WorldWideScience

Sample records for u235 neutron cross

  1. Measurement of the 235U/238U fission cross section ratio in the 235U fission neutron spectrum

    International Nuclear Information System (INIS)

    Azimi-Garakani, D.; Bagheri-Darbandi, M.

    1983-06-01

    Fission cross section ratio of 235 U to 238 U has been measured in the fast neutron field generated by the 235 U fission plate installed on the thermal column of the Tehran Research Reactor (TRR) with a Makrofol solid state nuclear track detector. The experiments were carried out with a set of total six enriched 235 U and depleted 238 U deposits with different masses and Makrofol films of 0.025mm and 0.060mm thicknesses. The chemically etched tracks were counted by an optical microscope. No significant differences were observed with the thin and the thick films. The results showed that the average fission cross section ratio is 3.83+-0.25. (author)

  2. Resonance analysis and evaluation of the 235U neutron induced cross sections

    International Nuclear Information System (INIS)

    Leal, L.C.

    1990-06-01

    Neutron cross sections of fissile nuclei are of considerable interest for the understanding of parameters such as resonance absorption, resonance escape probability, resonance self-shielding,and the dependence of the reactivity on temperature. In the present study, new techniques for the evaluation of the 235 U neutron cross sections are described. The Reich-Moore formalism of the Bayesian computer code SAMMY was used to perform consistent R-matrix multilevel analyses of the selected neutron cross-section data. The Δ 3 -statistics of Dyson and Mehta, along with high-resolution data and the spin-separated fission cross-section data, have provided the possibility of developing a new methodology for the analysis and evaluation of neutron-nucleus cross sections. The results of the analysis consists of a set of resonance parameters which describe the 235 U neutron cross sections up to 500 eV. The set of resonance parameters obtained through a R-matrix analysis are expected to satisfy statistical properties which lead to information on the nuclear structure. The resonance parameters were tested and showed good agreement with the theory. It is expected that the parametrization of the 235 U neutron cross sections obtained in this dissertation represents the current state of art in data as well as in theory and, therefore, can be of direct use in reactor calculations. 44 refs., 21 figs., 8 tabs

  3. Neutron induced fission cross sections for 232Th, 235,238U, 237Np, and 239Pu

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Ullmann, J.L.; Balestrini, S.J.; Hill, N.W.; Carlson, A.D.; Wasson, O.A.

    1989-01-01

    Neutron-induced fission cross section ratios for samples of 232 Th, 235,238 U, 237 Np and 239 Pu have been measured from 1 to 400 MeV. The fission reaction rate was determined for all samples simultaneously using a fast parallel plate ionization chamber at a 20-m flight path. A well characterized annular proton recoil telescope was used to measure the neutron fluence from 3 to 30 MeV. Those data provided the shape of the 235 U(n,f) cross section relative to the hydrogen scattering cross section. That shape was then normalized to the very accurately known value for 235 U(n,f) at 14.178 MeV. From 30 to 400 MeV cross section values were determined using the neutron fluence measured with a plastic scintillator. Cross section values of 232 Th, 235,238 U, 237 Np and 239 Pu were computed from the ratio data using the authors' values for 235 U(n,f). In addition to providing new results at high neutron energies, these data highlight several areas of deficiency in the evaluated nuclear data files and provide new information for the 235 U(n,f) standard

  4. Analysis of the 235U neutron cross sections in the resolved resonance range

    International Nuclear Information System (INIS)

    Leal, L.C.; de Saussure, G.; Perez, R.B.

    1989-01-01

    Using recent high-resolution measurements of the neutron transmission of 235 U and the spin-separated fission cross-section data of Moore et al., a multilevel analysis of the 235 U neutron cross sections was performed up to 300 eV. The Dyson Metha Δ 3 statistics were used to help locate small levels above 100 eV where resonances are not clearly resolved even in the best resolution measurements available. The statistical properties of the resonance parameters are discussed

  5. Analysis of the 235U neutron cross sections in the resolved resonance range

    International Nuclear Information System (INIS)

    Leal, L.C.; de Saussure, G.; Perez, R.B.

    1989-01-01

    Using recent high-resolution measurements of the neutron transmission of 235 U and the spin-separated fission cross-section data of Moore et al., a multilevel analysis of the 235 U neutron cross sections was performed up to 300 eV. The Dyson Metha Δ 3 statistics were used to help locate small levels above 100 eV where resonances are not clearly resolved even in the best resolution measurements available. The statistical properties of the resonance parameters are discussed. 13 refs., 8 figs., 1 tab

  6. Preparation of 235mU targets for 235U(n,n')235mU cross section measurements

    International Nuclear Information System (INIS)

    Bond, E.M.; Vieira, D.J.; Rundberg, R.S.; Glover, S.; Hynek, D.; Jansen, Y.; Becker, J.; Macri, R.

    2008-01-01

    This paper describes the preparation of samples for an experiment to measure the cross-section for 235 U(n,n') 235m U in a fast fission spectrum of neutrons provided by a fast pulsed reactor/critical assembly. Samples of 235m U have been prepared for the calibration of the internal conversion electron detector that is used for the 235m U measurement. Two methods are described for the preparation of 235 mU. The first method used a U-Pu chemical separation based on anion-exchange chromatography and the second method used an alpha recoil collection method. Thin, uniform samples of 235m U+ 235 U were prepared for the experiment using electrodeposition. (author)

  7. Measurement of 235U fission spectrum-averaged cross sections and neutron spectrum adjusted with the activation data

    International Nuclear Information System (INIS)

    Kobayashi, Katsuhei; Kobayashi, Tooru

    1992-01-01

    The 235 U fission spectrum-averaged cross sections for 13 threshold reactions were measured with the fission plate (27 cm in diameter and 1.1 cm thick) at the heavy water thermal neutron facility of the Kyoto University Reactor. The Monte Carlo code MCNP was applied to check the deviation from the 235 U fission neutron spectrum due to the room-scattered neutrons, and it was found that the resultant spectrum was close to that of 235 U fission neutrons. Supplementally, the relations to derive the absorbed dose rates with the fission plate were also given using the calculated neutron spectra and the neutron Kerma factors. Finally, the present values of the fission spectrum-averaged cross sections were employed to adjust the 235 U fission neutron spectrum with the NEUPAC code. The adjusted spectrum showed a good agreement with the Watt-type fission neutron spectrum. (author)

  8. Neutron inelastic-scattering cross sections of 232Th, 233U, 235U, 238U, 239Pu and 240Pu

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.

    1982-01-01

    Differential-neutron-emission cross sections of 232 Th, 233 U, 235 U, 238 U, 239 Pu and 240 Pu are measured between approx. = 1.0 and 3.5 MeV with the angle and magnitude detail needed to provide angle-integrated emission cross sections to approx. 232 Th, 233 U, 235 U and 238 U inelastic-scattering values, poor agreement is observed for 240 Pu, and a serious discrepancy exists in the case of 239 Pu

  9. 14.2 MeV neutron induced U-235 fission cross section measurement

    International Nuclear Information System (INIS)

    Li Jingwen; Shen Guanren; Ye Zongyuan; Li Anli; Zhou Shuhua; Sun Zhongfan; Wu Jingxia; Huang Tanzi

    1986-01-01

    The cross section of U-235 fission induced by 14.2 MeV neutrons was measured by the time correlated associated particle method. The result obtained is (2.078+-0.040) barn. Comparison with other author's is also given. (author)

  10. IAEA CIELO Evaluation of Neutron-induced Reactions on 235U and 238U Targets

    Science.gov (United States)

    Capote, R.; Trkov, A.; Sin, M.; Pigni, M. T.; Pronyaev, V. G.; Balibrea, J.; Bernard, D.; Cano-Ott, D.; Danon, Y.; Daskalakis, A.; Goričanec, T.; Herman, M. W.; Kiedrowski, B.; Kopecky, S.; Mendoza, E.; Neudecker, D.; Leal, L.; Noguere, G.; Schillebeeckx, P.; Sirakov, I.; Soukhovitskii, E. S.; Stetcu, I.; Talou, P.

    2018-02-01

    Evaluations of nuclear reaction data for the major uranium isotopes 238U and 235U were performed within the scope of the CIELO Project on the initiative of the OECD/NEA Data Bank under Working Party on Evaluation Co-operation (WPEC) Subgroup 40 coordinated by the IAEA Nuclear Data Section. Both the mean values and covariances are evaluated from 10-5 eV up to 30 MeV. The resonance parameters of 238U and 235U were re-evaluated with the addition of newly available data to the existing experimental database. The evaluations in the fast neutron range are based on nuclear model calculations with the code EMPIRE-3.2 Malta above the resonance range up to 30 MeV. 235U(n,f), 238U(n,f), and 238U(n,γ) cross sections and 235U(nth,f) prompt fission neutron spectrum (PFNS) were evaluated within the Neutron Standards project and are representative of the experimental state-of-the-art measurements. The Standards cross sections were matched in model calculations as closely as possible to guarantee a good predictive power for cross sections of competing neutron scattering channels. 235U(n,γ) cross section includes fluctuations observed in recent experiments. 235U(n,f) PFNS for incident neutron energies from 500 keV to 20 MeV were measured at Los Alamos Chi-Nu facility and re-evaluated using all available experimental data. While respecting the measured differential data, several compensating errors in previous evaluations were identified and removed so that the performance in integral benchmarks was restored or improved. Covariance matrices for 235U and 238U cross sections, angular distributions, spectra and neutron multiplicities were evaluated using the GANDR system that combines experimental data with model uncertainties. Unrecognized systematic uncertainties were considered in the uncertainty quantification for fission and capture cross sections above the thermal range, and for neutron multiplicities. Evaluated files were extensively benchmarked to ensure good performance in

  11. R-matrix analysis of the 235U neutron cross sections

    International Nuclear Information System (INIS)

    Leal, L.C.; de Saussure, G.; Perez, R.B.

    1988-01-01

    The ENDFB-V representation of the 235 U neutron cross sections in the resolved resonance region is unsatisfactory: below 1 eV the cross sections are given by ''smooth files'' (file 3) rather than by resonance parameters; above 1 eV the single-level formalism used by ENDFB-V necessitates a structured file 3 contribution consisting of more than 1300 energy points; furthermore, information on level-spins has not been included. Indeed the ENDFB-V 235 U resonance region is based on an analysis done in 1970 for ENDFB-III and therefore does not include the results of high quality measurements done in the past 18 years. The present paper presents the result of an R-matrix multilevel analysis of recent measurements as well as older data. The analysis also extends the resolved resonance region from its ENDFB-V upper limit of 81 eV to 110 eV. 13 refs., 2 figs., 1 tab

  12. 235U and 238U (n,xn gamma) cross-sections

    International Nuclear Information System (INIS)

    Bacquias, A.; Dessagne, Ph.; Kerveno, M.; Rudolf, G.; Thiry, J.C.; Borcea, C.; Negret, A.L.; Drohe, J.C.; Nankov, N.; Nyman, M.; Plompen, A.; Rouki, C.; Stanoiu, M.

    2014-01-01

    The (n,n') and (n,2n) are important processes in the energy domain of fission neutrons, but the cross-sections suffer from large uncertainties, not compatible with the objectives fixed for future and advanced nuclear reactors. This paper presents our experimental effort to improve 235 U and 238 U (n,xnγ) cross-section data. The experiments were performed at the GELINA facility (Belgium), which provides a pulsed (800 Hz) neutron beam covering a wide energy spectrum (from a few eV to about 20 MeV). The GRAPhEME set-up is designed for prompt gamma spectroscopy and time-of-flight measurement. The analysis methods are presented. Already published results on 235 U are shown, as well as results on 238 U. The interpretation and discussion rely on the comparison with TALYS and EMPIRE predictions. (authors)

  13. Measurement of the^ 235U(n,n')^235mU Integral Cross Section in a Pulsed Reactor

    Science.gov (United States)

    Vieira, D. J.; Bond, E. M.; Belier, G.; Meot, V.; Becker, J. A.; Macri, R. A.; Authier, N.; Hyneck, D.; Jacquet, X.; Jansen, Y.; Legrendre, J.

    2009-10-01

    We will present the integral measurement of the neutron inelastic cross section of ^235U leading to the 26-minute, E*=76.5 eV isomer state. Small samples (5-20 microgm) of isotope-enriched ^235U were activated in the central cavity of the CALIBAN pulsed reactor at Valduc where a nearly pure fission neutron spectrum is produced with a typical fluence of 3x10^14 n/cm^2. After 30 minutes the samples were removed from the reactor and counted in an electrostatic-deflecting electron spectrometer that was optimized for the detection of ^235mU conversion electrons. From the decay curve analysis of the data, the 26-minute ^235mU component was extracted. Preliminary results will be given and compared to gamma-cascade calculations assuming complete K-mixing or with no K-mixing.

  14. Measurement of the fission cross-section ratio for 237Np/235U around 14 MeV neutron energies

    International Nuclear Information System (INIS)

    Desdin, L.; Szegedy, S.; Csikai, J.

    1989-01-01

    Fission cross-section ratio was determined for 237 Np/ 235 U around 14 MeV neutron energies with a back-to-back ionization chamber. Neutrons were produced by a 180 KV accelerator using T(d,n) 4 He reaction. No significant energy dependence was found in the cross section ratio

  15. Fission cross section ratios for 233,234,236U relative to 235U from 0.5 to 400 MeV

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1991-01-01

    Neutron-induced fission cross section ratios from 0.5 to 400 MeV for samples of 233, 234, 236 U relative to 235 U have been measured at the WNR neutron Source at Los Alamos. The fission reaction rate was determined using a fast parallel plate ionization chamber at a 20-m flight path. Cross sections over most the energy range were also extracted using the neutron fluence determined with three different proton telescope arrangements. Those data provided the shape of the 235 U(n,f) cross section relative to the hydrogen scattering cross section. That shape was then normalized to the very accurately known value for 235 U(n,f) at 14.1 MeV to allow us to obtain cross section section values from the ratio data and our values for 235 U(n,f). 6 refs., 1 fig

  16. Fission cross section ratios for 233,234,236U relative to 235U from 0.5 to 400 MeV

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1992-01-01

    Neutron-induced fission cross section ratios from 0.5 to 400 MeV for samples of 233,234,236 U relative to 235 U have been measured at the WNR neutron Source at Los Alamos. The fission reaction rate was determined using a fast parallel plate ionization chamber at a 20-m flight path. Cross sections over most of the energy range were also extracted using the neutron fluence determined with three different proton telescope arrangements. Those data provided the shape of the 235 U(n, f) cross section relative to the hydrogen scattering cross section. That shape was then normalized to the very accurately known value for 235 U(n, f) at 14.1 MeV which will allow us to obtain cross section values from the ratio data and our values for 235 U(n, f). (orig.)

  17. Thermal-neutron fission cross section of 26. 1-min /sup 235/U/sup m/

    Energy Technology Data Exchange (ETDEWEB)

    Talbert W.L. Jr.; Starner, J.W.; Estep, R.J.; Balestrini, S.J.; Attrep M. Jr.; Efurd, D.W.; Roensch, F.R.

    1987-11-01

    The thermal-neutron fission cross section of /sup 235/U/sup m/ has been measured relative to the ground-state cross section. A rapid radiochemical separation procedure was developed to provide sizeable (10/sup 10/ to 10/sup 11/ atom) samples that were reasonably free of the parent /sup 239/Pu. From a series of eight measurements, the value of 1.42 +- 0.04 was obtained for the ratio sigma/sub m//sigma/sub g/.

  18. Thermal-neutron fission cross section of 26.1-min /sup 235/U/sup m/

    International Nuclear Information System (INIS)

    Talbert, W.L. Jr.; Starner, J.W.; Estep, R.J.; Balestrini, S.J.; Attrep, M. Jr.; Efurd, D.W.; Roensch, F.R.

    1987-01-01

    The thermal-neutron fission cross section of /sup 235/U/sup m/ has been measured relative to the ground-state cross section. A rapid radiochemical separation procedure was developed to provide sizeable (10/sup 10/ to 10/sup 11/ atom) samples that were reasonably free of the parent /sup 239/Pu. From a series of eight measurements, the value of 1.42 +- 0.04 was obtained for the ratio σ/sub m//σ/sub g/

  19. Comparison of 235U fission cross sections in JENDL-3.3 and ENDF/B-VI

    International Nuclear Information System (INIS)

    Kawano, Toshihiko; Carlson, Allan D.; Matsunobu, Hiroyuki; Nakagawa, Tsuneo; Shibata, Keiichi

    2002-01-01

    Comparisons of evaluated fission cross sections for 235 U in JENDL-3.3 and ENDF/B-VI are carried out. The comparisons are made for both the differential and integral data. The fission cross sections as well as the fission ratios are compared with the experimental data in detail. Spectrum averaged cross sections are calculated and compared with the measurements. The employed spectra are the 235 U prompt fission neutron spectrum, the 252 Cf spontaneous fission neutron spectrum, and the neutron spectrum produced by a 9 Be(d, xn) reaction. For 235 U prompt fission neutron spectrum, the ENDF/B-VI evaluation reproduces experimental averaged cross sections. For 252 Cf and 9 Be(d, xn) neutron spectra, the JENDL-3.3 evaluation gives better results than ENDF/B-VI. (author)

  20. Measurements of the {sup 235}U(n,f) cross section in the 3 to 30 MeV neutron energy region

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, A.D.; Wasson, O.A. [National Institute of Standards and Technology, Gaithersburg, MD (United States); Lisowski, P.W. [Los Alamos National Lab., NM (United States)] [and others

    1991-12-31

    To improve the accuracy of the {sup 235}U(n,f) cross section, measurements have been made of this standard cross section at the target 4 facility at Los Alamos National Laboratory (LANL). The data were obtained at the 20-meter flight path of that facility. The fission reaction rate was determined with a fast parallel plate ionization chamber and the neutron fluence was measured with an annular proton recoil telescope. The measurements provide the shape of the {sup 235}U(n,f) cross section relative to the hydrogen scattering cross section for neutron energies from about 3 to 30 MeV neutron energy. The data have been normalized to the very accurately known value near 14 MeV. The results are in good agreement with the ENDF/B-VI evaluation up to about 15 MeV neutron energy. Above this energy differences as large as 5% are observed.

  1. Ternary Fission of U235 by Resonance Neutrons

    International Nuclear Information System (INIS)

    Kvitek, I.; Popov, Ju.P.; Rjabov, Ju.V.

    1965-01-01

    Recently a number of papers have appeared indicating considerable variations in the ratio of the ternary-fission cross-section to the binary-fission cross-section of U 235 on transition from one neutron resonance to another. However, such variations have not been discovered in U 233 and Pu 239 . The paper reports investigations of the ternary fission of U 235 by neutrons with an energy of 0.1 to 30 eV. Unlike other investigators of the ternary fission of U 235 , we identified the ternary-fission event by the coincidence of one of the fission fragments with a light long-range particle. This made it passible to separate ternary fissions from the possible contribution of the (n, α)reaction. The measurements were performed at the fast pulsed reactor of the Joint Institute for Nuclear Research by the time-of-flight method. A flight length of 100 m was used, giving a resolution of 0.6 μs/m. Gas scintillation counters filled with xenon at a pressure of 2 atm were used to record the fission fragments and the light long-range particle. A layer of enriched U 235 ∼2 mg/cm 2 thick and ∼300 cm 2 in area was applied to an aluminium foil 20-fim thick. The scintillations from the fission fragments were recorded in the gas volume on one side of the foil and those from the light long-range particles in that on the other. In order to assess the background (e.g . coincidences of the pulse from a fragment with that from a fission gamma quantum or a proton from the (n, p) reaction in the aluminium foil), a measurement was carried out in which the volume recording the long-range particle was shielded with a supplementary aluminium filter 1-mm thick. The results obtained indicate the absence of the considerable variations in the ratio between the ternary-and binary- fission cross-sections for U 235 that have been noted by other authors. Measurements showed no irregularity in the ratio of the cross-sections in the energy range 0.1 to 0.2 eV. The paper discusses the possible effect of

  2. Comparison of {sup 235}U fission cross sections in JENDL-3.3 and ENDF/B-VI

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Toshihiko [Kyushu Univ., Fukuoka (Japan); Carlson, Allan D. [National Institute of Standards and Technology (United States); Matsunobu, Hiroyuki [Data Engineering, Inc., Fujisawa, Kanagawa (Japan); Nakagawa, Tsuneo; Shibata, Keiichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Talou, Patrick; Young, Philip G.; Chadwick, Mark B. [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2002-01-01

    Comparisons of evaluated fission cross sections for {sup 235}U in JENDL-3.3 and ENDF/B-VI are carried out. The comparisons are made for both the differential and integral data. The fission cross sections as well as the fission ratios are compared with the experimental data in detail. Spectrum averaged cross sections are calculated and compared with the measurements. The employed spectra are the {sup 235}U prompt fission neutron spectrum, the {sup 252}Cf spontaneous fission neutron spectrum, and the neutron spectrum produced by a {sup 9}Be(d, xn) reaction. For {sup 235}U prompt fission neutron spectrum, the ENDF/B-VI evaluation reproduces experimental averaged cross sections. For {sup 252}Cf and {sup 9}Be(d, xn) neutron spectra, the JENDL-3.3 evaluation gives better results than ENDF/B-VI. (author)

  3. Fission cross section ratios for sup 233,234,236 U relative to sup 235 U from 0. 5 to 400 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Balestrini, S.J. (Los Alamos National Lab., NM (USA)); Carlson, A.D.; Wasson, O.A. (National Inst. of Standards and Technology, Gaithersburg, MD (USA)); Hill, N.W. (Oak Ridge National Lab., TN (USA))

    1991-01-01

    Neutron-induced fission cross section ratios from 0.5 to 400 MeV for samples of {sup 233, 234, 236}U relative to {sup 235}U have been measured at the WNR neutron Source at Los Alamos. The fission reaction rate was determined using a fast parallel plate ionization chamber at a 20-m flight path. Cross sections over most the energy range were also extracted using the neutron fluence determined with three different proton telescope arrangements. Those data provided the shape of the {sup 235}U(n,f) cross section relative to the hydrogen scattering cross section. That shape was then normalized to the very accurately known value for {sup 235}U(n,f) at 14.1 MeV to allow us to obtain cross section section values from the ratio data and our values for {sup 235}U(n,f). 6 refs., 1 fig.

  4. Measurement of the fission cross-section of {sup 235}U and {sup 239}Pu for thermal neutrons; Mesures des sections de fission de {sup 235}U et de {sup 239}Pu en neutrons thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Fraysse, G; Prosdocimi, A; Netter, F; Samour, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    Improved techniques of fast detection have been applied for determining the fission cross-sections of {sup 235}U and {sup 239}Pu with reference to the absorption cross-section of Boron. Monochromatic neutron beams of 0.0322 eV, 0.0626 eV and 0.275 eV have been employed. Use has been made of a Xe-filled gaseous scintillator and of a low-geometry solid state ion chamber. Both measured alpha and fission rates. The results at the reference energy of 0.0253 eV are: ({sigma}{sub F}){sub 0} {sup 235}U = 588 {+-} 10 barns ({sigma}{sub F}){sub 0} {sup 239}Pu = 738 {+-} 7 barns. (authors) [French] Des techniques avancees de comptage rapide ont ete mise en oeuvre pour determiner la section efficace de fission de {sup 235}U et de {sup 239}Pu par rapport a celle d'absorption du bore. Des faisceaux de neutrons monochromatiques de 0,0322 eV, 0,0626 eV et 0,275 eV ont ete employes. Les detecteurs utilises sont un scintillateur gazeux rempli de xenon et une chambre d'ionisation a etat solide a basse geometrie. Les deux ont mesure les taux des desintegrations alpha et des fissions. Les resultats a l'energie de reference de 0,0253 eV sont: ({sigma}{sub F}){sub 0} {sup 235}U = 588 {+-} 10 barns ({sigma}{sub F}){sub 0} {sup 239}Pu = 738 {+-} 7 barns. (auteurs)

  5. The fission cross sections of 230Th, 232Th, 233U, 234U, 236U, 238U, 237Np, 239Pu and 242Pu relative 235U at 14.74 MeV neutron energy

    International Nuclear Information System (INIS)

    Meadows, J.W.

    1986-12-01

    The measurement of the fission cross section ratios of nine isotopes relative to 235 U at an average neutron energy of 14.74 MeV is described with particular attention to the determination of corrections and to sources of error. The results are compared to ENDF/B-V and to other measurements of the past decade. The ratio of the neutron induced fission cross section for these isotopes to the fission cross section for 235 U are: 230 Th - 0.290 +- 1.9%; 232 Th - 0.191 +- 1.9%; 233 U - 1.132 +- 0.7%; 234 U - 0.998 +- 1.0%; 236 U - 0.791 +- 1.1%; 238 U - 0.587 +- 1.1%; 237 Np - 1.060 +- 1.4%; 239 Pu - 1.152 +- 1.1%; 242 Pu - 0.967 +- 1.0%. 40 refs., 11 tabs., 9 figs

  6. Study of the variation with the energy of the fission cross-sections of 233U, 235U, 239Pu for the fast neutrons

    International Nuclear Information System (INIS)

    Szteinsznaider, D.; Naggiar, V.; Netter, F.

    1955-01-01

    This measurements have been done while taking the value of the fission cross-sections of 238 U as reference. The neutrons are produced by the reaction 7 Li(p,n) in the Van de Graaff generator of Saclay. The explored domain spreads from some tenths to 2000 keV. We find: for 239 Pu: σ f = 2,04 ± 0,12 barns, cross-section constant between 150 and 2000 keV, for 235 U: σ f = 1,15 ± 0,15 barns, cross-section constant between 700 and 1000 keV, for 233 U: σ f = 1,92 ± 0,25 barns, for neutrons of 850 keV. (authors) [fr

  7. Neutron induced fission cross sections for /sup 232/Th, /sup 235,238/U, /sup 237/Np and /sup 239/Pu from 1 to 400 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, P.W.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1988-01-01

    Neutron-induced fission cross section ratios for samples of /sup 232/Th, /sup 235,238/U, /sup 237/Np and /sup 239/Pu have been measured from 1 to 400 MeV. The fission reaction rate was determined for all samples simultaneously using a fast parallel plate ionization chamber at a 20-m flight path. A well characterized annular proton recoil telescope was used to measure the neutron fluence up to 30 MeV. These data provided the shape of the /sup 235/U(n,f) cross section relative to the hydrogen scattering cross section. That shape was then normalized to the very accurately known values were determined using the neutron fluence measured with a second proton recoil telescope. Cross section values for /sup 232/Th, /sup 238/U, /sup 237/Np, and /sup 239/Pu were computed from the ratio data using our values for /sup 235/U(n,f). In addition to providing new results at high neutron energies, these data resolve long standing discrepancies among different data sets. 1 ref., 1 fig.

  8. High accuracy measurement of the $^{235}$U(n,f) reaction cross-section in the 10-30 keV neutron energy range

    CERN Multimedia

    The analysis of the neutron flux of n_TOF (in EAR1) revealed an anomaly in the 10-30 keV neutron energy range. While the flux extracted on the basis of the $^{6}$Li(n,t)$^{4}$He and $^{10}$B(n,$\\alpha$)$^{7}$Li reactions mostly agreed with each other and with the results of FLUKA simulations of the neutron beam, the one based on the $^{235}$U(n,f) reaction was found to be systematically lower, independently of the detection system used. A possible explanation is that the $^{235}$U(n,f) crosssection in that energy region, where in principle should be known with an uncertainty of 1%, may be systematically overestimated. Such a finding, which has a negligible influence on thermal reactors, would be important for future fast critical or subcritical reactors. Furthermore, its interest is more general, since the $^{235}$U(n,f) reaction is often used at that energy to determine the neutron flux, or as reference in measurements of fission cross section of other actinides. We propose to perform a high-accuracy, high-r...

  9. Fission cross section of 235U from 1 to 6 MeV

    International Nuclear Information System (INIS)

    Barton, D.M.; Diven, B.C.; Hansen, G.E.; Jarvis, G.A.; Koontz, P.G.; Smith, R.K.

    1976-01-01

    The ratio of the neutron-induced fission cross section of 235 U to the neutron-proton scattering cross section was measured in the neutron energy region from 1 to 6 MeV. The neutron source was the T(p,n) reaction produced by a pulsed Van de Graaff proton beam on a thin tritium gas target. The use of monoenergetic neutrons allowed time-of-flight methods to be used to study carefully backgrounds and source characteristics

  10. Dispersion of the Neutron Emission in U{sup 235} Fission

    Science.gov (United States)

    Feynman, R. P.; de Hoffmann, F.; Serber, R.

    1955-01-01

    Equations are developed which allow the calculation of the average number of neutrons per U{sup235} fission from experimental measurements. Experimental methods are described, the results of which give a value of (7.8 + 0.6){sup ½} neutrons per U{sup 235} thermal fission.

  11. Measurement of the uranium-235 fission cross section over the neutron energy range 1 to 6 MeV

    International Nuclear Information System (INIS)

    Barton, D.M.; Diven, B.C.; Hansen, G.E.; Jarvis, G.A.; Koontz, P.G.; Smith, R.K.

    1976-01-01

    The ratio of the fission cross section of 235 U to the scattering cross section of 1 H was measured in the 1- to 6-MeV range using monoenergetic neutrons from a pulsed 3 H(p,n) 3 He source. In this measurement, solid-state detectors determined fission fragment and recoil proton emissions from back-to-back U(99.7%) and polyethylene disks. Timing permitted discrimination against room-scattered neutron backgrounds. Absolute values for 235 U(n,f) are obtained using the Hopkins-Breit evaluation of the hydrogen-scattering cross section

  12. Reich-Moore and Adler-Adler representations of the 235U cross sections in the resolved resonance region

    International Nuclear Information System (INIS)

    Saussure, G. de; Leal, L.C.; Perez, R.B.

    1990-01-01

    In the first part of this paper, a reevaluation of the low-energy neutron cross sections of 235 U is described. This reevaluation was motivated by the discrepancy between the measured and computed temperature coefficients of reactivity and is based on recent measurements of the fission cross section and of η in the thermal and subthermal neutron energy regions. In the second part of the paper, we discuss the conversion of the Reich-Moore resonance parameters, describing the neutron cross sections of 235 U in the resolved resonance region, into equivalent Adler-Adler resonance parameters and into equivalent momentum space multipole resonance parameters

  13. Measurement of neutron-induced fission cross-sections of Th232, U238, U233 and Np237 relative to U235 from 1 MeV to 200 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbakov, O.A.; Laptev, A.B.; Petrov, G.A. [Petersburg Nuclear Physics Inst., Gatchina, Leningrad district (Russian Federation); Fomichev, A.V.; Donets, A.Y.; Osetrov, O.I.

    1998-11-01

    The measurements of neutron-induced cross-section ratios for Th232, U238, U233 and Np237 relative to U235 have been carried out in the energy range from 1 MeV up to 200 MeV using the neutron time-of-flight spectrometer GNEIS based on 1 GeV proton synchrocyclotron. Below 20 MeV, the results of present measurements are roughly in agreement with evaluated data though there are some discrepances to be resolved. (author)

  14. Study of the variation with the energy of the fission cross-sections of {sup 233}U, {sup 235}U, {sup 239}Pu for the fast neutrons; Etude de la variation avec l'energie des sections efficaces de fission de {sup 233}U, {sup 235}U, {sup 239}Pu pour les neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Szteinsznaider, D; Naggiar, V; Netter, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    This measurements have been done while taking the value of the fission cross-sections of {sup 238}U as reference. The neutrons are produced by the reaction {sup 7}Li(p,n) in the Van de Graaff generator of Saclay. The explored domain spreads from some tenths to 2000 keV. We find: for {sup 239}Pu: {sigma}{sub f} = 2,04 {+-} 0,12 barns, cross-section constant between 150 and 2000 keV, for {sup 235}U: {sigma}{sub f} = 1,15 {+-} 0,15 barns, cross-section constant between 700 and 1000 keV, for {sup 233}U: {sigma}{sub f} = 1,92 {+-} 0,25 barns, for neutrons of 850 keV. (authors) [French] Ces mesures ont ete effectuees en prenant la valeur de la section efficace de fission de {sup 238}U comme reference. Les neutrons sont produits par la reaction {sup 7}Li(p,n) au generateur Van de Graaff de Saclay. Le domaine explore s'etend de quelques dizaines de kev a 2000 kev. Nous trouvons: pour {sup 239}Pu: {sigma}{sub f} = 2,04 {+-} 0,12 barns, section efficace constante entre 150 et 2000 kev. pour {sup 235}U: {sigma}{sub f} = 1,15 {+-} 0,15 barns, section efficace constante entre 700 et 1000 kev. pour {sup 233}U: {sigma}{sub f} = 1,92 {+-} 0,25 barns, pour des neutrons de 850 kev. (auteurs)

  15. Measurement of the neutron-induced fission cross section of 232Th relative to 235U from 0.7 to 30 MeV

    International Nuclear Information System (INIS)

    Behzens, T.W.; Ables, E.; Browne, T.C.

    1982-01-01

    The authors have measured the fission cross-section ratio 232 Th: 235 U as a function of neutron energy from 0.7 to 30 MeV using ionization fission chambers, the threshold cross-section method, and the time-of-flight technique at the Lawrence Livermore National Laboratory 100-MeV electron linear accelerator. The measured cross-section ratio, averaged over the neutron energy interval from 1.75 to 4.00 MeV, was 0.1086 + 0.0024

  16. Reich-Moore and Adler-Adler representations of the 235U cross sections in the resolved resonance region

    International Nuclear Information System (INIS)

    de Saussure, G.; Leal, L.C.; Perez, R.B.

    1990-01-01

    In the first part of this paper, a reevaluation of the low-energy neutron cross sections of 235 U is described. This reevaluation was motivated by the discrepancy between the measured and computed temperature coefficients of reactivity and is based on recent measurements of the fission cross section and of η in the thermal and subthermal neutron energy regions. In the second part of the paper, we discuss the conversion of the Reich-Moore resonance parameters, describing the neutron cross sections of 235 U in the resolved resonance region, into equivalent Adler-Adler resonance parameters and into equivalent momentum space multipole resonance parameters. 25 refs., 4 figs., 5 tabs

  17. R-matrix analyses of the 235U and 239Pu neutron cross sections

    International Nuclear Information System (INIS)

    Derrien, H.; de Saussure, G.; Larson, N.M.; Leal, L.C.; Perez, R.B.

    1988-01-01

    The resonance parameter analysis code SAMMY was used to perform consistent resonance analyses of several 235 U and 239 Pu fission and capture cross section and transmission measurements up to 110 eV for 235 U and up to 1 keV for 239 Pu. The method of analysis, the measurement selection and the results are briefly outlined in this paper

  18. Effective cross sections of U-235 and Au in a TRIGA-type reactor core

    International Nuclear Information System (INIS)

    Harasawa, S.; Auu, G.A.

    1992-01-01

    The dependence of effective cross sections of gold and uranium for neutron spectrum in Rikkyo University Reactor (TRIGA Mark- II, RUR) fuel cell was studied using computer calculations. The dependence of thermal neutron spectrum with temperature was also investigated. The effective cross section of gold in water of the fuel cell at 32degC was 90.3 barn and the fission cross section of U-235, 483 barn. These two values are similar to the cross sections for neutron energy of 0.034 eV. (author)

  19. The 235U Prompt Fission Neutron Spectrum in the BR1 Reactor at SCK•CEN

    Science.gov (United States)

    Wagemans, Jan; Malambu, Edouard; Borms, Luc; Fiorito, Luca

    2016-02-01

    The BR1 research reactor at SCK•CEN has a spherical cavity in the graphite above the reactor core. In this cavity an accurately characterised Maxwellian thermal neutron field is present. Different converters can be loaded in the cavity in order to obtain other types of neutron (and gamma) irradiation fields. Inside the so-called MARK III converter a fast 235U(n,f) prompt fission neutron field can be obtained. With the support of MCNP calculations, irradiations in MARK III can be directly related to the pure 235U(n,f) prompt fission neutron spectrum. For this purpose MARK III spectrum averaged cross sections for the most relevant fluence dosimetry reactions have been determined. A calibration factor for absolute measurements has been determined applying activation dosimetry following ISO/IEC 17025 standards.

  20. The 235U Prompt Fission Neutron Spectrum in the BR1 Reactor at SCK•CEN

    Directory of Open Access Journals (Sweden)

    Wagemans Jan

    2016-01-01

    Full Text Available The BR1 research reactor at SCK•CEN has a spherical cavity in the graphite above the reactor core. In this cavity an accurately characterised Maxwellian thermal neutron field is present. Different converters can be loaded in the cavity in order to obtain other types of neutron (and gamma irradiation fields. Inside the so-called MARK III converter a fast 235U(n,f prompt fission neutron field can be obtained. With the support of MCNP calculations, irradiations in MARK III can be directly related to the pure 235U(n,f prompt fission neutron spectrum. For this purpose MARK III spectrum averaged cross sections for the most relevant fluence dosimetry reactions have been determined. A calibration factor for absolute measurements has been determined applying activation dosimetry following ISO/IEC 17025 standards.

  1. Calculation of 235U(n,n') cross sections for ENDF/B-VI

    International Nuclear Information System (INIS)

    Young, P.G.; Arthur, E.D.

    1988-01-01

    Cross sections for neutron-induced reactions on 235 U between 0.01 and 20 MeV have been calculated in a preliminary analysis for the ENDF/B-VI evaluation with particular emphasis on neutron inelastic scattering. A deformed optical model potential that fits total, elastic, inelastic, and low-energy average resonance data is used to calculate direct (n,n') cross sections and transmission coefficients for a Hauser-Feshbach statistical theory analysis using a multiple fission barrier representation. Direct cross sections for higher-lying vibrational states are provided from DWBA calculations, normalized using B(E/ital l/) values determined from (d,d') and Coulomb excitation data. Initial fission barrier parameters and transition state density enhancements appropriate to the compound systems involved were obtained from previous analyses, especially fits to charged-particle fission probability data. Further modifications to fit 235 U(n,f) data were small, and the final fission parameters are generally consistent with published values. The results from this preliminary analysis are compared with the ENDF/B-V evaluation as well as with experimental data. 26 refs., 5 figs., 3 tabs

  2. The fission cross sections of /sup 230/Th, /sup 232/Th, /sup 233/U, /sup 234/U, /sup 236/U, /sup 238/U, /sup 237/Np, /sup 239/Pu and /sup 242/Pu relative /sup 235/U at 14. 74 MeV neutron energy

    Energy Technology Data Exchange (ETDEWEB)

    Meadows, J.W.

    1986-12-01

    The measurement of the fission cross section ratios of nine isotopes relative to /sup 235/U at an average neutron energy of 14.74 MeV is described with particular attention to the determination of corrections and to sources of error. The results are compared to ENDF/B-V and to other measurements of the past decade. The ratio of the neutron induced fission cross section for these isotopes to the fission cross section for /sup 235/U are: /sup 230/Th - 0.290 +- 1.9%; /sup 232/Th - 0.191 +- 1.9%; /sup 233/U - 1.132 +- 0.7%; /sup 234/U - 0.998 +- 1.0%; /sup 236/U - 0.791 +- 1.1%; /sup 238/U - 0.587 +- 1.1%; /sup 237/Np - 1.060 +- 1.4%; /sup 239/Pu - 1.152 +- 1.1%; /sup 242/Pu - 0.967 +- 1.0%. 40 refs., 11 tabs., 9 figs.

  3. Inelastic scattering of 1-2.5 MeV neutrons by 235U and 238U nuclei

    International Nuclear Information System (INIS)

    Kornilov, N.V.; Kagalenko, A.B.; Baryba, V.Ya.; Balitskij, A.V.; Androsenko, A.A.; Androsenko, P.A.

    1993-07-01

    The inelastic scattering cross-sections of 1-2.5 MeV neutrons for 235 U and 238 0 nuclei were measured. A detailed description is given of the data processing procedures used, and the methods for determining the neutron flux in the sample. The Monte Carlo method was used to calculate the corrections for multiple neutron scattering and neutron flux attenuation in the sample. Pursuant to an analysis of the fission neutron spectra, we concluded that the systematic error level of the results is ± 3.27%. The results of these cross-section and spectrum measurements for inelastically scattered neutrons are compared with results from other sources and existing evaluations, the possible causes of the divergences for neutrons with an energy level of less than 1 MeV are analysed, and suggestions are put forward for future research work. (author)

  4. Fission Product Yields of 233U, 235U, 238U and 239Pu in Fields of Thermal Neutrons, Fission Neutrons and 14.7-MeV Neutrons

    Science.gov (United States)

    Laurec, J.; Adam, A.; de Bruyne, T.; Bauge, E.; Granier, T.; Aupiais, J.; Bersillon, O.; Le Petit, G.; Authier, N.; Casoli, P.

    2010-12-01

    The yields of more than fifteen fission products have been carefully measured using radiochemical techniques, for 235U(n,f), 239Pu(n,f) in a thermal spectrum, for 233U(n,f), 235U(n,f), and 239Pu(n,f) reactions in a fission neutron spectrum, and for 233U(n,f), 235U(n,f), 238U(n,f), and 239Pu(n,f) for 14.7 MeV monoenergetic neutrons. Irradiations were performed at the EL3 reactor, at the Caliban and Prospero critical assemblies, and at the Lancelot electrostatic accelerator in CEA-Valduc. Fissions were counted in thin deposits using fission ionization chambers. The number of fission products of each species were measured by gamma spectrometry of co-located thick deposits.

  5. Measurements of neutron-induced capture and fission reactions on $^{235}$ U: cross sections and ${\\alpha}$ ratios, photon strength functions and prompt ${\\gamma}$-ray from fission

    CERN Multimedia

    We propose to measure the neutron-induced capture cross section of the fissile isotope $^{235}$U using a fission tagging set-up. This new set-up has been tested successfully in 2010 and combines the n_TOF 4${\\pi}$ Total Absorption Calorimeter (TAC) with MicroMegas (MGAS) fission detectors. It has been proven that such a combination of detectors allows distinguishing with very good reliability the electromagnetic cascades from the capture reactions from dominant ${\\gamma}$-ray background coming from the fission reactions. The accurate discrimination of the fission background is the main challenge in the neutron capture cross section measurements of fissile isotopes. The main results from the measurement will be the associated capture cross section and ${\\alpha}$ ratio in the resolved (0.3-2250 eV) and unresolved (2.25-30 keV) resonance regions. According to the international benchmarks and as it is mentioned in the NEA High Priority Request List (HPRL), the 235U(n,${\\gamma}$) cross section is of utmost impo...

  6. Average cross section measurements in U-235 fission neutron spectrum for some threshold reactions

    International Nuclear Information System (INIS)

    Maidana, N.L.

    1993-01-01

    The average cross section in the 235 U fission spectrum has been measured by the activation technique, for the following thresholds reactions: 115 In(n,n') 115m In, 232 Th(n,f) P.F., 46 , 47 , 48 Ti(n,p) 46,47 , 48 Sc, 55 Mn(n,2 n) 54 Mn, 51 V(n,α) 48 Sc, 90 Zr(n,2 n) 89 Zr, 93 Nb(n,2 n) 92m Nb, 58 Ni(n,2 n) 57 Ni, 24 Mg(n,p) 24 Na, 56 Fe(n,p) 56 Mn, 59 Co(n,α) 56 Mn and 63 Cu(n,α) 60 Co. The activation foils were irradiated close (∼ 4 mm) to the core of the IEA-R1 research reactor in the IPEN-CNEN/SP. The reactor was operated at 2 MW yielding a fast neutron flux around 5 x 10 12 n.cm -2 . s -1 . The neutron flux density was monitored by activation reactions with well known averaged cross sections and with effective thresholds above 1 MeV. The foil activities were measured in a calibrated HPGe spectrometer. The neutron spectrum has been calculated using the SAIPS unfolding system applied to the activation data. A detailed error analysis was performed using the covariance matrix methodology. The results were compared with those from other authors. (author)

  7. Analysis of the angular distributions of elastically scattered neutrons for 235U

    International Nuclear Information System (INIS)

    Sukhovitskij, E.Sh.; Benderskij, A.R.; Konshin, V.A.

    1976-01-01

    Experimental data on the angular distributions of 0.5-15 MeV neutrons elastically scattered by 235 U nuclei are analysed on the basis of Bessel functions and Legendre polynomial expansions. The advantages of the method are that there are no negative cross-sections and relatively few expansion coefficients and that experimental data on scattering at 0 0 and 180 0 are not needed. (author)

  8. Study of U235 neutron fission spectrum by the knowledge of cross sections average over that spectrum

    International Nuclear Information System (INIS)

    Suarez, P.M.

    1997-01-01

    A literature search of cross sections averaged over the fission neutron spectrum confirms inconsistencies between calculated and experimental values for high threshold reactions. Since, in this case, calculated averaged cross sections are systematically lower than measured values, it is concluded that the representations used to carry out these calculations underestimate the number of neutrons in the high energy region of the spectrum. A careful measurement of the averaged cross section for the 45 Sc(n,2n) 44g Sc and 45 Sc(n,2n) 44m Sc high threshold reactions had been performed in the RA-6 Neutron Activation Analysis Laboratory after carefully checking that the neutron flux at the core position where the samples were being irradiated was indeed an undisturbed fission spectrum. The experimental values are greater than those calculated with either, Watt type representations or the one based on the Madland and Nix model for the prompt fission spectrum. In many areas of nuclear engineering, like validation of nuclear data, reactor calculations, applied nuclear physics, shielding design, etc., it is of great practical importance to have a representation for the neutron flux that can be expressed in a closed analytical form and that agrees with experimental results, specially for the most widely fissile nuclide, 235 U. The results of the calculations mentioned above lead us to propose an analytical form for the 235 U fission neutron spectrum that better agrees with experimental results in the whole energy spectrum. We propose two different forms; both are a modification of the Watt-type form that has been adopted within the ENDF/B-V files. One of the new analytical representations is defined in two regions: below 9.5 MeV it is exactly the same formula as that used within the ENDF/B-V files, above this energy the parameters of this formula are changed. The other proposed analytical representation is expressed by a single formula in the whole energy range. These two new

  9. n+235U resonance parameters and neutron multiplicities in the energy region below 100 eV

    Directory of Open Access Journals (Sweden)

    Pigni Marco T.

    2017-01-01

    Full Text Available In August 2016, following the recent effort within the Collaborative International Evaluated Library Organization (CIELO pilot project to improve the neutron cross sections of 235U, Oak Ridge National Laboratory (ORNL collaborated with the International Atomic Energy Agency (IAEA to release a resonance parameter evaluation. This evaluation restores the performance of the evaluated cross sections for the thermal- and above-thermal-solution benchmarks on the basis of newly evaluated thermal neutron constants (TNCs and thermal prompt fission neutron spectra (PFNS. Performed with support from the US Nuclear Criticality Safety Program (NCSP in an effort to provide the highest fidelity general purpose nuclear database for nuclear criticality applications, the resonance parameter evaluation was submitted as an ENDF-compatible file to be part of the next release of the ENDF/B-VIII.0 nuclear data library. The resonance parameter evaluation methodology used the Reich-Moore approximation of the R-matrix formalism implemented in the code SAMMY to fit the available time-of-flight (TOF measured data for the thermal induced cross section of n+235U up to 100 eV. While maintaining reasonably good agreement with the experimental data, the validation analysis focused on restoring the benchmark performance for 235U solutions by combining changes to the resonance parameters and to the prompt resonance v̅ below 100 eV.

  10. Neutron Energy Spectra from Neutron Induced Fission of 235U at 0.95 MeV and of 238U at 1.35 and 2.02 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Almen, E; Holmqvist, B; Wiedling, T

    1971-09-15

    The shapes of fission neutron spectra are of interest for power reactor calculations. Recently it has been suggested that the neutron induced fission spectrum of 235U may be harder than was earlier assumed. For this reason measurements of the neutron spectra of some fissile isotopes are in progress at our laboratory. This report will present results from studies of the energy spectra of the neutrons emitted in the neutron induced fission of 235U and 238U. The measurements were performed at an incident neutron energy of 0.95 MeV for 235U and at energies of 1.35 and 2.02 MeV for 238U using time-of-flight techniques. The time-of-flight spectra were only analysed at energies higher than those of the incident neutrons and up to about 10 MeV. Corrections for neutron attenuation in the uranium samples were calculated using a Monte Carlo program. The corrected fission neutron spectra were fitted to Maxwellian temperature distributions. For 235U a temperature of 1.27 +- 0.01 MeV gives the best fit to the experimental data and for 238U the corresponding values are 1.29 +- 0.03 MeV at 1.35 MeV and 1.29 +- 0.02 MeV at 2.02 MeV

  11. Neutron induced fission cross section ratios for 232Th, 235,238U, 237Np and 239Pu from 1 to 400 MeV

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1988-01-01

    Time-of-flight measurements of neutron induced fission cross section ratios for 232 Th, 235,238 U, 237 Np, and 239 Pu, were performed using the WNR high intensity spallation neutron source located at Los Alamos National Laboratory. A multiple-plate gas ionization chamber located at a 20-m flight path was used to simultaneously measure the fission rate for all samples over the energy range from 1 to 400 MeV. Because the measurements were made with nearly identical neutron fluxes, we were able to cancel many systematic uncertainties present in previous measurements. This allows us to resolve discrepancies among different data sets. In addition, these are the first neutron-induced fission cross section values for most of the nuclei at energies above 30 MeV. (author)

  12. Fission cross sections of {sup 235,238}U and {sup 209}Bi at incident proton energies above 70 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Obukhov, A I; Rimskij-Korsakov, A A; Eismont, V P [V.G. Khlopin Radium Inst., St. Petersburg (Russian Federation)

    1997-06-01

    The proton fission cross-section data of {sup 235,238}U and Bi were measured in the V.G. Khlopin Radium Institute over a wide proton energy range. The experimental and calculated data were also compared with experimental neutron values. The proton cross-section of {sup 235,238}U increased up to 60-70 MeV and then decreased. The bismuth proton fission cross-section increased in line with the rise in proton energy up to 1 GeV. (author). 21 refs, 6 figs.

  13. Neutron-fragment angular correlations in /sup 235/U(n/sub th/,f)

    International Nuclear Information System (INIS)

    Franklyn, C.B.

    1985-01-01

    Neutron-fragment angular correlations in /sup 235/U(n/sub th/,f) as a function of neutron energy and fragment mass are presented. The results obtained in this experiment, together with data for neutron-neutron angular correlations, are compared with a Monte Carlo simulation of the fission process incorporating both a scission neutron component and an anisotropic neutron emission component

  14. Neutron induced fission cross section ratios for 232Th, /sup 235,238/U, 237Np, and 239Pu from 1 to 400 MeV

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1988-01-01

    Time-of-flight measurements of neutron induced fission cross section ratios for 232 Th, /sup 235,238/U, 237 Np, and 239 Pu, were performed using the WNR high intensity spallation neutron source located at Los Alamos National Laboratory. A multiple-plate gas ionization chamber located at a 20-m flight path was used to simultaneously measure the fission rate for all samples over the energy range from 1 to 400 MeV. Because the measurements were made with nearly identical neutron fluxes, we were able to cancel many systematic uncertainties present in previous measurements. This allows us to resolve discrepancies among different data sets. In addition, these are the first neutron-induced fission cross section values for most of the nuclei at energies above 30 MeV. 8 refs., 3 figs

  15. Energy dependence of average half-life of delayed neutron precursors in fast neutron induced fission of 235U and 236U

    International Nuclear Information System (INIS)

    Isaev, S.G.; Piksaikin, L.E.; Kazakov, L.E.; Tarasko, M.Z.

    2000-01-01

    The measurements of relative abundances and periods of delayed neutrons from fast neutron induced fission of 235 U and 236 U have been made at the electrostatic accelerator CG-2.5 at IPPE. The preliminary results were obtained and discussed in the frame of the systematics of the average half-life of delayed neutron precursors. It was shown that the average half-life value in both reactions depends on the energy of primary neutrons [ru

  16. 235U Determination using In-Beam Delayed Neutron Counting Technique at the NRU Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, M. T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bentoumi, G. [Canadian Nuclear Labs., Chalk River, ON (Canada); Corcoran, E. C. [Royal Military College of Canada, Kingston, ON (United States); Dimayuga, I. [Canadian Nuclear Labs., Chalk River, ON (Canada); Kelly, D. G. [Royal Military College of Canada, Kingston, ON (United States); Li, L. [Canadian Nuclear Labs., Chalk River, ON (Canada); Sur, B. [Canadian Nuclear Labs., Chalk River, ON (Canada); Rogge, R. B. [Canadian Nuclear Labs., Chalk River, ON (Canada)

    2015-11-17

    This paper describes a collaborative effort that saw the Royal Military College of Canada (RMC)’s delayed neutron and gamma counting apparatus transported to Canadian Nuclear Laboratories (CNL) for use in the neutron beamline at the National Research Universal (NRU) reactor. Samples containing mg quantities of fissile material were re-interrogated, and their delayed neutron emissions measured. This collaboration offers significant advantages to previous delayed neutron research at both CNL and RMC. This paper details the determination of 235U content in enriched uranium via the assay of in-beam delayed neutron magnitudes and temporal behavior. 235U mass was determined with an average absolute error of ± 2.7 %. This error is lower than that obtained at RMCC for the assay of 235U content in aqueous solutions (3.6 %) using delayed neutron counting. Delayed neutron counting has been demonstrated to be a rapid, accurate, and precise method for special nuclear material detection and identification.

  17. Measurements of the neutron-induced fission cross sections of 240Pu and 242Pu relative to 235U

    International Nuclear Information System (INIS)

    Behrens, J.W.; Browne, J.C.; Carlson, G.W.

    1976-01-01

    A continuation is given of the fission-cross-section ratio measurements in progress at the Lawrence Livermore Laboratory. Preliminary results are provided for the 240 Pu/ 235 U and 242 Pu/ 235 U ratios from 0.02 to 30 MeV and 0.1 to 30 MeV, respectively. Using the threshold-cross-section method, the ratios were normalized to the values 1.368 +- 0.030 and 1.116 +- 0.025, respectively, from 1.75 to 4.00 MeV

  18. Determination of U235 enrichment from nuclear fuel by neutronic activation

    International Nuclear Information System (INIS)

    Almeida, M.C.M. de.

    1988-01-01

    The enrichment of 235 U in UO 2 pellets samples through the instrumental neutron activation analysis method (I.N.A.A.) was determined. By high resolution gamma-ray spectrometry (H.R.G.S.), from analysis of isotopic ratios between fission products peaks from 235 U and 239 Np different energies peaks from 238 U, the enrichment was achieved. The 'Boatstrap' statistics technique for the analytical results, which is based in shaping results of an unknown distribution to the Gaussian distribution by B replications in interested statistics such as: the mean and its standard error, was introduced. (M.J.C.) [pt

  19. Measurement of the ^235mU Production Cross Section Using a Critical Assembly*

    Science.gov (United States)

    Macri, Robert; Authier, Nicolas; Becker, John; Belier, Gilbert; Bond, Evelyn; Bredeweg, Todd; Glover, S.; Meot, Vincent; Rundberg, Robert; Vieira, David; Wilhelmy, Jerry

    2006-10-01

    Measurements of the creation and destruction cross sections for actinide nuclei constitute an important experimental effort in support of Stockpile Stewardship. In this talk I will give a progress report on the effort to measure the production cross section of the ^235mU isomer integrated over a fission neutron spectrum. This ongoing experiment is fielded at CEA in Valduc, France, taking advantage of the CALIBAN critical assembly. This effort is performed in collaboration with LANL, LLNL, Bruyeres le Chatel, and Valduc staff. This experiment utilizes a technique to measure internal conversion electrons from the ^235mU isomer with the French BIII detector (Bruyeres le Chatel), and involves a substantial chemistry effort (LANL) to prepare targets for irradiation and counting, as well as to remove fission fragments after irradiation. Experimental techniques will be discussed and preliminary data presented. *Work performed under the auspices of the U.S. Department of Energy by Los Alamos National Laboratory (W-7405-ENG-36) and Lawrence Livermore National Laboratory (W-7405-ENG-48), and CEA-DAM under CEA-DAM NNSA-DOE agreement.

  20. The application of the Harwell neutron absorptiometer to the analysis of U-235 in nuclear fuel components

    International Nuclear Information System (INIS)

    Jones, T.L.; Watson, J.; Taylor, T.A.H.

    1979-05-01

    This paper describes the application of the Harwell Neutron Absorptiometer to routine analysis of the U-235 content of fuel element inserts manufactured at the Dounreay Nuclear Power Development Establishment for the use in Materials Testing Reactors. The instrument response, which is principally dependent on the 235 U closely follows a logarithmic relationship. Neutron attenuation due to the aluminium matrix and the presence of 238 U is less than 2% of the total attenuation. The absorptiometer can be used to estimate the weight of 235 U in a single insert with a total error in the range 1 to 1.6%. (author)

  1. On uncertainties and fluctuations of averaged neutron cross sections in unresolved resonance energy region for 235U, 238U, 239Pu

    International Nuclear Information System (INIS)

    Van'kov, A.A.; Blokhin, A.I.; Manokhin, V.N.; Kravchenko, I.V.

    1985-01-01

    This paper analyses the reasons for the differences which exist between group-averaged evaluated cross-section data from different evaluated data files for U235, U238 and Pu239 in the unresolved resonance energy region. (author)

  2. Symmetry of neutron-induced 235U fission at individual resonances. III

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, G A; Bayhurst, B P; Prestwood, R J; Gilmore, J S; Knobeloch, G W [Los Alamos Scientific Laboratory, University of California, Los Alamos, NM (United States)

    1970-05-15

    A number of experiments have been described in recent years which document variations in the yields of symmetric or near-symmetric fission products at resonances in 235-U and 239-Pu neutron-induced fission. In the case of 239-Pu fission it has been demonstrated in a statistically significant sample of s-wave neutron resonances (J{sup {pi}} = 0{sup +} or 1{sup +}) that the 0{sup +} levels have a characteristic 115Cd yield which is a factor of four higher than the yield at 1{sup +} levels. The fission widths of the J = 0 levels are larger than the J = 1 levels by a factor of ten. The populations of the two groups are in reasonable agreement with the expected (2J + 1) distributions. Previous efforts to obtain equally detailed data in 235-U fission and 233-U fission by the 'wheel' technique have not been entirely successful due in large part to the high level densities in the epithermal excitation functions of these nuclides and the consequent difficulty in characterizing fission yields in a sufficiently large and well-resolved sample of levels. In a recent 'wheel' experiment (late summer, 1969) vith a 235-U target the energy resolution was sufficiently improved in the region 20 eV-60 eV to allow characterization of a sample of 38 reasonably well-resolved levels by their relative symmetry of fission. (author)

  3. 8-group relative delayed neutron yields for epithermal neutron induced fission of 235U and 239Pu

    International Nuclear Information System (INIS)

    Piksaikin, V.M.; Kazakov, L.E.; Isaev, S.G.; Korolev, G.G.; Roshchenko, V.A.; Tertychnyj, R.G

    2002-01-01

    An 8-group representation of relative delayed neutron yields was obtained for epithermal neutron induced fission of 235 U and 239 Pu. These data were compared with ENDF/B-VI data in terms of the average half- life of the delayed neutron precursors and on the basis of the dependence of reactivity on the asymptotic period. (author)

  4. Estimation of covariances of 16O, 23Na, Fe, 235U, 238U and 239Pu neutron nuclear data in JENDL-3.2

    International Nuclear Information System (INIS)

    Shibata, Keiichi; Nakajima, Yutaka; Kawano, Toshihiko; Oh, Soo-Youl; Matsunobu, Hiroyuki; Murata, Toru.

    1997-10-01

    Covariances of nuclear data have been estimated for 6 nuclides contained in JENDL-3.2. The nuclides considered are 16 O, 23 Na, Fe, 235 U, 238 U, and 239 Pu, which are regarded as important for the nuclear design study of fast reactors. The physical quantities for which covariances are deduced are cross sections, resolved and unresolved resonance parameters, and the first order Legendre-polynomial coefficient for the angular distribution of elastically scattered neutrons. As for 235 U, covariances were obtained also for the average number of neutrons emitted in fission. The covariances were estimated by using the same methodology that had been used in the JENDL-3.2 evaluation in order to keep a consistency between mean values and their covariances. The least-squares fitting code GMA was used in estimating covariances for reactions of which JENDL-3.2 cross sections had been evaluated by taking account of measurements. In nuclear model calculations, the covariances were calculated by the KALMAN system. The covariance data obtained were compiled in the ENDF-6 format, and will be put into the JENDL-3.2 Covariance File which is one of JENDL special purpose files. (author). 193 refs

  5. Neutron induced fission cross section ratios for /sup 232/Th, /sup 235,238/U, /sup 237/Np, and /sup 239/Pu from 1 to 400 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, P.W.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1988-01-01

    Time-of-flight measurements of neutron induced fission cross section ratios for /sup 232/Th, /sup 235,238/U, /sup 237/Np, and /sup 239/Pu, were performed using the WNR high intensity spallation neutron source located at Los Alamos National Laboratory. A multiple-plate gas ionization chamber located at a 20-m flight path was used to simultaneously measure the fission rate for all samples over the energy range from 1 to 400 MeV. Because the measurements were made with nearly identical neutron fluxes, we were able to cancel many systematic uncertainties present in previous measurements. This allows us to resolve discrepancies among different data sets. In addition, these are the first neutron-induced fission cross section values for most of the nuclei at energies above 30 MeV. 8 refs., 3 figs.

  6. Determination of U-235 quantity in fresh fuel elements by neutron coincidence collar technique

    International Nuclear Information System (INIS)

    Almeida, M.C.M. de; Almeida, S.G. de; Marzo, M.A.S.; Moita, L.P.M.

