses, but rGO was more toxic than GO. The mass and volume of tumors were reduced in vivo after injection of GO and rGO. Moreover, the level of apoptotic markers increased in rGO-treated tumors. We show that rGO induces cell death mostly through apoptosis, indicating the potential applicability of

  20. Targeting and Therapy of Glioblastoma in a Mouse Model Using Exosomes Derived From Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Liya Zhu

    2018-04-01

    Full Text Available ObjectiveGlioblastoma is a highly aggressive primary brain tumor that is resistant to radiotherapy and chemotherapy. Natural killer (NK cells have been used to treat incurable cancers. Recent studies have investigated the effectiveness of NK-cell-derived exosomes (NK-Exo for treating incurable cancers such as melanoma, leukemia, and neuroblastoma; however, NK-Exo have not been used to treat glioblastoma. In the present study, we investigated the antitumor effects of NK-Exo against aggressive glioblastoma both in vitro and in vivo and determined the tumor-targeting ability of NK-Exo by performing fluorescence imaging.MethodsU87/MG cells were transfected with the enhanced firefly luciferase (effluc and thy1.1 genes; thy1.1-positive cells were selected using microbeads. U87/MG/F cells were assessed by reverse transcription polymerase chain reaction (RT-PCR, western blotting, and luciferase-activity assays. NK-Exo were isolated by ultracentrifugation, purified by density gradient centrifugation, and characterized by transmission electron microscopy, dynamic light scattering (DLS, nanoparticle-tracking analysis (NTA, and western blotting. Cytokine levels in NK-Exo were compared to those in NK cells and NK-cell medium by performing an enzyme-linked immunosorbent assay (ELISA. NK-Exo-induced apoptosis of cancer cells was confirmed by flow cytometry and western blotting. In vivo therapeutic effects and specificity of NK-Exo against glioblastoma were assessed in a xenograft mouse model by fluorescence imaging. Xenograft mice were treated with NK-Exo, which was administered seven times through the tail vein. Tumor growth was monitored by bioluminescence imaging (BLI, and tumor volume was measured by ultrasound imaging. The mice were intraperitoneally injected with dextran sulfate 2 h before NK-Exo injection to decrease the liver uptake and increase the tumor specificity of NK-Exo.ResultsRT-PCR and western blotting confirmed the gene and protein

  1. Histone deacetylase inhibitor, 2-propylpentanoic acid, increases the chemosensitivity and radiosensitivity of human glioma cell lines in vitro

    Institute of Scientific and Technical Information of China (English)

    SHAO Cui-jie; WU Ming-wei; CHEN Fu-rong; LI Cong; XIA Yun-fei; CHEN Zhong-ping

    2012-01-01

    Background Treatment for malignant glioma generally consists of cytoreductive surgery followed by radiotherapy and chemotherapy.In this study,we intended to investigate the effects of 2-propylpentanoic acid (VPA),a histone deacetylase inhibitor,on chemosensitivity and radiosensitivity in human glioma cell lines.Methods Human glioma cell lines,T98-G,and SF295,were treated with temozolomide (TMZ) or irradiation (IR),with or without VPA (1.0 mmol/L).Then,cytotoxicity and clonogenic survival assay was performed.Cell cycle stage,apoptosis,and autophagy were also detected using flow cytometry and dansyl monocadaverin (MDC) incorporation assay.One-way analysis of variance (ANOVA) and t-test were used to analyze the differences among variant groups.Results Mild cytotoxicity of VPA was revealed in both cell lines,T98-G and SF295,with the 50% inhibiting concentration (IC50) value of (3.85±0.58) mmol/L and (2.15±0.38) mmol/L,respectively; while the IC50 value of TMZ was (0.20±0.09) mmol/L for T98-G and (0.08±0.02) mmol/L for SF295.Moreover,if combined with VPA (1.0 mmol/L) for 96hours,the sensitivity of glioma cells to TMZ was significant increased (P <0.05).The surviving fractions at 2 Gy (SF2) of T98-G and SF295 cells exposed to IR alone were 0.52 and 0.58.However,when VPA was combined with IR,the SF2 of T98-G and SF295 dropped to 0.39 (P=0.047) and 0.49 (P=-0.049),respectively.Treatment with VPA plus TMZ or IR also resulted in a significant decrease in the proportion of cells in the G2 phase and increased apoptotic rates as well as autophagy in T98-G and SF295 cell lines (P <0.01).Conclusion VPA may enhance the activities of TMZ and IR on glioma cells possibly through cell cycle block and promote autophagy,and thus could be a potential sensitizer of glioma treatment.

  2. Monensin, a polyether ionophore antibiotic, overcomes TRAIL resistance in glioma cells via endoplasmic reticulum stress, DR5 upregulation and c-FLIP downregulation.

    Science.gov (United States)

    Yoon, Mi Jin; Kang, You Jung; Kim, In Young; Kim, Eun Hee; Lee, Ju Ahn; Lim, Jun Hee; Kwon, Taeg Kyu; Choi, Kyeong Sook

    2013-08-01

    Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) is preferentially cytotoxic to cancer cells over normal cells. However, many cancer cells, including malignant glioma cells, tend to be resistant to TRAIL. Monensin (a polyether ionophore antibiotic that is widely used in veterinary medicine) and salinomycin (a compound that is structurally related to monensin and shows cancer stem cell-inhibiting activity) are currently recognized as anticancer drug candidates. In this study, we show that monensin effectively sensitizes various glioma cells, but not normal astrocytes, to TRAIL-mediated apoptosis; this occurs at least partly via monensin-induced endoplasmic reticulum (ER) stress, CHOP-mediated DR5 upregulation and proteasome-mediated downregulation of c-FLIP. Interestingly, other polyether antibiotics, such as salinomycin, nigericin, narasin and lasalocid A, also stimulated TRAIL-mediated apoptosis in glioma cells via ER stress, CHOP-mediated DR5 upregulation and c-FLIP downregulation. Taken together, these results suggest that combined treatment of glioma cells with TRAIL and polyether ionophore antibiotics may offer an effective therapeutic strategy.

  3. Molecular markers in glioma.

    Science.gov (United States)

    Ludwig, Kirsten; Kornblum, Harley I

    2017-09-01

    Gliomas are the most malignant and aggressive form of brain tumors, and account for the majority of brain cancer related deaths. Malignant gliomas, including glioblastoma are treated with radiation and temozolomide, with only a minor benefit in survival time. A number of advances have been made in understanding glioma biology, including the discovery of cancer stem cells, termed glioma stem cells (GSC). Some of these advances include the delineation of molecular heterogeneity both between tumors from different patients as well as within tumors from the same patient. Such research highlights the importance of identifying and validating molecular markers in glioma. This review, intended as a practical resource for both clinical and basic investigators, summarizes some of the more well-known molecular markers (MGMT, 1p/19q, IDH, EGFR, p53, PI3K, Rb, and RAF), discusses how they are identified, and what, if any, clinical relevance they may have, in addition to discussing some of the specific biology for these markers. Additionally, we discuss identification methods for studying putative GSC's (CD133, CD15, A2B5, nestin, ALDH1, proteasome activity, ABC transporters, and label-retention). While much research has been done on these markers, there is still a significant amount that we do not yet understand, which may account for some conflicting reports in the literature. Furthermore, it is unlikely that the investigator will be able to utilize one single marker to prospectively identify and isolate GSC from all, or possibly, any gliomas.

  4. Forkhead box K2 inhibits the proliferation, migration, and invasion of human glioma cells and predicts a favorable prognosis.

    Science.gov (United States)

    Wang, Bo; Zhang, XueBin; Wang, Wei; Zhu, ZhiZhong; Tang, Fan; Wang, Dong; Liu, Xi; Zhuang, Hao; Yan, XiaoLing

    2018-01-01

    Forkhead box K2 (FOXK2) is a member of the forkhead box family of transcription factors. Recently, researchers discovered that overexpression of FOXK2 inhibits the proliferation and metastasis of breast cancer, non-small cell lung cancer, and colorectal cancer, and is related to the clinical prognosis. However, in hepatocellular carcinoma, FOXK2 results in the opposite phenotypes. Currently, the contribution of FOXK2 to glioma pathogenesis is not clear. We evaluated the expression of FOXK2 in 151 glioma patients using immunohistochemistry assays. The associations among the expression of FOXK2, clinicopathological parameters, and the prognosis of glioma patients were statistically analyzed. We downregulated and upregulated the level of FOXK2 in glioma cells by transfections with small interfering RNA and plasmids. Then, we investigated the effects on tumor cell behavior in vitro by Cell Counting Kit-8 assays, colony-formation assay, transwell assay, and the epithelial-to-mesenchymal transition (EMT) biomarker levels. The clinical data showed that expression of FOXK2 gradually decreased with increasing World Health Organization (WHO) grades and a low level of FOXK2 indicates a poor prognosis. FOXK2 expression is negatively correlated with Ki67 expression and the WHO degree but is not correlated with other clinicopathological parameters, including sex, age, Karnofsky Performance Status, tumor diameter, O -6-methylguanine-DNA methyltransferase, and glutathione S -transferase pi. FOXK2 knockdown enhances glioma cell proliferation, migration, invasion, and EMT process, and, in contrast, FOXK2 overexpression inhibits glioma cell proliferation, migration, invasion, and the EMT process. Expression of FOXK2 gradually decreases with increasing WHO grades. FOXK2 inhibits tumor proliferation, migration, and invasion. FOXK2 is a critical mediator of the EMT process.

  5. Lessons we learned from high-throughput and top-down systems biology analyses about glioma stem cells.

    Science.gov (United States)

    Mock, Andreas; Chiblak, Sara; Herold-Mende, Christel

    2014-01-01

    A growing body of evidence suggests that glioma stem cells (GSCs) account for tumor initiation, therapy resistance, and the subsequent regrowth of gliomas. Thus, continuous efforts have been undertaken to further characterize this subpopulation of less differentiated tumor cells. Although we are able to enrich GSCs, we still lack a comprehensive understanding of GSC phenotypes and behavior. The advent of high-throughput technologies raised hope that incorporation of these newly developed platforms would help to tackle such questions. Since then a couple of comparative genome-, transcriptome- and proteome-wide studies on GSCs have been conducted giving new insights in GSC biology. However, lessons had to be learned in designing high-throughput experiments and some of the resulting conclusions fell short of expectations because they were performed on only a few GSC lines or at one molecular level instead of an integrative poly-omics approach. Despite these shortcomings, our knowledge of GSC biology has markedly expanded due to a number of survival-associated biomarkers as well as glioma-relevant signaling pathways and therapeutic targets being identified. In this article we review recent findings obtained by comparative high-throughput analyses of GSCs. We further summarize fundamental concepts of systems biology as well as its applications for glioma stem cell research.

  6. Long-term culture of organotypic multicellular glioma spheroids: a good culture model for studying gliomas

    NARCIS (Netherlands)

    Kaaijk, P.; Troost, D.; Das, P. K.; Leenstra, S.; Bosch, D. A.

    1995-01-01

    Gliomas, as well as other solid tumours, contain tumour stroma composed of connective tissue, macrophages, capillaries and other non-cellular constituents. Therefore, a homogeneous culture of tumour cells alone, as is often used as a culture model for gliomas, is not ideal to study all aspects of

  7. CD4+ and Perivascular Foxp3+ T Cells in Glioma Correlate with Angiogenesis and Tumor Progression

    Directory of Open Access Journals (Sweden)

    Luyan Mu

    2017-11-01

    Full Text Available BackgroundAngiogenesis and immune cell infiltration are key features of gliomas and their manipulation of the microenvironment, but their prognostic significance remains indeterminate. We evaluate the interconnection between tumor-infiltrating lymphocyte (TIL and tumor blood-vasculatures in the context of glioma progression.MethodsPaired tumor tissues of 44 patients from three tumor-recurrent groups: diffuse astrocytomas (DA recurred as DA, DA recurred as glioblastomas (GBM, and GBM recurred as GBM were evaluated by genetic analysis, immunohistochemistry for tumor blood vessel density, TIL subsets, and clinical outcomes. These cells were geographically divided into perivascular and intratumoral TILs. Associations were examined between these TILs, CD34+ tumor blood vessels, and clinical outcomes. To determine key changes in TIL subsets, microarray data of 15-paired tumors from patients who failed antiangiogenic therapy- bevacizumab, and 16-paired tumors from chemo-naïve recurrent GBM were also evaluated and compared.ResultsUpon recurrence in primary gliomas, similar kinetic changes were found between tumor blood vessels and each TIL subset in all groups, but only CD4+ including Foxp3+ TILs, positively correlated with the density of tumor blood vessels. CD4 was the predominant T cell population based on the expression of gene-transcripts in primary GBMs, and increased activated CD4+ T cells were revealed in Bevacizumab-resistant recurrent tumors (not in chemo-naïve recurrent tumors. Among these TILs, 2/3 of them were found in the perivascular niche; Foxp3+ T cells in these niches not only correlated with the tumor vessels but were also an independent predictor of shortened recurrence-free survival (RFS (HR = 4.199, 95% CI 1.522–11.584, p = 0.006.ConclusionThe minimal intratumoral T cell infiltration and low detection of CD8 transcripts expression in primary GBMs can potentially limit antitumor response. CD4+ and perivascular Foxp3

  8. β‐Elemene Selectively Inhibits the Proliferation of Glioma Stem‐Like Cells Through the Downregulation of Notch1

    Science.gov (United States)

    Feng, Hai‐bin; Wang, Jing; Jiang, Hao‐ran; Mei, Xin; Zhao, Yi‐ying; Chen, Fu‐rong; Qu, Yue; Sai, Ke; Guo, Cheng‐cheng; Yang, Qun‐ying; Zhang, Zong‐ping

    2016-01-01

    Abstract Glioma is the most frequent primary central nervous system tumor. Although the current first‐line medicine, temozolomide (TMZ), promotes patient survival, drug resistance develops easily. Thus, it is important to investigate novel therapeutic reagents to solidify the treatment effect. β‐Elemene (bELE) is a compound from a Chinese herb whose anticancer effect has been shown in various types of cancer. However, its role in the inhibition of glioma stem‐like cells (GSLCs) has not yet been reported. We studied both the in vitro and the in vivo inhibitory effect of bELE and TMZ in GSLCs and parental cells and their combined effects. The molecular mechanisms were also investigated. We also optimized the delivery methods of bELE. We found that bELE selectively inhibits the proliferation and sphere formation of GSLCs, other than parental glioma cells, and TMZ exerts its effects on parental cells instead of GSLCs. The in vivo data confirmed that the combination of bELE and TMZ worked better in the xenografts of GSLCs, mimicking the situation of tumorigenesis of human cancer. Notch1 was downregulated with bELE treatment. Our data also demonstrated that the continuous administration of bELE produces an ideal effect to control tumor progression. Our findings have demonstrated, for the first time, that bELE could compensate for TMZ to kill both GSLCs and nonstem‐like cancer cells, probably improving the prognosis of glioma patients tremendously. Notch1 might be a downstream target of bELE. Therefore, our data shed light on improving the outcomes of glioma patients by combining bELE and TMZ. Stem Cells Translational Medicine 2017;6:830–839 PMID:28297578

  9. Establishment of 9L/F344 rat intracerebral glioma model of brain tumor stem cells

    Directory of Open Access Journals (Sweden)

    Zong-yu XIAO

    2015-04-01

    Full Text Available Objective To establish the 9L/F344 rat intracerebral glioma model of brain tumor stem cells.  Methods Rat 9L gliosarcoma stem-like cells were cultured in serum-free suspension. The expression of CD133 and nestin were tested by immunohistochemistry. A total of 48 inbredline male F344 rats were randomly divided into 2 groups, and 9L tumor sphere cells and 9L monolayer cells were respectively implanted into the right caudate nucleus of F344 rats in 2 groups. Survival time was observed and determined using the method of Kaplan-Meier survival analysis. Fourteen days after implantation or when the rats were dying, their brains were perfused and sectioned for HE staining, and CD133 and nestin were detected by immunohistochemistry.  Results Rat 9L tumor spheres were formed with suspension culture in serum-free medium. The gliomas formed in both groups were invasive without obvious capsule. More new vessels, bleeding and necrosis could be detected in 9L tumor spheres group. The tumor cells in both groups were positive for CD133 and nestin. There was no significant difference in the expression of CD133 and nestin between 2 groups (P > 0.05, for all. According to the expression of nestin, the tumors formed by 9L tumor sphere cells were more invasive. The median survival time of the rats bearing 9L tumor sphere cells was 15 d (95%CI: 15.219-15.781, and the median survival time of the rats bearing 9L monolayer cells was 21 d (95%CI: 20.395-21.605. There was significant difference between 2 groups (χ2 = 12.800, P = 0.000.  Conclusions 9L/F344 rat intracerebral glioma model of brain tumor stem cells is successfully established, which provides a glioma model for the future research. DOI: 10.3969/j.issn.1672-6731.2015.04.012

  10. Effect of brain- and tumor-derived connective tissue growth factor on glioma invasion.

    Science.gov (United States)

    Edwards, Lincoln A; Woolard, Kevin; Son, Myung Jin; Li, Aiguo; Lee, Jeongwu; Ene, Chibawanye; Mantey, Samuel A; Maric, Dragan; Song, Hua; Belova, Galina; Jensen, Robert T; Zhang, Wei; Fine, Howard A

    2011-08-03

    Tumor cell invasion is the principal cause of treatment failure and death among patients with malignant gliomas. Connective tissue growth factor (CTGF) has been previously implicated in cancer metastasis and invasion in various tumors. We explored the mechanism of CTGF-mediated glioma cell infiltration and examined potential therapeutic targets. Highly infiltrative patient-derived glioma tumor-initiating or tumor stem cells (TIC/TSCs) were harvested and used to explore a CTGF-induced signal transduction pathway via luciferase reporter assays, chromatin immunoprecipitation (ChIP), real-time polymerase chain reaction, and immunoblotting. Treatment of TIC/TSCs with small-molecule inhibitors targeting integrin β1 (ITGB1) and the tyrosine kinase receptor type A (TrkA), and short hairpin RNAs targeting CTGF directly were used to reduce the levels of key protein components of CTGF-induced cancer infiltration. TIC/TSC infiltration was examined in real-time cell migration and invasion assays in vitro and by immunohistochemistry and in situ hybridization in TIC/TSC orthotopic xenograft mouse models (n = 30; six mice per group). All statistical tests were two-sided. Treatment of TIC/TSCs with CTGF resulted in CTGF binding to ITGB1-TrkA receptor complexes and nuclear factor kappa B (NF-κB) transcriptional activation as measured by luciferase reporter assays (mean relative luciferase activity, untreated vs CTGF(200 ng/mL): 0.53 vs 1.87, difference = 1.34, 95% confidence interval [CI] = 0.69 to 2, P < .001). NF-κB activation resulted in binding of ZEB-1 to the E-cadherin promoter as demonstrated by ChIP analysis with subsequent E-cadherin suppression (fold increase in ZEB-1 binding to the E-cadherin promoter region: untreated + ZEB-1 antibody vs CTGF(200 ng/mL) + ZEB-1 antibody: 1.5 vs 6.4, difference = 4.9, 95% CI = 4.8 to 5.0, P < .001). Immunohistochemistry and in situ hybridization revealed that TrkA is selectively expressed in the most infiltrative glioma cells in situ

  11. A new anti-glioma therapy, AG119: pre-clinical assessment in a mouse GL261 glioma model

    International Nuclear Information System (INIS)

    Towner, Rheal A.; Ihnat, Michael; Saunders, Debra; Bastian, Anja; Smith, Nataliya; Pavana, Roheeth Kumar; Gangjee, Aleem

    2015-01-01

    High grade gliomas (HGGs; grades III and IV) are the most common primary brain tumors in adults, and their malignant nature ranks them fourth in incidence of cancer death. Standard treatment for glioblastomas (GBM), involving surgical resection followed by radiation and chemotherapy with temozolomide (TMZ) and the anti-angiogenic therapy bevacizumab, have not substantially improved overall survival. New therapeutic agents are desperately needed for this devastating disease. Here we study the potential therapeutic agent AG119 in a pre-clinical model for gliomas. AG119 possesses both anti-angiogenic (RTK inhibition) and antimicrotubule cytotoxic activity in a single molecule. GL261 glioma-bearing mice were either treated with AG119, anti-VEGF (vascular endothelial growth factor) antibody, anti c-Met antibody or TMZ, and compared to untreated tumor-bearing mice. Animal survival was assessed, and tumor volumes and vascular alterations were monitored with morphological magnetic resonance imaging (MRI) and perfusion-weighted imaging, respectively. Percent survival of GL261 HGG-bearing mice treated with AG119 was significantly higher (p < 0.001) compared to untreated tumors. Tumor volumes (21–31 days following intracerebral implantation of GL261 cells) were found to be significantly lower for AG119 (p < 0.001), anti-VEGF (p < 0.05) and anti-c-Met (p < 0.001) antibody treatments, and TMZ-treated (p < 0.05) mice, compared to untreated controls. Perfusion data indicated that both AG119 and TMZ were able to reduce the effect of decreasing perfusion rates significantly (p < 0.05 for both), when compared to untreated tumors. It was also found that IC 50 values for AG119 were much lower than those for TMZ in T98G and U251 cells. These data support further exploration of the anticancer activity AG119 in HGG, as this compound was able to increase animal survival and decrease tumor volumes in a mouse GL261 glioma model, and that AG119 is also not subject to methyl guanine

  12. PAR1 inhibition suppresses the self-renewal and growth of A2B5-defined glioma progenitor cells and their derived gliomas in vivo

    DEFF Research Database (Denmark)

    Auvergne, R.; Wu, C.; Connell, A.

    2016-01-01

    Glioblastoma (GBM) remains the most common and lethal intracranial tumor. In a comparison of gene expression by A2B5-defined tumor-initiating progenitor cells (TPCs) to glial progenitor cells derived from normal adult human brain, we found that the F2R gene encoding PAR1 was differentially...... overexpressed by A2B5-sorted TPCs isolated from gliomas at all stages of malignant development. In this study, we asked if PAR1 is causally associated with glioma progression. Lentiviral knockdown of PAR1 inhibited the expansion and self-renewal of human GBM-derived A2B5(+) TPCs in vitro, while pharmacological...

  13. MicroRNA-139-5p acts as a tumor suppressor by targeting ELTD1 and regulating cell cycle in glioblastoma multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Shouping [Department of Diagnostic Imaging, Linyi People' s Hospital, Linyi, Shandong 276000 (China); Wang, Xianjun [Department of Neurology, Linyi People' s Hospital, Linyi, Shandong 276000 (China); Li, Xiao [Department of Pathology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Cao, Yuandong, E-mail: yuandongcao@sina.com [Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province (China)

    2015-11-13

    MicroRNA-139-5p was identified to be significantly down-regulated in glioblastoma multiform (GBM) by miRNA array. In this report we aimed to clarify its biological function, molecular mechanisms and direct target gene in GBM. Twelve patients with GBM were analyzed for the expression of miR-139-5p by quantitative RT-PCR. miR-139-5p overexpression was established by transfecting miR-139-5p-mimic into U87MG and T98G cells, and its effects on cell proliferation were studied using MTT assay and colony formation assays. We concluded that ectopic expression of miR-139-5p in GBM cell lines significantly suppressed cell proliferation and inducing apoptosis. Bioinformatics coupled with luciferase and western blot assays also revealed that miR-139-5p suppresses glioma cell proliferation by targeting ELTD1 and regulating cell cycle. - Highlights: • miR-139-5p is downregulated in GBM. • miR-139-5p regulates cell proliferation through inducing apoptosis. • miR-139-5p regulates glioblastoma tumorigenesis by targeting 3′UTR of ELTD1. • miR-139-5p is involved in cell cycle regulation.

