WorldWideScience

Sample records for u251 human glioblastoma

  1. A miR-21 inhibitor enhances apoptosis and reduces G2-M accumulation induced by ionizing radiation in human glioblastoma U251 cells

    International Nuclear Information System (INIS)

    Li, Yi; Li, Qiang; Asai, Akio; Kawamoto, Keiji; Zhao Shiguang; Zhen Yunbo; Teng Lei

    2011-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that take part in diverse biological processes by suppressing target gene expression. Elevated expression of miR-21 has been reported in many types of human cancers. Radiotherapy is a standard adjuvant treatment for patients with glioblastoma. However, the resistance of glioblastoma cells to radiation limits the success of this treatment. In this study, we found that miR-21 expression was upregulated in response to ionizing radiation (IR) in U251 cells, which suggested that miR-21 could be involved in the response of U251 cells to radiation. We showed that a miR-21 inhibitor enhanced IR-induced glioblastoma cell growth arrest and increased the level of apoptosis, which was probably caused by abrogation of the G 2 -M arrest induced by IR. Further research demonstrated that the miR-21 inhibitor induced the upregulation of Cdc25A. Taken together, these findings suggest that miR-21 inhibitor can increase IR-induced growth arrest and apoptosis in U251 glioblastoma cells, at least in part by abrogating G 2 -M arrest, and that Cdc25A is a potential target of miR-21. (author)

  2. Down-regulation of Connexin43 expression reveals the involvement of caveolin-1 containing lipid rafts in human U251 glioblastoma cell invasion.

    Science.gov (United States)

    Strale, Pierre-Olivier; Clarhaut, Jonathan; Lamiche, Coralie; Cronier, Laurent; Mesnil, Marc; Defamie, Norah

    2012-11-01

    Glioblastoma cells are characterized by high proliferation and invasive capacities. Tumor development has been associated with a decrease of gap-junctional intercellular communication, but the concrete involvement of gap junction proteins, connexins, remains elusive since they are also suspected to promote cell invasion. In order to better understand how connexins control the glioma cell phenotype, we studied the consequences of inhibiting the intrinsic expression of the major astrocytic connexin, Connexin43, in human U251 glioblastoma cells by the shRNA strategy. The induced down-regulation of Cx43 expression has various effects on the U251 cells such as increased clonogenicity, angiogenesis and decreased adhesion on specific extracellular matrix proteins. We demonstrate that the invasion capacity measured in vitro and ex vivo correlates with Cx43 expression level. For the first time in a cancer cell context, our work demonstrates that Cx43 cofractionates, colocalizes and coimmunoprecipitates with a lipid raft marker, caveolin-1 and that this interaction is inversely correlated to the level of Cx43. This localization of Cx43 in these lipid raft microdomains regulates both homo- and heterocellular gap junctional communications (respectively between U251 cells, or between U251 cells and astrocytes). Moreover, the adhesive and invasive capacities are not dependent, in our model, on Cav-1 expression level. Our results tend to show that heterocellular gap junctional communication between cancer and stroma cells may affect the behavior of the tumor cells. Altogether, our data demonstrate that Cx43 controls the tumor phenotype of glioblastoma U251 cells and in particular, invasion capacity, through its localization in lipid rafts containing Cav-1. Copyright © 2011 Wiley Periodicals, Inc.

  3. Characterization of radioresistant variant from U251 human glioblastoma cell line and the role of antioxdant enzymes in its radioresistancy

    International Nuclear Information System (INIS)

    Lee, Hyung Chahn; Park, In Chul; Park, Myung Jin; Woo, Sang Hyeok; Rhee, Chang Hum; Hong, Seok-II

    2004-01-01

    To investigate the radioresistant mechanism in glioblastoma multiforme(GBM), we isolated the radioresistant clone (RRC) from U251 human glioblastoma cell line by exposing to repeated fractions of 3 Gy γ-radiation for six months. RRC had higher radioresistance than the parent cell line as measured by clonogenic survival assay. FACS analysis showed that RRC had a delayed G2 arrest after radiation. Antioxidant enzymes, such as SOD, catalase, glutathione peroxidase (GPX), glutathione reductase (GR), were activated up to 5 folds in RRC after radiation. Erk 1/2 activation was higher in RRC than in the parent cell. Therefore, radioresistancy in RRC might be due to the delayed cell cycle, the coordinated high activation of antioxidant enzyme rather than a single enzyme alone,and higher activation of Erk 1/2

  4. U-251 revisited: genetic drift and phenotypic consequences of long-term cultures of glioblastoma cells

    International Nuclear Information System (INIS)

    Torsvik, Anja; Stieber, Daniel; Enger, Per Øyvind; Golebiewska, Anna; Molven, Anders; Svendsen, Agnete; Westermark, Bengt; Niclou, Simone P; Olsen, Thale Kristin; Chekenya Enger, Martha; Bjerkvig, Rolf

    2014-01-01

    It is well known that in vitro subculture represents a selection pressure on cell lines, and over time this may result in a genetic drift in the cancer cells. In addition, long-term cultures harbor the risk of cross-contamination with other cell lines. The consequences may have major impact on experimental results obtained in various laboratories, where the cell lines no longer reflect the original tumors that they are supposed to represent. Much neglected in the scientific community is a close monitoring of cell cultures by regular phenotypic and genetic characterization. In this report, we present a thorough characterization of the commonly used glioblastoma (GBM) model U-251, which in numerous publications has been wrongly identified as U-373, due to an earlier cross-contamination. In this work, the original U-251 and three subclones of U-251, commonly referred to as U-251 or U-373, were analyzed with regard to their DNA profile, morphology, phenotypic expression, and growth pattern. By array comparative genomic hybridization (aCGH), we show that only the original low-passaged U-251 cells, established in the 1960s, maintain a DNA copy number resembling a typical GBM profile, whereas all long-term subclones lost the typical GBM profile. Also the long-term passaged subclones displayed variations in phenotypic marker expression and showed an increased growth rate in vitro and a more aggressive growth in vivo. Taken together, the variations in genotype and phenotype as well as differences in growth characteristics may explain different results reported in various laboratories related to the U-251 cell line

  5. MiR-18a regulates the proliferation, migration and invasion of human glioblastoma cell by targeting neogenin

    International Nuclear Information System (INIS)

    Song, Yichen; Wang, Ping; Zhao, Wei; Yao, Yilong; Liu, Xiaobai; Ma, Jun; Xue, Yixue; Liu, Yunhui

    2014-01-01

    MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identified as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma. - Highlights: • MiR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines. • Neogenin was identified as the target gene of miR-18a. • Neogenin expressions were decreased along with the rising pathological grades of glioblastoma. • Inhibition of miR-18a suppressed biological behavior of glioma cells by up-regulating neogenin

  6. MiR-18a regulates the proliferation, migration and invasion of human glioblastoma cell by targeting neogenin

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yichen, E-mail: jeff200064017@163.com [Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004 (China); Wang, Ping, E-mail: pingwang8000@163.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Zhao, Wei, E-mail: 15669746@qq.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Yao, Yilong, E-mail: yaoyilong_322@163.com [Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004 (China); Liu, Xiaobai, E-mail: paganizonda1991@qq.com [The 96th Class, 7-year Program, China Medical University, Shenyang, Liaoning Province 110001 (China); Ma, Jun, E-mail: majun_724@163.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Xue, Yixue, E-mail: xueyixue888@163.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Liu, Yunhui, E-mail: liuyh@sj-hospital.org [Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004 (China)

    2014-05-15

    MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identified as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma. - Highlights: • MiR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines. • Neogenin was identified as the target gene of miR-18a. • Neogenin expressions were decreased along with the rising pathological grades of glioblastoma. • Inhibition of miR-18a suppressed biological behavior of glioma cells by up-regulating neogenin.

  7. VPA and MEL induce apoptosis by inhibiting the Nrf2-ARE signaling pathway in TMZ-resistant U251 cells.

    Science.gov (United States)

    Pan, Hao; Wang, Handong; Jia, Yue; Wang, Qiang; Li, Liwen; Wu, Qi; Chen, Longbang

    2017-07-01

    Chemoresistance is the primary obstacle to effective treatment of glioblastoma, the most lethal brain tumor. Our previous study demonstrated that Nf-E2 related factor 2 (Nrf2), a traditional cytoprotective transcription factor, was overexpressed in gliomas and promoted malignancy. The present study aimed to investigate the expression levels of Nrf2‑antioxidant response element (ARE) signaling pathway genes in temozolomide (TMZ)‑resistant U251 human glioblastoma cells (U251‑TMZ). Additionally, the effect of valproic acid (VPA) and melatonin (MEL) on Nrf2 expression in U251‑TMZ cells and their association with chemoresistance was investigated. The results of the present study indicated that the expression levels of components of the Nrf2‑ARE signaling pathway were increased in U251‑TMZ cells compared with U251 parent cells. Silencing of Nrf2 by transfection with small interfering RNA restored the chemosensitivity of U251‑TMZ cells. The Nrf2 inhibitors VPA and MEL successfully reduced Nrf2 expression and survival in U251‑TMZ cells treated with TMZ, accompanied by increased reactive oxygen species levels and apoptosis. Therefore, VPA and MEL may be potential chemotherapeutic sensitizers for the treatment of chemoresistant glioblastoma.

  8. Increased radiosensitivity and radiothermosensitivity of human pancreatic MIA PaCa-2 and U251 glioblastoma cell lines treated with the novel Hsp90 inhibitor NVP-HSP990

    International Nuclear Information System (INIS)

    Milanović, Dušan; Firat, Elke; Grosu, Anca Ligia; Niedermann, Gabriele

    2013-01-01

    Heat shock Protein 90 (Hsp90) is a molecular chaperone that folds, stabilizes, and functionally regulates many cellular proteins involved in oncogenic signaling and in the regulation of radiosensitivity. It is upregulated in response to stress such a heat. Hyperthermia is a potent radiosensitizer, but induction of Hsp90 may potentially limit its efficacy. Our aim was to investigate whether the new Hsp90 inhibitor NVP-HSP990 increases radiosensitivity, thermosensitivity and radiothermosensitivity of human tumor cell lines. U251 glioblastoma and MIA PaCa-2 pancreatic carcinoma cells were used. To determine clonogenic survival, colony forming assays were performed. Cell viability and proliferation were assesed by Trypan blue staining. Cell cycle and apoptosis analyses were performed by flow cytometry. DAPI staining was used to detect mitotic catastrophe. NVP-HSP990 increased the thermosensitivity, radiosensitivity and radio-thermosensitivity of both cell lines in clonogenic assays. 72 hours after irradiation with 4 Gy, a significant reduction in cell number associated with considerable G2/M acumulation and mitotic catastrophe as well as cell death by apoptosis/necrosis was observed. Treatment with NVP-HSP990 strongly sensitized U251 and MIA PaCa-2 cells to hyperthermia and ionizing radiation or combination thereof through augmentation of G2/M arrest, mitotic catastrophe and associated apoptosis

  9. Proliferative and Invasive Effects of Progesterone-Induced Blocking Factor in Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Araceli Gutiérrez-Rodríguez

    2017-01-01

    Full Text Available Progesterone-induced blocking factor (PIBF is a progesterone (P4 regulated protein expressed in different types of high proliferative cells including astrocytomas, the most frequent and aggressive brain tumors. It has been shown that PIBF increases the number of human astrocytoma cells. In this work, we evaluated PIBF regulation by P4 and the effects of PIBF on proliferation, migration, and invasion of U87 and U251 cells, both derived from human glioblastomas. PIBF mRNA expression was upregulated by P4 (10 nM from 12 to 24 h. Glioblastoma cells expressed two PIBF isoforms, 90 and 57 kDa. The content of the shorter isoform was increased by P4 at 24 h, while progesterone receptor antagonist RU486 (10 μM blocked this effect. PIBF (100 ng/mL increased the number of U87 cells on days 4 and 5 of treatment and induced cell proliferation on day 4. Wound-healing assays showed that PIBF increased the migration of U87 (12–48 h and U251 (24 and 48 h cells. Transwell invasion assays showed that PIBF augmented the number of invasive cells in both cell lines at 24 h. These data suggest that PIBF promotes proliferation, migration, and invasion of human glioblastoma cells.

  10. Schedule-dependent inhibition of hypoxia-inducible factor-1alpha protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts.

    Science.gov (United States)

    Rapisarda, Annamaria; Zalek, Jessica; Hollingshead, Melinda; Braunschweig, Till; Uranchimeg, Badarch; Bonomi, Carrie A; Borgel, Suzanne D; Carter, John P; Hewitt, Stephen M; Shoemaker, Robert H; Melillo, Giovanni

    2004-10-01

    We have previously shown that topotecan, a topoisomerase I poison, inhibits hypoxia-inducible factor (HIF)-1alpha protein accumulation by a DNA damage-independent mechanism. Here, we report that daily administration of topotecan inhibits HIF-1alpha protein expression in U251-HRE glioblastoma xenografts. Concomitant with HIF-1alpha inhibition, topotecan caused a significant tumor growth inhibition associated with a marked decrease of angiogenesis and expression of HIF-1 target genes in tumor tissue. These results provide a compelling rationale for testing topotecan in clinical trials to target HIF-1 in cancer patients.

  11. Effective internalization of U251-MG-secreted exosomes into cancer cells and characterization of their lipid components.

    Science.gov (United States)

    Toda, Yuki; Takata, Kazuyuki; Nakagawa, Yuko; Kawakami, Hikaru; Fujioka, Shusuke; Kobayashi, Kazuya; Hattori, Yasunao; Kitamura, Yoshihisa; Akaji, Kenichi; Ashihara, Eishi

    2015-01-16

    Exosomes, the natural vehicles of various biological molecules, have been examined in several research fields including drug delivery. Although understanding of the biological functions of exosomes has increased, how exosomes are transported between cells remains unclear. We hypothesized that cell tropism is important for effective exosomal intercellular communication and that parental cells regulate exosome movement by modulating constituent exosomal molecules. Herein, we demonstrated the strong translocation of glioblastoma-derived exosomes (U251exo) into their parental (U251) cells, breast cancer (MDA-MB-231) cells, and fibrosarcoma (HT-1080). Furthermore, disruption of proteins of U251exo by enzymatic treatment did not affect their uptake. Therefore, we focused on lipid molecules of U251exo with the expectation that they are crucial for effective incorporation of U251exo by cancer cells. Phosphatidylethanolamine was identified as a unique lipid component of U251-MG cell-derived extracellular vesicles. From these results, valuable insight is provided into the targeting of U251exo to cancer cells, which will help to develop a cancer-targeted drug delivery system. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. The prosurvival role of autophagy in Resveratrol-induced cytotoxicity in human U251 glioma cells

    International Nuclear Information System (INIS)

    Li, Jun; Qin, Zhenghong; Liang, Zhongqin

    2009-01-01

    Previous study reported that resveratrol has anti-tumor activity. In this study, we investigated the involvement of autophagy in the resveratrol-induced apoptotic death of human U251 glioma cells. The growth inhibition of U251 cells induced by resveratrol was assessed with methyl thiazolyl tetrazolium (MTT). The activation of autophagy and proapoptotic effect were characterized by monodansylcadaverine labeling and Hoechst stain, respectively. Mitochondrialtransmembrane potential (ΔΨm) was measured as a function of drug treatment using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1). The role of autophagy and apoptosis in the resveratrol-induced death of U251 cells was assessed using autophagic and caspase inhibitors. Immunofluorescence, flow cytometry, and Western blot analysis were used to study the apoptotic and autophagic mechanisms. Methyl thiazolyl tetrazolium (MTT) assays indicated that resveratrol decreased the viability of U251 cells in a dose- and time-dependent manner. Flow cytometry analysis indicated that resveratrol increased cell population at sub-G1 phase, an index of apoptosis. Furthermore, resveratrol-induced cell death was associated with a collapse of the mitochondrial membrane potential. The pan-caspase inhibitor Z-VAD-fmk suppressed resveratrol-induced U251 cell death. Resveratrol stimulated autophagy was evidenced by punctuate monodansylcadaverine(MDC) staining and microtubule-associated protein light chain 3 (LC3) immunoreactivty. Resveratrol also increased protein levels of beclin 1 and membrane form LC3 (LC3-II). Autophagy inhibitors 3-methylademine (3-MA) and bafilomycin A1 sensitized the cytotoxicity of resveratrol. Together, these findings indicate that resveratrol induces autophagy in human U251 glioma cells and autophagy suppressed resveratrol-induced apoptosis. This study thus suggests that autophagy inhibitors can increase the cytotoxicity of resveratrol to glioma cells

  13. Autophagy suppression potentiates the anti-glioblastoma effect of asparaginase in vitro and in vivo

    Science.gov (United States)

    Chen, Qicheng; Ye, Li; Fan, Jiajun; Zhang, Xuyao; Wang, Huan; Liao, Siyang; Song, Ping; Wang, Ziyu; Wang, Shaofei; Li, Yubin; Luan, Jingyun; Wang, Yichen; Chen, Wei; Zai, Wenjing; Yang, Ping; Cao, Zhonglian; Ju, Dianwen

    2017-01-01

    Asparaginase has been reported to be effective in the treatment of various leukemia and several malignant solid cancers. However, the anti-tumor effect of asparaginase is always restricted due to complicated mechanisms. Herein, we investigated the mechanisms of how glioblastoma resisted asparaginase treatment and reported a novel approach to enhance the anti-glioblastoma effect of asparaginase. We found that asparaginase could induce growth inhibition and caspase-dependent apoptosis in U87MG/U251MG glioblastoma cells. Meanwhile, autophagy was activated as indicated by autophagosomes formation and upregulated expression of LC3-II. Importantly, abolishing autophagy using chloroquine (CQ) and LY294002 enhanced the cytotoxicity and apoptosis induced by asparaginase in U87MG/U251MG cells. Further study proved that Akt/mTOR and Erk signaling pathways participated in autophagy induction, while reactive oxygen species (ROS) served as an intracellular regulator for both cytotoxicity and autophagy in asparaginase-treated U87MG/U251MG cells. Moreover, combination treatment with autophagy inhibitor CQ significantly enhanced anti-glioblastoma efficacy of asparaginase in U87MG cell xenograft model. Taken together, our results demonstrated that inhibition of autophagy potentiated the anti-tumor effect of asparagine depletion on glioblastoma, indicating that targeting autophagy and asparagine could be a potential approach for glioblastoma treatment. PMID:29207624

  14. Bioactive form of resveratrol in glioblastoma cells and its safety for normal brain cells

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Shu

    2013-05-01

    Full Text Available ABSTRACTBackground: Resveratrol, a plant polyphenol existing in grapes and many other natural foods, possesses a wide range of biological activities including cancer prevention. It has been recognized that resveratrol is intracellularly biotransformed to different metabolites, but no direct evidence has been available to ascertain its bioactive form because of the difficulty to maintain resveratrol unmetabolized in vivo or in vitro. It would be therefore worthwhile to elucidate the potential therapeutic implications of resveratrol metabolism using a reliable resveratrol-sensitive cancer cells.Objective: To identify the real biological form of trans-resveratrol and to evaluate the safety of the effective anticancer dose of resveratrol for the normal brain cells.Methods: The samples were prepared from the condition media and cell lysates of human glioblastoma U251 cells, and were purified by solid phase extraction (SPE. The samples were subjected to high performance liquid chromatography (HPLC and liquid chromatography/tandem mass spectrometry (LC/MS analysis. According to the metabolite(s, trans-resveratrol was biotransformed in vitro by the method described elsewhere, and the resulting solution was used to treat U251 cells. Meanwhile, the responses of U251 and primarily cultured rat normal brain cells (glial cells and neurons to 100μM trans-resveratrol were evaluated by multiple experimental methods.Results: The results revealed that resveratrol monosulfate was the major metabolite in U251 cells. About half fraction of resveratrol monosulfate was prepared in vitro and this trans-resveratrol and resveratrol monosulfate mixture showed little inhibitory effect on U251 cells. It is also found that rat primary brain cells (PBCs not only resist 100μM but also tolerate as high as 200μM resveratrol treatment.Conclusions: Our study thus demonstrated that trans-resveratrol was the bioactive form in glioblastoma cells and, therefore, the biotransforming

  15. Aptamer-conjugated dendrimer-modified quantum dots for glioblastoma cells imaging

    International Nuclear Information System (INIS)

    Li Zhiming; Huang Peng; He Rong; Bao Chenchen; Cui Daxiang; Zhang Xiaomin; Ren Qiushi

    2009-01-01

    Targeted quantum dots have shown potential as a platform for development of cancer imaging. Aptamers have recently been demonstrated as ideal candidates for molecular targeting applications. In present work, polyamidoamine dendrimers were used to modify surface of quantum dots and improve their solubility in water solution. Then, dendrimer-modified quantum dots were conjugated with DNA aptamer, GBI-10, can recognize the extracellular matrix protein tenascin-C on the surface of human glioblastoma cells. The dendrimer-modified quantum dots exhibit water-soluble, high quantum yield, and good biocompatibility. Aptamer-conjugated quantum dots can specifically target U251 human glioblastoma cells. High-performance aptamer-conjugated dendrimers modified quantum dot-based nanoprobes have great potential in application such as cancer imaging.

  16. Mobile phone specific electromagnetic fields induce transient DNA damage and nucleotide excision repair in serum-deprived human glioblastoma cells.

    Science.gov (United States)

    Al-Serori, Halh; Ferk, Franziska; Kundi, Michael; Bileck, Andrea; Gerner, Christopher; Mišík, Miroslav; Nersesyan, Armen; Waldherr, Monika; Murbach, Manuel; Lah, Tamara T; Herold-Mende, Christel; Collins, Andrew R; Knasmüller, Siegfried

    2018-01-01

    Some epidemiological studies indicate that the use of mobile phones causes cancer in humans (in particular glioblastomas). It is known that DNA damage plays a key role in malignant transformation; therefore, we investigated the impact of the UMTS signal which is widely used in mobile telecommunications, on DNA stability in ten different human cell lines (six brain derived cell lines, lymphocytes, fibroblasts, liver and buccal tissue derived cells) under conditions relevant for users (SAR 0.25 to 1.00 W/kg). We found no evidence for induction of damage in single cell gel electrophoresis assays when the cells were cultivated with serum. However, clear positive effects were seen in a p53 proficient glioblastoma line (U87) when the cells were grown under serum free conditions, while no effects were found in p53 deficient glioblastoma cells (U251). Further experiments showed that the damage disappears rapidly in U87 and that exposure induced nucleotide excision repair (NER) and does not cause double strand breaks (DSBs). The observation of NER induction is supported by results of a proteome analysis indicating that several proteins involved in NER are up-regulated after exposure to UMTS; additionally, we found limited evidence for the activation of the γ-interferon pathway. The present findings show that the signal causes transient genetic instability in glioma derived cells and activates cellular defense systems.

  17. Swelling-induced chloride current in glioblastoma proliferation, migration, and invasion.

    Science.gov (United States)

    Wong, Raymond; Chen, Wenliang; Zhong, Xiao; Rutka, James T; Feng, Zhong-Ping; Sun, Hong-Shuo

    2018-01-01

    Glioblastoma (GBM) remains as the most common and aggressive brain tumor. The survival of GBM has been linked to the aberrant activation of swelling-induced chloride current I Cl,swell . In this study, we investigated the effects of I Cl,swell on cell viability, proliferation, and migration in the human GBM cell lines, U251 and U87, using a combination of patch clamp electrophysiology, MTT, colony formation, wound healing assays and Western immunoblotting. First, we showed that the specific inhibitor of I Cl,swell , DCPIB, potently reduced the I Cl,swell in U87 cells. Next, in both U87 and U251 cells, we found that DCPIB reduced GBM viability, proliferation, colony formation, migration, and invasion. In addition, our Western immunoblot assay showed that DCPIB-treated U251 cells had a reduction in JAK2, STAT3, and Akt phosphorylation, thus, suggesting that DCPIB potentially suppresses GBM functions through inhibition of the JAK2/STAT3 and PI3K/Akt signaling pathways. Therefore, the I Cl,swell may be a potential drug target for GBM. © 2017 Wiley Periodicals, Inc.

  18. Radiosensitization and relative mechanisms of vanillin derivative BVAN08 on human glioma U-251 cells

    International Nuclear Information System (INIS)

    Wang Shubin; Zhang Bo; Sun Weijian; Wang Yu; Liu Xiaodan; Xu Qinzhi; Zhou Pingkun

    2010-01-01

    Objective: To provide more convincing evidences and experimental data for exploring vanillin derivative BVAN08, 6-bromine-5-hydroxy-4-methoxy-benzaldehyde, as a new anticancer drug, and to investigate the effect on the growth, radiosensitization of human glioma cell line U-251 and the relative mechanism. Methods: The effect of BVAN08 on cell proliferation of U-251 and radiosensitivity to 60 Co γ-rays (irradiation dose rate 2.3 Gy/min) were analyzed with MTT and colony-forming ability assay. Change in cellular morphology was observed by using light microscope. Change in cell cycle and apoptosis was detected with flow cytometry. The autophagy was observed by using TEM (irradiation dose rate is transmission electron microscope). DNA-PKcs protein level was detected through Western blot analysis. Results: BVAN08 exhibited a dose- and time-dependent inhibition on the proliferation of U-251 cells during the concentration range of 10-100 mol/L (t=1.83-3.07, P 50 at 48 h and 72 h after administration with BVAN08 were 55.3 and 52.7 mol/L, respectively. Obvious G 2 /M arrest was induced in U-251 cells after 4 h administration with BVAN08, and reached peck at 12 h. The G 2 /M population reached 63.3% in U-251 cells after 12 h administration of 60 μmol/L BVAN08 and kept increasing with the time, while both apoptosis and autophagic cell death were induced. The most effective radiosensitization time for BVAN08 treatment was 12 h before irradiation. The enhancement ratio of radiosensitivity was 3.14 for 20 μmol/L of BVAN08 12 h before 2 Gy irradiation. Conclusions: BVAN08 can induce apoptosis as radiosensitizing effect might be associated with the induction of G 2 /M arrest and inhibition of DNA-PKcs expression. BVAN08 seemed to be a promising radiosensitizing anticancer drug. (authors)

  19. Over-expression of CHAF1A promotes cell proliferation and apoptosis resistance in glioblastoma cells via AKT/FOXO3a/Bim pathway

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Honghai; Du, Bin [Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013 (China); Jiang, Huili [Friendship Nephrology and Blood Purification Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013 (China); Gao, Jun, E-mail: gaoj1666@126.com [Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013 (China)

    2016-01-22

    Chromatinassembly factor 1 subunit A (CHAF1A) has been reported to be involved in several human diseases including cancer. However, the biological and clinical significance of CHAF1A in glioblastoma progression remains largely unknown. In this study, we found that up-regulation of CHAF1A happens frequently in glioblastoma tissues and is associated with glioblastoma prognosis. Knockout of CHAF1A by CRISPR/CAS9 technology induce G1 phase arrest and apoptosis in glioblastoma cell U251 and U87. In addition, inhibition of CHAF1A influenced the signal transduction of the AKT/FOXO3a/Bim axis, which is required for glioblastoma cell proliferation. Taken together, these results show that CHAF1A contributes to the proliferation of glioblastoma cells and may be developed as a de novo drug target and prognosis biomarker of glioblastoma.

  20. Over-expression of CHAF1A promotes cell proliferation and apoptosis resistance in glioblastoma cells via AKT/FOXO3a/Bim pathway

    International Nuclear Information System (INIS)

    Peng, Honghai; Du, Bin; Jiang, Huili; Gao, Jun

    2016-01-01

    Chromatinassembly factor 1 subunit A (CHAF1A) has been reported to be involved in several human diseases including cancer. However, the biological and clinical significance of CHAF1A in glioblastoma progression remains largely unknown. In this study, we found that up-regulation of CHAF1A happens frequently in glioblastoma tissues and is associated with glioblastoma prognosis. Knockout of CHAF1A by CRISPR/CAS9 technology induce G1 phase arrest and apoptosis in glioblastoma cell U251 and U87. In addition, inhibition of CHAF1A influenced the signal transduction of the AKT/FOXO3a/Bim axis, which is required for glioblastoma cell proliferation. Taken together, these results show that CHAF1A contributes to the proliferation of glioblastoma cells and may be developed as a de novo drug target and prognosis biomarker of glioblastoma.

  1. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zi-xuan [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Rao, Wei [Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Huan [Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Nan-ding [Department of Cardiology, Xi' an Traditional Chinese Medicine Hospital, Xi' an, 710032 (China); Si, Jing-Wen; Zhao, Jiao; Li, Jun-chang [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Zong-ren, E-mail: zongren@fmmu.edu.cn [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China)

    2015-02-13

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion.

  2. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    International Nuclear Information System (INIS)

    Shi, Zi-xuan; Rao, Wei; Wang, Huan; Wang, Nan-ding; Si, Jing-Wen; Zhao, Jiao; Li, Jun-chang; Wang, Zong-ren

    2015-01-01

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion

  3. An anatomic transcriptional atlas of human glioblastoma.

    Science.gov (United States)

    Puchalski, Ralph B; Shah, Nameeta; Miller, Jeremy; Dalley, Rachel; Nomura, Steve R; Yoon, Jae-Guen; Smith, Kimberly A; Lankerovich, Michael; Bertagnolli, Darren; Bickley, Kris; Boe, Andrew F; Brouner, Krissy; Butler, Stephanie; Caldejon, Shiella; Chapin, Mike; Datta, Suvro; Dee, Nick; Desta, Tsega; Dolbeare, Tim; Dotson, Nadezhda; Ebbert, Amanda; Feng, David; Feng, Xu; Fisher, Michael; Gee, Garrett; Goldy, Jeff; Gourley, Lindsey; Gregor, Benjamin W; Gu, Guangyu; Hejazinia, Nika; Hohmann, John; Hothi, Parvinder; Howard, Robert; Joines, Kevin; Kriedberg, Ali; Kuan, Leonard; Lau, Chris; Lee, Felix; Lee, Hwahyung; Lemon, Tracy; Long, Fuhui; Mastan, Naveed; Mott, Erika; Murthy, Chantal; Ngo, Kiet; Olson, Eric; Reding, Melissa; Riley, Zack; Rosen, David; Sandman, David; Shapovalova, Nadiya; Slaughterbeck, Clifford R; Sodt, Andrew; Stockdale, Graham; Szafer, Aaron; Wakeman, Wayne; Wohnoutka, Paul E; White, Steven J; Marsh, Don; Rostomily, Robert C; Ng, Lydia; Dang, Chinh; Jones, Allan; Keogh, Bart; Gittleman, Haley R; Barnholtz-Sloan, Jill S; Cimino, Patrick J; Uppin, Megha S; Keene, C Dirk; Farrokhi, Farrokh R; Lathia, Justin D; Berens, Michael E; Iavarone, Antonio; Bernard, Amy; Lein, Ed; Phillips, John W; Rostad, Steven W; Cobbs, Charles; Hawrylycz, Michael J; Foltz, Greg D

    2018-05-11

    Glioblastoma is an aggressive brain tumor that carries a poor prognosis. The tumor's molecular and cellular landscapes are complex, and their relationships to histologic features routinely used for diagnosis are unclear. We present the Ivy Glioblastoma Atlas, an anatomically based transcriptional atlas of human glioblastoma that aligns individual histologic features with genomic alterations and gene expression patterns, thus assigning molecular information to the most important morphologic hallmarks of the tumor. The atlas and its clinical and genomic database are freely accessible online data resources that will serve as a valuable platform for future investigations of glioblastoma pathogenesis, diagnosis, and treatment. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. [RITA combined with temozolomide inhibits the proliferation of human glioblastoma U87 cells].

    Science.gov (United States)

    He, Xiao-Yan; Feng, Xiao-Li; Song, Xin-Pei; Zeng, Huan-Chao; Cao, Zhong-Xu; Xiao, Wei-Wei; Zhang, Bao; Wu, Qing-Hua

    2016-10-20

    To observe the effect of RITA, a small molecule that targets p53, combined with temozolomide (TMZ) on proliferation, colony formation and apoptosis of human glioblastoma U87 cells and explore the underlying mechanism. Cultured U87 cells were treated with RITA (1, 5, 10, 20 µmol/L), TMZ, or RITA+TMZ (half dose) for 24, 48 or 72 h. MTS assay were used to detect the cell proliferation, and the cell proliferation rate and inhibitory rate were calculated. The effect of combined treatments was evaluated by the q value. The expressions of p53, p21 and other apoptosis-associated genes were detected by qRT-PCR and Western blotting; cell apoptosis was assayed using flow cytometry with Annexin V/PI double staining; colony formation of the cells was detected with crystal violet staining. MTS assay showed that RITA at the 4 doses more potently inhibited U87 cell viability than TMZ at 72 h (P=0.000) with inhibitory rates of 25.94%-41.38% and 3.84%-8.20%, respectively. RITA combined with TMZ caused a more significant inhibition of U87 cells (29.21%-52.11%) than RITA (PRITA+TMZ for 48 h resulted in q values exceeding 1.2 and showed an obvious synergistic effect of the drugs. Both RITA and TMZ, especially the latter, significantly increased the expressions of p53, p21, puma, and other apoptosis-associated genes to accelerate apoptosis and inhibit the growth and colony formation of U87 cells, and the effect was more obvious with a combined treatment. RITA inhibits the growth of human glioblastoma cells and enhance their sensitivity to TMZ by up-regulating p53 expression, and when combined, RITA and TMZ show a synergistic effect to cause a stronger cell inhibition.

  5. Targeting and killing of glioblastoma with activated T cells armed with bispecific antibodies

    International Nuclear Information System (INIS)

    Zitron, Ian M; Thakur, Archana; Norkina, Oxana; Barger, Geoffrey R; Lum, Lawrence G; Mittal, Sandeep

    2013-01-01

    Since most glioblastomas express both wild-type EGFR and EGFRvIII as well as HER2/neu, they are excellent targets for activated T cells (ATC) armed with bispecific antibodies (BiAbs) that target EGFR and HER2. ATC were generated from PBMC activated for 14 days with anti-CD3 monoclonal antibody in the presence of interleukin-2 and armed with chemically heteroconjugated anti-CD3×anti-HER2/neu (HER2Bi) and/or anti-CD3×anti-EGFR (EGFRBi). HER2Bi- and/or EGFRBi-armed ATC were examined for in vitro cytotoxicity using MTT and 51 Cr-release assays against malignant glioma lines (U87MG, U118MG, and U251MG) and primary glioblastoma lines. EGFRBi-armed ATC killed up to 85% of U87, U118, and U251 targets at effector:target ratios (E:T) ranging from 1:1 to 25:1. Engagement of tumor by EGFRBi-armed ATC induced Th1 and Th2 cytokine secretion by armed ATC. HER2Bi-armed ATC exhibited comparable cytotoxicity against U118 and U251, but did not kill HER2-negative U87 cells. HER2Bi- or EGFRBi-armed ATC exhibited 50—80% cytotoxicity against four primary glioblastoma lines as well as a temozolomide (TMZ)-resistant variant of U251. Both CD133– and CD133+ subpopulations were killed by armed ATC. Targeting both HER2Bi and EGFRBi simultaneously showed enhanced efficacy than arming with a single BiAb. Armed ATC maintained effectiveness after irradiation and in the presence of TMZ at a therapeutic concentration and were capable of killing multiple targets. High-grade gliomas are suitable for specific targeting by armed ATC. These data, together with additional animal studies, may provide the preclinical support for the use of armed ATC as a valuable addition to current treatment regimens

  6. Development of a multi-fraction radiation protocol for intracerebral human glioblastoma xenografts

    International Nuclear Information System (INIS)

    Ozawa, T.; Santos, R.A.; Hu, L.H.; Faddegon, B.A.; Lamborn, K.R.; Deen, D.F.

    2003-01-01

    Patients with malignant gliomas are typically treated by surgery, radiation therapy and chemotherapy. Fractionated radiotherapy consists of 30 daily doses of 1.8 to 2 Gy given over a 6-week period. We have investigated a multi-fraction radiation protocol in which rats bearing intracerebral tumors are irradiated once daily for 10 days with a 2-day break in the middle. This scheme simulates the first third of a typical human radiation protocol, and it is a practical scheme to conduct in the laboratory. U-87 MG or U-251 MG human glioblastoma cells were implanted into the right caudate-putamens of male athymic rats. We irradiated rats using an irradiation jig that allowed us to deliver Cesium-137 photons at a dose rate of 280 cGy/minute selectively to the portion of the head containing the tumor. This device adequately shields all other parts of rat, including the critically sensitive oropharynx. Animals received the first radiation dose when intracerebral tumors were ∼20 mg in size. Untreated U-87 MG tumor-bearing rats died with a median survival of 23 days, while tumor bearing rats that were given ten 1-Gy doses died with a median survival of 28.5 days. Untreated U-251 MG tumor-bearing rats died with a median survival of 34.5 days, while tumor-bearing rats that were given ten 1-Gy doses died with a median survival of 58 days. However, 5 of 14 of these rats had a lifespan >68 days and were considered cured. A daily dose of 0.75 Gy produced a median survival of 43 days, but again 2 rats had a lifespan >70 days. Currently, we are seeking a dose that causes reproducible tumor growth delay of 1 to 2 weeks, without curing any animals, to use in future studies that combine radiation with other anti-tumor agents

  7. Regulation of the oxidative balance with coenzyme Q10 sensitizes human glioblastoma cells to radiation and temozolomide.

    Science.gov (United States)

    Frontiñán-Rubio, Javier; Santiago-Mora, Raquel María; Nieva-Velasco, Consuelo María; Ferrín, Gustavo; Martínez-González, Alicia; Gómez, María Victoria; Moreno, María; Ariza, Julia; Lozano, Eva; Arjona-Gutiérrez, Jacinto; Gil-Agudo, Antonio; De la Mata, Manuel; Pesic, Milica; Peinado, Juan Ramón; Villalba, José M; Pérez-Romasanta, Luis; Pérez-García, Víctor M; Alcaín, Francisco J; Durán-Prado, Mario

    2018-05-18

    To investigate how the modulation of the oxidative balance affects cytotoxic therapies in glioblastoma, in vitro. Human glioblastoma U251 and T98 cells and normal astrocytes C8D1A were loaded with coenzyme Q10 (CoQ). Mitochondrial superoxide ion (O 2 - ) and H 2 O 2 were measured by fluorescence microscopy. OXPHOS performance was assessed in U251 cells with an oxytherm Clark-type electrode. Radio- and chemotherapy cytotoxicity was assessed by immunostaining of γH2AX (24 h), annexin V and nuclei morphology, at short (72 h) and long (15 d) time. Hif-1α, SOD1, SOD2 and NQO1 were determined by immunolabeling. Catalase activity was measured by classic enzymatic assay. Glutathione levels and total antioxidant capacity were quantified using commercial kits. CoQ did not affect oxygen consumption but reduced the level of O 2 - and H 2 O 2 while shifted to a pro-oxidant cell status mainly due to a decrease in catalase activity and SOD2 level. Hif-1α was dampened, echoed by a decrease lactate and several key metabolites involved in glutathione synthesis. CoQ-treated cells were twofold more sensitive than control to radiation-induced DNA damage and apoptosis in short and long-term clonogenic assays, potentiating TMZ-induced cytotoxicity, without affecting non-transformed astrocytes. CoQ acts as sensitizer for cytotoxic therapies, disarming GBM cells, but not normal astrocytes, against further pro-oxidant injuries, being potentially useful in clinical practice for this fatal pathology. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Sulforaphane inhibits invasion via activating ERK1/2 signaling in human glioblastoma U87MG and U373MG cells.

    Directory of Open Access Journals (Sweden)

    Chunliu Li

    Full Text Available Glioblastoma has highly invasive potential, which might result in poor prognosis and therapeutic failure. Hence, the key we study is to find effective therapies to repress migration and invasion. Sulforaphane (SFN was demonstrated to inhibit cell growth in a variety of tumors. Here, we will further investigate whether SFN inhibits migration and invasion and find the possible mechanisms in human glioblastoma U87MG and U373MG cells.First, the optimal time and dose of SFN for migration and invasion study were determined via cell viability and cell morphological assay. Further, scratch assay and transwell invasion assay were employed to investigate the effect of SFN on migration and invasion. Meanwhile, Western blots were used to detect the molecular linkage among invasion related proteins phosphorylated ERK1/2, matrix metalloproteinase-2 (MMP-2 and CD44v6. Furthermore, Gelatin zymography was performed to detect the inhibition of MMP-2 activation. In addition, ERK1/2 blocker PD98059 (25 µM was integrated to find the link between activated ERK1/2 and invasion, MMP-2 and CD44v6.The results showed that SFN (20 µM remarkably reduced the formation of cell pseudopodia, indicating that SFN might inhibit cell motility. As expected, scratch assay and transwell invasion assay showed that SFN inhibited glioblastoma cell migration and invasion. Western blot and Gelatin zymography showed that SFN phosphorylated ERK1/2 in a sustained way, which contributed to the downregulated MMP-2 expression and activity, and the upregulated CD44v6 expression. These molecular interactions resulted in the inhibition of cell invasion.SFN inhibited migration and invasion processes. Furthermore, SFN inhibited invasion via activating ERK1/2 in a sustained way. The accumulated ERK1/2 activation downregulated MMP-2 expression and decreased its activity and upregulated CD44v6. SFN might be a potential therapeutic agent by activating ERK1/2 signaling against human glioblastoma.

  9. Saponin 1 induces apoptosis and suppresses NF-κB-mediated survival signaling in glioblastoma multiforme (GBM.

    Directory of Open Access Journals (Sweden)

    Juan Li

    Full Text Available Saponin 1 is a triterpeniod saponin extracted from Anemone taipaiensis, a traditional Chinese medicine against rheumatism and phlebitis. It has also been shown to exhibit significant anti-tumor activity against human leukemia (HL-60 cells and human hepatocellular carcinoma (Hep-G2 cells. Herein we investigated the effect of saponin 1 in human glioblastoma multiforme (GBM U251MG and U87MG cells. Saponin 1 induced significant growth inhibition in both glioblastoma cell lines, with a 50% inhibitory concentration at 24 h of 7.4 µg/ml in U251MG cells and 8.6 µg/ml in U87MG cells, respectively. Nuclear fluorescent staining and electron microscopy showed that saponin 1 caused characteristic apoptotic morphological changes in the GBM cell lines. Saponin 1-induced apoptosis was also verified by DNA ladder electrophoresis and flow cytometry. Additionally, immunocytochemistry and western blotting analyses revealed a time-dependent decrease in the expression and nuclear location of NF-κB following saponin 1 treatment. Western blotting data indicated a significant decreased expression of inhibitors of apoptosis (IAP family members,(e.g., survivin and XIAP by saponin 1. Moreover, saponin 1 caused a decrease in the Bcl-2/Bax ratio and initiated apoptosis by activating caspase-9 and caspase-3 in the GBM cell lines. These findings indicate that saponin 1 inhibits cell growth of GBM cells at least partially by inducing apoptosis and inhibiting survival signaling mediated by NF-κB. In addition, in vivo study also demonstrated an obvious inhibition of saponin 1 treatment on the tumor growth of U251MG and U87MG cells-produced xenograft tumors in nude mice. Given the minimal toxicities of saponin 1 in non-neoplastic astrocytes, our results suggest that saponin 1 exhibits significant in vitro and in vivo anti-tumor efficacy and merits further investigation as a potential therapeutic agent for GBM.

  10. Saponin 1 Induces Apoptosis and Suppresses NF-κB-Mediated Survival Signaling in Glioblastoma Multiforme (GBM)

    Science.gov (United States)

    Tang, Chi; Li, Bo; Wang, Yuangang; Gao, Zhenhui; Luo, Peng; Yin, Anan; Wang, Xiaoyang; Cheng, Guang; Fei, Zhou

    2013-01-01

    Saponin 1 is a triterpeniod saponin extracted from Anemone taipaiensis, a traditional Chinese medicine against rheumatism and phlebitis. It has also been shown to exhibit significant anti-tumor activity against human leukemia (HL-60 cells) and human hepatocellular carcinoma (Hep-G2 cells). Herein we investigated the effect of saponin 1 in human glioblastoma multiforme (GBM) U251MG and U87MG cells. Saponin 1 induced significant growth inhibition in both glioblastoma cell lines, with a 50% inhibitory concentration at 24 h of 7.4 µg/ml in U251MG cells and 8.6 µg/ml in U87MG cells, respectively. Nuclear fluorescent staining and electron microscopy showed that saponin 1 caused characteristic apoptotic morphological changes in the GBM cell lines. Saponin 1-induced apoptosis was also verified by DNA ladder electrophoresis and flow cytometry. Additionally, immunocytochemistry and western blotting analyses revealed a time-dependent decrease in the expression and nuclear location of NF-κB following saponin 1 treatment. Western blotting data indicated a significant decreased expression of inhibitors of apoptosis (IAP) family members,(e.g., survivin and XIAP) by saponin 1. Moreover, saponin 1 caused a decrease in the Bcl-2/Bax ratio and initiated apoptosis by activating caspase-9 and caspase-3 in the GBM cell lines. These findings indicate that saponin 1 inhibits cell growth of GBM cells at least partially by inducing apoptosis and inhibiting survival signaling mediated by NF-κB. In addition, in vivo study also demonstrated an obvious inhibition of saponin 1 treatment on the tumor growth of U251MG and U87MG cells-produced xenograft tumors in nude mice. Given the minimal toxicities of saponin 1 in non-neoplastic astrocytes, our results suggest that saponin 1 exhibits significant in vitro and in vivo anti-tumor efficacy and merits further investigation as a potential therapeutic agent for GBM. PMID:24278406

  11. Polysaccharide peptide isolated from grass-cultured Ganoderma lucidum induces anti-proliferative and pro-apoptotic effects in the human U251 glioma cell line.

    Science.gov (United States)

    Wang, Chunhua; Lin, Dongmei; Chen, Quan; Lin, Shuqian; Shi, Songsheng; Chen, Chunmei

    2018-04-01

    The Ganoderma lucidum ( G. lucidum ) mushroom is one of the most extensively studied functional foods, known for its numerous health benefits, including the inhibition of tumor cell growth. The present study assessed the anti-proliferative and pro-apoptotic activity of a novel G. lucidum polysaccharide peptide (GL-PP) in human glioma U251 cells, which was purified from grass-cultured G. lucidum . GL-PP is a glycopeptide with an average molecular weight of 42,635 Da and a polysaccharide-to-peptide ratio of 88.70:11.30. The polysaccharides were composed of l-arabinose, d-mannose and d-glucose at a molar ratio of 1.329:0.372:2.953 and a total of 17 amino acids were detected. The results of the current study demonstrated that GL-PP significantly inhibited U251 cellular proliferation. The proportion of G 0 /G 1 phase cells and sub-G 1 phase cells significantly increased as the concentration of GL-PP increased, as did the activity of caspase-3. These results indicate that GL-PP directly inhibited human glioma U251 proliferation by inducing cell cycle arrest and promoting apoptosis.

  12. Downregulation of HIF-1a sensitizes U251 glioma cells to the temozolomide (TMZ) treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jun-Hai [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Ma, Zhi-Xiong [National Institute of Biological Sciences, Beijing 102206 (China); Huang, Guo-Hao; Xu, Qing-Fu; Xiang, Yan [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Li, Ningning; Sidlauskas, Kastytis [Division of Neuropathology and Department of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1N 3BG (United Kingdom); Zhang, Eric Erquan [National Institute of Biological Sciences, Beijing 102206 (China); Lv, Sheng-Qing, E-mail: lvsq0518@hotmail.com [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China)

    2016-05-01

    Purpose: The aim of this study was to investigate the effect of downregulation of HIF-1α gene on human U251 glioma cells and examine the consequent changes of TMZ induced effects and explore the molecular mechanisms. Methods: U251 cell line stably expressing HIF-1α shRNA was acquired via lentiviral vector transfection. The mRNA and protein expression alterations of genes involved in our study were determined respectively by qRT-PCR and Western blot. Cell proliferation was measured by MTT assay and colony formation assay, cell invasion/migration capacity was determined by transwell invasion assay/wound healing assay, and cell apoptosis was detected by flow cytometry. Results: We successfully established a U251 cell line with highly efficient HIF-1α knockdown. HIF-1a downregulation sensitized U251 cells to TMZ treatment and enhanced the proliferation-inhibiting, invasion/migration-suppressing, apoptosis-inducing and differentiation-promoting effects exerted by TMZ. The related molecular mechanisms demonstrated that expression of O{sup 6}-methylguanine DNA methyltransferase gene (MGMT) and genes of Notch1 pathway were significantly upregulated by TMZ treatment. However, this upregulation was abrogated by HIF-1α knockdown. We further confirmed important regulatory roles of HIF-1α in the expression of MGMT and activation of Notch1 pathways. Conclusion: HIF-1α downregulation sensitizes U251 glioma cells to the temozolomide treatment via inhibiting MGMT expression and Notch1 pathway activation. - Highlights: • TMZ caused more significant proliferation inhibition and apoptosis in U251 cells after downregulating HIF-1α. • Under TMZ treatment, HIF-1 downregulated U251 cells exhibited weaker mobility and more differentiated state. • TMZ caused MGMT over-expression and Notch1 pathway activation, which could be abrogated by HIF-1α downregulation.

  13. Microenvironment involved in FPR1 expression by human glioblastomas

    NARCIS (Netherlands)

    Boer, J. C.; van Marion, D. M S; Joseph, J. V.; Kliphuis, N. M.; Timmer-Bosscha, H.; van Strijp, J. A G; de Vries, E. G E; den Dunnen, W. F A; Kruyt, F. A E; Walenkamp, A. M E

    2015-01-01

    Formyl peptide receptor 1 (FPR1) activity in U87 glioblastoma (GBM) cells contributes to tumor cell motility. The present study aimed to evaluate the FPR1 expression in human GBM, the possibility to elicit agonist induced FPR1 activation of GBM cells and inhibit this activation with chemotaxis

  14. Microenvironment involved in FPR1 expression by human glioblastomas

    NARCIS (Netherlands)

    Boer, J. C.; van Marion, D. M. S.; Vareecal Joseph, J.; Kliphuis, N. M.; Timmer-Bosscha, H.; van Strijp, J. A. G.; de Vries, E. G. E.; den Dunnen, W. F. A.; Kruyt, F. A. E.; Walenkamp, A. M. E.

    Formyl peptide receptor 1 (FPR1) activity in U87 glioblastoma (GBM) cells contributes to tumor cell motility. The present study aimed to evaluate the FPR1 expression in human GBM, the possibility to elicit agonist induced FPR1 activation of GBM cells and inhibit this activation with chemotaxis

  15. Low dose radiation enhance the anti-tumor effect of high dose radiation on human glioma cell U251

    International Nuclear Information System (INIS)

    Wang Chang; Wang Guanjun; Tan Yehui; Jiang Hongyu; Li Wei

    2008-01-01

    Objective: To detect the effect on the growth of human glioma cell U251 induced by low dose irradiation and low dose irradiation combined with large dose irradiation. Methods: Human glioma cell line U251 and nude mice carried with human glioma were used. The tumor cells and the mice were treated with low dose, high dose, and low dose combined high dose radiation. Cells growth curve, MTT and flow cytometry were used to detect the proliferation, cell cycle and apoptosis of the cells; and the tumor inhibition rate was used to assess the growth of tumor in vivo. Results: After low dose irradiation, there was no difference between experimental group and control group in cell count, MTT and flow cytometry. Single high dose group and low dose combined high dose group both show significantly the suppressing effect on tumor cells, the apoptosis increased and there was cell cycle blocked in G 2 period, but there was no difference between two groups. In vivo apparent anti-tumor effect in high dose radiation group and the combining group was observed, and that was more significant in the combining group; the prior low dose radiation alleviated the injury of hematological system. There was no difference between single low dose radiation group and control. Conclusions: There is no significant effect on human glioma cell induced by low dose radiation, and low dose radiation could not induce adaptive response. But in vivo experience, low dose radiation could enhance the anti-tumor effect of high dose radiation and alleviated the injury of hematological system. (authors)

  16. Graphene nanoribbons as a drug delivery agent for lucanthone mediated therapy of glioblastoma multiforme.

    Science.gov (United States)

    Chowdhury, Sayan Mullick; Surhland, Cassandra; Sanchez, Zina; Chaudhary, Pankaj; Suresh Kumar, M A; Lee, Stephen; Peña, Louis A; Waring, Michael; Sitharaman, Balaji; Naidu, Mamta

    2015-01-01

    We report use of PEG-DSPE coated oxidized graphene nanoribbons (O-GNR-PEG-DSPE) as agent for delivery of anti-tumor drug Lucanthone (Luc) into Glioblastoma Multiformae (GBM) cells targeting base excision repair enzyme APE-1 (Apurinic endonuclease-1). Lucanthone, an endonuclease inhibitor of APE-1, was loaded onto O-GNR-PEG-DSPEs using a simple non-covalent method. We found its uptake by GBM cell line U251 exceeding 67% and 60% in APE-1-overexpressing U251, post 24h. However, their uptake was ~38% and 29% by MCF-7 and rat glial progenitor cells (CG-4), respectively. TEM analysis of U251 showed large aggregates of O-GNR-PEG-DSPE in vesicles. Luc-O-GNR-PEG-DSPE was significantly toxic to U251 but showed little/no toxicity when exposed to MCF-7/CG-4 cells. This differential uptake effect can be exploited to use O-GNR-PEG-DSPEs as a vehicle for Luc delivery to GBM, while reducing nonspecific cytotoxicity to the surrounding healthy tissue. Cell death in U251 was necrotic, probably due to oxidative degradation of APE-1. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Early versus late GD-DTPA MRI enhancement in experimental glioblastomas.

    Science.gov (United States)

    Farace, Paolo; Tambalo, Stefano; Fiorini, Silvia; Merigo, Flavia; Daducci, Alessandro; Nicolato, Elena; Conti, Giamaica; Degrassi, Anna; Sbarbati, Andrea; Marzola, Pasquina

    2011-03-01

    To compare early versus late enhancement in two glioblastoma models characterized by different infiltrative/edematous patterns. Three weeks after inoculation into nude mice of U87MG and U251 cells, T1-weighted images were acquired early (10.5 min), intermediate (21 min) and late (30.5 min) after a bolus injection of Gd-DTPA at 300 μ mol/kg dosage. EARLY(TH) and LATE(TH) were the corresponding volumes with an enhancement higher than a threshold TH, defined by the mean (μ) and standard deviation (σ) on a contralateral healthy area. ADD(TH) was the enhancing volume found in LATE(TH) but not in EARLY(TH). T2 imaging of both tumors was performed, and T2 mapping of U251. In all tumors, LATE(TH) was significantly higher than EARLY(TH) for TH ranging from μ+σ to μ+5σ. The ADD(TH) /EARLY(TH) ratio was not significantly different when U251 and U87MG tumors were compared. In the U87MG tumors, some enhancement was observed outside the regularly demarcated T2-hyperintense area. In the U251 tumors, irregularly T2 demarcated, a large portion of ADD(μ+3σ) had normal T2 values. At histology, U251 showed a higher infiltrative pattern than U87MG. In these models, the increase over time in the enhancing volume did not depend on the different infiltrative/edematous patterns and was not closely related with edema. Copyright © 2011 Wiley-Liss, Inc.

  18. The critical role of EGF-β-catenin signaling in the epithelial-mesenchymal transition in human glioblastoma

    Directory of Open Access Journals (Sweden)

    Wang X

    2017-05-01

    Full Text Available Xingqiang Wang, Shanshi Wang, Xiaolong Li, Shigang Jin, Feng Xiong, Xin Wang Department of Neurosurgery, People’s Hospital of Rizhao, Jining Medical University, Rizhao, China Abstract: To date, β-catenin has been reported to be implicated in mediating the epithelial-mesenchymal transition (EMT in a variety of human cancers, which can be triggered by EGF. However, the mechanisms underlying EGF-β-catenin pathway-induced EMT of glioblastoma multiforme (GBM have not been reported previously. In the present study, immunohistochemistry, reverse transcription polymerase chain reaction, and Western blot were applied to investigate the effect of EGF-β-catenin pathway on EMT of GBM. Here, we identified that β-catenin mRNA and protein levels were up-regulated in GBM tissues and four kinds of glioblastoma cell lines, including T98G, A172, U87, and U251 cells, compared with normal brain tissue and astrocytes. In U87 cell line, inhibition of β-catenin by siRNA suppressed EGF-induced proliferation, migration, invasiveness, and the expression of EMT activators (Snail and Slug. In addition, the expression of epithelial markers (E-cadherin was up-regulated and the expression of mesenchymal markers (N-cadherin and MMP9 was down-regulated. Finally, inhibitor of PI3K/Akt signaling pathways inactivated the EGF-β-catenin-induced EMT. In conclusion, β-catenin-EMT pathway induced by EGF is important for GBM progression by the PI3K/Akt pathways. Inhibition of β-catenin leads to suppression of EGF pathway-induced EMT, which provides a new way to treat GBM patients. Keywords: EGF, β-catenin, EMT, GBM

  19. Saponin 6 derived from Anemone taipaiensis induces U87 human malignant glioblastoma cell apoptosis via regulation of Fas and Bcl‑2 family proteins.

    Science.gov (United States)

    Ji, Chen-Chen; Tang, Hai-Feng; Hu, Yi-Yang; Zhang, Yun; Zheng, Min-Hua; Qin, Hong-Yan; Li, San-Zhong; Wang, Xiao-Yang; Fei, Zhou; Cheng, Guang

    2016-07-01

    Glioblastoma multiforme (GBM) is the most common and aggressive type of brain tumor, and is associated with a poor prognosis. Saponin 6, derived from Anemone taipaiensis, exerts potent cytotoxic effects against the human hepatocellular carcinoma HepG2 cell line and the human promyelocytic leukemia HL‑60 cell line; however, the effects of saponin 6 on glioblastoma remain unknown. The present study aimed to evaluate the effects of saponin 6 on human U87 malignant glioblastoma (U87 MG) cells. The current study revealed that saponin 6 induced U87 MG cell death in a dose‑ and time‑dependent manner, with a half maximal inhibitory concentration (IC50) value of 2.83 µM after treatment for 48 h. However, saponin 6 was needed to be used at a lesser potency in HT‑22 cells, with an IC50 value of 6.24 µM. Cell apoptosis was assessed by flow cytometry using Annexin V‑fluorescein isothiocyanate/propidium iodide double staining. DNA fragmentation and alterations in nuclear morphology were examined by terminal deoxynucleotidyl transferase‑mediated dUTP nick end labeling and transmission electron microscopy, respectively. The present study demonstrated that treatment with saponin 6 induced cell apoptosis in U87 MG cells, and resulted in DNA fragmentation and nuclear morphological alterations typical of apoptosis. In addition, flow cytometric analysis revealed that saponin 6 was able to induce cell cycle arrest. The present study also demonstrated that saponin 6‑induced apoptosis of U87 MG cells was attributed to increases in the protein expression levels of Fas, Fas ligand, and cleaved caspase‑3, ‑8 and ‑9, and decreases in the levels of B‑cell lymphoma 2. The current study indicated that saponin 6 may exhibit selective cytotoxicity toward U87 MG cells by activating apoptosis via the extrinsic and intrinsic pathways. Therefore, saponin 6 derived from A. taipaiensis may possess therapeutic potential for the treatment of GBM.

  20. Intracellular cholesterol level regulates sensitivity of glioblastoma cells against temozolomide-induced cell death by modulation of caspase-8 activation via death receptor 5-accumulation and activation in the plasma membrane lipid raft.

    Science.gov (United States)

    Yamamoto, Yutaro; Tomiyama, Arata; Sasaki, Nobuyoshi; Yamaguchi, Hideki; Shirakihara, Takuya; Nakashima, Katsuhiko; Kumagai, Kosuke; Takeuchi, Satoru; Toyooka, Terushige; Otani, Naoki; Wada, Kojiro; Narita, Yoshitaka; Ichimura, Koichi; Sakai, Ryuichi; Namba, Hiroki; Mori, Kentaro

    2018-01-01

    Development of resistance against temozolomide (TMZ) in glioblastoma (GBM) after continuous treatment with TMZ is one of the critical problems in clinical GBM therapy. Intracellular cholesterol regulates cancer cell biology, but whether intracellular cholesterol is involved in TMZ resistance of GBM cells remains unclear. The involvement of intracellular cholesterol in acquired resistance against TMZ in GBM cells was investigated. Intracellular cholesterol levels were measured in human U251 MG cells with acquired TMZ resistance (U251-R cells) and TMZ-sensitive control U251 MG cells (U251-Con cells), and found that the intracellular cholesterol level was significantly lower in U251-R cells than in U251-Con cells. In addition, treatment by intracellular cholesterol remover, methyl-beta cyclodextrin (MβCD), or intracellular cholesterol inducer, soluble cholesterol (Chol), regulated TMZ-induced U251-Con cell death in line with changes in intracellular cholesterol level. Involvement of death receptor 5 (DR5), a death receptor localized in the plasma membrane, was evaluated. TMZ without or with MβCD and/or Chol caused accumulation of DR5 into the plasma membrane lipid raft and formed a complex with caspase-8, an extrinsic caspase cascade inducer, reflected in the induction of cell death. In addition, treatment with caspase-8 inhibitor or knockdown of DR5 dramatically suppressed U251-Con cell death induced by combination treatment with TMZ, MβCD, and Chol. Combined treatment of Chol with TMZ reversed the TMZ resistance of U251-R cells and another GBM cell model with acquired TMZ resistance, whereas clinical antihypercholesterolemia agents at physiological concentrations suppressed TMZ-induced cell death of U251-Con cells. These findings suggest that intracellular cholesterol level affects TMZ treatment of GBM mediated via a DR5-caspase-8 mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Nanomelatonin triggers superior anticancer functionality in a human malignant glioblastoma cell line

    Science.gov (United States)

    Yadav, Sanjeev Kumar; Srivastava, Anup Kumar; Dev, Atul; Kaundal, Babita; Choudhury, Subhasree Roy; Karmakar, Surajit

    2017-09-01

    Melatonin (MEL) has promising medicinal value as an anticancer agent in a variety of malignancies, but there are difficulties in achieving a therapeutic dose due to its short half-life, low bioavailability, poor solubility and extensive first-pass metabolism. In this study chitosan/tripolyphosphate (TPP) nanoparticles were prepared by an ionic gelation method to overcome the therapeutic challenges of melatonin and to improve its anticancer efficacy. Characterization of the melatonin-loaded chitosan (MEL-CS) nanoformulation was performed using transmission and scanning electron microscopies, dynamic light scattering, Fourier transform infrared spectroscopy, Raman spectroscopy and x-ray diffraction. In vitro release, cellular uptake and efficacy studies were tested for their enhanced anticancer potential in human U87MG glioblastoma cells. Confocal studies revealed higher cellular uptake of MEL-CS nanoparticles and enhanced anticancer efficacy in human malignant glioblastoma cancer cells than in healthy non-malignant human HEK293T cells in mono- and co-culture models. Our study has shown for the first time that MEL-CS nanocomposites are therapeutically more effective as compared to free MEL at inducing functional anticancer efficacy in the human brain tumour U87MG cell line.

  2. Bcl-w Enhances Mesenchymal Changes and Invasiveness of Glioblastoma Cells by Inducing Nuclear Accumulation of β-Catenin

    Science.gov (United States)

    Lee, Woo Sang; Woo, Eun Young; Kwon, Junhye; Park, Myung-Jin; Lee, Jae-Seon; Han, Young-Hoon; Bae, In Hwa

    2013-01-01

    Bcl-w a pro-survival member of the Bcl-2 protein family, is expressed in a variety of cancer types, including gastric and colorectal adenocarcinomas, as well as glioblastoma multiforme (GBM), the most common and lethal brain tumor type. Previously, we demonstrated that Bcl-w is upregulated in gastric cancer cells, particularly those displaying infiltrative morphology. These reports propose that Bcl-w is strongly associated with aggressive characteristic, such as invasive or mesenchymal phenotype of GBM. However, there is no information from studies of the role of Bcl-w in GBM. In the current study, we showed that Bcl-w is upregulated in human glioblastoma multiforme (WHO grade IV) tissues, compared with normal and glioma (WHO grade III) tissues. Bcl-w promotes the mesenchymal traits of glioblastoma cells by inducing vimentin expression via activation of transcription factors, β-catenin, Twist1 and Snail in glioblastoma U251 cells. Moreover, Bcl-w induces invasiveness by promoting MMP-2 and FAK activation via the PI3K-p-Akt-p-GSK3β-β-catenin pathway. We further confirmed that Bcl-w has the capacity to induce invasiveness in several human cancer cell lines. In particular, Bcl-w-stimulated β-catenin is translocated into the nucleus as a transcription factor and promotes the expression of target genes, such as mesenchymal markers or MMPs, thereby increasing mesenchymal traits and invasiveness. Our findings collectively indicate that Bcl-w functions as a positive regulator of invasiveness by inducing mesenchymal changes and that trigger their aggressiveness of glioblastoma cells. PMID:23826359

  3. Fascin-1 knock-down of human glioma cells reduces their microvilli/filopodia while improving their susceptibility to lymphocyte-mediated cytotoxicity

    Science.gov (United States)

    Hoa, Neil T; Ge, Lisheng; Erickson, Kate L; Kruse, Carol A; Cornforth, Andrew N; Kuznetsov, Yurii; McPherson, Alex; Martini, Filippo; Jadus, Martin R

    2015-01-01

    Cancer cells derived from Glioblastoma multiforme possess membranous protrusions allowing these cells to infiltrate surrounding tissue, while resisting lymphocyte cytotoxicity. Microvilli and filopodia are supported by actin filaments cross-linked by fascin. Fascin-1 was genetically silenced within human U251 glioma cells; these knock-down glioma cells lost their microvilli/filopodia. The doubling time of these fascin-1 knock-down cells was doubled that of shRNA control U251 cells. Fascin-1 knock-down cells lost their transmigratory ability responding to interleukin-6 or insulin-like growth factor-1. Fascin-1 silenced U251 cells were more easily killed by cytolytic lymphocytes. Fascin-1 knock-down provides unique opportunities to augment glioma immunotherapy by simultaneously targeting several key glioma functions: like cell transmigration, cell division and resisting immune responses. PMID:25901196

  4. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells

    Directory of Open Access Journals (Sweden)

    Costello Joseph F

    2008-06-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM is an invariably fatal central nervous system tumor despite treatment with surgery, radiation, and chemotherapy. Further insights into the molecular and cellular mechanisms that drive GBM formation are required to improve patient outcome. MicroRNAs are emerging as important regulators of cellular differentiation and proliferation, and have been implicated in the etiology of a variety of cancers, yet the role of microRNAs in GBM remains poorly understood. In this study, we investigated the role of microRNAs in regulating the differentiation and proliferation of neural stem cells and glioblastoma-multiforme tumor cells. Methods We used quantitative RT-PCR to assess microRNA expression in high-grade astrocytomas and adult mouse neural stem cells. To assess the function of candidate microRNAs in high-grade astrocytomas, we transfected miR mimics to cultured-mouse neural stem cells, -mouse oligodendroglioma-derived stem cells, -human glioblastoma multiforme-derived stem cells and -glioblastoma multiforme cell lines. Cellular differentiation was assessed by immunostaining, and cellular proliferation was determined using fluorescence-activated cell sorting. Results Our studies revealed that expression levels of microRNA-124 and microRNA-137 were significantly decreased in anaplastic astrocytomas (World Health Organization grade III and glioblastoma multiforme (World Health Organization grade IV relative to non-neoplastic brain tissue (P erbB tumors and cluster of differentiation 133+ human glioblastoma multiforme-derived stem cells (SF6969. Transfection of microRNA-124 or microRNA-137 also induced G1 cell cycle arrest in U251 and SF6969 glioblastoma multiforme cells, which was associated with decreased expression of cyclin-dependent kinase 6 and phosphorylated retinoblastoma (pSer 807/811 proteins. Conclusion microRNA-124 and microRNA-137 induce differentiation of adult mouse neural stem cells, mouse

  5. Mechanism of Anti-glioblastoma Effect of Temzolomide Involved in ROS-Mediated SIRT 1 Pathway

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2014-03-01

    Full Text Available Objective: To explore the new molecular mechanism of anti-tumor effect of temzolomide (TMZon glioblastoma cell strain. Methods: MTT methods and Hoechst 33342 staining method were applied to determine the effect of TMZ on the proliferation and apoptosis of glioblastoma cell strains U251 and SHG44, while flow cytometry was used to detect the impact of TMZ on cellular cycles. Additionally, DCFH-DA probe was adopted to test intracellular reactive oxygen species (ROS level while Real-time PCR and Western blot tests were applied to determine the influence of TMZ on SIRT1 expression. Results: TMZ in different concentrations added into glioblastoma cell strain for 72 h could concentration-dependently inhibit the proliferation of glioblastoma cells, 100 μmol/L of which could also block cells in phase G2/M and improve cellular apoptosis. In addition, TMZ could evidently increase intracellular ROS level so as to activate SIRT1. Conclusion: The mechanism of anti-tumor effect of TMZ on glioblastoma may be associated with ROS-induced SIRT1 pathway, providing theoretical basis for the clinical efficacy of TMZ.

  6. Investigation of platinum nanoparticle properties against U87 glioblastoma multiforme

    DEFF Research Database (Denmark)

    Kutwin, Marta; Sawosz, Ewa; Jaworski, Slawomir

    2017-01-01

    a harmful influence on viability of U87 glioblastoma multiforme (GBM) cells, but also showed genotoxic properties as well as a pro-apoptotic effect on cancer cells. It was found that NP-Pt decreased the weight and volume of U87 GBM tumor tissue and caused pathomorphological changes in the ultrastructure...

  7. Human Leukocyte Antigen-G Is Frequently Expressed in a Multicentric Study on Glioblastoma and May Be Induced in Vitro by Combined 5-aza-2'-deoxycytidine and Interferon-γ Treatments

    DEFF Research Database (Denmark)

    Wastowski, Isabela J; Simões, Renata T; Yaghi, Layale

    2012-01-01

    -G protein expression was associated with a better long-term survival rate. The mechanisms underlying HLA-G gene expression were investigated in glioma cell lines U251MG, D247MG, and U138MG. Induction of HLA-G transcriptional activity was dependent of 5-aza-2'-deoxycytidine treatment and enhanced......Human leukocyte antigen-G (HLA-G) is a nonclassical major histocompatibility complex (MHC) class I molecule involved in immune tolerance processes, playing an important role in the maintenance of the semi-allogeneic fetus. Although HLA-G expression is restricted in normal tissues, it is broadly...... expressed in malignant tumors and may favor tumor immune escape. We analyzed HLA-G protein and mRNA expression in tumor samples from patients with glioblastoma collected in France, Denmark, and Brazil. We found HLA-G protein expression in 65 of 108 samples and mRNA in 20 of 21 samples. The absence of HLA...

  8. The radiosensitivity of glioblastoma cell lines after hypoxia-induced Bax expression

    International Nuclear Information System (INIS)

    Chen, J.K.; Hu, L.J.; Kong, E.L.; Lamborn, K.R.; Deen, D.F.

    2003-01-01

    Full text: Radiation therapy is the most effective treatment after surgery for patients with malignant gliomas. However, the hypoxic cells exclusive to tumor tissue have proven resistant to both radiotherapy and many forms of chemotherapy. In order to specifically target these hypoxic cells, U-251 MG and U-87 MG human glioblastoma cells were stably transfected with constructs containing the suicide gene Bax under the regulation of nine copies of hypoxia-responsive elements (HREs). During hypoxia, the transcriptional complex hypoxia-inducible-factor 1 (HIF-1) binds to HRE and facilitates the transcription of downstream genes. Previously, hypoxia-induced Bax expression in transfected U-251 and U-87 clone cells has been shown to increase cell killing. The benefits of the gene therapy could be further expanded if Bax also acted to increase the sensitivity of these clone cells to radiation. To determine whether this was the case, parent and clone cells were irradiated with graded doses of X-rays under hypoxic conditions. These cells were then left hypoxic for varying durations of time, after which they were incubated for two weeks under aerated conditions to assay for clonogenic cell survival. After less than an hour under hypoxia, both U-251 and U-87 clone cells appeared significantly more sensitive to radiation than their respective parent cells. However, after longer amounts of time under anoxia, higher surviving fractions were found in each clone that were consistent with those of their respective parent cell line, showing that potentially lethal damage repair (PLDR) had occurred in the clone cells. Parent cells did not exhibit PLDR. Results are inconclusive at this point in time. Western blot analyses detailing the amount of Bax expression at each time point as well as further research exploring different durations of hypoxia will be necessary to reveal the nature of the correlation between Bax expression and radiosensitivity. Supported by NS-42927 and CA-85356

  9. The response of human glioblastoma in culture to radiation

    International Nuclear Information System (INIS)

    Masuda, Koji; Aramaki, Ryoji; Takagi, Tosuke

    1980-01-01

    Cells from two human glioblastoma multiforme and one mouse glioma were grown in tissue cultures and their X-ray survival curve parameters were determined under oxygenated and hypoxic conditions. These were compared with the survival parameters for mouse fibroblasts (L5) and established cell lines from human carcinoma coli (HeLa S3) irradiated under identical conditions. There was no significant difference in response among the cell lines used. Repair of potentially lethal damage for human glioblastoma and HeLa S3 was assessed by the increase in survival which occurred as the cells were held in density inhibited stationary phase. The magnitude of repair of potentially lethal damage (slope modifying factors) for the glioblastoma and HeLa were 1.9 and 1.1, respectively. (author)

  10. A tumor-targeting p53 nanodelivery system limits chemoresistance to temozolomide prolonging survival in a mouse model of glioblastoma multiforme.

    Science.gov (United States)

    Kim, Sang-Soo; Rait, Antonina; Kim, Eric; Pirollo, Kathleen F; Chang, Esther H

    2015-02-01

    Development of temozolomide (TMZ) resistance contributes to the poor prognosis for glioblastoma multiforme (GBM) patients. It was previously demonstrated that delivery of exogenous wild-type tumor suppressor gene p53 via a tumor-targeted nanocomplex (SGT-53) which crosses the blood-brain barrier could sensitize highly TMZ-resistant GBM tumors to TMZ. Here we assessed whether SGT-53 could inhibit development of TMZ resistance. SGT-53 significantly chemosensitized TMZ-sensitive human GBM cell lines (U87 and U251), in vitro and in vivo. Furthermore, in an intracranial GBM tumor model, two cycles of concurrent treatment with systemically administered SGT-53 and TMZ inhibited tumor growth, increased apoptosis and most importantly, significantly prolonged median survival. In contrast TMZ alone had no significant effect on median survival compared to a single cycle of TMZ. These results suggest that combining SGT-53 with TMZ appears to limit development of TMZ resistance, prolonging its anti-tumor effect and could be a more effective therapy for GBM. Using human glioblastoma multiforma cell lines, this research team demonstrated that the delivery of exogenous wild-type tumor suppressor gene p53 via a tumor-targeted nanocomplex limited the development of temozolomide resistance and prolonged its anti-tumor effect, which may enable future human application of this or similar techniques. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Activated platelet-derived growth factor autocrine pathway drives the transformed phenotype of a human glioblastoma cell line.

    Science.gov (United States)

    Vassbotn, F S; Ostman, A; Langeland, N; Holmsen, H; Westermark, B; Heldin, C H; Nistér, M

    1994-02-01

    Human glioblastoma cells (A172) were found to concomitantly express PDGF-BB and PDGF beta-receptors. The receptors were constitutively autophosphorylated in the absence of exogenous ligand, suggesting the presence of an autocrine PDGF pathway. Neutralizing PDGF antibodies as well as suramin inhibited the autonomous PDGF receptor tyrosine kinase activity and resulted in up-regulation of receptor protein. The interruption of the autocrine loop by the PDGF antibodies reversed the transformed phenotype of the glioblastoma cell, as determined by (1) diminished DNA synthesis, (2) inhibition of tumor colony growth, and (3) reversion of the transformed morphology of the tumor cells. The PDGF antibodies showed no effect on the DNA synthesis of another glioblastoma cells line (U-343MGa 31L) or on Ki-ras-transformed fibroblasts. The present study demonstrates an endogenously activated PDGF pathway in a spontaneous human glioblastoma cell line. Furthermore, we provide evidence that the autocrine PDGF pathway drives the transformed phenotype of the tumor cells, a process that can be blocked by extracellular antagonists.

  12. Extracellular sphingosine-1-phosphate: a novel actor in human glioblastoma stem cell survival.

    Directory of Open Access Journals (Sweden)

    Elena Riccitelli

    Full Text Available Glioblastomas are the most frequent and aggressive intracranial neoplasms in humans, and despite advances and the introduction of the alkylating agent temozolomide in therapy have improved patient survival, resistance mechanisms limit benefits. Recent studies support that glioblastoma stem-like cells (GSCs, a cell subpopulation within the tumour, are involved in the aberrant expansion and therapy resistance properties of glioblastomas, through still unclear mechanisms. Emerging evidence suggests that sphingosine-1-phosphate (S1P a potent onco-promoter able to act as extracellular signal, favours malignant and chemoresistance properties in GSCs. Notwithstanding, the origin of S1P in the GSC environment remains unknown. We investigated S1P metabolism, release, and role in cell survival properties of GSCs isolated from either U87-MG cell line or a primary culture of human glioblastoma. We show that both GSC models, grown as neurospheres and expressing GSC markers, are resistant to temozolomide, despite not expressing the DNA repair protein MGMT, a major contributor to temozolomide-resistance. Pulse experiments with labelled sphingosine revealed that both GSC types are able to rapidly phosphorylate the long-chain base, and that the newly produced S1P is efficiently degraded. Of relevance, we found that S1P was present in GSC extracellular medium, its level being significantly higher than in U87-MG cells, and that the extracellular/intracellular ratio of S1P was about ten-fold higher in GSCs. The activity of sphingosine kinases was undetectable in GSC media, suggesting that mechanisms of S1P transport to the extracellular environment are constitutive in GSCs. In addition we found that an inhibitor of S1P biosynthesis made GSCs sensitive to temozolomide (TMZ, and that exogenous S1P reverted this effect, thus involving extracellular S1P as a GSC survival signal in TMZ resistance. Altogether our data implicate for the first time GSCs as a pivotal source

  13. Knockdown of NF-E2-related factor 2 inhibits the proliferation and growth of U251MG human glioma cells in a mouse xenograft model.

    Science.gov (United States)

    Ji, Xiang-Jun; Chen, Sui-Hua; Zhu, Lin; Pan, Hao; Zhou, Yuan; Li, Wei; You, Wan-Chun; Gao, Chao-Chao; Zhu, Jian-Hong; Jiang, Kuan; Wang, Han-Dong

    2013-07-01

    NF-E2-related factor 2 (Nrf2) is a pivotal transcription factor of cellular responses to oxidative stress and recent evidence suggests that Nrf2 plays an important role in cancer pathobiology. However, the underlying mechanism has yet to be elucidated, particularly in glioma. In the present study, we investigated the role of Nrf2 in the clinical prognosis, cell proliferation and tumor growth of human glioblastoma multiforme (GBM). We detected overexpression of Nrf2 protein levels in GBM compared to normal brain tissues. Notably, higher protein levels of Nrf2 were significantly associated with poorer overall survival and 1-year survival for GBM patients. Furthermore, we constructed the plasmid Si-Nrf2 and transduced it into U251MG cells to downregulate the expression of Nrf2 and established stable Nrf2 knockdown cells. The downregulation of Nrf2 suppressed cell proliferation in vitro and tumor growth in mouse xenograft models. We performed immunohistochemistry staining to detect the protein levels of Nrf2, Ki-67, caspase-3 and CD31 in the xenograft tumors and found that the expression levels of Nrf2 and Ki-67 were much lower in the Si-Nrf2 group compared to the Si-control group. In addition, the number of caspase-3-positive cells was significantly increased in the Si-Nrf2 group. By analysis of microvessel density (MVD) assessed by CD31, the MVD value in the Si-Nrf2 group decreased significantly compared to the Si-control group. These findings indicate that the knockdown of Nrf2 may suppress tumor growth by inhibiting cell proliferation, increasing cell apoptosis and inhibiting angiogenesis. These results highlight the potential of Nrf2 as a candidate molecular target to control GBM cell proliferation and tumor growth.

  14. Andrographolide suppresses the migratory ability of human glioblastoma multiforme cells by targeting ERK1/2-mediated matrix metalloproteinase-2 expression.

    Science.gov (United States)

    Yang, Shih-Liang; Kuo, Fu-Hsuan; Chen, Pei-Ni; Hsieh, Yi-Hsien; Yu, Nuo-Yi; Yang, Wei-En; Hsieh, Ming-Ju; Yang, Shun-Fa

    2017-12-01

    Glioblastoma multiforme (GBM) can be a fatal tumor because of difficulties in treating the related metastasis. Andrographolide is the bioactive component of the Andrographis paniculata . Andrographolide possesses the anti-inflammatory activity and inhibits the growth of various cancers; however, its effect on GBM cancer motility remains largely unknown. In this study, we examined the antimetastatic properties of andrographolide in human GBM cells. Our results revealed that andrographolide inhibited the invasion and migration abilities of GBM8401 and U251 cells. Furthermore, andrographolide inhibited matrix metalloproteinase (MMP)-2 activity and expression. Real-time PCR and promoter activity assays indicated that andrographolide inhibited MMP-2 expression at the transcriptional level. Such inhibitory effects were associated with the suppression of CREB DNA-binding activity and CREB expression. Mechanistically, andrographolide inhibited the cell motility of GBM8401 cells through the extracellular-regulated kinase (ERK) 1/2 pathway, and the blocking of the ERK 1/2 pathway could reverse MMP-2-mediated cell motility. In conclusion, CREB is a crucial target of andrographolide for suppressing MMP-2-mediated cell motility in GBM cells. Therefore, a combination of andrographolide and an ERK inhibitor might be a good strategy for preventing GBM metastasis.

  15. MSH6 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance

    Science.gov (United States)

    Yip, Stephen; Miao, Jiangyong; Cahill, Daniel P.; Iafrate, A. John; Aldape, Ken; Nutt, Catherine L.; Louis, David N.

    2009-01-01

    Purpose Over the past few years, the alkylating agent temozolomide (TMZ) has become the standard-of-care therapy for patients with glioblastoma, the most common brain tumor. Recently, large-scale cancer genome sequencing efforts have identified a hypermutation phenotype and inactivating MSH6 mismatch repair gene mutations in recurrent, post-TMZ glioblastomas, particularly those growing more rapidly during TMZ treatment. This study aimed to clarify the timing and role of MSH6 mutations in mediating glioblastoma TMZ resistance. Experimental Design MSH6 sequence and microsatellite instability (MSI) status were determined in matched pre- and post-chemotherapy glioblastomas identified by The Cancer Genome Atlas (TCGA) as having post-treatment MSH6 mutations. TMZ-resistant lines were derived in vitro via selective growth under TMZ and the MSH6 gene was sequenced in resistant clones. The role of MSH6 inactivation in mediating resistance was explored using lentiviral shRNA knockdown and MSH6 reconstitution. Results MSH6 mutations were confirmed in post-treatment TCGA glioblastomas but absent in matched pre-treatment tumors. The post-treatment hypermutation phenotype displayed a signature bias toward CpC transitions and was not associated with MSI. In vitro modeling via exposure of an MSH6-wildtype glioblastoma line to TMZ resulted in resistant clones; one clone showed an MSH6 mutation, Thr1219Ile, that had been independently noted in two treated TCGA glioblastomas. Knockdown of MSH6 in the glioblastoma line U251 increased resistance to TMZ cytotoxicity and reconstitution restored cytotoxicity in MSH6-null glioma cells. Conclusions MSH6 mutations are selected for in glioblastomas during TMZ therapy both in vitro and in vivo, and are causally associated with TMZ resistance. PMID:19584161

  16. ABCG2-mediated suppression of chlorin e6 accumulation and photodynamic therapy efficiency in glioblastoma cell lines can be reversed by KO143.