    1990-01-01

    The U-235 quantity per lenght of fresh fuel assemblies of the Angra-I first recharge was determined by Neutron Coincidence Collar technique (N.C.C.). This technique is well-founded in fresh fuel assemblies activation by thermal neutrons from AmLi source to generate U-235 fission neutrons. These neutrons are detected by coincidence method in polyethylene structure where 18 He-3 detectors were placed. The coincidence counting results, in active mode (AmLi), showed 0,7% to standard deviation and equal to 1,49% to mass in 1000s of counting. The accuracies of different calibration methods were evaluated and compared. The results showed that the operator declared values are consistent. This evaluation was part of technical-exchange program between Safeguards Laboratory from C.N.E.N. and Los Alamos National Lab., United States. (author)

  7. Study of U{sup 235} neutron fission spectrum by the knowledge of cross sections average over that spectrum; Estudio del espectro de neutrones de fision del {sup 235}U a traves del conocimiento de secciones eficaces promediadas sobre dicho espectro

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, P M [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche

    1998-12-31

    A literature search of cross sections averaged over the fission neutron spectrum confirms inconsistencies between calculated and experimental values for high threshold reactions. Since, in this case, calculated averaged cross sections are systematically lower than measured values, it is concluded that the representations used to carry out these calculations underestimate the number of neutrons in the high energy region of the spectrum. A careful measurement of the averaged cross section for the {sup 45}Sc(n,2n) {sup 44g}Sc and {sup 45}Sc(n,2n) {sup 44m}Sc high threshold reactions had been performed in the RA-6 Neutron Activation Analysis Laboratory after carefully checking that the neutron flux at the core position where the samples were being irradiated was indeed an undisturbed fission spectrum. The experimental values are greater than those calculated with either, Watt type representations or the one based on the Madland and Nix model for the prompt fission spectrum. In many areas of nuclear engineering, like validation of nuclear data, reactor calculations, applied nuclear physics, shielding design, etc., it is of great practical importance to have a representation for the neutron flux that can be expressed in a closed analytical form and that agrees with experimental results, specially for the most widely fissile nuclide, {sup 235}U. The results of the calculations mentioned above lead us to propose an analytical form for the {sup 235}U fission neutron spectrum that better agrees with experimental results in the whole energy spectrum. We propose two different forms; both are a modification of the Watt-type form that has been adopted within the ENDF/B-V files. One of the new analytical representations is defined in two regions: below 9.5 MeV it is exactly the same formula as that used within the ENDF/B-V files, above this energy the parameters of this formula are changed. The other proposed analytical representation is expressed by a single formula in the whole

  8. Beta decay heat following U-235, U-238 and Pu-239 neutron fission

    Science.gov (United States)

    Li, Shengjie

    1997-09-01

    This is an experimental study of beta-particle decay heat from 235U, 239Pu and 238U aggregate fission products over delay times 0.4-40,000 seconds. The experimental results below 2s for 235U and 239Pu, and below 20s for 238U, are the first such results reported. The experiments were conducted at the UMASS Lowell 5.5-MV Van de Graaff accelerator and 1-MW swimming-pool research reactor. Thermalized neutrons from the 7Li(p,n)7Be reaction induced fission in 238U and 239Pu, and fast neutrons produced in the reactor initiated fission in 238U. A helium-jet/tape-transport system rapidly transferred fission fragments from a fission chamber to a low background counting area. Delay times after fission were selected by varying the tape speed or the position of the spray point relative to the beta spectrometer that employed a thin-scintillator-disk gating technique to separate beta-particles from accompanying gamma-rays. Beta and gamma sources were both used in energy calibration. Based on low-energy(energies 0-10 MeV. Measured beta spectra were unfolded for their energy distributions by the program FERD, and then compared to other measurements and summation calculations based on ENDF/B-VI fission-product data performed on the LANL Cray computer. Measurements of the beta activity as a function of decay time furnished a relative normalization. Results for the beta decay heat are presented and compared with other experimental data and the summation calculations.

  9. A new method to measure the U-235 content in fresh LWR fuel assemblies via fast-neutron passive self-interrogation

    Science.gov (United States)

    Menlove, Howard; Belian, Anthony; Geist, William; Rael, Carlos

    2018-01-01

    The purpose of this paper is to provide a solution to a decades old safeguards problem in the verification of the fissile concentration in fresh light water reactor (LWR) fuel assemblies. The problem is that the burnable poison (e.g. Gd2O3) addition to the fuel rods decreases the active neutron assay for the fuel assemblies. This paper presents a new innovative method for the verification of the 235U linear mass density in fresh LEU fuel assemblies that is insensitive to the burnable poison content. The technique makes use of the 238U atoms in the fuel rods to self-interrogate the 235U mass. The innovation for the new approach is that the 238U spontaneous fission (SF) neutrons from the rods induces fission reactions (IF) in the 235U that are time correlated with the SF source neutrons. Thus, the coincidence gate counting rate benefits from both the nu-bar of the 238U SF (2.07) and the 235U IF (2.44) for a fraction of the IF reactions. Whereas, the 238U SF background has no time-correlation boost. The higher the detection efficiency, the higher the correlated boost because background neutron counts from the SF are being converted to signal doubles. This time-correlation in the IF signal increases signal/background ratio that provides a good precision for the net signal from the 235U mass. The hard neutron energy spectrum makes the technique insensitive to the burnable poison loading where a Cd or Gd liner on the detector walls is used to prevent thermal-neutron reflection back into the fuel assembly from the detector. We have named the system the fast-neutron passive collar (FNPC).

  10. Fission Product Yields for 14 MeV Neutrons on 235U, 238U and 239Pu

    International Nuclear Information System (INIS)

    Mac Innes, M.; Chadwick, M.B.; Kawano, T.

    2011-01-01

    We report cumulative fission product yields (FPY) measured at Los Alamos for 14 MeV neutrons on 235 U, 238 U and 239 Pu. The results are from historical measurements made in the 1950s–1970s, not previously available in the peer reviewed literature, although an early version of the data was reported in the Ford and Norris review. The results are compared with other measurements and with the ENDF/B-VI England and Rider evaluation. Compared to the Laurec (CEA) data and to ENDF/B-VI evaluation, good agreement is seen for 235 U and 238 U, but our FPYs are generally higher for 239 Pu. The reason for the higher plutonium FPYs compared to earlier Los Alamos assessments reported by Ford and Norris is that we update the measured values to use modern nuclear data, and in particular the 14 MeV 239 Pu fission cross section is now known to be 15–20% lower than the value assumed in the 1950s, and therefore our assessed number of fissions in the plutonium sample is correspondingly lower. Our results are in excellent agreement with absolute FPY measurements by Nethaway (1971), although Nethaway later renormalized his data down by 9% having hypothesized that he had a normalization error. The new ENDF/B-VII.1 14 MeV FPY evaluation is in good agreement with our data.

  11. Measurement of 235U content and flow of UF6 using delayed neutrons or gamma rays following induced fission

    International Nuclear Information System (INIS)

    Stromswold, D.C.; Peurrung, A.J.; Reeder, P.L.; Perkins, R.W.

    1996-06-01

    Feasibility experiments conducted at Pacific Northwest National Laboratory demonstrate that either delayed neutrons or energetic gamma rays from short-lived fission products can be used to monitor the blending of UF 6 gas streams. A 252 Cf neutron source was used to induce 235 U fission in a sample, and delayed neutrons and gamma rays were measured after the sample moved open-quotes down-stream.close quotes The experiments used a UO 2 powder that was transported down the pipe to simulate the flowing UF 6 gas. Computer modeling and analytic calculation extended the test results to a flowing UF 6 gas system. Neutron or gamma-ray measurements made at two downstream positions can be used to indicate both the 235 U content and UF 6 flow rate. Both the neutron and gamma-ray techniques have the benefits of simplicity and long-term reliability, combined with adequate sensitivity for low-intrusion monitoring of the blending process. Alternatively, measuring the neutron emission rate from (a, n) reactions in the UF 6 provides an approximate measure of the 235 U content without using a neutron source to induce fission

  12. Measurements of fission cross-sections and of neutron production rates

    International Nuclear Information System (INIS)

    Billaud, P.; Clair, C.; Gaudin, M.; Genin, R.; Joly, R.; Leroy, J.L.; Michaudon, A.; Ouvry, J.; Signarbieux, C.; Vendryes, G.

    1958-01-01

    a) Measurements of neutron induced fission cross-sections in the low energy region. The variation of the fission cross sections of several fissile isotopes has been measured and analysed, for neutron energies below 0,025 eV. The monochromator was a crystal spectrometer used in conjunction with a mechanical velocity selector removing higher order Bragg reflections. The fissile material was laid down on the plates of a fission chamber by painting technic. An ionization chamber, having its plates coated with thin 10 B layers, was used as the neutron flux monitor. b) Measurement of the fission cross section of 235 U. We intend to measure the variation of the neutron induced fission cross section of 235 U over the neutron energy range from 1 keV by the time of flight method. The neutron source is the uranium target of a pulsed 28 MeV electron linear accelerator. The detector is a large fission chamber, with parallel plates, containing about 10 g of 235 U (20 deposits of 25 cm diameter). The relative fission data were corrected for the neutron spectrum measured with a set of BF 3 proportional counters. c) Mean number ν of neutrons emitted in neutron induced fission. We measured the value of ν for several fissile isotopes in the case of fission induced by 14 MeV neutrons. The 14 MeV neutrons were produced by D (t, n) α reaction by means of a 300 kV Cockcroft Walton generator. (author) [fr

  13. {sup 235}U(n,F) prompt fission neutron spectra

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, M.V.; Tetereva, N.A. [Joint Institute of Nuclear and Energy Research, Minsk-Sosny (Belarus); Pronyaev, V.P.; Kagalenko, A.B. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Capote, R. [International Atomic Energy Agency, Vienna (Austria); Granier, T.; Morillon, B. [CEA, Centre DAM-IIe de France, 91 - Arpajon (France); Hambsch, F.J. [EC-JRC Institute for Reference Materials and Measurements, Geel (Belgium); Sublet, J.C. [CEA Cadarache, 13 - Saint Paul lez Durance (France)

    2009-07-01

    The longstanding problem of inconsistency of integral thermal data testing and differential prompt fission neutron spectra data (PFNS) is mostly due to rather poor fits of differential PFNS data in major data libraries. The measured database is updated by using modern standards including Manhart's evaluation of the spontaneous fission neutron spectra of {sup 252}Cf(sf). That largely removes the inconsistency of older thermal neutron-induced PFNS measurements with newest data of JRC IRMM by Hambsch et al. (2009). A phenomenological approach, developed by Kornilov et al. (1999), for the first-chance fission and extended for the emissive fission domain by Maslov et al. (2005) is calibrated at E{sub th} to predict both the PFNS average energy and PFNS shape up to 20 MeV. The latter is extremely important, since rather close values in fact correspond to quite discrepant spectra shapes, which influences reactor neutronics strongly. The proposed phenomenological representation of the PFNS reproduces both soft and hard energy tails of {sup 235}U(n{sub th},F) PFNS at thermal incident neutron energy E{sub th}. In the first-chance and emissive fission domain evaluated PFNS are consistent with the data by Ethvignot et al. (2005). A compiled MF=5 Endf/B-formatted file of the {sup 235}U(n,F) PFNS largely removes the inconsistencies of the evaluated differential PFNS with integral data benchmarks. Almost perfect fits are attained for available differential PFNS data from E{sub th} up to E{sub n}=14.7 MeV, with few exceptions at E{sub n}=2.9 and E{sub n}=5 MeV. Fast integral critical experiment like GODIVA or Flattop benchmarks might be reproduced almost with the same accuracy as with the PFNS of the major data libraries. That reveals a rather delicate compensation effect, since present and previous PFNS shapes are drastically different from each other. Thermal assemblies benchmarking reveals positive biases in k(eff), which might be attributed to the influence of

  14. Proposal for Analysis of the Safeguarded Nuclear Materials 235U and 239Pu by Delayed Neutrons Technique

    International Nuclear Information System (INIS)

    El-Mongy, S.A.

    2000-01-01

    This paper introduces, describes and initiates a very sensitive and rapid non-destructive technique to be used for analysis of the safeguarded nuclear materials 235 U and 239 Pu. The technique is based on fission of the nuclear material by neutrons and then measuring the delayed neutrons produced from the neutron rich fission products. By this technique, fissile isotope content ( 235 U) can be determined in the presence of the other fissile (e.g. 239 Pu) or fertile isotopes (e.g. 238 U) in fresh and spent fuel. The time consumed for analysis of bulk materials by this technique is only 4 minutes. The method is also used for analysis of uranium in rock, sediment, soil, meteorites, lunar, biological, urine, archaeological, zircon sand and seawater samples. The method enables uranium in a sample to be measured without respect to its oxidation state, organic and inorganic elements

  15. Prompt neutron decay constant for the Oak Ridge Research Reactor with 20 wt % 235U enriched fuel

    International Nuclear Information System (INIS)

    Ragan, G.E.; Mihalczo, J.T.

    1986-01-01

    This paper describes measurements of the prompt neutron decay constant at delayed criticality for the Oak Ridge Research Reactor (ORR) using 20 wt % 235 U enriched fuel and compares these measurements with similar measurements using 93.2 wt % 235 U enriched fuel. This reactor parameter is of interest because it affects the transient behavior of the reactor in prompt criticality accident situations. This experiment is part of a program to investigate the differences in the performance of research reactors fueled with highly enriched and low enriched uranium. The prompt neutron decay constants were obtained using noise analysis measurement techniques for a core with newly fabricated, unirradiated fuel elements

  16. Monte Carlo cross section testing for thermal and intermediate 235U/238U critical assemblies, ENDF/B-V vs ENDF/B-VI

    International Nuclear Information System (INIS)

    Weinman, J.P.

    1997-06-01

    The purpose of this study is to investigate the eigenvalue sensitivity to changes in ENDF/B-V and ENDF/B-VI cross section data sets by comparing RACER vectorized Monte Carlo calculations for several thermal and intermediate spectrum critical experiments. Nineteen Oak Ridge and Rocky Flats thermal solution benchmark critical assemblies that span a range of hydrogen-to- 235 U (H/U) concentrations (2052 to 27.1) and above-thermal neutron leakage fractions (0.555 to 0.011) were analyzed. In addition, three intermediate spectrum critical assemblies (UH3-UR, UH3-NI, and HISS-HUG) were studied

  17. Measurement of fast neutron induced fission cross sections of 232Th, 238U, 237Np and 243Am

    International Nuclear Information System (INIS)

    Kanda, Kazutaka; Sato, Osamu; Yoshida, Kazuo; Imaruoka, Hiromitsu; Terayama, Hiromichi; Yoshida, Masashi; Hirakawa, Naohiro

    1984-01-01

    Neutron induced fission cross sections of 232 Th, 238 U, 237 Np and 243 Am relative to 235 U were measured in the energy range from 1.5 to 6.6 MeV. The present results are compared with experimental results of others and evaluated data in JENDL-2 and ENDF/B-IV. (author)

  18. Measurements of Integral Cross Section Ratios in Two Dosimetry Benchmark Neutron Fields

    International Nuclear Information System (INIS)

    Fabry, A.; Czock, K.H.

    1974-12-01

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the 103 Rh(n,n') 103m Rh and 58 Ni(n,p) 58 Co integral cross sections have been accurately measured relatively to the 115 In(n,n') 115m In cross section in the 235 U thermal dission neutron spectrum and in the MOLΣΣ Intermediate-Energy Standard Neutron field. In this last neutron field, the data are related also to the 235 U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific 103 Rh(n,n') 103m Rh differential-energy cross section among the existing, conflicting data. (author)

  19. Measurements of integral cross section ratios in two dosimetry benchmark neutron fields

    International Nuclear Information System (INIS)

    Fabry, A.; Czock, K.H.

    1974-12-01

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the 103 Rh(n,n') 103m Rh and 58 Ni(n,p) 58 Co integral cross sections have been accurately measured relatively to the 115 In(n,n') 115m In cross section in the 235 U thermal fission neutron spectrum and in the MOL-ΣΣ intermediate-energy standard neutron field. In this last neutron field, the data are related also to the 235 U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific 103 Rh(n,n') 103m Rh differential-energy cross section among the existing, conflicting data. (author)

  20. Energy dependence of the neutron multiplicity P/sub nu/ in fast neutron induced fission of /sup 235,238/U and 239Pu

    International Nuclear Information System (INIS)

    Zucker, M.S.; Holden, N.E.

    1986-01-01

    Certain applications require knowledge of the higher moments of the neutron multiplicity probability. It can be shown that the second factorial moment is proportional to the fission rate in the sample, and that the third factorial moment can be of use in disentangling spontaneous fission from induced fission. Using a source of unpublished work in which neutron multiplicities were derived for the fast neutron induced fission of U-235, U-238, and Pu-239, the multiplicity probability has been calculated as a function of neutron energy for the energy range 0 to 10 MeV

  1. Measurements of the prompt neutron spectra in 233U, 235U, 239Pu thermal neutron fission in the energy range of 0.01-5 MeV and in 252Cf spontaneous fission in the energy range of 0.01-10 MeV

    International Nuclear Information System (INIS)

    Starostov, B.I.; Semenov, A.F.; Nefedov, V.N.

    1978-01-01

    The measurement results on the prompt neutron spectra in 233 U, 235 U, 239 Pu thermal neutron fission in the energy range of 0.01-5 MeV and in 252 Cf spontaneous fission in the energy range of 0.01-10 MeV are presented. The time-of-flight method was used. The exceeding of the spectra over the Maxwell distributions is observed at E 252 Cf neutron fission spectra. The spectra analysis was performed after normalization of the spectra and corresponding Maxwell distributions for one and the same area. In the range of 0.05-0.22 MeV the yield of 235 U + nsub(t) fission neutrons is approximately 8 and approximately 15 % greater than the yield of 252 Cf and 239 Pu + nsub(t) fission neutrons, respectively. In the range of 0.3-1.2 MeV the yield of 235 U + nsub(t) fission neutrons is 8 % greater than the fission neutron yield in case of 239 Pu + nsub(t) fission. The 235 U + nsub(t) and 233 U + nsub(t) fission neutron spectra do not differ from one another in the 0.05-0.6 MeV range

  2. Simultaneous measurement of fission fragments and prompt neutrons for thermal neutron-induced fission of U-235

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Katsuhisa; Yamamoto, Hideki; Kimura, Itsuro; Nakagome, Yoshihiro [Kyoto Univ. (Japan)

    1997-03-01

    Simultaneous measurement of fission fragments and prompt neutrons following the thermal neutron induced fission of U-235 has been performed in order to obtain the neutron multiplicity (v) and its emission energy ({eta}) against the specified mass (m{sup *}) and the total kinetic energy (TKE). The obtained value of -dv/dTKE(m{sup *}) showed a saw-tooth distribution. The average neutron energy <{eta}>(m{sup *}) had a distribution with a reflection symmetry around the half mass division. The measurement also gave the level density parameters of the specified fragment, a(m{sup *}), and this parameters showed a saw-tooth trend too. The analysis by a phenomenological description of this parameters including the shell and collective effects suggested the existence of a collective motion of the fission fragments. (author)

  3. Estimation of covariances of {sup 16}O, {sup 23}Na, Fe, {sup 235}U, {sup 238}U and {sup 239}Pu neutron nuclear data in JENDL-3.2

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Keiichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nakajima, Yutaka; Kawano, Toshihiko; Oh, Soo-Youl; Matsunobu, Hiroyuki; Murata, Toru

    1997-10-01

    Covariances of nuclear data have been estimated for 6 nuclides contained in JENDL-3.2. The nuclides considered are {sup 16}O, {sup 23}Na, Fe, {sup 235}U, {sup 238}U, and {sup 239}Pu, which are regarded as important for the nuclear design study of fast reactors. The physical quantities for which covariances are deduced are cross sections, resolved and unresolved resonance parameters, and the first order Legendre-polynomial coefficient for the angular distribution of elastically scattered neutrons. As for {sup 235}U, covariances were obtained also for the average number of neutrons emitted in fission. The covariances were estimated by using the same methodology that had been used in the JENDL-3.2 evaluation in order to keep a consistency between mean values and their covariances. The least-squares fitting code GMA was used in estimating covariances for reactions of which JENDL-3.2 cross sections had been evaluated by taking account of measurements. In nuclear model calculations, the covariances were calculated by the KALMAN system. The covariance data obtained were compiled in the ENDF-6 format, and will be put into the JENDL-3.2 Covariance File which is one of JENDL special purpose files. (author). 193 refs.

  4. The Prompt Fission Neutron Spectrum of 235U for Einc 0.7-5.0 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Jaime A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Devlin, Matthew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Haight, Robert Cameron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); O' Donnell, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lee, Hye Young [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Shea Morgan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Taddeucci, Terry Nicholas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kelly, Keegan John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fotiadis, Nikolaos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Neudecker, Denise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); White, Morgan Curtis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Talou, Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Solomon, Clell Jeffrey Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wu, Ching-Yen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bucher, Brian Michael [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Buckner, Matthew Quinn [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Henderson, Roger Alan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-03-23

    The Chi-Nu experiment aims to accurately measure the prompt fission neutron spectrum (PFNS) for the major actinides. At the Los Alamos Neutron Science Center (LANSCE), fission can be induced using the white neutron source. Using a two arm time of flight (T.O.F) technique; Chi-Nu presents a preliminary result of the low energy component of the 235U PFNS measured using an array of 22-Lithium glass scintillators.

  5. Fission product yields from 6 to 9 MeV neutron induced fission of 235U and 238U

    International Nuclear Information System (INIS)

    Chapman, T.C.

    1978-01-01

    The yields of 28 mass chains have been measured for fission of 235 U and 238 U induced by neutrons at four different energies from 6.0 to 9.1 MeV. This is the first experimental measurement where sufficient energy resolution was obtained to observe the effect of the onset of second-chance fission in the case of symmetric fission. The 111 Ag results are compared with measurements at other neutron energies and with previous theoretical predictions. Several of the nuclide results are presented in graphical form, and all nuclide results are presented in tabular form, as a function of neutron energy. The mass chains measured range from 84 to 156, and their half-lives range from 18 minutes to 30 years

  6. Measurements of integral cross section ratios in two dosimetry benchmark neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A [CEN-SCK, Mol (Belgium); Czock, K H [International Atomic Energy Agency, Laboratory Seibersdorf, Vienna (Austria)

    1974-12-01

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the {sup 103}Rh(n,n'){sup 103m}Rh and {sup 58}Ni(n,p){sup 58}Co integral cross sections have been accurately measured relatively to the {sup 115}In(n,n'){sup 115m} In cross section in the {sup 235}U thermal fission neutron spectrum and in the MOL-{sigma}{sigma} intermediate-energy standard neutron field. In this last neutron field, the data are related also to the {sup 235}U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific {sup 103}Rh(n,n'){sup 103m}Rh differential-energy cross section among the existing, conflicting data. (author)

  7. Measurements of Integral Cross Section Ratios in Two Dosimetry Benchmark Neutron Fields

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A. [CEN-SCK, Mol (Belgium); Czock, K. H. [International Atomic Energy Agency, Vienna (Austria)

    1974-12-15

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the {sup 103}Rh(n,n'){sup 103m}Rh and {sup 58}Ni(n,p){sup 58}Co integral cross sections have been accurately measured relatively to the {sup 115}In(n,n'){sup 115m}In cross section in the {sup 235}U thermal dission neutron spectrum and in the MOL{Sigma}{Sigma} Intermediate-Energy Standard Neutron field. In this last neutron field, the data are related also to the {sup 235}U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific {sup 103}Rh(n,n'){sup 103m}Rh differential-energy cross section among the existing, conflicting data. (author)

  8. Use of integral experiments for the assessment of the 235U capture cross section within the CIELO Project

    Directory of Open Access Journals (Sweden)

    Ichou Raphaelle

    2016-01-01

    Full Text Available A new 235U capture cross-section evaluation, evaluated by ORNL and the CEA Bruyères-le-Châtel (BRC has been proposed within the CIELO project. IRSN, who participates in the CIELO project, contributes with data testing and has carried out benchmark calculations using few benchmarks, extracted from the ICSBEP database, for testing the new 235U evaluation. The benchmarks have been selected by privileging the experiments showing small experimental uncertainties and a significant sensitivity to 235U capture cross-section. The keff calculations were performed with both the MCNP 6 code and the 5.C.1 release of the MORET 5 code, using the ENDF/B-VII.1 library for all isotopes except 235U, for which both the ENDF/B-VII.1 and the new 235U evaluation was used. The benchmark selection allowed highlighting a significant effect on keff of the new 235U capture cross-section. The results of this data testing, provided as input for the evaluators, are presented here.

  9. Evaluation of the neutron cross sections of 235U in the thermal energy region. Final report

    International Nuclear Information System (INIS)

    Leonard, B.R. Jr.; Kottwitz, D.A.; Thompson, J.K.

    1976-02-01

    The objective of this work has been to improve the knowledge of the thermal cross sections of the fissile nuclei as a step toward providing a standard data base for the nuclear industry. The methodology uses a form of the Adler-Adler multilevel-fission theory and Breit-Wigner multilevel-scattering theory. It incorporates these theories in a general nonlinear least-squares (LSQ) fitting program SIGLEARNThe analysis methodology in this work was applied to the thermal data on 235 U. A reference data file has been developed which includes most of the known data of interest. The first important result of this work is the assessment of the shape uncertainties of the partial cross sections. The results of our studies lead to the following values and error estimates for 235 U g factors in a thermal (20.44 0 C) energy spectrum: g/sub f/ = 0.97751 (+-0.11%); g/sub γ/ = 0.98230 (+-0.14%). A second important result of this study is the development of a recommended set of 2200 m/s (0.0253 eV) values of the parameters and the probable range of further adjustment which might be made. The analysis also provides the result of a common interpretation of energy-dependent absolute cross-section data of different measurements to yield a consistent set of experimental 0.0253 eV values with rigorous error estimates. It also provides normalization factors for relative fission and capture cross sections on a common basis with rigorous error estimates. The results of these analyses provide a basis for deciding what new measurements would be most beneficial. The most important of these would be improved direct capture data in the thermal region

  10. Fission neutron spectrum averaged cross sections for threshold reactions on arsenic

    International Nuclear Information System (INIS)

    Dorval, E.L.; Arribere, M.A.; Kestelman, A.J.; Comision Nacional de Energia Atomica, Cuyo Nacional Univ., Bariloche; Ribeiro Guevara, S.; Cohen, I.M.; Ohaco, R.A.; Segovia, M.S.; Yunes, A.N.; Arrondo, M.; Comision Nacional de Energia Atomica, Buenos Aires

    2006-01-01

    We have measured the cross sections, averaged over a 235 U fission neutron spectrum, for the two high threshold reactions: 75 As(n,p) 75 mGe and 75 As(n,2n) 74 As. The measured averaged cross sections are 0.292±0.022 mb, referred to the 3.95±0.20 mb standard for the 27 Al(n,p) 27 Mg averaged cross section, and 0.371±0.032 mb referred to the 111±3 mb standard for the 58 Ni(n,p) 58m+g Co averaged cross section, respectively. The measured averaged cross sections were also evaluated semi-empirically by numerically integrating experimental differential cross section data extracted for both reactions from the current literature. The calculations were performed for four different representations of the thermal-neutron-induced 235 U fission neutron spectrum. The calculated cross sections, though depending on analytical representation of the flux, agree with the measured values within the estimated uncertainties. (author)

  11. The 235U prompt fission neutron spectrum measured by the Chi-Nu project at LANSCE

    Directory of Open Access Journals (Sweden)

    Gomez J.A.

    2017-01-01

    Full Text Available The Chi-Nu experiment aims to accurately measure the prompt fission neutron spectrum for the major actinides. At the Los Alamos Neutron Science Center (LANSCE, fission can be induced with neutrons ranging from 0.7 MeV and above. Using a two arm time-of-flight (TOF technique, the fission neutrons are measured in one of two arrays: a 22-6Li glass array for lower energies, or a 54-liquid scintillator array for outgoing energies of 0.5 MeV and greater. Presented here are the collaboration's preliminary efforts at measuring the 235U PFNS.

  12. Contribution to the study of the interaction of slow neutrons with {sup 235}U using the time-of-flight method; Contribution a l'etude par la methode du temps de vol de l'interaction de neutrons lents avec l'U{sup 235}

    Energy Technology Data Exchange (ETDEWEB)

    Michaudon, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-05-15

    This study concerns the properties of the excited levels of uranium 236 obtained by interaction of slow neutron with uranium 235. The experiments have been carried out at the Saclay linear electron accelerator by use of the time of flight method. In the first part of this paper, we examine the technical and physical conditions which rule the experiments: compromise between resolution and counting rate, time dispersion due to the slowing down of the neutrons and crystalline binding effects. In a second part the experimental results i.e. total, fission and ternary fission cross sections are given. The third part deals with the analysis of these results: the resonance parameters determination ({tau}{sub n}, {tau}{sub {gamma}}, {tau}{sub f}), the study of their statistical distribution and of their correlations. We tried some classifications of the resonances according to their parameters and compared these classifications to each other and to other results. At least the evidence of a cross section correlation with a range smaller than 100 eV seems to be confirmed. (author) [French] Cette etude porte sur les proprietes des niveaux excites de l'Uranium-236 obtenus par l'interaction de neutrons lents avec le {sup 235}U. La technique experimentale est celle de la spectrometrie par temps de vol, les experiences ayant ete realisees aupres de l'accelerateur lineaire d'electrons de Saclay, Dans une premiere partie nous examinons les donnees techniques et physiques conditionnant les experiences: compromis entre resolution et taux de comptage, dispersion en temps due au ralentissement des neutrons, effet des liaisons cristallines. Dans une deuxieme partie sont exposes les resultats experimentaux: sections efficaces totales, de fission et de fission ternaire du {sup 235}U. Une troisieme partie porte sur l'analyse de ces resultats: determination des parametres ({tau}{sub n}, {tau}{sub {gamma}}, {tau}{sub f}), etude de leurs distributions statistiques et des correlations entre ces

  13. Independent yields of Rb and Cs isotopes from thermal-neutron induced fission of 235U

    International Nuclear Information System (INIS)

    Balestrini, S.J.; Decker, R.; Wollnik, H.; Wuensch, K.D.; Jung, G.; Koglin, E.; Siegert, G.

    1979-01-01

    The relative yields of Rb and Cs isotopes from thermal-neutron fission of 235 U have been redetermined using the mass separator OSTIS, on-line at a neutron guide of the High-Flux Beam Reactor at the Institut Laue-Langevin, Grenoble, France. The separator ion source was a hot oven containing 235 U in a graphite matrix. The neutron beam was pulsed. Alkali fission products diffused out of the graphite and were ionized, thus producing a stepwise increase in the analyzed ion beam proportional to the independent fission yield. The ion beam and the fissions in the source were monitored simultaneously. The diffusion of Rb and Cs from the source was exponential in time with half-lives ranging from 2.8 to 18 sec, depending upon the element and source temperature. The independent fission yields of Rb and Cs are normalized by equating their element yields to each other and to a value computed from the charge distributions observed with the recoil separator LOHENGRIN and well established mass yields. Fractional independent yields are deduced from the independent fission yields, and these compare very well with the EOZ model described by Wahl

  14. Measurement of the neutron-induced fission cross section of 237Np relative to 235U from 0.02 to 30 MeV

    International Nuclear Information System (INIS)

    Behrens, J.W.; Magana, J.W.; Browne, J.C.

    1977-01-01

    The 237 Np/ 235 U fission cross section ratio has been measured from 0.02 to 30 MeV. Using the threshold method, a value of 1.294 +- 0.019 is obtained for the average cross section ratio in the interval from 1.75 to 4.00 MeV

  15. Evaluation of 235U(n,f) between 100 keV and 20 MeV

    International Nuclear Information System (INIS)

    Poenitz, W.P.

    1979-07-01

    The 235 U(n,f) cross section is evaluated in the energy range from 100 keV to 20 MeV. Experimental data are included up to the 1978 Harwell Conference on Neutron Physics. The evaluation methodology is discussed in detail. The shape and the normalization of the cross section are evalutated in separate steps. An extensive comparison of the evaluation result with experimental data sets is made. The shape of the cross section obtained in a preliminary version of the present evaluation and a normalization factor extracted from data provided within the framework of this evaluation were used by the Subcommittee on Standards and Normalizations of the Cross Sections Evaluation Working Group to establish 235 U(n,f) for ENDF/B-V above 100 keV. 20 figures, 6 tables

  16. $\\gamma$-ray energy spectra and multiplicities from the neutron-induced fission of $^{235}$U using STEFF

    CERN Document Server

    An experiment is proposed to use the STEFF spectrometer at n_TOF to study fragment $\\gamma$-correlations following the neutron-induced fission of $^{235}$U. The STEFF array of 12 NaI detectors will allow measurements of the single $\\gamma$-energy, the $\\gamma$ multiplicity, and the summed $\\gamma$energy distributions as a function of the mass and charge split, and deduced excitation energy in the fission event. These data will be used to study the origin of fission-fragment angular momenta, examining angular distribution eects as a function of incident neutron energy. The principal application of this work is in meeting the NEA high-priority request for improved $\\gamma$ray data from $^{235}$U(n; F). To improve the detection rate and expand the range of detection angles, STEFF will be modied to include two new ssion-fragment detectors each at 45 to the beam direction.

  17. Actinide neutron-induced fission cross section measurements at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Tovesson, Fredrik K [Los Alamos National Laboratory; Laptev, Alexander B [Los Alamos National Laboratory; Hill, Tony S [INL

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications in a wide energy range from sub-thermal energies up to 200 MeV. A parallel-plate ionization chamber are used to measure fission cross sections ratios relative to the {sup 235}U standard while incident neutron energies are determined using the time-of-flight method. Recent measurements include the {sup 233,238}U, {sup 239-242}Pu and {sup 243}Am neutron-induced fission cross sections. Obtained data are presented in comparison with ex isting evaluations and previous data.

  18. Determination of the 54Fe(n, 2n)53gFe and 54Fe(n, 2n)53mFe cross sections averaged over a 235U fission neutron spectrum

    International Nuclear Information System (INIS)

    Ribeiro Guevara, S.; Arribere, M.; Kestelman, A.J.

    2002-01-01

    The reaction cross sections averaged over a 235 U fission neutron spectrum have been measured for the 54 Fe(n, 2n) 53g Fe and 54 Fe(n, 2n) 53m Fe threshold reactions. The values found are, respectively: (1.14 ± 0.13) μb, and (0.52 ± 0.16) μb. The measured cross sections are referred to the (111± 3) mb standard cross section of the 58 Ni(n, p) 58m+g Co reaction. The (81.7 ± 2.2) mb standard cross section value for the 54 Fe(n, p) 54 Mn reaction, was also used as a monitor to check the results obtained with the Ni standard, leading to an excellent agreement. (author)

  19. Contribution to the study of the interaction of slow neutrons with {sup 235}U using the time-of-flight method; Contribution a l'etude par la methode du temps de vol de l'interaction de neutrons lents avec l'U{sup 235}

    Energy Technology Data Exchange (ETDEWEB)

    Michaudon, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-05-15

    This study concerns the properties of the excited levels of uranium 236 obtained by interaction of slow neutron with uranium 235. The experiments have been carried out at the Saclay linear electron accelerator by use of the time of flight method. In the first part of this paper, we examine the technical and physical conditions which rule the experiments: compromise between resolution and counting rate, time dispersion due to the slowing down of the neutrons and crystalline binding effects. In a second part the experimental results i.e. total, fission and ternary fission cross sections are given. The third part deals with the analysis of these results: the resonance parameters determination ({tau}{sub n}, {tau}{sub {gamma}}, {tau}{sub f}), the study of their statistical distribution and of their correlations. We tried some classifications of the resonances according to their parameters and compared these classifications to each other and to other results. At least the evidence of a cross section correlation with a range smaller than 100 eV seems to be confirmed. (author) [French] Cette etude porte sur les proprietes des niveaux excites de l'Uranium-236 obtenus par l'interaction de neutrons lents avec le {sup 235}U. La technique experimentale est celle de la spectrometrie par temps de vol, les experiences ayant ete realisees aupres de l'accelerateur lineaire d'electrons de Saclay, Dans une premiere partie nous examinons les donnees techniques et physiques conditionnant les experiences: compromis entre resolution et taux de comptage, dispersion en temps due au ralentissement des neutrons, effet des liaisons cristallines. Dans une deuxieme partie sont exposes les resultats experimentaux: sections efficaces totales, de fission et de fission ternaire du {sup 235}U. Une troisieme partie porte sur l'analyse de ces resultats: determination des parametres ({tau}{sub n}, {tau}{sub {gamma}}, {tau}{sub f}), etude de leurs distributions statistiques et

  20. Resonance structure in the fission of ( sup 235 U+n)

    Energy Technology Data Exchange (ETDEWEB)

    Moore, M.S. (Los Alamos National Lab. (LANL), NM (USA). Physics Div.); Leal, L.C.; De Saussure, G.; Perez, R.B.; Larson, N.M. (Oak Ridge National Lab., TN (USA))

    1989-10-09

    A new multilevel reduced R-matrix analysis of the neutron-induced resonance cross sections of {sup 235}U has been carried out. We used as a constraint in the analysis the angular anisotropy measurements of Pattenden and Postma, obtaining a Bohr-channel (or J, K channel) representation of the resonances in a two-fission vector space for each spin state. Hambsch et al., have reported definitive measurements of the mass- and kinetic-energy distributions of fission fragments of ({sup 235}U+n) in the resonance region and analyzed their results according to the fission-channel representation of Brosa et al., extracting relative contributions of the two asymmetric and one symmetric Brosa fission channels. We have explored the connection between Bohr-channel and asymmetric Brosa-channel representations. The results suggest that a simple rotation of coordinates in channel space may be the only transformation required; the multilevel fit to the total and partial cross sections is invariant to such a transformation. (orig.).

  1. Prompt fission neutron spectra from fission induced by 1 to 8 MeV neutrons on 235U and 239Pu using the double time-of-flight technique

    International Nuclear Information System (INIS)

    Noda, S.; Haight, R. C.; Nelson, R. O.; Devlin, M.; O'Donnell, J. M.; Chatillon, A.; Granier, T.; Belier, G.; Taieb, J.; Kawano, T.; Talou, P.

    2011-01-01

    Prompt fission neutron spectra from 235 U and 239 Pu were measured for incident neutron energies from 1 to 200 MeV at the Weapons Neutron Research facility (WNR) of the Los Alamos Neutron Science Center, and the experimental data were analyzed with the Los Alamos model for the incident neutron energies of 1-8 MeV. A CEA multiple-foil fission chamber containing deposits of 100 mg 235 U and 90 mg 239 Pu detected fission events. Outgoing neutrons were detected by the Fast Neutron-Induced γ-Ray Observer array of 20 liquid organic scintillators. A double time-of-flight technique was used to deduce the neutron incident energies from the spallation target and the outgoing energies from the fission chamber. These data were used for testing the Los Alamos model, and the total kinetic energy parameters were optimized to obtain a best fit to the data. The prompt fission neutron spectra were also compared with the Evaluated Nuclear Data File (ENDF/B-VII.0). We calculate average energies from both experimental and calculated fission neutron spectra.

  2. Independent yields of Rb and Cs isotopes from thermal-neutron induced fission of /sup 235/U

    Energy Technology Data Exchange (ETDEWEB)

    Balestrini, S.J.; Decker, R.; Wollnik, H.; Wuensch, K.D.; Jung, G.; Koglin, E.; Siegert, G.

    1979-12-01

    The relative yields of Rb and Cs isotopes from thermal-neutron fission of /sup 235/U have been redetermined using the mass separator OSTIS, on-line at a neutron guide of the High-Flux Beam Reactor at the Institut Laue-Langevin, Grenoble, France. The separator ion source was a hot oven containing /sup 235/U in a graphite matrix. The neutron beam was pulsed. Alkali fission products diffused out of the graphite and were ionized, thus producing a stepwise increase in the analyzed ion beam proportional to the independent fission yield. The ion beam and the fissions in the source were monitored simultaneously. The diffusion of Rb and Cs from the source was exponential in time with half-lives ranging from 2.8 to 18 sec, depending upon the element and source temperature. The independent fission yields of Rb and Cs are normalized by equating their element yields to each other and to a value computed from the charge distributions observed with the recoil separator LOHENGRIN and well established mass yields. Fractional independent yields are deduced from the independent fission yields, and these compare very well with the EOZ model described by Wahl.

  3. Determination of the neutron-induced fission cross section of 242Pu

    International Nuclear Information System (INIS)

    Koegler, Toni Joerg

    2016-01-01

    Neutron induced fission cross sections of actinides like the Pu-isotopes are of relevance for the development of nuclear transmutation technologies. For 242 Pu, current uncertainties are of around 21%. Sensitivity studies show that the total uncertainty has to be reduced to below 5% to allow for reliable neutron physics simulations. This challenging task was performed at the neutron time-of-flight facility of the new German National Center for High Power Radiation Sources at HZDR, Dresden. Within the TRAKULA project, thin, large and homogeneous deposits of 235 U and 242 Pu have been produced successfully. Using two consecutively placed fission chambers allowed the determination of the neutron induced fission cross section of 242 Pu relative to 235 U. The areal density of the Plutonium targets was calculated using the measured spontaneous fission rate. Experimental results of the fast neutron induced fission of 242 Pu acquired at nELBE will be presented and compared to recent experiments and evaluated data. Corrections addressing the neutron scattering are discussed by using results of different neutron transport simulations (Geant 4, MCNP 6 and FLUKA).

  4. Analysis of dependence of fission cross section and angular anisotropy of the 235U fission fragment escape induced by neutrons of intermediate energies (epsilon < or approximately200 keV) on target nucleus orientation

    International Nuclear Information System (INIS)

    Barabanov, A.L.

    1985-01-01

    Experimental data on dependence of fission cross section Σsub(f) (epsilon) and angular anisotropy W(epsilon, 0 deg)/W(epsilon, 90 deg) of sup(235)U fission fragment escape by neutrons with energy epsilon=100 and 200 keV on orientation of target nuclei are analyzed. 235 U (Isup(πsub(0))=7/2sup(-)) nuclei were orientated at the expense of interaction of quadrupole nucleus momenta with nonuniform electric field of uranyl-rubidium nitrate crystal at crystal cooling to T=0.2 K. The analysis was carried out with three different sets of permeability factors T(epsilon). Results of the analysis weakly depend on T(epsilon) choice. It is shown that a large number of adjusting parameters (six fissionabilities γsup(f)(Jsup(π), epsilon) and six momenta sub(Jsup(π))) permit to described experimental data on Σsub(f)(epsilon) and W(epsilon, 0 deg)/W(epsilon, 90 deg), obtained at epsilon=200 keV by introducing essential dependence of γsup(f)(Jsup(π), epsilon) and sub(Jsup(π)) on Jsup(π). Estimations of fission cross sections Σsub(f)(epsilon) and angular distribution W(epsilon, n vector) up to T approximately equal to 0.01 K in two geometries of the experiment: the orientation axis is parallel and perpendicular to momentum direction p vector of incident neutrons, are conducted

  5. Evaluation of the neutron induced reactions on 235U from 2.25 keV up to 30 MeV

    Science.gov (United States)

    Trkov, Andrej; Capote, Roberto; Pigni, Marco T.; Pronyaev, Vladimir G.; Sin, Mihaela; Soukhovitskii, Efrem S.

    2017-09-01

    An evaluation of fast neutron induced reactions on 235U is performed in the 2.25 keV-30 MeV incident energy range with the code EMPIRE-3.2 Malta, combined with selected experimental data. The reaction model includes a dispersive optical model potential (RIPL 2408) that couples seven levels of the ground-state rotational band and a triple-humped fission barrier with absorption in the wells described within the optical model for fission. EGSM nuclear level densities are used in Hauser-Feshbach calculations of the compound-nuclear decay. The starting values for the model parameters are retrieved from the RIPL-3 data-base. Excellent agreement is achieved with available experimental data for neutron emission, neutron capture and fission, which gives confidence that the quantities for which there is no experimental information are also predicted accurately. In the fast neutron region of the evaluated file, the fission cross section is taken from Neutron Standards, and neutron capture includes fluctuations observed in recent experiments. Other channels are taken directly from model calculations. New evaluation is validated against ICSBEP criticality benchmarks with fast neutron spectra with excellent results.

  6. Cross sections and neutron yields for U233, U235 and Pu239 at 2200 m/sec

    International Nuclear Information System (INIS)

    Sjoestrand, N.G.; Story, J.S.

    1960-04-01

    The experimental information on the 2200 m/sec values for σ abs , σ f , α, ν and η for 233 U , 235 U and 23 been collected and discussed. The values will later be used in an evaluation of a 'best' set of data. In appendix the isotopic abundances of the uranium isotopes are discussed and also the alpha activities of the uranium isotopes and Pu-239

  7. Delayed neutron spectra from short pulse fission of uranium-235

    International Nuclear Information System (INIS)

    Atwater, H.F.; Goulding, C.A.; Moss, C.E.; Pederson, R.A.; Robba, A.A.; Wimett, T.F.; Reeder, P.; Warner, R.

    1986-01-01

    Delayed neutron spectra from individual short pulse (∼50 μs) fission of small 235 U samples (50 mg) were measured using a small (5 cm OD x 5 cm length) NE 213 neutron spectrometer. The irradiating fast neutron flux (∼10 13 neutrons/cm 2 ) for these measurements was provided by the Godiva fast burst reactor at the Los Alamos Critical Experiment Facility (LACEF). A high speed pneumatic transfer system was used to transfer the 50 mg 235 U samples from the irradiation position near the Godiva assembly to a remote shielded counting room containing the NE 213 spectrometer and associated electronics. Data were acquired in sixty-four 0.5 s time bins and over an energy range 1 to 7 MeV. Comparisons between these measurements and a detailed model calculation performed at Los Alamos is presented

  8. Prompt fission neutron spectra of n + 235U above the (n, nf) fission threshold

    International Nuclear Information System (INIS)

    Shu Nengchuan; Chen Yongjing; Liu Tingjin; Jia Min

    2015-01-01

    Calculations of prompt fission neutron spectra (PFNS) from the 235 U(n, f) reaction were performed with a semi-empirical method for En = 7.0 and 14.7 MeV neutron energies. The total PFNS were obtained as a superposition of (n, xnf) pre-fission neutron spectra and post-fission spectra of neutrons which were evaporated from fission fragments, and these two kinds of spectra were taken as an expression of the evaporation spectrum. The contributions of (n, xnf) fission neutron spectra on the calculated PFNS were discussed. The results show that emission of one or two neutrons in the (n, nf) or (n, 2nf) reactions influences the PFNS shape, and the neutron spectra of the (n, xnf) fission-channel are soft compared with the neutron spectra of the (n, f) fission channel. In addition, analysis of the multiple-chance fission component showed that second-chance fission dominates the PFNS with an incident neutron energy of 14.7 MeV whereas first-chance fission dominates the 7 MeV case. (authors)

  9. Measurement of mass distribution of U-235 fission products in the intermediate neutron region

    International Nuclear Information System (INIS)

    Nakagomi, Yoshihiro; Kobayashi, Shohei; Yamamoto, Shuji; Kanno, Ikuo; Wakabayashi, Hiroaki.

    1982-01-01

    The mass distribution and the momentum distribution of U-235 fission products in the intermediate neutron region were measured by using a combination system of the Yayoi intermediate neutron column and an electron linear accelerator. The double energy measurement method was applied. A fission chamber, which consists of an enriched uranium target and two Si surface barrier detectors, was used for the measurement of the neutrons with energy above 1.3 eV. The linear accelerator was operated at the repetition rate of 100 Hz and the pulse width of 10 ns. The data obtained by the two-dimensional pulse height analysis were analyzed by the Schmitt's method. The preliminary results of the mass distribution and the momentum distribution of fission fragments were obtained. (Kato, T.)

  10. Neutron cross sections for uranium-235 (ENDF/B-IV Release 3)

    International Nuclear Information System (INIS)

    Lubitz, C.R.

    1996-09-01

    The resonance parameters in ENDF6 (Release 2) U235 were adjusted to make the average capture and fission cross sections below 900 eV agree with selected differential capture and fission measurements. The measurements chosen were the higher of the credible capture measurements and the lower of the fission results, yielding a higher epithermal alpha. In addition, the 2200 m/s cross sections were adjusted to obtain agreement with the integral value of K1. As a result, criticality calculations for thermal benchmarks, and agreement with a variety of integral parameters, are improved

  11. Investigation of neutronic behavior in a CANDU reactor with different (Am, Th, {sup 235}U)O{sub 2} fuel matrixes

    Energy Technology Data Exchange (ETDEWEB)

    Gholamzadeh, Z. [Talca Univ. (Chile). Dept. of Physics; Feghhi, S.A.H. [Shahid Beheshti Univ., Tehran (Iran, Islamic Republic of). Dept. of Radiation Application

    2014-11-15

    Recently thorium-based fuel matrixes are taken into consideration for nuclear waste incineration because of thorium proliferation resistance feature moreover its breeding or convertor ability in both thermal and fast reactors. In this work, neutronic influences of adding Am to (Th-{sup 235}U)O{sub 2} on effective delayed neutron fraction, reactivity coefficients and burn up of a fed CANDU core has been studied using MCNPX 2.6.0 computational code. Different atom fractions of Am have been introduced in the fuel matrix to evaluate its effects on neutronic parameters of the modeled core. The computational data show that adding 2% atom fraction of Am to thorium-based fuel matrix won't noticeably change reactivity coefficients in comparison with the fuel matrix containing 1% atom fraction of Am. The use of 2% atom fraction of Am resulted in a higher delayed neutron fraction. According to the obtained data, 32.85 GWd burn up of the higher Americium-containing fuel matrix resulted in 55.2%, 26.5%, 41.9% and 2.14% depletion of {sup 241}Am, {sup 243}Am, {sup 235}U and {sup 232}Th respectively. 132.8 kg of {sup 233}U fissile element is produced after the burn up time and the nuclear core multiplication factor increases in rate of 2390 pcm. The less americium-containing fuel matrix resulted in higher depletion of {sup 241/243}Am, {sup 235}U and {sup 232}Th while the nuclear core effective multiplication factor increases in rate of 5630 pcm after the burn up time with 9.8 kg additional {sup 233}U production.

  12. 238U subthreshold neutron induced fission cross section

    International Nuclear Information System (INIS)

    Difilippo, F.C.; Perez, R.B.; De Saussure, G.; Olsen, D.K.; Ingle, R.W.

    1976-01-01

    High resolution measurements of the 238 U neutron induced fission cross section are reported for neutron energies between 600 eV and 2 MeV. The average subthreshold fission cross section between 10 and 100 keV was found to be 44 +- 6 μb

  13. Thermal-Neutron-Induced Fission of U235, U233 and Pu239

    International Nuclear Information System (INIS)

    Thomas, T.D.; Gibson, W.M.; Safford, G.J.

    1965-01-01

    We have used solid-state detectors to measure the kinetic energies of the coincident fission fragments in the thermal-neutron-induced fission of U 235 , U 233 and Pu 239 . Special care has been taken to eliminate spurious-events near symmetry to give an accurate measure of such quantities as the average total kinetic energy at symmetry. For each fissioning system over 10 6 events were recorded. As a result the statistics are good enough to see definite evidence for fine structure over a wide range of masses and energies. The data have been analysed to give mass yield curves, average kinetic energies as a function of mass, and other quantities of interest. For each fissioning system the average total kinetic energy goes through a maximum for a heavy fragment mass of about 132 and for the corresponding light fragment mass. There is a pronounced minimum at symmetry, although not as deep as that found in time-of-flight experiments. The difference between the maximum average kinetic energy and that at symmetry is about 32 MeV for U 235 , 18 MeV for U 233 and 20 MeV for Pu 239 . The dispersion of kinetic energies at symmetry is also smaller than that found in time-of-flight experiments. Fine structure is apparent in two different representations of the data. The energy spectrum of heavy fragments in coincidence with light fragment energies is greater than the most probable value. This structure becomes more pronounced as the light fragment energy increases. The mass yield curves for a given total kinetic energy show a structure suggesting a preference for fission fragments with masses ∼134, ∼140 and ∼145 (and their light fragment partners). Much of the structure observed can be understood by considering a semi-empirical mass surface and a simple model for the nuclear configuration at the saddle point. (author) [fr

  14. Cross sections and neutron yields for U-233, U-235 and Pu-239 at 2200 m/sec

    Energy Technology Data Exchange (ETDEWEB)

    Sjoestrand, N G; Story, J S

    1960-04-15

    The experimental information on the 2200 m/sec values for {sigma}{sub abs}, {sigma}{sub f}, {alpha}, {nu} and {eta} for {sup 233}U , {sup 235}U and {sup 23} been collected and discussed. The values will later be used in an evaluation of a 'best' set of data. In appendix the isotopic abundances of the uranium isotopes are discussed and also the alpha activities of the uranium isotopes and Pu-239.

  15. Measurement of the ROT effect in the neutron induced fission of 235U in the 0.3 eV resonance at a hot source of polarized neutrons

    Science.gov (United States)

    Kopatch, Yuri; Novitsky, Vadim; Ahmadov, Gadir; Gagarsky, Alexei; Berikov, Daniyar; Danilyan, Gevorg; Hutanu, Vladimir; Klenke, Jens; Masalovich, Sergey

    2018-03-01

    The TRI and ROT asymmetries in fission of heavy nuclei have been extensively studied during more than a decade. The effects were first discovered in the ternary fission in a series of experiments performed at the ILL reactor (Grenoble) by a collaboration of Russian and European institutes, and were carefully measured for a number of fissioning nuclei. Later on, the ROT effect has been observed in the emission of prompt gamma rays and neutrons in fission of 235U and 233U, although its value was an order of magnitude smaller than in the α-particle emission from ternary fission. All experiments performed so far are done with cold polarized neutrons, what assumes a mixture of several spin states, the weights of these states being not well known. The present paper describes the first attempt to get "clean" data by performing the measurement of gamma and neutron asymmetries in an isolated resonance of 235U at the POLI instrument of the FRM2 reactor in Garching.

  16. Characterization of bauxite residue (red mud) for 235U, 238U, 232Th and 40K using neutron activation analysis and the radiation dose levels as modeled by MCNP.

    Science.gov (United States)

    Landsberger, S; Sharp, A; Wang, S; Pontikes, Y; Tkaczyk, A H

    2017-07-01

    This study employs thermal and epithermal neutron activation analysis (NAA) to quantitatively and specifically determine absorption dose rates to various body parts from uranium, thorium and potassium. Specifically, a case study of bauxite residue (red mud) from an industrial facility was used to demonstrate the feasibility of the NAA approach for radiological safety assessment, using small sample sizes to ascertain the activities of 235 U, 238 U, 232 Th and 40 K. This proof-of-concept was shown to produce reliable results and a similar approach could be used for quantitative assessment of other samples with possible radiological significance. 238 U and 232 Th were determined by epithermal and thermal neutron activation analysis, respectively. 235 U was determined based on the known isotopic ratio of 238 U/ 235 U. 40 K was also determined using epithermal neutron activation analysis to measure total potassium content and then subtracting its isotopic contribution. Furthermore, the work demonstrates the application of Monte Carlo Neutral-Particle (MCNP) simulations to estimate the radiation dose from large quantities of red mud, to assure the safety of humans and the surrounding environment. Phantoms were employed to observe the dose distribution throughout the human body demonstrating radiation effects on each individual organ. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Current Status and Open Issues of the 235U Evaluation. Summary Report of an IAEA Consultants’ Meeting

    International Nuclear Information System (INIS)

    Noguere, Gilles; Trkov, Andrej

    2016-08-01

    The objective of this consultancy meeting was to discuss the status of the 235 U neutron cross sections from the thermal to MeV energy ranges, to identify the main difficulties and to propose recommendations for improving the current experimental and evaluation works

  18. Evaluation of fission cross sections and covariances for 233U, 235U, 238U, 239Pu, 240Pu, and 241Pu

    International Nuclear Information System (INIS)

    Kawano, Toshihiko; Matsunobu, Hiroyuki; Murata, Toru

    2000-02-01

    A simultaneous evaluation code SOK (Simultaneous evaluation on KALMAN) has been developed, which is a least-squares fitting program to absolute and relative measurements. The SOK code was employed to evaluate the fission cross sections of 233 U, 235 U, 238 U, 239 Pu, 240 Pu, and 241 Pu for the evaluated nuclear data library JENDL-3.3. Procedures of the simultaneous evaluation and the experimental database of the fission cross sections are described. The fission cross sections obtained were compared with evaluated values given in JENDL-3.2 and ENDF/B-VI. (author)

  19. 31 CFR 540.315 - Uranium-235 (U235).

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium-235 (U235). 540.315 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.315 Uranium-235 (U235). The term uranium-235 or U235 means the fissile...

  20. R-matrix analysis of 235U neutron transmission and cross sections in the energy range 0 to 2.25 keV

    International Nuclear Information System (INIS)

    Leal, L.C.; Derrien, H.; Larson, N.M.; Wright, R.Q.

    1997-11-01

    This document describes a new R-matrix analysis of 235 U cross section data in the energy range from 0 to 2,250 eV. The analysis was performed with the computer code SAMMY, that has recently been updated to permit, for the first time, inclusion of both differential and integral data within the analysis process. Fourteen differential data sets and six integral quantities were used in this evaluation: two measurements of fission plus capture, one of fission plus absorption, six of fission alone, two of transmission, and one of eta, plus standard values of thermal cross sections for fission, capture, and scattering, and of K1 and the Westcott g-factors for both fission and absorption. An excellent representation was obtained for the high-resolution transmission, fission, and capture cross-section data as well as for the integral quantities. The result is a single set of resonance parameters spanning the entire range up to 2,250 eV, a decided improvement over the present ENDF/VI evaluation, in which eleven discrete resonance parameter sets are required to cover that same energy range. This new evaluation is expected to greatly improve predictability of the criticality safety margins for nuclear systems in which 235 U is present

  1. Fission fragment yields and total kinetic energy release in neutron-induced fission of235,238U,and239Pu

    Science.gov (United States)

    Tovesson, F.; Duke, D.; Geppert-Kleinrath, V.; Manning, B.; Mayorov, D.; Mosby, S.; Schmitt, K.

    2018-03-01

    Different aspects of the nuclear fission process have been studied at Los Alamos Neutron Science Center (LANSCE) using various instruments and experimental techniques. Properties of the fragments emitted in fission have been investigated using Frisch-grid ionization chambers, a Time Projection Chamber (TPC), and the SPIDER instrument which employs the 2v-2E method. These instruments and experimental techniques have been used to determine fission product mass yields, the energy dependent total kinetic energy (TKE) release, and anisotropy in neutron-induced fission of U-235, U-238 and Pu-239.

  2. Measurement of the ROT effect in the neutron induced fission of 235U in the 0.3 eV resonance at a hot source of polarized neutrons

    Directory of Open Access Journals (Sweden)

    Kopatch Yuri

    2018-01-01

    Full Text Available The TRI and ROT asymmetries in fission of heavy nuclei have been extensively studied during more than a decade. The effects were first discovered in the ternary fission in a series of experiments performed at the ILL reactor (Grenoble by a collaboration of Russian and European institutes, and were carefully measured for a number of fissioning nuclei. Later on, the ROT effect has been observed in the emission of prompt gamma rays and neutrons in fission of 235U and 233U, although its value was an order of magnitude smaller than in the α-particle emission from ternary fission. All experiments performed so far are done with cold polarized neutrons, what assumes a mixture of several spin states, the weights of these states being not well known. The present paper describes the first attempt to get “clean” data by performing the measurement of gamma and neutron asymmetries in an isolated resonance of 235U at the POLI instrument of the FRM2 reactor in Garching.

  3. Effects of Neutron Emission on Fragment Mass and Kinetic Energy Distribution from Thermal Neutron-Induced Fission of 235U

    International Nuclear Information System (INIS)

    Montoya, M.; Rojas, J.; Saetone, E.

    2007-01-01

    The mass and kinetic energy distribution of nuclear fragments from thermal neutron-induced fission of 235 U(n th ,f) have been studied using a Monte-Carlo simulation. Besides reproducing the pronounced broadening in the standard deviation of the kinetic energy at the final fragment mass number around m = 109, our simulation also produces a second broadening around m = 125. These results are in good agreement with the experimental data obtained by Belhafaf et al. and other results on yield of mass. We conclude that the obtained results are a consequence of the characteristics of the neutron emission, the sharp variation in the primary fragment kinetic energy and mass yield curves. We show that because neutron emission is hazardous to make any conclusion on primary quantities distribution of fragments from experimental results on final quantities distributions

  4. Status of neutron cross sections for reactor dosimetry

    International Nuclear Information System (INIS)

    Vlasov, M.F.; Fabry, A.; McElroy, W.N.

    1977-03-01

    The status of current international efforts to develop standardized sets of evaluated energy-dependent (differential) neutron cross sections for reactor dosimetry is reviewed. The status and availability of differential data are considered, some recent results of the data testing of the ENDF/B-IV dosimetry file using 252 Cf and 235 U benchmark reference neutron fields are presented, and a brief review is given of the current efforts to characterize and identify dosimetry benchmark radiation fields

  5. Pulsed reactivity measurements of large 235U--Al castings in H2O

    International Nuclear Information System (INIS)

    Pellarin, D.J.; Jarriel, J.L.