  14. Toll-like receptor triggered dendritic cell maturation and IL-12 secretion are necessary to overcome T-cell inhibition by glioma-associated TGF-beta2.

    NARCIS (Netherlands)

    Grauer, O.M.; Poschl, P.; Lohmeier, A.; Adema, G.J.; Bogdahn, U.

    2007-01-01

    Malignant gliomas are able to secrete large amounts of immunosuppressive cytokines like transforming growth factor beta 2 (TGF-beta2) and regularly escape from immune surveillance. Many strategies have been developed to induce potent anti-glioma responses, among those the use of dendritic cells (DC)

  15. Phase I Pharmacokinetic Study of the VEGFR Tyrosine Kinase Inhibitor Vatalanib (PTK787) plus Imatinib and Hydroxyurea for Malignant Glioma

    Science.gov (United States)

    Reardon, David A.; Egorin, Merrill J.; Desjardins, Annick; Vredenburgh, James J.; Beumer, Jan H.; Lagattuta, Theodore F.; Gururangan, Sridharan; Herndon, James E.; Salvado, August J.; Friedman, Henry S.

    2009-01-01

    Background We determined the maximum tolerated dose (MTD) and dose-limiting toxicities (DLT) of the oral vascular endothelial growth factor receptor (VEGFR) inhibitor, vatalanib, when administered with imatinib and hydroxyurea on a continuous daily schedule among recurrent malignant glioma patients. Methods All patients received 500 mg of hydroxyurea twice daily. Imatinib was dosed at 400 mg per day for patients not taking enzyme-inducing antiepileptic drugs (EIAEDs; stratum A) and at 500 mg twice-a-day for patients taking EIAEDs (stratum B). Vatalanib was escalated from 500 mg to 1250 mg twice daily in successive cohorts, independently for each stratum. Pharmacokinetics of each drug were assessed. Results Thirty-seven recurrent patients, including 34 (92%) with glioblastoma and 3 (8%) with grade 3 malignant glioma, were enrolled. Nineteen patients (51%) were taking EIAEDs. The MTD of vatalanib for all patients was 1000 mg twice-a-day. DLTs were hematologic, gastrointestinal, renal and hepatic. No patients developed intracranial hemorrhage. Concurrent administration of imatinib and hydroxyurea did not affect vatalanib exposure, but EIAEDs decreased vatalanib and imatinib plasma exposures. Conclusion Vatalanib doses up to 1000 mg twice-a-day combined with imatinib and hydroxyurea are well tolerated. Strategies to target tumor blood vessel endothelial cells and pericytes by inhibiting VEGFR and PDGFR, respectively, are safe among recurrent malignant glioma patients and may enhance anti-angiogenesis activity. PMID:19248046

  16. EG-07CELL CYCLE SIGNATURE AND TUMOR PHYLOGENY ARE ENCODED IN THE EVOLUTIONARY DYNAMICS OF DNA METHYLATION IN GLIOMA

    Science.gov (United States)

    Mazor, Tali; Pankov, Aleksandr; Johnson, Brett E.; Hong, Chibo; Bell, Robert J.A.; Smirnov, Ivan V.; Reis, Gerald F.; Phillips, Joanna J.; Barnes, Michael; Bollen, Andrew W.; Taylor, Barry S.; Molinaro, Annette M.; Olshen, Adam B.; Song, Jun S.; Berger, Mitchel S.; Chang, Susan M.; Costello, Joseph F.

    2014-01-01

    The clonal evolution of tumor cell populations can be reconstructed from patterns of genetic alterations. In contrast, tumor epigenetic states, including DNA methylation, are reversible and sensitive to the tumor microenvironment, presumably precluding the use of epigenetics to discover tumor phylogeny. Here we examined the spatial and temporal dynamics of DNA methylation in a clinically and genetically characterized cohort of IDH1-mutant low-grade gliomas and their patient-matched recurrences. WHO grade II gliomas are diffuse, infiltrative tumors that frequently recur and may undergo malignant progression to a higher grade with a worse prognosis. The extent to which epigenetic alterations contribute to the evolution of low-grade gliomas, including malignant progression, is unknown. While all gliomas in the cohort exhibited the hypermethylation signature associated with IDH1 mutation, low-grade gliomas that underwent malignant progression to high-grade glioblastoma (GBM) had a unique signature of DNA hypomethylation enriched for active enhancers, as well as sites of age-related hypermethylation in the brain. Genes with promoter hypomethylation and concordant transcriptional upregulation during evolution to GBM were enriched in cell cycle function, evolving in concert with genetic alterations that deregulate the G1/S cell cycle checkpoint. Despite the plasticity of tumor epigenetic states, phyloepigenetic trees robustly recapitulated phylogenetic trees derived from somatic mutations in the same patients. These findings highlight widespread co-dependency of genetic and epigenetic events throughout the clonal evolution of initial and recurrent glioma.

  17. Nitrosoureas Inhibit the Stathmin Mediated Migration and Invasion of Malignant Glioma Cells

    OpenAIRE

    Liang, Xing-Jie; Choi, Yong; Sackett, Dan L.; Park, John K.

    2008-01-01

    Malignant gliomas are the most common primary intrinsic brain tumors and are highly lethal. The widespread migration and invasion of neoplastic cells from the initial site of tumor formation into the surrounding brain render these lesions refractory to definitive surgical treatment. Stathmin, a microtubule destabilizing protein that mediates cell cycle progression, can also regulate directed cell movement. Nitrosoureas, traditionally viewed as DNA alkylating agents, can also covalently modify...

  18. Therapeutic Strategy for Targeting Aggressive Malignant Gliomas by Disrupting Their Energy Balance.

    Science.gov (United States)

    Hegazy, Ahmed M; Yamada, Daisuke; Kobayashi, Masahiko; Kohno, Susumu; Ueno, Masaya; Ali, Mohamed A E; Ohta, Kumiko; Tadokoro, Yuko; Ino, Yasushi; Todo, Tomoki; Soga, Tomoyoshi; Takahashi, Chiaki; Hirao, Atsushi

    2016-10-07

    Although abnormal metabolic regulation is a critical determinant of cancer cell behavior, it is still unclear how an altered balance between ATP production and consumption contributes to malignancy. Here we show that disruption of this energy balance efficiently suppresses aggressive malignant gliomas driven by mammalian target of rapamycin complex 1 (mTORC1) hyperactivation. In a mouse glioma model, mTORC1 hyperactivation induced by conditional Tsc1 deletion increased numbers of glioma-initiating cells (GICs) in vitro and in vivo Metabolic analysis revealed that mTORC1 hyperactivation enhanced mitochondrial biogenesis, as evidenced by elevations in oxygen consumption rate and ATP production. Inhibition of mitochondrial ATP synthetase was more effective in repressing sphere formation by Tsc1-deficient glioma cells than that by Tsc1-competent glioma cells, indicating a crucial function for mitochondrial bioenergetic capacity in GIC expansion. To translate this observation into the development of novel therapeutics targeting malignant gliomas, we screened drug libraries for small molecule compounds showing greater efficacy in inhibiting the proliferation/survival of Tsc1-deficient cells compared with controls. We identified several compounds able to preferentially inhibit mitochondrial activity, dramatically reducing ATP levels and blocking glioma sphere formation. In human patient-derived glioma cells, nigericin, which reportedly suppresses cancer stem cell properties, induced AMPK phosphorylation that was associated with mTORC1 inactivation and induction of autophagy and led to a marked decrease in sphere formation with loss of GIC marker expression. Furthermore, malignant characteristics of human glioma cells were markedly suppressed by nigericin treatment in vivo Thus, targeting mTORC1-driven processes, particularly those involved in maintaining a cancer cell's energy balance, may be an effective therapeutic strategy for glioma patients. © 2016 by The American

  19. The Effect of Sodium Valproate on the Glioblastoma U87 Cell Line Tumor Development on the Chicken Embryo Chorioallantoic Membrane and on EZH2 and p53 Expression

    Directory of Open Access Journals (Sweden)

    Dovilė Kavaliauskaitė

    2017-01-01

    Full Text Available Literature data support evidences that glioblastoma (GBM patients experience prolonged survival due to sodium valproate (NaVP treatment. The study assessed the human GBM cell U87 xenograft studied in the chicken embryo chorioallantoic membrane (CAM model evaluating NaVP effect on tumor. Three groups of tumors (each n = 10 were studied: nontreated, treated with 4 mM, and treated with 8 mM of NaVP. The majority of tumors without NaVP treatment during tumor growth destroyed the chorionic epithelium, invaded the mesenchyme, and induced angiogenesis. Incidence of tumor formation on CAM without invasion into the mesenchyme was higher when U87 cells were treated with NaVP; the effect significantly increased with NaVP concentration. Treatment with 8 mM of NaVP did not show clear dynamics of tumor growth during 5 days; at the same time, the angiogenesis failed. With a strong staining of EZH2, p53 in tumors without NaVP treatment was found, and NaVP significantly decreased the expression of EZH2- and p53-positive cells; the effect was significantly higher at its 8 mM concentration. NaVP has a function in blocking the growth, invasion, and angiogenesis of tumor in the CAM model; tumor growth interferes with EZH2 and p53 molecular pathways, supporting the NaVP potential in GBM therapy.

  20. Stem cells and the origin of gliomas: A historical reappraisal with molecular advancements

    Directory of Open Access Journals (Sweden)

    Michael L Levy

    2009-01-01

    Full Text Available Michael L Levy1, Allen L Ho1,2, Samuel Hughes3, Jayant Menon1, Rahul Jandial41Division of Neurosurgery, University of California, San Diego, La Jolla, California, USA; 2Del E Webb Neurosciences, Aging and Stem Cell Research Center, The Burnham Institute for Medical Research, La Jolla, California, USA; 3Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA; 4Division of Neurosurgery, Department of Surgery, City of Hope Cancer Center, Duarte, CA, USAAbstract: The biology of both normal and tumor development clearly possesses overlapping and parallel features. Oncogenes and tumor suppressors are relevant not only in tumor biology, but also in physiological developmental regulators of growth and differentiation. Conversely, genes identified as regulators of developmental biology are relevant to tumor biology. This is particularly relevant in the context of brain tumors, where recent evidence is mounting that the origin of brain tumors, specifically gliomas, may represent dysfunctional developmental neurobiology. Neural stem cells are increasingly being investigated as the cell type that originally undergoes malignant transformation – the cell of origin – and the evidence for this is discussed.Keywords: stem cells, gliomas, neural stem cells, brain tumors, cancer stem cells

  1. Ebselen Induced C6 Glioma Cell Death in Oxygen and Glucose Deprivation

    OpenAIRE

    Shi, Honglian; Liu, Shimin; Miyake, Minoru; Liu, Ke Jian

    2006-01-01

    Studies have shown that ebselen is an anti-inflammatory and antioxidative agent. Its protective effect has been investigated in oxidative stress related diseases such as cerebral ischemia in recent years. However, experimental evidence also shows that ebselen causes cell death in several different cell types. Whether ebselen will have beneficial or detrimental effect on cells under ischemic condition is not known. Herein, we studied the effect of ebselen on C6 glioma cell under oxygen and glu...

  2. Effects of concomitant temozolomide and radiation therapies on WT1-specific T-cells in malignant glioma

    International Nuclear Information System (INIS)

    Chiba, Yasuyoshi; Hashimoto, Naoya; Tsuboi, Akihiro

    2010-01-01

    Immunotherapy targeting the Wilms' tumour 1 gene product has been proven safe and effective for treating malignant glioma in a phase II clinical study. Currently, radiation/temozolomide therapy is the standard treatment with only modest benefit. Whether combining radiation/temozolomide therapy with WT1 immunotherapy will have a negating effect on immunotherapy is still controversial because of the significant lymphocytopaenia induced by the former therapy. To address this issue, we investigated the changes in frequency and number of WT1-specific T-cells in patients with malignant gliomas. Twenty-two patients with newly diagnosed malignant glioma who received standard radiation/temozolomide therapy were recruited for the study. Blood samples were collected before treatment and on the sixth week of therapy. The frequencies and numbers of lymphocytes, CD8 + T-cells, WT1-specific T-cells, regulatory T-cells, natural killer cells and natural killer T-cells were measured and analysed using T-tests. Analysis of the frequency of T lymphocytes and its subpopulation showed an increase in regulatory T-cells, but no significant change was noted in the populations of T-cells, WT1-specific T-cells, natural killer (NK) cells and natural killer T (NKT) cells. Reductions in the total numbers of T-cells, WT1-specific T-cells, NK cells and NKT cells were mainly a consequence of the decrease in the total lymphocyte count. Radiation/temozolomide therapy did not significantly affect the frequency of WT1-specific T-cells, suggesting that the combination with WT1 immunotherapy may be possible, although further assessment in the clinical setting is warranted. (author)

  3. Effects of anticancer drugs on glia-glioma brain tumor model characterized by acoustic impedance microscopy

    Science.gov (United States)

    Soon, Thomas Tiong Kwong; Chean, Tan Wei; Yamada, Hikari; Takahashi, Kenta; Hozumi, Naohiro; Kobayashi, Kazuto; Yoshida, Sachiko

    2017-07-01

    An ultrasonic microscope is a useful tool for observing living tissue without chemical fixation or histochemical processing. Two-dimensional (2D) acoustic impedance microscopy developed in our previous study for living cell observation was employed to visualize intracellular changes. We proposed a brain tumor model by cocultivating rat glial cells and C6 gliomas to quantitatively analyze the effects of two types of anticancer drugs, cytochalasin B (CyB) and temozolomide (TMZ), when they were applied. We reported that CyB treatment (25 µg/ml, T = 90 min) significantly reduced the acoustic impedance of gliomas and has little effect on glial cells. Meanwhile, TMZ treatment (2 mg/ml, T = 90 min) impacted both cells equally, in which both cells’ acoustic impedances were decreased. As CyB targets the actin filament polymerization of the cells, we have concluded that the decrease in acoustic impedance was in fact due to actin filament depolymerization and the data can be quantitatively assessed for future studies in novel drug development.

  4. The 1p-encoded protein stathmin and resistance of malignant gliomas to nitrosoureas.

    Science.gov (United States)

    Ngo, Teri-T B; Peng, Tien; Liang, Xing-Jie; Akeju, Oluwaseun; Pastorino, Sandra; Zhang, Wei; Kotliarov, Yuri; Zenklusen, Jean C; Fine, Howard A; Maric, Dragan; Wen, Patrick Y; De Girolami, Umberto; Black, Peter McL; Wu, Wells W; Shen, Rong-Fong; Jeffries, Neal O; Kang, Dong-Won; Park, John K

    2007-04-18

    Malignant gliomas are generally resistant to all conventional therapies. Notable exceptions are anaplastic oligodendrogliomas with loss of heterozygosity on chromosome 1p (1p+/-). Patients with 1p+/- anaplastic oligodendroglioma frequently respond to procarbazine, 1-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea, and vincristine. Because the underlying biologic basis for this clinical finding is unclear, we evaluated differentially expressed 1p-encoded proteins in 1p+/- and 1p+/+ malignant glioma cell lines and then examined whether their expression was associated with outcome of patients with anaplastic oligodendroglioma. We used a comparative proteomic screen of A172 (1p+/-) and U251 (1p+/+) malignant glioma cell lines to identify differentially expressed 1p-encoded proteins, including stathmin, a microtubule-associated protein. 1p+/- and 1p+/+ anaplastic oligodendroglioma specimens from 24 patients were assessed for stathmin expression by immunohistochemistry. The relationship between stathmin expression and clinical outcome was assessed with Kaplan-Meier analyses. RNA inhibition and cDNA transfection experiments tested effects of stathmin under- and overexpression, respectively, on the in vitro and in vivo resistance of malignant glioma cells to treatment with nitrosourea. For in vivo resistance studies, 36 mice with intracranial and 16 mice with subcutaneous xenograft tumor implants were used (one tumor per mouse). Flow cytometry was used for cell cycle analysis. Immunoblotting was used to assess protein expression. All statistical tests were two-sided. Decreased stathmin expression in tumors was statistically significantly associated with loss of heterozygosity in 1p (Pnitrosourea-treated mice carrying xenograft tumors. Median survival of mice with stathmin+/- tumors was 95 days (95% CI = 68.7 to 121.3 days) and that of mice with stathmin+/+ tumors was 64 days (95% CI = 58.2 to 69.8 days) (difference = 31 days, 95% CI = 4.1 to 57.9 days; PNitrosoureas induced

  5. Predominant antitumor effects by fully human anti-TRAIL-receptor2 (DR5) monoclonal antibodies in human glioma cells in vitro and in vivo

    Science.gov (United States)

    Nagane, Motoo; Shimizu, Saki; Mori, Eiji; Kataoka, Shiro; Shiokawa, Yoshiaki

    2010-01-01

    Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL/Apo2 L) preferentially induces apoptosis in human tumor cells through its cognate death receptors DR4 or DR5, thereby being investigated as a potential agent for cancer therapy. Here, we applied fully human anti-human TRAIL receptor monoclonal antibodies (mAbs) to specifically target one of death receptors for TRAIL in human glioma cells, which could also reduce potential TRAIL-induced toxicity in humans. Twelve human glioma cell lines treated with several fully human anti-human TRAIL receptor mAbs were sensitive to only anti-DR5 mAbs, whereas they were totally insensitive to anti-DR4 mAb. Treatment with anti-DR5 mAbs exerted rapid cytotoxicity and lead to apoptosis induction. The cellular sensitivity was closely associated with cell-surface expression of DR5. Expression of c-FLIPL, Akt, and Cyclin D1 significantly correlated with sensitivity to anti-DR5 mAbs. Primary cultures of glioma cells were also relatively resistant to anti-DR5 mAbs, exhibiting both lower DR5 and higher c-FLIPL expression. Downregulation of c-FLIPL expression resulted in the sensitization of human glioma cells to anti-DR5 mAbs, whereas overexpression of c-FLIPL conferred resistance to anti-DR5 mAb. Treatment of tumor-burden nude mice with the direct agonist anti-DR5 mAb KMTR2 significantly suppressed growth of subcutaneous glioma xenografts leading to complete regression. Similarly, treatment of nude mice bearing intracerebral glioma xenografts with KMTR2 significantly elongated lifespan without tumor recurrence. These results suggest that DR5 is the predominant TRAIL receptor mediating apoptotic signals in human glioma cells, and sensitivity to anti-DR5 mAbs was determined at least in part by the expression level of c-FLIPL and Akt. Specific targeting of death receptor pathway through DR5 using fully human mAbs might provide a novel therapeutic strategy for intractable malignant gliomas. PMID:20511188

  6. Vitamin K3-2,3-epoxide induction of apoptosis with activation of ROS-dependent ERK and JNK protein phosphorylation in human glioma cells.

    Science.gov (United States)

    Wu, Jender; Chien, Chih-Chiang; Yang, Liang-Yo; Huang, Guan-Cheng; Cheng, Min-Chi; Lin, Che-Tong; Shen, Shing-Chuan; Chen, Yen-Chou

    2011-08-15

    2-Methyl-1,4-naphthoquinone (menadione or vitamin K3; EPO) and K3-2,3-epoxide (EPO1), but not vitamin K3-3-OH (EPO2), exhibited cytotoxicity that caused DNA fragmentation and chromatin condensation in U87 and C6 cells. EPO1 showed more-potent cytotoxicity than EPO, and the IC(50) values of EPO and EPO1 in U87 cells were 37.5 and 15.7μM, respectively. Activation of caspase 3 enzyme activity with cleavage of caspase 3 protein was detected in EPO1-treated U87 and C6 cells, and the addition of the caspase 3 peptidyl inhibitor, DEVD-FMK, reduced the cytotoxic effect of EPO1. An increase in the intracellular ROS level by EPO1 was observed in the DCHF-DA analysis, and EPO1-induced apoptosis and caspase 3 protein cleavage were prevented by adding the antioxidant, N-acetyl-cysteine (NAC), with decreased ROS production elicited by EPO1. Activation of ERK and JNK, but not p38, via phosphorylation induction was identified in EPO1- but not EPO- or EPO2-treated U87 and C6 cells, and this was blocked by adding NAC. However, the ERK inhibitor, PD98059, and the JNK inhibitor, SP600125, showed no effect on EPO1-induced cytotoxicity in either cell type. Our findings demonstrate that 2,3-epoxide substitution significantly potentiates the apoptotic effect of vitamin K3 via stimulating ROS production, which may be useful in the chemotherapy of glioblastoma cells. Copyright © 2011. Published by Elsevier Ireland Ltd.

  7. A Pilot Feasibility Study of Oral 5-Fluorocytosine and Genetically-Modified Neural Stem Cells Expressing E.Coli Cytosine Deaminase for Treatment of Recurrent High Grade Gliomas

    Science.gov (United States)

    2017-11-07

    Adult Anaplastic Astrocytoma; Recurrent Grade III Glioma; Recurrent Grade IV Glioma; Adult Anaplastic Oligodendroglioma; Adult Brain Tumor; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Recurrent Adult Brain Tumor; Adult Anaplastic Oligoastrocytoma; Recurrent High Grade Glioma

  8. Nanoprodrugs of NSAIDs: Preparation and Characterization of Flufenamic Acid Nanoprodrugs

    Directory of Open Access Journals (Sweden)

    Bong-Seop Lee

    2011-01-01

    Full Text Available We demonstrated that hydrophobic derivatives of the nonsteroidal anti-inflammatory drug (NSAIDflufenamic acid (FA, can be formed into stable nanometer-sized prodrugs (nanoprodrugs that inhibit the growth of glioma cells, suggesting their potential application as anticancer agent. We synthesized highly hydrophobic monomeric and dimeric prodrugs of FA via esterification and prepared nanoprodrugs using spontaneous emulsification mechanism. The nanoprodrugs were in the size range of 120 to 140 nm and physicochemically stable upon long-term storage as aqueous suspension, which is attributed to the strong hydrophobic interaction between prodrug molecules. Importantly, despite the highly hydrophobic nature and water insolubility, nanoprodrugs could be readily activated into the parent drug by porcine liver esterase, presenting a potential new strategy for novel NSAID prodrug design. The nanoprodrug inhibited the growth of U87-MG glioma cells with IC50 of 20 μM, whereas FA showed IC50 of 100 μM, suggesting that more efficient drug delivery was achieved with nanoprodrugs.