    Science.gov (United States)

    Abdel Gaber, Sara A; Müller, Patricia; Zimmermann, Wolfgang; Hüttenberger, Dirk; Wittig, Rainer; Abdel Kader, Mahmoud H; Stepp, Herbert

    2018-01-01

    Photodynamic therapy (PDT) of malignant brain tumors is a promising adjunct to standard treatment, especially if tumor stem cells thought to be responsible for tumor progression and therapy resistance were also susceptible to this kind of treatment. However, some photosensitizers have been reported to be substrates of ABCG2, one of the membrane transporters mediating resistance to chemotherapy. Here we investigate, whether inhibition of ABCG2 can restore sensitivity to photosensitizer chlorin e6-mediated PDT. Accumulation of chlorin e6 in wild type U87 and doxycycline-inducible U251 glioblastoma cells with or without induction of ABCG2 expression or ABCG2 inhibition by KO143 was analyzed using flow cytometry. In U251 cells, ABCG2 was inducible by doxycycline after stable transfection with a tet-on expression plasmid. Tumor sphere cultivation under low attachment conditions was used to enrich for cells with stem cell-like properties. PDT was done on monolayer cell cultures by irradiation with laser light at 665nm. Elevated levels of ABCG2 in U87 cells grown as tumor spheres or in U251 cells after ABCG2 induction led to a 6-fold lower accumulation of chlorin e6 and the light dose needed to reduce cell viability by 50% (LD50) was 2.5 to 4-fold higher. Both accumulation and PDT response can be restored by KO143, an efficient non-toxic inhibitor of ABCG2. Glioblastoma stem cells might escape phototoxic destruction by ABCG2-mediated reduction of photosensitizer accumulation. Inhibition of ABCG2 during photosensitizer accumulation and irradiation promises to restore full susceptibility of this crucial tumor cell population to photodynamic treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Opposing effects of PI3K/Akt and Smad-dependent signaling pathways in NAG-1-induced glioblastoma cell apoptosis.

    Directory of Open Access Journals (Sweden)

    Zhiguo Zhang

    Full Text Available Nonsteroidal anti-inflammatory drug (NSAID activated gene-1 (NAG-1 is a divergent member of the transforming growth factor-beta (TGF-β superfamily. NAG-1 plays remarkable multifunctional roles in controlling diverse physiological and pathological processes including cancer. Like other TGF-β family members, NAG-1 can play dual roles during cancer development and progression by negatively or positively modulating cancer cell behaviors. In glioblastoma brain tumors, NAG-1 appears to act as a tumor suppressor gene; however, the precise underlying mechanisms have not been well elucidated. In the present study, we discovered that overexpression of NAG-1 induced apoptosis in U87 MG, U118 MG, U251 MG, and T98G cell lines via the intrinsic mitochondrial pathway, but not in A172 and LN-229 cell lines. NAG-1 could induce the phosphorylation of PI3K/Akt and Smad2/3 in all six tested glioblastoma cell lines, except Smad3 phosphorylation in A172 and LN-229 cell lines. In fact, Smad3 expression and its phosphorylation were almost undetectable in A172 and LN-229 cells. The PI3K inhibitors promoted NAG-1-induced glioblastoma cell apoptosis, while siRNAs to Smad2 and Smad3 decreased the apoptosis rate. NAG-1 also stimulated the direct interaction between Akt and Smad3 in glioblastoma cells. Elevating the level of Smad3 restored the sensitivity to NAG-1-induced apoptosis in A172 and LN-229 cells. In conclusion, our results suggest that PI3K/Akt and Smad-dependent signaling pathways display opposing effects in NAG-1-induced glioblastoma cell apoptosis.

  18. Multifaceted role of galectin-3 on human glioblastoma cell motility

    International Nuclear Information System (INIS)

    Debray, Charles; Vereecken, Pierre; Belot, Nathalie; Teillard, Peggy; Brion, Jean-Pierre; Pandolfo, Massimo; Pochet, Roland

    2004-01-01

    Astrocytic tumors' aggressiveness results from an imbalance between cell proliferation and cell death favoring growth, but also from the propensity of tumor cells to detach from the primary tumor site, migrate, and invade the surrounding parenchyma. Astrocytic tumor progression is known to be associated with an increased expression of galectin-3. We investigated in cell culture how galectin-3 expression affects astrocytoma cell motility. Galectin-3 deficient cells were obtained by stable transfection of the U373 glioblastoma cell line with a specific expression antisense plasmid. Cultured galectin-3 deficient glioblastoma cells showed increased motility potential on laminin and modifications in the cytoskeleton reorganization. In addition, c-DNA microarrays and quantitative immunofluorescence analysis showed that galectin-3 deficient U373 cells have an increased expression of integrins-α6 and -β1, proteins known to be implicated in the regulation of cell adhesion

  19. RhoE interferes with Rb inactivation and regulates the proliferation and survival of the U87 human glioblastoma cell line

    International Nuclear Information System (INIS)

    Poch, Enric; Minambres, Rebeca; Mocholi, Enric; Ivorra, Carmen; Perez-Arago, Amparo; Guerri, Consuelo; Perez-Roger, Ignacio; Guasch, Rosa M.

    2007-01-01

    Rho GTPases are important regulators of actin cytoskeleton, but they are also involved in cell proliferation, transformation and oncogenesis. One of this proteins, RhoE, inhibits cell proliferation, however the mechanism that regulates this effect remains poorly understood. Therefore, we undertook the present study to determine the role of RhoE in the regulation of cell proliferation. For this purpose we generated an adenovirus system to overexpress RhoE in U87 glioblastoma cells. Our results show that RhoE disrupts actin cytoskeleton organization and inhibits U87 glioblastoma cell proliferation. Importantly, RhoE expressing cells show a reduction in Rb phosphorylation and in cyclin D1 expression. Furthermore, RhoE inhibits ERK activation following serum stimulation of quiescent cells. Based in these findings, we propose that RhoE inhibits ERK activation, thereby decreasing cyclin D1 expression and leading to a reduction in Rb inactivation, and that this mechanism is involved in the RhoE-induced cell growth inhibition. Moreover, we also demonstrate that RhoE induces apoptosis in U87 cells and also in colon carcinoma and melanoma cells. These results indicate that RhoE plays an important role in the regulation of cell proliferation and survival, and suggest that this protein may be considered as an oncosupressor since it is capable to induce apoptosis in several tumor cell lines

  20. Primary ciliogenesis defects are associated with human astrocytoma/glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Rattner Jerome B

    2009-12-01

    Full Text Available Abstract Background Primary cilia are non-motile sensory cytoplasmic organelles that have been implicated in signal transduction, cell to cell communication, left and right pattern embryonic development, sensation of fluid flow, regulation of calcium levels, mechanosensation, growth factor signaling and cell cycle progression. Defects in the formation and/or function of these structures underlie a variety of human diseases such as Alström, Bardet-Biedl, Joubert, Meckel-Gruber and oral-facial-digital type 1 syndromes. The expression and function of primary cilia in cancer cells has now become a focus of attention but has not been studied in astrocytomas/glioblastomas. To begin to address this issue, we compared the structure and expression of primary cilia in a normal human astrocyte cell line with five human astrocytoma/glioblastoma cell lines. Methods Cultured normal human astrocytes and five human astrocytoma/glioblastoma cell lines were examined for primary cilia expression and structure using indirect immunofluorescence and electron microscopy. Monospecific antibodies were used to detect primary cilia and map the relationship between the primary cilia region and sites of endocytosis. Results We show that expression of primary cilia in normal astrocytes is cell cycle related and the primary cilium extends through the cell within a unique structure which we show to be a site of endocytosis. Importantly, we document that in each of the five astrocytoma/glioblastoma cell lines fully formed primary cilia are either expressed at a very low level, are completely absent or have aberrant forms, due to incomplete ciliogenesis. Conclusions The recent discovery of the importance of primary cilia in a variety of cell functions raises the possibility that this structure may have a role in a variety of cancers. Our finding that the formation of the primary cilium is disrupted in cells derived from astrocytoma/glioblastoma tumors provides the first

  1. Anticancer potential and mechanism of action of mango ginger (Curcuma amada Roxb.) supercritical CO₂ extract in human glioblastoma cells.

    Science.gov (United States)

    Ramachandran, Cheppail; Lollett, Ivonne V; Escalon, Enrique; Quirin, Karl-Werner; Melnick, Steven J

    2015-04-01

    Mango ginger (Curcuma amada Roxb.) is among the less-investigated species of Curcuma for anticancer properties. We have investigated the anticancer potential and the mechanism of action of a supercritical CO2 extract of mango ginger (CA) in the U-87MG human glioblastoma cell line. CA demonstrated higher cytotoxicity than temozolomide, etoposide, curcumin, and turmeric force with IC50, IC75, and IC90 values of 4.92 μg/mL, 12.87 μg/mL, and 21.30 μg/mL, respectively. Inhibitory concentration values of CA for normal embryonic mouse hypothalamus cell line (mHypoE-N1) is significantly higher than glioblastoma cell line, indicating the specificity of CA against brain tumor cells. CompuSyn analysis indicates that CA acts synergistically with temozolomide and etoposide for the cytotoxicity with combination index values of <1. CA treatment also induces apoptosis in glioblastoma cells in a dose-dependent manner and downregulates genes associated with apoptosis, cell proliferation, telomerase activity, oncogenesis, and drug resistance in glioblastoma cells. © The Author(s) 2014.

  2. Deregulation of a STAT3-IL8 Signaling Pathway Promotes Human Glioblastoma Cell Proliferation and Invasiveness

    Science.gov (United States)

    de la Iglesia, Núria; Konopka, Genevieve; Lim, Kah Leong; Nutt, Catherine L.; Bromberg, Jacqueline F.; Frank, David A.; Mischel, Paul S.; Louis, David N.; Bonni, Azad

    2009-01-01

    Inactivation of the tumor suppressor PTEN is recognized as a major event in the pathogenesis of the brain tumor glioblastoma. However, the mechanisms by which PTEN loss specifically impacts the malignant behavior of glioblastoma cells including their proliferation and propensity for invasiveness remain poorly understood. Genetic studies suggest that the transcription factor STAT3 harbors a PTEN-regulated tumor suppressive function in mouse astrocytes. Here, we report that STAT3 plays a critical tumor suppressive role in PTEN-deficient human glioblastoma cells. Endogenous STAT3 signaling is specifically inhibited in PTEN-deficient glioblastoma cells. Strikingly, reactivation of STAT3 in PTEN-deficient glioblastoma cells inhibits their proliferation, invasiveness, and ability to spread on myelin. We also identify the chemokine IL8 as a novel target gene of STAT3 in human glioblastoma cells. Activated STAT3 occupies the endogenous IL8 promoter and directly represses IL8 transcription. Consistent with these results, IL8 is upregulated in PTEN-deficient human glioblastoma tumors. Importantly, IL8 repression mediates STAT3-inhibition of glioblastoma cell proliferation, invasiveness, and spreading on myelin. Collectively, our findings uncover a novel link between STAT3 and IL8 whose deregulation plays a key role in the malignant behavior of PTEN-deficient glioblastoma cells. These studies suggest that STAT3 activation or IL8 inhibition may have potential in patient-tailored treatment of PTEN-deficient brain tumors. PMID:18524891

  3. Anticancer activity of 7-epiclusianone, a benzophenone from Garcinia brasiliensis, in glioblastoma.

    Science.gov (United States)

    Sales, Leilane; Pezuk, Julia Alejandra; Borges, Kleiton Silva; Brassesco, María Sol; Scrideli, Carlos Alberto; Tone, Luiz Gonzaga; dos Santos, Marcelo Henrique; Ionta, Marisa; de Oliveira, Jaqueline Carvalho

    2015-10-30

    Glioblastoma is the most common tumor of the central nervous system and one of the hardest tumors to treat. Consequently, the search for novel therapeutic options is imperative. 7-epiclusianone, a tetraprenylated benzophenone isolated from the epicarp of the native plant Garcinia brasiliensis, exhibits a range of biological activities but its prospect anticancer activity is underexplored. Thus, the aim of the present study was to evaluate the influence of 7-epiclusianone on proliferation, clonogenic capacity, cell cycle progression and induction of apoptosis in two glioblastoma cell lines (U251MG and U138MG). Cell viability was measured by the MTS assay; for the clonogenic assay, colonies were stained with Giemsa and counted by direct visual inspection; For cell cycle analysis, cells were stained with propidium iodide and analyzed by cytometry; Cyclin A expression was determined by immunoblotting; Apoptotic cell death was determined by annexin V fluorescein isothiocyanate labeling and Caspase-3 activity in living cells. Viability of both cell lines was drastically inhibited; moreover, the colony formation capacity was significantly reduced, demonstrating long-term effects even after removal of the drug. 7-epiclusianone treatment at low concentrations also altered cell cycle progression, decreased the S and G2/M populations and at higher concentrations increased the number of cells at sub-G1, in concordance with the increase of apoptotic cells. The present study demonstrates for the first time the anticancer potential of 7-epiclusianone against glioblastoma cells, thus meriting its further investigation as a potential therapeutic agent.

  4. Dicty_cDB: SHI251 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available SH (Link to library) SHI251 (Link to dictyBase) - - - Contig-U11819-1 - (Link to Or...iginal site) SHI251F 125 - - - - - - Show SHI251 Library SH (Link to library) Clone ID SHI251 (Link to dicty...Base) Atlas ID - NBRP ID - dictyBase ID - Link to Contig Contig-U11819-1 Original site URL http://dictycdb.b...XX sequence update 2002.10.25 Translated Amino Acid sequence ilfqilkistnk**IKNYYVNRVYEIIIIINICT...YKKK--- Translated Amino Acid sequence (All Frames) Frame A: ilfqilkistnk**IKNYYVNRVYEIIIIINICT

  5. The Role of RhoA, RhoB and RhoC GTPases in Cell Morphology, Proliferation and Migration in Human Cytomegalovirus (HCMV Infected Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Melpomeni Tseliou

    2016-01-01

    Full Text Available Background/Aims: Rho GTPases are crucial regulators of the actin cytoskeleton, membrane trafficking and cell signaling and their importance in cell migration and invasion is well- established. The human cytomegalovirus (HCMV is a widespread pathogen responsible for generally asymptomatic and persistent infections in healthy people. Recent evidence indicates that HCMV gene products are expressed in over 90% of malignant type glioblastomas (GBM. In addition, the HCMV Immediate Early-1 protein (IE1 is expressed in >90% of tumors analyzed. Methods: RhoA, RhoB and RhoC were individually depleted in U373MG glioblastoma cells as well as U373MG cells stably expressing the HCMV IE1 protein (named U373MG-IE1 cells shRNA lentivirus vectors. Cell proliferation assays, migration as well as wound-healing assays were performed in uninfected and HCMV-infected cells. Results: The depletion of RhoA, RhoB and RhoC protein resulted in significant alterations in the morphology of the uninfected cells, which were further enhanced by the cytopathic effect caused by HCMV. Furthermore, in the absence or presence of HCMV, the knockdown of RhoB and RhoC proteins decreased the proliferation rate of the parental and the IE1-expressing glioblastoma cells, whereas the knockdown of RhoA protein in the HCMV infected cell lines restored their proliferation rate. In addition, wound healing assays in U373MG cells revealed that depletion of RhoA, RhoB and RhoC differentially reduced their migration rate, even in the presence or the absence of HCMV. Conclusion: Collectively, these data show for the first time a differential implication of Rho GTPases in morphology, proliferation rate and motility of human glioblastoma cells during HCMV infection, further supporting an oncomodulatory role of HCMV depending on the Rho isoforms' state.

  6. Transfer of the sodium/iodide symporter gene into gliomas for radioiodine therapy in vitro

    International Nuclear Information System (INIS)

    Tan Jian; Li Wei; Liu Xiaohua; Xiao Qian; Jia Qiang; Li Ning

    2008-01-01

    Objective: The most frequent brain tumors are the gliomas. Glioblastomas are largely incurable secondary, to their rapid, aggressive and diffusely infiltrative growth pattern and hypervascularity. This study aimed at investigating the possibility of transecting human sodium/iodide symporter (hNIS) gene into human glioma cell lines to facilitate radioactive iodide treatment in vitro. Methods: Transecting hNIS gene into human glioma cell lines U251 was performed by recombinant expression plasmids with lipofectamine 2000-plasmid complexes. The hNIS gene cell lines with stable expression (hNIS-U251) were selected through G418 antibiotic constraint. The hNIS-U251 gene cell lines were then evaluated for their biologic functions, including 125 I uptake assay, 125 I influx-course, 125 I-efflux-course, 131 I inhibitory effect on cellular proliferation by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyhe-trazolium bromide (MTT) assay and flow cytometer. Results: We were successful in transecting hNIS gene into human glioma cell lines by recombinant expression plasmids, and were able to obtain hNIS gene cell lines (hNIS-U251) with stable expression. The hNIS-U251 cell lines could intake and bind radioactive iodide by hNIS gene. The uptakes of 125 I were 117 fold higher in hNIS-U251 cell lines than U251 cell lines [(50 469.88 ± 997.29), (432.92 ± 89.28) counts·min -1 , respectively]. And the proliferation index of hNIS-U251 cell lines was lower than U251 cell lines after incubating with 131 I. Conclusion: The hNIS gene with stable gene expression (hNIS- U251) cell lines could be labeled by 131 I with a high efficiency, thereby may function effectively in the treatment of glioma-related brain tumors. (authors)

  7. Impact of pEGFP mediated ING4 gene on growth of glioma U251 ...

    African Journals Online (AJOL)

    Jane

    2011-06-22

    Jun 22, 2011 ... Full Length Research Paper. Impact of pEGFP mediated ING4 gene on growth of glioma U251 cells and its potential molecular mechanism. Yuefei Deng*, Bingxi Lei and Yiying Zhao. Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.

  8. Anti-tumor activities of luteolin and silibinin in glioblastoma cells: overexpression of miR-7-1-3p augmented luteolin and silibinin to inhibit autophagy and induce apoptosis in glioblastoma in vivo.

    Science.gov (United States)

    Chakrabarti, Mrinmay; Ray, Swapan K

    2016-03-01

    Glioblastoma is the deadliest brain tumor in humans. High systemic toxicity of conventional chemotherapies prompted the search for natural compounds for controlling glioblastoma. The natural flavonoids luteolin (LUT) and silibinin (SIL) have anti-tumor activities. LUT inhibits autophagy, cell proliferation, metastasis, and angiogenesis and induces apoptosis; while SIL activates caspase-8 cascades to induce apoptosis. However, synergistic anti-tumor effects of LUT and SIL in glioblastoma remain unknown. Overexpression of tumor suppressor microRNA (miR) could enhance the anti-tumor effects of LUT and SIL. Here, we showed that 20 µM LUT and 50 µM SIL worked synergistically for inhibiting growth of two different human glioblastoma U87MG (wild-type p53) and T98G (mutant p53) cell lines and natural combination therapy was more effective than conventional chemotherapy (10 µM BCNU or 100 µM TMZ). Combination of LUT and SIL caused inhibition of growth of glioblastoma cells due to induction of significant amounts of apoptosis and complete inhibition of invasion and migration. Further, combination of LUT and SIL inhibited rapamycin (RAPA)-induced autophagy, a survival mechanism, with suppression of PKCα and promotion of apoptosis through down regulation of iNOS and significant increase in expression of the tumor suppressor miR-7-1-3p in glioblastoma cells. Our in vivo studies confirmed that overexpression of miR-7-1-3p augmented anti-tumor activities of LUT and SIL in RAPA pre-treated both U87MG and T98G tumors. In conclusion, our results clearly demonstrated that overexpression of miR-7-1-3p augmented the anti-tumor activities of LUT and SIL to inhibit autophagy and induce apoptosis for controlling growth of different human glioblastomas in vivo.

  9. Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Bernhart, Eva; Damm, Sabine; Wintersperger, Andrea [Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz (Austria); DeVaney, Trevor [Institute of Biophysics, Medical University of Graz (Austria); Zimmer, Andreas [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens University, Graz (Austria); Raynham, Tony; Ireson, Christopher [Cancer Research Technology Ltd, London (United Kingdom); Sattler, Wolfgang, E-mail: wolfgang.sattler@medunigraz.at [Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz (Austria)

    2013-08-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen. Time-lapse microscopy demonstrated that random cell migration was significantly diminished in response to PRKD2 silencing. The pharmacological PRKD family inhibitor CRT0066101 decreased chemotactic migration and invasion across uncoated or matrigel-coated Transwell inserts. Silencing of PRKD2 attenuated migration and invasion of U87MG cells even more effectively. In terms of downstream signaling, CRT0066101 prevented PRKD2 autophosphorylation and inhibited p44/42 MAPK and to a smaller extent p54/46 JNK and p38 MAPK activation. PRKD2 silencing impaired activation of p44/42 MAPK and p54/46 JNK, downregulated nuclear c-Jun protein levels and decreased c-Jun{sup S73} phosphorylation without affecting the NFκB pathway. Finally, qPCR array analyses revealed that silencing of PRKD2 downregulates mRNA levels of integrin alpha-2 and -4 (ITGA2 and -4), plasminogen activator urokinase (PLAU), plasminogen activator urokinase receptor (PLAUR), and matrix metallopeptidase 1 (MMP1). Findings of the present study identify PRKD2 as a potential target to interfere with glioblastoma cell migration and invasion, two major determinants contributing to recurrence of glioblastoma after multimodality treatment. Highlights: • Sphingosine-1-phosphate induces glioma cell migration and invasion. • Part of the effects is mediated by protein kinase D2 (PRKD2) activation. • Inactivation of PRKD2 attenuates glioblastoma cell migration and invasion. • Both, RNAi and pharmacological inhibition of PRKD2 inhibits MAPK

  10. Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro

    International Nuclear Information System (INIS)

    Bernhart, Eva; Damm, Sabine; Wintersperger, Andrea; DeVaney, Trevor; Zimmer, Andreas; Raynham, Tony; Ireson, Christopher; Sattler, Wolfgang

    2013-01-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen. Time-lapse microscopy demonstrated that random cell migration was significantly diminished in response to PRKD2 silencing. The pharmacological PRKD family inhibitor CRT0066101 decreased chemotactic migration and invasion across uncoated or matrigel-coated Transwell inserts. Silencing of PRKD2 attenuated migration and invasion of U87MG cells even more effectively. In terms of downstream signaling, CRT0066101 prevented PRKD2 autophosphorylation and inhibited p44/42 MAPK and to a smaller extent p54/46 JNK and p38 MAPK activation. PRKD2 silencing impaired activation of p44/42 MAPK and p54/46 JNK, downregulated nuclear c-Jun protein levels and decreased c-Jun S73 phosphorylation without affecting the NFκB pathway. Finally, qPCR array analyses revealed that silencing of PRKD2 downregulates mRNA levels of integrin alpha-2 and -4 (ITGA2 and -4), plasminogen activator urokinase (PLAU), plasminogen activator urokinase receptor (PLAUR), and matrix metallopeptidase 1 (MMP1). Findings of the present study identify PRKD2 as a potential target to interfere with glioblastoma cell migration and invasion, two major determinants contributing to recurrence of glioblastoma after multimodality treatment. Highlights: • Sphingosine-1-phosphate induces glioma cell migration and invasion. • Part of the effects is mediated by protein kinase D2 (PRKD2) activation. • Inactivation of PRKD2 attenuates glioblastoma cell migration and invasion. • Both, RNAi and pharmacological inhibition of PRKD2 inhibits MAPK

  11. Kaurene diterpene induces apoptosis in U87 human malignant glioblastoma cells by suppression of anti-apoptotic signals and activation of cysteine proteases

    Energy Technology Data Exchange (ETDEWEB)

    Lizarte, F.S. Neto; Tirapelli, D.P.C. [Universidade de São Paulo, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Ambrosio, S.R. [Universidade de Franca, Núcleo de Pesquisa em Ciências e Tecnologia, Franca, SP (Brazil); Tirapelli, C.R. [Universidade de São Paulo, Laboratório de Farmacologia, Departamento de Enfermagem Psiquiátrica e Ciências Humanas, Escola de Enfermagem de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Oliveira, F.M. [Universidade de São Paulo, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Novais, P.C. [Universidade de São Paulo, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Peria, F.M.; Oliveira, H.F. [Universidade de São Paulo, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Carlotti, C.G. Junior; Tirapelli, L.F. [Universidade de São Paulo, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil)

    2013-01-11

    Gliomas are the most common and malignant primary brain tumors in humans. Studies have shown that classes of kaurene diterpene have anti-tumor activity related to their ability to induce apoptosis. We investigated the response of the human glioblastoma cell line U87 to treatment with ent-kaur-16-en-19-oic acid (kaurenoic acid, KA). We analyzed cell survival and the induction of apoptosis using flow cytometry and annexin V staining. Additionally, the expression of anti-apoptotic (c-FLIP and miR-21) and apoptotic (Fas, caspase-3 and caspase-8) genes was analyzed by relative quantification (real-time PCR) of mRNA levels in U87 cells that were either untreated or treated with KA (30, 50, or 70 µM) for 24, 48, and 72 h. U87 cells treated with KA demonstrated reduced viability, and an increase in annexin V- and annexin V/PI-positive cells was observed. The percentage of apoptotic cells was 9% for control cells, 26% for cells submitted to 48 h of treatment with 50 µM KA, and 31% for cells submitted to 48 h of treatment with 70 µM KA. Similarly, in U87 cells treated with KA for 48 h, we observed an increase in the expression of apoptotic genes (caspase-8, -3) and a decrease in the expression of anti-apoptotic genes (miR-21 and c-FLIP). KA possesses several interesting properties and induces apoptosis through a unique mechanism. Further experiments will be necessary to determine if KA may be used as a lead compound for the development of new chemotherapeutic drugs for the treatment of primary brain tumors.

  12. Kaurene diterpene induces apoptosis in U87 human malignant glioblastoma cells by suppression of anti-apoptotic signals and activation of cysteine proteases

    International Nuclear Information System (INIS)

    Lizarte, F.S. Neto; Tirapelli, D.P.C.; Ambrosio, S.R.; Tirapelli, C.R.; Oliveira, F.M.; Novais, P.C.; Peria, F.M.; Oliveira, H.F.; Carlotti, C.G. Junior; Tirapelli, L.F.

    2013-01-01

    Gliomas are the most common and malignant primary brain tumors in humans. Studies have shown that classes of kaurene diterpene have anti-tumor activity related to their ability to induce apoptosis. We investigated the response of the human glioblastoma cell line U87 to treatment with ent-kaur-16-en-19-oic acid (kaurenoic acid, KA). We analyzed cell survival and the induction of apoptosis using flow cytometry and annexin V staining. Additionally, the expression of anti-apoptotic (c-FLIP and miR-21) and apoptotic (Fas, caspase-3 and caspase-8) genes was analyzed by relative quantification (real-time PCR) of mRNA levels in U87 cells that were either untreated or treated with KA (30, 50, or 70 µM) for 24, 48, and 72 h. U87 cells treated with KA demonstrated reduced viability, and an increase in annexin V- and annexin V/PI-positive cells was observed. The percentage of apoptotic cells was 9% for control cells, 26% for cells submitted to 48 h of treatment with 50 µM KA, and 31% for cells submitted to 48 h of treatment with 70 µM KA. Similarly, in U87 cells treated with KA for 48 h, we observed an increase in the expression of apoptotic genes (caspase-8, -3) and a decrease in the expression of anti-apoptotic genes (miR-21 and c-FLIP). KA possesses several interesting properties and induces apoptosis through a unique mechanism. Further experiments will be necessary to determine if KA may be used as a lead compound for the development of new chemotherapeutic drugs for the treatment of primary brain tumors

  13. Antiviral and cytotoxic activities of some Indonesian plants.

    Science.gov (United States)

    Lohézic-Le Dévéhat, F; Bakhtiar, A; Bézivin, C; Amoros, M; Boustie, J

    2002-08-01

    Ten methanolic extracts from eight Indonesian medicinal plants were phytochemically screened and evaluated for antiviral (HSV-1 and Poliovirus) and cytotoxic activities on murine and human cancer lines (3LL, L1210, K562, U251, DU145, MCF-7). Besides Melastoma malabathricum (Melastomataceae), the Indonesian Loranthaceae species among which Elytranthe tubaeflora, E. maingayi, E. globosa and Scurrula ferruginea exhibited attractive antiviral and cytotoxic activities. Piper aduncum (Piperaceae) was found active on Poliovirus. S. ferruginea was selected for further studies because of its activity on the U251 glioblastoma cells.

  14. PTEN-induction in U251 glioma cells decreases the expression of insulin-like growth factor binding protein-2

    International Nuclear Information System (INIS)

    Levitt, Randy J.; Georgescu, Maria-Magdalena; Pollak, Michael

    2005-01-01

    PTEN is a tumor suppressor gene whose loss of function is observed in ∼40-50% of human cancers. Although insulin-like growth factor binding protein-2 (IGFBP-2) was classically described as a growth inhibitor, multiple recent reports have shown an association of overexpression and/or high serum levels of IGFBP-2 with poor prognosis of several malignancies, including gliomas. Using an inducible PTEN expression system in the PTEN-null glioma cell line U251, we demonstrate that PTEN-induction is associated with reduced proliferation, increased apoptosis, and a substantial reduction of the high levels of IGFBP-2 expression. The PTEN-induced decrease in IGFBP-2 expression could be mimicked with the PI3-kinase inhibitor LY294002, indicating that the lipid phosphatase activity of PTEN is responsible for the observed effect. However, the rapamycin analog CCI-779 did not affect IGFBP-2 expression, suggesting that the PTEN-induced decrease in IGFBP-2 expression is not attributable to decreased mTOR signalling. Recombinant human IGFBP-2 was unable to rescue U251-PTEN cells from the antiproliferative effects of PTEN, and IGFBP-2 siRNA did not affect the IGF-dependent or -independent growth of this cell line. These results suggest that the clinical data linking IGFBP-2 expression to poor prognosis may arise, at least in part, because high levels of IGFBP-2 expression correlate with loss of function of PTEN, which is well known to lead to aggressive behavior of gliomas. Our results motivate translational research regarding the relationship between IGFBP-2 expression and loss of function of PTEN

  15. In vitro cytotoxicity of SiO2 or ZnO nanoparticles with different sizes and surface charges on U373MG human glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Kim JE

    2014-12-01

    Full Text Available Jung-Eun Kim,1,* Hyejin Kim,1,* Seong Soo A An,2 Eun Ho Maeng,3 Meyoung-Kon Kim,4 Yoon-Jae Song1 1Department of Life Science, 2Department of Bionano Technology, Gachon University, Seongnam-Si, South Korea; 3Korea Testing and Research Institute, Seoul, South Korea; 4Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, South Korea *These authors contributed equally to this work Abstract: Silicon dioxide (SiO2 and zinc oxide (ZnO nanoparticles are widely used in various applications, raising issues regarding the possible adverse effects of these metal oxide nanoparticles on human cells. In this study, we determined the cytotoxic effects of differently charged SiO2 and ZnO nanoparticles, with mean sizes of either 100 or 20 nm, on the U373MG human glioblastoma cell line. The overall cytotoxicity of ZnO nanoparticles against U373MG cells was significantly higher than that of SiO2 nanoparticles. Neither the size nor the surface charge of the ZnO nanoparticles affected their cytotoxicity against U373MG cells. The 20 nm SiO2 nanoparticles were more toxic than the 100 nm nanoparticles against U373MG cells, but the surface charge had little or no effect on their cytotoxicity. Both SiO2 and ZnO nanoparticles activated caspase-3 and induced DNA fragmentation in U373MG cells, suggesting the induction of apoptosis. Thus, SiO2 and ZnO nanoparticles appear to exert cytotoxic effects against U373MG cells, possibly via apoptosis. Keyword: apoptosis

  16. Genome-wide transcriptional profiling of human glioblastoma cells in response to ITE treatment.

    Science.gov (United States)

    Kang, Bo; Zhou, Yanwen; Zheng, Min; Wang, Ying-Jie

    2015-09-01

    A ligand-activated transcription factor aryl hydrocarbon receptor (AhR) is recently revealed to play a key role in embryogenesis and tumorigenesis (Feng et al. [1], Safe et al. [2]) and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) (Song et al. [3]) is an endogenous AhR ligand that possesses anti-tumor activity. In order to gain insights into how ITE acts via the AhR in embryogenesis and tumorigenesis, we analyzed the genome-wide transcriptional profiles of the following three groups of cells: the human glioblastoma U87 parental cells, U87 tumor sphere cells treated with vehicle (DMSO) and U87 tumor sphere cells treated with ITE. Here, we provide the details of the sample gathering strategy and show the quality controls and the analyses associated with our gene array data deposited into the Gene Expression Omnibus (GEO) under the accession code of GSE67986.

  17. Inhibition of CLIC4 enhances autophagy and triggers mitochondrial and ER stress-induced apoptosis in human glioma U251 cells under starvation.

    Directory of Open Access Journals (Sweden)

    Jiateng Zhong

    Full Text Available CLIC4/mtCLIC, a chloride intracellular channel protein, localizes to mitochondria, endoplasmic reticulum (ER, nucleus and cytoplasm, and participates in the apoptotic response to stress. Apoptosis and autophagy, the main types of the programmed cell death, seem interconnected under certain stress conditions. However, the role of CLIC4 in autophagy regulation has yet to be determined. In this study, we demonstrate upregulation and nuclear translocation of the CLIC4 protein following starvation in U251 cells. CLIC4 siRNA transfection enhanced autophagy with increased LC3-II protein and puncta accumulation in U251 cells under starvation conditions. In that condition, the interaction of the 14-3-3 epsilon isoform with CLIC4 was abolished and resulted in Beclin 1 overactivation, which further activated autophagy. Moreover, inhibiting the expression of CLIC4 triggered both mitochondrial apoptosis involved in Bax/Bcl-2 and cytochrome c release under starvation and endoplasmic reticulum stress-induced apoptosis with CHOP and caspase-4 upregulation. These results demonstrate that CLIC4 nuclear translocation is an integral part of the cellular response to starvation. Inhibiting the expression of CLIC4 enhances autophagy and contributes to mitochondrial and ER stress-induced apoptosis under starvation.

  18. Wnt/β-catenin pathway involvement in ionizing radiation-induced invasion of U87 glioblastoma cells

    International Nuclear Information System (INIS)

    Dong, Zhen; Zhou, Lin; Han, Na; Zhang, Mengxian; Lyu, Xiaojuan

    2015-01-01

    Radiotherapy has been reported to promote the invasion of glioblastoma cells; however, the underlying mechanisms remain unclear. Here, we investigated the role of the Wnt/β-catenin pathway in radiation-induced invasion of glioblastoma cells. U87 cells were irradiated with 3 Gy or sham irradiated in the presence or absence of the Wnt/β-catenin pathway inhibitor XAV 939. Cell invasion was determined by an xCELLigence real-time cell analyser and matrigel invasion assays. The intracellular distribution of β-catenin in U87 cells with or without irradiation was examined by immunofluorescence and Western blotting of nuclear fractions. We next investigated the effect of irradiation on Wnt/β-catenin pathway activity using TOP/FOP flash luciferase assays and quantitative polymerase chain reaction analysis of β-catenin target genes. The expression levels and activities of two target genes, matrix metalloproteinase (MMP)-2 and MMP-9, were examined further by Western blotting and zymography. U87 cell invasiveness was increased significantly by ionizing radiation. Interestingly, ionizing radiation induced nuclear translocation and accumulation of β-catenin. Moreover, we found increased β-catenin/TCF transcriptional activities, followed by up-regulation of downstream genes in the Wnt/β-catenin pathway in irradiated U87 cells. Importantly, inhibition of the Wnt/β-catenin pathway by XAV 939, which promotes degradation of β-catenin, significantly abrogated the pro-invasion effects of irradiation. Mechanistically, XAV 939 suppressed ionizing radiation-triggered up-regulation of MMP-2 and MMP-9, and inhibited the activities of these gelatinases. Our data demonstrate a pivotal role of the Wnt/β-catenin pathway in ionizing radiation-induced invasion of glioblastoma cells, and suggest that targeting β-catenin is a promising therapeutic approach to overcoming glioma radioresistance. (orig.) [de

  19. Quantitative imaging of pO2 in orthotopic murine gliomas: hypoxia correlates with resistance to radiation.

    Science.gov (United States)

    Yasui, Hironobu; Kawai, Tatsuya; Matsumoto, Shingo; Saito, Keita; Devasahayam, Nallathamby; Mitchell, James B; Camphausen, Kevin; Inanami, Osamu; Krishna, Murali C

    2017-10-01

    Hypoxia is considered one of the microenvironmental factors associated with the malignant nature of glioblastoma. Thus, evaluating intratumoural distribution of hypoxia would be useful for therapeutic planning as well as assessment of its effectiveness during the therapy. Electron paramagnetic resonance imaging (EPRI) is an imaging technique which can generate quantitative maps of oxygen in vivo using the exogenous paramagnetic compound, triarylmethyl and monitoring its line broadening caused by oxygen. In this study, the feasibility of EPRI for assessment of oxygen distribution in the glioblastoma using orthotopic U87 and U251 xenograft model is examined. Heterogeneous distribution of pO 2 between 0 and 50 mmHg was observed throughout the tumours except for the normal brain tissue. U251 glioblastoma was more likely to exhibit hypoxia than U87 for comparable tumour size (median pO 2 ; 29.7 and 18.2 mmHg, p = .028, in U87 and U251, respectively). The area with pO 2 under 10 mmHg on the EPR oximetry (HF10) showed a good correlation with pimonidazole staining among tumours with evaluated size. In subcutaneous xenograft model, irradiation was relatively less effective for U251 compared with U87. In conclusion, EPRI is a feasible method to evaluate oxygen distribution in the brain tumour.

  20. Sinomenine Hydrochloride Inhibits the Metastasis of Human Glioblastoma Cells by Suppressing the Expression of Matrix Metalloproteinase-2/-9 and Reversing the Endogenous and Exogenous Epithelial-Mesenchymal Transition.

    Science.gov (United States)

    Jiang, Yumao; Jiao, Yue; Liu, Yang; Zhang, Meiyu; Wang, Zhiguo; Li, Yujuan; Li, Tao; Zhao, Xiaoliang; Wang, Danqiao

    2018-03-14

    As shown in our previous study, sinomenine hydrochloride (SH), the major bioactive alkaloid isolated from Sinomenium acutum Rehd. et Wils. (Fam. Menispermaceae ), initiates the autophagy-mediated death of human glioblastoma cells by generating reactive oxygen species and activating the autophagy-lysosome pathway. However, its effects on the migration and invasion of human glioblastoma cells have not yet been elucidated. Therefore, human glioblastoma U87 and SF767 cells were treated with SH (0.125 and 0.25 mM) for 24 h, and cell migration and invasion were assessed using scratch wound healing, migration and invasion assays. SH promoted G0/G1 phase arrest, inhibited the migration and invasion of the two cell lines, suppressed the activation of nuclear factor kappa B (NFκB) and the expression of matrix metalloproteinase (MMP)-2/-9, triggered endoplasmic reticulum (ER) stress, reversed the exogenous epithelial-mesenchymal transition (EMT) induced by the inflammatory microenvironment and the endogenous EMT. Additionally, NFκB p65 overexpression blocked the SH-mediated inhibitory effects on MMP-2/-9 expression and cell invasion. SH-induced autophagy was reduced in CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP) or autophagy-related 5 (ATG5)-silenced human glioblastoma cells and cells treated with 4-phenylbutyric acid (4-PBA) or 3-methyladenine (3-MA), as shown by the decreased levels of the microtubule-associated protein light chain 3B (LC3B)-II and autophagic vacuoles (AVs) stained with monodansylcadaverine (MDC), respectively. Moreover, knockdown of CHOP or ATG5 and treatment with 4-PBA or 3-MA abolished the SH-mediated inhibition of mesenchymal markers (vimentin, Snail and Slug) expression and cell invasion, respectively. Importantly, SH also regulated the above related pathways in nude mice. Based on these findings, SH inhibited cell proliferation by inducing cell cycle arrest, and attenuated the metastasis of U87 and SF767 cells by suppressing MMP

  1. Sinomenine Hydrochloride Inhibits the Metastasis of Human Glioblastoma Cells by Suppressing the Expression of Matrix Metalloproteinase-2/-9 and Reversing the Endogenous and Exogenous Epithelial-Mesenchymal Transition

    Directory of Open Access Journals (Sweden)

    Yumao Jiang

    2018-03-01

    Full Text Available As shown in our previous study, sinomenine hydrochloride (SH, the major bioactive alkaloid isolated from Sinomenium acutum Rehd. et Wils. (Fam. Menispermaceae, initiates the autophagy-mediated death of human glioblastoma cells by generating reactive oxygen species and activating the autophagy-lysosome pathway. However, its effects on the migration and invasion of human glioblastoma cells have not yet been elucidated. Therefore, human glioblastoma U87 and SF767 cells were treated with SH (0.125 and 0.25 mM for 24 h, and cell migration and invasion were assessed using scratch wound healing, migration and invasion assays. SH promoted G0/G1 phase arrest, inhibited the migration and invasion of the two cell lines, suppressed the activation of nuclear factor kappa B (NFκB and the expression of matrix metalloproteinase (MMP-2/-9, triggered endoplasmic reticulum (ER stress, reversed the exogenous epithelial-mesenchymal transition (EMT induced by the inflammatory microenvironment and the endogenous EMT. Additionally, NFκB p65 overexpression blocked the SH-mediated inhibitory effects on MMP-2/-9 expression and cell invasion. SH-induced autophagy was reduced in CCAAT/enhancer binding protein (C/EBP homologous protein (CHOP or autophagy-related 5 (ATG5-silenced human glioblastoma cells and cells treated with 4-phenylbutyric acid (4-PBA or 3-methyladenine (3-MA, as shown by the decreased levels of the microtubule-associated protein light chain 3B (LC3B-II and autophagic vacuoles (AVs stained with monodansylcadaverine (MDC, respectively. Moreover, knockdown of CHOP or ATG5 and treatment with 4-PBA or 3-MA abolished the SH-mediated inhibition of mesenchymal markers (vimentin, Snail and Slug expression and cell invasion, respectively. Importantly, SH also regulated the above related pathways in nude mice. Based on these findings, SH inhibited cell proliferation by inducing cell cycle arrest, and attenuated the metastasis of U87 and SF767 cells by suppressing

  2. Inhibition of AKT signaling by supercritical CO2 extract of mango ginger (Curcuma amada Roxb.) in human glioblastoma cells.

    Science.gov (United States)

    Ramachandran, Cheppail; Portalatin, Gilda; Quirin, Karl-W; Escalon, Enrique; Khatib, Ziad; Melnick, Steven J

    2015-12-01

    Mango ginger (Curcuma amada Roxb.) is a less-investigated herb for anticancer properties than other related Curcuma species. AKT (a serine/threonine protein kinase B, originally identified as an oncogene in the transforming retrovirus AKT8) plays a central role in the development and promotion of cancer. In this investigation, we have analyzed the effect of supercritical CO2 extract of mango ginger (CA) on the genetic pathways associated with AKT signaling in human glioblastoma cells. The inhibitory effect of supercritical CO2 extract of mango ginger (Curcuma amada) on AKT signaling was investigated in U-87MG glioblastoma cells. CA was highly cytotoxic to glioblastoma cell line (IC50=4.92±0.81 µg/mL) compared to mHypoE-N1 normal mouse hypothalamus cell line (IC50=40.57±0.06 µg/mL). CA inhibits AKT (protein Kinase B) and adenosine monophophate -activated protein kinase α (AMPKα) phosphorylation significantly in a dose-dependent manner. The cell migration which is necessary for invasion and metastasis was also inhibited by CA treatment, with about 43% reduction at 20 µg/mL concentration. Analysis of mRNA and protein expression of genes associated with apoptosis, cell proliferation and angiogenesis showed that CA modulates expression of genes associated with apoptosis (Bax, Bcl-2, Bcl-X, BNIP3, caspase-3, mutant p53 and p21), cell proliferation (Ki67) and angiogenesis vascular endothelial growth factor (VEGF). Additionally, heat shock protein 90 (HSP90) and AMPKα genes interacting with the AKT signaling pathway were also downregulated by CA treatment. These results indicate the molecular targets and mechanisms underlying the anticancer effect of CA in human glioblastoma cells.

  3. Downregulation of mitochondrial UQCRB inhibits cancer stem cell-like properties in glioblastoma.

    Science.gov (United States)

    Jung, Narae; Kwon, Ho Jeong; Jung, Hye Jin

    2018-01-01

    Glioblastoma stem cell targeted therapies have become a powerful strategy for the treatment of this deadliest brain tumor. We demonstrate for the first time that downregulation of mitochondrial ubiquinol-cytochrome c reductase binding protein (UQCRB) inhibits the cancer stem cell-like properties in human glioblastoma cells. The synthetic small molecules targeting UQCRB significantly suppressed not only the self-renewal capacity such as growth and neurosphere formation, but also the metastatic potential such as migration and invasion of glioblastoma stem‑like cells (GSCs) derived from U87MG and U373MG at subtoxic concentrations. Notably, the UQCRB inhibitors repressed c‑Met-mediated downstream signal transduction and hypoxia‑inducible factor‑1α (HIF‑1α) activation, thereby reducing the expression levels of GSC markers including CD133, Nanog, Oct4 and Sox2 in the GSCs. Furthermore, the UQCRB inhibitors decreased mitochondrial ROS generation and mitochondrial membrane potential in the GSCs, indicating that they regulate the mitochondrial function in GSCs. Indeed, the knockdown of UQCRB gene by UQCRB siRNA significantly inhibited the cancer stem cell-like phenotypes as well as the expression of stemness markers by blocking mitochondrial ROS/HIF‑1α/c‑Met pathway in U87MG GSCs. These findings suggest that UQCRB and its inhibitors could be a new therapeutic target and lead compounds for eliminating cancer stem cells in glioblastoma.

  4. vct 251,uop vct 251,vct 251 entire course new

    OpenAIRE

    admin

    2018-01-01

    UOP VCT 251 Week 1 Individual: Graphic Icon NEW Check this A+ tutorial guideline at http://www.assignmentcloud.com/vct-251-uop/vct-251-week-1-individual-graphic-icon-new For more classes visit http://www.assignmentcloud.com/ VCT 251 Week 1 Individual: Graphic Icon NEW Review Lessons 1, 2, and 3 of Adobe® Illustrator® CC™ Digital Classroom and the Lynda.com® video “Introduction to Graphic Design with Justin Seeley”. Create your first Illustrat...

  5. Enhanced tumor control of human Glioblastoma Multiforme xenografts with the concomitant use of radiotherapy and an attenuated herpes simplex-1 virus (ASTRO research fellowship)

    International Nuclear Information System (INIS)

    Song, Paul Y.; Sibley, Gregory S.; Advani, Sunil; Hallahan, Dennis; Hyland, John; Kufe, Donald W.; Chou, Joany; Roizman, Bernard; Weichselbaum, Ralph R.

    1996-01-01

    Purpose: Glioblastoma Multiforme remains one of the most incurable of human tumors. The current treatment outcomes are dismal. There are several recent reports which suggest that some human glioblastoma xenografts implanted in the brains of athymic mice may be potentially cured with the use of an attenuated herpes simplex-1 virus alone. We have chosen a replication competent, non-neurovirulent HSV-1 mutant, designated R3616 to determine whether there is an interactive cell killing and enhanced tumor control with radiotherapy in the treatment of a human glioblastoma xenograft. Materials and Methods: In vivo, 1 mm 3 pieces of U-87 human glioblastoma cell line xenografts were implanted into the right hind limb of athymic mice and grown to > 200 mm 3 . A total of 112 mice were then equally distributed within four treatment arms (see chart below) based upon tumor volume. Xenografts selected to receive virus as part of the therapy were inoculated with three injections of 2 x 10 7 plaque forming units (PFU) of R3616 virus given on day 1, 2, and 3 for a total dose of 6 x 10 7 PFU. R3616 is a non-neurovirulent HSV-1 mutant created by the deletion of the γ 34.5 gene. Local field irradiation was delivered on day 2 (20 Gy) and day 3 (25 Gy). The mice were then followed for 60 days during which time the xenografts were measured twice weekly. A clinically non-palpable tumor (< 10% original volume) was scored as a cure. In addition percent-fractional tumor volume (FTV) and mean tumor volume (MTV) were calculated for each group. Results: Conclusion: While our tumor control with R3616 alone is similar to that reported in the literature, we have seen significantly enhanced tumor control and cell killing with the addition of RT suggesting a synergistic interaction between an oncolytic virus and radiation in the treatment of human glioblastoma multiforme xenografts

  6. Regulation of YKL-40 expression during genotoxic or microenvironmental stress in human glioblastoma cells

    DEFF Research Database (Denmark)

    Junker, Nanna; Johansen, Julia S; Hansen, Lasse T

    2005-01-01

    YKL-40 is a 40 kDa secreted glycoprotein belonging to the family of 'mammalian chitinase-like proteins', but without chitinase activity. YKL-40 has a proliferative effect on fibroblasts, chondrocytes and synoviocytes, and chemotactic effect on endothelium and vascular smooth muscle cells. Elevated...... material from glioblastomas patients. We investigated the expression of YKL-40 in three human malignant glioma cell lines exposed to different types of stress. Whereas a polymerase chain reaction transcript was detectable in all three cell lines, only U87 produced measurable amounts of YKL-40 protein. In U...... is attenuated by p53. In contrast, both basic fibroblast growth factor and tumor necrosing factor-alpha repressed YKL-40. These are the first data on regulation of YKL-40 in cancer cells. Diverse types of stress resulted in YKL-40 elevation, which strongly supports an involvement of YKL-40 in the malignant...

  7. Human glioblastoma-associated microglia/monocytes express a distinct RNA profile compared to human control and murine samples.

    Science.gov (United States)

    Szulzewsky, Frank; Arora, Sonali; de Witte, Lot; Ulas, Thomas; Markovic, Darko; Schultze, Joachim L; Holland, Eric C; Synowitz, Michael; Wolf, Susanne A; Kettenmann, Helmut

    2016-08-01

    Glioblastoma (GBM) is the most aggressive brain tumor in adults. It is strongly infiltrated by microglia and peripheral monocytes that support tumor growth. In the present study we used RNA sequencing to compare the expression profile of CD11b(+) human glioblastoma-associated microglia/monocytes (hGAMs) to CD11b(+) microglia isolated from non-tumor samples. Hierarchical clustering and principal component analysis showed a clear separation of the two sample groups and we identified 334 significantly regulated genes in hGAMs. In comparison to human control microglia hGAMs upregulated genes associated with mitotic cell cycle, cell migration, cell adhesion, and extracellular matrix organization. We validated the expression of several genes associated with extracellular matrix organization in samples of human control microglia, hGAMs, and the hGAMs-depleted fraction via qPCR. The comparison to murine GAMs (mGAMs) showed that both cell populations share a significant fraction of upregulated transcripts compared with their respective controls. These genes were mostly related to mitotic cell cycle. However, in contrast to murine cells, human GAMs did not upregulate genes associated to immune activation. Comparison of human and murine GAMs expression data to several data sets of in vitro-activated human macrophages and murine microglia showed that, in contrast to mGAMs, hGAMs share a smaller overlap to these data sets in general and in particular to cells activated by proinflammatory stimulation with LPS + INFγ or TNFα. Our findings provide new insights into the biology of human glioblastoma-associated microglia/monocytes and give detailed information about the validity of murine experimental models. GLIA 2016 GLIA 2016;64:1416-1436. © 2016 Wiley Periodicals, Inc.

  8. Extracts of Artocarpus communis Induce Mitochondria-Associated Apoptosis via Pro-oxidative Activity in Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Chiang-Wen Lee

    2018-05-01

    Full Text Available Glioblastoma multiforme (GBM is an extremely aggressive and devastating malignant tumor in the central nervous system. Its incidence is increasing and the prognosis is poor. Artocarpin is a natural prenylated flavonoid with various anti-inflammatory and anti-tumor properties. Studies have shown that artocarpin is associated with cell death of primary glioblastoma cells. However, the in vivo effects and the cellular and molecular mechanisms modulating the anticancer activities of artocarpin remain unknown. In this study, we demonstrated that treating the glioblastoma cell lines U87 and U118 cells with artocarpin induced apoptosis. Artocarpin-induced apoptosis is associated with caspase activation and poly (ADP-ribose polymerase (PARP cleavage and is mediated by the mitochondrial pathway. This is associated with mitochondrial depolarization, mitochondrial-derived reactive oxidative species (ROS production, cytochrome c release, Bad and Bax upregulations, and Bcl-2 downregulation. Artocarpin induced NADPH oxidase/ROS generation plays an important role in the mitochondrial pathway activation. Furthermore, we found artocarpin-induced ROS production in mitochondria is associated with Akt- and ERK1/2 activation. After treatment with artocarpin, ROS causes PI3K/Akt/ERK1/2-induced cell death of these tumor cells. These observations were further verified by the results from the implantation of both U87 and U118 cells into in vivo mouse. In conclusion, our findings suggest that artocarpin induces mitochondria-associated apoptosis of glioma cells, suggesting that artocarpine can be a potential chemotherapeutic agent for future GBM treatment.

  9. Histology-Based Expression Profiling Yields Novel Prognostic Markers in Human Glioblastoma

    Science.gov (United States)

    Dong, Shumin; Nutt, Catherine L.; Betensky, Rebecca A.; Stemmer-Rachamimov, Anat O.; Denko, Nicholas C.; Ligon, Keith L.; Rowitch, David H.; Louis, David N.

    2006-01-01

    Although the prognosis for patients with glioblastoma is poor, survival is variable, with some patients surviving longer than others. For this reason, there has been longstanding interest in the identi-fication of prognostic markers for glioblastoma. We hypothesized that specific histologic features known to correlate with malignancy most likely express molecules that are directly related to the aggressive behavior of these tumors. We further hypothesized that such molecules could be used as biomarkers to predict behavior in a manner that might add prognostic power to sole histologic observation of the feature. We reasoned that perinecrotic tumor cell palisading, which denotes the most aggressive forms of malignant gliomas, would be a striking histologic feature on which to test this hypothesis. We therefore used laser capture microdissection and oligonucleotide arrays to detect molecules differentially expressed in perinecrotic palisades. A set of RNAs (including POFUT2, PTDSR, PLOD2, ATF5, and HK2) that were differentially expressed in 3 initially studied, micro-dissected glioblastomas also provided prognostic information in an independent set of 28 glioblastomas that did not all have perinecrotic palisades. On validation in a second, larger independent series, this approach could be applied to other human glioma types to derive tissue biomarkers that could offer ancillary prognostic and predictive information alongside standard histopathologic examination. PMID:16254489

  10. Saponin B, a novel cytostatic compound purified from Anemone taipaiensis, induces apoptosis in a human glioblastoma cell line.

    Science.gov (United States)

    Wang, Yuangang; Tang, Haifeng; Zhang, Yun; Li, Juan; Li, Bo; Gao, Zhenhui; Wang, Xiaoyang; Cheng, Guang; Fei, Zhou

    2013-11-01

    Glioblastoma multiforme (GBM) is one of the most common malignant brain tumors. Saponin B, a novel compound isolated from the medicinal plant, Anemone taipaiensis, has been found to have a strong time- and dose-dependent cytostatic effect on human glioma cells and to suppress the growth of U87MG GBM cells. In this study, we investigated whether saponin B induces the apoptosis of glioblastoma cells and examined the underlying mechanism(s) of action of saponin B. Saponin B significantly suppressed U87MG cell proliferation. Flow cytometric analysis of DNA in the U87MG cells confirmed that saponin B blocked the cell cycle at the S phase. Furthermore, treatment of the U87MG cells with saponin B induced chromatin condensation and led to the formation of apoptotic bodies, as observed under a fluorescence microscope, and Annexin V/PI assay further suggested that phosphatidylserine (PS) externalization was apparent at higher drug concentrations. Treatment with saponin B activated the receptor-mediated pathway of apoptosis, as western blot analysis revealed the activation of Fas-l. Saponin B increased the Bax and caspase-3 ratio and decreased the protein expression of Bcl-2. The results from the present study demonstrate that the novel compound, saponin B, effectively induces the apoptosis of GBM cells and inhibits glioma cell growth and survival. Therefore, saponin B may be a potential candidate for the development of novel cancer therapeutics with antitumor activity against gliomas.

  11. Bee venom induces apoptosis and suppresses matrix metaloprotease-2 expression in human glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Mohsen Sisakht

    Full Text Available Abstract Glioblastoma is the most common malignant brain tumor representing with poor prognosis, therapy resistance and high metastasis rate. Increased expression and activity of matrix metalloproteinase-2, a member of matrix metalloproteinase family proteins, has been reported in many cancers including glioblastoma. Inhibition of matrix metalloproteinase-2 expression has resulted in reduced aggression of glioblastoma tumors in several reports. In the present study, we evaluated effect of bee venom on expression and activity of matrix metalloproteinase-2 as well as potential toxicity and apoptogenic properties of bee venom on glioblastoma cells. Human A172 glioblastoma cells were treated with increasing concentrations of bee venom. Then, cell viability, apoptosis, matrix metalloproteinase-2 expression, and matrix metalloproteinase-2 activity were measured using MMT assay, propidium iodide staining, real time-PCR, and zymography, respectively. The IC50 value of bee venom was 28.5 µg/ml in which it leads to decrease of cell viability and induction of apoptosis. Incubation with bee venom also decreased the expression of matrix metalloproteinase-2 in this cell line (p < 0.05. In zymography, there was a reverse correlation between bee venom concentration and total matrix metalloproteinase-2 activity. Induction of apoptosis as well as inhibition of matrix metalloproteinase-2 activity and expression can be suggested as molecular mechanisms involved in cytotoxic and antimetastatic effects of bee venom against glioblastoma cells.

  12. HDAC4 and HDAC6 sustain DNA double strand break repair and stem-like phenotype by promoting radioresistance in glioblastoma cells.

    Science.gov (United States)

    Marampon, Francesco; Megiorni, Francesca; Camero, Simona; Crescioli, Clara; McDowell, Heather P; Sferra, Roberta; Vetuschi, Antonella; Pompili, Simona; Ventura, Luca; De Felice, Francesca; Tombolini, Vincenzo; Dominici, Carlo; Maggio, Roberto; Festuccia, Claudio; Gravina, Giovanni Luca

    2017-07-01

    The role of histone deacetylase (HDAC) 4 and 6 in glioblastoma (GBM) radioresistance was investigated. We found that tumor samples from 31 GBM patients, who underwent temozolomide and radiotherapy combined treatment, showed HDAC4 and HDAC6 expression in 93.5% and 96.7% of cases, respectively. Retrospective clinical data analysis demonstrated that high-intensity HDAC4 and/or HDAC6 immunostaining was predictive of poor clinical outcome. In vitro experiments revealed that short hairpin RNA-mediated silencing of HDAC4 or HDAC6 radiosensitized U87MG and U251MG GBM cell lines by promoting DNA double-strand break (DSBs) accumulation and by affecting DSBs repair molecular machinery. We found that HDAC6 knock-down predisposes to radiation therapy-induced U251MG apoptosis- and U87MG autophagy-mediated cell death. HDAC4 silencing promoted radiation therapy-induced senescence, independently by the cellular context. Finally, we showed that p53 WT expression contributed to the radiotherapy lethal effects and that HDAC4 or HDAC6 sustained GBM stem-like radioresistant phenotype. Altogether, these observations suggest that HDAC4 and HDAC6 are guardians of irradiation-induced DNA damages and stemness, thus promoting radioresistance, and may represent potential prognostic markers and therapeutic targets in GBM. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Impact of anemia prevention by recombinant human erythropoietin on the sensitivity of xenografted glioblastomas to fractionated irradiation

    International Nuclear Information System (INIS)

    Stueben, G.; Poettgen, C.; Knuehmann, K.; Sack, H.; Stuschke, M.; Thews, O.; Vaupel, P.

    2003-01-01

    Background: Pronounced oxygen deficiency in tumors which might be caused by a diminished oxygen transport capacity of the blood (e.g., in anemia) reduces the efficacy of ionizing radiation. The aim of this study was to analyze whether anemia prevention by recombinant human erythropoietin (rHuEPO) affects the radiosensitivity of human glioblastoma xenografts during fractionated irradiation. Material and Methods: Anemia was induced by total body irradiation (TBI, 2 x 4 Gy) of mice prior to tumor implantation into the subcutis of the hind leg. In one experimental group, the development of anemia was prevented by rHuEPO (750 U/kg s.c.) given three times weekly starting 10 days prior to TBI. 13 days after tumor implantation (tumor volume approx. 40 mm 3 ), fractionated irradiation (4 x 7 Gy, one daily fraction) of the glioblastomas was performed resulting in a growth delay with subsequent regrowth of the tumors. Results: Compared to nonanemic control animals (hemoglobin concentration cHb = 14.7 g/dl), the growth delay in anemic mice (cHb = 9.9 g/dl) was significantly shorter (49 ± 5 days vs. 79 ± 4 days to reach four times the initial tumor volume) upon fractionated radiation. The prevention of anemia by rHuEPO treatment (cHb = 13.3 g/dl) resulted in a significantly prolonged growth delay (61 ± 5 days) compared to the anemia group, even though the growth inhibition found in control animals was not completely achieved. Conclusions: These data indicate that moderate anemia significantly reduces the efficacy of radiotherapy. Prevention of anemia with rHuEPO partially restores the radiosensitivity of xenografted glioblastomas to fractionated irradiation. (orig.)

  14. Anthelmintic drug ivermectin inhibits angiogenesis, growth and survival of glioblastoma through inducing mitochondrial dysfunction and oxidative stress

    International Nuclear Information System (INIS)

    Liu, Yingying; Fang, Shanshan; Sun, Qiushi; Liu, Bo

    2016-01-01

    Glioblastoma is one of the most vascular brain tumour and highly resistant to current therapy. Targeting both glioblastoma cells and angiogenesis may present an effective therapeutic strategy for glioblastoma. In our work, we show that an anthelmintic drug, ivermectin, is active against glioblastoma cells in vitro and in vivo, and also targets angiogenesis. Ivermectin significantly inhibits growth and anchorage-independent colony formation in U87 and T98G glioblastoma cells. It induces apoptosis in these cells through a caspase-dependent manner. Ivermectin significantly suppresses the growth of two independent glioblastoma xenograft mouse models. In addition, ivermectin effectively targets angiogenesis through inhibiting capillary network formation, proliferation and survival in human brain microvascular endothelial cell (HBMEC). Mechanistically, ivermectin decreases mitochondrial respiration, membrane potential, ATP levels and increases mitochondrial superoxide in U87, T98G and HBMEC cells exposed to ivermectin. The inhibitory effects of ivermectin are significantly reversed in mitochondria-deficient cells or cells treated with antioxidants, further confirming that ivermectin acts through mitochondrial respiration inhibition and induction of oxidative stress. Importantly, we show that ivermectin suppresses phosphorylation of Akt, mTOR and ribosomal S6 in glioblastoma and HBMEC cells, suggesting its inhibitory role in deactivating Akt/mTOR pathway. Altogether, our work demonstrates that ivermectin is a useful addition to the treatment armamentarium for glioblastoma. Our work also highlights the therapeutic value of targeting mitochondrial metabolism in glioblastoma. - Highlights: • Ivermectin is effective in glioblastoma cells in vitro and in vivo. • Ivermectin inhibits angiogenesis. • Ivermectin induces mitochondrial dysfunction and oxidative stress. • Ivermectin deactivates Akt/mTOR signaling pathway.

  15. 4-IBP, a σ1 Receptor Agonist, Decreases the Migration of Human Cancer Cells, Including Glioblastoma Cells, In Vitro and Sensitizes Them In Vitro and In Vivo to Cytotoxic Insults of Proapoptotic and Proautophagic Drugs

    Directory of Open Access Journals (Sweden)

    Veronique Mégalizzi

    2007-05-01

    Full Text Available Although the molecular function of cr receptors has not been fully defined and the natural ligand(s is still not known, there is increasing evidence that these receptors and their ligands might play a significant role in cancer biology. 4-(N-tibenzylpiperidin-4-yl-4iodobenzamide (4-IBP, a selective σ1, agonist, has been used to investigate whether this compound is able to modify: 1 in vitro the migration and proliferation of human cancer cells; 2 in vitro the sensitivity of human glioblastoma cells to cytotoxic drugs; and 3 in vivo in orthotopic glioblastoma and non-small cell lung carcinoma (NSCLC models the survival of mice coadministered cytotoxic agents. 4-IBP has revealed weak anti proliferative effects on human U373-MG glioblastoma and C32 melanoma cells but induced marked concentration-dependent decreases in the growth of human A549 NSCLC and PC3 prostate cancer cells. The compound was also significantly antimigratory in all four cancer cell lines. This may result, at least in U373-MG cells, from modifications to the actin cytoskeleton. 4-IBP modified the sensitivity of U373-MG cells in vitro to proapoptotic lomustin and proautophagic temozolomide, and markedly decreased the expression of two proteins involved in drug resistance: glucosylceramide synthase and Rho guanine nucleotide dissociation inhibitor. In vivo, 4-IBP increased the antitumor effects of temozolomide and irinotecan in immunodeficient mice that were orthotopically grafted with invasive cancer cells.

  16. Phenylbutyrate Sensitizes Human Glioblastoma Cells Lacking Wild-Type P53 Function to Ionizing Radiation

    International Nuclear Information System (INIS)

    Lopez, Carlos A.; Feng, Felix Y.; Herman, Joseph M.; Nyati, Mukesh K.; Lawrence, Theodore S.; Ljungman, Mats

    2007-01-01

    Purpose: Histone deacetylase (HDAC) inhibitors induce growth arrest, differentiation, and apoptosis in cancer cells. Phenylbutyrate (PB) is a HDAC inhibitor used clinically for treatment of urea cycle disorders. Because of its low cytotoxicity, cerebrospinal fluid penetration, and high oral bioavailability, we investigated PB as a potential radiation sensitizer in human glioblastoma cell lines. Methods and Materials: Four glioblastoma cell lines were selected for this study. Phenylbutyrate was used at a concentration of 2 mM, which is achievable in humans. Western blots were used to assess levels of acetylated histone H3 in tumor cells after treatment with PB. Flow cytometry was used for cell cycle analysis. Clonogenic assays were performed to assess the effect of PB on radiation sensitivity. We used shRNA against p53 to study the role of p53 in radiosensitization. Results: Treatment with PB alone resulted in hyperacetylation of histones, confirmed by Western blot analysis. The PB alone resulted in cytostatic effects in three cell lines. There was no evidence of G 1 arrest, increase in sub-G 1 fraction or p21 protein induction. Clonogenic assays showed radiosensitization in two lines harboring p53 mutations, with enhancement ratios (± SE) of 1.5 (± 0.2) and 1.3 (± 0.1), respectively. There was no radiopotentiating effect in two cell lines with wild-type p53, but knockdown of wild-type p53 resulted in radiosensitization by PB. Conclusions: Phenylbutyrate can produce p21-independent cytostasis, and enhances radiation sensitivity in p53 mutant human glioblastoma cells in vitro. This suggests the potential application of combined PB and radiotherapy in glioblastoma harboring mutant p53

  17. Adult, embryonic and fetal hemoglobin are expressed in human glioblastoma cells.

    Science.gov (United States)

    Emara, Marwan; Turner, A Robert; Allalunis-Turner, Joan

    2014-02-01

    Hemoglobin is a hemoprotein, produced mainly in erythrocytes circulating in the blood. However, non-erythroid hemoglobins have been previously reported in other cell types including human and rodent neurons of embryonic and adult brain, but not astrocytes and oligodendrocytes. Human glioblastoma multiforme (GBM) is the most aggressive tumor among gliomas. However, despite extensive basic and clinical research studies on GBM cells, little is known about glial defence mechanisms that allow these cells to survive and resist various types of treatment. We have shown previously that the newest members of vertebrate globin family, neuroglobin (Ngb) and cytoglobin (Cygb), are expressed in human GBM cells. In this study, we sought to determine whether hemoglobin is also expressed in GBM cells. Conventional RT-PCR, DNA sequencing, western blot analysis, mass spectrometry and fluorescence microscopy were used to investigate globin expression in GBM cell lines (M006x, M059J, M059K, M010b, U87R and U87T) that have unique characteristics in terms of tumor invasion and response to radiotherapy and hypoxia. The data showed that α, β, γ, δ, ζ and ε globins are expressed in all tested GBM cell lines. To our knowledge, we are the first to report expression of fetal, embryonic and adult hemoglobin in GBM cells under normal physiological conditions that may suggest an undefined function of those expressed hemoglobins. Together with our previous reports on globins (Ngb and Cygb) expression in GBM cells, the expression of different hemoglobins may constitute a part of series of active defence mechanisms supporting these cells to resist various types of treatments including chemotherapy and radiotherapy.

  18. Autotaxin inhibition with PF8380 enhances the radiosensitivity of human and murine glioblastoma cell lines

    Directory of Open Access Journals (Sweden)

    Sandeep R Bhave

    2013-09-01

    Full Text Available Purpose: Glioblastoma multiforme (GBM is an aggressive primary brain tumor that is radio-resistant and recurs despite aggressive surgery, chemo and radiotherapy. Autotaxin (ATX is over expressed in various cancers including GBM and is implicated in tumor progression, invasion, and angiogenesis. Using the ATX specific inhibitor, PF-8380, we studied ATX as a potential target to enhance radiosensitivity in GBM.Methods and Materials: Mouse GL-261 and Human U87MG cells were used as GBM cell models. Clonogenic survival assays and tumor transwell invasion assays were performed using PF-8380 to evaluate role of ATX in survival and invasion. Radiation dependent activation of Akt was analyzed by immunoblotting. Tumor induced angiogenesis was studied using the dorsal skin-fold model in Gl-261. Heterotopic mouse GL-261 tumors were used to evaluate the efficacy of PF-8380 as a radiosensitizer.Results: Pretreatment of GL-261 and U87-MG cells with 1µM PF-8380 followed by 4Gy irradiation resulted in decreased clonogenic survival, decreased migration (33% in GL-261;P = 0.002 and 17.9% in U87; P = 0.012 decreased invasion (35.6% in GL-261; P = 0.0037 and 31.8% in U87; P = 0.002, and attenuated radiation induced Akt phosphorylation. In the tumor window model inhibition of ATX abrogated radiation-induced tumor neovascularization (65%; P=0.011. In a heterotopic mouse GL-261 tumors untreated mice took 11.2 days to reach a tumor volume of 7000 mm3 , however combination of PF-8380 (10mg/kg with irradiation (5 fractions of 2Gy took more than 32 days to reach a tumor volume of 7000 mm3 .Conclusion: Inhibition of ATX by PF8380 led to decreased invasion and enhanced radiosensitization of glioma cells. Radiation induced activation of Akt was abrogated by inhibition of ATX. Furthermore, inhibition of ATX led to diminished tumor vascularity and delayed tumor growth. These results suggest that inhibition of ATX may ameliorate glioblastoma response to radiotherapy.

  19. Phenotype abnormality: 251 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available lant flowering stage in environment of long day length regimen in environment of long day length regimen htt... 251 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u757i delayed whole p

  20. Glioblastoma Inhibition by Cell Surface Immunoglobulin Protein EWI-2, In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Tatiana V. Kolesnikova

    2009-01-01

    Full Text Available EWI-2, a cell surface IgSF protein, is highly expressed in normal human brain but is considerably diminished in glioblastoma tumors and cell lines. Moreover, loss of EWI-2 expression correlated with a shorter survival time in human glioma patients, suggesting that EWI-2 might be a natural inhibitor of glioblastoma. In support of this idea, EWI-2 expression significantly impaired both ectopic and orthotopic tumor growth in nude mice in vivo. In vitro assays provided clues regarding EWI-2 functions. Expression of EWI-2 in T98G and/or U87-MG malignant glioblastoma cell lines failed to alter two-dimensional cell proliferation but inhibited glioblastoma colony formation in soft agar and caused diminished cell motility and invasion. At the biochemical level, EWI-2 markedly affects the organization of four molecules (tetraspanin proteins CD9 and CD81 and matrix metalloproteinases MMP-2 and MT1-MMP, which play key roles in the biology of astrocytes and gliomas. EWI-2 causes CD9 and CD81 to become more associated with each other, whereas CD81 and other tetraspanins become less associated with MMP-2 and MT1-MMP. We propose that EWI-2 inhibition of glioblastoma growth in vivo is at least partly explained by the capability of EWI-2 to inhibit growth and/or invasion in vitro. Underlying these functional effects, EWI-2 causes a substantial molecular reorganization of multiple molecules (CD81, CD9, MMP-2, and MT1-MMP known to affect proliferation and/or invasion of astrocytes and/or glioblastomas.

  1. Combinatorial therapy with adenoviral-mediated PTEN and a PI3K inhibitor suppresses malignant glioma cell growth in vitro and in vivo by regulating the PI3K/AKT signaling pathway.

    Science.gov (United States)

    Nan, Yang; Guo, Liyun; Song, Yunpeng; Wang, Le; Yu, Kai; Huang, Qiang; Zhong, Yue

    2017-08-01

    Glioblastoma is a highly invasive and challenging tumor of the central nervous system. The mutation/deletion of the tumor suppressor phosphatase and tensin homolog (PTEN) gene is the main genetic change identified in glioblastomas. PTEN plays a critical role in tumorigenesis and has been shown to be an important therapeutic target. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 is commonly used to inhibit glioma cell growth via regulation of the PI3K/AKT signaling pathway. In this study, we examined the growth inhibitory effects of a combinatorial therapy of adenoviral-mediated PTEN (Ad-PTEN) and LY294002 on LN229 and U251 glioma cells in vitro and on tumor xenografts in vivo. In vitro, LN229 and U251 glioma cells were treated by combinatorial therapy with Ad-PTEN and LY294002. The growth ability was determined by MTT assay. The cell cycle distribution was analyzed by flow cytometry. Cell invasive ability was analyzed by transwell invasion assay and cell apoptosis analysis via FITC-Annexin V analysis. In vivo, U251 subcutaneous glioblastoma xenograft was used to assay anti-tumor effect of combinatorial therapy with Ad-PTEN and LY294002 by mean volume of tumors, immunohistochemistry and TUNEL method. The combinatorial treatment clearly suppressed cell proliferation, arrested the cell cycle, reduced cell invasion and promoted cell apoptosis compared with the Ad-PTEN or LY294002 treatment alone. The treatment worked by inhibiting the PI3K/AKT pathway. In addition, the growth of U251 glioma xenografts treated with the combination of Ad-PTEN and LY294002 was significantly inhibited compared with those treated with Ad-PTEN or LY294002 alone. Our data indicated that the combination of Ad-PTEN and LY294002 effectively suppressed the malignant growth of human glioma cells in vitro and in tumor xenografts, suggesting a promising new approach for glioma gene therapy that warrants further investigation.

  2. 37 CFR 251.71 - Commencement of proceedings.

    Science.gov (United States)

    2010-07-01

    ... PROCEDURE Royalty Fee Distribution Proceedings § 251.71 Commencement of proceedings. (a) Cable. In the case of royalty fees collected under the cable compulsory license (17 U.S.C. 111), any person claiming to... royalty fees collected under the satellite carrier compulsory license (17 U.S.C. 119), any person claiming...

  3. Long non-coding RNA taurine upregulated 1 enhances tumor-induced angiogenesis through inhibiting microRNA-299 in human glioblastoma.

    Science.gov (United States)

    Cai, H; Liu, X; Zheng, J; Xue, Y; Ma, J; Li, Z; Xi, Z; Li, Z; Bao, M; Liu, Y

    2017-01-19

    Angiogenesis is one of the critical biological elements affecting the development and progression of cancer. Long non-coding RNAs (lncRNAs) are important regulators and aberrantly expressed in various types of human cancer. Our previous studies indicated that lncRNA taurine upregulated 1 (TUG1) implicated in the regulation of blood-tumor barrier permeability; however, its role in glioblastoma angiogenesis still unclear. Here we demonstrated that TUG1 was up-expressed in human glioblastoma tissues and glioblastoma cell lines. Knockdown of TUG1 remarkably suppressed tumor-induced endothelial cell proliferation, migration and tube formation as well as reducing spheroid-based angiogenesis ability in vitro, which are the critical steps for tumor angiogenesis. Besides, knockdown of TUG1 significantly increased the expression of mircroRNA-299 (miR-299), which was down-expressed in glioblastoma tissues and glioblastoma cell lines. Bioinformatics analysis and luciferase reporter assay revealed that TUG1 influenced tumor angiogenesis via directly binding to the miR-299 and there was a reciprocal repression between TUG1 and miR-299 in the same RNA-induced silencing complex. Moreover, knockdown of TUG1 reduced the expression of vascular endothelial growth factor A (VEGFA), which was defined as a functional downstream target of miR-299. In addition, knockdown of TUG1, shown in the in vivo studies, has effects on suppressing tumor growth, reducing tumor microvessel density and decreasing the VEGFA expression by upregulating miR-299 in xenograft glioblastoma model. Overall, the results demonstrated that TUG1 enhances tumor-induced angiogenesis and VEGF expression through inhibiting miR-299. Also, the inhibition of TUG1 could provide a novel therapeutic target for glioblastoma treatment.

  4. Three-dimensional Invasion of Human Glioblastoma Cells Remains Unchanged by X-ray and Carbon Ion Irradiation In Vitro

    Energy Technology Data Exchange (ETDEWEB)

    Eke, Iris; Storch, Katja; Kaestner, Ina; Vehlow, Anne [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Faethe, Christina; Mueller-Klieser, Wolfgang [Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz (Germany); Taucher-Scholz, Gisela [Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt (Germany); Temme, Achim; Schackert, Gabriele [Section of Experimental Neurosurgery/Tumor Immunology, Department of Neurosurgery, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Cordes, Nils, E-mail: Nils.Cordes@Oncoray.de [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Department of Radiation Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany)

    2012-11-15

    Purpose: Cell invasion represents one of the major determinants that treatment has failed for patients suffering from glioblastoma. Contrary findings have been reported for cell migration upon exposure to ionizing radiation. Here, the migration and invasion capability of glioblastoma cells on and in collagen type I were evaluated upon irradiation with X-rays or carbon ions. Methods and Materials: Migration on and invasion in collagen type I were evaluated in four established human glioblastoma cell lines exposed to either X-rays or carbon ions. Furthermore, clonogenic radiation survival, proliferation (5-bromo-2-deoxyuridine positivity), DNA double-strand breaks ({gamma}H2AX/53BP1-positive foci), and expression of invasion-relevant proteins (eg, {beta}1 integrin, FAK, MMP2, and MMP9) were explored. Migration and invasion assays for primary glioblastoma cells also were carried out with X-ray irradiation. Results: Neither X-ray nor carbon ion irradiation affected glioblastoma cell migration and invasion, a finding similarly observed in primary glioblastoma cells. Intriguingly, irradiated cells migrated unhampered, despite DNA double-strand breaks and reduced proliferation. Clonogenic radiation survival was increased when cells had contact with extracellular matrix. Specific inhibition of the {beta}1 integrin or proliferation-associated signaling molecules revealed a critical function of JNK, PI3K, and p38 MAPK in glioblastoma cell invasion. Conclusions: These findings indicate that X-rays and carbon ion irradiation effectively reduce proliferation and clonogenic survival without modifying the migration and invasion ability of glioblastoma cells in a collagen type I environment. Addition of targeted agents against members of the MAPK and PI3K signaling axis to conventional chemoradiation therapy seems potentially useful to optimize glioblastoma therapy.

  5. Identification of a novel antagonist of the ErbB1 receptor capable of inhibiting migration of human glioblastoma cells

    DEFF Research Database (Denmark)

    Staberg, Mikkel; Riemer, Christian; Xu, Ruodan

    2013-01-01

    B1 targeting peptide, termed Herfin-1, was designed based on a model of the tertiary structure of the EGF-EGFR ternary complex. The binding kinetics of this peptide were determined employing surface plasmon resonance analyses. ErbB1-4 expression and phosphorylation in human glioblastoma cell lines U...... processing. RESULTS: The present study shows that Herfin-1 functions as an ErbB1 antagonist. It binds to the extracellular domain of ErbB1 with a KD value of 361 nM. In U87 and U118 cells, both expressing high levels of ErbB1, Herfin-1 inhibits EGF-induced ErbB1 phosphorylation and cell migration....... Additionally, Herfin-1 was found to increase neurite outgrowth in cerebellar granule neurons, likely through the inhibition of a sustained weak ErbB1 activation. CONCLUSIONS: Targeting the ErbB1 receptor dimerization interface is a promising strategy to inhibit receptor activation in ErbB1-expressing glioma...

  6. Polish natural bee honeys are anti-proliferative and anti-metastatic agents in human glioblastoma multiforme U87MG cell line.

    Directory of Open Access Journals (Sweden)

    Justyna Moskwa

    Full Text Available Honey has been used as food and a traditional medicament since ancient times. However, recently many scientists have been concentrating on the anti-oxidant, anti-proliferative, anti-inflammatory and other properties of honey. In this study, we investigated for the first time an anticancer effect of different honeys from Poland on tumor cell line - glioblastoma multiforme U87MG. Anti-proliferative activity of honeys and its interferences with temozolomide were determined by a cytotoxicity test and DNA binding by [H3]-thymidine incorporation. A gelatin zymography was used to conduct an evaluation of metalloproteinases (MMP-2 and MMP-9 expression in U87MG treatment with honey samples. The honeys were previously tested qualitatively (diastase activity, total phenolic content, lead and cadmium content. The data demonstrated that the examined honeys have a potent anti-proliferative effect on U87MG cell line in a time- and dose-dependent manner, being effective at concentrations as low as 0.5% (multifloral light honey - viability 53% after 72 h of incubation. We observed that after 48 h, combining honey with temozolomide showed a significantly higher inhibitory effect than the samples of honey alone. We observed a strong inhibition of MMP-2 and MMP-9 for the tested honeys (from 20 to 56% and from 5 to 58% compared to control, respectively. Our results suggest that Polish honeys have an anti-proliferative and anti-metastatic effect on U87MG cell line. Therefore, natural bee honey can be considered as a promising adjuvant treatment for brain tumors.

  7. [Screening serum response special antibodies of U251 cell line from surface display phage antibody library].