    1977-01-01

    The safe storage and handling of large 235 U-Al castings at the Savannah River Plant are assured by limiting the number of fuel pieces and their spacing such that the k/sub eff/ calculated by KENO-IV with Hansen-Roach cross sections does not exceed some conservative limit with complete, accidental water immersion. For economic reasons, the conservative limit on the calculated k/sub eff/ is generally chosen as high as possible consistent with an accurate knowledge of the margin of error in the k/sub eff/ calculation. The margin of error for arrays of large, hollow cylinders of highly enriched 235 U-Al alloy fuel in H 2 O is presented. The subcritical reactivities were derived from pulsed neutron measurements. The measurements are extended to castings with 17.39 kg 235 U/m, the pulsed experiments are more accurately analyzed by the αv -1 method, and measurements for both 7-assembly hexagonal and 2 x 3 square pitch lattices are compared with KENO-IV calculations

  6. Ternary Fission of U{sup 235} by Resonance Neutrons; Fission Ternaire de {sup 235}U par des Neutrons de Resonance; 0422 0420 041e 0419 041d 041e 0415 0414 0415 041b 0415 041d 0418 0415 0423 0420 0410 041d 0410 -235 041d 0410 0420 0415 0417 041e 041d 0410 041d 0421 041d 042b 0425 041d 0415 0419 0422 0420 041e 041d 0410 0425 ; Fision Ternaria del {sup 235}U por Neutrones de Resonancia

    Energy Technology Data Exchange (ETDEWEB)

    Kvitek, I.; Popov, Ju. P.; Rjabov, Ju. V. [Ob' edinennyj Institut Jadernyh Issledovanij, Dubna, SSSR (Russian Federation)

    1965-07-15

    Recently a number of papers have appeared indicating considerable variations in the ratio of the ternary-fission cross-section to the binary-fission cross-section of U{sup 235} on transition from one neutron resonance to another. However, such variations have not been discovered in U{sup 233} and Pu{sup 239}. The paper reports investigations of the ternary fission of U{sup 235} by neutrons with an energy of 0.1 to 30 eV. Unlike other investigators of the ternary fission of U{sup 235} , we identified the ternary-fission event by the coincidence of one of the fission fragments with a light long-range particle. This made it passible to separate ternary fissions from the possible contribution of the (n, {alpha})reaction. The measurements were performed at the fast pulsed reactor of the Joint Institute for Nuclear Research by the time-of-flight method. A flight length of 100 m was used, giving a resolution of 0.6 {mu}s/m. Gas scintillation counters filled with xenon at a pressure of 2 atm were used to record the fission fragments and the light long-range particle. A layer of enriched U{sup 235} {approx}2 mg/cm{sup 2} thick and {approx}300 cm{sup 2} in area was applied to an aluminium foil 20-fim thick. The scintillations from the fission fragments were recorded in the gas volume on one side of the foil and those from the light long-range particles in that on the other. In order to assess the background (e.g . coincidences of the pulse from a fragment with that from a fission gamma quantum or a proton from the (n, p) reaction in the aluminium foil), a measurement was carried out in which the volume recording the long-range particle was shielded with a supplementary aluminium filter 1-mm thick. The results obtained indicate the absence of the considerable variations in the ratio between the ternary-and binary- fission cross-sections for U{sup 235} that have been noted by other authors. Measurements showed no irregularity in the ratio of the cross-sections in the energy

  7. High-energy Neutron-induced Fission Cross Sections of Natural Lead and Bismuth-209

    CERN Document Server

    Tarrio, D; Carrapico, C; Eleftheriadis, C; Leeb, H; Calvino, F; Herrera-Martinez, A; Savvidis, I; Vlachoudis, V; Haas, B; Koehler, P; Vannini, G; Oshima, M; Le Naour, C; Gramegna, F; Wiescher, M; Pigni, M T; Audouin, L; Mengoni, A; Quesada, J; Becvar, F; Plag, R; Cennini, P; Mosconi, M; Rauscher, T; Couture, A; Capote, R; Sarchiapone, L; Vlastou, R; Domingo-Pardo, C; Dillmann, I; Pavlopoulos, P; Karamanis, D; Krticka, M; Jericha, E; Ferrari, A; Martinez, T; Trubert, D; Oberhummer, H; Karadimos, D; Plompen, A; Isaev, S; Terlizzi, R; Cortes, G; Cox, J; Cano-Ott, D; Pretel, C; Colonna, N; Berthoumieux, E; Vaz, P; Heil, M; Lopes, I; Lampoudis, C; Walter, S; Calviani, M; Gonzalez-Romero, E; Embid-Segura, M; Stephan, C; Igashira, M; Papachristodoulou, C; Aerts, G; Tavora, L; Berthier, B; Rudolf, G; Andrzejewski, J; Villamarin, D; Ferreira-Marques, R; Tain, J L; O'Brien, S; Reifarth, R; Kadi, Y; Neves, F; Poch, A; Kerveno, M; Rubbia, C; Lazano, M; Dahlfors, M; Wisshak, K; Salgado, J; Dridi, W; Ventura, A; Andriamonje, S; Assimakopoulos, P; Santos, C; Voss, F; Ferrant, L; Patronis, N; Chiaveri, E; Guerrero, C; Perrot, L; Vicente, M C; Lindote, A; Praena, J; Baumann, P; Kappeler, F; Rullhusen, P; Furman, W; David, S; Marrone, S; Tassan-Got, L; Gunsig, F; Alvarez-Velarde, F; Massimi, C; Mastinu, P; Pancin, J; Papadopoulos, C; Tagliente, G; Haight, R; Chepel, V; Kossionides, E; Badurek, G; Marganiec, J; Lukic, S; Pavlik, A; Goncalves, I; Duran, I; Alvarez, H; Abbondanno, U; Fujii, K; Milazzo, P M; Moreau, C

    2011-01-01

    The CERN Neutron Time-Of-Flight (n\\_TOF) facility is well suited to measure small neutron-induced fission cross sections, as those of subactinides. The cross section ratios of (nat)Pb and (209)Bi relative to (235)U and (238)U were measured using PPAC detectors. The fragment coincidence method allows to unambiguously identify the fission events. The present experiment provides the first results for neutron-induced fission up to 1 GeV for (nat)Pb and (209)Bi. A good agreement with previous experimental data below 200 MeV is shown. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross section is close to 1 GeV.

  8. Cross section measurements of fissile nuclei for slow neutrons; Mesures de sections efficaces de noyaux fissiles pour les neutrons lents

    Energy Technology Data Exchange (ETDEWEB)

    Auclair, J M; Hubert, P; Joly, R; Vendryes, G; Jacrot, B; Netter, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Galula, M [Centre National de la Recherche Scientifique (CNRS), 91 - Gif-sur-Yvette (France)

    1955-07-01

    It presents the experimental measurements of cross section of fissile nuclei for slow neutrons to improve the understanding of some heavy nuclei of great importance in the study of nuclear reactors. The different experiments are divided in three categories. In the first part, it studied the variation with energy of the cross sections of natural uranium, {sup 233}U, {sup 235}U and {sup 239}Pu. Two measurement techniques are used: the time-of-flight spectrometer and the crystal spectrometer. In a second part, the fission cross sections of {sup 233}U and {sup 239}Pu for thermal neutrons are compared using a neutron flux from EL-2 going through a double fission chamber. The matter quantity contained in each source is measured by counting the {alpha} activity with a solid angle counter. Finally, the average cross section of {sup 236}U for a spectra of neutrons from the reactor is measured by studying the {beta} activity of {sup 237}U formed by the reaction {sup 236}U (n, {gamma}) {sup 237}U in a sample of {sup 236}U irradiated in the Saclay reactor (EL-2). (M.P.)

  9. Determination of 233U, 235U, 238U and 239Pu fission yields induced by fission and 14.7 MeV neutrons

    International Nuclear Information System (INIS)

    Laurec, Jean; Adam, Albert; Bruyne, Thierry de.

    1981-12-01

    The 233 U, 235 U, 238 U, 239 Pu fission yields have been determined by a radiochemical method. A target and a fission chamber made of same fissible material are irradied together. The total fission number is measured from the fission chamber. The fission product activities are directly measured on the target using calibrated Ge-Li detectors. The fissible material masses are determined by alpha and mass spectrometries. The irradiations were made on the critical assemblies PROSPERO and CALIBAN and on the 14 MeV neutron generator of C.E. VALDUC. 3 to 5% fission yield errors are got for the most measured nuclides: 95 Zr, 97 Zr, 99 Mo, 103 Ru, 131 I, 132 Te, 140 Ba, 141 Ce, 143 Ce, 144 Ce, 147 Nd [fr

  10. Feasibility study of {sup 235}U and {sup 239}Pu characterization in radioactive waste drums using neutron-induced fission delayed gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Nicol, T. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); FZJ, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety, Wilhelm-Johnen-Straße, d-52425 Jülich (Germany); Pérot, B., E-mail: bertrand.perot@cea.fr [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Carasco, C. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Brackx, E. [CEA, DEN, Marcoule, Metallography and Chemical Analysis Laboratory, F-30207 Bagnols-sur-Cèze (France); Mariani, A.; Passard, C. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Mauerhofer, E. [FZJ, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety, Wilhelm-Johnen-Straße, d-52425 Jülich (Germany); Collot, J. [Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble Alpes, CNRS/IN2P3 Grenoble (France)

    2016-10-01

    This paper reports a feasibility study of {sup 235}U and {sup 239}Pu characterization in 225 L bituminized waste drums or 200 L concrete waste drums, by detecting delayed fission gamma rays between the pulses of a deuterium-tritium neutron generator. The delayed gamma yields were first measured with bare samples of {sup 235}U and {sup 239}Pu in REGAIN, a facility dedicated to the assay of 118 L waste drums by Prompt Gamma Neutron Activation Analysis (PGNAA) at CEA Cadarache, France. Detectability in the waste drums is then assessed using the MCNPX model of MEDINA (Multi Element Detection based on Instrumental Neutron Activation), another PGNAA cell dedicated to 200 L drums at FZJ, Germany. For the bituminized waste drum, performances are severely hampered by the high gamma background due to {sup 137}Cs, which requires the use of collimator and shield to avoid electronics saturation, these elements being very penalizing for the detection of the weak delayed gamma signal. However, for lower activity concrete drums, detection limits range from 10 to 290 g of {sup 235}U or {sup 239}Pu, depending on the delayed gamma rays of interest. These detection limits have been determined by using MCNPX to calculate the delayed gamma useful signal, and by measuring the experimental gamma background in MEDINA with a 200 L concrete drum mock-up. The performances could be significantly improved by using a higher interrogating neutron emission and an optimized experimental setup, which would allow characterizing nuclear materials in a wide range of low and medium activity waste packages.

  11. Activation Doppler Measurements on U 238 and U 235 in Some Fast Reactor Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Tiren, L I; Gustafsson, I

    1968-03-15

    Measurements of the Doppler effect in U-238 capture and U-235 fission have been made by means of the activation technique in three different neutron spectra in the fast critical assembly FR0. The experiments involved the irradiation of thin uranium metal foils or oxide disks, which were heated in a small oven located at the core centre. The measurements on U-238 were extended to 1780 deg K and on U-235 to 1470 deg K. A core region surrounding the oven was homogenized in order to facilitate the interpretation of results. The reaction rates in the uranium samples were detected by gamma counting. The experimental method was checked with regard to systematic errors by irradiations in a thermal spectrum. The data obtained for U-238 capture were corrected for the effect of neutron collisions in the oven wall, and were extrapolated to zero sample thickness. In the softest spectrum (core 5) a Doppler effect (relative increase in capture rate) of 0.260 {+-} 0.018 was obtained on heating from 343 to 1780 deg K, and in the hardest spectrum (core 3) the corresponding value was 0.030 {+-} 0.003. An appreciable Doppler effect in U-235 fission was obtained only in the softest spectrum, in which the measured increase in fission rate on heating from 320 to 1470 deg K was 0.007 {+-} 0.003.

  12. Analysis of reaction cross-section production in neutron induced fission reactions on uranium isotope using computer code COMPLET.

    Science.gov (United States)

    Asres, Yihunie Hibstie; Mathuthu, Manny; Birhane, Marelgn Derso

    2018-04-22

    This study provides current evidence about cross-section production processes in the theoretical and experimental results of neutron induced reaction of uranium isotope on projectile energy range of 1-100 MeV in order to improve the reliability of nuclear stimulation. In such fission reactions of 235 U within nuclear reactors, much amount of energy would be released as a product that able to satisfy the needs of energy to the world wide without polluting processes as compared to other sources. The main objective of this work is to transform a related knowledge in the neutron-induced fission reactions on 235 U through describing, analyzing and interpreting the theoretical results of the cross sections obtained from computer code COMPLET by comparing with the experimental data obtained from EXFOR. The cross section value of 235 U(n,2n) 234 U, 235 U(n,3n) 233 U, 235 U(n,γ) 236 U, 235 U(n,f) are obtained using computer code COMPLET and the corresponding experimental values were browsed by EXFOR, IAEA. The theoretical results are compared with the experimental data taken from EXFOR Data Bank. Computer code COMPLET has been used for the analysis with the same set of input parameters and the graphs were plotted by the help of spreadsheet & Origin-8 software. The quantification of uncertainties stemming from both experimental data and computer code calculation plays a significant role in the final evaluated results. The calculated results for total cross sections were compared with the experimental data taken from EXFOR in the literature, and good agreement was found between the experimental and theoretical data. This comparison of the calculated data was analyzed and interpreted with tabulation and graphical descriptions, and the results were briefly discussed within the text of this research work. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Adjustment of the 235U Fission Spectrum

    International Nuclear Information System (INIS)

    GRIFFIN, PATRICK J.; WILLIAMS, J.G.

    1999-01-01

    The latest nuclear data are used to examine the sensitivity of the least squares adjustment of the 235 U fission spectrum to the measured reaction rates, dosimetry cross sections, and prior spectrum covariance matrix. All of these parameters were found to be very important in the spectrum adjustment. The most significant deficiency in the nuclear data is the absence of a good prior covariance matrix. Covariance matrices generated from analytic models of the fission spectra have been used in the past. This analysis reveals some unusual features in the covariance matrix produced with this approach. Specific needs are identified for improved nuclear data to better determine the 235 U spectrum. An improved 235 U covariance matrix and adjusted spectrum are recommended for use in radiation transport sensitivity analyses

  14. Measurement of the average number of prompt neutrons emitted per fission of 235U relative to 252Cf for the energy region 500 eV to 10 MeV

    International Nuclear Information System (INIS)

    Gwin, R.; Spencer, R.R.; Ingle, R.W.; Todd, J.H.; Weaver, H.

    1980-01-01

    The average number of prompt neutrons emitted per fission ν/sub p/-bar(E), was measured for 235 U relative to ν/sub p/-bar for the spontaneous fission of 252 Cf over the neutron energy range from 500 eV to 10 MeV. The samples of 235 U and 252 Cf were contained in fission chambers located in the center of a large liquid scintillator. Fission neutrons were detected by the large liquid scintillator. The present values of ν/sub p/-bar(E) for 235 U are about 0.8% larger than those measured by Boldeman. In earlier work with the present system, it was noted that Boldeman's value of ν/sub p/-bar(E) for thermal energy neutrons was about 0.8% lower than obtained at ORELA. It is suggested that the thickness of the fission foil used in Boldeman's experiment may cause some of the discrepancy between his and the present values of ν/sub p/-bar(E). For the energy region up to 700 keV, the present values of ν/sub p/-bar(E) for 235 U agree, within the uncertainty, with those given in ENDF/B-V. Above 1 MeV the present results for ν/sub p/-bar(E) range about the ENDF/B-V values with differences up to 1.3%. 6 figures, 1 table

  15. Energy Dependence of Fission Product Yields from 235U, 238U and 239Pu for Incident Neutron Energies Between 0.5 and 14.8 MeV

    Science.gov (United States)

    Gooden, Matthew; Bredeweg, Todd; Fowler, Malcolm; Vieira, David; Wilhelmy, Jerry; Tonchev, Anton; Stoyer, Mark; Bhike, Megha; Finch, Sean; Krishichayan, Fnu; Tornow, Werner

    2017-09-01

    The energy dependence of a number of cumulative fission product yields (FPY) have been measured using quasi- monoenergetic neutron beams for three actinide targets, 235U, 238U and 239Pu, between 0.5 and 14.8 MeV. The FPYs were measured by a combi- nation of fission counting using specially designed dual-fission chambers and -ray counting. Each dual-fission chamber is a back-to-back ioniza- tion chamber encasing an activation target in the center with thin de- posits of the same target isotope in each chamber. This method allows for the direct measurement of the total number of fissions in the activa- tion target with no reference to the fission cross-section, thus reducing uncertainties. γ-ray counting of the activation target was performed on well-shielded HPGe detectors over a period of 2 months post irradiation to properly identify fission products. Reported are absolute cumulative fission product yields for incident neutron energies of 0.5, 1.37, 2.4, 3.6, 4.6 and 14.8 MeV. New data in the second chance fission region of 5.5 - 9 MeV are included. Work performed for the U.S. Department of Energy by Los Alamos National Security, LLC under Contract DE-AC52-06NA25396.

  16. Non-electric-dipole photofission of 235U

    International Nuclear Information System (INIS)

    Arruda Neto, J.D.T.; Herdade, S.B.; Carvalheiro, Z.; Simionatto, S.

    1984-01-01

    The electrofission cross section for 235 U has been measured from 5.8 to 22 MeV. From a combined analysis of it and the previously measured photofission cross section, using the virtual-photon formalism, the photofission cross section for excitations other than E1 has been determined. (Author) [pt

  17. Summary Report from the Consultants' Meeting on International Neutron Cross-Sections Standards: Extending and Updating

    International Nuclear Information System (INIS)

    Pronyaev, V.; Carlson, A.D.; Capote Noy, R.; Wallner, A.

    2011-03-01

    The meeting participants have considered the progress in the measurement and evaluation of neutron cross sections and spectra which can be used as standard or reference data. This includes extension of the 197 Au(n,γ) standard to the energy range below 200 keV, 235 U(n th ,f) prompt fission neutron spectrum and neutron induced gamma-production cross sections. The work on this data development project for next two years has been agreed. (author)

  18. Development of a rapid radiochemical procedure for the separation of /sup 235m/U from 239Pu

    International Nuclear Information System (INIS)

    Attrep, M. Jr.; Efurd, D.W.; Roensch, F.R.

    1987-01-01

    We have developed a rapid radiochemical procedure for the isolation and purification of /sup 235m/U (t/sub 1/2/ = 26 minutes) from 239 Pu samples up to 250 mg. Purpose of developing the procedure was to measure the thermal neutron fission cross section of the isomeric meta state of 235 U. We used rapid small-scale anion exchange columns that absorbed uranium in concentrated HBr but did not absorb plutonium. Uranium was easily eluted with very dilute HF. The separation time required 25 to 35 minutes. We were able to attain a separation factor of uranium from plutonium of approximately 1 x 10 10 with samples ranging from 1 x 10 10 to 3 x 10 11 . The ratio of the fission cross sections for the meta to ground state was measured to be 1.42. 4 figs., 1 tab

  19. Heterogeneity in the 238U/235U Ratios of Angrites.

    Science.gov (United States)

    Tissot, F.; Dauphas, N.; Grove, T. L.

    2016-12-01

    Angrites are differentiated meteorites of basaltic composition, of either volcanic or plutonic origin, that display minimal post-crystallization alteration, metamorphism, shock or impact brecciation. Because quenched angrites cooled very rapidly, all radiochronometric systems closed simultaneously in these samples. Quenched angrites are thus often used as anchors for cross-calibrating short-lived dating methods (e.g., 26Al-26Mg) and the absolute dating techniques (e.g, Pb-Pb). Due to the constancy of the 238U/235U ratio in natural samples, Pb-Pb ages have long been calculated using a "consensus" 238U/235U ratio, but the discovery of resolvable variations in the 238U/235U ratio of natural samples, means that the U isotopic composition of the material to date also has to be determined in order to obtain high-precision Pb-Pb ages. We set out (a) to measure at high-precision the 238U/235U ratio of a large array of angrites to correct their Pb-Pb ages, and (b) to identify whether all angrites have a similar U isotopic composition, and, if not, what were the processes responsible for this variability. Recently, Brennecka & Wadhwa (2012) suggested that the angrite-parent body had a homogeneous 238U/235U ratio. They reached this conclusion partly because they propagated the uncertainties of the U isotopic composition of the various U double spikes that they used onto the final 238U/235U ratio the sample. Because this error is systematic (i.e., it affects all samples similarly), differences in the δ238U values of samples corrected by the same double spike are better known than one would be led to believe if uncertainties on the spike composition are propagated. At the conference, we will present the results of the high-precision U isotope analyses for six angrite samples: NWA 4590, NWA 4801, NWA 6291, Angra dos Reis, D'Orbigny, and Sahara 99555. We will show that there is some heterogeneity in the δ238U values of the angrites and will discuss the possible processes by

  20. Photon-induced Fission Product Yield Measurements on 235U, 238U, and 239Pu

    Science.gov (United States)

    Krishichayan, Fnu; Bhike, M.; Tonchev, A. P.; Tornow, W.

    2015-10-01

    During the past three years, a TUNL-LANL-LLNL collaboration has provided data on the fission product yields (FPYs) from quasi-monoenergetic neutron-induced fission of 235U, 238U, and 239Pu at TUNL in the 0.5 to 15 MeV energy range. Recently, we have extended these experiments to photo-fission. We measured the yields of fission fragments ranging from 85Kr to 147Nd from the photo-fission of 235U, 238U, and 239Pu using 13-MeV mono-energetic photon beams at the HIGS facility at TUNL. First of its kind, this measurement will provide a unique platform to explore the effect of the incoming probe on the FPYs, i.e., photons vs. neutrons. A dual-fission ionization chamber was used to determine the number of fissions in the targets and these samples (along with Au monitor foils) were gamma-ray counted in the low-background counting facility at TUNL. Details of the experimental set-up and results will be presented and compared to the FPYs obtained from neutron-induced fission at the same excitation energy of the compound nucleus. Work supported in part by the NNSA-SSAA Grant No. DE-NA0001838.

  1. Fission cross sections of some thorium, uranium, neptunium and plutonium isotopes relative to /sup 235/U

    Energy Technology Data Exchange (ETDEWEB)

    Meadows, J W

    1983-10-01

    Earlier results from the measurements, at this Laboratory, of the fission cross sections of /sup 230/Th, /sup 232/Th, /sup 233/U, /sup 234/U, /sup 236/U, /sup 238/U, /sup 237/Np, /sup 239/Pu, /sup 240/Pu, and /sup 242/Pu relative to /sup 235/U are reviewed with revisions to include changes in data processing procedures, alpha half lives and thermal fission cross sections. Some new data have also been included. The current experimental methods and procedures and the sample assay methods are described in detail and the sources of error are presented in a systematic manner. 38 references.

  2. Sensitivity coefficients for the 238U neutron-capture shielded-group cross sections

    International Nuclear Information System (INIS)

    Munoz-Cobos, J.L.; de Saussure, G.; Perez, R.B.

    1981-01-01

    In the unresolved resonance region cross sections are represented with statistical resonance parameters. The average values of these parameters are chosen in order to fit evaluated infinitely dilute group cross sections. The sensitivity of the shielded group cross sections to the choice of mean resonance data has recently been investigated for the case of 235 U and 239 Pu by Ganesan and by Antsipov et al; similar sensitivity studies for 238 U are reported

  3. Use of delayed gamma rays for active non-destructive assay of {sup 235}U irradiated by pulsed neutron source (plasma focus)

    Energy Technology Data Exchange (ETDEWEB)

    Andola, Sanjay; Niranjan, Ram [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kaushik, T.C., E-mail: tckk@barc.gov.in [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Rout, R.K. [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Ashwani; Paranjape, D.B.; Kumar, Pradeep; Tomar, B.S.; Ramakumar, K.L. [Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Gupta, S.C. [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2014-07-01

    A pulsed neutron source based on plasma focus device has been used for active interrogation and assay of {sup 235}U by monitoring its delayed high energy γ-rays. The method involves irradiation of fissile material by thermal neutrons obtained after moderation of a burst of neutrons emitted upon fusion of deuterium in plasma focus (PF) device. The delayed gamma rays emitted from the fissile material as a consequence of induced fission were detected by a large volume sodium iodide (NaI(Tl)) detector. The detector is coupled to a data acquisition system of 2k input size with 2k ADC conversion gain. Counting was carried out in pulse height analysis mode for time integrated counts up to 100 s while the temporal profile of delayed gamma has been obtained by counting in multichannel scaling mode with dwell time of 50 ms. To avoid the effect of passive (natural) and active (from surrounding materials) backgrounds, counts have been acquired for gamma energy between 3 and 10 MeV. The lower limit of detection of {sup 235}U in the oxide samples with this set-up is estimated to be 14 mg.

  4. Nuclear data and measurements series: Ratio of the prompt-fission-neutron spectrum of plutonium 239 to that of uranium 235

    International Nuclear Information System (INIS)

    Sugimoto, M.; Smith, A.B.; Guenther, P.T.

    1986-09-01

    The prompt-fission-neutron spectrum resulting from 239 Pu fission induced by 0.55 MeV incident neutrons is measured from 1.0 to 10.0 MeV relative to that of 235 U fission induced by the same incident-energy neutrons. The measurements employ the time-of-flight technique. Energy-dependent ratios of the two spectra are deduced from the measured values over the energy range 1.0 to 10.0 MeV. The experimentally-derived ratio results are compared with those calculated from ENDF/B-V, revision-2, and with results of recent microscopic measurements. Using the ENDF/B-V 235 U Watt parameters for the 235 U spectrum, the experimental measurements imply a ratio of average fission-spectrum energies of 239 Pu/ 235 U = 1.045 +- 0.003, compared to the value 1.046 calculated from ENDF/B-V, revision 2. 12 refs., 2 figs., 2 tabs

  5. Measurement of fast neutron induced fission cross section of minor-actinide

    International Nuclear Information System (INIS)

    Hirakawa, Naohiro

    1997-03-01

    In fuel cycles with recycled actinide, core characteristics are largely influenced by minor actinide (MA: Np, Am, Cm). Accurate nuclear data of MA such as fission cross section are required to estimate the effect of MA with high accuracy. In this study, fast neutron induced fission cross section of MA is measured using Dynamitron Accelerator in Tohoku University. The experimental method and the samples, which were developed or introduced during the last year, were improved in this fiscal year: (1) Development of a sealed fission chamber, (2) Intensification of Li neutron target, (3) Improvement of time-resolution of Time-of-Flight (TOF) electronic circuit, (4) Introduction of Np237 samples with large sample mass and (5) Introduction of a U235 sample with high purity. Using these improved tools and samples, the fission cross section ratio of Np237 relative to U235 was measured between 5 to 100 keV, and the fission cross section of Np237 was deduced. On the other hand, samples of Am241 and Am243 were obtained from Japan Atomic Energy Research Institute (JAERI) after investigating fission cross section of two americium isotopes (Am241 and Am 243) which are important for core physics calculation of fast reactors. (author)

  6. Beta and gamma decay heat measurements between 0.1s--50,000s for neutron fission of 235U, 238U and 239Pu. Final report, June 1, 1992--December 31, 1996

    International Nuclear Information System (INIS)

    Schier, W.A.; Couchell, G.P.

    1996-01-01

    This is a final reporting on the composition of separate beta and gamma decay heat measurements following neutron fission of 235 U and 238 U and 239 Pu and on cumulative and independent yield measurements of fission products of 235 U and 238 U. What made these studies unique was the very short time of 0.1 s after fission that could be achieved by incorporating the helium jet and tape transport system as the technique for transporting fission fragments from the neutron environment of the fission chamber to the low-background environment of the counting area. This capability allowed for the first time decay heat measurements to extend nearly two decades lower on the logarithmic delay time scale, a region where no comprehensive aggregate decay heat measurements had extended to. This short delay time capability also allowed the measurement of individual fission products with half lives as short as 0.2s. The purpose of such studies was to provide tests both at the aggregate level and at the individual nuclide level of the nation's evaluated nuclear data file associated with fission, ENDF/B-VI. The results of these tests are in general quite encouraging indicating this data base generally predicts correctly the aggregate beta and aggregate gamma decay heat as a function of delay time for 235 U, 238 U and 239 Pu. Agreement with the measured individual nuclide cumulative and independent yields for fission products of 235 U and 238 U was also quite good although the present measurements suggest needed improvements in several individual cases

  7. A new evaluation of the neutron data standards

    Directory of Open Access Journals (Sweden)

    Carlson A.D.

    2017-01-01

    Full Text Available Evaluations are being done for the H(n,n, 6Li(n,t, 10B(n,αγ, 10B(n,α, C(n,n, Au(n,γ, 235U(n,f and 238U(n,f standard cross sections. Evaluations are also being done for data that are not traditional standards including: the Au(n,γ cross section at energies below where it is considered a standard; reference cross sections for prompt gamma-ray production in fast neutron-induced reactions; reference cross sections for very high energy fission cross sections; the 235U thermal neutron fission spectrum and the 252Cf spontaneous fission neutron spectrum and the thermal constants.

  8. Evaluation of the 235U fission cross-section from 100 eV to 20 MeV

    International Nuclear Information System (INIS)

    Bhat, M.R.

    1976-01-01

    The evaluation of the 235 U fission cross section from 100 eV to 20 MeV for ENDF/B-V is described. The evaluated average cross sections from 100 eV to 200 keV are given, and it is proposed to include structure in the cross section in this energy region. Above 200 keV, the cross section is given as a smooth curve, and is recommended as a standard. Preliminary error estimates in the cross section are also given

  9. Filtered thermal neutron captured cross-sections measurements and decay heat calculations

    International Nuclear Information System (INIS)

    Son, Pham Ngoc; Tan, Vuong Huu

    2014-01-01

    Recently, a pure thermal neutron beam has been developed for neutron capture measurements based on the horizontal channel No.2 of the research reactor at the Nuclear Research Institute, Dalat. The original reactor neutron spectrum is transmitted through an optimal composition of Bi and Si single crystals for delivering a thermal neutron beam with Cadmium ratio (R cd ) of 420 and neutron flux (Φ th ) of 1.6x10 6 n/cm 2 .s. This thermal neutron beam has been applied for measurements of capture cross-sections for nuclide of 51 V, 55 Mn, 180 Hf and 186 W by the activation method relative to the standard reaction 197 Au(n,g) 198 Au. In addition to the activities of neutron capture cross-sections measurements, the study on nuclear decay heat calculations has been also considered to be developed at the Institute. Some results on calculation procedure and decay heat values calculated with update nuclear database for 235 U, 238 U, 239 Pu and 232 Th are introduced in this report. (author)

  10. Improvement of Modeling HTGR Neutron Physics by Uncertainty Analysis with the Use of Cross-Section Covariance Information

    Science.gov (United States)

    Boyarinov, V. F.; Grol, A. V.; Fomichenko, P. A.; Ternovykh, M. Yu

    2017-01-01

    This work is aimed at improvement of HTGR neutron physics design calculations by application of uncertainty analysis with the use of cross-section covariance information. Methodology and codes for preparation of multigroup libraries of covariance information for individual isotopes from the basic 44-group library of SCALE-6 code system were developed. A 69-group library of covariance information in a special format for main isotopes and elements typical for high temperature gas cooled reactors (HTGR) was generated. This library can be used for estimation of uncertainties, associated with nuclear data, in analysis of HTGR neutron physics with design codes. As an example, calculations of one-group cross-section uncertainties for fission and capture reactions for main isotopes of the MHTGR-350 benchmark, as well as uncertainties of the multiplication factor (k∞) for the MHTGR-350 fuel compact cell model and fuel block model were performed. These uncertainties were estimated by the developed technology with the use of WIMS-D code and modules of SCALE-6 code system, namely, by TSUNAMI, KENO-VI and SAMS. Eight most important reactions on isotopes for MHTGR-350 benchmark were identified, namely: 10B(capt), 238U(n,γ), ν5, 235U(n,γ), 238U(el), natC(el), 235U(fiss)-235U(n,γ), 235U(fiss).

  11. Monte Carlo simulation for fragment mass and kinetic energy distributions from the neutron-induced fission of 235U

    International Nuclear Information System (INIS)

    Montoya, M.; Rojas, J.; Saettone, E.

    2007-01-01

    The mass and kinetic energy distribution of nuclear fragments from the thermal neutron-induced fission of 235 U have been studied using a Monte Carlo simulation. Besides reproducing the pronounced broadening on the standard deviation of the final fragment kinetic energy distribution (σ e (m)) around the mass number m = 109, our simulation also produces a second broadening around m = 125 that is in agreement with the experimental data obtained by Belhafaf et al. These results are a consequence of the characteristics of the neutron emission, the variation in the primary fragment mean kinetic energy, and the yield as a function of the mass. (Author)

  12. Multilevel fitting of 235U resonance data sensitive to Bohr-and Brosa-fission channels

    International Nuclear Information System (INIS)

    Moore, M.S.

    1995-01-01

    The recent determination of the K, J dependence of the neutron induced fission cross section of 235 U by the Dubna group has led to a renewed interest in the mechanism of fission from saddle to scission. The K quantum numbers designate the so-called Bohr fission channels, which describe the fission properties at the saddle point. Certain other fission properties, e.g., the fragment mass and kinetic-energy distribution, are related to the properties of the scission point. The neutron energy dependence of the fragment kinetic energies has been measured by Hambsch et al., who analyzed their data according to a channel description of Brosa et al. How these two channel descriptions, the saddle-point Bohr channels and the scission-point Brosa channels, relate to one another is an open question, and is the subject matter of the present paper. We use the correlation coefficient between various data sets, in which variations are reported from resonance to resonance, as a measure of both-the statistical reliability of the data and of the degree to which different scission variables relate to different Bohr channels. We have carried out an adjustment of the ENDF/B-VI multilevel evaluation of the fission cross section of 235 U, one that provides a reasonably good fit to the energy dependence of the fission, capture, and total cross sections below 100 eV, and to the Bohr-channel structure deduced from an earlier measurement by Pattenden and Postma. We have also further explored the possibility of describing the data of Hambsch et al. in the Brosa-channel framework with the same set of fission-width vectors, only in a different reference system. While this approach shows promise, it is clear that better data are also needed for the neutron energy variation of the scission-point variables

  13. Average values of 235U resonance parameters up to 500 eV

    International Nuclear Information System (INIS)

    Leal, L.C.

    1991-01-01

    An R-matrix analysis of 235 U neutron cross sections was recently completed. The analysis was performed with the multilevel-multichannel Reich-Moore computer code SAMMY and extended the resolved resonance region up to 500 eV. Several high resolution measurements namely, transmission, fission and capture data as well as spin separated fission data were analyzed in a consistent manner and a very accurate parametrization up to 500 eV of these data were obtained. The aim of this paper is to present the results of average values of the resonance parameters. 9 refs., 1 tab

  14. Determination of the fast-neutron-induced fission cross-section of 242Pu at nELBE

    Science.gov (United States)

    Kögler, Toni; Beyer, Roland; Junghans, Arnd R.; Schwengner, Ronald; Wagner, Andreas

    2018-03-01

    The fast-neutron-induced fission cross section of 242Pu was determined in the energy range of 0.5 MeV to 10MeV at the neutron time-of-flight facility nELBE. Using a parallel-plate fission ionization chamber this quantity was measured relative to 235U(n,f). The number of target nuclei was thereby calculated by means of measuring the spontaneous fission rate of 242Pu. An MCNP 6 neutron transport simulation was used to correct the relative cross section for neutron scattering. The determined results are in good agreement with current experimental and evaluated data sets.

  15. 233U Assay A Neutron NDA System

    International Nuclear Information System (INIS)

    Hensley, D.C.; Lucero, A.J.; Pierce, L.

    1998-01-01

    The assay of highly enriched 233 U material presents some unique challenges. Techniques which apply to the assay of materials of Pu or enriched 235 U do not convert easily over to the assay of 233 U. A specialized neutron assay device is being fabricated to exploit the singles neutron signal, the weak correlated neutron signal, and an active correlated signal. These pieces of information when combined with γ ray isotopics information should give a good overall determination of 233 U material now stored in bldg. 3019 at the Oak Ridge National Laboratory

  16. Measurements of fission cross-sections and of neutron production rates; Mesures de sections efficaces de fission et du nombre de neutrons prompts emis par fission

    Energy Technology Data Exchange (ETDEWEB)

    Billaud, P; Clair, C; Gaudin, M; Genin, R; Joly, R; Leroy, J L; Michaudon, A; Ouvry, J; Signarbieux, C; Vendryes, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    a) Measurements of neutron induced fission cross-sections in the low energy region. The variation of the fission cross sections of several fissile isotopes has been measured and analysed, for neutron energies below 0,025 eV. The monochromator was a crystal spectrometer used in conjunction with a mechanical velocity selector removing higher order Bragg reflections. The fissile material was laid down on the plates of a fission chamber by painting technic. An ionization chamber, having its plates coated with thin {sup 10}B layers, was used as the neutron flux monitor. b) Measurement of the fission cross section of {sup 235}U. We intend to measure the variation of the neutron induced fission cross section of {sup 235}U over the neutron energy range from 1 keV by the time of flight method. The neutron source is the uranium target of a pulsed 28 MeV electron linear accelerator. The detector is a large fission chamber, with parallel plates, containing about 10 g of {sup 235}U (20 deposits of 25 cm diameter). The relative fission data were corrected for the neutron spectrum measured with a set of BF{sub 3} proportional counters. c) Mean number {nu} of neutrons emitted in neutron induced fission. We measured the value of {nu} for several fissile isotopes in the case of fission induced by 14 MeV neutrons. The 14 MeV neutrons were produced by D (t, n) {alpha} reaction by means of a 300 kV Cockcroft Walton generator. (author)Fren. [French] a) Mesures de sectionficaces de fission a basse energie. Nous avons mesure et analyse la variation de la section efficace de fission de divers isotopes fissiles pour des neutrons d'energie inferieure a 0,025 eV. Le monochromateur est constitue par un spectrometre a cristal auquel est associe un selecteur mecanique destine a eliminer les diffractions de Bragg d'ordre superieur au premier. Le materiau fissile est contenu dans une chambre a fission sous forme de depots realises par peinture; une chambre d'ionisation a depots minces de B{sub 10

  17. Measurement of 237Np fission rate ratio relative to 235U fission rate in cores with various thermal neutron spectrum at the Kyoto University Critical Assembly

    International Nuclear Information System (INIS)

    Unesaki, Hironobu; Shiroya, Seiji; Iwasaki, Tomohiko; Fujiwara, Daisuke; Kitada, Takanori; Kuroda, Mitsuo; Kohashi, Akio; Kato, Takeshi; Ikeuchi, Yoshitaka

    2000-01-01

    Integral measurements of 237 Np fission rate ratio relative to 235 U fission rate have been performed at Kyoto University Citrical Assembly. The fission rates have been measured using the back-to back type double fission chamber at five thermal cores with different H/ 235 U ratio so that the neutron spectra of the cores were systematically varied. The measured fission rate ratio per atom was 0.00439 to 0.0298, with a typical uncertainty of 2 to 3%. The measured data were compared with the calculated results using SRAC/TWOTRAN and MVP based on JENDL-3.2, which gave the averaged C/E values of 0.93 and 0.95, respectively. Obtained results of C/E using 237 Np cross sections from JENDL-3/2, ENDF/B-VI.5 and JEF2.2 show that the latter two gave smaller results than JENDL-3.2 by about 4%, which clearly reflects the discrepancy in the evaluated cross section among the libraries. This difference arises from both fast fission and resonance region. Although further improvement is recommended, 237 Np fission cross section in JENDL-3.2 is considered to be superior to those in the other libraries and can be adopted for use in design calculations for minor actinide transmutation system using thermal reactors with prediction precision of 237 Np fission rate with in 10%. (author)

  18. Evaluation for ENDF/B-IV of the neutron cross sections for 235U from 82 eV to 25 keV

    International Nuclear Information System (INIS)

    Peelle, R.W.

    1976-05-01

    Capture and fission cross sections for 235 U in the ''unresolved resonance'' energy region were evaluated to permit determination of local-average resonance parameters for the ENDF/B-IV cross section file. Microscopic data were examined for infinitely dilute average fission and capture cross sections and also for intermediate structure unlikely to be reproduced by statistical fluctuations of resonance widths and spacings within known laws. Evaluated cross sections, averaged over lethargy intervals greater than 0.1, were obtained as an average over selected data sets after appropriate renormalization. Estimated uncertainties are given for these evaluated average cross sections. The ''intermediate'' structure fluctuations common to a few independent data sets were approximated by straight lines joining successive cross sections at 120 selected energy points; the cross sections at the vertices were adjusted to reproduce the evaluated average cross sections over the broad energy regions. Data sources and methods are reviewed, output values are tabulated, and some modified procedures are suggested for future evaluations. Evaluated fission and capture integrals for the resolved resonance region are also tabulated. These are not in agreement with integrals based on the resonance parameters of ENDF/B versions III and IV. 8 tables, 5 figures

  19. Exploratory study of fission product yields of neutron-induced fission of 235U , 238U , and 239Pu at 8.9 MeV

    Science.gov (United States)

    Bhatia, C.; Fallin, B. F.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.; Arnold, C. W.; Bond, E.; Bredeweg, T. A.; Fowler, M. M.; Moody, W.; Rundberg, R. S.; Rusev, G. Y.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Macri, R.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.

    2015-06-01

    Using dual-fission chambers each loaded with a thick (200 -400 -mg /c m2) actinide target of 235 ,238U or 239Pu and two thin (˜10 -100 -μ g /c m2) reference foils of the same actinide, the cumulative yields of fission products ranging from 92Sr to 147Nd have been measured at En= 8.9 MeV . The 2H(d ,n ) 3He reaction provided the quasimonoenergetic neutron beam. The experimental setup and methods used to determine the fission product yield (FPY) are described, and results for typically eight high-yield fission products are presented. Our FPYs for 235U(n ,f ) , 238U(n ,f ) , and 239Pu(n ,f ) at 8.9 MeV are compared with the existing data below 8 MeV from Glendenin et al. [Phys. Rev. C 24, 2600 (1981), 10.1103/PhysRevC.24.2600], Nagy et al. [Phys. Rev. C 17, 163 (1978), 10.1103/PhysRevC.17.163], Gindler et al. [Phys. Rev. C 27, 2058 (1983), 10.1103/PhysRevC.27.2058], and those of Mac Innes et al. [Nucl. Data Sheets 112, 3135 (2011), 10.1016/j.nds.2011.11.009] and Laurec et al. [Nucl. Data Sheets 111, 2965 (2010), 10.1016/j.nds.2010.11.004] at 14.5 and 14.7 MeV, respectively. This comparison indicates a negative slope for the energy dependence of most fission product yields obtained from 235U and 239Pu , whereas for 238U the slope issue remains unsettled.

  20. Measurement of thermal neutron cross section for {sup 241}Am(n,f) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Katsuhei; Yamamoto, Shuji; Fujita, Yoshiaki [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Miyoshi, Mitsuharu; Kimura, Itsuro; Kanno, Ikuo; Shinohara, Nobuo

    1997-03-01

    Making use of a standard neutron spectrum field with a pure Maxwellian distribution, the thermal neutron cross section for the {sup 241}Am(n,f) reaction has been measured relative to the reference value of 586.2b for the {sup 235U}(n,f) reaction. For the present measurement, electrodeposited layers of {sup 241}Am and {sup 235}U have been employed as back-to-back type double fission chambers. The present result at neutron energy of 0.0253 eV is 3.15 {+-} 0.097b. The ENDF/B-VI data is in good agreement with the present value, while the JENDL-3.2 data is lower by 4.2%. The evaluated data in JEF-2.2 and by Mughabghab are higher by 0.9% and 1.6%, respectively than the present result. The ratios of the earlier experimental data to the present value are distributed between 0.89 and 1.02. (author)

  1. The measurement of tripartition alpha particle low energy spectrum in 235U fission induced by thermal neutrons

    International Nuclear Information System (INIS)

    El Hage Sleiman, F.

    1980-01-01

    The energy spectrum of the α particles emitted in the thermal neutron induced fission of 235 U was measured from 11.5 MeV down to 2 MeV using the parabola mass spectrometer Lohengrin at the ILL high flux reactor. A Monte Carlo program, that simulates the α particle motion to the spectrometer, has been developed. Numerical results of Monte Carlo calculations for differents values of parameter are reported. The overall energy spectrum is slightly asymmetric at low energy. The possible reasons for the existence of this asymmetry are discussed [fr

  2. Evaluation of fission cross sections and covariances for {sup 233}U, {sup 235}U, {sup 238}U, {sup 239}Pu, {sup 240}Pu, and {sup 241}Pu

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Toshihiko [Kyushu Univ., Fukuoka (Japan); Matsunobu, Hiroyuki [Data Engineering, Inc. (Japan); Murata, Toru [AITEL Corporation, Tokyo (JP)] [and others

    2000-02-01

    A simultaneous evaluation code SOK (Simultaneous evaluation on KALMAN) has been developed, which is a least-squares fitting program to absolute and relative measurements. The SOK code was employed to evaluate the fission cross sections of {sup 233}U, {sup 235}U, {sup 238}U, {sup 239}Pu, {sup 240}Pu, and {sup 241}Pu for the evaluated nuclear data library JENDL-3.3. Procedures of the simultaneous evaluation and the experimental database of the fission cross sections are described. The fission cross sections obtained were compared with evaluated values given in JENDL-3.2 and ENDF/B-VI. (author)

  3. Monte Carlo simulation for fragment mass and kinetic energy distributions from the neutron-induced fission of {sup 235}U

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, M.; Rojas, J. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, Lima 41 (Peru); Saettone, E. [Facultad de Ciencias, Universidad Nacional de lngenieria, Av. Tupac Amaru 210, Apartado 31-139, Lima (Peru)

    2007-07-01

    The mass and kinetic energy distribution of nuclear fragments from the thermal neutron-induced fission of {sup 235}U have been studied using a Monte Carlo simulation. Besides reproducing the pronounced broadening on the standard deviation of the final fragment kinetic energy distribution ({sigma}{sub e}(m)) around the mass number m = 109, our simulation also produces a second broadening around m = 125 that is in agreement with the experimental data obtained by Belhafaf et al. These results are a consequence of the characteristics of the neutron emission, the variation in the primary fragment mean kinetic energy, and the yield as a function of the mass. (Author)

  4. Use of integral experiments for the assessment of a new 235U IRSN-CEA evaluation

    Directory of Open Access Journals (Sweden)

    Ichou Raphaëlle

    2017-01-01

    Full Text Available The Working Party on International Nuclear Data Evaluation Co-operation (WPEC subgroup 29 (SG 29 was established to investigate an issue with the 235U capture cross-section in the energy range from 0.1 to 2.25 keV, due to a possible overestimation of 10% or more. To improve the 235U capture crosssection, a new 235U evaluation has been proposed by the Institut de Radioprotection et de Sûreté Nucléaire (IRSN and the CEA, mainly based on new time-of-flight 235U capture cross-section measurements and recent fission cross-section measurements performed at the n_TOF facility from CERN. IRSN and CEA Cadarache were in charge of the thermal to 2.25 keV energy range, whereas the CEA DIF was responsible of the high energy region. Integral experiments showing a strong 235U sensitivity are used to assess the new evaluation, using Monte-Carlo methods. The keff calculations were performed with the 5.D.1 beta version of the MORET 5 code, using the JEFF-3.2 library and the new 235U evaluation, as well as the JEFF-3.3T1 library in which the new 235U has been included. The benchmark selection allowed highlighting a significant improvement on keff due to the new 235U evaluation. The results of this data testing are presented here.

  5. Photofission cross-section ratio measurement of 235U/238U using monoenergetic photons in the energy range of 9.0-16.6 MeV

    Science.gov (United States)

    Krishichayan; Bhike, Megha; Finch, S. W.; Howell, C. R.; Tonchev, A. P.; Tornow, W.

    2017-05-01

    Photofission cross-section ratios of 235U and 238U have been measured using monoenergetic photon beams at the HIγS facility of TUNL. These measurements have been performed in small energy steps between 9.0 and 16.6 MeV using a dual-fission ionization chamber. Measured cross-section ratios are compared with the previous experimental data as well as with the recent evaluated nuclear data library ENDF.

  6. 233U Assay A Neutron NDA System

    Energy Technology Data Exchange (ETDEWEB)

    Hensley, D.C.; Lucero, A.J.; Pierce, L.

    1998-11-17

    The assay of highly enriched {sup 233}U material presents some unique challenges. Techniques which apply to the assay of materials of Pu or enriched {sup 235}U do not convert easily over to the assay of {sup 233}U. A specialized neutron assay device is being fabricated to exploit the singles neutron signal, the weak correlated neutron signal, and an active correlated signal. These pieces of information when combined with {gamma} ray isotopics information should give a good overall determination of {sup 233}U material now stored in bldg. 3019 at the Oak Ridge National Laboratory.

  7. Comparative studies for determining U-235/U-238 relation in solutions of natural and depleted uranium using gamma spectrometry and neutron activation analysis

    International Nuclear Information System (INIS)

    Cassorla F, V.; Valle M, L.; Pena V, L.

    1988-01-01

    Two experimental methods were developed for determining U-235/U-238 ratio in uranium solutions. The isotopic was measured by high resolution ratio gamma-ray spectrometry (G.S.) and neutron activation analysis (N.A.A.). The precision obtained was similar for both methods, but better sensitivity was obtained by N.A.A. The accuracy in both cases was stablished by comparison with samples previously analyzed by mass spectrometry, the results were satisfactory for both techniques. Studies involving the influence of the nitric acid concentration on the isotopic ratio measurement, also were done. In addition, computer programs for faster data reduction were developped, in the case of N.A.A. (author)

  8. Determination of the fast-neutron-induced fission cross-section of 242Pu at nELBE

    Directory of Open Access Journals (Sweden)

    Kögler Toni

    2018-01-01

    Full Text Available The fast-neutron-induced fission cross section of 242Pu was determined in the energy range of 0.5 MeV to 10MeV at the neutron time-of-flight facility nELBE. Using a parallel-plate fission ionization chamber this quantity was measured relative to 235U(n,f. The number of target nuclei was thereby calculated by means of measuring the spontaneous fission rate of 242Pu. An MCNP 6 neutron transport simulation was used to correct the relative cross section for neutron scattering. The determined results are in good agreement with current experimental and evaluated data sets.

  9. Prompt neutrons from {sup 236}U fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Boldeman, J W; Musgrove, A.R. de L.; Walsch, R L

    1971-03-01

    Measurements were made of prompt neutron emission in the thermal neutron fission of {sup 235}U. The mean neutron emission per fragment was obtained for particular values of the fragment mass and total kinetic energy. A direct neutron counting method was employed and a comparison made with data from previous experiments of this type. (author)

  10. Filtered thermal neutron captured cross sections measurements and decay heat calculations

    International Nuclear Information System (INIS)

    Pham Ngoc Son; Vuong Huu Tan

    2015-01-01

    Recently, a pure thermal neutron beam has been developed for neutron capture measurements based on the horizontal channel No.2 of the research reactor at the Nuclear Research Institute, Dalat. The original reactor neutron spectrum is transmitted through an optimal composition of Bi and Si single crystals for delivering a thermal neutron beam with Cadmium ratio (R ed ) of 420 and neutron flux (Φ th ) of 1.6*10 6 n/cm 2 .s. This thermal neutron beam has been applied for measurements of capture cross sections for nuclide of 51 V, by the activation method relative to the standard reaction 197 Au(n,γ) 198 Au. In addition to the activities of neutron capture cross sections measurements, the study on nuclear decay heat calculations has been also considered to be developed at the Institute. Some results on calculation procedure and decay heat values calculated with update nuclear database for 235 U are introduced in this report. (author)

  11. distributions for the thermal neutron induced fission of 234U

    Directory of Open Access Journals (Sweden)

    Al-Adili A.

    2016-01-01

    In addition, the analysis of thermal neutron induced fission of 234U(n,f will be discussed. Currently analysis of data is ongoing, originally taken at the ILL reactor. The experiment is of particular interest since no measurement exist of the mass and energy distributions for this system at thermal energies. One main problem encountered during analysis was the huge background of 235U(nth,f. Despite the negligible isotopic traces in the sample, the cross section difference is enormous. Solution to this parasitic background will be highlighted.

  12. Evaluation of the 238U neutron total cross section

    International Nuclear Information System (INIS)

    Smith, A.; Poenitz, W.P.; Howerton, R.J.

    1982-12-01

    Experimental energy-averaged neutron total cross sections of 238 U were evaluated from 0.044 to 20.0 MeV using regorous numerical methods. The evaluated results are presented together with the associated uncertainties and correlation matrix. They indicate that this energy-averaged neutron total cross section is known to better than 1% over wide energy regions. There are somwewhat larger uncertainties at low energies (e.g., less than or equal to 0.2 MeV), near 8 MeV and above 15 MeV. The present evaluation is compard with values given in ENDF/B-V

  13. Determination of the neutron-induced fission cross section of {sup 242}Pu; Bestimmung des neutroneninduzierten Spaltquerschnitts von {sup 242}Pu

    Energy Technology Data Exchange (ETDEWEB)

    Koegler, Toni Joerg

    2016-04-26

    Neutron induced fission cross sections of actinides like the Pu-isotopes are of relevance for the development of nuclear transmutation technologies. For {sup 242}Pu, current uncertainties are of around 21%. Sensitivity studies show that the total uncertainty has to be reduced to below 5% to allow for reliable neutron physics simulations. This challenging task was performed at the neutron time-of-flight facility of the new German National Center for High Power Radiation Sources at HZDR, Dresden. Within the TRAKULA project, thin, large and homogeneous deposits of {sup 235}U and {sup 242}Pu have been produced successfully. Using two consecutively placed fission chambers allowed the determination of the neutron induced fission cross section of {sup 242}Pu relative to {sup 235}U. The areal density of the Plutonium targets was calculated using the measured spontaneous fission rate. Experimental results of the fast neutron induced fission of {sup 242}Pu acquired at nELBE will be presented and compared to recent experiments and evaluated data. Corrections addressing the neutron scattering are discussed by using results of different neutron transport simulations (Geant 4, MCNP 6 and FLUKA).

  14. Neutron capture cross-section measurements for 238U between 0.4 and 1.4 MeV

    Science.gov (United States)

    Krishichayan, Fnu; Finch, S. W.; Howell, C. R.; Tonchev, A. P.; Tornow, W.

    2017-09-01

    Neutron-induced radiative-capture cross-section data of 238U are crucial for fundamental nuclear physics as well as for Stewardship Science, for advanced-fuel-cycle calculations, and for nuclear astrophysics. Based on different techniques, there are a large number of 238U(n, γ) 239U cross-section data available in the literature. However, there is a lack of systematic and consistent measurements in the 0.1 to 3.0 MeV energy range. The goal of the neutron-capture project at TUNL is to provide accurate 238U(n, γ) 239U cross-section data in this energy range. The 238U samples, sandwiched between gold foils of the same size, were irradiated for 8-14 hours with monoenergetic neutrons. To avoid any contribution from thermal neutrons, the 238U and 197Au targets were placed inside of a thin-walled pill-box made of 238U. Finally, the whole pill-box was wrapped in a gold foil as well. After irradiation, the samples were gamma-counted at the TUNL's low-background counting facility using high-efficient HPGe detectors. The 197Au monitor foils were used to calculate the neutron flux. The experimental technique and 238U(n, γ) 239U cross-section results at 6 energies will be discussed during the meeting.

  15. Measurement of fission yields far from the center of isotopic distributions in the thermal neutron fission of 235U

    International Nuclear Information System (INIS)

    Shmid, M.

    1979-08-01

    The main purpose of this work was to measure independent yields, in the thermal neutron fission of 235 U, of fission products which lie far from the centers of the isotopic and isobaric yield distributions. These measurements were used to test the predictions of semi-empirical systematics of fission yields and theoretical fission models. Delay times were measured as a function of temperature in the range 1200-2000degC. The very low delay times achieved in the present work permitted expanding the measurable region to the isotopes 147 , 148 Cs and 99 Rb which are of special interest in the present work. The delay times of Sr and Ba isotopes achieved were more than two orders of magnitude lower than values reported in the literature and thus short-lived isotopes of these elements could be separated for the first time by mass spectrometry. The half-lives of 147 Ba, 148 Ba, 149 La and 149 Ce were measured for the first time. The isotopic distributions of fission yields were measured for the elements Rb, Sr, Cs and Ba in the thermal neutron fission of 235 U, those of 99 Rb, 147 Cs and 148 Cs having been measured for the first time. A comparison of the experimental yields with the predictions of the currently accepted semi-empirical systematics of fission yields, which is the odd-even effect systematics, shows that the systematics succeeds in accounting for the strong odd-even proton effect and the weaker odd-even neutron effect and also in predicting the shape of the distributions in the central region. It is shown that prompt neutron emission broadens the distribution only slightly in the wing of heavy isotopes and more significantly in the wing of light isotopes. But the effect of prompt neutron emission cannot explain the large discrepancies existing between the predictions of fission models and the experimentally measured fission yield in the wings of the isotopic distributions. (B.G.)

  16. Evaluation of the U-Pu residual mass from spent fuel assemblies with passive and active neutronic methods

    International Nuclear Information System (INIS)

    Bignan, G.; Martin-Deidier, L.

    1991-01-01

    The interpretation of passive and active neutronic measurements to evaluate the U-Pu residual mass in spent fuel assemblies is presented as follows: passive neutron measurements are well correlated to the plutonium mass, active neutron measurements give information linked to the fissile mass content of the assembly ( 235 U + 239 Pu + 241 Pu) and, using the passive neutron measurement, lead to the 235 U mass content of the assemblies

  17. Effect of U-238 and U-235 cross sections on nuclear characteristics of fast and thermal reactors

    Energy Technology Data Exchange (ETDEWEB)

    Akie, Hiroshi; Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kaneko, Kunio

    1997-03-01

    Benchmark calculation has been made for fast and thermal reactors by using ENDF/B-VI release 2(ENDF/B-VI.2) and JENDL-3.2 nuclear data. Effective multiplication factors (k{sub eff}s) calculated for fast reactors calculated with ENDF/B-VI.2 becomes about 1% larger than the results with JENDL-3.2. The difference in k{sub eff} is caused mainly from the difference in inelastic scattering cross section of U-238. In all thermal benchmark cores, ENDF/B-VI.2 gives smaller multiplication factors than JENDL-3.2. In U-235 cores, the difference is about 0.3%dk and it becomes about 0.6% in TCA U cores. The difference in U-238 data is also important in thermal reactors, while there are found 0.1-0.3% different v values of U isotopes in thermal energy between ENDF/B-VI.2 and JENDL-3.2. (author)

  18. Fission cross-section measurements on 233U and minor actinides at the CERN n-TOF facility

    International Nuclear Information System (INIS)

    Calviani, M.; Cennini, P.; Chiaveri, E.; Dahlfors, M.; Ferrari, A.; Herrera-Martinez, A.; Kadi, Y.; Sarchiapone, L.; Vlachoudis, V.; Colonna, N.; Terlizzi, R.; Abbondanno, U.; Marrone, S.; Belloni, F.; Fujii, K.; Moreau, C.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.; Gunsing, F.; Pancin, J.; Perrot, L.; Plukis, A.; Alvarez, H.; Duran, I.; Paradela, C.; Alvarez-Velarde, F.; Cano-Ott, D.; Embid-Sesura, M.; Gonzalez-Romero, E.; Guerrero, C.; Martinez, T.; Vincente, M. C.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; David, S.; Ferrant, L.; Stephan, C.; Tassan-Got, L.; Badurek, G.; Jericha, E.; Leeb, H.; Oberhummer, H.; Pigni, M. T.; Baumann, P.; Kerveno, M.; Lukic, S.; Rudolf, G.; Becvar, F.; Calvino, F.; Capote, R.; Carrapico, C.; Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.; Cortes, G.; Poch, A.; Pretel, C.; Couture, A.; Cox, J.; O'Brien, S.; Wiescher, M.; Dillmann, I.; Heil, M.; Kaeppeler, F.; Mosconi, M.; Plag, R.; Walter, S.; Wisshak, K.; Domingo-Pardo, C.; Eleftheriadis, C.; Furman, W.; Goverdovski, A.; Gramegna, F.; Mastinu, P.; Praena, J.; Haas, B.; Haight, R.; Igashira, M.; Karadimos, D.; Karamanis, D.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krticka, M.; Lampoudis, C.; Lozano, M.; Marganiec, J.; Massimi, C.; Mengoni, A.; Milazzo, P. M.; Papachristodoulou, C.; Papadopoulos, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Plompen, A.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rullhusen, P.; Salgado, J.; Santos, C.; Savvidis, I.; Tagliente, G.; Tain, J. L.; Tavora, L.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vlastou, R.; Voss, F.

    2010-01-01

    Neutron-induced fission cross-sections of minor actinides have been measured at the white neutron source n-TOF at CERN, Geneva. The studied isotopes include 233 U, interesting for Th/U based nuclear fuel cycles, 241, 243 Am and 245 Cm, relevant for transmutation and waste reduction studies in new generation fast reactors (Gen-IV) or Accelerator Driven Systems. The measurements take advantage of the unique features of the n-TOF facility, namely the wide energy range, the high instantaneous neutron flux and the low background. Results for the involved isotopes are reported from ∼30 meV to around 1 MeV neutron energy. The measurements have been performed with a dedicated Fission Ionization Chamber (FIC), relative to the standard cross-section of the 235 U fission reaction, measured simultaneously with the same detector. Results are here reported. (authors)

  19. Measurement of the fission cross section induced by fast neutrons of the {sup 232}Th/{sup 233}U nuclei within the innovating fuel cycles framework; Mesure de la section efficace de fission induite par neutrons rapides des noyaux {sup 232}Th/{sup 233}U dans le cadre des cycles de combustible innovants

    Energy Technology Data Exchange (ETDEWEB)

    Grosjean, C

    2005-03-15

    The thorium-U{sup 233} fuel cycle might provided safer and cleaner nuclear energy than the present Uranium/Pu fuelled reactors. Over the last 10 years, a vast campaign of measurements has been initiated to bring the precision of neutron data for the key nuclei (Th{sup 232}, Pa{sup 233} and U{sup 233}) at the level of those for the U-Pu cycle. This is the framework of these measurements, the energy dependent neutron induced fission cross section of Th{sup 232} and U{sup 233} has been measured from 1 to 7 MeV with a target accuracy lesser than 5 per cent. These measurements imply the accurate determination of the fission rate, the number of the target nuclei as well as the incident neutron flux impinging on the target, the latter has been obtained using the elastic scattering (n,p). The cross section of which is very well known in a large neutron energy domain ({approx} 0,5 % from 1 eV to 50 MeV) compared to the U{sup 235}(n,f) reaction. This technique has been applied for the first time to the Th{sup 232}(n,f) and U{sup 233}(n,f) cases. A Hauser-Feshbach statistical model has been developed. It consists of describing the different decay channels of the compound nucleus U{sup 234} from 0,01 to 10 MeV neutron energy. The parameters of this model were adjusted in order to reproduce the measured fission cross section of U{sup 233}. From these parameters, the cross sections from the following reactions could be extracted: inelastic scattering U{sup 233}(n,n'), radiative capture U{sup 233}(n,{gamma}) and U{sup 233}(n,2n). These cross sections are still difficult to measure by direct neutron reactions. The calculated values have allowed us to fill the lack of experimental data for the major fissile nucleus of the thorium cycle. (author)

  20. Average cross sections calculated in various neutron fields

    International Nuclear Information System (INIS)

    Shibata, Keiichi

    2002-01-01

    Average cross sections have been calculated for the reactions contained in the dosimetry files, JENDL/D-99, IRDF-90V2, and RRDF-98 in order to select the best data for the new library IRDF-2002. The neutron spectra used in the calculations are as follows: 1) 252 Cf spontaneous fission spectrum (NBS evaluation), 2) 235 U thermal fission spectrum (NBS evaluation), 3) Intermediate-energy Standard Neutron Field (ISNF), 4) Coupled Fast Reactivity Measurement Facility (CFRMF), 5) Coupled thermal/fast uranium and boron carbide spherical assembly (ΣΣ), 6) Fast neutron source reactor (YAYOI), 7) Experimental fast reactor (JOYO), 8) Japan Material Testing Reactor (JMTR), 9) d-Li neutron spectrum with a 2-MeV deuteron beam. The items 3)-7) represent fast neutron spectra, while JMTR is a light water reactor. The Q-value for the d-Li reaction mentioned above is 15.02 MeV. Therefore, neutrons with energies up to 17 MeV can be produced in the d-Li reaction. The calculated average cross sections were compared with the measurements. Figures 1-9 show the ratios of the calculations to the experimental data which are given. It is found from these figures that the 58 Fe(n, γ) cross section in JENDL/D-99 reproduces the measurements in the thermal and fast reactor spectra better than that in IRDF-90V2. (author)

  1. Neutron-induced fission cross-section measurement of 234U with quasi-monoenergetic beams in the keV and MeV range using micromegas detectors

    Science.gov (United States)

    Tsinganis, A.; Kokkoris, M.; Vlastou, R.; Kalamara, A.; Stamatopoulos, A.; Kanellakopoulos, A.; Lagoyannis, A.; Axiotis, M.