  9. Discovery of Power-Law Growth in the Self-Renewal of Heterogeneous Glioma Stem Cell Populations.

    Directory of Open Access Journals (Sweden)

    Michiya Sugimori

    Full Text Available Accumulating evidence indicates that cancer stem cells (CSCs drive tumorigenesis. This suggests that CSCs should make ideal therapeutic targets. However, because CSC populations in tumors appear heterogeneous, it remains unclear how CSCs might be effectively targeted. To investigate the mechanisms by which CSC populations maintain heterogeneity during self-renewal, we established a glioma sphere (GS forming model, to generate a population in which glioma stem cells (GSCs become enriched. We hypothesized, based on the clonal evolution concept, that with each passage in culture, heterogeneous clonal sublines of GSs are generated that progressively show increased proliferative ability.To test this hypothesis, we determined whether, with each passage, glioma neurosphere culture generated from four different glioma cell lines become progressively proliferative (i.e., enriched in large spheres. Rather than monitoring self-renewal, we measured heterogeneity based on neurosphere clone sizes (#cells/clone. Log-log plots of distributions of clone sizes yielded a good fit (r>0.90 to a straight line (log(% total clones = k*log(#cells/clone indicating that the system follows a power-law (y = xk with a specific degree exponent (k = -1.42. Repeated passaging of the total GS population showed that the same power-law was maintained over six passages (CV = -1.01 to -1.17. Surprisingly, passage of either isolated small or large subclones generated fully heterogeneous populations that retained the original power-law-dependent heterogeneity. The anti-GSC agent Temozolomide, which is well known as a standard therapy for glioblastoma multiforme (GBM, suppressed the self-renewal of clones, but it never disrupted the power-law behavior of a GS population.Although the data above did not support the stated hypothesis, they did strongly suggest a novel mechanism that underlies CSC heterogeneity. They indicate that power-law growth governs the self-renewal of heterogeneous

  10. Cell death is induced by ciglitazone, a peroxisome proliferator-activated receptor γ (PPARγ) agonist, independently of PPARγ in human glioma cells

    International Nuclear Information System (INIS)

    Lee, Myoung Woo; Kim, Dae Seong; Kim, Hye Ryung; Kim, Hye Jin; Yang, Jin Mo; Ryu, Somi; Noh, Yoo Hun; Lee, Soo Hyun; Son, Meong Hi; Jung, Hye Lim; Yoo, Keon Hee; Koo, Hong Hoe; Sung, Ki Woong

    2012-01-01

    Highlights: ► Greater than 30 μM ciglitazone induces cell death in glioma cells. ► Cell death by ciglitazone is independent of PPARγ in glioma cells. ► CGZ induces cell death by the loss of MMP via decreased Akt. -- Abstract: Peroxisome proliferator-activated receptor γ (PPARγ) regulates multiple signaling pathways, and its agonists induce apoptosis in various cancer cells. However, their role in cell death is unclear. In this study, the relationship between ciglitazone (CGZ) and PPARγ in CGZ-induced cell death was examined. At concentrations of greater than 30 μM, CGZ, a synthetic PPARγ agonist, activated caspase-3 and induced apoptosis in T98G cells. Treatment of T98G cells with less than 30 μM CGZ effectively induced cell death after pretreatment with 30 μM of the PPARγ antagonist GW9662, although GW9662 alone did not induce cell death. This cell death was also observed when cells were co-treated with CGZ and GW9662, but was not observed when cells were treated with CGZ prior to GW9662. In cells in which PPARγ was down-regulated cells by siRNA, lower concentrations of CGZ (<30 μM) were sufficient to induce cell death, although higher concentrations of CGZ (⩾30 μM) were required to induce cell death in control T98G cells, indicating that CGZ effectively induces cell death in T98G cells independently of PPARγ. Treatment with GW9662 followed by CGZ resulted in a down-regulation of Akt activity and the loss of mitochondrial membrane potential (MMP), which was accompanied by a decrease in Bcl-2 expression and an increase in Bid cleavage. These data suggest that CGZ is capable of inducing apoptotic cell death independently of PPARγ in glioma cells, by down-regulating Akt activity and inducing MMP collapse.

  11. Mechanisms of Glioma Formation: Iterative Perivascular Glioma Growth and Invasion Leads to Tumor Progression, VEGF-Independent Vascularization, and Resistance to Antiangiogenic Therapy

    Directory of Open Access Journals (Sweden)

    Gregory J. Baker

    2014-07-01

    Full Text Available As glioma cells infiltrate the brain they become associated with various microanatomic brain structures such as blood vessels, white matter tracts, and brain parenchyma. How these distinct invasion patterns coordinate tumor growth and influence clinical outcomes remain poorly understood. We have investigated how perivascular growth affects glioma growth patterning and response to antiangiogenic therapy within the highly vascularized brain. Orthotopically implanted rodent and human glioma cells are shown to commonly invade and proliferate within brain perivascular space. This form of brain tumor growth and invasion is also shown to characterize de novo generated endogenous mouse brain tumors, biopsies of primary human glioblastoma (GBM, and peripheral cancer metastasis to the human brain. Perivascularly invading brain tumors become vascularized by normal brain microvessels as individual glioma cells use perivascular space as a conduit for tumor invasion. Agent-based computational modeling recapitulated biological perivascular glioma growth without the need for neoangiogenesis. We tested the requirement for neoangiogenesis in perivascular glioma by treating animals with angiogenesis inhibitors bevacizumab and DC101. These inhibitors induced the expected vessel normalization, yet failed to reduce tumor growth or improve survival of mice bearing orthotopic or endogenous gliomas while exacerbating brain tumor invasion. Our results provide compelling experimental evidence in support of the recently described failure of clinically used antiangiogenics to extend the overall survival of human GBM patients.

  12. Preparation and characterization of Fe3O4@Au-C225 composite targeted nanoparticles for MRI of human glioma.

    Science.gov (United States)

    Ge, Yaoqi; Zhong, Yuejiao; Ji, Guozhong; Lu, Qianling; Dai, Xinyu; Guo, Zhirui; Zhang, Peng; Peng, Gang; Zhang, Kangzhen; Li, Yuntao

    2018-01-01

    To study the characterization of Fe3O4@Au-C225 composite targeted MNPs. Fe3O4@Au-C225 was prepared by the absorption method. The immunosorbent assay was used to evaluate its absorption efficiency at C225 Fc. ZETA SIZER3000 laser particle size analyzer, ultraviolet photometer and its characteristics were analyzed by VSM. the targeting effect of Fe3O4@Au-C225 composite targeted MNPs on U251 cells in vitro were detected by 7.0 Tesla Micro-MR; and subcutaneous transplanted human glioma in nude mice were performed the targeting effect in vivo after tail vein injection of Fe3O4@Au-C225 composite targeted MNPs by MRI. The self-prepared Fe3O4@Au composite MNPs can adsorb C225 with high efficiency of adsorption so that Fe3O4@Au-C225 composite targeted MNPs were prepared successfully. Fe3O4@Au-C225 composite targeted MNPs favorably targeted human glioma cell line U251 in vitro; Fe3O4@Au-C225 composite targeted MNPs have good targeting ability to xenografted glioma on nude mice in vivo, and can be traced by MRI. The Fe3O4@Au-C225 composite targeted MNPs have the potential to be used as a tracer for glioma in vivo.

  13. Intracranial AAV-sTRAIL combined with lanatoside C prolongs survival in an orthotopic xenograft mouse model of invasive glioblastoma.

    Science.gov (United States)

    Crommentuijn, Matheus H W; Maguire, Casey A; Niers, Johanna M; Vandertop, W Peter; Badr, Christian E; Würdinger, Thomas; Tannous, Bakhos A

    2016-04-01

    Glioblastoma (GBM) is the most common malignant brain tumor in adults. We designed an adeno-associated virus (AAV) vector for intracranial delivery of secreted, soluble tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) to GBM tumors in mice and combined it with the TRAIL-sensitizing cardiac glycoside, lanatoside C (lan C). We applied this combined therapy to two different GBM models using human U87 glioma cells and primary patient-derived GBM neural spheres in culture and in orthotopic GBM xenograft models in mice. In U87 cells, conditioned medium from AAV2-sTRAIL expressing cells combined with lan C induced 80% cell death. Similarly, lan C sensitized primary GBM spheres to sTRAIL causing over 90% cell death. In mice bearing intracranial U87 tumors treated with AAVrh.8-sTRAIL, administration of lan C caused a decrease in tumor-associated Fluc signal, while tumor size increased within days of stopping the treatment. Another round of lan C treatment re-sensitized GBM tumor to sTRAIL-induced cell death. AAVrh.8-sTRAIL treatment alone and combined with lanatoside C resulted in a significant decrease in tumor growth and longer survival of mice bearing orthotopic invasive GBM brain tumors. In summary, AAV-sTRAIL combined with lanatoside C induced cell death in U87 glioma cells and patient-derived GBM neural spheres in culture and in vivo leading to an increased in overall mice survival. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Asymmetric Distribution of GFAP in Glioma Multipotent Cells

    Science.gov (United States)

    Guichet, Pierre-Olivier; Guelfi, Sophie; Ripoll, Chantal; Teigell, Marisa; Sabourin, Jean-Charles; Bauchet, Luc; Rigau, Valérie; Rothhut, Bernard; Hugnot, Jean-Philippe

    2016-01-01

    Asymmetric division (AD) is a fundamental mechanism whereby unequal inheritance of various cellular compounds during mitosis generates unequal fate in the two daughter cells. Unequal repartitions of transcription factors, receptors as well as mRNA have been abundantly described in AD. In contrast, the involvement of intermediate filaments in this process is still largely unknown. AD occurs in stem cells during development but was also recently observed in cancer stem cells. Here, we demonstrate the asymmetric distribution of the main astrocytic intermediate filament, namely the glial fibrillary acid protein (GFAP), in mitotic glioma multipotent cells isolated from glioblastoma (GBM), the most frequent type of brain tumor. Unequal mitotic repartition of GFAP was also observed in mice non-tumoral neural stem cells indicating that this process occurs across species and is not restricted to cancerous cells. Immunofluorescence and videomicroscopy were used to capture these rare and transient events. Considering the role of intermediate filaments in cytoplasm organization and cell signaling, we propose that asymmetric distribution of GFAP could possibly participate in the regulation of normal and cancerous neural stem cell fate. PMID:26953813

  15. Asymmetric Distribution of GFAP in Glioma Multipotent Cells.

    Directory of Open Access Journals (Sweden)

    Pierre-Olivier Guichet

    Full Text Available Asymmetric division (AD is a fundamental mechanism whereby unequal inheritance of various cellular compounds during mitosis generates unequal fate in the two daughter cells. Unequal repartitions of transcription factors, receptors as well as mRNA have been abundantly described in AD. In contrast, the involvement of intermediate filaments in this process is still largely unknown. AD occurs in stem cells during development but was also recently observed in cancer stem cells. Here, we demonstrate the asymmetric distribution of the main astrocytic intermediate filament, namely the glial fibrillary acid protein (GFAP, in mitotic glioma multipotent cells isolated from glioblastoma (GBM, the most frequent type of brain tumor. Unequal mitotic repartition of GFAP was also observed in mice non-tumoral neural stem cells indicating that this process occurs across species and is not restricted to cancerous cells. Immunofluorescence and videomicroscopy were used to capture these rare and transient events. Considering the role of intermediate filaments in cytoplasm organization and cell signaling, we propose that asymmetric distribution of GFAP could possibly participate in the regulation of normal and cancerous neural stem cell fate.

  16. Tumor-infiltrating lymphocytes (TILs) from patients with glioma

    DEFF Research Database (Denmark)

    Liu, Zhenjiang; Meng, Qingda; Bartek, Jiri

    2017-01-01

    Tumor-infiltrating lymphocytes (TILs) may represent a viable source of T cells for the biological treatment of patients with gliomas. Glioma tissue was obtained from 16 patients, tumor cell lines were established, and TILs were expanded in 16/16 cases using a combination of IL-2/IL-15/IL-21...

  17. In vitro drug response and efflux transporters associated with drug resistance in pediatric high grade glioma and diffuse intrinsic pontine glioma.

    Directory of Open Access Journals (Sweden)

    Susanna J E Veringa

    Full Text Available Pediatric high-grade gliomas (pHGG, including diffuse intrinsic pontine gliomas (DIPG, are the leading cause of cancer-related death in children. While it is clear that surgery (if possible, and radiotherapy are beneficial for treatment, the role of chemotherapy for these tumors is still unclear. Therefore, we performed an in vitro drug screen on primary glioma cells, including three DIPG cultures, to determine drug sensitivity of these tumours, without the possible confounding effect of insufficient drug delivery. This screen revealed a high in vitro cytotoxicity for melphalan, doxorubicine, mitoxantrone, and BCNU, and for the novel, targeted agents vandetanib and bortezomib in pHGG and DIPG cells. We subsequently determined the expression of the drug efflux transporters P-gp, BCRP1, and MRP1 in glioma cultures and their corresponding tumor tissues. Results indicate the presence of P-gp, MRP1 and BCRP1 in the tumor vasculature, and expression of MRP1 in the glioma cells themselves. Our results show that pediatric glioma and DIPG tumors per se are not resistant to chemotherapy. Treatment failure observed in clinical trials, may rather be contributed to the presence of drug efflux transporters that constitute a first line of drug resistance located at the blood-brain barrier or other resistance mechanism. As such, we suggest that alternative ways of drug delivery may offer new possibilities for the treatment of pediatric high-grade glioma patients, and DIPG in particular.

  18. Radiosensitivity and TP 53, EGFR amplification and LOH10 analysis of primary glioma cell cultures

    International Nuclear Information System (INIS)

    Gerlach, B.; Harder, A.H.; Slotman, B.J.; Sminia, P.; Hulsebos, T.J.M.; Leenstra, S.; Peter Vandertop, W.; Hartmann, K.A.

    2002-01-01

    Aim: Determination of in-vitro radiosensitivity and genetic alterations of cell cultures derived from human glioma biopsy tissue and established glioma cell lines. Material and Methods: Fresh brain tumor specimens of six patients were processed to early passage cell cultures. In addition the cell lines D 384 and Gli 6 were used. Cell cultures were irradiated with doses from 2 to 10 Gy. Following irradiation, cell survival was determined by clonogenic assay and survival curves were generated. The surviving fractions after 2 Gy (SF2) and 4 Gy (SF4) were used as radiosensitivity parameters. Genetic analysis included determination of the mutational and loss of heterozygosity (LOH) status of TP 53 (exons 5-8), the LOH 10- and epidermal growth factor receptor gene (EGFR) amplification status. Results: The SF2 and SF4 values ranged from 0.54 to 0.88 (mean: 0.70) and from 0.13 to 0.52 (mean: 0.32), respectively. Genetic alterations were found in the Gli 6 cell line and in two primary cell cultures. The genetic profile of Gli 6 showed LOH but no TP 53 mutation, complete LOH 10 and no EGFR amplification. The VU 15 cell culture showed TP 53 mutation but no LOH 10 or EGFR amplification, while VU 24 showed incomplete LOH 10, EGFR amplification and no TP 53 mutation. In the other four cell cultures and D 384 cell line no genetic alterations were diagnosed. Histopathological classification of glioblastoma multiforme and/or genetic alterations resulted in lower radiosensitivity. Conclusion: In this small series of early passage glioma cell cultures low radiosensitivity and alterations in cell regulatory genes were seen. Further testing of biological behavior in larger series of patient-derived material is ongoing. (orig.)

  19. Revisit the Candidacy of Brain Cell Types as the Cell(s of Origin for Human High-Grade Glioma

    Directory of Open Access Journals (Sweden)

    Fangjie Shao

    2018-02-01

    Full Text Available High-grade glioma, particularly, glioblastoma, is the most aggressive cancer of the central nervous system (CNS in adults. Due to its heterogeneous nature, glioblastoma almost inevitably relapses after surgical resection and radio-/chemotherapy, and is thus highly lethal and associated with a dismal prognosis. Identifying the cell of origin has been considered an important aspect in understanding tumor heterogeneity, thereby holding great promise in designing novel therapeutic strategies for glioblastoma. Taking advantage of genetic lineage-tracing techniques, performed mainly on genetically engineered mouse models (GEMMs, multiple cell types in the CNS have been suggested as potential cells of origin for glioblastoma, among which adult neural stem cells (NSCs and oligodendrocyte precursor cells (OPCs are the major candidates. However, it remains highly debated whether these cell types are equally capable of transforming in patients, given that in the human brain, some cell types divide so slowly, therefore may never have a chance to transform. With the recent advances in studying adult NSCs and OPCs, particularly from the perspective of comparative biology, we now realize that notable differences exist among mammalian species. These differences have critical impacts on shaping our understanding of the cell of origin of glioma in humans. In this perspective, we update the current progress in this field and clarify some misconceptions with inputs from important findings about the biology of adult NSCs and OPCs. We propose to re-evaluate the cellular origin candidacy of these cells, with an emphasis on comparative studies between animal models and humans.

  20. FasL and FADD delivery by a glioma-specific and cell cycle-dependent HSV-1 amplicon virus enhanced apoptosis in primary human brain tumors

    Directory of Open Access Journals (Sweden)

    Lam Paula Y

    2010-10-01

    Full Text Available Abstract Background Glioblastoma multiforme is the most malignant cancer of the brain and is notoriously difficult to treat due to the highly proliferative and infiltrative nature of the cells. Herein, we explored the combination treatment of pre-established human glioma xenograft using multiple therapeutic genes whereby the gene expression is regulated by both cell-type and cell cycle-dependent transcriptional regulatory mechanism conferred by recombinant HSV-1 amplicon vectors. Results We demonstrated for the first time that Ki67-positive proliferating primary human glioma cells cultured from biopsy samples were effectively induced into cell death by the dual-specific function of the pG8-FasL amplicon vectors. These vectors were relatively stable and exhibited minimal cytotoxicity in vivo. Intracranial implantation of pre-transduced glioma cells resulted in better survival outcome when compared with viral vectors inoculated one week post-implantation of tumor cells, indicating that therapeutic efficacy is dependent on the viral spread and mode of viral vectors administration. We further showed that pG8-FasL amplicon vectors are functional in the presence of commonly used treatment regimens for human brain cancer. In fact, the combined therapies of pG8-FasL and pG8-FADD in the presence of temozolomide significantly improved the survival of mice bearing intracranial high-grade gliomas. Conclusion Taken together, our results showed that the glioma-specific and cell cycle-dependent HSV-1 amplicon vector is potentially useful as an adjuvant therapy to complement the current gene therapy strategy for gliomas.

  1. Gefitinib Radiosensitizes Stem-Like Glioma Cells: Inhibition of Epidermal Growth Factor Receptor-Akt-DNA-PK Signaling, Accompanied by Inhibition of DNA Double-Strand Break Repair

    International Nuclear Information System (INIS)

    Kang, Khong Bee; Zhu Congju; Wong Yinling; Gao Qiuhan; Ty, Albert; Wong, Meng Cheong

    2012-01-01

    Purpose: We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)–Akt-DNA–dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Methods and Materials: Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, γ-H 2 AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, γ-H 2 AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Results: Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G 2 /M arrest and increased γ-H 2 AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased γ-H 2 AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Conclusions: Stem-like gliomaspheres are resistant to irradiation

  2. Gefitinib radiosensitizes stem-like glioma cells: inhibition of epidermal growth factor receptor-Akt-DNA-PK signaling, accompanied by inhibition of DNA double-strand break repair.

    Science.gov (United States)

    Kang, Khong Bee; Zhu, Congju; Wong, Yin Ling; Gao, Qiuhan; Ty, Albert; Wong, Meng Cheong

    2012-05-01

    We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)-Akt-DNA-dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, γ-H(2)AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, γ-H(2)AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G(2)/M arrest and increased γ-H(2)AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased γ-H(2)AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Stem-like gliomaspheres are resistant to irradiation-induced cytotoxicity, G(2)/M arrest, and DNA DSBs, compared with nonstem

  3. Gefitinib Radiosensitizes Stem-Like Glioma Cells: Inhibition of Epidermal Growth Factor Receptor-Akt-DNA-PK Signaling, Accompanied by Inhibition of DNA Double-Strand Break Repair

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Khong Bee, E-mail: dmskkb@nccs.com.sg [Brain Tumour Research Laboratory, Division of Medical Sciences, National Cancer Centre Singapore (Singapore); Zhu Congju; Wong Yinling; Gao Qiuhan; Ty, Albert; Wong, Meng Cheong [Brain Tumour Research Laboratory, Division of Medical Sciences, National Cancer Centre Singapore (Singapore)

    2012-05-01

    Purpose: We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)-Akt-DNA-dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Methods and Materials: Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, {gamma}-H{sub 2}AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, {gamma}-H{sub 2}AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Results: Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G{sub 2}/M arrest and increased {gamma}-H{sub 2}AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased {gamma}-H{sub 2}AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Conclusions: Stem-like gliomaspheres are

  4. Investigation of therapeutic efficiency of phenytoin (PHT) labeled with radioactive 131I in the cancer cell lines

    International Nuclear Information System (INIS)

    Cansu Uzaras; Ugur Avcibasi; Hasan Demiroglu; Emin Ilker Medine; Ayfer Yurt KiIcar; Fazilet Zuemruet Biber Mueftueler; Perihan Uenak

    2016-01-01

    The aim of this study is to determine the incorporations of PHT radiolabeled with 131 I ( 131 I-PHT) on U-87 MG, Daoy and A549 cancerous cell lines. For this, cold and radio-labeling studies were carried out. The radiolabeling yield of 131 I-PHT was obtained about 95 %. Subsequently, cell culture studies were carried out and radio-labeling yields of 131 I, 131 I-PHT on U-87 MG, Daoy and A549 cancerous cells were investigated. Cell culture studies demonstrated that the incorporation values of 131 IPHT on the three cell lines decreased with increasing radioactivity. Consequently, 131 I-PHT may be a good radiopharmaceutical for targeting radionuclide therapy of Central Nervous System Tumors. (author)

  5. Epigallocatechin-3-gallate increases intracellular [Ca2+] in U87 cells mainly by influx of extracellular Ca2+ and partly by release of intracellular stores.

    Science.gov (United States)

    Kim, Hee Jung; Yum, Keun Sang; Sung, Jong-Ho; Rhie, Duck-Joo; Kim, Myung-Jun; Min, Do Sik; Hahn, Sang June; Kim, Myung-Suk; Jo, Yang-Hyeok; Yoon, Shin Hee

    2004-02-01

    Green tea has been receiving considerable attention as a possible preventive agent against cancer and cardiovascular disease. Epigallocatechin-3-gallate (EGCG) is a major polyphenol component of green tea. Using digital calcium imaging and an assay for [3H]-inositol phosphates, we determined whether EGCG increases intracellular [Ca2+] ([Ca2+]i) in non-excitable human astrocytoma U87 cells. EGCG induced concentration-dependent increases in [Ca2+]i. The EGCG-induced [Ca2+]i increases were reduced to 20.9% of control by removal of extracellular Ca2+. The increases were also inhibited markedly by treatment with the non-specific Ca2+ channel inhibitors cobalt (3 mM) for 3 min and lanthanum (1 mM) for 5 min. The increases were not significantly inhibited by treatment for 10 min with the L-type Ca2+ channel blocker nifedipine (100 nM). Treatment with the inhibitor of endoplasmic reticulum Ca2+-ATPase thapsigargin (1 micro M) also significantly inhibited the EGCG-induced [Ca2+]i increases. Treatment for 15 min with the phospholipase C (PLC) inhibitor neomycin (300 micro M) attenuated the increases significantly, while the tyrosine kinase inhibitor genistein (30 micro M) had no effect. EGCG increased [3H]-inositol phosphates formation via PLC activation. Treatment for 10 min with mefenamic acid (100 micro M) and flufenamic acid (100 micro M), derivatives of diphenylamine-2-carboxylate, blocked the EGCG-induced [Ca2+]i increase in non-treated and thapsigargin-treated cells but indomethacin (100 micro M) did not affect the increases. Collectively, these data suggest that EGCG increases [Ca2+]i in non-excitable U87 cells mainly by eliciting influx of extracellular Ca2+ and partly by mobilizing intracellular Ca2+ stores by PLC activation. The EGCG-induced [Ca2+]i influx is mediated mainly through channels sensitive to diphenylamine-2-carboxylate derivatives.