    Science.gov (United States)

    Yu, Min; Tan, De-Yong; Qian, Wei; Lai, Jian-Hua; Sun, Gui-Lin

    2004-05-01

    U251 cell is a sensitive cell line to serum, which stops at G0 phase of cell cycle in no-serum medium, and recovers growth when the serum is added into no-serum medium. The cell can express corresponding proteins in different phase of cell cycle. Therefore it is very signification for the study of cell cycle regulation mechanism that explores these proteins. In this paper, the mouse antibody phage display library was added into the bottle in which the serum starvation U251 cells had been cultured, and the special antibody phages were absorbed. Then the absorbed antibody phages were amplified by adding E. coli TG1 and helper phage M13K07. Amplified antibody phages were added into bottle in which the serum cultured cell after serum starvation (follow named as serum recovered cells) were incubated, so that the cell absorbed the no-special antibody phages for the serum starvation cell and the special antibody phages were in supernatant. The remaining no-special antibody phages in the supernatant were discarded by repeating above program 3-4 times. The pure special antibody phages were gotten, and amplified by adding the host cell E. coli TG1 and helper phage M13K07. Then the host bacterium infected special antibody phage was spread on the plate medium with ampicillin, and the monoclonal antibody phages were gotten. Using same as above program, the monoclonal antibody phages absorbed specially for serum recovered U251 cells were obtained when the serum recovered cells instead of serum starvation cells and serum starvation cells instead of serum recovered cells. In this study, ninety-six positive monoclonal antibody phages that absorbed specially the serum starvation cells and eighty-two positive monoclonal antibody phages that absorbed specially the serum recovered cells were obtained. By using cell immunochemistry assay, two special signification antibodies were obtained. one (No.11) was the strong response in serum starvation cells, the other (No.2) was the strong

  8. Wnt/β-catenin pathway involvement in ionizing radiation-induced invasion of U87 glioblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Zhen [Huazhong University of Science and Technology, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Wuhan (China); Zhou, Lin [Huazhong University of Science and Technology, Department of Histoembryology, Tongji Medical College, Wuhan (China); Han, Na; Zhang, Mengxian [Huazhong University of Science and Technology, Department of Oncology, Tongji Hospital, Tongji Medical College, Wuhan (China); Lyu, Xiaojuan [Huazhong University of Science and Technology, Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Wuhan (China)

    2015-08-15

    Radiotherapy has been reported to promote the invasion of glioblastoma cells; however, the underlying mechanisms remain unclear. Here, we investigated the role of the Wnt/β-catenin pathway in radiation-induced invasion of glioblastoma cells. U87 cells were irradiated with 3 Gy or sham irradiated in the presence or absence of the Wnt/β-catenin pathway inhibitor XAV 939. Cell invasion was determined by an xCELLigence real-time cell analyser and matrigel invasion assays. The intracellular distribution of β-catenin in U87 cells with or without irradiation was examined by immunofluorescence and Western blotting of nuclear fractions. We next investigated the effect of irradiation on Wnt/β-catenin pathway activity using TOP/FOP flash luciferase assays and quantitative polymerase chain reaction analysis of β-catenin target genes. The expression levels and activities of two target genes, matrix metalloproteinase (MMP)-2 and MMP-9, were examined further by Western blotting and zymography. U87 cell invasiveness was increased significantly by ionizing radiation. Interestingly, ionizing radiation induced nuclear translocation and accumulation of β-catenin. Moreover, we found increased β-catenin/TCF transcriptional activities, followed by up-regulation of downstream genes in the Wnt/β-catenin pathway in irradiated U87 cells. Importantly, inhibition of the Wnt/β-catenin pathway by XAV 939, which promotes degradation of β-catenin, significantly abrogated the pro-invasion effects of irradiation. Mechanistically, XAV 939 suppressed ionizing radiation-triggered up-regulation of MMP-2 and MMP-9, and inhibited the activities of these gelatinases. Our data demonstrate a pivotal role of the Wnt/β-catenin pathway in ionizing radiation-induced invasion of glioblastoma cells, and suggest that targeting β-catenin is a promising therapeutic approach to overcoming glioma radioresistance. (orig.) [German] Studien haben gezeigt, dass eine Strahlentherapie die Invasivitaet von

  9. Conditioned Media from Human Adipose Tissue-Derived Mesenchymal Stem Cells and Umbilical Cord-Derived Mesenchymal Stem Cells Efficiently Induced the Apoptosis and Differentiation in Human Glioma Cell Lines In Vitro

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2014-01-01

    Full Text Available Human mesenchymal stem cells (MSCs have an intrinsic property for homing towards tumor sites and can be used as tumor-tropic vectors for tumor therapy. But very limited studies investigated the antitumor properties of MSCs themselves. In this study we investigated the antiglioma properties of two easily accessible MSCs, namely, human adipose tissue-derived mesenchymal stem cells (ASCs and umbilical cord-derived mesenchymal stem cells (UC-MSCs. We found (1 MSC conditioned media can significantly inhibit the growth of human U251 glioma cell line; (2 MSC conditioned media can significantly induce apoptosis in human U251 cell line; (3 real-time PCR experiments showed significant upregulation of apoptotic genes of both caspase-3 and caspase-9 and significant downregulation of antiapoptotic genes such as survivin and XIAP after MSC conditioned media induction in U 251 cells; (4 furthermore, MSCs conditioned media culture induced rapid and complete differentiation in U251 cells. These results indicate MSCs can efficiently induce both apoptosis and differentiation in U251 human glioma cell line. Whereas UC-MSCs are more efficient for apoptosis induction than ASCs, their capability of differentiation induction is not distinguishable from each other. Our findings suggest MSCs themselves have favorable antitumor characteristics and should be further explored in future glioma therapy.

  10. Adhesion signaling promotes protease‑driven polyploidization of glioblastoma cells.

    Science.gov (United States)

    Mercapide, Javier; Lorico, Aurelio

    2014-11-01

    An increase in ploidy (polyploidization) causes genomic instability in cancer. However, the determinants for the increased DNA content of cancer cells have not yet been fully elucidated. In the present study, we investigated whether adhesion induces polyploidization in human U87MG glioblastoma cells. For this purpose, we employed expression vectors that reported transcriptional activation by signaling networks implicated in cancer. Signaling activation induced by intercellular integrin binding elicited both extracellular signal‑regulated kinase (ERK) and Notch target transcription. Upon the prolonged activation of both ERK and Notch target transcription induced by integrin binding to adhesion protein, cell cultures accumulated polyploid cells, as determined by cell DNA content distribution analysis and the quantification of polynucleated cells. This linked the transcriptional activation induced by integrin adhesion to the increased frequency of polyploidization. Accordingly, the inhibition of signaling decreased the extent of polyploidization mediated by protease‑driven intracellular invasion. Therefore, the findings of this study indicate that integrin adhesion induces polyploidization through the stimulation of glioblastoma cell invasiveness.

  11. Elevated chemokine CC-motif receptor-like 2 (CCRL2) promotes cell migration and invasion in glioblastoma.

    Science.gov (United States)

    Yin, Fengqiong; Xu, Zhenhua; Wang, Zifeng; Yao, Hong; Shen, Zan; Yu, Fang; Tang, Yiping; Fu, Dengli; Lin, Sheng; Lu, Gang; Kung, Hsiang-Fu; Poon, Wai Sang; Huang, Yunchao; Lin, Marie Chia-Mi

    2012-12-14

    Chemokine CC-motif receptor-like 2 (CCRL2) is a 7-transmembrane G protein-coupled receptor which plays a key role in lung dendritic cell trafficking to peripheral lymph nodes. The function and expression of CCRL2 in cancer is not understood at present. Here we report that CCRL2 expression level is elevated in human glioma patient samples and cell lines. The magnitude of increase is positively associated with increasing tumor grade, with the highest level observed in grade IV glioblastoma. By gain-of-function and loss-of-function studies, we further showed that CCRL2 did not regulate the growth of human glioblatoma U87 and U373 cells. Importantly, we demonstrated that over-expression of CCRL2 significantly enhanced the migration rate and invasiveness of the glioblastoma cells. Taken together, these results suggest for the first time that elevated CCRL2 in glioma promotes cell migration and invasion. The potential roles of CCRL2 as a novel therapeutic target and biomarker warrant further investigations. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. 211At-α-dose dependence of poly-ADP-ribosylation of human glioblastoma cells in vitro. Suitability in cancer therapy?

    International Nuclear Information System (INIS)

    Schneeweiss, F.H.A.

    1999-01-01

    Aim: It was intended to test the biological response (poly-ADP-ribosylation of cellular proteins) of α-particles from extracellular 211 At for enhanced damage to human glioblastoma cells in vitro and to discuss its suitability for potential application in therapy of high-grade gliomas. Materials and Methods: Confluent cultures of human glioblastoma cells were exposed to different doses of α-radiations from homogeneously distributed extracellular 211 At. Cellular poly-ADP-ribosylation of all proteins including histones was monitored since it is an indirect but sensitive indicator of chromatin damage and putative repair in both normal and malignant mammalian cells. Results: A significant diminution (average 85.6%) in poly-ADP-ribosylation of total cellular proteins relative to that for non-irradiated glioblastoma cells was observed following 0.025 to 1.0 Gy α-radiations. In the dose range of 0.0025 to 0.01 Gy there was an increase with a maximum value of approximately 119.0% at 0.0025 Gy. Below 0.0025 Gy no change in poly-ADP-ribosylation was observed. Conclusions: Level of cellular poly-ADP-ribosylation of proteins at 0.025 to 1.0 Gy of α-radiation dose from 211 At appears to cause enhanced damage by creating molecular conditions which are not conductive to repair of DNA damages in human glioblastoma cells in vitro. Therefore, it is assumed that clinical application of 211 At at least in this dose range might enhance clinical efficacy in radiotherapy of cancer. (orig.) [de

  13. Ultrastructural characterization of primary cilia in pathologically characterized human glioblastoma multiforme (GBM) tumors.

    Science.gov (United States)

    Moser, Joanna J; Fritzler, Marvin J; Rattner, Jerome B

    2014-01-01

    Primary cilia are non-motile sensory cytoplasmic organelles that are involved in cell cycle progression. Ultrastructurally, the primary cilium region is complex, with normal ciliogenesis progressing through five distinct morphological stages in human astrocytes. Defects in early stages of ciliogenesis are key features of astrocytoma/glioblastoma cell lines and provided the impetus for the current study which describes the morphology of primary cilia in molecularly characterized human glioblastoma multiforme (GBM) tumors. Seven surgically resected human GBM tissue samples were molecularly characterized according to IDH1/2 mutation status, EGFR amplification status and MGMT promoter methylation status and were examined for primary cilia expression and structure using indirect immunofluorescence and electron microscopy. We report for the first time that primary cilia are disrupted in the early stages of ciliogenesis in human GBM tumors. We confirm that immature primary cilia and basal bodies/centrioles have aberrant ciliogenesis characteristics including absent paired vesicles, misshaped/swollen vesicular hats, abnormal configuration of distal appendages, and discontinuity of centriole microtubular blades. Additionally, the transition zone plate is able to form in the absence of paired vesicles on the distal end of the basal body and when a cilium progresses beyond the early stages of ciliogenesis, it has electron dense material clumped along the transition zone and a darkening of the microtubules at the proximal end of the cilium. Primary cilia play a role in a variety of human cancers. Previously primary cilia structure was perturbed in cultured cell lines derived from astrocytomas/glioblastomas; however there was always some question as to whether these findings were a cell culture phenomena. In this study we confirm that disruptions in ciliogenesis at early stages do occur in GBM tumors and that these ultrastructural findings bear resemblance to those previously

  14. Sprouty2 enhances the tumorigenic potential of glioblastoma cells.

    Science.gov (United States)

    Park, Jong-Whi; Wollmann, Guido; Urbiola, Carles; Fogli, Barbara; Florio, Tullio; Geley, Stephan; Klimaschewski, Lars

    2018-02-23

    Sprouty2 (SPRY2), a feedback regulator of receptor tyrosine kinase (RTK) signaling, has been shown to be associated with drug resistance and cell proliferation in glioblastoma (GBM), but the underlying mechanisms are still poorly defined. SPRY2 expression and survival patterns of patients with gliomas were analyzed using publicly available databases. Effects of RNA interference targeting SPRY2 on cellular proliferation in established GBM or patient-derived GBM stemlike cells were examined. Loss- or gain-of-function of SPRY2 to regulate the tumorigenic capacity was assessed in both intracranial and subcutaneous xenografts. SPRY2 was found to be upregulated in GBM, which correlated with reduced survival in GBM patients. SPRY2 knockdown significantly impaired proliferation of GBM cells but not of normal astrocytes. Silencing of SPRY2 increased epidermal growth factor-induced extracellular signal-regulated kinase (ERK) and Akt activation causing premature onset of DNA replication, increased DNA damage, and impaired proliferation, suggesting that SPRY2 suppresses DNA replication stress. Abrogating SPRY2 function strongly inhibited intracranial tumor growth and led to significantly prolonged survival of U87 xenograft-bearing mice. In contrast, SPRY2 overexpression promoted tumor propagation of low-tumorigenic U251 cells. The present study highlights an antitumoral effect of SPRY2 inhibition that is based on excessive activation of ERK signaling and DNA damage response, resulting in reduced cell proliferation and increased cytotoxicity, proposing SPRY2 as a promising pharmacological target in GBM patients.

  15. The Human Glioblastoma Cell Culture Resource: Validated Cell Models Representing All Molecular Subtypes

    Directory of Open Access Journals (Sweden)

    Yuan Xie

    2015-10-01

    Full Text Available Glioblastoma (GBM is the most frequent and malignant form of primary brain tumor. GBM is essentially incurable and its resistance to therapy is attributed to a subpopulation of cells called glioma stem cells (GSCs. To meet the present shortage of relevant GBM cell (GC lines we developed a library of annotated and validated cell lines derived from surgical samples of GBM patients, maintained under conditions to preserve GSC characteristics. This collection, which we call the Human Glioblastoma Cell Culture (HGCC resource, consists of a biobank of 48 GC lines and an associated database containing high-resolution molecular data. We demonstrate that the HGCC lines are tumorigenic, harbor genomic lesions characteristic of GBMs, and represent all four transcriptional subtypes. The HGCC panel provides an open resource for in vitro and in vivo modeling of a large part of GBM diversity useful to both basic and translational GBM research.

  16. Xenograft transplantation of human malignant astrocytoma cells into immunodeficient rats: an experimental model of glioblastoma.

    Science.gov (United States)

    Miura, Flávio Key; Alves, Maria Jose Ferreira; Rocha, Mussya Cisotto; da Silva, Roseli; Oba-Shinjo, Sueli Mieko; Marie, Suely Kazue Nagahashi

    2010-03-01

    Astrocytic gliomas are the most common intracranial central nervous system neoplasias, accounting for about 60% of all primary central nervous system tumors. Despite advances in the treatment of gliomas, no effective therapeutic approach is yet available; hence, the search for a more realistic model to generate more effective therapies is essential. To develop an experimental malignant astrocytoma model with the characteristics of the human tumor. Primary cells from subcutaneous xenograft tumors produced with malignant astrocytoma U87MG cells were inoculated intracerebrally by stereotaxis into immunosuppressed (athymic) Rowett rats. All four injected animals developed non-infiltrative tumors, although other glioblastoma characteristics, such as necrosis, pseudopalisading cells and intense mitotic activity, were observed. A malignant astrocytoma intracerebral xenograft model with poorly invasive behavior was achieved in athymic Rowett rats. Tumor invasiveness in an experimental animal model may depend on a combination of several factors, including the cell line used to induce tumor formation, the rat strains and the status of the animal's immune system.

  17. Development of bioactive materials for glioblastoma therapy

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2016-09-01

    Full Text Available Glioblastoma is the most common and deadly human brain cancers. Unique barriers hinder the drug delivering pathway due to the individual position of glioblastoma, including blood-brain barrier and blood-brain tumor barrier. Numerous bioactive materials have been exploited and applied as the transvascular delivery carriers of therapeutic drugs. They promote site-specific accumulation and long term release of the encapsulated drugs at the tumor sites and reduce side effects with systemic delivery. And the delivery systems exhibit a certain extent of anti-glioblastoma effect and extend the median survival time. However, few of them step into the clinical trials. In this review, we will investigate the recent studies of bioactive materials for glioblastoma chemotherapy, including the inorganic materials, lipids and polymers. These bioactive materials construct diverse delivery vehicles to trigger tumor sites in brain intravenously. Herein, we exploit their functionality in drug delivery and discuss the deficiency for the featured tumors, to provide guidance for establishing optimized therapeutic drug formulation for anti-glioblastoma therapy and pave the way for clinical application.

  18. Mesenchymal stem cell-like properties of CD133+ glioblastoma initiating cells

    Science.gov (United States)

    Pavon, Lorena Favaro; Sibov, Tatiana Tais; de Oliveira, Daniela Mara; Marti, Luciana C.; Cabral, Francisco Romero; de Souza, Jean Gabriel; Boufleur, Pamela; Malheiros, Suzana M.F.; de Paiva Neto, Manuel A.; da Cruz, Edgard Ferreira; Chudzinski-Tavassi, Ana Marisa; Cavalheiro, Sérgio

    2016-01-01

    Glioblastoma is composed of dividing tumor cells, stromal cells and tumor initiating CD133+ cells. Recent reports have discussed the origin of the glioblastoma CD133+ cells and their function in the tumor microenvironment. The present work sought to investigate the multipotent and mesenchymal properties of primary highly purified human CD133+ glioblastoma-initiating cells. To accomplish this aim, we used the following approaches: i) generation of tumor subspheres of CD133+ selected cells from primary cell cultures of glioblastoma; ii) analysis of the expression of pluripotency stem cell markers and mesenchymal stem cell (MSC) markers in the CD133+ glioblastoma-initiating cells; iii) side-by-side ultrastructural characterization of the CD133+ glioblastoma cells, MSC and CD133+ hematopoietic stem cells isolated from human umbilical cord blood (UCB); iv) assessment of adipogenic differentiation of CD133+ glioblastoma cells to test their MSC-like in vitro differentiation ability; and v) use of an orthotopic glioblastoma xenograft model in the absence of immune suppression. We found that the CD133+ glioblastoma cells expressed both the pluripotency stem cell markers (Nanog, Mush-1 and SSEA-3) and MSC markers. In addition, the CD133+ cells were able to differentiate into adipocyte-like cells. Transmission electron microscopy (TEM) demonstrated that the CD133+ glioblastoma-initiating cells had ultrastructural features similar to those of undifferentiated MSCs. In addition, when administered in vivo to non-immunocompromised animals, the CD133+ cells were also able to mimic the phenotype of the original patient's tumor. In summary, we showed that the CD133+ glioblastoma cells express molecular signatures of MSCs, neural stem cells and pluripotent stem cells, thus possibly enabling differentiation into both neural and mesodermal cell types. PMID:27244897

  19. An anti-VEGF ribozyme embedded within the adenoviral VAI sequence inhibits glioblastoma cell angiogenic potential in vitro.

    Science.gov (United States)

    Ciafrè, Silvia Anna; Niola, Francesco; Wannenes, Francesca; Farace, Maria Giulia

    2004-01-01

    Vascular endothelial growth factor (VEGF) plays an important role in tumor angiogenesis, where it functions as one of the major angiogenic factors sustaining growth and draining catabolites. In this study, we developed an anti-VEGF ribozyme targeted to the 5' part of human VEGF mRNA. We endowed this ribozyme with an additional feature expected to improve its activity in vivo, by cloning it into a VAI transcriptional cassette. VAI is originally part of the adenovirus genome, and is characterized by high transcription rates, good stability due to its strong secondary structure and cytoplasmic localization. Transfection of U87 human glioblastoma cells with plasmid vectors encoding for this ribozyme resulted in a strong (-56%) reduction of VEGF secreted in the extracellular medium, indicating a good biological activity of the ribozyme. Moreover, this reduction in VEGF secretion had the important functional consequence of drastically diminishing the formation of tube-like structures of human umbilical vascular endothelial cells in a Matrigel in vitro angiogenesis assay. In conclusion, our VAI-embedded anti-VEGF ribozyme is a good inhibitor of angiogenesis in vitro, in a glioblastoma cell context. Thus, it may represent a useful tool for future applications in vivo, for antiangiogenic gene therapy of glioblastoma and of highly vascularized tumors. Copyright 2004 S. Karger AG, Basel

  20. Frequent Nek1 overexpression in human gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jun [School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai (China); Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Cai, Yu, E-mail: aihaozuqiu22@163.com [School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai (China); Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Liu, Pin [Med-X Research Institute, Shanghai Jiao Tong University, Shanghai (China); Zhao, Weiguo [Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China)

    2016-08-05

    Never in mitosis A (NIMA)-related kinase 1 (Nek1) regulates cell cycle progression to mitosis. Its expression and potential functions in human gliomas have not been studied. Here, our immunohistochemistry (IHC) assay and Western blot assay results showed that Nek1 expression was significantly upregulated in fresh and paraffin-embedded human glioma tissues. Its level in normal brain tissues was low. Nek1 overexpression in human gliomas was correlated with the proliferation marker (Ki-67), tumor grade, Karnofsky performance scale (KPS) and more importantly, patients’ poor survival. Further studies showed that Nek1 expression level was also increased in multiple human glioma cell lines (U251-MG, U87-MG, U118, H4 and U373). Significantly, siRNA-mediated knockdown of Nek1 inhibited glioma cell (U87-MG/U251-MG) growth. Nek1 siRNA also sensitized U87-MG/U251-MG cells to temozolomide (TMZ), causing a profound apoptosis induction and growth inhibition. The current study indicates Nek1 might be a novel and valuable oncotarget of glioma, it is important for glioma cell growth and TMZ-resistance. - Highlights: • Nek1 is upregulated in multiple human glioma tissues and cell lines. • Nek1 overexpression correlates with glioma grades and patients’ KPS score. • Nek1 overexpression correlates with patients’ poor overall survival. • siRNA knockdown of Nek1 inhibits glioma cell growth. • siRNA knockdown of Nek1 sensitizes human glioma cells to temozolomide.

  1. Frequent Nek1 overexpression in human gliomas

    International Nuclear Information System (INIS)

    Zhu, Jun; Cai, Yu; Liu, Pin; Zhao, Weiguo

    2016-01-01

    Never in mitosis A (NIMA)-related kinase 1 (Nek1) regulates cell cycle progression to mitosis. Its expression and potential functions in human gliomas have not been studied. Here, our immunohistochemistry (IHC) assay and Western blot assay results showed that Nek1 expression was significantly upregulated in fresh and paraffin-embedded human glioma tissues. Its level in normal brain tissues was low. Nek1 overexpression in human gliomas was correlated with the proliferation marker (Ki-67), tumor grade, Karnofsky performance scale (KPS) and more importantly, patients’ poor survival. Further studies showed that Nek1 expression level was also increased in multiple human glioma cell lines (U251-MG, U87-MG, U118, H4 and U373). Significantly, siRNA-mediated knockdown of Nek1 inhibited glioma cell (U87-MG/U251-MG) growth. Nek1 siRNA also sensitized U87-MG/U251-MG cells to temozolomide (TMZ), causing a profound apoptosis induction and growth inhibition. The current study indicates Nek1 might be a novel and valuable oncotarget of glioma, it is important for glioma cell growth and TMZ-resistance. - Highlights: • Nek1 is upregulated in multiple human glioma tissues and cell lines. • Nek1 overexpression correlates with glioma grades and patients’ KPS score. • Nek1 overexpression correlates with patients’ poor overall survival. • siRNA knockdown of Nek1 inhibits glioma cell growth. • siRNA knockdown of Nek1 sensitizes human glioma cells to temozolomide.

  2. Pluronic-based micelle encapsulation potentiates myricetin-induced cytotoxicity in human glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Tang XJ

    2016-10-01

    Full Text Available Xiang-Jun Tang,1,* Kuan-Ming Huang,1,* Hui Gui,1,* Jun-Jie Wang,2 Jun-Ti Lu,1 Long-Jun Dai,1,3 Li Zhang,1 Gang Wang2 1Department of Neurosurgery, TaiHe Hospital, Hubei University of Medicine, Shiyan, 2Department of Pharmaceutics, Shanghai Eighth People’s Hospital, Jiangsu University, Shanghai, People’s Republic of China; 3Department of Surgery, University of British Columbia, Vancouver, BC, Canada *These authors contributed equally to this work Abstract: As one of the natural herbal flavonoids, myricetin has attracted much research interest, mainly owing to its remarkable anticancer properties and negligible side effects. It holds great potential to be developed as an ideal anticancer drug through improving its bioavailability. This study was performed to investigate the effects of Pluronic-based micelle encapsulation on myricetin-induced cytotoxicity and the mechanisms underlying its anticancer properties in human glioblastoma cells. Cell viability was assessed using a methylthiazol tetrazolium assay and a real-time cell analyzer. Immunoblotting and quantitative reverse transcriptase polymerase chain reaction techniques were used for determining the expression levels of related molecules in protein and mRNA. The results indicated that myricetin-induced cytotoxicity was highly potentiated by the encapsulation of myricetin. Mitochondrial apoptotic pathway was demonstrated to be involved in myricetin-induced glioblastoma cell death. The epidermal growth factor receptor (EGFR/PI3K/Akt pathway located in the plasma membrane and cytosol and the RAS-ERK pathway located in mitochondria served as upstream and downstream targets, respectively, in myricetin-induced apoptosis. MiR-21 inhibitors interrupted the expression of EGFR, p-Akt, and K-Ras in the same fashion as myricetin-loaded mixed micelles (MYR-MCs and miR-21 expression were dose-dependently inhibited by MYR-MCs, indicating the interaction of miR-21 with MYR-MCs. This study provided evidence

  3. Expression of delta-catenin is associated with progression of human astrocytoma

    International Nuclear Information System (INIS)

    MingHao, Wang; Qianze, Dong; Di, Zhang; YunJie, Wang

    2011-01-01

    δ-Catenin (CTNND2), which encodes a scaffold protein in humans, has been found in a few malignancies. However, the expression pattern and contribution of δ-catenin to astrocytoma progression are unclear. We investigated δ-catenin expression in human astrocytoma samples and its function in astrocytoma cell lines using immunohistochemistry, siRNA knockdown, transfection, MTT, transwell migration and Rac1 pulldown techniques. δ-Catenin protein expression was detected in cytoplasm of astrocytoma cells by immunohistochemistry. Analysis showed that grade I astrocytoma (0%, 0/11) and glial cells from normal brain tissue exhibited negative staining. δ-Catenin expression was significantly higher in grade III-IV (35%, 29/84) compared to grade II astrocytoma cells (18%, 11/61); p < 0.01). In addition, CTNND2 overexpression promoted proliferation, invasion and Rac1 activity of U251 astrocytoma cells. Treatment of δ-catenin-transfected cells with a Rac1 inhibitor decreased Rac1 activity and invasion. δ-Catenin knockdown in U87 glioblastoma cell decreased cell proliferation, invasion and Rac1 activity. The results suggest that δ-catenin expression is associated with the malignant progression of astrocytoma and promotes astrocytoma cell invasion through upregulation of Rac1 activity. δ-Catenin expression levels may serve as a useful marker of the biological behavior of astrocytoma cells

  4. Osteopontin and splice variant expression level in human malignant glioma: Radiobiologic effects and prognosis after radiotherapy

    International Nuclear Information System (INIS)

    Güttler, Antje; Giebler, Maria; Cuno, Peter; Wichmann, Henri; Keßler, Jacqueline; Ostheimer, Christian; Söling, Ariane; Strauss, Christian; Illert, Jörg; Kappler, Matthias; Vordermark, Dirk; Bache, Matthias

    2013-01-01

    Background and purpose: We investigated the role of the hypoxia-associated secreted glycoprotein osteopontin (OPN) in the response of malignant glioma to radiotherapy by characterizing OPN and its splice variants in vitro and in patient material. Material and methods: The effect of siRNA knockdown of OPN splice variants on cellular and radiobiologic behavior was analyzed in U251MG cells using OpnS siRNA (inhibition of all OPN splice variants) and OpnAC siRNA (knockdown only of OPNa and OPNc). OPN and splice variant mRNA levels were quantified in archival material of 41 glioblastoma tumor samples. Plasma OPN was prospectively measured in 33 malignant glioma patients. Results: Inhibition of OPNa and OPNc (OpnAC) reduced clonogenic survival in U251MG cells but did not affect proliferation, migration or apoptosis. Knockdown of all OPN splice variants (OpnS) resulted in an even stronger inhibition of clonogenic survival, while cell proliferation and migration were reduced and rate of apoptosis was increased. Additional irradiation had additive effects with both siRNAs. Plasma OPN increased continuously in malignant glioma patients and was associated with poor survival. Conclusions: OPNb is partially able to compensate the effects of OPNa and OPNc knockdown in U251MG cells. High OPN plasma levels at the end of radiotherapy are associated with poor survival

  5. Mesothelin as a novel biomarker and immunotherapeutic target in human glioblastoma

    DEFF Research Database (Denmark)

    Liu, Zhenjiang; Rao, Martin; Poiret, Thomas

    2017-01-01

    Glioblastoma multiforme (GBM) presents the most malignant form of glioma, with a 5-year survival rate below 3% despite standard therapy. Novel immune-based therapies in improving treatment outcomes in GBM are therefore warranted. Several molecularly defined targets have been identified mediating...... anti-GBM cellular immune responses. Mesothelin is a tumor-associated antigen (TAA) which is expressed in several solid tumors with different histology. Here, we report the immunological significance of mesothelin in human malignant glioma. Expression of mature, surface-bound mesothelin protein...... was found to bein human GBM defined by immunofluorescence microscopy, and on freshly isolated, single cell suspension of GBM tumor cells and GBM tumor cell lines, determined by based on flow cytometric analysis. Peripheral blood (PB) from patients with GBM, stimulated with mesothelin peptides and IL-2, IL...

  6. The orthotopic xenotransplant of human glioblastoma successfully recapitulates glioblastoma-microenvironment interactions in a non-immunosuppressed mouse model.

    Science.gov (United States)

    Garcia, Celina; Dubois, Luiz Gustavo; Xavier, Anna Lenice; Geraldo, Luiz Henrique; da Fonseca, Anna Carolina Carvalho; Correia, Ana Helena; Meirelles, Fernanda; Ventura, Grasiella; Romão, Luciana; Canedo, Nathalie Henriques Silva; de Souza, Jorge Marcondes; de Menezes, João Ricardo Lacerda; Moura-Neto, Vivaldo; Tovar-Moll, Fernanda; Lima, Flavia Regina Souza

    2014-12-08

    Glioblastoma (GBM) is the most common primary brain tumor and the most aggressive glial tumor. This tumor is highly heterogeneous, angiogenic, and insensitive to radio- and chemotherapy. Here we have investigated the progression of GBM produced by the injection of human GBM cells into the brain parenchyma of immunocompetent mice. Xenotransplanted animals were submitted to magnetic resonance imaging (MRI) and histopathological analyses. Our data show that two weeks after injection, the produced tumor presents histopathological characteristics recommended by World Health Organization for the diagnosis of GBM in humans. The tumor was able to produce reactive gliosis in the adjacent parenchyma, angiogenesis, an intense recruitment of macrophage and microglial cells, and presence of necrosis regions. Besides, MRI showed that tumor mass had enhanced contrast, suggesting a blood-brain barrier disruption. This study demonstrated that the xenografted tumor in mouse brain parenchyma develops in a very similar manner to those found in patients affected by GBM and can be used to better understand the biology of GBM as well as testing potential therapies.

  7. Enhancement of insulin-like growth factor 2 receptors in glioblastoma

    International Nuclear Information System (INIS)

    Sara, V.; Prisell, Per; Sjoegren, Barbro; Enberg, Goesta

    1986-01-01

    The somatomedins (IGF-1/IGF-2) are a family of growth-promoting hormones which have been identified in the human central nervous system where their specific receptors are distributed. The present study identified somatomedin receptors in glioblastoma and compared them with those found in normal brain. A significant enhancement in the binding of 125 1-IGF-2 but not 125 1-IGF-1 to glioblastoma membranes was found. A fourfold increase in IGF-2 receptor concentration was observed. These findings indicate enhanced expression of the IGF-2 receptor in glioblastoma. (author)

  8. Enhancement of insulin-like growth factor 2 receptors in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Sara, V; Prisell, P; Sjoegren, B; Persson, L; Boethius, J; Enberg, G

    1986-09-01

    The somatomedins (IGF-1/IGF-2) are a family of growth-promoting hormones which have been identified in the human central nervous system where their specific receptors are distributed. The present study identified somatomedin receptors in glioblastoma and compared them with those found in normal brain. A significant enhancement in the binding of /sup 125/1-IGF-2 but not /sup 125/1-IGF-1 to glioblastoma membranes was found. A fourfold increase in IGF-2 receptor concentration was observed. These findings indicate enhanced expression of the IGF-2 receptor in glioblastoma. 14 refs.

  9. Antiproliferative activity of Eremanthus crotonoides extracts and centratherin demonstrated in brain tumor cell lines

    Directory of Open Access Journals (Sweden)

    Jonathas F. R. Lobo

    2012-12-01

    Full Text Available The genus Eremanthus is recognized by the predominance of sesquiterpene lactones from the furanoheliangolide type, a class of substances extensively tested against cancer cell lines. Thus, the species E. crotonoides (DC. Sch. Bip., Asteraceae, obtained on "restinga" vegetation was evaluated against U251 and U87-MG glioma cell lines using the MTT colorimetric assay. Dichloromethane fraction was cytotoxic to both glioblastoma multiforme cell lines. We then conducted UPLC-PDA-ESI-MS/MS analysis of the dichloromethane fraction, which allowed the identification of the sesquiterpene lactones centratherin and goyazensolide. The isolation of centratherin was performed using chromatographic techniques and the identification of this substance was confirmed according to NMR data. Cytotoxic activity of centratherin alone was also evaluated against both U251 and U87-MG cells, which showed IC50 values comparable with those obtained for the commercial anticancer drug doxorubicin. All the tested samples showed cytotoxic activity against glioblastoma multiforme cells which suggests that E. crotonoides extracts may be important sources of antiproliferative substances and that the centratherin may serve as prototype for developing new antiglioblastoma drugs.

  10. In vivo PET/CT in a human glioblastoma chicken chorioallantoic membrane model: a new tool for oncology and radiotracer development.

    Science.gov (United States)

    Warnock, Geoff; Turtoi, Andrei; Blomme, Arnaud; Bretin, Florian; Bahri, Mohamed Ali; Lemaire, Christian; Libert, Lionel Cyrille; Seret, Alain E J J; Luxen, André; Castronovo, Vincenzo; Plenevaux, Alain R E G

    2013-10-01

    For many years the laboratory mouse has been used as the standard model for in vivo oncology research, particularly in the development of novel PET tracers, but the growth of tumors on chicken chorioallantoic membrane (CAM) provides a more rapid, low cost, and ethically sustainable alternative. For the first time, to our knowledge, we demonstrate the feasibility of in vivo PET and CT imaging in a U87 glioblastoma tumor model on chicken CAM, with the aim of applying this model for screening of novel PET tracers. U87 glioblastoma cells were implanted on the CAM at day 11 after fertilization and imaged at day 18. A small-animal imaging cell was used to maintain incubation and allow anesthesia using isoflurane. Radiotracers were injected directly into the exposed CAM vasculature. Sodium (18)F-fluoride was used to validate the imaging protocol, demonstrating that image-degrading motion can be removed with anesthesia. Tumor glucose metabolism was imaged using (18)F-FDG, and tumor protein synthesis was imaged using 2-(18)F-fluoro-l-tyrosine. Anatomic images were obtained by contrast-enhanced CT, facilitating clear delineation of the tumor, delineation of tracer uptake in tumor versus embryo, and accurate volume measurements. PET imaging of tumor glucose metabolism and protein synthesis was successfully demonstrated in the CAM U87 glioblastoma model. Catheterization of CAM blood vessels facilitated dynamic imaging of glucose metabolism with (18)F-FDG and demonstrated the ability to study PET tracer uptake over time in individual tumors, and CT imaging improved the accuracy of tumor volume measurements. We describe the novel application of PET/CT in the CAM tumor model, with optimization of typical imaging protocols. PET imaging in this valuable tumor model could prove particularly useful for rapid, high-throughput screening of novel radiotracers.

  11. Target-specific delivery of doxorubicin to human glioblastoma cell ...

    Indian Academy of Sciences (India)

    Abdullah Tahir Bayraç

    2018-01-29

    Jan 29, 2018 ... was previously selected for specific recognition of glioblastoma and represented many advantageous ... antigens, receptors or any 3-D structure on the target cells ..... both PSMA (?) and PSMA (-) prostate cancers.

  12. Toroidal-spiral particles for codelivery of anti-VEGFR-2 antibody and irinotecan: a potential implant to hinder recurrence of glioblastoma multiforme.

    Science.gov (United States)

    Sharma, Vishal; Köllmer, Melanie; Szymusiak, Magdalena; Nitsche, Ludwig C; Gemeinhart, Richard A; Liu, Ying

    2014-03-10

    Heterogeneous toroidal-spiral particles (TSPs) were generated by polymer droplet sedimentation, interaction, and cross-linking. TSPs provide a platform for encapsulation and release of multiple compounds of different sizes and physicochemical properties. As a model system, we demonstrate the encapsulation and independently controlled release of an anti-VEGFR-2 antibody and irinotecan for the treatment of glioblastoma multiforme. The anti-VEGFR-2 antibody was released from the TS channels and its binding to HUVECs was confirmed by confocal microscopy and flow cytometry, suggesting active antibody encapsulation and release. Irinotecan, a small molecule drug, was released from the dense polymer matrix of poly(ethylene glycol) diacrylate (MW ~ 700 g/mol; PEGDA 700). Released irinotecan inhibited the proliferation of U251 malignant glioma cells. Since the therapeutic compounds are released through different pathways, specifically diffusion through the polymer matrix versus TS channels, the release rate can be controlled independently through the design of the structure and material of particle components.

  13. Newcastle disease virus triggers autophagy in U251 glioma cells to enhance virus replication.

    Science.gov (United States)

    Meng, Chunchun; Zhou, Zhizhi; Jiang, Ke; Yu, Shengqing; Jia, Lijun; Wu, Yantao; Liu, Yanqing; Meng, Songshu; Ding, Chan

    2012-06-01

    Newcastle disease virus (NDV) can replicate in tumor cells and induce apoptosis in late stages of infection. However, the interaction between NDV and cells in early stages of infection is not well understood. Here, we report that, shortly after infection, NDV triggers the formation of autophagosomes in U251 glioma cells, as demonstrated by an increased number of double-membrane vesicles, GFP-microtubule-associated protein 1 light chain 3 (GFP-LC3) a dot formations, and elevated production of LC3II. Moreover, modulation of NDV-induced autophagy by rapamycin, chloroquine or small interfering RNAs targeting the genes critical for autophagosome formation (Atg5 and Beclin-1) affects virus production, indicating that autophagy may be utilized by NDV to facilitate its own production. Furthermore, the class III phosphatidylinositol 3-kinase (PI3K)/Beclin-1 pathway plays a role in NDV-induced autophagy and virus production. Collectively, our data provide a unique example of a paramyxovirus that uses autophagy to enhance its production.

  14. Downregulation of TLX induces TET3 expression and inhibits glioblastoma stem cell self-renewal and tumorigenesis.

    Science.gov (United States)

    Cui, Qi; Yang, Su; Ye, Peng; Tian, E; Sun, Guoqiang; Zhou, Jiehua; Sun, Guihua; Liu, Xiaoxuan; Chen, Chao; Murai, Kiyohito; Zhao, Chunnian; Azizian, Krist T; Yang, Lu; Warden, Charles; Wu, Xiwei; D'Apuzzo, Massimo; Brown, Christine; Badie, Behnam; Peng, Ling; Riggs, Arthur D; Rossi, John J; Shi, Yanhong

    2016-02-03

    Glioblastomas have been proposed to be maintained by highly tumorigenic glioblastoma stem cells (GSCs) that are resistant to current therapy. Therefore, targeting GSCs is critical for developing effective therapies for glioblastoma. In this study, we identify the regulatory cascade of the nuclear receptor TLX and the DNA hydroxylase Ten eleven translocation 3 (TET3) as a target for human GSCs. We show that knockdown of TLX expression inhibits human GSC tumorigenicity in mice. Treatment of human GSC-grafted mice with viral vector-delivered TLX shRNA or nanovector-delivered TLX siRNA inhibits tumour development and prolongs survival. Moreover, we identify TET3 as a potent tumour suppressor downstream of TLX to regulate the growth and self-renewal in GSCs. This study identifies the TLX-TET3 axis as a potential therapeutic target for glioblastoma.

  15. Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Tahmasebi Mirgani M

    2014-01-01

    Full Text Available Maryam Tahmasebi Mirgani,1 Benedetta Isacchi,2 Majid Sadeghizadeh,1,* Fabio Marra,3 Anna Rita Bilia,2,* Seyed Javad Mowla,1 Farhood Najafi,4 Esmael Babaei51Department of Genetics, Tarbiat Modares University, Tehran, Iran; 2Department of Chemistry, University of Florence, Sesto Fiorentino, Italy; 3Department of Experimental and Clinical Medicine, University of Florence, Italy; 4Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran; 5Department of Biology, University of Tabriz, Tabriz, Iran*These authors contributed equally to this workAbstract: Glioblastoma is an invasive tumor of the central nervous system. Tumor recurrence resulting from ineffective current treatments, mainly due to the blood–brain barrier, highlights the need for innovative therapeutic alternatives. The recent availability of nanotechnology represents a novel targeted strategy in cancer therapy. Natural products have received considerable attention for cancer therapy because of general lower side effects. Curcumin is a new candidate for anticancer treatment, but its low bioavailability and water solubility represent the main disadvantages of its use. Here, curcumin was efficiently encapsulated in a nontoxic nanocarrier, termed dendrosome, to overcome these problems. Dendrosomal curcumin was prepared as 142 nm spherical structures with constant physical and chemical stability. The inhibitory role of dendrosomal curcumin on the proliferation of U87MG cells, a cellular model of glioblastoma, was evaluated by considering master genes of pluripotency and regulatory miRNA (microribonucleic acid. Methylthiazol tetrazolium assay and flow cytometry were used to detect the antiproliferative effects of dendrosomal curcumin. Annexin-V-FLUOS and caspase assay were used to quantify apoptosis. Real-time polymerase chain reaction was used to analyze the expression of OCT4 (octamer binding protein 4 gene variants (OCT4A, OCT4B, and OCT4B1, SOX-2 (SRY

  16. Bacterial Carriers for Glioblastoma Therapy

    Directory of Open Access Journals (Sweden)

    Nalini Mehta

    2017-03-01

    Full Text Available Treatment of aggressive glioblastoma brain tumors is challenging, largely due to diffusion barriers preventing efficient drug dosing to tumors. To overcome these barriers, bacterial carriers that are actively motile and programmed to migrate and localize to tumor zones were designed. These carriers can induce apoptosis via hypoxia-controlled expression of a tumor suppressor protein p53 and a pro-apoptotic drug, Azurin. In a xenograft model of human glioblastoma in rats, bacterial carrier therapy conferred a significant survival benefit with 19% overall long-term survival of >100 days in treated animals relative to a median survival of 26 days in control untreated animals. Histological and proteomic analyses were performed to elucidate the safety and efficacy of these carriers, showing an absence of systemic toxicity and a restored neural environment in treated responders. In the treated non-responders, proteomic analysis revealed competing mechanisms of pro-apoptotic and drug-resistant activity. This bacterial carrier opens a versatile avenue to overcome diffusion barriers in glioblastoma by virtue of its active motility in extracellular space and can lead to tailored therapies via tumor-specific expression of tumoricidal proteins.

  17. Upregulation of miR-181a suppresses the formation of glioblastoma stem cells by targeting the Notch2 oncogene and correlates with good prognosis in patients with glioblastoma multiforme

    International Nuclear Information System (INIS)

    Huang, Shi-Xiong; Zhao, Zhong-Yan; Weng, Guo-Hu; He, Xiang-Ying; Wu, Chan-Ji; Fu, Chuan-Yi; Sui, Zhi-Yan; Ma, Yu-Shui; Liu, Tao

    2017-01-01

    Glioblastoma stem-like cells (GSCs) are responsible for the initiation and progression of glioblastoma multiforme (GBM), and microRNAs (miRNAs) play an important role in this disease. However, the mechanisms underlying the role of miRNAs in the stemness of GSCs have not been completely elucidated. We previously showed that miR-181a is downregulated in GBM and may predict prognosis in patients with this disease. Here, we demonstrate that the upregulation of miR-181a suppressed GSC formation and inhibited GBM tumorigenesis by targeting the Notch2 oncogene. We found that miR-181a was downregulated in GSCs derived from human glioblastoma U87MG and U373MG cells. The high expression of miR-181a inhibited the levels of stemness-related markers CD133 and BMI1, attenuated sphere proliferation, promoted cell apoptosis, and reduced the tumorigenicity of GSCs. MiR-181a decreased the expression of Notch2 by targeting the 3’-untranslated region of its mRNA. Notch2 overexpression inhibited the effects of miR-181a downregulation on GSCs, and was negatively correlated with miR-181a expression. Moreover, high Notch2 expression together with low miR-181a expression was correlated with a shorter median overall survival for GBM patients. Together, these data show that miR-181a may play an essential role in GSC formation and GBM progression by targeting Notch2, suggesting that Notch2 and miR-181a have potential prognostic value as tumor biomarkers in GBM patients. - Highlights: • MiR-181a suppressed GSC formation and GBM tumorigenesis by targeting Notch2. • Notch2 and miR-181a expression were correlated with OS for GBM patients. • Notch2 and miR-181a have potential prognostic value in GBM patients.

  18. 6 CFR 25.1 - Purpose.

    Science.gov (United States)

    2010-01-01

    ... 6 Domestic Security 1 2010-01-01 2010-01-01 false Purpose. 25.1 Section 25.1 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY REGULATIONS TO SUPPORT ANTI-TERRORISM BY FOSTERING EFFECTIVE TECHNOLOGIES § 25.1 Purpose. This part implements the Support Anti-terrorism by Fostering...

  19. Actin cytoskeleton organization, cell surface modification and invasion rate of 5 glioblastoma cell lines differing in PTEN and p53 status

    International Nuclear Information System (INIS)

    Djuzenova, Cholpon S.; Fiedler, Vanessa; Memmel, Simon; Katzer, Astrid; Hartmann, Susanne; Krohne, Georg; Zimmermann, Heiko; Scholz, Claus-Jürgen; Polat, Bülent; Flentje, Michael

    2015-01-01

    Glioblastoma cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores the relationship between the invasion capacity of 5 glioblastoma cell lines differing in p53 and PTEN status, expression of mTOR and several other marker proteins involved in cell invasion, actin cytoskeleton organization and cell morphology. We found that two glioblastoma lines mutated in both p53 and PTEN genes (U373-MG and SNB19) exhibited the highest invasion rates through the Matrigel or collagen matrix. In DK-MG (p53wt/PTENwt) and GaMG (p53mut/PTENwt) cells, F-actin mainly occurred in the numerous stress fibers spanning the cytoplasm, whereas U87-MG (p53wt/PTENmut), U373-MG and SNB19 (both p53mut/PTENmut) cells preferentially expressed F-actin in filopodia and lamellipodia. Scanning electron microscopy confirmed the abundant filopodia and lamellipodia in the PTEN mutated cell lines. Interestingly, the gene profiling analysis revealed two clusters of cell lines, corresponding to the most (U373-MG and SNB19, i.e. p53 and PTEN mutated cells) and less invasive phenotypes. The results of this study might shed new light on the mechanisms of glioblastoma invasion. - Highlights: • We examine 5 glioblastoma lines on the invasion capacity and actin cytoskeleton. • Glioblastoma cell lines mutated in both p53 and PTEN were the most invasive. • Less invasive cells showed much less lamellipodia, but more actin stress fibers. • A mechanism for the differences in tumor cell invasion is proposed

  20. Actin cytoskeleton organization, cell surface modification and invasion rate of 5 glioblastoma cell lines differing in PTEN and p53 status

    Energy Technology Data Exchange (ETDEWEB)

    Djuzenova, Cholpon S., E-mail: djuzenova_t@ukw.de [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Fiedler, Vanessa [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Memmel, Simon [Lehrstuhl für Biotechnologie und Biophysik, Universität Würzburg, Biozentrum Am Hubland, 97070 Würzburg (Germany); Katzer, Astrid; Hartmann, Susanne [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Krohne, Georg [Elektronenmikroskopie, Biozentrum, Universität Würzburg, Am Hubland, 97070 Würzburg (Germany); Zimmermann, Heiko [Hauptabteilung Biophysik and Kryotechnologie, Fraunhofer-Institut für Biomedizinische Technik, Lehrstuhl für Molekulare und Zelluläre Biotechnologie/Nanotechnologie, Universität des Saarlandes, Ensheimer Strasse 48, 66386 St. Ingbert (Germany); Scholz, Claus-Jürgen [Interdisciplinary Center for Clinical Research, University Hospital, Versbacher Strasse 7, 97078 Würzburg (Germany); Polat, Bülent; Flentje, Michael [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); and others

    2015-01-15

    Glioblastoma cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores the relationship between the invasion capacity of 5 glioblastoma cell lines differing in p53 and PTEN status, expression of mTOR and several other marker proteins involved in cell invasion, actin cytoskeleton organization and cell morphology. We found that two glioblastoma lines mutated in both p53 and PTEN genes (U373-MG and SNB19) exhibited the highest invasion rates through the Matrigel or collagen matrix. In DK-MG (p53wt/PTENwt) and GaMG (p53mut/PTENwt) cells, F-actin mainly occurred in the numerous stress fibers spanning the cytoplasm, whereas U87-MG (p53wt/PTENmut), U373-MG and SNB19 (both p53mut/PTENmut) cells preferentially expressed F-actin in filopodia and lamellipodia. Scanning electron microscopy confirmed the abundant filopodia and lamellipodia in the PTEN mutated cell lines. Interestingly, the gene profiling analysis revealed two clusters of cell lines, corresponding to the most (U373-MG and SNB19, i.e. p53 and PTEN mutated cells) and less invasive phenotypes. The results of this study might shed new light on the mechanisms of glioblastoma invasion. - Highlights: • We examine 5 glioblastoma lines on the invasion capacity and actin cytoskeleton. • Glioblastoma cell lines mutated in both p53 and PTEN were the most invasive. • Less invasive cells showed much less lamellipodia, but more actin stress fibers. • A mechanism for the differences in tumor cell invasion is proposed.

  1. Nanotechnology Applications for Glioblastoma

    Science.gov (United States)

    Nduom, Edjah; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Costas G.

    2012-01-01

    Synopsis Glioblastoma remains one of the most difficult cancers to treat and represents the most common primary malignancy of the brain. While conventional treatments have found modest success in reducing the initial tumor burden, infiltrating cancer cells beyond the main mass are responsible for tumor recurrence and ultimate patient demise. Targeting the residual infiltrating cancer cells requires the development of new treatment strategies. The emerging field of cancer nanotechnology holds much promise in the use of multifunctional nanoparticles for the imaging and targeted therapy of GBM.. Nanoparticles have emerged as potential “theranostic” agents that can permit the diagnosis and therapeutic treatment of GBM tumors. A recent human clinical trial with magnetic nanoparticles has provided feasibility and efficacy data for potential treatment of GBM patients with thermotherapy. Here we examine the current state of nanotechnology in the treatment of glioblastoma and interesting directions of further study. PMID:22748656

  2. Hypofractionated radiation induces a decrease in cell proliferation but no histological damage to organotypic multicellular spheroids of human glioblastomas

    International Nuclear Information System (INIS)

    Kaaijk, P.; Academic Medical Center, Amsterdam; Troost, D.; Leenstra, S.; Bosch, D.A.; Sminia, P.; Hulshof, M.C.C.M..; Kracht, A.H.W. van der

    1997-01-01

    The aim of this study was to examine the effect of radiation on glioblastoma, using an organotypic multicellular spheroid (OMS) model. Most glioblastoma cell lines are, in contrast to glioblastomas in vivo, relatively radiosensitive. This limits the value of using cell lines for studying the radiation effect of glioblastomas. The advantage of OMS is maintenance of the characteristics of the original tumour, which is lost in conventional cell cultures. OMS prepared from four glioblastomas were treated with hypofractionated radiation with a radiobiologically equivalent dose to standard radiation treatment for glioblastomas patients. After treatment, the histology as well as the cell proliferation of the OMS was examined. After radiation, a significant decrease in cell proliferation was found, although no histological damage to the OMS was observed. The modest effects of radiation on the OMS are in agreement with the limited therapeutic value of radiotherapy for glioblastoma patients. Therefore, OMS seems to be a good alternative for cell lines to study the radiobiological effect on glioblastomas. (author)

  3. Hypofractionated radiation induces a decrease in cell proliferation but no histological damage to organotypic multicellular spheroids of human glioblastomas

    Energy Technology Data Exchange (ETDEWEB)

    Kaaijk, P [Academic Medical Center, Amsterdam (Netherlands). Dept. of (Neuro) Pathology; [Academic Medical Center, Amsterdam (Netherlands). Dept. of Neurosurgery; Troost, D [Academic Medical Center, Amsterdam (Netherlands). Dept. of (Neuro) Pathology; Leenstra, S; Bosch, D A [Academic Medical Center, Amsterdam (Netherlands). Dept. of Neurosurgery; Sminia, P; Hulshof, M C.C.M.; Kracht, A.H.W. van der [Academic Medical Center, Amsterdam (Netherlands). Dept. of (Experimental) Radiotherapy

    1997-04-01

    The aim of this study was to examine the effect of radiation on glioblastoma, using an organotypic multicellular spheroid (OMS) model. Most glioblastoma cell lines are, in contrast to glioblastomas in vivo, relatively radiosensitive. This limits the value of using cell lines for studying the radiation effect of glioblastomas. The advantage of OMS is maintenance of the characteristics of the original tumour, which is lost in conventional cell cultures. OMS prepared from four glioblastomas were treated with hypofractionated radiation with a radiobiologically equivalent dose to standard radiation treatment for glioblastomas patients. After treatment, the histology as well as the cell proliferation of the OMS was examined. After radiation, a significant decrease in cell proliferation was found, although no histological damage to the OMS was observed. The modest effects of radiation on the OMS are in agreement with the limited therapeutic value of radiotherapy for glioblastoma patients. Therefore, OMS seems to be a good alternative for cell lines to study the radiobiological effect on glioblastomas. (author).

  4. 36 CFR 251.63 - Reciprocity.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Reciprocity. 251.63 Section 251.63 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LAND USES Special Uses § 251.63 Reciprocity. If it is determined that a right-of-way shall be needed by the United States...

  5. FUNCTIONAL SUBCLONE PROFILING FOR PREDICTION OF TREATMENT-INDUCED INTRA-TUMOR POPULATION SHIFTS AND DISCOVERY OF RATIONAL DRUG COMBINATIONS IN HUMAN GLIOBLASTOMA

    Science.gov (United States)

    Reinartz, Roman; Wang, Shanshan; Kebir, Sied; Silver, Daniel J.; Wieland, Anja; Zheng, Tong; Küpper, Marius; Rauschenbach, Laurèl; Fimmers, Rolf; Shepherd, Timothy M.; Trageser, Daniel; Till, Andreas; Schäfer, Niklas; Glas, Martin; Hillmer, Axel M.; Cichon, Sven; Smith, Amy A.; Pietsch, Torsten; Liu, Ying; Reynolds, Brent A.; Yachnis, Anthony; Pincus, David W.; Simon, Matthias; Brüstle, Oliver; Steindler, Dennis A.; Scheffler, Björn

    2016-01-01

    Purpose Investigation of clonal heterogeneity may be key to understanding mechanisms of therapeutic failure in human cancer. However, little is known on the consequences of therapeutic intervention on the clonal composition of solid tumors. Experimental Design Here, we used 33 single cell-derived subclones generated from five clinical glioblastoma specimens for exploring intra- and inter-individual spectra of drug resistance profiles in vitro. In a personalized setting, we explored whether differences in pharmacological sensitivity among subclones could be employed to predict drug-dependent changes to the clonal composition of tumors. Results Subclones from individual tumors exhibited a remarkable heterogeneity of drug resistance to a library of potential anti-glioblastoma compounds. A more comprehensive intra-tumoral analysis revealed that stable genetic and phenotypic characteristics of co-existing subclones could be correlated with distinct drug sensitivity profiles. The data obtained from differential drug response analysis could be employed to predict clonal population shifts within the naïve parental tumor in vitro and in orthotopic xenografts. Furthermore, the value of pharmacological profiles could be shown for establishing rational strategies for individualized secondary lines of treatment. Conclusions Our data provide a previously unrecognized strategy for revealing functional consequences of intra-tumor heterogeneity by enabling predictive modeling of treatment-related subclone dynamics in human glioblastoma. PMID:27521447

  6. Inhibition of STAT3 reduces astrocytoma cell invasion and constitutive activation of STAT3 predicts poor prognosis in human astrocytoma.

    Directory of Open Access Journals (Sweden)

    Qinchuan Liang

    Full Text Available Astrocytoma cells characteristically possess high invasion potentials. Recent studies have revealed that knockdown of signal transducers and activators of transcription 3 (STAT3 expression by RNAi induces apoptosis in astrocytoma cell. Nevertheless, the distinct roles of STAT3 in astrocytoma's invasion and recurrence have not been elucidated. In this study, we silenced STAT3 using Small interfering RNAs in two human glioblastoma multiforme (GBM cell lines (U251 and U87, and investigated the effect on GBM cell adhesion and invasion. Our results demonstrate that disruption of STAT3 inhibits GBM cell's adhesion and invasion. Knockdown of STAT3 significantly increased E-cadherin but decreased N-cadherin, vascular endothelial growth factor, matrix metalloproteinase 2 and matrix metalloproteinase 9. Additionally, expression of pSTAT3(Tyr705 correlates with astrocytoma WHO classification, Karnofsky performance status scale score, tumor recurrence and survival. Furthermore, pSTAT3(Tyr705 is a significant prognostic factor in astrocytoma. In conclusion, STAT3 may affect astrocytoma invasion, expression of pSTAT3(Tyr705 is a significant prognostic factor in tumor recurrence and overall survival in astrocytoma patients. Therefore, STAT3 may provide a potential target for molecular therapy in human astrocytoma, and pSTAT3(Tyr705could be an important biomarker for astrocytoma prognosis.

  7. Peptide-Based Optical uPAR Imaging for Surgery

    DEFF Research Database (Denmark)

    Juhl, Karina; Christensen, Anders; Persson, Morten

    2016-01-01

    Near infrared intra-operative optical imaging is an emerging technique with clear implications for improved cancer surgery by enabling a more distinct delineation of the tumor margins during resection. This modality has the potential to increase the number of patients having a curative radical...... tumor resection. In the present study, a new uPAR-targeted fluorescent probe was developed and the in vivo applicability was evaluated in a human xenograft mouse model. Most human carcinomas express high level of uPAR in the tumor-stromal interface of invasive lesions and uPAR is therefore considered...... an ideal target for intra-operative imaging. Conjugation of the flourophor indocyanine green (ICG) to the uPAR agonist (AE105) provides an optical imaging ligand with sufficiently high receptor affinity to allow for a specific receptor targeting in vivo. For in vivo testing, human glioblastoma xenograft...

  8. VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells

    International Nuclear Information System (INIS)

    Oka, Naoki; Soeda, Akio; Inagaki, Akihito; Onodera, Masafumi; Maruyama, Hidekazu; Hara, Akira; Kunisada, Takahiro; Mori, Hideki; Iwama, Toru

    2007-01-01

    There is increasing evidence for the presence of cancer stem cells (CSCs) in malignant brain tumors, and these CSCs may play a pivotal role in tumor initiation, growth, and recurrence. Vascular endothelial growth factor (VEGF) promotes the proliferation of vascular endothelial cells (VECs) and the neurogenesis of neural stem cells. Using CSCs derived from human glioblastomas and a retrovirus expressing VEGF, we examined the effects of VEGF on the properties of CSCs in vitro and in vivo. Although VEGF did not affect the property of CSCs in vitro, the injection of mouse brains with VEGF-expressing CSCs led to the massive expansion of vascular-rich GBM, tumor-associated hemorrhage, and high morbidity, suggesting that VEGF promoted tumorigenesis via angiogenesis. These results revealed that VEGF induced the proliferation of VEC in the vascular-rich tumor environment, the so-called stem cell niche

  9. Polymers for IUdR radiosensitization of experimental glioblastoma

    International Nuclear Information System (INIS)

    Williams, Jeffery A.; Xuan Yuan; Brem, Henry

    1997-01-01

    Purpose: For the radiosensitization of human malignant gliomas, the potential of polymers for the local, controlled release of 5-iodo-2'-deoxyuridine (IUdR) remains unexplored. We tested a synthetic, implantable biodegradable polymer for the controlled in vitro release of IUdR, the resultant in vivo cellular labeling and subsequent radiosensitization of experimental intracranial (i.c.) U251 human glioblastoma xenografts. Materials and Methods: In vitro: Release: To measure release, increasing (10%, 30%, 50%) proportions of IUdR in synthetic [(poly(bis(p-carboxyphenoxy)-propane) (PCPP):sebacic acid (SA) (PCPP:SA ratio 20:80)] polymer discs (1x1x3 mm: 10 mg) were incubated in 0.1 M phosphate-buffered saline. The supernatant fractions were periodically removed and IUdR was measured via quantitative spectrophotometry. Radiosensitization: To confirm sensitization, U251 cells had 0 (control), 0.1, 1.0 or 10 uM exposure to IUdR for 72 hours and acute irradiation (0, 2.5, 5.0, or 10 Gy). Cells were trypsinized, replated and scored for colony formation. In vivo: To confirm in vivo i.c. release, 5 mice (male nu/nu, 6 weeks) had right frontal i.c. implantation of single polymer discs having 200 uCi 125-IUdR. The decay-corrected activity (cpm) vs. time (days) was serially measured via a calibrated, collimated scintillation detector. To measure i.c. diffusion of IUdR from polymers to GBM xenografts, groups of 5 mice had i.c. inoculation of 2 x 10 5 U251 cells (Day 0) and subsequent (Day 5) implantation of polymer discs having 50% IUdR loadings. Four or 8 days after IUdR polymer implantation, mice were sacrificed and the intact brains bearing the tumor and IUdR polymer were excised, fixed and cut coronally 0 (in plane of polymer), 1 or 2 mm anterior to the polymer in tumor using a cryostat. To quantify the percentage labeling of the tumor cells vs. distance from polymers via quantitative immunohistochemistry, triplicate high-powered fields of tumors were scored for nuclear IUd

  10. Comparing sequencing assays and human-machine analyses in actionable genomics for glioblastoma.

    Science.gov (United States)

    Wrzeszczynski, Kazimierz O; Frank, Mayu O; Koyama, Takahiko; Rhrissorrakrai, Kahn; Robine, Nicolas; Utro, Filippo; Emde, Anne-Katrin; Chen, Bo-Juen; Arora, Kanika; Shah, Minita; Vacic, Vladimir; Norel, Raquel; Bilal, Erhan; Bergmann, Ewa A; Moore Vogel, Julia L; Bruce, Jeffrey N; Lassman, Andrew B; Canoll, Peter; Grommes, Christian; Harvey, Steve; Parida, Laxmi; Michelini, Vanessa V; Zody, Michael C; Jobanputra, Vaidehi; Royyuru, Ajay K; Darnell, Robert B

    2017-08-01

    To analyze a glioblastoma tumor specimen with 3 different platforms and compare potentially actionable calls from each. Tumor DNA was analyzed by a commercial targeted panel. In addition, tumor-normal DNA was analyzed by whole-genome sequencing (WGS) and tumor RNA was analyzed by RNA sequencing (RNA-seq). The WGS and RNA-seq data were analyzed by a team of bioinformaticians and cancer oncologists, and separately by IBM Watson Genomic Analytics (WGA), an automated system for prioritizing somatic variants and identifying drugs. More variants were identified by WGS/RNA analysis than by targeted panels. WGA completed a comparable analysis in a fraction of the time required by the human analysts. The development of an effective human-machine interface in the analysis of deep cancer genomic datasets may provide potentially clinically actionable calls for individual patients in a more timely and efficient manner than currently possible. NCT02725684.

  11. Predominant contribution of L-type amino acid transporter to 4-borono-2-18F-fluoro-phenylalanine uptake in human glioblastoma cells

    International Nuclear Information System (INIS)

    Yoshimoto, Mitsuyoshi; Kurihara, Hiroaki; Honda, Natsuki; Kawai, Keiichi; Ohe, Kazuyo; Fujii, Hirofumi; Itami, Jun; Arai, Yasuaki

    2013-01-01

    Introduction: 4-Borono-2- 18 F-fluoro-phenylalanine ( 18 F-FBPA) has been used to anticipate the therapeutic effects of boron neutron capture therapy (BNCT) with 4-borono-L-phenylalanine (BPA). Similarly, L-[methyl- 11 C]-methionine ( 11 C-MET), the most popular amino acid PET tracer, is a possible candidate for this purpose. We investigated the transport mechanism of 18 F-FBPA and compared it with that of 14 C-MET in human glioblastoma cell lines. Methods: Uptake of 18 F-FBPA and 14 C-MET was examined in A172, T98G, and U-87MG cells using 2-aminobicyclo-(2.2.1)-heptane-2-carboxylic acid (a system L-specific substrate), 2-(methylamino)-isobutyric acid (a system A-specific substrate), and BPA. Gene expression was analyzed by quantitative real time polymerase chain reaction. Results: System L was mainly involved in the uptake of 18 F-FBPA (74.5%–81.1% of total uptake) and 14 C-MET (48.3%–59.4%). System A and ASC also contributed to the uptake of 14 C-MET. Inhibition experiments revealed that BPA significantly decreased the uptake of 18 F-FBPA, whereas 31%–42% of total 14 C-MET uptake was transported by BPA non-sensitive transporters. In addition, 18 F-FBPA uptake correlated with LAT1 and total LAT expressions. Conclusion: This study demonstrated that 18 F-FBPA was predominantly transported by system L in human glioblastoma cells compared to 14 C-MET. Although further studies are needed to elucidate the correlation between 18 F-FBPA uptake and BPA content in tumor tissues, 18 F-FBPA is suitable for the selection of patients who benefit from BNCT with BPA

  12. EGFR gene overexpression retained in an invasive xenograft model by solid orthotopic transplantation of human glioblastoma multiforme into nude mice.

    Science.gov (United States)

    Yi, Diao; Hua, Tian Xin; Lin, Huang Yan

    2011-03-01

    Orthotopic xenograft animal model from human glioblastoma multiforme (GBM) cell lines often do not recapitulate an extremely important aspect of invasive growth and epidermal growth factor receptor (EGFR) gene overexpression of human GBM. We developed an orthotopic xenograft model by solid transplantation of human GBM into the brain of nude mouse. The orthotopic xenografts sharing the same histopathological features with their original human GBMs were highly invasive and retained the overexpression of EGFR gene. The murine orthotopic GBM models constitute a valuable in vivo system for preclinical studies to test novel therapies for human GBM.

  13. Carbon ion beam is more effective to induce cell death in sphere-type A172 human glioblastoma cells compared with X-rays.

    Science.gov (United States)

    Takahashi, Momoko; Hirakawa, Hirokazu; Yajima, Hirohiko; Izumi-Nakajima, Nakako; Okayasu, Ryuichi; Fujimori, Akira

    2014-12-01

    To obtain human glioblastoma cells A172 expressing stem cell-related protein and comparison of radiosensitivity in these cells with X-rays and carbon beam. Human monolayer-type A172 glioblastoma cells were maintained in normal medium with 10% bovine serum. In order to obtain sphere-type A172 cells the medium was replaced with serum-free medium supplemented with growth factors. Both types of A172 cells were irradiated with either X-rays or carbon ion beams and their radiosensitivity was evaluated. Serum-free medium induced expression of stem cell-related proteins in A172 cells along with the neurosphere-like appearance. These sphere-type cells were found resistant to both X-rays and carbon ion beams. Phosphorylation of histone H2A family member X persisted for a longer period in the cells exposed to carbon ion beams than in those exposed to X-rays and it disappeared quicker in the sphere type than in the monolayer type. Relative radioresistance of the sphere type cells was smaller for carbon ion beams than for X-rays. We demonstrated that glioblastoma A172 cells with induced stem cell-related proteins turned resistant to irradiation. Accelerated heavy ion particles may have advantage over X-rays in overcoming the tumor resistance due to cell stemness.

  14. 49 CFR 234.251 - Standby power.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Standby power. 234.251 Section 234.251 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION..., Inspection, and Testing Inspections and Tests § 234.251 Standby power. Standby power shall be tested at least...

  15. 48 CFR 251.205 - Contract clause.

    Science.gov (United States)

    2010-10-01

    ... Fleet Management System (IFMS) Vehicles 251.205 Contract clause. Use the clause at 252.251-7001, Use of Interagency Fleet Management System (IFMS)Vehicles and Related Services, in solicitations and contracts which include the clause at FAR 52.251-2, Interagency Fleet Management System (IFMS) Vehicles and Related...

  16. Irradiation combined with SU5416: Microvascular changes and growth delay in a human xenograft glioblastoma tumor line

    International Nuclear Information System (INIS)

    Schuuring, Janneke; Bussink, Johan; Bernsen, Hans; Peeters, Wenny; Kogel, Albert J. van der

    2005-01-01

    Purpose: The combination of irradiation and the antiangiogenic compound SU5416 was tested and compared with irradiation alone in a human glioblastoma tumor line xenografted in nude mice. The aim of this study was to monitor microenvironmental changes and growth delay. Methods and materials: A human glioblastoma xenograft tumor line was implanted in nude mice. Irradiations consisted of 10 Gy or 20 Gy with and without SU5416. Several microenvironmental parameters (tumor cell hypoxia, tumor blood perfusion, vascular volume, and microvascular density) were analyzed after imunohistochemical staining. Tumor growth delay was monitored for up to 200 days after treatment. Results: SU5416, when combined with irradiation, has an additive effect over treatment with irradiation alone. Analysis of the tumor microenvironment showed a decreased vascular density during treatment with SU5416. In tumors regrowing after reaching only a partial remission, vascular characteristics normalized shortly after cessation of SU5416. However, in tumors regrowing after reaching a complete remission, permanent microenvironmental changes and an increase of tumor necrosis with a subsequent slower tumor regrowth was found. Conclusions: Permanent vascular changes were seen after combined treatment resulting in complete remission. Antiangiogenic treatment with SU5416 when combined with irradiation has an additive effect over treatment with irradiation or antiangiogenic treatment alone

  17. Functional simian immunodeficiency virus Gag-specific CD8+ intraepithelial lymphocytes in the mucosae of SIVmac251- or simian-human immunodeficiency virus KU2-infected macaques

    International Nuclear Information System (INIS)

    Stevceva, Liljana; Moniuszko, Marcin; Alvarez, Xavier; Lackner, Andrew A.; Franchini, Genoveffa

    2004-01-01

    The vaginal and rectal mucosae are the first line of cellular immune defense to sexually transmitted human immunodeficiency virus type 1 (HIV-1) entry. Thus, intraepithelial lymphocytes (IELs) may be important in the immune response to HIV infection. Here we investigated whether functional IELs in mucosal compartments could be visualized by direct staining with a tetrameric complex specific for the simian immunodeficiency virus (SIV) immunodominant Gag epitope in either separated IEL cells or tissues of macaques infected with SIVmac251. Of the 15 Mamu-A*01-positive macaques studied here, eight were chronically infected with either SIVmac251 or simian-human immunodeficiency virus (SHIV) KU2 and the remaining seven were exposed mucosally to SIVmac251 and sacrificed within 48 h to assess the local immune response. Gag-specific CD8+ T-cells were found in separated IELs from the rectum, colon, jejunum, and vagina of most infected animals. Direct staining of tetramers also revealed their presence in intact tissue. These Gag-specific IELs expressed the activation marker CD69 and produced IFN-γ, suggesting an active immune response in this locale

  18. Ion channels in glioblastoma.

    Science.gov (United States)

    Molenaar, Remco J

    2011-01-01

    Glioblastoma is the most common primary brain tumor with the most dismal prognosis. It is characterized by extensive invasion, migration, and angiogenesis. Median survival is only 15 months due to this behavior, rendering focal surgical resection ineffective and adequate radiotherapy impossible. At this moment, several ion channels have been implicated in glioblastoma proliferation, migration, and invasion. This paper summarizes studies on potassium, sodium, chloride, and calcium channels of glioblastoma. It provides an up-to-date overview of the literature that could ultimately lead to new therapeutic targets.

  19. Hypofractionated radiation induces a decrease in cell proliferation but no histological damage to organotypic multicellular spheroids of human glioblastomas

    NARCIS (Netherlands)

    Kaaijk, P.; Troost, D.; Sminia, P.; Hulshof, M. C.; van der Kracht, A. H.; Leenstra, S.; Bosch, D. A.

    1997-01-01

    The aim of this study was to examine the effect of radiation on glioblastoma, using an organotypic multicellular spheroid (OMS) model. Most glioblastoma cell lines are, in contrast to glioblastomas in vivo, relatively radiosensitive. This limits the value of using cell lines for studying the

  20. The suppression of manganese superoxide dismutase decreased the survival of human glioblastoma multiforme T98G cells

    Directory of Open Access Journals (Sweden)

    Novi S. Hardiany

    2017-05-01

    Full Text Available Background: Glioblastoma multiforme (GBM is a primary malignant brain tumor which has poor prognosis. High incidence of oxidative stress-based therapy resistance could be related to the high antioxidant status of GBM cells. Our previous study has reported that manganese superoxide dismutase (MnSOD antioxidant expression was significantly higher in high grade glioma than in low grade. The aim of this study was to analyze the impact of MnSOD suppression toward GBM cell survival.Methods: This study is an experimental study using human glioblastoma multiforme T98G cell line. Suppression of MnSOD expression was performed using in vitro transfection MnSOD-siRNA. The MnSOD expression was analyzed by measuring the mRNA using real time RT-PCR, protein using ELISA technique, and specific activity of enzyme using inhibition of xantine oxidase. Concentration of reactive oxygen species (ROS intracellular was determined by measuring superoxide radical and hydrogen peroxide. Cell survival was analyzed by measuring viability, proliferation, and cell apoptosis.Results: In vitro transfection of MnSOD-siRNA suppressed the mRNA, protein, and specific activity of MnSOD. This treatment significantly increased the concentration of superoxide radical; however, it did not influence the concentration of hydrogen peroxide. Moreover, viability MnSOD-suppressing cell significantly decreased, accompanied by increase of cell apoptosis without affecting cell proliferation.Conclusion: The suppression of MnSOD expression leads to decrease glioblastoma multiforme cell survival, which was associated to the increase of cell apoptotic.

  1. In vivo preclinical low field MRI monitoring of tumor growth following a suicide gene therapy in an ortho-topic mice model of human glioblastoma

    International Nuclear Information System (INIS)

    Breton, E.; Goetz, Ch.; Aubertin, G.; Constantinesco, A.; Choquet, Ph.; Kintz, J.; Accart, N.; Grellier, B.; Erbs, Ph.; Rooke, R.

    2010-01-01

    Purpose The aim of this study was to monitor in vivo with low field MRI growth of a murine ortho-topic glioma model following a suicide gene therapy. Methods The gene therapy consisted in the stereotactic injection in the mice brain of a modified vaccinia virus Ankara (M.V.A.) vector encoding for a suicide gene (FCU1) that transforms a non toxic pro-drug 5-fluoro-cytosine (5-F.C.) to its highly cytotoxic derivatives 5-fluorouracil (5-F.U.) and 5-fluoro-uridine-5 monophosphate (5-F.U.M.P.). Using a warmed-up imaging cell, sequential 3D T1 and T2 0.1T MRI brain examinations were performed on 16 Swiss female nu/nu mice bearing ortho-topic human glioblastoma (U 87-MG cells). The 6-week in vivo MRI follow-up consisted in a weekly measurement of the intracerebral tumor volume leading to a total of 65 examinations. Mice were divided in four groups: sham group (n = 4), sham group treated with 5-F.C. only (n = 4), sham group with injection of M.V.A.-FCU1 vector only (n = 4), therapy group administered with M.V.A.-FCU1 vector and 5-F.C. (n = 4). Measurements of tumor volumes were obtained after manual segmentation of T1- and T2-weighted images. Results Intra-observer and inter-observer tumor volume measurements show no significant differences. No differences were found between T1 and T2 volume tumor doubling times between the three sham groups. A significant statistical difference (p < 0.05) in T1 and T2 volume tumor doubling times between the three sham groups and the animals treated with the intratumoral injection of M.V.A.-FCU1 vector in combination with 2 weeks per os 5-F.C. administration was demonstrated. Conclusion Preclinical low field MRI was able to monitor efficacy of suicide gene therapy in delaying the tumor growth in an in vivo mouse model of ortho-topic glioblastoma. (authors)

  2. 3-Bromopyruvate treatment induces alterations of metabolic and stress-related pathways in glioblastoma cells.

    Science.gov (United States)

    Chiasserini, Davide; Davidescu, Magdalena; Orvietani, Pier Luigi; Susta, Federica; Macchioni, Lara; Petricciuolo, Maya; Castigli, Emilia; Roberti, Rita; Binaglia, Luciano; Corazzi, Lanfranco

    2017-01-30

    Glioblastoma (GBM) is the most common and aggressive brain tumour of adults. The metabolic phenotype of GBM cells is highly dependent on glycolysis; therefore, therapeutic strategies aimed at interfering with glycolytic pathways are under consideration. 3-Bromopyruvate (3BP) is a potent antiglycolytic agent, with a variety of targets and possible effects on global cell metabolism. Here we analyzed the changes in protein expression on a GBM cell line (GL15 cells) caused by 3BP treatment using a global proteomic approach. Validation of differential protein expression was performed with immunoblotting and enzyme activity assays in GL15 and U251 cell lines. The results show that treatment of GL15 cells with 3BP leads to extensive changes in the expression of glycolytic enzymes and stress related proteins. Importantly, other metabolisms were also affected, including pentose phosphate pathway, aminoacid synthesis, and glucose derivatives production. 3BP elicited the activation of stress response proteins, as shown by the phosphorylation of HSPB1 at serine 82, caused by the concomitant activation of the p38 pathway. Our results show that inhibition of glycolysis in GL15 cells by 3BP influences different but interconnected pathways. Proteome analysis may help in the molecular characterization of the glioblastoma response induced by pharmacological treatment with antiglycolytic agents. Alteration of the glycolytic pathway characterizes glioblastoma (GBM), one of the most common brain tumours. Metabolic reprogramming with agents able to inhibit carbohydrate metabolism might be a viable strategy to complement the treatment of these tumours. The antiglycolytic agent 3-bromopyruvate (3BP) is able to strongly inhibit glycolysis but it may affect also other cellular pathways and its precise cellular targets are currently unknown. To understand the protein expression changes induced by 3BP, we performed a global proteomic analysis of a GBM cell line (GL15) treated with 3BP. We

  3. Suppression of survivin expression in glioblastoma cells by the Ras inhibitor farnesylthiosalicylic acid promotes caspase-dependent apoptosis.

    Science.gov (United States)

    Blum, Roy; Jacob-Hirsch, Jasmine; Rechavi, Gideon; Kloog, Yoel

    2006-09-01

    The Ras inhibitor farnesylthiosalicylic acid (FTS) has been shown to induce apoptosis in glioblastoma multiforme, but its mechanism of action was unknown. We show that FTS or dominant-negative Ras, by deregulating extracellular signal-regulated kinase and Akt signaling, decreases survivin gene transcripts in U87 glioblastoma multiforme, leading to disappearance of survivin protein and cell death. FTS affected both Ras-controlled regulators of survivin transcription and Ras-regulated survival signals. Thus, Ras inhibition by FTS resulted in release of the survivin "brake" on apoptosis and in activation of the mitochondrial apoptotic pathway: dephosphorylation of Bad, activation of Bax, release of cytochrome c, and caspase activation. FTS-induced apoptosis of U87 cells was strongly attenuated by forced expression of survivin or by caspase inhibitors. These results show that resistance to apoptosis in glioblastoma multiforme can be abolished by a single Ras inhibitor, which targets both survivin, a critical inhibitor of apoptosis, and the intrinsic mitochondrial apoptotic machinery.

  4. Targeting and Therapy of Glioblastoma in a Mouse Model Using Exosomes Derived From Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Liya Zhu

    2018-04-01

    Full Text Available ObjectiveGlioblastoma is a highly aggressive primary brain tumor that is resistant to radiotherapy and chemotherapy. Natural killer (NK cells have been used to treat incurable cancers. Recent studies have investigated the effectiveness of NK-cell-derived exosomes (NK-Exo for treating incurable cancers such as melanoma, leukemia, and neuroblastoma; however, NK-Exo have not been used to treat glioblastoma. In the present study, we investigated the antitumor effects of NK-Exo against aggressive glioblastoma both in vitro and in vivo and determined the tumor-targeting ability of NK-Exo by performing fluorescence imaging.MethodsU87/MG cells were transfected with the enhanced firefly luciferase (effluc and thy1.1 genes; thy1.1-positive cells were selected using microbeads. U87/MG/F cells were assessed by reverse transcription polymerase chain reaction (RT-PCR, western blotting, and luciferase-activity assays. NK-Exo were isolated by ultracentrifugation, purified by density gradient centrifugation, and characterized by transmission electron microscopy, dynamic light scattering (DLS, nanoparticle-tracking analysis (NTA, and western blotting. Cytokine levels in NK-Exo were compared to those in NK cells and NK-cell medium by performing an enzyme-linked immunosorbent assay (ELISA. NK-Exo-induced apoptosis of cancer cells was confirmed by flow cytometry and western blotting. In vivo therapeutic effects and specificity of NK-Exo against glioblastoma were assessed in a xenograft mouse model by fluorescence imaging. Xenograft mice were treated with NK-Exo, which was administered seven times through the tail vein. Tumor growth was monitored by bioluminescence imaging (BLI, and tumor volume was measured by ultrasound imaging. The mice were intraperitoneally injected with dextran sulfate 2 h before NK-Exo injection to decrease the liver uptake and increase the tumor specificity of NK-Exo.ResultsRT-PCR and western blotting confirmed the gene and protein

  5. Imaging of human glioblastoma cells and their interactions with mesenchymal stem cells in the zebrafish (Danio rerio) embryonic brain

    International Nuclear Information System (INIS)

    Vittori, Milos; Breznik, Barbara; Gredar, Tajda; Hrovat, Katja; Bizjak Mali, Lilijana; Lah, Tamara T

    2016-01-01

    An attractive approach in the study of human cancers is the use of transparent zebrafish (Danio rerio) embryos, which enable the visualization of cancer progression in a living animal. We implanted mixtures of fluorescently labeled glioblastoma (GBM) cells and bonemarrow-derived mesenchymal stem cells (MSCs) into zebrafish embryos to study the cellular pathways of their invasion and the interactions between these cells in vivo. By developing and applying a carbocyanine-dye-compatible clearing protocol for observation of cells in deep tissues, we showed that U87 and U373 GBM cells rapidly aggregated into tumor masses in the ventricles and midbrain hemispheres of the zebrafish embryo brain, and invaded the central nervous system, often using the ventricular system and the central canal of the spinal cord. However, the GBM cells did not leave the central nervous system. With co-injection of differentially labeled cultured GBM cells and MSCs, the implanted cells formed mixed tumor masses in the brain. We observed tight associations between GBM cells and MSCs, and possible cell-fusion events. GBM cells and MSCs used similar invasion routes in the central nervous system. This simple model can be used to study the molecular pathways of cellular processes in GBM cell invasion, and their interactions with various types of stromal cells in double or triple cell co-cultures, to design anti-GBM cell therapies that use MSCs as vectors

  6. 40 CFR 25.1 - Introduction.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Introduction. 25.1 Section 25.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL PUBLIC PARTICIPATION IN PROGRAMS UNDER THE... Introduction. This part sets forth minimum requirements and suggested program elements for public participation...

  7. 7 CFR 251.2 - Administration.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Administration. 251.2 Section 251.2 Agriculture... Administration. (a) Food and Nutrition Service. Within the United States Department of Agriculture (the... this section, any information on changes in program administration, including any changes resulting...

  8. A gene delivery system with a human artificial chromosome vector based on migration of mesenchymal stem cells towards human glioblastoma HTB14 cells.