    2017-09-01

    Accurate data on neutron-induced fission cross-sections of actinides are essential for the design of advanced nuclear reactors based either on fast neutron spectra or alternative fuel cycles, as well as for the reduction of safety margins of existing and future conventional facilities. The fission cross-section of 234U was measured at incident neutron energies of 560 and 660 keV and 7.5 MeV with a setup based on `microbulk' Micromegas detectors and the same samples previously used for the measurement performed at the CERN n_TOF facility (Karadimos et al., 2014). The 235U fission cross-section was used as reference. The (quasi-)monoenergetic neutron beams were produced via the 7Li(p,n) and the 2H(d,n) reactions at the neutron beam facility of the Institute of Nuclear and Particle Physics at the `Demokritos' National Centre for Scientific Research. A detailed study of the neutron spectra produced in the targets and intercepted by the samples was performed coupling the NeuSDesc and MCNPX codes, taking into account the energy spread, energy loss and angular straggling of the beam ions in the target assemblies, as well as contributions from competing reactions and neutron scattering in the experimental setup. Auxiliary Monte-Carlo simulations were performed with the FLUKA code to study the behaviour of the detectors, focusing particularly on the reproduction of the pulse height spectra of α-particles and fission fragments (using distributions produced with the GEF code) for the evaluation of the detector efficiency. An overview of the developed methodology and preliminary results are presented.

  2. Fission Product Yield Study of 235U, 238U and 239Pu Using Dual-Fission Ionization Chambers

    Science.gov (United States)

    Bhatia, C.; Fallin, B.; Howell, C.; Tornow, W.; Gooden, M.; Kelley, J.; Arnold, C.; Bond, E.; Bredeweg, T.; Fowler, M.; Moody, W.; Rundberg, R.; Rusev, G.; Vieira, D.; Wilhelmy, J.; Becker, J.; Macri, R.; Ryan, C.; Sheets, S.; Stoyer, M.; Tonchev, A.

    2014-05-01

    To resolve long-standing differences between LANL and LLNL regarding the correct fission basis for analysis of nuclear test data [M.B. Chadwick et al., Nucl. Data Sheets 111, 2891 (2010); H. Selby et al., Nucl. Data Sheets 111, 2891 (2010)], a collaboration between TUNL/LANL/LLNL has been established to perform high-precision measurements of neutron induced fission product yields. The main goal is to make a definitive statement about the energy dependence of the fission yields to an accuracy better than 2-3% between 1 and 15 MeV, where experimental data are very scarce. At TUNL, we have completed the design, fabrication and testing of three dual-fission chambers dedicated to 235U, 238U, and 239Pu. The dual-fission chambers were used to make measurements of the fission product activity relative to the total fission rate, as well as for high-precision absolute fission yield measurements. The activation method was employed, utilizing the mono-energetic neutron beams available at TUNL. Neutrons of 4.6, 9.0, and 14.5 MeV were produced via the 2H(d,n)3He reaction, and for neutrons at 14.8 MeV, the 3H(d,n)4He reaction was used. After activation, the induced γ-ray activity of the fission products was measured for two months using high-resolution HPGe detectors in a low-background environment. Results for the yield of seven fission fragments of 235U, 238U, and 239Pu and a comparison to available data at other energies are reported. For the first time results are available for neutron energies between 2 and 14 MeV.

  3. Delayed β ray spectrum of 235U fission fragments

    International Nuclear Information System (INIS)

    Pascholati, P.R.

    1973-01-01

    The time-dependent electron spectra of fission fragments from the thermal-neutron-induced fission of 235 U are calculated. The Gross theory of nuclear beta decay is used to obtain the decay constant and individual electron spectra. The mean energy per fission carried by the electrons and the number of electrons per fission are also calculated. Comparison of these calculated spectra to experimental ones shows good agreements. (Author) [pt

  4. Neutron-induced fission cross-section of 233U, 241Am and 243Am in the energy range 0.5 MeV ≤ En ≤ 20 MeV

    International Nuclear Information System (INIS)

    Belloni, F.; Milazzo, P.M.; Calviani, M.

    2011-01-01

    Neutron-induced fission cross-sections of 233 U, 241 Am and 243 Am relative to 235 U have been measured in a wide energy range at the neutron time of flight facility n-TOF in Geneva to address the present discrepancies in evaluated and experimental databases for reactions and isotopes relevant for transmutation and new generation fast reactors. A dedicated fast ionization chamber was used. Each isotope was mounted in a different cell of the modular detector. The measurements took advantage of the characteristics of the n-TOF installation. Its intrinsically low background, coupled to its high instantaneous neutron flux, results in high accuracy data. Its wide energy neutron spectrum helps to reduce systematic uncertainties due to energy-domain matching problems while the 185 m flight path and a 6 ns pulse width assure an excellent energy resolution. This paper presents results obtained between 500 keV and 20 MeV neutron energy. (authors)

  5. Determination of the isotopic abundance of 235U in rocks in search for an Oklo phenomenon in Brazil by activation analysis

    International Nuclear Information System (INIS)

    Vasconcellos, M.B.A.; Armelin, M.J.A.; Lima, F.W. de; Fulfaro, R.

    1981-09-01

    Isotopic analyses of uranium are generally carried out by mass spectrometry, with a precision better than 1%. In nuclear laboratories it is often necessary to perform rapid determinations of 235 U isotopic abundances. Thermal neutron activation analysis by delayed neutron counting or by high resolution gamma-ray spectrometry can be applied for this purpose, although with less precision than by mass spectrometry. In this work, delayed neutron counting and gamma-ray spectrometry are used for the determination of the isotopic abundance of 235 U in rocks from the Northeastern region of Brazil. In the case of the application of delayed neutron counting, the rocks are analyzed non-destructively. When high resolution gamma-ray spectrometry is applied, a pre-irradiation chemical separation had to be performed, by extraction of uranium with tributylphosphate. By both methods employed the results for the isotopic abundance of 235 U can be considered as equal to the natural value of 0.702%, for the rocks under study. The precision attained by gamma-ray spectrometry is better than that by delayed neutron couting. (Author) [pt

  6. Energy dependence of fission product yields from 235U, 238U, and 239Pu with monoenergetic neutrons between thermal and 14.8 MeV

    Science.gov (United States)

    Gooden, Matthew; Arnold, Charles; Bhike, Megha; Bredeweg, Todd; Fowler, Malcolm; Krishichayan; Tonchev, Anton; Tornow, Werner; Stoyer, Mark; Vieira, David; Wilhelmy, Jerry

    2017-09-01

    Under a joint collaboration between TUNL-LANL-LLNL, a set of absolute fission product yield measurements has been performed. The energy dependence of a number of cumulative fission product yields (FPY) have been measured using quasi-monoenergetic neutron beams for three actinide targets, 235U, 238U and 239Pu, between 0.5 and 14.8 MeV. The FPYs were measured by a combination of fission counting using specially designed dual-fission chambers and γ-ray counting. Each dual-fission chamber is a back-to-back ionization chamber encasing an activation target in the center with thin deposits of the same target isotope in each chamber. This method allows for the direct measurement of the total number of fissions in the activation target with no reference to the fission cross-section, thus reducing uncertainties. γ-ray counting of the activation target was performed on well-shielded HPGe detectors over a period of two months post irradiation to properly identify fission products. Reported are absolute cumulative fission product yields for incident neutron energies of 0.5, 1.37, 2.4, 3.6, 4.6, 5.5, 7.5, 8.9 and 14.8 MeV. Preliminary results from thermal irradiations at the MIT research reactor will also be presented and compared to present data and evaluations. This work was performed under the auspices of the U.S. Department of Energy by Los Alamos National Security, LLC under contract DE-AC52-06NA25396, Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 and by Duke University and Triangle Universities Nuclear Laboratory through NNSA Stewardship Science Academic Alliance grant No. DE-FG52-09NA29465, DE-FG52-09NA29448 and Office of Nuclear Physics Grant No. DE-FG02-97ER41033.

  7. Energy dependence of fission product yields from 235U, 238U, and 239Pu with monoenergetic neutrons between thermal and 14.8 MeV

    Directory of Open Access Journals (Sweden)

    Gooden Matthew

    2017-01-01

    Full Text Available Under a joint collaboration between TUNL-LANL-LLNL, a set of absolute fission product yield measurements has been performed. The energy dependence of a number of cumulative fission product yields (FPY have been measured using quasi-monoenergetic neutron beams for three actinide targets, 235U, 238U and 239Pu, between 0.5 and 14.8 MeV. The FPYs were measured by a combination of fission counting using specially designed dual-fission chambers and γ-ray counting. Each dual-fission chamber is a back-to-back ionization chamber encasing an activation target in the center with thin deposits of the same target isotope in each chamber. This method allows for the direct measurement of the total number of fissions in the activation target with no reference to the fission cross-section, thus reducing uncertainties. γ-ray counting of the activation target was performed on well-shielded HPGe detectors over a period of two months post irradiation to properly identify fission products. Reported are absolute cumulative fission product yields for incident neutron energies of 0.5, 1.37, 2.4, 3.6, 4.6, 5.5, 7.5, 8.9 and 14.8 MeV. Preliminary results from thermal irradiations at the MIT research reactor will also be presented and compared to present data and evaluations. This work was performed under the auspices of the U.S. Department of Energy by Los Alamos National Security, LLC under contract DE-AC52-06NA25396, Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 and by Duke University and Triangle Universities Nuclear Laboratory through NNSA Stewardship Science Academic Alliance grant No. DE-FG52-09NA29465, DE-FG52-09NA29448 and Office of Nuclear Physics Grant No. DE-FG02-97ER41033.

  8. Neutron cross section standards and instrumentation: Annual report

    International Nuclear Information System (INIS)

    1987-01-01

    This annual report from the National Bureau of Standards contains a summary of the results of the Neutron Cross Section Standards and Instrumentation Program. The technical measurements for the past year are given along with the proposed program and budget needs for the next three years. The neutron standards measurements have concentrated on the most important 235 U(n,f) cross section in the thermal to 20 MeV energy range along with the development of neutron detectors required for these measurements. The NBS measurements have made a significant contribution to the improvement in the understanding of this reaction. Measurements were performed with numerous neutron detectors at overlapping energies and at different neutron sources in order to reduce the systematic errors to achieve the required accuracy in this important neutron standard. Significant progress was also made in the development of a detector to utilize the 3 He(n,p) reaction as a standard in the eV to MeV energy region. Improvements in data acquisition systems as well as additional studies of advanced neutron sources were accomplished. Contacts with private industry were maintained and coordination of the neutron standards evaluation was continued. The report also includes biographical listings of the research staff along with copies of a few of our recent publications. 13 figs., 1 tab

  9. Photofission cross-section ratio measurement of {sup 235}U/{sup 238}U using monoenergetic photons in the energy range of 9.0–16.6 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Krishichayan, E-mail: krishi@tunl.duke.edu [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Bhike, Megha; Finch, S.W.; Howell, C.R. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Tonchev, A.P. [Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Tornow, W. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States)

    2017-05-11

    Photofission cross-section ratios of {sup 235}U and {sup 238}U have been measured using monoenergetic photon beams at the HIγS facility of TUNL. These measurements have been performed in small energy steps between 9.0 and 16.6 MeV using a dual-fission ionization chamber. Measured cross-section ratios are compared with the previous experimental data as well as with the recent evaluated nuclear data library ENDF.

  10. Neutron methods for measuring 235U content in UF6 gas

    International Nuclear Information System (INIS)

    Stromswold, D.C.; Peurrung, A.J.; Reeder, P.L.; Pappas, R.A.; Sunberg, D.S.

    1996-10-01

    In the United States and Russia, UF 6 gas streams of highly enriched uranium and lower enrichment uranium am being blended to reduce the stockpile of the highly enriched material. The resultant uranium is no longer useful for weapons, but is suitable as fuel for nuclear reactors. A method to verify the blending of high- and low-enrichment uranium was developed at Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy, Office of Research and Development (NN-20). In the United States, blending occurs at the U.S. Department of Energy's Portsmouth Gaseous Diffusion Plant located near Portsmouth, Ohio. In Russia, the blending takes place at Novouralsk. The United States is purchasing the blended product produced in Russia in a program to reduce the availability of enriched uranium that can be used for weapons production. Monitoring the 235 U mass flux of the input stream having the highly enriched uranium will provide confidence that high-enrichment uranium is being consumed in the blending process, and monitoring the output stream will provide an on-line measure of the 235 U in the mixed product. The Portsmouth plant is a potential test facility for non-destructive technology to monitor blending. In addition, monitoring the blending at Portsmouth can support International Atomic Energy Agency activities on controlling and reducing enriched uranium stockpiles

  11. Evaluation of the Neutron Data Standards

    Science.gov (United States)

    Carlson, A. D.; Pronyaev, V. G.; Capote, R.; Hale, G. M.; Chen, Z.-P.; Duran, I.; Hambsch, F.-J.; Kunieda, S.; Mannhart, W.; Marcinkevicius, B.; Nelson, R. O.; Neudecker, D.; Noguere, G.; Paris, M.; Simakov, S. P.; Schillebeeckx, P.; Smith, D. L.; Tao, X.; Trkov, A.; Wallner, A.; Wang, W.

    2018-02-01

    With the need for improving existing nuclear data evaluations, (e.g., ENDF/B-VIII.0 and JEFF-3.3 releases) the first step was to evaluate the standards for use in such a library. This new standards evaluation made use of improved experimental data and some developments in the methodology of analysis and evaluation. In addition to the work on the traditional standards, this work produced the extension of some energy ranges and includes new reactions that are called reference cross sections. Since the effort extends beyond the traditional standards, it is called the neutron data standards evaluation. This international effort has produced new evaluations of the following cross section standards: the H(n,n), 6Li(n,t), 10B(n,α), 10B(n,α1 γ), natC(n,n), Au(n,γ), 235U(n,f) and 238U(n,f). Also in the evaluation process the 238U(n,γ) and 239Pu(n,f) cross sections that are not standards were evaluated. Evaluations were also obtained for data that are not traditional standards: the Maxwellian spectrum averaged cross section for the Au(n,γ) cross section at 30 keV; reference cross sections for prompt γ-ray production in fast neutron-induced reactions; reference cross sections for very high energy fission cross sections; the 252Cf spontaneous fission neutron spectrum and the 235U prompt fission neutron spectrum induced by thermal incident neutrons; and the thermal neutron constants. The data and covariance matrices of the uncertainties were obtained directly from the evaluation procedure.

  12. Cumulative fission yield of Ce-148 produced by thermal-neutron fission of U-235

    International Nuclear Information System (INIS)

    Hasan, A.A.

    1984-12-01

    Cumulative fission yield of 148 cesium isotopes and some other fission products produced by thermal-neutron fission of 235 uranium is determined by Germanium/Lithium spectroscopic methods. The measuremets were done at Tsing-Hua open pool reactor using 3 to 4 mg of 93.15% enriched 235 uranium samples. Gamma rays are assigned to the responsible fission products by matching gamma rays energies and half lives. Fission rate is calculated by fission track method. Cumulative fission yields of 148 cesium, 90 krypton, 130 iodine, 144 lanthanum, 89 krypton, 136 xenon, 137 xenon and 140 cesium are calculated. This values are compared with previously predicted values and showed good agreement. 21 Ref

  13. Nuclear Excitation by Electronic Transition of U-235

    Energy Technology Data Exchange (ETDEWEB)

    Chodash, Perry Adam [Univ. of California, Berkeley, CA (United States)

    2015-07-14

    Nuclear excitation by electronic transition (NEET) is a rare nuclear excitation that is theorized to occur in numerous isotopes. One isotope in particular, 235U, has been studied several times over the past 40 years and NEET of 235U has never been conclusively observed. These past experiments generated con icting results with some experiments claiming to observe NEET of 235U and others setting limits for the NEET rate. This dissertation discusses the latest attempt to measure NEET of 235U. If NEET of 235U were to occur, 235mU would be created. 235mU decays by internal conversion with a decay energy of 76 eV and a half-life of 26 minutes. A pulsed Nd:YAG laser operating at 1064 nm with a pulse energy of 789 mJ and a pulse width of 9 ns was used to generate a uranium plasma. The plasma was captured on a catcher plate and electrons emitted from the catcher plate were accelerated and focused onto a microchannel plate detector. A decay of 26 minutes would suggest the creation of 235mU and the possibility that NEET occurred. However, measurements performed using a variety of uranium targets spanning depleted uranium up to 99.4% enriched uranium did not observe a 26 minute decay. Numerous other decays were observed with half-lives ranging from minutes up to hundreds of minutes. While NEET of 235U was not observed during this experiment, an upper limit for the NEET rate of 235U was determined. In addition, explanations for the con icting results from previous experiments are given. Based on the results of this experiment and the previous experiments looking for NEET of 235U, it is likely that NEET of 235U has never been observed.

  14. Isotopic composition of uranium in U3O8 by neutron induced reactions utilizing thermal neutrons from critical facility and high resolution gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Acharya, R.; Pujari, P.K.; Goel, Lokesh

    2015-01-01

    Uranium in oxide and metal forms is used as fuel material in nuclear power reactors. For chemical quality control, it is necessary to know the isotopic composition (IC) of uranium i.e., 235 U to 238 U atom ratio as well as 235 U atom % in addition to its total concentration. Uranium samples can be directly assayed by passive gamma ray spectrometry for obtaining IC by utilizing 185 keV (γ-ray abundance 57.2%) of 235 U and 1001 keV (γ-ray abundance 0.837%) of 234m Pa (decay product of 238 U). However, due to low abundance of 1001 keV, often it is not practiced to obtain IC by this method as it gives higher uncertainty even if higher mass of sample and counting time are used. IC of uranium can be determined using activity ratio of neutron induced fission product of 235 U to activation product of 238 U ( 239 Np). In the present work, authors have demonstrated methodologies for determination of IC of U as well as 235 U atom% in natural ( 235 U 0.715%) and low enriched uranium (LEU, 3-20 atom % of 235 U) samples of uranium oxide (U 3 O 8 ) by utilizing ratio of counts at 185 keV γ-ray or γ-rays of fission products with respect to 277 keV of 239 Np. Natural and enriched samples (about 25 mg) were neutron irradiated for 4 hours in graphite reflector position of AHWR Critical Facility (CF) using highly thermalized (>99.9% thermal component) neutron flux (∼10 7 cm -2 s -1 )

  15. Surrogate measurement of the 238Pu(n,f) cross section

    International Nuclear Information System (INIS)

    Ressler, J. J.; Burke, J. T.; Escher, J. E.; Bernstein, L. A.; Bleuel, D. L.; Casperson, R. J.; Gostic, J.; Henderson, R.; Scielzo, N. D.; Thompson, I. J.; Wiedeking, M.; Angell, C. T.; Goldblum, B. L.; Munson, J.; Basunia, M. S.; Phair, L. W.; Beausang, C. W.; Hughes, R. O.; Hatarik, R.; Ross, T. J.

    2011-01-01

    The neutron-induced fission cross section of 238 Pu was determined using the surrogate ratio method. The (n,f) cross section over an equivalent neutron energy range 5-20 MeV was deduced from inelastic α-induced fission reactions on 239 Pu, with 235 U(α,α ' f) and 236 U(α,α ' f) used as references. These reference reactions reflect 234 U(n,f) and 235 U(n,f) yields, respectively. The deduced 238 Pu(n,f) cross section agrees well with standard data libraries up to ∼10 MeV, although larger values are seen at higher energies. The difference at higher energies is less than 20%.

  16. Determination of the fission-neutron averaged cross sections of some high-energy threshold reactions of interest for reactor dosimetry

    International Nuclear Information System (INIS)

    Arribere, M.A.; Kestelman, A.J.; Korochinsky, S.; Blostein, J.J.

    2003-01-01

    For three high threshold reactions, we have measured the cross sections averaged over a 235 U fission neutron spectrum. The measured reactions, and corresponding averaged cross sections found, are: 127 I(n,2n) 126 I, (1.36±0.12) mb; 90 Zr(n,2n) 89m Zr, (13.86±0.83) μb; and 58 Ni(n,d+np+pn) 57 Co, (274±15) μb; all referred to the well known standard of (111±3) mb for the 58 Ni(n,p) 58m+g Co averaged cross section. The measured cross sections are of interest in nuclear engineering for the characterization of the fast neutron component in the energy distribution of reactor neutrons. (author)

  17. Fission Cross-section Measurements of (233)U, (245)Cm and (241,243)Am at CERN n_TOF Facility

    CERN Document Server

    Calviani, M; Andriamonje, S; Chiaveri, E; Vlachoudis, V; Colonna, N; Meaze, M H; Marrone, S; Tagliente, G; Terlizzi, R; Belloni, F; Abbondanno, U; Fujii, K; Milazzo, P M; Moreau, C; Aerts, G; Berthoumieux, E; Dridi, W; Gunsing, F; Pancin, J; Perrot, L; Plukis, A; Alvarez, H; Duran, I; Paradela, C; Alvarez-Velarde, F; Cano-Ott, D; Gonzalez-Romero, E; Guerrero, C; Martinez, T; Villamarin, D; Vicente, M C; Andrzejewski, J; Marganiec, J; Assimakopoulos, P; Karadimos, D; Karamanis, D; Papachristodoulou, C; Patronis, N; Audouin, L; David, S; Ferrant, L; Isaev, S; Stephan, C; Tassan-Got, L; Badurek, G; Jericha, E; Leeb, H; Oberhummer, H; Pigni, M T; Baumann, P; Kerveno, M; Lukic, S; Rudolf, G; Becvar, F; Krticka, M; Calvino, F; Capote, R; Carrillo De Albornoz, A; Marques, L; Salgado, J; Tavora, L; Vaz, P; Cennini, P; Dahlfors, M; Ferrari, A; Gramegna, F; Herrera-Martinez, A; Kadi, Y; Mastinu, P; Praena, J; Sarchiapone, L; Wendler, H; Chepel, V; Ferreira-Marques, R; Goncalves, I; Lindote, A; Lopes, I; Neves, F; Cortes, G; Poch, A; Pretel, C; Couture, A; Cox, J; O'brien, S; Wiescher, M; Dillman, I; Heil, M; Kappeler, F; Mosconi, M; Plag, R; Voss, F; Walter, S; Wisshak, K; Dolfini, R; Rubbia, C; Domingo-Pardo, C; Tain, J L; Eleftheriadis, C; Savvidis, I; Frais-Koelbl, H; Griesmayer, E; Furman, W; Konovalov, V; Goverdovski, A; Ketlerov, V; Haas, B; Haight, R; Reifarth, R; Igashira, M; Koehler, P; Kossionides, E; Lampoudis, C; Lozano, M; Quesada, J; Massimi, C; Vannini, G; Mengoni, A; Oshima, M; Papadopoulos, C; Vlastou, R; Pavlik, A; Pavlopoulos, P; Plompen, A; Rullhusen, P; Rauscher, T; Rosetti, M; Ventura, A

    2011-01-01

    Neutron-induced fission cross-sections of minor actinides have been measured using the n_TOF white neutron source at CERN, Geneva, as part of a large experimental program aiming at collecting new data relevant for nuclear astrophysics and for the design of advanced reactor systems. The measurements at n_TOF take advantage of the innovative features of the n_TOF facility, namely the wide energy range, high instantaneous neutron flux and good energy resolution. Final results on the fission cross-section of 233U, 245Cm and 243Am from thermal to 20 MeV are here reported, together with preliminary results for 241Am. The measurement have been performed with a dedicated Fast Ionization Chamber (FIC), a fission fragment detector with a very high efficiency, relative to the very well known cross-section of 235U, measured simultaneously with the same detector.

  18. Energies and Yields of Prompt Gamma Rays from Fragments in Slow-Neutron Induced Fission of 235U

    Energy Technology Data Exchange (ETDEWEB)

    Albinsson, H [Chalmers Univ. of Technology, Goeteborg (SE)

    1971-04-15

    Measurements were made on the gamma radiation emitted from fission fragments in slow-neutron induced fission of 235U. The fragments were detected with solid state detectors of the surface barrier type and the gamma radiation with a Nal(Tl) scintillator. Mass selection was used so that the gamma radiation could be measured as a function of fragment mass. Time discrimination between the fission gammas and the prompt neutrons released in the fission process was employed to reduce the background. The gamma radiation emitted during different time intervals after the fission event was studied with the help of a collimator, the position of which was changed along the path of the fission fragments. In this way it was possible to select various collimator settings and let gamma radiation of different half-lives be enhanced. Gamma-ray energy spectra from these time components were then recorded as function of mass. The spectrum shape differed greatly depending on the half-life of the radiation and the fragment from which it was emitted. The results of the present measurements were discussed in the light of existing fission models, and comparisons were made with prompt gamma-ray and neutron data from other fission experiments

  19. Energies and Yields of Prompt Gamma Rays from Fragments in Slow-Neutron Induced Fission of 235U

    International Nuclear Information System (INIS)

    Albinsson, H.

    1971-04-01

    Measurements were made on the gamma radiation emitted from fission fragments in slow-neutron induced fission of 235 U. The fragments were detected with solid state detectors of the surface barrier type and the gamma radiation with a Nal(Tl) scintillator. Mass selection was used so that the gamma radiation could be measured as a function of fragment mass. Time discrimination between the fission gammas and the prompt neutrons released in the fission process was employed to reduce the background. The gamma radiation emitted during different time intervals after the fission event was studied with the help of a collimator, the position of which was changed along the path of the fission fragments. In this way it was possible to select various collimator settings and let gamma radiation of different half-lives be enhanced. Gamma-ray energy spectra from these time components were then recorded as function of mass. The spectrum shape differed greatly depending on the half-life of the radiation and the fragment from which it was emitted. The results of the present measurements were discussed in the light of existing fission models, and comparisons were made with prompt gamma-ray and neutron data from other fission experiments

  20. Measuring the energies and multiplicities of prompt gamma-ray emissions from neutron-induced fission of $^{235}$U using the STEFF spectrometer

    CERN Document Server

    AUTHOR|(CDS)2093036; Smith, Alastair Gavin; Wright, Tobias James

    Following a NEA high priority nuclear data request, an experimental campaign to measure the prompt $\\gamma$-ray emissions from $^{235}$U has been performed. This has used the STEFF spectrometer at the new Experimental Area 2 (EAR2) within the neutron timeof-flight facility (n_TOF), a white neutron source facility at CERN with energies from thermal to approximately 1 GeV. Prior to the experimental campaign, STEFF has been optimised for the environment of EAR2. The experimental hall features a high background $\\gamma$-ray rate, due to the nature of the spallation neutron source. Thus an investigation into reduction of the background $\\gamma$-ray rate, encountered by the NaI(Tl) detector array of STEFF, has been carried out. This has been via simulations using the simulation package FLUKA. Various materials and shielding geometries have been investigated but the effects determined to be insufficient in reducing the background rate by a meaningful amount. The NaI(Tl) detectors have been modified to improve their ...

  1. Resonance Region Covariance Analysis Method and New Covariance Data for Th-232, U-233, U-235, U-238, and Pu-239

    International Nuclear Information System (INIS)

    Leal, Luiz C.; Arbanas, Goran; Derrien, Herve; Wiarda, Dorothea

    2008-01-01

    Resonance-parameter covariance matrix (RPCM) evaluations in the resolved resonance region were done for 232Th, 233U, 235U, 238U, and 239Pu using the computer code SAMMY. The retroactive approach of the code SAMMY was used to generate the RPCMs for 233U, 235U. RPCMs for 232Th, 238U and 239Pu were generated together with the resonance parameter evaluations. The RPCMs were then converted in the ENDF format using the FILE32 representation. Alternatively, for computer storage reasons, the FILE32 was converted in the FILE33 cross section covariance matrix (CSCM). Both representations were processed using the computer code PUFF-IV. This paper describes the procedures used to generate the RPCM with SAMMY.

  2. Prompt Gamma Radiation from Fragments in the Thermal Fission of 235U

    International Nuclear Information System (INIS)

    Albinsson, H.; Lindow, L.

    1970-06-01

    Measurements were made on the gamma radiation emitted from fission fragments in slow neutron induced fission of 235 U. The fragments were detected with solid state detectors of the surface barrier type and the gamma radiation with a Nal(Tl) scintillator. Mass selection was used so that the gamma radiation could be measured as a function of fragment mass. Time discrimination between the fission gammas and the prompt neutrons released in the fission process was employed to reduce the background. The gamma radiation emitted during different time intervals after the fission event was studied with the help of a collimator, the position of which was changed along the path of the fission fragments. In this way a decay curve was obtained from which the life-time of one of the gamma-emitting states could be estimated. The relative yield of the gamma-rays was determined as a function of mass for different gamma-ray energy portions and two specific time intervals after the fission events. Comparisons were made with data obtained from 252 Cf-fission. Attention is drawn to some features which seem to be the same in 235 U and 252 Cf-fission

  3. Evaluation of the 235U prompt fission neutron spectrum including a detailed analysis of experimental data and improved model information

    Science.gov (United States)

    Neudecker, Denise; Talou, Patrick; Kahler, Albert C.; White, Morgan C.; Kawano, Toshihiko

    2017-09-01

    We present an evaluation of the 235U prompt fission neutron spectrum (PFNS) induced by thermal to 20-MeV neutrons. Experimental data and associated covariances were analyzed in detail. The incident energy dependence of the PFNS was modeled with an extended Los Alamos model combined with the Hauser-Feshbach and the exciton models. These models describe prompt fission, pre-fission compound nucleus and pre-equilibrium neutron emissions. The evaluated PFNS agree well with the experimental data included in this evaluation, preliminary data of the LANL and LLNL Chi-Nu measurement and recent evaluations by Capote et al. and Rising et al. However, they are softer than the ENDF/B-VII.1 (VII.1) and JENDL-4.0 PFNS for incident neutron energies up to 2 MeV. Simulated effective multiplication factors keff of the Godiva and Flattop-25 critical assemblies are further from the measured keff if the current data are used within VII.1 compared to using only VII.1 data. However, if this work is used with ENDF/B-VIII.0β2 data, simulated values of keff agree well with the measured ones.

  4. Multipole components of 235U photofission

    International Nuclear Information System (INIS)

    Carvalheiro, Z.

    1985-01-01

    The absolute electrofission cross section for 235 U has been experimentally obtained in the energy range 5.8 - 18.0 MeV, using the electron beam of the Linear Accelerator of Institute of Physics of the University of Sao Paulo. From a combined analysis of this cross section and a previously measured photofission cross section, using virtual photon spectra calculated in the Distorted Wave Born Approximation (DWBA), the '' non electric dipole photofission'' cross section σ NDE γ,f (ω) has been obtained, which contains all multipolarities allowed by the reaction Kinematics, except El. This cross section presents a resonant shape, probably associated with the Giant Quadrupole Resonance (GQR). Once the fission channel exhausts a great amount of the Energy Weighted Sum Rule (EWSR), it is therefore the major decay mode of the GQR. All these aspects agree with the ones verified for the other Uranium isotopes previously analysed in this Laboratory. (author) [pt

  5. Measurements of the total neutron cross-sections of U and UO2 below 2 eV at different temperatures

    International Nuclear Information System (INIS)

    Adib, M.; Maayouf, R.M.A.; Abdel-Kawy, A.; Ashry, A.; Abbas, Y.; Abu-Zahra, A.; Hamouda, I.

    1982-11-01

    The total neutron cross-sections of natural uranium and its oxide are measured using two time of flight spectrometers, installed in front of two of the ET-RR-1 reactor horizontal channels, and also by a neutron diffraction spectrometer. The measurements were carried out at room temperature in the energy range from 2 eV-0.002 eV and at 210 deg. C, for neutron energies below 0.005 eV. The coherent scattering cross-section of U was deduced both from the Bragg cut-offs observed in the behaviour of the total neutron cross-section of both U and UO 2 at cold neutron energies and the neutron diffraction pattern obtained at room temperature. (author)

  6. Application research of improved 235U enrichment meter

    International Nuclear Information System (INIS)

    Liu Daming; Wu Xin; Lu Zhao; Tang Peijia; Lu Feng; Wang Yunmei

    1998-01-01

    A prototype 235 U enrichment meter based on NaI(Tl) γ spectroscopy is improved and it works under the principle of that the enrichment of 235 U is proportional to the radioactivity of 185 keV γ-ray when the sample is thick infinitely. The data of radioactivity from 235 U can be collected by a notebook computer and the interface control software is written using C++ language. The meter was tested and calibrated using standard fuel rods in fuel fabrication plant. For single fuel rod, the measured value of 235 U enrichment is agreeable with declared value within-1.0%-2.8%

  7. Yields and isomeric ratio of xenon and krypton isotopes from thermal neutron fission of 235U

    International Nuclear Information System (INIS)

    Hsu, S.S.; Lin, J.T.; Yang, C.M.; Yu, Y.W.

    1981-01-01

    The experimental cumulative yields of 85 Kr/sup m/, 87 Kr, 88 Kr, 133 Xe/sup g/, 135 Xe/sup m/, and 135 Xe/sup g/ and the independent isomeric yield of 133 Xe/sup m/ in the thermal neutron fission of 235 U have been measured by the gas chromatographic method. The independent yields of 133 Xe/sup g/, 135 Xe/sup m/, and 135 Xe/sup g/ were deduced with the aid of 133 I and 135 I data. The isomeric yield ratios of 133 Xe and 135 Xe have been computed and compared with theoretical values since they have the same high spin state J = 11/2 - and low spin ground state J = 3/2 + . The influence of the shell effect on the fission isomeric yield ratio is discussed. From the measured independent yield of Xe isotopes plus the reported data, the Xe-isotopic distribution curve has been constructed. The curve is compared with the isotopic distribution curves of Xe isotopes formed in 11.5 GeV proton interactions with 238 U and Cs isotopes formed in 24 GeV proton interactions with 238 U. Upon fitting the yield curves we find that only those products with N/Z> or =1.48 fit a curve typical of a binary fission process

  8. Fission Fragment Mass Distributions and Total Kinetic Energy Release of 235-Uranium and 238-Uranium in Neutron-Induced Fission at Intermediate and Fast Neutron Energies

    Energy Technology Data Exchange (ETDEWEB)

    Duke, Dana Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-12

    This Ph.D. dissertation describes a measurement of the change in mass distributions and average total kinetic energy (TKE) release with increasing incident neutron energy for fission of 235U and 238U. Although fission was discovered over seventy-five years ago, open questions remain about the physics of the fission process. The energy of the incident neutron, En, changes the division of energy release in the resulting fission fragments, however, the details of energy partitioning remain ambiguous because the nucleus is a many-body quantum system. Creating a full theoretical model is difficult and experimental data to validate existing models are lacking. Additional fission measurements will lead to higher-quality models of the fission process, therefore improving applications such as the development of next-generation nuclear reactors and defense. This work also paves the way for precision experiments such as the Time Projection Chamber (TPC) for fission cross section measurements and the Spectrometer for Ion Determination in Fission (SPIDER) for precision mass yields.

  9. Decay scheme of the U{sup 2}35; Esquema de desintegracion del U-235

    Energy Technology Data Exchange (ETDEWEB)

    Gaeta, R

    1965-07-01

    A study of the Th{sup 2}31 excited levels from the alpha decay of the U{sup 2}35, is carried out. The alpha particle spectrum was measured by means of a semiconductor counter spectrometer with an effective resolution of 18 keV. Nineteen new lines were identified. The gamma-ray spectrum was measured with thin samples of U{sup 2}35, free from decay products, and in such geometrical conditions, that most of the interference effects were eliminated. The gamma-gamma coincidence spectra have made easier a better knowledge of the transition between the several levels. (Author) 110 refs.

  10. Surrogate Measurements of Actinide (n,2n) Cross Sections with NeutronSTARS

    Energy Technology Data Exchange (ETDEWEB)

    Casperson, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Burke, J. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hughes, R. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Akindele, O. A. [Univ. of California, Berkeley, CA (United States); Koglin, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wang, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tamashiro, A. [Oregon State Univ., Corvallis, OR (United States)

    2016-09-27

    Directly measuring (n,2n) cross sections on short-lived actinides presents a number of experimental challenges. The surrogate reaction technique is an experimental method for measuring cross sections on short-­lived isotopes, and it provides a unique solution for measuring (n,2n) cross sections. This technique involves measuring a charged-­particle reaction cross section, where the reaction populates the same compound nucleus as the reaction of interest. To perform these surrogate (n,2n) cross section measurements, a silicon telescope array has been placed along a beam line at the Texas A&M University Cyclotron Institute, which is surrounded by a large tank of gadolinium-doped liquid scintillator, which acts as a neutron detector. The combination of the charge-particle and neutron-detector arrays is referred to as NeutronSTARS. In the analysis procedure for calculating the (n,2n) cross section, the neutron detection efficiency and time structure plays an important role. Due to the lack of availability of isotropic, mono-energetic neutron sources, modeling is an important component in establishing this efficiency and time structure. This report describes the NeutronSTARS array, which was designed and commissioned during this project. It also describes the surrogate reaction technique, specifically referencing a 235U(n,2n) commissioning measurement that was fielded during the past year. Advanced multiplicity analysis techniques have been developed for this work, which should allow for efficient analysis of 241Pu(n,2n) and 239Pu(n,2n) cross section measurements

  11. Theoretical analyses of (n,xn) reactions on sup 235 U, sup 238 U, sup 237 Np, and sup 239 Pu for ENDF/B-VI

    Energy Technology Data Exchange (ETDEWEB)

    Young, P.G.; Arthur, E.D.

    1991-01-01

    Theoretical analyses were performed of neutron-induced reactions on {sup 235}U, {sup 238}U, {sup 237}Np, and {sup 239}Pu between 0.01 and 20 MeV in order to calculate neutron emission cross sections and spectra for ENDF/B-VI evaluations. Coupled-channel optical model potentials were obtained for each target nucleus by fitting total, elastic, and inelastic scattering cross section data, as well as low-energy average resonance data. The resulting deformed optical model potentials were used to calculate direct (n,n{prime}) cross sections and transmission coefficients for use in Hauser-Feshbach statistical theory analyses. A fission model with multiple barrier representation, width fluctuation corrections, and preequilibrium corrections were included in the analyses. Direct cross sections for higher-lying vibrational states were calculated using DWBA theory, normalized using B(E{ell}) values determined from (d,d{prime}) and Coulomb excitation data, where available, and from systematics otherwise. Initial fission barrier parameters and transition state density enhancements appropriate to the compound systems involved were obtained from previous analyses, especially fits to charged-particle fission probability data. The parameters for the fission model were adjusted for each target system to obtain optimum agreement with direct (n,f) cross section measurements, taking account of the various multichance fission channels, that is, the different compound systems involved. The results from these analyses were used to calculate most of the neutron (n,n), (n,n{prime}), and (n,xn) cross section data in the ENDF/B/VI evaluations for the above nuclei, and all of the energy-angle correlated spectra. The deformed optical model and fission model parameterizations are described. Comparisons are given between the results of these analyses and the previous ENDF/B-V evaluations as well as with the available experimental data. 14 refs., 3 figs., 1 tab.

  12. Neutron-induced fission cross sections of uraniums up to 40 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, V.M. [Radiation Physics and Chemistry Problems Inst., Minsk-Sosny (Belarus); Hasegawa, A.

    1998-11-01

    Statistical theory of nuclear reactions, well-proved below 20 MeV, is applied for {sup 235}U and {sup 238}U fission data analysis up to {approx}40 MeV. It is shown that measured data could be reproduced. Chance structure of measured fission cross section is provided, it`s validity is supported by description of data for competing (n,xn)-reactions. Role of fissility of target nucleus is addressed. It seems that gap in incident neutron energy interval of 20 MeV - 50 MeV, below which evaluation approaches are well-developed, and above which simplified statistical approaches are valid, could be covered. (author)

  13. Wines: water inelastic neutron scattering experimental study

    International Nuclear Information System (INIS)

    Risch, P.; Ait Abderrahim, H.; D'hondt, P.; Malabu, E.

    1997-01-01

    An intercomparison of calculated fast neutron flux (E > 1 MeV) traverse through a very thick water zone obtained using both S N , (DORT) and Monte-Carlo (TRIPOLI and MCBEND) codes in combination with different cross-sections libraries (based on ENDF/B-III, IV, V and VI), showed small discrepancies either between S N , and Monte-Carlo results or even between S N , or Monte-Carlo results when we consider different cross-sections libraries except for S N , calculation when using P 0 , cross-sections. In order to validate our calculations we looked for experimental data. Unfortunately no experiment, dedicated for the fast neutron transport in large thickness of water, was found in the literature. Therefore SCK-CEN and EDF decided to launch the WINES experiment which is dedicated to study this phenomenon. WINES sands for Water Inelastic Neutron scattering Experimental Study. The aim of this experiment is to provide-experimental data for validation of neutron transport codes and nuclear cross-sections libraries used for LWR surveillance dosimetry analysis. The experimental device is made of 1 m 3 cubic plexiglass container filled with demineralized water. At one face of this cube, a 235 U neutron fission source system is screwed. The source device is made of a 235 U (93 % weight enriched) 18.55 x 16 cm 2 plate cladded with aluminium which is inserted in neutron beam emerging from the graphite gas-cooled BR1 reactor. Fission chambers ( 238 U(n,f), 232 Th(n,f), 237 Np(n,f) and 235 U(n,f)) are used to measure the flux traverses on the central axis of the water cube perpendicular to the fission sources. In this paper we will compare the experimental data to the calculated results using the S N , transport code DORT with the P 3 , ELXSIR library, based on ENDF/B-V, and the P 7 -BUGLE-93 library, based on ENDF/B-VI as well as the Monte-Carlo transport code TRIPOLI with a cross-section library based on ENDF/B IV and ENDF/B-VI. (authors)

  14. Limitations on the precision of 238U/235U measurements and implications for environmental monitoring

    International Nuclear Information System (INIS)

    Russ III, G.P.

    1997-01-01

    The ability to determine the isotopic composition of uranium in environmental samples is an important component of the International Atomic Energy Agency's (IAEA) safeguards program, and variations in the isotopic ratio 238 U/ 235 U provide the most direct evidence of isotopic enrichment activities. The interpretation of observed variations in 238 U/ 235 U depends on the ability to distinguish enrichment from instrumental biases and any variations occurring in the environment but not related to enrichment activities. Instrumental biases that have historically limited the accuracy of 238 U/ 235 U determinations can be eliminated by the use of the 233 U/ 236 U double-spike technique. With this technique, it is possible to determine the 238 U/ 235 U in samples to an accuracy equal to the precision of the measurement, ca. 0.1% for a few 10's of nanograms of uranium. Given an accurate determination of 238 U/ 235 U, positive identification of enrichment activities depends on the observed value being outside the range of 238 U/ 235 U's expected as a result of natural or environmental variations. Analyses of a suite of soil samples showed no variation beyond 0.2% in 238 U/ 235 U

  15. Energy Dependence of Fission Product Yields from 235U, 238U and 239Pu for Incident Neutron Energies Between 0.5 and 14.8 MeV

    Science.gov (United States)

    Gooden, M. E.; Arnold, C. W.; Becker, J. A.; Bhatia, C.; Bhike, M.; Bond, E. M.; Bredeweg, T. A.; Fallin, B.; Fowler, M. M.; Howell, C. R.; Kelley, J. H.; Krishichayan; Macri, R.; Rusev, G.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.; Tornow, W.; Vieira, D. J.; Wilhelmy, J. B.

    2016-01-01

    Fission Product Yields (FPY) have historically been one of the most observable features of the fission process. They are known to have strong variations that are dependent on the fissioning species, the excitation energy, and the angular momentum of the compound system. However, consistent and systematic studies of the variation of these FPY with energy have proved challenging. This is caused primarily by the nature of the experiments that have traditionally relied on radiochemical procedures to isolate specific fission products. Although radiochemical procedures exist that can isolate all products, each element presents specific challenges and introduces varying degrees of systematic errors that can make inter-comparison of FPY uncertain. Although of high importance in fields such as nuclear forensics and Stockpile Stewardship, accurate information about the energy dependence of neutron induced FPY are sparse, due primarily to the lack of suitable monoenergetic neutron sources. There is a clear need for improved data, and to address this issue, a collaboration was formed between Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL) and the Triangle Universities Nuclear Laboratory (TUNL) to measure the energy dependence of FPY for 235U, 238U and 239Pu. The measurements have been performed at TUNL, using a 10 MV Tandem Van de Graaff accelerator to produce monoenergetic neutrons at energies between 0.6 MeV to 14.8 MeV through a variety of reactions. The measurements have utilized a dual-fission chamber, with thin (10-100 μg/cm2) reference foils of similar material to a thick (100-400 mg) activation target held in the center between the chambers. This method allows for the accurate determination of the number of fissions that occurred in the thick target without requiring knowledge of the fission cross section or neutron fluence on target. Following activation, the thick target was removed from the dual-fission chamber and gamma

  16. Yield of Prompt Gamma Radiation in Slow-Neutron Induced Fission of 235U as a Function of the Total Fragment Kinetic Energy

    Energy Technology Data Exchange (ETDEWEB)

    Albinsson, H [Chalmers Univ. of Technology, Goeteborg (SE)

    1971-07-01

    Fission gamma radiation yields as functions of the total fragment kinetic energy were obtained for 235U thermal-neutron induced fission. The fragments were detected with silicon surface-barrier detectors and the gamma radiation with a Nal(Tl) scintillator. In some of the measurements mass selection was used so that the gamma radiation could also be measured as a function of fragment mass. Time discrimination between the fission gammas and the prompt neutrons released in the fission process was employed to reduce the background. The gamma radiation emitted during different time intervals after the fission event was studied with the help of a collimator, the position of which was changed along the path of the fission fragments. Fission-neutron and gamma-ray data of previous experiments were used for comparisons of the yields, and estimates were made of the variation of the prompt gamma-ray energy with the total fragment kinetic energy

  17. Alecto - results obtained with homogeneous critical experiments on plutonium 239, uranium 235 and uranium 233

    International Nuclear Information System (INIS)

    Bruna, J.G.; Brunet, J.P.; Caizegues, R.; Clouet d'Orval, Ch.; Kremser, J.; Tellier, H.; Verriere, Ph.

    1965-01-01

    In this report are given the results of the homogeneous critical experiments ALECTO, made on plutonium 239, uranium 235 and uranium 233. After a brief description of the equipment, the critical masses for cylinders of diameters varying from 25 to 42 cm, are given and compared with other values (foreign results, criticality guide). With respect to the specific conditions of neutron reflection in the ALECTO experiments the minimal values of critical masses are: Pu239 M c = 910 ± 10 g, U235 M c = 1180 ± 12 g and U233 M c = 960 ± 10 g. Experiments relating to cross sections and constants to be used on these materials are presented. Lastly, kinetic experiments allow to compare pulsed neutron methods to fluctuation methods [fr

  18. 238U neutron-induced fission cross section for incident neutron energies between 5 eV and 3.5 MeV

    International Nuclear Information System (INIS)

    Difilippo, F.C.; Perez, R.B.; de Saussure, G.; Olsen, D.K.; Ingle, R.W.

    1979-01-01

    A measurement of the 238 U neutron-induced fission cross section was performed at the ORELA Linac facility in the neutron energy range between 5 eV and 3.5 MeV. The favorable signal-to-background ratio and high resolution of this experiment resulted in the identificaion of 85 subthreshold fission resonances or clusters of resonances in the neutron energy region between 5 eV and 200 keV. The fission data below 100 keV are characteristic of a weak coupling situation between Class I and Class II levels. The structure of the fission levels at the 720 eV and 1210 eV fission clusters is discussed. There is an apparent enhancement of the fission cross section at the opening of the 2 + neutron inelastic channel in 238 U at 45 keV. An enhancement of the subthreshold fission cross section between 100 keV and 200 keV is tentatively interpreted in terms of the presence of a Class II, partially damped vibrational level. There is a marked structure in the fission cross section above 200 keV up to and including the plateau between 2 and 3.5 MeV. 11 figures and 6 tables

  19. Prompt Gamma Radiation from Fragments in the Thermal Fission of {sup 235}U

    Energy Technology Data Exchange (ETDEWEB)

    Albinsson, H [Chalmers Univ. of Technology, Goteborg (Sweden); Lindow, L [AB Atomenergi, Nykoeping (Sweden)

    1970-06-15

    Measurements were made on the gamma radiation emitted from fission fragments in slow neutron induced fission of {sup 235}U. The fragments were detected with solid state detectors of the surface barrier type and the gamma radiation with a Nal(Tl) scintillator. Mass selection was used so that the gamma radiation could be measured as a function of fragment mass. Time discrimination between the fission gammas and the prompt neutrons released in the fission process was employed to reduce the background. The gamma radiation emitted during different time intervals after the fission event was studied with the help of a collimator, the position of which was changed along the path of the fission fragments. In this way a decay curve was obtained from which the life-time of one of the gamma-emitting states could be estimated. The relative yield of the gamma-rays was determined as a function of mass for different gamma-ray energy portions and two specific time intervals after the fission events. Comparisons were made with data obtained from {sup 252} Cf-fission. Attention is drawn to some features which seem to be the same in {sup 235}U and {sup 252} Cf-fission.

  20. Fission cross section measurements of actinides at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Tovesson, Fredrik [Los Alamos National Laboratory; Laptev, Alexander B [Los Alamos National Laboratory; Hill, Tony S [INL

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications. By combining measurement at two LANSCE facilities, Lujan Center and the Weapons Neutron Research center (WNR), differential cross sections can be measured from sub-thermal energies up to 200 MeV. Incident neutron energies are determined using the time-of-flight method, and parallel-plate ionization chambers are used to measure fission cross sections relative to the {sup 235}U standard. Recent measurements include the {sup 233,238}U, {sup 239,242}Pu and {sup 243}Am neutron-induced fission cross sections. In this paper preliminary results for cross section data of {sup 243}Am and {sup 233}U will be presented.

  1. Critical mass experiment using 235U foils and lucite plates

    International Nuclear Information System (INIS)

    Sanchez, R.; Butterfield, K.; Kimpland, R.; Jaegers, P.

    1998-01-01

    This experiment demonstrated how the neutron multiplication of a system increases as moderated material is placed between highly enriched uranium foils. In addition, this experiment served to demonstrate the hand-stacking technique and approach to criticality be remote operation. This experiment was designed by McLaughlin in the mid-seventies as part of the criticality safety course that is taught at the Los Alamos Critical Experiments Facility. The H/ 235 U ratio for this experiment was 215, which is the ratio at which the minimum critical mass for this configuration occurs

  2. Studies of the Fission Integrals of U-{sup 235} and Pu-{sup 239} with Cadmium and Filters

    Energy Technology Data Exchange (ETDEWEB)

    Hellstrand, E

    1965-04-15

    The resonance fissions in U{sup 235} and Pu{sup 239} have been studied using cadmium and boron filters. Fission chambers were used as detectors and the experiments were performed in beam geometry. The neutron energy distribution in the beams transmitted through the different filters was determined with a fast chopper. From the cadmium filter, measurements the fission resonance integrals were determined. The values obtained were 278{+-}9 b for U{sup 235} and 301{+-}10 b for Pu{sup 239}; 0.5 eV < E < 1 MeV. Complementary Pu{sup 239} measurements were made in which the fission events were detected from the fission product activity in irradiated foils. Contrary to what has been reported elsewhere the value of the Pu{sup 239} resonance integral, found in this way, agreed well with that obtained from the fission chamber measurement. The experiments with the boron filters yielded results which, for the thin filter, agreed well with those calculated from the cross section data given in the Karlsruhe compilation. The discrepancy was larger for the thick filter but the values did not disagree outside the common limits of error.

  3. Pulsed and monoenergetic beams for neutron cross-section measurements using activation and scattering techniques at Triangle Universities Nuclear Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hutcheson, A. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States)]. E-mail: hutch@tunl.duke.edu; Angell, C.T. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Becker, J.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Boswell, M. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Crowell, A.S. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Dashdorj, D. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Fallin, B. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Fotiades, N. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Howell, C.R.; Karwowski, H.J.; Kelley, J.H.; Kiser, M. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Macri, R.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Nelson, R.O. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Pedroni, R.S. [NC A and T State University, 1601 East Market Street, Greensboro, NC 27411 (United States); Tonchev, A.P.; Tornow, W. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Vieira, D.J. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Weisel, G.J. [Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601 (United States); Wilhelmy, J.B. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2007-08-15

    In support of the Stewardship Science Academic Alliances initiative, an experimental program has been developed at Triangle Universities Nuclear Laboratory (TUNL) to measure (n,xn) cross-sections with both in-beam and activation techniques with the goal of improving the partial cross-section database for the NNSA Stockpile Stewardship Program. First experimental efforts include excitation function measurements on {sup 235,238}U and {sup 241}Am using pulsed and monoenergetic neutron beams with E {sub n} = 5-15 MeV. Neutron-induced partial cross-sections were measured by detecting prompt {gamma} rays from the residual nuclei using various combinations of clover and planar HPGe detectors in the TUNL shielded neutron source area. Complimentary activation measurements using DC neutron beams have also been performed in open geometry in our second target area. The neutron-induced activities were measured in the TUNL low-background counting area. In this presentation, we include detailed information about the irradiation procedures and facilities and preliminary data on first measurements using this capability.

  4. Reexamining the role of the (n ,γ f ) process in the low-energy fission of 235U and 239Pu

    Science.gov (United States)

    Lynn, J. E.; Talou, P.; Bouland, O.

    2018-06-01

    The (n ,γ f ) process is reviewed in light of modern nuclear reaction calculations in both slow and fast neutron-induced fission reactions on 235U and 239Pu. Observed fluctuations of the average prompt fission neutron multiplicity and average total γ -ray energy below 100-eV incident neutron energy are interpreted in this framework. The surprisingly large contribution of the M 1 transitions to the prefission γ -ray spectrum of 239Pu is explained by the dominant fission probabilities of 0+ and 2+ transition states, which can only be accessed from compound nucleus states formed by the interaction of s -wave neutrons with the target nucleus in its ground state, and decaying through M 1 transitions. The impact of an additional low-lying M 1 scissors mode in the photon strength function is analyzed. We review experimental evidence for fission fragment mass and kinetic-energy fluctuations in the resonance region and their importance in the interpretation of experimental data on prompt neutron data in this region. Finally, calculations are extended to the fast energy range where (n ,γ f ) corrections can account for up to 3% of the total fission cross section and about 20% of the capture cross section.

  5. High accuracy 235U(n,f) data in the resonance energy region

    International Nuclear Information System (INIS)

    Paradela, C.; Duran, I.; Alvarez-Pol, H.; Tassan-Got, L.; Audouin, L.; Berthier, B.; Isaev, S.; Le Naour, C.; Stephan, C.; David, S.; Ferrant, L.; Tarrio, D.; Abbondanno, U.; Tagliente, G.; Terlizzi, R.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.; Gunsing, F.; Pancin, S.J.; Perrot, L.; Plukis, A.; Alvarez-Velarde, F.; Cano-Ott, D.; Gonzalez-Romero, E.; Martinez, T.; Villamarin, D.; Andrzejewski, J.; Marganiec, J.; Badurek, G.; Jericha, E.; Lederer, C.; Leeb, H.; Baumann, P.; Kerveno, M.; Lukic, S.; Rudolf, G.; Becvar, F.; Embid-Segura, M.; Krticka, M.; Vincente, M.C.; Calvino, F.; Cortes, G.; Poch, A.; Pretel, C.; Calviani, M.; Cennini, P.; Chiaveri, E.; Dahlfors, M.; Ferrari, A.; Kadi, Y.; Rubbia, C.; Sarchiapone, L.; Vlachoudis, V.; Weiss, C.; Capote, R.; Quesada, J.; Carrapico, C.; Goncalves, I.F.; Salgado, J.; Santos, C.; Tavora, L.; Vaz, P.; Chepel, V.; Ferreira-Marques, R.; Lindote, A.; Colonna, N.; Marrone, S.; Couture, A.; Cox, J.; Wiesher, M.; Dillmann, I.; Heil, M.; Kaeppeler, F.; Mosconi, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.; Domingo-Pardo, C.; Tain, J.L.; Eleftheriadis, C.; Lampoudis, C.; Savvidis, I.; Fujii, K.; Milazzo, P.M.; Moreau, C.; Furman, W.; Konovalov, V.; Goverdovski, A.; Ketlerov, V.; Gramegna, F.; Mastinu, P.; Praena, J.; Guerrero, C.; Haight, R.; Koehler, P.; Reifarth, R.; Igashira, M.; Karadimos, D.; Vlastou, R.; Massimi, C.; Pavlopoulos, P.; Mengoni, A.; Plompen, A.; Rullhusen, P.; Rauscher, T.; Ventura, A.; Pavlik, A.

    2016-01-01

    The 235 U neutron-induced cross section is widely used as reference cross section for measuring other fission cross sections, but in the resonance region it is not considered as an IAEA standard because of the scarce experimental data covering the full region. In this work, we deal with a new analysis of the experimental data obtained with a detection setup based on parallel plate ionization chambers (PPACs) at the CERN n-TOF facility in the range from 1 eV to 10 keV. The relative cross section has been normalised to the IAEA value in the region between 7.8 and 11 eV, which is claimed as well-known. Its comparison with the last IAEA reference files and with the present version of the ENDF evaluation leads to the following conclusions: 1) there is very good agreement with the shape of the ENDF cross-section in the resolved resonance range, while showing a lower background; 2) the ENDF integral values, apart from a 2% difference in the normalisation value at 7.8-11.0 eV, show a sharp drop at the transition from the resolved to the unresolved resonance energy regions; And 3) There is a very good agreement with the IAEA integral-data set, provided that an offset of 0.09 barn is applied in the whole energy range

  6. Measurements of prompt fission neutron spectra and double-differential neutron inelastic-scattering cross sections for 238U and 232Th

    International Nuclear Information System (INIS)

    Baba, Mamoru; Itoh, Nobuo; Maeda, Kazuto; Hirakawa, Naohiro; Wakabayashi, Hidetaka.

    1989-10-01

    This report presents the summary of experimental studies of prompt fission neutron spectra and double-differential neutron inelastic-scattering cross sections of 238 U and 232 Th. The experiments were performed at Tohoku University Fast Neutron Laboratory employing a time-of-flight technique and Dynamitron accelerator as the pulsed neutron generator. From the experiments, we obtained the following data for both nuclei; 1. prompt fission neutron spectrum for 2 MeV neutrons, 2. double-differential neutron inelastic-scattering cross sections for 1.2, 2.0, 4.2, 6.1 and 14.1 MeV incident neutrons. Both in experiments and data processing, cares were taken to obtain reliable data by avoiding systematic uncertainty. The experimental data were compared with those by other experiments, evaluations and model calculations. Through the data comparison, some fundamental problems were found in the experiments by previous authors and the evaluations. The present data will provide useful data base for refinement of the evaluated data and theoretical models. (author)

  7. The fission cross section ratios and error analysis for ten thorium, uranium, neptunium and plutonium isotopes at 14.74 MeV neutron energy

    International Nuclear Information System (INIS)

    Meadows, J.W.

    1987-03-01

    The error information from the recent measurements of the fission cross section ratios of nine isotopes, 230 Th, 232 Th, 233 U, 234 U, 236 U, 238 U, 237 Np, 239 Pu, and 242 Pu, relative to 235 U at 14.74 MeV neutron energy was used to calculate their correlations. The remaining 36 non-trivial and non-reciprocal cross section ratios and their errors were determined and compared to evaluated (ENDF/B-V) values. There are serious differences but it was concluded that the reduction of three of the evaluated cross sections would remove most of them. The cross sections to be reduced are 230 Th - 13%, 237 Np - 9.6% and 239 Pu - 7.6%. 5 refs., 6 tabs

  8. ZZ TEMPEST/MUFT, Thermal Neutron and Fast Neutron Multigroup Cross-Section Library for Program LEOPARD

    International Nuclear Information System (INIS)

    Kim, Jung-Do; Lee, Jong Tai

    1986-01-01

    Description of problem or function: Format: TEMPEST and MUFT; Number of groups: 246 thermal groups in TEMPEST Format and 54 fast groups in MUFT Format. From this library, the program SPOTS4 generates a 172-54 group library as input to the code LEOPARD. Nuclides: H, O, Zr, C, Fe, Ni, Al, Cr, Mn, U, Pu, Th, Pa, Xe, Sm, B and D. Origin: ENDF/B-4; Weighting spectrum: 1/E + U 235 fission spectrum. Data library of thermal and fast neutron group Cross sections to generate input to the program LEOPARD. The data is based on ENDF/B-4 and consists of two parts: (1) 246 thermal groups in TEMPEST Format. (2) 54 fast groups in MUFT Format. From this library, the program SPOTS4 generates a 172-54 group library as input to the code LEOPARD (NESC0279)

  9. Modelisation of the fission cross section

    International Nuclear Information System (INIS)

    Morariu, Claudia

    2013-03-01

    The neutron cross sections of four nuclear systems (n+ 235 U, n+ 233 U, n+ 241 Am and n+ 237 Np) are studied in the present document. The target nuclei of the first case, like 235 U and 239 Pu, have a large fission cross section after the absorption of thermal neutrons. These nuclei are called 'fissile' nuclei. The other type of nuclei, like 237 Np and 241 Am, fission mostly with fast neutrons, which exceed the fission threshold energy. These types of nuclei are called 'fertile'. The compound nuclei of the fertile nuclei have a binding energy higher than the fission barrier, while for the fissile nuclei the binding energy is lower than the fission barrier. In this work, the neutron induced cross sections for both types of nuclei are evaluated in the fast energy range. The total, reaction and shape-elastic cross sections are calculated by the coupled channel method of the optical model code ECIS, while the compound nucleus mechanism are treated by the statistical models implemented in the codes STATIS, GNASH and TALYS. The STATIS code includes a refined model of the fission process. Results from the theoretical calculations are compared with data retrieved from the experimental data base EXFOR. (author) [fr

  10. Angular Distribution of Gamma Rays from the Fission of {sup 235}U Induced by 14-Mev Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Jeki, L.; Kluge, Gy.; Lajtai, A. [Central Research Institute for Physics, Hungarian Academy of Sciences (Hungary)

    1969-12-15

    Experiments are reported which were performed to study the angular distribution of the gamma radiation following fast-neutron-induced nuclear fission. The investigations were, in particular, focussed on the influence which the angular momentum imparted to the compound nucleus by the fast neutrons has on the angular distribution of the {gamma}-rays. The fission of {sup 235}U is induced by 14-MeV-energy neutrons from the T(d, n) {alpha} reaction. The fission fragments are detected by a gas-scintillation counter filled with a mixture of Ar and Ni gases, the {gamma}-rays by 5 cm x 5 cm Nal(Tl) crystal with an energy threshold of 120 keV. The intensity of the {gamma}-rays is measured at 90 Degree-Sign and 174 Degree-Sign to the direction of fragment motion. The flight times of fission neutrons and {gamma}-rays are measured with a 20-ns overlap-type time-to-pulse height converter while the background was covered simultaneously with another converter delayed with respect to the former. The signals from both converters are analysed by a multichannel analyser with divisible memory. The flight path, which is chosen to be about 70 cm, makes it possible to separate the neutron from the gamma counts. The geometry is designed to keep the direction of the outflying fission fragments nearly the same as that of the incident fast neutrons. In this way the angular momenta of the fast neutrons are normal to the flight path of the fragments. The measured gamma intensities are extrapolated to 180 Degree-Sign on a computer using Strutinski's formula n( Greek-Theta-Symbol ) {approx}1 + B sin Greek-Theta-Symbol . On transformation of the measured data from the laboratory system to the system of fragments the anisotropy is found to be A = 1(180 Degree-Sign )/l (90 Degree-Sign ) = 1.33 {+-} 0.05. The main angular momentum of fission fragments is calculated from the anisotropy as 15 h units. As compared with the thermal-neutron-induced fission the present results indicate an additional

  11. Consistent Data Assimilation of Actinide Isotopes: 235U and 239Pu

    International Nuclear Information System (INIS)

    Palmiottti, G.; Hiruta, H.; Salvatores, M.