  6. Induction of reactive oxygen intermediates-dependent programmed cell death in human malignant ex vivo glioma cells and inhibition of the vascular endothelial growth factor production by taurolidine.

    Science.gov (United States)

    Rodak, Roksana; Kubota, Hisashi; Ishihara, Hideyuki; Eugster, Hans-Pietro; Könü, Dilek; Möhler, Hanns; Yonekawa, Yasuhiro; Frei, Karl

    2005-06-01

    Taurolidine, a derivative of the amino acid taurin, was recently found to display a potent antineoplastic effect both in vitro and in vivo. The authors therefore initiated studies to assess the potential antineoplastic activity of taurolidine in human glioma cell lines and in ex vivo malignant cell cultures. They also studied the mechanisms that induce cell death and the impact of taurolidine on tumor-derived vascular endothelial growth factor (VEGF) production. Cytotoxicity and clonogenic assays were performed using crystal violet staining. In the cytotoxicity assay 100% of glioma cell lines (eight of eight) and 74% of ex vivo glioma cultures (14 of 19) demonstrated sensitivity to taurolidine, with a mean median effective concentration (EC50) of 51 +/- 28 microg/ml and 56 +/- 23 microg/ml, respectively. Colony formation was inhibited by taurolidine, with a mean EC50 of 7 +/- 3 microg/ml for the cell lines and a mean EC50 of 3.5 +/- 1.7 microg/ml for the ex vivo glioma cultures. On observing this high activity of taurolidine in both assays, the authors decided to evaluate its cell death mechanisms. Fragmentation of DNA, externalization of phosphatidylserine, activation of poly(adenosine diphosphate-ribose) polymerase, loss of the mitochondrial membrane potential followed by a release of apoptosis-inducing factor, and typical apoptotic features were found after taurolidine treatment. Cell death was preceded by the generation of reactive O2 intermediates, which was abrogated by N-acetylcysteine but not by benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. Moreover, taurolidine also induced suppression of VEGF production on the protein and messenger RNA level, as shown by an enzyme-linked immunosorbent assay and by reverse transcription-polymerase chain reaction. Given all these findings, taurolidine may be a promising new agent in the treatment of malignant gliomas; it displays a combination of antineoplastic and antiangiogenic activities, inducing tumor cell

  7. Ibuprofen and Diclofenac Restrict Migration and Proliferation of Human Glioma Cells by Distinct Molecular Mechanisms

    Science.gov (United States)

    Leidgens, Verena; Seliger, Corinna; Jachnik, Birgit; Welz, Tobias; Leukel, Petra; Vollmann-Zwerenz, Arabel; Bogdahn, Ulrich; Kreutz, Marina; Grauer, Oliver M.; Hau, Peter

    2015-01-01

    Background Non-steroidal anti-inflammatory drugs (NSAIDs) have been associated with anti-tumorigenic effects in different tumor entities. For glioma, research has generally focused on diclofenac; however data on other NSAIDs, such as ibuprofen, is limited. Therefore, we performed a comprehensive investigation of the cellular, molecular, and metabolic effects of ibuprofen and diclofenac on human glioblastoma cells. Methods Glioma cell lines were treated with ibuprofen or diclofenac to investigate functional effects on proliferation and cell motility. Cell cycle, extracellular lactate levels, lactate dehydrogenase-A (LDH-A) expression and activity, as well as inhibition of the Signal Transducer and Activator of Transcription 3 (STAT-3) signaling pathway, were determined. Specific effects of diclofenac and ibuprofen on STAT-3 were investigated by comparing their effects with those of the specific STAT-3 inhibitor STATTIC. Results Ibuprofen treatment led to a stronger inhibition of cell growth and migration than treatment with diclofenac. Proliferation was affected by cell cycle arrest at different checkpoints by both agents. In addition, diclofenac, but not ibuprofen, decreased lactate levels in all concentrations used. Both decreased STAT-3 phosphorylation; however, diclofenac led to decreased c-myc expression and subsequent reduction in LDH-A activity, whereas treatment with ibuprofen in higher doses induced c-myc expression and less LDH-A alteration. Conclusions This study indicates that both ibuprofen and diclofenac strongly inhibit glioma cells, but the subsequent metabolic responses of both agents are distinct. We postulate that ibuprofen may inhibit tumor cells also by COX- and lactate-independent mechanisms after long-term treatment in physiological dosages, whereas diclofenac mainly acts by inhibition of STAT-3 signaling and downstream modulation of glycolysis. PMID:26485029

  8. Morphological characterization of a human glioma cell l ine.

    Science.gov (United States)

    Machado, Camila Ml; Schenka, André; Vassallo, José; Tamashiro, Wirla Msc; Gonçalves, Estela M; Genari, Selma C; Verinaud, Liana

    2005-05-10

    A human malignant continuous cell line, named NG97, was recently established in our laboratory. This cell line has been serially subcultured over 100 times in standard culture media presenting no sign of cell senescence. The NG97 cell line has a doubling time of about 24 h. Immunocytochemical analysis of glial markers demonstrated that cells are positive for glial fibrillary acidic protein (GFAP) and S-100 protein, and negative for vimentin. Under phase-contrast microscope, cultures of NG97 showed cells with variable morphological features, such as small rounded cells, fusiform cells (fibroblastic-like cells), and dendritic-like cells. However, at confluence just small rounded and fusiform cells can be observed. At scanning electron microscopy (SEM) small rounded cells showed heterogeneous microextentions, including blebs and filopodia. Dendritic-like cells were flat and presented extensive prolongations, making several contacts with small rounded cells, while fusiform cells presented their surfaces dominated by microvilli.We believe that the knowledge about NG97 cell line may be useful for a deeper understanding of biological and immunological characteristics of gliomas.

  9. Functional Changes of Dendritic Cells in C6 Glioma-Bearing Rats That Underwent Combined Argon-Helium Cryotherapy and IL-12 Treatment.

    Science.gov (United States)

    Li, Ming; Cui, Yao; Li, Xiqing; Guo, Yanwu; Wang, Bin; Zhang, Jiadong; Xu, Jian; Han, Shuangyin; Shi, Xiwen

    2016-08-01

    The aim of this study was to explore changes in tumor tissues of glioma-bearing rats that underwent argon-helium cryoablation as well as changes in antitumor immunity before and after combined interleukin 12 treatment. Two hundred sixty Wistar rats were randomly divided into a blank control group, intravenous injection interleukin-12 group, cryotherapy group, and cryotherapy + intravenous injection group. C6 glioma cells proliferated in vitro were implanted subcutaneously on the backs of rats to establish C6 glioma-bearing animal models. Each group underwent the corresponding treatments, and morphological changes in tumor tissues were examined using hematoxylin-eosin staining. CD11c staining was examined using immunohistochemistry, and differences in dendritic cells and T-cell subsets before and after treatment were analyzed using flow cytometry. The control group showed no statistical changes in terms of tumor tissue morphology and cellular immunity, cryotherapy group, and cryotherapy + intravenous injection group, among which the count for the cryotherapy + intravenous injection group was significantly higher than those of all other groups. In the argon-helium cryotherapy group, tumor cells were damaged and dendritic cell markers were positive. The number of CD11c+ and CD86+ cells increased significantly after the operation as did the cytokine interferon-γ level (P < .01), suggesting a shift toward Th1-type immunity. Combined treatment of argon-helium cryoablation and interleukin 12 for gliomas not only effectively injured tumor tissues but also boosted immune function and increased antitumor ability. Therefore, this approach is a promising treatment measure for brain gliomas. © The Author(s) 2015.

  10. Nasal Glioma: Case report

    Directory of Open Access Journals (Sweden)

    Ozgur Surmelioglu

    2011-02-01

    Full Text Available Nasal gliomas are rare, benign, congenital tumors that are thought to be result of abnormality in embryonic development. Three types of clinical presentations have been recognized; extranasal, intranasal and combined. Clinically, these masses are non-pulsatile, gray or purple lesions that obstruct the nasal cavity and cause deformity extranasaly. Histologically, they are made up of astrocytic cells, fibrous and vascular connective tissue that is covered with nasal respiratory mucosa. Treatment of the nasal glioma requires a multidisciplinary approach including an radiologist, neurosurgeon and otorhinolaryngologist. Radiological investigation should be performed to describe intracranial extension. In this case, a 2 years old boy with nasal mass that was diagnosed as nasal glioma is reported. . [Cukurova Med J 2011; 36(1.000: 34-36

  11. Nasal Glioma: Case report

    Directory of Open Access Journals (Sweden)

    Ozgur Surmelioglu

    2011-03-01

    Full Text Available Nasal gliomas are rare, benign, congenital tumors that are thought to be result of abnormality in embryonic development. Three types of clinical presentations have been recognized; extranasal, intranasal and combined. Clinically, these masses are non-pulsatile, gray or purple lesions that obstruct the nasal cavity and cause deformity extranasaly. Histologically, they are made up of astrocytic cells, fibrous and vascular connective tissue that is covered with nasal respiratory mucosa. Treatment of the nasal glioma requires a multidisciplinary approach including an radiologist, neurosurgeon and otorhinolaryngologist. Radiological investigation should be performed to describe intracranial extension. In this case, a 2 years old boy with nasal mass that was diagnosed as nasal glioma is reported. . [Cukurova Med J 2011; 36(1: 34-36

  12. SVM-based glioma grading. Optimization by feature reduction analysis

    International Nuclear Information System (INIS)

    Zoellner, Frank G.; Schad, Lothar R.; Emblem, Kyrre E.; Harvard Medical School, Boston, MA; Oslo Univ. Hospital

    2012-01-01

    We investigated the predictive power of feature reduction analysis approaches in support vector machine (SVM)-based classification of glioma grade. In 101 untreated glioma patients, three analytic approaches were evaluated to derive an optimal reduction in features; (i) Pearson's correlation coefficients (PCC), (ii) principal component analysis (PCA) and (iii) independent component analysis (ICA). Tumor grading was performed using a previously reported SVM approach including whole-tumor cerebral blood volume (CBV) histograms and patient age. Best classification accuracy was found using PCA at 85% (sensitivity = 89%, specificity = 84%) when reducing the feature vector from 101 (100-bins rCBV histogram + age) to 3 principal components. In comparison, classification accuracy by PCC was 82% (89%, 77%, 2 dimensions) and 79% by ICA (87%, 75%, 9 dimensions). For improved speed (up to 30%) and simplicity, feature reduction by all three methods provided similar classification accuracy to literature values (∝87%) while reducing the number of features by up to 98%. (orig.)

  13. SVM-based glioma grading. Optimization by feature reduction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zoellner, Frank G.; Schad, Lothar R. [University Medical Center Mannheim, Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Emblem, Kyrre E. [Massachusetts General Hospital, Charlestown, A.A. Martinos Center for Biomedical Imaging, Boston MA (United States). Dept. of Radiology; Harvard Medical School, Boston, MA (United States); Oslo Univ. Hospital (Norway). The Intervention Center

    2012-11-01

    We investigated the predictive power of feature reduction analysis approaches in support vector machine (SVM)-based classification of glioma grade. In 101 untreated glioma patients, three analytic approaches were evaluated to derive an optimal reduction in features; (i) Pearson's correlation coefficients (PCC), (ii) principal component analysis (PCA) and (iii) independent component analysis (ICA). Tumor grading was performed using a previously reported SVM approach including whole-tumor cerebral blood volume (CBV) histograms and patient age. Best classification accuracy was found using PCA at 85% (sensitivity = 89%, specificity = 84%) when reducing the feature vector from 101 (100-bins rCBV histogram + age) to 3 principal components. In comparison, classification accuracy by PCC was 82% (89%, 77%, 2 dimensions) and 79% by ICA (87%, 75%, 9 dimensions). For improved speed (up to 30%) and simplicity, feature reduction by all three methods provided similar classification accuracy to literature values ({proportional_to}87%) while reducing the number of features by up to 98%. (orig.)

  14. Nitric oxide donors attenuate clongenic potential in rat C6 glioma cells treated with alkylating chemotherapeutic agents.

    Science.gov (United States)

    Yang, Jir-Jei; Yin, Jiu-Haw; Yang, Ding-I

    2007-05-11

    1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU) kills tumor cells via multiple actions including alkylation and carbamoylation. Previously, we have reported that formation of S-nitrosoglutathione (GSNO) in glioma cells overexpressing inducible nitric oxide synthase (iNOS) contributed to nitric oxide (NO)-dependent carbamoylating chemoresistance against BCNU. To further characterize the effects of NO on alkylating cytotoxicity, colony formation assay was applied to evaluate the effects of various NO donors on rat C6 glioma cells challenged with alkylating agents. We demonstrate that NO donors including GSNO, diethylamine NONOate (DEA/NO), and sodium nitroprusside (SNP) substantially reduced the extent of colony formation in glioma cells treated with alkylating agents, namely methyl methanesulfonate (MMS), N-methyl-N-nitrosourea (MNU), and N-ethyl-N-nitrosourea (ENU). Without alkylating agents these NO-releasing agents alone had no effects on clongenic potential of rat C6 glioma cells. Among these three NO donors used, the effectiveness in potentiating alkylating cytotoxicity is in the order of "GSNO>DEA/NO>SNP" when applied at the same dosages. GSNO also exerted similar synergistic actions reducing the extents of colony formation when co-administrated with 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-hydrazine (compound #1), another alkylating agent that mimics the chloroethylating action of BCNU. Together with our previous findings, we propose that NO donors may be used as adjunct chemotherapy with alkylating agents for such malignant brain tumors as glioblastoma multiforme (GBM). In contrast, production of NO as a result of iNOS induction, such as that occurring after surgical resection of brain tumors, may compromise the efficacy of carbamoylating chemotherapy.

  15. Inhibitors of GLUT/SLC2A Enhance the Action of BCNU and Temozolomide against High-Grade Gliomas

    Directory of Open Access Journals (Sweden)

    Alberto Azzalin

    2017-04-01

    Full Text Available Glucose transport across glioblastoma membranes plays a crucial role in maintaining the enhanced glycolysis typical of high-grade gliomas and glioblastoma. We tested the ability of two inhibitors of the glucose transporters GLUT/SLC2A superfamily, indinavir (IDV and ritonavir (RTV, and of one inhibitor of the Na/glucose antiporter type 2 (SGLT2/SLC5A2 superfamily, phlorizin (PHZ, in decreasing glucose consumption and cell proliferation of human and murine glioblastoma cells. We found in vitro that RTV, active on at least three different GLUT/SLC2A transporters, was more effective than IDV, a specific inhibitor of GLUT4/SLC2A4, both in decreasing glucose consumption and lactate production and in inhibiting growth of U87MG and Hu197 human glioblastoma cell lines and primary cultures of human glioblastoma. PHZ was inactive on the same cells. Similar results were obtained when cells were grown in adherence or as 3D multicellular tumor spheroids. RTV treatment but not IDV treatment induced AMP-activated protein kinase (AMPKα phosphorylation that paralleled the decrease in glycolytic activity and cell growth. IDV, but not RTV, induced an increase in GLUT1/SLC2A1 whose activity could compensate for the inhibition of GLUT4/SLC2A4 by IDV. RTV and IDV pass poorly the blood brain barrier and are unlikely to reach sufficient liquoral concentrations in vivo to inhibit glioblastoma growth as single agents. Isobologram analysis of the association of RTV or IDV and 1,3-bis(2-chloroethyl-1-nitrosourea (BCNU or 4-methyl-5-oxo-2,3,4,6,8-pentazabicyclo[4.3.0]nona-2,7,9-triene-9-carboxamide (TMZ indicated synergy only with RTV on inhibition of glioblastoma cells. Finally, we tested in vivo the combination of RTV and BCNU on established GL261 tumors. This drug combination increased the overall survival and allowed a five-fold reduction in the dose of BCNU.

  16. Analysis of changes in energy and redox states in HepG2 hepatoma and C6 glioma cells upon exposure to cadmium

    International Nuclear Information System (INIS)

    Yang, M.S.; Yu, L.C.; Gupta, R.C.

    2004-01-01

    The energy and redox states of the HepG2 hepatoma and the C6 glioma cells were studied by quantifying the levels of ATP, ADP, AMP, GSH, and GSSG. These values were used to calculate the energy charge potential (ECP = [ATP + 0.5ADP]/TAN), total adenosine nucleotides (TAN = ATP + ADP + AMP), total glutathione (TG = [GSH + GSSG]/TAN), and the redox state (GSH/GSSG ratio). For comparison between cell types, the level of each energy metabolite (ATP, ADP, and AMP) was normalized against TAN of the respective cell. The results showed that ATP:ADP:AMP ratio was 0.76:0.11:0.13 for the HepG2 cells and 0.80:0.11:0.09 for the C6 glioma cells. ECP was 0.81 ± 0.01 and 0.85 ± 0.01 for the HepG2 and the C6 glioma cells, respectively. GSH/GSSG ratio was 2.66 ± 0.16 and 3.63 ± 0.48 for HepG2 and C6 glioma cells, respectively. TG was 3.2 ± 0.54 for the HepG2 cells and 2.43 ± 0.18 for the C6 glioma cells, indicating that the level of total glutathione is more than two to three times higher than the total energy metabolites in these cell lines. Following a 3-h incubation in medium containing different concentrations of Cd, there was a dose-dependent decrease in cell viability. The 3-h LC 50 for the HepG2 cells was 0.5 mM and that for the C6 glioma cells was 0.4 mM. Cellular TAN decreased with a decrease in cell viability. Upon careful analysis of the energy state, there was a significant increase in relative amount of ATP and decrease in ADP and AMP in both cells as Cd concentration increased from 0 to 0.1, 0.2, and 0.6 mM. However, ECP in both cell lines increased, which indicated that the level of high energy phosphate was adequate. There was also a significant increase in TG and a significant decrease in GSH/GSSG in the C6 glioma cells when cells were exposed to as low as 0.1 mM Cd, which suggested that the cellular redox state was compromised. The HepG2 cells, on the other hand, showed no significant change in both TG and GSH/GSSG level until Cd concentration reached 0.6 m

  17. Characterization of NCAM expression and function in BT4C and BT4Cn glioma cells

    DEFF Research Database (Denmark)

    Andersson, A M; Moran, N; Gaardsvoll, H

    1991-01-01

    The neural cell adhesion molecule, NCAM, plays an important role in cell-cell adhesion. Therefore, we have studied NCAM expression in the glioma cell lines BT4C and BT4Cn. We demonstrate that the 2 cell lines differ in their metastatic ability; while BT4C cells have a very low capacity for produc...

  18. GCN5 Potentiates Glioma Proliferation and Invasion via STAT3 and AKT Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Kun Liu

    2015-09-01

    Full Text Available The general control of nucleotide synthesis 5 (GCN5, which is one kind of lysine acetyltransferases, regulates a number of cellular processes, such as cell proliferation, differentiation, cell cycle and DNA damage repair. However, its biological role in human glioma development remains elusive. In the present study, we firstly reported that GCN5 was frequently overexpressed in human glioma tissues and GCN5 was positively correlated with proliferation of cell nuclear antigen PCNA and matrix metallopeptidase MMP9. Meanwhile, down-regulation of GCN5 by siRNA interfering inhibited glioma cell proliferation and invasion. In addition, GCN5 knockdown reduced expression of p-STAT3, p-AKT, PCNA and MMP9 and increased the expression of p21 in glioma cells. In conclusion, GCN5 exhibited critical roles in glioma development by regulating cell proliferation and invasion, which suggested that GCN5 might be a potential molecular target for glioma treatment.

  19. The immunohistochemical expression of calcitonin receptor-like receptor (CRLR) in human gliomas.

    Science.gov (United States)

    Benes, L; Kappus, C; McGregor, G P; Bertalanffy, H; Mennel, H D; Hagner, S

    2004-02-01

    Gliomas are the most common primary tumours of the central nervous system and exhibit rapid growth that is associated with neovascularisation. Adrenomedullin is an important tumour survival factor in human carcinogenesis. It has growth promoting effects on gliomas, and blockade of its actions has been experimentally shown to reduce the growth of glioma tissues and cell lines. There is some evidence that the calcitonin receptor-like receptor (CRLR) mediates the tumorigenic actions of adrenomedullin. To determine whether CRLR is expressed in human gliomas and the probable cellular targets of adrenomedullin. Biopsies from 95 human gliomas of varying grade were processed for immunohistochemical analysis using a previously developed and characterised antibody to CRLR. All tumour specimens were positive for CRLR. As previously found in normal peripheral tissues, CRLR immunostaining was particularly intense in the endothelial cells. This was evident in all the various vascular conformations that were observed, and which are typical of gliomas. In addition, clear immunostaining of tumour cells with astrocyte morphology was observed. These were preferentially localised around vessels. This study has shown for the first time that the CRLR protein is present in human glioma tissue. The expression of the receptor in endothelial cells and in astrocytic tumour cells is consistent with the evidence that its endogenous ligand, adrenomedullin, may influence glioma growth by means of both direct mitogenic and indirect angiogenic effects. CRLR may be a valuable target for effective therapeutic intervention in these malignant tumours.

  20. A Phase I Study of the Combination of Sorafenib With Temozolomide and Radiation Therapy for the Treatment of Primary and Recurrent High-Grade Gliomas

    International Nuclear Information System (INIS)

    Den, Robert B.; Kamrava, Mitchell; Sheng, Zhi; Werner-Wasik, Maria; Dougherty, Erin; Marinucchi, Michelle; Lawrence, Yaacov R.; Hegarty, Sarah; Hyslop, Terry; Andrews, David W.; Glass, Jon; Friedman, David P.; Green, Michael R.; Camphausen, Kevin; Dicker, Adam P.

    2013-01-01

    Purpose: Despite recent advances in the management of high-grade and recurrent gliomas, survival remains poor. Antiangiogenic therapy has been shown to be efficacious in the treatment of high-grade gliomas both in preclinical models and in clinical trials. We sought to determine the safety and maximum tolerated dose of sorafenib when combined with both radiation and temozolomide in the primary setting or radiation alone in the recurrent setting. Methods and Materials: This was a preclinical study and an open-label phase I dose escalation trial. Multiple glioma cell lines were analyzed for viability after treatment with radiation, temozolomide, or sorafenib or combinations of them. For patients with primary disease, sorafenib was given concurrently with temozolomide (75 mg/m 2 ) and 60 Gy radiation, for 30 days after completion of radiation. For patients with recurrent disease, sorafenib was combined with a hypofractionated course of radiation (35 Gy in 10 fractions). Results: Cell viability was significantly reduced with the combination of radiation, temozolomide, and sorafenib or radiation and sorafenib. Eighteen patients (11 in the primary cohort, 7 in the recurrent cohort) were enrolled onto this trial approved by the institutional review board. All patients completed the planned course of radiation therapy. The most common toxicities were hematologic, fatigue, and rash. There were 18 grade 3 or higher toxicities. The median overall survival was 18 months for the entire population. Conclusions: Sorafenib can be safely combined with radiation and temozolomide in patients with high-grade glioma and with radiation alone in patients with recurrent glioma. The recommended phase II dose of sorafenib is 200 mg twice daily when combined with temozolomide and radiation and 400 mg with radiation alone. To our knowledge, this is the first publication of concurrent sorafenib with radiation monotherapy or combined with radiation and temozolomide.