    Science.gov (United States)

    Kinoshita, Yusuke; Kamitani, Hideki; Mamun, Mahabub Hasan; Wasita, Brian; Kazuki, Yasuhiro; Hiratsuka, Masaharu; Oshimura, Mitsuo; Watanabe, Takashi

    2010-05-01

    Mesenchymal stem cells (MSCs) have been expected to become useful gene delivery vehicles against human malignant gliomas when coupled with an appropriate vector system, because they migrate towards the lesion. Human artificial chromosomes (HACs) are non-integrating vectors with several advantages for gene therapy, namely, no limitations on the size and number of genes that can be inserted. We investigated the migration of human immortalized MSCs bearing a HAC vector containing the herpes simplex virus thymidine kinase gene (HAC-tk-hiMSCs) towards malignant gliomas in vivo. Red fluorescence protein-labeled human glioblastoma HTB14 cells were implanted into a subcortical region in nude mice. Four days later, green fluorescence protein-labeled HAC-tk-hiMSCs were injected into a contralateral subcortical region (the HTB14/HAC-tk-hiMSC injection model). Tropism to the glioma mass and the route of migration were visualized by fluorescence microscopy and immunohistochemical staining. HAC-tk-hiMSCs began to migrate toward the HTB14 glioma area via the corpus callosum on day 4, and gathered around the HTB14 glioma mass on day 7. To test whether the delivered gene could effectively treat glioblastoma in vivo, HTB14/HAC-tk-hiMSC injected mice were treated with ganciclovir (GCV) or PBS. The HTB14 glioma mass was significantly reduced by GCV treatment in mice injected with HAC-tk-hiMSCs. It was confirmed that gene delivery by our HAC-hiMSC system was effective after migration of MSCs to the glioma mass in vivo. Therefore, MSCs containing HACs carrying an anticancer gene or genes may provide a new tool for the treatment of malignant gliomas and possibly of other tumor types.

  9. A Phase 1 trial of intravenous boronophenylalanine-fructose complex in patients with glioblastoma multiforme

    International Nuclear Information System (INIS)

    Bergland, R.; Elowitz, E.; Chadha, M.; Coderre, J.A.; Joel, D.

    1996-01-01

    Boron neutron capture therapy (BNCT) of glioblastoma multiforme was initially performed at the Brookhaven National Laboratory in the early 1950's While this treatment for malignant brain tumors has continued in Japan, new worldwide interest has been stimulated by the development of new and more selective boron compounds. Boronophenylalanine (BPA) is a blood-brain barrier penetrating compound that has been used in BNCT of malignant melanomas. SPA has been employed experimentally in BNCT of rat gliosarcoma and has potential use in the treatment of human glioblastoma. As a preface to clinical BNCT trials, we studied the biodistribution of SPA in patients with glioblastoma

  10. 30 CFR 206.251 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Definitions. 206.251 Section 206.251 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT PRODUCT... impurities from coal. Coal washing may include, but is not limited to, operations such as flotation, air...

  11. Immunological targeting of cytomegalovirus for glioblastoma therapy

    OpenAIRE

    Nair, Smita K; Sampson, John H; Mitchell, Duane A

    2014-01-01

    Human cytomegalovirus (CMV) is purportedly present in glioblastoma (GBM) while absent from the normal brain, making CMV antigens potentially ideal immunological anti-GBM targets. We recently demonstrated that patient-derived CMV pp65-specific T cells are capable of recognizing and killing autologous GBM tumor cells. This data supports CMV antigen-directed immunotherapies against GBM.

  12. Nanotechnology applications for glioblastoma.

    Science.gov (United States)

    Nduom, Edjah K; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Costas G

    2012-07-01

    Glioblastoma remains one of the most difficult cancers to treat and represents the most common primary malignancy of the brain. Although conventional treatments have found modest success in reducing the initial tumor burden, infiltrating cancer cells beyond the main mass are responsible for tumor recurrence and ultimate patient demise. Targeting residual infiltrating cancer cells requires the development of new treatment strategies. The emerging field of cancer nanotechnology holds promise in the use of multifunctional nanoparticles for imaging and targeted therapy of glioblastoma. This article examines the current state of nanotechnology in the treatment of glioblastoma and directions of further study. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. GLUT-1-independent infection of the glioblastoma/astroglioma U87 cells by the human T cell leukemia virus type 1

    International Nuclear Information System (INIS)

    Jin Qingwen; Agrawal, Lokesh; VanHorn-Ali, Zainab; Alkhatib, Ghalib

    2006-01-01

    The human glucose transporter protein 1 (GLUT-1) functions as a receptor for human T cell leukemia virus (HTLV). GLUT-1 is a twelve-transmembrane cell surface receptor with six extracellular (ECL) and seven intracellular domains. To analyze HTLV-1 cytotropism, we utilized polyclonal antibodies to a synthetic peptide corresponding to the large extracellular domain of GLUT-1. The antibodies caused significant blocking of envelope (Env)-mediated fusion and pseudotyped virus infection of HeLa cells but had no significant effect on infection of U87 cells. This differential effect correlated with the detection of high-level surface expression of GLUT-1 on HeLa cells and very weak staining of U87 cells. To investigate this in terms of viral cytotropism, we cloned GLUT-1 cDNA from U87 cells and isolated two different versions of cDNA clones: the wild-type sequence (encoding 492 residues) and a mutant cDNA with a 5-base pair deletion (GLUT-1Δ5) between nucleotides 1329 and 1333. The deletion, also detected in genomic DNA, resulted in a frame-shift and premature termination producing a truncated protein of 463 residues. Transfection of the wild-type GLUT-1 but not GLUT-1Δ5 cDNA into CHO cells resulted in efficient surface expression of the human GLUT-1. Co-expression of GLUT-1 with GLUT-1Δ5 produces a trans-inhibition by GLUT-1Δ5 of GLUT-1-mediated HTLV-1 envelope (Env)-mediated fusion. Co-immunoprecipitation experiments demonstrated physical interaction of the wild-type and mutant proteins. Northern blot and RT-PCR analyses demonstrated lower GLUT-1 RNA expression in U87 cells. We propose two mechanisms to account for the impaired cell surface expression of GLUT-1 on U87 cells: low GLUT-1 RNA expression and the formation of GLUT-1/GLUT-1Δ5 heterodimers that are retained intracellularly. Significant RNAi-mediated reduction of endogenous GLUT-1 expression impaired HTLV-1 Env-mediated fusion with HeLa cells but not with U87 cells. We propose a GLUT-1-independent mechanism

  14. Live attenuated measles virus vaccine therapy for locally established malignant glioblastoma tumor cells

    Directory of Open Access Journals (Sweden)

    Al-Shammari AM

    2014-05-01

    Full Text Available Ahmed M Al-Shammari,1 Farah E Ismaeel,2 Shahlaa M Salih,2 Nahi Y Yaseen11Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Researches, Mustansiriya University, 2Departments of Biotechnology, College of Science, Al-Nahrain University, Baghdad, IraqAbstract: Glioblastoma multiforme is the most aggressive malignant primary brain tumor in humans, with poor prognosis. A new glioblastoma cell line (ANGM5 was established from a cerebral glioblastoma multiforme in a 72-year-old Iraqi man who underwent surgery for an intracranial tumor. This study was carried out to evaluate the antitumor effect of live attenuated measles virus (MV Schwarz vaccine strain on glioblastoma multiforme tumor cell lines in vitro. Live attenuated MV Schwarz strain was propagated on Vero, human rhabdomyosarcoma, and human glioblastoma-multiform (ANGM5 cell lines. The infected confluent monolayer appeared to be covered with syncytia with granulation and vacuolation, as well as cell rounding, shrinkage, and large empty space with cell debris as a result of cell lysis and death. Cell lines infected with virus have the ability for hemadsorption to human red blood cells after 72 hours of infection, whereas no hemadsorption of uninfected cells is seen. Detection of MV hemagglutinin protein by monoclonal antibodies in infected cells of all cell lines by immunocytochemistry assay gave positive results (brown color in the cytoplasm of infected cells. Cell viability was measured after 72 hours of infection by 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay. Results showed a significant cytotoxic effect for MV (P≤0.05 on growth of ANGM5 and rhabdomyosarcoma cell lines after 72 hours of infection. Induction of apoptosis by MV was assessed by measuring mitochondrial membrane potentials in tumor cells after 48, 72, and 120 hours of infection. Apoptotic cells were counted, and the mean percentage of dead cells was significantly higher after 48, 72

  15. Nanosecond pulsed electric fields depolarize transmembrane potential via voltage-gated K+, Ca2+ and TRPM8 channels in U87 glioblastoma cells.

    Science.gov (United States)

    Burke, Ryan C; Bardet, Sylvia M; Carr, Lynn; Romanenko, Sergii; Arnaud-Cormos, Delia; Leveque, Philippe; O'Connor, Rodney P

    2017-10-01

    Nanosecond pulsed electric fields (nsPEFs) have a variety of applications in the biomedical and biotechnology industries. Cancer treatment has been at the forefront of investigations thus far as nsPEFs permeabilize cellular and intracellular membranes leading to apoptosis and necrosis. nsPEFs may also influence ion channel gating and have the potential to modulate cell physiology without poration of the membrane. This phenomenon was explored using live cell imaging and a sensitive fluorescent probe of transmembrane voltage in the human glioblastoma cell line, U87 MG, known to express a number of voltage-gated ion channels. The specific ion channels involved in the nsPEF response were screened using a membrane potential imaging approach and a combination of pharmacological antagonists and ion substitutions. It was found that a single 10ns pulsed electric field of 34kV/cm depolarizes the transmembrane potential of cells by acting on specific voltage-sensitive ion channels; namely the voltage and Ca2 + gated BK potassium channel, L- and T-type calcium channels, and the TRPM8 transient receptor potential channel. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Sublethal dose of irradiation enhances invasion of malignant glioma cells through p53-MMP 2 pathway in U87MG mouse brain tumor model

    International Nuclear Information System (INIS)

    Pei, Jian; Park, In-Ho; Ryu, Hyang-Hwa; Li, Song-Yuan; Li, Chun-Hao; Lim, Sa-Hoe; Wen, Min; Jang, Woo-Youl; Jung, Shin

    2015-01-01

    Glioblastoma is a highly lethal neoplasm that frequently recurs locally after radiotherapy, and most of these recurrences originate from near the irradiated target field. In the present study, we identified the effects of radiation on glioma invasion and p53, TIMP-2, and MMP-2 expression through in vitro and in vivo experiments. The U87MG (wt p53) and U251 (mt p53) human malignant glioma cell lines were prepared, and the U2OS (wt 53) and Saos2 (del p53) osteosarcoma cell lines were used as p53 positive and negative controls. The four cell lines and p53 knock-downed U87MG cells received radiation (2–6 Gy) and were analyzed for expression of p53 and TIMP-2 by Western blot, and MMP-2 activity was detected by zymography. In addition, the effects of irradiation on directional invasion of malignant glioma were evaluated by implanting nude mice with bioluminescent u87-Fluc in vivo followed by MMP-2, p53, and TIMP-2 immunohisto-chemistry and in situ zymography. MMP-2 activity and p53 expression increased in proportional to the radiation dose in cell lines with wt p53, but not in the cell lines with del or mt p53. TIMP-2 expression did not increase in U87MG cells. MMP-2 activity decreased in p53 knock-downed U87MG cells but increased in the control group. Furthermore, radiation enhanced MMP-2 activity and increased tumor margin invasiveness in vivo. Tumor cells invaded by radiation overexpressed MMP-2 and p53 and revealed high gelatinolytic activity compared with those of non-radiated tumor cells. Radiation-induced upregulation of p53 modulated MMP-2 activity, and the imbalance between MMP-2 and TIMP-2 may have an important role in glioblastoma invasion by degrading the extracellular matrix. Bioluminescent “U87-Fluc”was useful for observing tumor formation without sacrifice after implanting tumor cells in the mouse brain. These findings suggest that the radiotherapy involved field for malignant glioma needs to be reconsidered, and that future trials should investigate

  17. Glioblastoma stem-like cells give rise to tumour endothelium

    NARCIS (Netherlands)

    Wang, Rong; Chadalavada, Kalyani; Wilshire, Jennifer; Kowalik, Urszula; Hovinga, Koos E.; Geber, Adam; Fligelman, Boris; Leversha, Margaret; Brennan, Cameron; Tabar, Viviane

    2010-01-01

    Glioblastoma (GBM) is among the most aggressive of human cancers. A key feature of GBMs is the extensive network of abnormal vasculature characterized by glomeruloid structures and endothelial hyperplasia. Yet the mechanisms of angiogenesis and the origin of tumour endothelial cells remain poorly

  18. TCGA Workshop: Genomics and Biology of Glioblastoma Multiforme (GBM) - TCGA

    Science.gov (United States)

    The National Cancer Institute (NCI) and National Human Genome Research Institute (NHGRI) held a workshop entitled, “Genomics and Biology of Glioblastoma Multiforme (GBM),” to review the initial GBM data from the TCGA pilot project.

  19. 34 CFR 75.251 - The budget period.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false The budget period. 75.251 Section 75.251 Education... Multi-Year Projects § 75.251 The budget period. (a) The Secretary usually approves a budget period of... budget period; and (2) Indicates his or her intention to make contination awards to fund the remainder of...

  20. Cytomegalovirus infection induces a stem cell phenotype in human primary glioblastoma cells

    DEFF Research Database (Denmark)

    Fornara, O; Bartek, J; Rahbar, A

    2016-01-01

    Glioblastoma (GBM) is associated with poor prognosis despite aggressive surgical resection, chemotherapy, and radiation therapy. Unfortunately, this standard therapy does not target glioma cancer stem cells (GCSCs), a subpopulation of GBM cells that can give rise to recurrent tumors. GBMs express...... human cytomegalovirus (HCMV) proteins, and previously we found that the level of expression of HCMV immediate-early (IE) protein in GBMs is a prognostic factor for poor patient survival. In this study, we investigated the relation between HCMV infection of GBM cells and the presence of GCSCs. Primary...... GBMs were characterized by their expression of HCMV-IE and GCSCs marker CD133 and by patient survival. The extent to which HCMV infection of primary GBM cells induced a GCSC phenotype was evaluated in vitro. In primary GBMs, a large fraction of CD133-positive cells expressed HCMV-IE, and higher co...

  1. Interference with PSMB4 Expression Exerts an Anti-Tumor Effect by Decreasing the Invasion and Proliferation of Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Yu-Chen Cheng

    2018-01-01

    Full Text Available Background/Aims: Glioblastoma (GBM is a malignant brain tumor with a poor prognosis. Proteasome subunit beta type-4 (PSMB4 is an essential subunit that contributes to the assembly of the 20S proteasome complex. However, the role of PSMB4 in glioblastomas remains to be clarified. The aim of this study was to investigate the role of PSMB4 in GBM tumor progression. Methods: We first analyzed the PSMB4 protein and mRNA expression in 80 clinical brain specimens and 77 datasets from the National Center for Biotechnology Information (NCBI Gene Expression Omnibus (GEO database. Next, we inhibited the PSMB4 expression by siRNA in cellular and animal models to explore PSMB4’s underlying mechanisms. The cell survival after siPSMB4 transfection was assayed by MTT assay. Annexin V and propidium iodide staining was used to monitor the apoptosis by flow cytometric analysis. Moreover, the migration and invasion were evaluated by wound healing and Transwell assays. The expression of migration-related and invasion-related proteins after PSMB4 inhibition was detected by Western blotting. In addition, an orthotropic xenograft mouse model was used to assay the effect of PSMB4 knockdown in the in vivo study. Results: Basis on the results of bioinformatics study, glioma patients with higher PSMB4 expression had a shorter survival time than those with lower PSMB4 expression. The staining of clinical brain tissues showed elevated PSMB4 expression in GBM tissues compared with normal brain tissues. The PSMB4 inhibition decreased proliferation, migration and invasion abilities in human GBM cells. Downregulated PSMB4 resulted in cell cycle arrest and apoptosis in vitro. In an orthotropic xenograft mouse model, the glioma tumors progression was reduced when PSMB4 was down-regulated. The decreased PSMB4 enhanced the anti-tumor effect of temozolomide (TMZ on tumor growth. In addition, the absence of PSMB4 decreased the expression of phosphorylated focal adhesion kinase and

  2. Exposure to 3G mobile phone signals does not affect the biological features of brain tumor cells.

    Science.gov (United States)

    Liu, Yu-xiao; Li, Guo-qing; Fu, Xiang-ping; Xue, Jing-hui; Ji, Shou-ping; Zhang, Zhi-wen; Zhang, Yi; Li, An-ming

    2015-08-08

    The increase in mobile phone use has generated concerns about possible risks to human health, especially the development of brain tumors. Whether tumor patients should continue to use mobile telephones has remained unclear because of a paucity of information. Herein, we investigated whether electromagnetic fields from mobile phones could alter the biological features of human tumor cells and act as a tumor-promoting agent. Human glioblastoma cell lines, U251-MG and U87-MG, were exposed to 1950-MHz time division-synchronous code division multiple access (TD-SCDMA) at a specific absorption rate (maximum SAR = 5.0 W/kg) for 12, 24, and 48 h. Cell morphologies and ultra-structures were observed by microscopy and the rates of apoptosis and cell cycle progression were monitored by flow cytometry. Additionally, cell growth was determined using the CKK-8 assay, and the expression levels of tumor and apoptosis-related genes and proteins were analyzed by real-time PCR and western blotting, respectively. Tumor formation and invasiveness were measured using a tumorigenicity assay in vivo and migration assays in vitro. No significant differences in either biological features or tumor formation ability were observed between unexposed and exposed glioblastoma cells. Our data showed that exposure to 1950-MHz TD-SCDMA electromagnetic fields for up to 48 h did not act as a cytotoxic or tumor-promoting agent to affect the proliferation or gene expression profile of glioblastoma cells. Our findings implied that exposing brain tumor cells in vitro for up to 48 h to 1950-MHz continuous TD-SCDMA electromagnetic fields did not elicit a general cell stress response.

  3. Omega-3 fatty acid supplementation in cancer therapy. Does eicosapentanoic acid influence the radiosensitivity of tumor cells?

    Energy Technology Data Exchange (ETDEWEB)

    Manda, Katrin; Kriesen, Stephan; Hildebrandt, Guido [Rostock Univ. (Germany). Dept. of Radiotherapy; Fietkau, Rainer; Klautke, Gunther [Univ. Hospital Erlangen, Erlangen (Germany). Dept. of Radiation Oncology

    2011-02-15

    Purpose: The aim of this study was to evaluate whether the omega-3 polyunsaturated fatty acid cis-5,8,11,14,17-eicosapentanoic acid (EPA) can enhance the radiosensitivity of different human tumor cell lines. Materials and Methods: Colon adenocarcinoma cells HT-29, and two glioblastoma multiforme tumor cells T98G and U251 were cultured under standard conditions. Cell growth was observed during administration with different concentrations of EPA, using it as the free fatty acid dissolved in ethanol or bound to bovine serum albumin. To investigate the influence of EPA (free and bound) on radiosensitivity, tumor cells were pretreated 30 minutes or 24 hours prior to irradiation with the fatty acid. Cell survival was measured by colony-forming assays. Results: When combined with irradiation, incubation with EPA was found to result in enhanced radiosensitivity with substantial variation: while there was strong radiosensitization for HT-29 and U251 cells, almost no effect for T98G cells was observed. A marked radiosensitization was clearly dependent on the treatment schedule. Conclusion: The observations suggest that EPA is not only a nutritional adjuvant but also may be a potential candidate to enhance the efficacy of irradiation on human cancer cells. (orig.)

  4. Transgenic nude mouse with green fluorescent protein expression-based human glioblastoma multiforme animal model with EGFR expression and invasiveness.

    Science.gov (United States)

    Tan, Guo-Wei; Lan, Fo-Lin; Gao, Jian-Guo; Jiang, Cai-Mou; Zhang, Yi; Huang, Xiao-Hong; Ma, Yue-Hong; Shao, He-Dui; He, Xue-Yang; Chen, Jin-Long; Long, Jian-Wu; Xiao, Hui-Sheng; Guo, Zhi-Tong; Diao, Yi

    2012-08-01

    Previously, we developed an orthotopic xenograft model of human glioblastoma multiforme (GBM) with high EGFR expression and invasiveness in Balb/c nu/nu nude mice. Now we also developed the same orthotopic xenograft model in transgenic nude mice with green fluorescent protein (GFP) expression. The present orthotopic xenografts labeled by phycoerythrin fluorescing red showed high EGFR expression profile, and invasive behavior under a bright green-red dual-color fluorescence background. A striking advantage in the present human GBM model is that the change of tumor growth can be observed visually instead of sacrificing animals in our further antitumor therapy studies.

  5. Nanoparticles for hyperthermic therapy: synthesis strategies and applications in glioblastoma

    NARCIS (Netherlands)

    Verma, Jyoti; Lal, Sumit; van Noorden, Cornelis J. F.

    2014-01-01

    Glioblastoma multiforme (GBM) is the most common and most aggressive malignant primary brain tumor in humans. Current GBM treatment includes surgery, radiation therapy, and chemotherapy, sometimes supplemented with novel therapies. Despite recent advances, survival of GBM patients remains poor.

  6. 47 CFR 25.251 - Special requirements for coordination.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Special requirements for coordination. 25.251 Section 25.251 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.251 Special requirements for coordination. (a) The...

  7. Cyclophilin B supports Myc and mutant p53-dependent survival of glioblastoma multiforme cells.

    Science.gov (United States)

    Choi, Jae Won; Schroeder, Mark A; Sarkaria, Jann N; Bram, Richard J

    2014-01-15

    Glioblastoma multiforme is an aggressive, treatment-refractory type of brain tumor for which effective therapeutic targets remain important to identify. Here, we report that cyclophilin B (CypB), a prolyl isomerase residing in the endoplasmic reticulum (ER), provides an essential survival signal in glioblastoma multiforme cells. Analysis of gene expression databases revealed that CypB is upregulated in many cases of malignant glioma. We found that suppression of CypB reduced cell proliferation and survival in human glioblastoma multiforme cells in vitro and in vivo. We also found that treatment with small molecule inhibitors of cyclophilins, including the approved drug cyclosporine, greatly reduced the viability of glioblastoma multiforme cells. Mechanistically, depletion or pharmacologic inhibition of CypB caused hyperactivation of the oncogenic RAS-mitogen-activated protein kinase pathway, induction of cellular senescence signals, and death resulting from loss of MYC, mutant p53, Chk1, and Janus-activated kinase/STAT3 signaling. Elevated reactive oxygen species, ER expansion, and abnormal unfolded protein responses in CypB-depleted glioblastoma multiforme cells indicated that CypB alleviates oxidative and ER stresses and coordinates stress adaptation responses. Enhanced cell survival and sustained expression of multiple oncogenic proteins downstream of CypB may thus contribute to the poor outcome of glioblastoma multiforme tumors. Our findings link chaperone-mediated protein folding in the ER to mechanisms underlying oncogenic transformation, and they make CypB an attractive and immediately targetable molecule for glioblastoma multiforme therapy.

  8. Potent antiproliferative cembrenoids accumulate in tobacco upon infection with Rhodococcus fascians and trigger unusual microtubule dynamics in human glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Aminata P Nacoulma

    Full Text Available AIMS: Though plant metabolic changes are known to occur during interactions with bacteria, these were rarely challenged for pharmacologically active compounds suitable for further drug development. Here, the occurrence of specific chemicals with antiproliferative activity against human cancer cell lines was evidenced in hyperplasia (leafy galls induced when plants interact with particular phytopathogens, such as the Actinomycete Rhodococcus fascians. METHODS: We examined leafy galls fraction F3.1.1 on cell proliferation, cell division and cytoskeletal disorganization of human cancer cell lines using time-lapse videomicroscopy imaging, combined with flow cytometry and immunofluorescence analysis. We determined the F3.1.1-fraction composition by gas chromatography coupled to mass spectrometry. RESULTS: The leafy galls induced on tobacco by R. fascians yielded fraction F3.1.1 which inhibited proliferation of glioblastoma U373 cells with an IC50 of 4.5 µg/mL, F.3.1.1 was shown to increase cell division duration, cause nuclear morphological deformations and cell enlargement, and, at higher concentrations, karyokinesis defects leading to polyploidization and apoptosis. F3.1.1 consisted of a mixture of isomers belonging to the cembrenoids. The cellular defects induced by F3.1.1 were caused by a peculiar cytoskeletal disorganization, with the occurrence of fragmented tubulin and strongly organized microtubule aggregates within the same cell. Colchicine, paclitaxel, and cembrene also affected U373 cell proliferation and karyokinesis, but the induced microtubule rearrangement was very different from that provoked by F3.1.1. Altogether our data indicate that the cembrenoid isomers in F3.1.1 have a unique mode of action and are able to simultaneously modulate microtubule polymerization and stability.

  9. A kinome-wide RNAi screen in Drosophila Glia reveals that the RIO kinases mediate cell proliferation and survival through TORC2-Akt signaling in glioblastoma.

    Directory of Open Access Journals (Sweden)

    Renee D Read

    Full Text Available Glioblastoma, the most common primary malignant brain tumor, is incurable with current therapies. Genetic and molecular analyses demonstrate that glioblastomas frequently display mutations that activate receptor tyrosine kinase (RTK and Pi-3 kinase (PI3K signaling pathways. In Drosophila melanogaster, activation of RTK and PI3K pathways in glial progenitor cells creates malignant neoplastic glial tumors that display many features of human glioblastoma. In both human and Drosophila, activation of the RTK and PI3K pathways stimulates Akt signaling along with other as-yet-unknown changes that drive oncogenesis. We used this Drosophila glioblastoma model to perform a kinome-wide genetic screen for new genes required for RTK- and PI3K-dependent neoplastic transformation. Human orthologs of novel kinases uncovered by these screens were functionally assessed in mammalian glioblastoma models and human tumors. Our results revealed that the atypical kinases RIOK1 and RIOK2 are overexpressed in glioblastoma cells in an Akt-dependent manner. Moreover, we found that overexpressed RIOK2 formed a complex with RIOK1, mTor, and mTor-complex-2 components, and that overexpressed RIOK2 upregulated Akt signaling and promoted tumorigenesis in murine astrocytes. Conversely, reduced expression of RIOK1 or RIOK2 disrupted Akt signaling and caused cell cycle exit, apoptosis, and chemosensitivity in glioblastoma cells by inducing p53 activity through the RpL11-dependent ribosomal stress checkpoint. These results imply that, in glioblastoma cells, constitutive Akt signaling drives RIO kinase overexpression, which creates a feedforward loop that promotes and maintains oncogenic Akt activity through stimulation of mTor signaling. Further study of the RIO kinases as well as other kinases identified in our Drosophila screen may reveal new insights into defects underlying glioblastoma and related cancers and may reveal new therapeutic opportunities for these cancers.

  10. From reverse transcription to human brain tumors

    Directory of Open Access Journals (Sweden)

    Dmitrenko V. V.

    2013-05-01

    Full Text Available Reverse transcriptase from avian myeloblastosis virus (AMV was the subject of the study, from which the investi- gations of the Department of biosynthesis of nucleic acids were started. Production of AMV in grams quantities and isolation of AMV reverse transcriptase were established in the laboratory during the seventies of the past cen- tury and this initiated research on the cDNA synthesis, cloning and investigation of the structure and functions of the eukaryotic genes. Structures of salmon insulin and insulin-like growth factor (IGF family genes and their transcripts were determined during long-term investigations. Results of two modern techniques, microarray-ba- sed hybridization and SAGE, were used for the identification of the genes differentially expressed in astrocytic gliomas and human normal brain. Comparison of SAGE results on the genes overexpressed in glioblastoma with the results of microarray analysis revealed a limited number of common genes. 105 differentially expressed genes, common to both methods, can be included in the list of candidates for the molecular typing of glioblastoma. The first experiments on the classification of glioblastomas based on the data of the 20 genes expression were conducted by using of artificial neural network analysis. The results of these experiments showed that the expression profiles of these genes in 224 glioblastoma samples and 74 normal brain samples could be according to the Koho- nen’s maps. The CHI3L1 and CHI3L2 genes of chitinase-like cartilage protein were revealed among the most overexpressed genes in glioblastoma, which could have prognostic and diagnostic potential. Results of in vitro experiments demonstrated that both proteins, CHI3L1 and CHI3L2, may initiate the phosphorylation of ERK1/ ERK2 and AKT kinases leading to the activation of MAPK/ERK1/2 and PI3K/AKT signaling cascades in human embryonic kidney 293 cells, human glioblastoma U87MG, and U373 cells. The new human cell line

  11. Andrographolide suppresses the migratory ability of human glioblastoma multiforme cells by targeting ERK1/2-mediated matrix metalloproteinase-2 expression

    OpenAIRE

    Yang, Shih-Liang; Kuo, Fu-Hsuan; Chen, Pei-Ni; Hsieh, Yi-Hsien; Yu, Nuo-Yi; Yang, Wei-En; Hsieh, Ming-Ju; Yang, Shun-Fa

    2017-01-01

    Glioblastoma multiforme (GBM) can be a fatal tumor because of difficulties in treating the related metastasis. Andrographolide is the bioactive component of the Andrographis paniculata. Andrographolide possesses the anti-inflammatory activity and inhibits the growth of various cancers; however, its effect on GBM cancer motility remains largely unknown. In this study, we examined the antimetastatic properties of andrographolide in human GBM cells. Our results revealed that andrographolide inhi...

  12. MicroRNA involvement in glioblastoma pathogenesis

    International Nuclear Information System (INIS)

    Novakova, Jana; Slaby, Ondrej; Vyzula, Rostislav; Michalek, Jaroslav

    2009-01-01

    MicroRNAs are endogenously expressed regulatory noncoding RNAs. Altered expression levels of several microRNAs have been observed in glioblastomas. Functions and direct mRNA targets for these microRNAs have been relatively well studied over the last years. According to these data, it is now evident, that impairment of microRNA regulatory network is one of the key mechanisms in glioblastoma pathogenesis. MicroRNA deregulation is involved in processes such as cell proliferation, apoptosis, cell cycle regulation, invasion, glioma stem cell behavior, and angiogenesis. In this review, we summarize the current knowledge of miRNA functions in glioblastoma with an emphasis on its significance in glioblastoma oncogenic signaling and its potential to serve as a disease biomarker and a novel therapeutic target in oncology.

  13. Urokinase-Type Plasminogen Activator Receptor as a Potential PET Biomarker in Glioblastoma

    DEFF Research Database (Denmark)

    Persson, Morten; Nedergaard, Mette K; Brandt-Larsen, Malene

    2016-01-01

    an orthotopic xenograft model of glioblastoma. Tumor growth was monitored using bioluminescence imaging. Five to six weeks after inoculation, all mice were scanned with small-animal PET/CT using two new uPAR PET ligands ((64)Cu-NOTA-AE105 and (68)Ga-NOTA-AE105) and, for comparison, O-(2-(18)F...

  14. EG-10LONG NON-CODING RNAs IN GLIOBLASTOMA

    Science.gov (United States)

    Pastori, Chiara; Kapranov, Philipp; Penas, Clara; Laurent, Georges St.; Ayad, Nagi; Wahlestedt, Claes

    2014-01-01

    Glioblastoma (GBM) is the most common, aggressive and incurable primary brain tumor in adults. Genome studies have confirmed that GBM is extremely heterogeneous with many genetically different subgroups. Consequently, there is much current interest in epigenetic drugs that may be active across genetically distinct tumors. In support of this, some epigenetic drugs has recently shown efficacy against several cancers including glioblastoma. Much recent interest has also been devoted to long non-coding RNAs (lncRNAs), which can modulate gene expression regulating chromatin architecture, in part through the interaction with epigenetic protein machineries. To date, however, only a few lncRNAs have been studied in human cancer. We therefore embarked on a comprehensive genomic and functional analysis of lncRNAs in GBM. Using the Helicos Single Molecule Sequencing platform glioblastoma samples were sequenced resulting in the identification of hundreds of dysregulated lncRNAs. Among these the lncRNA HOTAIR was found massively increased in GBM. This observation parallels findings in other cancers where HOTAIR's increased expression has been linked to poor prognosis due to metastatic events. Interestingly, here we show that in glioblastoma HOTAIR does not promote metastasis, but instead sustains the ability of these cells to proliferate. In fact, we demonstrate that HOTAIR knockdown in GBM strongly impairs cell proliferation and induces apoptosis in vitro and in vivo. Further, we implicate HOTAIR in the mechanism of action of certain epigenetic drugs. In summary, long noncoding RNAs (newly discovered epigenomic factors) play a vital role in GBM and deserve attention as entirely novel drug targets as well as biomarkers.

  15. Therapeutic efficacy of aldoxorubicin in an intracranial xenograft mouse model of human glioblastoma.

    Science.gov (United States)

    Marrero, Luis; Wyczechowska, Dorota; Musto, Alberto E; Wilk, Anna; Vashistha, Himanshu; Zapata, Adriana; Walker, Chelsey; Velasco-Gonzalez, Cruz; Parsons, Christopher; Wieland, Scott; Levitt, Daniel; Reiss, Krzysztof; Prakash, Om

    2014-10-01

    Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor with a median survival of 12 to 15 months after diagnosis. Acquired chemoresistance, high systemic toxicity, and low penetration of the blood brain barrier by many anticancer drugs contribute to the failure of anti-GBM therapies. To circumvent some of these obstacles, we tested a novel prodrug approach to evaluate anti-GBM efficacy by utilizing serum albumin-binding doxorubicin (Doxo), aldoxorubicin (Aldoxo), which is less toxic, is released from albumin in an acidic environment and accumulates in tumor tissues. A human GBM cell line that expresses a luciferase reporter (U87-luc) was stereotactically injected into the left striatum of the brain of immunodeficient mice. Following initial tumor growth for 12 days, mice were injected once a week in the tail-vein with Aldoxo [24 mg/kg or 18 mg/kg of doxorubicin equivalents-3/4 maximum tolerated dose (MTD)], Doxo [6 mg/kg (3/4 MTD)], or vehicle. Aldoxo-treated mice demonstrated significantly slower growth of the tumor when compared to vehicle-treated or Doxo-treated mice. Five out of eight Aldoxo-treated mice remained alive more than 60 days with a median survival of 62 days, while the median survival of vehicle- and Doxo-treated mice was only 26 days. Importantly, Aldoxo-treated mice exhibited high levels of Doxo within the tumor tissue, accompanied by low tumor cell proliferation (Ki67) and abundant intratumoral programmed cell death (cleaved caspase-3). Effective accumulation of Aldoxo in brain tumor tissues but not normal brain, its anti-tumor efficacy, and low toxicity, provide a strong rationale for evaluating this novel drug conjugate as a treatment for patients afflicted with GBM.

  16. Gene therapy for human glioblastoma using neurotropic JC virus-like particles as a gene delivery vector.

    Science.gov (United States)

    Chao, Chun-Nun; Yang, Yu-Hsuan; Wu, Mu-Sheng; Chou, Ming-Chieh; Fang, Chiung-Yao; Lin, Mien-Chun; Tai, Chien-Kuo; Shen, Cheng-Huang; Chen, Pei-Lain; Chang, Deching; Wang, Meilin

    2018-02-02

    Glioblastoma multiforme (GBM), the most common malignant brain tumor, has a short period of survival even with recent multimodality treatment. The neurotropic JC polyomavirus (JCPyV) infects glial cells and oligodendrocytes and causes fatal progressive multifocal leukoencephalopathy in patients with AIDS. In this study, a possible gene therapy strategy for GBM using JCPyV virus-like particles (VLPs) as a gene delivery vector was investigated. We found that JCPyV VLPs were able to deliver the GFP reporter gene into tumor cells (U87-MG) for expression. In an orthotopic xenograft model, nude mice implanted with U87 cells expressing the near-infrared fluorescent protein and then treated by intratumoral injection of JCPyV VLPs carrying the thymidine kinase suicide gene, combined with ganciclovir administration, exhibited significantly prolonged survival and less tumor fluorescence during the experiment compared with controls. Furthermore, JCPyV VLPs were able to protect and deliver a suicide gene to distal subcutaneously implanted U87 cells in nude mice via blood circulation and inhibit tumor growth. These findings show that metastatic brain tumors can be targeted by JCPyV VLPs carrying a therapeutic gene, thus demonstrating the potential of JCPyV VLPs to serve as a gene therapy vector for the far highly treatment-refractory GBM.

  17. Molecular and cellular heterogeneity: the hallmark of glioblastoma.

    Science.gov (United States)

    Aum, Diane J; Kim, David H; Beaumont, Thomas L; Leuthardt, Eric C; Dunn, Gavin P; Kim, Albert H

    2014-12-01

    There has been increasing awareness that glioblastoma, which may seem histopathologically similar across many tumors, actually represents a group of molecularly distinct tumors. Emerging evidence suggests that cells even within the same tumor exhibit wide-ranging molecular diversity. Parallel to the discoveries of molecular heterogeneity among tumors and their individual cells, intense investigation of the cellular biology of glioblastoma has revealed that not all cancer cells within a given tumor behave the same. The identification of a subpopulation of brain tumor cells termed "glioblastoma cancer stem cells" or "tumor-initiating cells" has implications for the management of glioblastoma. This focused review will therefore summarize emerging concepts on the molecular and cellular heterogeneity of glioblastoma and emphasize that we should begin to consider each individual glioblastoma to be an ensemble of molecularly distinct subclones that reflect a spectrum of dynamic cell states.

  18. miR-340 inhibits glioblastoma cell proliferation by suppressing CDK6, cyclin-D1 and cyclin-D2

    International Nuclear Information System (INIS)

    Li, Xuesong; Gong, Xuhai; Chen, Jing; Zhang, Jinghui; Sun, Jiahang; Guo, Mian

    2015-01-01

    Glioblastoma development is often associated with alteration in the activity and expression of cell cycle regulators, such as cyclin-dependent kinases (CKDs) and cyclins, resulting in aberrant cell proliferation. Recent studies have highlighted the pivotal roles of miRNAs in controlling the development and growth of glioblastoma. Here, we provide evidence for a function of miR-340 in the inhibition of glioblastoma cell proliferation. We found that miR-340 is downregulated in human glioblastoma tissue samples and several established glioblastoma cell lines. Proliferation and neurosphere formation assays revealed that miR-340 plays an oncosuppressive role in glioblastoma, and that its ectopic expression causes significant defect in glioblastoma cell growth. Further, using bioinformatics, luciferase assay and western blot, we found that miR-340 specifically targets the 3′UTRs of CDK6, cyclin-D1 and cyclin-D2, leading to the arrest of glioblastoma cells in the G0/G1 cell cycle phase. Confirming these results, we found that re-introducing CDK6, cyclin-D1 or cyclin-D2 expression partially, but significantly, rescues cells from the suppression of cell proliferation and cell cycle arrest mediated by miR-340. Collectively, our results demonstrate that miR-340 plays a tumor-suppressive role in glioblastoma and may be useful as a diagnostic biomarker and/or a therapeutic avenue for glioblastoma. - Highlights: • miR-340 is downregulated in glioblastoma samples and cell lines. • miR-340 inhibits glioblastoma cell proliferation. • miR-340 directly targets CDK6, cyclin-D1, and cyclin-D2. • miR-340 regulates glioblastoma cell proliferation via CDK6, cyclin-D1 and cyclin-D2

  19. miR-340 inhibits glioblastoma cell proliferation by suppressing CDK6, cyclin-D1 and cyclin-D2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuesong; Gong, Xuhai [Department of Neurology, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163001 (China); Chen, Jing [Department of Neurology, Daqing Longnan Hospital, Daqing, Heilongjiang, 163001 China (China); Zhang, Jinghui [Department of Cardiology, The Fourth Hospital of Harbin City, Harbin, Heilongjiang 150026 (China); Sun, Jiahang [Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086 (China); Guo, Mian, E-mail: guomian_hyd@163.com [Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086 (China)

    2015-05-08

    Glioblastoma development is often associated with alteration in the activity and expression of cell cycle regulators, such as cyclin-dependent kinases (CKDs) and cyclins, resulting in aberrant cell proliferation. Recent studies have highlighted the pivotal roles of miRNAs in controlling the development and growth of glioblastoma. Here, we provide evidence for a function of miR-340 in the inhibition of glioblastoma cell proliferation. We found that miR-340 is downregulated in human glioblastoma tissue samples and several established glioblastoma cell lines. Proliferation and neurosphere formation assays revealed that miR-340 plays an oncosuppressive role in glioblastoma, and that its ectopic expression causes significant defect in glioblastoma cell growth. Further, using bioinformatics, luciferase assay and western blot, we found that miR-340 specifically targets the 3′UTRs of CDK6, cyclin-D1 and cyclin-D2, leading to the arrest of glioblastoma cells in the G0/G1 cell cycle phase. Confirming these results, we found that re-introducing CDK6, cyclin-D1 or cyclin-D2 expression partially, but significantly, rescues cells from the suppression of cell proliferation and cell cycle arrest mediated by miR-340. Collectively, our results demonstrate that miR-340 plays a tumor-suppressive role in glioblastoma and may be useful as a diagnostic biomarker and/or a therapeutic avenue for glioblastoma. - Highlights: • miR-340 is downregulated in glioblastoma samples and cell lines. • miR-340 inhibits glioblastoma cell proliferation. • miR-340 directly targets CDK6, cyclin-D1, and cyclin-D2. • miR-340 regulates glioblastoma cell proliferation via CDK6, cyclin-D1 and cyclin-D2.

  20. 7 CFR 251.1 - General purpose and scope.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false General purpose and scope. 251.1 Section 251.1... AGRICULTURE GENERAL REGULATIONS AND POLICIES-FOOD DISTRIBUTION THE EMERGENCY FOOD ASSISTANCE PROGRAM § 251.1 General purpose and scope. This part announces the policies and prescribes the regulations necessary to...

  1. 7 CFR 251.6 - Distribution plan.

    Science.gov (United States)

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE GENERAL REGULATIONS AND POLICIES-FOOD DISTRIBUTION THE EMERGENCY FOOD ASSISTANCE PROGRAM § 251.6..., 2009, § 251.6 was amended by revising paragraph (b), effective March 1, 2010. For the convenience of...

  2. 37 CFR 1.251 - Unlocatable file.

    Science.gov (United States)

    2010-07-01

    ..., patent, or other patent-related proceeding after a reasonable search, the Office will notify the... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Unlocatable file. 1.251 Section 1.251 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK OFFICE, DEPARTMENT OF...

  3. Immunotherapeutic Potential of Oncolytic H-1 Parvovirus: Hints of Glioblastoma Microenvironment Conversion towards Immunogenicity.

    Science.gov (United States)

    Angelova, Assia L; Barf, Milena; Geletneky, Karsten; Unterberg, Andreas; Rommelaere, Jean

    2017-12-15

    Glioblastoma, one of the most aggressive primary brain tumors, is characterized by highly immunosuppressive microenvironment. This contributes to glioblastoma resistance to standard treatment modalities and allows tumor growth and recurrence. Several immune-targeted approaches have been recently developed and are currently under preclinical and clinical investigation. Oncolytic viruses, including the autonomous protoparvovirus H-1 (H-1PV), show great promise as novel immunotherapeutic tools. In a first phase I/IIa clinical trial (ParvOryx01), H-1PV was safe and well tolerated when locally or systemically administered to recurrent glioblastoma patients. The virus was able to cross the blood-brain (tumor) barrier after intravenous infusion. Importantly, H-1PV treatment of glioblastoma patients was associated with immunogenic changes in the tumor microenvironment. Tumor infiltration with activated cytotoxic T cells, induction of cathepsin B and inducible nitric oxide (NO) synthase (iNOS) expression in tumor-associated microglia/macrophages (TAM), and accumulation of activated TAM in cluster of differentiation (CD) 40 ligand (CD40L)-positive glioblastoma regions was detected. These are the first-in-human observations of H-1PV capacity to switch the immunosuppressed tumor microenvironment towards immunogenicity. Based on this pilot study, we present a tentative model of H-1PV-mediated modulation of glioblastoma microenvironment and propose a combinatorial therapeutic approach taking advantage of H-1PV-induced microglia/macrophage activation for further (pre)clinical testing.

  4. 37 CFR 251.23 - FOIA and Privacy Act.

    Science.gov (United States)

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false FOIA and Privacy Act. 251.23 Section 251.23 Patents, Trademarks, and Copyrights COPYRIGHT OFFICE, LIBRARY OF CONGRESS COPYRIGHT... Access to and Inspection of Records § 251.23 FOIA and Privacy Act. Freedom of Information Act and Privacy...

  5. 37 CFR 251.21 - Public records.

    Science.gov (United States)

    2010-07-01

    ... available by law except to a party in litigation with a CARP, the Copyright Office, or the Library of... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Public records. 251.21 Section 251.21 Patents, Trademarks, and Copyrights COPYRIGHT OFFICE, LIBRARY OF CONGRESS COPYRIGHT...

  6. The effect of combining recombinant human tumor necrosis factor-alpha with local radiation on tumor control probability of a human glioblastoma multiforme xenograft in nude mice

    International Nuclear Information System (INIS)

    Huang, Peigen; Allam, Ayman; Perez, Luis A.; Taghian, Alphonse; Freeman, Jill; Suit, Herman D.

    1995-01-01

    Purpose: To evaluate the antitumor activity of recombinant human tumor necrosis factor-alpha (rHuTNF-α) on a human glioblastoma multiforme (U87) xenograft in nude mice, and to study the effect of combining rHuTNF-α with local radiation on the tumor control probability of this tumor model. Methods and Materials: U87 xenograft was transplanted SC into the right hindleg of NCr/Sed nude mice (7-8 weeks old, male). When tumors reached a volume of about 110 mm 3 , mice were randomly assigned to treatment: rHuTNF-α alone compared with normal saline control; or local radiation plus rHuTNF-α vs. local radiation plus normal saline. Parameters of growth delay, volume doubling time, percentage of necrosis, and cell loss factor were used to assess the antitumor effects of rHuTNF-α on this tumor. The TCD 50 (tumor control dose 50%) was used as an endpoint to determine the effect of combining rHuTNF-α with local radiation. Results: Tumor growth in mice treated with a dose of 150 μg/kg body weight rHuTNF-α, IP injection daily for 7 consecutive days, was delayed about 8 days compared to that in controls. Tumors in the treatment group had a significantly longer volume doubling time, and were smaller in volume and more necrotic than matched tumors in control group. rHuTNF-α also induced a 2.3 times increase of cell loss factor. The administration of the above-mentioned dose of rHuTNF-α starting 24 h after single doses of localized irradiation under hypoxic condition, resulted in a significant reduction in TCD 50 from the control value of 60.9 Gy to 50.5 Gy (p 50 value in the treatment vs. the control groups

  7. Antitumor Activity and Mechanism of a Reverse Transcriptase Inhibitor, Dapivirine, in Glioblastoma

    OpenAIRE

    Liu, Weiwen; Song, Xian-lu; Zhao, Shan-chao; He, Minyi; Wang, Hai; Chen, Ziyang; Xiang, Wei; Yi, Guozhong; Qi, Songtao; Liu, Yawei

    2018-01-01

    Ethnopharmacological relevance: Dapivirine is one of reverse transcriptase inhibitors (RTIs). It is the prototype of diarylpyrimidines (DAPY), formerly known as TMC120 or DAPY R147681 (IUPAC name: 4- [[4-(2, 4, 6-trimethylphenyl) amino]-2-pyrimidinyl] amino]-benzonitrile; CAS no.244767-67-7). Aim: The purpose of this study is to investigate the antitumor activity of dapivirine, one of the RTIs, on U87 glioblastoma (GBM) cells in vitro and in vivo. Materials and Methods: U87 GBM cells were cul...

  8. Lipoprotein-biomimetic nanostructure enables efficient targeting delivery of siRNA to Ras-activated glioblastoma cells via macropinocytosis

    Science.gov (United States)

    Huang, Jia-Lin; Jiang, Gan; Song, Qing-Xiang; Gu, Xiao; Hu, Meng; Wang, Xiao-Lin; Song, Hua-Hua; Chen, Le-Pei; Lin, Ying-Ying; Jiang, Di; Chen, Jun; Feng, Jun-Feng; Qiu, Yong-Ming; Jiang, Ji-Yao; Jiang, Xin-Guo; Chen, Hong-Zhuan; Gao, Xiao-Ling

    2017-05-01

    Hyperactivated Ras regulates many oncogenic pathways in several malignant human cancers including glioblastoma and it is an attractive target for cancer therapies. Ras activation in cancer cells drives protein internalization via macropinocytosis as a key nutrient-gaining process. By utilizing this unique endocytosis pathway, here we create a biologically inspired nanostructure that can induce cancer cells to `drink drugs' for targeting activating transcription factor-5 (ATF5), an overexpressed anti-apoptotic transcription factor in glioblastoma. Apolipoprotein E3-reconstituted high-density lipoprotein is used to encapsulate the siRNA-loaded calcium phosphate core and facilitate it to penetrate the blood-brain barrier, thus targeting the glioblastoma cells in a macropinocytosis-dependent manner. The nanostructure carrying ATF5 siRNA exerts remarkable RNA-interfering efficiency, increases glioblastoma cell apoptosis and inhibits tumour cell growth both in vitro and in xenograft tumour models. This strategy of targeting the macropinocytosis caused by Ras activation provides a nanoparticle-based approach for precision therapy in glioblastoma and other Ras-activated cancers.

  9. Effect of saw palmetto extract on PI3K cell signaling transduction in human glioma.

    Science.gov (United States)

    Yang, Yang; Hui, Lv; Yuqin, Che; Jie, Li; Shuai, Hou; Tiezhu, Zhou; Wei, Wang

    2014-08-01

    Saw palmetto extract can induce the apoptosis of prostate cancer cells. The aim of the present study was to investigate the effect of saw palmetto extract on the phosphatidylinositol 3-kinase (PI3K)/Akt signaling transduction pathway in human glioma U87 and U251 cell lines. Suspensions of U87 and U251 cells in a logarithmic growth phase were seeded into six-well plates at a density of 10 4 cells/well. In the experimental group, 1 μl/ml saw palmetto extract was added, while the control group was cultured without a drug for 24 h. The expression levels of PI3K, B-cell lymphoma-extra large (Bcl-xL) and p53 were evaluated through western blot analysis. In the experimental group, the U87 and U251 cells exhibited a lower expression level of PI3K protein as compared with the control group (t=6.849; Psaw palmetto extract induces glioma cell growth arrest and apoptosis via decreasing PI3K/Akt signal transduction.

  10. Lebbeckoside C, a new triterpenoid saponin from the stem barks of Albizia lebbeck inhibits the growth of human glioblastoma cells.

    Science.gov (United States)

    Noté, Olivier Placide; Ngo Mbing, Joséphine; Kilhoffer, Marie-Claude; Pegnyemb, Dieudonné Emmanuel; Lobstein, Annelise

    2018-02-19

    One new acacic acid-type saponin, named lebbeckoside C (1), was isolated from the stem barks of Albizia lebbeck. Its structure was established on the basis of extensive analysis of 1D and 2D NMR ( 1 H, 13 C NMR, DEPT, COSY, TOCSY, ROESY, HSQC and HMBC) experiments, HRESIMS studies, and by chemical evidence as 3-O-[β-d-xylopyranosyl-(l→2)-β-d-fucopyranosyl-(1→6)-[β-d-glucopyranosyl(1→2)]-β-d-glucopyranosyl]-21-O-{(2E,6S)-6-O-{4-O-[(2E,6S)-2,6-dimethyl-6-O-(β-d-quinovopyranosyl)octa-2,7-dienoyl]-4-O-[(2E,6S)-2,6-dimethyl-6-O-(β-d-quinovopyranosyl)octa-2,7-dienoyl]-β-d-quinovopyranosyl}-2,6-dimethylocta-2,7-dienoyl}acacic acid 28 O-[β-d-quinovopyranosyl-(l→3)-[α-l-arabinofuranosyl-(l→4)]-α-l-rhamnopyranosyl-(l→2)-β-d-glucopyranosyl] ester. The isolated saponin (1) displayed significant cytotoxic activity against the human glioblastoma cell line U-87 MG and TG1 stem-like glioma cells isolated from a patient tumor with IC 50 values of 1.69 and 1.44 μM, respectively.

  11. Ex vivo cultures of glioblastoma in three-dimensional hydrogel maintain the original tumor growth behavior and are suitable for preclinical drug and radiation sensitivity screening

    Energy Technology Data Exchange (ETDEWEB)

    Jiguet Jiglaire, Carine, E-mail: carine.jiguet-jiglaire@univ-amu.fr [Aix Marseille Université, Faculté de Médecine de la Timone, 27 boulevard Jean Moulin, 13284 Marseille (France); CRO2, UMR 911, Faculté de Médecine de la Timone, 27 boulevard Jean Moulin, 13284 Marseille Cedex (France); INSERM, U911, 13005 Marseille (France); Baeza-Kallee, Nathalie; Denicolaï, Emilie; Barets, Doriane [Aix Marseille Université, Faculté de Médecine de la Timone, 27 boulevard Jean Moulin, 13284 Marseille (France); CRO2, UMR 911, Faculté de Médecine de la Timone, 27 boulevard Jean Moulin, 13284 Marseille Cedex (France); INSERM, U911, 13005 Marseille (France); Metellus, Philippe [Aix Marseille Université, Faculté de Médecine de la Timone, 27 boulevard Jean Moulin, 13284 Marseille (France); CRO2, UMR 911, Faculté de Médecine de la Timone, 27 boulevard Jean Moulin, 13284 Marseille Cedex (France); INSERM, U911, 13005 Marseille (France); APHM, Timone Hospital, Department of Neurosurgery, 13005 Marseille (France); Timone Hospital, 264 Rue Saint Pierre, 13385 Marseille Cedex 5 (France); and others

    2014-02-15

    Identification of new drugs and predicting drug response are major challenges in oncology, especially for brain tumors, because total surgical resection is difficult and radiation therapy or chemotherapy is often ineffective. With the aim of developing a culture system close to in vivo conditions for testing new drugs, we characterized an ex vivo three-dimensional culture system based on a hyaluronic acid-rich hydrogel and compared it with classical two-dimensional culture conditions. U87-MG glioblastoma cells and seven primary cell cultures of human glioblastomas were subjected to radiation therapy and chemotherapy drugs. It appears that 3D hydrogel preserves the original cancer growth behavior and enables assessment of the sensitivity of malignant gliomas to radiation and drugs with regard to inter-tumoral heterogeneity of therapeutic response. It could be used for preclinical assessment of new therapies. - Highlights: • We have compared primary glioblastoma cell culture in a 2D versus 3D-matrix system. • In 3D morphology, organization and markers better recapitulate the original tumor. • 3D-matrix culture might represent a relevant system for more accurate drug screening.

  12. Ex vivo cultures of glioblastoma in three-dimensional hydrogel maintain the original tumor growth behavior and are suitable for preclinical drug and radiation sensitivity screening

    International Nuclear Information System (INIS)

    Jiguet Jiglaire, Carine; Baeza-Kallee, Nathalie; Denicolaï, Emilie; Barets, Doriane; Metellus, Philippe

    2014-01-01

    Identification of new drugs and predicting drug response are major challenges in oncology, especially for brain tumors, because total surgical resection is difficult and radiation therapy or chemotherapy is often ineffective. With the aim of developing a culture system close to in vivo conditions for testing new drugs, we characterized an ex vivo three-dimensional culture system based on a hyaluronic acid-rich hydrogel and compared it with classical two-dimensional culture conditions. U87-MG glioblastoma cells and seven primary cell cultures of human glioblastomas were subjected to radiation therapy and chemotherapy drugs. It appears that 3D hydrogel preserves the original cancer growth behavior and enables assessment of the sensitivity of malignant gliomas to radiation and drugs with regard to inter-tumoral heterogeneity of therapeutic response. It could be used for preclinical assessment of new therapies. - Highlights: • We have compared primary glioblastoma cell culture in a 2D versus 3D-matrix system. • In 3D morphology, organization and markers better recapitulate the original tumor. • 3D-matrix culture might represent a relevant system for more accurate drug screening

  13. Single-Cell RNA-Seq Analysis of Infiltrating Neoplastic Cells at the Migrating Front of Human Glioblastoma

    Directory of Open Access Journals (Sweden)

    Spyros Darmanis

    2017-10-01

    Full Text Available Summary: Glioblastoma (GBM is the most common primary brain cancer in adults and is notoriously difficult to treat because of its diffuse nature. We performed single-cell RNA sequencing (RNA-seq on 3,589 cells in a cohort of four patients. We obtained cells from the tumor core as well as surrounding peripheral tissue. Our analysis revealed cellular variation in the tumor’s genome and transcriptome. We were also able to identify infiltrating neoplastic cells in regions peripheral to the core lesions. Despite the existence of significant heterogeneity among neoplastic cells, we found that infiltrating GBM cells share a consistent gene signature between patients, suggesting a common mechanism of infiltration. Additionally, in investigating the immunological response to the tumors, we found transcriptionally distinct myeloid cell populations residing in the tumor core and the surrounding peritumoral space. Our data provide a detailed dissection of GBM cell types, revealing an abundance of information about tumor formation and migration. : Darmanis et al. perform single-cell transcriptomic analyses of neoplastic and stromal cells within and proximal to primary glioblastomas. The authors describe a population of neoplastic-infiltrating glioblastoma cells as well as a putative role of tumor-infiltrating immune cells in supporting tumor growth. Keywords: single cell, RNA-seq, glioma, glioblastoma, GBM, brain, heterogeneity, infiltrating, diffuse, checkpoint

  14. 37 CFR 2.51 - Drawing required.

    Science.gov (United States)

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Drawing required. 2.51... COMMERCE RULES OF PRACTICE IN TRADEMARK CASES Drawing § 2.51 Drawing required. (a) In an application under section 1(a) of the Act, the drawing of the mark must be a substantially exact representation of the mark...

  15. Treatment of glioblastoma with herbal medicines.

    Science.gov (United States)

    Trogrlić, Ivo; Trogrlić, Dragan; Trogrlić, Darko; Trogrlić, Amina Kadrić

    2018-02-13

    In the latest years, a lot of research studies regarding the usage of active agents from plants in the treatment of tumors have been published, but there is no data about successful usage of herbal remedies in the treatment of glioblastoma in humans. The phytotherapy involved five types of herbal medicine which the subjects took in the form of tea, each type once a day at regular intervals. Three patients took herbal medicine along with standard oncological treatment, while two patients applied for phytotherapy after completing medical treatment. The composition of herbal medicine was modified when necessary, which depended on the results of the control scans using the nuclear magnetic resonance technique and/or computed tomography. Forty-eight months after the introduction of phytotherapy, there were no clinical or radiological signs of the disease, in three patients; in one patient, the tumor was reduced and his condition was stable, and one patient lived for 48 months in spite of a large primary tumor and a massive recurrence, which developed after the treatment had been completed. The results achieved in patients in whom tumor regression occurred exclusively through the use of phytotherapy deserve special attention. In order to treat glioblastoma more effectively, it is necessary to develop innovative therapeutic strategies and medicines that should not be limited only to the field of conventional medicine. The results presented in this research paper are encouraging and serve as a good basis for further research on the possibilities of phytotherapy in the treatment of glioblastoma.

  16. Dicty_cDB: Contig-U04729-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available Contig-U04729-1 no gap 251 5 1037629 1037880 PLUS 1 1 U04729 0 0 0 0 0 0 1 0 0 0 0 0 0 0 Show Contig...-U04729-1 Contig ID Contig-U04729-1 Contig update 2001. 8.29 Contig sequence >Contig-U04729-1 (Contig...-U04729-1Q) /CSM_Contig/Contig-U04729-1Q.Seq.d TGGATTTATAACAGAGGTTATTGTAGGTGGTAAAACTTTTAGAGGAATCG ...CATTATCTAATGGG T Gap no gap Contig length 251 Chromosome number (1..6, M) 5 Chromosome length 5062330 Start ...ITEVIVGGKTFRGIVFEDLKSSNQTNNHSQNFSPNQSGTNLNNSNSNIPSSKKIKDKN ISPSSFLPTIGSTTSTSNPLSNG Translated Amino Acid seq

  17. Adenoid glioblastoma

    Directory of Open Access Journals (Sweden)

    Cui-yun SUN

    2018-04-01

    Full Text Available Objective To report the diagnosis and treatment of one case of adenoid glioblastoma and investigate the clinicopathological features, diagnosis and differential diagnosis. Methods and Results A 63-year-old male patient suffered from left-skewed corner of the mouth for more than 10 d. Brain enhanced MRI revealed a cystic mass in left frontotemporal lobe and metastatic tumor was considered. 18F-fluoro-2-deoxy-D-glucose (18F-FDG PET did not detected any sign of malignant neoplasm in the whole body. Under the guide of neuronavigation and ultrasound, the tumor was totally removed under microscope. Histologically, the tumor was located in brain parenchyma and presented a growing pattern of multicentric sheets or nests. Mucus scattered in some regions. Tumor cells were arranged in strip, cribriform, adenoid or papillary patterns. Tumor cells contained few cytoplasm with round or oval uniform hyperchromatic nuclei and occasionally obvious nucleoli. Proliferation of glomeruloid vascular endothelial cells could be seen. Immunohistochemical staining showed the cytoplasm of tumor cells was diffusively positive for glial fibrillary acidic protein (GFAP, vimentin (Vim and phosphatase and tensin homologue (PTEN; nuclei was positive for oligodendrocytes transcription factor-2 (Olig-2 and P53; cytoplasm and nuclei were positive for S-100 protein (S-100; membrane was positive for epidermal growth factor receptor (EGFR. The tumor cells showed a negative reaction for cytokeratin (CK, epithelial membrane antigen (EMA, carcinoembryonic antigen (CEA, thyroid transcription factor-1 (TTF-1, CD31, CD34, CAM5.2 and isocitrate dehydrogenase 1 (IDH1. Ki-67 labeling index was 76.80%. The final pathological diagnosis was adenoid glioblastoma. The patient died of respiratroy failure and circulation function failure 12 d after operation. Conclusions Adenoid glioblastoma was a rare glioblastoma subtype. A clear diagnosis depends on histological findings and immunohistochemical

  18. Dexamethasone-Mediated Upregulation of Calreticulin Inhibits Primary Human Glioblastoma Dispersal Ex Vivo

    Directory of Open Access Journals (Sweden)

    Mohan Nair

    2018-02-01

    Full Text Available Dispersal of Glioblastoma (GBM renders localized therapy ineffective and is a major cause of recurrence. Previous studies have demonstrated that Dexamethasone (Dex, a drug currently used to treat brain tumor–related edema, can also significantly reduce dispersal of human primary GBM cells from neurospheres. It does so by triggering α5 integrin activity, leading to restoration of fibronectin matrix assembly (FNMA, increased neurosphere cohesion, and reduction of neurosphere dispersal velocity (DV. How Dex specifically activates α5 integrin in these GBM lines is unknown. Several chaperone proteins are known to activate integrins, including calreticulin (CALR. We explore the role of CALR as a potential mediator of Dex-dependent induction of α5 integrin activity in primary human GBM cells. We use CALR knock-down and knock-in strategies to explore the effects on FNMA, aggregate compaction, and dispersal velocity in vitro, as well as dispersal ex vivo on extirpated mouse retina and brain slices. We show that Dex increases CALR expression and that siRNA knockdown suppresses Dex-mediated FNMA. Overexpression of CALR in GBM cells activates FNMA, increases compaction, and decreases DV in vitro and on explants of mouse retina and brain slices. Our results define a novel interaction between Dex, CALR, and FNMA as inhibitors of GBM dispersal.

  19. The ER stress inducer DMC enhances TRAIL-induced apoptosis in glioblastoma

    NARCIS (Netherlands)

    van Roosmalen, Ingrid A. M.; Dos Reis, Carlos R; Setroikromo, Rita; Yuvaraj, Saravanan; Joseph, Justin V.; Tepper, Pieter G.; Kruyt, Frank A. E.; Quax, Wim J.

    2014-01-01

    Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumour in humans and is highly resistant to current treatment modalities. We have explored the combined treatment of the endoplasmic reticulum (ER) stress-inducing agent 2,5-dimethyl-celecoxib (DMC) and TNF-related

  20. Therapeutic Efficacy of Aldoxorubicin in an Intracranial Xenograft Mouse Model of Human Glioblastoma

    Directory of Open Access Journals (Sweden)

    Luis Marrero

    2014-10-01

    Full Text Available Glioblastoma multiforme (GBM is the most aggressive primary brain tumor with a median survival of 12 to 15 months after diagnosis. Acquired chemoresistance, high systemic toxicity, and low penetration of the blood brain barrier by many anticancer drugs contribute to the failure of anti-GBM therapies. To circumvent some of these obstacles, we tested a novel prodrug approach to evaluate anti-GBM efficacy by utilizing serum albumin-binding doxorubicin (Doxo, aldoxorubicin (Aldoxo, which is less toxic, is released from albumin in an acidic environment and accumulates in tumor tissues. A human GBM cell line that expresses a luciferase reporter (U87-luc was stereotactically injected into the left striatum of the brain of immunodeficient mice. Following initial tumor growth for 12 days, mice were injected once a week in the tail-vein with Aldoxo [24 mg/kg or 18 mg/kg of doxorubicin equivalents—3/4 maximum tolerated dose (MTD], Doxo [6 mg/kg (3/4 MTD], or vehicle. Aldoxo-treated mice demonstrated significantly slower growth of the tumor when compared to vehicle-treated or Doxo-treated mice. Five out of eight Aldoxo-treated mice remained alive more than 60 days with a median survival of 62 days, while the median survival of vehicle- and Doxo-treated mice was only 26 days. Importantly, Aldoxo-treated mice exhibited high levels of Doxo within the tumor tissue, accompanied by low tumor cell proliferation (Ki67 and abundant intratumoral programmed cell death (cleaved caspase-3. Effective accumulation of Aldoxo in brain tumor tissues but not normal brain, its anti-tumor efficacy, and low toxicity, provide a strong rationale for evaluating this novel drug conjugate as a treatment for patients afflicted with GBM.

  1. Genetic modification of neurons to express bevacizumab for local anti-angiogenesis treatment of glioblastoma.

    Science.gov (United States)

    Hicks, Martin J; Funato, Kosuke; Wang, Lan; Aronowitz, Eric; Dyke, Jonathan P; Ballon, Douglas J; Havlicek, David F; Frenk, Esther Z; De, Bishnu P; Chiuchiolo, Maria J; Sondhi, Dolan; Hackett, Neil R; Kaminsky, Stephen M; Tabar, Viviane; Crystal, Ronald G

    2015-01-01

    The median survival of glioblastoma multiforme (GBM) is approximately 1 year. Following surgical removal, systemic therapies are limited by the blood-brain barrier. To circumvent this, we developed a method to modify neurons with the genetic sequence for therapeutic monoclonal antibodies using adeno-associated virus (AAV) gene transfer vectors, directing persistent, local expression in the tumor milieu. The human U87MG GBM cell line or patient-derived early passage GBM cells were administered to the striatum of NOD/SCID immunodeficient mice. AAVrh.10BevMab, an AAVrh.10-based vector coding for bevacizumab (Avastin), an anti-human vascular endothelial growth factor (VEGF) monoclonal antibody, was delivered to the area of the GBM xenograft. Localized expression of bevacizumab was demonstrated by quantitative PCR, ELISA and western blotting. Immunohistochemistry showed that bevacizumab was expressed in neurons. Concurrent administration of AAVrh.10BevMab with the U87MG tumor reduced tumor blood vessel density and tumor volume, and increased survival. Administration of AAVrh.10BevMab 1 week after U87MG xenograft reduced growth and increased survival. Studies with patient-derived early passage GBM primary cells showed a reduction in primary tumor burden with an increased survival. These data support the strategy of AAV-mediated central nervous system gene therapy to treat GBM, overcoming the blood-brain barrier through local, persistent delivery of an anti-angiogenesis monoclonal antibody.

  2. Experimental studies on the radiosensitizing agents against cultured human glioblastoma and human neurinoma

    International Nuclear Information System (INIS)

    Sawatari, Yutaka

    1976-01-01

    The radiosensitivity increasing effect of bromo-2'-deoxyuridine (BUdR) and 5-fluorouracil (5-FU), alone and in combination, was studied comparatively using tissue culture of brain tumor cells (No. 60 cells originating in human glioblastoma and N cells originating in human neurinoma) with colony formation and growth curve as the quantitative indices and the phase contrast microscope and scanning electron microscope for morphological observation. The inhibitive effect of BUdR on growth of the N cells was above 4μg/ml, while 3000μg/ml was required in the case of the No. 60 cells. This indicates that there is a large difference between the sensitivities of these two cell types against BUdR. Increased sensitivity can be anticipated by pretreatment of the No. 60 cells or the N cells with BUdR with a dose of no growth inhibition effect. N cells have a lower radiosensitivity than No. 60 cells; but when both cells are pretreated with BUdR, N cells have a higher radiosensitivity than No. 60 cells. This increasing radiosensitivity of the N cells, which is clinically benign, suggests the possibility of wider application for radiotherapy in the future. A dose of 2μg/ml of 5-FU alone showed no growth inhibiting effect on either the N cells or the No. 60 cells, but it intensified the effect of BUdR. Using a phase contrast microscope and a scanning electron microscope for morphological observation of the No. 60 cells and the N cells which had been exposed to BUdR+5-FU+X-ray, unique findings were observed on the surface structures of these two kinds of cells. (J.P.N.)

  3. Antitumor Activity and Mechanism of a Reverse Transcriptase Inhibitor, Dapivirine, in Glioblastoma.

    Science.gov (United States)

    Liu, Weiwen; Song, Xian-Lu; Zhao, Shan-Chao; He, Minyi; Wang, Hai; Chen, Ziyang; Xiang, Wei; Yi, Guozhong; Qi, Songtao; Liu, Yawei

    2018-01-01

    Dapivirine is one of reverse transcriptase inhibitors (RTIs). It is the prototype of diarylpyrimidines (DAPY), formerly known as TMC120 or DAPY R147681 (IUPAC name: 4- [[4-(2, 4, 6-trimethylphenyl) amino]-2-pyrimidinyl] amino]-benzonitrile; CAS no.244767-67-7). The purpose of this study is to investigate the antitumor activity of dapivirine, one of the RTIs, on U87 glioblastoma (GBM) cells in vitro and in vivo . U87 GBM cells were cultured and treated with or without dapivirine. Cell viability was evaluated by CCK-8 (Cell Counting Kit 8, CCK-8) assay; apoptosis was analyzed by flow cytometry; cell migration was evaluated by Boyden Chamber assay; Western blotting was performed to detect proteins related to apoptosis, epithelial-to-mesenchymal transition and autophagy. PathScan intracellular signaling array kit was used to detect important and well-characterized signaling molecules. Tumor xenograft model in nude mice was used to evaluate the antitumorigenic effect in vivo . Dapivirine weakened proliferation of glioma cells and induced the apoptosis of U87 glioblastoma cells. Furthermore, dapivirine regulated autophagy and induced Akt, Bad and SAPK/JNK activations. Moreover, the inhibition of glioma cell growth by dapivirine was also observed in nude mice in vivo . In summary, in our study dapivirine exposure induces stress, resulting in JNK and PI3K/Akt pathway activation through diminished inhibition of the apoptosis and autophagy cascade in U87 GBM cells, which inhibits cell growth in vitro and in vivo .

  4. STAT6 expression in glioblastoma promotes invasive growth

    Directory of Open Access Journals (Sweden)

    Silva Corinne M

    2011-05-01

    Full Text Available Abstract Background Glioblastoma (GBM is a highly aggressive malignant primary brain tumor, characterized by rapid growth, diffuse infiltration of cells into both adjacent and remote brain regions, and a generalized resistance to currently available treatment modalities. Recent reports in the literature suggest that Signal Transducers and Activators of Transcription (STATs play important roles in the regulation of GBM pathophysiology. Methods STAT6 protein expression was analyzed by Western blotting in GBM cell lines and by immunohistochemistry in a tissue microarray (TMA of glioma patient tissues. We utilized shRNA against STAT6 to investigate the effects of prolonged STAT6 depletion on the growth and invasion of two STAT6-positive GBM cell lines. Cell proliferation was assessed by measuring 3H-Thymidine uptake over time. Invasion was measured using an in vitro transwell assay in which cells invade through a type IV collagen matrix toward a chemoattractant (Fetal Bovine Serum. Cells were then stained and counted. Kaplan-Meyer survival curves were generated to show the correlation between STAT6 gene expression and patient survival in 343 glioma patients and in a subset of patients with only GBM. Gene expression microarray and clinical data were acquired from the Rembrandt 1 public data depository (https://caintegrator.nci.nih.gov/rembrandt/. Lastly, a genome-wide expression microarray analysis was performed to compare gene expression in wild-type GBM cells to expression in stable STAT6 knockdown clones. Results STAT6 was expressed in 2 GBM cell lines, U-1242MG and U-87MG, and in normal astrocytes (NHA but not in the U-251MG GBM cell line. In our TMA study, STAT6 immunostaining was visible in the majority of astrocytomas of all grades (I-IV but not in normal brain tissue. In positive cells, STAT6 was localized exclusively in the nuclei over 95% of the time. STAT6-deficient GBM cells showed a reduction in 3H-Thymidine uptake compared to the wild

  5. Cross-talk between Smad and p38 MAPK signalling in transforming growth factor β signal transduction in human glioblastoma cells

    International Nuclear Information System (INIS)

    Dziembowska, Magdalena; Danilkiewicz, Malgorzata; Wesolowska, Aleksandra; Zupanska, Agata; Chouaib, Salem; Kaminska, Bozena

    2007-01-01

    Transforming growth factor-beta (TGF-β) is a multifunctional cytokine involved in the regulation of cell proliferation, differentiation, and survival. Malignant tumour cells often do not respond to TGF-β by growth inhibition, but retain responsiveness to cytokine in regulating extracellular matrix deposition, cell adhesion, and migration. We demonstrated that TGF-β1 does not affect viability or proliferation of human glioblastoma T98G, but increases transcriptional responses exemplified by induction of MMP-9 expression. TGF-β receptors were functional in T98G glioblastoma cells leading to SMAD3/SMAD4 nuclear translocation and activation of SMAD-dependent promoter. In parallel, a selective activation of p38 MAPK, and phosphorylation of its substrates: ATF2 and c-Jun proteins were followed by a transient activation of AP-1 transcription factor. Surprisingly, an inhibition of p38 MAPK with a specific inhibitor, SB202190, abolished TGF-inducible activation of Smad-dependent promoter and decreased Smad2 phosphorylation. It suggests an unexpected interaction between Smad and p38 MAPK pathways in TGF-β1-induced signalling

  6. A comprehensive profile of recurrent glioblastoma

    DEFF Research Database (Denmark)

    Campos, B.; Olsen, Lars Rønn; Urup, T.

    2016-01-01

    In spite of relentless efforts to devise new treatment strategies, primary glioblastomas invariably recur as aggressive, therapy-resistant relapses and patients rapidly succumb to these tumors. Many therapeutic agents are first tested in clinical trials involving recurrent glioblastomas. Remarkab...... 2016; doi:10.1038/onc.2016.85....

  7. PCDH10 is required for the tumorigenicity of glioblastoma cells

    International Nuclear Information System (INIS)

    Echizen, Kanae; Nakada, Mitsutoshi; Hayashi, Tomoatsu; Sabit, Hemragul; Furuta, Takuya; Nakai, Miyuki; Koyama-Nasu, Ryo; Nishimura, Yukiko; Taniue, Kenzui; Morishita, Yasuyuki; Hirano, Shinji; Terai, Kenta; Todo, Tomoki; Ino, Yasushi; Mukasa, Akitake; Takayanagi, Shunsaku; Ohtani, Ryohei; Saito, Nobuhito; Akiyama, Tetsu

    2014-01-01

    Highlights: • PCDH10 is required for the proliferation, survival and self-renewal of glioblastoma cells. • PCDH10 is required for glioblastoma cell migration and invasion. • PCDH10 is required for the tumorigenicity of glioblastoma cells. • PCDH10 may be a promising target for the therapy of glioblastoma. - Abstract: Protocadherin10 (PCDH10)/OL-protocadherin is a cadherin-related transmembrane protein that has multiple roles in the brain, including facilitating specific cell–cell connections, cell migration and axon guidance. It has recently been reported that PCDH10 functions as a tumor suppressor and that its overexpression inhibits proliferation or invasion of multiple tumor cells. However, the function of PCDH10 in glioblastoma cells has not been elucidated. In contrast to previous reports on other tumors, we show here that suppression of the expression of PCDH10 by RNA interference (RNAi) induces the growth arrest and apoptosis of glioblastoma cells in vitro. Furthermore, we demonstrate that knockdown of PCDH10 inhibits the growth of glioblastoma cells xenografted into immunocompromised mice. These results suggest that PCDH10 is required for the proliferation and tumorigenicity of glioblastoma cells. We speculate that PCDH10 may be a promising target for the therapy of glioblastoma

  8. Coordination of glioblastoma cell motility by PKCι

    Directory of Open Access Journals (Sweden)

    Baldwin R Mitchell

    2010-09-01

    Full Text Available Abstract Background Glioblastoma is one of the deadliest forms of cancer, in part because of its highly invasive nature. The tumor suppressor PTEN is frequently mutated in glioblastoma and is known to contribute to the invasive phenotype. However the downstream events that promote invasion are not fully understood. PTEN loss leads to activation of the atypical protein kinase C, PKCι. We have previously shown that PKCι is required for glioblastoma cell invasion, primarily by enhancing cell motility. Here we have used time-lapse videomicroscopy to more precisely define the role of PKCι in glioblastoma. Results Glioblastoma cells in which PKCι was either depleted by shRNA or inhibited pharmacologically were unable to coordinate the formation of a single leading edge lamellipod. Instead, some cells generated multiple small, short-lived protrusions while others generated a diffuse leading edge that formed around the entire circumference of the cell. Confocal microscopy showed that this behavior was associated with altered behavior of the cytoskeletal protein Lgl, which is known to be inactivated by PKCι phosphorylation. Lgl in control cells localized to the lamellipod leading edge and did not associate with its binding partner non-muscle myosin II, consistent with it being in an inactive state. In PKCι-depleted cells, Lgl was concentrated at multiple sites at the periphery of the cell and remained in association with non-muscle myosin II. Videomicroscopy also identified a novel role for PKCι in the cell cycle. Cells in which PKCι was either depleted by shRNA or inhibited pharmacologically entered mitosis normally, but showed marked delays in completing mitosis. Conclusions PKCι promotes glioblastoma motility by coordinating the formation of a single leading edge lamellipod and has a role in remodeling the cytoskeleton at the lamellipod leading edge, promoting the dissociation of Lgl from non-muscle myosin II. In addition PKCι is required

  9. Evaluation of photodynamic treatment efficiency on glioblastoma cells received from malignant lesions: initial studies

    Science.gov (United States)

    Borisova, Ekaterina; Kyurkchiev, Dobroslav; Tumangelova-Yuzeir, Kalina; Angelov, Ivan; Genova-Hristova, Tsanislava; Semyachkina-Glushkovskaya, Oxana; Minkin, Krassimir

    2018-04-01

    Photodynamic therapy is well-established and extensively used method in treatment of different cancer types. This research reveals its potential in the treatment of cultivated human glioblastoma cells with adherent morphology. As the blood-brain barrier (BBB) permeability of the drugs is a significant problem that could not be solved easily for large biomolecules, we search for an appropriate low-molecular weight photosensitizer that could be applied for photodynamic treatment of glioblastoma cells. We used delta-aminolevulinic acid (5-ALA), which could pass BBB and plays the role of precursor of a protoporphyrin IX (PpIX) - photosensitizer, that is accumulated selectively in the tumour cells and could be a proper tool in PDT of glioblastoma. However, differences from patient to patient and between the cell activities could also lead to different effectiveness of the PDT treatment of the tumour areas. Therefore in our study we investigated not only the effect of using different fluence rates and light doses, but aims to establish more efficient values for further clinical applications for each sub-type of the GBM lesions. For the needs of PDT application an illumination device was developed in Laboratory of Biophotonics, BAS based on light-emitting diode (LED) matrix light sources for therapeutic application emitting at 635 nm. The device is optimized for PDT in combination with aminolevulinic acid/protoporphyrin IX applied as a photosensitizer drug. By the means of FACSCalibur flow cytometer (Becton Dickinson, USA) and Cell Quest Software was made evaluation of PDT effect on used human glioblastoma cells. Treatment of glioblastoma tumours continues to be a very serious issue and there is growing need in development of new concepts, methods and cancer-fighting strategies. PDT may contribute in accomplishing better results in cancer treatment and can be applied as well in combination with other techniques.

  10. P53-dependent antiproliferative and pro-apoptotic effects of trichostatin A (TSA) in glioblastoma cells.

    Science.gov (United States)

    Bajbouj, K; Mawrin, C; Hartig, R; Schulze-Luehrmann, J; Wilisch-Neumann, A; Roessner, A; Schneider-Stock, R

    2012-05-01

    Glioblastomas are known to be highly chemoresistant, but HDAC inhibitors (HDACi) have been shown to be of therapeutic relevance for this aggressive tumor type. We treated U87 glioblastoma cells with trichostatin A (TSA) to define potential epigenetic targets for HDACi-mediated antitumor effects. Using a cDNA array analysis covering 96 cell cycle genes, cyclin-dependent kinase inhibitor p21(WAF1) was identified as the major player in TSA-induced cell cycle arrest. TSA slightly inhibited proliferation and viability of U87 cells, cumulating in a G1/S cell cycle arrest. This effect was accompanied by a significant up-regulation of p53 and its transcriptional target p21(WAF1) and by down-regulation of key G1/S regulators, such as cdk4, cdk6, and cyclin D1. Nevertheless, TSA did not induce apoptosis in U87 cells. As expected, TSA promoted the accumulation of total acetylated histones H3 and H4 and a decrease in endogenous HDAC activity. Characterizing the chromatin modulation around the p21(WAF1) promoter after TSA treatment using chromatin immunoprecipitation, we found (1) a release of HDAC1, (2) an increase of acetylated H4 binding, and (3) enhanced recruitment of p53. p53-depleted U87 cells showed an abrogation of the G1/S arrest and re-entered the cell cycle. Immunofluorescence staining revealed that TSA induced the nuclear translocation of p21(WAF1) verifying a cell cycle arrest. On the other hand, a significant portion of p21(WAF1) was present in the cytoplasmic compartment causing apoptosis resistance. Furthermore, TSA-treated p53-mutant cell line U138 failed to show an induction in p21(WAF1), showed a deficient G2/M checkpoint, and underwent mitotic catastrophe. We suggest that HDAC inhibition in combination with other clinically used drugs may be considered an effective strategy to overcome chemoresistance in glioblastoma cells.

  11. Capacity of ultraviolet-induced DNA repair in human glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Hiroji

    1987-04-01

    A DNA repair abnormality is likely related to an increased incidence of neoplasms in several autosomal recessive diseases such as xeroderma pigmentosum, Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. In human glioma cells, however, there are only a few reports on DNA repair. In this study, an ultraviolet (UV)-induced DNA repair was examined systematically in many human glioma cells. Two human malignant glioma cell lines (MMG-851, U-251-MG) and 7 human glioma cell strains (4, benign; 3, malignant) of short term culture, in which glial fibrillary acidic protein (GFAP) staining were positive, were used. To investigate the capacity of DNA repair, UV sensitivity was determined by colony formation; excision repair by autoradiography and Cytosine Arabinoside (Ara-C) assay; and post-replication repair by the joining rate of newly synthesized DNA. As a result, the colony-forming abilities of malignant glioma cell lines were lower than those of normal human fibroblasts, but no difference was found between two malignant glioma cell lines. The excision repair of the malignant group (2 cell lines and 3 cell strains) was apparently lower than that of the benign group (4 cell strains). In two malignant glioma cell lines, the excision repair of MMG-851 was lower than that of U-251-MG, and the post-replication repair of MMG-851 was higher than that of U-251-MG. These results were considered to correspond well with colony-forming ability. The results indicate that there are some differences in each human malignant glioma cell in its UV-induced DNA repair mechanism, and that the excision repair of the malignant glioma cells is apparently lower than that of the benign glioma cells. These findings may be useful for diagnosis and treatment.