    2011-01-01

    In this annual report we illustrate the methodology of the consistent data assimilation that allows to use the information coming from integral experiments for improving the basic nuclear parameters used in cross section evaluation. A series of integral experiments were analyzed using the EMPIRE evaluated files for 235 U, 238 U, and 239 Pu. Inmost cases the results have shown quite large worse results with respect to the corresponding existing evaluations available for ENDF/B-VII. The observed discrepancies between calculated and experimental results were used in conjunction with the computed sensitivity coefficients and covariance matrix for nuclear parameters in a consistent data assimilation. Only the GODIVA and JEZEBEL experimental results were used, in order to exploit information relative to the isotope of interest that are, in this particular case: 235 U and 239 Pu. The results obtained by the consistent data assimilation indicate that with reasonable modifications (mostly within the initial standard deviation) it is possible to eliminate the original large discrepancies on the K eff of the two critical configurations. However, some residual discrepancy remains for a few fission spectral indices that are, most likely, to be attributed to the detector cross sections.

  12. 235U NMR study of the itinerant antiferromagnet USb2

    International Nuclear Information System (INIS)

    Kato, Harukazu; Sakai, Hironori; Ikushima, Kenji; Kambe, Shinsaku; Tokunaga, Yo; Aoki, Dai; Haga, Yoshinori; O-bar nuki, Yoshichika; Yasuoka, Hiroshi; Walstedt, Russell E.

    2005-01-01

    We have succeeded in resolving a 235 U antiferromagnetic nuclear magnetic resonance (AFNMR) signal using 235 U-enriched samples of USb 2 . The uranium hyperfine field and coupling constant estimated for this compound are consistent with those from other experiments. This is the first reported observation of 235 U NMR in conducting host material

  13. Fission Product Data Measured at Los Alamos for Fission Spectrum and Thermal Neutrons on 239Pu, 235U, 238U

    International Nuclear Information System (INIS)

    Selby, H.D.; Mac Innes, M.R.; Barr, D.W.; Keksis, A.L.; Meade, R.A.; Burns, C.J.; Chadwick, M.B.; Wallstrom, T.C.

    2010-01-01

    for 99 Mo where the present results are about 4%-relative higher for neutrons incident on 239 Pu and 235 U. Additionally, our results illustrate the importance of representing the incident energy dependence of fission product yields over the fast neutron energy range for high-accuracy work, for example the 147 Nd from neutron reactions on plutonium. An upgrade to the ENDF library, for ENDF/B-VII.1, based on these and other data, is described in a companion paper to this work.

  14. Research on Fast-Doppler-Broadening of neutron cross sections

    International Nuclear Information System (INIS)

    Li, S.; Wang, K.; Yu, G.

    2012-01-01

    A Fast-Doppler-Broadening method is developed in this work to broaden Continuous Energy neutron cross-sections for Monte Carlo calculations. Gauss integration algorithm and parallel computing are implemented in this method, which is unprecedented in the history of cross section processing. Compared to the traditional code (NJOY, SIGMA1, etc.), the new Fast-Doppler-Broadening method shows a remarkable speedup with keeping accuracy. The purpose of using Gauss integration is to avoid complex derivation of traditional broadening formula and heavy load of computing complementary error function that slows down the Doppler broadening process. The OpenMP environment is utilized in parallel computing which can take full advantage of modern multi-processor computers. Combination of the two can reduce processing time of main actinides (such as 238 U, 235 U) to an order of magnitude of 1∼2 seconds. This new method is fast enough to be applied to Online Doppler broadening. It can be combined or coupled with Monte Carlo transport code to solve temperature dependent problems and neutronics-thermal hydraulics coupled scheme which is a big challenge for the conventional NJOY-MCNP system. Examples are shown to determine the efficiency and relative errors compared with the NJOY results. A Godiva Benchmark is also used in order to test the ACE libraries produced by the new method. (authors)

  15. The Radiative Capture Cross-Section of U 238 for Fast Neutrons

    International Nuclear Information System (INIS)

    Broda, E.

    1945-01-01

    This report was written by E. Broda and D.H. Wilkinson at the Cavendish Laboratory (Cambridge) in January 1945 and is about the radiative capture cross-section of U238 for fast neutrons. The Chemical procedure and beta counting, the notes on the activation of the samples, the results and an appendix as well as a short introduction can be found in this report. (nowak)

  16. The Radiative Capture Cross-Section of U 238 for Fast Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Broda, E.

    1945-07-01

    This report was written by E. Broda and D.H. Wilkinson at the Cavendish Laboratory (Cambridge) in January 1945 and is about the radiative capture cross-section of U238 for fast neutrons. The Chemical procedure and beta counting, the notes on the activation of the samples, the results and an appendix as well as a short introduction can be found in this report. (nowak)

  17. Fission cross section and fission fragment angular distribution for oriented nucleus fission by intermediate energy neutrons (epsilon < or approximately 1 Mev)

    International Nuclear Information System (INIS)

    Barabanov, A.L.; Grechukhin, D.P.

    1985-01-01

    General analysis is conducted, and formulae for fission cross section and angular distribution of fission fragments of oriented nuclei by fast neutrons are presented. Geometrical coefficients making up the formulae permitting to carry out calculations for target nuclei with spins I=3/2, 5/2, 7/2 at interaction energies epsilon < or approximately 1 MeV are tabulated. Results of demonstrative calculation of fission fragment angular distribution of oriented sup(235)U nuclei by 0.1 <= epsilon <= 1.0 MeV neutrons reveal that angular distribution weakly depends on the set of permeability factors of neutron waves applied in the calculations

  18. Fission cross sections in the intermediate energy region

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1991-01-01

    Until recently there has been very little cross section data for neutron-induced fission in the intermediate energy region, primarily because no suitable neutron source has existed. At Los Alamos, the WNR target-4 facility provides a high-intensity source of neutrons nearly ideal for fission measurements extending from a fraction of a MeV to several hundred MeV. This paper summarizes the status of fission cross section data in the intermediate energy range (En > 30 MeV) and presents our fission cross section data for 235 U and 238 U compared to intranuclear cascade and statistical model predictions

  19. Fission cross sections in the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Ullmann, J.L.; Balestrini, S.J. (Los Alamos National Lab., NM (USA)); Carlson, A.D.; Wasson, O.A. (National Inst. of Standards and Technology, Gaithersburg, MD (USA)); Hill, N.W. (Oak Ridge National Lab., TN (USA))

    1991-01-01

    Until recently there has been very little cross section data for neutron-induced fission in the intermediate energy region, primarily because no suitable neutron source has existed. At Los Alamos, the WNR target-4 facility provides a high-intensity source of neutrons nearly ideal for fission measurements extending from a fraction of a MeV to several hundred MeV. This paper summarizes the status of fission cross section data in the intermediate energy range (En > 30 MeV) and presents our fission cross section data for {sup 235}U and {sup 238}U compared to intranuclear cascade and statistical model predictions.

  20. Should we ignore U-235 series contribution to dose?

    International Nuclear Information System (INIS)

    Beaugelin-Seiller, Karine; Goulet, Richard; Mihok, Steve; Beresford, Nicholas A.

    2016-01-01

    Environmental Risk Assessment (ERA) methodology for radioactive substances is an important regulatory tool for assessing the safety of licensed nuclear facilities for wildlife, and the environment as a whole. ERAs are therefore expected to be both fit for purpose and conservative. When uranium isotopes are assessed, there are many radioactive decay products which could be considered. However, risk assessors usually assume 235 U and its daughters contribute negligibly to radiological dose. The validity of this assumption has not been tested: what might the 235 U family contribution be and how does the estimate depend on the assumptions applied? In this paper we address this question by considering aquatic wildlife in Canadian lakes exposed to historic uranium mining practices. A full theoretical approach was used, in parallel to a more realistic assessment based on measurements of several elements of the U decay chains. The 235 U family contribution varied between about 4% and 75% of the total dose rate depending on the assumptions of the equilibrium state of the decay chains. Hence, ignoring the 235 U series will not result in conservative dose assessments for wildlife. These arguments provide a strong case for more in situ measurements of the important members of the 235 U chain and for its consideration in dose assessments. - Highlights: • Realistic ecological risk assessment infers a complete inventory of radionuclides. • U-235 family may not be minor when assessing total dose rates experienced by biota. • There is a need to investigate the real state of equilibrium decay of U chains. • There is a need to improve the capacity to measure all elements of the U decay chains.

  1. The fission cross section ratios and error analysis for ten thorium, uranium, neptunium and plutonium isotopes at 14. 74 MeV neutron energy

    Energy Technology Data Exchange (ETDEWEB)

    Meadows, J.W.

    1987-03-01

    The error information from the recent measurements of the fission cross section ratios of nine isotopes, /sup 230/Th, /sup 232/Th, /sup 233/U, /sup 234/U, /sup 236/U, /sup 238/U, /sup 237/Np, /sup 239/Pu, and /sup 242/Pu, relative to /sup 235/U at 14.74 MeV neutron energy was used to calculate their correlations. The remaining 36 non-trivial and non-reciprocal cross section ratios and their errors were determined and compared to evaluated (ENDF/B-V) values. There are serious differences but it was concluded that the reduction of three of the evaluated cross sections would remove most of them. The cross sections to be reduced are /sup 230/Th - 13%, /sup 237/Np - 9.6% and /sup 239/Pu - 7.6%. 5 refs., 6 tabs.

  2. Impact of the 235U Covariance Data in Benchmark Calculations

    International Nuclear Information System (INIS)

    Leal, Luiz C.; Mueller, D.; Arbanas, G.; Wiarda, D.; Derrien, H.

    2008-01-01

    The error estimation for calculated quantities relies on nuclear data uncertainty information available in the basic nuclear data libraries such as the U.S. Evaluated Nuclear Data File (ENDF/B). The uncertainty files (covariance matrices) in the ENDF/B library are generally obtained from analysis of experimental data. In the resonance region, the computer code SAMMY is used for analyses of experimental data and generation of resonance parameters. In addition to resonance parameters evaluation, SAMMY also generates resonance parameter covariance matrices (RPCM). SAMMY uses the generalized least-squares formalism (Bayes method) together with the resonance formalism (R-matrix theory) for analysis of experimental data. Two approaches are available for creation of resonance-parameter covariance data. (1) During the data-evaluation process, SAMMY generates both a set of resonance parameters that fit the experimental data and the associated resonance-parameter covariance matrix. (2) For existing resonance-parameter evaluations for which no resonance-parameter covariance data are available, SAMMY can retroactively create a resonance-parameter covariance matrix. The retroactive method was used to generate covariance data for 235U. The resulting 235U covariance matrix was then used as input to the PUFF-IV code, which processed the covariance data into multigroup form, and to the TSUNAMI code, which calculated the uncertainty in the multiplication factor due to uncertainty in the experimental cross sections. The objective of this work is to demonstrate the use of the 235U covariance data in calculations of critical benchmark systems

  3. Impact of the 235U covariance data in benchmark calculations

    International Nuclear Information System (INIS)

    Leal, Luiz; Mueller, Don; Arbanas, Goran; Wiarda, Dorothea; Derrien, Herve

    2008-01-01

    The error estimation for calculated quantities relies on nuclear data uncertainty information available in the basic nuclear data libraries such as the U.S. Evaluated Nuclear Data File (ENDF/B). The uncertainty files (covariance matrices) in the ENDF/B library are generally obtained from analysis of experimental data. In the resonance region, the computer code SAMMY is used for analyses of experimental data and generation of resonance parameters. In addition to resonance parameters evaluation, SAMMY also generates resonance parameter covariance matrices (RPCM). SAMMY uses the generalized least-squares formalism (Bayes' method) together with the resonance formalism (R-matrix theory) for analysis of experimental data. Two approaches are available for creation of resonance-parameter covariance data. (1) During the data-evaluation process, SAMMY generates both a set of resonance parameters that fit the experimental data and the associated resonance-parameter covariance matrix. (2) For existing resonance-parameter evaluations for which no resonance-parameter covariance data are available, SAMMY can retroactively create a resonance-parameter covariance matrix. The retroactive method was used to generate covariance data for 235 U. The resulting 235 U covariance matrix was then used as input to the PUFF-IV code, which processed the covariance data into multigroup form, and to the TSUNAMI code, which calculated the uncertainty in the multiplication factor due to uncertainty in the experimental cross sections. The objective of this work is to demonstrate the use of the 235 U covariance data in calculations of critical benchmark systems. (authors)

  4. Coulomb and even-odd effects in cold and super-asymmetric fragmentation for thermal neutron induced fission of 235U

    International Nuclear Information System (INIS)

    Modesto, Montoya

    2014-01-01

    The Coulomb effects hypothesis is used to interpret even-odd effects of maximum total kinetic energy as a function of mass and charge of fragments from thermal neutron induced fission of 235 U. Assuming spherical fragments at scission, the Coulomb interaction energy between fragments (C sph ) is higher than the Q-value, the available energy. Therefore at scission the fragments must be deformed, so that the Coulomb interaction energy does not exceed the Q-value. The fact that the even-odd effects in the maximum total kinetic energy as a function of the charge and mass, respectively, are lower than the even-odd effects of Q is consistent with the assumption that odd mass fragments are softer than the even-even fragments. Even-odd effects of charge distribution in super asymmetric fragmentation also are interpreted with the Coulomb effect hypothesis. Because the difference between C sph and Q increases with asymmetry, fragmentations require higher total deformation energy to occur. Higher deformation energy of the fragments implies lower free energy to break pairs of nucleons. This explains why in the asymmetric fragmentation region, the even-odd effects of the distribution of proton number and neutron number increases with asymmetry. (author).

  5. Alecto - results obtained with homogeneous critical experiments on plutonium 239, uranium 235 and uranium 233; Alecto - resultats des experiences critiques homogenes realisees sur le plutonium 239, l'uranium 235 et l'uranium 233

    Energy Technology Data Exchange (ETDEWEB)

    Bruna, J G; Brunet, J P; Caizegues, R; Clouet d' Orval, Ch; Kremser, J; Tellier, H; Verriere, Ph [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    In this report are given the results of the homogeneous critical experiments ALECTO, made on plutonium 239, uranium 235 and uranium 233. After a brief description of the equipment, the critical masses for cylinders of diameters varying from 25 to 42 cm, are given and compared with other values (foreign results, criticality guide). With respect to the specific conditions of neutron reflection in the ALECTO experiments the minimal values of critical masses are: Pu239 M{sub c} = 910 {+-} 10 g, U235 M{sub c} = 1180 {+-} 12 g and U233 M{sub c} = 960 {+-} 10 g. Experiments relating to cross sections and constants to be used on these materials are presented. Lastly, kinetic experiments allow to compare pulsed neutron methods to fluctuation methods. [French] On presente dans ce rapport les resultats des experiences critiques homogenes ALECTO, effectuees sur le plutonium 239, l'uranium 235 et l'uranium 233. Apres avoir rappele la description des installations, on donne les masses critiques pour des cylindres de diametres variant entre 25 et 42 cm, qui sont comparees avec d'autres chiffres (resultats etrangers, guide de criticite). Dans les gammes des diametres etudies pour des cuves a fond plat reflechies lateralement, la valeur minimale des masses critiques est la suivante: Pu239 M{sub c} = 910 {+-} 10 g, U235 M{sub c} = 1180 {+-} 12 g et U233 M{sub c} 960 {+-} 10 g. Des experiences portant sur les sections efficaces et les constantes a utiliser sur ces milieux sont ensuite presentees. Enfin des experiences de cinetique permettent une comparaison entre la methode des neutrons pulses et la methode des fluctuations. (auteur)

  6. Analysis of 235U enrichment by chemical exchange in U(IV) - U(VI) system on anionite

    International Nuclear Information System (INIS)

    Raica, Paula; Axente, Damian

    2007-01-01

    Full text: A theoretical study about the 235 U enrichment by chemical exchange method in U(IV)-U(VI) system on anion-exchange resins is presented. The 235 U isotope concentration profiles along the band were numerically calculated using an accurate mathematical model and simulations were carried out for the situation of product and waste withdrawal and feed supply. By means of numerical simulation, an estimation of the migration time, necessary for a desired enrichment degree, was obtained. The required migration distance, the production of uranium 3 at.% 235 U per year and the plant configuration are calculated for different operating conditions. An analysis of the process scale for various experimental conditions is also presented. (authors)

  7. On the contradiction between the microscopic and integral data for fast neutron absorption cross-section for 238U nuclei

    International Nuclear Information System (INIS)

    Van'kov, A.A.

    1994-01-01

    The contradiction between a measured integral neutron absorption cross-section averaged over a fast reactor spectrum and the corresponding value which was calculated with the use of evaluated microscopic cross-sections and a theoretical neutron spectrum has been investigated. The possible systematic error of a correction factor which takes into account multiple resonance neutron scattering in samples used in the measurement of the absorption cross-section is investigated. It is proposed that this error may be one of the main reason for the contradiction mentioned above which arises in the measurement of the 236 U neutron absorption cross-section. (author). 13 refs, 3 figs

  8. Energy Dependence of Fission Product Yields from {sup 235}U, {sup 238}U and {sup 239}Pu for Incident Neutron Energies Between 0.5 and 14.8 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Gooden, M.E., E-mail: m_gooden@lanl.gov [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Arnold, C.W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Becker, J.A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Bhatia, C. [McMaster University, Ontario (Canada); Bhike, M. [Department of Physics, Duke University,Durham, North Carolina 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708 (United States); Bond, E.M.; Bredeweg, T.A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Fallin, B. [Department of Physics, Duke University,Durham, North Carolina 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708 (United States); Fowler, M.M. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Howell, C.R. [Department of Physics, Duke University,Durham, North Carolina 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708 (United States); Kelley, J.H. [Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708 (United States); Department of Physics, North Carolina State University, Raleigh, North Carolina 27605 (United States); Krishichayan [Department of Physics, Duke University,Durham, North Carolina 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708 (United States); Macri, R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Rusev, G. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Ryan, C.; Sheets, S.A.; Stoyer, M.A.; Tonchev, A.P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Tornow, W. [Department of Physics, Duke University,Durham, North Carolina 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708 (United States); and others

    2016-01-15

    Fission Product Yields (FPY) have historically been one of the most observable features of the fission process. They are known to have strong variations that are dependent on the fissioning species, the excitation energy, and the angular momentum of the compound system. However, consistent and systematic studies of the variation of these FPY with energy have proved challenging. This is caused primarily by the nature of the experiments that have traditionally relied on radiochemical procedures to isolate specific fission products. Although radiochemical procedures exist that can isolate all products, each element presents specific challenges and introduces varying degrees of systematic errors that can make inter-comparison of FPY uncertain. Although of high importance in fields such as nuclear forensics and Stockpile Stewardship, accurate information about the energy dependence of neutron induced FPY are sparse, due primarily to the lack of suitable monoenergetic neutron sources. There is a clear need for improved data, and to address this issue, a collaboration was formed between Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL) and the Triangle Universities Nuclear Laboratory (TUNL) to measure the energy dependence of FPY for {sup 235}U, {sup 238}U and {sup 239}Pu. The measurements have been performed at TUNL, using a 10 MV Tandem Van de Graaff accelerator to produce monoenergetic neutrons at energies between 0.6 MeV to 14.8 MeV through a variety of reactions. The measurements have utilized a dual-fission chamber, with thin (10-100 μg/cm2) reference foils of similar material to a thick (100-400 mg) activation target held in the center between the chambers. This method allows for the accurate determination of the number of fissions that occurred in the thick target without requiring knowledge of the fission cross section or neutron fluence on target. Following activation, the thick target was removed from the dual-fission chamber

  9. Study on the aligned uranium-235 nuclear decay in the neutron energy range of 1.7 eV - 2.15 keV

    International Nuclear Information System (INIS)

    Danelyan, L.S.; Zakharov, Yu.V.; Zykov, V.M.; Mostovoj, V.I.; Stolyarov, V.A.; Biryukov, S.A.; Zysina, N.Yu.; Osochnikov, A.A.; Svettsov, A.V.

    1983-01-01

    Using a time-of-flight neutron spectrometer comparative measurements of intensity of fission reaction on the aligned and non-oriented uranium-235 nuclei have been performed in order to identify the resonances caused by p-neutron capture as well as to determine the p-neutron contribution to the fission cross section in the region of unresolved resonances. In some isolated resonances differences in cross sections on aligned and non-oriented nuclei of about 10% have been observed which can permit to assi.on them to p-resonances. In the region of unresolved resonances in the 0.15-2.15 keV neutron energy range to the accuracy +-1% no changes in the fission cross section during the nuclear alignment have been observ

  10. Least squares analysis of fission neutron standard fields

    International Nuclear Information System (INIS)

    Griffin, P.J.; Williams, J.G.

    1997-01-01

    A least squares analysis of fission neutron standard fields has been performed using the latest dosimetry cross sections. Discrepant nuclear data are identified and adjusted spectra for 252 Cf spontaneous fission and 235 U thermal fission fields are presented

  11. Angular distribution of gamma rays from the fission of {sup 235}U induced by 14-MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Jeki, L; Kluge, G; Lajtai, A [Central Research Institute for Physics, Hungarian Academy of Sciences (Hungary)

    1969-12-15

    Experiments are reported which were performed to study the angular distribution of the gamma radiation following fast-neutron-induced nuclear fission. The investigations were, in particular, focussed on the influence which the angular momentum imparted to the compound nucleus by the fast neutrons has on the angular distribution of the {gamma}-rays. The fission of {sup 235}U is induced by 14-MeV-energy neutrons from the T(d, n) {alpha} reaction. The fission fragments are detected by a gas-scintillation counter filled with a mixture of Ar and Ni gases, the {gamma}-rays by 5 cm x 5 cm Nal(Tl) crystal with an energy threshold of 120 keV. The intensity of the {gamma}-rays is measured at 90 deg. and 174 deg. to the direction of fragment motion. The flight times of fission neutrons and {gamma}-rays are measured with a 20-ns overlap-type time-to-pulse height converter while the background was covered simultaneously with another converter delayed with respect to the former. The signals from both converters are analysed by a multichannel analyser with divisible memory. The flight path, which is chosen to be about 70 cm, makes it possible to separate the neutron from the gamma counts. The geometry is designed to keep the direction of the outflying fission fragments nearly the same as that of the incident fast neutrons. In this way the angular momenta of the fast neutrons are normal to the flight path of the fragments. The measured gamma intensities are extrapolated to 180 deg on a computer using Strutinski's formula n({theta}) {approx} 1 + B sin {theta}. On transformation of the measured data from the laboratory system to the system of fragments the anisotropy is found to be A = I(180 deg.)/I (90 deg.) = 1.33 {+-} 0.05. The main angular momentum of fission fragments is calculated from the anisotropy as 15 (h/2{pi}) units. As compared with the thermal-neutron-induced fission the present results indicate an additional contribution from the angular momentum of the compound

  12. Development of a Secondary Neutron Fluence Standard at GELINA

    International Nuclear Information System (INIS)

    Heyse, Jan; Eykens, Roger; Moens, Andre; Plompen, Arjan J.M.; Schillebeeckx, Peter; Wynants, Ruud; Anastasiou, Maria

    2013-06-01

    The MetroFission project, a Joint Research Project within the European Metrology Research Program, aims at addressing a number of metrological problems involved in the design of proposed Generation IV nuclear reactors. One of the objectives of this multidisciplinary project is the improvement of neutron cross section measurement techniques in order to arrive at uncertainties as required for the design and safety assessment of new generation power plants and fuel cycles. This objective is in line with the 'Uncertainty and target accuracy assessment for innovative systems using recent covariance data evaluations' published by a working party of the OECD Nuclear Energy Agency in 2008. These requests are often very challenging, being at or beyond the state-of-the-art in neutron measurements, which is set by self-normalizing methods and the neutron data standards used at laboratories where the data are measured. A secondary neutron fluence standard has been developed and calibrated at the neutron time-of-flight facility GELINA of the JRC's Institute for Reference Materials and Measurements (IRMM). It consists of a flux monitor, a reference ionization chamber containing a 10 B layer and a 235 U layer, and a parallel plate ionization chamber with 8 well characterized 235 U deposits. These devices are used to determine the neutron fluence, based on the well-known neutron induced fission reaction on 235 U. All deposits have been prepared and characterized at the IRMM target preparation lab. The secondary fluence standard at the GELINA facility can be used for reliable determination of the efficiency of fluence measurement devices used in neutron data measurements at IRMM and elsewhere. It is an essential tool to reliably calibrate fluence normalization devices used in neutron time-of-flight cross section measurements. (authors)

  13. Fission cross-section calculations and the multi-modal fission model

    International Nuclear Information System (INIS)

    Hambsch, F.J.

    2004-01-01

    New, self consistent, neutron-induced reaction cross section calculations for 235,238 U, 237 Np have been performed. The statistical model code STATIS was improved to take into account the multimodality of the fission process. The three most dominant fission modes, the two asymmetric standards I (S1) and standard II (S2) modes and the symmetric superlong (SL) mode have been taken into account. De-convoluted fission cross sections for those modes for 235,238 U(n,f) and 237 Np(n,f) based on experimental branching ratios, were calculated for the first time up to the second chance fission threshold. For 235 U(n,f), the calculations being made up to 28 MeV incident neutron energy, higher fission chances have been considered. This implied the need for additional calculations for the neighbouring isotopes. As a side product also mass yield distributions could be calculated at energies hitherto not accessible by experiment. Experimental validation of the predictions is being envisaged

  14. Photo-fission Product Yield Measurements at Eγ=13 MeV on 235U, 238U, and 239Pu

    Science.gov (United States)

    Tornow, W.; Bhike, M.; Finch, S. W.; Krishichayan, Fnu; Tonchev, A. P.

    2016-09-01

    We have measured Fission Product Yields (FPYs) in photo-fission of 235U, 238U, and 239Pu at TUNL's High-Intensity Gamma-ray Source (HI γS) using mono-energetic photons of Eγ = 13 MeV. Details of the experimental setup and analysis procedures will be discussed. Yields for approximately 20 fission products were determined. They are compared to neutron-induced FPYs of the same actinides at the equivalent excitation energies of the compound nuclear systems. In the future photo-fission data will be taken at Eγ = 8 . 0 and 10.5 MeV to find out whether photo-fission exhibits the same so far unexplained dependence of certain FPYs on the energy of the incident probe, as recently observed in neutron-induced fission, for example, for the important fission product 147Nd. Work supported by the U. S. Dept. of Energy, under Grant No. DE-FG02-97ER41033, and by the NNSA, Stewardship Science Academic Alliances Program, Grant No. DE-NA0001838 and the Lawrence Livermore, National Security, LLC under Contract No. DE-AC52-07NA27344.

  15. Adjusted neutron spectra of STEK cores for reactivity calculations

    International Nuclear Information System (INIS)

    Dekker, J.W.M.; Dragt, J.B.; Janssen, A.J.; Heijboer, R.J.; Klippel, H.Th.

    1978-02-01

    Neutron flux and adjoint flux spectra form a pre-requisite in the analysis of reactivity worth data measured in the STEK facility. First, a survey of all available information about these spectra is given. Next a special application of a general adjustment method is described. This method has been used to obtain adjusted STEK group flux and adjoint flux spectra, starting from calculated spectra. These theoretical spectra were adjusted to reactivity worths of natural boron (nat. B) and 235 U as well as a number of fission reaction rates. As a by-product in this adjustment calculation adjusted fission group cross sections of 235 U were obtained. The results, viz. group fluxes and adjoint fluxes and adjusted fission cross sections of 235 U are given. They have been used for the interpretation of fission product reactivity worth measurements made in STEK

  16. Neutron-induced reactions on U and Th - A new approach via AMS

    International Nuclear Information System (INIS)

    Wallner, A.; Capote, R.; Christl, M.; Fifield, L.K.; Srncik, M.; Tims, S.; Hotchkis, M.; Krasa, A.; Lachner, J.; Lippold, J.; Plompen, A.; Semkova, V.; Steier, P.; Winkler, S.

    2014-01-01

    Recent studies exhibit discrepancies at keV and MeV energies between major nuclear data libraries for 238 U(n,γ), 232 Th(n,γ) and also for (n,xn) reactions. We have extended our initial (n,γ) measurements on 235,238 U to higher neutron energies and to additional reaction channels. Neutron-induced reactions on 232 Th and 238 U were measured by a combination of the activation technique and atom counting of the reaction products using accelerator mass spectrometry (AMS). Natural thorium and uranium samples were activated with quasi-monoenergetic neutrons at IRMM. Neutron capture data were produced for neutron energies between 0.5 and 5 MeV. Fast neutron-induced reactions were studied in the energy range from 17 to 22 MeV. Preliminary data indicate a fair agreement with data libraries; however at the lower band of existing data. This approach represents a complementary method to on-line particle detection techniques and also to conventional decay counting. (authors)

  17. Assessment of the ''thermal normalization technique'' for measurement of neutron cross sections vs energy

    International Nuclear Information System (INIS)

    Peelle, R.W.; de Sassure, G.

    1977-01-01

    Refined knowledge of the thermal neutron cross sections of the fissile nuclides and of the (n,α) reaction standards, together with the reasonably well known energy dependence of the latter, have permitted resonance-region and low-keV fissile nuclide cross sections to be based on these standards together with count-rate ratios observed as a function of energy using a pulsed ''white'' source. As one evaluates cross sections for energies above 20 keV, optimum results require combination of cross section shape measurements with all available absolute measurements. The assumptions of the ''thermal normalization method'' are reviewed, and an opinion is given of the status of some of the standards required for its use. The complications which may limit the accuracy of results using the method are listed and examples are given. For the 235 U(n,f) cross section, the option is discussed of defining resonance-region fission integrals as standards. The area of the approximately 9 eV resonances in this nuclide may be known to one percent accuracy, but at present the fission integral from 0.1 to 1.0 keV is known to no better than about two percent. This uncertainty is based on the scatter among independent results, and has not been reduced by the most recent measurements. This uncertainty now limits the accuracy attainable for the 235 U(n,f) cross section below about 50 keV. Suggestions are given to indicate how future detailed work might overcome past sources of error

  18. Evaluation of covariances for resolved resonance parameters of 235U, 238U, and 239Pu in JENDL-3.2

    International Nuclear Information System (INIS)

    Kawano, Toshihiko; Shibata, Keiichi

    2003-02-01

    Evaluation of covariances for resolved resonance parameters of 235 U, 238 U, and 239 Pu was carried out. Although a large number of resolved resonances are observed for major actinides, uncertainties in averaged cross sections are more important than those in resonance parameters in reactor calculations. We developed a simple method which derives a covariance matrix for the resolved resonance parameters from uncertainties in the averaged cross sections. The method was adopted to evaluate the covariance data for some important actinides, and the results were compiled in the JENDL-3.2 covariance file. (author)

  19. Calculation of the Reaction Cross Section for Several Actinides

    International Nuclear Information System (INIS)

    Hambsch, Franz-Josef; Oberstedt, Stephan; Vladuca, Gheorghita; Tudora, Anabella; Filipescu, Dan

    2005-01-01

    New, self-consistent, neutron-induced reaction cross-section calculations for 235,238U, 237Np, and 231,232,233Pa have been performed. The statistical model code STATIS was extended to take into account the multi-modality of the fission process. The three most dominant fission modes, the two asymmetric standard I (S1) and standard II (S2) modes, and the symmetric superlong (SL) mode have been taken into account. De-convoluted fission cross sections for these modes in 235,238U(n,f) and 237Np(n,f) based on experimental branching ratios, were calculated for the first time up to the second chance fission threshold. For 235U(n,f) and 233Pa(n,f), the calculations being made up to 50 MeV and 20 MeV incident neutron energy, respectively, higher fission chances have been considered. This implied the need for additional calculations for the neighbouring isotopes.As a side product also mass yield distributions could be calculated at energies hitherto not accessible by experiment. Experimental validation of the predictions is being envisaged

  20. Calculation of the fast neutron flux spectrum in the MNSR inner irradiation site using the WIMSD4 code

    International Nuclear Information System (INIS)

    Khattab, K.

    2005-03-01

    The Miniature Neutron Source Reactor (MNSR) in Syria has five inner irradiation sites in the annulus Beryllium reflectors to analyze the unknown samples using the Neutron Activation Analysis technique and to produce medium and short half life isotopes. The fast neutron flux spectrum has a special importance in the MNSR reactor physics where this spectrum is required to measure the fast neutron flux in the MNSR inner irradiation sites. Hence, calculation of the fast neutron flux spectrum in the MNSR inner irradiation site is conducted in this work using the WIMSD4 code. The energy range is divided in the WIMSD4 to 69 energy groups. The first six energy groups represent the fast neutron ranging from 0.5 to 10 MeV. To calculate the fast neutron flux spectrum in the MNSR inner irradiation site using the WIMSD4 code, the MNSR is modeled as a super unit cell. This cell consists of three regions which are: the homogenized core, annulus Beryllium, and water. The fast neutron spectrum is calculated also using the U 235 fission neutron spectrum approximation. The U 235 fission neutron spectrum agrees very good with the WIMSD4 results when neutron energy exceeds 1 MeV, but it fails when the neutron energy ranges from 0.5 to 1 MeV. The WIMSD4 code is used as well to calculate the microscopic fission cross sections for the U 238 using six energy groups where a unit cell of U 238 is used since the U 238 is usually used to measure the fast neutron flux in the reactor. The macroscopic fission cross sections for the U 238 are calculated first then the microscopic fission cross sections are calculated knowing the U 238 atomic density. (Author)

  1. Calculation of the fast neutron flux spectrum in the MNSR inner irradiation site using the WIMSD4 code

    International Nuclear Information System (INIS)

    Khattab, K.

    2006-01-01

    The Miniature Neutron Source Reactor (MNSR) in Syria has five inner irradiation sites in the annulus Beryllium reflectors to analyze the unknown samples using the Neutron Activation Analysis technique and to produce medium and short half life isotopes. The fast neutron flux spectrum has a special importance in the MNSR reactor physics where this spectrum is required to measure the fast neutron flux in the MNSR inner irradiation sites. Hence, calculation of the fast neutron flux spectrum in the MNSR inner irradiation site is conducted in this work using the WIMSD4 code. The energy range is divided in the WIMSD4 to 69 energy groups. The first six energy groups represent the fast neutron ranging from 0.5 to 10 MeV. To calculate the fast neutron flux spectrum in the MNSR inner irradiation site using the WIMSD4 code, the MNSR is modeled as a super unit cell. This cell consists of three regions which are: the homogenized core, annulus Beryllium, and water. The fast neutron spectrum is calculated also using the U 235 fission neutron spectrum approximation. The U 235 fission neutron spectrum agrees very good with the WIMSD4 results when neutron energy exceeds 1 MeV, but it fails when the neutron energy ranges from 0.5 to 1 MeV. The WIMSD4 code is used as well to calculate the microscopic fission cross sections for the U 238 using six energy groups where a unit cell of U 238 is used since the U 238 is usually used to measure the fast neutron flux in the reactor. The macroscopic fission cross sections for the U 238 are calculated first then the microscopic fission cross sections are calculated knowing the U 238 atomic density. (Author)

  2. Fast-neutron-induced fission of 242Pu at nELBE

    Directory of Open Access Journals (Sweden)

    Kögler Toni

    2017-01-01

    Full Text Available The fast neutron-induced fission cross section of 242Pu was determined in the range of 0.5 MeV to 10 MeV relative to 235U(n,f at the neutron time-of-flight facility nELBE. The number of target nuclei was calculated by means of measuring the spontaneous fission rate of 242Pu. Neutron transport simulations with Geant4 and MCNP6 are used to correct the relative cross section for neutron scattering. The determined results are in good agreement with current experimental and evaluated data sets.

  3. Sources of neutronics data involving thorium of 233U and light water moderation

    International Nuclear Information System (INIS)

    Davenport, L.C.

    1978-11-01

    A literature search has been conducted to locate sources of neutronics data for light water moderated systems which contain thorium and/or uranium-233. It is concluded that insufficient data is currently available to validate neutronics design methods for licensing the 233 UO 2 -ThO 2 fuel cycle in light water reactors. A summary of the neutronics data sources found is reported in this document. These sources include critical and exponential experiments with lattices of fuel rods containing 233 U + Th or 235 U + Th. A few experiments using homogeneous aqueous solutions of 233 UO 2 (NO 3 ) 2 or 233 UO 2 F 2 are also included. The only critical lattice data using both 233 U and Th came from the LWBR program. All these experiments were zoned radially and in most cases axially also. Geometrically clean lattice critical data were measured for the CETR and TUPE programs. Both series used 235 UO 2 -ThO 2 pellets. A series of 21 exponential experiments using 3% 233 UO 2 - 97% ThO 2 fuel vibratory compacted to 92% of theoretical density in Zircaloy-2 tubing was performed at BNL using both unpoisoned and boric acid poisoned H 2 O moderator. For completeness, homogeneous systems are listed in which basic neutronics data have been measured. However, it is expected that most data concerning homogeneous systems will be applied to criticality safety problems rather than neutronics methods validation

  4. Laboratory studies of 235U enrichment by chemical separation methods

    International Nuclear Information System (INIS)

    Daloisi, P.J.; Orlett, M.J.; Tracy, J.W.; Saraceno, A.J.

    1976-01-01

    Laboratory experiments on 235 U enrichment processes based on column redox ion exchange, electrodialysis, and gas exchange chromatography performed from August 1972 to September 1974 are summarized. Effluent from a 50 to 50 weight mixture of U +4 and U +6 (as UO 2 2+ ), at a total uranium concentration of 5 mg U per ml in 0.25N H 2 SO 4 -0.03N NaF solution, passing through a 100 cm length cation exchange column at 0.5 ml/min flow rates, was enriched in 235 U by 1.00090 +- .00012. The enriched fraction was mostly in the +6 valence form while the depleted fraction was U +4 retained on the resin. At flow rates of 2 ml/min, the enrichment factor decreases to 1.00033 +- .00003. In the electrodialysis experiments, the fraction of uranium diffusing through the membranes (mostly as +6 valence state) in 4.2 hours is enriched in 235 U by 1.00096 +- .00012. Gas exchange chromatography tests involved dynamic and static exposure of UF 6 over NaF. In dynamic tests, no significant change in isotopic abundance occurred in the initial one-half weight cut of UF 6 . The measured relative 235 U/ 238 U mole ratios were 1.00004 +- .00004 for these runs. In static runs, enrichment became evident. For the NaF(UF 6 )/sub x/-UF 6 system, there is 235 U depletion in the gas phase, with a single-stage factor of 1.00033 at 100 0 C and 1.00025 at 25 0 C after 10 days of equilibration. The single-stage or unit holdup time is impractically long for all three chemical processes

  5. Coulomb and even-odd effects in cold and super-asymmetric fragmentation for thermal neutron induced fission of {sup 235}U

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, M. [Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Rímac, Lima (Peru)

    2016-07-07

    Even-odd effects of the maximal total kinetic energy (K{sub max}) as a function of charge (Z) and mass (A) of fragments from thermal neutron induced fission of actinides are questioned by other authors. In this work, visiting old results on thermal neutron induced fission of {sup 235}U, those even-odd effects are reconfirmed. The cases seeming to contradict even-odd effects are interpreted with the Coulomb effect hypothesis. According to Coulomb effect hypothesis, K{sub max} is equal to the Coulomb interaction energy of the most compact scission configuration. As a consequence, between two isobaric charge splits with similar Q-values, the more asymmetrical one will get the more compact scission configuration and then it will reach the higher K{sub max}-value. In some cases, the more asymmetrical charge split corresponds, by coincidence, to an odd charge split; consequently its higher K{sub max}-value may be misinterpreted as anti-even-odd effect. Another experimental result reported in the literature is the increasing of even-odd effects on charge distribution on the more asymmetrical fragmentations region. In this region, the difference between K{sub max} and Q-values increases with asymmetry, which means that the corresponding scission configuration needs higher total deformation energy to occur. Higher deformation energy of the fragments implies lower free energy to break nucleon pairs. Consequently, in the asymmetric fragmentation region, the even-odd effects of the distribution of proton number and neutron number must increase with asymmetry.

  6. Effective K quantum numbers in fission of oriented 235U

    International Nuclear Information System (INIS)

    Dabbs, J.W.T.; Eggerman, C.; Cauvin, B.; Michaudon, A.; Sanche, M.

    1969-01-01

    The angular anisotropy of fission fragments produced in neutron-induced fission of aligned 235 U nuclei has been measured for neutron energies between 0.3 eV and 175 eV, using time-of-flight techniques at the pulsed 45 MeV electron linear accelerator at Saclay. The low-temperature nuclear-alignment apparatus used was a modified version of the apparatus described at the Salzburg conference, and gave an average temperature of 0.61 K for the four UO 2 Rb(NO 3 ) 3 single crystal samples during a measurement period of approximately 220 h. The flight path was 5 m and the election pulse length was 100 ns. Multilevel fits to the observed 0 deg and 90 deg fission cross-sections have been made using the Adler and Adler formalism with the aid of a program developed by G. de Saussure. The most striking result obtained in the analysis of some 16 of 100 levels or groups of levels is a strong correlation between small fission width and an effective value of K ≅ J. All 5 resonances in the group of 16 for which results are final, for which K ≅ J is deduced, have exceptionally small widths. This result suggests that the small widths are associated with a large rotational energy and consequent diminution in available deformation energy, so that these 5 resonances are effectively sub-threshold resonances; such a suggestion is quite in accord with the ideas of Bohr. The preponderance of other resonances so far analysed have effective K values of 1 or 2. An analysis of all resolvable resonances is presented. (author)

  7. Determination of the axial 235U distribution in target fuel rods

    International Nuclear Information System (INIS)

    Huettig, G.; Bernhard, G.; Niese, U.

    1989-01-01

    The homogenity of the axial 235 U distribution in target fuel rods is an important quality criterion for the production of 99 Mo. The 235 U distribution has been analyzed automatically and nondestructively by measuring the 235 U gamma ray peak at 285.7 keV. For the quantitative assessment a calibration curve was prepared by the help of X-ray fluorescence analysis, colorimetry, and photometric titration. The accuracy of the method is ≤ 1.5% uranium per centimeter of the fuel rod

  8. Comparison of the ENDF/B-V and SOKRATOR evaluations of 235U, 239Pu, 240Pu and 241Pu at low neutron energies

    International Nuclear Information System (INIS)

    de Saussure, G.; Wright, R.Q.

    1981-01-01

    The US and USSR's most recent evaluationsof 235 U, 239 Pu, 240 Pu and 241 Pu are compared over the thermal region and over the first few resonances. The two evaluations rest on essentially the same experimental data base and the differences reflect different approaches to the representation of the cross sections or different weightings of the experimental results. It is found that over the thermal and resolved ranges the two evaluations are very similar. Some differences in approaches are briefly discussed

  9. Short Lived Fission Product Yield Measurements in 235U, 238U and 239Pu

    Science.gov (United States)

    Silano, Jack; Tonchev, Anton; Tornow, Werner; Krishichayan, Fnu; Finch, Sean; Gooden, Matthew; Wilhelmy, Jerry

    2017-09-01

    Yields of short lived fission products (FPYs) with half lives of a few minutes to an hour contain a wealth of information about the fission process. Knowledge of short lived FPYs would contribute to existing data on longer lived FPY mass and charge distributions. Of particular interest are the relative yields between the ground states and isomeric states of FPYs since these isomeric ratios can be used to determine the angular momentum of the fragments. Over the past five years, a LLNL-TUNL-LANL collaboration has made precision measurements of FPYs from quasi-monoenergetic neutron induced fission of 235U, 238U and 239Pu. These efforts focused on longer lived FPYs, using a well characterized dual fission chamber and several days of neutron beam exposure. For the first time, this established technique will be applied to measuring short lived FPYs, with half lives of minutes to less than an hour. A feasibility study will be performed using irradiation times of < 1 hour, improving the sensitivity to short lived FPYs by limiting the buildup of long lived isotopes. Results from this exploratory study will be presented, and the implications for isomeric ratio measurements will be discussed. This work was performed under the auspices of US DOE by LLNL under Contract DE-AC52-07NA27344.

  10. Mass dependence of azimuthal asymmetry in the fission of 232Th and 233,235,236,238U by polarized photons

    International Nuclear Information System (INIS)

    Denyak, V.V.; Khvastunov, V.M.; Paschuk, S.A.; Schelin, H.R.

    2013-01-01

    Fission of the even-even nuclei 232 Th, 236,238 U and even-odd nuclei 233,235 U by linearly polarized photons has been studied at excitation energies in the region of a giant dipole resonance. The performed investigations unambiguously showed the existence of the fragment mass dependence of the cross section azimuthal asymmetry in the photofission of 236 U and 238 U. In addition, the obtained results provided the first evidence for the possible difference between the asymmetry values in asymmetric and symmetric mass distribution regions in the case of 236 U. The measured cross section azimuthal asymmetry of the fission of 232 Th does not show any fragment mass dependence. In the even-odd nuclei 233 U and 235 U the difference between the far-asymmetric and other mass distribution regions was also observed but with the statistical uncertainty not small enough for definitive conclusion. (orig.)

  11. Study of fission fragments produced by 14N + 235U reaction

    International Nuclear Information System (INIS)

    Yalcinkaya, M.; Erduran, M.N.; Ganioglu, E.; Akkus, B.; Bostan, M.; Gurdal, G.; Erturk, S.; Balabanski, D.; Minkova, A.; Danchev, M.

    2005-01-01

    This work was performed to understand the structure of neutron rich fission fragments around ∼ 130 region. A thin metallic 235 U target was bombarded by 14 N beam with 10 MeV/A from the Separated Sector Cyclotron at the National Accelerator Centre, Cape Town, South Africa. The main goal to detect and identify fission fragments and to obtain their mass distribution was achieved by using Solar Cell detectors in the AFRODITE (African Omnipurpose Detector for Innovative Techniques and Experiments) spectrometer. The X-rays emitted from fission fragments were detected by LEP detectors and γ rays emitted from excited states of the fission fragments were detected by CLOVER detectors in the spectrometer. (author)

  12. Decay heat from products of 235U thermal fission by fast-response boil-off calorimetry

    International Nuclear Information System (INIS)

    Yarnell, J.L.; Bendt, P.J.

    1977-09-01

    A cryogenic boil-off calorimeter was used to measure the decay heat from the products of thermal-neutron-induced fission of 235 U. Data are presented for cooling times between 10 and 10 5 s following a 2 x 10 4 s irradiation at constant thermal-neutron flux. The experimental uncertainty (1 sigma) in these measurements was approximately 2 percent, except at the shortest cooling times where it rose to approximately 4 percent. The beta and gamma energy from an irradiated 235 U sample was absorbed in a thermally isolated 52-kg copper block that was held at 4 K by an internal liquid helium reservoir. The absorbed energy evaporated liquid helium from the reservoir and a hot-film anemometer flowmeter recorded the evolution rate of the boil-off gas. The decay heat was calculated from the gas-flow rate using the heat of vaporization of helium. The calorimeter had a thermal time constant of 0.85 s. The energy loss caused by gamma leakage from the absorber was less than or equal to 3 percent; a correction was made by Monte Carlo calculations based on experimentally determined gamma spectra. The data agree within the combined uncertainties with summation calculations using the ENDF/B-IV data base. The experimental data were combined with summation calculations to give the decay heat for infinite (10 13 s) irradiation

  13. Study of 235U very asymmetric thermal fission

    International Nuclear Information System (INIS)

    Sida, J.L.

    1989-12-01

    The fission fragment separator Lohengrin of the Institut Laue-Langevin in Grenoble was used to determine the yields of the very asymmetric light fission products (A=84-69) as a function of A, Z, and the kinetic energy E. The proton pairing effect causes fine structures in the mass distribution, in the mean nuclear charge anti Z and its variance σ z , and in the mean kinetic energies of the elements. The neutron pairing effect in the production yields is found for the first time of the same order of magnitude than the proton pairing effect. In the mass region investigated both are the largest observed in fission of 235 U. A decrease in the mean kinetic energy for the isotopes of Ni and Cu was observed. It points to a large deformation at scission. Our results support the view that very asymmetric low-energy fission is a weakly dissipative process. The highly deformed transient system breaks by a slow necking-in process [fr

  14. Measurement of the 238U subthreshold fission cross section for incident neutron energies between 0.6 and 100 keV

    International Nuclear Information System (INIS)

    Difilippo, F.C.; Perez, R.B.; de Saussure, G.; Olsen, D.K.; Ingle, R.W.

    1977-01-01

    The neutron-induced 238 U subthreshold fission cross section has been measured in the neutron energy range between 0.6 and 100 keV. A total of 28 fission clusters were identified. The well-known clusters at 721 and 1210 eV appeared resolved into their Class I components. Average 238 U subthreshold fission cross sections were determined and compared with available results in the literature. The measurement is interpreted in terms of fission doorway (Class II levels) arising from the assumption of the existence of a double-humped fission barrier for the ( 238 U + n) compound nucleus at large deformations. On the basis of this model, several fission barrier parameters were determined

  15. Proposal of new 235U nuclear data to improve keff biases on 235U enrichment and temperature for low enriched uranium fueled lattices moderated by light water

    International Nuclear Information System (INIS)

    Wu, Haicheng; Okumura, Keisuke; Shibata, Keiichi

    2005-06-01

    The under prediction of k eff depending on 235 U enrichment in low enriched uranium fueled systems, which had been a long-standing puzzle especially for slightly enriched ones, was studied in this report. Benchmark testing was carried out with several evaluated nuclear data files, including the new uranium evaluations from preliminary ENDF/B-VII and CENDL-3.1. Another problem reviewed here was k eff underestimation vs. temperature increase, which was observed in the sightly enriched system with recent JENDL and ENDF/B uranium evaluations. Through the substitute analysis of nuclear data of 235 U and 238 U, we propose a new evaluation of 235 U data to solve both of the problems. The new evaluation was tested for various uranium fueled systems including low or highly enriched metal and solution benchmarks in the ICSBEP handbook. As a result, it was found that the combination of the new evaluation of 235 U and the 238 U data from the preliminary ENDF/B-VII gives quite good results for most of benchmark problems. (author)

  16. Neutron capture and fission cross section of Americium-243 in the energy range from 5 to 250 keV

    International Nuclear Information System (INIS)

    Wisshak, K.; Kaeppeler, F.

    1983-04-01

    The neutron capture and subthreshold fission cross section of 243 Am was measured in the energy range from 5 to 250 keV using 197 Au and 235 U as the respective standards. Neutrons were produced via the 7 Li(p,n) and the T(p,n) reaction with the Karlsruhe 3-MV pulsed Van de Graaff accelerator. Capture events were detected by two MoxonRae detectors with graphite and bismuthgraphite converters, respectively. Fission events were registered by a NE-213 liquid scintillator with pulse-shape discriminator equipment. Flight paths as short as 50-70 mm were used to obtain optimum signal-to-background ratio. After correction for the different efficiency of the individual converter materials the capture cross section could be determined with a total uncertainty of 3-6%. The respective values for the fission cross section are 8-12%. The results are compared to predictions of recent evaluations, which in some cases are severely discrepant. (orig.)

  17. Determination of the isotopic ratio 234 U/238 U and 235 U/238 U in uranium commercial reagents by alpha spectroscopy

    International Nuclear Information System (INIS)

    Iturbe G, J.L.

    1990-02-01

    In this work the determination of the isotope ratio 234 U/ 238 U and 235 U/ 238 U obtained by means of the alpha spectroscopy technique in uranium reagents of commercial marks is presented. The analyzed uranium reagents were: UO 2 (*) nuclear purity, UO 3 (*) poly-science, metallic uranium, uranyl nitrate and uranyl acetate Merck, uranyl acetate and uranyl nitrate Baker, uranyl nitrate (*) of the Refinement and Conversion Department of the ININ, uranyl acetate (*) Medi-Lab Sigma of Mexico and uranyl nitrate Em Science. The obtained results show that the reagents that are suitable with asterisk (*) are in radioactive balance among the one 234 U/ 238 U, since the obtained value went near to the unit. In the case of the isotope ratio 235 U/ 238 U the near value was also obtained the one that marks the literature that is to say 0.04347, what indicates that these reagents contain the isotope of 235 U in the percentage found in the nature of 0.71%. The other reagents are in radioactive imbalance among the 234 U/ 238 U, the found values fluctuated between 0.4187 and 0.1677, and for the quotient of activities 235 U/ 238 U its were of 0.0226, and the lowest of 0.01084. Also in these reagents it was at the 236 U as impurity. The isotope of 236 U is an isotope produced artificially, for what is supposed that the reagents that are in radioactive imbalance were synthesized starting from irradiated fuel. (Author)

  18. Review of microscopic integral cross section data in fundamental reactor dosimetry benchmark neutron fields

    International Nuclear Information System (INIS)

    Fabry, A.; McElroy, W.N.; Kellogg, L.S.; Lippincott, E.P.; Grundl, J.A.; Gilliam, D.M.; Hansen, G.E.

    1976-01-01

    This paper is intended to review and critically discuss microscopic integral cross section measurement and calculation data for fundamental reactor dosimetry benchmark neutron fields. Specifically the review covers the following fundamental benchmarks: the spontaneous californium-252 fission neutron spectrum standard field; the thermal-neutron induced uranium-235 fission neutron spectrum standard field; the (secondary) intermediate-energy standard neutron field at the center of the Mol-ΣΣ, NISUS, and ITN-ΣΣ facilities; the reference neutron field at the center of the Coupled Fast Reactor Measurement Facility; the reference neutron field at the center of the 10% enriched uranium metal, cylindrical, fast critical; the (primary) Intermediate-Energy Standard Neutron Field

  19. Theoretical studies aiming at the IEA-R1 reactor core conversion from high U-235 enrichment to low U-235 enrichment

    International Nuclear Information System (INIS)

    Frajndlich, R.

    1982-01-01

    The research reactors, of which the fuel elements are of MTR type, functions presently, almost in their majority with high U-235 enrichment. The fear that those fuel elements might generate a considerabLe proliferation of nuclear weapons rendered almost mandatory the conversion of highly enriched fuel elements to a low U-235 enrichment. As the IEA-R1 reactor of IPEN is operating with highly enriched fuel elements a study aiming at this conversion was done. The problems related to the conversion and the results obtained, demonstrated the technical viabilty for its realization. (E.G.) [pt

  20. Performance evaluation of indigenous thermal ionization mass spectrometer for determination of 235U/238U atom ratios

    International Nuclear Information System (INIS)

    Alamelu, D.; Parab, A.R.; Sasi Bhushan, K.; Shah, Raju V.; Jagdish Kumar, S.; Rao, Radhika M.; Aggarwal, S.K.; Bhatia, R.K.; Yadav, V.K.; Sharma, Madhavi P.; Tulsyan, Puneet; Chavda, Pradip; Sriniwasan, P.

    2014-07-01

    A magnetic sector based Thermal Ionization Mass Spectrometer (TIMS) designed and developed at Technical Physics Division, B.A.R.C., was evaluated for its performance for the determination of 235 U/ 238 U atom ratios in uranium samples. This consisted of evaluating the precision and accuracy on the 235 U/ 238 U atom ratios in various isotopic reference materials as well as indigenously generated uranium samples. The results obtained by the indigenous TIMS were also compared with those obtained using a commercially available TIMS system. The internal and external precision were found to be around 0.1% for determining 235 U/ 238 U atom ratios close to those of natural uranium ( i.e. 0.00730). (author)

  1. 232Th and 238U neutron emission cross section calculations and analysis of experimental data

    International Nuclear Information System (INIS)

    Tel, E.

    2004-01-01

    In this study, pre-equilibrium neutron-emission spectra produced by (n,xn) reactions on nuclei 2 32Th and 2 38U have been calculated. Angle-integrated cross sections in neutron induced reactions on targets 2 32Th and 2 38U have been calculated at the bombarding energies up to 18 MeV. We have investigated multiple pre-equilibrium matrix element constant from internal transition for 2 32Th (n,xn) neutron emission spectra. In the calculations, the geometry dependent hybrid model and the cascade exciton model including the effects of pre-equilibrium have been used. In addition, we have described how multiple pre-equilibrium emissions can be included in the Feshbach-Kerman-Koonin (FKK) fully quantum-mechanical theory. By analyzing (n,xn) reaction on 232 T h and 2 38U, with the incident energy from 2 Me V to 18 Me V, the importance of multiple pre-equilibrium emission can be seen cleady. All calculated results have been compared with experimental data. The obtained results have been discussed and compared with the available experimental data and found agreement with each other

  2. Neutron induced 238U subthreshold fission cross section for neutron energies between 5 eV and 3.5 MeV

    International Nuclear Information System (INIS)

    Perez, R.B.; Difilippo, F.C.; Saussure, G. de; Ingle, R.W.

    1978-01-01

    A measurement of the 238 U fission cross section between 5 eV and 3.5 MeV was performed. Included is the identification of 85 resonances or clusters of resonances below 200 keV. Also the fission widths for the 27 resolved class I levels were computed from their fission areas, and a neutron width of 0.005 MeV was estimated for the quasi-class II level in the 721 eV fission cluster. The fission level spacing and cross sections are discussed. 9 references

  3. Beta and gamma decay heat measurements between 0.1s--50,000s for neutron fission of 235U, 238U and 239Pu

    International Nuclear Information System (INIS)

    Schier, W.A.; Couchell, G.P.

    1993-01-01

    A helium-jet/tape-transport system is employed in the study of beta-particle and gamma-ray energy spectra of aggregate fission products as a function of time after fission. During the initial nine months of this project we have investigated the following areas: Design, assembly and characterization of a beta-particle spectrometer; Measurement of 235 U(n th ff) beta spectra for delay times 0.2 s to 12,000 s; Assembly and characterization of a 5 x 5 Nal(Tl) gamma-ray spectrometer; Measurement of 235 U(n th ff) gamma-ray spectra for delay times 0.2s to 1 5,500s; Assembly and characterization of HPGe gamma-ray spectrometer with a Nal(Tl) Compton-and-background-suppression annulus; Measurement of 235 U(n th ,ff) high-resolution gamma-ray spectra for delay times 0.6 s to over 100,000 s; Comparison of individual gamma-line intensities with ENDF/B-VI; Adaptation to our computer of unfolding program FERDO for beta and gamma aggregate fission-product energy spectra and development of a spectrum-stripping program for analysis of HPGe gamma-ray spectra; Study of the helium-jet fission-fragment elemental transfer efficiency. This work has resulted in the publication of twelve BAPS abstracts of presentations at scientific meetings. There are currently four Ph.D. and two M.S. candidates working on dissertations associated with the project

  4. Review of microscopic integral cross section data in fundamental reactor dosimetry benchmark neutron fields

    International Nuclear Information System (INIS)

    Fabry, A.; McElroy, W.N.; Kellogg, L.S.; Lippincott, E.P.; Grundl, J.A.; Gilliam, D.M.; Hansen, G.E.

    1976-10-01

    The paper is intended to review and critically discuss microscopic integral cross section measurement and calculation data for fundamental reactor dosimetry benchmark neutron fields. Specifically the review covers the following fundamental benchmarks: (1) the spontaneous californium-252 fission neutron spectrum standard field; (2) the thermal-neutron induced uranium-235 fission neutron spectrum standard field; (3) the (secondary) intermediate-energy standard neutron field at the center of the Mol-ΣΣ, NISUS, and ITN--ΣΣ facilities; (4) the reference neutron field at the center of the Coupled Fast Reactor Measurement Facility (CFRMF); (5) the reference neutron field at the center of the 10 percent enriched uranium metal, cylindrical, fast critical; and (6) the (primary) Intermediate-Energy Standard Neutron Field

  5. Neutron widths for 236U from high resolution transmission measurements at a 100M flightpath

    International Nuclear Information System (INIS)

    Carraro, G.; Brusegan, A.

    1975-01-01

    A series of neutron transmission measurements has been performed on 236 U aiming at a determination of the resonance parameters and their statistical properties. The analysis range covered neutron energies from 40eV to 4.1 keV. The experiments were carried out at about 100 m flightpath of the 80 MeV electron linear accelerator of CBNM using a 10 B slab-NaI detector and 2 236 U-oxyde samples on loan from the USAEC. A table displays the details of 6 experimental runs, 3 of which were arranged in such a way that the effect of the 235 U and 238 U impurities in the sample on the transmission was automatically compensated

  6. Recommended reactor coolant water chemistry requirements for WWER-1000 units with 235U higher enriched fuel

    International Nuclear Information System (INIS)

    Dobrevski, I.; Zaharieva, N.