  1. Human gliomas contain morphine

    DEFF Research Database (Denmark)

    Olsen, Peter; Rasmussen, Mads; Zhu, Wei

    2005-01-01

    BACKGROUND: Morphine has been found in cancer cell lines originating from human and animal cells. Thus, it became important to demonstrate whether or not actual tumours contain this opiate alkaloid. MATERIAL/METHODS: Human glioma tissues were biochemically treated to isolate and separate endogenous...

  2. Extracts of Artocarpus communis Induce Mitochondria-Associated Apoptosis via Pro-oxidative Activity in Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Chiang-Wen Lee

    2018-05-01

    Full Text Available Glioblastoma multiforme (GBM is an extremely aggressive and devastating malignant tumor in the central nervous system. Its incidence is increasing and the prognosis is poor. Artocarpin is a natural prenylated flavonoid with various anti-inflammatory and anti-tumor properties. Studies have shown that artocarpin is associated with cell death of primary glioblastoma cells. However, the in vivo effects and the cellular and molecular mechanisms modulating the anticancer activities of artocarpin remain unknown. In this study, we demonstrated that treating the glioblastoma cell lines U87 and U118 cells with artocarpin induced apoptosis. Artocarpin-induced apoptosis is associated with caspase activation and poly (ADP-ribose polymerase (PARP cleavage and is mediated by the mitochondrial pathway. This is associated with mitochondrial depolarization, mitochondrial-derived reactive oxidative species (ROS production, cytochrome c release, Bad and Bax upregulations, and Bcl-2 downregulation. Artocarpin induced NADPH oxidase/ROS generation plays an important role in the mitochondrial pathway activation. Furthermore, we found artocarpin-induced ROS production in mitochondria is associated with Akt- and ERK1/2 activation. After treatment with artocarpin, ROS causes PI3K/Akt/ERK1/2-induced cell death of these tumor cells. These observations were further verified by the results from the implantation of both U87 and U118 cells into in vivo mouse. In conclusion, our findings suggest that artocarpin induces mitochondria-associated apoptosis of glioma cells, suggesting that artocarpine can be a potential chemotherapeutic agent for future GBM treatment.

  3. 99mTcO(MAG2-3G3-dimer): a new integrin αvβ3-targeted SPECT radiotracer with high tumor uptake and favorable pharmacokinetics

    International Nuclear Information System (INIS)

    Shi, Jiyun; Wang, Lijun; Kim, Young-Seung; Zhai, Shizhen; Liu, Shuang; Jia, Bing; Wang, Fan

    2009-01-01

    This report presents the synthesis of a cyclic RGD dimer conjugate, MAG 2 -G 3 -E[G 3 -c(RGDfK)] 2 (MAG 2 -3G 3 -dimer, G 3 = Gly-Gly-Gly, MAG 2 = S-benzoyl mercaptoacetylglycylglycyl), and evaluation of its 99m Tc complex, 99m TcO(MAG 2 -3G 3 -dimer), as a new radiotracer for imaging the tumor integrin α v β 3 expression. An in vitro displacement assay was used to determine the integrin α v β 3 binding affinity of MAG 2 -3G 3 -dimer against 125 I-c(RGDyK) bound to U87MG human glioma cells. The athymic nude mice bearing U87MG glioma xenografts were used for biodistribution and planar imaging studies. We found that (1) MAG 2 is such a highly effective bifunctional chelator that 99m TcO(MAG 2 -3G 3 -dimer) can be prepared in high yield (radiochemical purity >95%) and with high specific activity (∝5 Ci/μmol) using a kit formulation; (2) 99m TcO(MAG 2 -3G 3 -dimer) has very high solution stability in the kit matrix; and (3) 99m TcO(MAG 2 -3G 3 -dimer) has very fast clearance kinetics from the intestine, liver, and kidneys. Among the 99m Tc-labeled cyclic RGD peptides evaluated in the xenografted U87MG glioma models, 99m TcO(MAG 2 -3G 3 -dimer) has the best pharmacokinetics and tumor to background ratios (tumor/liver = 4.29 ± 1.00 at 30 min postinjection and 8.29 ± 1.50 at 120 min postinjection; tumor/kidney = 1.16 ± 0.19 at 30 min postinjection and 2.49 ± 0.25 at 120 min postinjection). Planar imaging studies showed that tumors in the glioma-bearing mice administered with 99m TcO(MAG 2 -3G 3 -dimer) can be visualized with excellent contrast as early as 15 min postinjection. 99m TcO(MAG 2 -3G 3 -dimer) was able to maintain its chemical integrity in kidneys (>80% intact) and liver (>95% intact) over the 2-h period. However, there was significant metabolism (>50% of the injected radioactivity) detected in both urine and feces samples. 99m TcO(MAG 2 -3G 3 -dimer) is a very attractive radiotracer for early detection of integrin α v β 3 -positive tumors and has

  4. Paired related homeobox 1 transactivates dopamine D2 receptor to maintain propagation and tumorigenicity of glioma-initiating cells

    Institute of Scientific and Technical Information of China (English)

    Yamu Li; Ying Liu; Shu Li; Xiaobing Jiang; Guangwei Du; Yan Zhou; Wen Wang; Fangyu Wang; Qiushuang Wu; Wei Li; Xiaoling Zhong; Kuan Tian; Tao Zeng; Liang Gao

    2017-01-01

    Glioblastoma multiforme (GBM) is a highly invasive brain tumor with limited therapeutic means and poor prognosis.Recent studies indicate that glioma-initiating cells/glioma stem cells (GICs/GSCs) may be responsible for tumor initiation,infiltration,and recurrence.GlCs could aberrantly employ molecular machinery balancing self-renewal and differentiation of embryonic neural precursors.Here,we find that paired related homeobox 1 (PRRX1),a homeodomain transcription factor that was previously reported to control skeletal development,is expressed in cortical neural progenitors and is required for their self-renewal and proper differentiation.Further,PRRX1 is overrepresented in glioma samples and labels GlCs.Glioma cells and GlCs depleted with PRRX1 could not propagate in vitro or form tumors in the xenograft mouse model.The GIC self-renewal function regulated by PRRX1 is mediated by dopamine D2 receptor (DRD2).PRRX1 directly binds to the DRD2 promoter and transactivates its expression in GlCs.Blockage of the DRD2 signaling hampers GIC self-renewal,whereas its overexpression restores the propagating and tumorigenic potential of PRRX1-depleted GlCs.Finally,PRRX1 potentiates GlCs via DRD2-mediated extracellular signal-related kinase (ERK) and AKT activation.Thus,our study suggests that therapeutic targeting the PRRX1-DRD2-ERK/AKT axis in GlCs is a promising strategy for treating GBMs.

  5. Regulation of YKL-40 expression during genotoxic or microenvironmental stress in human glioblastoma cells

    DEFF Research Database (Denmark)

    Junker, Nanna; Johansen, Julia S; Hansen, Lasse T

    2005-01-01

    YKL-40 is a 40 kDa secreted glycoprotein belonging to the family of 'mammalian chitinase-like proteins', but without chitinase activity. YKL-40 has a proliferative effect on fibroblasts, chondrocytes and synoviocytes, and chemotactic effect on endothelium and vascular smooth muscle cells. Elevated...... material from glioblastomas patients. We investigated the expression of YKL-40 in three human malignant glioma cell lines exposed to different types of stress. Whereas a polymerase chain reaction transcript was detectable in all three cell lines, only U87 produced measurable amounts of YKL-40 protein. In U...... is attenuated by p53. In contrast, both basic fibroblast growth factor and tumor necrosing factor-alpha repressed YKL-40. These are the first data on regulation of YKL-40 in cancer cells. Diverse types of stress resulted in YKL-40 elevation, which strongly supports an involvement of YKL-40 in the malignant...

  6. Immunotherapy Approaches for Malignant Glioma From 2007 to 2009

    Science.gov (United States)

    Sampson, John H.

    2012-01-01

    Malignant glioma is a deadly disease for which there have been few therapeutic advances over the past century. Although previous treatments were largely unsuccessful, glioma may be an ideal target for immune-based therapy. Recently, translational research led to several clinical trials based on tumor immunotherapy to treat patients with malignant glioma. Here we review 17 recent glioma immunotherapy clinical trials, published over the past 3 years. Various approaches were used, including passive transfer of naked and radiolabeled antibodies, tumor antigen-specific peptide immunization, and the use of patient tumor cells with or without dendritic cells as vaccines. We compare and discuss the current state of the art of clinical immunotherapy treatment, as well as its limited successes, pitfalls, and future potential. PMID:20424975

  7. Angiogenesis in gliomas.

    Directory of Open Access Journals (Sweden)

    Elzbieta Czykier

    2008-02-01

    Full Text Available Brain gliomas are characterized by invasive growth and neovascularisation potential. Angiogenesis plays a major role in the progression of gliomas and its determination has a great prognostic value. The aim of the study was to assess the vascularisation of chosen brain gliomas and to estimate how it is correlated with tumour histological type, malignancy grade, location and size, and with age and sex of patients. Tumour vascularisation analysis was based on the determination of microvascular proliferation (MVP and microvessel density (MVD. Microvascular proliferation was measured with immunohistochemical methods using mouse monoclonal antibodies to detect cell proliferation antigens. The following antibodies were used Ki-67 and PCNA (DAKO. Identification of vessels was performed by CD31 antibody and anti-human von Willebrand factor (DAKO. The highest microvascular proliferation and microvascular density were observed in multiform glioblastomas and the lowest in oligodendrogliomas. Significant correlation was observed between the vascularisation and malignancy grade.

  8. Live microbial cells adsorb Mg2+ more effectively than lifeless organic matter

    Science.gov (United States)

    Qiu, Xuan; Yao, Yanchen; Wang, Hongmei; Duan, Yong

    2018-03-01

    The Mg2+ content is essential in determining different Mg-CaCO3 minerals. It has been demonstrated that both microbes and the organic matter secreted by microbes are capable of allocating Mg2+ and Ca2+ during the formation of Mg-CaCO3, yet detailed scenarios remain unclear. To investigate the mechanism that microbes and microbial organic matter potentially use to mediate the allocation of Mg2+ and Ca2+ in inoculating systems, microbial mats and four marine bacterial strains ( Synechococcus elongatus, Staphylococcus sp., Bacillus sp., and Desulfovibrio vulgaris) were incubated in artificial seawater media with Mg/Ca ratios ranging from 0.5 to 10.0. At the end of the incubation, the morphology of the microbial mats and the elements adsorbed on them were analyzed using scanning electronic microscopy (SEM) and energy diffraction spectra (EDS), respectively. The content of Mg2+ and Ca2+ adsorbed by the extracellular polysaccharide substances (EPS) and cells of the bacterial strains were analyzed with atomic adsorption spectroscopy (AAS). The functional groups on the surface of the cells and EPS of S. elongatus were estimated using automatic potentiometric titration combined with a chemical equilibrium model. The results show that live microbial mats generally adsorb larger amounts of Mg2+ than Ca2+, while this rarely is the case for autoclaved microbial mats. A similar phenomenon was also observed for the bacterial strains. The living cells adsorb more Mg2+ than Ca2+, yet a reversed trend was observed for EPS. The functional group analysis indicates that the cell surface of S. elongatus contains more basic functional groups (87.24%), while the EPS has more acidic and neutral functional groups (83.08%). These features may be responsible for the different adsorption behavior of Mg2+ and Ca2+ by microbial cells and EPS. Our work confirms the differential Mg2+ and Ca2+ mediation by microbial cells and EPS, which may provide insight into the processes that microbes use to

  9. Intercellular transfer of P-glycoprotein from the drug resistant human bladder cancer cell line BIU-87 does not require cell-to-cell contact.

    Science.gov (United States)

    Zhou, Hui-liang; Zheng, Yong-jun; Cheng, Xiao-zhi; Lv, Yi-song; Gao, Rui; Mao, Hou-ping; Chen, Qin

    2013-09-01

    The efflux activity of transmembrane P-glycoprotein prevents various therapeutic drugs from reaching lethal concentrations in cancer cells, resulting in multidrug resistance. We investigated whether drug resistant bladder cancer cells could transfer functional P-glycoprotein to sensitive parental cells. Drug sensitive BIU-87 bladder cancer cells were co-cultured for 48 hours with BIU-87/ADM, a doxorubicin resistant derivative of the same cell line, in a Transwell® system that prevented cell-to-cell contact. The presence of P-glycoprotein in recipient cell membranes was established using fluorescein isothiocyanate, laser scanning confocal microscopy and Western blot. P-glycoprotein mRNA levels were compared between cell types. Rhodamine 123 efflux assay was done to confirm that P-glycoprotein was biologically active. The amount of P-glycoprotein protein in BIU-87 cells co-cultured with BIU-87/ADM was significantly higher than in BIU-87 cells (0.44 vs 0.25) and BIU-87/H33342 cells (0.44 vs 0.26, each p transfer. P-glycoprotein mRNA expression was significantly higher in BIU-87/ADM cells than in co-cultured BIU-87 cells (1.28 vs 0.30), BIU-87/H33342 (0.28) and BIU-87 cells (0.25, each p <0.001), ruling out a genetic mechanism. After 30 minutes of efflux, rhodamine 123 fluorescence intensity was significantly lower in BIU-87/ADM cells (5.55 vs 51.45, p = 0.004) and co-cultured BIU-87 cells than in BIU-87 cells (14.22 vs 51.45, p <0.001), indicating that P-glycoprotein was functional. Bladder cancer cells can acquire functional P-glycoprotein through a nongenetic mechanism that does not require direct cell contact. This mechanism is consistent with a microparticle mediated process. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. RANK (TNFRSF11A Is Epigenetically Inactivated and Induces Apoptosis in Gliomas

    Directory of Open Access Journals (Sweden)

    Anna von dem Knesebeck

    2012-06-01

    Full Text Available Alterations of DNA methylation play an important role in gliomas. In a genome-wide screen, we identified a CpG-rich fragment within the 5′ region of the tumor necrosis factor receptor superfamily, member 11A gene (TNFRSF11A that showed de novo methylation in gliomas. TNFRSF11A, also known as receptor activator of NF-κB (RANK, activates several signaling pathways, such as NF-κB, JNK, ERK, p38α, and Akt/PKB. Using pyrosequencing, we detected RANK/TNFRSF11A promoter methylation in 8 (57.1% of 14 diffuse astrocytomas, 17 (77.3% of 22 anaplastic astrocytomas, 101 (84.2% of 120 glioblastomas, 6 (100% of 6 glioma cell lines, and 7 (100% of 7 glioma stem cell-enriched glioblastoma primary cultures but not in four normal white matter tissue samples. Treatment of glioma cell lines with the demethylating agent 5-aza-2′-deoxycytidine significantly reduced the methylation level and resulted in increased RANK/TNFRSF11A mRNA expression. Overexpression of RANK/TNFRSF11A in glioblastoma cell lines leads to a significant reduction in focus formation and elevated apoptotic activity after flow cytometric analysis. Reporter assay studies of transfected glioma cells supported these results by showing the activation of signaling pathways associated with regulation of apoptosis. We conclude that RANK/TNFRSF11A is a novel and frequent target for de novo methylation in gliomas, which affects apoptotic activity and focus formation thereby contributing to the molecular pathogenesis of gliomas.

  11. Efficacy and toxicity of postoperative temozolomide radiochemotherapy in malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Kocher, M.; Kunze, S.; Eich, H.T.; Semrau, R.; Mueller, R.P. [Dept. of Radiation Oncology, Univ. of Cologne (Germany)

    2005-03-01

    Purpose: to evaluate the feasibility, safety and efficacy of daily temozolomide concurrent with postoperative radiotherapy in malignant glioma. Patients and methods: from 11/1999 to 03/2003, n = 81 patients aged 15-72 years (median 52 years, karnofsky score 80-100% in 83%) suffering from primary glioblastoma (n = 47), anaplastic astrocytoma (n = 6), anaplastic oligodendroglioma (n = 16), and recurrent glioma (n = 12) were treated. Patients with primary gliomas received a combination of postoperative radiotherapy (60 Gy/1.8- to 2.0-Gy fractions) and daily oral temozolomide (75 mg/m{sup 2}) at all irradiation days (30-33 doses), while recurrent tumors were treated with 45-60 Gy and temozolomide. Initially, 6/81 patients had daily temozolomide doses of 50 mg/m{sup 2}. Results: in total, 70/81 patients (86%) completed both radio- and chemotherapy. Grade 1 nausea/vomiting was seen in 28%, grade 2 in 11%, grade 3 in 1%. Antiemetics were applied in 41%. Hematologic toxicities were observed as follows: leukopenia grade 3/4 1%, lymphopenia grade 3/4 46%, thrombopenia grade 3/4 1%. Two patients under dexamethasone suffered herpes encephalitis after one and 16 doses of temozolomide (75 mg/m{sup 2}). Median survival was 15 months for glioblastoma. In oligodendroglioma patients, a 4-year survival rate of 78% was observed. Conclusion: postoperative radiochemotherapy with 30-33 daily doses of temozolomide (75 mg/m{sup 2}) is safe in patients with malignant glioma. The combined schedule is effective in oligodendroglioma patients and may prolong survival in glioblastoma. Effort should be taken to minimize corticosteroid doses, since both steroids and temozolomide lead to immunosuppression. (orig.)

  12. The melatonin-MT1 receptor axis modulates tumor growth in PTEN-mutated gliomas.

    Science.gov (United States)

    Ma, Huihui; Wang, Zhen; Hu, Lei; Zhang, Shangrong; Zhao, Chenggang; Yang, Haoran; Wang, Hongzhi; Fang, Zhiyou; Wu, Lijun; Chen, Xueran

    2018-02-19

    More than 40% of glioma patients have tumors that harbor PTEN (phosphatase and tensin homologue deleted on chromosome ten) mutations; this disease is associated with poor therapeutic resistance and outcome. Such mutations are linked to increased cell survival and growth, decreased apoptosis, and drug resistance; thus, new therapeutic strategies focusing on inhibiting glioma tumorigenesis and progression are urgently needed. Melatonin, an indolamine produced and secreted predominantly by the pineal gland, mediates a variety of physiological functions and possesses antioxidant and antitumor properties. Here, we analyzed the relationship between PTEN and the inhibitory effect of melatonin in primary human glioma cells and cultured glioma cell lines. The results showed that melatonin can inhibit glioma cell growth both in culture and in vivo. This inhibition was associated with PTEN levels, which significantly correlated with the expression level of MT1 in patients. In fact, c-fos-mediated MT1 was shown to be a key modulator of the effect of melatonin on gliomas that harbor wild type PTEN. Taken together, these data suggest that melatonin-MT1 receptor complexes represent a potential target for the treatment of glioma. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    International Nuclear Information System (INIS)

    Massi, Paola; Valenti, Marta; Solinas, Marta; Parolaro, Daniela

    2010-01-01

    Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells

  14. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Energy Technology Data Exchange (ETDEWEB)

    Massi, Paola [Department of Pharmacology, Chemotherapy and Toxicology, University of Milan, Via Vanvitelli 32, 20129 Milan (Italy); Valenti, Marta; Solinas, Marta; Parolaro, Daniela [Department of Structural and Functional Biology, Section of Pharmacology, Center of Neuroscience, University of Insubria, Via A. da Giussano 10, 20152 Busto Arsizio, Varese (Italy)

    2010-05-26

    Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  15. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Paola Massi

    2010-05-01

    Full Text Available Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  16. Mobile phone specific electromagnetic fields induce transient DNA damage and nucleotide excision repair in serum-deprived human glioblastoma cells.

    Science.gov (United States)

    Al-Serori, Halh; Ferk, Franziska; Kundi, Michael; Bileck, Andrea; Gerner, Christopher; Mišík, Miroslav; Nersesyan, Armen; Waldherr, Monika; Murbach, Manuel; Lah, Tamara T; Herold-Mende, Christel; Collins, Andrew R; Knasmüller, Siegfried

    2018-01-01

    Some epidemiological studies indicate that the use of mobile phones causes cancer in humans (in particular glioblastomas). It is known that DNA damage plays a key role in malignant transformation; therefore, we investigated the impact of the UMTS signal which is widely used in mobile telecommunications, on DNA stability in ten different human cell lines (six brain derived cell lines, lymphocytes, fibroblasts, liver and buccal tissue derived cells) under conditions relevant for users (SAR 0.25 to 1.00 W/kg). We found no evidence for induction of damage in single cell gel electrophoresis assays when the cells were cultivated with serum. However, clear positive effects were seen in a p53 proficient glioblastoma line (U87) when the cells were grown under serum free conditions, while no effects were found in p53 deficient glioblastoma cells (U251). Further experiments showed that the damage disappears rapidly in U87 and that exposure induced nucleotide excision repair (NER) and does not cause double strand breaks (DSBs). The observation of NER induction is supported by results of a proteome analysis indicating that several proteins involved in NER are up-regulated after exposure to UMTS; additionally, we found limited evidence for the activation of the γ-interferon pathway. The present findings show that the signal causes transient genetic instability in glioma derived cells and activates cellular defense systems.

  17. Extracellular diffusion quantified by magnetic resonance imaging during rat C6 glioma cell progression

    Directory of Open Access Journals (Sweden)

    G. Song

    Full Text Available Solution reflux and edema hamper the convection-enhanced delivery of the standard treatment for glioma. Therefore, a real-time magnetic resonance imaging (MRI method was developed to monitor the dosing process, but a quantitative analysis of local diffusion and clearance parameters has not been assessed. The objective of this study was to compare diffusion into the extracellular space (ECS at different stages of rat C6 gliomas, and analyze the effects of the extracellular matrix (ECM on the diffusion process. At 10 and 20 days, after successful glioma modeling, gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA was introduced into the ECS of rat C6 gliomas. Diffusion parameters and half-life of the reagent were then detected using MRI, and quantified according to the mathematical model of diffusion. The main ECM components [chondroitin sulfate proteoglycans (CSPGs, collagen IV, and tenascin C] were detected by immunohistochemical and immunoblot analyses. In 20-day gliomas, Gd-DTPA diffused more slowly and derived higher tortuosity, with lower clearance rate and longer half-life compared to 10-day gliomas. The increased glioma ECM was associated with different diffusion and clearance parameters in 20-day rat gliomas compared to 10-day gliomas. ECS parameters were altered with C6 glioma progression from increased ECM content. Our study might help better understand the glioma microenvironment and provide benefits for interstitial drug delivery to treat brain gliomas.

  18. ER-mitochondria contacts control surface glycan expression and sensitivity to killer lymphocytes in glioma stem-like cells.