  12. 27 CFR 25.1 - Production and removal of beer.

    Science.gov (United States)

    2010-04-01

    ... beer. 25.1 Section 25.1 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Scope of Regulations § 25.1 Production and removal of beer. The regulations in this part relate to beer and cereal beverages and cover the location, construction, equipment...

  13. Angiogenic Gene Signature Derived from Subtype Specific Cell Models Segregate Proneural and Mesenchymal Glioblastoma

    Directory of Open Access Journals (Sweden)

    Aman Sharma

    2017-07-01

    Full Text Available Intertumoral molecular heterogeneity in glioblastoma identifies four major subtypes based on expression of molecular markers. Among them, the two clinically interrelated subtypes, proneural and mesenchymal, are the most aggressive with proneural liable for conversion to mesenchymal upon therapy. Using two patient-derived novel primary cell culture models (MTA10 and KW10, we developed a minimal but unique four-gene signature comprising genes vascular endothelial growth factor A (VEGF-A, vascular endothelial growth factor B (VEGF-B and angiopoietin 1 (ANG1, angiopoietin 2 (ANG2 that effectively segregated the proneural (MTA10 and mesenchymal (KW10 glioblastoma subtypes. The cell culture preclassified as mesenchymal showed elevated expression of genes VEGF-A, VEGF-B and ANG1, ANG2 as compared to the other cell culture model that mimicked the proneural subtype. The differentially expressed genes in these two cell culture models were confirmed by us using TCGA and Verhaak databases and we refer to it as a minimal multigene signature (MMS. We validated this MMS on human glioblastoma tissue sections with the use of immunohistochemistry on preclassified (YKL-40 high or mesenchymal glioblastoma and OLIG2 high or proneural glioblastoma tumor samples (n = 30. MMS segregated mesenchymal and proneural subtypes with 83% efficiency using a simple histopathology scoring approach (p = 0.008 for ANG2 and p = 0.01 for ANG1. Furthermore, MMS expression negatively correlated with patient survival. Importantly, MMS staining demonstrated spatiotemporal heterogeneity within each subclass, adding further complexity to subtype identification in glioblastoma. In conclusion, we report a novel and simple sequencing-independent histopathology-based biomarker signature comprising genes VEGF-A, VEGF-B and ANG1, ANG2 for subtyping of proneural and mesenchymal glioblastoma.

  14. SNAI2/Slug promotes growth and invasion in human gliomas

    International Nuclear Information System (INIS)

    Yang, Hong Wei; Menon, Lata G; Black, Peter M; Carroll, Rona S; Johnson, Mark D

    2010-01-01

    Numerous factors that contribute to malignant glioma invasion have been identified, but the upstream genes coordinating this process are poorly known. To identify genes controlling glioma invasion, we used genome-wide mRNA expression profiles of primary human glioblastomas to develop an expression-based rank ordering of 30 transcription factors that have previously been implicated in the regulation of invasion and metastasis in cancer. Using this approach, we identified the oncogenic transcriptional repressor, SNAI2/Slug, among the upper tenth percentile of invasion-related transcription factors overexpressed in glioblastomas. SNAI2 mRNA expression correlated with histologic grade and invasive phenotype in primary human glioma specimens, and was induced by EGF receptor activation in human glioblastoma cells. Overexpression of SNAI2/Slug increased glioblastoma cell proliferation and invasion in vitro and promoted angiogenesis and glioblastoma growth in vivo. Importantly, knockdown of endogenous SNAI2/Slug in glioblastoma cells decreased invasion and increased survival in a mouse intracranial human glioblastoma transplantation model. This genome-scale approach has thus identified SNAI2/Slug as a regulator of growth and invasion in human gliomas

  15. Chromosomal abnormalities in human glioblastomas: gain in chromosome 7p correlating with loss in chromosome 10q.

    Science.gov (United States)

    Inda, María del Mar; Fan, Xing; Muñoz, Jorge; Perot, Christine; Fauvet, Didier; Danglot, Giselle; Palacio, Ana; Madero, Pilar; Zazpe, Idoya; Portillo, Eduardo; Tuñón, Teresa; Martínez-Peñuela, José María; Alfaro, Jorge; Eiras, José; Bernheim, Alain; Castresana, Javier S

    2003-01-01

    Various genomic alterations have been detected in glioblastoma. Chromosome 7p, with the epidermal growth factor receptor locus, together with chromosome 10q, with the phosphatase and tensin homologue deleted in chromosome 10 and deleted in malignant brain tumors-1 loci, and chromosome 9p, with the cyclin-dependent kinase inhibitor 2A locus, are among the most frequently damaged chromosomal regions in glioblastoma. In this study, we evaluated the genetic status of 32 glioblastomas by comparative genomic hybridization; the sensitivity of comparative genomic hybridization versus differential polymerase chain reaction to detect deletions at the phosphatase and tensin homologue deleted in chromosome 10, deleted in malignant brain tumors-1, and cyclin-dependent kinase inhibitor 2A loci and amplifications at the cyclin-dependent kinase 4 locus; the frequency of genetic lesions (gain or loss) at 16 different selected loci (including oncogenes, tumor-suppressor genes, and proliferation markers) mapping on 13 different chromosomes; and the possible existence of a statistical association between any pair of molecular markers studied, to subdivide the glioblastoma entity molecularly. Comparative genomic hybridization showed that the most frequent region of gain was chromosome 7p, whereas the most frequent losses occurred on chromosomes 10q and 13q. The only statistically significant association was found for 7p gain and 10q loss. Copyright 2002 Wiley-Liss, Inc.

  16. Resveratrol represses YKL-40 expression in human glioma U87 cells

    International Nuclear Information System (INIS)

    Zhang, Wei; Tamiya, Takashi; Murao, Koji; Zhang, Xiang; Matsumoto, Kensuke; Diah, Suwarni; Okada, Masaki; Miyake, Keisuke; Kawai, Nobuyuki; Fei, Zhou

    2010-01-01

    Glioblastoma multiforme (GBM) is the most malignant intracranial tumour that develops in both adults and children. Microarray gene analyses have confirmed that the human YKL-40 gene is one of the most over-expressed genes in these tumours but not in normal brain tissue. Clinical studies have shown that serum YKL-40 levels are positively correlated with tumour burden in addition to being an independent prognostic factor of a short relapse-free interval as well as short overall survival in patients with various cancers. Our previous study revealed that YKL-40 was closely correlated with the pathological grades of human primary astrocytomas and played a crucial role in glioma cell proliferation. Hence, YKL-40 could be an attractive target in the design of anti-cancer therapies. Cell viability and invasion assays were performed to detect the cell proliferation and invasive ability of U87 cells induced by resveratrol (3, 5, 4'-trihydroxystilbene; Res) or YKL-40 small-interfering RNAs (siRNAs). In addition, the luciferase assay, real-time RT-PCR, western blotting, and ELISA were used to measure YKL-40 promoter activity, mRNA, and protein expression, respectively. The expressions of phosphor-ERK1/2 and ERK1/2 were determined by western blotting. Res inhibited U87 cell proliferation and invasion in vitro and repressed YKL-40 in U87 cells by decreasing the activity of its promoter and reducing mRNA transcription and protein expression in vitro. YKL-40 siRNA treatment also impaired the invasiveness of U87 cells. When U87 cells were cultured with 20 μM PD98059 (an ERK1/2 inhibitor) alone, with 20 μM PD98059 and 100 μM Res, or with 100 μM Res alone for 48 h, YKL-40 protein expression decreased most significantly in the Res-treated group. PD98059 partially reversed the decrease of YKL-40 protein expression induced by Res. Furthermore, phosphor-ERK1/2 expression was reduced by Res treatment in a time-dependent manner. We demonstrated for the first time that Res

  17. Advance Care Planning in Glioblastoma Patients

    Directory of Open Access Journals (Sweden)

    Lara Fritz

    2016-11-01

    Full Text Available Despite multimodal treatment with surgery, radiotherapy and chemotherapy, glioblastoma is an incurable disease with a poor prognosis. During the disease course, glioblastoma patients may experience progressive neurological deficits, symptoms of increased intracranial pressure such as drowsiness and headache, incontinence, seizures and progressive cognitive dysfunction. These patients not only have cancer, but also a progressive brain disease. This may seriously interfere with their ability to make their own decisions regarding treatment. It is therefore warranted to involve glioblastoma patients early in the disease trajectory in treatment decision-making on their future care, including the end of life (EOL care, which can be achieved with Advance Care Planning (ACP. Although ACP, by definition, aims at timely involvement of patients and proxies in decision-making on future care, the optimal moment to initiate ACP discussions in the disease trajectory of glioblastoma patients remains controversial. Moreover, the disease-specific content of these ACP discussions needs to be established. In this article, we will first describe the history of patient participation in treatment decision-making, including the shift towards ACP. Secondly, we will describe the possible role of ACP for glioblastoma patients, with the specific aim of treatment of disease-specific symptoms such as somnolence and dysphagia, epileptic seizures, headache, and personality changes, agitation and delirium in the EOL phase, and the importance of timing of ACP discussions in this patient population.

  18. 36 CFR 251.52 - Delegation of authority.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Delegation of authority. 251... USES Special Uses § 251.52 Delegation of authority. Special use authorizations shall be issued, granted, amended, renewed, suspended, terminated, or revoked by the Chief, or through delegation, by the Regional...

  19. 5 CFR 251.302 - All other organizations.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false All other organizations. 251.302 Section... RELATIONSHIPS WITH ORGANIZATIONS REPRESENTING FEDERAL EMPLOYEES AND OTHER ORGANIZATIONS Dues Withholding § 251.302 All other organizations. Under 5 CFR 550.311(b), an agency may permit an employee to make an...

  20. Curcumin Encapsulated into Methoxy Poly(Ethylene Glycol) Poly(ε-Caprolactone) Nanoparticles Increases Cellular Uptake and Neuroprotective Effect in Glioma Cells.

    Science.gov (United States)

    Marslin, Gregory; Sarmento, Bruno Filipe Carmelino Cardoso; Franklin, Gregory; Martins, José Alberto Ribeiro; Silva, Carlos Jorge Ribeiro; Gomes, Andreia Ferreira Castro; Sárria, Marisa Passos; Coutinho, Olga Maria Fernandes Pereira; Dias, Alberto Carlos Pires

    2017-03-01

    Curcumin is a natural polyphenolic compound isolated from turmeric ( Curcuma longa ) with well-demonstrated neuroprotective and anticancer activities. Although curcumin is safe even at high doses in humans, it exhibits poor bioavailability, mainly due to poor absorption, fast metabolism, and rapid systemic elimination. To overcome these issues, several approaches, such as nanoparticle-mediated targeted delivery, have been undertaken with different degrees of success. The present study was conducted to compare the neuroprotective effect of curcumin encapsulated in poly( ε -caprolactone) and methoxy poly(ethylene glycol) poly( ε -caprolactone) nanoparticles in U251 glioblastoma cells. Prepared nanoparticles were physically characterized by laser doppler anemometry, transmission electron microscopy, and X-ray diffraction. The results from laser doppler anemometry confirmed that the size of poly( ε -caprolactone) and poly(ethylene glycol) poly( ε -caprolactone) nanoparticles ranged between 200-240 nm for poly( ε -caprolactone) nanoparticles and 30-70 nm for poly(ethylene glycol) poly( ε -caprolactone) nanoparticles, and transmission electron microscopy images revealed their spherical shape. Treatment of U251 glioma cells and zebrafish embryos with poly( ε -caprolactone) and poly(ethylene glycol) poly( ε -caprolactone) nanoparticles loaded with curcumin revealed efficient cellular uptake. The cellular uptake of poly(ethylene glycol) poly( ε -caprolactone) nanoparticles was higher in comparison to poly( ε -caprolactone) nanoparticles. Moreover, poly(ethylene glycol) poly( ε -caprolactone) di-block copolymer-loaded curcumin nanoparticles were able to protect the glioma cells against tBHP induced-oxidative damage better than free curcumin. Together, our results show that curcumin-loaded poly(ethylene glycol) poly( ε -caprolactone) di-block copolymer nanoparticles possess significantly stronger neuroprotective effect in U251 human glioma cells compared to

  1. REST controls self-renewal and tumorigenic competence of human glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Luciano Conti

    Full Text Available The Repressor Element 1 Silencing Transcription factor (REST/NRSF is a master repressor of neuronal programs in non-neuronal lineages shown to function as a central regulator of developmental programs and stem cell physiology. Aberrant REST function has been associated with a number of pathological conditions. In cancer biology, REST has been shown to play a tumor suppressor activity in epithelial cancers but an oncogenic role in brain childhood malignancies such as neuroblastoma and medulloblastoma. Here we examined REST expression in human glioblastoma multiforme (GBM specimens and its role in GBM cells carrying self-renewal and tumorigenic competence. We found REST to be expressed in GBM specimens, its presence being particularly enriched in tumor cells in the perivascular compartment. Significantly, REST is highly expressed in self-renewing tumorigenic-competent GBM cells and its knock down strongly reduces their self-renewal in vitro and tumor-initiating capacity in vivo and affects levels of miR-124 and its downstream targets. These results indicate that REST contributes to GBM maintenance by affecting its self-renewing and tumorigenic cellular component and that, hence, a better understanding of these circuitries in these cells might lead to new exploitable therapeutic targets.

  2. Glioblastoma multiforme of the cerebellum: description of three cases.

    Science.gov (United States)

    Luccarelli, G

    1980-01-01

    Only 43 cases of glioblastoma multiforme of the cerebellum have been reported in the literature. This report is based on the findings of 3 cerebellar glioblastomas in a review of 1,206 consecutive confirmed cases of glioblastoma operated on between 1947 and 1977 at the Istituto Neurologico of Milan, giving an incidence of 0.24%. Clinical features are similar to those of any other fast-growing subtentorial tumour. Neuroradiological studies, including CAT, are of little help in predicting the exact nature of these tumours before surgery. A correct diagnosis can be reached only by microscopic examination. Histological patterns appear in no way to differ from those of cerebral glioblastoma. The biological behaviour of these tumours is in all respects identical to that of glioblastoma of cerebral hemispheres.

  3. Polyethylene glycol–polylactic acid nanoparticles modified with cysteine–arginine–glutamic acid–lysine–alanine fibrin-homing peptide for glioblastoma therapy by enhanced retention effect

    Directory of Open Access Journals (Sweden)

    Wu J

    2014-11-01

    Full Text Available Junzhu Wu,1,2,* Jingjing Zhao,1,3,* Bo Zhang,1 Yong Qian,1 Huile Gao,1 Yuan Yu,1 Yan Wei,1 Zhi Yang,1 Xinguo Jiang,1 Zhiqing Pang1 1Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 2School of Pharmacy, Dali University, Xiaguan, 3School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China *These authors contributed equally to this work Abstract: For a nanoparticulate drug-delivery system, crucial challenges in brain-glioblastoma therapy are its poor penetration and retention in the glioblastoma parenchyma. As a prevailing component in the extracellular matrix of many solid tumors, fibrin plays a critical role in the maintenance of glioblastoma morphology and glioblastoma cell differentiation and proliferation. We developed a new drug-delivery system by conjugating polyethylene glycol–polylactic acid nanoparticles (NPs with cysteine–arginine–glutamic acid–lysine–alanine (CREKA; TNPs, a peptide with special affinity for fibrin, to mediate glioblastoma-homing and prolong NP retention at the tumor site. In vitro binding tests indicated that CREKA significantly enhanced specific binding of NPs with fibrin. In vivo fluorescence imaging of glioblastoma-bearing nude mice, ex vivo brain imaging, and glioblastoma distribution demonstrated that TNPs had higher accumulation and longer retention in the glioblastoma site over unmodified NPs. Furthermore, pharmacodynamic results showed that paclitaxel-loaded TNPs significantly prolonged the median survival time of intracranial U87 glioblastoma-bearing nude mice compared with controls, Taxol, and NPs. These findings suggested that TNPs were able to target the glioblastoma and enhance retention, which is a valuable strategy for tumor therapy. Keywords: CREKA peptide, nanoparticles, retention effect, paclitaxel, glioblastoma

  4. Subcellular SIMS imaging of gadolinium isotopes in human glioblastoma cells treated with a gadolinium containing MRI agent

    Science.gov (United States)

    Smith, Duane R.; Lorey, Daniel R.; Chandra, Subhash

    2004-06-01

    Neutron capture therapy is an experimental binary radiotherapeutic modality for the treatment of brain tumors such as glioblastoma multiforme. Recently, neutron capture therapy with gadolinium-157 has gained attention, and techniques for studying the subcellular distribution of gadolinium-157 are needed. In this preliminary study, we have been able to image the subcellular distribution of gadolinium-157, as well as the other six naturally abundant isotopes of gadolinium, with SIMS ion microscopy. T98G human glioblastoma cells were treated for 24 h with 25 mg/ml of the metal ion complex diethylenetriaminepentaacetic acid Gd(III) dihydrogen salt hydrate (Gd-DTPA). Gd-DTPA is a contrast enhancing agent used for MRI of brain tumors, blood-brain barrier impairment, diseases of the central nervous system, etc. A highly heterogeneous subcellular distribution was observed for gadolinium-157. The nuclei in each cell were distinctly lower in gadolinium-157 than in the cytoplasm. Even within the cytoplasm the gadolinium-157 was heterogeneously distributed. The other six naturally abundant isotopes of gadolinium were imaged from the same cells and exhibited a subcellular distribution consistent with that observed for gadolinium-157. These observations indicate that SIMS ion microscopy may be a viable approach for subcellular studies of gadolinium containing neutron capture therapy drugs and may even play a major role in the development and validation of new gadolinium contrast enhancing agents for diagnostic MRI applications.

  5. The effect of combining recombinant human tumor necrosis factor-alpha with local radiation on tumor control probability of a human glioblastoma multiforme xenograft in nude mice

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Peigen; Allam, Ayman; Perez, Luis A; Taghian, Alphonse; Freeman, Jill; Suit, Herman D

    1995-04-30

    Purpose: To evaluate the antitumor activity of recombinant human tumor necrosis factor-alpha (rHuTNF-{alpha}) on a human glioblastoma multiforme (U87) xenograft in nude mice, and to study the effect of combining rHuTNF-{alpha} with local radiation on the tumor control probability of this tumor model. Methods and Materials: U87 xenograft was transplanted SC into the right hindleg of NCr/Sed nude mice (7-8 weeks old, male). When tumors reached a volume of about 110 mm{sup 3}, mice were randomly assigned to treatment: rHuTNF-{alpha} alone compared with normal saline control; or local radiation plus rHuTNF-{alpha} vs. local radiation plus normal saline. Parameters of growth delay, volume doubling time, percentage of necrosis, and cell loss factor were used to assess the antitumor effects of rHuTNF-{alpha} on this tumor. The TCD{sub 50} (tumor control dose 50%) was used as an endpoint to determine the effect of combining rHuTNF-{alpha} with local radiation. Results: Tumor growth in mice treated with a dose of 150 {mu}g/kg body weight rHuTNF-{alpha}, IP injection daily for 7 consecutive days, was delayed about 8 days compared to that in controls. Tumors in the treatment group had a significantly longer volume doubling time, and were smaller in volume and more necrotic than matched tumors in control group. rHuTNF-{alpha} also induced a 2.3 times increase of cell loss factor. The administration of the above-mentioned dose of rHuTNF-{alpha} starting 24 h after single doses of localized irradiation under hypoxic condition, resulted in a significant reduction in TCD{sub 50} from the control value of 60.9 Gy to 50.5 Gy (p < 0.01). Conclusion: rHuTNF-{alpha} exhibits an antitumor effect against U87 xenograft in nude mice, as evidenced by an increased delay in tumor growth as well as cell loss factor. Also, there was an augmentation of tumor curability when given in combination with radiotherapy, resulting in a significantly lower TCD{sub 50} value in the treatment vs. the

  6. Protective Effect of Gwakhyangjeonggisan Herbal Acupuncture Solution in Glioblastoma Cells: Microarray Analysis of Gene Expression

    Directory of Open Access Journals (Sweden)

    Hong-Seok Lee

    2005-12-01

    Full Text Available Objectives : Neurological disorders have been one of main therapeutic targets of acupuncture. The present study investigated the protective effects of Gwakhyangjeonggisan herbal acupuncture solution (GHAS. Methods : We performed 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay in glioblastoma cells, and did microarray analysis with cells exposed to reactive oxigen species (ROS of hydrogen peroxide by 8.0 k Human cDNA, with cut-off level of 2-fold changes in gene expression. Results : MTT assay showed protective effect of GHAS on the glioblastoma cells exposed to hydrogen peroxide. When glioblastoma cells were exposed to hydrogen peroxide, 24 genes were downregulated. When the cells were pretreated with GHAS before exposure to hydrogen peroxide, 46 genes were downregulated. Many of the genes downregulated by hydrogen peroxide stimulation were decreased in the amount of downregulation or reversed to upregulation. Conclusions : The gene expression changes observed in the present study are supposed to be related to the protective molecular mechanism of GHAS in the glioblastoma cells exposed to ROS stress.

  7. Negative control of the HGF/c-MET pathway by TGF-β: a new look at the regulation of stemness in glioblastoma.

    Science.gov (United States)

    Papa, Eleanna; Weller, Michael; Weiss, Tobias; Ventura, Elisa; Burghardt, Isabel; Szabó, Emese

    2017-12-13

    Multiple target inhibition has gained considerable interest in combating drug resistance in glioblastoma, however, understanding the molecular mechanisms of crosstalk between signaling pathways and predicting responses of cancer cells to targeted interventions has remained challenging. Despite the significant role attributed to transforming growth factor (TGF)-β family and hepatocyte growth factor (HGF)/c-MET signaling in glioblastoma pathogenesis, their functional interactions have not been well characterized. Using genetic and pharmacological approaches to stimulate or antagonize the TGF-β pathway in human glioma-initiating cells (GIC), we observed that TGF-β exerts an inhibitory effect on c-MET phosphorylation. Inhibition of either mitogen-activated protein kinase (MAPK)/ extracellular signal-regulated kinase (ERK) or phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) signaling pathway attenuated this effect. A comparison of c-MET-driven and c-MET independent GIC models revealed that TGF-β inhibits stemness in GIC at least in part via its negative regulation of c-MET activity, suggesting that stem cell (SC) maintenance may be controlled by the balance between these two oncogenic pathways. Importantly, immunohistochemical analyses of human glioblastoma and ex vivo single-cell gene expression profiling of TGF-β and HGF confirm the negative interaction between both pathways. These novel insights into the crosstalk of two major pathogenic pathways in glioblastoma may explain some of the disappointing results when targeting either pathway alone in human glioblastoma patients and inform on potential future designs on targeted pharmacological or genetic intervention.

  8. Lipoprotein internalisation induced by oncogenic AMPK activation is essential to maintain glioblastoma cell growth.

    Science.gov (United States)

    Ríos, M; Foretz, M; Viollet, B; Prieto, A; Fraga, M; García-Caballero, T; Costoya, J A; Señarís, R

    2014-12-01

    Metabolic adaptations are essential during tumour growth to maintain the high proliferation levels exhibited by cancer cells. In this study, we examined the transformations that occurred in the lipid metabolism in astrocytic tumours, and the possible role of the fuel-sensing enzyme AMPK. Metabolic targets might help design new and effective drugs for cancer. To accomplish this objective, we studied both mice and human astrocytic tumours. We first used a mouse model of astrocytoma driven by oncogenic H-RasV12 and/or with PTEN deletion based on the common constitutive activation of the Raf/MEK/ERK and PI3K/AKT cascades in human astrocytomas. We then confirmed the results in human glioblastoma cell lines and in glioblastoma tissue samples from patients. We show that the high levels of activated AMPK, observed in astrocytic tumours, increase extracellular lipid internalisation and reduce energy expenditure by inhibiting 'de novo' fatty acid (FA) synthesis, which allows tumour cells to obtain building blocks and energy to be able to create new organelles and new cells. Our findings demonstrate that AMPK plays a crucial role in glioblastoma cell growth and suggest that blocking lipoprotein receptors could potentially be used as a plausible therapeutic approach for these and other type of tumours with high levels of AMPK. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The Effect of Sodium Valproate on the Glioblastoma U87 Cell Line Tumor Development on the Chicken Embryo Chorioallantoic Membrane and on EZH2 and p53 Expression

    Directory of Open Access Journals (Sweden)

    Dovilė Kavaliauskaitė

    2017-01-01

    Full Text Available Literature data support evidences that glioblastoma (GBM patients experience prolonged survival due to sodium valproate (NaVP treatment. The study assessed the human GBM cell U87 xenograft studied in the chicken embryo chorioallantoic membrane (CAM model evaluating NaVP effect on tumor. Three groups of tumors (each n = 10 were studied: nontreated, treated with 4 mM, and treated with 8 mM of NaVP. The majority of tumors without NaVP treatment during tumor growth destroyed the chorionic epithelium, invaded the mesenchyme, and induced angiogenesis. Incidence of tumor formation on CAM without invasion into the mesenchyme was higher when U87 cells were treated with NaVP; the effect significantly increased with NaVP concentration. Treatment with 8 mM of NaVP did not show clear dynamics of tumor growth during 5 days; at the same time, the angiogenesis failed. With a strong staining of EZH2, p53 in tumors without NaVP treatment was found, and NaVP significantly decreased the expression of EZH2- and p53-positive cells; the effect was significantly higher at its 8 mM concentration. NaVP has a function in blocking the growth, invasion, and angiogenesis of tumor in the CAM model; tumor growth interferes with EZH2 and p53 molecular pathways, supporting the NaVP potential in GBM therapy.

  10. The influence of bromodeoxyuridine on the induction and repair of DNA double-strand breaks in glioblastoma cells

    International Nuclear Information System (INIS)

    Nusser, N.N.; Bartkowiak, D.; Roettinger, E.M.

    2002-01-01

    Aims: To examine the dose response of DNA damage and its modification by the radiosensitizer, 5-bromo-2'-deoxyuridine (BrdU). The sensitizing mechanism is analyzed with regard to its influence on the induction and repair of DNA double-strand breaks (DSBs). Material and Methods: Cells from three different human glioblastoma lines, A7, LH and U87MG, were X-irradiated with and without exposure to BrdU. DNA fragments were separated by field-inversion gel electrophoresis (FIGE) and quantified by fluorometry immediately and 24 h after irradiation. Results: In all cell lines, the dose response followed a linear-quadratic rather than a purely linear function. BrdU-treated cells exhibited a significantly higher amount of mobile DNA. In repair experiments with and without BrdU, the amount of mobile DNA fell close to control values within 24 h. Conclusions: The linear-quadratic model appropriately describes the X-ray induced fragmentation of DNA. BrdU sensitizing acts predominantly by increasing DNA fragility, and not by impairing damage repair. The amount of DSBs persistent after 24 h of repair is minimal, even after highly cytotoxic doses. However, it appears to depend on the extent of initial damage, causing sensitized cells to retain more DSBs than unsensitized cells. (orig.)

  11. Amnesia due to bilateral hippocampal glioblastoma

    International Nuclear Information System (INIS)

    Shimauchi, M.; Wakisaka, S.; Kinoshita, K.

    1989-01-01

    The authors report a unique case of glioblastoma which caused permanent amnesia. Magnetic resonance imaging showed the lesion to be limited to the hippocampal formation bilaterally. Although glioblastoma extends frequently into fiber pathways and expands into the opposite cerebral hemisphere, making a 'butterfly' lesion, it is unusual for it to invade the limbic system selectively to this extent. (orig.)

  12. Human glioblastoma multiforme: p53 reactivation by a novel MDM2 inhibitor.

    Directory of Open Access Journals (Sweden)

    Barbara Costa

    Full Text Available Cancer development and chemo-resistance are often due to impaired functioning of the p53 tumor suppressor through genetic mutation or sequestration by other proteins. In glioblastoma multiforme (GBM, p53 availability is frequently reduced because it binds to the Murine Double Minute-2 (MDM2 oncoprotein, which accumulates at high concentrations in tumor cells. The use of MDM2 inhibitors that interfere with the binding of p53 and MDM2 has become a valid approach to inhibit cell growth in a number of cancers; however little is known about the efficacy of these inhibitors in GBM. We report that a new small-molecule inhibitor of MDM2 with a spirooxoindolepyrrolidine core structure, named ISA27, effectively reactivated p53 function and inhibited human GBM cell growth in vitro by inducing cell cycle arrest and apoptosis. In immunoincompetent BALB/c nude mice bearing a human GBM xenograft, the administration of ISA27 in vivo activated p53, inhibited cell proliferation and induced apoptosis in tumor tissue. Significantly, ISA27 was non-toxic in an in vitro normal human cell model and an in vivo mouse model. ISA27 administration in combination with temozolomide (TMZ produced a synergistic inhibitory effect on GBM cell viability in vitro, suggesting the possibility of lowering the dose of TMZ used in the treatment of GBM. In conclusion, our data show that ISA27 releases the powerful antitumor capacities of p53 in GBM cells. The use of this MDM2 inhibitor could become a novel therapy for the treatment of GBM patients.

  13. 40 CFR 265.251 - Protection from wind.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Protection from wind. 265.251 Section... FACILITIES Waste Piles § 265.251 Protection from wind. The owner or operator of a pile containing hazardous waste which could be subject to dispersal by wind must cover or otherwise manage the pile so that wind...

  14. First-in-human intraoperative near-infrared fluorescence imaging of glioblastoma using cetuximab-IRDye800.

    Science.gov (United States)

    Miller, Sarah E; Tummers, Willemieke S; Teraphongphom, Nutte; van den Berg, Nynke S; Hasan, Alifia; Ertsey, Robert D; Nagpal, Seema; Recht, Lawrence D; Plowey, Edward D; Vogel, Hannes; Harsh, Griffith R; Grant, Gerald A; Li, Gordon H; Rosenthal, Eben L

    2018-04-06

    Maximizing extent of surgical resection with the least morbidity remains critical for survival in glioblastoma patients, and we hypothesize that it can be improved by enhancements in intraoperative tumor detection. In a clinical study, we determined if therapeutic antibodies could be repurposed for intraoperative imaging during resection. Fluorescently labeled cetuximab-IRDye800 was systemically administered to three patients 2 days prior to surgery. Near-infrared fluorescence imaging of tumor and histologically negative peri-tumoral tissue was performed intraoperatively and ex vivo. Fluorescence was measured as mean fluorescence intensity (MFI), and tumor-to-background ratios (TBRs) were calculated by comparing MFIs of tumor and histologically uninvolved tissue. The mean TBR was significantly higher in tumor tissue of contrast-enhancing (CE) tumors on preoperative imaging (4.0 ± 0.5) compared to non-CE tumors (1.2 ± 0.3; p = 0.02). The TBR was higher at a 100 mg dose than at 50 mg (4.3 vs. 3.6). The smallest detectable tumor volume in a closed-field setting was 70 mg with 50 mg of dye and 10 mg with 100 mg. On sections of paraffin embedded tissues, fluorescence positively correlated with histological evidence of tumor. Sensitivity and specificity of tumor fluorescence for viable tumor detection was calculated and fluorescence was found to be highly sensitive (73.0% for 50 mg dose, 98.2% for 100 mg dose) and specific (66.3% for 50 mg dose, 69.8% for 100 mg dose) for viable tumor tissue in CE tumors while normal peri-tumoral tissue showed minimal fluorescence. This first-in-human study demonstrates the feasibility and safety of antibody based imaging for CE glioblastomas.

  15. Ruta graveolens L. induces death of glioblastoma cells and neural progenitors, but not of neurons, via ERK 1/2 and AKT activation.

    Directory of Open Access Journals (Sweden)

    Maria Teresa Gentile

    Full Text Available Glioblastoma multiforme is a highly aggressive brain tumor whose prognosis is very poor. Due to early invasion of brain parenchyma, its complete surgical removal is nearly impossible, and even after aggressive combined treatment (association of surgery and chemo- and radio-therapy five-year survival is only about 10%. Natural products are sources of novel compounds endowed with therapeutic properties in many human diseases, including cancer. Here, we report that the water extract of Ruta graveolens L., commonly known as rue, induces death in different glioblastoma cell lines (U87MG, C6 and U138 widely used to test novel drugs in preclinical studies. Ruta graveolens' effect was mediated by ERK1/2 and AKT activation, and the inhibition of these pathways, via PD98058 and wortmannin, reverted its antiproliferative activity. Rue extract also affects survival of neural precursor cells (A1 obtained from embryonic mouse CNS. As in the case of glioma cells, rue stimulates the activation of ERK1/2 and AKT in A1 cells, whereas their blockade by pharmacological inhibitors prevents cell death. Interestingly, upon induction of differentiation and cell cycle exit, A1 cells become resistant to rue's noxious effects but not to those of temozolomide and cisplatin, two alkylating agents widely used in glioblastoma therapy. Finally, rutin, a major component of the Ruta graveolens water extract, failed to cause cell death, suggesting that rutin by itself is not responsible for the observed effects. In conclusion, we report that rue extracts induce glioma cell death, discriminating between proliferating/undifferentiated and non-proliferating/differentiated neurons. Thus, it can be a promising tool to isolate novel drugs and also to discover targets for therapeutic intervention.

  16. The role of interleukin-18 in glioblastoma pathology implies therapeutic potential of two old drugs-disulfiram and ritonavir.

    Science.gov (United States)

    Kast, Richard E

    2015-04-09

    Based on reporting in the last several years, an impressive but dismal list of cytotoxic chemotherapies that fail to prolong the median overall survival of patients with glioblastoma has prompted the development of treatment protocols designed to interfere with growth-facilitating signaling systems by using non-cytotoxic, non-oncology drugs. Recent recognition of the pro-mobility stimulus, interleukin-18, as a driver of centrifugal glioblastoma cell migration allows potential treatment adjuncts with disulfiram and ritonavir. Disulfiram and ritonavir are well-tolerated, non-cytotoxic, non-oncology chemotherapeutic drugs that are marketed for the treatment of alcoholism and human immunodeficiency virus (HIV) infection, respectively. Both drugs exhibit an interleukin-18-inhibiting function. Given the favorable tolerability profile of disulfiram and ritonavir, the unlikely drug-drug interaction with temozolomide, and the poor prognosis of glioblastoma, trials of addition of disulfiram and ritonavir to current standard initial treatment of glioblastoma would be warranted.

  17. Tectal glioblastoma Glioblastoma tetal

    Directory of Open Access Journals (Sweden)

    Feres Chaddad Neto

    2007-12-01

    Full Text Available Brain stem gliomas are a heterogeneous group of neoplasms arising mostly in paediatric patients. Tectal plate gliomas represent a particular type of brain stem tumours usually with a benign, indolent clinical course, presenting with signs of raised intracranial hipertension due to supra-tentorialhydrocephalous caused by aqueductal stenosis. Seldom high-grade lesions arise in this location with tremendous therapeutic implications. When a malignant tumour is clinically and radiographically suspected a biopsy should be performed to obtain histhological confirmation. Treatment is then planned in a case-by-case basis. We present the case of a glioblastoma of the tectal plate in a 22 years-old woman operated upon by a supracerebellar-infratentorial approach.Os gliomas do tronco cerebral são um grupo heterogêneo de neoplasias que acometem habitualmente crianças. Os gliomas da placa quadrigeminal representam um tipo particular de tumores do tronco cerebral, habitualmente com um curso benigno e indolente, surgindo com sinais de hipertensão intracraniana devido a hidrocefalia supra-tentorial provocada por compressão do aqueduto cerebral. Raramente surgem lesões de alto grau nesta região, mas as implicações terapêuticas são tremendas. Quando existe suspeita clínica e imagiológica de que se trata de lesão maligna, esta deve ser biopsada para se obter confirmação histológica. O tratamento deve então ser planejado caso a caso. Apresentamos o caso de glioblastoma da placa quadrigeminal em uma paciente de 22 anos intervencionado por via supracerebelar-infratentorial.

  18. STAT6 expression in glioblastoma promotes invasive growth

    International Nuclear Information System (INIS)

    Merk, Barbara C; Owens, Jennifer L; Lopes, Maria-Beatriz S; Silva, Corinne M; Hussaini, Isa M

    2011-01-01

    Glioblastoma (GBM) is a highly aggressive malignant primary brain tumor, characterized by rapid growth, diffuse infiltration of cells into both adjacent and remote brain regions, and a generalized resistance to currently available treatment modalities. Recent reports in the literature suggest that Signal Transducers and Activators of Transcription (STATs) play important roles in the regulation of GBM pathophysiology. STAT6 protein expression was analyzed by Western blotting in GBM cell lines and by immunohistochemistry in a tissue microarray (TMA) of glioma patient tissues. We utilized shRNA against STAT6 to investigate the effects of prolonged STAT6 depletion on the growth and invasion of two STAT6-positive GBM cell lines. Cell proliferation was assessed by measuring 3 H-Thymidine uptake over time. Invasion was measured using an in vitro transwell assay in which cells invade through a type IV collagen matrix toward a chemoattractant (Fetal Bovine Serum). Cells were then stained and counted. Kaplan-Meyer survival curves were generated to show the correlation between STAT6 gene expression and patient survival in 343 glioma patients and in a subset of patients with only GBM. Gene expression microarray and clinical data were acquired from the Rembrandt [1] public data depository (https://caintegrator.nci.nih.gov/rembrandt/). Lastly, a genome-wide expression microarray analysis was performed to compare gene expression in wild-type GBM cells to expression in stable STAT6 knockdown clones. STAT6 was expressed in 2 GBM cell lines, U-1242MG and U-87MG, and in normal astrocytes (NHA) but not in the U-251MG GBM cell line. In our TMA study, STAT6 immunostaining was visible in the majority of astrocytomas of all grades (I-IV) but not in normal brain tissue. In positive cells, STAT6 was localized exclusively in the nuclei over 95% of the time. STAT6-deficient GBM cells showed a reduction in 3 H-Thymidine uptake compared to the wild-type. There was some variation among the

  19. A highly invasive human glioblastoma pre-clinical model for testing therapeutics

    Directory of Open Access Journals (Sweden)

    Cao Brian

    2008-12-01

    Full Text Available Abstract Animal models greatly facilitate understanding of cancer and importantly, serve pre-clinically for evaluating potential anti-cancer therapies. We developed an invasive orthotopic human glioblastoma multiforme (GBM mouse model that enables real-time tumor ultrasound imaging and pre-clinical evaluation of anti-neoplastic drugs such as 17-(allylamino-17-demethoxy geldanamycin (17AAG. Clinically, GBM metastasis rarely happen, but unexpectedly most human GBM tumor cell lines intrinsically possess metastatic potential. We used an experimental lung metastasis assay (ELM to enrich for metastatic cells and three of four commonly used GBM lines were highly metastatic after repeated ELM selection (M2. These GBM-M2 lines grew more aggressively orthotopically and all showed dramatic multifold increases in IL6, IL8, MCP-1 and GM-CSF expression, cytokines and factors that are associated with GBM and poor prognosis. DBM2 cells, which were derived from the DBTRG-05MG cell line were used to test the efficacy of 17AAG for treatment of intracranial tumors. The DMB2 orthotopic xenografts form highly invasive tumors with areas of central necrosis, vascular hyperplasia and intracranial dissemination. In addition, the orthotopic tumors caused osteolysis and the skull opening correlated to the tumor size, permitting the use of real-time ultrasound imaging to evaluate antitumor drug activity. We show that 17AAG significantly inhibits DBM2 tumor growth with significant drug responses in subcutaneous, lung and orthotopic tumor locations. This model has multiple unique features for investigating the pathobiology of intracranial tumor growth and for monitoring systemic and intracranial responses to antitumor agents.

  20. FBXW7/hCDC4 controls glioma cell proliferation in vitro and is a prognostic marker for survival in glioblastoma patients

    Directory of Open Access Journals (Sweden)

    Hagedorn Martin

    2007-02-01

    Full Text Available Abstract Background In the quest for novel molecular mediators of glioma progression, we studied the regulation of FBXW7 (hCDC4/hAGO/SEL10, its association with survival of patients with glioblastoma and its potential role as a tumor suppressor gene in glioma cells. The F-box protein Fbxw7 is a component of SCFFbxw7, a Skp1-Cul1-F-box E3 ubiquitin ligase complex that tags specific proteins for proteasome degradation. FBXW7 is mutated in several human cancers and functions as a haploinsufficient tumor suppressor in mice. Any of the identified targets, Cyclin E, c-Myc, c-Jun, Notch1/4 and Aurora-A may have oncogenic properties when accumulated in tumors with FBXW7 loss. Results We tested the expression of FBXW7 in human glioma biopsies by quantitative PCR and compared the transcript levels of grade IV glioma (glioblastoma, G-IV with those of grade II tumors (G-II. In more than 80% G-IV, expression of FBXW7 was significantly reduced. In addition, levels of FBXW7 were correlated with survival indicating a possible implication in tumor aggressiveness. Locus 4q31.3 which carries FBXW7 was investigated by in situ hybridization on biopsy touchprints. This excluded allelic loss as the principal cause for low expression of FBXW7 in G-IV tumors. Two targets of Fbxw7, Aurora-A and Notch4 were preferentially immunodetected in G-IV biopsies. Next, we investigated the effects of FBXW7 misregulation in glioma cells. U87 cells overexpressing nuclear isoforms of Fbxw7 lose the expression of the proliferation markers PCNA and Ki-67, and get counterselected in vitro. This observation fits well with the hypothesis that Fbxw7 functions as a tumor suppressor in astroglial cells. Finally, FBXW7 knockdown in U87 cells leads to defects in mitosis that may promote aneuploidy in progressing glioma. Conclusion Our results show that FBXW7 expression is a prognostic marker for patients with glioblastoma. We suggest that loss of FBXW7 plays an important role in glioma

  1. Assessment of the proliferation status of glioblastoma cell and tumour tissue after nanoplatinum treatment

    DEFF Research Database (Denmark)

    Kutwin, Marta; Sawosz, Ewa; Jaworski, Slawomir

    2017-01-01

    nanoparticles (NP-Pt). The aim of the study was to evaluate and compare the antiproliferative properties of NP-Pt and cisplatin against U87 and U118 glioma cell lines and U87 tumour tissue. NP-Pt and cisplatin were incubated with U87 and U118 glioma cells or administered directly into glioma tumour tissue. Cell...... and the migration of cancer cells but also downregulated the level of PCNA protein expression in tumour tissue. Furthermore, NP-Pt caused oxidative DNA damage in tumour tissue to a higher degree than cisplatin. Consequently, NP-Pt can be considered as an effective inhibitor of glioblastoma tumour cell proliferation....... However, the mechanism of action and potential side effects need to be elucidated further...

  2. Targeting MT1-MMP as an ImmunoPET-Based Strategy for Imaging Gliomas.

    Directory of Open Access Journals (Sweden)

    A G de Lucas

    Full Text Available A critical challenge in the management of Glioblastoma Multiforme (GBM tumors is the accurate diagnosis and assessment of tumor progression in a noninvasive manner. We have identified Membrane-type 1 matrix metalloproteinase (MT1-MMP as an attractive biomarker for GBM imaging since this protein is actively involved in tumor growth and progression, correlates with tumor grade and is closely associated with poor prognosis in GBM patients. Here, we report the development of an immunoPET tracer for effective detection of MT1-MMP in GBM models.An anti-human MT1-MMP monoclonal antibody (mAb, LEM2/15, was conjugated to p-isothiocyanatobenzyl-desferrioxamine (DFO-NCS for 89Zr labeling. Biodistribution and PET imaging studies were performed in xenograft mice bearing human GBM cells (U251 expressing MT1-MMP and non-expressing breast carcinoma cells (MCF-7 as negative control. Two orthotopic brain GBM models, patient-derived neurospheres (TS543 and U251 cells, with different degrees of blood-brain barrier (BBB disruption were also used for PET imaging experiments.89Zr labeling of DFO-LEM2/15 was achieved with high yield (>90% and specific activity (78.5 MBq/mg. Biodistribution experiments indicated that 89Zr-DFO-LEM2/15 showed excellent potential as a radiotracer for detection of MT1-MMP positive GBM tumors. PET imaging also indicated a specific and prominent 89Zr-DFO-LEM2/15 uptake in MT1-MMP+ U251 GBM tumors compared to MT1-MMP- MCF-7 breast tumors. Results obtained in orthotopic brain GBM models revealed a high dependence of a disrupted BBB for tracer penetrance into tumors. 89Zr-DFO-LEM2/15 showed much higher accumulation in TS543 tumors with a highly disrupted BBB than in U251 orthotopic model in which the BBB permeability was only partially increased. Histological analysis confirmed the specificity of the immunoconjugate in all GBM models.A new anti MT1-MMP-mAb tracer, 89Zr-DFO-LEM2/15, was synthesized efficiently. In vivo validation showed high

  3. Advanced magnetic resonance imaging of the physical processes in human glioblastoma.

    Science.gov (United States)

    Kalpathy-Cramer, Jayashree; Gerstner, Elizabeth R; Emblem, Kyrre E; Andronesi, Ovidiu; Rosen, Bruce

    2014-09-01

    The most common malignant primary brain tumor, glioblastoma multiforme (GBM) is a devastating disease with a grim prognosis. Patient survival is typically less than two years and fewer than 10% of patients survive more than five years. Magnetic resonance imaging (MRI) can have great utility in the diagnosis, grading, and management of patients with GBM as many of the physical manifestations of the pathologic processes in GBM can be visualized and quantified using MRI. Newer MRI techniques such as dynamic contrast enhanced and dynamic susceptibility contrast MRI provide functional information about the tumor hemodynamic status. Diffusion MRI can shed light on tumor cellularity and the disruption of white matter tracts in the proximity of tumors. MR spectroscopy can be used to study new tumor tissue markers such as IDH mutations. MRI is helping to noninvasively explore the link between the molecular basis of gliomas and the imaging characteristics of their physical processes. We, here, review several approaches to MR-based imaging and discuss the potential for these techniques to quantify the physical processes in glioblastoma, including tumor cellularity and vascularity, metabolite expression, and patterns of tumor growth and recurrence. We conclude with challenges and opportunities for further research in applying physical principles to better understand the biologic process in this deadly disease. See all articles in this Cancer Research section, "Physics in Cancer Research." ©2014 American Association for Cancer Research.

  4. Benzyl isothiocyanate alters the gene expression with cell cycle regulation and cell death in human brain glioblastoma GBM 8401 cells.

    Science.gov (United States)

    Tang, Nou-Ying; Chueh, Fu-Shin; Yu, Chien-Chih; Liao, Ching-Lung; Lin, Jen-Jyh; Hsia, Te-Chun; Wu, King-Chuen; Liu, Hsin-Chung; Lu, Kung-Wen; Chung, Jing-Gung

    2016-04-01

    Glioblastoma multiforme (GBM) is a highly malignant devastating brain tumor in adults. Benzyl isothiocyanate (BITC) is one of the isothiocyanates that have been shown to induce human cancer cell apoptosis and cell cycle arrest. Herein, the effect of BITC on cell viability and apoptotic cell death and the genetic levels of human brain glioblastoma GBM 8401 cells in vitro were investigated. We found that BITC induced cell morphological changes, decreased cell viability and the induction of cell apoptosis in GBM 8401 cells was time-dependent. cDNA microarray was used to examine the effects of BITC on GBM 8401 cells and we found that numerous genes associated with cell death and cell cycle regulation in GBM 8401 cells were altered after BITC treatment. The results show that expression of 317 genes was upregulated, and two genes were associated with DNA damage, the DNA-damage-inducible transcript 3 (DDIT3) was increased 3.66-fold and the growth arrest and DNA-damage-inducible α (GADD45A) was increased 2.34-fold. We also found that expression of 182 genes was downregulated and two genes were associated with receptor for cell responses to stimuli, the EGF containing fibulin-like extracellular matrix protein 1 (EFEMP1) was inhibited 2.01-fold and the TNF receptor-associated protein 1 (TRAP1) was inhibited 2.08-fold. BITC inhibited seven mitochondria ribosomal genes, the mitochondrial ribosomal protein; tumor protein D52 (MRPS28) was inhibited 2.06-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein L23 (MRPL23) decreased 2.08-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein S12 (MRPS12) decreased 2.08-fold, the mitochondria ribosomal protein L12 (MRPL12) decreased 2.25-fold and the mitochondria ribosomal protein S34 (MRPS34) was decreased 2.30-fold in GBM 8401 cells. These changes of gene expression can provide the effects of BITC on the genetic level and are

  5. Metformin and Ara-a Effectively Suppress Brain Cancer by Targeting Cancer Stem/Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Tarek H. Mouhieddine

    2015-11-01

    Full Text Available Background: Gliomas and neuroblastomas pose a great health burden worldwide with a poor and moderate prognosis, respectively. Many studies have tried to find effective treatments for these primary malignant brain tumors. Of interest, the AMP-activated protein kinase (AMPK pathway was found to be associated with tumorigenesis and tumor survival, leading to many studies on AMPK drugs, especially Metformin, and their potential role as anti-cancer treatments. Cancer stem cells (CSCs are a small population of slowly-dividing, treatment-resistant, undifferentiated cancer cells that are being discovered in a multitude of cancers. They are thought to be responsible for replenishing the tumor with highly proliferative cells and increasing the risk of recurrence. Methods: Metformin and 9-β-d-Arabinofuranosyl Adenine (Ara-a were used to study the role of the AMPK pathway in vitro on U251 (glioblastoma and SHSY-5Y (neuroblastoma cell lines.Results: We found that both drugs are able to decrease the survival of U251 and SH-SY5Y cell lines in a 2D as well as a 3D culture model. Metformin and Ara-a significantly decreased the invasive ability of these cancer cell lines. Treatment with these drugs decreased the sphere-forming units (SFU of U251 cells, with Ara-a being more efficient, signifying the extinction of the CSC population. However, if treatment is withdrawn before all SFUs are extinguished, the CSCs regain some of their sphere-forming capabilities in the case of Metformin but not Ara-a treatment. Conclusion: Metformin and Ara-a have proved to be effective in the treatment of glioblastomas and neuroblastomas, in vitro, by targeting their cancer stem/progenitor cell population, which prevents recurrence.

  6. Evaluation of [18F]-ATRi as PET tracer for in vivo imaging of ATR in mouse models of brain cancer

    International Nuclear Information System (INIS)

    Carlucci, Giuseppe; Carney, Brandon; Sadique, Ahmad; Vansteene, Axel; Tang, Jun; Reiner, Thomas

    2017-01-01

    Rationale: Ataxia telangiectasia and Rad3-related (ATR) threonine serine kinase is one of the key elements in orchestrating the DNA damage response (DDR). As such, inhibition of ATR can amplify the effects of chemo- and radiation-therapy, and several ATR inhibitors (ATRi) have already undergone clinical testing in cancer. For more accurate patient selection, monitoring and staging, real-time in vivo imaging of ATR could be invaluable; the development of appropriate imaging agents has remained a major challenge. Methods: 3-amino-N-(4-[ 18 F]phenyl)-6-(4-(methylsulfonyl)phenyl) pyrazine-2-carboxamide ([ 18 F]-ATRi), a close analogue of Ve-821, (a clinical ATRi candidate), was readily accomplished similarly to already established synthetic procedures. Structurally, 18 F was introduced at the 4-position of the aromatic ring of Ve-821 for generating a labeled ATR inhibitor. In vitro experiments were conducted in U251 MG glioblastoma cell lines and ex vivo biodistribution were performed in subcutaneous U251 MG xenograft bearing athymic nude mice following microPET imaging. Results: [ 18 F]-ATRi has a similar pharmacokinetic profile to that of Ve-821. Using an U251 MG glioblastoma mouse model, we evaluated the in vivo binding efficiency of [ 18 F]-ATRi. Blood and tumor showed a statistically significant difference between mice injected with only the probe or following blocking experiment with Ve-821 (1.48 ± 0.40%ID/g vs. 0.46 ± 0.12%ID/g in tumor and 1.85 ± 0.47%ID/g vs. 0.84 ± 0.3%ID/g in blood respectively). Conclusions: [ 18 F]-ATRi represents the first 18 F positron emission tomography (PET) ATR imaging agent, and is designed on a low nanomolar and clinically relevant ATR inhibitor.

  7. Small tyrosine kinase inhibitors interrupt EGFR signaling by interacting with erbB3 and erbB4 in glioblastoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco-Garcia, Estefania; Saceda, Miguel [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche (Alicante) (Spain); Grasso, Silvina; Rocamora-Reverte, Lourdes; Conde, Mariano; Gomez-Martinez, Angeles [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Garcia-Morales, Pilar [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche (Alicante) (Spain); Ferragut, Jose A. [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Martinez-Lacaci, Isabel, E-mail: imlacaci@umh.es [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad AECC de Investigacion Traslacional en Cancer, Hospital Universitario Virgen de la Arrixaca, 30120 Murcia (Spain)

    2011-06-10

    Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G{sub 1} arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G{sub 1} arrest. This G{sub 1} arrest was associated with up-regulation of p27{sup kip1}, whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cell lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G{sub 1} arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 {Delta}EGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.

  8. Analysis of the cytotoxicity of carbon-based nanoparticles, diamond and graphite, in human glioblastoma and hepatoma cell lines

    DEFF Research Database (Denmark)

    Zakrzewska, Karolina Ewa; Samluk, Anna; Wierzbicki, Mateusz

    2015-01-01

    carbon based nanoparticles, diamond and graphite, on glioblastoma and hepatoma cells were compared. First, we confirmed previous results that diamond nanoparticles are practically nontoxic. Second, graphite nanoparticles exhibited a negative impact on glioblastoma, but not on hepatoma cells. The studied...... carbon nanoparticles could be a potentially useful tool for therapeutics delivery to the brain tissue with minimal side effects on the hepatocytes. Furthermore, we showed the influence of the nanoparticles on the stable, fluorescently labeled tumor cell lines and concluded that the labeled cells...

  9. Chimeric Mouse model to track the migration of bone marrow derived cells in glioblastoma following anti-angiogenic treatments.

    Science.gov (United States)

    Achyut, B R; Shankar, Adarsh; Iskander, A S M; Ara, Roxan; Knight, Robert A; Scicli, Alfonso G; Arbab, Ali S

    2016-01-01

    Bone marrow derived cells (BMDCs) have been shown to contribute in the tumor development. In vivo animal models to investigate the role of BMDCs in tumor development are poorly explored. We established a novel chimeric mouse model using as low as 5 × 10(6) GFP+ BM cells in athymic nude mice, which resulted in >70% engraftment within 14 d. In addition, chimera was established in NOD-SCID mice, which displayed >70% with in 28 d. Since anti-angiogenic therapies (AAT) were used as an adjuvant against VEGF-VEGFR pathway to normalize blood vessels in glioblastoma (GBM), which resulted into marked hypoxia and recruited BMDCs to the tumor microenvironment (TME). We exploited chimeric mice in athymic nude background to develop orthotopic U251 tumor and tested receptor tyrosine kinase inhibitors and CXCR4 antagonist against GBM. We were able to track GFP+ BMDCs in the tumor brain using highly sensitive multispectral optical imaging instrument. Increased tumor growth associated with the infiltration of GFP+ BMDCs acquiring suppressive myeloid and endothelial phenotypes was seen in TME following treatments. Immunofluorescence study showed GFP+ cells accumulated at the site of VEGF, SDF1 and PDGF expression, and at the periphery of the tumors following treatments. In conclusion, we developed a preclinical chimeric model of GBM and phenotypes of tumor infiltrated BMDCs were investigated in context of AATs. Chimeric mouse model could be used to study detailed cellular and molecular mechanisms of interaction of BMDCs and TME in cancer.

  10. IL22/IL-22R pathway induces cell survival in human glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Hussein Akil

    Full Text Available Interleukin-22 (IL-22 is a member of the IL-10 cytokine family that binds to a heterodimeric receptor consisting of IL-22 receptor 1 (IL-22R1 and IL-10R2. IL-22R expression was initially characterized on epithelial cells, and plays an essential role in a number of inflammatory diseases. Recently, a functional receptor was detected on cancer cells such as hepatocarcinoma and lung carcinoma, but its presence was not reported in glioblastoma (GBM. Two GBM cell lines and 10 primary cell lines established from patients undergoing surgery for malignant GBM were used to investigate the expression of IL-22 and IL-22R by using quantitative RT-PCR, western blotting and confocal microscopy studies. The role of IL-22 in proliferation and survival of GBM cell lines was investigated in vitro by BrdU and ELISA cell death assays. We report herein that the two subunits of the IL-22R complex are expressed on human GBM cells. Their activation, depending on exogenous IL-22, induced antiapoptotic effect and cell proliferation. IL-22 treatment of GBM cells resulted in increased levels of phosphorylated Akt, STAT3 signaling protein and its downstream antiapoptotic protein Bcl-xL and decreased level of phosphorylated ERK1/2. In addition, IL-22R subunits were expressed in all the 10 tested primary cell lines established from GBM tumors. Our results showed that IL-22R is expressed on GBM established and primary cell lines. Depending on STAT3, ERK1/2 and PI3K/Akt pathways, IL-22 induced GBM cell survival. These data are consistent with a potential role of IL-22R in tumorigenesis of GBM. Since endogenous IL-22 was not detected in all studied GBM cells, we hypothesize that IL-22R could be activated by immune microenvironmental IL-22 producing cells.

  11. Microtubule-severing ATPase spastin in glioblastoma: increased expression in human glioblastoma cell lines and inverse roles in cell motility and proliferation

    Czech Academy of Sciences Publication Activity Database

    Dráberová, Eduarda; Vinopal, Stanislav; Morfini, G.; Liu, P. S.; Sládková, Vladimíra; Sulimenko, Tetyana; Burns, M.R.; Solowska, J.; Kulandaivel, K.; De Chadarévian, J.P.; Legido, A.; Mork, S.J.; Janáček, Jiří; Baas, P.; Dráber, Pavel; Katsetos, C.D.

    2011-01-01

    Roč. 70, č. 9 (2011), s. 811-826 ISSN 0022-3069 R&D Projects: GA ČR GAP302/10/1701; GA ČR GA204/09/1777; GA ČR(CZ) GD204/09/H084; GA AV ČR KAN200520701; GA MŠk LC545 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z50110509 Keywords : spastin * glioblastoma * cell motility Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.258, year: 2011

  12. Orthotopic Patient-Derived Glioblastoma Xenografts in Mice.

    Science.gov (United States)

    Xu, Zhongye; Kader, Michael; Sen, Rajeev; Placantonakis, Dimitris G

    2018-01-01

    Patient-derived xenografts (PDX) provide in vivo glioblastoma (GBM) models that recapitulate actual tumors. Orthotopic tumor xenografts within the mouse brain are obtained by injection of GBM stem-like cells derived from fresh surgical specimens. These xenografts reproduce GBM's histologic complexity and hallmark biological behaviors, such as brain invasion, angiogenesis, and resistance to therapy. This method has become essential for analyzing mechanisms of tumorigenesis and testing the therapeutic effect of candidate agents in the preclinical setting. Here, we describe a protocol for establishing orthotopic tumor xenografts in the mouse brain with human GBM cells.

  13. Theobromine, the primary methylxanthine found in Theobroma cacao, prevents malignant glioblastoma proliferation by negatively regulating phosphodiesterase-4, extracellular signal-regulated kinase, Akt/mammalian target of rapamycin kinase, and nuclear factor-kappa B.

    Science.gov (United States)

    Sugimoto, Naotoshi; Miwa, Shinji; Hitomi, Yoshiaki; Nakamura, Hiroyuki; Tsuchiya, Hiroyuki; Yachie, Akihiro

    2014-01-01

    Theobromine, a caffeine derivative, is the primary methylxanthine produced by Theobroma cacao. We previously showed that methylxanthines, including caffeine and theophylline, have antitumor and antiinflammatory effects, which are in part mediated by their inhibition of phosphodiesterase (PDE). A member of the PDE family, PDE4, is widely expressed in and promotes the growth of glioblastoma, the most common type of brain tumor. The purpose of this study was to determine whether theobromine could exert growth inhibitory effects on U87-MG, a cell line derived from human malignant glioma. We show that theobromine treatment elevates intracellular cAMP levels and increases the activity of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase, whereas it attenuates p44/42 extracellular signal-regulated kinase activity and the Akt/mammalian target of rapamycin kinase and nuclear factor-kappa B signal pathways. It also inhibits cell proliferation. These results suggest that foods and beverages containing cocoa bean extracts, including theobromine, might be extremely effective in preventing human glioblastoma.

  14. Formulation and in vitro evaluation of 17-allyamino-17-demethoxygeldanamycin (17-AAG) loaded polymeric mixed micelles for glioblastoma multiforme.

    Science.gov (United States)

    Saxena, Vipin; Hussain, Muhammad Delwar

    2013-12-01

    Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain tumor in human. 17-Allylamino-17-demethoxy geldanamycin (17-AAG) is an inhibitor of heat shock protein 90 (HSP90). The highly lipophilic nature and selective targeting of tumor cells makes 17-AAG a promising candidate for therapy of GBMs but poor water solubility, short biological half-life and hepatotoxicity limited its clinical use. Polymeric mixed micelles composed of Pluronic® P-123 and F-127 (2:1 (w/w)) containing 17-AAG were prepared and characterized. Cellular uptake and in vitro cytotoxicity of the prepared micelles were determined in U87MG human glioblastoma cells. The particle size of 17-AAG loaded Pluronic(®) P-123 and F-127 mixed micelles was 22.2 ± 0.1 nm; drug loading was about 4.0 ± 0.5% (w/w) with 88.2 ± 3.1% (w/w) encapsulation efficiency. About 90% of drug was released from the nanoparticles over 8 days. Cellular uptake studies showed intracellular uptake of mixed micelles. Cytotoxicity study showed 5-fold increase (P AAG-loaded mixed micelles to free 17-AAG. Due to their targeting ability, size, high drug loading and controlled release behavior, 17-AAG loaded Pluronic(®) P-123 and F-127 mixed micelles might be developed as a delivery system for GBM treatment. © 2013 Elsevier B.V. All rights reserved.

  15. Estimation of Tumor Volumes by 11C-MeAIB and 18F-FDG PET in an Orthotopic Glioblastoma Rat Model

    DEFF Research Database (Denmark)

    Halle, Bo; Thisgaard, Helge; Hvidsten, Svend

    2015-01-01

    starting immediately after the injection of 11C-methylaminoisobutyric acid (11C-MeAIB). One hour later, 18F-FDG was injected, followed by a 3-h dynamic PET scan. Images were reconstructed using 2-dimensional ordered-subsets expectation maximization and 3-dimensional maximum a posteriori probability (MAP3D......UNLABELLED: Brain tumor volume assessment is a major challenge. Molecular imaging using PET may be a promising option because it reflects the biologically active cells. We compared the agreement between PET- and histology-derived tumor volumes in an orthotopic glioblastoma rat model...... with a noninfiltrating (U87MG) and an infiltrating (T87) tumor phenotype using 2 different radiotracers, 2 different image reconstruction algorithms, parametric imaging, and 2 different image segmentation techniques. METHODS: Rats with U87MG- and T87-derived glioblastomas were continuously scanned with PET for 1 h...

  16. 38 CFR 3.251 - Income of parents; dependency and indemnity compensation.

    Science.gov (United States)

    2010-07-01

    ...; dependency and indemnity compensation. 3.251 Section 3.251 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation Dependency, Income and Estate § 3.251 Income of parents; dependency and indemnity compensation. (a) Annual...

  17. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy.

    Directory of Open Access Journals (Sweden)

    Julia Pollak

    Full Text Available Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.

  18. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy.

    Science.gov (United States)

    Pollak, Julia; Rai, Karan G; Funk, Cory C; Arora, Sonali; Lee, Eunjee; Zhu, Jun; Price, Nathan D; Paddison, Patrick J; Ramirez, Jan-Marino; Rostomily, Robert C

    2017-01-01

    Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.

  19. Modulation of microRNA editing, expression and processing by ADAR2 deaminase in glioblastoma.

    Science.gov (United States)

    Tomaselli, Sara; Galeano, Federica; Alon, Shahar; Raho, Susanna; Galardi, Silvia; Polito, Vinicia Assunta; Presutti, Carlo; Vincenti, Sara; Eisenberg, Eli; Locatelli, Franco; Gallo, Angela

    2015-01-13

    ADAR enzymes convert adenosines to inosines within double-stranded RNAs, including microRNA (miRNA) precursors, with important consequences on miRNA retargeting and expression. ADAR2 activity is impaired in glioblastoma and its rescue has anti-tumoral effects. However, how ADAR2 activity may impact the miRNome and the progression of glioblastoma is not known. By integrating deep-sequencing and array approaches with bioinformatics analyses and molecular studies, we show that ADAR2 is essential to edit a small number of mature miRNAs and to significantly modulate the expression of about 90 miRNAs in glioblastoma cells. Specifically, the rescue of ADAR2 activity in cancer cells recovers the edited miRNA population lost in glioblastoma cell lines and tissues, and rebalances expression of onco-miRNAs and tumor suppressor miRNAs to the levels observed in normal human brain. We report that the major effect of ADAR2 is to reduce the expression of a large number of miRNAs, most of which act as onco-miRNAs. ADAR2 can edit miR-222/221 and miR-21 precursors and decrease the expression of the corresponding mature onco-miRNAs in vivo and in vitro, with important effects on cell proliferation and migration. Our findings disclose an additional layer of complexity in miRNome regulation and provide information to better understand the impact of ADAR2 editing enzyme in glioblastoma. We propose that ADAR2 is a key factor for maintaining edited-miRNA population and balancing the expression of several essential miRNAs involved in cancer.

  20. Immunological Evasion in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Roxana Magaña-Maldonado

    2016-01-01

    Full Text Available Glioblastoma is the most aggressive tumor in Central Nervous System in adults. Among its features, modulation of immune system stands out. Although immune system is capable of detecting and eliminating tumor cells mainly by cytotoxic T and NK cells, tumor microenvironment suppresses an effective response through recruitment of modulator cells such as regulatory T cells, monocyte-derived suppressor cells, M2 macrophages, and microglia as well as secretion of immunomodulators including IL-6, IL-10, CSF-1, TGF-β, and CCL2. Other mechanisms that induce immunosuppression include enzymes as indolamine 2,3-dioxygenase. For this reason it is important to develop new therapies that avoid this immune evasion to promote an effective response against glioblastoma.

  1. Activation of p53 by nutlin-3a induces apoptosis and cellular senescence in human glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Ruth Villalonga-Planells

    2011-04-01

    Full Text Available Glioblastoma multiforme (GBM is the most common and aggressive primary brain tumor in adults. Despite concerted efforts to improve current therapies and develop novel clinical approaches, patient survival remains poor. As such, increasing attention has focused on developing new therapeutic strategies that specifically target the apoptotic pathway in order to improve treatment responses. Recently, nutlins, small-molecule antagonists of MDM2, have been developed to inhibit p53-MDM2 interaction and activate p53 signaling in cancer cells. Glioma cell lines and primary cultured glioblastoma cells were treated with nutlin-3a. Nutlin-3a induced p53-dependent G1- and G2-M cell cycle arrest and apoptosis in glioma cell lines with normal TP53 status. In addition, nutlin-arrested glioma cells show morphological features of senescence and persistent induction of p21 protein. Furthermore, senescence induced by nutlin-3a might be depending on mTOR pathway activity. In wild-type TP53 primary cultured cells, exposure to nutlin-3a resulted in variable degrees of apoptosis as well as cellular features of senescence. Nutlin-3a-induced apoptosis and senescence were firmly dependent on the presence of functional p53, as revealed by the fact that glioblastoma cells with knockdown p53 with specific siRNA, or cells with mutated or functionally impaired p53 pathway, were completely insensitive to the drug. Finally, we also found that nutlin-3a increased response of glioma cells to radiation therapy. The results provide a basis for the rational use of MDM2 antagonists as a novel treatment option for glioblastoma patients.

  2. Comparison of vitamins K1, K2 and K3 effects on growth of rat glioma and human glioblastoma multiforme cells in vitro.

    Science.gov (United States)

    Oztopçu, Pinar; Kabadere, Selda; Mercangoz, Ayşe; Uyar, Ruhi

    2004-09-01

    Glioblastoma multiforme is characterized as highly invasive and rapidly growing astrocytomas, and scientists have sought for efficient treatment against malignant gliomas for a long time. Therefore, we compared the respond of rat glioma (C6) and glioblastoma multiforme cells derived from two patients to vitamins K1, K2 and K3. The cells were exposed to 100, 250, 500, 750 and 1000 microM of vitamins K1 and K2, and 1, 10, 25, 50, 75 and 100 microM of vitamin K3 for 24 hours in an incubator atmosphere of 5% CO2, 37 degrees C and 100% humidity. Cell viability was estimated by MTT assay. Vitamin K1 showed no growth effect on all the glioma cells examined. Vitamin K2 did not cause any change in number of C6, however induced growth inhibition in a dose-dependent manner on glioblastoma multiforme. The IC50 values of vitamin K2 were 960 microM and 970 microM for glioblastoma multiforme, respectively. Vitamin K3 had also growth inhibitory effect in a dose-dependent manner on both C6 and glioblastoma multiforme. The IC50 values were 41 microM, 24 microM and 23 microM for vitamin K3, respectively. We concluded that vitamin K3 is more effective than vitamin K2 for inhibition of cancer cell growth, and might have an alternative value as an anticancer drug against glioblastoma multiforme.

  3. Age groups related glioblastoma study based on radiomics approach.

    Science.gov (United States)

    Li, Zeju; Wang, Yuanyuan; Yu, Jinhua; Guo, Yi; Zhang, Qi

    2017-12-01

    Glioblastoma is the most aggressive malignant brain tumor with poor prognosis. Radiomics is a newly emerging and promising technique to reveal the complex relationships between high-throughput medical image features and deep information of disease including pathology, biomarkers and genomics. An approach was developed to investigate the internal relationship between magnetic resonance imaging (MRI) features and the age-related origins of glioblastomas based on a quantitative radiomics method. A fully automatic image segmentation method was applied to segment the tumor regions from three dimensional MRI images. 555 features were then extracted from the image data. By analyzing large numbers of quantitative image features, some predictive and prognostic information could be obtained by the radiomics approach. 96 patients diagnosed with glioblastoma pathologically have been divided into two age groups (age groups (T test, p age difference (T test, p= .006). In conclusion, glioblastoma in different age groups present different radiomics-feature patterns with statistical significance, which indicates that glioblastoma in different age groups should have different pathologic, protein, or genic origins.

  4. Radiotherapy Results of Brain Astrocytoma and Glioblastoma Multiforme

    International Nuclear Information System (INIS)

    Choi, Doo Ho; Kim, Il Han; Ha, Sung Whan; Chi, Je Geun

    1988-01-01

    A retrospective analysis was performed on 49 patients with astrocytoma of glioblastoma multiforme of brain who received postoperative radiotherapy in the period between February 1979 and December 1985. Fourteen patients had grade I astrocytoma, 11 patients grade II, 14 patients grade III, and 10 patients glioblastoma multiforme. Three year actuarial survival rates were 85.7%, 44.6% and 23.1% for grade I, II, and III astrocytomas, respectively. One and 2 year actuarial survival rates for patients with glioblastoma multiforme were 54.5% and 27.3%, respectively. Histologic grade, age, extent of operation and tumor location were revealed to be prognosticators

  5. First-in-human study of PET and optical dual-modality image-guided surgery in glioblastoma using 68Ga-IRDye800CW-BBN.

    Science.gov (United States)

    Li, Deling; Zhang, Jingjing; Chi, Chongwei; Xiao, Xiong; Wang, Junmei; Lang, Lixin; Ali, Iqbal; Niu, Gang; Zhang, Liwei; Tian, Jie; Ji, Nan; Zhu, Zhaohui; Chen, Xiaoyuan

    2018-01-01

    Purpose : Despite the use of fluorescence-guided surgery (FGS), maximum safe resection of glioblastoma multiforme (GBM) remains a major challenge. It has restricted surgeons between preoperative diagnosis and intraoperative treatment. Currently, an integrated approach combining preoperative assessment with intraoperative guidance would be a significant step in this direction. Experimental design : We developed a novel 68 Ga-IRDye800CW-BBN PET/near-infrared fluorescence (NIRF) dual-modality imaging probe targeting gastrin-releasing peptide receptor (GRPR) in GBM. The preclinical in vivo tumor imaging and FGS were first evaluated using an orthotopic U87MG glioma xenograft model. Subsequently, the first-in-human prospective cohort study (NCT 02910804) of GBM patients were conducted with preoperative PET assessment and intraoperative FGS. Results : The orthotopic tumors in mice could be precisely resected using the near-infrared intraoperative system. Translational cohort research in 14 GBM patients demonstrated an excellent correlation between preoperative positive PET uptake and intraoperative NIRF signal. The tumor fluorescence signals were significantly higher than those from adjacent brain tissue in vivo and ex vivo (p dual-modality imaging technique is feasible for integrated pre- and intraoperative targeted imaging via the same molecular receptor and improved intraoperative GBM visualization and maximum safe resection.

  6. 24 CFR 251.6 - Method of payment of mortgage insurance premiums.

    Science.gov (United States)

    2010-04-01

    ... insurance premiums. 251.6 Section 251.6 Housing and Urban Development Regulations Relating to Housing and... HOUSING PROJECTS § 251.6 Method of payment of mortgage insurance premiums. In the cases that the... affected lenders, that mortgage insurance premiums be remitted electronically. [63 FR 1303, Jan. 8, 1998] ...

  7. Immunotherapy for the Treatment of Glioblastoma

    Science.gov (United States)

    Thomas, Alissa A.; Ernstoff, Marc S.; Fadul, Camilo E.

    2012-01-01

    Glioblastoma, the most aggressive primary brain tumor, thrives in a microenvironment of relative immunosuppression within the relatively immune-privileged central nervous system. Despite treatments with surgery, radiation therapy, and chemotherapy, prognosis remains poor. The recent success of immunotherapy in the treatment of other cancers has renewed interest in vaccine therapy for the treatment of gliomas. In this article, we outline various immunotherapeutic strategies, review recent clinical trials data, and discuss the future of vaccine therapy for glioblastoma. PMID:22290259

  8. Protocols for BNCT of glioblastoma multiforme at Brookhaven: Practical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Chanana, A.D.; Coderre, J.A.; Joel, D.D.; Slatkin, D.N.

    1996-12-31

    In this report we discuss some issues considered in selecting initial protocols for boron neutron capture therapy (BNCT) of human glioblastoma multiforme. First the tolerance of normal tissues, especially the brain, to the radiation field. Radiation doses limits were based on results with human and animal exposures. Estimates of tumor control doses were based on the results of single-fraction photon therapy and single fraction BNCT both in humans and experimental animals. Of the two boron compounds (BSH and BPA), BPA was chosen since a FDA-sanctioned protocol for distribution in humans was in effect at the time the first BNCT protocols were written and therapy studies in experimental animals had shown it to be more effective than BSH.

  9. Clinico-pathological studies of CSF dissemination of glioblastoma and medulloblastoma

    International Nuclear Information System (INIS)

    Kato, Kyozo; Yoshida, Jun; Kageyama, Naoki

    1986-01-01

    Clinico-pathological findings of CSF dissemination which was diagnosed on CT scan, were studied on 13 cases of glioblastoma and 9 cases of medulloblastoma. The type of CSF dissemination and the prognosis of patients were both different between glioblastoma and medulloblastoma. In the former, the dissemination was predominantly in ventricular walls and in the latter, in basal cisterns. The mean survival time after the diagnosis of dissemination is 6 months of glioblastoma as compared with 13 months of medulloblastoma. The Pathological studies show that subependymal and/or subpial infiltration of tumor cells, and thickness of arachnoid membrane by marked mesodermal reaction were demonstrated in cases of glioblastoma. On the contrary, tumor cells of medulloblastoma grow markedly in the subarachnoid space and/or on the ependymal layers. From these pathological findings of CSF dissemination, it will be resulted that the prognosis of glioblastoma is much more poor that of medulloblastoma. (author)

  10. Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain.

    Directory of Open Access Journals (Sweden)

    Jeffrey C Lee

    2006-12-01

    Full Text Available Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy.Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132 of glioblastomas and 12.5% (1/8 of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors.Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma.

  11. 48 CFR 251.202 - Authorization.

    Science.gov (United States)

    2010-10-01

    ... OF DEFENSE CONTRACT MANAGEMENT USE OF GOVERNMENT SOURCES BY CONTRACTORS Contractor Use of Interagency Fleet Management System (IFMS) Vehicles 251.202 Authorization. (a)(2)(A) See FAR 28.307-2(c) for policy...

  12. 18F-FET and 18F-FCH uptake in human glioblastoma T98G cell lines

    International Nuclear Information System (INIS)

    Persico, Marco Giovanni; Buroni, Federica Eleonora; Pasi, Francesca; Lodola, Lorenzo; Aprile, Carlo; Nano, Rosanna; Hodolic, Marina

    2016-01-01

    Despite complex treatment of surgery, radiotherapy and chemotherapy, high grade gliomas often recur. Differentiation between post-treatment changes and recurrence is difficult. 18 F-methyl-choline ( 18 F-FCH) is frequently used in staging and detection of recurrent prostate cancer disease as well as some brain tumours; however accumulation in inflammatory tissue limits its specificity. The 18 F-ethyl-tyrosine ( 18 F-FET) shows a specific uptake in malignant cells, resulting from increased expression of amino acid transporters or diffusing through the disrupted blood-brain barrier. 18 F-FET exhibits lower uptake in machrophages and other inflammatory cells. Aim of this study was to evaluate 18 F-FCH and 18 F-FET uptake by human glioblastoma T98G cells. Human glioblastoma T98G or human dermal fibroblasts cells, seeded at a density to obtain 2 × 10 5 cells per flask when radioactive tracers were administered, grew adherent to the plastic surface at 37°C in 5% CO 2 in complete medium. Equimolar amounts of radiopharmaceuticals were added to cells for different incubation times (20 to 120 minutes) for 18 F-FCH and 18 F-FET respectively. The cellular radiotracer uptake was determined with a gamma counter. All experiments were carried out in duplicate and repeated three times. The uptake measurements are expressed as the percentage of the administered dose of tracer per 2 × 10 5 cells. Data (expressed as mean values of % uptake of radiopharmaceuticals) were compared using parametric or non-parametric tests as appropriate. Differences were regarded as statistically significant when p<0.05. A significant uptake of 18 F-FCH was seen in T98G cells at 60, 90 and 120 minutes. The percentage uptake of 18 F-FET in comparison to 18 F-FCH was lower by a factor of more than 3, with different kinetic curves. 18 F-FET showed a more rapid initial uptake up to 40 minutes and 18 F-FCH showed a progressive rise reaching a maximum after 90 minutes. 18 F-FCH and 18 F-FET are candidates

  13. In vivo bioluminescence imaging validation of a human biopsy-derived orthotopic mouse model of glioblastoma multiforme.

    Science.gov (United States)

    Jarzabek, Monika A; Huszthy, Peter C; Skaftnesmo, Kai O; McCormack, Emmet; Dicker, Patrick; Prehn, Jochen H M; Bjerkvig, Rolf; Byrne, Annette T

    2013-05-01

    Glioblastoma multiforme (GBM), the most aggressive brain malignancy, is characterized by extensive cellular proliferation, angiogenesis, and single-cell infiltration into the brain. We have previously shown that a xenograft model based on serial xenotransplantation of human biopsy spheroids in immunodeficient rodents maintains the genotype and phenotype of the original patient tumor. The present work further extends this model for optical assessment of tumor engraftment and growth using bioluminescence imaging (BLI). A method for successful lentiviral transduction of the firefly luciferase gene into multicellular spheroids was developed and implemented to generate optically active patient tumor cells. Luciferase-expressing spheroids were injected into the brains of immunodeficient mice. BLI photon counts and tumor volumes from magnetic resonance imaging (MRI) were correlated. Luciferase-expressing tumors recapitulated the histopathologic hallmarks of human GBMs and showed proliferation rates and microvessel density counts similar to those of wild-type xenografts. Moreover, we detected widespread invasion of luciferase-positive tumor cells in the mouse brains. Herein we describe a novel optically active model of GBM that closely mimics human pathology with respect to invasion, angiogenesis, and proliferation indices. The model may thus be routinely used for the assessment of novel anti-GBM therapeutic approaches implementing well-established and cost-effective optical imaging strategies.

  14. In Vivo Bioluminescence Imaging Validation of a Human Biopsy–Derived Orthotopic Mouse Model of Glioblastoma Multiforme

    Directory of Open Access Journals (Sweden)

    Monika A. Jarzabek

    2013-05-01

    Full Text Available Glioblastoma multiforme (GBM, the most aggressive brain malignancy, is characterized by extensive cellular proliferation, angiogenesis, and single-cell infiltration into the brain. We have previously shown that a xenograft model based on serial xenotransplantation of human biopsy spheroids in immunodeficient rodents maintains the genotype and phenotype of the original patient tumor. The present work further extends this model for optical assessment of tumor engraftment and growth using bioluminescence imaging (BLI. A method for successful lentiviral transduction of the firefly luciferase gene into multicellular spheroids was developed and implemented to generate optically active patient tumor cells. Luciferase-expressing spheroids were injected into the brains of immunodeficient mice. BLI photon counts and tumor volumes from magnetic resonance imaging (MRI were correlated. Luciferase-expressing tumors recapitulated the histopathologic hallmarks of human GBMs and showed proliferation rates and microvessel density counts similar to those of wild-type xenografts. Moreover, we detected widespread invasion of luciferase-positive tumor cells in the mouse brains. Herein we describe a novel optically active model of GBM that closely mimics human pathology with respect to invasion, angiogenesis, and proliferation indices. The model may thus be routinely used for the assessment of novel anti-GBM therapeutic approaches implementing well-established and cost-effective optical imaging strategies.

  15. Glioblastoma as differential diagnosis of autoimmune encephalitis.

    Science.gov (United States)

    Vogrig, Alberto; Joubert, Bastien; Ducray, Francois; Thomas, Laure; Izquierdo, Cristina; Decaestecker, Kévin; Martinaud, Olivier; Gerardin, Emmanuel; Grand, Sylvie; Honnorat, Jérome

    2018-03-01

    To identify the clinical and radiological features that should raise suspicion for the autoimmune encephalitis (AE)-like presentation of glioblastoma. This is an observational, retrospective case series of patients referred to the French National Reference Center on Paraneoplastic Neurological Diseases for suspected AE (possible, probable or definite, using the 2016 criteria) who later received a final diagnosis of glioblastoma according to 2016 WHO criteria. An extensive literature search was also conducted for similar existing cases. Between 2014 and 2016, 306 patients were referred to our center for suspected AE. Six of these patients (2%) later developed pathologically confirmed glioblastoma. Thirteen patients (9 male) were included for analysis (6 from the present series and 7 from the literature); median age was 63. Initially, a diagnosis of AE was clinically suspected based on: working memory deficits (77%), seizures (62%) (including status epilepticus in 23%), and psychiatric symptoms (46%). Initial brain MRI was not in favor of a typical glioblastoma pattern and showed bilateral (54%) or unilateral selective limbic involvement. Five patients exhibited initial slight contrast enhancement. A clear inflammatory CSF was present in five patients and three from the literature showed autoantibody positivity (NMDAR, VGKC, GluRepsilon2). Median delay between suspicions of AE to GBM diagnosis was 3 months (range 1.5-24) and one patient from the literature was diagnosed post-mortem. An alternative diagnosis of glioblastoma should be considered in patients presenting initially as AE, especially in patients who do not fulfill the criteria for definite AE and in those with a poor clinical evolution despite initial improvement.