    2011-01-01

    The last decade worldwide experience of PWRs and WWERs confirms the trends for the improvement of the nuclear power industry electricity production through the implementation of high burn-up or high fuel duty, which are usually accompanied with the usage of UO 2 fuel with higher content of 235 U - 4.0% - 4.5% (5.0%). It was concluded that the onset of sub-cooled nucleate boiling (SNB) on the fuel cladding surfaces and the initial excess reactivity of the core are the primary and basic factors accompanying the implementation of uranium fuel with higher 235 U content, aiming extended fuel cycles and higher burn-up of the fuel in Pressurized Water Reactors. As main consequences of the presence of these factors the modifications of chemical / electrochemical environments of nuclear fuel cladding- and reactor coolant system- surfaces are evaluated. These conclusions are the reason for: 1) The determination of the choices of the type of fuel cladding materials in respect with their enough corrosion resistance to the specific fuel cladding environment, created by the presence of SNB; 2) The development and implementation of primary circuit water chemistry guidelines ensuring the necessary low corrosion rates of primary circuit materials and limitation of cladding deposition and out-of-core radioactivity buildup; 3) Implementation of additional neutron absorbers which allow enough decrease of the initial concentration of H 3 BO 3 in coolant, so that its neutralization will be possible with the permitted alkalising agent concentrations. In this paper the specific features of WWER-1000 units in Bulgarian Nuclear Power Plant; use of 235 U higher enriched fuel in the WWER-1000 reactors in the Kozloduy NPP; coolant water chemistry and radiochemistry plant data during the power operation period of the Kozloduy NPP Unit 5, 15 th fuel cycle; evaluation of the approaches and results by the conversion of the WWER-1000 Units at the Kozloduy NPP to the uranium fuel with 4.3% 235 U as

  7. Measurement of actinide neutron cross sections

    International Nuclear Information System (INIS)

    Firestone, Richard B.; Nitsche, Heino; Leung, Ka-Ngo; Perry, DaleL.; English, Gerald

    2003-01-01

    The maintenance of strong scientific expertise is critical to the U.S. nuclear attribution community. It is particularly important to train students in actinide chemistry and physics. Neutron cross-section data are vital components to strategies for detecting explosives and fissile materials, and these measurements require expertise in chemical separations, actinide target preparation, nuclear spectroscopy, and analytical chemistry. At the University of California, Berkeley and the Lawrence Berkeley National Laboratory we have trained students in actinide chemistry for many years. LBNL is a leader in nuclear data and has published the Table of Isotopes for over 60 years. Recently, LBNL led an international collaboration to measure thermal neutron capture radiative cross sections and prepared the Evaluated Gamma-ray Activation File (EGAF) in collaboration with the IAEA. This file of 35, 000 prompt and delayed gamma ray cross-sections for all elements from Z=1-92 is essential for the neutron interrogation of nuclear materials. LBNL has also developed new, high flux neutron generators and recently opened a 1010 n/s D+D neutron generator experimental facility

  8. CAMAC in neutron physics investigations

    Energy Technology Data Exchange (ETDEWEB)

    Meiling, W; Arlt, R; Grimm, W; Hirsch, W; Krause, R; Wagner, W; Weidhase, F [Technische Univ., Dresden (German Democratic Republic). Sektion Physik

    1978-09-01

    For computer-assisted experiments on the basis of the KRS 4200 minicomputer system, a CAMAC computer connection controller AS 10 as well as some control devices and CAMAC modules have been developed. A CAMAC assembly has been used for measuring the fission cross section of /sup 235/U for 14.7 MeV neutrons finding sigma sub(n,f) = (2.073 +- 0.023) x 10/sup -24/ cm/sup 2/.

  9. Effect of cycloheximide and actinomycin D on radionuclide 235U-induced apoptosis

    International Nuclear Information System (INIS)

    Fu Qiang; Zhang Lansheng; Zhu Shoupeng

    1999-01-01

    Objective: The mechanism of apoptosis induced by radionuclide 235 U was studied. Methods: MTT and JAM assay were used to analyse the cell viability and quantification of fragmented DNA. Results: The inhibitor of protein cycloheximide (CHX), and the inhibitor of RNA synthesis, actinomycin D. cannot inhibit the apoptosis induced by 235 U, but CHX can partly inhibit apoptotic cells DNA fragmentation. Conclusion: The pathway of apoptosis induced by radionuclide 235 U is different from X-and γ-ray external irradiation, protein synthesis is not essential for it, but synthetic endonuclease is necessary for DNA fragmentation of apoptotic cells

  10. Neutron cross section measurements for the Fast Breeder Program

    International Nuclear Information System (INIS)

    Block, R.C.

    1979-06-01

    This research was concerned with the measurement of neutron cross sections of importance to the Fast Breeder Reactor. The capture and total cross sections of fission products ( 101 102 104 Ru, 143 145 Nd, 149 Sm, 95 97 Mo, Cs, Pr, Pd, 107 Pd, 99 Tc) and tag gases (Kr, 78 80 Kr) were measured up to 100 keV. Filtered neutron beams were used to measure the capture cross section of 238 U (with an Fe filter) and the total cross section of Na (with a Na filter). A radioactive neutron capture detector was developed. A list of publications is included

  11. Additions and corrections to the communications presented by France at the Geneva Conference in august 1955; Additifs et correctifs aux communications presentees par la France a la conference de Geneve d'aout 1955

    Energy Technology Data Exchange (ETDEWEB)

    Labeyrie, J; Weill, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    A graphic correction is given for the communication number 442 of the C.E.A. at the Geneva conference about the measurement of atmosphere radioactivity and pollution near an atomic centre. An addition to the communication number 446 of the C.E.A. at the Geneva conference about the measurement of the cross section of fissile nucleus for slow neutrons is presented. It discussed the measurement of the cross section of {sup 235}U nucleus fission for neutrons of 25 keV by comparing the fission cross section of {sup 235}U and the activation cross section of {sup 197}Au with two different neutrons sources. The principle and experimental procedures are explained and the experimental data and results are given. A note about the cross section of {sup 239}Pu fission for slow neutrons is added. A modification of the appendix in the communication number 405 of the C.E.A. at the Geneva conference about the study of the energy dependent variation of the cross sections of {sup 233}U, {sup 235}U and {sup 239}Pu fission for fast neutrons is given. The variation of the fission cross sections of {sup 233}U, {sup 235}U and {sup 239}Pu with the neutrons energy is given as well as the variation of the counting ratio of fission between {sup 239}Pu and {sup 235}U with the neutrons sources distance. The efficiency of the 'long' counter is discussed. (M.P.)

  12. Calculations of neutron and proton induced reaction cross sections for actinides in the energy region from 10 MeV to 1 GeV

    International Nuclear Information System (INIS)

    Konshin, V.A.

    1995-01-01

    Several nuclear model codes were applied to calculations of nuclear data in the energy region from 10 MeV to 1 GeV. At energies up to 100 MeV the nuclear theory code GNASH was used for nuclear data calculation for incident neutrons for 238 U, 233-236 U, 238-242 Pu, 237 Np, 232 Th, 241-243 Am and 242-247 Cm. At energies from 100 MeV to 1 GeV the intranuclear cascade exciton model including the fission process was applied to calculations of protons and neutrons with 233 U, 235 U, 238 U, 232 Th, 232 Pa, 237 Np, 238 Np, 239 Pu, 241 Am, 242 Am and 242-248 Cm. Determination of parameter systematics was a major effort in the present work that was aimed at improving the predictive capability of the models used. An emphasis was made on a simultaneous analysis of data for a variety of reaction channels for the nucleus considered, as well as of data that are available for nearby nuclei or other incident particles. Comparison with experimental data available on multiple reaction cross sections, isotope yields, fission cross sections, particle multiplicities, secondary particle spectra, and double differential cross sections indicates that the calculations reproduce the trends, and often the details, of the experimental data. (author)

  13. Calculations of neutron and proton induced reaction cross sections for actinides in the energy region from 10MeV to 1GeV

    International Nuclear Information System (INIS)

    Konshin, V.A.

    1995-06-01

    Several nuclear model codes were applied to calculations of nuclear data in the energy region from 10MeV to 1GeV. At energies up to 100MeV the nuclear theory code GNASH was used for nuclear data calculation for neutrons incident for on 238 U, 233-236 U, 238-242 Pu, 237 Np, 232 Th, 241-243 Am and 242-247 Cm. At energies from 100MeV to 1GeV the intranuclear cascade exciton model including the fission process was applied to calculations of protons and neutrons with 233 U, 235 U, 238 U, 232 Th, 232 Pa, 237 Np, 238 Np, 239 Pu, 241 Am, 242 Am and 242-248 Cm. Determination of parameter systematics was a major effort in the present work that was aimed at improving the predictive capability of the models used. An emphasis was placed upon a simultaneous analysis of data for a variety of reaction channels for the nuclei considered, as well as of data that are available for nearby nuclei or for other incident particles. Comparisons with experimental data available on multiple reaction cross sections, isotope yields, fission cross sections, particle multiplicities, secondary particle spectra, and double differential cross sections indicate that the calculations reproduce the trends, and often the details, of the measurements data. (author) 82 refs

  14. Mass dependence of azimuthal asymmetry in the fission of {sup 232}Th and {sup 233,235,236,238}U by polarized photons

    Energy Technology Data Exchange (ETDEWEB)

    Denyak, V.V. [National Science Center ' ' Kharkov Institute of Physics and Technology' ' , Kharkiv (Ukraine); Pele Pequeno Principe Research Institute, Curitiba (Brazil); Khvastunov, V.M. [National Science Center ' ' Kharkov Institute of Physics and Technology' ' , Kharkiv (Ukraine); Paschuk, S.A. [Federal University of Technology - Parana, Curitiba (Brazil); Schelin, H.R. [Federal University of Technology - Parana, Curitiba (Brazil); Pele Pequeno Principe Research Institute, Curitiba (Brazil)

    2013-04-15

    Fission of the even-even nuclei {sup 232}Th, {sup 236,238}U and even-odd nuclei {sup 233,235}U by linearly polarized photons has been studied at excitation energies in the region of a giant dipole resonance. The performed investigations unambiguously showed the existence of the fragment mass dependence of the cross section azimuthal asymmetry in the photofission of {sup 236}U and {sup 238}U. In addition, the obtained results provided the first evidence for the possible difference between the asymmetry values in asymmetric and symmetric mass distribution regions in the case of {sup 236}U. The measured cross section azimuthal asymmetry of the fission of {sup 232}Th does not show any fragment mass dependence. In the even-odd nuclei {sup 233}U and {sup 235}U the difference between the far-asymmetric and other mass distribution regions was also observed but with the statistical uncertainty not small enough for definitive conclusion. (orig.)

  15. Computer program FPIP-REV calculates fission product inventory for U-235 fission

    Science.gov (United States)

    Brown, W. S.; Call, D. W.

    1967-01-01

    Computer program calculates fission product inventories and source strengths associated with the operation of U-235 fueled nuclear power reactor. It utilizes a fission-product nuclide library of 254 nuclides, and calculates the time dependent behavior of the fission product nuclides formed by fissioning of U-235.

  16. Determination of the isotopic ratio {sup 234} U/{sup 238} U and {sup 235} U/{sup 238} U in uranium commercial reagents by alpha spectroscopy; Determinacion de la relacion isotopica {sup 234} U/{sup 238} U y {sup 235} U/{sup 238} U en reactivos comerciales de uranio por espectrometria alfa

    Energy Technology Data Exchange (ETDEWEB)

    Iturbe G, J L

    1990-02-15

    In this work the determination of the isotope ratio {sup 234} U/{sup 238} U and {sup 235} U/{sup 238} U obtained by means of the alpha spectroscopy technique in uranium reagents of commercial marks is presented. The analyzed uranium reagents were: UO{sub 2} (*) nuclear purity, UO{sub 3} (*) poly-science, metallic uranium, uranyl nitrate and uranyl acetate Merck, uranyl acetate and uranyl nitrate Baker, uranyl nitrate (*) of the Refinement and Conversion Department of the ININ, uranyl acetate (*) Medi-Lab Sigma of Mexico and uranyl nitrate Em Science. The obtained results show that the reagents that are suitable with asterisk (*) are in radioactive balance among the one {sup 234} U/{sup 238} U, since the obtained value went near to the unit. In the case of the isotope ratio {sup 235} U/{sup 238} U the near value was also obtained the one that marks the literature that is to say 0.04347, what indicates that these reagents contain the isotope of {sup 235} U in the percentage found in the nature of 0.71%. The other reagents are in radioactive imbalance among the {sup 234} U/{sup 238} U, the found values fluctuated between 0.4187 and 0.1677, and for the quotient of activities {sup 235} U/{sup 238} U its were of 0.0226, and the lowest of 0.01084. Also in these reagents it was at the {sup 236} U as impurity. The isotope of {sup 236} U is an isotope produced artificially, for what is supposed that the reagents that are in radioactive imbalance were synthesized starting from irradiated fuel. (Author)

  17. Fission-product energy release for times following thermal-neutron fission of 235U between 2 and 14000 seconds

    International Nuclear Information System (INIS)

    Dickens, J.K.; Emery, J.F.; Love, T.A.; McConnell, J.W.; Northcutt, K.J.; Peelle, R.W.; Weaver, H.

    1977-10-01

    Fission-product decay energy-releases rates were measured for thermal-neutron fission of 235 U. Samples of mass 1 to 10 μg were irradiated for 1 to 100 sec by use of the fast pneumatic-tube facility at the Oak Ridge Research Reactor. The resulting beta- and gamma-ray emissions were counted for times-after-fission between 2 and 14,000 seconds. The data were obtained for beta and gamma rays separately as spectral distributions, N(E/sub γ/) vs E/sub γ/ and N(E/sub beta/) vs E/sub β/. For the gamma-ray data the spectra were obtained by using a NaI detector, while for the beta-ray data the spectra were obtained by using an NE-110 detector with an anticoincidence mantle. The raw data were unfolded to provide spectral distributions of modest resolution. These were integrated over E/sub γ/ and E/sub β/ to provide total yield and energy integrals as a function of time after fission. Results are low compared to the present 1973 ANS Decay-heat standard. A complete description of the experimental apparatus and data-reduction techniques is presented. The final integral data are given in tabular and graphical form and are compared with published data. 41 figures, 13 tables

  18. Fission-fragment angular distributions and total kinetic energies for 235U(n,f) from .18 to 8.83 MeV

    International Nuclear Information System (INIS)

    Meadows, J.W.; Budtz-Joergensen, C.

    1982-01-01

    A gridded ion chamber was used to measure the fission fragment angular distribution and total kinetic energy for the 235 U(n,f) reaction from 0.18 to 8.81 MeV neutron energy. The anisotropies are in generally good agreement with earlier measurements. The average total kinetic energy is approx. 0.2 MeV greater than the thermal value at neutron energies < 2 MeV and shows a sudden decrease of approx. 0.8 MeV between 4 and 5 MeV neutron energy, well below the (n, n'f) threshold. Possible causes of this decrease are a change in the mass distribution or decreased shell effects in the heavy fragment

  19. Validation of Cross Sections with Criticality Experiment and Reaction Rates: the Neptunium Case

    CERN Document Server

    Leong, L S; Audouin, L; Berthier, B; Le Naour, C; Stéphan, C; Paradela, C; Tarrío, D; Duran, I

    2014-01-01

    The Np-237 neutron-induced fission cross section has been recently measured in a large energy range (from eV to GeV) at the n\\_TOF facility at CERN. When compared to previous measurements the n\\_TOF fission cross section appears to be higher by 5-7\\% beyond the fission threshold. To check the relevance of the n\\_TOF data, we considered a criticality experiment performed at Los Alamos with a 6 kg sphere of Np-237, surrounded by uranium highly enriched in U-235 so as to approach criticality with fast neutrons. The multiplication factor k(eff) of the calculation is in better agreement with the experiment when we replace the ENDF/B-VII. 0 evaluation of the Np-237 fission cross section by the n\\_TOF data. We also explored the hypothesis of deficiencies of the inelastic cross section in U-235 which has been invoked by some authors to explain the deviation of 750 pcm. The large modification needed to reduce the deviation seems to be incompatible with existing inelastic cross section measurements. Also we show that t...

  20. 48 CFR 252.235-7001 - Indemnification under 10 U.S.C. 2354-cost reimbursement.

    Science.gov (United States)

    2010-10-01

    ....S.C. 2354-cost reimbursement. 252.235-7001 Section 252.235-7001 Federal Acquisition Regulations.... 2354—cost reimbursement. As prescribed in 235.070-3, use the following clause: Indemnification Under 10 U.S.C. 2354—Cost Reimbursement (DEC 1991) (a) This clause provides for indemnification under 10 U.S...

  1. Neutron radiography at the SCK/CEN

    International Nuclear Information System (INIS)

    Tourwe, H.

    1977-01-01

    Neutron radiography has become in recent years a very important method of nondestructive testing in industry and research. The earliest practical application of neutron radiography has probably been the inspection of highly radioactive material: originally irradiated reactor fuels. Applications then progressed to other nuclear and industrial inspection problems. Neutron radiography and the conventional X-ray or gamma techniques are complementary. Some of the most important application fields of neutron radiography are: the detection of light elements (H, Li, B,...) with a very high scattering of absorption cross section for thermal neutrons; the nondestructive control of fuel before and after irradiation; controls where a distinction has to be made between isotopes of the same element ( 235 U and 238 U, 10 B and 11 B,...) and between components of a similar atomic number (Fe and Zn); the control of materials with a high density; the study of corrosion in closed structures; the control of the homogeneity of foreign materials in alloys,.... (author)

  2. Neutron-absorption cross section of sodium-22

    International Nuclear Information System (INIS)

    Rundberg, R.; Elgart, M.F.; Finston, H.L.; Williams, E.T.; Bond, A.H. Jr.

    1975-01-01

    A simple method for determining the neutron-absorption cross sections for radionuclides produced and consumed in a reactor-neutron flux is described. Data were obtained for 22 Na which, through application of Westcott's procedure, yielded the following: sigma 0 = 51.5 +- 3.1 kbarns, s 0 = 2.3 +- 0.1, and Σ' = 100 +- 10 kbarns. (3 tables) (U.S.)

  3. Neutron multiplicity for neutron induced fission of 235U, 238U, and 239Pu as a function of neutron energy

    International Nuclear Information System (INIS)

    Zucker, M.S.; Holden, N.E.

    1986-01-01

    Recent development in the theory and practice of neutron correlation (''coincidence'') counting require knowledge of the higher factorial moments of the P/sub ν/ distribution (the probability that (ν) neutrons are emitted in a fission) for the case where the fission is induced by bombarding neutrons of more than thermal energies. In contrast to the situation with spontaneous and thermal neutron induced fission, where with a few exceptions the P/sub ν/ is reasonably well known, in the fast neutron energy region, almost no information is available concerning the multiplicity beyond the average value, [ν], even for the most important nuclides. The reason for this is the difficulty of such experiments, with consequent statistically poor and physically inconsistent results

  4. Measurement of the 235 U absolute activity

    International Nuclear Information System (INIS)

    Bueno, C.C.; Santos, M.D.S.

    1993-01-01

    The absolute activity of 235 U contained in a sample was measured utilizing a sum-coincidence circuit which selects only the alpha particles emitted simultaneously with the 143 KeV gamma radiations from the 231 Th (product nucleus). The alpha particles were detected by means of a new type of a gas scintillating chamber, in which the light emitted by excitation of the gas atoms, due to the passage of a charged incoming particle, has its intensity increased by the action of an applied electric field. The gamma radiations were detected by means of a 1'x 1 1/2 Nal (TI) scintillation detector. The value obtained for the half-life of 235 U, (7.04+-0.01)10 8 y, was compared with the data available from various observers with used different experimental techniques. It is shown that our results are in excellent agreement with the best data available on the subject. (author) 15 refs, 5 figs, 1 tab

  5. Measurement of the 234U(n, f ) cross-section with quasi-monoenergetic beams in the keV and MeV range using a Micromegas detector assembly

    Science.gov (United States)

    Stamatopoulos, A.; Kanellakopoulos, A.; Kalamara, A.; Diakaki, M.; Tsinganis, A.; Kokkoris, M.; Michalopoulou, V.; Axiotis, M.; Lagoyiannis, A.; Vlastou, R.

    2018-01-01

    The 234U neutron-induced fission cross-section has been measured at incident neutron energies of 452, 550, 651 keV and 7.5, 8.7, 10 MeV using the 7Li ( p, n) and the 2H( d, n) reactions, respectively, relative to the 235U( n, f ) and 238U( n, f ) reference reactions. The measurement was performed at the neutron beam facility of the National Center for Scientific Research "Demokritos", using a set-up based on Micromegas detectors. The active mass of the actinide samples and the corresponding impurities were determined via α-spectroscopy using a surface barrier silicon detector. The neutron spectra intercepted by the actinide samples have been thoroughly studied by coupling the NeuSDesc and MCNP5 codes, taking into account the energy and angular straggling of the primary ion beams in the neutron source targets in addition to contributions from competing reactions ( e.g. deuteron break-up) and neutron scattering in the surrounding materials. Auxiliary Monte Carlo simulations were performed making combined use of the FLUKA and GEF codes, focusing particularly on the determination of the fission fragment detection efficiency. The developed methodology and the final results are presented.

  6. Neutron scattering cross sections for 232Th and 238U inferred from proton scattering and charge exchange measurements

    International Nuclear Information System (INIS)

    Hansen, L.F.; Grimes, S.M.; Pohl, B.A.; Poppe, C.H.; Wong, C.

    1980-01-01

    Differential cross sections for the (p,n) reactions to the isobaric analog states (IAS) of 232 Th and 238 U targets were measured at 26 and 27 MeV. The analysis of the data was done in conjunction with the proton elastic and inelastic (2 + , 4 + , 6 + ) differential cross sections measured at 26 MeV. Because collective effects are important in this mass region, deformed coupled-channels calculations were carried out for the simultaneous analysis of the proton and neutron outgoing channels. The sensitivity of the calculations was studied with respect to the optical model parameters used in the calculations, the shape of the nuclear charge distribution, the type of coupling scheme assumed among the levels, the magnitude of the deformation parameters, and the magnitude of the isovector potentials, V 1 and W 1 . A Lane model-consistent analysis of the data was used to infer optical potential parameters for 6- to 7-MeV neutrons. The neutron elastic differential cross sections obtained from these calculations are compared with measurements available in the literature, and with results obtained using neutron parameters from global sets reported at these energies. 7 figures, 3 tables

  7. High-accuracy determination of the neutron flux at n{sub T}OF

    Energy Technology Data Exchange (ETDEWEB)

    Barbagallo, M.; Colonna, N.; Mastromarco, M.; Meaze, M.; Tagliente, G.; Variale, V. [Sezione di Bari, INFN, Bari (Italy); Guerrero, C.; Andriamonje, S.; Boccone, V.; Brugger, M.; Calviani, M.; Cerutti, F.; Chin, M.; Ferrari, A.; Kadi, Y.; Losito, R.; Versaci, R.; Vlachoudis, V. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Tsinganis, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); National Technical University of Athens (NTUA), Athens (Greece); Tarrio, D.; Duran, I.; Leal-Cidoncha, E.; Paradela, C. [Universidade de Santiago de Compostela, Santiago (Spain); Altstadt, S.; Goebel, K.; Langer, C.; Reifarth, R.; Schmidt, S.; Weigand, M. [Johann-Wolfgang-Goethe Universitaet, Frankfurt (Germany); Andrzejewski, J.; Marganiec, J.; Perkowski, J. [Uniwersytet Lodzki, Lodz (Poland); Audouin, L.; Leong, L.S.; Tassan-Got, L. [Centre National de la Recherche Scientifique/IN2P3 - IPN, Orsay (France); Becares, V.; Cano-Ott, D.; Garcia, A.R.; Gonzalez-Romero, E.; Martinez, T.; Mendoza, E. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Becvar, F.; Krticka, M.; Kroll, J.; Valenta, S. [Charles University, Prague (Czech Republic); Belloni, F.; Fraval, K.; Gunsing, F.; Lampoudis, C.; Papaevangelou, T. [Commissariata l' Energie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); Berthoumieux, E.; Chiaveri, E. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Commissariata l' Energie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); Billowes, J.; Ware, T.; Wright, T. [University of Manchester, Manchester (United Kingdom); Bosnar, D.; Zugec, P. [University of Zagreb, Department of Physics, Faculty of Science, Zagreb (Croatia); Calvino, F.; Cortes, G.; Gomez-Hornillos, M.B.; Riego, A. [Universitat Politecnica de Catalunya, Barcelona (Spain); Carrapico, C.; Goncalves, I.F.; Sarmento, R.; Vaz, P. [Universidade Tecnica de Lisboa, Instituto Tecnologico e Nuclear, Instituto Superior Tecnico, Lisboa (Portugal); Cortes-Giraldo, M.A.; Praena, J.; Quesada, J.M.; Sabate-Gilarte, M. [Universidad de Sevilla, Sevilla (Spain); Diakaki, M.; Karadimos, D.; Kokkoris, M.; Vlastou, R. [National Technical University of Athens (NTUA), Athens (Greece); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L. [CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular, Valencia (Spain); Dressler, R.; Kivel, N.; Schumann, D.; Steinegger, P. [Paul Scherrer Institut, Villigen PSI (Switzerland); Dzysiuk, N.; Mastinu, P.F. [Laboratori Nazionali di Legnaro, INFN, Rome (Italy); Eleftheriadis, C.; Manousos, A. [Aristotle University of Thessaloniki, Thessaloniki (Greece); Ganesan, S.; Gurusamy, P.; Saxena, A. [Bhabha Atomic Research Centre (BARC), Mumbai (IN); Griesmayer, E.; Jericha, E.; Leeb, H. [Technische Universitaet Wien, Atominstitut, Wien (AT); Hernandez-Prieto, A. [European Organization for Nuclear Research (CERN), Geneva (CH); Universitat Politecnica de Catalunya, Barcelona (ES); Jenkins, D.G.; Vermeulen, M.J. [University of York, Heslington, York (GB); Kaeppeler, F. [Institut fuer Kernphysik, Karlsruhe Institute of Technology, Campus Nord, Karlsruhe (DE); Koehler, P. [Oak Ridge National Laboratory (ORNL), Oak Ridge (US); Lederer, C. [Johann-Wolfgang-Goethe Universitaet, Frankfurt (DE); University of Vienna, Faculty of Physics, Vienna (AT); Massimi, C.; Mingrone, F.; Vannini, G. [Universita di Bologna (IT); INFN, Sezione di Bologna, Dipartimento di Fisica, Bologna (IT); Mengoni, A.; Ventura, A. [Agenzia nazionale per le nuove tecnologie, l' energia e lo sviluppo economico sostenibile (ENEA), Bologna (IT); Milazzo, P.M. [Sezione di Trieste, INFN, Trieste (IT); Mirea, M. [Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest - Magurele (RO); Mondalaers, W.; Plompen, A.; Schillebeeckx, P. [Institute for Reference Materials and Measurements, European Commission JRC, Geel (BE); Pavlik, A.; Wallner, A. [University of Vienna, Faculty of Physics, Vienna (AT); Rauscher, T. [University of Basel, Department of Physics and Astronomy, Basel (CH); Roman, F. [European Organization for Nuclear Research (CERN), Geneva (CH); Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest - Magurele (RO); Rubbia, C. [European Organization for Nuclear Research (CERN), Geneva (CH); Laboratori Nazionali del Gran Sasso dell' INFN, Assergi (AQ) (IT); Weiss, C. [European Organization for Nuclear Research (CERN), Geneva (CH); Johann-Wolfgang-Goethe Universitaet, Frankfurt (DE)

    2013-12-15

    The neutron flux of the n{sub T}OF facility at CERN was measured, after installation of the new spallation target, with four different systems based on three neutron-converting reactions, which represent accepted cross sections standards in different energy regions. A careful comparison and combination of the different measurements allowed us to reach an unprecedented accuracy on the energy dependence of the neutron flux in the very wide range (thermal to 1 GeV) that characterizes the n{sub T}OF neutron beam. This is a pre-requisite for the high accuracy of cross section measurements at n{sub T}OF. An unexpected anomaly in the neutron-induced fission cross section of {sup 235}U is observed in the energy region between 10 and 30keV, hinting at a possible overestimation of this important cross section, well above currently assigned uncertainties. (orig.)

  8. Neutron capture cross section of ^243Am

    Science.gov (United States)

    Jandel, M.

    2009-10-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL) was used for neutron capture cross section measurement on ^243Am. The high granularity of DANCE (160 BaF2 detectors in a 4π geometry) enables the efficient detection of prompt gamma-rays following neutron capture. DANCE is located on the 20.26 m neutron flight path 14 (FP14) at the Manuel Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE). The methods and techniques established in [1] were used for the determination of the ^243Am neutron capture cross section. The cross sections were obtained in the range of neutron energies from 0.02 eV to 400 keV. The resonance region was analyzed using SAMMY7 and resonance parameters were extracted. The results will be compared to existing evaluations and calculations. Work was performed under the auspices of the U.S. Department of Energy at Los Alamos National Laboratory by the Los Alamos National Security, LLC under Contract No. DE-AC52-06NA25396 and at Lawrence Livermore National Laboratory by the Lawrence Livermore National Security, LLC under Contract No. DE-AC52-07NA27344. [4pt] [1] M. Jandel et al., Phys. Rev. C78, 034609 (2008)

  9. Neutron scattering studies in the actinide region

    International Nuclear Information System (INIS)

    Beghian, L.E.; Kegel, G.H.R.

    1991-08-01

    During the report period we have investigated the following areas: Neutron elastic and inelastic scattering measurements on 14 N, 181 Ta, 232 Th, 238 U and 239 Pu; Prompt fission spectra for 232 Th, 235 U, 238 U and 239 Pu; Theoretical studies of neutron scattering; Neutron filters; New detector systems; and Upgrading of neutron target assembly, data acquisition system, and accelerator/beam-line apparatus

  10. The analysis of neutron physical characteristics of fast reactors by means of pulsed experiments

    International Nuclear Information System (INIS)

    Stumbur, Eh.A.; Milyutina, Z.N.

    1992-01-01

    Possibility is considered for determination of macroscopic cross sections of homogeneous multiplicating media with fast neutrons. It is shown that by means of the critical size, laplaccian and neutron pulse damping decrement measurement results it is possible to obtain values of almost all cross sections of a medium. The method is tested with systems of metal 235 U and BFS-32 assemblies with the composition, typical for fast power reactors. A suitable algorithm is developed for solving nonstationary asymptotic transport problems. Calculation results are compared with experimental ones. 21 refs.; 2 figs.; 3 tabs

  11. Prompt fission neutron spectra and average prompt neutron multiplicities

    International Nuclear Information System (INIS)

    Madland, D.G.; Nix, J.R.

    1983-01-01

    We present a new method for calculating the prompt fission neutron spectrum N(E) and average prompt neutron multiplicity anti nu/sub p/ as functions of the fissioning nucleus and its excitation energy. The method is based on standard nuclear evaporation theory and takes into account (1) the motion of the fission fragments, (2) the distribution of fission-fragment residual nuclear temperature, (3) the energy dependence of the cross section sigma/sub c/ for the inverse process of compound-nucleus formation, and (4) the possibility of multiple-chance fission. We use a triangular distribution in residual nuclear temperature based on the Fermi-gas model. This leads to closed expressions for N(E) and anti nu/sub p/ when sigma/sub c/ is assumed constant and readily computed quadratures when the energy dependence of sigma/sub c/ is determined from an optical model. Neutron spectra and average multiplicities calculated with an energy-dependent cross section agree well with experimental data for the neutron-induced fission of 235 U and the spontaneous fission of 252 Cf. For the latter case, there are some significant inconsistencies between the experimental spectra that need to be resolved. 29 references

  12. On the Relative Signs of "ROT-Effects" in Ternary and Binary Fission of 233U and 235U Nuclei Induced by Polarized Cold Neutrons

    Science.gov (United States)

    Danilyan, G. V.

    2018-02-01

    Signs of the ROT-effects in ternary fission of 233U and 235U experimentally defined by PNPI group are the same, whereas in binary fission defined by ITEP group are opposite. This contradiction cannot be explained by the errors in the experiments of both groups, since such instrumental effects would be too large not to be noticed. Therefore, it is necessary to find the answer to this problem in the differences of the ternary and binary fission mechanisms.

  13. Measurements of neutron capture cross sections

    International Nuclear Information System (INIS)

    Nakajima, Yutaka

    1984-01-01

    A review of measurement techniques for the neutron capture cross sections is presented. Sell transmission method, activation method, and prompt gamma-ray detection method are described using examples of capture cross section measurements. The capture cross section of 238 U measured by three different prompt gamma-ray detection methods (large liquid scintillator, Moxon-Rae detector, and pulse height weighting method) are compared and their discrepancies are resolved. A method how to derive the covariance is described. (author)

  14. Evaluation of the neutron and gamma-ray production cross-sections for 55Mn

    International Nuclear Information System (INIS)

    Takahashi, H.

    1974-11-01

    The evaluation of neutron and gamma production cross sections for manganese-55 from 1.0 (10) -5 eV to 20.0 MeV for ENDF/ B-IV is summarized. Included are resonance parameters, neutron cross sections, angular and energy distribution of secondary neutrons, gamma multiplicities and transition probability array, gamma angular and energy distributions, nuclear model calculations, uncertainty estimates of cross sections, and evaluated cross sections. (U.S.)

  15. Neutron scattering cross sections of uranium-238

    International Nuclear Information System (INIS)

    Beghian, L.E.; Kegel, G.H.R.; Marcella, T.V.; Barnes, B.K.; Couchell, G.P.; Egan, J.J.; Mittler, A.; Pullen, D.J.; Schier, W.A.

    1979-01-01

    The University of Lowell high-resolution time-of-flight spectrometer was used to measure angular distributions and 90-deg excitation functions for neutrons scattered from 238 U in the energy range from 0.9 to 3.1 MeV. This study was limited to the elastic and the first two inelastic groups, corresponding to states of 238 U at 45 keV (2 + ) and 148 keV (4 + ). Angular distributions were measured at primary neutron energies of 1.1, 1.9, 2.5, and 3.1 MeV for the same three neutron groups. Whereas the elastic data are in fair agreement with the evaluation in the ENDF/B-IV file, there is substantial disagreement between the inelastic measurements and the evaluated cross sections. 12 figures

  16. Description and performance characteristics for the neutron Coincidence Collar for the verification of reactor fuel assemblies

    International Nuclear Information System (INIS)

    Menlove, H.O.

    1981-08-01

    An active neutron interrogation method has been developed for the measurement of 235 U content in fresh fuel assemblies. The neutron Coincidence Collar uses neutron interrogation with an AmLi neutron source and coincidence counting the induced fission reaction neutrons from the 235 U. This manual describes the system components, operation, and performance characteristics. Applications of the Coincidence Collar to PWR and BWR types of reactor fuel assemblies are described

  17. Recent improvements in the calculation of prompt fission neutron spectra: Preliminary results

    International Nuclear Information System (INIS)

    Madland, D.G.; LaBauve, R.J.; Nix, J.R.

    1989-01-01

    We consider three topics in the refinement and improvement of our original calculations of prompt fission neutron spectra. These are an improved calculation of the prompt fission neutron spectrum N(E) from the spontaneous fission of 252 Cf, a complete calculation of the prompt fission neutron spectrum matrix N(E,E n ) from the neutron-induced fission of 235 U, at incident neutron energies ranging from 0 to 15 MeV, and an assessment of the scission neutron component of the prompt fission neutron spectrum. Preliminary results will be presented and compared with experimental measurements and an evaluation. A suggestion is made for new integral cross section measurements. (author). 45 refs, 12 figs, 1 tab

  18. Identification of high-spin states in 235U

    International Nuclear Information System (INIS)

    Lorenz, A.; Makarenko, V.E.; Chukreev, F.E.

    1994-02-01

    The results of a 235 U high spin states study are analysed. A new way to assign newly observed gamma ray transitions is proposed. Such assignments deals with low spin parts of the level scheme without introducing high spin level states. (author)

  19. Estimation of (n,f) Cross-Sections by Measuring Reaction Probability Ratios

    Energy Technology Data Exchange (ETDEWEB)

    Plettner, C; Ai, H; Beausang, C W; Bernstein, L A; Ahle, L; Amro, H; Babilon, M; Burke, J T; Caggiano, J A; Casten, R F; Church, J A; Cooper, J R; Crider, B; Gurdal, G; Heinz, A; McCutchan, E A; Moody, K; Punyon, J A; Qian, J; Ressler, J J; Schiller, A; Williams, E; Younes, W

    2005-04-21

    Neutron-induced reaction cross-sections on unstable nuclei are inherently difficult to measure due to target activity and the low intensity of neutron beams. In an alternative approach, named the 'surrogate' technique, one measures the decay probability of the same compound nucleus produced using a stable beam on a stable target to estimate the neutron-induced reaction cross-section. As an extension of the surrogate method, in this paper they introduce a new technique of measuring the fission probabilities of two different compound nuclei as a ratio, which has the advantage of removing most of the systematic uncertainties. This method was benchmarked in this report by measuring the probability of deuteron-induced fission events in coincidence with protons, and forming the ratio P({sup 236}U(d,pf))/P({sup 238}U(d,pf)), which serves as a surrogate for the known cross-section ratio of {sup 236}U(n,f)/{sup 238}U(n,f). IN addition, the P({sup 238}U(d,d{prime}f))/P({sup 236}U(d,d{prime}f)) ratio as a surrogate for the {sup 237}U(n,f)/{sup 235}U(n,f) cross-section ratio was measured for the first time in an unprecedented range of excitation energies.

  20. ENDF/B-VII.1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks and Reactor Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kahler, A. [Los Alamos National Laboratory (LANL); Macfarlane, R E [Los Alamos National Laboratory (LANL); Mosteller, R D [Los Alamos National Laboratory (LANL); Kiedrowski, B C [Los Alamos National Laboratory (LANL); Frankle, S C [Los Alamos National Laboratory (LANL); Chadwick, M. B. [Los Alamos National Laboratory (LANL); Mcknight, R D [Argonne National Laboratory (ANL); Lell, R M [Argonne National Laboratory (ANL); Palmiotti, G [Idaho National Laboratory (INL); Hiruta, h [Idaho National Laboratory (INL); Herman, Micheal W [Brookhaven National Laboratory (BNL); Arcilla, r [Brookhaven National Laboratory (BNL); Mughabghab, S F [Brookhaven National Laboratory (BNL); Sublet, J C [Culham Science Center, Abington, UK; Trkov, A. [Jozef Stefan Institute, Slovenia; Trumbull, T H [Knolls Atomic Power Laboratory; Dunn, Michael E [ORNL

    2011-01-01

    The ENDF/B-VII.1 library is the latest revision to the United States' Evaluated Nuclear Data File (ENDF). The ENDF library is currently in its seventh generation, with ENDF/B-VII.0 being released in 2006. This revision expands upon that library, including the addition of new evaluated files (was 393 neutron files previously, now 423 including replacement of elemental vanadium and zinc evaluations with isotopic evaluations) and extension or updating of many existing neutron data files. Complete details are provided in the companion paper [1]. This paper focuses on how accurately application libraries may be expected to perform in criticality calculations with these data. Continuous energy cross section libraries, suitable for use with the MCNP Monte Carlo transport code, have been generated and applied to a suite of nearly one thousand critical benchmark assemblies defined in the International Criticality Safety Benchmark Evaluation Project's International Handbook of Evaluated Criticality Safety Benchmark Experiments. This suite covers uranium and plutonium fuel systems in a variety of forms such as metallic, oxide or solution, and under a variety of spectral conditions, including unmoderated (i.e., bare), metal reflected and water or other light element reflected. Assembly eigenvalues that were accurately predicted with ENDF/B-VII.0 cross sections such as unrnoderated and uranium reflected (235)U and (239)Pu assemblies, HEU solution systems and LEU oxide lattice systems that mimic commercial PWR configurations continue to be accurately calculated with ENDF/B-VII.1 cross sections, and deficiencies in predicted eigenvalues for assemblies containing selected materials, including titanium, manganese, cadmium and tungsten are greatly reduced. Improvements are also confirmed for selected actinide reaction rates such as (236)U; (238,242)Pu and (241,243)Am capture in fast systems. Other deficiencies, such as the overprediction of Pu solution system critical

  1. Measurement of uranium enrichment by 14 MeV neutron irradiation

    International Nuclear Information System (INIS)

    Rezende, H.R.

    1987-01-01

    a non-destructive technique for the determination of uranium in UO 2 samples was developed, making use of the change in the fission cross section of a nuclide with the neutron energy. The active interrogation method was used by irradiating the samples with pulsed 14 MeV neutrons and further detection of delayed fission neutrons. In order to discriminate U-238 from U-235 the neutron energy was tailored by means of two concentric cylinders of lead and paraffin/poliethylene, 11 and 4 cm thick. Between neutron pulses, delayed neutrons from fission were detected by a long counter built with five BF 3 proportional counters. Calibration curves for enrichment and total mass versus delayed neutron response were obtained using available UO 2 pellets of known enrichment. Enrichment detection limit, obtained with 95% confidence level by the Student distribution was estimated to be 0.33%. The minimal detectable mass was estimated to be 4.4 g. (author) [pt

  2. Measure of uranium enrichment by 14 MeV neutron irradiation

    International Nuclear Information System (INIS)

    Rezende, H.R.

    1987-01-01

    A non-destructive technique for the determination of uranium in UO 2 samples was developed, marking use of the change in the fission cross of a nuclide with the neutron energy. The active interrogation method was used by irradiating the samples with pulsed 14 MeV neutrons and furtherdetection of delayed fission neutrons. In order to descriminated U-238 from U-235 the neutron energy was tailored by means of two concentric cylinders of lead and paraffin/poliethylene, 11 and 4 cm thick. Between neutron pulses, delayed neutrons from fission were detected by a long counter built with five BF 3 proportional counters. Calibration curves for enrichment and total mass versus delayed neutron response were obtained using available UO 2 pellets of Known enrichment. Enrichment detection limit, obtained with 95% confidence level by the the Student distribution was estimated to be 0.33%. The minimal detectable mass was estimated to be 4.4 g. (Author) [pt

  3. Conceptual design of neutron diagnostic systems for fusion experimental reactor

    International Nuclear Information System (INIS)

    Iguchi, T.; Kaneko, J.; Nakazawa, M.

    1994-01-01

    Neutron measurement in fusion experimental reactors is very important for burning plasma diagnostics and control, monitoring of irradiation effects on device components, neutron source characterization for in-situ engineering tests, etc. A conceptual design of neutron diagnostic systems for an ITER-like fusion experimental reactor has been made, which consists of a neutron yield monitor, a neutron emission profile monitor and a 14-MeV spectrometer. Each of them is based on a unique idea to meet the required performances for full power conditions assumed at ITER operation. Micro-fission chambers of 235 U (and 238 U) placed at several poloidal angles near the first wall are adopted as a promising neutron yield monitor. A collimated long counter system using a 235 U fission chamber and graphite neutron moderators is also proposed to improve the calibration accuracy of absolute neutron yield determination

  4. Precise 238U(n,2n)237U reaction cross-section measurements using the activation facility at TUNL

    Science.gov (United States)

    Krishichayan, Fnu; Bhike, M.; Tornow, W.

    2014-09-01

    Accurate neutron-induced 238U(n,2n)237U reaction data are required for many practical applications, especially in the field of nuclear energy, including advanced heavy water reactors, where 238U is used as the breeding material to regenerate the fissile material 239Pu. Precise (n,2n) cross-section measurements of 238U are underway at TUNL with mono-energetic neutrons in the 8.0 to 14.0 MeV energy range in steps of 0.25 MeV using the activation technique. After activation of the 0.5 inch diameter and 442 mg 238U foil, the activity of the 208 keV characteristic γ-line is tracked for 6 weeks with a high efficient HPGe clover detector to determine the initial activity needed for the cross-section determination. Results of the cross-section measurements, determined relative to 27Al and 197Au neutron activation monitor foils, and the comparison with theoretical models will be presented during the meeting.

  5. Neutron induced fission of U isotopes up to 100 MeV

    International Nuclear Information System (INIS)

    Lestone, J.P.; Gavron, A.

    1993-01-01

    We have developed a statistical model description of the neutron induced fission of U isotopes using densities of intrinsic states and spin cut off parameters obtained directly from appropriate Nilsson model single particle levels. The first chance fission cross sections are well reproduced when the rotational contributions to the nuclear level densities are taken into account. In order to fit the U(n,f) cross sections above the threshold of second chance fission, we need to: (1) assume that the triaxial level density enhancement is washed out at an excitation energy of ∼7 MeV above the triaxial barriers with a width of ∼1 MeV, implying a γ deformation for the first barriers of 10 degree < γ < 20 degree; and (2) include pre-equilibrium particle emission in the calculations. Above an incoming neutron kinetic energy of ∼17 MeV our statistical model U(n,f) cross sections increasingly overestimate the experimental data when so called ''good'' optical model potentials are used to calculate the compound nucleus formation cross sections. This is not surprising since at these high energies little data exists on the scattering of neutrons to help guide the choice of optical model parameters. A satisfactory reproduction of all the available U(n,f) cross sections above 17 MeV is obtained by a simple scaling of our calculated compound nucleus formation cross sections. This scaling factor falls from 1.0 at 17 MeV to 0.82 at 100 MeV

  6. Development of long-life neutron detectors for the prototype heavy water reactor 'Fugen'

    International Nuclear Information System (INIS)

    Ohteru, Shigeru; Shirayama, Shimpey.

    1981-01-01

    The development of long-life neutron detectors as the flux monitors for the prototype heavy water reactor has been made. Three kinds of neutron monitors, namely start-up monitor (SUM), power up monitor (PUM) and local power monitor (LPM), are provided. The LPM consists of 4 ion chamber type neutron detectors and a guide tube of power calibration monitor (PCM). This is useful for reactor control and fuel soundness monitor. The improvement of the neutron detectors was made for the operation under high neutron flux and gamma-ray heating. For the long-life operation, U-234 was mixed into U-235 for the conversion in the detectors. The ratio of U-234 to U-235 is 3 to 1. The PCM is also an ion chamber type detector with U-235. The mixing ratio of U-234 to U-235 was determined by a test with the JMTR. The characteristic performance was also investigated by the JMTR. After the completion of Fugen, various tests on the long-life detectors were performed with Fugen. It was hard to test the output linearity of the detectors with a large scale reactor. Therefore, it was tested that the operation range of the detectors is within the linear region of detector output. The voltage-current characteristics and the correlation of output current and saturation current were measured. The variation of the neutron sensitivity of the detectors with the cumulative dose was also studied. (Kato, T.)

  7. Secondary standards (non-activation) for neutron data measurements above 20 MeV

    International Nuclear Information System (INIS)

    Haight, R.C.

    1991-01-01

    In addition to H(n,p) scattering and 235,238 U(n,f) reactions, secondary standards for neutron flux determination may be useful for neutron energies above 20 MeV. For experiments where gamma rays are detected, reference gamma-ray production cross sections are relevant. For neutron-induced charged particle production, standard (n,p) and (n,alpha) cross sections would be helpful. Total cross section standards would serve to check the accuracy of these measurements. These secondary standards are desirable because they can be used with the same detector systems employed in measuring the quantities of interest. Uncertainties due to detector efficiency, geometrical effects, timing and length of flight paths can therefore be significantly reduced. Several secondary standards that do not depend on activation techniques are proposed. 14 refs

  8. Fission coincident neutrons from the reactions p + sup(235,236,238)U with protons between 12,7 and 25.5 MeV

    International Nuclear Information System (INIS)

    Plischke, P.

    1981-01-01

    With the proton beam of the Hamburg isochronous cyclotron (HAIZY) thin uranium targets with the mass numbers 235, 236, and 238 were bombarded. Both fragments from the fission of the Np reaction systems and the neutrons coincident with the fragments were detected in the plane perpendicular to the beam direction. Measured and stored event by event were for all particles the times of flight. The detection of the neutron succeeded in conventional time-of-flight technique with NE213 liquid scintillators. A fission detector system with plastic scintillator foils was developed. It permits high event rates over long measuring times and allows the choice of so long neutron flight paths that a neutron energy resolution between 2% and 4% could be reached. The determination of the fragment masses is in spite of the short flight paths of 15 respectively 21 cm possible to +-2 amu. The isotropic component das discussed under the assumption that it is composed of prefission and scission neutrons which were emitted befor fission respectively during the fragmentation. From the post fission results the distribution of the excitation energy to both fragments was determined in dependence of Esup(*) and the fragment mass. (orig./HSI) [de

  9. Estimation of thermal neutron cross sections from K, U, Th concentrations for rock samples using neural network algorithms

    International Nuclear Information System (INIS)

    Loskiewicz, J.; Swakon, J.

    1992-01-01

    In the paper present the results of the use of the neural network algorithms to find a function Σ a =f(K, U, Th,...). The easily measurable parameters (K, U, Th concentrations, lithology) were used to estimate the thermal neutron absorption cross-section Σ a , which is difficult to measure in the borehole conditions. This paper is suggesting a possible solution to the problem. This method may have an important application in the well-logging data treatment. (author). 6 refs, 9 tabs

  10. Measurement of cross-sections of fission reactions induced by neutrons on actinides from the thorium cycle at n-TOF facility

    International Nuclear Information System (INIS)

    Ferrant, L.

    2005-09-01

    In the frame of innovating energy source system studies, thorium fuel cycle reactors are considered. Neutron induced fission cross section on such cycle involved actinides play a role in scenario studies. To feed them, data bases are built with experimental results and nuclear models. For some nuclei, they are not complete or in disagreement. In order to complete these data bases, we have built an original set up, consisting in an alternation of PPACs (Parallel Plate Avalanche Chamber) and ultra - thin targets, which we installed on n-TOF facility. We describe detectors, set up, and the particular care brought to target making and characterization. Fission products in coincidence are detected with precise time measurement and localization with delay line read out method. We contributed, within the n-TOF collaboration, to the CERN brand new intense spallation neutron source characterization, based on time of flight measurement, and we describe its characteristics and performances. We were able to measure such actinide fission cross sections as 232 Th, 234 U, 233 U, 237 Np, 209 Bi, and nat Pb relative to 235 U et 238 U standards, using an innovative acquisition system. We took advantage of the lame accessible energy field, from 0.7 eV to 1 GeV, combined with the excellent energy resolution in this field. Data treatment and analysis advancement are described to enlighten performance and limits of the obtained results. (author)

  11. The Effect of Early Diagenesis on the 238U/235U Ratio of Platform Carbonates.

    Science.gov (United States)

    Tissot, F.; Chen, C.; Go, B. M.; Naziemiec, M.; Healy, G.; Swart, P. K.; Dauphas, N.

    2017-12-01

    In the past 15 years, the so-called non-traditional stable isotopes systems (e.g., Mg, Fe, Mo, U) have emerged as powerful tracers of both high-T and low-T geochemical processes (e.g., [1]). Of particular interest for paleoredox studies is the ratio of "stable" isotopes of U (238U/235U), which has the potential to track the global extent of oceanic anoxia (e.g., [2, 3]). Indeed, in the modern ocean, U exists in two main oxidation states, soluble U6+ and insoluble U4+, and has a mean residence time of 400 kyr ([4]), much longer than the global ocean mixing time (1-2 kyr). As such the salinity-normalized ocean is homogeneous with regards to both U concentrations and isotopes (δ238USW = -0.392±0.005 ‰, [2]). The value of δ238USW at any given time is therefore the balance between U input to the ocean, mainly from rivers, and U removal, mostly into biogenic carbonates, anoxic/euxinic sediments and suboxic/hypoxic sediments (e.g., [2, 5]). Because the 238U/235U ratio of the past ocean cannot be measured directly, it has to be estimated from the measurement of the 238U/235U ratio of a sedimentary rock and assuming a constant fractionation factor. Carbonates appear as a promising record since they span most of Earth's history, and the δ238U values of modern primary carbonate precipitates and well-preserved fossil aragonitic coral up to 600 ka are indistinguishable from that of seawater (e.g., [2, 6, 7]). Yet, the effect of secondary processes on the δ238U values of non-coral carbonates, which represent the bulk of the rock record, has only been studied in a handful of shallow samples (down to 40cm, [6]) and remains poorly understood. To investigate the effect of early diagenesis on the 238U/235U ratio of carbonates on the 30kyr to 1Myr timescale, we measured δ13C, δ18O, and δ238U in samples from a 220m long drill core from the Bahamas carbonate platform. In order to separate lattice bound U from secondary U we developed a leaching protocol applicable to carbonate

  12. Measurement of the 209Bi(n ,4 n )206Bi and 169Tm(n ,3 n )167Tm cross sections between 23.5 and 30.5 MeV relevant to reaction-in-flight neutron studies at the National Ignition Facility

    Science.gov (United States)

    Gooden, M. E.; Bredeweg, T. A.; Champine, B.; Combs, D. C.; Finch, S.; Hayes-Sterbenz, A.; Henry, E.; Krishichayan, Rundberg, R.; Tornow, W.; Wilhelmy, J.; Yeamans, C.

    2017-08-01

    At the National Ignition Facility, experiments are being performed to measure charged-particle stopping powers in the previously unexplored warm dense plasma regime. These measurements are done using reaction-in-flight (RIF) neutrons from an inertial confinement fusion system. RIF neutrons are produced with a continuum of energies up to 30 MeV. By making activation measurements utilizing threshold reactions for neutrons in the energy range of 15 neutrons can be determined and from this the stopping power of the deuterium and tritium ions that produced the RIF neutrons can be inferred. Currently, the 169Tm(n ,3 n )167Tm reaction has been used. However, in an effort to provide a secondary complimentary measurement, efforts are underway to make use of the 209Bi(n ,4 n )206Bi reaction, with a threshold of 22.5 MeV. The cross sections were measured at the 10 MV tandem Van De Graaff accelerator at the Triangle Universities Nuclear Laboratory with quasimonoenergetic neutrons between 23.5 and 30.5 MeV, where few previous measurements have been made. Cross-section data are compared to calculations and other available measurements.

  13. DEVELOPMENT OF ENRICHMENT VERIFICATION ASSAY BASED ON THE AGE AND 235U AND 238U ACTIVITIES OF THE SAMPLES

    International Nuclear Information System (INIS)

    AL-YAMAHI, H.; EL-MONGY, S.A.

    2008-01-01

    Development of the enrichment verification methods is the backbone of the nuclear materials safeguards skeleton. In this study, the 235U percentage of depleted , natural and very slightly enriched uranium samples were estimated based on the sample age and the measured activity of 235U and 238U. The HpGe and NaI spectrometry were used for samples assay. A developed equation was derived to correlate the sample age and 235U and 238U activities with the enrichment percentage (E%). The results of the calculated E% by the deduced equation and the target E% values were found to be similar and within 0.58 -1.75% bias in the case of HpGe measurements. The correlation between them was found to be very sharp. The activity was also calculated based on the measured sample count rate and the efficiency at the gamma energies of interest. The correlation between the E% and the 235U activity was estimated and found to be linearly sharp. The results obtained by NaI was found to be less accurate than these obtained by HpGe. The bias in the case of NaI assay was in the range from 6.398% to 22.8% for E% verification

  14. Neutron-induced cross sections of actinides via the surrogate-reaction method

    Directory of Open Access Journals (Sweden)

    Ducasse Q.

    2013-12-01

    Full Text Available The surrogate-reaction method is an indirect way of determining cross sections for reactions that proceed through a compound nucleus. This technique may enable neutron-induced cross sections to be extracted for short-lived nuclei that otherwise cannot be measured. However, the validity of the surrogate method has to be investigated. In particular, the absence of a compound nucleus formation and the Jπ dependence of the decay probabilities may question the method. In this work we study the reactions 238U(d,p239U, 238U(3He,t238Np, 238U(3He,4He237U as surrogates for neutron-induced reactions on 238U, 237Np and 236U, respectively, for which good quality data exist. The experimental set-up enabled the measurement of fission and gamma-decay probabilities. The first results are hereby presented.

  15. Using 238U/235U ratios to understand the formation and oxidation of reduced uranium solids in naturally reduced zones

    Science.gov (United States)

    Jemison, N.; Johnson, T. M.; Druhan, J. L.; Davis, J. A.

    2016-12-01

    Uranium occurs in groundwater primarily as soluble and mobile U(VI), which can be reduced to immobile U(IV), often observed in sediments as uraninite. Numerous U(VI)-contaminated sites, such as the DOE field site in Rifle, CO, contain naturally reduced zones (NRZ's) that have relatively high concentrations of organic matter. Reduction of heavy metals occurs within NRZ's, producing elevated concentrations of iron sulfides and U(IV). Slow, natural oxidation of U(IV) from NRZ's may prolong U(VI) contamination of groundwater. The reduction of U(VI) produces U(IV) with a higher 238U/235U ratio. Samples from two NRZ sediment cores recovered from the Rifle site revealed that the outer fringes of the NRZ contain U(IV) with a high 238U/235U ratio, while lower values are observed in the center . We suggest that as aqueous U(VI) was reduced in the NRZ, it was driven to lower 238U/235U values, such that U(IV) formed in the core of the NRZ reflects a lower 238U/235U. Two oxidation experiments were conducted by injecting groundwater containing between 14.9 and 21.2 mg/L dissolved O2 as an oxidant into the NRZ. The oxidation of U(IV) from this NRZ increased aqueous U(VI) concentrations and caused a shift to higher 238U/235U in groundwater as U(IV) was oxidized primarily on the outer fringes of the NRZ. In total these observations suggest that the stability of solid phase uranium is governed by coupled reaction and transport processes. To better understand various reactive transport scenarios we developed a model for the formation and oxidation of NRZ's utilizing the reactive transport software CrunchTope. These simulations suggest that the development of isotopically heterogeneous U(IV) within NRZ's is largely controlled by permeability of the NRZ and the U(VI) reduction rate. Oxidation of U(IV) from the NRZ's is constrained by the oxidation rate of U(IV) as well as iron sulfides, which can prevent oxidation of U(IV) by scavenging dissolved oxygen.

  16. Fission cross-section normalization problems

    International Nuclear Information System (INIS)

    Wagemans, C.; Ghent Rijksuniversiteit; Deruytter, A.J.

    1983-01-01

    The present measurements yield σsub(f)-data in the neutron energy from 20 MeV to 30 keV directly normalized in the thermal region. In the keV-region these data are consistent with the absolute σsub(f)-measurements of Szabo and Marquette. For the secondary normalization integral I 2 values have been obtained in agreement with those of Gwin et al. and Czirr et al. which were also directly normalized in the thermal region. For the I 1 integral, however, puzzling low values have been obtained. This was also the case for σsub(f)-bar in neutron energy intervals containing strong resonances. Three additional measurements are planned to further investigate these observations: (i) maintaining the actual approx.2π-geometry but using a 10 B-foil for the neutron flux detection (ii) using a low detection geometry with a 10 B- as well as a 6 Li-flux monitor. Only after these measurements definite conclusions on the I 1 and I 2 integrals can be formulated and final σsub(f)-bar-values can be released. The present study also gives some evidence for a correlation between the integral I 2 and the neutron flux monitor used. The influence of a normalization via I 1 or I 2 on the final cross-section has been shown. The magnitude of possible normalization errors is illustrated. Finally, since 235 U is expected to be an ''easy'' nucleus (low α-activity high σsub(f)-values), there are some indications that the important discrepancies still present in 235 U(n,f) cross-section measurements might partially be due to errors in the neutron flux determination

  17. Measurement of the {sup 234}U(n, f) cross-section with quasi-monoenergetic beams in the keV and MeV range using a Micromegas detector assembly

    Energy Technology Data Exchange (ETDEWEB)

    Stamatopoulos, A.; Kanellakopoulos, A.; Kalamara, A.; Kokkoris, M.; Michalopoulou, V.; Vlastou, R. [National Technical University of Athens, Department of Physics, Athens (Greece); Diakaki, M. [National Technical University of Athens, Department of Physics, Athens (Greece); European Organisation for Nuclear Research (CERN), Geneva (Switzerland); Tsinganis, A. [European Organisation for Nuclear Research (CERN), Geneva (Switzerland); Axiotis, M.; Lagoyiannis, A. [Tandem Accelerator Laboratory, Institute of Nuclear and Particle Physics, N.C.S.R. Demokritos, Athens (Greece)

    2018-01-15

    The {sup 234}U neutron-induced fission cross-section has been measured at incident neutron energies of 452, 550, 651 keV and 7.5, 8.7, 10 MeV using the {sup 7}Li (p, n) and the {sup 2}H(d, n) reactions, respectively, relative to the {sup 235}U(n, f) and {sup 238}U(n, f) reference reactions. The measurement was performed at the neutron beam facility of the National Center for Scientific Research ''Demokritos'', using a set-up based on Micromegas detectors. The active mass of the actinide samples and the corresponding impurities were determined via α-spectroscopy using a surface barrier silicon detector. The neutron spectra intercepted by the actinide samples have been thoroughly studied by coupling the NeuSDesc and MCNP5 codes, taking into account the energy and angular straggling of the primary ion beams in the neutron source targets in addition to contributions from competing reactions (e.g. deuteron break-up) and neutron scattering in the surrounding materials. Auxiliary Monte Carlo simulations were performed making combined use of the FLUKA and GEF codes, focusing particularly on the determination of the fission fragment detection efficiency. The developed methodology and the final results are presented. (orig.)

  18. Measurement of the neutron capture cross section of U234 in n-TOF at CERN for Generation IV nuclear reactors

    International Nuclear Information System (INIS)

    Dridi, W.

    2006-11-01

    Accurate and reliable neutron capture cross sections are needed in many research areas, including stellar nucleosynthesis, advanced nuclear fuel cycles, waste transmutation, and other applied programs. In particular, the accurate knowledge of U 234 (n,γ) reaction cross section is required for the design and realization of nuclear power plants based on the thorium fuel cycle. We have measured the neutron capture cross section of U 234 , with a 4π BaF 2 Total Absorption Calorimeter, at the recently constructed neutron time-of-flight facility n-TOF at CERN in the energy range from 0.03 eV to 1 MeV. Monte-Carlo simulations with GEANT4 and MCNPX of the detector response have been performed. After the background subtraction and correction with dead time and pile-up, the capture yield from 0.03 eV up to 1.5 keV was derived. The analysis of the capture yield in terms of R-matrix resonance parameters is discussed. We have identified 123 resonances and measured the resonance parameters in the energy range from 0.03 eV to 1.5 keV. The mean radiative width γ > is found to be (38.2 ± 1.5) meV and the mean spacing parameter 0 > is (11.0 ± 0.2) eV, both values agree well with recommended values

  19. The main conditions ensured problemless implementation of 235U high enriched fuel in Kozloduy NPP (Bulgaria) - WWER-1000 Units

    International Nuclear Information System (INIS)

    Dobrevski, I.; Zaharieva, N.; Minkova, K.; Michaylov, G.; Penev, P.; Gerchev, N.