    Science.gov (United States)

    Bassoy, Esen Yonca; Kasahara, Atsuko; Chiusolo, Valentina; Jacquemin, Guillaume; Boydell, Emma; Zamorano, Sebastian; Riccadonna, Cristina; Pellegatta, Serena; Hulo, Nicolas; Dutoit, Valérie; Derouazi, Madiha; Dietrich, Pierre Yves; Walker, Paul R; Martinvalet, Denis

    2017-06-01

    Glioblastoma is a highly heterogeneous aggressive primary brain tumor, with the glioma stem-like cells (GSC) being more sensitive to cytotoxic lymphocyte-mediated killing than glioma differentiated cells (GDC). However, the mechanism behind this higher sensitivity is unclear. Here, we found that the mitochondrial morphology of GSCs modulates the ER-mitochondria contacts that regulate the surface expression of sialylated glycans and their recognition by cytotoxic T lymphocytes and natural killer cells. GSCs displayed diminished ER-mitochondria contacts compared to GDCs. Forced ER-mitochondria contacts in GSCs increased their cell surface expression of sialylated glycans and reduced their susceptibility to cytotoxic lymphocytes. Therefore, mitochondrial morphology and dynamism dictate the ER-mitochondria contacts in order to regulate the surface expression of certain glycans and thus play a role in GSC recognition and elimination by immune effector cells. Targeting the mitochondrial morphology, dynamism, and contacts with the ER could be an innovative strategy to deplete the cancer stem cell compartment to successfully treat glioblastoma. © 2017 The Authors.

  19. Rapid emergence and mechanisms of resistance by U87 glioblastoma cells to doxorubicin in an in vitro tumor microfluidic ecology

    Science.gov (United States)

    Austin, Robert; Lee, Sanghyuk; Park, Sungsu

    We have developed a microfluidic device consisting of approximately 500 hexagonal micro-compartments which provides a complex ecology with wide ranges of drug and nutrient gradients and local populations. This ecology of a fragmented metapopulation induced the drug resistance in stage IV U87 glioblastoma cells to doxorubicin in seven days. Exome and transcriptome sequencing of the resistant cells identified mutations and differentially expressed genes. Gene ontology and pathway analyses of the genes identified showed that they were functionally relevant with the established mechanisms of doxorubicin action. Functional experiments support the in silico analyses and together demonstrate the effects of these genetic changes. Our findings suggest that given the rapid evolution of resistance and the focused response, this technology could act as a rapid screening modality for genetic aberrations leading to resistance to chemotherapy as well as counter-selection of drugs unlikely to be successful ultimately. Technology Innovation Program of the Ministry of Trade, Industry and Energy, Republic of Korea (10050154 to S.L. and S.P.), the National Research Foundation of Korea (NRF-2014M3C9A3065221 to S.L., NRF-2015K1A4A3047851 to J.K. and S.L.) funded by the Minis.

  20. Damage of Neuroblastoma Cell SH-SY5Y Mediated by MPP+ Inhibits Proliferation of T-Cell Leukemia Jurkat by Co-Culture System

    Directory of Open Access Journals (Sweden)

    Fuli Wang

    2014-06-01

    Full Text Available The adaptive immune system has implications in pathology of Parkinson’s disease (PD. Research data demonstrated that the peripheral CD4+ T-cell population decreased in pathogenesis of PD. The effect of damaged dopaminergic neurons on peripheral T cells of PD is still unknown. In this study, we constructed a neuronal and glial cells co-culture model by using human neuroblastoma cells SH-SY5Y and gliomas cells U87. After the co-culture cells were treated with neurotoxin 1-methyl-4-phenylpyridinium (MPP+ for 24 h, the conditioned media was harvested and used to cultivate T-cell leukemia Jurkat cells for another 24 h. We then analyzed the cell proliferation, cell cycle and necrosis effect of Jurkat cells. The results showed that co-culture medium of SH-SY5Y and U87 cells with MPP+ treatment inhibited the proliferation of Jurkat cells compared to control medium without MPP+, even though the same concentration of MPP+ had very little toxicity to the Jurkat cell. Furthermore, co-culture medium with low concentration of MPP+ (100 µM arrested Jurkat cells cycle in G2/M phase through increasing cell cycle division 2 (CDC2 and CyclinB1 expression level, whereas co-culture medium with high concentration of MPP+ (500 µM induced Jurkat cell necrosis through cellular swelling and membrane breakage. Our data implies that damaged dopamine neurons with glial cells can lead to the reduced number or inhibited proliferation activity of peripheral T cells.

  1. MicroRNA-203 Modulates the Radiation Sensitivity of Human Malignant Glioma Cells

    International Nuclear Information System (INIS)

    Chang, Ji Hyun; Hwang, Yeo Hyun; Lee, David J.; Kim, Dan Hyo; Park, Ji Min; Wu, Hong-Gyun; Kim, In Ah

    2016-01-01

    Purpose: We investigated whether miR-203 could modulate the radiation sensitivity of glioblastoma (GBM) cells and which target gene(s) could be involved. Methods and Materials: Three human malignant glioma (MG) cell lines and normal human astrocytes were transfected with control microRNA, pre-miR-203, or antisense miR-203. Real-time PCR (RT-PCR), clonogenic assays, immunofluorescence, and invasion/migration assays were performed. To predict the target(s), bioinformatics analyses using microRNA target databases were performed. Results: Overexpression of miR-203 increased the radiation sensitivity of all 3 human MG cell lines and prolonged radiation-induced γ-H2AX foci formation. Bioinformatics analyses suggested that miR-203 could be involved in post-transcriptional control of DNA repair, PI3K/AKT, SRC, and JAK/STAT3 and the vascular signaling pathway. Western blot analysis validated the fact that miR-203 downregulated ATM, RAD51, SRC, PLD2, PI3K-AKT, JAK-STAT3, VEGF, HIF-1α, and MMP2. Overexpression of miR-203 inhibited invasion and migration potentials, downregulated SLUG and Vimentin, and upregulated Claudin-1 and ZO1. Conclusions: These data demonstrate that miR-203 potentially controls DNA damage repair via the PI3K/AKT and JAK/STAT3 pathways and may collectively contribute to the modulation of radiation sensitivity in MG cells by inhibiting DNA damage repair, prosurvival signaling, and epithelium-mesenchyme transition. Taken together, these findings demonstrate that miR-203 could be a target for overcoming the radiation resistance of GBM.

  2. MicroRNA-203 Modulates the Radiation Sensitivity of Human Malignant Glioma Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ji Hyun [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Hwang, Yeo Hyun; Lee, David J.; Kim, Dan Hyo; Park, Ji Min [Medical Science Research Institute, Seoul National University Bundang Hospital, Kyeonggido (Korea, Republic of); Wu, Hong-Gyun [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Kim, In Ah, E-mail: inah228@snu.ac.kr [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Medical Science Research Institute, Seoul National University Bundang Hospital, Kyeonggido (Korea, Republic of); Cancer Research Institute, Seoul National University, Seoul (Korea, Republic of)

    2016-02-01

    Purpose: We investigated whether miR-203 could modulate the radiation sensitivity of glioblastoma (GBM) cells and which target gene(s) could be involved. Methods and Materials: Three human malignant glioma (MG) cell lines and normal human astrocytes were transfected with control microRNA, pre-miR-203, or antisense miR-203. Real-time PCR (RT-PCR), clonogenic assays, immunofluorescence, and invasion/migration assays were performed. To predict the target(s), bioinformatics analyses using microRNA target databases were performed. Results: Overexpression of miR-203 increased the radiation sensitivity of all 3 human MG cell lines and prolonged radiation-induced γ-H2AX foci formation. Bioinformatics analyses suggested that miR-203 could be involved in post-transcriptional control of DNA repair, PI3K/AKT, SRC, and JAK/STAT3 and the vascular signaling pathway. Western blot analysis validated the fact that miR-203 downregulated ATM, RAD51, SRC, PLD2, PI3K-AKT, JAK-STAT3, VEGF, HIF-1α, and MMP2. Overexpression of miR-203 inhibited invasion and migration potentials, downregulated SLUG and Vimentin, and upregulated Claudin-1 and ZO1. Conclusions: These data demonstrate that miR-203 potentially controls DNA damage repair via the PI3K/AKT and JAK/STAT3 pathways and may collectively contribute to the modulation of radiation sensitivity in MG cells by inhibiting DNA damage repair, prosurvival signaling, and epithelium-mesenchyme transition. Taken together, these findings demonstrate that miR-203 could be a target for overcoming the radiation resistance of GBM.

  3. Microarray Analysis in a Cell Death Resistant Glioma Cell Line to Identify Signaling Pathways and Novel Genes Controlling Resistance and Malignancy

    Energy Technology Data Exchange (ETDEWEB)

    Seznec, Janina; Naumann, Ulrike, E-mail: ulrike.naumann@uni-tuebingen.de [Laboratory of Molecular Neuro-Oncology, Department of General Neurology, Hertie-Institute for Clinical Brain Research and Center Neurology, University of Tuebingen, Otfried-Mueller-Str. 27, Tuebingen 72076 (Germany)

    2011-06-27

    Glioblastoma multiforme (GBM) is a lethal type of cancer mainly resistant to radio- and chemotherapy. Since the tumor suppressor p53 functions as a transcription factor regulating the expression of genes involved in growth inhibition, DNA repair and apoptosis, we previously assessed whether specific differences in the modulation of gene expression are responsible for the anti-tumor properties of a dominant positive p53, chimeric tumor suppressor (CTS)-1. CTS-1 is based on the sequence of p53 and designed to resist various mechanisms of inactivation which limit the activity of p53. To identify CTS-1-regulated cell death-inducing genes, we generated a CTS-1-resistant glioma cell line (229R). We used Affymetrix whole-genome microarray expression analysis to analyze alterations in gene expression and identified a variety of CTS-1 regulated genes involved in cancer-linked processes. 313 genes were differentially expressed in Adeno-CTS-1 (Ad-CTS-1)-infected and 700 genes in uninfected 229R cells compared to matching parental cells. Ingenuity Pathway Analysis (IPA) determined a variety of differentially expressed genes in Ad-CTS-1-infected cells that were members of the intracellular networks with central tumor-involved players such as nuclear factor kappa B (NF-κB), protein kinase B (PKB/AKT) or transforming growth factor beta (TGF-β). Differentially regulated genes include secreted factors as well as intracellular proteins and transcription factors regulating not only cell death, but also processes such as tumor cell motility and immunity. This work gives an overview of the pathways differentially regulated in the resistant versus parental glioma cells and might be helpful to identify candidate genes which could serve as targets to develop novel glioma specific therapy strategies.

  4. Microarray Analysis in a Cell Death Resistant Glioma Cell Line to Identify Signaling Pathways and Novel Genes Controlling Resistance and Malignancy

    International Nuclear Information System (INIS)

    Seznec, Janina; Naumann, Ulrike

    2011-01-01

    Glioblastoma multiforme (GBM) is a lethal type of cancer mainly resistant to radio- and chemotherapy. Since the tumor suppressor p53 functions as a transcription factor regulating the expression of genes involved in growth inhibition, DNA repair and apoptosis, we previously assessed whether specific differences in the modulation of gene expression are responsible for the anti-tumor properties of a dominant positive p53, chimeric tumor suppressor (CTS)-1. CTS-1 is based on the sequence of p53 and designed to resist various mechanisms of inactivation which limit the activity of p53. To identify CTS-1-regulated cell death-inducing genes, we generated a CTS-1-resistant glioma cell line (229R). We used Affymetrix whole-genome microarray expression analysis to analyze alterations in gene expression and identified a variety of CTS-1 regulated genes involved in cancer-linked processes. 313 genes were differentially expressed in Adeno-CTS-1 (Ad-CTS-1)-infected and 700 genes in uninfected 229R cells compared to matching parental cells. Ingenuity Pathway Analysis (IPA) determined a variety of differentially expressed genes in Ad-CTS-1-infected cells that were members of the intracellular networks with central tumor-involved players such as nuclear factor kappa B (NF-κB), protein kinase B (PKB/AKT) or transforming growth factor beta (TGF-β). Differentially regulated genes include secreted factors as well as intracellular proteins and transcription factors regulating not only cell death, but also processes such as tumor cell motility and immunity. This work gives an overview of the pathways differentially regulated in the resistant versus parental glioma cells and might be helpful to identify candidate genes which could serve as targets to develop novel glioma specific therapy strategies

  5. TEM characterization of irradiated U-7Mo/Mg dispersion fuel

    Science.gov (United States)

    Gan, J.; Keiser, D. D.; Miller, B. D.; Jue, J. F.; Robinson, A. B.; Madden, J.

    2017-10-01

    This paper presents the results of transmission electron microscopy (TEM) characterization on neutron-irradiated samples taken from the low-flux and high-flux sides of the same fuel plate with U-7Mo fuel particles dispersed in Mg matrix with aluminum alloy Al6061 as cladding material that was irradiated edge-on to the core in the Advanced Test Reactor. The corresponding local fission density and fission rate of the fuel particles and the average fuel-plate centerline temperature for the low-flux and high-flux samples are estimated to be 3.7 × 1021 f/cm3, 7.4 × 1014 f/cm3/s and 123 °C, and 5.5 × 1021 f/cm3, 11.0 × 1014 f/cm3/s and 158 °C, respectively. Complex interaction layers developed at the Al-Mg interface, consisting of Al3Mg2 and Al12Mg17 along with precipitates of MgO, Mg2Si and FeAl5.3. No interaction between Mg matrix and U-Mo fuel particle was identified. For the U-Mo fuel particles, at low fission density, small elongated bubbles wrapped around the clean areas with a fission gas bubble superlattice, which suggests that bubble coalescence is an important mechanism for converting the fission gas bubble superlattice to large bubbles. At high fission density, no bubbles or porosity were observed in the Mg matrix, and pockets of residual fission gas bubble superlattice were observed in the U-Mo fuel particle interior.

  6. A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging

    International Nuclear Information System (INIS)

    Ponomarev, Vladimir; Vider, Jelena; Shavrin, Aleksander; Ageyeva, Ludmila; Tourkova, Vilia; Doubrovin, Michael; Serganova, Inna; Beresten, Tatiana; Ivanova, Anna; Blasberg, Ronald; Balatoni, Julius; Bornmann, William; Gelovani Tjuvajev, Juri

    2004-01-01

    Two genetic reporter systems were developed for multimodality reporter gene imaging of different molecular-genetic processes using fluorescence, bioluminescence (BLI), and nuclear imaging techniques. The eGFP cDNA was fused at the N-terminus with HSV1-tk cDNA bearing a nuclear export signal from MAPKK (NES-HSV1-tk) or with truncation at the N-terminus of the first 45 amino acids (Δ45HSV1-tk) and with firefly luciferase at the C-terminus. A single fusion protein with three functional subunits is formed following transcription and translation from a single open reading frame. The NES-TGL (NES-TGL) or Δ45HSV1-tk/GFP/luciferase (Δ45-TGL) triple-fusion gene cDNAs were cloned into a MoMLV-based retrovirus, which was used for transduction of U87 human glioma cells. The integrity, fluorescence, bioluminescence, and enzymatic activity of the TGL reporter proteins were assessed in vitro. The predicted molecular weight of the fusion proteins (130 kDa) was confirmed by western blot. The U87-NES-TGL and U87-Δ45-TGL cells had cytoplasmic green fluorescence. The in vitro BLI was 7- and 13-fold higher in U87-NES-TGL and U87-Δ45-TGL cells compared to nontransduced control cells. The Ki of 14 C-FIAU was 0.49±0.02, 0.51±0.03, and 0.003±0.001 ml/min/g in U87-NES-TGL, U87-Δ45-TGL, and wild-type U87 cells, respectively. Multimodality in vivo imaging studies were performed in nu/nu mice bearing multiple s.c. xenografts established from U87-NES-TGL, U87-Δ45-TGL, and wild-type U87 cells. BLI was performed after administration of d-luciferin (150 mg/kg i.v.). Gamma camera or PET imaging was conducted at 2 h after i.v. administration of [ 131 I]FIAU (7.4 MBq/animal) or [ 124 I]FIAU (7.4 MBq/animal), respectively. Whole-body fluorescence imaging was performed in parallel with the BLI and radiotracer imaging studies. In vivo BLI and gamma camera imaging showed specific localization of luminescence and radioactivity to the TGL transduced xenografts with background levels of activity

  7. Glioma stem cells targeted by oncolytic virus carrying endostatin-angiostatin fusion gene and the expression of its exogenous gene in vitro.

    Science.gov (United States)

    Zhu, Guidong; Su, Wei; Jin, Guishan; Xu, Fujian; Hao, Shuyu; Guan, Fangxia; Jia, William; Liu, Fusheng

    2011-05-16

    The development of the cancer stem cell (CSCs) niche theory has provided a new target for the treatment of gliomas. Gene therapy using oncolytic viral vectors has shown great potential for the therapeutic targeting of CSCs. To explore whether a viral vector carrying an exogenous Endo-Angio fusion gene (VAE) can infect and kill glioma stem cells (GSCs), as well as inhibit their vascular niche in vitro, we have collected surgical specimens of human high-grade glioma (world health organization, WHO Classes III-VI) from which we isolated and cultured GSCs under conditions originally designed for the selective expansion of neural stem cells. Our results demonstrate the following: (1) Four lines of GSCs (isolated from 20 surgical specimens) could grow in suspension, were multipotent, had the ability to self-renew and expressed the neural stem cell markers, CD133 and nestin. (2) VAE could infect GSCs and significantly inhibit their viability. (3) The Endo-Angio fusion gene was expressed in GSCs 48 h after VAE infection and could inhibit the proliferation of human brain microvascular endothelial cells (HBMEC). (4) Residual viable cells lose the ability of self-renewal and adherent differentiation. In conclusion, VAE can significantly inhibit the activity of GSCs in vitro and the expression of exogenous Endo-Angio fusion gene can inhibit HBMEC proliferation. VAE can be used as a novel virus-gene therapy strategy for glioma. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Forkhead box K2 inhibits the proliferation, migration, and invasion of human glioma cells and predicts a favorable prognosis

    Directory of Open Access Journals (Sweden)

    Wang B

    2018-02-01

    Full Text Available Bo Wang,1–3,* XueBin Zhang,2–4,* Wei Wang,1–3 ZhiZhong Zhu,5 Fan Tang,2–4 Dong Wang,6–8 Xi Liu,9 Hao Zhuang,10 XiaoLing Yan2–4 1Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China; 2Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin, China; 3Tianjin Neurosurgical Institute, Tianjin, China; 4Department of Pathology, Tianjin Huanhu Hospital, Tianjin, China; 5Department of Rehabilitation, Tianjin Huanhu Hospital, Tianjin, China; 6Department of Neurosurgery, Tianjin Medical University, General Hospital, Tianjin, China; 7Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China; 8Tianjin Neurological Institute, Tianjin, China; 9Department of Gastroenterology, Tianjin NanKai Hospital, Tianjin, China; 10Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, China *These authors contributed equally to this work Purpose: Forkhead box K2 (FOXK2 is a member of the forkhead box family of transcription factors. Recently, researchers discovered that overexpression of FOXK2 inhibits the proliferation and metastasis of breast cancer, non-small cell lung cancer, and colorectal cancer, and is related to the clinical prognosis. However, in hepatocellular carcinoma, FOXK2 results in the opposite phenotypes. Currently, the contribution of FOXK2 to glioma pathogenesis is not clear. Patients and methods: We evaluated the expression of FOXK2 in 151 glioma patients using immunohistochemistry assays. The associations among the expression of FOXK2, clinicopathological parameters, and the prognosis of glioma patients were statistically analyzed. We downregulated and upregulated the level of FOXK2 in glioma cells by transfections with small interfering RNA and plasmids. Then, we investigated the effects on tumor cell behavior in vitro by Cell Counting Kit-8 assays, colony-formation assay, transwell assay, and the

  9. Cyclophosphamide Enhances Human Tumor Growth in Nude Rat Xenografted Tumor Models

    Directory of Open Access Journals (Sweden)

    Yingjen Jeffrey Wu

    2009-02-01

    Full Text Available The effect of the immunomodulatory chemotherapeutic agent cyclophosphamide (CTX on tumor growth was investigated in primary and metastatic intracerebral and subcutaneous rat xenograft models. Nude rats were treated with CTX (100 mg/kg, intraperitoneally 24 hours before human ovarian carcinoma (SKOV3, small cell lung carcinoma (LX-1 SCLC, and glioma (UW28, U87MG, and U251 tumor cells were inoculated subcutaneously, intraperitoneally, or in the right cerebral hemisphere or were infused into the right internal carotid artery. Tumor development was monitored and recorded. Potential mechanisms were further investigated. Only animals that received both CTX and Matrigel showed consistent growth of subcutaneous tumors. Cyclophosphamide pretreatment increased the percentage (83.3% vs 0% of animals showing intraperitoneal tumors. In intracerebral implantation tumor models, CTX pretreatment increased the tumor volume and the percentage of animals showing tumors. Cyclophosphamide increased lung carcinoma bone and facial metastases after intra-arterial injection, and 20% of animals showed brain metastases. Cyclophosphamide transiently decreased nude rat white blood cell counts and glutathione concentration, whereas serum vascular endothelial growth factor was significantly elevated. Cyclophosphamide also increased CD31 reactivity, a marker of vascular endothelium, and macrophage (CD68-positive infiltration into glioma cell-inoculated rat brains. Cyclophosphamide may enhance primary and metastatic tumor growth through multiple mechanisms, including immune modulation, decreased response to oxidative stress, increased tumor vascularization, and increased macrophage infiltration. These findings may be clinically relevant because chemotherapy may predispose human cancer subjects to tumor growth in the brain or other tissues.

  10. VPA and MEL induce apoptosis by inhibiting the Nrf2-ARE signaling pathway in TMZ-resistant U251 cells.

    Science.gov (United States)

    Pan, Hao; Wang, Handong; Jia, Yue; Wang, Qiang; Li, Liwen; Wu, Qi; Chen, Longbang

    2017-07-01

    Chemoresistance is the primary obstacle to effective treatment of glioblastoma, the most lethal brain tumor. Our previous study demonstrated that Nf-E2 related factor 2 (Nrf2), a traditional cytoprotective transcription factor, was overexpressed in gliomas and promoted malignancy. The present study aimed to investigate the expression levels of Nrf2‑antioxidant response element (ARE) signaling pathway genes in temozolomide (TMZ)‑resistant U251 human glioblastoma cells (U251‑TMZ). Additionally, the effect of valproic acid (VPA) and melatonin (MEL) on Nrf2 expression in U251‑TMZ cells and their association with chemoresistance was investigated. The results of the present study indicated that the expression levels of components of the Nrf2‑ARE signaling pathway were increased in U251‑TMZ cells compared with U251 parent cells. Silencing of Nrf2 by transfection with small interfering RNA restored the chemosensitivity of U251‑TMZ cells. The Nrf2 inhibitors VPA and MEL successfully reduced Nrf2 expression and survival in U251‑TMZ cells treated with TMZ, accompanied by increased reactive oxygen species levels and apoptosis. Therefore, VPA and MEL may be potential chemotherapeutic sensitizers for the treatment of chemoresistant glioblastoma.