  16. Glucocorticoids promote a glioma stem cell-like phenotype and resistance to chemotherapy in human glioblastoma primary cells

    DEFF Research Database (Denmark)

    Kostopoulou, Ourania N; Mohammad, Abdul-Aleem; Bartek, Jiri

    2018-01-01

    Glioma stem cells (GSCs) are glioblastoma (GBM) cells that are resistant to therapy and can give rise to recurrent tumors. The identification of patient-related factors that support GSCs is thus necessary to design effective therapies for GBM patients. Glucocorticoids (GCs) are used to treat GBM......-associated edema. However, glucocorticoids participate in the physiological response to psychosocial stress, which has been linked to poor cancer prognosis. This raises concern that glucocorticoids affect the tumor and GSCs. Here, we treated primary human GBM cells with dexamethasone and evaluated GC......-driven changes in cell morphology, proliferation, migration, gene expression, secretory activity and growth as neurospheres. Dexamethasone treatment of GBM cells appeared to promote the development of a GSC-like phenotype and conferred resistance to physiological stress and chemotherapy. We also analyzed...

  17. A Novel Molecular Diagnostic of Glioblastomas: Detection of an Extracellular Fragment of Protein Tyrosine Phosphatase μ

    Directory of Open Access Journals (Sweden)

    Susan M. Burden-Gulley

    2010-04-01

    Full Text Available We recently found that normal human brain and low-grade astrocytomas express the receptor protein tyrosine phosphatase mu (PTPμ and that the more invasive astrocytomas, glioblastoma multiforme (GBM, downregulate full-length PTPμ expression. Loss of PTPμ expression in GBMs is due to proteolytic cleavage that generates an intracellular and potentially a cleaved and released extracellular fragment of PTPμ. Here, we identify that a cleaved extracellular fragment containing the domains required for PTPμ-mediated adhesion remains associated with GBM tumor tissue. We hypothesized that detection of this fragment would make an excellent diagnostic tool for the localization of tumor tissue within the brain. To this end, we generated a series of fluorescently tagged peptide probes that bind the PTPμ fragment. The peptide probes specifically recognize GBM cells in tissue sections of surgically resected human tumors. To test whether the peptide probes are able to detect GBM tumors in vivo, the PTPμ peptide probes were tested in both mouse flank and intracranial xenograft human glioblastoma tumor model systems. The glial tumors were molecularly labeled with the PTPμ peptide probes within minutes of tail vein injection using the Maestro FLEX In Vivo Imaging System. The label was stable for at least 3 hours. Together, these results indicate that peptide recognition of the PTPμ extracellular fragment provides a novel molecular diagnostic tool for detection of human glioblastomas. Such a tool has clear translational applications and may lead to improved surgical resections and prognosis for patients with this devastating disease.

  18. Cellular and subcellular distribution of BSH in human glioblastoma multiforme

    International Nuclear Information System (INIS)

    Neumann, M.; Gabel, D.

    2000-01-01

    The cellular and subcellular distribution of mercaptoundecahydrododecaborate (BSH) in seven glioblastoma multiforme tissue sections of six patients having received BSH prior to surgery was investigated by light, fluorescence and electron microscopy. With use of specific antibodies against BSH its localization could be found in tissue sections predominantly (approx. 90%) in the cytoplasm of GFAP-positive cells of all but one patient. The latter was significantly younger (33 years in contrast of 46-71 (mean 60) years). In none of the tissue sections BSH could be found to a significant amount in the cell nuclei. In contrast, electron microscopy studies show BSH as well associated with the cell membrane as with the chromatin in the nucleus. (author)

  19. KIF11 inhibition for glioblastoma treatment: reason to hope or a struggle with the brain?

    International Nuclear Information System (INIS)

    Valensin, Silvia; Ghiron, Chiara; Lamanna, Claudia; Kremer, Andreas; Rossi, Marco; Ferruzzi, Pietro; Nievo, Marco; Bakker, Annette

    2009-01-01

    Glioblastomas (GBM) are typically comprised of morphologically diverse cells. Despite current advances in therapy, including surgical resection followed by radiation and chemotherapy, the prognosis for patients with GBM remains poor. Unfortunately, most patients die within 2 years of diagnosis of their disease. Molecular abnormalities vary among individual patients and also within each tumor. Indeed, one of the distinguishing features of GBM is its marked genetic heterogeneity. Due to the brain location of the tumor, the potential target inhibition for anticancer therapy must exhibit a manageable neurotoxicity profile in the concentration range in which the compounds show anti-proliferative activity. Kinesin KIF11 inhibition by small molecules such as Monastrol or Ispinesib is currently under investigation in the field of malignant tumors. In the current study we have assessed the relevance of the anti-mitotic Kinesin-like protein KIF11 in human GBM cell-lines. In this study the target was validated using a set of well characterised and potentially specific small molecule inhibitors of KIF11: an ispinesib analog, Monastrol, a Merck compound and 3 simplified derivatives of the Merck compound. Following an in silico selection, those compounds predicted to bear a favorable BBB permeation profile were assessed for their phenotypic effect on cell lines derived both from primary (U87MG) as well as treated (DBTRG-05-MG) glioblastomas. For some compounds, these data could be compared to their effect on normal human astrocytes, as well as their neurotoxicity on primary rat cortical neurons. The ispinesib analogue 1 showed an anti-proliferative effect on GBM cell lines by blocking them in the G2/M phase in a concentration range which was shown to be harmless to primary rat cortical neurons. Furthermore, ispinesib analog increased caspase 3/7-induced apoptosis in U87MG cells. In the area of cell cycle inhibition, KIF11 is critical for proper spindle assembly and represents an

  20. A Chimeric Protein PTEN-L-p53 Enters U251 Cells to Repress Proliferation and Invasion.

    Science.gov (United States)

    Xiao, Man; An, Yang; Wang, Fengling; Yao, Chao; Zhang, Chu; Xin, Junfang; Duan, Yongjian; Zhao, Xiaofang; Fang, Na; Ji, Shaoping

    2018-05-23

    PTEN, a well-known tumor suppressor, dephosphorylates PIP3 and inhibits AKT activity. A translational variant of PTEN has been identified and termed PTEN-Long (PTEN-L). The additional 173 amino acids (PTEN-L leader) at the N-terminal constitute a potential signal peptide. Differing from canonical PTEN, PTEN-L is secreted into the extracellular fluid and re-enters recipient cells, playing the similar roles as PTEN in vivo and in vitro. This character confers the PTEN-L a therapeutic ability via directly protein delivering instead of traditional DNA and RNA vector options. In the present study, we employed PTEN-L leader to assemble a fusion protein, PTEN-L-p53, inosculated with the transcriptional regulator TP53, which is another powerful tumor suppressor. We overexpressed PTEN-L-p53 in HEK293T cells and detected it in both the cytoplasm and nucleus. Subsequently, we found that PTEN-L-p53 was secreted outside of the cells and detected in the culture media by immunoblotting. Furthermore, we demonstrated that PTEN-L-p53 freely entered the cells and suppressed the viability of U251cells (p53 R273H , a cell line with p53 R273H-mutation). PTEN-L-p53 is composed of endogenous protein/peptide bearing low immunogenicity, and only the junction region between PTEN-L leader and p53 can act as a new immune epitope. Accordingly, this fusion protein can potentially be used as a therapeutic option for TP53-abnormality cancers. Copyright © 2018. Published by Elsevier Inc.

  1. A reproducible brain tumour model established from human glioblastoma biopsies

    International Nuclear Information System (INIS)

    Wang, Jian; Chekenya, Martha; Bjerkvig, Rolf; Enger, Per Ø; Miletic, Hrvoje; Sakariassen, Per Ø; Huszthy, Peter C; Jacobsen, Hege; Brekkå, Narve; Li, Xingang; Zhao, Peng; Mørk, Sverre

    2009-01-01

    Establishing clinically relevant animal models of glioblastoma multiforme (GBM) remains a challenge, and many commonly used cell line-based models do not recapitulate the invasive growth patterns of patient GBMs. Previously, we have reported the formation of highly invasive tumour xenografts in nude rats from human GBMs. However, implementing tumour models based on primary tissue requires that these models can be sufficiently standardised with consistently high take rates. In this work, we collected data on growth kinetics from a material of 29 biopsies xenografted in nude rats, and characterised this model with an emphasis on neuropathological and radiological features. The tumour take rate for xenografted GBM biopsies were 96% and remained close to 100% at subsequent passages in vivo, whereas only one of four lower grade tumours engrafted. Average time from transplantation to the onset of symptoms was 125 days ± 11.5 SEM. Histologically, the primary xenografts recapitulated the invasive features of the parent tumours while endothelial cell proliferations and necrosis were mostly absent. After 4-5 in vivo passages, the tumours became more vascular with necrotic areas, but also appeared more circumscribed. MRI typically revealed changes related to tumour growth, several months prior to the onset of symptoms. In vivo passaging of patient GBM biopsies produced tumours representative of the patient tumours, with high take rates and a reproducible disease course. The model provides combinations of angiogenic and invasive phenotypes and represents a good alternative to in vitro propagated cell lines for dissecting mechanisms of brain tumour progression

  2. A reproducible brain tumour model established from human glioblastoma biopsies

    Directory of Open Access Journals (Sweden)

    Li Xingang

    2009-12-01

    Full Text Available Abstract Background Establishing clinically relevant animal models of glioblastoma multiforme (GBM remains a challenge, and many commonly used cell line-based models do not recapitulate the invasive growth patterns of patient GBMs. Previously, we have reported the formation of highly invasive tumour xenografts in nude rats from human GBMs. However, implementing tumour models based on primary tissue requires that these models can be sufficiently standardised with consistently high take rates. Methods In this work, we collected data on growth kinetics from a material of 29 biopsies xenografted in nude rats, and characterised this model with an emphasis on neuropathological and radiological features. Results The tumour take rate for xenografted GBM biopsies were 96% and remained close to 100% at subsequent passages in vivo, whereas only one of four lower grade tumours engrafted. Average time from transplantation to the onset of symptoms was 125 days ± 11.5 SEM. Histologically, the primary xenografts recapitulated the invasive features of the parent tumours while endothelial cell proliferations and necrosis were mostly absent. After 4-5 in vivo passages, the tumours became more vascular with necrotic areas, but also appeared more circumscribed. MRI typically revealed changes related to tumour growth, several months prior to the onset of symptoms. Conclusions In vivo passaging of patient GBM biopsies produced tumours representative of the patient tumours, with high take rates and a reproducible disease course. The model provides combinations of angiogenic and invasive phenotypes and represents a good alternative to in vitro propagated cell lines for dissecting mechanisms of brain tumour progression.

  3. Radiation induced glioblastoma. A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Naoki; Kayama, Takamasa; Sakurada, Kaori; Saino, Makoto; Kuroki, Akira [Yamagata Univ. (Japan). School of Medicine

    2000-05-01

    We report a surgical case of a 54-year-old woman with a radiation induced glioblastoma. At the age of 34, the patient was diagnosed to have a non-functioning pituitary adenoma. It was partially removed followed by 50 Gy focal irradiation with a 5 x 5 cm lateral opposed field. Twenty years later, she suffered from rapidly increasing symptoms such as aphasia and right hemiparesis. MRI showed a large mass lesion in the left temporal lobe as well as small mass lesions in the brain stem and the right medial temporal lobe. These lesions situated within the irradiated field. Magnetic resonance spectroscopy revealed relatively high lactate signal and decreased N-acetyl aspartate, choline, creatine and phosphocreatine signals. Increased lactate signal meant anaerobic metabolism that suggested the existence of a rapidly growing malignant tumor. Thus, we planned surgical removal of the left temporal lesion with the diagnosis of a radiation induced malignant glioma. The histological examination revealed a glioblastoma with radiation necrosis. MIB-1 staining index was 65%. Postoperatively, her symptoms improved, but she died from pneumonia 1 month after the surgery. A autopsy was obtained. The lesion of the left temporal lobe was found to have continuity to the lesion in the midbrain, the pons and the right temporal lobe as well. High MIB-1 staining index suggested that a radiation induced glioblastoma had high proliferative potential comparing with a de novo and secondary glioblastoma. (author)

  4. β-Arrestin 1 has an essential role in neurokinin-1 receptor-mediated glioblastoma cell proliferation and G2/M phase transition.

    Science.gov (United States)

    Zhang, Yi-Xin; Li, Xiao-Fang; Yuan, Guo-Qiang; Hu, Hui; Song, Xiao-Yun; Li, Jing-Yi; Miao, Xiao-Kang; Zhou, Tian-Xiong; Yang, Wen-Le; Zhang, Xiao-Wei; Mou, Ling-Yun; Wang, Rui

    2017-05-26

    Glioblastoma is the most common malignant brain tumor and has a poor prognosis. Tachykinin receptor neurokinin-1 (NK1R) is a promising target in glioblastoma therapy because of its overexpression in human glioblastoma. NK1R agonists promote glioblastoma cell growth, whereas NK1R antagonists efficiently inhibit cell growth both in vitro and in vivo However, the molecular mechanisms involved in these effects are incompletely understood. β-Arrestins (ARRBs) serve as scaffold proteins and adapters to mediate intracellular signal transduction. Here we show that the ARRB1-mediated signaling pathway is essential for NK1-mediated glioblastoma cell proliferation. ARRB1 knockdown significantly inhibited NK1-mediated glioblastoma cell proliferation and induced G 2 /M phase cell cycle arrest. ARRB1 knockdown cells showed remarkable down-regulation of CDC25C/CDK1/cyclin B1 activity. We also demonstrated that ARRB1 mediated prolonged phosphorylation of ERK1/2 and Akt in glioblastoma cells induced by NK1R activation. ERK1/2 and Akt phosphorylation are involved in regulating CDC25C/CDK1/cyclin B1 activity. The lack of long-term ERK1/2 and Akt activation in ARRB1 knockdown cells was at least partly responsible for the delayed cell cycle progression and proliferation. Moreover, we found that ARRB1-mediated ERK1/2 and Akt phosphorylation regulated the transcriptional activity of both NF-κB and AP-1, which were involved in cyclin B1 expression. ARRB1 deficiency increased the sensitivity of glioblastoma cells to the treatment of NK1R antagonists. Taken together, our results suggest that ARRB1 plays an essential role in NK1R-mediated cell proliferation and G 2 /M transition in glioblastoma cells. Interference with ARRB1-mediated signaling via NK1R may have potential significance for therapeutic strategies targeting glioblastoma. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Reduced expression of brain-enriched microRNAs in glioblastomas permits targeted regulation of a cell death gene.

    Directory of Open Access Journals (Sweden)

    Rebecca L Skalsky

    Full Text Available Glioblastoma is a highly aggressive malignant tumor involving glial cells in the human brain. We used high-throughput sequencing to comprehensively profile the small RNAs expressed in glioblastoma and non-tumor brain tissues. MicroRNAs (miRNAs made up the large majority of small RNAs, and we identified over 400 different cellular pre-miRNAs. No known viral miRNAs were detected in any of the samples analyzed. Cluster analysis revealed several miRNAs that were significantly down-regulated in glioblastomas, including miR-128, miR-124, miR-7, miR-139, miR-95, and miR-873. Post-transcriptional editing was observed for several miRNAs, including the miR-376 family, miR-411, miR-381, and miR-379. Using the deep sequencing information, we designed a lentiviral vector expressing a cell suicide gene, the herpes simplex virus thymidine kinase (HSV-TK gene, under the regulation of a miRNA, miR-128, that was found to be enriched in non-tumor brain tissue yet down-regulated in glioblastomas, Glioblastoma cells transduced with this vector were selectively killed when cultured in the presence of ganciclovir. Using an in vitro model to recapitulate expression of brain-enriched miRNAs, we demonstrated that neuronally differentiated SH-SY5Y cells transduced with the miRNA-regulated HSV-TK vector are protected from killing by expression of endogenous miR-128. Together, these results provide an in-depth analysis of miRNA dysregulation in glioblastoma and demonstrate the potential utility of these data in the design of miRNA-regulated therapies for the treatment of brain cancers.

  6. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma

    International Nuclear Information System (INIS)

    Johansson, Erik; Zhai, Qiwei; Zeng, Zhao-jun; Yoshida, Takeshi; Funa, Keiko

    2016-01-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. - Highlights: • TLX knockdown enhances TGF-β dependent Smad signaling in glioblastoma cells • TLX knockdown increases the protein level of TGF-β receptor II. • TLX stabilizes and retains Smurf1 in the cytoplasm. • TLX enhances Smurf1-dependent ubiquitination and degradation of TGF-β receptor II.

  7. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Erik; Zhai, Qiwei [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Zeng, Zhao-jun [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Molecular Biology Research Center, School of Life Sciences, Central South University, 110, Xiangya Road, Changsha, Hunan 410078 (China); Yoshida, Takeshi [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Funa, Keiko, E-mail: keiko.funa@gu.se [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden)

    2016-05-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. - Highlights: • TLX knockdown enhances TGF-β dependent Smad signaling in glioblastoma cells • TLX knockdown increases the protein level of TGF-β receptor II. • TLX stabilizes and retains Smurf1 in the cytoplasm. • TLX enhances Smurf1-dependent ubiquitination and degradation of TGF-β receptor II.

  8. Remodeling the Vascular Microenvironment of Glioblastoma with α-Particles.

    Science.gov (United States)

    Behling, Katja; Maguire, William F; Di Gialleonardo, Valentina; Heeb, Lukas E M; Hassan, Iman F; Veach, Darren R; Keshari, Kayvan R; Gutin, Philip H; Scheinberg, David A; McDevitt, Michael R

    2016-11-01

    Tumors escape antiangiogenic therapy by activation of proangiogenic signaling pathways. Bevacizumab is approved for the treatment of recurrent glioblastoma, but patients inevitably develop resistance to this angiogenic inhibitor. We previously investigated targeted α-particle therapy with 225 Ac-E4G10 as an antivascular approach and showed increased survival and tumor control in a high-grade transgenic orthotopic glioblastoma model. Here, we investigated changes in tumor vascular morphology and functionality caused by 225 Ac-E4G10. We investigated remodeling of the tumor microenvironment in transgenic Ntva glioblastoma mice using a therapeutic 7.4-kBq dose of 225 Ac-E4G10. Immunofluorescence and immunohistochemical analyses imaged morphologic changes in the tumor blood-brain barrier microenvironment. Multicolor flow cytometry quantified the endothelial progenitor cell population in the bone marrow. Diffusion-weighted MR imaged functional changes in the tumor vascular network. The mechanism of drug action is a combination of remodeling of the glioblastoma vascular microenvironment, relief of edema, and depletion of regulatory T and endothelial progenitor cells. The primary remodeling event is the reduction of both endothelial and perivascular cell populations. Tumor-associated edema and necrosis were lessened, resulting in increased perfusion and reduced diffusion. Pharmacologic uptake of dasatinib into tumor was enhanced after α-particle therapy. Targeted antivascular α-particle radiation remodels the glioblastoma vascular microenvironment via a multimodal mechanism of action and provides insight into the vascular architecture of platelet-derived growth factor-driven glioblastoma. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  9. Human adipose tissue-derived mesenchymal stem cells expressing yeast cytosinedeaminase::uracil phosphoribosyltransferase inhibit intracerebral rat glioblastoma

    Czech Academy of Sciences Publication Activity Database

    Altanerova, V.; Cihova, M.; Babič, Michal; Rychly, B.; Ondicova, K.; Mravec, B.; Altaner, C.

    2012-01-01

    Roč. 130, č. 10 (2012), s. 2455-2463 ISSN 0020-7136 Institutional research plan: CEZ:AV0Z40500505 Keywords : glioblastoma * mesenchymal stem cells * suicide gene therapy Subject RIV: CD - Macromolecular Chemistry Impact factor: 6.198, year: 2012

  10. Radiation induced sarcoma after treatment of glioblastoma: case report; Sarcoma radioinduzido pós-tratamento de glioblastoma: relato de caso

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, Victor Domingos Lisita; Anjos, Caroline Souza dos; Candido, Priscila Barile Marchi; Dias Junior, Antonio Soares; Santos, Evandro Airton Sordi dos; Godoy, Antonio Carlos Cavalcante; Saggioro, Fabiano P.; Carlotti Junior, Carlos Gilberto; Oliveira, Harley Francisco de; Peria, Fernanda Maris, E-mail: fernandaperia@fmrp.usp.br, E-mail: victor_lisita@yahoo.com.br, E-mail: carolinesanjos@gmail.com, E-mail: priscilabarile@yahoo.com.br [Universidade de Sao Paulo (USP), Ribeirão Preto, SP (Brazil). Hospital das Clinicas

    2016-07-01

    Introduction: Glioblastoma multiform is the most lethal central nervous system neoplasm, with a median survival of around 13 months and the worst prognosis among all gliomas. The therapeutic approach of glioblastoma consists in neurosurgery with maximum possible resection of tumor volume, followed by radiotherapy and chemotherapy. Radiotherapy reduces the risk of tumor recurrence through direct and indirect damage to tumor deoxyribonucleic acid. The long-term effects of radiation therapy include tissue necrosis, vasculopathy, and radiation-induced neoplasia. The most reported secondary intracranial malignant tumors include meningiomas, gliomas, and sarcomas. The latency period between skull radiotherapy and the appearance of radioinduced lesions varies in the literature from six months to 47 years, with an average of 18.7 years. Case report: The present report describes the appearance of high-grade spindle cell sarcoma after ten months in a patient who received glioblastoma treatment at Hospital das Clínicas of Ribeirão Preto of the University of São Paulo. Conclusion: The rarity of this association is probably due to the poor survival of patients with glioblastoma, thus limiting the time to development of secondary neoplasia.

  11. 40 CFR 421.251 - Specialized definitions.

    Science.gov (United States)

    2010-07-01

    ... AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Precious Metals and Mercury Subcategory § 421.251 Specialized definitions. For the purpose of this subpart the general...

  12. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Hee, E-mail: leedneo@gmail.com [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Kim, Dong-Wook [Department of Microbiology, Immunology, and Cancer Biology, University of VA (United States); Jung, Chang-Hwa [Division of Metabolism and Functionality Research, Korea Food Research Institute (Korea, Republic of); Lee, Yong J. [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Park, Daeho, E-mail: daehopark@gist.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-09-15

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.

  13. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    International Nuclear Information System (INIS)

    Lee, Dae-Hee; Kim, Dong-Wook; Jung, Chang-Hwa; Lee, Yong J.; Park, Daeho

    2014-01-01

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway

  14. Implanting Glioblastoma Spheroids into Rat Brains and Monitoring Tumor Growth by MRI Volumetry.

    Science.gov (United States)

    Löhr, Mario; Linsenmann, Thomas; Jawork, Anna; Kessler, Almuth F; Timmermann, Nils; Homola, György A; Ernestus, Ralf-Ingo; Hagemann, Carsten

    2017-01-01

    The outcome of patients suffering from glioblastoma multiforme (GBM) remains poor with a median survival of less than 15 months. To establish innovative therapeutical approaches or to analyze the effect of protein overexpression or protein knockdown by RNA interference in vivo, animal models are mandatory. Here, we describe the implantation of C6 glioma spheroids into the rats' brain and how to follow tumor growth by MRI scans. We show that C6 cells grown in Sprague-Dawley rats share several morphologic features of human glioblastoma like pleomorphic cells, areas of necrosis, vascular proliferation, and tumor cell invasion into the surrounding brain tissue. In addition, we describe a method for tumor volumetry utilizing the CISS 3D- or contrast-enhanced T1-weighted 3D sequence and freely available post-processing software.

  15. Cytomegalovirus-targeted immunotherapy and glioblastoma: hype or hope?

    Science.gov (United States)

    Ferguson, Sherise D; Srinivasan, Visish M; Ghali, Michael Gz; Heimberger, Amy B

    2016-01-01

    Malignant gliomas, including glioblastoma (GBM), are the most common primary brain tumors. Despite extensive research only modest gains have been made in long-term survival. Standard of care involves maximizing safe surgical resection followed by concurrent chemoradiation with temozolomide. Immunotherapy for GBM is an area of intense research in recent years. New immunotherapies, although promising, have not been integrated into standard practice. Human cytomegalovirus (HCMV) is a DNA virus of the family Herpesviridae. Human seroprevalence is approximately 80%, and in most cases, is associated with asymptomatic infection. HCMV may be an important agent in the initiation, promotion and/or progression of tumorigenesis. Regardless of a possible etiologic role in GBM, interest has centered on exploiting this association for development of immunomodulatory therapies.

  16. Subcutaneous tissue metastasis from glioblastoma multiforme: A case report and review of the literature.

    Science.gov (United States)

    Frade Porto, Natalia; Delgado Fernández, Juan; García Pallero, María de Los Ángeles; Penanes Cuesta, Juan Ramón; Pulido Rivas, Paloma; Gil Simoes, Ricardo

    2018-05-16

    Glioblastoma multiforme is the most common primary brain tumor, despite an aggressive clinical course, less than 2% of patients develop extraneural metastasis. We present a 72-year-old male diagnosed with a right temporal glioblastoma due to headache. He underwent total gross resection surgery and after that the patient was treated with adyuvant therapy. Five months after the patient returned with trigeminal neuralgia, and MRI showed an infratemporal cranial mass which infiltrates masticator space, the surrounding bone, the temporal muscle and superior cervical and parotid lymph nodes. The patient underwent a new surgery reaching partial resection of the temporal lesion. After that the patient continued suffering from disabling trigeminal neuralgia, that's why because of the bad clinical situation and the treatment failure we decided to restrict therapeutic efforts. The patient died 3 weeks after the diagnosis of extracranial metastasis. Copyright © 2018 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Therapeutic Advances using Combinational Therapy in the Treatment of Glioblastoma

    DEFF Research Database (Denmark)

    Staberg, Mikkel

    2017-01-01

    Glioblastoma is the most malignant brain tumor in adults. Median survival is only about 15 months despite aggressive treatment, consisting of surgery followed by radio- and chemotherapy, stressing the need for new therapies. Development of glioblastoma is thought to be a result of both genetic...... and epigenetic alterations, ultimately leading to oncogenic transformation of normal glia cells. Several features are suggested to give rise to the poor prognosis of glioblastoma including treatment resistance, a high degree of abnormal blood vessels, and high heterogeneity, both within the single tumor and from...... patient to patient. Thus, investigations are needed to identify the genetic-molecular alterations that glioblastoma tumors depend on in order to overcome treatment and regrow after initial surgery. The findings presented in this thesis illustrate the promising potential of combinational treatments...

  18. Amnesia due to bilateral hippocampal glioblastoma. MRI finding

    Energy Technology Data Exchange (ETDEWEB)

    Shimauchi, M.; Wakisaka, S.; Kinoshita, K. (Miyazaki Medical Coll., Kiyotake (Japan). Dept. of Neurosurgery)

    1989-11-01

    The authors report a unique case of glioblastoma which caused permanent amnesia. Magnetic resonance imaging showed the lesion to be limited to the hippocampal formation bilaterally. Although glioblastoma extends frequently into fiber pathways and expands into the opposite cerebral hemisphere, making a 'butterfly' lesion, it is unusual for it to invade the limbic system selectively to this extent. (orig.).

  19. Expression patterns of the hypoxia-related genes osteopontin, CA9, erythropoietin, VEGF and HIF-1α in human glioma in vitro and in vivo

    International Nuclear Information System (INIS)

    Said, Harun M.; Hagemann, Carsten; Staab, Adrian; Stojic, Jelena; Kuehnel, Siglinde; Vince, Giles H.; Flentje, Michael; Roosen, Klaus; Vordermark, Dirk

    2007-01-01

    Background and purpose: To identify molecular markers of tumor hypoxia and potential therapeutic targets in glioblastoma (GBM), we investigated the hypoxia-related expression of osteopontin (OPN), carbonic anhydrase 9 (CA9), erythropoietin (EPO), vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α) in vitro in human GBM cell lines and in vivo in human tumor samples of GBM, compared to low-grade astrocytoma (LGA). Materials and methods: Expression of the hypoxia-induced genes OPN, CA9, EPO, VEGF and HIF-1α was analyzed in three GBM cell lines, GaMG, U373 and U251, under in vitro hypoxia (1, 6 or 24 h at 5%, 1% or 0.1% O 2 ) and in tumor samples from two patient groups with LGA and GBM (n = 15 each), at the mRNA level (semiquantitative RT-PCR). Selected conditions and representative tumor samples were also evaluated at the protein level by Western blot. Results: OPN and CA9 mRNA was most consistently upregulated in relation to severity and duration of in vitro hypoxia. In tumor samples, mean expression levels (LGA vs. GBM, normalized to mean expression in normal brain) were 1.71 vs. 4.57 (p < 0.001) for OPN, 1.11 vs. 3.35 (p < 0.001) for CA9, 2.79 vs. 5.28 (not significant, n.s.) for Epo, 1.13 vs. 2.0 (p = 0.007) for VEGF and 0.97 vs. 0.97 (n.s.) for HIF-1α. In tumor samples, GBM showed a particularly strong protein expression of OPN. Conclusions: Among a panel of known hypoxia-inducible genes, OPN and CA9 emerge as most consistently induced by in vitro hypoxia in human GBM cell lines and most specifically expressed in patient GBM tumor tissue, rendering these two genes attractive targets for hypoxia-directed treatment approaches

  20. SOX9-mediated upregulation of LGR5 is important for glioblastoma tumorigenicity

    International Nuclear Information System (INIS)

    Hiraoka, Koji; Hayashi, Tomoatsu; Kaneko, Ryusuke; Nasu-Nishimura, Yukiko; Koyama-Nasu, Ryo; Kawasaki, Yoshihiro; Akiyama, Tetsu

    2015-01-01

    LGR5 plays an important role in the self-renewal of stem cells and is used as a marker identifying self-renewing stem cells in small intestine and hair follicles. Moreover, LGR5 has been reported to be overexpressed in several cancers. SOX9 is a transcription factor that plays a key role in development, differentiation and lineage commitment in various tissues. It has also been reported that SOX9 is overexpressed in a variety of cancers and contributes to their malignant phenotype. Here we show that LGR5 is required for the tumorigenicity of glioblastoma cells. We further show that SOX9 is upregulated in glioblastoma cells and directly enhances the expression of LGR5. We also demonstrate that knockdown of SOX9 suppresses the proliferation and tumorigenicity of glioblastoma cells. These results suggest that SOX9-mediated transcriptional regulation of LGR5 is critical for the tumorigenicity of glioblastoma cells. We speculate that the SOX9-LGR5 pathway could be a potentially promising target for the therapy of glioblastoma. - Highlights: • LGR5 is required for the tumorigenicity of glioblastoma cells. • SOX9 directly enhances the expression of LGR5. • SOX9 is required for the tumorigenicity of glioblastoma cells

  1. SOX9-mediated upregulation of LGR5 is important for glioblastoma tumorigenicity

    Energy Technology Data Exchange (ETDEWEB)

    Hiraoka, Koji; Hayashi, Tomoatsu; Kaneko, Ryusuke; Nasu-Nishimura, Yukiko; Koyama-Nasu, Ryo; Kawasaki, Yoshihiro; Akiyama, Tetsu, E-mail: akiyama@iam.u-tokyo.ac.jp

    2015-05-01

    LGR5 plays an important role in the self-renewal of stem cells and is used as a marker identifying self-renewing stem cells in small intestine and hair follicles. Moreover, LGR5 has been reported to be overexpressed in several cancers. SOX9 is a transcription factor that plays a key role in development, differentiation and lineage commitment in various tissues. It has also been reported that SOX9 is overexpressed in a variety of cancers and contributes to their malignant phenotype. Here we show that LGR5 is required for the tumorigenicity of glioblastoma cells. We further show that SOX9 is upregulated in glioblastoma cells and directly enhances the expression of LGR5. We also demonstrate that knockdown of SOX9 suppresses the proliferation and tumorigenicity of glioblastoma cells. These results suggest that SOX9-mediated transcriptional regulation of LGR5 is critical for the tumorigenicity of glioblastoma cells. We speculate that the SOX9-LGR5 pathway could be a potentially promising target for the therapy of glioblastoma. - Highlights: • LGR5 is required for the tumorigenicity of glioblastoma cells. • SOX9 directly enhances the expression of LGR5. • SOX9 is required for the tumorigenicity of glioblastoma cells.

  2. Osthole Suppresses the Migratory Ability of Human Glioblastoma Multiforme Cells via Inhibition of Focal Adhesion Kinase-Mediated Matrix Metalloproteinase-13 Expression

    Directory of Open Access Journals (Sweden)

    Cheng-Fang Tsai

    2014-03-01

    Full Text Available Glioblastoma multiforme (GBM is the most common type of primary and malignant tumor occurring in the adult central nervous system. GBM often invades surrounding regions of the brain during its early stages, making successful treatment difficult. Osthole, an active constituent isolated from the dried C. monnieri fruit, has been shown to suppress tumor migration and invasion. However, the effects of osthole in human GBM are largely unknown. Focal adhesion kinase (FAK is important for the metastasis of cancer cells. Results from this study show that osthole can not only induce cell death but also inhibit phosphorylation of FAK in human GBM cells. Results from this study show that incubating GBM cells with osthole reduces matrix metalloproteinase (MMP-13 expression and cell motility, as assessed by cell transwell and wound healing assays. This study also provides evidence supporting the potential of osthole in reducing FAK activation, MMP-13 expression, and cell motility in human GBM cells.

  3. Glioblastoma, gadolinium (III) and NCT. An in vitro study

    International Nuclear Information System (INIS)

    Mercanti, D.; Casalbore, P.; Sanita, F.; Rosi, F.; Festinesi, A.; Pallini, R.; Gilbert, B.; Stasio, G. de

    2000-01-01

    We treated cultured human glioblastoma cells with gadolinium (III) [gadopentetic acid] and we found that: a) cells do internalise this element; b) gadolinium can be localised in the cells nuclei; c) exposure of the cultures to a neutron beam produced a significant and immediate cell death. Although cell survival was also influenced in the irradiated controls it was further reduced (about 50%) in cells pre-exposed to 10 mg/ml gadopentetic acid. We also found that Gd uptake, as measured by ICP-AES, was concentration dependent. (author)

  4. 37 CFR 251.2 - Purpose of Copyright Arbitration Royalty Panels.

    Science.gov (United States)

    2010-07-01

    ... carrier royalty fees and digital audio recording devices and media payments deposited with the Register of... Arbitration Royalty Panels. 251.2 Section 251.2 Patents, Trademarks, and Copyrights COPYRIGHT OFFICE, LIBRARY OF CONGRESS COPYRIGHT ARBITRATION ROYALTY PANEL RULES AND PROCEDURES COPYRIGHT ARBITRATION ROYALTY...

  5. 7 CFR 251.3 - Definitions.

    Science.gov (United States)

    2010-01-01

    ... following categories: (i) Emergency feeding organizations (including food banks, food pantries and soup... eligible recipient agencies in the distribution of TEFAP commodities pursuant to § 251.4(h). (f) Food bank... Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE...

  6. [Glioblastoma in 2017].

    Science.gov (United States)

    Duffau, Hugues

    2017-02-01

    Glioblastomas are serious tumours of the central nervous system. Recurrence is systematic and prognosis poor. Radiotherapy and chemotherapy follow surgery, when surgery is possible, to lengthen survival, while preserving quality of life as much as possible. In this respect, symptomatic treatments and supportive care are necessary. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Determination of the synthesis of uptake of α2-macroglobulin by cultured human glioma cells

    International Nuclear Information System (INIS)

    Druskova, E.; Bizik, J.; Grofova, M.

    1994-01-01

    Using immunological techniques, the synthesis of α 2 -macroglobulin was studied in established cell lines derived from human glioblastomas multiform. α 2 -Macroglobulin was detected in cytoplasm and in the culture medium of the analyzed cell lines. Radioimmunoprecipitation, revealed a protein with Mr corresponding to α 2 -macroglobulin in the medium conditioned by U-118MG and U-343MG cells. On the other hand, using immunoblot analysis, α 2 -macroglobulin was detected in all of the analyzed lines. In immunofluorescence test, α 2 -macroglobulin was determined also in all four cell lines, but with different staining pattern. Conditioned culture medium of U-536MG cells with the lowest level of α 2 -macroglobulin exerted the lowest mitogenic activity for human fibroblasts. (author)

  8. CCL5, CCR1 and CCR5 in murine glioblastoma: immune cell infiltration and survival rates are not dependent on individual expression of either CCR1 or CCR5

    OpenAIRE

    Pham, Kien; Luo, Defang; Liu, Che; Harrison, Jeffrey K.

    2012-01-01

    Glioblastoma multiforme (GBM) is the most malignant brain tumor. Microglia/macrophages are found within human GBM where they likely promote tumor progression. We report that CCL5, CCR1, and CCR5 are expressed in glioblastoma. Individual deletion of CCR1 or CCR5 had little to no effect on survival of tumor bearing mice, or numbers of glioblastoma-infiltrated microglia/macrophages or lymphocytes. CCL5 promoted in vitro migration of wild type, CCR1- or CCR5-deficient microglia/macrophages that w...

  9. Inhibition of NF-κB Pathway and Modulation of MAPK Signaling Pathways in Glioblastoma and Implications for Lovastatin and Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL Combination Therapy.

    Directory of Open Access Journals (Sweden)

    Pi Chu Liu

    Full Text Available Glioblastoma is a common malignant brain tumor and it is refractory to therapy because it usually contains a mixture of cell types. The tumor necrosis factor-related apoptosis inducing ligand (TRAIL has been shown to induce apoptosis in a range of tumor cell types. Previously, we found that two human glioblastoma cell lines are resistant to TRAIL, while lovastatin sensitizes these glioblastoma cells to TRAIL-induced cell death. In this study, we investigated the mechanisms underlying the TRAIL-induced apoptosis in human glioblastoma cell lines by lovastatin. Furthermore, we have confirmed the anti-tumor effect of combination therapy with lovastatin and TRAIL in the subcutaneous brain tumor model. We showed that lovastatin significantly up-regulated the expression of death receptor 5 (DR5 in glioblastoma cell lines as well as in tumor-bearing mice with peri-tumoral administration of lovastatin. Further study in glioblastoma cell lines suggested that lovastatin treatment could inhibit NF-κB and Erk/MAPK pathways but activates JNK pathway. These results suggest that lovastatin sensitizes TRAIL-induced apoptosis by up-regulation of DR5 level via NF-κB inactivation, but also directly induces apoptosis by dysregulation of MAPK pathway. Our in vivo study showed that local peri-tumoral co-injection of lovastatin and TRAIL substantially reduced tumor growth compared with single injection of lovastatin or TRAIL in subcutaneous nude mice model. This study suggests that combined treatment of lovastatin and TRAIL is a promising therapeutic strategy to TRAIL-resistant glioblastoma.

  10. PARPi-FL - a Fluorescent PARP1 Inhibitor for Glioblastoma Imaging

    Directory of Open Access Journals (Sweden)

    Christopher P. Irwin

    2014-05-01

    Full Text Available New intravital optical imaging technologies have revolutionized our understanding of mammalian biology and continue to evolve rapidly. However, there are only a limited number of imaging probes available to date. In this study, we investigated in mouse models of glioblastoma whether a fluorescent small molecule inhibitor of the DNA repair enzyme PARP1, PARPi-FL, can be used as an imaging agent to detect glioblastomas in vivo. We demonstrated that PARPi-FL has appropriate biophysical properties, low toxicity at concentrations used for imaging, high stability in vivo, and accumulates selectively in glioblastomas due to high PARP1 expression. Importantly, subcutaneous and orthotopic glioblastoma xenografts were imaged with high contrast clearly defining tumor tissue from normal surrounding tissue. This research represents a step toward exploring and developing PARPi-FL as an optical intraoperative imaging agent for PARP1 in the clinic.

  11. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma.

    Science.gov (United States)

    Johansson, Erik; Zhai, Qiwei; Zeng, Zhao-Jun; Yoshida, Takeshi; Funa, Keiko

    2016-05-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. Copyright © 2016. Published by Elsevier Inc.

  12. 50 CFR 216.251 - Effective dates.

    Science.gov (United States)

    2010-10-01

    ..., DEPARTMENT OF COMMERCE MARINE MAMMALS REGULATIONS GOVERNING THE TAKING AND IMPORTING OF MARINE MAMMALS Taking Marine Mammals Incidental to Conducting Precision Strike Weapon Missions in the Gulf of Mexico § 216.251...

  13. Individualized targeted therapy for glioblastoma: fact or fiction?

    Science.gov (United States)

    Weller, Michael; Stupp, Roger; Hegi, Monika; Wick, Wolfgang

    2012-01-01

    This review will address the current state of individualized cancer therapy for glioblastoma. Glioblastomas are highly malignant primary brain tumors presumably originating from neuroglial progenitor cells. Median survival is less than 1 year. Recent developments in the morphologic, clinical, and molecular classification of glioblastoma were reviewed, and their impact on clinical decision making was analyzed. Glioblastomas can be classified by morphology, clinical characteristics, complex molecular signatures, single biomarkers, or imaging parameters. Some of these characteristics, including age and Karnofsky Performance Scale score, provide important prognostic information. In contrast, few markers help to choose between various treatment options. Promoter methylation of the O-methylguanine methyltransferase gene seems to predict benefit from alkylating agent chemotherapy. Hence, it is used as an entry criterion for alkylator-free experimental combination therapy with radiotherapy. Screening for a specific type of epidermal growth factor receptor mutation is currently being explored as a biomarker for selecting patients for vaccination. Positron emission tomography for the detection of ανβ3/5 integrins could be used to select patients for treatment with anti-integrin antiangiogenic approaches. Despite extensive efforts at defining biological markers as a basis for selecting therapies, most treatment decisions for glioblastoma patients are still based on age and performance status. However, several ongoing clinical trials may enrich the repertoire of criteria for clinical decision making in the very near future. The concept of individualized or personalized targeted cancer therapy has gained significant attention throughout oncology. Yet, data in support of such an approach to glioblastoma, the most malignant subtype of glioma, are limited, and personalized medicine plays a minor role in current clinical neuro-oncology practice. In essence, this concept proposes

  14. Acyclovir inhibition of IDO to decrease Tregs as a glioblastoma treatment adjunct

    Directory of Open Access Journals (Sweden)

    Söderlund Johan

    2010-08-01

    Full Text Available Abstract Regulatory T cells, Tregs, are a subset of lymphocytes that have immunosuppressive attributes. They are elevated in blood of glioblastoma patients and within this tumor's tissue itself. Indoleamine 2,3-dioxygenase, IDO, converts tryptophan to kynurenine. IDO activity enhances Treg formation by pathways that are unknown. Experimentally, inhibition of IDO decreases Treg function and number in rodents. The common anti-viral agent acyclovir inhibits IDO. Acyclovir may thereby decrease Treg function in glioblastoma. If it can be confirmed that Treg counts are elevated in glioblastoma patients' tumor tissue, and if we can document acyclovir's lowering of tissue Treg counts by a small trial of acyclovir in pre-operative glioblastoma patients, a trial of acyclovir effect on survival should be done given the current poor prognosis of glioblastoma and the well-established safety and low side effect burden of acyclovir.

  15. Dipeptidyl peptidase IV in two human glioma cell lines

    Directory of Open Access Journals (Sweden)

    A Sedo

    2009-12-01

    Full Text Available There is growing evidence that dipeptidyl peptidase IV [DPP-IV, EC 3.4.14.5] takes part in the metabolism of biologically active peptides participating in the regulation of growth and transformation of glial cells. However, the knowledge on the DPP-IV expression in human glial and glioma cells is still very limited. In this study, using histochemical and biochemical techniques, the DPP-IV activity was demonstrated in two commercially available human glioma cell lines of different transformation degree, as represented by U373 astrocytoma (Grade III and U87 glioblastoma multiforme (Grade IV lines. Higher total activity of the enzyme, as well as its preferential localisation in the plasma membrane, was observed in U87 cells. Compared to U373 population, U87 cells were morphologically more pleiomorphic, they were cycling at lower rate and expressing less Glial Fibrillary Acidic Protein. The data revealed positive correlation between the degree of transformation of cells and activity of DPP-IV. Great difference in expression of this enzyme, together with the phenotypic differences of cells, makes these lines a suitable standard model for further 57 studies of function of this enzyme in human glioma cells.

  16. The effects of antiepileptic drugs on the growth of glioblastoma cell lines

    OpenAIRE

    Lee, Ching-Yi; Lai, Hung-Yi; Chiu, Angela; Chan, She-Hung; Hsiao, Ling-Ping; Lee, Shih-Tseng

    2016-01-01

    To determine the effects of antiepileptic drug compounds on glioblastoma cellular growth, we exposed glioblastoma cell lines to select antiepileptic drugs. The effects of selected antiepileptic drugs on glioblastoma cells were measured by MTT assay. For compounds showing significant inhibition, cell cycle analysis was performed. Statistical analysis was performed using SPSS. The antiepileptic compounds selected for screening included carbamazepine, ethosuximide, gabapentin, lamotrigine, levet...

  17. Triterpenoid saponins from Albizia lebbeck (L.) Benth and their inhibitory effect on the survival of high grade human brain tumor cells.

    Science.gov (United States)

    Noté, Olivier Placide; Jihu, Dong; Antheaume, Cyril; Zeniou, Maria; Pegnyemb, Dieudonné Emmanuel; Guillaume, Dominique; Chneiwess, Hervé; Kilhoffer, Marie Claude; Lobstein, Annelise

    2015-03-02

    As part of our search of new bioactive triterpenoid saponins from Cameroonian Mimosaceae plants, phytochemical investigation of the roots of Albizia lebbeck led to the isolation of two new oleanane-type saponins, named lebbeckosides A-B (1-2). Their structures were established on the basis of extensive 1D and 2D NMR ((1)H, (13)C NMR, DEPT, COSY, TOCSY, ROESY, HSQC, and HMBC) and HRESIMS studies, and by chemical evidence. Compounds 1-2 were evaluated for their inhibitory effect on the metabolism of high grade human brain tumor cells, the human glioblastoma U-87 MG cell lines and the glioblastoma stem-like TG1 cells isolated from a patient tumor, and known to be particularly resistant to standard therapies. The isolated saponins showed significant cytotoxic activity against U-87 MG and TG1 cancer cells with IC50 values of 3.46 μM and 1.36 μM for 1, and 2.10 μM and 2.24 μM for 2, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. 29 CFR 1910.251 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Welding, Cutting and Brazing § 1910.251 Definitions. As used in this subpart: (a) Welder and welding operator mean any operator of electric or gas welding and cutting equipment. (b) Approved means listed or approved by a nationally recognized testing laboratory. Refer to...

  19. Two-peaked 5-ALA-induced PpIX fluorescence emission spectrum distinguishes glioblastomas from low grade gliomas and infiltrative component of glioblastomas.

    Science.gov (United States)

    Montcel, Bruno; Mahieu-Williame, Laurent; Armoiry, Xavier; Meyronet, David; Guyotat, Jacques

    2013-04-01

    5-ALA-induced protoporphyrin IX (PpIX) fluorescence enables to guiding in intra-operative surgical glioma resection. However at present, it has yet to be shown that this method is able to identify infiltrative component of glioma. In extracted tumor tissues we measured a two-peaked emission in low grade gliomas and in the infiltrative component of glioblastomas due to multiple photochemical states of PpIX. The second emission peak appearing at 620 nm (shifted by 14 nm from the main peak at 634 nm) limits the sensibility of current methods to measured PpIX concentration. We propose new measured parameters, by taking into consideration the two-peaked emission, to overcome these limitations in sensitivity. These parameters clearly distinguish the solid component of glioblastomas from low grade gliomas and infiltrative component of glioblastomas.

  20. Estimation of transition doses for human glioblastoma, neuroblastoma and prostate cell lines using the linear-quadratic formalism

    Directory of Open Access Journals (Sweden)

    John Akudugu

    2015-09-01

    Full Text Available Purpose: The introduction of stereotactic radiotherapy has raised concerns regarding the use of the linear-quadratic (LQ model for predicting radiation response for large fractional doses. To partly address this issue, a transition dose D* below which the LQ model retains its predictive strength has been proposed. Estimates of D* which depends on the a, β, and D0 parameters are much lower than fractional doses typically encountered in stereotactic radiotherapy. D0, often referred to as the final slope of the cell survival curve, is thought to be constant. In vitro cell survival curves generally extend over the first few logs of cell killing, where D0-values derived from the multi-target formalism may be overestimated and can lead to low transition doses. Methods:  D0-values were calculated from first principles for each decade of cell killing, using experimentally-determined a and β parameters for 17 human glioblastoma, neuroblastoma, and prostate cell lines, and corresponding transition doses were derived.Results: D0 was found to decrease exponentially with cell killing. Using D0-values at cell surviving fractions of the order of 10-10 yielded transition doses ~3-fold higher than those obtained from D0-values obtained from conventional approaches. D* was found to increase from 7.84 ± 0.56, 8.91 ± 1.20, and 6.55 ± 0.91 Gy to 26.84 ± 2.83, 23.95 ± 2.03, and 22.49 ± 2.31 Gy for the glioblastoma, neuroblastoma, and prostate cell lines, respectively. Conclusion: These findings suggest that the linear-quadratic formalism might be valid for estimating the effect of stereotactic radiotherapy with fractional doses in excess of 20 Gy.

  1. Dopamine signaling: target in glioblastoma

    Czech Academy of Sciences Publication Activity Database

    Bartek, Jiří; Hodný, Zdeněk

    2014-01-01

    Roč. 5, č. 5 (2014), 1116-1117 ISSN 1949-2553 Institutional support: RVO:68378050 Keywords : Dopamine signaling * glioblastoma * MAPK Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.359, year: 2014

  2. Glioblastoma familiar

    Directory of Open Access Journals (Sweden)

    Walter O. Arruda

    1995-06-01

    Full Text Available The authors describe a family with three members affected by glioblastoma. The proband patient, a 7 year-old girl, developed a rare complication, a pulmonary metastasis. Chromosomal analysis of her peripheral blood lymphocytes showed a normal karyotype (46, XX, without structural abnormalities. Cytogenetic study of the tumor cells disclosed several abnormalities: 46, XX, 7q - / 46, XX, -2, 4p-, 7p-, +15/ 46, XX. Some aspects about genetics of glial neoplasms are discussed.

  3. Efficient chemotherapy of rat glioblastoma using doxorubicin-loaded PLGA nanoparticles with different stabilizers.

    Directory of Open Access Journals (Sweden)

    Stefanie Wohlfart

    Full Text Available BACKGROUND: Chemotherapy of glioblastoma is largely ineffective as the blood-brain barrier (BBB prevents entry of most anticancer agents into the brain. For an efficient treatment of glioblastomas it is necessary to deliver anti-cancer drugs across the intact BBB. Poly(lactic-co-glycolic acid (PLGA nanoparticles coated with poloxamer 188 hold great promise as drug carriers for brain delivery after their intravenous injection. In the present study the anti-tumour efficacy of the surfactant-coated doxorubicin-loaded PLGA nanoparticles against rat glioblastoma 101/8 was investigated using histological and immunohistochemical methods. METHODOLOGY: The particles were prepared by a high-pressure solvent evaporation technique using 1% polyvinylalcohol (PLGA/PVA or human serum albumin (PLGA/HSA as stabilizers. Additionally, lecithin-containing PLGA/HSA particles (Dox-Lecithin-PLGA/HSA were prepared. For evaluation of the antitumour efficacy the glioblastoma-bearing rats were treated intravenously with the doxorubicin-loaded nanoparticles coated with poloxamer 188 using the following treatment regimen: 3 × 2.5 mg/kg on day 2, 5 and 8 after tumour implantation; doxorubicin and poloxamer 188 solutions were used as controls. On day 18, the rats were sacrificed and the antitumour effect was determined by measurement of tumour size, necrotic areas, proliferation index, and expression of GFAP and VEGF as well as Isolectin B4, a marker for the vessel density. CONCLUSION: The results reveal a considerable anti-tumour effect of the doxorubicin-loaded nanoparticles. The overall best results were observed for Dox-Lecithin-PLGA/HSA. These data demonstrate that the poloxamer 188-coated PLGA nanoparticles enable delivery of doxorubicin across the blood-brain barrier in the therapeutically effective concentrations.

  4. First-in-human uPAR PET

    DEFF Research Database (Denmark)

    Persson, Morten; Skovgaard, Dorthe; Brandt-Larsen, Malene

    2015-01-01

    A first-in-human clinical trial with Positron Emission Tomography (PET) imaging of the urokinase-type plasminogen activator receptor (uPAR) in patients with breast, prostate and bladder cancer, is described. uPAR is expressed in many types of human cancers and the expression is predictive...... for targeted molecular imaging with PET. The safety, pharmacokinetic, biodistribution profile and radiation dosimetry after a single intravenous dose of (64)Cu-DOTA-AE105 were assessed by serial PET and computed tomography (CT) in 4 prostate, 3 breast and 3 bladder cancer patients. Safety assessment...... of invasion, metastasis and indicates poor prognosis. uPAR PET imaging therefore holds promise to be a new and innovative method for improved cancer diagnosis, staging and individual risk stratification. The uPAR specific peptide AE105 was conjugated to the macrocyclic chelator DOTA and labeled with (64)Cu...

  5. Monitoring Oxygen Levels in Orthotopic Human Glioma Xenograft Following Carbogen Inhalation and Chemotherapy by Implantable Resonator Based Oximetry

    Science.gov (United States)

    Hou, Huagang; Nemani, Venkata Krishnamurthy; Du, Gaixin; Montano, Ryan; Song, Rui; Gimi, Barjor; Swartz, Harold M.; Eastman, Alan; Khan, Nadeem

    2014-01-01

    Hypoxia is a critical hallmark of glioma, and significantly compromises treatment efficacy. Unfortunately, techniques for monitoring glioma pO2 to facilitate translational research are lacking. Furthermore, poor prognoses of patients with malignant glioma, in particular glioblastoma multiforme, warrant effective strategies that can inhibit hypoxia and improve treatment outcome. EPR oximetry using implantable resonators was implemented for monitoring pO2 in normal cerebral tissue and U251 glioma in mice. Breathing carbogen (95% O2 + 5% CO2) was tested for hyperoxia in the normal brain and glioma xenografts. A new strategy to inhibit glioma growth by rationally combining gemcitabine and MK-8776, a cell cycle checkpoint inhibitor, was also investigated. The mean pO2 of left and right hemisphere were approximately 56 – 69 mmHg in the normal cerebral tissue of mice. The mean baseline pO2 of U251 glioma on the first and fifth day of measurement was 21.9 ± 3.7 and 14.1 ± 2.4 mmHg, respectively. The mean brain pO2 including glioma increased by at least 100% on carbogen inhalation, although the response varied between the animals over days. Treatment with gemcitabine + MK-8776 significantly increased pO2 and inhibited glioma growth assessed by MRI. In conclusion, EPR oximetry with implantable resonators can be used to monitor the efficacy of carbogen inhalation and chemotherapy on orthotopic glioma in mice. The increase in glioma pO2 of mice breathing carbogen can be used to improve treatment outcome. The treatment with gemcitabine + MK-8776 is a promising strategy that warrants further investigation. PMID:25111969

  6. Monitoring oxygen levels in orthotopic human glioma xenograft following carbogen inhalation and chemotherapy by implantable resonator-based oximetry.

    Science.gov (United States)

    Hou, Huagang; Krishnamurthy Nemani, Venkata; Du, Gaixin; Montano, Ryan; Song, Rui; Gimi, Barjor; Swartz, Harold M; Eastman, Alan; Khan, Nadeem

    2015-04-01

    Hypoxia is a critical hallmark of glioma, and significantly compromises treatment efficacy. Unfortunately, techniques for monitoring glioma pO2 to facilitate translational research are lacking. Furthermore, poor prognosis of patients with malignant glioma, in particular glioblastoma multiforme, warrant effective strategies that can inhibit hypoxia and improve treatment outcome. EPR oximetry using implantable resonators was implemented for monitoring pO2 in normal cerebral tissue and U251 glioma in mice. Breathing carbogen (95% O2 + 5% CO2 ) was tested for hyperoxia in the normal brain and glioma xenografts. A new strategy to inhibit glioma growth by rationally combining gemcitabine and MK-8776, a cell cycle checkpoint inhibitor, was also investigated. The mean pO2 of left and right hemisphere were ∼56-69 mmHg in the normal cerebral tissue of mice. The mean baseline pO2 of U251 glioma on the first and fifth day of measurement was 21.9 ± 3.7 and 14.1 ± 2.4 mmHg, respectively. The mean brain pO2 including glioma increased by at least 100% on carbogen inhalation, although the response varied between the animals over days. Treatment with gemcitabine + MK-8776 significantly increased pO2 and inhibited glioma growth assessed by MRI. In conclusion, EPR oximetry with implantable resonators can be used to monitor the efficacy of carbogen inhalation and chemotherapy on orthotopic glioma in mice. The increase in glioma pO2 of mice breathing carbogen can be used to improve treatment outcome. The treatment with gemcitabine + MK-8776 is a promising strategy that warrants further investigation. © 2014 UICC.

  7. Can Immunotherapy Succeed in Glioblastoma?

    Science.gov (United States)

    Researchers are hopeful that, for the deadly brain cancer glioblastoma, immunotherapy might succeed where other therapies have not. As this Cancer Currents post reports, different immunotherapy approaches are being tested in clinical trials.

  8. Dexamethasone-mediated inhibition of Glioblastoma neurosphere dispersal in an ex vivo organotypic neural assay

    Science.gov (United States)

    Meleis, Ahmed M.; Mahtabfar, Aria; Danish, Shabbar

    2017-01-01

    Glioblastoma is highly aggressive. Early dispersal of the primary tumor renders localized therapy ineffective. Recurrence always occurs and leads to patient death. Prior studies have shown that dispersal of Glioblastoma can be significantly reduced by Dexamethasone (Dex), a drug currently used to control brain tumor related edema. However, due to high doses and significant side effects, treatment is tapered and discontinued as soon as edema has resolved. Prior analyses of the dispersal inhibitory effects of Dex were performed on tissue culture plastic, or polystyrene filters seeded with normal human astrocytes, conditions which inherently differ from the parenchymal architecture of neuronal tissue. The aim of this study was to utilize an ex-vivo model to examine Dex-mediated inhibition of tumor cell migration from low-passage, human Glioblastoma neurospheres on multiple substrates including mouse retina, and slices of mouse, pig, and human brain. We also determined the lowest possible Dex dose that can inhibit dispersal. Analysis by Two-Factor ANOVA shows that for GBM-2 and GBM-3, Dex treatment significantly reduces dispersal on all tissue types. However, the magnitude of the effect appears to be tissue-type specific. Moreover, there does not appear to be a difference in Dex-mediated inhibition of dispersal between mouse retina, mouse brain and human brain. To estimate the lowest possible dose at which Dex can inhibit dispersal, LogEC50 values were compared by Extra Sum-of-Squares F-test. We show that it is possible to achieve 50% reduction in dispersal with Dex doses ranging from 3.8 x10-8M to 8.0x10-9M for GBM-2, and 4.3x10-8M to 1.8x10-9M for GBM-3, on mouse retina and brain slices, respectively. These doses are 3-30-fold lower than those used to control edema. This study extends our previous in vitro data and identifies the mouse retina as a potential substrate for in vivo studies of GBM dispersal. PMID:29040322

  9. Dexamethasone-mediated inhibition of Glioblastoma neurosphere dispersal in an ex vivo organotypic neural assay.

    Directory of Open Access Journals (Sweden)

    Ahmed M Meleis

    Full Text Available Glioblastoma is highly aggressive. Early dispersal of the primary tumor renders localized therapy ineffective. Recurrence always occurs and leads to patient death. Prior studies have shown that dispersal of Glioblastoma can be significantly reduced by Dexamethasone (Dex, a drug currently used to control brain tumor related edema. However, due to high doses and significant side effects, treatment is tapered and discontinued as soon as edema has resolved. Prior analyses of the dispersal inhibitory effects of Dex were performed on tissue culture plastic, or polystyrene filters seeded with normal human astrocytes, conditions which inherently differ from the parenchymal architecture of neuronal tissue. The aim of this study was to utilize an ex-vivo model to examine Dex-mediated inhibition of tumor cell migration from low-passage, human Glioblastoma neurospheres on multiple substrates including mouse retina, and slices of mouse, pig, and human brain. We also determined the lowest possible Dex dose that can inhibit dispersal. Analysis by Two-Factor ANOVA shows that for GBM-2 and GBM-3, Dex treatment significantly reduces dispersal on all tissue types. However, the magnitude of the effect appears to be tissue-type specific. Moreover, there does not appear to be a difference in Dex-mediated inhibition of dispersal between mouse retina, mouse brain and human brain. To estimate the lowest possible dose at which Dex can inhibit dispersal, LogEC50 values were compared by Extra Sum-of-Squares F-test. We show that it is possible to achieve 50% reduction in dispersal with Dex doses ranging from 3.8 x10-8M to 8.0x10-9M for GBM-2, and 4.3x10-8M to 1.8x10-9M for GBM-3, on mouse retina and brain slices, respectively. These doses are 3-30-fold lower than those used to control edema. This study extends our previous in vitro data and identifies the mouse retina as a potential substrate for in vivo studies of GBM dispersal.

  10. Cytotoxic and Apoptogenic Effects of Cyanidin-3-Glucoside on the Glioblastoma Cell Line.

    Science.gov (United States)

    Hosseini, Masoumeh Mansoubi; Karimi, Aliasghar; Behroozaghdam, Mitra; Javidi, Mohammad Amin; Ghiasvand, Saeedeh; Bereimipour, Ahmad; Aryan, Hoda; Nassiri, Farbod; Jangholi, Ehsan

    2017-12-01

    Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary cerebral tumor. The median survival time is 15 months despite maximum treatment because the tumor is resistant to most therapeutic modalities. Several studies have indicated chemopreventive and chemotherapeutic activity of cyanidin-3-glucoside (C3G) as an anthocyanin component. We aimed to illustrate the cytotoxic and apoptogenic effects of C3G in the U87 cell line (human GBM cell line). Cytotoxic activity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium assay after treatment with C3G at different concentrations in the U87 cell line. Cisplatin was used as a positive control for 24 and 48 hours. The percentage of apoptotic cells was determined using an Annexin V/propidium iodide assay, and the expression of bax, bcl2, and p53 genes was assessed using real-time polymerase chain reaction. Treatment of U87 cells with 40 μg/mL of C3G resulted in 32% apoptotic cells after 24 hours. To further confirm that C3G treatment induced apoptosis in U87 cells, RNA expression of bax, bcl2, and p53 genes was investigated after treatment. Real-time polymerase chain reaction indicated that the expression of bax and p53 increased, whereas the expression of bcl2 decreased. C3G had an apoptogenic effect in the GBM cell line. New information regarding the therapeutic effects of C3G in GBM could ultimately lead to the production of new drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Epigenetic suppression of EGFR signaling in G-CIMP+ glioblastomas.

    Science.gov (United States)

    Li, Jie; Taich, Zachary J; Goyal, Amit; Gonda, David; Akers, Johnny; Adhikari, Bandita; Patel, Kunal; Vandenberg, Scott; Yan, Wei; Bao, Zhaoshi; Carter, Bob S; Wang, Renzhi; Mao, Ying; Jiang, Tao; Chen, Clark C

    2014-09-15

    The intrinsic signaling cascades and cell states associated with the Glioma CpG Island Methylator Phenotype (G-CIMP) remain poorly understood. Using published mRNA signatures associated with EGFR activation, we demonstrate that G-CIMP+ tumors harbor decreased EGFR signaling using three independent datasets, including the Chinese Glioma Genome Atlas(CGGA; n=155), the REMBRANDT dataset (n=288), and The Cancer Genome Atlas (TCGA; n=406). Additionally, an independent collection of 25 fresh-frozen glioblastomas confirmed lowered pERK levels in G-CIMP+ specimens (pCIMP+ glioblastomas harbored lowered mRNA levels for EGFR and H-Ras. Induction of G-CIMP+ state by exogenous expression of a mutated isocitrate dehydrogenase 1, IDH1-R132H, suppressed EGFR and H-Ras protein expression as well as pERK accumulation in independent glioblastoma models. These suppressions were associated with increased deposition of the repressive histone markers, H3K9me3 and H3K27me3, in the EGFR and H-Ras promoter regions. The IDH1-R132H expression-induced pERK suppression can be reversed by exogenous expression of H-RasG12V. Finally, the G-CIMP+ Ink4a-Arf-/- EGFRvIII glioblastoma line was more resistant to the EGFR inhibitor, Gefitinib, relative to its isogenic G-CIMP- counterpart. These results suggest that G-CIMP epigenetically regulates EGFR signaling and serves as a predictive biomarker for EGFR inhibitors in glioblastoma patients.

  12. MiRNA-125a-5p inhibits glioblastoma cell proliferation and promotes cell differentiation by targeting TAZ

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jian; Xiao, Gelei [Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); The Institute of Skull Base Surgery & Neuro-oncology at Hunan, Changsha, Hunan 410008 (China); Peng, Gang [Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Liu, Dingyang [Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); The Institute of Skull Base Surgery & Neuro-oncology at Hunan, Changsha, Hunan 410008 (China); Wang, Zeyou [Cancer Research Institute, Central South University, Changsha, Hunan 410008 (China); Liao, Yiwei; Liu, Qing [Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); The Institute of Skull Base Surgery & Neuro-oncology at Hunan, Changsha, Hunan 410008 (China); Wu, Minghua [The Institute of Skull Base Surgery & Neuro-oncology at Hunan, Changsha, Hunan 410008 (China); Cancer Research Institute, Central South University, Changsha, Hunan 410008 (China); Yuan, Xianrui, E-mail: xry69@163.com [Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); The Institute of Skull Base Surgery & Neuro-oncology at Hunan, Changsha, Hunan 410008 (China)

    2015-02-06

    Highlights: • Expression of miR-125a-5p is inversely correlated with that of TAZ in glioma cells. • MiR-125a-5p represses TAZ expression in glioma cells. • MiR-125a-5p directly targets the 3′ UTR of TAZ mRNA and promotes its degradation. • MiR-125a-5p represses CTGF and survivin via TAZ, and inhibits glioma cell growth. • MiR-125a-5p inhibits the stem cell features of HFU-251 MG cells. - Abstract: Glioblastoma (GBM) is the most lethal brain tumor due to the resistance to conventional therapies, such as radiotherapy and chemotherapy. TAZ, an important mediator of the Hippo pathway, was found to be up-regulated in diverse cancers, including in GBM, and plays important roles in tumor initiation and progression. However, little is known about the regulation of TAZ expression in tumors. In this study, we found that miR-125a-5p is an important regulator of TAZ in glioma cells by directly targeting the TAZ 3′ UTR. MiR-125a-5p levels are inversely correlated with that of TAZ in normal astrocytes and a panel of glioma cell lines. MiR-125a-5p represses the expression of TAZ target genes, including CTGF and survivin, and inhibits cell proliferation and induces the differentiation of GBM cells; whereas over-expression of TAZ rescues the effects of miR-125a-5p. This study revealed a mechanism for TAZ deregulation in glioma cells, and also demonstrated a tumor suppressor role of miR-125a-5p in glioblastoma cells.

  13. MiRNA-125a-5p inhibits glioblastoma cell proliferation and promotes cell differentiation by targeting TAZ

    International Nuclear Information System (INIS)

    Yuan, Jian; Xiao, Gelei; Peng, Gang; Liu, Dingyang; Wang, Zeyou; Liao, Yiwei; Liu, Qing; Wu, Minghua; Yuan, Xianrui

    2015-01-01

    Highlights: • Expression of miR-125a-5p is inversely correlated with that of TAZ in glioma cells. • MiR-125a-5p represses TAZ expression in glioma cells. • MiR-125a-5p directly targets the 3′ UTR of TAZ mRNA and promotes its degradation. • MiR-125a-5p represses CTGF and survivin via TAZ, and inhibits glioma cell growth. • MiR-125a-5p inhibits the stem cell features of HFU-251 MG cells. - Abstract: Glioblastoma (GBM) is the most lethal brain tumor due to the resistance to conventional therapies, such as radiotherapy and chemotherapy. TAZ, an important mediator of the Hippo pathway, was found to be up-regulated in diverse cancers, including in GBM, and plays important roles in tumor initiation and progression. However, little is known about the regulation of TAZ expression in tumors. In this study, we found that miR-125a-5p is an important regulator of TAZ in glioma cells by directly targeting the TAZ 3′ UTR. MiR-125a-5p levels are inversely correlated with that of TAZ in normal astrocytes and a panel of glioma cell lines. MiR-125a-5p represses the expression of TAZ target genes, including CTGF and survivin, and inhibits cell proliferation and induces the differentiation of GBM cells; whereas over-expression of TAZ rescues the effects of miR-125a-5p. This study revealed a mechanism for TAZ deregulation in glioma cells, and also demonstrated a tumor suppressor role of miR-125a-5p in glioblastoma cells

  14. Tumor suppressor WWOX and p53 alterations and drug resistance in glioblastomas

    Directory of Open Access Journals (Sweden)

    Ming-Fu eChiang

    2013-03-01

    Full Text Available Tumor suppressor p53 are frequently mutated in glioblastomas (GBMs and appears to contribute, in part, to resistance to temozolomide and therapeutic drugs. WW domain-containing oxidoreductase WWOX (FOR or WOX1 is a proapoptotic protein and is considered as a tumor suppressor. Loss of WWOX gene expression is frequently seen in malignant cancer cells due to promoter hypermethylation, genetic alterations, and translational blockade. Intriguingly, ectopic expression of wild type WWOX preferentially induces apoptosis in human glioblastoma cells harboring mutant p53. WWOX is known to physically bind and stabilize wild type p53. Here, we provide an overview for the updated knowledge in p53 and WWOX, and postulate a potential scenarios that wild type and mutant p53, or isoforms, modulate the apoptotic function of WWOX. We propose that triggering WWOX activation by therapeutic drugs under p53 functional deficiency is needed to overcome TMZ resistance and induce GBM cell death.

  15. Dormant glioblastoma cells acquire stem cell characteristics and are differentially affected by Temozolomide and AT101 treatment.

    Science.gov (United States)

    Adamski, Vivian; Hempelmann, Annika; Flüh, Charlotte; Lucius, Ralph; Synowitz, Michael; Hattermann, Kirsten; Held-Feindt, Janka

    2017-12-08

    Cellular dormancy is defined as a state in which cells enter quiescence driven by intrinsic or extrinsic factors, and striking parallels exist between the concept of cellular dormancy in malignancies and the cancer stem cell theory. We showed now that the proven dormancy markers insulin-like growth factor-binding protein 5, ephrin receptor A5 and histone cluster 1 H2B family member K were expressed in human glioblastomas in situ , were located in single tumor cells, and could be co-stained with each other and with the stem cell markers krüppel-like factor 4, octamer binding transcription factor 4 and sex determining region Y-box 2. Human non-stem glioblastoma cell lines and primary cultures were characterized by expression of individual, cell-type specific dormancy- and stemness-associated markers, which were (up)regulated and could be co-stained in a cell-type specific manner upon Temozolomide-induced dormancy in vitro . The induction patterns of dormancy- and stemness-associated markers were reflected by cell-type specific responses to Temozolomide-induced and combined Temozolomide/AT101-mediated cytotoxicity in different glioblastoma cell lines and primary cultures in vitro , and accompanied by higher self-renewal capacity and lower TMZ-sensitivity of Temozolomide-pretreated cells. We postulate that a better understanding of the dormant state of tumor cells is essential to further improve efficiency of treatment.

  16. HLA class I is most tightly linked to levels of tapasin compared with other antigen-processing proteins in glioblastoma.

    Science.gov (United States)

    Thuring, Camilla; Follin, Elna; Geironson, Linda; Freyhult, Eva; Junghans, Victoria; Harndahl, Mikkel; Buus, Søren; Paulsson, Kajsa M

    2015-09-15

    Tumour cells can evade the immune system by dysregulation of human leukocyte antigens (HLA-I). Low quantity and/or altered quality of HLA-I cell surface expression is the result of either HLA-I alterations or dysregulations of proteins of the antigen-processing machinery (APM). Tapasin is an APM protein dedicated to the maturation of HLA-I and dysregulation of tapasin has been linked to higher malignancy in several different tumours. We studied the expression of APM components and HLA-I, as well as HLA-I tapasin-dependency profiles in glioblastoma tissues and corresponding cell lines. Tapasin displayed the strongest correlation to HLA-I heavy chain but also clustered with β2-microglobulin, transporter associated with antigen processing (TAP) and LMP. Moreover, tapasin also correlated to survival of glioblastoma patients. Some APM components, for example, TAP1/TAP2 and LMP2/LMP7, showed variable but coordinated expression, whereas ERAP1/ERAP2 displayed an imbalanced expression pattern. Furthermore, analysis of HLA-I profiles revealed variable tapasin dependence of HLA-I allomorphs in glioblastoma patients. Expression of APM proteins is highly variable between glioblastomas. Tapasin stands out as the APM component strongest correlated to HLA-I expression and we proved that HLA-I profiles in glioblastoma patients include tapasin-dependent allomorphs. The level of tapasin was also correlated with patient survival time. Our results support the need for individualisation of immunotherapy protocols.

  17. Key concepts in glioblastoma therapy

    DEFF Research Database (Denmark)

    Bartek, Jiri; Ng, Kimberly; Bartek, Jiri

    2012-01-01

    principles that drive the formulation of therapeutic strategies in glioblastoma. Specifically, the concepts of tumour heterogeneity, oncogene addiction, non-oncogene addiction, tumour initiating cells, tumour microenvironment, non-coding sequences and DNA damage response will be reviewed....

  18. Radiation induced sarcoma after treatment of glioblastoma: case report

    International Nuclear Information System (INIS)

    Rosa, Victor Domingos Lisita; Anjos, Caroline Souza dos; Candido, Priscila Barile Marchi; Dias Junior, Antonio Soares; Santos, Evandro Airton Sordi dos; Godoy, Antonio Carlos Cavalcante; Saggioro, Fabiano P.; Carlotti Junior, Carlos Gilberto; Oliveira, Harley Francisco de; Peria, Fernanda Maris

    2016-01-01

    Introduction: Glioblastoma multiform is the most lethal central nervous system neoplasm, with a median survival of around 13 months and the worst prognosis among all gliomas. The therapeutic approach of glioblastoma consists in neurosurgery with maximum possible resection of tumor volume, followed by radiotherapy and chemotherapy. Radiotherapy reduces the risk of tumor recurrence through direct and indirect damage to tumor deoxyribonucleic acid. The long-term effects of radiation therapy include tissue necrosis, vasculopathy, and radiation-induced neoplasia. The most reported secondary intracranial malignant tumors include meningiomas, gliomas, and sarcomas. The latency period between skull radiotherapy and the appearance of radioinduced lesions varies in the literature from six months to 47 years, with an average of 18.7 years. Case report: The present report describes the appearance of high-grade spindle cell sarcoma after ten months in a patient who received glioblastoma treatment at Hospital das Clínicas of Ribeirão Preto of the University of São Paulo. Conclusion: The rarity of this association is probably due to the poor survival of patients with glioblastoma, thus limiting the time to development of secondary neoplasia

  19. Rapid progression of gliomatosis cerebri to secondary glioblastoma, factors that affects the progression rate: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Kyung; Yu, In Kyu; Kim, Seung Min; Kim, Joo Heon; Lee, Seung Hoon; Lee, Seung Yeon [Eulji University Hospital, Daejeon (Korea, Republic of)

    2017-03-15

    Glioblastomas may develop de novo or through progression from low-grade or anaplastic astrocytomas. The term 'primary glioblastoma' refers to a glioblastoma that lacks a precursor lesion and has a clinical history of less than three months. On the other hand, the term 'secondary glioblastoma' indicates that the glioblastoma has progressed from a low-grade tumor after a long latency period and often manifests in younger patients. These subtypes of glioblastoma develop via different genetic pathways, and they differ in prognosis and response to therapy. Thus, differential diagnosis of these subtypes and prediction of the factors that affect the progression from low-grade diffuse astrocytoma to secondary glioblastoma would be clinically very important. We present a rare case of secondary glioblastoma, which developed only three months after the follow up imaging evaluations, with a history of low grade glioma, and present the factors that cause rapid progression.

  20. Angiotensinogen and HLA class II predict bevacizumab response in recurrent glioblastoma patients

    DEFF Research Database (Denmark)

    Urup, Thomas; Michaelsen, Signe Regner; Olsen, Lars Rønn

    2016-01-01

    Background: Bevacizumab combination therapy is among the most frequently used treatments in recurrent glioblastoma and patients who achieve response to bevacizumab have improved survival as well as quality of life. Accordingly, the aim of this study was to identify predictive biomarkers for bevac......Background: Bevacizumab combination therapy is among the most frequently used treatments in recurrent glioblastoma and patients who achieve response to bevacizumab have improved survival as well as quality of life. Accordingly, the aim of this study was to identify predictive biomarkers...... for bevacizumab response in recurrent glioblastoma patients. Methods: The study included a total of 82 recurrent glioblastoma patients treated with bevacizumab combination therapy whom were both response and biomarker evaluable. Gene expression of tumor tissue was analyzed by using a customized Nano...

  1. Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype

    Science.gov (United States)

    Gabrusiewicz, Konrad; Rodriguez, Benjamin; Wei, Jun; Hashimoto, Yuuri; Healy, Luke M.; Maiti, Sourindra N.; Wang, Qianghu; Elakkad, Ahmed; Liebelt, Brandon D.; Yaghi, Nasser K.; Ezhilarasan, Ravesanker; Huang, Neal; Weinberg, Jeffrey S.; Prabhu, Sujit S.; Rao, Ganesh; Sawaya, Raymond; Langford, Lauren A.; Bruner, Janet M.; Fuller, Gregory N.; Bar-Or, Amit; Li, Wei; Colen, Rivka R.; Curran, Michael A.; Bhat, Krishna P.; Antel, Jack P.; Cooper, Laurence J.; Sulman, Erik P.; Heimberger, Amy B.

    2016-01-01

    Glioblastomas are highly infiltrated by diverse immune cells, including microglia, macrophages, and myeloid-derived suppressor cells (MDSCs). Understanding the mechanisms by which glioblastoma-associated myeloid cells (GAMs) undergo metamorphosis into tumor-supportive cells, characterizing the heterogeneity of immune cell phenotypes within glioblastoma subtypes, and discovering new targets can help the design of new efficient immunotherapies. In this study, we performed a comprehensive battery of immune phenotyping, whole-genome microarray analysis, and microRNA expression profiling of GAMs with matched blood monocytes, healthy donor monocytes, normal brain microglia, nonpolarized M0 macrophages, and polarized M1, M2a, M2c macrophages. Glioblastoma patients had an elevated number of monocytes relative to healthy donors. Among CD11b+ cells, microglia and MDSCs constituted a higher percentage of GAMs than did macrophages. GAM profiling using flow cytometry studies revealed a continuum between the M1- and M2-like phenotype. Contrary to current dogma, GAMs exhibited distinct immunological functions, with the former aligned close to nonpolarized M0 macrophages. PMID:26973881

  2. X-ray radiation induced bystander effects of human glioblastoma T98G cells under hypoxia condition

    International Nuclear Information System (INIS)

    Zhang Jianghong; Jin Yizun; Shao Chunlin; Prise, K.M.

    2008-01-01

    Non-irradiated bystander human glioblastoma T98G cells were co-cultured (CC) with irradiated cells or treated with conditioned medium (CM) from irradiated cells under hypoxic condition, then micronucleus (MN) of both irradiated cells and bystander cells were measured for the investigation of radiation induced bystander effect and its mechanism. It has been found that the MN yield (Y MN ) of non-irradiated bystander T98G cells is obviously enhanced after the cell co-culture, or CM treatment, but this increment is diminished by free radical scavenger, dimethyl sulfoxide (DMSO). When hypoxic or normoxic T98G cells are treated with CM obtained from irradiated cells under either hypoxic or normoxic condition, the biggest bystander response has been observed in the group of hypoxic by- stander cells treated with CM from irradiated normoxic cells. However, all of these increments of bystander Y MN could be eliminated by aminoguanidine, an iNOS inhibitor. Therefore, under hypoxic condition, free radicals, especially reactive oxygen species and nitric oxide, are involved in the bystander response induced by irradiated T98G cells. (authors)

  3. 37 CFR 251.41 - Formal hearings.

    Science.gov (United States)

    2010-07-01

    ... ARBITRATION ROYALTY PANEL RULES AND PROCEDURES COPYRIGHT ARBITRATION ROYALTY PANEL RULES OF PROCEDURE Procedures of Copyright Arbitration Royalty Panels § 251.41 Formal hearings. (a) The formal hearings that will be conducted under the rules of this subpart are rate adjustment hearings and royalty fee...

  4. A conceptually new treatment approach for relapsed glioblastoma: Coordinated undermining of survival paths with nine repurposed drugs (CUSP9) by the International Initiative for Accelerated Improvement of Glioblastoma Care

    Science.gov (United States)

    Kast, Richard E.; Boockvar, John A.; Brüning, Ansgar; Cappello, Francesco; Chang, Wen-Wei; Cvek, Boris; Dou, Q. Ping; Duenas-Gonzalez, Alfonso; Efferth, Thomas; Focosi, Daniele; Ghaffari, Seyed H.; Karpel-Massler, Georg; Ketola, Kirsi; Khoshnevisan, Alireza; Keizman, Daniel; Magné, Nicolas; Marosi, Christine; McDonald, Kerrie; Muñoz, Miguel; Paranjpe, Ameya; Pourgholami, Mohammad H.; Sardi, Iacopo; Sella, Avishay; Srivenugopal, Kalkunte S.; Tuccori, Marco; Wang, Weiguang; Wirtz, Christian R.; Halatsch, Marc-Eric

    2013-01-01

    To improve prognosis in recurrent glioblastoma we developed a treatment protocol based on a combination of drugs not traditionally thought of as cytotoxic chemotherapy agents but that have a robust history of being well-tolerated and are already marketed and used for other non-cancer indications. Focus was on adding drugs which met these criteria: a) were pharmacologically well characterized, b) had low likelihood of adding to patient side effect burden, c) had evidence for interfering with a recognized, well-characterized growth promoting element of glioblastoma, and d) were coordinated, as an ensemble had reasonable likelihood of concerted activity against key biological features of glioblastoma growth. We found nine drugs meeting these criteria and propose adding them to continuous low dose temozolomide, a currently accepted treatment for relapsed glioblastoma, in patients with recurrent disease after primary treatment with the Stupp Protocol. The nine adjuvant drug regimen, Coordinated Undermining of Survival Paths, CUSP9, then are aprepitant, artesunate, auranofin, captopril, copper gluconate, disulfiram, ketoconazole, nelfinavir, sertraline, to be added to continuous low dose temozolomide. We discuss each drug in turn and the specific rationale for use- how each drug is expected to retard glioblastoma growth and undermine glioblastoma's compensatory mechanisms engaged during temozolomide treatment. The risks of pharmacological interactions and why we believe this drug mix will increase both quality of life and overall survival are reviewed. PMID:23594434

  5. Human alpha-lactalbumin made lethal to tumor cells (HAMLET) kills human glioblastoma cells in brain xenografts by an apoptosis-like mechanism and prolongs survival.