    2009-01-01

    The collected water chemistry and radiochemistry data during the operation of the Kozloduy NPP Unit 5 for the period 2006-2009 (12-th, 13-th 14-th and 15-th fuel cycles) undoubtedly indicate for WWER-1000 Units (whose specific features are: Steam generators with austenitic stainless steel 08Cr18N10T tubing; Steam generators are with horizontal straight tubing and Fuel elements cladding material is Zr-1%Nb (Zr1Nb) alloy), that one realistic way for problemless implementation of 235 U high enriched fuel have been found. The main feature characteristics of this way are: Implementation of solid neutron burnable absorbers together with the dissolved in coolant neutron absorber - natural boric acid; Application of fuel cladding materials with enough corrosion resistance by the specific fuel cladding environment created by presence of SNB; Keeping of suitable coolant water chemistry which ensures low corrosion rates of core- and out-of-core- materials and limits in core (cladding) depositions and restricts out-of-core radioactivity buildup. The realization of this way in WWER-1000 Units in Kozloduy NPP was practically carried out through: 1) Implementation of Russian fuel assemblies TVSA which have as fuel cladding material E-110 alloy (Zr1Nb) with enough high corrosion resistance by presence of sub-cooled nucleate boiling (SNB) and use burnable absorber (Gd) integrated in the uranium-gadolinium (U-Gd 2 O 3 ) fuel (fuel rod with 5.0% Gd 2 O 3 ); 2) Development and implementation of water chemistry primary circuit guidelines, which require the relation between boric acid concentration and total alkalising agent concentrations to ensure coolant pH 300 = 7.0 - 7.2 values during the whole operation period. The above mentioned conditions by the passing of WWER-1000 Units in NPP Kozloduy to uranium fuel with 4.4% 235 U (TVSA fuel assemblies) practically ensured avoidance of the creation of the necessary conditions for AOA onset. The operational experience (2006-2009) of the

  20. Neutron shielding verification measurements and simulations for a 235-MeV proton therapy center

    International Nuclear Information System (INIS)

    Newhauser, W.D.; Titt, U.; Dexheimer, D.; Yan, X.; Nill, S.

    2002-01-01

    The neutron shielding at the Massachusetts General Hospital's 235-MeV proton therapy facility was investigated with measurements, analytical calculations, and realistic three-dimensional Monte Carlo simulations. In 37 of 40 cases studied, the analytical calculations predicted higher neutron dose equivalent rates outside the shielding than the measured, typically by more than a factor of 10, and in some cases more than 100. Monte Carlo predictions of dose equivalent at three locations are, on average, 1.1 times the measured values. Except at one location, all of the analytical model predictions and Monte Carlo simulations overestimate neutron dose equivalent

  1. Absolute calibration of the neutron yield measurement on JT-60 Upgrade

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Takeuchi, Hiroshi; Barnes, C.W.

    1991-10-01

    Absolutely calibrated measurements of the neutron yield are important for the evaluation of the plasma performance such as the fusion gain Q in DD operating tokamaks. Total neutron yield is measured with 235 U and 238 U fission chambers and 3 He proportional counters in JT-60 Upgrade. The in situ calibration was performed by moving the 252 Cf neutron source toroidally through the JT-60 vacuum vessel. Detection efficiencies of three 235 U and two 3 He detectors were measured for 92 locations of the neutron point source in toroidal scans at two different major radii. The total detection efficiency for the torus neutron source was obtained by averaging the point efficiencies over the whole toroidal angle. The uncertainty of the resulting absolute plasma neutron source calibration is estimated to be ± 10%. (author)

  2. Evaluation of the neutron induced reactions on 235U from 2.25 keV up to 30 MeV

    Directory of Open Access Journals (Sweden)

    Trkov Andrej

    2017-01-01

    Full Text Available An evaluation of fast neutron induced reactions on 235U is performed in the 2.25 keV–30 MeV incident energy range with the code EMPIRE–3.2 Malta, combined with selected experimental data. The reaction model includes a dispersive optical model potential (RIPL 2408 that couples seven levels of the ground-state rotational band and a triple-humped fission barrier with absorption in the wells described within the optical model for fission. EGSM nuclear level densities are used in Hauser-Feshbach calculations of the compound-nuclear decay. The starting values for the model parameters are retrieved from the RIPL-3 data-base. Excellent agreement is achieved with available experimental data for neutron emission, neutron capture and fission, which gives confidence that the quantities for which there is no experimental information are also predicted accurately. In the fast neutron region of the evaluated file, the fission cross section is taken from Neutron Standards, and neutron capture includes fluctuations observed in recent experiments. Other channels are taken directly from model calculations. New evaluation is validated against ICSBEP criticality benchmarks with fast neutron spectra with excellent results.

  3. Preliminary study of the α ratio measurement, ratio of the neutron capture cross section to the fission one for 233U, on the PEREN platform. Development and study of the experimental setup

    International Nuclear Information System (INIS)

    Cognet, M.A.

    2007-12-01

    Producing nuclear energy in order to reduce anthropic CO 2 emission and to meet high energy demand, implies three conditions to the nuclear plants of the IV. generation: safety improvements, radioactive waste minimization, and fuel breeding for a sustainable use of the resources. The Thorium fuel cycle used in Molten Salt Reactors seems promising. Many numerical studies based on probabilistic codes are carried out in order to analyse the behaviour of such reactors. Nevertheless, one of the most important parameters is badly known: the alpha ratio of 233 U, ratio of the neutron capture cross section to fission one for 233 U. This key-parameter is necessary to calculate the breeding ratio and thus, the deployment capacities of those reactors. This Ph-D thesis was intended to prepare a precise measurement of the alpha ratio of 233 U between 1 eV and 10 keV. Preliminary measurements have been performed on the experimental platform PEREN. This experimental environment is composed of a lead slowing-down time spectrometer associated with an intense pulsed neutron generator. Capture and fission rates are measured thanks to eight scintillators with their photomultipliers, surrounding a fission chamber. A software analysis sets the coincidence rate between the scintillators. In order to understand perfectly the experimental setup, preliminary tests using a 235 U fission chamber have been done. This experiment resulted in a very low signal to background ratio (1 %). The background coming from the scintillators themselves seriously handicapped the measurement. Another series of experiment has been done with scintillators 5 times thinner. Nevertheless, the signal to background ratio should still be increased to measure the capture of 235 U. To make sure that the experimental setup has totally been understood, we made many comparisons between experimental results and simulations. Two simulation codes were mainly used: MCNP and GEANT4. We paid special attention to quantify the

  4. ENDF/B-VII.1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks and Reactor Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kahler, A.C.; Herman, M.; Kahler,A.C.; MacFarlane,R.E.; Mosteller,R.D.; Kiedrowski,B.C.; Frankle,S.C.; Chadwick,M.B.; McKnight,R.D.; Lell,R.M.; Palmiotti,G.; Hiruta,H.; Herman,M.; Arcilla,R.; Mughabghab,S.F.; Sublet,J.C.; Trkov,A.; Trumbull,T.H.; Dunn,M.

    2011-12-01

    The ENDF/B-VII.1 library is the latest revision to the United States Evaluated Nuclear Data File (ENDF). The ENDF library is currently in its seventh generation, with ENDF/B-VII.0 being released in 2006. This revision expands upon that library, including the addition of new evaluated files (was 393 neutron files previously, now 423 including replacement of elemental vanadium and zinc evaluations with isotopic evaluations) and extension or updating of many existing neutron data files. Complete details are provided in the companion paper [M. B. Chadwick et al., 'ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data,' Nuclear Data Sheets, 112, 2887 (2011)]. This paper focuses on how accurately application libraries may be expected to perform in criticality calculations with these data. Continuous energy cross section libraries, suitable for use with the MCNP Monte Carlo transport code, have been generated and applied to a suite of nearly one thousand critical benchmark assemblies defined in the International Criticality Safety Benchmark Evaluation Project's International Handbook of Evaluated Criticality Safety Benchmark Experiments. This suite covers uranium and plutonium fuel systems in a variety of forms such as metallic, oxide or solution, and under a variety of spectral conditions, including unmoderated (i.e., bare), metal reflected and water or other light element reflected. Assembly eigenvalues that were accurately predicted with ENDF/B-VII.0 cross sections such as unmoderated and uranium reflected {sup 235}U and {sup 239}Pu assemblies, HEU solution systems and LEU oxide lattice systems that mimic commercial PWR configurations continue to be accurately calculated with ENDF/B-VII.1 cross sections, and deficiencies in predicted eigenvalues for assemblies containing selected materials, including titanium, manganese, cadmium and tungsten are greatly reduced. Improvements are also

  5. Neutron data evaluation of {sup 238}U

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, V.M.; Porodzinskij, Y.V.; Hasegawa, Akira; Shibata, Keiichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-08-01

    Cross sections for neutron-induced reactions on {sup 238}U are calculated by using the Hauser-Feshbach-Moldauer theory, the coupled channel model and the double-humped fission barrier model. The direct excitation of ground state band levels is calculated with a rigid-rotator model. The direct excitation of vibrational octupole and K = 2{sup +} quadrupole bands is included using a soft (deformable) rotator model. The competition of inelastic scattering to fission reaction is shown to be sensitive to the target nucleus level density at excitations above the pairing gap. As for fission, (n,2n), (n,3n), and (n,4n) reactions, secondary neutron spectra data are consistently reproduced. Pre-equilibrium emission of first neutron is included. Shell effects in the level densities are shown to be important for estimation of energy dependence of non-emissive fission cross section. (author). 105 refs.

  6. Advanced Neutron Source enrichment study

    International Nuclear Information System (INIS)

    Bari, R.A.; Ludewig, H.; Weeks, J.R.

    1996-01-01

    A study has been performed of the impact on performance of using low-enriched uranium (20% 235 U) or medium-enriched uranium (35% 235 U) as an alternative fuel for the Advanced Neutron Source, which was initially designed to use uranium enriched to 93% 235 U. Higher fuel densities and larger volume cores were evaluated at the lower enrichments in terms of impact on neutron flux, safety, safeguards, technical feasibility, and cost. The feasibility of fabricating uranium silicide fuel at increasing material density was specifically addressed by a panel of international experts on research reactor fuels. The most viable alternative designs for the reactor at lower enrichments were identified and discussed. Several sensitivity analyses were performed to gain an understanding of the performance of the reactor at parametric values of power, fuel density, core volume, and enrichment that were interpolations between the boundary values imposed on the study or extrapolations from known technology

  7. Total cross section of 242Pu between 0.7 and 170 MeV

    International Nuclear Information System (INIS)

    Moore, M.S.; Lisowski, P.W.; Morgan, G.L.; Auchampaugh, G.F.

    1979-01-01

    Various evaluations of the neutron cross sections of 242 Pu lead to widely different predictions of bulk neutronics properties such as critical mass. These evaluations also show rather different behavior of the energy dependence of the total cross section. The total cross section of 242 Pu from 0.7 to 170 MeV was measured to a statistical accuracy of = 0.5% below 6 MeV, using 8 g of high purity material and the WNR pulsed neutron facility. Recent evaluations by Madland and Young and by Lagrange and Jary are found to be reasonably consistent with the data obtained. Best agreement, however, is found by using a relationship between the total cross sections for 238 U, 239 Pu, and 235 U. The remarkable accuracy of this description for 242 Pu suggests that it could be extended to other deformed actinides for which inadequate amounts of material exist for direct measurements of sigma/sub T/ in the MeV region, as an evaluation constraint

  8. Validation of the U-238 inelastic scattering neutron cross section through the EXCALIBUR dedicated experiment

    Directory of Open Access Journals (Sweden)

    Leconte Pierre

    2017-01-01

    Full Text Available EXCALIBUR is an integral transmission experiment based on the fast neutron source produced by the bare highly enriched fast burst reactor CALIBAN, located in CEA/DAM Valduc (France. Two experimental campaigns have been performed, one using a sphere of diameter 17 cm and one using two cylinders of 17 cm diameter 9 cm height, both made of metallic Uranium 238. A set of 15 different dosimeters with specific threshold energies have been employed to provide information on the neutron flux attenuation as a function of incident energy. Measurements uncertainties are typically in the range of 0.5–3% (1σ. The analysis of these experiments is performed with the TRIPOLI4 continuous energy Monte Carlo code. A calculation benchmark with validated simplifications is defined in order to improve the statistical convergence under 2%. Various 238U evaluations have been tested: JEFF-3.1.1, ENDF/B-VII.1 and the IB36 evaluation from IAEA. A sensitivity analysis is presented to identify the contribution of each reaction cross section to the integral transmission rate. This feedback may be of interest for the international effort on 238U, through the CIELO project.

  9. Validation of the U-238 inelastic scattering neutron cross section through the EXCALIBUR dedicated experiment

    Science.gov (United States)

    Leconte, Pierre; Bernard, David

    2017-09-01

    EXCALIBUR is an integral transmission experiment based on the fast neutron source produced by the bare highly enriched fast burst reactor CALIBAN, located in CEA/DAM Valduc (France). Two experimental campaigns have been performed, one using a sphere of diameter 17 cm and one using two cylinders of 17 cm diameter 9 cm height, both made of metallic Uranium 238. A set of 15 different dosimeters with specific threshold energies have been employed to provide information on the neutron flux attenuation as a function of incident energy. Measurements uncertainties are typically in the range of 0.5-3% (1σ). The analysis of these experiments is performed with the TRIPOLI4 continuous energy Monte Carlo code. A calculation benchmark with validated simplifications is defined in order to improve the statistical convergence under 2%. Various 238U evaluations have been tested: JEFF-3.1.1, ENDF/B-VII.1 and the IB36 evaluation from IAEA. A sensitivity analysis is presented to identify the contribution of each reaction cross section to the integral transmission rate. This feedback may be of interest for the international effort on 238U, through the CIELO project.

  10. Measurement of neutron inelastic scattering cross section of {sup 238}U

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Takako; Baba, Mamoru; Ibaraki, Masanobu; Sanami, Toshiya; Win, Than; Hirasawa, Yoshitaka; Matsuyama, Shigeo; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan)

    1998-03-01

    Neutron scattering from the 0{sup +}, 2{sup +} (1-st) and 4{sup +} (2nd) levels of {sup 238}U was measured for incident energies between 0.4 and 0.85 MeV at the Tohoku University 4.5 MV Dynamitron facility, using the time-of-flight (TOF) method with monoenergetic pulsed neutrons by the {sup 7}Li(p,n) reaction. The results are presented in comparison with other experimental data and evaluated data. (author)

  11. Theoretical Model for Volume Fraction of UC, 235U Enrichment, and Effective Density of Final U 10Mo Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Hu, Shenyang Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); McGarrah, Eric J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)

    2016-04-12

    The purpose of this document is to provide a theoretical framework for (1) estimating uranium carbide (UC) volume fraction in a final alloy of uranium with 10 weight percent molybdenum (U-10Mo) as a function of final alloy carbon concentration, and (2) estimating effective 235U enrichment in the U-10Mo matrix after accounting for loss of 235U in forming UC. This report will also serve as a theoretical baseline for effective density of as-cast low-enriched U-10Mo alloy. Therefore, this report will serve as the baseline for quality control of final alloy carbon content

  12. Decay heat measurement of U-235

    International Nuclear Information System (INIS)

    Baumung, K.

    1976-01-01

    The calorimeter and the transport mechanism for the fuel samples was designed and is under construction now. Calculations of the heat-source distributions for different 235U-contents led to an optimal enrichment of the UO 2 -samples which minimizes the effects of the bad heat conductivity of the oxide on temperature measurement. Monte-Carlo-calculations of the γ-leakage-spectra yielded data which allow, from the γ-energy-flow measurements, to calculate the total γ-energy loss as well as the portions of the β- and γ-heating. (orig.) [de

  13. Calculating the mass distribution of heavy nucleus fission product by neutrons

    International Nuclear Information System (INIS)

    Gudkov, A.N.; Koldobskij, A.B.; Kolobashkin, V.M.; Semenova, E.V.

    1981-01-01

    The technique of calculating the fission product mass yields by neutrons which are necessary for performing nucleus physical calculations in designing nuclear reactor cores is considered. The technique is based on the approximation of fission product mass distribution over the whole mass range by five Gauss functions. New analytical expressions for determining energy weights of used gaussians are proposed. The results of comparison of experimental data with calculated values for fission product mass obtained for reference processes in the capacity of which the fission reactions are chosen: 233 U, 235 U fission by thermal neutrons, 232 Th, 233 U, 235 U, 238 U by fission spectrum neutrons and 14 MeV neutrons and for 232 Th fission reactions by 11 MeV neutrons and 238 U by 7.7 MeV neutrons. On the basis of the analysis of results obtained the conclusion is drawn on a good agreement of fission product mass yield calculation values obtained using recommended values of mass distribution parameters with experimental data [ru

  14. Status update on the NIFFTE high precision fission cross section measurement program

    International Nuclear Information System (INIS)

    Laptev, Alexander B.; Tovesson, Fredrik; Burgett, Eric; Greife, Uwe; Grimes, Steven; Heffner, Michael D.; Hertel, Nolan E.; Hill, Tony; Isenhower, Donald; Klay, Jennifer L.; Kornilov, Nickolay; Kudo, Ryuho; Loveland, Walter; Massey, Thomas; McGrath, Chris; Pickle, Nathan; Qu, Hai; Sharma, Sarvagya; Snyder, Lucas; Thornton, Tyler; Towell, Rusty S.; Watson, Shon

    2010-01-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) program has been underway for nearly two years. The program's mission is to measure fission cross sections of the primary fissionable and fissile materials ( 235 U, 239 Pu, 238 U) as well as the minor actinides across energies from approximately 50 keV up to 20 MeV with an absolute uncertainty of less than one percent while investigating energy ranges from below an eV to 600 MeV. This basic nuclear physics data is being reinvestigated to support the next generation power plants and a fast burner reactor program. Uncertainties in the fast, resolved and unresolved resonance regions in plutonium and other transuranics are extremely large, dominating safety margins in the next generation nuclear power plants and power plants of today. This basic nuclear data can be used to support all aspects of the nuciear renaissance. The measurement campaign is utilizing a Time Projection Chamber or TPC as the tool to measure these cross sections to these unprecedented levels. Unlike traditional fission cross section measurements using time-of-flight and a multiple fission foil configurations in which fission cross sections in relation to that of 235 U are performed, the TPC project uses time-of-flight and hydrogen as the benchmark cross section. Using the switch to hydrogen, a simple, smooth cross section that can be used which removes the uncertainties associated with the resolved and unresolved resonances in 235 U.

  15. Neutron data evaluation of 232U

    International Nuclear Information System (INIS)

    Maslov, V.M.; Porodzinskij, Yu.V.; Tetereva, N.A.; Kagalenko, A.B.; Kornilov, N.V.; Baba, M.; Hasegawa, A.

    2003-03-01

    Consistent evaluation of 232 U measured data base is performed. Hauser-Feshbach- Moldauer theory, coupled channel model and double-humped fission barrier model are employed. Total, differential scattering, fission and (n,xn) data are consistently reproduced as a major constraint for inelastic scattering cross section estimate. The direct excitation of ground state and higher band levels is calculated within rigid rotator and soft (deformable) rotator model, respectively. Prompt fission neutron spectra data are described. Average resonance parameters are provided, which reproduce evaluated cross sections in the range of 10-150 keV. (author)

  16. Neutron data testing for plutonium isotopes in experiments at fast critical assemblies

    International Nuclear Information System (INIS)

    Bednyakov, S.M.; Dulin, V.A.; Manturov, G.N.; Mozhaev, V.K.; Semenov, M.Yu.; Tsibulya, A.M.

    1996-01-01

    Experimental results on checking neutron data, obtained at the fast critical assemblies, are presented. They constitute sufficiently large collection of data making it possible to test nuclear neutron constants of plutonium isotopes for the new system of group constants BNAB-93. The work contains comparison of the measurement results on average fission cross section ratios and reactivity coefficients ratios for 239,240,241 Pu (to 235 U) with calculational data, obtained on the basis of the new testing system of the BNAB-93 group constants system. 14 refs., 6 figs

  17. Neutron scattering studies in the actinide region

    International Nuclear Information System (INIS)

    Kegel, G.H.R.; Egan, J.J.

    1993-09-01

    This report discusses the following topics: Prompt fission neutron energy spectra for 235 U and 239 Pu; Two-parameter measurement of nuclear lifetimes; ''Black'' neutron detector; Data reduction techniques for neutron scattering experiments; Inelastic neutron scattering studies in 197 Au; Elastic and inelastic scattering studies in 239 Pu; and neutron induced defects in silicon dioxide MOS structures

  18. Precise measurement and calculation of 238U neutron transmissions

    International Nuclear Information System (INIS)

    Olsen, D.K.; de Saussure, G.; Silver, E.G.; Perez, R.B.

    1975-01-01

    The total neutron cross section of 238 U has been measured above 0.5 eV in precise transmission experiments and results are compared with ENDF/B-IV. Emphasis has been on measuring transmissions through thick samples in order to obtain accurate total cross sections in the potential-resonance interference regions between resonances. 4 figures, 1 table

  19. Study of correcting the effect of daughter age on determining 235U enrichment of fuel rods

    International Nuclear Information System (INIS)

    Deng Jingshan; Zhou Chengfang; Luo Minxuan; Liu Yun

    1997-01-01

    Gamma-ray passive technique is a very effective method to assay and determine 235 U enrichment of nuclear power plant fuel rods. There is a weakness in this passive method, i.e. only after the uranium isotope daughters of UO 2 pellets have reached to equilibrium with uranium parent, then the 235 U enrichment can be determined. This weakness greatly restricts the application of the method. A new two-peak and two-window technique is developed that can overcome the interference of uranium daughter decay in determining 235 U enrichment of nuclear fuel rods, and the results are very satisfactory. The new technique will play an important role in the gamma-ray passive technique for determining 235 U enrichment of fuel rods. This new technique also makes the gamma-ray passive method perfectly. (11 figs., 6 tabs.)

  20. Determination of the isotope U-235 in uranium hexafluoride by gas mass spectrometry: results of an interlaboratory experiment performed in 1975

    International Nuclear Information System (INIS)

    Duerr, W.; Grossgut, W.; Beyrich, W.

    1977-02-01

    Samples of UF 6 with a 235 U content of about 0.4, 0.7 and 3% were measured with 10 gas mass spectrometers in 8 European laboratories. Identical reference materials were used with 235 U abundances deviating less than 6% from those of the samples and known with an accuracy better than +- 0.15%. By statistical evaluation of the data, errors of about 0.1% were calculated for the determination of the ratio of ratios 235 U: 238 U (sample)/ 235 U: 238 U (reference) with increasing tendency for 235 U abundances below the natural range. (orig./HP) [de

  1. Quantification of 235U and 238U activity concentrations for undeclared nuclear materials by a digital gamma-gamma coincidence spectroscopy.

    Science.gov (United States)

    Zhang, Weihua; Yi, Jing; Mekarski, Pawel; Ungar, Kurt; Hauck, Barry; Kramer, Gary H

    2011-06-01

    The purpose of this study is to investigate the possibility of verifying depleted uranium (DU), natural uranium (NU), low enriched uranium (LEU) and high enriched uranium (HEU) by a developed digital gamma-gamma coincidence spectroscopy. The spectroscopy consists of two NaI(Tl) scintillators and XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The results demonstrate that the spectroscopy provides an effective method of (235)U and (238)U quantification based on the count rate of their gamma-gamma coincidence counting signatures. The main advantages of this approach over the conventional gamma spectrometry include the facts of low background continuum near coincident signatures of (235)U and (238)U, less interference from other radionuclides by the gamma-gamma coincidence counting, and region-of-interest (ROI) imagine analysis for uranium enrichment determination. Compared to conventional gamma spectrometry, the method offers additional advantage of requiring minimal calibrations for (235)U and (238)U quantification at different sample geometries. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  2. The resonance neutron fission on heavy nuclei

    International Nuclear Information System (INIS)

    Kopach, Yu.N.; Popov, A.B.; Furman, V.I.; Alfimenkov, V.P.; Lason', L.; Pikel'ner, L.B.; ); Gonin, N.N.; Kozlovskij, L.K.; Tambovtsev, D.I.; Gagarskij, A.M.; Petrov, G.A.; Sokolov, V.E.

    2001-01-01

    A new approach to the description of the fission, similar to the well-known reaction theory and based on the helicity representation for the exit fission channels, is briefly summarized. This approach allows one to connect the multimodal fission representation with A. Bohr's concept of the fission transition states and to obtain formulae for the partial and differential fission cross sections. The formulae are used for analysis of the angular anisotropy of fragments in the neutron resonance induced fission of aligned 235 U nuclei and of the P-even angular forward-backward and right-left correlations of fragments oe the P-odd correlations caused by the interference of s- and p-wave neutron resonances [ru

  3. Neutron cross-section determination in geological samples (U)

    International Nuclear Information System (INIS)

    Harris, J.M.; McDaniel, P.J.

    1982-01-01

    The Prompt Gamma Neutron Activation Analysis (PGAA) technique yields elemental composition data which can be used to calculate the macroscopic cross section for any sample. The Small Sample Reactivity Measurements (SSRM) technique yields the macroscopic thermal absorption directly. Experimentally, PGAA is somewhat more difficult because of the calibration and data handling than is SSRM. However, SSRM requires a mathematical model of the reactor which means a rather complicated analysis. Once the model and calibration are completed, data analysis is routine. The SSRM technique is production oriented. 9 figures

  4. Fission fragment angular distributions and fission cross section validation

    International Nuclear Information System (INIS)

    Leong, Lou Sai

    2013-01-01

    The present knowledge of angular distributions of neutron-induced fission is limited to a maximal energy of 15 MeV, with large discrepancies around 14 MeV. Only 238 U and 232 Th have been investigated up to 100 MeV in a single experiment. The n-TOF Collaboration performed the fission cross section measurement of several actinides ( 232 Th, 235 U, 238 U, 234 U, 237 Np) at the n-TOF facility using an experimental set-up made of Parallel Plate Avalanche Counters (PPAC), extending the energy domain of the incident neutron above hundreds of MeV. The method based on the detection of the 2 fragments in coincidence allowed to clearly disentangle the fission reactions among other types of reactions occurring in the spallation domain. I will show the methods we used to reconstruct the full angular resolution by the tracking of fission fragments. Below 10 MeV our results are consistent with existing data. For example in the case of 232 Th, below 10 MeV the results show clearly the variation occurring at the first (1 MeV) and second (7 MeV) chance fission, corresponding to transition states of given J and K (total spin and its projection on the fission axis), and a much more accurate energy dependence at the 3. chance threshold (14 MeV) has been obtained. In the spallation domain, above 30 MeV we confirm the high anisotropy revealed in 232 Th by the single existing data set. I'll discuss the implications of this finding, related to the low anisotropy exhibited in proton-induced fission. I also explore the critical experiments which is valuable checks of nuclear data. The 237 Np neutron-induced fission cross section has recently been measured in a large energy range (from eV to GeV) at the n-TOF facility at CERN. When compared to previous measurements, the n-TOF fission cross section appears to be higher by 5-7 % beyond the fission threshold. To check the relevance of n-TOF data, we simulate a criticality experiment performed at Los Alamos with a 6 kg sphere of 237 Np. This

  5. Inclusive quasifree electrofission cross section for 238U

    International Nuclear Information System (INIS)

    Likhachev, V.P.; Carvalho, W.R. Jr.; Deppman, A.; Hussein, M.S.; Macedo, L.F.R.; Mesa, J.; Vaudeluci, M.S.; Arruda-Neto, J.D.T.; Evseev, I.G.; Pashchuk, S.A.; Schelin, H.R.; Garcia, F.; Rodriguez, O.; Margaryan, A.; Nesterenko, V.O.

    2003-01-01

    We present results from a joint theoretical and experimental study of inclusive quasifree electrofission of 238 U. The off-shell cross sections for the quasifree reaction stage have been calculated within the plane wave impulse approximation with distortion corrections included in the effective momentum approximation. Proton and neutron single-particle momentum distributions were calculated in the macroscopic-microscopic approach. The fissility for proton and neutron single hole excited states of the residual nuclei 237 Pa and 237,238 U was calculated within the compound nucleus model. Final state interaction corrections to residual nucleus excitation energy were calculated using the imaginary part of the optical potential. The total inclusive electrofission cross section was measured with high absolute precision, and all principal partial contributions are analyzed, in particular, the quasifree one

  6. Total Cross-Sections of U, UO{sub 2} and ThO{sub 2} for Thermal and Subthermal Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Beshai, S F [IAEA-fellow from Atomic Energy Establishment (Egypt)

    1966-03-15

    The total neutron cross-sections of U, UO{sub 2} and ThO{sub 2} have been measured from 0.0045 eV to 0.028 eV, using the time-of-flight technique. The samples were measured at 20 deg C. ThO{sub 2} was also measured at 750 deg C. The neutron source was the reactor Rl, Stockholm. The experimental results presented as graphs in the report show in detail the influence of Bragg scattering. The results further show that the increase of the temperature for the ThO{sub 2} sample gives an increase in the cross-section. The work also contains some calculations of the position in energy of Bragg edges for the three materials. These calculations show a very good agreement with the experiments. For uranium metal some calculations have been carried out also for the height ({sigma}{sup g}{sub hkl}) of the edges The agreement with the experiments is reasonable.

  7. Neutron-induced cross sections of actinides via the surrogate-reaction method

    Directory of Open Access Journals (Sweden)

    Tveten G. M.

    2013-03-01

    Full Text Available The surrogate-reaction method is an indirect way of determining cross sections for reactions that proceed through a compound nucleus. This technique may enable neutron-induced cross sections to be extracted for short-lived nuclei that otherwise cannot be measured. However, the validity of the surrogate method for extracting capture cross sections has to be investigated. In this work we study the reactions 238U(d,p239U, 238U(3He,t238Np, 238U(3He,4He237U as surrogates for neutroninduced reactions on 238U, 237Np and 236U, respectively, for which good quality data exist. The experimental set-up enabled the measurement of fission and gamma-decay probabilities. First results are presented and discussed.

  8. Assay of Uranium Isotopic Ratios 234U/238U, 235U/238U in Bottom Sediment Samples Using Destructive and Non Destructive Techniques (Nasser Lake)

    International Nuclear Information System (INIS)

    Agha, A.R.; El-Mongy, S.A.; Kandel, A.E.

    2011-01-01

    Nasser Lake is the greatest man-made lake in the World. It is considered as the main source of water where the Nile water is impounded behind the Aswan high dam.. Uranium has three naturally occurring isotopes 234 U, 235 U and 238 U with isotopic abundance 0.00548, 0.7200 and 99.2745 atom percent. Dissolved uranium in the lake is primary due to weathering process. Monitoring of the isotopic ratios of uranium is used as a good indicator to trace and evaluate the origin and activities associated with any variation of uranium in the lake environment. The main objective of the present study is to clarify any potential variation of natural uranium 234 U/ 238 U, 235 U/ 238 U ratios in sediment samples of Nasser Lake by using destructive alpha and non destructive gamma- techniques. The results show that the uranium isotopic activity ratios are very close to the natural values. This study can also be used for radiological protection and safety evaluation purposes.

  9. Review and Assessment of Neutron Cross Section and Nubar Covariances for Advanced Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maslov,V.M.; Oblozinsky, P.; Herman, M.

    2008-12-01

    In January 2007, the National Nuclear Data Center (NNDC) produced a set of preliminary neutron covariance data for the international project 'Nuclear Data Needs for Advanced Reactor Systems'. The project was sponsored by the OECD Nuclear Energy Agency (NEA), Paris, under the Subgroup 26 of the International Working Party on Evaluation Cooperation (WPEC). These preliminary covariances are described in two recent BNL reports. The NNDC used a simplified version of the method developed by BNL and LANL that combines the recent Atlas of Neutron Resonances, the nuclear reaction model code EMPIRE and the Bayesian code KALMAN with the experimental data used as guidance. There are numerous issues involved in these estimates of covariances and it was decided to perform an independent review and assessment of these results so that better covariances can be produced for the revised version in future. Reviewed and assessed are uncertainties for fission, capture, elastic scattering, inelastic scattering and (n,2n) cross sections as well as prompt nubars for 15 minor actinides ({sup 233,234,236}U, {sup 237}Np, {sup 238,240,241,242}Pu, {sup 241,242m,243}Am and {sup 242,243,244,245}Cm) and 4 major actinides ({sup 232}Th, {sup 235,238}U and {sup 239}Pu). We examined available evaluations, performed comparison with experimental data, taken into account uncertainties in model parameterization and made use state-of-the-art nuclear reaction theory to produce the uncertainty assessment.

  10. Behavior of uranium along Jucar River (Eastern Spain). Determination of 234U/238U and 235U/238U ratios

    International Nuclear Information System (INIS)

    Rodriguez-Alvarez, M.J.; Sanchez, F.

    1995-01-01

    The uranium concentration and the 234 U/ 238 U, 235 U/ 238 U activity ratios were studied in water samples from Jucar River, using low-level α-spectrometry. The effects of pH, temperature and salinity were considered and more detailed sampling was done in the neighbourhood of Cofrentes Nuclear Plant (Valencia, Spain). Changes were observed in the uranium concentration with the salinity and the 234 U/ 238 U activity ratio was found to vary with pH. Leaching and dilution, which depend on pH and salinity, are the probable mechanisms for these changes in the concentration of uranium and the activity ratios. (author) 25 refs.; 4 figs.; 1 tab

  11. Measurements of Neutron Induced Cross Sections at the Oak Ridge Electron Linear Accelerator

    International Nuclear Information System (INIS)

    Guber, K.H.; Harvey, J.A.; Hill, N.W.; Koehler, P.E.; Leal, L.C.; Sayer, R.O.; Spencer, R.R.

    1999-01-01

    We have used the Oak Ridge Electron Linear Accelerator (ORELA) to measure neutron total and the fission cross sections of 233 U in the energy range from 0.36 eV to 700 keV. We report average fission and total cross sections. Also, we measured the neutron total cross sections of 27 Al and Natural chlorine as well as the capture cross section of Al over an energy range from 100 eV up to about 400 keV

  12. Active-interrogation measurements of fast neutrons from induced fission in low-enriched uranium

    International Nuclear Information System (INIS)

    Dolan, J.L.; Marcath, M.J.; Flaska, M.; Pozzi, S.A.; Chichester, D.L.; Tomanin, A.; Peerani, P.

    2014-01-01

    A detection system was designed with MCNPX-PoliMi to measure induced-fission neutrons from U-235 and U-238 using active interrogation. Measurements were then performed with this system at the Joint Research Centre in Ispra, Italy on low-enriched uranium samples. Liquid scintillators measured induced fission neutrons to characterize the samples in terms of their uranium mass and enrichment. Results are presented to investigate and support the use of organic liquid scintillators with active interrogation techniques to characterize uranium containing materials. -- Highlights: • We studied low-enriched uranium using active-interrogation experiments including a deuterium–tritium neutron generator and an americium–lithium isotopic neutron source. • Liquid scintillators measured induced-fission neutrons from the active-interrogation methods. • Fast-neutron (DT) and thermal-neutron (Am–Li) interrogation resulted in the measurement of trends in uranium mass and 235 U enrichment respectively. • MCNPX-PoliMi, the Monte Carlo transport code, simulated the measured induced-fission neutron trends in the liquid scintillators

  13. Active-interrogation measurements of fast neutrons from induced fission in low-enriched uranium

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, J.L., E-mail: jldolan@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Marcath, M.J.; Flaska, M.; Pozzi, S.A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Chichester, D.L. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Tomanin, A.; Peerani, P. [European Commission, Joint Research Centre, Institute for Transuranium Elements, Ispra (Italy)

    2014-02-21

    A detection system was designed with MCNPX-PoliMi to measure induced-fission neutrons from U-235 and U-238 using active interrogation. Measurements were then performed with this system at the Joint Research Centre in Ispra, Italy on low-enriched uranium samples. Liquid scintillators measured induced fission neutrons to characterize the samples in terms of their uranium mass and enrichment. Results are presented to investigate and support the use of organic liquid scintillators with active interrogation techniques to characterize uranium containing materials. -- Highlights: • We studied low-enriched uranium using active-interrogation experiments including a deuterium–tritium neutron generator and an americium–lithium isotopic neutron source. • Liquid scintillators measured induced-fission neutrons from the active-interrogation methods. • Fast-neutron (DT) and thermal-neutron (Am–Li) interrogation resulted in the measurement of trends in uranium mass and {sup 235}U enrichment respectively. • MCNPX-PoliMi, the Monte Carlo transport code, simulated the measured induced-fission neutron trends in the liquid scintillators.

  14. Intermediate structure studies of 234U cross sections

    International Nuclear Information System (INIS)

    James, G.D.; Schindler, R.H.

    1976-01-01

    Neutron induced fission and total cross sections of 234 U have been measured over the neutron energy range from a few eV to several MeV. Neutron and fission widths for 118 cross section resonances below 1500 eV have been determined and give a class I level spacing of 10.64 + -0.46 eV and a neutron strength function of (0.857 +- 0.108)x10 -4 . These fine structure resonances comprise a narrow intermediate structure resonance in the sub-threshold fission cross section of 234 U. Parameters for the Lorentzian energy dependence of the mean fission width are deduced on the assumption that, relative to this mean, the observed fission widths have a Porter-Thomas distribution. Two large fission widths measured for resonances at 1092.5 eV and 1134 eV may indicate the presence of a second narrow intermediate structure resonance at about this energy. The class II level spacing derived from the observation of 7 resonances below 13 keV is 2.1 +-0.3 keV. Pronounced breaks in the fission cross section at 310 keV, 550 keV and 720 keV are assumed to be due to β-vibrational levels in the second minimum of the Strutinsky potential. Fluctuations due to the presence of class II resonances are strongly evident for each of these vibrational levels. It is shown that the fluctuations near 310 keV are consistent with parameters deduced from the low energy data and this enables parameters for the double humped fission barrier potential to be obtained

  15. 235U isotope enrichment in the metastable levels of UI

    International Nuclear Information System (INIS)

    Gagne, J.M.; Demers, Y.; Dreze, C.; Pianarosa, P.

    1983-01-01

    We have used optical pumping to produce a substantial 235 U enrichment in the metastable levels of UI in the discharge afterglow of a hollow-cathode vapor generator. The measured isotope-enrichment factor for the level at 3800 cm -1 is approximately 20

  16. Development Of A Method For Measurement Of Total Neutron Cross Sections Based On The Neutron Transmission Method Using A He-3 Counter On Filtered Neutron Beams At Dalat Research Reactor

    International Nuclear Information System (INIS)

    Tran Tuan Anh; Dang Lanh; Nguyen Canh Hai; Nguyen Xuan Hai; Pham Kien; Nguyen Thuy Nham; Pham Ngoc Son; Ho Huu Thang

    2007-01-01

    Determination of total neutron cross sections and average resonance parameters in the energy range from tens keV to hundreds keV is important for fast reactors calculations and designs because this energy range gives the most output of all neutron induced reactions in the spectrum of fast reactors. Besides, the total neutron cross section measurement is also one of the methods for determination of s, p and d-wave neutron strength functions. The purpose of this project is to develop a method for measurement of total neutron cross sections based on the neutron transmission technique using a He-3 counter. The average total neutron cross sections of 238 U were obtained from neutron transmission measurements on filtered neutron beams of 55 keV and 144 keV at the horizontal channel No.4 of the Dalat research reactor. The present results have been compared with the previous measurements, and the evaluated data from ENDF/B-6.8 library. (author)

  17. Measurement and resonance analysis of neutron transmissions through four samples of 238U

    International Nuclear Information System (INIS)

    Olsen, D.K.; de Saussure, G.; Perez, R.B.; Difilippo, F.C.; Ingle, R.W.

    1977-01-01

    Accurate total and partial cross sections for 238 U are important for nuclear reactor design. In the resolved resonance region, energies below 4.0 keV, these cross sections are described in terms of individual resonance parameters of which the neutron widths in the 1.5 to 4.0 keV region from various workers appear discrepant. In order to determine these widths, (0.880 to 100.0 keV) neutron transmissions through 0.076, 0.254, 1.080, and 3.620 cm thick enriched 238 U samples were measured, and (0.880 to 100.0 keV) range transmissions were analyzed

  18. Computer simulation of the natural U 238 and U 235 radioactive series decay

    International Nuclear Information System (INIS)

    Barna, A.; Oncescu, M.

    1980-01-01

    The principles of the computer simulation of a radionuclide decay - its decay scheme adoption and codification -, and the adoption principle of a radionuclide chain in a series are applied to the natural U 238 and U 235 series radionuclide decay computer simulation. Using the computer simulation data of these two series adopted chains, the decay characteristic quantities of the series radionuclides, the gamma spectra and the basic characteristics of each of these series are determined and compared with the experimental values given in the literature. (author)

  19. Measurement of the Neutron Capture Cross Sections of $^{233}$U, $^{237}$Np, $^{240,242}$Pu, $^{241,243}$Am and $^{245}$Cm with a Total Absorption Calorimeter at n_TOF

    CERN Multimedia

    Beer, H; Wiescher, M; Cox, J; Rapp, W; Embid, M; Dababneh, S

    2002-01-01

    Accurate and reliable neutron capture cross section data for actinides are necessary for the poper design, safety regulation and precise performance assessment of transmutation devices such as Fast Critical Reactors or Accelerator Driven Systems (ADS). The goal of this proposal is the measurement of the neutron capture cross sections of $^{233}$U, $^{237}$Np, $^{240,242}$Pu, $^{241,243}$Am and $^{245}$Cm at n_TOF with an accuracy of 5~\\%. $^{233}$U plays an essential role in the Th fuel cycle, which has been proposed as a safer and cleaner alternative to the U fuel cycle. The capture cross sections of $^{237}$Np,$^{240,242}$Pu, $^{241,243}$Am and $^{245}$Cm play a key role in the design and optimization of a strategy for the Nuclear Waste Transmutation. A high accuracy can be achieved at n_TOF in such measurements due to a combination of features unique in the world: high instantaneous neutron fluence and excellent energy resolution of the facility, innovative Data Acquisition System based on flash ADCs and t...

  20. Statistical model analysis of fast-neutron-induced fission of U isotopes

    International Nuclear Information System (INIS)

    Lestone, J.P.; Gavron, A.

    1994-01-01

    We have obtained the first experimental evidence of the washing out of the collective level density enhancement associated with the amma deformation of the triaxial first barrier in the U isotope cross sections at neutron energies up to ∼20 MeV, with a statistical model which uses level densities obtained from Nilsson model singles particle levels, we find that it is necessary to (1) wash out the triaxial level density enhancement at an excitation energy of ∼7 MeV above the triaxial barriers with a width of ∼1 MeV, and (2) incorporate the effects of preequilibrium emission. These results imply a γ deformation of the first barriers in the range 10 degree--20 degree. Above an incoming neutron energy of ∼20 MeV where insufficient data exist to constrain optical model potentials, our statistical model U(n,f) cross sections increasingly overestimate the experimental data. A satisfactory reproduction of all the available U(n,f) cross sections above ∼20 MeV is obtained by scaling our calculated compound nucleus formation cross sections. This scaling factor falls from 1.0 at ∼20 MeV to 0.82 at 100 MeV

  1. Performance assessment of new neutron cross section libraries using MCNP code and some critical benchmarks

    International Nuclear Information System (INIS)

    Bakkari, B El; Bardouni, T El.; Erradi, L.; Chakir, E.; Meroun, O.; Azahra, M.; Boukhal, H.; Khoukhi, T El.; Htet, A.

    2007-01-01

    Full text: New releases of nuclear data files made available during the few recent years. The reference MCNP5 code (1) for Monte Carlo calculations is usually distributed with only one standard nuclear data library for neutron interactions based on ENDF/B-VI. The main goal of this work is to process new neutron cross sections libraries in ACE continuous format for MCNP code based on the most recent data files recently made available for the scientific community : ENDF/B-VII.b2, ENDF/B-VI (release 8), JEFF3.0, JEFF-3.1, JENDL-3.3 and JEF2.2. In our data treatment, we used the modular NJOY system (release 99.9) (2) in conjunction with its most recent upadates. Assessment of the processed point wise cross sections libraries performances was made by means of some criticality prediction and analysis of other integral parameters for a set of reactor benchmarks. Almost all the analyzed benchmarks were taken from the international handbook of Evaluated criticality safety benchmarks experiments from OECD (3). Some revised benchmarks were taken from references (4,5). These benchmarks use Pu-239 or U-235 as the main fissionable materiel in different forms, different enrichments and cover various geometries. Monte Carlo calculations were performed in 3D with maximum details of benchmark description and the S(α,β) cross section treatment was adopted in all thermal cases. The resulting one standard deviation confidence interval for the eigenvalue is typically +/-13% to +/-20 pcm [fr

  2. Triple-humped fission barrier model for a new {sup 238}U neutron cross-section evaluation and first validations

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Jimenez, M.J. [CEA/DIF/DPTA/Service de Physique Nucleaire, B.P. 12, F-91680 Bruyeres-le-Chatel (France); Morillon, B. [CEA/DIF/DPTA/Service de Physique Nucleaire, B.P. 12, F-91680 Bruyeres-le-Chatel (France); Romain, P. [CEA/DIF/DPTA/Service de Physique Nucleaire, B.P. 12, F-91680 Bruyeres-le-Chatel (France)]. E-mail: pascal.romain@cea.fr

    2005-01-15

    A new neutron-induced cross-section evaluation of {sup 238}U from 1 keV up to 200 MeV has been performed using only nuclear reactions models. A new fission penetrability model taking into account a triple humped barrier has been developed. A clear improvement has been observed for K-effective validation tests (up to 30 MeV) with this new evaluation. This improvement is mainly due to a better treatment of the inelastic exit channel.

  3. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234,236,238U Neutron-Capture Cross Sections

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, John Leonard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kawano, Toshihiko [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bredeweg, Todd Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baramsai, Bayarbadrakh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Couture, Aaron Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Haight, Robert Cameron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jandel, Marian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Shea Morgan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); O' Donnell, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vieira, David J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilhelmy, Jerry B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Becker, John A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wu, Ching-Yen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Krticka, Milan [Charles Univ., Prague (Czech Republic)

    2015-05-28

    Neutron capture cross sections in the “continuum” region (>≈1 keV) and gamma-emission spectra are of importance to basic science and many applied fields. Careful measurements have been made on most common stable nuclides, but physicists must rely on calculations (or “surrogate” reactions) for rare or unstable nuclides. Calculations must be benchmarked against measurements (cross sections, gamma-ray spectra, and <Γγ>). Gamma-ray spectrum measurements from resolved resonances were made with 1 - 2 mg/cm2 thick targets; cross sections at >1 keV were measured using thicker targets. The results show that the shape of capture cross section vs neutron energy is not sensitive to the form of the strength function (although the magnitude is); the generalized Lorentzian E1 strength function is not sufficient to describe the shape of observed gamma-ray spectra; MGLO + “Oslo M1” parameters produces quantitative agreement with the measured 238U(n,γ) cross section; additional strength at low energies (~ 3 MeV) -- likely M1-- is required; and careful study of complementary results on low-lying giant resonance strength is needed to consistently describe observations.

  4. Absolute measurements of neutron cross sections. Progress report

    International Nuclear Information System (INIS)

    1984-11-01

    In the photoneutron laboratory, we have completed a major refurbishing of experimental facilities and begun work on measurements of the capture cross section in thorium and U-238. In the 14 MeV neutron experimental bay, work continues on the measurement of 14 MeV neutron induced reactions of interest as standards or because of their technological importance. First results have been obtained over the past year, and we are extending these measurements along the lines outlined in our proposal of a year ago

  5. Measurement of cross-sections of fission reactions induced by neutrons on actinides from the thorium cycle at n-TOF facility; Mesures de sections efficaces de fission induite par neutrons sur des actinides du cycle du thorium a n-TOF

    Energy Technology Data Exchange (ETDEWEB)

    Ferrant, L

    2005-09-01

    In the frame of innovating energy source system studies, thorium fuel cycle reactors are considered. Neutron induced fission cross section on such cycle involved actinides play a role in scenario studies. To feed them, data bases are built with experimental results and nuclear models. For some nuclei, they are not complete or in disagreement. In order to complete these data bases, we have built an original set up, consisting in an alternation of PPACs (Parallel Plate Avalanche Chamber) and ultra - thin targets, which we installed on n-TOF facility. We describe detectors, set up, and the particular care brought to target making and characterization. Fission products in coincidence are detected with precise time measurement and localization with delay line read out method. We contributed, within the n-TOF collaboration, to the CERN brand new intense spallation neutron source characterization, based on time of flight measurement, and we describe its characteristics and performances. We were able to measure such actinide fission cross sections as {sup 232}Th, {sup 234}U, {sup 233}U, {sup 237}Np, {sup 209}Bi, and {sup nat}Pb relative to {sup 235}U et {sup 238}U standards, using an innovative acquisition system. We took advantage of the lame accessible energy field, from 0.7 eV to 1 GeV, combined with the excellent energy resolution in this field. Data treatment and analysis advancement are described to enlighten performance and limits of the obtained results. (author)

  6. Delayed Fission Gamma-ray Characteristics of Th-232 U-233 U-235 U-238 and Pu-239

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Taylor [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Parma, Edward J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    Delayed fission gamma-rays play an important role in determining the time dependent ioniz- ing dose for experiments in the central irradiation cavity of the Annular Core Research Reactor (ACRR). Delayed gamma-rays are produced from both fission product decay and from acti- vation of materials in the core, such as cladding and support structures. Knowing both the delayed gamma-ray emission rate and the time-dependent gamma-ray energy spectrum is nec- essary in order to properly determine the dose contributions from delayed fission gamma-rays. This information is especially important when attempting to deconvolute the time-dependent neutron, prompt gamma-ray, and delayed gamma-ray contribution to the response of a diamond photo-conducting diode (PCD) or fission chamber in time frames of milliseconds to seconds following a reactor pulse. This work focused on investigating delayed gamma-ray character- istics produced from fission products from thermal, fast, and high energy fission of Th-232, U-233, U-235, U-238, and Pu-239. This work uses a modified version of CINDER2008, a transmutation code developed at Los Alamos National Laboratory, to model time and energy dependent photon characteristics due to fission. This modified code adds the capability to track photon-induced transmutations, photo-fission, and the subsequent radiation caused by fission products due to photo-fission. The data is compared against previous work done with SNL- modified CINDER2008 [ 1 ] and experimental data [ 2 , 3 ] and other published literature, includ- ing ENDF/B-VII.1 [ 4 ]. The ability to produce a high-fidelity (7,428 group) energy-dependent photon fluence at various times post-fission can improve the delayed photon characterization for radiation effects tests at research reactors, as well as other applications.

  7. Validation of IRDFF in 252Cf Standard and IRDF-2002 Reference Neutron Fields

    Directory of Open Access Journals (Sweden)

    Simakov Stanislav

    2016-01-01

    Full Text Available The results of validation of the latest release of International Reactor Dosimetry and Fusion File, IRDFF-1.03, in the standard 252Cf(s.f. and reference 235U(nth,f neutron benchmark fields are presented. The spectrum-averaged cross sections were shown to confirm IRDFF-1.03 in the 252Cf standard spontaneous fission spectrum; that was not the case for the current recommended spectra for 235U(nth,f. IRDFF was also validated in the spectra of the research reactor facilities ISNF, Sigma-Sigma and YAYOI, which are available in the IRDF-2002 collection. The ISNF facility was re-simulated to remove unphysical oscillations in the spectrum. IRDFF-1.03 was shown to reproduce reasonably well the spectrum-averaged data measured in these fields except for the case of YAYOI.

  8. Comparison of Thermal Neutron Flux Measured by Uranium 235 Fission Chamber and Rhodium Self-Powered Neutron Detector in MTR

    International Nuclear Information System (INIS)

    Fourmentel, D.; Filliatre, P.; Barbot, L.; Villard, J.-F.; Lyoussi, A.; Geslot, B.; Malo, J.-Y.; Carcreff, H.; Reynard-Carette, C.

    2013-06-01

    Thermal neutron flux is one of the most important nuclear parameter to be measured on-line in Material Testing Reactors (MTRs). In particular two types of sensors with different physical operating principles are commonly used: self-powered neutron detectors (SPND) and fission chambers with uranium 235 coating. This work aims to compare on one hand the thermal neutron flux evaluation given by these two types of sensors and on the other hand to compare these evaluations with activation dosimeter measurements, which are considered as the reference for absolute neutron flux assessment. This study was conducted in an irradiation experiment, called CARMEN-1, performed during 2012 in OSIRIS reactor (CEA Saclay - France). The CARMEN-1 experiment aims to improve the neutron and photon flux and nuclear heating measurements in MTRs. In this paper we focus on the thermal neutron flux measurements performed in CARMEN-1 experiment. The use of fission chambers to measure the absolute thermal neutron flux in MTRs is not very usual. An innovative calibration method for fission chambers operated in Campbell mode has been developed at the CEA Cadarache (France) and tested for the first time in the CARMEN-1 experiment. The results of these measurements are discussed, with the objective to measure with the best accuracy the thermal neutron flux in the future Jules Horowitz Reactor. (authors)

  9. New fit of thermal neutron constants (TNC for 233,235U, 239,241Pu and 252Cf(sf: Microscopic vs. maxwellian data

    Directory of Open Access Journals (Sweden)

    Pronyaev Vladimir G.

    2017-01-01

    Full Text Available An IAEA project to update the Neutron Standards is near completion. Traditionally, the Thermal Neutron Constants (TNC evaluated data by Axton for thermal-neutron scattering, capture and fission on four fissile nuclei and the total nu-bar of 252Cf(sf are used as input in the combined least-square fit with neutron cross section standards. The evaluation by Axton (1986 was based on a least-square fit of both thermal-spectrum averaged cross sections (Maxwellian data and microscopic cross sections at 2200 m/s. There is a second Axton evaluation based exclusively on measured microscopic cross sections at 2200 m/s (excluding Maxwellian data. Both evaluations disagree within quoted uncertainties for fission and capture cross sections and total multiplicities of uranium isotopes. There are two factors, which may lead to such difference: Westcott g-factors with estimated 0.2% uncertainties used in the Axton's fit, and deviation of the thermal spectra from Maxwellian shape. To exclude or mitigate the impact of these factors, a new combined GMA fit of standards was undertaken with Axton's TNC evaluation based on 2200 m/s data used as a prior. New microscopic data at the thermal point, available since 1986, were added to the combined fit. Additionally, an independent evaluation of TNC was undertaken using CONRAD code. Both GMA and CONRAD results are consistent within quoted uncertainties. New evaluation shows a small increase of fission and capture thermal cross sections, and a corresponding decrease in evaluated thermal nubar for uranium isotopes and 239Pu.

  10. Energy-averaged neutron cross sections of fast-reactor structural materials

    International Nuclear Information System (INIS)

    Smith, A.; McKnight, R.; Smith, D.

    1978-02-01

    The status of energy-averaged cross sections of fast-reactor structural materials is outlined with emphasis on U.S. data programs in the neutron-energy range 1-10 MeV. Areas of outstanding accomplishment and significant uncertainty are noted with recommendations for future efforts. Attention is primarily given to the main constituents of stainless steel (e.g., Fe, Ni, and Cr) and, secondarily, to alternate structural materials (e.g., V, Ti, Nb, Mo, Zr). Generally, the mass regions of interest are A approximately 50 to 60 and A approximately 90 to 100. Neutron total and elastic-scattering cross sections are discussed with the implication on the non-elastic-cross sections. Cross sections governing discrete-inelastic-neutron-energy transfers are examined in detail. Cross sections for the reactions (n;p), (n;n',p), (n;α), (n;n',α) and (n;2n') are reviewed in the context of fast-reactor performance and/or diagnostics. The primary orientation of the discussion is experimental with some additional attention to the applications of theory, the problems of evaluation and the data sensitivity of representative fast-reactor systems

  11. Criticality Data for Spherical 235U, 239Pu, and 237Np Systems Reflector-Moderated by Low Capturing-Moderator Materials

    International Nuclear Information System (INIS)

    Loaiza, David J.; Stratton, William

    2004-01-01

    The critical dimensions of spherical systems moderated and reflected by low-capturing materials such as D 2 O, BeO, Be, and C were investigated. A parametric study of the critical mass of enriched uranium, plutonium, and neptunium is examined and tabulated. The results obtained expand on the understanding of reflector-moderated critical systems, and they show regions of unstable criticality for 235 U and 239 Pu reflected cores at intermediate densities. This instability is illustrated by calculations of the positive reactivity coefficient of volume expansion. The coefficient is positive, not negative, in the intermediate density region for 235 U and 239 Pu systems. For 237 Np cores reflected by the same moderator, the effect is negligible. The critical dimensions were calculated with the DANTSYS codes using the Hansen-Roach cross-section libraries. This study is both a summary of mostly unpublished calculations and new calculations. Experimental data for these configurations are extremely limited. These are examined in the text when applicable

  12. The D-D Neutron Generator as an Alternative to Am(Li) Isotopic Neutron Source in the Active Well Coincidence Counter

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, Robert Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cleveland, Steven L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    The 235U mass assay of bulk uranium items, such as oxide canisters, fuel pellets, and fuel assemblies, is not achievable by traditional gamma-ray assay techniques due to the limited penetration of the item by the characteristic 235U gamma rays. Instead, fast neutron interrogation methods such as active neutron coincidence counting must be used. For international safeguards applications, the most commonly used active neutron systems, the Active Well Coincidence Counter (AWCC), Uranium Neutron Collar (UNCL) and 252Cf Shuffler, rely on fast neutron interrogation using an isotopic neutron source [i.e., 252Cf or Am(Li)] to achieve better measurement accuracies than are possible using gamma-ray techniques for high-mass, high-density items. However, the Am(Li) sources required for the AWCC and UNCL systems are no longer manufactured, and newly produced systems rely on limited supplies of sources salvaged from disused instruments. The 252Cf shuffler systems rely on the use of high-output 252Cf sources, which while still available have become extremely costly for use in routine operations and require replacement every five to seven years. Lack of a suitable alternative neutron interrogation source would leave a potentially significant gap in the safeguarding of uranium processing facilities. In this work, we made use of Oak Ridge National Laboratory’s (ORNL’s) Large Volume Active Well Coincidence Counter (LV-AWCC) and a commercially available deuterium-deuterium (D-D) neutron generator to examine the potential of the D-D neutron generator as an alternative to the isotopic sources. We present the performance of the LV-AWCC with D-D generator for the assay of 235U based on the results of Monte Carlo N-Particle (MCNP) simulations and measurements of depleted uranium (DU), low enriched uranium (LEU), and highly enriched uranium (HEU) items.

  13. Delayed neutrons as a probe of nuclear charge distribution in fission of heavy nuclei by neutrons

    International Nuclear Information System (INIS)

    Isaev, S.G.; Piksaikin, V.M.; Kazakov, L.E.; Roshchenko, V.A.

    2002-01-01

    A method of the determination of cumulative yields of delayed neutron precursors is developed. This method is based on the iterative least-square procedure applied to delayed neutron decay curves measured after irradiation of 235 U sample by thermal neutrons. Obtained cumulative yields in turns were used for deriving the values of the most probable charge in low-energy fission of the above-mentioned nucleus. (author)

  14. Measurement of double differential cross sections of secondary neutrons from 238U, 209Bi, Fe and 9Be around 10 MeV

    International Nuclear Information System (INIS)

    Qi Bujia; Tang Hongqing; Zhou Zuying

    1995-01-01

    Double differential cross sections of 238 U, 209 Bi, Fe and 9 Be around 10 MeV are measured at 5 or 6 or 8 angles between 35 degree and 120 degree by means of both normal and abnormal TOF spectrometers using T(d,n) neutron source. The present result of 9 Be is compared with existing experimental data. The data of 238 U and 209 Bi are compared with theoretical calculations. A good agreement is achieved

  15. New data on prefission neutrons

    International Nuclear Information System (INIS)

    Boikov, G.S.; Dmitriev, V.D.; Kudyaev, G.A.; Ostapenko, Yu.B.; Svirin, M.I.; Smirenkin, G.N.

    1991-01-01

    The spectra of neutrons emitted in fission of 232 Th, 235 U and 238 U induced by 2.9 and 14.7 MeV neutrons (below and above the chance fission threshold, respectively) were measured by the time-of-flight method. Two effects were observed in the prefission neutron spectra: the high-energy wing is related to the nonequilibrium mechanism of emission up to the well pronounced upper boundary of ε max = 8.5 MeV; in the lower-energy wing ε < 2 MeV, neutron yield exceeds conventional statistical model description. The latter effect was attributed to the fission process dynamics. (author). 18 refs, 3 figs, 2 tabs

  16. Distribution of nanomole quantities of 235U in young and adult Japanese quail and in the F1 generation. Comparison with 153Gd

    International Nuclear Information System (INIS)

    Robinson, G.A.

    1988-01-01

    Enriched uranium, 93.16% for 235 U, served as a tracer of uranium deposition in an avian species, the Japanese quail. A second label, 153 Gd, provided for monitoring of procedures and for estimation of the 235 U content of live eggs. Depositions of 235 U were greater than for 153 Gd in all tissues except the yolk sac and the liver. Skeletal levels for 235 U were age- and sex-dependent. Feathers contained only 0.11% of the 235 U tracer in contrast to 50% of the endogenous uranium. The results show that 235 U provides for tracing uranium metabolism in small animals, since in quail the tracer increased the uranium burden of the body by only 1-8%. (author)

  17. Application of the 226Ra-230Th-234U and 227Ac-231Pa-235U radiochronometers to uranium certified reference materials

    International Nuclear Information System (INIS)

    Rolison, J.M.; Treinen, K.C.; McHugh, K.C.; Gaffney, A.M.; Williams, R.W.