  11. Glioma-derived mutations in isocitrate dehydrogenase 2 beneficial to traditional chemotherapy

    International Nuclear Information System (INIS)

    Fu, Yuejun; Huang, Rui; Zheng, Yali; Zhang, Zhiyun; Liang, Aihua

    2011-01-01

    Highlights: → IDH1 and IDH2 mutations are not detected in the rat C6 glioma cell line model. → IDH2 mutations are not required for the tumorigenesis of glioma. → IDH2 R172G can sensitize glioma sensitivity to chemotherapy through NADPH levels. → IDH2 R172G can give a benefit to traditional chemotherapy of glioma. → This finding serves as an important complement to existing research on this topic. -- Abstract: Heterozygous mutations in either the R132 residue of isocitrate dehydrogenase I (IDH1) or the R172 residue of IDH2 in human gliomas were recently highlighted. In the present study, we report that mutations of IDH1 and IDH2 are not detected in the rat C6 glioma cell line model, which suggests that these mutations are not required for the development of glioblastoma induced by N,N'-nitroso-methylurea. The effects of IDH2 and IDH2 R172G on C6 cells proliferation and sensitivity to chemotherapy and the possible mechanism are analyzed at the cellular level. IDH1 and IDH2 mutations lead to simultaneous loss and gain of activities in the production of α-ketoglutarate (α-KG) and 2-hydroxyglutarate (2HG), respectively, and result in lowering NADPH levels even further. The low NADPH levels can sensitize tumors to chemotherapy, and account for the prolonged survival of patients harboring the mutations. Our data extrapolate potential importance of the in vitro rat C6 glioma cell model, show that the IDH2 R172G mutation in gliomas may give a benefit to traditional chemotherapy of this cancer and serve as an important complement to existing research on this topic.

  12. Arginylglycylaspartic Acid-Surface-Functionalized Doxorubicin-Loaded Lipid-Core Nanocapsules as a Strategy to Target Alpha(V) Beta(3) Integrin Expressed on Tumor Cells

    Science.gov (United States)

    Antonow, Michelli B.; Franco, Camila; Prado, Willian; Beckenkamp, Aline; Silveira, Gustavo P.; Buffon, Andréia; Guterres, Sílvia S.

    2017-01-01

    Doxorubicin (Dox) clinical use is limited by dose-related cardiomyopathy, becoming more prevalent with increasing cumulative doses. Previously, we developed Dox-loaded lipid-core nanocapsules (Dox-LNC) and, in this study, we hypothesized that self-assembling and interfacial reactions could be used to obtain arginylglycylaspartic acid (RGD)-surface-functionalized-Dox-LNC, which could target tumoral cells overexpressing αvβ3 integrin. Human breast adenocarcinoma cell line (MCF-7) and human glioblastoma astrocytoma (U87MG) expressing different levels of αvβ3 integrin were studied. RGD-functionalized Dox-LNC were prepared with Dox at 100 and 500 mg·mL−1 (RGD-MCMN (Dox100) and RGD-MCMN (Dox500)). Blank formulation (RGD-MCMN) had z-average diameter of 162 ± 6 nm, polydispersity index of 0.11 ± 0.04, zeta potential of +13.2 ± 1.9 mV and (6.2 ± 1.1) × 1011 particles mL−1, while RGD-MCMN (Dox100) and RGD-MCMN (Dox500) showed respectively 146 ± 20 and 215 ± 25 nm, 0.10 ± 0.01 and 0.09 ± 0.03, +13.8 ± 2.3 and +16.4 ± 1.5 mV and (6.9 ± 0.6) × 1011 and (6.1 ± 1.0) × 1011 particles mL−1. RGD complexation was 7.73 × 104 molecules per nanocapsule and Dox loading were 1.51 × 104 and 7.64 × 104 molecules per nanocapsule, respectively. RGD-functionalized nanocapsules had an improved uptake capacity by U87MG cells. Pareto chart showed that the cell viability was mainly affected by the Dox concentration and the period of treatment in both MCF-7 and U87MG. The influence of RGD-functionalization on cell viability was a determinant factor exclusively to U87MG. PMID:29271920

  13. Multivoxel magnetic resonance spectroscopy identifies enriched foci of cancer stem-like cells in high-grade gliomas

    Directory of Open Access Journals (Sweden)

    He T

    2017-01-01

    Full Text Available Tao He,1–3,* Tianming Qiu,4,* Xiaodong Wang,5 Hongxing Gui,6 Xilong Wang,2 Qikuan Hu,3,7 Hechun Xia,2 Gaoyang Qi,1,2 Jinsong Wu,4 Hui Ma2 1Clinical Medicine College, Ningxia Medical University, 2Department of Neurosurgery, General Hospital of Ningxia Medical University, 3Ningxia Key Laboratory of Cerebrocranial Diseases, The National Key Laboratory Incubation Base, Yinchuan, 4Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 5Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China; 6Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School of Rutgers University, Piscataway, NJ, USA; 7Department of Physiology, Ningxia Medical University, Yinchuan, People’s Republic of China *These authors contributed equally to this work Objective: This study investigated the correlation between choline/creatine (Cho/Cr ratios determined by multivoxel proton magnetic resonance spectroscopy (1H-MRS and the distribution of cancer stem-like cells (CSLCs in high-grade gliomas. Patients and methods: Sixteen patients with high-grade gliomas were recruited and underwent 1H-MRS examination before surgery to identify distinct tumor regions with variable Cho/Cr ratios. Using intraoperative neuronavigation, tumor tissues were accurately sampled from regions with high and low Cho/Cr ratios within each tumor. The distribution of CSLCs in samples from glioma tissue regions with different Cho/Cr ratios was quantified by neurosphere culture, immunohistochemistry, and Western blot. Results: The mean neurosphere formation rate in tissues with high Cho/Cr ratios was significantly increased compared with that in low Cho/Cr ratio tissues (13.94±5.94 per 100 cells vs 8.04±3.99 per 100 cells, P<0.001. Immunohistochemistry indicated that tissues with high Cho/Cr ratios had elevated expression of CD133, nestin, and CD15, relative to low Cho/Cr ratio tissue

  14. Increased catalase activity by all-trans retinoic acid and its effect on radiosensitivity in rat glioma cells

    International Nuclear Information System (INIS)

    Jin, Hua; Jeon, Ha Yeun; Park, Woo Yoon; Kim, Won Dong; Ahn, Hee Yul; Yu, Jae Ran

    2005-01-01

    It has been reported that all-trans retinoic acid (ATRA) can inhibit glioma growing in vitro. However, clinical trials with ATRA alone in gliomas revealed modest results. ATRA has been shown to increase radiosensitivity in other tumor types, so combining radiation and ATRA would be one of alternatives to increase therapeutic efficacy in malignant gliomas. Thus, we intended to know the role of catalase, which is induced by ATRA, for radiosensitivity. If radiation-reduced reactive oxygen species (ROS) is removed by catalase, the effect of radiation will be reduced. A rat glioma cell line (36B10) was used for this study. The change of catalase activity and radiosensitivity by ATRA, with or without 3-amino-1, 2, 4-triazole (ATZ), a chemical inhibitor of catalase were measured. Catalase activity was measured by the decomposition of H 2 O 2 spectrophotometrically. Radiosensitivity was measured with clonogenic assay. Also ROS was measured using a 2, 7-dichlorofluores-cein diacetate spectrophotometrically. When 36B10 cells were exposed to 10, 25 and 50 μ M of ATRA for 48 h, the expression of catalase activity were increased with increasing concentration and incubation time of ATRA. Catalase activity was decreased with increasing the concentration of AT (1, 10 mM) dose-dependently. ROS was increased with ATRA and it was augmented with the combination of ATRA and radiation. ATZ decreased ROS production and increased cell survival in combination of ATRA and radiation despite the reduction of catalase. The increase of ROS is one of the reasons for the increased radiosensitivity in combination with ATRA. The catalase that is induced by ATRA doesn't decrease ROS production and radiosensitivity

  15. Loss of heterozygosity of TRIM3 in malignant gliomas

    International Nuclear Information System (INIS)

    Boulay, Jean-Louis; Stiefel, Urs; Taylor, Elisabeth; Dolder, Béatrice; Merlo, Adrian; Hirth, Frank

    2009-01-01

    Malignant gliomas are frequent primary brain tumors associated with poor prognosis and very limited response to conventional chemo- and radio-therapies. Besides sharing common growth features with other types of solid tumors, gliomas are highly invasive into adjacent brain tissue, which renders them particularly aggressive and their surgical resection inefficient. Therefore, insights into glioma formation are of fundamental interest in order to provide novel molecular targets for diagnostic purposes and potential anti-cancer drugs. Human Tripartite motif protein 3 (TRIM3) encodes a structural homolog of Drosophila brain tumor (brat) implicated in progenitor cell proliferation control and cancer stem cell suppression. TRIM3 is located within the loss of allelic heterozygosity (LOH) hotspot of chromosome segment 11p15.5, indicating a potential role in tumor suppression. ... Here we analyze 70 primary human gliomas of all types and grades and report somatic deletion mapping as well as single nucleotide polymorphism analysis together with quantitative real-time PCR of chromosome segment 11p15.5. Our analysis identifies LOH in 17 cases (24%) of primary human glioma which defines a common 130 kb-wide interval within the TRIM3 locus as a minimal area of loss. We further detect altered genomic dosage of TRIM3 in two glioma cases with LOH at 11p15.5, indicating homozygous deletions of TRIM3. Loss of heterozygosity of chromosome segment 11p15.5 in malignant gliomas suggests TRIM3 as a candidate brain tumor suppressor gene

  16. Identification of a novel antagonist of the ErbB1 receptor capable of inhibiting migration of human glioblastoma cells

    DEFF Research Database (Denmark)

    Staberg, Mikkel; Riemer, Christian; Xu, Ruodan

    2013-01-01

    B1 targeting peptide, termed Herfin-1, was designed based on a model of the tertiary structure of the EGF-EGFR ternary complex. The binding kinetics of this peptide were determined employing surface plasmon resonance analyses. ErbB1-4 expression and phosphorylation in human glioblastoma cell lines U...... processing. RESULTS: The present study shows that Herfin-1 functions as an ErbB1 antagonist. It binds to the extracellular domain of ErbB1 with a KD value of 361 nM. In U87 and U118 cells, both expressing high levels of ErbB1, Herfin-1 inhibits EGF-induced ErbB1 phosphorylation and cell migration....... Additionally, Herfin-1 was found to increase neurite outgrowth in cerebellar granule neurons, likely through the inhibition of a sustained weak ErbB1 activation. CONCLUSIONS: Targeting the ErbB1 receptor dimerization interface is a promising strategy to inhibit receptor activation in ErbB1-expressing glioma...

  17. Differential expression of centrosomal proteins at different stages of human glioma

    International Nuclear Information System (INIS)

    Loh, Joon-Khim; Lieu, Ann-Shung; Chou, Chia-Hua; Lin, Fang-Yi; Wu, Chia-Hung; Howng, Sheng-Long; Chio, Chung-Ching; Hong, Yi-Ren

    2010-01-01

    High-grade gliomas have poor prognosis, requiring aggressive treatment. The aim of this study is to explore mitotic and centrosomal dysregulation in gliomas, which may provide novel targets for treatment. A case-control study was performed using 34 resected gliomas, which were separated into low- and high-grade groups. Normal human brain tissue was used as a control. Using immunohistochemical analysis, immunofluorescent microscopy, and RT-PCR, detection of centrins 1 and 2, γ-tubulin, hNinein, Aurora A, and Aurora B, expression was performed. Analysis of the GBM8401 glioma cell line was also undertaken to complement the in vivo studies. In high-grade gliomas, the cells had greater than two very brightly staining centrioles within large, atypical nuclei, and moderate-to-strong Aurora A staining. Comparing with normal human brain tissue, most of the mRNAs expression in gliomas for centrosomal structural proteins, including centrin 3, γ-tubulin, and hNinein isoforms 1, 2, 5 and 6, Aurora A and Aurora B were elevated. The significant different expression was observed between high- and low-grade glioma in both γ-tubulin and Aurora A mRNA s. In the high-grade glioma group, 78.6% of the samples had higher than normal expression of γ-tubulin mRNA, which was significantly higher than in the low-grade glioma group (18.2%, p < 0.05). Markers for mitotic dysregulation, such as supernumerary centrosomes and altered expression of centrosome-related mRNA and proteins were more frequently detected in higher grade gliomas. Therefore, these results are clinically useful for glioma staging as well as the development of novel treatments strategies

  18. Differential expression of centrosomal proteins at different stages of human glioma

    Directory of Open Access Journals (Sweden)

    Lin Fang-Yi

    2010-06-01

    Full Text Available Abstract Background High-grade gliomas have poor prognosis, requiring aggressive treatment. The aim of this study is to explore mitotic and centrosomal dysregulation in gliomas, which may provide novel targets for treatment. Methods A case-control study was performed using 34 resected gliomas, which were separated into low- and high-grade groups. Normal human brain tissue was used as a control. Using immunohistochemical analysis, immunofluorescent microscopy, and RT-PCR, detection of centrins 1 and 2, γ-tubulin, hNinein, Aurora A, and Aurora B, expression was performed. Analysis of the GBM8401 glioma cell line was also undertaken to complement the in vivo studies. Results In high-grade gliomas, the cells had greater than two very brightly staining centrioles within large, atypical nuclei, and moderate-to-strong Aurora A staining. Comparing with normal human brain tissue, most of the mRNAs expression in gliomas for centrosomal structural proteins, including centrin 3, γ-tubulin, and hNinein isoforms 1, 2, 5 and 6, Aurora A and Aurora B were elevated. The significant different expression was observed between high- and low-grade glioma in both γ-tubulin and Aurora A mRNA s. In the high-grade glioma group, 78.6% of the samples had higher than normal expression of γ-tubulin mRNA, which was significantly higher than in the low-grade glioma group (18.2%, p Conclusions Markers for mitotic dysregulation, such as supernumerary centrosomes and altered expression of centrosome-related mRNA and proteins were more frequently detected in higher grade gliomas. Therefore, these results are clinically useful for glioma staging as well as the development of novel treatments strategies.

  19. P02.04MICRORNA-MEDIATED DOWN-REGULATION OF NKG2D LIGAND EXPRESSION REDUCES GLIOMA CELL IMMUNOGENICITY

    Science.gov (United States)

    Codo, P.; Weller, M.; Meister, G.; Szabo, E.; Steinle, A.; Wolter, M.; Reifenberger, G.; Roth, P.

    2014-01-01

    Glioblastoma is a primary brain tumor with a dismal prognosis despite comprehensive therapeutic regimens. It is characterized by diffuse infiltration of the surrounding healthy brain tissue, well-adapted to hypoxic conditions and regarded as paradigmatic for tumor-associated immunosuppression. One of the major activating receptors of natural killer (NK) cells is NKG2D. It binds to at least 8 ligands (NKG2DL) which are induced after malignant transformation and cellular stress. Regulation of NKG2DL expression may be affected by endogenous RNA molecules known as microRNA (miRNA). Here, we aimed at characterizing the role of miRNA in the control of NKG2DL expression in glioma cells. We selected 6 miRNA that were described or predicted to target NKG2DL. Three of the miRNA candidates, miR-20a, miR-93 and miR-106b, were expressed in glioma cell lines and were also detected in glioblastoma tissue specimens. Silencing of these miRNA with locked nucleic acid (LNA) molecules resulted in an up-regulation of NKG2DL cell surface levels which translated into increased sensitivity to immune cell killing. This effect was reversed by neutralizing NKG2D antibodies, confirming that enhanced immune cell lysis upon miRNA silencing was mediated through the NKG2D system. We conclude that the expression of several miRNA may contribute to the immune escape of glioma cells at the level of the NKG2D system. Therapeutic targeting of miRNA that regulate NKG2DL levels may therefore represent a promising approach to allow for more potent immune responses against glioblastoma.

  20. Aberrant rhythmic expression of cryptochrome2 regulates the radiosensitivity of rat gliomas.

    Science.gov (United States)

    Fan, Wang; Caiyan, Li; Ling, Zhu; Jiayun, Zhao

    2017-09-29

    In this study, we investigated the role of the clock regulatory protein cryptochrome 2 (Cry2) in determining the radiosensitivity of C6 glioma cells in a rat model. We observed that Cry2 mRNA and protein levels showed aberrant rhythmic periodicity of 8 h in glioma tissues, compared to 24 h in normal brain tissue. Cry2 mRNA and protein levels did not respond to irradiation in normal tissues, but both were increased at the ZT4 (low Cry2) and ZT8 (high Cry2) time points in gliomas. Immunohistochemical staining of PCNA and TUNEL assays demonstrated that high Cry2 expression in glioma tissues was associated with increased cell proliferation and decreased apoptosis. Western blot analysis showed that glioma cell fate was independent of p53, but was probably dependent on p73, which was more highly expressed at ZT4 (low Cry2) than at ZT8 (high Cry2). Levels of both p53 and p73 were unaffected by irradiation in normal brain tissues. These findings suggest aberrant rhythmic expression of Cry2 influence on radiosensitivity in rat gliomas.

  1. Nrf2 is required to maintain the self-renewal of glioma stem cells

    International Nuclear Information System (INIS)

    Zhu, Jianhong; Wang, Handong; Sun, Qing; Ji, Xiangjun; Zhu, Lin; Cong, Zixiang; Zhou, Yuan; Liu, Huandong; Zhou, Mengliang

    2013-01-01

    Glioblastomas are deadly cancers that display a functional cellular hierarchy maintained by self-renewing glioma stem cells (GSCs). Self-renewal is a complex biological process necessary for maintaining the glioma stem cells. Nuclear factor rythroid 2-related factor 2(Nrf2) plays a significant role in protecting cells from endogenous and exogenous stresses. Nrf2 is a key nuclear transcription factor that regulates antioxidant response element (ARE)-containing genes. Previous studies have demonstrated the significant role of Nrf2 in the proliferation of glioblastoma, and in their resistance to radioactive therapies. We examined the effect of knocking down Nrf2 in GSCs. Nrf2 expression was down-regulated by shRNA transinfected with lentivirus. Expression levels of Nestin, Nrf2, BMI-1, Sox2 and Cyclin E were assessed by western blotting, quantitative polymerase chain reaction (qPCR) and immunohistochemistry analysis. The capacity for self-renewal in vitro was assessed by genesis of colonies. The capacity for self-renewal in vivo was analyzed by tumor genesis of xenografts in nude mice. Knockdown of Nrf2 inhibited the proliferation of GSCs, and significantly reduced the expression of BMI-1, Sox2 and CyclinE. Knocking down of Nrf2 changed the cell cycle distribution of GSCs by causing an uncharacteristic increase in the proportion of cells in the G2 phase and a decrease in the proportion of cells in the S phase of the cell cycle. Nrf2 is required to maintain the self-renewal of GSCs, and its down-regulation can attenuate the self-renewal of GSCs significantly

  2. In Silico Neuro-Oncology: Brownian Motion-Based Mathematical Treatment as a Potential Platform for Modeling the Infiltration of Glioma Cells into Normal Brain Tissue

    Science.gov (United States)

    Antonopoulos, Markos; Stamatakos, Georgios

    2015-01-01

    Intensive glioma tumor infiltration into the surrounding normal brain tissues is one of the most critical causes of glioma treatment failure. To quantitatively understand and mathematically simulate this phenomenon, several diffusion-based mathematical models have appeared in the literature. The majority of them ignore the anisotropic character of diffusion of glioma cells since availability of pertinent truly exploitable tomographic imaging data is limited. Aiming at enriching the anisotropy-enhanced glioma model weaponry so as to increase the potential of exploiting available tomographic imaging data, we propose a Brownian motion-based mathematical analysis that could serve as the basis for a simulation model estimating the infiltration of glioblastoma cells into the surrounding brain tissue. The analysis is based on clinical observations and exploits diffusion tensor imaging (DTI) data. Numerical simulations and suggestions for further elaboration are provided. PMID:26309390

  3. Hyperthermia studies using inductive and ultrasound methods on E. coli bacteria and mouse glioma cells

    International Nuclear Information System (INIS)

    Cabral–Prieto, A.; López-Callejas, R.; Rodríguez-Méndez, B. G.; Santos-Cuevas, C. L.; Celis-Almazán, J.; Olea-Mejía, O.; Gómez-Morales, J. L.; Peña-Eguiluz, R.; Valencia-Alvarado, R.; Mercado-Cabrera, A.; Muñoz-Castro, A. E.; García-Santibañez, F.

    2017-01-01

    The survival of Escherichia coli bacteria and mouse glioma cells were studied under different temperatures using direct heating in water, ultrasound, and magnetic fluid hyperthermia. The survival of these microorganisms depended on whether the heating mode was continuous or discontinuous, surviving more in the former than in the discontinuous heating mode. Whereas Escherichia coli bacteria did not survive at temperatures ≥50"∘C, the mouse glioma cells did not survive at temperatures ≥48"∘C. The survival of both these microorganisms was independent of the presence or absence of the magnetic nanoparticles of magnetite, suggesting that these, having mean particle sizes of 9.5, 8.5 and 5, did not show any apparent cytotoxicity effect. Present results also showed that the inductive heating system which used a radiofrequency of 13.56 MHz, providing a maximum magnetic field strength of 160 A/m, the electric rather than magnetic heating predominated.

  4. The infrared spectrum of human glioma cells is related to their in vitro and in vivo behavior

    International Nuclear Information System (INIS)

    Gaigneaux, A.; Decaestecker, C.; Camby, I.; Mijatovic, T.; Kiss, R.; Ruysschaert, J.M.; Goormaghtigh, E.

    2004-01-01

    The present research investigates whether infrared spectra can be related to the biological characteristics of glioma cell lines. We used nine human glioma cell lines for which a series of in vitro and in vivo biological features had already been established [Glia 36 (2001) 375] and were able to show that their characteristic infrared spectra reflect their in vitro migration (i.e., motility and invasiveness) properties and their in vivo aggressiveness. More particularly, the infrared data evidenced correlations at the level of the lipid/protein ratio. These relationships were found to be tissue-dependent when controlled on seven pancreatic carcinoma cell lines. We also showed that oligodendroglial and astrocytic tumor cells, whose identification remains difficult, can easily be identified by their infrared spectra in the lipid acyl chain region as well as in the nucleic acid region. We concluded that infrared spectroscopy could usefully complement information provided by more conventional diagnostic and prognostic (e.g., morphological and molecular) approaches

  5. Interactions between glioma and pregnancy: insight from a 52-case multicenter series.

    Science.gov (United States)

    Peeters, Sophie; Pagès, Mélanie; Gauchotte, Guillaume; Miquel, Catherine; Cartalat-Carel, Stéphanie; Guillamo, Jean-Sébastien; Capelle, Laurent; Delattre, Jean-Yves; Beauchesne, Patrick; Debouverie, Marc; Fontaine, Denys; Jouanneau, Emmanuel; Stecken, Jean; Menei, Philippe; De Witte, Olivier; Colin, Philippe; Frappaz, Didier; Lesimple, Thierry; Bauchet, Luc; Lopes, Manuel; Bozec, Laurence; Moyal, Elisabeth; Deroulers, Christophe; Varlet, Pascale; Zanello, Marc; Chretien, Fabrice; Oppenheim, Catherine; Duffau, Hugues; Taillandier, Luc; Pallud, Johan

    2018-01-01

    OBJECTIVE The goal of this study was to provide insight into the influence of gliomas on gestational outcomes, the impact of pregnancy on gliomas, and the identification of patients at risk. METHODS In this multiinstitutional retrospective study, the authors identified 52 pregnancies in 50 women diagnosed with a glioma. RESULTS For gliomas known prior to pregnancy (n = 24), we found the following: 1) An increase in the quantified imaging growth rates occurred during pregnancy in 87% of cases. 2) Clinical deterioration occurred in 38% of cases, with seizures alone resolving after delivery in 57.2% of cases. 3) Oncological treatments were immediately performed after delivery in 25% of cases. For gliomas diagnosed during pregnancy (n = 28), we demonstrated the following: 1) The tumor was discovered during the second and third trimesters in 29% and 54% of cases, respectively, with seizures being the presenting symptom in 68% of cases. 2) The quantified imaging growth rates did not significantly decrease after delivery and before oncological treatment. 3) Clinical deterioration resolved after delivery in 21.4% of cases. 4) Oncological treatments were immediately performed after delivery in 70% of cases. Gliomas with a high grade of malignancy, negative immunoexpression of alpha-internexin, or positive immunoexpression for p53 were more likely to be associated with tumor progression during pregnancy. Deliveries were all uneventful (cesarean section in 54.5% of cases and vaginal delivery in 45.5%), and the infants were developmentally normal. CONCLUSIONS When a woman harboring a glioma envisions a pregnancy, or when a glioma is discovered in a pregnant patient, the authors suggest informing her and her partner that pregnancy may impact the evolution of the glioma clinically and radiologically. They strongly advise a multidisciplinary approach to management. ■ CLASSIFICATION OF EVIDENCE Type of question: association; study design: case series; evidence: Class IV.