    Science.gov (United States)

    Fischer, Walter; Gustafsson, Lotta; Mossberg, Ann-Kristin; Gronli, Janne; Mork, Sverre; Bjerkvig, Rolf; Svanborg, Catharina

    2004-03-15

    Malignant brain tumors present a major therapeutic challenge because no selective or efficient treatment is available. Here, we demonstrate that intratumoral administration of human alpha-lactalbumin made lethal to tumor cells (HAMLET) prolongs survival in a human glioblastoma (GBM) xenograft model, by selective induction of tumor cell apoptosis. HAMLET is a protein-lipid complex that is formed from alpha-lactalbumin when the protein changes its tertiary conformation and binds oleic acid as a cofactor. HAMLET induces apoptosis in a wide range of tumor cells in vitro, but the therapeutic effect in vivo has not been examined. In this study, invasively growing human GBM tumors were established in nude rats (Han:rnu/rnu Rowett, n = 20) by transplantation of human GBM biopsy spheroids. After 7 days, HAMLET was administered by intracerebral convection-enhanced delivery for 24 h into the tumor area; and alpha-lactalbumin, the native, folded variant of the same protein, was used as a control. HAMLET reduced the intracranial tumor volume and delayed the onset of pressure symptoms in the tumor-bearing rats. After 8 weeks, all alpha-lactalbumin-treated rats had developed pressure symptoms, but the HAMLET-treated rats remained asymptomatic. Magnetic resonance imaging scans revealed large differences in tumor volume (456 versus 63 mm(3)). HAMLET caused apoptosis in vivo in the tumor but not in adjacent intact brain tissue or in nontransformed human astrocytes, and no toxic side effects were observed. The results identify HAMLET as a new candidate in cancer therapy and suggest that HAMLET should be additionally explored as a novel approach to controlling GBM progression.

  6. Glioblastoma multiforme of the pineal region: case report Glioblastoma multiforme de região pineal: relato de caso

    Directory of Open Access Journals (Sweden)

    Emerson Leandro Gasparetto

    2003-06-01

    Full Text Available PURPOSE: pineal region tumors are uncommon, and comprise more frequently three categories: germ cell, parenchymal cell and glial tumors. Most pineal gliomas are low-grade astrocytomas. Glioblastoma multiforme, the most aggressive and common brain tumor, is extremely rare at this location with only few cases reported. CASE DESCRIPTION: a 29-year-old woman with a two month history of headache, nuchal pain, fever, nausea and seizures and physical examination showing nuchal rigidity, generalized hypotony, hypotrophy and hyper-reflexia, Babinski sign and left VI cranial par palsy. CT scan examination revealed a ill-defined hypodense lesion at the pineal region with heterogeneous contrast enhancement. MRI showed a lesion at the pineal region infiltrating the right thalamic region. The patient underwent a right craniotomy with partial resection of the mass. The histological examination of paraffin-embedded material defined the diagnosis of glioblastoma multiforme. Post-operative radiotherapy was indicated but the patient refused the treatment and died two months afterwards. CONCLUSION: in spite of its rarity at this location, glioblastoma multiforme should be considered in the differential diagnosis of aggressive lesions at the pineal region.OBJETIVO: Os tumores da região pineal são incomuns e podem ser divididos em três categorias de acordo com a sua origem: células germinativas, células do parênquima e células gliais. Em sua maioria, os gliomas de pineal são astrocitomas de baixo grau, sendo que o seu correspondente maligno, glioblastoma multiforme, é o mais comum e agressivo tumor encefálico e é extremamente raro nesta localização, com apenas alguns casos relatados na literatura. CASO: Mulher com 29 anos apresentando há 2 meses cefaléia, nucalgia, febre, náuseas e crises convulsivas. O exame físico mostrou rigidez de nuca, hipotonia, hipotrofia e hiperreflexia generalizadas, sinal de Babinski e paralisia do VI nervo craniano. A

  7. MicroRNA biomarkers in glioblastoma

    DEFF Research Database (Denmark)

    Hermansen, Simon Kjær; Kristensen, Bjarne Winther

    2013-01-01

    tissues. Understanding these alterations is key to developing new biomarkers and intelligent treatment strategies. This review presents an overview of current knowledge about miRNA alterations in glioblastoma while focusing on the clinical future of miRNAs as biomarkers and discussing the strengths...

  8. Analysis of fractional anisotropy facilitates differentiation of glioblastoma and brain metastases in a clinical setting

    Energy Technology Data Exchange (ETDEWEB)

    Bette, Stefanie, E-mail: stefanie.bette@tum.de [Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Huber, Thomas; Wiestler, Benedikt; Boeckh-Behrens, Tobias [Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Gempt, Jens; Ringel, Florian; Meyer, Bernhard [Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Zimmer, Claus; Kirschke, Jan S. [Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany)

    2016-12-15

    Purpose: Differentiating glioblastoma from brain metastases is important for therapy planning. Diffusion tensor imaging (DTI) was described as a promising tool, however with conflicting results. Aim: of this study was to analyze the clinical utility of DTI for the differentiation of brain metastases and glioblastoma. Methods: 294 patients (165 glioblastoma, 129 brain metastases) with preoperative DTI were included in this retrospective study. Fractional anisotropy (FA) was measured via regions of interest (ROIs) in the contrast-enhancing tumor, the necrosis and the FLAIR-hyperintense non-enhancing peritumoral region (NEPTR). Two neuroradiologists classified patient cases as glioblastoma or brain metastases without and with knowledge of FA values. Results: Glioblastoma showed significantly higher FA{sub contrast} (median glioblastoma = 0.33, metastases = 0.23; P < 0.001) whereas no significant difference was observed for FA{sub NEPTR} (0.21 vs. 0.22; P = 0.28) and for FA{sub necrosis} (0.17 vs. 0.18, P = 0.37). FA improved diagnostic accuracy of the neuroradiologists significantly from an AUC of 0.84/0.85 (Reader1/Reader2) to 0.89/0.92. Conclusions: Glioblastoma show significantly higher FA values in the contrast enhancing tumor part than brain metastases. Implementation of a ROI-based measurement of FA values and FA color maps in clinical routine helps to differentiate between glioblastoma and brain metastases.

  9. 37 CFR 251.58 - Judicial review.

    Science.gov (United States)

    2010-07-01

    ... determination on appeal, from depositing statements of account and royalty fees by those sections. [59 FR 23981... ARBITRATION ROYALTY PANEL RULES AND PROCEDURES COPYRIGHT ARBITRATION ROYALTY PANEL RULES OF PROCEDURE Procedures of Copyright Arbitration Royalty Panels § 251.58 Judicial review. (a) Any order of determination...

  10. Recurrent MET fusion genes represent a drug target in pediatric glioblastoma

    DEFF Research Database (Denmark)

    Sehested, Astrid Marie

    2016-01-01

    Pediatric glioblastoma is one of the most common and most deadly brain tumors in childhood. Using an integrative genetic analysis of 53 pediatric glioblastomas and five in vitro model systems, we identified previously unidentified gene fusions involving the MET oncogene in ∼10% of cases. These MET...

  11. A chalcone-related small molecule that induces methuosis, a novel form of non-apoptotic cell death, in glioblastoma cells.

    Science.gov (United States)

    Overmeyer, Jean H; Young, Ashley M; Bhanot, Haymanti; Maltese, William A

    2011-06-06

    Methuosis is a unique form of non-apoptotic cell death triggered by alterations in the trafficking of clathrin-independent endosomes, ultimately leading to extreme vacuolization and rupture of the cell. Here we describe a novel chalcone-like molecule, 3-(2-methyl-1H- indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (MIPP) that induces cell death with the hallmarks of methuosis. MIPP causes rapid accumulation of vacuoles derived from macropinosomes, based on time-lapse microscopy and labeling with extracellular fluid phase tracers. Vacuolization can be blocked by the cholesterol-interacting compound, filipin, consistent with the origin of the vacuoles from non-clathrin endocytic compartments. Although the vacuoles rapidly acquire some characteristics of late endosomes (Rab7, LAMP1), they remain distinct from lysosomal and autophagosomal compartments, suggestive of a block at the late endosome/lysosome boundary. MIPP appears to target steps in the endosomal trafficking pathway involving Rab5 and Rab7, as evidenced by changes in the activation states of these GTPases. These effects are specific, as other GTPases (Rac1, Arf6) are unaffected by the compound. Cells treated with MIPP lose viability within 2-3 days, but their nuclei show no evidence of apoptotic changes. Inhibition of caspase activity does not protect the cells, consistent with a non-apoptotic death mechanism. U251 glioblastoma cells selected for temozolomide resistance showed sensitivity to MIPP-induced methuosis that was comparable to the parental cell line. MIPP might serve as a prototype for new drugs that could be used to induce non-apoptotic death in cancers that have become refractory to agents that work through DNA damage and apoptotic mechanisms.

  12. A chalcone-related small molecule that induces methuosis, a novel form of non-apoptotic cell death, in glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Bhanot Haymanti

    2011-06-01

    Full Text Available Abstract Background Methuosis is a unique form of non-apoptotic cell death triggered by alterations in the trafficking of clathrin-independent endosomes, ultimately leading to extreme vacuolization and rupture of the cell. Results Here we describe a novel chalcone-like molecule, 3-(2-methyl-1H- indol-3-yl-1-(4-pyridinyl-2-propen-1-one (MIPP that induces cell death with the hallmarks of methuosis. MIPP causes rapid accumulation of vacuoles derived from macropinosomes, based on time-lapse microscopy and labeling with extracellular fluid phase tracers. Vacuolization can be blocked by the cholesterol-interacting compound, filipin, consistent with the origin of the vacuoles from non-clathrin endocytic compartments. Although the vacuoles rapidly acquire some characteristics of late endosomes (Rab7, LAMP1, they remain distinct from lysosomal and autophagosomal compartments, suggestive of a block at the late endosome/lysosome boundary. MIPP appears to target steps in the endosomal trafficking pathway involving Rab5 and Rab7, as evidenced by changes in the activation states of these GTPases. These effects are specific, as other GTPases (Rac1, Arf6 are unaffected by the compound. Cells treated with MIPP lose viability within 2-3 days, but their nuclei show no evidence of apoptotic changes. Inhibition of caspase activity does not protect the cells, consistent with a non-apoptotic death mechanism. U251 glioblastoma cells selected for temozolomide resistance showed sensitivity to MIPP-induced methuosis that was comparable to the parental cell line. Conclusions MIPP might serve as a prototype for new drugs that could be used to induce non-apoptotic death in cancers that have become refractory to agents that work through DNA damage and apoptotic mechanisms.

  13. Altered cellular distribution and subcellular sorting of gamma-tubulin in diffuse astrocytic gliomas and human glioblastoma cell lines

    Czech Academy of Sciences Publication Activity Database

    Katsetos, C.; Path, M.; Reddy, G.; Dráberová, Eduarda; Šmejkalová, Barbora; Del Valle, L.; Asfraf, Q.; Tadevosyan, A.; Yelin, K.; Maraziotis, T.; Mörk, S.; Mishra, O.; Legido, A.; Nissanov, J.; Baas, P.; De Chadarevian, J.; Dráber, Pavel

    2006-01-01

    Roč. 65, č. 5 (2006), s. 465-477 ISSN 0022-3069 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z5052915 Keywords : anaplastic changes * glioblastoma * gamma tubulin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.371, year: 2006

  14. P16.30 4th ventricle glioblastoma

    Science.gov (United States)

    Unal, E.; Isik, S.; Gurbuz, M.; Kilic, K.

    2017-01-01

    Abstract Introduction: We present the 2nd case ever known in English literature describing a glioblastoma of the fourth ventricle originating from cerebellar peduncle. CASE DESCIPTION: A 66 years old woman was admitted to hospital with dizziness and nausea for four months. An MRI scan showed fourth ventricle mass. First impression was an ependymoma due to MRI scan characteristics. Results: A surgery was performed and histopathology revealed Grade IV glial tumor. Radiotherapy was done. CONCLUSION: This report suggests that GBM can mimic every tumor in the CNS. Surgery is the best option for these tumors not only for aggressive behaviour of glioblastoma but also to prevent hydrocephalus and associated symptoms.

  15. Radiotherapy effect on the release of tumor micro-vesicles by glioblastoma cells

    International Nuclear Information System (INIS)

    Ding, Haixia

    2014-01-01

    Radiation therapy is a major therapeutic tool for glioblastoma (GBM). However, the post-radiation recurrence is almost inevitable, due to the emergence of a subpopulation of radioresistant cancer cells with greater proliferative, invasive, and pro-angiogenic capacities. The objective of this study was to investigate in vitro how irradiated cancer cells affect the function of untreated neighboring tumor cells and endothelial cells, focusing on signals exchange initiated by irradiation, such as soluble factors and tumor micro-vesicles (TMVs). Radiotherapy has slowed down the proliferation of GBM cells (T98G, U87) and induced mitotic death of 50-60%, without significant apoptosis. Through long-term monitoring of cell growth (xCELLigence) and wound-healing assay, we have confirmed that surviving GBM cells after irradiation release signals that can change the functions of endothelial cells HUVEC and non-irradiated tumor cells. In addition to the secretion of known soluble factors (VEGF, uPA), we were able to show using scanning electron microscopy and the Nanoparticle Tracking Analysis (NTA), the release of tumor micro-vesicles (TMVS), whose size was generally less than 500 nm. By NTA and flow cytometry, we have shown that the release of TMVs (exosome + 'shedding vesicles') can be significantly stimulated by irradiation in two lines, in a time-dependent manner. According to the proteomics analysis, soluble factors such as VEGF or IL-8, well known as pro-angiogenic factors, rather contribute to promote the survival or proliferation of HUVEC, while the released TMVs after irradiation, significantly altered the migration abilities of non-irradiated HUVEC and tumor cells. The pro-migratory properties of TMVs could thus contribute to glioblastoma recurrence after irradiation. (author) [fr

  16. Rapid emergence and mechanisms of resistance by U87 glioblastoma cells to doxorubicin in an in vitro tumor microfluidic ecology

    Science.gov (United States)

    Austin, Robert; Lee, Sanghyuk; Park, Sungsu

    We have developed a microfluidic device consisting of approximately 500 hexagonal micro-compartments which provides a complex ecology with wide ranges of drug and nutrient gradients and local populations. This ecology of a fragmented metapopulation induced the drug resistance in stage IV U87 glioblastoma cells to doxorubicin in seven days. Exome and transcriptome sequencing of the resistant cells identified mutations and differentially expressed genes. Gene ontology and pathway analyses of the genes identified showed that they were functionally relevant with the established mechanisms of doxorubicin action. Functional experiments support the in silico analyses and together demonstrate the effects of these genetic changes. Our findings suggest that given the rapid evolution of resistance and the focused response, this technology could act as a rapid screening modality for genetic aberrations leading to resistance to chemotherapy as well as counter-selection of drugs unlikely to be successful ultimately. Technology Innovation Program of the Ministry of Trade, Industry and Energy, Republic of Korea (10050154 to S.L. and S.P.), the National Research Foundation of Korea (NRF-2014M3C9A3065221 to S.L., NRF-2015K1A4A3047851 to J.K. and S.L.) funded by the Minis.

  17. 37 CFR 251.43 - Written cases.

    Science.gov (United States)

    2010-07-01

    ... and redirect) must be referenced. (d) In the case of a royalty fee distribution proceeding, each party... ROYALTY PANEL RULES AND PROCEDURES COPYRIGHT ARBITRATION ROYALTY PANEL RULES OF PROCEDURE Procedures of Copyright Arbitration Royalty Panels § 251.43 Written cases. (a) All parties who have filed a notice of...

  18. Glioblastoma Multiforme Presenting as Spontaneous Intracerebral Hemorrhage

    Directory of Open Access Journals (Sweden)

    Cagatay Ozdol

    2014-06-01

    Full Text Available Brain tumors with concomitant intracerebral hemorrhage are rarely encountered. Hemorrhage as the initial presentation of a brain tumour may pose some diagnostic problems, especially if the tumour is small or the hemorrhage is abundant. We present a 47-year-old man who admitted to the emergency department with sudden onset headache, right blurred vision and gait disturbance. A non-contrast cranial computerized tomography scan performed immediately after his admission revealed a well circumscribed right occipitoparietal haematoma with intense peripheral edema causing compression of the ipsilateral ventricles. On 6th hour of his admission the patient%u2019s neurological status deteriorated and he subsequently underwent emergent craniotomy and microsurgical evacuation of the haematoma. The histopathological examination of the mass was consistent with a glioblastoma multiforme. Neoplasms may be hidden behind each case of spontaneous intracerebral hemorrhage. Histological sampling and investigation is mandatory in the presence of preoperative radiological features suggesting a neoplasm.

  19. Targeting EGFR induced oxidative stress by PARP1 inhibition in glioblastoma therapy.

    Science.gov (United States)

    Nitta, Masayuki; Kozono, David; Kennedy, Richard; Stommel, Jayne; Ng, Kimberly; Zinn, Pascal O; Kushwaha, Deepa; Kesari, Santosh; Inda, Maria-del-Mar; Wykosky, Jill; Furnari, Frank; Hoadley, Katherine A; Chin, Lynda; DePinho, Ronald A; Cavenee, Webster K; D'Andrea, Alan; Chen, Clark C

    2010-05-24

    Despite the critical role of Epidermal Growth Factor Receptor (EGFR) in glioblastoma pathogenesis, EGFR targeted therapies have achieved limited clinical efficacy. Here we propose an alternate therapeutic strategy based on the conceptual framework of non-oncogene addiction. A directed RNAi screen revealed that glioblastoma cells over-expressing EGFRvIII, an oncogenic variant of EGFR, become hyper-dependent on a variety of DNA repair genes. Among these, there was an enrichment of Base Excision Repair (BER) genes required for the repair of Reactive Oxygen Species (ROS)-induced DNA damage, including poly-ADP ribose polymerase 1 (PARP1). Subsequent studies revealed that EGFRvIII over-expression in glioblastoma cells caused increased levels of ROS, DNA strand break accumulation, and genome instability. In a panel of primary glioblastoma lines, sensitivity to PARP1 inhibition correlated with the levels of EGFR activation and oxidative stress. Gene expression analysis indicated that reduced expression of BER genes in glioblastomas with high EGFR expression correlated with improved patient survival. These observations suggest that oxidative stress secondary to EGFR hyper-activation necessitates increased cellular reliance on PARP1 mediated BER, and offer critical insights into clinical trial design.

  20. Targeting EGFR induced oxidative stress by PARP1 inhibition in glioblastoma therapy.

    Directory of Open Access Journals (Sweden)

    Masayuki Nitta

    Full Text Available Despite the critical role of Epidermal Growth Factor Receptor (EGFR in glioblastoma pathogenesis, EGFR targeted therapies have achieved limited clinical efficacy. Here we propose an alternate therapeutic strategy based on the conceptual framework of non-oncogene addiction. A directed RNAi screen revealed that glioblastoma cells over-expressing EGFRvIII, an oncogenic variant of EGFR, become hyper-dependent on a variety of DNA repair genes. Among these, there was an enrichment of Base Excision Repair (BER genes required for the repair of Reactive Oxygen Species (ROS-induced DNA damage, including poly-ADP ribose polymerase 1 (PARP1. Subsequent studies revealed that EGFRvIII over-expression in glioblastoma cells caused increased levels of ROS, DNA strand break accumulation, and genome instability. In a panel of primary glioblastoma lines, sensitivity to PARP1 inhibition correlated with the levels of EGFR activation and oxidative stress. Gene expression analysis indicated that reduced expression of BER genes in glioblastomas with high EGFR expression correlated with improved patient survival. These observations suggest that oxidative stress secondary to EGFR hyper-activation necessitates increased cellular reliance on PARP1 mediated BER, and offer critical insights into clinical trial design.

  1. PACAP and VIP inhibit the invasiveness of glioblastoma cells exposed to hypoxia through the regulation of HIFs and EGFR expression

    Directory of Open Access Journals (Sweden)

    Grazia eMaugeri

    2016-05-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP and vasoactive intestinal peptide (VIP through the binding of vasoactive intestinal peptide receptors (VIPRs, perform a wide variety of effects in human cancers, including glioblastoma multiforme (GBM. This tumor is characterized by extensive areas of hypoxia, which triggers the expression of hypoxia-inducible factors (HIFs. HIFs not only mediate angiogenesis but also tumor cell migration and invasion. Furthermore, HIFs activation is linked to epidermal growth factor receptor (EGFR overexpression. Previous studies have shown that VIP interferes with the invasive nature of gliomas by regulating cell migration. However, the role of VIP family members in GBM infiltration under low oxygen tension has not been clarified yet. Therefore, in the present study we have investigated, for the first time, the molecular mechanisms involved in the anti-invasive effect of PACAP or VIP in U87MG glioblastoma cells exposed to hypoxia induced by treatment with desferrioxamine (DFX. The results suggest that either PACAP or VIP exert an anti-infiltrative effect under low oxygen tension by modulating HIFs and EGFR expression, key elements involved in cell migration and angiogenesis. These peptides act through the inhibition of PI3K/Akt and MAPK/ERK signaling pathways, which are known to have a crucial role in HIFs regulation. In conclusion, the modulation of hypoxic event and the anti-invasive effect exerted by some VIP family members might open new insights in the therapeutic approach to GBM.

  2. Up-regulation of cholesterol associated genes as novel resistance mechanism in glioblastoma cells in response to archazolid B

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, Rebecca; Zeino, Maen [Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany); Frewert, Simon [Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken (Germany); Efferth, Thomas, E-mail: efferth@uni-mainz.de [Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany)

    2014-11-15

    Treatment of glioblastoma multiforme (GBM), the most common and aggressive lethal brain tumor, represents a great challenge. Despite decades of research, the survival prognosis of GBM patients is unfavorable and more effective therapeutics are sorely required. Archazolid B, a potent vacuolar H{sup +}-ATPase inhibitor influencing cellular pH values, is a promising new compound exerting cytotoxicity in the nanomolar range on wild-type U87MG glioblastoma cells and U87MG.∆EGFR cells transfected with a mutant epidermal growth factor receptor (EGFR) gene. Gene expression profiling using microarray technology showed that archazolid B caused drastic disturbances in cholesterol homeostasis. Cholesterol, a main component of cellular membranes, is known to be essential for GBM growth and cells bearing EGFRvIII mutation are highly dependent on exogenous cholesterol. Archazolid B caused excessive accumulation of free cholesterol within intracellular compartments thus depleting cellular cholesterol and leading to up-regulation of SREBP targeted genes, including LDLR and HMGCR, the key enzyme of cholesterol biosynthesis. This cholesterol response is considered to be a novel resistance mechanism induced by archazolid B. We surmise that re-elevation of cholesterol levels in archazolid B treated cells may be mediated by newly synthesized cholesterol, since the drug leads to endosomal/lysosomal malfunction and cholesterol accumulation.

  3. Up-regulation of cholesterol associated genes as novel resistance mechanism in glioblastoma cells in response to archazolid B

    International Nuclear Information System (INIS)

    Hamm, Rebecca; Zeino, Maen; Frewert, Simon; Efferth, Thomas

    2014-01-01

    Treatment of glioblastoma multiforme (GBM), the most common and aggressive lethal brain tumor, represents a great challenge. Despite decades of research, the survival prognosis of GBM patients is unfavorable and more effective therapeutics are sorely required. Archazolid B, a potent vacuolar H + -ATPase inhibitor influencing cellular pH values, is a promising new compound exerting cytotoxicity in the nanomolar range on wild-type U87MG glioblastoma cells and U87MG.∆EGFR cells transfected with a mutant epidermal growth factor receptor (EGFR) gene. Gene expression profiling using microarray technology showed that archazolid B caused drastic disturbances in cholesterol homeostasis. Cholesterol, a main component of cellular membranes, is known to be essential for GBM growth and cells bearing EGFRvIII mutation are highly dependent on exogenous cholesterol. Archazolid B caused excessive accumulation of free cholesterol within intracellular compartments thus depleting cellular cholesterol and leading to up-regulation of SREBP targeted genes, including LDLR and HMGCR, the key enzyme of cholesterol biosynthesis. This cholesterol response is considered to be a novel resistance mechanism induced by archazolid B. We surmise that re-elevation of cholesterol levels in archazolid B treated cells may be mediated by newly synthesized cholesterol, since the drug leads to endosomal/lysosomal malfunction and cholesterol accumulation

  4. High epiregulin expression in human U87 glioma cells relies on IRE1α and promotes autocrine growth through EGF receptor

    International Nuclear Information System (INIS)

    Auf, Gregor; Vajkoczy, Peter; Seno, Masaharu; Bikfalvi, Andreas; Minchenko, Dmitri; Minchenko, Oleksandr; Moenner, Michel; Jabouille, Arnaud; Delugin, Maylis; Guérit, Sylvaine; Pineau, Raphael; North, Sophie; Platonova, Natalia; Maitre, Marlène; Favereaux, Alexandre

    2013-01-01

    Epidermal growth factor (EGF) receptors contribute to the development of malignant glioma. Here we considered the possible implication of the EGFR ligand epiregulin (EREG) in glioma development in relation to the activity of the unfolded protein response (UPR) sensor IRE1α. We also examined EREG status in several glioblastoma cell lines and in malignant glioma. Expression and biological properties of EREG were analyzed in human glioma cells in vitro and in human tumor xenografts with regard to the presence of ErbB proteins and to the blockade of IRE1α. Inactivation of IRE1α was achieved by using either the dominant-negative strategy or siRNA-mediated knockdown. EREG was secreted in high amounts by U87 cells, which also expressed its cognate EGF receptor (ErbB1). A stimulatory autocrine loop mediated by EREG was evidenced by the decrease in cell proliferation using specific blocking antibodies directed against either ErbB1 (cetuximab) or EREG itself. In comparison, anti-ErbB2 antibodies (trastuzumab) had no significant effect. Inhibition of IRE1α dramatically reduced EREG expression both in cell culture and in human xenograft tumor models. The high-expression rate of EREG in U87 cells was therefore linked to IRE1α, although being modestly affected by chemical inducers of the endoplasmic reticulum stress. In addition, IRE1-mediated production of EREG did not depend on IRE1 RNase domain, as neither the selective dominant-negative invalidation of the RNase activity (IRE1 kinase active) nor the siRNA-mediated knockdown of XBP1 had significant effect on EREG expression. Finally, chemical inhibition of c-Jun N-terminal kinases (JNK) using the SP600125 compound reduced the ability of cells to express EREG, demonstrating a link between the growth factor production and JNK activation under the dependence of IRE1α. EREG may contribute to glioma progression under the control of IRE1α, as exemplified here by the autocrine proliferation loop mediated in U87 cells by the

  5. MiRNA expression patterns predict survival in glioblastoma

    International Nuclear Information System (INIS)

    Niyazi, Maximilian; Belka, Claus; Zehentmayr, Franz; Niemöller, Olivier M; Eigenbrod, Sabina; Kretzschmar, Hans; Osthoff, Klaus-Schulze; Tonn, Jörg-Christian; Atkinson, Mike; Mörtl, Simone

    2011-01-01

    In order to define new prognostic subgroups in patients with glioblastoma a miRNA screen (> 1000 miRNAs) from paraffin tissues followed by a bio-mathematical analysis was performed. 35 glioblastoma patients treated between 7/2005 - 8/2008 at a single institution with surgery and postoperative radio(chemo)therapy were included in this retrospective analysis. For microarray analysis the febit biochip 'Geniom ® Biochip MPEA homo-sapiens' was used. Total RNA was isolated from FFPE tissue sections and 1100 different miRNAs were analyzed. It was possible to define a distinct miRNA expression pattern allowing for a separation of distinct prognostic subgroups. The defined miRNA pattern was significantly associated with early death versus long-term survival (split at 450 days) (p = 0.01). The pattern and the prognostic power were both independent of the MGMT status. At present, this is the first dataset defining a prognostic role of miRNA expression patterns in patients with glioblastoma. Having defined such a pattern, a prospective validation of this observation is required

  6. Clinical implications of microRNAs in human glioblastoma

    Directory of Open Access Journals (Sweden)

    Masahiro eMizoguchi

    2013-02-01

    Full Text Available Glioblastoma (GBM is one of the most common and dismal brain tumors in adults. Further elucidation of the molecular pathogenesis of GBM is mandatory to improve the overall survival of patients. A novel small non-coding RNA molecule, microRNA (miRNA, appears to represent one of the most attractive target molecules contributing to the pathogenesis of various types of tumors. Recent global analyses have revealed that several miRNAs are clinically implicated in GBM, with some reports indicating the association of miRNA dysregulation with acquired temozolomide (TMZ resistance. More recent studies have revealed that miRNAs could play a role in cancer stem cell (CSC properties, contributing to treatment resistance. In addition, greater impact might be expected from miRNA-targeted therapies based on tumor-derived exosomes that contain numerous functional miRNAs, which could be transferred between tumor cells and surrounding structures. Tumor-derived miRNAs are now considered to be a novel molecular mechanism promoting the progression of GBM. Establishment of miRNA-targeted therapies based on miRNA dysregulation of CSCs could provide effective therapeutic strategies for TMZ-resistant GBM. Recent progress has revealed that miRNAs are not only putative biological markers for diagnosis, but also one of the most promising targets for GBM treatment. Herein, we summarize the translational aspects of miRNAs in the diagnosis and treatment of GBM.

  7. Glioblastomas with Oligodendroglial Component ? Common Origin of the Different Histological Parts and Genetic Subclassification

    OpenAIRE

    Klink, Barbara; Schlingelhof, Ben; Klink, Martin; Stout-Weider, Karen; Patt, Stephan; Schrock, Evelin

    2010-01-01

    Background: Glioblastomas are the most common and most malignant brain tumors in adults. A small subgroup of glioblastomas contains areas with histological features of oligodendroglial differentiation (GBMO). Our objective was to genetically characterize the oligodendroglial and the astrocytic parts of GBMOs and correlate morphologic and genetic features with clinical data. Methods: The oligodendroglial and the ?classic? glioblastoma parts of 13 GBMO were analyzed separately by interphase flu...

  8. Toward a noncytotoxic glioblastoma therapy: blocking MCP-1 with the MTZ Regimen

    Directory of Open Access Journals (Sweden)

    Salacz ME

    2016-04-01

    Full Text Available Michael E Salacz,1,2 Richard E Kast,3 Najmaldin Saki,4 Ansgar Brüning,5 Georg Karpel-Massler,6 Marc-Eric Halatsch6 1Department of Internal Medicine, 2Department of Neurosurgery, University of Kansas, Kansas City, KS, USA; 3IIAIGC Study Center, Burlington, VT, USA; 4Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; 5Molecular Biology Laboratory, University Hospital Munich, Munich, Germany; 6Department of Neurosurgery, University of Ulm, Ulm, Germany Abstract: To improve the prognosis of glioblastoma, we developed an adjuvant treatment directed to a neglected aspect of glioblastoma growth, the contribution of nonmalignant monocyte lineage cells (MLCs (monocyte, macrophage, microglia, dendritic cells that infiltrated a main tumor mass. These nonmalignant cells contribute to glioblastoma growth and tumor homeostasis. MLCs comprise of approximately 10%–30% of glioblastoma by volume. After integration into the tumor mass, these become polarized toward an M2 immunosuppressive, pro-angiogenic phenotype that promotes continued tumor growth. Glioblastoma cells initiate and promote this process by synthesizing 13 kDa MCP-1 that attracts circulating monocytes to the tumor. Infiltrating monocytes, after polarizing toward an M2 phenotype, synthesize more MCP-1, forming an amplification loop. Three noncytotoxic drugs, an antibiotic – minocycline, an antihypertensive drug – telmisartan, and a bisphosphonate – zoledronic acid, have ancillary attributes of MCP-1 synthesis inhibition and could be re-purposed, singly or in combination, to inhibit or reverse MLC-mediated immunosuppression, angiogenesis, and other growth-enhancing aspects. Minocycline, telmisartan, and zoledronic acid – the MTZ Regimen – have low-toxicity profiles and could be added to standard radiotherapy and temozolomide. Re-purposing older drugs has advantages of established safety and low

  9. Overexpression of endothelin B receptor in glioblastoma: a prognostic marker and therapeutic target?

    KAUST Repository

    Vasaikar, Suhas

    2018-02-06

    BackgroundGlioblastoma (GBM) is the most common malignant brain tumor with median survival of 12-15 months. Owing to uncertainty in clinical outcome, additional prognostic marker(s) apart from existing markers are needed. Since overexpression of endothelin B receptor (ETBR) has been demonstrated in gliomas, we aimed to test whether ETBR is a useful prognostic marker in GBM and examine if the clinically available endothelin receptor antagonists (ERA) could be useful in the disease treatment.MethodsData from The Cancer Genome Atlas and the Gene Expression Omnibus database were analyzed to assess ETBR expression. For survival analysis, glioblastoma samples from 25 Swedish patients were immunostained for ETBR, and the findings were correlated with clinical history. The druggability of ETBR was assessed by protein-protein interaction network analysis. ERAs were analyzed for toxicity in in vitro assays with GBM and breast cancer cells.ResultsBy bioinformatics analysis, ETBR was found to be upregulated in glioblastoma patients, and its expression levels were correlated with reduced survival. ETBR interacts with key proteins involved in cancer pathogenesis, suggesting it as a druggable target. In vitro viability assays showed that ERAs may hold promise to treat glioblastoma and breast cancer.ConclusionsETBR is overexpressed in glioblastoma and other cancers and may be a prognostic marker in glioblastoma. ERAs may be useful for treating cancer patients.

  10. Autopsy findings in a long-term survivor with glioblastoma multiforme. Case report

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Shozo; Endo, Yuzo; Takada, Koji; Usui, Masaaki; Hara, Mitsuru [Toranomon Hospital, Tokyo (Japan); Hirose, Takanori

    1998-02-01

    Autopsy detected no tumor tissues in a patient who died 6.5 years after the diagnosis of glioblastoma multiforme. A 54-year-old male developed left hemiparesis one month prior to admission. Computed tomography demonstrated a cystic lesion in the right frontal region with irregular ring-like enhancement. The tumor was extensively removed together with the surrounding tissues followed by irradiation (whole brain 32.4 Gy, local 28.8 Gy), and intravenous administration of interferon-{beta}. Histological examination confirmed the diagnosis of glioblastoma multiform. He died of accidental head trauma 6.5 years after surgery. Autopsy of the brain detected no evidence of glioblastoma multiform. The only findings were cerebral edema and hematoma caused by head trauma, as well as histological changes due to radiation damage. This case apparently confirms the histological disappearance of tumor tissue in a long-term survivor with glioblastoma multiform. (author)

  11. Autopsy findings in a long-term survivor with glioblastoma multiforme. Case report

    International Nuclear Information System (INIS)

    Yamada, Shozo; Endo, Yuzo; Takada, Koji; Usui, Masaaki; Hara, Mitsuru; Hirose, Takanori.

    1998-01-01

    Autopsy detected no tumor tissues in a patient who died 6.5 years after the diagnosis of glioblastoma multiforme. A 54-year-old male developed left hemiparesis one month prior to admission. Computed tomography demonstrated a cystic lesion in the right frontal region with irregular ring-like enhancement. The tumor was extensively removed together with the surrounding tissues followed by irradiation (whole brain 32.4 Gy, local 28.8 Gy), and intravenous administration of interferon-β. Histological examination confirmed the diagnosis of glioblastoma multiform. He died of accidental head trauma 6.5 years after surgery. Autopsy of the brain detected no evidence of glioblastoma multiform. The only findings were cerebral edema and hematoma caused by head trauma, as well as histological changes due to radiation damage. This case apparently confirms the histological disappearance of tumor tissue in a long-term survivor with glioblastoma multiform. (author)

  12. 27 CFR 25.251 - Authorized removals.

    Science.gov (United States)

    2010-04-01

    ..., DEPARTMENT OF THE TREASURY LIQUORS BEER Removal of Brewer's Yeast and Other Articles § 25.251 Authorized removals. (a) Brewer's yeast. A brewer may remove brewer's yeast, in liquid or solid form containing not... including the words “Brewer's Yeast.” (c) Pipeline. If brewer's yeast is removed by pipeline, the pipeline...

  13. Novel MET/TIE2/VEGFR2 inhibitor altiratinib inhibits tumor growth and invasiveness in bevacizumab-resistant glioblastoma mouse models

    Science.gov (United States)

    Piao, Yuji; Park, Soon Young; Henry, Verlene; Smith, Bryan D.; Tiao, Ningyi; Flynn, Daniel L.

    2016-01-01

    Background Glioblastoma highly expresses the proto-oncogene MET in the setting of resistance to bevacizumab. MET engagement by hepatocyte growth factor (HGF) results in receptor dimerization and autophosphorylation mediating tumor growth, invasion, and metastasis. Evasive revascularization and the recruitment of TIE2-expressing macrophages (TEMs) are also triggered by anti-VEGF therapy. Methods We investigated the activity of altiratinib (a novel balanced inhibitor of MET/TIE2/VEGFR2) against human glioblastoma stem cell lines in vitro and in vivo using xenograft mouse models. The biological activity of altiratinib was assessed in vitro by testing the expression of HGF-stimulated MET phosphorylation as well as cell viability after altiratinib treatment. Tumor volume, stem cell and mesenchymal marker levels, microvessel density, and TIE2-expressing monocyte infiltration were evaluated in vivo following treatment with a control, bevacizumab alone, bevacizumab combined with altiratinib, or altiratinib alone. Results In vitro, HGF-stimulated MET phosphorylation was completely suppressed by altiratinib in GSC17 and GSC267, and altiratinib markedly inhibited cell viability in several glioblastoma stem cell lines. More importantly, in multiple xenograft mouse models, altiratinib combined with bevacizumab dramatically reduced tumor volume, invasiveness, mesenchymal marker expression, microvessel density, and TIE2-expressing monocyte infiltration compared with bevacizumab alone. Furthermore, in the GSC17 xenograft model, altiratinib combined with bevacizumab significantly prolonged survival compared with bevacizumab alone. Conclusions Together, these data suggest that altiratinib may suppress tumor growth, invasiveness, angiogenesis, and myeloid cell infiltration in glioblastoma. Thus, altiratinib administered alone or in combination with bevacizumab may overcome resistance to bevacizumab and prolong survival in patients with glioblastoma. PMID:26965451

  14. Combining Immunotherapy with Standard Glioblastoma Therapy

    Science.gov (United States)

    This clinical trial is testing standard therapy (surgery, radiation and temozolomide) plus immunotherapy with pembrolizumab with or without a cancer treatment vaccine for patients with newly diagnosed glioblastoma, a common and deadly type of brain tumor.

  15. Stereotactic Radiosurgery and Hypofractionated Radiotherapy for Glioblastoma.

    Science.gov (United States)

    Shah, Jennifer L; Li, Gordon; Shaffer, Jenny L; Azoulay, Melissa I; Gibbs, Iris C; Nagpal, Seema; Soltys, Scott G

    2018-01-01

    Glioblastoma is the most common primary brain tumor in adults. Standard therapy depends on patient age and performance status but principally involves surgical resection followed by a 6-wk course of radiation therapy given concurrently with temozolomide chemotherapy. Despite such treatment, prognosis remains poor, with a median survival of 16 mo. Challenges in achieving local control, maintaining quality of life, and limiting toxicity plague treatment strategies for this disease. Radiotherapy dose intensification through hypofractionation and stereotactic radiosurgery is a promising strategy that has been explored to meet these challenges. We review the use of hypofractionated radiotherapy and stereotactic radiosurgery for patients with newly diagnosed and recurrent glioblastoma. Copyright © 2017 by the Congress of Neurological Surgeons.

  16. CDK4/6 inhibitor PD0332991 in glioblastoma treatment: does it have a future?

    Directory of Open Access Journals (Sweden)

    Lisette eSchroder

    2015-11-01

    Full Text Available Glioblastoma is aggressive, highly infiltrating, and the most frequent malignant form of brain cancer. With a median survival time of only 14.6 months, when treated with the standard of care, it is essential to find new therapeutic options. A specific CDK4/6 inhibitor, PD0332991, obtained accelerated approval from the Food and Drug Administration for the treatment of patients with advanced estrogen receptor-positive and HER2-negative breast cancer. Common alterations in the cyclin D1-Cyclin Dependent Kinase 4/6-Retinoblastoma 1 pathway in glioblastoma make PD0332991 also an interesting drug for the treatment of glioblastoma. Promising results in in vitro studies, where patient derived glioblastoma cell lines showed sensitivity to PD0332991, gave motive to start in vivo studies. Outcomes of these studies have been contrasting in terms of PD0332991 efficacy within the brain: more research is necessary to conclude whether CDK4/6 inhibitor can be beneficial in the treatment of glioblastoma.

  17. Micro RNAs as molecular markers of glioblastoma multiform

    Energy Technology Data Exchange (ETDEWEB)

    Farace, M G [Department Experimental Medicine and Biochemical Sciences, University of Tor Vergata, Rome (Italy); Finocchiaro, G [Istituto Neurologico Besta, Milan (Italy); Ricci Vitiani, L [Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanita, Rome (Italy)

    2009-07-01

    The aim of this project was to unravel the role that miR-221 and miR-222, of which we had already demonstrated the specific differential expression in glioblastoma multiforme compared to normal brain, play in the control of cell proliferation, with the ultimate goal to provide new insights in the molecular basis of cancer. The results of our research allowed to identify an important molecular target for miRNA-221 and miR-222, highly expressed in glioblastoma multiforme tissues and cell lines, and to precisely recognize the mRNA regions responsible for this regulation.

  18. Micro RNAs as molecular markers of glioblastoma multiform

    International Nuclear Information System (INIS)

    Farace, M.G.; Finocchiaro, G.; Ricci Vitiani, L.

    2009-01-01

    The aim of this project was to unravel the role that miR-221 and miR-222, of which we had already demonstrated the specific differential expression in glioblastoma multiforme compared to normal brain, play in the control of cell proliferation, with the ultimate goal to provide new insights in the molecular basis of cancer. The results of our research allowed to identify an important molecular target for miRNA-221 and miR-222, highly expressed in glioblastoma multiforme tissues and cell lines, and to precisely recognize the mRNA regions responsible for this regulation

  19. Prodrugs of Pyrazolo[3,4-d]pyrimidines: From Library Synthesis to Evaluation as Potential Anticancer Agents in an Orthotopic Glioblastoma Model.

    Science.gov (United States)

    Vignaroli, Giulia; Iovenitti, Giulia; Zamperini, Claudio; Coniglio, Federica; Calandro, Pierpaolo; Molinari, Alessio; Fallacara, Anna Lucia; Sartucci, Andrea; Calgani, Alessia; Colecchia, David; Mancini, Andrea; Festuccia, Claudio; Dreassi, Elena; Valoti, Massimo; Musumeci, Francesca; Chiariello, Mario; Angelucci, Adriano; Botta, Maurizio; Schenone, Silvia

    2017-07-27

    Pyrazolo[3,4-d]pyrimidines are potent protein kinase inhibitors with promising antitumor activity but suboptimal aqueous solubility, consequently worth being further optimized. Herein, we present the one-pot two-step procedure for the synthesis of a set of pyrazolo[3,4-d]pyrimidine prodrugs (1a-8a and 9a-e) with higher aqueous solubility and enhanced pharmacokinetic and therapeutic properties. ADME studies demonstrated for the most promising prodrugs a better aqueous solubility, a favorable hydrolysis in human and murine serum, and an increased ability to cross cell membranes with respect to the parental drugs, explaining their better 24 h in vitro cytotoxicity against human glioblastoma U87 cell line. Finally, the 4-4a couple of drug/prodrug was also evaluated in vivo, revealing a profitable pharmacokinetic profile of the prodrug associated with a good efficacy. The application of the prodrug approach demonstrated to be a successful strategy for improving aqueous solubility of the parental drugs, determining a positive impact also in their biological efficacy.

  20. Long-term In Vitro Treatment of Human Glioblastoma Cells with Temozolomide Increases Resistance In Vivo through Up-regulation of GLUT Transporter and Aldo-Keto Reductase Enzyme AKR1C Expression

    Directory of Open Access Journals (Sweden)

    Benjamin Le Calvé

    2010-09-01

    Full Text Available Glioblastoma (GBM is the most frequent malignant glioma. Treatment of GBM patients is multimodal with maximum surgical resection, followed by concurrent radiation and chemotherapy with the alkylating drug temozolomide (TMZ. The present study aims to identify genes implicated in the acquired resistance of two human GBM cells of astrocytic origin, T98G and U373, to TMZ. Resistance to TMZ was induced by culturing these cells in vitro for months with incremental TMZ concentrations up to 1 mM. Only partial resistance to TMZ has been achieved and was demonstrated in vivo in immunocompromised mice bearing orthotopic U373 and T98G xenografts. Our data show that long-term treatment of human astroglioma cells with TMZ induces increased expression of facilitative glucose transporter/solute carrier GLUT/SLC2A family members, mainly GLUT-3, and of the AKR1C family of proteins. The latter proteins are phase 1 drug-metabolizing enzymes involved in the maintenance of steroid homeostasis, prostaglandin metabolism, and metabolic activation of polycyclic aromatic hydrocarbons. GLUT-3 has been previously suggested to exert roles in GBM neovascularization processes, and TMZ was found to exert antiangiogenic effects in experimental gliomas. AKR1C1 was previously shown to be associated with oncogenic potential, with proproliferative effects similar to AKR1C3 in the latter case. Both AKR1C1 and AKR1C2 proteins are involved in cancer pro-proliferative cell chemoresistance. Selective targeting of GLUT-3 in GBM and/or AKR1C proteins (by means of jasmonates, for example could thus delay the acquisition of resistance to TMZ of astroglioma cells in the context of prolonged treatment with this drug.

  1. Hippocampal sparing radiotherapy for glioblastoma patients: a planning study using volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Hofmaier, Jan; Kantz, Steffi; Söhn, Matthias; Dohm, Oliver S.; Bächle, Stefan; Alber, Markus; Parodi, Katia; Belka, Claus; Niyazi, Maximilian

    2016-01-01

    The purpose of this study is to investigate the potential to reduce exposure of the contralateral hippocampus in radiotherapy for glioblastoma using volumetric modulated arc therapy (VMAT). Datasets of 27 patients who had received 3D conformal radiotherapy (3D-CRT) for glioblastoma with a prescribed dose of 60Gy in fractions of 2Gy were included in this planning study. VMAT plans were optimized with the aim to reduce the dose to the contralateral hippocampus as much as possible without compromising other parameters. Hippocampal dose and treatment parameters were compared to the 3D-CRT plans using the Wilcoxon signed-rank test. The influence of tumour location and PTV size on the hippocampal dose was investigated with the Mann–Whitney-U-test and Spearman’s rank correlation coefficient. The median reduction of the contralateral hippocampus generalized equivalent uniform dose (gEUD) with VMAT was 36 % compared to the original 3D-CRT plans (p < 0.05). Other dose parameters were maintained or improved. The median V30Gy brain could be reduced by 17.9 % (p < 0.05). For VMAT, a parietal and a non-temporal tumour localisation as well as a larger PTV size were predictors for a higher hippocampal dose (p < 0.05). Using VMAT, a substantial reduction of the radiotherapy dose to the contralateral hippocampus for patients with glioblastoma is feasible without compromising other treatment parameters. For larger PTV sizes, less sparing can be achieved. Whether this approach is able to preserve the neurocognitive status without compromising the oncological outcome needs to be investigated in the setting of prospective clinical trials

  2. Tonsillary carcinoma after temozolomide treatment for glioblastoma multiforme: treatment-related or dual-pathology?

    Science.gov (United States)

    Binello, E; Germano, I M

    2009-08-01

    Glioblastoma multiforme is a primary malignant brain tumor with a prognosis of typically less than 2 years. Standard treatment paradigms include surgery, radiation therapy and temozolomide. Little data exists for temozolomide recommendations after the first 6 months. We present a case of a patient with glioblastoma multiforme treated with surgery, radiation and chronic temozolomide for 6 years. He continues to survive glioblastoma-recurrence-free, but developed tonsillary carcinoma. This case raises the question of whether this secondary solid-organ malignancy is treatment-related or dual pathology.

  3. Towards precision medicine-based therapies for glioblastoma: interrogating human disease genomics and mouse phenotypes.

    Science.gov (United States)

    Chen, Yang; Gao, Zhen; Wang, Bingcheng; Xu, Rong

    2016-08-22

    Glioblastoma (GBM) is the most common and aggressive brain tumors. It has poor prognosis even with optimal radio- and chemo-therapies. Since GBM is highly heterogeneous, drugs that target on specific molecular profiles of individual tumors may achieve maximized efficacy. Currently, the Cancer Genome Atlas (TCGA) projects have identified hundreds of GBM-associated genes. We develop a drug repositioning approach combining disease genomics and mouse phenotype data towards predicting targeted therapies for GBM. We first identified disease specific mouse phenotypes using the most recently discovered GBM genes. Then we systematically searched all FDA-approved drugs for candidates that share similar mouse phenotype profiles with GBM. We evaluated the ranks for approved and novel GBM drugs, and compared with an existing approach, which also use the mouse phenotype data but not the disease genomics data. We achieved significantly higher ranks for the approved and novel GBM drugs than the earlier approach. For all positive examples of GBM drugs, we achieved a median rank of 9.2 45.6 of the top predictions have been demonstrated effective in inhibiting the growth of human GBM cells. We developed a computational drug repositioning approach based on both genomic and phenotypic data. Our approach prioritized existing GBM drugs and outperformed a recent approach. Overall, our approach shows potential in discovering new targeted therapies for GBM.

  4. Triterpenoid saponins from the roots of Clematis argentilucida.

    Science.gov (United States)

    Zhao, Mei; Ma, Ning; Qiu, Feng; Tian, Xiangrong; Zhang, Yan; Tang, Haifeng; Liu, Xinyou

    2014-09-01

    Reinvestigation of the n-BuOH extract of the roots of Clematis argentilucida led to the isolation of a new ursane-type triterpenoid saponin 1 and a new taraxerane-type saponin 2, four known saponins 3-6 first isolated from the species, together with seven saponins 7-13 reported in the previous papers. The structures of saponins 1-6 were elucidated by extensive spectroscopic analysis and chemical evidences. The ursane-type and taraxerane-type triterpenoid saponins were obtained from genus Clematis for the first time, and the aglycone of saponin 1, 3β,28-dihydroxy-18αH-ursan-20-en was first encountered. The cytotoxicity of all the saponins was evaluated against human glioblastoma U251MG cell lines. The monodesmosidic saponins 1, 2 and 4-8 exhibited cytotoxic activity against the cells with IC50 values ranging from 6.95 to 38.51 μM. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Radiation related basic cancer research : research for radiation induced tumor cell killing

    International Nuclear Information System (INIS)

    Lee, Seung Hoon; Hong, Seok Il; Cho, Kyung Ja; Kim, Byung Gi; Lee, Kee Ho; Nam, Myung Jin

    1999-04-01

    The radioresistant clones was established from human U251 glioblastoma cell line through intermittently exposed to 3 Gy gamma-radiation for six months. Treatment of SNU-16 cells with various doses of radiation, TNF alpha and PMA resulted in a decrease in cell viability. The results prove that cell death of SNU16 is a apoptosis mediated by caspase-3. We have examined the expression of bcl-2 and c-myc in cervical cancer specimens and cervical intraepithelial neoplasia (CIN) to determine the role of coexpression of bcl-3 and c-myc during progression into cervical cancer. The frequent alterations in FHIT expression in many cervical carcinomas and their cell lines suggest that FHIT gene alterations are pla a role in cervical tumorigenesis. According to these correlation between the viability and apoptosis of RD cells, the proper range of the dosage for the investigation of differentiation potency in RD cells was assessed as 1 to 3Gy

  6. Radiation related basic cancer research : research for radiation induced tumor cell killing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Hoon; Hong, Seok Il; Cho, Kyung Ja; Kim, Byung Gi; Lee, Kee Ho; Nam, Myung Jin

    1999-04-01

    The radioresistant clones was established from human U251 glioblastoma cell line through intermittently exposed to 3 Gy gamma-radiation for six months. Treatment of SNU-16 cells with various doses of radiation, TNF alpha and PMA resulted in a decrease in cell viability. The results prove that cell death of SNU16 is a apoptosis mediated by caspase-3. We have examined the expression of bcl-2 and c-myc in cervical cancer specimens and cervical intraepithelial neoplasia (CIN) to determine the role of coexpression of bcl-3 and c-myc during progression into cervical cancer. The frequent alterations in FHIT expression in many cervical carcinomas and their cell lines suggest that FHIT gene alterations are pla a role in cervical tumorigenesis. According to these correlation between the viability and apoptosis of RD cells, the proper range of the dosage for the investigation of differentiation potency in RD cells was assessed as 1 to 3Gy.

  7. Quantitative Analysis of Signaling Networks across Differentially Embedded Tumors Highlights Interpatient Heterogeneity in Human Glioblastoma

    Science.gov (United States)

    2015-01-01

    Glioblastoma multiforme (GBM) is the most aggressive malignant primary brain tumor, with a dismal mean survival even with the current standard of care. Although in vitro cell systems can provide mechanistic insight into the regulatory networks governing GBM cell proliferation and migration, clinical samples provide a more physiologically relevant view of oncogenic signaling networks. However, clinical samples are not widely available and may be embedded for histopathologic analysis. With the goal of accurately identifying activated signaling networks in GBM tumor samples, we investigated the impact of embedding in optimal cutting temperature (OCT) compound followed by flash freezing in LN2 vs immediate flash freezing (iFF) in LN2 on protein expression and phosphorylation-mediated signaling networks. Quantitative proteomic and phosphoproteomic analysis of 8 pairs of tumor specimens revealed minimal impact of the different sample processing strategies and highlighted the large interpatient heterogeneity present in these tumors. Correlation analyses of the differentially processed tumor sections identified activated signaling networks present in selected tumors and revealed the differential expression of transcription, translation, and degradation associated proteins. This study demonstrates the capability of quantitative mass spectrometry for identification of in vivo oncogenic signaling networks from human tumor specimens that were either OCT-embedded or immediately flash-frozen. PMID:24927040

  8. A case showing effective radiotherapy for a radiation-induced glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Kimiko; Inamura, Takanori; Nakamizo, Akira; Ikezaki, Kiyonobu; Inoha, Satoshi; Nakamura, Kazumasa; Matsuzaki, Akinobu; Fukui, Masashi [Kyushu Univ., Fukuoka (Japan). Graduate School of Medical Sciences

    2001-07-01

    Radiation-induced glioblastoma is usually resistant to all treatments. We report a case with radiation-induced glioblastoma, in which radiotherapy was remarkably effective. A 14-year-old female with a history of acute lymphoblastic leukemia, at the age of 7, underwent 15 Gy of radiotherapy to the whole brain. She was admitted to our department due to the development of headache and nausea. Magnetic resonance imaging showed an irregularly enhanced mass in the left frontal lobe. Partial removal of the mass was performed and histological examination showed it to be glioblastoma with a high MIB-1 index. The patient underwent 40 Gy of local radiotherapy and chemotherapy with ACNU and Interferon-{beta} for 2 years. The residual tumor disappeared after the radiotherapy, and her status is still ''complete remission'', 29 months after the onset. (author)

  9. Role of differentiation in glioblastoma invasion

    NARCIS (Netherlands)

    Vareecal Joseph, Justin

    2015-01-01

    Glioblastoma (GBM) is de meest agressieve hersentumor en diffuse infiltratie in het normale hersenweefsel is een van de hoofdoorzaken van een slechte prognose, aangezien volledige chirurgische verwijdering hierdoor vrijwel onmogelijk is. Het belangrijkste doel van het in dit proefschrift beschreven

  10. Endothelial trans-differentiation in glioblastoma recurring after radiotherapy.

    Science.gov (United States)

    De Pascalis, Ivana; Morgante, Liliana; Pacioni, Simone; D'Alessandris, Quintino Giorgio; Giannetti, Stefano; Martini, Maurizio; Ricci-Vitiani, Lucia; Malinverno, Matteo; Dejana, Elisabetta; Larocca, Luigi M; Pallini, Roberto

    2018-04-30

    We hypothesized that in glioblastoma recurring after radiotherapy, a condition whereby the brain endothelium undergoes radiation-induced senescence, tumor cells with endothelial phenotype may be relevant for tumor neovascularization. Matched glioblastoma samples obtained at primary surgery and at surgery for tumor recurrence after radiotherapy, all expressing epidermal growth factor receptor variant III (EGFRvIII), were assessed by a technique that combines fluorescent in situ hybridization (FISH) for the EGFR/CEP7 chromosomal probe with immunostaining for endothelial cells (CD31) and activated pericytes (α Smooth Muscle Actin). Five EGFRvIII-expressing paired primary/recurrent glioblastoma samples, in which the tumor cells showed EGFR/CEP7 amplification, were then assessed by CD31 and α Smooth Muscle Actin immunofluorescence. In glomeruloid bodies, the ratio between CD31+ cells with amplified EGFR/CEP7 signal and the total CD31+ cells was 0.23 ± 0.09 (mean ± sem) and 0.63 ± 0.07 in primary tumors and in recurrent ones, respectively (p < 0.002, Student-t test). In capillaries, the ratio of CD31+ cells with amplified EGFR/CEP7 over the total CD31+ cells lining the capillary lumen was 0.21 ± 0.06 (mean ± sem) and 0.42 ± 0.07 at primary surgery and at recurrence, respectively (p < 0.005, Student-t test). Expression of α Smooth Muscle Actin by cells with EGFR/CEP7 amplification was not observed. Then, in glioblastoma recurring after radiotherapy, where the brain endothelium suffers from radiation-induced cell senescence, tumor-derived endothelium plays a role in neo-vascularization.

  11. 7 CFR 251.4 - Availability of commodities.

    Science.gov (United States)

    2010-01-01

    ... existing food bank networks and other organizations whose ongoing primary function is to facilitate the... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE GENERAL REGULATIONS AND POLICIES-FOOD DISTRIBUTION THE EMERGENCY FOOD ASSISTANCE PROGRAM § 251.4...

  12. Prognostic value of plasma transforming growth factor-beta in patients with glioblastoma multiforme

    NARCIS (Netherlands)

    Hulshof, M. C.; Sminia, P.; Barten-van Rijbroek, A. D.; Gonzalez Gonzalez, D.

    2001-01-01

    We investigated whether the postoperative concentration of circulating transforming growth factor beta (TGF-beta) yields prognostic value in patients with glioblastoma multiforme (gbm). Blood was collected from 20 healthy volunteers and in 28 patients with mainly glioblastoma multiforme (gbm), both

  13. Effects of hypoxia on expression of a panel of stem cell and chemosensitivity markers in glioblastoma cell line-derived spheroids

    DEFF Research Database (Denmark)

    Kolenda, Jesper; Jensen, Stine Skov; Aaberg-Jessen, Charlotte

    Glioblastomas are the most frequent and malignant primary brain tumor. Tumor stem cells in these tumors have recently been suggested to possess innate resistance mechanisms against radiation and chemotherapy possibly explaining their high level of therapeutic resistance. Moreover tumor hypoxia...... for podoplanin, nestin and TIMP-1 as well as for Ki-67. Hif-2α, Sox-2, MGMT and MDR-1 were not detectable in normoxic and hypoxic U87 spheroids. In conclusion, the expression of tumor stem cell and chemosensitivity markers seems to depend on the oxygen tension suggesting that future development of therapeutic...... with oxygen tensions below 1-5% O2 has been attributed to play a crucial role in tumorigenesis and therapeutic resistance in glioblastoma. This is in contrast to most in vitro experiments in this field being performed in atmospheric air with 21% O2. In this study the influence of hypoxia on the expression...

  14. Involvement of miRNAs in the differentiation of human glioblastoma multiforme stem-like cells.

    Directory of Open Access Journals (Sweden)

    Beatriz Aldaz

    Full Text Available Glioblastoma multiforme (GBM-initiating cells (GICs represent a tumor subpopulation with neural stem cell-like properties that is responsible for the development, progression and therapeutic resistance of human GBM. We have recently shown that blockade of NFκB pathway promotes terminal differentiation and senescence of GICs both in vitro and in vivo, indicating that induction of differentiation may be a potential therapeutic strategy for GBM. MicroRNAs have been implicated in the pathogenesis of GBM, but a high-throughput analysis of their role in GIC differentiation has not been reported. We have established human GIC cell lines that can be efficiently differentiated into cells expressing astrocytic and neuronal lineage markers. Using this in vitro system, a microarray-based high-throughput analysis to determine global expression changes of microRNAs during differentiation of GICs was performed. A number of changes in the levels of microRNAs were detected in differentiating GICs, including over-expression of hsa-miR-21, hsa-miR-29a, hsa-miR-29b, hsa-miR-221 and hsa-miR-222, and down-regulation of hsa-miR-93 and hsa-miR-106a. Functional studies showed that miR-21 over-expression in GICs induced comparable cell differentiation features and targeted SPRY1 mRNA, which encodes for a negative regulator of neural stem-cell differentiation. In addition, miR-221 and miR-222 inhibition in differentiated cells restored the expression of stem cell markers while reducing differentiation markers. Finally, miR-29a and miR-29b targeted MCL1 mRNA in GICs and increased apoptosis. Our study uncovers the microRNA dynamic expression changes occurring during differentiation of GICs, and identifies miR-21 and miR-221/222 as key regulators of this process.

  15. 28 CFR 25.1 - Purpose and authority.

    Science.gov (United States)

    2010-07-01

    ... Instant Criminal Background Check System § 25.1 Purpose and authority. The purpose of this subpart is to establish policies and procedures implementing the Brady Handgun Violence Prevention Act (Brady Act), Public... Instant Criminal Background Check System (NICS) to be contacted by any licensed importer, licensed...

  16. 37 CFR 251.33 - Ex parte communications.

    Science.gov (United States)

    2010-07-01

    ....33 Section 251.33 Patents, Trademarks, and Copyrights COPYRIGHT OFFICE, LIBRARY OF CONGRESS COPYRIGHT... person outside the Library of Congress shall engage in ex parte communication with the Librarian of... concerning public policies related to royalty fee distribution and rate adjustment so long as they are...

  17. Early neuroimaging findings of glioblastoma mimicking non-neoplastic cerebral lesion.

    Science.gov (United States)

    Jung, Tae-Young; Jung, Shin

    2007-09-01

    A 54-year-old man and a 63-year-old woman presented with glioblastoma manifesting as seizure and headache, respectively. Magnetic resonance imaging of the two patients revealed hypointense area on T(1)-weighted imaging, and hyperintense area on T(2)-weighted and diffusion-weighted imaging, with no enhancement after gadolinium administration. Both patients underwent conservative therapy under diagnoses of non-neoplastic cerebral lesion. Six months later, they suffered aggravated symptoms and new neurological deficits. Follow-up magnetic resonance imaging revealed hypointense area on diffusion-weighted imaging and ring enhancement on T(1)-weighted imaging with gadolinium at the site of the previously detected lesions. The tumors showed growth pattern of superficial origin. The large enhanced masses were totally removed through craniotomy under neuronavigator guidance. The histological diagnoses were glioblastoma. Glioblastoma may mimic non-neoplastic conditions on neuroimaging in the early stages. Close follow up of such patients is essential.

  18. Transcriptional profiling of human glioblastoma vessels indicates a key role of VEGF-A and TGF beta 2 in vascular abnormalization

    NARCIS (Netherlands)

    Dieterich, Lothar C.; Mellberg, Sofie; Langenkamp, Elise; Zhang, Lei; Zieba, Agata; Salomaki, Henriikka; Teichert, Martin; Huang, Hua; Edqvist, Per-Henrik; Kraus, Theo; Augustin, Hellmut G.; Olofsson, Tommie; Larsson, Erik; Soderberg, Ola; Molema, Grietje; Ponten, Fredrik; Georgii-Hemming, Patrik; Alafuzoff, Irina; Dimberg, Anna

    2012-01-01

    Glioblastoma are aggressive astrocytic brain tumours characterized by microvascular proliferation and an abnormal vasculature, giving rise to brain oedema and increased patient morbidity. Here, we have characterized the transcriptome of tumour-associated blood vessels and describe a gene signature

  19. Downregulation of RND3/RhoE in glioblastoma patients promotes tumorigenesis through augmentation of notch transcriptional complex activity

    International Nuclear Information System (INIS)

    Liu, Baohui; Lin, Xi; Yang, Xiangsheng; Dong, Huimin; Yue, Xiaojing; Andrade, Kelsey C; Guo, Zhentao; Yang, Jian; Wu, Liquan; Zhu, Xiaonan; Zhang, Shenqi; Tian, Daofeng; Wang, Junmin; Cai, Qiang; Chen, Qizuan; Mao, Shanping; Chen, Qianxue; Chang, Jiang

    2015-01-01

    Activation of Notch signaling contributes to glioblastoma multiform (GBM) tumorigenesis. However, the molecular mechanism that promotes the Notch signaling augmentation during GBM genesis remains largely unknown. Identification of new factors that regulate Notch signaling is critical for tumor treatment. The expression levels of RND3 and its clinical implication were analyzed in GBM patients. Identification of RND3 as a novel factor in GBM genesis was demonstrated in vitro by cell experiments and in vivo by a GBM xenograft model. We found that RND3 expression was significantly decreased in human glioblastoma. The levels of RND3 expression were inversely correlated with Notch activity, tumor size, and tumor cell proliferation, and positively correlated with patient survival time. We demonstrated that RND3 functioned as an endogenous repressor of the Notch transcriptional complex. RND3 physically interacted with NICD, CSL, and MAML1, the Notch transcriptional complex factors, promoted NICD ubiquitination, and facilitated the degradation of these cofactor proteins. We further revealed that RND3 facilitated the binding of NICD to FBW7, a ubiquitin ligase, and consequently enhanced NICD protein degradation. Therefore, Notch transcriptional activity was inhibited. Forced expression of RND3 repressed Notch signaling, which led to the inhibition of glioblastoma cell proliferation in vitro and tumor growth in the xenograft mice in vivo. Downregulation of RND3, however, enhanced Notch signaling activity, and subsequently promoted glioma cell proliferation. Inhibition of Notch activity abolished RND3 deficiency-mediated GBM cell proliferation. We conclude that downregulation of RND3 is responsible for the enhancement of Notch activity that promotes glioblastoma genesis

  20. CAR T-Cell Therapies in Glioblastoma: A First Look.

    Science.gov (United States)

    Migliorini, Denis; Dietrich, Pierre-Yves; Stupp, Roger; Linette, Gerald P; Posey, Avery D; June, Carl H

    2018-02-01

    Glioblastoma is an aggressive malignancy with a poor prognosis. The current standard of care for newly diagnosed glioblastoma patients includes surgery to the extent, temozolomide combined with radiotherapy, and alternating electric fields therapy. After recurrence, there is no standard therapy and survival is less than 9 months. Recurrent glioblastoma offers a unique opportunity to investigate new treatment approaches in a malignancy known for remarkable genetic heterogeneity, an immunosuppressive microenvironment, and a partially permissive anatomic blood-brain barrier. Results from three first-in-man chimeric antigen receptor (CAR) T-cell trials targeting IL13Rα2, Her2/CMV, and EGFRvIII have recently been reported. Each one of these trials addresses important questions, such as T-cell trafficking to CNS, engraftment and persistence, tumor microenvironment remodeling, and monitoring of glioma response to CAR T cells. Objective radiologic responses have been reported. Here, we discuss and summarize the results of these trials and suggest opportunities for the field. Clin Cancer Res; 24(3); 535-40. ©2017 AACR . ©2017 American Association for Cancer Research.

  1. Glioblastoma chemotherapy adjunct via potent serotonin receptor-7 inhibition using currently marketed high-affinity antipsychotic medicines

    Science.gov (United States)

    Kast, RE

    2010-01-01

    Glioblastoma treatment as now constituted offers increased survival measured in months over untreated patients. Because glioblastomas are active in synthesizing a bewildering variety of growth factors, a systematic approach to inhibiting these is being undertaken as treatment adjunct. The serotonin 7 receptor is commonly overexpressed in glioblastoma. Research documentation showing agonists at serotonin receptor 7 cause increased extracellular regulated kinase 1/2 activation, increased interleukin-6 synthesis, increased signal transducer and activator of transcription-3 activation, increased resistance to apoptosis and other growth enhancing changes in glioblastoma is reviewed in this paper. Because three drugs in wide use to treat thought disorders – paliperidone, pimozide and risperidone – are also potent and well-tolerated inhibitors at serotonin receptor 7, these drugs should be studied for growth factor deprivation in an adjunctive role in glioblastoma treatment. PMID:20880389

  2. Nestin expression in the cell lines derived from glioblastoma multiforme

    International Nuclear Information System (INIS)

    Veselska, Renata; Kuglik, Petr; Cejpek, Pavel; Svachova, Hana; Neradil, Jakub; Loja, Tomas; Relichova, Jirina

    2006-01-01

    Nestin is a protein belonging to class VI of intermediate filaments that is produced in stem/progenitor cells in the mammalian CNS during development and is consecutively replaced by other intermediate filament proteins (neurofilaments, GFAP). Down-regulated nestin may be re-expressed in the adult organism under certain pathological conditions (brain injury, ischemia, inflammation, neoplastic transformation). Our work focused on a detailed study of the nestin cytoskeleton in cell lines derived from glioblastoma multiforme, because re-expression of nestin together with down-regulation of GFAP has been previously reported in this type of brain tumor. Two cell lines were derived from the tumor tissue of patients treated for glioblastoma multiforme. Nestin and other cytoskeletal proteins were visualized using imunocytochemical methods: indirect immunofluorescence and immunogold-labelling. Using epifluorescence and confocal microscopy, we described the morphology of nestin-positive intermediate filaments in glioblastoma cells of both primary cultures and the derived cell lines, as well as the reorganization of nestin during mitosis. Our most important result came through transmission electron microscopy and provided clear evidence that nestin is present in the cell nucleus. Detailed information concerning the pattern of the nestin cytoskeleton in glioblastoma cell lines and especially the demonstration of nestin in the nucleus represent an important background for further studies of nestin re-expression in relationship to tumor malignancy and invasive potential

  3. GFAP promoter driven transgenic expression of PDGFB in the mouse brain leads to glioblastoma in a Trp53 null background

    NARCIS (Netherlands)

    Hede, Sanna-Maria; Hansson, Inga; Afink, Gijs B.; Eriksson, Anna; Nazarenko, Inga; Andrae, Johanna; Genove, Guillem; Westermark, Bengt; Nistér, Monica

    2009-01-01

    Glioblastomas are the most common and malignant astrocytic brain tumors in human adults. The tumor suppressor gene TP53 is commonly mutated and/or lost in astrocytic brain tumors and the TP53 alterations are often found in combination with excessive growth factor signaling via PDGF/PDGFRalpha. Here,

  4. Impact of oligodendroglial component in glioblastoma (GBM-O): Is the outcome favourable than glioblastoma?

    Science.gov (United States)

    Goda, Jayant S; Lewis, Shirley; Agarwal, Aditi; Epari, Sridhar; Churi, Shraddha; Padmavati, A; Gupta, Tejpal; Shetty, Prakash; Moiyadi, Aliasgar; Jalali, Rakesh

    2015-08-01

    Prognosis of patients with glioblastoma with oligodendroglial component (GBM-O) is not well defined. We report our experience of patients of GBM-O treated at our center. Between January 2007 and August 2013, out of 817 consecutive patients with glioblastoma (GBM), 74 patients with GBM-O were identified in our prospectively maintained database. An experienced neuropathologist revaluated the histopathology of all these 74 patients and the diagnosis of GBM-O was eventually confirmed in 57 patients. Patients were uniformly treated with maximal safe resection followed by focal radiotherapy with concurrent and adjuvant temozolamide (TMZ). At a median follow up of 16 months, median overall survival (OS) and progression free survival (PFS) of the entire cohort was 23 months and 13 months respectively. Near total excision was performed in 30/57 (52.6%). On univariate analysis, age GBM-O patients with a similarly treated cohort of 105 GBM patients during the same period revealed significantly better median OS in favour of GBM-O (p = 0.01). Our experience suggests patients with GBM-O have a more favourable clinical outcome as compared to GBM. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Advances in Brain Tumor Surgery for Glioblastoma in Adults

    Directory of Open Access Journals (Sweden)

    Montserrat Lara-Velazquez

    2017-12-01

    Full Text Available Glioblastoma (GBM is the most common primary intracranial neoplasia, and is characterized by its extremely poor prognosis. Despite maximum surgery, chemotherapy, and radiation, the histological heterogeneity of GBM makes total eradication impossible, due to residual cancer cells invading the parenchyma, which is not otherwise seen in radiographic images. Even with gross total resection, the heterogeneity and the dormant nature of brain tumor initiating cells allow for therapeutic evasion, contributing to its recurrence and malignant progression, and severely impacting survival. Visual delimitation of the tumor’s margins with common surgical techniques is a challenge faced by many surgeons. In an attempt to achieve optimal safe resection, advances in approaches allowing intraoperative analysis of cancer and non-cancer tissue have been developed and applied in humans resulting in improved outcomes. In addition, functional paradigms based on stimulation techniques to map the brain’s electrical activity have optimized glioma resection in eloquent areas such as the Broca’s, Wernike’s and perirolandic areas. In this review, we will elaborate on the current standard therapy for newly diagnosed and recurrent glioblastoma with a focus on surgical approaches. We will describe current technologies used for glioma resection, such as awake craniotomy, fluorescence guided surgery, laser interstitial thermal therapy and intraoperative mass spectrometry. Additionally, we will describe a newly developed tool that has shown promising results in preclinical experiments for brain cancer: optical coherence tomography.

  6. Periarteriolar Glioblastoma Stem Cell Niches Express Bone Marrow Hematopoietic Stem Cell Niche Proteins

    NARCIS (Netherlands)

    Hira, Vashendriya V. V.; Wormer, Jill R.; Kakar, Hala; Breznik, Barbara; van der Swaan, Britt; Hulsbos, Renske; Tigchelaar, Wikky; Tonar, Zbynek; Khurshed, Mohammed; Molenaar, Remco J.; van Noorden, Cornelis J. F.

    2018-01-01

    In glioblastoma, a fraction of malignant cells consists of therapy-resistant glioblastoma stem cells (GSCs) residing in protective niches that recapitulate hematopoietic stem cell (HSC) niches in bone marrow. We have previously shown that HSC niche proteins stromal cell-derived factor-1α (SDF-1α),

  7. Postoperative extracranial metastasis from glioblastoma: a case report and review of the literature.

    Science.gov (United States)

    Wu, Wenjiao; Zhong, Dequan; Zhao, Zhan; Wang, Wentao; Li, Jun; Zhang, Wei

    2017-12-29

    Glioblastoma is the most common primary malignant brain tumor. Extraneural metastases are rarely reported in the literature. We report a case of a 38-year-old patient who was diagnosed with glioblastoma in 2015. Four months after surgery, local relapse was found and the patient received a second surgery. After another 4 months, we found a hard mass in the right posterior neck when she admitted to our department for fourth cycle of adjuvant chemotherapy. Immunohistochemical investigation supported the diagnosis of glioblastoma metastases to the neck after resection of the right neck mass. A few days later, spinal vertebral magnetic resonance imaging (MRI) confirmed multiple metastases in the thoracic, lumbar, sacral, and bilateral iliac bones. Glioblastoma is the most common primary malignant brain tumor. Whole tumor resection and early radiotherapy and chemotherapy can delay recurrence and prolong survival. Extracranial metastases are extremely rare. We report this case with the aim of bringing attention to extracranial metastasis of brain glioma.

  8. Glioblastomas vs. lymphomas. More diagnostic certainty by using susceptibility-weighted imaging (SWI)

    Energy Technology Data Exchange (ETDEWEB)

    Peters, S.; Knoess, N.; Wodarg, F.; Cnyrim, C.; Jansen, O. [Universitaetsklinikum Schleswig-Holstein, Kiel (Germany). Inst. fuer Neuroradiologie

    2012-08-15

    Purpose: It can be difficult to differentiate glioblastomas from lymphomas using only standard MR images. There are references suggesting that it might be possible to differentiate these tumors using susceptibility-weighted imaging (SWI). The purpose of this study is to prove the diagnostic benefit using susceptibility-weighted images. Material and Methods: Three neuroradiologists tried to differentiate 4 histologically verified lymphomas from 11 glioblastomas in retrospect. They first viewed the conventional MR images and declared a diagnosis with a grade of certainty. Afterwards they additionally reviewed the susceptibility-weighted images. Results: Glioblastomas have a clearly higher grade of susceptibility signals than lymphomas. By additionally using susceptibility-weighted images, the radiologists determined the correct diagnosis in 82.2 % of the cases. Without susceptibility-weighted images, the diagnosis was correct in 75.5 % of the cases. The subjective gain of certainty was 16.5 %. If there were no intratumoral susceptibility signals (ITSS) (grade 1), the sensitivity for diagnosing a lymphoma was 70 % and the specificity was 100 %. The sensitivity for diagnosing a glioblastoma was 90.5 % and the specificity was 100 % if there was a high rate of intratumoral susceptibility signals (grade 3). Conclusion: Susceptibility-weighted images are an additional tool in clinical practice for determining the correct diagnosis. The differentiation between glioblastomas and lymphomas and the certainty of the determined diagnosis are better. Therefore, we recommend adding susceptibility-weighted imaging to the clinical MR tumor protocol. (orig.)

  9. Glioblastomas vs. lymphomas: more diagnostic certainty by using susceptibility-weighted imaging (SWI).

    Science.gov (United States)

    Peters, S; Knöß, N; Wodarg, F; Cnyrim, C; Jansen, O

    2012-08-01

    It can be difficult to differentiate glioblastomas from lymphomas using only standard MR images. There are references suggesting that it might be possible to differentiate these tumors using susceptibility-weighted imaging (SWI). The purpose of this study is to prove the diagnostic benefit using susceptibility-weighted images. Three neuroradiologists tried to differentiate 4 histologically verified lymphomas from 11 glioblastomas in retrospect. They first viewed the conventional MR images and declared a diagnosis with a grade of certainty. Afterwards they additionally reviewed the susceptibility-weighted images. Glioblastomas have a clearly higher grade of susceptibility signals than lymphomas. By additionally using susceptibility-weighted images, the radiologists determined the correct diagnosis in 82.2 % of the cases. Without susceptibility-weighted images, the diagnosis was correct in 75.5 % of the cases. The subjective gain of certainty was 16.5 %. If there were no intratumoral susceptibility signals (ITSS) (grade 1), the sensitivity for diagnosing a lymphoma was 70 % and the specificity was 100 %. The sensitivity for diagnosing a glioblastoma was 90.5 % and the specificity was 100 % if there was a high rate of intratumoral susceptibility signals (grade 3). Susceptibility-weighted images are an additional tool in clinical practice for determining the correct diagnosis. The differentiation between glioblastomas and lymphomas and the certainty of the determined diagnosis are better. Therefore, we recommend adding susceptibility-weighted imaging to the clinical MR tumor protocol. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Glioblastomas vs. lymphomas. More diagnostic certainty by using susceptibility-weighted imaging (SWI)

    International Nuclear Information System (INIS)

    Peters, S.; Knoess, N.; Wodarg, F.; Cnyrim, C.; Jansen, O.

    2012-01-01

    Purpose: It can be difficult to differentiate glioblastomas from lymphomas using only standard MR images. There are references suggesting that it might be possible to differentiate these tumors using susceptibility-weighted imaging (SWI). The purpose of this study is to prove the diagnostic benefit using susceptibility-weighted images. Material and Methods: Three neuroradiologists tried to differentiate 4 histologically verified lymphomas from 11 glioblastomas in retrospect. They first viewed the conventional MR images and declared a diagnosis with a grade of certainty. Afterwards they additionally reviewed the susceptibility-weighted images. Results: Glioblastomas have a clearly higher grade of susceptibility signals than lymphomas. By additionally using susceptibility-weighted images, the radiologists determined the correct diagnosis in 82.2 % of the cases. Without susceptibility-weighted images, the diagnosis was correct in 75.5 % of the cases. The subjective gain of certainty was 16.5 %. If there were no intratumoral susceptibility signals (ITSS) (grade 1), the sensitivity for diagnosing a lymphoma was 70 % and the specificity was 100 %. The sensitivity for diagnosing a glioblastoma was 90.5 % and the specificity was 100 % if there was a high rate of intratumoral susceptibility signals (grade 3). Conclusion: Susceptibility-weighted images are an additional tool in clinical practice for determining the correct diagnosis. The differentiation between glioblastomas and lymphomas and the certainty of the determined diagnosis are better. Therefore, we recommend adding susceptibility-weighted imaging to the clinical MR tumor protocol. (orig.)

  11. A study of concurrent radiochemotherapy with paclitaxel in glioblastoma multiforme

    International Nuclear Information System (INIS)

    Julka, P.K.; Awasthy, B.S.; Rath, G.K.; Agarwal, S.; Varna, T.; Mahapatra, A.K.; Singh, R.

    2000-01-01

    Despite advances in neurosurgery and radiotherapy, the prognosis of patients with glioblastoma multiforme remains poor. Reports in the literature about the radiosensitizing properties of paclitaxel stimulated the authors to conduct a study using paclitaxel concurrently with radiation in a group of 18 patients who had residual disease postoperatively. Paclitaxel was delivered weekly as an intravenous infusion in a dose of 60 mg/m 2 along with radiation to the primary lesion. A total of 108 cycles of paclitaxel was given. All the patients tolerated the treatment well. The main side effects were haematological, and neuropathy which was self-limiting. The overall 1-year survival rate was 70%, with 12 patients alive at 13 months. The median survival has not yet been reached although it is more than 13 months. Thus, paclitaxel can be safely delivered concomitantly with radiation in patients with glioblastoma multiforme. Larger, randomized trials are required to establish the comparative efficacy of paclitaxel as a radiosensitizer in glioblastoma multiforme. Copyright (1999) Blackwell Science Pty Ltd

  12. 36 CFR 251.56 - Terms and conditions.

    Science.gov (United States)

    2010-07-01

    ... subject to State regulatory or conservation laws governing its purchase by pipeline companies is offered... standards established by or pursuant to applicable Federal or State law; and (D) Require compliance with... making explicit its preexisting understanding of § 251.56(a)(1)(ii)(G) of this subpart in the context of...

  13. 30 CFR 251.13 - Reimbursement for the costs of reproducing data and information and certain processing costs.

    Science.gov (United States)

    2010-07-01

    ... and information and certain processing costs. 251.13 Section 251.13 Mineral Resources MINERALS... third party for the reasonable costs of processing geophysical information (which does not include cost... OUTER CONTINENTAL SHELF § 251.13 Reimbursement for the costs of reproducing data and information and...

  14. Targeting of human glioma xenografts in vivo utilizing radiolabeled antibodies

    International Nuclear Information System (INIS)

    Williams, J.A.; Wessels, B.W.; Wharam, M.D.; Order, S.E.; Wanek, P.M.; Poggenburg, J.K.; Klein, J.L.

    1990-01-01

    Radiolabeled antibodies provide a potential basis for selective radiotherapy of human gliomas. We have measured tumor targeting by radiolabeled monoclonal and polyclonal antibodies directed against neuroectodermal and tumor-associated antigens in nude mice bearing human glioma xenografts. Monoclonal P96.5, a mouse IgG2a immunoglobulin, defines an epitope of a human melanoma cell surface protein, and specifically binds the U-251 human glioma as measured by immunoperoxidase histochemistry. 111In-radiolabeled P96.5 specifically targets the U-251 human glioma xenograft and yields 87.0 microCuries (microCi) of tumor activity per gram per 100 microCi injected activity compared to 4.5 microCi following administration of radiolabeled irrelevant monoclonal antibody. Calculations of targeting ratios demonstrate deposited dose to be 11.6 times greater with radiolabeled P96.5 administration compared to irrelevant monoclonal antibody. The proportion of tumor dose found in normal organs is less than 10%, further supporting specific targeting of the human glioma xenograft by this antibody. Monoclonal antibody ZME018, which defines a second melanoma-associated antigen, and polyclonal rabbit antiferritin, which defines a tumor-associated antigen, demonstrate positive immunoperoxidase staining of the tumor, but comparatively decreased targeting. When compared to the 111In-radiolabeled antibody, 90Y-radiolabeled P96.5 demonstrates comparable tumor targeting and percentages of tumor dose found in normal organs. To test the therapeutic potential of 90Y-radiolabeled P96.5, tumors and normal sites were implanted with miniature thermoluminescent dosimeters (TLD). Seven days following administration of 100 microCi 90Y-radiolabeled P96.5, average absorbed doses of 3770, 980, 353, and 274 cGy were observed in tumor, liver, contralateral control site, and total body, respectively

  15. Quantitative radiomic profiling of glioblastoma represents transcriptomic expression.

    Science.gov (United States)

    Kong, Doo-Sik; Kim, Junhyung; Ryu, Gyuha; You, Hye-Jin; Sung, Joon Kyung; Han, Yong Hee; Shin, Hye-Mi; Lee, In-Hee; Kim, Sung-Tae; Park, Chul-Kee; Choi, Seung Hong; Choi, Jeong Won; Seol, Ho Jun; Lee, Jung-Il; Nam, Do-Hyun

    2018-01-19

    Quantitative imaging biomarkers have increasingly emerged in the field of research utilizing available imaging modalities. We aimed to identify good surrogate radiomic features that can represent genetic changes of tumors, thereby establishing noninvasive means for predicting treatment outcome. From May 2012 to June 2014, we retrospectively identified 65 patients with treatment-naïve glioblastoma with available clinical information from the Samsung Medical Center data registry. Preoperative MR imaging data were obtained for all 65 patients with primary glioblastoma. A total of 82 imaging features including first-order statistics, volume, and size features, were semi-automatically extracted from structural and physiologic images such as apparent diffusion coefficient and perfusion images. Using commercially available software, NordicICE, we performed quantitative imaging analysis and collected the dataset composed of radiophenotypic parameters. Unsupervised clustering methods revealed that the radiophenotypic dataset was composed of three clusters. Each cluster represented a distinct molecular classification of glioblastoma; classical type, proneural and neural types, and mesenchymal type. These clusters also reflected differential clinical outcomes. We found that extracted imaging signatures does not represent copy number variation and somatic mutation. Quantitative radiomic features provide a potential evidence to predict molecular phenotype and treatment outcome. Radiomic profiles represents transcriptomic phenotypes more well.

  16. Intracranial AAV-sTRAIL combined with lanatoside C prolongs survival in an orthotopic xenograft mouse model of invasive glioblastoma.

    Science.gov (United States)

    Crommentuijn, Matheus H W; Maguire, Casey A; Niers, Johanna M; Vandertop, W Peter; Badr, Christian E; Würdinger, Thomas; Tannous, Bakhos A

    2016-04-01

    Glioblastoma (GBM) is the most common malignant brain tumor in adults. We designed an adeno-associated virus (AAV) vector for intracranial delivery of secreted, soluble tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) to GBM tumors in mice and combined it with the TRAIL-sensitizing cardiac glycoside, lanatoside C (lan C). We applied this combined therapy to two different GBM models using human U87 glioma cells and primary patient-derived GBM neural spheres in culture and in orthotopic GBM xenograft models in mice. In U87 cells, conditioned medium from AAV2-sTRAIL expressing cells combined with lan C induced 80% cell death. Similarly, lan C sensitized primary GBM spheres to sTRAIL causing over 90% cell death. In mice bearing intracranial U87 tumors treated with AAVrh.8-sTRAIL, administration of lan C caused a decrease in tumor-associated Fluc signal, while tumor size increased within days of stopping the treatment. Another round of lan C treatment re-sensitized GBM tumor to sTRAIL-induced cell death. AAVrh.8-sTRAIL treatment alone and combined with lanatoside C resulted in a significant decrease in tumor growth and longer survival of mice bearing orthotopic invasive GBM brain tumors. In summary, AAV-sTRAIL combined with lanatoside C induced cell death in U87 glioma cells and patient-derived GBM neural spheres in culture and in vivo leading to an increased in overall mice survival. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. CANINE BUTTERFLY GLIOBLASTOMAS: A NEURORADIOLOGICAL REVIEW

    Directory of Open Access Journals (Sweden)

    John Henry Rossmeisl

    2016-05-01

    Full Text Available In humans, high-grade gliomas may infiltrate across the corpus callosum resulting in bihemispheric lesions that may have symmetrical, winged-like appearances. This particular tumor manifestation has been coined a ‘butterfly’ glioma (BG. While canine and human gliomas share many neuroradiological and pathological features, the BG morphology has not been previously reported in dogs. Here we describe the magnetic resonance imaging (MRI characteristics of BG in three dogs, and review the potential differential diagnoses based on neuroimaging findings. All dogs presented with generalized seizures and interictal neurological deficits referable to multifocal or diffuse forebrain disease. MRI examinations revealed asymmetrical (2/3 or symmetrical (1/3, bihemispheric intra-axial mass lesions that predominantly affected the frontoparietal lobes and associated with extensive perilesional edema, and involvement of the corpus callosum. The masses displayed heterogeneous T1, T2, and FLAIR signal intensities, variable contrast enhancement (2/3, and mass effect. All tumors demonstrated classical histopathological features of glioblastoma (GBM including glial cell pseudopalisading, serpentine necrosis, microvascular proliferation, as well as invasion of the corpus callosum by neoplastic astrocytes. Although rare, GBM should be considered a differential diagnosis in dogs with MRI evidence of asymmetric or symmetric bilateral, intra-axial cerebral mass lesions with signal characteristics compatible with glioma.

  18. 36 CFR 251.93 - Resolution of issues.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Resolution of issues. 251.93... issues. (a) Authorized Forest Service officers shall, to the extent practicable and consistent with the... meetings is to discuss any issues or concerns related to the authorized use and to reach a common...

  19. Enhancement of the effect of X-irradiation against cultured human glioblastoma cells by pretreatment with ACNU

    Energy Technology Data Exchange (ETDEWEB)

    Mashiyama, Shoji; Katakura, Ryuichi; Takahashi, Kou; Kitahara, Masakazu; Suzuki, Jiro [Tohoku Univ., Sendai (Japan). Inst. of Brain Diseases; Sasaki, Takehito

    1989-12-01

    Human glioblastoma A-7 (GB A-7) cells can apparently recover from potentially lethal X-irradiation. The authors, using a colony-forming assay, studied the influence of pretreatment with 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3- (2-chloroethyl)-3-nitrosourea hydrochloride (ACNU) on the effectiveness of X-irradiation against GB A-7 cells grown in monolayers and as multicellular spheroids. Pre-exposure to ACNU inhibited the recovery of irradiated GB A-7 cells. In monolayer cells, the combination treatment was most effective when ACNU was applied 2 to 8 hours prior to irradiation, and the larger the X-ray dose, the more potent the effect. ACNU pretreatment was more effective against large spheroids (enhancement ratio 1.86) than against small ones (1.34). Large spheroids showed necrosis, whereas small ones did not. Isobolographic analysis disclosed that the effect of combining X-irradiation and ACNU is within an additive envelope at the surviving fraction of 10{sup -2}, while supra-additive at the surviving fraction of 10{sup -3}. These results suggest that the potency of X-irradiation is augmented by ACNU pretreatment through an interactive mechanism. Further, suppression of recovery from X-ray induced potentially lethal damage was influenced by the presence of necrosis. (author).

  20. Enhancement of the effect of X-irradiation against cultured human glioblastoma cells by pretreatment with ACNU

    International Nuclear Information System (INIS)

    Mashiyama, Shoji; Katakura, Ryuichi; Takahashi, Kou; Kitahara, Masakazu; Suzuki, Jiro; Sasaki, Takehito.

    1989-01-01

    Human glioblastoma A-7 (GB A-7) cells can apparently recover from potentially lethal X-irradiation. The authors, using a colony-forming assay, studied the influence of pretreatment with 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3- (2-chloroethyl)-3-nitrosourea hydrochloride (ACNU) on the effectiveness of X-irradiation against GB A-7 cells grown in monolayers and as multicellular spheroids. Pre-exposure to ACNU inhibited the recovery of irradiated GB A-7 cells. In monolayer cells, the combination treatment was most effective when ACNU was applied 2 to 8 hours prior to irradiation, and the larger the X-ray dose, the more potent the effect. ACNU pretreatment was more effective against large spheroids (enhancement ratio 1.86) than against small ones (1.34). Large spheroids showed necrosis, whereas small ones did not. Isobolographic analysis disclosed that the effect of combining X-irradiation and ACNU is within an additive envelope at the surviving fraction of 10 -2 , while supra-additive at the surviving fraction of 10 -3 . These results suggest that the potency of X-irradiation is augmented by ACNU pretreatment through an interactive mechanism. Further, suppression of recovery from X-ray induced potentially lethal damage was influenced by the presence of necrosis. (author)

  1. Therapeutic efficacy of intralesional 131I-labelled hyaluronectin in grafted human glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Girard, N.; Courel, M.N.; Vera, P.; Delpech, B. [Centre Henri-Becquerel, Rouen (France). Laboratoire d' Oncologie Moleculaire

    2000-07-01

    The grafted human glioblastoma cell CB109 was used as a model for intralesional therapy with 131I-labelled hyaluronectin glycoprotein (131I-HN). 131I-HN bound specifically to in situ hyaluronic acid (HA), a main component of the extracellular matrix which is involved in tumour invasion. Labelling experimental conditions were determined and, finally, 25 {mu}Ci/{mu}gHN, 1 {mu}g chloramine-T/{mu}gHN and a 60-s stirring period provided a 131I-HN preparation with an optimal affinity for HA (64% compared to unlabelled HN). Following intratumoral injection, 131I-HN was retained with a limited diffusion outside the tumour. On day 4 the radioactivity concentrated in the tumour was still 25 times greater than that in the liver, spleen and kidneys combined. For therapeutic assays, 65 {mu}Ci 131I-HN was injected into the tumour, resulting in a delivery of 6.8 Gy over a 7-day period. Controls received unlabelled HN, heat-inactivated HN, a mixture of inactivated HN plus free 131I or no treatment (six animals per group). Tumour volumes were evaluated every second day from treatment day and the rate of tumour growth was expressed as a ratio of tumour size at time intervals to the tumour size at the time of injection. Growth curves were compared: heat-inactivated with or without free 131I had no anti-tumour effect. Unlabelled HN-injected tumours had a slightly slower growth rate than untreated tumours (p < 0.02) and growth rate of 131I-HN-injected tumours was much lower (p < 0.00002). A pronounced inhibitory effect with intralesional 131I-labelled HN injection resulted from a combination of a) blockage of HA, a proliferation facilitating factor, and b) local irradiation of tumoral tissue, while uptake in normal tissues was minimized.

  2. Therapeutic efficacy of intralesional 131I-labelled hyaluronectin in grafted human glioblastoma

    International Nuclear Information System (INIS)

    Girard, N.; Courel, M.N.; Vera, P.; Delpech, B.

    2000-01-01

    The grafted human glioblastoma cell CB109 was used as a model for intralesional therapy with 131I-labelled hyaluronectin glycoprotein (131I-HN). 131I-HN bound specifically to in situ hyaluronic acid (HA), a main component of the extracellular matrix which is involved in tumour invasion. Labelling experimental conditions were determined and, finally, 25 μCi/μgHN, 1 μg chloramine-T/μgHN and a 60-s stirring period provided a 131I-HN preparation with an optimal affinity for HA (64% compared to unlabelled HN). Following intratumoral injection, 131I-HN was retained with a limited diffusion outside the tumour. On day 4 the radioactivity concentrated in the tumour was still 25 times greater than that in the liver, spleen and kidneys combined. For therapeutic assays, 65 μCi 131I-HN was injected into the tumour, resulting in a delivery of 6.8 Gy over a 7-day period. Controls received unlabelled HN, heat-inactivated HN, a mixture of inactivated HN plus free 131I or no treatment (six animals per group). Tumour volumes were evaluated every second day from treatment day and the rate of tumour growth was expressed as a ratio of tumour size at time intervals to the tumour size at the time of injection. Growth curves were compared: heat-inactivated with or without free 131I had no anti-tumour effect. Unlabelled HN-injected tumours had a slightly slower growth rate than untreated tumours (p < 0.02) and growth rate of 131I-HN-injected tumours was much lower (p < 0.00002). A pronounced inhibitory effect with intralesional 131I-labelled HN injection resulted from a combination of a) blockage of HA, a proliferation facilitating factor, and b) local irradiation of tumoral tissue, while uptake in normal tissues was minimized

  3. hERG1 channels are overexpressed in glioblastoma multiforme and modulate VEGF secretion in glioblastoma cell lines

    Science.gov (United States)

    Masi, A; Becchetti, A; Restano-Cassulini, R; Polvani, S; Hofmann, G; Buccoliero, A M; Paglierani, M; Pollo, B; Taddei, G L; Gallina, P; Di Lorenzo, N; Franceschetti, S; Wanke, E; Arcangeli, A

    2005-01-01

    Recent studies have led to considerable advancement in our understanding of the molecular mechanisms that underlie the relentless cell growth and invasiveness of human gliomas. Partial understanding of these mechanisms has (1) improved the classification for gliomas, by identifying prognostic subgroups, and (2) pointed to novel potential therapeutic targets. Some classes of ion channels have turned out to be involved in the pathogenesis and malignancy of gliomas. We studied the expression and properties of K+ channels in primary cultures obtained from surgical specimens: human ether a gò-gò related (hERG)1 voltage-dependent K+ channels, which have been found to be overexpressed in various human cancers, and human ether a gò-gò-like 2 channels, that share many of hERG1's biophysical features. The expression pattern of these two channels was compared to that of the classical inward rectifying K+ channels, IRK, that are widely expressed in astrocytic cells and classically considered a marker of astrocytic differentiation. In our study, hERG1 was found to be specifically overexpressed in high-grade astrocytomas, that is, glioblastoma multiforme (GBM). In addition, we present evidence that, in GBM cell lines, hERG1 channel activity actively contributes to malignancy by promoting vascular endothelial growth factor secretion, thus stimulating the neoangiogenesis typical of high-grade gliomas. Our data provide important confirmation for studies proposing the hERG1 channel as a molecular marker of tumour progression and a possible target for novel anticancer therapies. PMID:16175187

  4. The role of IDH1 mutated tumour cells in secondary glioblastomas: an evolutionary game theoretical view

    International Nuclear Information System (INIS)

    Basanta, David; Scott, Jacob G; Anderson, Alexander R A; Rockne, Russ; Swanson, Kristin R

    2011-01-01

    Recent advances in clinical medicine have elucidated two significantly different subtypes of glioblastoma which carry very different prognoses, both defined by mutations in isocitrate dehydrogenase-1 (IDH-1). The mechanistic consequences of this mutation have not yet been fully clarified, with conflicting opinions existing in the literature; however, IDH-1 mutation may be used as a surrogate marker to distinguish between primary and secondary glioblastoma multiforme (sGBM) from malignant progression of a lower grade glioma. We develop a mathematical model of IDH-1 mutated secondary glioblastoma using evolutionary game theory to investigate the interactions between four different phenotypic populations within the tumor: autonomous growth, invasive, glycolytic, and the hybrid invasive/glycolytic cells. Our model recapitulates glioblastoma behavior well and is able to reproduce two recent experimental findings, as well as make novel predictions concerning the rate of invasive growth as a function of vascularity, and fluctuations in the proportions of phenotypic populations that a glioblastoma will experience under different microenvironmental constraints

  5. The role of IDH1 mutated tumour cells in secondary glioblastomas: an evolutionary game theoretical view

    Science.gov (United States)

    Basanta, David; Scott, Jacob G.; Rockne, Russ; Swanson, Kristin R.; Anderson, Alexander R. A.

    2011-02-01

    Recent advances in clinical medicine have elucidated two significantly different subtypes of glioblastoma which carry very different prognoses, both defined by mutations in isocitrate dehydrogenase-1 (IDH-1). The mechanistic consequences of this mutation have not yet been fully clarified, with conflicting opinions existing in the literature; however, IDH-1 mutation may be used as a surrogate marker to distinguish between primary and secondary glioblastoma multiforme (sGBM) from malignant progression of a lower grade glioma. We develop a mathematical model of IDH-1 mutated secondary glioblastoma using evolutionary game theory to investigate the interactions between four different phenotypic populations within the tumor: autonomous growth, invasive, glycolytic, and the hybrid invasive/glycolytic cells. Our model recapitulates glioblastoma behavior well and is able to reproduce two recent experimental findings, as well as make novel predictions concerning the rate of invasive growth as a function of vascularity, and fluctuations in the proportions of phenotypic populations that a glioblastoma will experience under different microenvironmental constraints.

  6. Neuroimaging classification of progression patterns in glioblastoma: a systematic review.

    Science.gov (United States)

    Piper, Rory J; Senthil, Keerthi K; Yan, Jiun-Lin; Price, Stephen J

    2018-03-30

    Our primary objective was to report the current neuroimaging classification systems of spatial patterns of progression in glioblastoma. In addition, we aimed to report the terminology used to describe 'progression' and to assess the compliance with the Response Assessment in Neuro-Oncology (RANO) Criteria. We conducted a systematic review to identify all neuroimaging studies of glioblastoma that have employed a categorical classification system of spatial progression patterns. Our review was registered with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) registry. From the included 157 results, we identified 129 studies that used labels of spatial progression patterns that were not based on radiation volumes (Group 1) and 50 studies that used labels that were based on radiation volumes (Group 2). In Group 1, we found 113 individual labels and the most frequent were: local/localised (58%), distant/distal (51%), diffuse (20%), multifocal (15%) and subependymal/subventricular zone (15%). We identified 13 different labels used to refer to 'progression', of which the most frequent were 'recurrence' (99%) and 'progression' (92%). We identified that 37% (n = 33/90) of the studies published following the release of the RANO classification were adherent compliant with the RANO criteria. Our review reports significant heterogeneity in the published systems used to classify glioblastoma spatial progression patterns. Standardization of terminology and classification systems used in studying progression would increase the efficiency of our research in our attempts to more successfully treat glioblastoma.

  7. 27 CFR 41.251 - Change in name.

    Science.gov (United States)

    2010-04-01

    ... corporate name. When there is a change in the corporate name of an importer of processed tobacco, the... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Change in name. 41.251... name. (a) Change in individual name. When there is a change in the name of an individual operating...

  8. New perspective for GdNCT. Gd-DTPA reaches the nucleus of glioblastoma cells in culture and in vivo

    International Nuclear Information System (INIS)

    Stasio, G. de; Gilbert, B.; Frazer, B.H.

    2000-01-01

    We investigated the prospects of gadolinium as a neutron capture therapy agent by combining three independent techniques to study the uptake of Gd-DTPA in vitro, in cultured glioblastoma cells, and in vivo, in the glioblastoma tissue sections after injection of Gd-DTPA and tumor extraction. We show that gadolinium not only penetrates the plasma membrane of glioblastoma cells grown in culture, but we also observe a statistically significant higher concentration of Gd in the nucleus relative to the cytoplasm. For the in vivo experiments, Gd-DTPA was administered to 6 glioblastoma patients before neurosurgery. The extracted bioptic tissue was then analyzed with spectromictroscopy, showing Gd localized in the nuclei of glioblastoma cells in 5 patients out of the 6 analyzed. (author)

  9. 29 CFR 779.251 - Goods that have lost their out-of-State identity.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Goods that have lost their out-of-State identity. 779.251... Coverage Interstate Inflow Test Under Prior Act § 779.251 Goods that have lost their out-of-State identity... been processed or manufactured so as to have lost their identity as out-of-State goods before they are...

  10. 17-AAG sensitized malignant glioma cells to death-receptor mediated apoptosis.

    Science.gov (United States)

    Siegelin, Markus David; Habel, Antje; Gaiser, Timo

    2009-02-01

    17-AAG is a selective HSP90-inhibitor that exhibited therapeutic activity in cancer. In this study three glioblastoma cell lines (U87, LN229 and U251) were treated with 17-AAG, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or the combination of both. Treatment with subtoxic doses of 17-AAG in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces rapid apoptosis in TRAIL-resistant glioma cells, suggesting that this combined treatment may offer an attractive strategy for treating gliomas. 17-AAG treatment down-regulated survivin through proteasomal degradation. In addition, over-expression of survivin attenuated cytotoxicity induced by the combination of 17-AAG and TRAIL. In summary, survivin is a key regulator of TRAIL-17-AAG mediated cell death in malignant glioma.

  11. Second Generation Amphiphilic Poly-Lysine Dendrons Inhibit Glioblastoma Cell Proliferation without Toxicity for Neurons or Astrocytes.

    Directory of Open Access Journals (Sweden)

    Jolanta Janiszewska

    Full Text Available Glioblastomas are the most common malignant primary brain tumours in adults and one of the most aggressive and difficult-to-treat cancers. No effective treatment exits actually for this tumour and new therapeutic approaches are needed for this disease. One possible innovative approach involves the nanoparticle-mediated specific delivery of drugs and/or genetic material to glioblastoma cells where they can provide therapeutic benefits. In the present work, we have synthesised and characterised several second generation amphiphilic polylysine dendrons to be used as siRNA carriers. We have found that, in addition to their siRNA binding properties, these new compounds inhibit the proliferation of two glioblastoma cell lines while being nontoxic for non-tumoural central nervous system cells like neurons and glia, cell types that share the anatomical space with glioblastoma cells during the course of the disease. The selective toxicity of these nanoparticles to glioblastoma cells, as compared to neurons and glial cells, involves mitochondrial depolarisation and reactive oxygen species production. This selective toxicity, together with the ability to complex and release siRNA, suggests that these new polylysine dendrons might offer a scaffold in the development of future nanoparticles designed to restrict the proliferation of glioblastoma cells.

  12. IDH1-associated primary glioblastoma in young adults displays differential patterns of tumour and vascular morphology.

    Directory of Open Access Journals (Sweden)

    Sergey Popov

    Full Text Available Glioblastoma is a highly aggressive tumour with marked heterogeneity at the morphological level in both the tumour cells and the associated highly prominent vasculature. As we begin to develop an increased biological insight into the underlying processes driving the disease, fewer attempts have thus far been made to understand these phenotypic differences. We sought to address this by carefully assessing the morphological characteristics of both the tumour cells and the associated vasculature, relating these observations to the IDH1/MGMT status, with a particular focus on the early onset population of young adults who develop primary glioblastoma. 276 primary glioblastoma specimens were classified into their predominant cell morphological type (fibrillary, gemistocytic, giant cell, small cell, oligodendroglial, sarcomatous, and assessed for specific tumour (cellularity, necrosis, palisades and vascular features (glomeruloid structures, arcades, pericyte proliferation. IDH1 positive glioblastomas were associated with a younger age at diagnosis, better clinical outcome, prominent oligodendroglial and small cell tumour cell morphology, pallisading necrosis and glomeruloid vascular proliferation in the absence of arcade-like structures. These features widen the phenotype of IDH1 mutation-positive primary glioblastoma in young adults and provide correlative evidence for a functional role of mutant IDH1 in the differential nature of neo-angiogenesis in different subtypes of glioblastoma.

  13. Combined Modality Approaches in the Management of Adult Glioblastoma

    International Nuclear Information System (INIS)

    Shirazi, Haider A.; Grimm, Sean; Raizer, Jeffrey; Mehta, Minesh P.

    2011-01-01

    Over the past two decades, management of newly diagnosed glioblastoma has undergone significant evolution. While surgery has long been a mainstay of management for this disease, and while radiotherapy has a proven survival role, initial efforts at radiotherapy dose escalation, use of radiosurgery, brachytherapy, and altered fractionation did not improve patient survival. Recently, multiple modality therapy integrating maximal safe resection, postoperative radiation, and new systemic therapies have resulted in improved patient outcomes compared with older regimens utilizing surgery and postoperative radiation alone. Numerous trials are currently underway investigating the combination of surgery, radiation, and systemic therapy with targeted agents to find ways to further improve outcomes for adults with glioblastoma.

  14. Combined Modality Approaches in the Management of Adult Glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Shirazi, Haider A. [Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL (United States); Grimm, Sean; Raizer, Jeffrey [Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL (United States); Mehta, Minesh P., E-mail: mmehta@nmff.org [Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL (United States)

    2011-10-28

    Over the past two decades, management of newly diagnosed glioblastoma has undergone significant evolution. While surgery has long been a mainstay of management for this disease, and while radiotherapy has a proven survival role, initial efforts at radiotherapy dose escalation, use of radiosurgery, brachytherapy, and altered fractionation did not improve patient survival. Recently, multiple modality therapy integrating maximal safe resection, postoperative radiation, and new systemic therapies have resulted in improved patient outcomes compared with older regimens utilizing surgery and postoperative radiation alone. Numerous trials are currently underway investigating the combination of surgery, radiation, and systemic therapy with targeted agents to find ways to further improve outcomes for adults with glioblastoma.

  15. Sigma and opioid receptors in human brain tumors

    International Nuclear Information System (INIS)

    Thomas, G.E.; Szuecs, M.; Mamone, J.Y.; Bem, W.T.; Rush, M.D.; Johnson, F.E.; Coscia, C.J.

    1990-01-01

    Human brain tumors and nude mouse-borne human neuroblastomas and gliomas were analyzed for sigma and opioid receptor content. Sigma binding was assessed using [ 3 H] 1, 3-di-o-tolylguanidine (DTG), whereas opioid receptor subtypes were measured with tritiated forms of the following: μ, [D-ala 2 , mePhe 4 , gly-ol 5 ] enkephalin (DAMGE); κ, ethylketocyclazocine (EKC) or U69,593; δ, [D-pen 2 , D-pen 5 ] enkephalin (DPDPE) or [D-ala 2 , D-leu 5 ] enkephalin (DADLE) with μ suppressor present. Binding parameters were estimated by homologous displacement assays followed by analysis using the LIGAND program. Sigma binding was detected in 15 of 16 tumors examined with very high levels found in a brain metastasis from an adenocarcinoma of lung and a human neuroblastoma (SK-N-MC) passaged in nude mice. κ opioid receptor binding was detected in 4 of 4 glioblastoma multiforme specimens and 2 of 2 human astrocytoma cell lines tested but not in the other brain tumors analyzed

  16. In vivo preclinical low field MRI monitoring of tumor growth following a suicide gene therapy in an ortho-topic mice model of human glioblastoma;Controle par IRM bas champ in vivo de l'efficacite d'une therapie genique par gene suicide dans un modele murin de glioblastome orthotopique

    Energy Technology Data Exchange (ETDEWEB)

    Breton, E.; Goetz, Ch.; Aubertin, G.; Constantinesco, A.; Choquet, Ph. [Service de biophysique et medecine nucleaire, hopital de Hautepierre, CHRU de Strasbourg, 67 - Strasbourg (France); Institut de mecanique des fluides et des solides, CNRS, universite de Strasbourg, 67 - Strasbourg (France); Kintz, J.; Accart, N.; Grellier, B.; Erbs, Ph.; Rooke, R. [Transgene SA, parc d' innovation, 67 - Illkirch Graffenstaden (France)

    2010-03-15

    Purpose The aim of this study was to monitor in vivo with low field MRI growth of a murine ortho-topic glioma model following a suicide gene therapy. Methods The gene therapy consisted in the stereotactic injection in the mice brain of a modified vaccinia virus Ankara (M.V.A.) vector encoding for a suicide gene (FCU1) that transforms a non toxic pro-drug 5-fluoro-cytosine (5-F.C.) to its highly cytotoxic derivatives 5-fluorouracil (5-F.U.) and 5-fluoro-uridine-5 monophosphate (5-F.U.M.P.). Using a warmed-up imaging cell, sequential 3D T1 and T2 0.1T MRI brain examinations were performed on 16 Swiss female nu/nu mice bearing ortho-topic human glioblastoma (U 87-MG cells). The 6-week in vivo MRI follow-up consisted in a weekly measurement of the intracerebral tumor volume leading to a total of 65 examinations. Mice were divided in four groups: sham group (n = 4), sham group treated with 5-F.C. only (n = 4), sham group with injection of M.V.A.-FCU1 vector only (n = 4), therapy group administered with M.V.A.-FCU1 vector and 5-F.C. (n = 4). Measurements of tumor volumes were obtained after manual segmentation of T1- and T2-weighted images. Results Intra-observer and inter-observer tumor volume measurements show no significant differences. No differences were found between T1 and T2 volume tumor doubling times between the three sham groups. A significant statistical difference (p < 0.05) in T1 and T2 volume tumor doubling times between the three sham groups and the animals treated with the intratumoral injection of M.V.A.-FCU1 vector in combination with 2 weeks per os 5-F.C. administration was demonstrated. Conclusion Preclinical low field MRI was able to monitor efficacy of suicide gene therapy in delaying the tumor growth in an in vivo mouse model of ortho-topic glioblastoma. (authors)

  17. CAR T Cell Therapy for Glioblastoma: Recent Clinical Advances and Future Challenges.

    Science.gov (United States)

    Bagley, Stephen J; Desai, Arati S; Linette, Gerald P; June, Carl H; O'Rourke, Donald M

    2018-03-02

    In patients with certain hematologic malignancies, the use of autologous T cells genetically modified to express chimeric antigen receptors (CARs) has led to unprecedented clinical responses. Although progress in solid tumors has been elusive, recent clinical studies have demonstrated the feasibility and safety of CAR T cell therapy for glioblastoma. In addition, despite formidable barriers to T cell localization and effector function in glioblastoma, signs of efficacy have been observed in select patients. In this review, we begin with a discussion of established obstacles to systemic therapy in glioblastoma and how these may be overcome by CAR T cells. We continue with a summary of previously published CAR T cell trials in GBM, and end by outlining the key therapeutic challenges associated with the use of CAR T cells in this disease.

  18. ERGO: A pilot study of ketogenic diet in recurrent glioblastoma

    Science.gov (United States)

    RIEGER, JOHANNES; BÄHR, OLIVER; MAURER, GABRIELE D.; HATTINGEN, ELKE; FRANZ, KEA; BRUCKER, DANIEL; WALENTA, STEFAN; KÄMMERER, ULRIKE; COY, JOHANNES F.; WELLER, MICHAEL; STEINBACH, JOACHIM P.

    2014-01-01

    Limiting dietary carbohydrates inhibits glioma growth in preclinical models. Therefore, the ERGO trial (NCT00575146) examined feasibility of a ketogenic diet in 20 patients with recurrent glioblastoma. Patients were put on a low-carbohydrate, ketogenic diet containing plant oils. Feasibility was the primary endpoint, secondary endpoints included the percentage of patients reaching urinary ketosis, progression-free survival (PFS) and overall survival. The effects of a ketogenic diet alone or in combination with bevacizumab was also explored in an orthotopic U87MG glioblastoma model in nude mice. Three patients (15%) discontinued the diet for poor tolerability. No serious adverse events attributed to the diet were observed. Urine ketosis was achieved at least once in 12 of 13 (92%) evaluable patients. One patient achieved a minor response and two patients had stable disease after 6 weeks. Median PFS of all patients was 5 (range, 3–13) weeks, median survival from enrollment was 32 weeks. The trial allowed to continue the diet beyond progression. Six of 7 (86%) patients treated with bevacizumab and diet experienced an objective response, and median PFS on bevacizumab was 20.1 (range, 12–124) weeks, for a PFS at 6 months of 43%. In the mouse glioma model, ketogenic diet alone had no effect on median survival, but increased that of bevacizumab-treated mice from 52 to 58 days (pketogenic diet is feasible and safe but probably has no significant clinical activity when used as single agent in recurrent glioma. Further clinical trials are necessary to clarify whether calorie restriction or the combination with other therapeutic modalities, such as radiotherapy or anti-angiogenic treatments, could enhance the efficacy of the ketogenic diet. PMID:24728273

  19. 12 CFR 335.251 - Forms for notification of action taken by national securities exchanges.

    Science.gov (United States)

    2010-01-01

    ... national securities exchanges. 335.251 Section 335.251 Banks and Banking FEDERAL DEPOSIT INSURANCE... for notification of action taken by national securities exchanges. The applicable forms for notification of action taken by national securities exchanges are codified in subpart A of 17 CFR part 249. All...

  20. 48 CFR 2452.251-70 - Contractor employee travel.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Contractor employee travel... 2452.251-70 Contractor employee travel. As prescribed in 2451.7001, insert the following clause in all cost-reimbursement solicitations and contracts involving travel: Contractor Employee Travel (OCT 1999...

  1. THE CANNABINOID RECEPTOR ANTAGONIST AM251 INCREASES PARAOXON AND CHLORPYRIFOS OXON TOXICITY IN RATS

    Science.gov (United States)

    Liu, Jing; Pope, Carey

    2014-01-01

    Organophosphorus anticholinesterases (OPs) elicit acute toxicity by inhibiting acetylcholinesterase (AChE), leading to acetylcholine accumulation and overstimulation of cholinergic receptors. Endocannabinoids (eCBs, e.g., arachidonoyl ethanolamide [AEA] and 2-arachidonoyl glycerol [2-AG]) are neuromodulators that regulate neurotransmission by reducing neurotransmitter release. The eCBs are degraded by the enzymes fatty acid amide hydrolase (FAAH, primarily involved in hydrolysis of AEA) and monoacylglycerol lipase (MAGL, primarily responsible for metabolism of 2-AG). We previously reported that the cannabinoid receptor agonist WIN 55,212-2 reduced cholinergic toxicity after paraoxon exposure. This study compared the effects of the cannabinoid receptor antagonist AM251 on acute toxicity following either paraoxon (PO) or chlorpyrifos oxon (CPO). CPO was more potent in vitro than PO at inhibiting AChE (≈ 2 fold), FAAH (≈ 8 fold), and MAGL (≈ 19 fold). Rats were treated with vehicle, PO (0.3 and 0.6 mg/kg, sc.) or CPO (6 and 12 mg/kg, sc.) and subsets treated with AM251 (3 mg/kg, ip; 30 min after OP). Signs of toxicity were recorded for four hours and rats were then sacrificed. OP-treated rats showed dose-related involuntary movements, with AM251 increasing signs of toxicity with the lower dosages. PO and CPO elicited excessive secretions, but AM251 had no apparent effect with either OP. Lethality was increased by AM251 with the higher dosage of PO, but no lethality was noted with either dosage of CPO, with or without AM251. Both OPs caused extensive inhibition of hippocampal AChE and FAAH (>80–90%), but only CPO inhibited MAGL (37–50%). These results provide further evidence that eCB signaling can influence acute OP toxicity. The selective in vivo inhibition of MAGL by CPO may be important in the differential lethality noted between PO and CPO with AM251 co-administration. PMID:25447325

  2. MGMT, GATA6, CD81, DR4, and CASP8 gene promoter methylation in glioblastoma

    Directory of Open Access Journals (Sweden)

    Skiriute Daina

    2012-06-01

    Full Text Available Abstract Background Methylation of promoter region is the major mechanism affecting gene expression in tumors. Recent methylome studies of brain tumors revealed a list of new epigenetically modified genes. Our aim was to study promoter methylation of newly identified epigenetically silenced genes together with already known epigenetic markers and evaluate its separate and concomitant role in glioblastoma genesis and patient outcome. Methods The methylation status of MGMT, CD81, GATA6, DR4, and CASP8 in 76 patients with primary glioblastomas was investigated. Methylation-specific PCR reaction was performed using bisulfite treated DNA. Evaluating glioblastoma patient survival time after operation, patient data and gene methylation effect on survival was estimated using survival analysis. Results The overwhelming majority (97.3% of tumors were methylated in at least one of five genes tested. In glioblastoma specimens gene methylation was observed as follows: MGMT in 51.3%, GATA6 in 68.4%, CD81 in 46.1%, DR4 in 41.3% and CASP8 in 56.8% of tumors. Methylation of MGMT was associated with younger patient age (p CASP8 with older (p MGMT methylation was significantly more frequent event in patient group who survived longer than 36 months after operation (p CASP8 was more frequent in patients who survived shorter than 36 months (p MGMT, GATA6 and CASP8 as independent predictors for glioblastoma patient outcome (p MGMT and GATA6 were independent predictors for patient survival in younger patients’ group, while there were no significant associations observed in older patients’ group when adjusted for therapy. Conclusions High methylation frequency of tested genes shows heterogeneity of glioblastoma epigenome and the importance of MGMT, GATA6 and CASP8 genes methylation in glioblastoma patient outcome.

  3. Glioblastoma after radiotherapy for craniopharyngioma: case report

    International Nuclear Information System (INIS)

    Ushio, Y.; Arita, N.; Yoshimine, T.; Nagatani, M.; Mogami, H.

    1987-01-01

    A 6-year-old girl developed a glioblastoma in the basal ganglia and brain stem 5 years after surgical excision and local irradiation (5460 cGy) for craniopharyngioma. Clinical and histological details are presented, and the literature on radiation-induced gliomas is reviewed

  4. Prediction of clinical course of glioblastomas by MRI during radiotherapy

    International Nuclear Information System (INIS)

    Leitzen, Christina; Schild, Hans H.; Bungart, Birgitta; Luetter, Christiana; Muedder, Thomas; Wilhelm-Buchstab, Timo; Schueller, Heinrich; Herrlinger, Ulrich

    2010-01-01

    Purpose: Determine the value of MR studies in patients undergoing radiotherapy for glioblastomas pre and during radiotherapy to predict the clinical course. Patients and Methods: MR follow-up studies were performed in 33 patients with glioblastomas before radiotherapy, after 30 Gy, after 60 Gy, and in the treatment follow-up. Findings on MR were categorized into: definite progress, questionable progress, status idem. Patients were followed clinically (median for 11 months). Results: After 30 Gy 23/33 (70%) of the MR examination showed status idem. 10/33 (30%) demonstrated definite (n = 6) or questionable (n = 4) progress. Further tumor progress was faster in these patients and patients succumb to their disease earlier (9 vs. 22 months). The 60 Gy study showed definite (n = 8) and questionable (n = 6) progress in 14/33 (42%) cases. All these tumors were progressing faster and were associated with a comparatively reduced life expectancy. Conclusion: MR follow-up studies after 30 Gy in patients undergoing radiotherapy for glioblastomas allow for prognostic appraisal, and potentially early modification of treatment. (orig.)

  5. Fenofibrate induces ketone body production in melanoma and glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Maja M Grabacka

    2016-02-01

    Full Text Available Ketone bodies (beta-hydroxybutyrate, bHB, acetoacetate are mainly produced in the liver during prolonged fasting or starvation. bHB is a very efficient energy substrate for sustaining ATP production in peripheral tissues; importantly its consumption is preferred over glucose. However, the majority of malignant cells, particularly cancer cells of neuroectodermal origin such as glioblastoma, are not able to use ketone bodies as a source of energy. Here, we report a novel observation that fenofibrate, a synthetic peroxisome proliferator-activated receptor alpha (PPARa agonist, induces bHB production in melanoma and glioblastoma cells, as well as in neurospheres composed of nontransformed cells. Unexpectedly, this effect is not dependent on PPARa activity or its expression level. The fenofibrate-induced ketogenesis is accompanied by growth arrest and down-regulation of transketolase, but the NADP/NADPH and GSH/GSSG ratios remain unaffected. Our results reveal a new, intriguing aspect of cancer cell biology and highlight the benefits of fenofibrate as a supplement to both canonical and dietary (ketogenic therapeutic approaches against glioblastoma.

  6. Vacquinol-1 inducible cell death in glioblastoma multiforme is counter regulated by TRPM7 activity induced by exogenous ATP

    OpenAIRE

    Sander, Philip; Mostafa, Haouraa; Soboh, Ayman; Schneider, Julian M.; Pala, Andrej; Baron, Ann-Kathrin; Moepps, Barbara; Wirtz, C. Rainer; Georgieff, Michael; Schneider, Marion

    2017-01-01

    Glioblastomas (GBM) are the most malignant brain tumors in humans and have a very poor prognosis. New therapeutic options are urgently needed. A novel drug, Vacquinol-1 (Vac), a quinolone derivative, displays promising properties by inducing rapid cell death in GBM but not in non-transformed tissues. Features of this type of cell death are compatible with a process termed methuosis. Here we tested Vac on a highly malignant glioma cell line observed by long-term video microscopy. Human dental-...

  7. Gaussian graphical modeling reveals specific lipid correlations in glioblastoma cells

    Science.gov (United States)

    Mueller, Nikola S.; Krumsiek, Jan; Theis, Fabian J.; Böhm, Christian; Meyer-Bäse, Anke

    2011-06-01

    Advances in high-throughput measurements of biological specimens necessitate the development of biologically driven computational techniques. To understand the molecular level of many human diseases, such as cancer, lipid quantifications have been shown to offer an excellent opportunity to reveal disease-specific regulations. The data analysis of the cell lipidome, however, remains a challenging task and cannot be accomplished solely based on intuitive reasoning. We have developed a method to identify a lipid correlation network which is entirely disease-specific. A powerful method to correlate experimentally measured lipid levels across the various samples is a Gaussian Graphical Model (GGM), which is based on partial correlation coefficients. In contrast to regular Pearson correlations, partial correlations aim to identify only direct correlations while eliminating indirect associations. Conventional GGM calculations on the entire dataset can, however, not provide information on whether a correlation is truly disease-specific with respect to the disease samples and not a correlation of control samples. Thus, we implemented a novel differential GGM approach unraveling only the disease-specific correlations, and applied it to the lipidome of immortal Glioblastoma tumor cells. A large set of lipid species were measured by mass spectrometry in order to evaluate lipid remodeling as a result to a combination of perturbation of cells inducing programmed cell death, while the other perturbations served solely as biological controls. With the differential GGM, we were able to reveal Glioblastoma-specific lipid correlations to advance biomedical research on novel gene therapies.

  8. miR-29b and miR-125a Regulate Podoplanin and Suppress Invasion in Glioblastoma

    Science.gov (United States)

    Cortez, Maria Angelica; Nicoloso, Milena Sabrina; Shimizu, Masayoshi; Rossi, Simona; Gopisetty, Gopal; Molina, Jennifer R.; Carlotti, Carlos; Tirapelli, Daniela; Neder, Luciano; Brassesco, Maria Sol; Scrideli, Carlos Alberto; Tone, Luiz Gonzaga; Georgescu, Maria-Magdalena; Zhang, Wei; Puduvalli, Vinay; Calin, George Adrian

    2017-01-01

    Glioblastoma is the most frequent and malignant brain tumor, characterized by an elevated capacity for cellular proliferation and invasion. Recently, it was demonstrated that podoplanin membrane sialo-glycoprotein encoded by PDPN gene is over-expressed and related to cellular invasion in astrocytic tumors; however the mechanisms of regulation are still unknown. MicroRNAs are noncoding RNAs that regulate gene expression and several biological processes and diseases, including cancer. Nevertheless, their roles in invasion, proliferation, and apoptosis of glioblastoma are not completely understood. In this study, we focused on miR-29b and miR-125a, which were predicted to regulate PDPN, and demonstrated that these microRNAs directly target the 3′ untranslated region of PDPN and inhibit invasion, apoptosis, and proliferation of glioblastomas. Furthermore, we report that miR-29b and miR-125a are downregulated in glioblastomas and also in CD133-positive cells. Taken together, these results suggest that miR-29b and miR-125a represent potential therapeutic targets in glioblastoma. PMID:20665731

  9. Main alkaloids from the Brazilian dendrobatidae frog Epipedobates flavopictus: pumiliotoxin 251D, histrionicotoxin and decahydroquinolines.

    Science.gov (United States)

    Mortari, Márcia Renata; Schwartz, Elisabeth N Ferroni; Schwartz, Carlos Alberto; Pires, Osmindo Rodrigues; Santos, Marcello Moreira; Bloch, Carlos; Sebben, Antonio

    2004-03-01

    Epipedobates flavopictus, Dendrobatidae, is a small aposematic frog found in Brazilian Cerrado bioma. In the present work, we isolated and characterized chemically the most abundant alkaloids present in the cutaneous extract of E. flavopictus. The specimens were collected in Pirenópolis (Goiás, Brazil), their skins were removed and extracted with methanol, and submitted to purification by HPLC and identification by gas chromatography and mass spectrometry. Pumiliotoxin 251D, histrionicotoxin 285Da and two decahydroquinolines, 219A and 243A, were identified. The pumiliotoxin 251D was tested on isolated frog sciatic nerve and on isolated guinea pig ileum muscle. The pumiliotoxin 251D slightly reduced the action potentials amplitude of frog sciatic nerve. The crude skin extract of E. flavopictus and the pumiliotoxin 251D produced rhythmic contractions and increased the muscular tension on isolated guinea pig ileum.

  10. 26 CFR 1.381(c)(25)-1 - Deficiency dividend of a qualified investment entity.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Deficiency dividend of a qualified investment entity. 1.381(c)(25)-1 Section 1.381(c)(25)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Insolvency Reorganizations § 1.381(c)(25...

  11. Triacetin-based acetate supplementation as a chemotherapeutic adjuvant therapy in glioma.

    Science.gov (United States)

    Tsen, Andrew R; Long, Patrick M; Driscoll, Heather E; Davies, Matthew T; Teasdale, Benjamin A; Penar, Paul L; Pendlebury, William W; Spees, Jeffrey L; Lawler, Sean E; Viapiano, Mariano S; Jaworski, Diane M

    2014-03-15

    Cancer is associated with epigenetic (i.e., histone hypoacetylation) and metabolic (i.e., aerobic glycolysis) alterations. Levels of N-acetyl-L-aspartate (NAA), the primary storage form of acetate in the brain, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis to generate acetate, are reduced in glioma; yet, few studies have investigated acetate as a potential therapeutic agent. This preclinical study sought to test the efficacy of the food additive Triacetin (glyceryl triacetate, GTA) as a novel therapy to increase acetate bioavailability in glioma cells. The growth-inhibitory effects of GTA, compared to the histone deacetylase inhibitor Vorinostat (SAHA), were assessed in established human glioma cell lines (HOG and Hs683 oligodendroglioma, U87 and U251 glioblastoma) and primary tumor-derived glioma stem-like cells (GSCs), relative to an oligodendrocyte progenitor line (Oli-Neu), normal astrocytes, and neural stem cells (NSCs) in vitro. GTA was also tested as a chemotherapeutic adjuvant with temozolomide (TMZ) in orthotopically grafted GSCs. GTA-induced cytostatic growth arrest in vitro comparable to Vorinostat, but, unlike Vorinostat, GTA did not alter astrocyte growth and promoted NSC expansion. GTA alone increased survival of mice engrafted with glioblastoma GSCs and potentiated TMZ to extend survival longer than TMZ alone. GTA was most effective on GSCs with a mesenchymal cell phenotype. Given that GTA has been chronically administered safely to infants with Canavan disease, a leukodystrophy due to ASPA mutation, GTA-mediated acetate supplementation may provide a novel, safe chemotherapeutic adjuvant to reduce the growth of glioma tumors, most notably the more rapidly proliferating, glycolytic and hypoacetylated mesenchymal glioma tumors. © 2013 UICC.

  12. Third-line therapy in recurrent glioblastoma: is it another chance for bevacizumab?

    Science.gov (United States)

    Franceschi, Enrico; Lamberti, Giuseppe; Paccapelo, Alexandro; Di Battista, Monica; Genestreti, Giovenzio; Minichillo, Santino; Mura, Antonella; Bartolini, Stefania; Agati, Raffaele; Brandes, Alba A

    2018-04-18

    Standard glioblastoma therapy is long-lasting. Among second-line therapy, choices could be bevacizumab and nitrosoureas depending on National Agencies approval. There is no consensus on 3rd line therapy or clinical trials specifically designed for this setting. We reviewed our institutional database on all consecutive patients who received 3rd line therapy for glioblastoma. Data on 168 out of 1337 (12.6%) glioblastoma patients who underwent 3rd line therapy treatment were collected. Third line treatments were bevacizumab or chemotherapy (nitrosourea, temozolomide or carboplatin plus etoposide). Median progression free survival was 2.9 months and median survival time was 6.6 months from the start of 3rd line therapy. Bevacizumab significantly improved progression-free survival (4.7 vs. 2.6 months, p = .020) and survival from 3rd line start (8.0 vs. 6.0 months, p = .014) in respect to chemotherapy. Toxicity of grade ≥ 3 occurred in 13.7% of patients. In multivariate analysis, survival in 3rd line treatment depends on MGMT methylation (p = .006) and treatment with Bevacizumab (p = .011). Third line therapy in selected glioblastoma patients may be feasible and well tolerated. Bevacizumab improved outcome in 3rd line in respect to chemotherapy.

  13. [Glioblastoma and nursing care in neurosurgery].

    Science.gov (United States)

    Lefort, Mathilde

    2017-02-01

    Nurses in neurosurgical departments play a critical role as they are involved in the first stages of the care pathway of patients with glioblastoma. Indeed, surgery enables a definitive histopathological diagnosis to be established and the size of the tumour to be significantly reduced, thereby improving the prognosis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Studies on the relationship between the radiation resistance and glutathione content of human and rodent cells after treatment with dexamethasone in vitro

    International Nuclear Information System (INIS)

    Millar, B.C.; Jinks, S.

    1985-01-01

    a 20 pre-treatment of human cells from normal (foetal lung) or malignant origin (glioma, lines U118 MG and U251 MG and bladder carcinoma, line EJ) with dexamethasone failed to increase their radiation resistance in vitro despite a 2-fold increase in the GSH content of a glioma cell line, U251 MG, and a small but significant increase in the GSH content of EJ bladder carcinoma cells. In contrast, there was a correlation between an increase in radiation resistance and an elevated GSH content of rodent cells (Chinese hamster lung, line V-79-379A; ovary, line CHO; rat hepatoma line HTC, and mouse neuroblastoma, line NB413A) after a similar pre-treatment. The results suggest that enhancement of radiation resistance cannot be directly ascribed to an elevated GSH content in steroid-treated cells. On the bases of these data it is unlikely that the efficacy of radiotherapy will be diminished amongst patients receiving concomitant treatment with dexamethasone. However, in vivo testing is required to confirm these findings. (author)

  15. Isoforms of U1-70k control subunit dynamics in the human spliceosomal U1 snRNP.

    Directory of Open Access Journals (Sweden)

    Helena Hernández

    2009-09-01

    Full Text Available Most human protein-encoding genes contain multiple exons that are spliced together, frequently in alternative arrangements, by the spliceosome. It is established that U1 snRNP is an essential component of the spliceosome, in human consisting of RNA and ten proteins, several of which are post-translationally modified and exist as multiple isoforms. Unresolved and challenging to investigate are the effects of these post translational modifications on the dynamics, interactions and stability of the particle. Using mass spectrometry we investigate the composition and dynamics of the native human U1 snRNP and compare native and recombinant complexes to isolate the effects of various subunits and isoforms on the overall stability. Our data reveal differential incorporation of four protein isoforms and dynamic interactions of subunits U1-A, U1-C and Sm-B/B'. Results also show that unstructured post-translationally modified C-terminal tails are responsible for the dynamics of Sm-B/B' and U1-C and that their interactions with the Sm core are controlled by binding to different U1-70k isoforms and their phosphorylation status in vivo. These results therefore provide the important functional link between proteomics and structure as well as insight into the dynamic quaternary structure of the native U1 snRNP important for its function.

  16. Epidermal Growth Factor Receptor Variant III (EGFRvIII) Positivity in EGFR-Amplified Glioblastomas: Prognostic Role and Comparison between Primary and Recurrent Tumors.

    Science.gov (United States)

    Felsberg, Jörg; Hentschel, Bettina; Kaulich, Kerstin; Gramatzki, Dorothee; Zacher, Angela; Malzkorn, Bastian; Kamp, Marcel; Sabel, Michael; Simon, Matthias; Westphal, Manfred; Schackert, Gabriele; Tonn, Jörg C; Pietsch, Torsten; von Deimling, Andreas; Loeffler, Markus; Reifenberger, Guido; Weller, Michael

    2017-11-15

    Purpose: Approximately 40% of all glioblastomas have amplified the EGFR gene, and about half of these tumors express the EGFRvIII variant. The prognostic role of EGFRvIII in EGFR -amplified glioblastoma patients and changes in EGFRvIII expression in recurrent versus primary glioblastomas remain controversial, but such data are highly relevant for EGFRvIII-targeted therapies. Experimental Design: EGFR -amplified glioblastomas from 106 patients were assessed for EGFRvIII positivity. Changes in EGFR amplification and EGFRvIII status from primary to recurrent glioblastomas were evaluated in 40 patients with EGFR -amplified tumors and 33 patients with EGFR -nonamplified tumors. EGFR single-nucleotide variants (SNV) were assessed in 27 patients. Data were correlated with outcome and validated in 150 glioblastoma patients from The Cancer Genome Atlas (TCGA) consortium. Results: Sixty of 106 EGFR -amplified glioblastomas were EGFRvIII-positive (56.6%). EGFRvIII positivity was not associated with different progression-free or overall survival. EGFRvIII status was unchanged at recurrence in 35 of 40 patients with EGFR -amplified primary tumors (87.5%). Four patients lost and one patient gained EGFRvIII positivity at recurrence. None of 33 EGFR- nonamplified glioblastomas acquired EGFR amplification or EGFRvIII at recurrence. EGFR SNVs were frequent in EGFR -amplified tumors, but were not linked to survival. Conclusions: EGFRvIII and EGFR SNVs are not prognostic in EGFR -amplified glioblastoma patients. EGFR amplification is retained in recurrent glioblastomas. Most EGFRvIII-positive glioblastomas maintain EGFRvIII positivity at recurrence. However, EGFRvIII expression may change in a subset of patients at recurrence, thus repeated biopsy with reassessment of EGFRvIII status is recommended for patients with recurrent glioblastoma to receive EGFRvIII-targeting agents. Clin Cancer Res; 23(22); 6846-55. ©2017 AACR . ©2017 American Association for Cancer Research.

  17. RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls

    Directory of Open Access Journals (Sweden)

    Noerholm Mikkel

    2012-01-01

    Full Text Available Abstract Background RNA from exosomes and other microvesicles contain transcripts of tumour origin. In this study we sought to identify biomarkers of glioblastoma multiforme in microvesicle RNA from serum of affected patients. Methods Microvesicle RNA from serum from patients with de-novo primary glioblastoma multiforme (N = 9 and normal controls (N = 7 were analyzed by microarray analysis. Samples were collected according to protocols approved by the Institutional Review Board. Differential expressions were validated by qRT-PCR in a separate set of samples (N = 10 in both groups. Results Expression profiles of microvesicle RNA correctly separated individuals in two groups by unsupervised clustering. The most significant differences pertained to down-regulated genes (121 genes > 2-fold down in the glioblastoma multiforme patient microvesicle RNA, validated by qRT-PCR on several genes. Overall, yields of microvesicle RNA from patients was higher than from normal controls, but the additional RNA was primarily of size Conclusions Serum microvesicle RNA from patients with glioblastoma multiforme has significantly down-regulated levels of RNAs coding for ribosome production, compared to normal healthy controls, but a large overabundance of RNA of unknown origin with size

  18. 8 CFR 251.1 - Arrival manifests and lists.

    Science.gov (United States)

    2010-01-01

    ... List, in accordance with the instructions contained thereon. (2) Longshore work notations. The master... master, captain, or agent shall prepare as a part of the manifest, when one is required for presentation... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Arrival manifests and lists. 251.1 Section...

  19. Changes in chromatin state reveal ARNT2 at a node of a tumorigenic transcription factor signature driving glioblastoma cell aggressiveness.

    Science.gov (United States)

    Bogeas, Alexandra; Morvan-Dubois, Ghislaine; El-Habr, Elias A; Lejeune, François-Xavier; Defrance, Matthieu; Narayanan, Ashwin; Kuranda, Klaudia; Burel-Vandenbos, Fanny; Sayd, Salwa; Delaunay, Virgile; Dubois, Luiz G; Parrinello, Hugues; Rialle, Stéphanie; Fabrega, Sylvie; Idbaih, Ahmed; Haiech, Jacques; Bièche, Ivan; Virolle, Thierry; Goodhardt, Michele; Chneiweiss, Hervé; Junier, Marie-Pierre

    2018-02-01

    Although a growing body of evidence indicates that phenotypic plasticity exhibited by glioblastoma cells plays a central role in tumor development and post-therapy recurrence, the master drivers of their aggressiveness remain elusive. Here we mapped the changes in active (H3K4me3) and repressive (H3K27me3) histone modifications accompanying the repression of glioblastoma stem-like cells tumorigenicity. Genes with changing histone marks delineated a network of transcription factors related to cancerous behavior, stem state, and neural development, highlighting a previously unsuspected association between repression of ARNT2 and loss of cell tumorigenicity. Immunohistochemistry confirmed ARNT2 expression in cell sub-populations within proliferative zones of patients' glioblastoma. Decreased ARNT2 expression was consistently observed in non-tumorigenic glioblastoma cells, compared to tumorigenic cells. Moreover, ARNT2 expression correlated with a tumorigenic molecular signature at both the tissue level within the tumor core and at the single cell level in the patients' tumors. We found that ARNT2 knockdown decreased the expression of SOX9, POU3F2 and OLIG2, transcription factors implicated in glioblastoma cell tumorigenicity, and repressed glioblastoma stem-like cell tumorigenic properties in vivo. Our results reveal ARNT2 as a pivotal component of the glioblastoma cell tumorigenic signature, located at a node of a transcription factor network controlling glioblastoma cell aggressiveness.

  20. [2,4-(13)C]β-hydroxybutyrate metabolism in astrocytes and C6 glioblastoma cells.

    Science.gov (United States)

    Eloqayli, Haytham; Melø, Torun M; Haukvik, Anne; Sonnewald, Ursula

    2011-08-01

    This study was undertaken to determine if the ketogenic diet could be useful for glioblastoma patients. The hypothesis tested was whether glioblastoma cells can metabolize ketone bodies. Cerebellar astrocytes and C6 glioblastoma cells were incubated in glutamine and serum free medium containing [2,4-(13)C]β-hydroxybutyrate (BHB) with and without glucose. Furthermore, C6 cells were incubated with [1-(13)C]glucose in the presence and absence of BHB. Cell extracts were analyzed by mass spectrometry and media by (1)H magnetic resonance spectroscopy and HPLC. Using [2,4-(13)C]BHB and [1-(13)C]glucose it could be shown that C6 cells, in analogy to astrocytes, had efficient mitochondrial activity, evidenced by (13)C labeling of glutamate, glutamine and aspartate. However, in the presence of glucose, astrocytes were able to produce and release glutamine, whereas this was not accomplished by the C6 cells, suggesting lack of anaplerosis in the latter. We hypothesize that glioblastoma cells kill neurons by not supplying the necessary glutamine, and by releasing glutamate.

  1. Synemin promotes AKT-dependent glioblastoma cell proliferation by antagonizing PP2A

    OpenAIRE

    Pitre, Aaron; Davis, Nathan; Paul, Madhumita; Orr, A Wayne; Skalli, Omar

    2012-01-01

    The intermediate filament protein synemin is present in astrocyte progenitors and glioblastoma cells but not in mature astrocytes. Here we demonstrate a role for synemin in enhancing glioblastoma cell proliferation and clonogenic survival, as synemin RNA interference decreased both behaviors by inducing G1 arrest along with Rb hypophosphorylation and increased protein levels of the G1/S inhibitors p21Cip1 and p27Kip1. Akt involvement was demonstrated by decreased phosphorylation of its substr...

  2. Transcriptional profiling provides insights into metronomic cyclophosphamide-activated, innate immune-dependent regression of brain tumor xenografts

    International Nuclear Information System (INIS)

    Doloff, Joshua C; Waxman, David J

    2015-01-01

    Cyclophosphamide treatment on a six-day repeating metronomic schedule induces a dramatic, innate immune cell-dependent regression of implanted gliomas. However, little is known about the underlying mechanisms whereby metronomic cyclophosphamide induces innate immune cell mobilization and recruitment, or about the role of DNA damage and cell stress response pathways in eliciting the immune responses linked to tumor regression. Untreated and metronomic cyclophosphamide-treated human U251 glioblastoma xenografts were analyzed on human microarrays at two treatment time points to identify responsive tumor cell-specific factors and their upstream regulators. Mouse microarray analysis across two glioma models (human U251, rat 9L) was used to identify host factors and gene networks that contribute to the observed immune and tumor regression responses. Metronomic cyclophosphamide increased expression of tumor cell-derived DNA damage, cell stress, and cell death genes, which may facilitate innate immune activation. Increased expression of many host (mouse) immune networks was also seen in both tumor models, including complement components, toll-like receptors, interferons, and cytolysis pathways. Key upstream regulators activated by metronomic cyclophosphamide include members of the interferon, toll-like receptor, inflammatory response, and PPAR signaling pathways, whose activation may contribute to anti-tumor immunity. Many upstream regulators inhibited by metronomic cyclophosphamide, including hypoxia-inducible factors and MAP kinases, have glioma-promoting activity; their inhibition may contribute to the therapeutic effectiveness of the six-day repeating metronomic cyclophosphamide schedule. Large numbers of responsive cytokines, chemokines and immune regulatory genes linked to innate immune cell recruitment and tumor regression were identified, as were several immunosuppressive factors that may contribute to the observed escape of some tumors from metronomic CPA

  3. 43 CFR 17.251 - Drug and alcohol addicts.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Drug and alcohol addicts. 17.251 Section... Drug and alcohol addicts. A recipient that operates a general hospital or outpatient facility may not discriminate in admission or treatment against a drug or alcohol abuser or addict who is suffering from a...

  4. ERGO: a pilot study of ketogenic diet in recurrent glioblastoma.

    Science.gov (United States)

    Rieger, Johannes; Bähr, Oliver; Maurer, Gabriele D; Hattingen, Elke; Franz, Kea; Brucker, Daniel; Walenta, Stefan; Kämmerer, Ulrike; Coy, Johannes F; Weller, Michael; Steinbach, Joachim P

    2014-06-01

    Limiting dietary carbohydrates inhibits glioma growth in preclinical models. Therefore, the ERGO trial (NCT00575146) examined feasibility of a ketogenic diet in 20 patients with recurrent glioblastoma. Patients were put on a low-carbohydrate, ketogenic diet containing plant oils. Feasibility was the primary endpoint, secondary endpoints included the percentage of patients reaching urinary ketosis, progression-free survival (PFS) and overall survival. The effects of a ketogenic diet alone or in combination with bevacizumab was also explored in an orthotopic U87MG glioblastoma model in nude mice. Three patients (15%) discontinued the diet for poor tolerability. No serious adverse events attributed to the diet were observed. Urine ketosis was achieved at least once in 12 of 13 (92%) evaluable patients. One patient achieved a minor response and two patients had stable disease after 6 weeks. Median PFS of all patients was 5 (range, 3-13) weeks, median survival from enrollment was 32 weeks. The trial allowed to continue the diet beyond progression. Six of 7 (86%) patients treated with bevacizumab and diet experienced an objective response, and median PFS on bevacizumab was 20.1 (range, 12-124) weeks, for a PFS at 6 months of 43%. In the mouse glioma model, ketogenic diet alone had no effect on median survival, but increased that of bevacizumab-treated mice from 52 to 58 days (pketogenic diet is feasible and safe but probably has no significant clinical activity when used as single agent in recurrent glioma. Further clinical trials are necessary to clarify whether calorie restriction or the combination with other therapeutic modalities, such as radiotherapy or anti-angiogenic treatments, could enhance the efficacy of the ketogenic diet.

  5. VEGF-121 plasma level as biomarker for response to anti-angiogenetic therapy in recurrent glioblastoma.

    Science.gov (United States)

    Martini, Maurizio; de Pascalis, Ivana; D'Alessandris, Quintino Giorgio; Fiorentino, Vincenzo; Pierconti, Francesco; Marei, Hany El-Sayed; Ricci-Vitiani, Lucia; Pallini, Roberto; Larocca, Luigi Maria

    2018-05-10

    Vascular endothelial growth factor (VEGF) isoforms, particularly the diffusible VEGF-121, could play a major role in the response of recurrent glioblastoma (GB) to anti-angiogenetic treatment with bevacizumab. We hypothesized that circulating VEGF-121 may reduce the amount of bevacizumab available to target the heavier isoforms of VEGF, which are the most clinically relevant. We assessed the plasma level of VEGF-121 in a brain xenograft model, in human healthy controls, and in patients suffering from recurrent GB before and after bevacizumab treatment. Data were matched with patients' clinical outcome. In athymic rats with U87MG brain xenografts, the level of plasma VEGF-121 relates with tumor volume and it significantly decreases after iv infusion of bevacizumab. Patients with recurrent GB show higher plasma VEGF-121 than healthy controls (p = 0.0002) and treatment with bevacizumab remarkably reduced the expression of VEGF-121 in plasma of these patients (p = 0.0002). Higher plasma level of VEGF-121 was significantly associated to worse PFS and OS (p = 0.0295 and p = 0.0246, respectively). Quantitative analysis of VEGF-121 isoform in the plasma of patients with recurrent GB could be a promising predictor of response to anti-angiogenetic treatment.

  6. Characterization of TEM1/endosialin in human and murine brain tumors

    International Nuclear Information System (INIS)

    Carson-Walter, Eleanor B; Walter, Kevin A; Winans, Bethany N; Whiteman, Melissa C; Liu, Yang; Jarvela, Sally; Haapasalo, Hannu; Tyler, Betty M; Huso, David L; Johnson, Mahlon D

    2009-01-01

    TEM1/endosialin is an emerging microvascular marker of tumor angiogenesis. We characterized the expression pattern of TEM1/endosialin in astrocytic and metastatic brain tumors and investigated its role as a therapeutic target in human endothelial cells and mouse xenograft models. In situ hybridization (ISH), immunohistochemistry (IH) and immunofluorescence (IF) were used to localize TEM1/endosialin expression in grade II-IV astrocytomas and metastatic brain tumors on tissue microarrays. Changes in TEM1/endosialin expression in response to pro-angiogenic conditions were assessed in human endothelial cells grown in vitro. Intracranial U87MG glioblastoma (GBM) xenografts were analyzed in nude TEM1/endosialin knockout (KO) and wildtype (WT) mice. TEM1/endosialin was upregulated in primary and metastatic human brain tumors, where it localized primarily to the tumor vasculature and a subset of tumor stromal cells. Analysis of 275 arrayed grade II-IV astrocytomas demonstrated TEM1/endosialin expression in 79% of tumors. Robust TEM1/endosialin expression occurred in 31% of glioblastomas (grade IV astroctyomas). TEM1/endosialin expression was inversely correlated with patient age. TEM1/endosialin showed limited co-localization with CD31, αSMA and fibronectin in clinical specimens. In vitro, TEM1/endosialin was upregulated in human endothelial cells cultured in matrigel. Vascular Tem1/endosialin was induced in intracranial U87MG GBM xenografts grown in mice. Tem1/endosialin KO vs WT mice demonstrated equivalent survival and tumor growth when implanted with intracranial GBM xenografts, although Tem1/endosialin KO tumors were significantly more vascular than the WT counterparts. TEM1/endosialin was induced in the vasculature of high-grade brain tumors where its expression was inversely correlated with patient age. Although lack of TEM1/endosialin did not suppress growth of intracranial GBM xenografts, it did increase tumor vascularity. The cellular localization of TEM1

  7. Small cell glioblastoma or small cell carcinoma

    DEFF Research Database (Denmark)

    Hilbrandt, Christine; Sathyadas, Sathya; Dahlrot, Rikke H

    2013-01-01

    was admitted to the hospital with left-sided loss of motor function. A MRI revealed a 6 cm tumor in the right temporoparietal area. The histology was consistent with both glioblastoma multiforme (GBM) and small cell lung carcinoma (SCLC) but IHC was suggestive of a SCLC metastasis. PET-CT revealed...

  8. Glioblastoma-Initiating Cells: Relationship with Neural Stem Cells and the Micro-Environment

    OpenAIRE

    Goffart, Nicolas; KROONEN, Jérôme

    2013-01-01

    Glioblastoma multiforme (GBM, WHO grade IV) is the most common and lethal subtype of primary brain tumor with a median overall survival of 15 months from the time of diagnosis. The presence in GBM of a cancer population displaying neural stem cell (NSC) properties as well as tumor-initiating abilities and resistance to current therapies suggests that these glioblastoma-initiating cells (GICs) play a central role in tumor development and are closely related to NSCs. However, it is nowadays sti...

  9. Differential Induction of Cytoplasmic Vacuolization and Methuosis by Novel 2-Indolyl-Substituted Pyridinylpropenones.

    Science.gov (United States)

    Trabbic, Christopher J; Dietsch, Heather M; Alexander, Evan M; Nagy, Peter I; Robinson, Michael W; Overmeyer, Jean H; Maltese, William A; Erhardt, Paul W

    2014-01-09

    Because many cancers harbor mutations that confer resistance to apoptosis, there is a need for therapeutic agents that can trigger alternative forms of cell death. Methuosis is a novel form of non-apoptotic cell death characterized by accumulation of vacuoles derived from macropinosomes and endosomes. Previous studies identified an indole-based chalcone, 3-(5-methoxy-2-methylindol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (MOMIPP), that induces methuosis in human cancer cells. Herein, we describe the synthesis of related 2-indolyl substituted pyridinylpropenones and their effects on U251 glioblastoma cells. Increasing the size of the 2-indolyl substituent substantially reduces growth inhibitory activity and cytotoxicity, but does not prevent cell vacuolization. Computational models suggest that the results are not due to steric-driven conformational effects. The unexpected uncoupling of vacuolization and cell death implies that the relationship between endosomal perturbations and methuotic cell death is more complex than previously realized. The new series of compounds will be useful in further defining the molecular and cellular mechanisms underlying methuosis.

  10. An NAD+-dependent transcriptional program governs self-renewal and radiation resistance in glioblastoma.

    Science.gov (United States)

    Gujar, Amit D; Le, Son; Mao, Diane D; Dadey, David Y A; Turski, Alice; Sasaki, Yo; Aum, Diane; Luo, Jingqin; Dahiya, Sonika; Yuan, Liya; Rich, Keith M; Milbrandt, Jeffrey; Hallahan, Dennis E; Yano, Hiroko; Tran, David D; Kim, Albert H

    2016-12-20

    Accumulating evidence suggests cancer cells exhibit a dependency on metabolic pathways regulated by nicotinamide adenine dinucleotide (NAD + ). Nevertheless, how the regulation of this metabolic cofactor interfaces with signal transduction networks remains poorly understood in glioblastoma. Here, we report nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting step in NAD + synthesis, is highly expressed in glioblastoma tumors and patient-derived glioblastoma stem-like cells (GSCs). High NAMPT expression in tumors correlates with decreased patient survival. Pharmacological and genetic inhibition of NAMPT decreased NAD + levels and GSC self-renewal capacity, and NAMPT knockdown inhibited the in vivo tumorigenicity of GSCs. Regulatory network analysis of RNA sequencing data using GSCs treated with NAMPT inhibitor identified transcription factor E2F2 as the center of a transcriptional hub in the NAD + -dependent network. Accordingly, we demonstrate E2F2 is required for GSC self-renewal. Downstream, E2F2 drives the transcription of members of the inhibitor of differentiation (ID) helix-loop-helix gene family. Finally, we find NAMPT mediates GSC radiation resistance. The identification of a NAMPT-E2F2-ID axis establishes a link between NAD + metabolism and a self-renewal transcriptional program in glioblastoma, with therapeutic implications for this formidable cancer.

  11. RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls

    International Nuclear Information System (INIS)

    Noerholm, Mikkel; Balaj, Leonora; Limperg, Tobias; Salehi, Afshin; Zhu, Lin Dan; Hochberg, Fred H; Breakefield, Xandra O; Carter, Bob S; Skog, Johan

    2012-01-01

    RNA from exosomes and other microvesicles contain transcripts of tumour origin. In this study we sought to identify biomarkers of glioblastoma multiforme in microvesicle RNA from serum of affected patients. Microvesicle RNA from serum from patients with de-novo primary glioblastoma multiforme (N = 9) and normal controls (N = 7) were analyzed by microarray analysis. Samples were collected according to protocols approved by the Institutional Review Board. Differential expressions were validated by qRT-PCR in a separate set of samples (N = 10 in both groups). Expression profiles of microvesicle RNA correctly separated individuals in two groups by unsupervised clustering. The most significant differences pertained to down-regulated genes (121 genes > 2-fold down) in the glioblastoma multiforme patient microvesicle RNA, validated by qRT-PCR on several genes. Overall, yields of microvesicle RNA from patients was higher than from normal controls, but the additional RNA was primarily of size < 500 nt. Gene ontology of the down-regulated genes indicated these are coding for ribosomal proteins and genes related to ribosome production. Serum microvesicle RNA from patients with glioblastoma multiforme has significantly down-regulated levels of RNAs coding for ribosome production, compared to normal healthy controls, but a large overabundance of RNA of unknown origin with size < 500 nt

  12. Glioblastomas with Oligodendroglial Component – Common Origin of the Different Histological Parts and Genetic Subclassification

    Directory of Open Access Journals (Sweden)

    Barbara Klink

    2010-01-01

    Full Text Available Background: Glioblastomas are the most common and most malignant brain tumors in adults. A small subgroup of glioblastomas contains areas with histological features of oligodendroglial differentiation (GBMO. Our objective was to genetically characterize the oligodendroglial and the astrocytic parts of GBMOs and correlate morphologic and genetic features with clinical data.

  13. Management of glioblastoma after recurrence: A changing paradigm

    International Nuclear Information System (INIS)

    Mallick, S.; Benson, R.; Hakim, A.; Rath, G.K.

    2016-01-01

    Glioblastoma remains the most common primary brain tumor after the age of 40 years. Maximal safe surgery followed by adjuvant chemoradiotherapy has remained the standard treatment for glioblastoma (GBM). But recurrence is an inevitable event in the natural history of GBM with most patients experiencing it after 6–9 months of primary treatment. Recurrent GBM poses great challenge to manage with no well-defined management protocols. The challenge starts from differentiating radiation necrosis from true local progression. A fine balance needs to be maintained on improving survival and assuring a better quality of life. Treatment options are limited and ranges from re-excision, re-irradiation, systemic chemotherapy or a combination of these. Re-excision and re-irradiation must be attempted in selected patients and has been shown to improve survival outcomes. To facilitate the management of GBM recurrences, a treatment algorithm is proposed

  14. 76 FR 16038 - Proposed Collection; Comment Request for Prepaid Card Marketing Customer Survey, CS-10-251.

    Science.gov (United States)

    2011-03-22

    ... of social marketing. Social marketing principles and practices apply marketing principles to social... Prepaid Card Marketing Customer Survey, CS-10-251. AGENCY: Internal Revenue Service (IRS), Treasury..., the IRS is soliciting comments concerning Prepaid Card Marketing Customer Survey, CS-10-251 DATES...

  15. HIF-1α inhibition by siRNA or chetomin in human malignant glioma cells: effects on hypoxic radioresistance and monitoring via CA9 expression

    Directory of Open Access Journals (Sweden)

    Bache Matthias

    2010-11-01

    Full Text Available Abstract Background Hypoxia induces activation of the HIF-1 pathway and is an essential characteristic of malignant gliomas. Hypoxia has been linked to tumor progression, therapy resistance and poor prognosis. However, little is known about the impact of HIF-1α inhibition on radioresistance of malignant glioma. Methods In this study, we investigated the effects of the inhibition of HIF-1α on cell survival and radiosensitivity in U251MG and U343MG glioma cells, using two different strategies. HIF-1α inhibition was achieved by siRNA targeting of HIF-1α or via chetomin, a disruptor of interactions between HIF-1α and p300. The inhibition of the HIF-1 pathway was monitored by quantitative real-time PCR and Western blot analyses of the expression levels of HIF-1α and CA9. CA9 expression was investigated as a potential indicator of the efficacy of HIF-1 inhibition and the resulting radiosensitivity of malignant glioma cell lines was determined by clonogenic assay after irradiation under normoxic (2-10 Gy or hypoxic (2-15 Gy conditions. Results Although siRNA and chetomin show distinct modes of action, both attenuated the hypoxia-induced radioresistance of malignant glioma cell lines U251MG (DMF10: 1.35 and 1.18 and U343MG (DMF10: 1.78 and 1.48. However, siRNA and chetomin showed diverse effects on radiosensitivity under normoxic conditions in U251MG (DMF10: 0.86 and 1.35 and U343MG (DMF10: 1.33 and 1.02 cells. Conclusions Results from this in vitro study suggest that inhibition of HIF-1α is a promising strategy to sensitize human malignant gliomas to radiotherapy and that CA9 could serve as an indicator of effective HIF-1-related radiosensitization.

  16. Blocking epithelial-to-mesenchymal transition in glioblastoma with a sextet of repurposed drugs: the EIS regimen.

    Science.gov (United States)

    Kast, Richard E; Skuli, Nicolas; Karpel-Massler, Georg; Frosina, Guido; Ryken, Timothy; Halatsch, Marc-Eric

    2017-09-22

    This paper outlines a treatment protocol to run alongside of standard current treatment of glioblastoma- resection, temozolomide and radiation. The epithelial to mesenchymal transition (EMT) inhibiting sextet, EIS Regimen, uses the ancillary attributes of six older medicines to impede EMT during glioblastoma. EMT is an actively motile, therapy-resisting, low proliferation, transient state that is an integral feature of cancers' lethality generally and of glioblastoma specifically. It is believed to be during the EMT state that glioblastoma's centrifugal migration occurs. EMT is also a feature of untreated glioblastoma but is enhanced by chemotherapy, by radiation and by surgical trauma. EIS Regimen uses the antifungal drug itraconazole to block Hedgehog signaling, the antidiabetes drug metformin to block AMP kinase (AMPK), the analgesic drug naproxen to block Rac1, the anti-fibrosis drug pirfenidone to block transforming growth factor-beta (TGF-beta), the psychiatric drug quetiapine to block receptor activator NFkB ligand (RANKL) and the antibiotic rifampin to block Wnt- all by their previously established ancillary attributes. All these systems have been identified as triggers of EMT and worthy targets to inhibit. The EIS Regimen drugs have a good safety profile when used individually. They are not expected to have any new side effects when combined. Further studies of the EIS Regimen are needed.

  17. Organic Matter in Space (IAU S251)

    Science.gov (United States)

    Kwok, Sun; Sanford, Scott

    2009-01-01

    Preface; From the local organising committee; Organising committee; Conference participants; Opening address of Symposium 251 C. Cesarsky; Session I. Observations of organic compounds beyond the Solar System William Irvine, Ewine van Dishoeck, Yvonne Pendleton and Hans Olofsson; Session II. Organic compounds within the Solar System Scott Sandford, Ernst Zinner and Dale Cruikshank; Session III. Laboratory analogues of organic compounds in space Max Bernstein and Thomas Henning; Banquet speech; Author index; Object index.

  18. PACAP and VIP inhibit the invasiveness of glioblastoma cells exposed to hypoxia through the regulation of HIFs and EGFR expression

    OpenAIRE

    Grazia eMaugeri; Agata Grazia eD'Amico; Agata Grazia eD'Amico; Rita eReitano; Gaetano eMagro; Sebastiano eCavallaro; Salvatore eSalomone; Velia eD'Agata

    2016-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) through the binding of vasoactive intestinal peptide receptors (VIPRs), perform a wide variety of effects in human cancers, including glioblastoma multiforme (GBM). This tumor is characterized by extensive areas of hypoxia, which triggers the expression of hypoxia-inducible factors (HIFs). HIFs not only mediate angiogenesis but also tumor cell migration and invasion. Furthermore, HIFs activation...

  19. Feasibility and safety of extended adjuvant temozolomide beyond six cycles for patients with glioblastoma.

    Science.gov (United States)

    Hsieh, S Yp; Chan, D Tm; Kam, M Km; Loong, H Hf; Tsang, W K; Poon, D Mc; Ng, S Cp; Poon, W S

    2017-12-01

    Temozolomide is the first chemotherapeutic agent proven effective for patients with newly diagnosed glioblastoma. The drug is well tolerated for its low toxicity. The current standard practice is concomitant chemoradiotherapy for 6 weeks followed by 6 cycles of adjuvant temozolomide. Some Caucasian studies have suggested that patients might benefit from extended adjuvant cycles of temozolomide (>6 cycles) to lengthen both progression-free survival and overall survival. In the present study, we compared differences in survival and toxicity profile between patients who received conventional 6-cycle temozolomide and those who received more than 6 cycles of temozolomide. Patients with newly diagnosed glioblastoma without progressive disease and completed concomitant chemoradiotherapy during a 4-year period were studied. Progression-free survival was compared using Kaplan-Meier survival curves. t Test, U test, and correlation were chosen accordingly to examine the impact of age, extent of resection, MGMT promoter methylation status and adjuvant cycles on progression-free survival. For factors with a P value of cycles of temozolomide (n=7) and 43.4 months for those who received more than 6 cycles (n=7) [P=0.007, log-rank test]. Two patients in the former group and one in the latter group encountered grade 1 toxicity and recovered following dose adjustment. Cycles of adjuvant temozolomide were correlated with progression-free survival (P=0.016, hazard ratio=0.68). Extended cycles of temozolomide are safe and feasible for Chinese patients with disease responsive to temozolomide.

  20. Antibodies with High Avidity to the gp120 Envelope Protein in Protection from Simian Immunodeficiency Virus SIVmac251 Acquisition in an Immunization Regimen That Mimics the RV-144 Thai Trial

    Science.gov (United States)

    Pegu, Poonam; Vaccari, Monica; Gordon, Shari; Keele, Brandon F.; Doster, Melvin; Guan, Yongjun; Ferrari, Guido; Pal, Ranajit; Ferrari, Maria Grazia; Whitney, Stephen; Hudacik, Lauren; Billings, Erik; Rao, Mangala; Montefiori, David; Tomaras, Georgia; Alam, S. Munir; Fenizia, Claudio; Lifson, Jeffrey D.; Stablein, Donald; Tartaglia, Jim; Michael, Nelson; Kim, Jerome; Venzon, David

    2013-01-01

    The recombinant canarypox vector, ALVAC-HIV, together with human immunodeficiency virus (HIV) gp120 envelope glycoprotein, has protected 31.2% of Thai individuals from HIV acquisition in the RV144 HIV vaccine trial. This outcome was unexpected, given the limited ability of the vaccine components to induce CD8+ T-cell responses or broadly neutralizing antibodies. We vaccinated macaques with an immunization regimen intended to mimic the RV144 trial and exposed them intrarectally to a dose of the simian immunodeficiency virus SIVmac251 that transmits few virus variants, similar to HIV transmission to humans. Vaccination induced anti-envelope antibodies in all vaccinees and CD4+ and CD8+ T-cell responses. Three of the 11 macaques vaccinated with ALVAC-SIV/gp120 were protected from SIVmac251 acquisition, but the result was not significant. The remaining vaccinees were infected and progressed to disease. The magnitudes of vaccine-induced SIVmac251-specific T-cell responses and binding antibodies were not significantly different between protected and infected animals. However, sera from protected animals had higher avidity antibodies to gp120, recognized the variable envelope regions V1/V2, and reduced SIVmac251 infectivity in cells that express high levels of α4β7 integrins, suggesting a functional role of antibodies to V2. The current results emphasize the utility of determining the titer of repeated mucosal challenge in the preclinical evaluation of HIV vaccines. PMID:23175374