  6. N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) promote growth and inhibit differentiation of glioma stem-like cells.

    Science.gov (United States)

    Long, Patrick M; Moffett, John R; Namboodiri, Aryan M A; Viapiano, Mariano S; Lawler, Sean E; Jaworski, Diane M

    2013-09-06

    Metabolic reprogramming is a pathological feature of cancer and a driver of tumor cell transformation. N-Acetylaspartate (NAA) is one of the most abundant amino acid derivatives in the brain and serves as a source of metabolic acetate for oligodendrocyte myelination and protein/histone acetylation or a precursor for the synthesis of the neurotransmitter N-acetylaspartylglutamate (NAAG). NAA and NAAG as well as aspartoacylase (ASPA), the enzyme responsible for NAA degradation, are significantly reduced in glioma tumors, suggesting a possible role for decreased acetate metabolism in tumorigenesis. This study sought to examine the effects of NAA and NAAG on primary tumor-derived glioma stem-like cells (GSCs) from oligodendroglioma as well as proneural and mesenchymal glioblastoma, relative to oligodendrocyte progenitor cells (Oli-Neu). Although the NAA dicarboxylate transporter NaDC3 is primarily thought to be expressed by astrocytes, all cell lines expressed NaDC3 and, thus, are capable of NAA up-take. Treatment with NAA or NAAG significantly increased GSC growth and suppressed differentiation of Oli-Neu cells and proneural GSCs. Interestingly, ASPA was expressed in both the cytosol and nuclei of GSCs and exhibited greatest nuclear immunoreactivity in differentiation-resistant GSCs. Both NAA and NAAG elicited the expression of a novel immunoreactive ASPA species in select GSC nuclei, suggesting differential ASPA regulation in response to these metabolites. Therefore, this study highlights a potential role for nuclear ASPA expression in GSC malignancy and suggests that the use of NAA or NAAG is not an appropriate therapeutic approach to increase acetate bioavailability in glioma. Thus, an alternative acetate source is required.

  7. Isthmin inhibits glioma growth through antiangiogenesis in vivo.

    Science.gov (United States)

    Yuan, Bangqing; Xian, Ronghua; Ma, Jianfang; Chen, Yujian; Lin, Chuangan; Song, Yaoming

    2012-09-01

    Among glioma treatment strategies, antiangiogenesis emerges as a meaningful and feasible treatment approach for inducing long-term survival. Isthmin is a gene highly expressed in the isthmus of the midbrain-hindbrain organizer in Xenopus, and has recently been identified as a novel angiogenesis inhibitor. However, the potential of isthmin on the glioma angiogenesis has not been well studied. In the present study, we demonstrated that the recombinant adenovirus isthmin (Ad-isthmin) could inhibit VEGF-stimulated endothelial cell proliferation and induce apoptosis through a caspase-dependent pathway. In addition, Ad-isthmin significantly suppressed glioma growth through antiangiogenesis without apparent side effects. Taken together, our results demonstrated that isthmin could act as a novel angiogenesis inhibitor and might be utilized in the glioma antiangiogenesis therapy.

  8. Assessment of type of allergy and antihistamine use in the development of glioma

    Science.gov (United States)

    McCarthy, Bridget J.; Rankin, Kristin; Il'yasova, Dora; Erdal, Serap; Vick, Nicholas; Ali-Osman, Francis; Bigner, Darell D.; Davis, Faith

    2010-01-01

    Background Allergies have been associated with decreased risk of glioma, but associations between duration and timing of allergies, and antihistamine use and glioma risk have been less consistent. The objective was to investigate this association by analyzing types, number, years since diagnosis, and age at diagnosis of allergies, and information on antihistamine usage, including type, duration, and frequency of exposure. Methods Self-report data on medically-diagnosed allergies and antihistamine use were obtained for 419 glioma cases and 612 hospital-based controls from Duke University and NorthShore University HealthSystem. Results High- and low-grade glioma cases were statistically significantly less likely to report any allergy than controls (OR= 0.66, 95% CI: 0.49–0.87 and 0.44, 95% CI: 0.25–0.76, respectively). The number of types of allergies (seasonal, medication, pet, food, and other) was inversely associated with glioma risk in a dose-response manner (p-value for trend Impact A comprehensive study of allergies and antihistamine use using standardized questions and biological markers will be essential to further delineate the biological mechanism that may be involved in brain tumor development. PMID:21300619

  9. Phospho-eNOS Ser-1176 is associated with the nucleoli and the Golgi complex in C6 rat glioma cells.

    Science.gov (United States)

    Klinz, Franz-Josef; Herberg, Natalie; Arnhold, Stefan; Addicks, Klaus; Bloch, Wilhelm

    2007-06-29

    Enzymatic activity of endothelial nitric oxide synthase (eNOS) is controlled by posttranslational modifications, protein-protein interactions, and subcellular localization. For example, N-terminal fatty acid modifications target eNOS to the Golgi complex where it becomes phosphorylated. We show here by immunofluorescence analysis that phospho-eNOS Ser-1176 is enriched in the perinuclear region of interphase C6 rat glioma cells. Confocal double immunofluorescence microscopy with the Golgi marker protein 58K revealed that phospho-eNOS Ser-1176 is associated with the Golgi complex. Surprisingly, we observed several spots in the nucleus of C6 cells that were positive for phospho-eNOS Ser-1176. Confocal double immunofluorescence analysis with the nucleolus marker protein fibrillarin revealed that within the nucleus phospho-eNOS Ser-1176 is exclusively associated with the nucleoli. It is known that in mitotic cells nucleoli are lost during prophase and rebuild during telophase. In agreement with this, we find no nucleoli-like distribution of phospho-eNOS Ser-1176 in metaphase and anaphase C6 glioma cells. Our finding that phospho-eNOS Ser-1176 is selectively associated with the nucleoli points to a so far unknown role for eNOS in interphase glioma cells.

  10. Beyond Alkylating Agents for Gliomas: Quo Vadimus?

    Science.gov (United States)

    Puduvalli, Vinay K; Chaudhary, Rekha; McClugage, Samuel G; Markert, James

    2017-01-01

    Recent advances in therapies have yielded notable success in terms of improved survival in several cancers. However, such treatments have failed to improve outcome in patients with gliomas for whom surgery followed by radiation therapy and chemotherapy with alkylating agents remain the standard of care. Genetic and epigenetic studies have helped identify several alterations specific to gliomas. Attempts to target these altered pathways have been unsuccessful due to various factors, including tumor heterogeneity, adaptive resistance of tumor cells, and limitations of access across the blood-brain barrier. Novel therapies that circumvent such limitations have been the focus of intense study and include approaches such as immunotherapy, targeting of signaling hubs and metabolic pathways, and use of biologic agents. Immunotherapeutic approaches including tumor-targeted vaccines, immune checkpoint blockade, antibody-drug conjugates, and chimeric antigen receptor-expressing cell therapies are in various stages of clinical trials. Similarly, identification of key metabolic pathways or converging hubs of signaling pathways that are tumor specific have yielded novel targets for therapy of gliomas. In addition, the failure of conventional therapies against gliomas has led to a growing interest among patients in the use of alternative therapies, which in turn has necessitated developing evidence-based approaches to the application of such therapies in clinical studies. The development of these novel approaches bears potential for providing breakthroughs in treatment of more meaningful and improved outcomes for patients with gliomas.

  11. Loss of heterozygosity of TRIM3 in malignant gliomas

    Directory of Open Access Journals (Sweden)

    Dolder Béatrice

    2009-02-01

    Full Text Available Abstract Background Malignant gliomas are frequent primary brain tumors associated with poor prognosis and very limited response to conventional chemo- and radio-therapies. Besides sharing common growth features with other types of solid tumors, gliomas are highly invasive into adjacent brain tissue, which renders them particularly aggressive and their surgical resection inefficient. Therefore, insights into glioma formation are of fundamental interest in order to provide novel molecular targets for diagnostic purposes and potential anti-cancer drugs. Human Tripartite motif protein 3 (TRIM3 encodes a structural homolog of Drosophila brain tumor (brat implicated in progenitor cell proliferation control and cancer stem cell suppression. TRIM3 is located within the loss of allelic heterozygosity (LOH hotspot of chromosome segment 11p15.5, indicating a potential role in tumor suppression. ... Methods Here we analyze 70 primary human gliomas of all types and grades and report somatic deletion mapping as well as single nucleotide polymorphism analysis together with quantitative real-time PCR of chromosome segment 11p15.5. Results Our analysis identifies LOH in 17 cases (24% of primary human glioma which defines a common 130 kb-wide interval within the TRIM3 locus as a minimal area of loss. We further detect altered genomic dosage of TRIM3 in two glioma cases with LOH at 11p15.5, indicating homozygous deletions of TRIM3. Conclusion Loss of heterozygosity of chromosome segment 11p15.5 in malignant gliomas suggests TRIM3 as a candidate brain tumor suppressor gene.

  12. In vivo detection of inducible nitric oxide synthase in rodent gliomas.

    Science.gov (United States)

    Towner, Rheal A; Smith, Nataliya; Doblas, Sabrina; Garteiser, Philippe; Watanabe, Yasuko; He, Ting; Saunders, Debra; Herlea, Oana; Silasi-Mansat, Robert; Lupu, Florea

    2010-03-01

    Increased iNOS expression is often found in brain tumors, such as gliomas. The goal of this study was to develop and assess a novel molecular MRI (mMRI) probe for in vivo detection of iNOS in rodent models for gliomas (intracerebral implantation of rat C6 or RG2 cells or ethyl nitrosourea-induced glioma). The probe we used incorporated a Gd-DTPA (gadolinium(III) complex of diethylenetriamine-N,N,N',N'',N''-pentaacetate) backbone with albumin and biotin moieties and covalent binding of an anti-iNOS antibody (Ab) to albumin (anti-iNOS probe). We used mMRI with the anti-iNOS probe to detect in vivo iNOS levels in gliomas. Nonimmune normal rat IgG coupled to albumin-Gd-DTPA-biotin was used as a control nonspecific contrast agent. By targeting the biotin component of the anti-iNOS probe with streptavidin Cy3, fluorescence imaging confirmed the specificity of the probe for iNOS in glioma tissue. iNOS levels in glioma tumors were also confirmed via Western blots and immunohistochemistry. The presence of plasma membrane-associated iNOS in glioma cells was established by transmission electron microscopy and gold-labeled anti-iNOS Ab. The more aggressive RG2 glioma was not found to have higher levels of iNOS compared to C6. Differences in glioma vascularization and blood-brain barrier permeability between the C6 and the RG2 gliomas are discussed. In vivo assessment of iNOS levels associated with tumor development is quite feasible in heterogeneous tissues with mMRI. (c) 2009 Elsevier Inc. All rights reserved.

  13. Actin cytoskeleton organization, cell surface modification and invasion rate of 5 glioblastoma cell lines differing in PTEN and p53 status

    International Nuclear Information System (INIS)

    Djuzenova, Cholpon S.; Fiedler, Vanessa; Memmel, Simon; Katzer, Astrid; Hartmann, Susanne; Krohne, Georg; Zimmermann, Heiko; Scholz, Claus-Jürgen; Polat, Bülent; Flentje, Michael

    2015-01-01

    Glioblastoma cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores the relationship between the invasion capacity of 5 glioblastoma cell lines differing in p53 and PTEN status, expression of mTOR and several other marker proteins involved in cell invasion, actin cytoskeleton organization and cell morphology. We found that two glioblastoma lines mutated in both p53 and PTEN genes (U373-MG and SNB19) exhibited the highest invasion rates through the Matrigel or collagen matrix. In DK-MG (p53wt/PTENwt) and GaMG (p53mut/PTENwt) cells, F-actin mainly occurred in the numerous stress fibers spanning the cytoplasm, whereas U87-MG (p53wt/PTENmut), U373-MG and SNB19 (both p53mut/PTENmut) cells preferentially expressed F-actin in filopodia and lamellipodia. Scanning electron microscopy confirmed the abundant filopodia and lamellipodia in the PTEN mutated cell lines. Interestingly, the gene profiling analysis revealed two clusters of cell lines, corresponding to the most (U373-MG and SNB19, i.e. p53 and PTEN mutated cells) and less invasive phenotypes. The results of this study might shed new light on the mechanisms of glioblastoma invasion. - Highlights: • We examine 5 glioblastoma lines on the invasion capacity and actin cytoskeleton. • Glioblastoma cell lines mutated in both p53 and PTEN were the most invasive. • Less invasive cells showed much less lamellipodia, but more actin stress fibers. • A mechanism for the differences in tumor cell invasion is proposed

  14. Actin cytoskeleton organization, cell surface modification and invasion rate of 5 glioblastoma cell lines differing in PTEN and p53 status

    Energy Technology Data Exchange (ETDEWEB)

    Djuzenova, Cholpon S., E-mail: djuzenova_t@ukw.de [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Fiedler, Vanessa [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Memmel, Simon [Lehrstuhl für Biotechnologie und Biophysik, Universität Würzburg, Biozentrum Am Hubland, 97070 Würzburg (Germany); Katzer, Astrid; Hartmann, Susanne [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Krohne, Georg [Elektronenmikroskopie, Biozentrum, Universität Würzburg, Am Hubland, 97070 Würzburg (Germany); Zimmermann, Heiko [Hauptabteilung Biophysik and Kryotechnologie, Fraunhofer-Institut für Biomedizinische Technik, Lehrstuhl für Molekulare und Zelluläre Biotechnologie/Nanotechnologie, Universität des Saarlandes, Ensheimer Strasse 48, 66386 St. Ingbert (Germany); Scholz, Claus-Jürgen [Interdisciplinary Center for Clinical Research, University Hospital, Versbacher Strasse 7, 97078 Würzburg (Germany); Polat, Bülent; Flentje, Michael [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); and others

    2015-01-15

    Glioblastoma cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores the relationship between the invasion capacity of 5 glioblastoma cell lines differing in p53 and PTEN status, expression of mTOR and several other marker proteins involved in cell invasion, actin cytoskeleton organization and cell morphology. We found that two glioblastoma lines mutated in both p53 and PTEN genes (U373-MG and SNB19) exhibited the highest invasion rates through the Matrigel or collagen matrix. In DK-MG (p53wt/PTENwt) and GaMG (p53mut/PTENwt) cells, F-actin mainly occurred in the numerous stress fibers spanning the cytoplasm, whereas U87-MG (p53wt/PTENmut), U373-MG and SNB19 (both p53mut/PTENmut) cells preferentially expressed F-actin in filopodia and lamellipodia. Scanning electron microscopy confirmed the abundant filopodia and lamellipodia in the PTEN mutated cell lines. Interestingly, the gene profiling analysis revealed two clusters of cell lines, corresponding to the most (U373-MG and SNB19, i.e. p53 and PTEN mutated cells) and less invasive phenotypes. The results of this study might shed new light on the mechanisms of glioblastoma invasion. - Highlights: • We examine 5 glioblastoma lines on the invasion capacity and actin cytoskeleton. • Glioblastoma cell lines mutated in both p53 and PTEN were the most invasive. • Less invasive cells showed much less lamellipodia, but more actin stress fibers. • A mechanism for the differences in tumor cell invasion is proposed.

  15. Taurine Biosynthesis by Neurons and Astrocytes*

    Science.gov (United States)

    Vitvitsky, Victor; Garg, Sanjay K.; Banerjee, Ruma

    2011-01-01

    The physiological roles of taurine, a product of cysteine degradation and one of the most abundant amino acids in the body, remain elusive. Taurine deficiency leads to heart dysfunction, brain development abnormalities, retinal degradation, and other pathologies. The taurine synthetic pathway is proposed to be incomplete in astrocytes and neurons, and metabolic cooperation between these cell types is reportedly needed to complete the pathway. In this study, we analyzed taurine synthesis capability as reported by incorporation of radioactivity from [35S]cysteine into taurine, in primary murine astrocytes and neurons, and in several transformed cell lines (human (SH-SY5Y) and murine (N1E-115) neuroblastoma, human astrocytoma (U-87MG and 1321 N1), and rat glioma (C6)). Extensive incorporation of radioactivity from [35S]cysteine into taurine was observed in rat glioma cells as well as in primary mouse astrocytes and neurons, establishing the presence of an intact taurine synthesis pathway in these cells. Interestingly, exposure of cells to cysteine or cysteamine resulted in elevated intracellular hypotaurine without a corresponding increase in taurine levels, suggesting that oxidation of hypotaurine limits taurine synthesis in cells. Consistent with its role as an organic osmolyte, taurine synthesis was stimulated under hypertonic conditions in neurons. PMID:21778230

  16. Lebbeckoside C, a new triterpenoid saponin from the stem barks of Albizia lebbeck inhibits the growth of human glioblastoma cells.

    Science.gov (United States)

    Noté, Olivier Placide; Ngo Mbing, Joséphine; Kilhoffer, Marie-Claude; Pegnyemb, Dieudonné Emmanuel; Lobstein, Annelise

    2018-02-19

    One new acacic acid-type saponin, named lebbeckoside C (1), was isolated from the stem barks of Albizia lebbeck. Its structure was established on the basis of extensive analysis of 1D and 2D NMR ( 1 H, 13 C NMR, DEPT, COSY, TOCSY, ROESY, HSQC and HMBC) experiments, HRESIMS studies, and by chemical evidence as 3-O-[β-d-xylopyranosyl-(l→2)-β-d-fucopyranosyl-(1→6)-[β-d-glucopyranosyl(1→2)]-β-d-glucopyranosyl]-21-O-{(2E,6S)-6-O-{4-O-[(2E,6S)-2,6-dimethyl-6-O-(β-d-quinovopyranosyl)octa-2,7-dienoyl]-4-O-[(2E,6S)-2,6-dimethyl-6-O-(β-d-quinovopyranosyl)octa-2,7-dienoyl]-β-d-quinovopyranosyl}-2,6-dimethylocta-2,7-dienoyl}acacic acid 28 O-[β-d-quinovopyranosyl-(l→3)-[α-l-arabinofuranosyl-(l→4)]-α-l-rhamnopyranosyl-(l→2)-β-d-glucopyranosyl] ester. The isolated saponin (1) displayed significant cytotoxic activity against the human glioblastoma cell line U-87 MG and TG1 stem-like glioma cells isolated from a patient tumor with IC 50 values of 1.69 and 1.44 μM, respectively.

  17. The association between birth order, sibship size and glioma development in adulthood.

    Science.gov (United States)

    Amirian, E; Scheurer, Michael E; Bondy, Melissa L

    2010-06-01

    The etiology of brain tumors is still largely unknown. Previous research indicates that infectious agents and immunological characteristics may influence adult glioma risk. The purpose of our study was to evaluate the effects of birth order and sibship size (total number of siblings), as indicators of the timing and frequency of early life infections, on adult glioma risk using a population of 489 cases and 540 cancer-free controls from the Harris County Brain Tumor Study. Odds ratios for birth order and sibship size were calculated separately from multivariable logistic regression models, adjusting for sex, family history of cancer, education, and age. Each one-unit increase in birth order confers a 13% decreased risk of glioma development in adulthood (OR = 0.87, 95% CI = 0.79-0.97). However, sibship size was not significantly associated with adult glioma status (OR = 0.97, 95% CI = 0.91-1.04). Our study indicates that individuals who were more likely to develop common childhood infections at an earlier age (those with a higher birth order) may be more protected against developing glioma in adulthood. More biological and epidemiological research is warranted to clarify the exact mechanisms through which the timing of common childhood infections and the course of early life immune development affect gliomagenesis.

  18. Childhood Brain Stem Glioma Treatment (PDQ®)—Patient Version

    Science.gov (United States)

    Childhood brain stem glioma can be a benign (not cancer) or malignant (cancer) condition where abnormal cells form in the tissues of the brain stem. Get information about the symptoms, diagnosis, prognosis, and treatment of newly diagnosed and recurrent childhood brain stem glioma in this expert-reviewed summary.

  19. Silencing of mitochondrial NADP+-dependent isocitrate dehydrogenase gene enhances glioma radiosensitivity

    International Nuclear Information System (INIS)

    Kim, Sung Youl; Yoo, Young Hyun; Park, Jeen-Woo

    2013-01-01

    Highlights: •Silencing of the IDPm gene enhances IR-induced autophagy in glioma cells. •Autophagy inhibition augmented apoptosis of irradiated glioma cells. •Results offer a redox-active therapeutic strategy for the treatment of cancer. -- Abstract: Reactive oxygen species (ROS) levels are elevated in organisms that have been exposed to ionizing radiation and are protagonists in the induction of cell death. Recently, we demonstrated that the control of mitochondrial redox balance and the cellular defense against oxidative damage are primary functions of mitochondrial NADP + -dependent isocitrate dehydrogenase (IDPm) via the supply of NADPH for antioxidant systems. In the present study, we report an autophagic response to ionizing radiation in A172 glioma cells transfected with small interfering RNA (siRNA) targeting the IDPm gene. Autophagy in A172 transfectant cells was associated with enhanced autophagolysosome formation and GFP–LC3 punctuation/aggregation. Furthermore, we found that the inhibition of autophagy by chloroquine augmented apoptotic cell death of irradiated A172 cells transfected with IDPm siRNA. Taken together, our data suggest that autophagy functions as a survival mechanism in A172 cells against ionizing radiation-induced apoptosis and the sensitizing effect of IDPm siRNA and autophagy inhibitor on the ionizing radiation-induced apoptotic cell death of glioma cells offers a novel redox-active therapeutic strategy for the treatment of cancer

  20. The functional role of Notch signaling in human gliomas

    DEFF Research Database (Denmark)

    Stockhausen, Marie-Thérése; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2010-01-01

    have been referred to as brain cancer stem cells (bCSC), as they share similarities to normal neural stem cells in the brain. The Notch signaling pathway is involved in cell fate decisions throughout normal development and in stem cell proliferation and maintenance. The role of Notch in cancer is now...... firmly established, and recent data implicate a role for Notch signaling also in gliomas and bCSC. In this review, we explore the role of the Notch signaling pathway in gliomas with emphasis on its role in normal brain development and its interplay with pathways and processes that are characteristic...