    2017-01-01

    Uranium certified reference materials (CRM) issued by New Brunswick Laboratory were subjected to dating using four independent uranium-series radiochronometers. In all cases, there was acceptable agreement between the model ages calculated using the 231 Pa- 235 U, 230 Th- 234 U, 227 Ac- 235 U or 226 Ra- 234 U radiochronometers and either the certified 230 Th- 234 U model date (CRM 125-A and CRM U630), or the known purification date (CRM U050 and CRM U100). The agreement between the four independent radiochronometers establishes these uranium certified reference materials as ideal informal standards for validating dating techniques utilized in nuclear forensic investigations in the absence of standards with certified model ages for multiple radiochronometers. (author)

  18. Neutron calorimeter as a fusion diagnostic

    International Nuclear Information System (INIS)

    Proctor, A.E.; Nieschmidt, E.B.

    1986-01-01

    A calorimeter is described which is applicable as a fusion neutron diagnostic. The device has the following distinct advantages: low sensitivity to thermal neutrons, large dynamic range, small mass resulting in fair time resolution, small physical size, independent calibration, little shielding required, no heat loss to surroundings, and low cost. The heat generation is provided by neutron induced fissions in a foil of 235 U or 238 U. The effects, advantages, and disadvantages of these target materials are discussed. The expected time resolution and dynamic range are estimated for both target materials

  19. Design of ex-vessel neutron monitor for ITER

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Yamauchi, Michinori; Kasai, Satoshi; Ebisawa, Katsuyuki; Walker, Chris

    2002-07-01

    A neutron flux monitor has been designed by using 235 U fission chambers to be installed outside the vacuum vessel of ITER. We investigated moderator materials to get flat energy response the responses of 235 U fission chambers. Here we employed graphite and beryllium with a ratio of Be/C=0.25 as moderator, which materials are stable in ITER relevant temperature in a horizontal port. Based on the neutronics calculations, a fission chamber with 200 mg of 235 U is adopted for the neutron flux monitor. Three detectors are mounted in a stainless steel housing with moderation material. Two fission chamber assemblies will be installed in a horizontal port; one is for D-D and calibration operation, and another is for D-T operation. The assembly for the D-D operation and the calibration are installed just outside the port plug in the horizontal port. The assembly for the D-T operation is installed just behind the additional shield in the port. Combining of those assemblies with both pulse counting mode and Campbelling mode in the electronics, a dynamic range of 10 7 can be obtained with 1 ms temporal resolution. Effects of gamma-rays and magnetic fields on the fission chamber are negligible in this arrangement. The neutron flux monitor can meet the required 10% accuracy for a fusion power monitor. (author)

  20. The Measurement of Epithermal-to-Thermal U-238 Neutron Capture Rate in Aagesta Power Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bernander, G

    1967-09-15

    The epithermal-to-thermal neutron capture rate ratio {rho}{sub 28} in U-238 in Aagesta fuel has been measured by the chemical separation method. The method involves the isolation of Np-239 from uranium and fission products by reversed phase partition chromatography. Although somewhat elaborate, and in spite of difficulties with residual fission products, the method has yielded reasonably accurate results. Further development work on chemical procedures may lead to some improvement. A comparison with the coincidence method - electronic separation of activities - has not shown any large systematic differences between the two methods. The separation of the epithermal U-235 activation from the total has been achieved by means of the '1/v subtraction technique' using copper foils as the 1/v monitor. The complementary thermal column irradiations required have been performed in the research reactors TRIGA (Helsinki) and R1 (Stockholm). From the measured {rho}{sub 28} values the resonance escape probability (p) and the initial conversion ratio (ICR) may be calculated using cross-section data and other lattice parameters. Comparisons with theoretical values of {rho} and ICR as calculated with the BURNUP lattice parameter code are favourable.

  1. Characteristics of the neutron field near the fission plate; Karakteristike nevtronskega polja fisijske plosce

    Energy Technology Data Exchange (ETDEWEB)

    Glumac, B [Institut Jozef Stefan, Ljubljana (Yugoslavia)

    1979-07-01

    After the reconstruction of the exposure room of the TRIGA reactor a new measurement of the neutron spectrum behind the fission converter was necessary. The multiple foil method was applied. Following twelve reactions were chosen: 197-Au (n, {gamma}), 63-Cu (n, {gamma}), 59-Co (n, {gamma}), 115-In (n.n'), 64-Zn )n.p), 27-Al (n, {alpha}), 25 Mg (n,p), 56-Fe (n,p), 19 F (n,2n'), 237-Np (n,f), 239 Pu (n,f) and 235-U (n,f). The neutron spectrum was calculated from measured reaction rates using our unfolding code ITERAD. The neutron cross sections library DOCROS 77 was applied for the calculations. (author)

  2. Measurement of gamma-ray multiplicity spectra and the alpha value for {sup 235}U resonances

    Energy Technology Data Exchange (ETDEWEB)

    Grigor` ev, Yu V [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Georgiev, G P; Stanchik, Kh [Joint Inst. for Nuclear Research, Dubna (Russian Federation)

    1997-06-01

    Gamma spectra from 1 to 12 multiplicity were measured on th 500 m flight path of the IBR-30 reactor using a 16-section 32 L NaI(Tl) crystal scintillation detector able to hold 2 metallic samples of 90% {sup 235}U and 10% {sup 238}U 0.00137 atoms/b and 0.00411 atoms/b thick. Multiplicity spectra were obtained for resolved resonances in the E = 1-150 eV energy region. They were used to determine the value of {alpha} = {sigma}{sub {gamma}}/{sigma}{sub f} for 165 resonances of {sup 235}U. (author). 6 refs, 7 figs, 1 tab.

  3. Calibration of ITER Instant Power Neutron Monitors: Recommended Scenario of Experiments at the Reactor

    Science.gov (United States)

    Borisov, A. A.; Deryabina, N. A.; Markovskij, D. V.

    2017-12-01

    Instant power is a key parameter of the ITER. Its monitoring with an accuracy of a few percent is an urgent and challenging aspect of neutron diagnostics. In a series of works published in Problems of Atomic Science and Technology, Series: Thermonuclear Fusion under a common title, the step-by-step neutronics analysis was given to substantiate a calibration technique for the DT and DD modes of the ITER. A Gauss quadrature scheme, optimal for processing "expensive" experiments, is used for numerical integration of 235U and 238U detector responses to the point sources of 14-MeV neutrons. This approach allows controlling the integration accuracy in relation to the number of coordinate mesh points and thus minimizing the number of irradiations at the given uncertainty of the full monitor response. In the previous works, responses of the divertor and blanket monitors to the isotropic point sources of DT and DD neutrons in the plasma profile and to the models of real sources were calculated within the ITER model using the MCNP code. The neutronics analyses have allowed formulating the basic principles of calibration that are optimal for having the maximum accuracy at the minimum duration of in situ experiments at the reactor. In this work, scenarios of the preliminary and basic experimental ITER runs are suggested on the basis of those principles. It is proposed to calibrate the monitors only with DT neutrons and use correction factors to the DT mode calibration for the DD mode. It is reasonable to perform full calibration only with 235U chambers and calibrate 238U chambers by responses of the 235U chambers during reactor operation (cross-calibration). The divertor monitor can be calibrated using both direct measurement of responses at the Gauss positions of a point source and simplified techniques based on the concepts of equivalent ring sources and inverse response distributions, which will considerably reduce the amount of measurements. It is shown that the monitor

  4. Evaluation of cross-section data from threshold to 40-60 MeV for specific neutron reactions important for neutron dosimetry applications. Part 1: Evaluation of the excitation functions for the 27Al(n,α)24Na, 55Mn(n,2n)54Mn, 59Co(n,p)59Fe, 59Co(n,2n)58m+gCo and 90Zr(n,2n)89m+gZr reactions

    International Nuclear Information System (INIS)

    Zolotarev, K.I.

    2009-04-01

    Evaluations of cross sections and their associated covariance matrices have been carried out for five dosimetry reactions: - excitation functions were re-evaluated for the 27 Al(n,α) 24 Na, 55 Mn(n,2n) 54 Mn and 90 Zr(n,2n) 89m+g Zr reactions over the neutron energy range from threshold to 40 MeV; - excitation functions were re-evaluated for the 59 Co(n,p) 59 Fe and 59 Co(n,2n) 58m+g Co reactions over the neutron energy range from threshold to 60 MeV. Uncertainties in the cross sections for all of those reactions were also derived in the form of relative covariance matrices. Benchmark calculations performed for 235 U thermal fission and 252 Cf spontaneous fission neutron spectra show that the integral cross sections calculated from the newly evaluated excitation functions exhibit improved agreement with related experimental data when compared with the equivalent data from the IRDF-2002 library. (author)

  5. Ranges of the fragments from thermal (slow) neutron fission of /sup 235/U in water

    Energy Technology Data Exchange (ETDEWEB)

    Gu, H; Chao, Z; Sheng, Z; Wang, L; Feng, X

    1980-05-01

    According to the principle of thick target, we used the aqueous solutions of uranyl chloride of various concentrations as thick targets and platinum plates of known surface area as absorbers immersed in the target solutions. The ranges of the U(n, f) fission fragments /sup 89/Sr, /sup 91/Y, /sup 140/Ba, /sup 141/Ce and /sup 144/Ce in the aqueous solutions of uranyl chloride of various concentrations were determined. In the concentration region of 0.16 U% - 6.2 U%, the uranium concentration had no significant effect on the measurement of the range. Therefore, the ranges of the fission fragments in diluted UO/sub 2/Cl/sub 2/ solutions are very close to those in pure water, and the mean value of the ranges in UO/sub 2/Cl/sub 2/ solutions of various concentrations was taken as the range in water. The experimental results of the ranges of these five fission fragments in water were: R/sub Sr-90/ = 2.39 +- 0.04 mgcm/sup -2/, R/sub Y-91/ = 2.35 +- 0.09 mgcm/sup -2/, R/sub Ba-140/ = 1.92 +- 0.07 mgcm/sup -2/, R/sub Ce-141/ = 1.91 +- 0.12 mgcm/sup -2/, R/sub Ce-144/ = 1.84 +- 0.10 mgcm/sup -2/. In order to estimate the effect of back scattering of fission fragments in platinum plate, we did the experiments using stainless steel plate as absorber (the aqueous solutions of uranyl chloride as thick targets). The results were similar. Thus, the effect of back scattering was not significant. This work provides a convenient means for determining the ranges of the fission fragments in a liquid.

  6. Measurement of {sup 238}Np fission cross-section by neutrons near thermal point (preliminary results)

    Energy Technology Data Exchange (ETDEWEB)

    Abramo; vich, S.N.; Andreev, M.F.; Bol`shakov, Y.M. [Institute of Experimental Physics, Arzamas (Russian Federation)] [and others

    1995-10-01

    Measurements have been carried out of {sup 238}Np fission cross-section by thermal neutrons. The isotope {sup 238}Np was built up through the reaction {sup 238}U(p,n) on an electrostatic accelerator. Extraction and cleaning of the sample were done by ion-exchange chromatography. Fast neutrons were generated on the electrostatic accelerator through the reaction {sup 9}Be(d,n); a polyethylene block was used to slow down neutrons. Registration of fission fragments was performed with dielectric track detectors. Suggesting that the behavior of {sup 238}Np and {sup 238}U. Westscott`s factors are indentical the fission cross-section of {sup 238}Np was obtained: {sigma}{sub fo}=2110 {plus_minus} 75 barn.

  7. The energy spectrum of delayed neutrons from thermal neutron induced fission of 235U and its analytical approximation

    International Nuclear Information System (INIS)

    Doroshenko, A.Yu.; Tarasko, M.Z.; Piksaikin, V.M.

    2002-01-01

    The energy spectrum of the delayed neutrons is the poorest known of all input data required in the calculation of the effective delayed neutron fractions. In addition to delayed neutron spectra based on the aggregate spectrum measurements there are two different approaches for deriving the delayed neutron energy spectra. Both of them are based on the data related to the delayed neutron spectra from individual precursors of delayed neutrons. In present work these two different data sets were compared with the help of an approximation by gamma-function. The choice of this approximation function instead of the Maxwellian or evaporation type of distribution is substantiated. (author)

  8. Evaluation of neutron-induced reactions in 48Ti and 238U

    International Nuclear Information System (INIS)

    Carlson, B.V.; Fiorentino, J.; Frederico, T.; Isidro Filho, M.P.; Mastroleo, R.C.; Rego, R.A.

    1984-05-01

    Preliminary results of the evaluation of neutron-induced reactions in 48 Ti and 238 U are presented. Calculated cross sections for the reactions (n,γ), (n,n'), (n, 2n) and (n,p) as well as for (n,f) in 238 U are given. Comparisons with available experimental data are made and possible changes in the parameters are discussed. (Author) [pt

  9. A New Measurement of the 1S0 Neutron-Neutron Scattering Length using the Neutron-Proton Scattering Length as a Standard

    OpenAIRE

    Trotter, D. E. Gonzalez; Salinas, F.; Chen, Q.; Crowell, A. S.; Gloeckle, W.; Howell, C. R.; Roper, C. D.; Schmidt, D.; Slaus, I.; Tang, H.; Tornow, W.; Walter, R. L.; Witala, H.; Zhou, Z.

    1999-01-01

    The present paper reports high-accuracy cross-section data for the 2H(n,nnp) reaction in the neutron-proton (np) and neutron-neutron (nn) final-state-interaction (FSI) regions at an incident mean neutron energy of 13.0 MeV. These data were analyzed with rigorous three-nucleon calculations to determine the 1S0 np and nn scattering lengths, a_np and a_nn. Our results are a_nn = -18.7 +/- 0.6 fm and a_np = -23.5 +/- 0.8 fm. Since our value for a_np obtained from neutron-deuteron (nd) breakup agr...

  10. Study of Photon Strength Functions of Actinides: the case of U-235, Np-238 and Pu-241

    CERN Document Server

    Guerrero, C; Cano-Ott, D; Martinez, T; Mendoza, E; Villamarin, D; Colonna, N; Meaze, M H; Marrone, S; Tagliente, G; Terlizzi, R; Belloni, F; Abbondanno, U; Fujii, K; Milazzo, P M; Moreau, C; Aerts, G; Berthoumieux, E; Dridi, W; Gunsing, F; Pancin, J; Perrot, L; Plukis, A; Alvarez, H; Duran, I; Paradela, C; Andriamonje, S; Calviani, M; Chiaveri, E; Gonzalez-Romero, E; Kadi, Y; Vicente, M C; Vlachoudis, V; Andrzejewski, J; Marganiec, J; Assimakopoulos, P; Karadimos, D; Karamanis, D; Papachristodoulou, C; Patronis, N; Audouin, L; David, S; Ferrant, L; Isaev, S; Stephan, C; Tassan-Got, L; Badurek, G; Jericha, E; Leeb, H; Oberhummer, H; Pigni, M T; Baumann, P; Kerveno, M; Lukic, S; Rudolf, G; Becvar, F; Krticka, M; Calvino, F; Capote, R; Carrillo De Albornoz, A; Marques, L; Salgado, J; Tavora, L; Vaz, P; Cennini, P; Dahlfors, M; Ferrari, A; Gramegna, F; Herrera-Martinez, A; Mastinu, P; Praena, J; Sarchiapone, L; Wendler, H; Chepel, V; Ferreira-Marques, R; Goncalves, I; Lindote, A; Lopes, I; Neves, F; Cortes, G; Poch, A; Pretel, C; Couture, A; Cox, J; O'brien, S; Wiescher, M; Dillman, I; Kappeler, F; Mosconi, M; Plag, R; Voss, F; Walter, S; Wisshak, K; Dolfini, R; Rubbia, C; Domingo-Pardo, C; Tain, J L; Eleftheriadis, C; Savvidis, I; Frais-Koelbl, H; Griesmayer, E; Furman, W; Konovalov, V; Goverdovski, A; Ketlerov, V; Haas, B; Haight, R; Reifarth, R; Heil, M; Igashira, M; Koehler, P; Kossionides, E; Lampoudis, C; Lozano, M; Quesada, J; Massimi, C; Vannini, G; Mengoni, A; Oshima, M; Papadopoulos, C; Vlastou, R; Pavlik, A; Pavlopoulos, P; Plompen, A; Rullhusen, P; Rauscher, T; Rosetti, M; Ventura, A

    2011-01-01

    The decay from excited levels in medium and heavy nuclei can be described in a statistical approach by means of Photon Strength Functions and Level Density distributions combined with the theory of the compound. The study of electromagnetic cascades following neutron capture by means of high efficiency detectors has been shown to be well suited for probing the properties of the Photon Strength Function of heavy (high level density) and/or radioactive (high background) nuclei. In this work we have investigated for the first time the validity of the recommended PSF for actinides, in particular 235U, 238Np and 241Pu. Our study includes the search for resonance structures in the PSF below Sn and draws conclusions regarding their existence and their characteristics in terms of energy, width and electromagnetic nature.

  11. Calculations of nuclear data for the reactions of neutrons and protons with heavy nuclei at energy from 1 MeV up to 2 GeV

    International Nuclear Information System (INIS)

    Konshin, V.A.

    1995-01-01

    Several nuclear model codes were applied to calculations of nuclear data in the energy region from 1 MeV to 2 GeV. At energies from 1 to 20 MeV the statistical model code STAPRE was used for calculations of the neutron cross-sections for fission, (n,2n) and (n,3n) reaction cross-sections for 71 actinide isotopes. In the energy region from 10 to 100 MeV the nuclear theory code GNASH was used to calculate the neutron fission and (n,xn) cross-sections for 238 U, 235 U, 239 Pu, 232 Th, 237 Np, 238 Pu, 241 Am, 243 Am, 245 Cm and 246 Cm. At energies from 100 MeV to 2 GeV the intranuclear cascade-exciton model including the fission process was applied to calculations of the interactions of protons and neutrons with actinides and the calculated results are compared with experimental data. (author)

  12. Delayed neutron yield from fast neutron induced fission of 238U

    International Nuclear Information System (INIS)

    Piksaikin, V.M.; Kazakov, L.E.; Isaev, S.G.; Roshchenko, V.A.; Goverdovski, A.A.; Tertytchnyi, R.G.

    2002-01-01

    The measurements of the total delayed neutron yield from fast neutron induced fission of 238 U were made. The experimental method based on the periodic irradiation of the fissionable sample by neutrons from a suitable nuclear reaction had been employed. The preliminary results on the energy dependence of the total delayed neutron yield from fission of 238 U are obtained. According to the comparison of experimental data with our prediction based on correlation properties of delayed neutron characteristics, it is concluded that the value of the total delayed neutron yield near the threshold of (n,f) reaction is not a constant. (author)

  13. First principle active neutron coincidence counting measurements of uranium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, Braden, E-mail: goddard.braden@gmail.com [Nuclear Security Science and Policy Institute, Texas A and M University, College Station, Texas 77843 (United States); Charlton, William [Nuclear Security Science and Policy Institute, Texas A and M University, College Station, Texas 77843 (United States); Peerani, Paolo [European Commission, EC-JRC-ITU, Ispra (Italy)

    2014-03-01

    Uranium is present in most nuclear fuel cycle facilities ranging from uranium mines, enrichment plants, fuel fabrication facilities, nuclear reactors, and reprocessing plants. The isotopic, chemical, and geometric composition of uranium can vary significantly between these facilities, depending on the application and type of facility. Examples of this variation are: enrichments varying from depleted (∼0.2 wt% {sup 235}U) to high enriched (>20 wt% {sup 235}U); compositions consisting of U{sub 3}O{sub 8}, UO{sub 2}, UF{sub 6}, metallic, and ceramic forms; geometries ranging from plates, cans, and rods; and masses which can range from a 500 kg fuel assembly down to a few grams fuel pellet. Since {sup 235}U is a fissile material, it is routinely safeguarded in these facilities. Current techniques for quantifying the {sup 235}U mass in a sample include neutron coincidence counting. One of the main disadvantages of this technique is that it requires a known standard of representative geometry and composition for calibration, which opens up a pathway for potential erroneous declarations by the State and reduces the effectiveness of safeguards. In order to address this weakness, the authors have developed a neutron coincidence counting technique which uses the first principle point-model developed by Boehnel instead of the “known standard” method. This technique was primarily tested through simulations of 1000 g U{sub 3}O{sub 8} samples using the Monte Carlo N-Particle eXtended (MCNPX) code. The results of these simulations showed good agreement between the simulated and exact {sup 235}U sample masses.

  14. Uranium isotopic ratio measurements ({sup 235}U/{sup 238}U) by laser ablation high resolution inductively coupled plasma mass spectrometry for environmental radioactivity monitoring - {sup 235}U/{sup 238}U isotope ratio analysis by LA-ICP-MS-HR for environmental radioactivity monitoring

    Energy Technology Data Exchange (ETDEWEB)

    David, K.; Mokili, M.B.; Rousseau, G.; Deniau, I.; Landesman, C. [SUBATECH, Ecole des Mines de Nantes, Universite de Nantes, CNRS/IN2P3, 4 rue Alfred Kastler, 44307 Nantes cedex 3 (France)

    2014-07-01

    The protection of the aquatic and terrestrial environments from a broad range of contaminants spread by nuclear activities (nuclear plants, weapon tests or mining) require continuous monitoring of long-lives radionuclides that were released into the environment. The precise determination of uranium isotope ratios in both natural and potential contaminated samples is of primary concern for the nuclear safeguards and the control of environmental contamination. As an example, analysis of environmental samples around nuclear plants are carried out to detect the traces in the environment originating from nuclear technology activities. This study deals with the direct analysis of {sup 235}U/{sup 238}U isotope ratios in real environmental solid samples performed with laser ablation (LA)-HR-ICP-MS. A similar technique has already been reported for the analysis of biological samples or uranium oxide particles [1,2] but to our knowledge, this was never applied on real environmental samples. The high sensitivity, rapid acquisition time and low detection limits are the main advantages of high resolution ICP-MS for accurate and precise isotope ratio measurements of uranium at trace and ultra-trace levels. In addition, the use of laser ablation allows the analysis of solid samples with minimal preparation. A a consequence, this technique is very attractive for conducting rapid direct {sup 235}U/{sup 238}U isotope ratio analysis on a large set of various matrix samples likely to be encountered in environmental monitoring such as corals, soils, sands, sediments, terrestrial and marine bio-indicators. For the present study, LA-ICP-MS-HR analyses are performed using a New Wave UP213 nano-second Nd:YAG laser coupled to a Thermo Element-XR high resolution mass spectrometer. Powdered samples are compacted with an hydraulic press (5 tons) in order to obtain disk-shaped pellet (10-13 mm in diameter and 2 mm in thickness). The NIST612 reference glass is used for LA-ICP-MS-HR tuning and as

  15. Preparation of 235U target by electrodeposition

    International Nuclear Information System (INIS)

    Chen Qiping; Zhong Wenbin; Li Yougen

    2004-12-01

    A target for the production of fission 99 Mo in a nuclear reactor is composed of an enclosed, cylindrical vessel. Preferable vessel is comprised of stainless steel, having a thin, continuous, uniform layer of 235 U integrally bonded to its inner walls. Two processes are introduced for electrodepositing uranium on to the inner walls of the vessel. One processes is electrodepositing UO 2 from UO 2 (NO 3 ) 2 -(NH 4 ) 2 CO 4 ·H 2 O solution; the other is electrodepositing pure uranium metal from molten salt. Its plating efficiency and plating quantity from a molten bath is higher than UO 2 from the aqueous system. (authors)

  16. Neutronics of a mixed-flow gas-core reactor

    International Nuclear Information System (INIS)

    Soran, P.D.; Hansen, G.E.

    1977-11-01

    The study was made to investigate the neutronic feasibility of a mixed-flow gas-core reactor. Three reactor concepts were studied: four- and seven-cell radial reactors and a seven-cell scallop reactor. The reactors were fueled with UF 6 (either U-233 or U-235) and various parameters were varied. A four-cell reactor is not practical nor is the U-235 fueled seven-cell radial reactor; however, the 7-cell U-233 radial and scallop reactors can satisfy all design criteria. The mixed flow gas core reactor is a very attractive reactor concept and warrants further investigation

  17. Evaluation of the (n,xn) and (n,xnf) cross sections for heavy nuclei with the statistical model

    International Nuclear Information System (INIS)

    Jary, J.

    1975-01-01

    A method was presented to calculate the (n,xn) and (n,xnf) cross sections for the heavy nuclei having mass numbers of 232 1) without fission, according to the law of conventional statistical models, in the (n,xn) process. Fission can also compete with the emission of neutrons and γ-ray for the nuclei and the excitation energy considered. The fission cross sections of 235 U and 238 U recently evaluated by Sowerby and the fission cross section of 236 U have been used to determine the other parameters needed in the calculation. The fission widths of 239 U and 238 U have been obtained by fitting the first-chance and second-chance fission plateaus of the 238 U cross section. For the fission width of 238 U, good agreement was observed between the authors' results and Landrum and others' experimental data. (Iwase, T.)

  18. Microscopic integral cross section measurements in the Be(d,n) neutron spectrum for applications in neutron dosimetry, radiation damage and the production of long-lived radionuclides

    International Nuclear Information System (INIS)

    Smith, D.L.; Meadows, J.W.; Greenwood, L.R.

    1990-01-01

    Integral neutron-reaction cross sections have been measured, relative to the U-238 neutron fission cross-section standard, for 27 reactions which are of contemporary interest in various nuclear applications (e.g., fast-neutron dosimetry, neutron radiation damage and the production of long-lived activities which affect nuclear waste disposal). The neutron radiation field employed in this study was produced by bombarding a thick Be-metal target with 7-MeV deuterons from an accelerator. The experimental results are reported along with detailed information on the associated measurement uncertainties and their correlations. These data are also compared with corresponding calculated values, based on contemporary knowledge of the differential cross sections and of the Be(d,n) neutron spectrum. Some conclusions are reached on the utility of this procedure for neutron-reaction data testing

  19. The secondary neutrons spectra of 235U, 238U for incident energy range 1-2.5 MeV

    International Nuclear Information System (INIS)

    Kornilov, N.V.; Kagalenko, A.B.; Balitsky, A.V.; Baryba, V.Ja.; Androsenko, P.A.; Androsenko, A.A.

    1993-01-01

    Spectra of inelastic scattered neutrons and fission neutrons were measured with neutron time of flight spectrometer. The solid tritium target was used as a neutron source. The energy distribution of neutrons on the sample was calculated with Monte-Carlo code, taking into account interaction income protons inside target and reaction kinematics. The detector efficiency was determined with 252 Cf source. The multiple scattering and absorption corrections were calculated with codes packet BRAND. Our results confirm ENDF/B-6 data library. (author)

  20. Experimental and Theoretical Understanding of Neutron Capture on Uranium Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, John Leonard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-21

    Neutron capture cross sections on uranium isotopes are important quantities needed to model nuclear explosion performance, nuclear reactor design, nuclear test diagnostics, and nuclear forensics. It has been difficult to calculate capture accurately, and factors of 2 or more be- tween calculation and measurements are not uncommon, although normalization to measurements of the average capture width and nuclear level density can improve the result. The calculations of capture for 233,235,237,239U are further complicated by the need to accurately include the fission channel.

  1. Measurement of the $^{233}$U neutron capture cross section at the n_TOF facility at CERN

    CERN Document Server

    Carrapiço, Carlos; Berthoumieux, Eric; Gonçalves, Isabel; Gunsing, Frank

    2012-12-12

    The Thorium-Uranium (Th-U) fuel cycle has been envisaged as an alternative to the Uranium-Plutonium (U-Pu) fuel cycle for electricity generation using nuclear power reactors. Indeed, thorium can be used as a nuclear fuel, and several studies and R&D programs seem to provide evidence on the sustainability of the Th-U fuel cycle, due to (i) the natural abundance of Thorium, (ii) the improved proliferation resistance offered by the Th-U fuel cycle relative to the U-Pu fuel cycle, (iii) the better neutronics performance of the Th-U fuel cycle throughout the whole neutron energy range compared to the U-Pu fuel cycle, (iv) the lower radiotoxicity of the generated spent fuel in reactors with Th-U fuel cycle and, consequently (v) better economics and public acceptance of the reactors operated using the Th-U fuel cycle compared to those using the U-Pu fuel cycle (prior to the Generation IV nuclear reactors). In a nuclear reactor operated using the Th-U fuel cycle, $^{233}$U is a key nuclide governing the neutr...

  2. Development and application of a detector for absolute measurement of neutron fluence rate in MeV region

    International Nuclear Information System (INIS)

    Silva Dias, M. da.

    1988-01-01

    The development and performance of the DTS (Dual Thin Scintillator) for the absolute measurement of the neutron fluence rate between 1 and 15 MeV is decribed. The DTS detector consists of a pair of organic scintillators in a dual configuration, where the incident produces a proton-recoil which is detected in a 2Π geometry therefore avoiding the effect of the escape of protons. Thin scintillators are used resulting in small multiple scattering corrections. The theoretical caluclations of detector efficiency and proton-recoil spectrum were performed by means of a Monte Carlos code - CARLO DTS. The calculated efficiency was compared to the experimental one at two neutron energies namely 2.446 MeV and 14.04 MeV applying the Time Correlated Associated Particle technique. The theoretical and experimental efficiencies agreed within the experimental uncertainties of 1.44% and 0.77%, respectively. The performance of the DTS has been verified in an absolute 235 U(n,f) cross section measurement between 1 and 6 MeV neutron energy. The cross section results were compared to those obtained replacing the DTS detector by the NBS (National Bureau of Standards, USA) Black Neutron Detector. The agreement was excellent in the overlapping energy interval of the two experiments (between 1 and 3 MeV), within the estimated uncertainly in the range of 1,0 to 1,7%. The agreement with the most recent evaluation from the ENDF/B-VI was excellent in almost all the energy range between 1 and 6 MeV. The 235 U(n,f) cross section, average over the 252 Cf fission neutron spectrum has been evaluated. The result including the cross section values of the present work was 1220 mb, in excellent agreement with the average value among the most recent measurements, 1227 +- 12 mb, and with the value 1213 mb, using the ENDF/B-VI data. (author) [pt

  3. Criticality experiments to provide benchmark data on neutron flux traps

    International Nuclear Information System (INIS)

    Bierman, S.R.

    1988-06-01

    The experimental measurements covered by this report were designed to provide benchmark type data on water moderated LWR type fuel arrays containing neutron flux traps. The experiments were performed at the US Department of Energy Hanford Critical Mass Laboratory, operated by Pacific Northwest Laboratory. The experimental assemblies consisted of 2 /times/ 2 arrays of 4.31 wt % 235 U enriched UO 2 fuel rods, uniformly arranged in water on a 1.891 cm square center-to-center spacing. Neutron flux traps were created between the fuel units using metal plates containing varying amounts of boron. Measurements were made to determine the effect that boron loading and distance between the fuel and flux trap had on the amount of fuel required for criticality. Also, measurements were made, using the pulse neutron source technique, to determine the effect of boron loading on the effective neutron multiplications constant. On two assemblies, reaction rate measurements were made using solid state track recorders to determine absolute fission rates in 235 U and 238 U. 14 refs., 12 figs., 7 tabs

  4. Fission cross section measurements at the LLL 100-MeV linac

    International Nuclear Information System (INIS)

    Browne, J.C.

    1975-01-01

    The fission cross section for 235 U was measured from thermal energy to 20 MeV in several steps. First, the cross section was measured from 8 MeV to 20 MeV relative to the n,p scattering cross section and then from thermal to one MeV relative to 6 Li(n,α). In addition, a measurement of the ratio of the fission cross sections of 235 U and 238 U relative to 235 U has been completed in the range 1 keV to 30 MeV for 233 U and 100 keV to 30 MeV for 238 U. Statistical uncertainties are less than 4 percent. (U.S.)

  5. Evaluation of Uranium-235 Measurement Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kaspar, Tiffany C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dibert, Mark W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-05-23

    Monolithic U-Mo fuel plates are rolled to final fuel element form from the original cast ingot, and thus any inhomogeneities in 235U distribution present in the cast ingot are maintained, and potentially exaggerated, in the final fuel foil. The tolerance for inhomogeneities in the 235U concentration in the final fuel element foil is very low. A near-real-time, nondestructive technique to evaluate the 235U distribution in the cast ingot is required in order to provide feedback to the casting process. Based on the technical analysis herein, gamma spectroscopy has been recommended to provide a near-real-time measure of the 235U distribution in U-Mo cast plates.

  6. Neutron cross section libraries for analysis of fusion neutronics experiments

    International Nuclear Information System (INIS)

    Kosako, Kazuaki; Oyama, Yukio; Maekawa, Hiroshi; Nakamura, Tomoo

    1988-03-01

    We have prepared two computer code systems producing neutron cross section libraries to analyse fusion neutronics experiments. First system produces the neutron cross section library in ANISN format, i.e., the multi-group constants in group independent format. This library can be obtained by using the multi-group constant processing code system MACS-N and the ANISN format cross section compiling code CROKAS. Second system is for the continuous energy cross section library for the MCNP code. This library can be obtained by the nuclear data processing system NJOY which generates pointwise energy cross sections and the cross section compiling code MACROS for the MCNP library. In this report, we describe the production procedures for both types of the cross section libraries, and show six libraries with different conditions in ANISN format and a library for the MCNP code. (author)

  7. Application of the activation analysis using the method of retarded fission neutrons counting for the determination of some fissionable nuclides

    International Nuclear Information System (INIS)

    Armelin, M.J.A.

    1984-01-01

    A system for the detection and counting of delayed neutrons which allows the analysis of some fissile and fertile nuclides, in samples of milligram size, was developed. This was applied for the analysis of natural uranium and thorium and also for determining the 235 U/ 238 U ratio in non-irradiated samples which contain uranium with different degrees of enrichment in 235 U. The spectrum of activated neutrons was varied in order to discriminate the nuclides, by covering or not the sample with a material (cadmium or boron) able to absorb low energy neutrons. Determination of 235 U/ 238 U ratios, through the number of delayed neutrons, was made by drawing a calibration curve using standards ranging from 0.5% to 93% on 235 U; the accuracy of the method was also examined. In a first step, conditions for a simultaneous and non-destructive analysis of uranium and thorium were developed. The interference between these two nuclides was studied, using simulated samples. Real samples were provided by Nuclemon and IAEA. For samples with uranium concentration in the range of percentages and thorium concentration of some ppm, uranium interferes in the determination of thorium through the non-destructive analytical method. For this case, a fast and quantitative chemical method was studied which allows for the separation of thorium from uranium before the determination of throrium concentration by counting the delayed fission neutrons. It was found that the results obtained by both destructive and non-destructive methods are very consistent and can be considered statistically equivalent within a confidence level of 95%. (Author) [pt

  8. Validation of evaluated neutron standard cross sections

    International Nuclear Information System (INIS)

    Badikov, S.; Golashvili, T.

    2008-01-01

    Some steps of the validation and verification of the new version of the evaluated neutron standard cross sections were carried out. In particular: -) the evaluated covariance data was checked for physical consistency, -) energy-dependent evaluated cross-sections were tested in most important neutron benchmark field - 252 Cf spontaneous fission neutron field, -) a procedure of folding differential standard neutron data in group representation for preparation of specialized libraries of the neutron standards was verified. The results of the validation and verification of the neutron standards can be summarized as follows: a) the covariance data of the evaluated neutron standards is physically consistent since all the covariance matrices of the evaluated cross sections are positive definite, b) the 252 Cf spectrum averaged standard cross-sections are in agreement with the evaluated integral data (except for 197 Au(n,γ) reaction), c) a procedure of folding differential standard neutron data in group representation was tested, as a result a specialized library of neutron standards in the ABBN 28-group structure was prepared for use in reactor applications. (authors)

  9. Actinide Capture and Fission Cross Section Measurements Within the Mini-Inca Project

    International Nuclear Information System (INIS)

    Letourneau, A.

    2006-01-01

    Full text of publication follows: The Mini-INCA project is devoted to precise description of the transmutation chain of Actinides within high thermal neutron fluxes. It uses the High Flux Reactor of ILL (Laue Langevin Institute) as an intense thermal neutron source to measure capture and fission cross sections. Two irradiation channels are dedicated for those measurements offering a diversity of fluxes ranging from pure thermal neutrons to 15% epithermal neutrons with intensities as high as 1*10 15 n/cm 2 /s. Standard nuclear techniques for measurements, such as α and γ-spectroscopy of irradiated samples, have been extended in order to stand all constraints due to the irradiation in high fluxes. In particular new types of fission micro-chambers have been developed to follow online the evolution of one actinide and to measure its fission cross section in reference to 235 U(n,F) standard reaction. This type of neutron detector will be used within the MEGAPIE target to on-line characterise the neutron flux and to study the potentiality of such target in terms of incineration. (author)

  10. Assay of fissionable isotopes in aqueous solution by pulsed neutron interrogation

    International Nuclear Information System (INIS)

    Campbell, P.; Gardy, E.M.; Boase, D.G.

    1978-04-01

    Non-destructive assay of uranium-235 and thorium-232 in aqueous nitric acid solutions has been accomplished by irradiation with pulses of neutrons from a 14-MeV Cockcroft-Walton neutron generator, and counting of the delayed neutrons emitted from the fissions induced. Design of the delayed neutron detector assemblies is described, together with the neutron pulse timing and counting systems. The effects of irradiation time, counting time, neutron moderation, detector design and sample geometry on the delayed neutron response from uranium-235 and 238 and thorium-232 are discussed. By using polyethylene to moderate the interrogating neutrons, solutions can be analyzed for both uranium-235 and thorium. Comparative analyses with chemical and γ-spectrometric methods show good agreement. The neutron method is rapid and is shown to be unaffected by the presence in solution of impurities such as iron, nickel, chromium, and aluminum. With the experimental equipment described, detection limits of 0.6 mg of 235 U and 9 mg of 232 Th in a sample volume of 25 mL have been achieved. Analyses of highly radioactive samples may be done easily since the measurements are not affected by the presence of large amounts of βγ radiation. Samples can be enclosed in small lead-shielded flasks during analysis to protect the analyst. The potential of the technique to on-line analysis applications is explored briefly. (author)

  11. Neutron scattering studies in the actinide region. Progress report, August 1, 1991--July 31, 1994

    International Nuclear Information System (INIS)

    Kegel, G.H.R.; Egan, J.J.

    1994-09-01

    During the period August 1, 1991 to July 31, 1994 the authors report progress on the following: (a) prompt fission neutron energy spectra for 235 U and 239 Pu; (b) two-parameter measurement of nuclear lifetimes; (c) 'black' neutron detector; (d) data reduction techniques for neutron scattering experiments; (e) elastic and inelastic neutron scattering studies in 197 Au; (f) elastic and inelastic neutron scattering studies in 239 Pu; (g) neutron induced defects in silicon dioxide MOS structures; (h) response of a 235 U fission chamber near reaction thresholds; (i) efficiency calibration of a liquid scintillation detector using the WNR facility at LAMPF; (j) prompt fission neutron energy spectrum measurements below the incident neutron energy; (k) multi-parameter data acquisition system; (l) accelerator improvements; (m) non-DOE supported research. Eight Ph.D. dissertations and two M.S. theses were completed during the report period. Publications consisted of 6 journal articles, 10 conference proceedings, and 19 abstracts of presentations at scientific meetings. One invited talk was given

  12. The Measurement of Epithermal-to-Thermal U-238 Neutron Capture Rate (ρ28) in Aagesta Power Reactor Fuel

    International Nuclear Information System (INIS)

    Bernander, G.

    1967-09-01

    The epithermal-to-thermal neutron capture rate ratio ρ 28 in U-238 in Aagesta fuel has been measured by the chemical separation method. The method involves the isolation of Np-239 from uranium and fission products by reversed phase partition chromatography. Although somewhat elaborate, and in spite of difficulties with residual fission products, the method has yielded reasonably accurate results. Further development work on chemical procedures may lead to some improvement. A comparison with the coincidence method - electronic separation of activities - has not shown any large systematic differences between the two methods. The separation of the epithermal U-235 activation from the total has been achieved by means of the '1/v subtraction technique' using copper foils as the 1/v monitor. The complementary thermal column irradiations required have been performed in the research reactors TRIGA (Helsinki) and R1 (Stockholm). From the measured ρ 28 values the resonance escape probability (p) and the initial conversion ratio (ICR) may be calculated using cross-section data and other lattice parameters. Comparisons with theoretical values of ρ and ICR as calculated with the BURNUP lattice parameter code are favourable

  13. Measurement of MA fission cross sections at YAYOI

    Energy Technology Data Exchange (ETDEWEB)

    Ohkawachi, Yasushi; Ohki, Shigeo; Wakabayashi, Toshio [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    Fission cross section ratios of minor actinide nuclides (Am-241, Am-243) relative to U-235 in the fast neutron energy region have been measured using a back-to-back (BTB) fission chamber at YAYOI fast neutron source reactor. A small BTB fission chamber was developed to measure the fission cross section ratios in the center of the core at YAYOI reactor. Dependence of the fission cross section ratios on neutron spectra was investigated by changing the position of the detector in the reactor core. The measurement results were compared with the fission cross sections in the JENDL-3.2, ENDF/B-VI and JEF-2.2 libraries. It was found that calculated values of Am-241 using the JENDL-3.2, ENDF/B-VI and JEF-2.2 data are lower by about 15% than the measured value in the center of the core (the neutron average energy is 1.44E+6(eV)). And, good agreement can be seen the measured value and calculated value of Am-243 using the JENDL-3.2 data in the center of the core (the neutron average energy is 1.44E+6)(eV), but calculated values of Am-243 using the ENDF/B-VI and JEF-2.2 data are lower by 11% and 13% than the measured value. (author)

  14. Reimiep 87. An interlaboratory U-235 enrichment determination by gamma measurement on solid UF6 sample

    International Nuclear Information System (INIS)

    Aparo, M.; Cresti, P.

    1988-01-01

    Gamma spectroscopy technique, based on the measurement of U 235 186 KeV flux, is now currently used for the determination of Uranium enrichment in different material of nuclear fuel cycle, namely: Uranium metallic, UO 2 pellets, UF 6 liquid or solid. The present paper describes the use of such a technique and the obtained results in determining the U 235 /U atomic isotopic abundance on a certified UF 6 solid sample. The measurements have been carried out in the frame work of the partecipation to the ''UF 6 Interlaboratory Measurements Evaluation Programme'' organized by CBNM/Geel with the support of the ESARDA (European Safeguards Research and Development Association)

  15. Fuel cycle cost comparison of choices in U-235 recycle in the HTGR

    International Nuclear Information System (INIS)

    Rothstein, M.P.

    1976-07-01

    An analysis of alternative options for the recycle of discharged makeup U-235 (''residual'' makeup) in HTGRs shows that the three-particle system which has been the reference plan remains optimal. This result considers both the resource utilization and the handling costs attendant to the alternative strategies (primarily in the recycle facility and in waste disposal). Furthermore, this result appears to be true under all forseeable economic conditions. A simple risk assessment indicates that recycle cost (including reprocessing, refabrication, and related waste disposal) would have to double or triple in order for the alternative U-235 recycle schemes to become attractive. This induces some degree of confidence in the choice of staying with the reference cycle in spite of the large degree of uncertainty over recycle and its costs

  16. MADNIX a code to calculate prompt fission neutron spectra and average prompt neutron multiplicities

    International Nuclear Information System (INIS)

    Merchant, A.C.

    1986-03-01

    A code has been written and tested on the CDC Cyber-170 to calculate the prompt fission neutron spectrum, N(E), as a function of both the fissioning nucleus and its excitation energy. In this note a brief description of the underlying physical principles involved and a detailed explanation of the required input data (together with a sample output for the fission of 235 U induced by 14 MeV neutrons) are presented. Weisskopf's standard nuclear evaporation theory provides the basis for the calculation. Two important refinements are that the distribution of fission-fragment residual nuclear temperature and the cooling of the fragments as neutrons are emitted approximately taken into account, and also the energy dependence of the cross section for the inverse process of compound nucleus formation is included. This approach is then used to calculate the average number of prompt neutrons emitted per fission, v-bar p . At high excitation energies, where fission is still possible after neutron emission, the consequences of the competition between first, second and third chance fission on N(E) and v-bar p are calculated. Excellent agreement with all the examples given in the original work of Madland and Nix is obtained. (author) [pt

  17. Neutron cross sections for fusion

    International Nuclear Information System (INIS)

    Haight, R.C.

    1979-10-01

    First generation fusion reactors will most likely be based on the 3 H(d,n) 4 He reaction, which produces 14-MeV neutrons. In these reactors, both the number of neutrons and the average neutron energy will be significantly higher than for fission reactors of the same power. Accurate neutron cross section data are therefore of great importance. They are needed in present conceptual designs to calculate neutron transport, energy deposition, nuclear transmutation including tritium breeding and activation, and radiation damage. They are also needed for the interpretation of radiation damage experiments, some of which use neutrons up to 40 MeV. In addition, certain diagnostic measurements of plasma experiments require nuclear cross sections. The quality of currently available data for these applications will be reviewed and current experimental programs will be outlined. The utility of nuclear models to provide these data also will be discussed. 65 references

  18. Evaluation of fission spectra and cross sections by zero-leakage core experiments

    International Nuclear Information System (INIS)

    Iijima, T.; Mukaiyama, T.

    1979-01-01

    A series of unit k-infinity core experiments were performed in FCA of JAERI to obtain the information on the equivalence of 239 Pu to 235 U in fast reactors, and to examine the inelastic slowing down cross section of 238 U. Three assemblies were built. Each assembly consists of a test zone (about 44l) of nearly unit k-infinity, a 20% enriched uranium driver and a natural uranium blanket. Assembly IV-1 (first built in 1969 and rebuilt in 1972) is an all uranium system, and Assemblies IV-1-P, IV-1-P' have a plutonium/natural uranium test zone. Three assemblies are nearly the same from the view-point of the slowing down cross section in the main energy region of the neutron spectrum, since 238 U occupies the most part of the composition. The main difference between Assembly IV-1 and the latter two is the difference in the fissile material. Fission rate ratios and k-infinity values were measured to obtain knowledge of the fission spectra and cross sections important for the criticality. In order to evaluate the inelastic slowing down cross section of 238 U, neutron spectra were measured with various methods. The analysis was done with four cross section sets. The agreement of k-infinity values between the experiment and the calculation is unsatisfactory, especially for Pu/NU systems

  19. Influence of vibrations of gas molecules on neutron reaction cross sections

    Science.gov (United States)

    Bowman, C. D.; Schrack, R. A.

    1980-01-01

    The change in molecular vibrational energy upon absorption of a neutron by a nucleus bound in a free molecule can influence resonance shape and other aspects of neutron reaction cross sections. A formalism is developed for centrosymmetric molecules such as UF6 and applied to the shape of the 6.67 eV resonance in 238U. The ratio of the resonance shape for 238UF6 gas and for solid 238U3O8 has been measured and compared with the calculation. Reasonable agreement is obtained indicating the validity of the calculation and the necessity to include vibration effects to avoid large errors in measurements and calculations on gascontaining systems. NUCLEAR REACTIONS 238U(n,γ) measured at 6.67 eV resonance; Effect of molecular vibrations studied experimentally and theoretically.

  20. A setup for active neutron analysis of the fissile material content in fuel assemblies of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bushuev, A. V.; Kozhin, A. F., E-mail: alexfkozhin@yandex.ru; Aleeva, T. B.; Zubarev, V. N.; Petrova, E. V.; Smirnov, V. E. [National Research Nuclear University MEPhI (Russian Federation)

    2016-12-15

    An active neutron method for measuring the residual mass of {sup 235}U in spent fuel assemblies (FAs) of the IRT MEPhI research reactor is presented. The special measuring stand design and uniform irradiation of the fuel with neutrons along the entire length of the active part of the FA provide high accuracy of determination of the residual {sup 235}U content. AmLi neutron sources yield a higher effect/background ratio than other types of sources and do not induce the fission of {sup 238}U. The proposed method of transfer of the isotope source in accordance with a given algorithm may be used in experiments where the studied object needs to be irradiated with a uniform fluence.

  1. Measurements of neutron-induced fission cross sections of Pb and Bi at intermediate energies

    International Nuclear Information System (INIS)

    Ryzhov, Igor; Tutin, Gennady; Eismont, Vilen; Mitryukhin, Andrey; Oplavin, Valery; Soloviev, Sergey; Conde, Henri; Olsson, Nils; Renberg, Per-Ulf

    2002-01-01

    Neutron-induced fission cross sections of nat Pb and 209 Bi have been measured relative to the 238 U(n.f) cross section at energies 96 MeV for lead and 133 MeV for bismuth. The measurements were performed at the quasi-mono-energetic neutron beam facility of The Svedberg Laboratory in Uppsala using Frisch-gridded ionization chamber. The results obtained are compared with other experimental data. The present state of the Bi standard recommended by IAEA is discussed. (author)

  2. An Investigation of an Irradiated Fuel Pin by Measurement of the Production of Fast Neutrons in a Thermal Column and by Pile Oscillation Technique

    International Nuclear Information System (INIS)

    Gustavsson, Veine

    1968-05-01

    A fuel pin irradiated to about 3400 MWd/tU from the Halden reactor has been investigated by a measurement of the production of fast neutrons in a thermal column and by pile oscillator technique in the central channel of the reactor R1. Calibration was made by using samples with different U 235 enrichments. The thermal column experiment gives the quantity ave(νΣ f ) (average in the thermal column spectrum) for the Halden sample. Σ f is the macroscopic fission cross section and ν is the number of fast neutrons produced per fission. The result of the oscillator measurements is a value of ave(Σ a ) - w ave(Σ f ) (average in the central channel spectrum) for the irradiated sample, w is the importance of a fast neutron relative to a thermal one and ave(Σ a ) is the macroscopic absorption cross section. The results from both the experiments have been compared with values calculated by the REBUS code and the agreement was good

  3. Benchmark experiments at ASTRA facility on definition of space distribution of 235U fission reaction rate

    International Nuclear Information System (INIS)

    Bobrov, A. A.; Boyarinov, V. F.; Glushkov, A. E.; Glushkov, E. S.; Kompaniets, G. V.; Moroz, N. P.; Nevinitsa, V. A.; Nosov, V. I.; Smirnov, O. N.; Fomichenko, P. A.; Zimin, A. A.

    2012-01-01

    Results of critical experiments performed at five ASTRA facility configurations modeling the high-temperature helium-cooled graphite-moderated reactors are presented. Results of experiments on definition of space distribution of 235 U fission reaction rate performed at four from these five configurations are presented more detail. Analysis of available information showed that all experiments on criticality at these five configurations are acceptable for use them as critical benchmark experiments. All experiments on definition of space distribution of 235 U fission reaction rate are acceptable for use them as physical benchmark experiments. (authors)

  4. Isotopic separation of 235U and 238U in an atomic beam with selective two-step photo-ionisation

    International Nuclear Information System (INIS)

    Boehm, H.D.V.

    1977-01-01

    The present work gives a report on investigations on isotope separation of 235 U and 238 U by means of selective two-stage photo-ionization on atomic uranium. An atomic beam of sufficient particle density was produced by dissociation of URe 2 in an electron beam heated tungsten furnace at a temperature of 2.500 k. A continuously operated rhodamin-69 dye laser with a maximum output of 120 mW and about 50 mHz band width in one-made operation was used for selective excitation from the ground state. From this state of excitation, ionization resulted achieving a light power of 1.8 W below 3030 A in the reaction volume. The measured separation factors show that the laser method enables the enrichment of uranium to the required valve of three or more percent 235 U for light water reactors in a single separation step. The hyperfine structure could be considerably better resolved compared to earlier investigations, so that it was possible for the first time to identify and measure hitherto unobserved weak components. (orig.) [de

  5. Uranium contents and {sup 235}U/{sup 238}U atom ratios in soil and earthworms in western Kosovo after the 1999 war

    Energy Technology Data Exchange (ETDEWEB)

    Di Lella, L.A.; Nannoni, F.; Protano, G.; Riccobono, F. [Dipartimento di Scienze Ambientali ' G. Sarfatti' -Sezione di Geochimica Ambientale, University of Siena, Via del Laterino 8, I-53100, Siena (Italy)

    2005-01-20

    The uranium content and {sup 235}U/{sup 238}U atom ratio were determined in soils and earthworms of an area of Kosovo (Djakovica garrison), heavily shelled with depleted uranium (DU) ammunition during the 1999 war. The aim of the study was to reconstruct the small-scale distribution of uranium and assess the influence of the DU added to the surface environment. The total uranium concentration and the {sup 235}U/{sup 238}U ratio of topsoils showed great variability and were inversely correlated. The highest uranium levels (up to 31.47 mg kg{sup -1}) and lowest {sup 235}U/{sup 238}U ratios (minimum 0.002147) were measured in topsoils collected inside, or very close to, the clusters of DU penetrator holes. Regarding the fractionation of uranium in the surface soils, the uranium concentrations in the soluble and exchangeable fractions increased as the total uranium concentration of the topsoils increased. High and rather uniform percentage contents of uranium (24-36%) were associated with the poorly crystalline iron oxide phases of soils. In the U-enriched soils the elevated levels of the element were probably due to the presence of very small, unevenly distributed oxidized DU particles. The total uranium concentration in earthworms was in the range 0.142-0.656 mg kg{sup -1}, with the highest concentrations in Lumbricus terrestris. The juveniles of all three studied species seemed to accumulate uranium more than adults, probably due to age-related differences in metabolism. The {sup 235}U/{sup 238}U ratio in the earthworms was variable (0.005241-0.007266) and independent of both the total uranium contents in soils and the absolute uranium levels in the animals. Bioconcentration was greater at lower U concentrations in soil, probably due to an increasing rate of elimination of uranium by the earthworms as the soil contents of the element increase. The results of this study clearly indicate that DU was added to the soil of the study area. Nevertheless, the phenomenon was

  6. Non destructive examination of UN / U-Si fuel pellets using neutrons (preliminary assessment)

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, Mark Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Voit, Stewart Lancaster [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mcclellan, Kenneth James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Losko, Adrian S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tremsin, Anton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-31

    Tomographic imaging and diffraction measurements were performed on nine pellets; four UN/ U Si composite formulations (two enrichment levels), three pure U3Si5 reference formulations (two enrichment levels) and two reject pellets with visible flaws (to qualify the technique). The U-235 enrichments ranged from 0.2 to 8.8 wt.%. The nitride/silicide composites are candidate compositions for use as Accident Tolerant Fuel (ATF). The monophase U3Si5 material was included as a reference. Pellets from the same fabrication batches will be inserted in the Advanced Test Reactor at Idaho during 2016. The goal of the Advanced Non-destructive Fuel Examination work package is the development and application of non-destructive neutron imaging and scattering techniques to ceramic and metallic nuclear fuels. Data reported in this report were collected in the LANSCE run cycle that started in September 2015 and ended in March 2016. Data analysis is ongoing; thus, this report provides a preliminary review of the measurements and provides an overview of the characterized samples.

  7. Prompt neutron fission spectrum mean energies for the fissile nuclides and 252Cf

    International Nuclear Information System (INIS)

    Holden, N.E.

    1985-01-01

    The international standard for a neutron spectrum is that produced from the spontaneous fission of 252 Cf, while the thermal neutron induced fission neutron spectra for the four fissile nuclides, 233 U, 235 U, 239 Pu, and 241 Pu are of interest from the standpoint of nuclear reactors. The average neutron energies of these spectra are tabulated. The individual measurements are recorded with the neutron energy range measured, the method of detection as well as the average neutron energy for each author. Also tabulated are the measurements of the ratio of mean energies for pairs of fission neutron spectra. 75 refs., 9 tabs

  8. High energy resolution measurement of the sup 238 U neutron capture yield from 1 to 100 keV

    Energy Technology Data Exchange (ETDEWEB)

    Macklin, R.L. (Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering); Perez, R.B. (Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering Oak Ridge National Lab., TN (United States)); De Saussure, G.; Ingle, R.W. (Oak Ridge National Lab., TN (United States))

    1991-01-01

    The purpose of this work is the precise determination of the {sup 238}U neutron capture yield (i.e. the probability of neutron capture) as a function of neutron energy with the highest available neutron energy resolution. The motivation for this undertaking arises from the central role played by the {sup 238}U neutron capture process in the neutron balance of both thermal reactors and fast breeder reactors. The present measurement was performed using the Oak Ridge Electron Linear Accelerator (ORELA) facility. The pulsed beam of neutrons from the ORELA facility is collimated on a sample of {sup 238}U. The neutron capture rate in the sample is measured, as a function of neutron time-of-flight (TOF) by detecting the {gamma}-rays from the {sup 238}U(n, {gamma}){sup 239}U reaction with a large {gamma}-ray detector surrounding the {sup 238}U sample. At each energy, the capture yield is proportional to the observed capture rate divided by the measured intensity of the neutron beam. The constant of proportionality (the normalization constant) is obtained from the ratio of theoretical to experimentally measured areas under small {sup 238}U resonances where the resonance parameters have been determined from high-resolution {sup 238}U transmission measurements. The cross section for the reaction {sup 238}U(n,{gamma}){sup 239}U can be derived from the measured capture yield if one applies appropriate corrections for multiple scattering and resonance self-shielding. Some 200 {sup 238}U neutron resonances in the energy range from 250 eV to 10 keV have been observed which had not been detected in previous measurements. (author).

  9. Prediction of fission mass-yield distributions based on cross section calculations

    International Nuclear Information System (INIS)

    Hambsch, F.-J.; G.Vladuca; Tudora, Anabella; Oberstedt, S.; Ruskov, I.

    2005-01-01

    For the first time, fission mass-yield distributions have been predicted based on an extended statistical model for fission cross section calculations. In this model, the concept of the multi-modality of the fission process has been incorporated. The three most dominant fission modes, the two asymmetric standard I (S1) and standard II (S2) modes and the symmetric superlong (SL) mode are taken into account. De-convoluted fission cross sections for S1, S2 and SL modes for 235,238 U(n, f) and 237 Np(n, f), based on experimental branching ratios, were calculated for the first time in the incident neutron energy range from 0.01 to 5.5 MeV providing good agreement with the experimental fission cross section data. The branching ratios obtained from the modal fission cross section calculations have been used to deduce the corresponding fission yield distributions, including mean values also for incident neutron energies hitherto not accessible to experiment

  10. Neutron cross sections: Book of curves

    International Nuclear Information System (INIS)

    McLane, V.; Dunford, C.L.; Rose, P.F.

    1988-01-01

    Neuton Cross Sections: Book of Curves represents the fourth edition of what was previously known as BNL-325, Neutron Cross Sections, Volume 2, CURVES. Data is presented only for (i.e., intergrated) reaction cross sections (and related fission parameters) as a function of incident-neutron energy for the energy range 0.01 eV to 200 MeV. For the first time, isometric state production cross sections have been included. 11 refs., 4 figs

  11. Investigating Uranium Mobility Using Stable Isotope Partitioning of 238U/235U and a Reactive Transport Model

    Science.gov (United States)

    Bizjack, M.; Johnson, T. M.; Druhan, J. L.; Shiel, A. E.

    2015-12-01

    We report a numerical reactive transport model which explicitly incorporates the effectively stable isotopes of uranium (U) and the factors that influence their partitioning in bioactive systems. The model reproduces trends observed in U isotope ratios and concentration measurements from a field experiment, thereby improving interpretations of U isotope ratios as a tracer for U reactive transport. A major factor contributing to U storage and transport is its redox state, which is commonly influenced by the availability of organic carbon to support metal-reducing microbial communities. Both laboratory and field experiments have demonstrated that biogenic reduction of U(VI) fractionates the stable isotope ratio 238U/235U, producing an isotopically heavy solid U(IV) product. It has also been shown that other common reactive transport processes involving U do not fractionate isotopes to a consistently measurable level, which suggests the capacity to quantify the extent of bioreduction occurring in groundwater containing U using 238U/235U ratios. A recent study of a U bioremediation experiment at the Rifle IFRC site (Colorado, USA) applied Rayleigh distillation models to quantify U stable isotope fractionation observed during acetate amendment. The application of these simplified models were fit to the observations only by invoking a "memory-effect," or a constant source of low-concentration, unfractionated U(VI). In order to more accurately interpret the measured U isotope ratios, we present a multi-component reactive transport model using the CrunchTope software. This approach is capable of quantifying the cycling and partitioning of individual U isotopes through a realistic network of transport and reaction pathways including reduction, oxidation, and microbial growth. The model incorporates physical heterogeneity of the aquifer sediments through zones of decreased permeability, which replicate the observed bromide tracer, major ion chemistry, U concentration, and U

  12. Neutron physics computation of CERCA fuel elements for Maria Reactor

    International Nuclear Information System (INIS)

    Andrzejewski, K.J.; Kulikowska, T.; Marcinkowska, Z.

    2008-01-01

    Neutron physics parameters of CERCA design fuel elements were calculated in the framework of the RERTR (Reduced Enrichment for Research and Test Reactors) program for Maria reactor. The analysis comprises burnup of experimental CERCA design fuel elements for 4 cycles in Maria Reactor To predict the behavior of the mixed core the differences between the CERCA fuel (485 g U-235 as U 3 Si 2 , 5 fuel tubes, low enrichment 19.75 % - LEU) and the presently used MR-6 fuel (430 g as UO 2 , 6 fuel tubes, high enrichment 36 % - HEU) had to be taken into account. The basic tool used in neutron-physics analysis of Maria reactor is program REBUS using in its dedicated libraries of effective microscopic cross sections. The cross sections were prepared using WIMS-ANL code, taking into account the actual structure, temperature and material composition of the fuel elements required preparation of new libraries.The problem is described in the first part of the present paper. In the second part the applicability of the new library is shown on the basis of the fuel core computational analysis. (author)

  13. Measurement of double differential cross sections of secondary neutrons in the incident energy range 9-13 MeV

    International Nuclear Information System (INIS)

    Tang Hongqing; Qi Bujia; Zhou Zuying; Sa Jun; Ke Zunjian; Sui Qingchang; Xia Haihong; Shen Guanren

    1992-01-01

    The status and technique of double differential cross section measurement of secondary neutrons in the incident neutron energy range 9 to 13 MeV is reviewed with emphasis on the work done at CIAE. There are scarce measurements of secondary neutron double differential cross sections in this energy region up to now. A main difficulty for this is lack of an applicable monoenergetic neutron source. When monoenergetic neutron energy reaches 8 Me/v, the break-up neutrons from the d + D or p + T reaction starts to become significant. It is difficult to get a pure secondary neutron spectrum induced only by monoenergetic neutrons. To solve this problem an abnormal fast neutron TOF facility was designed and tested. Double differential neutron emission cross sections of 238 U and 209 Bi at 10 MeV were obtained by combining the data measured by both normal and abnormal TOF spectrometers and a good agreement between measurement and calculation was achieved

  14. Fission physics experiments at the time-of-flight spectrometer GNEIS in Gatchina (PNPI)

    International Nuclear Information System (INIS)

    Shcherbakov, O.A.

    1994-01-01

    The outline of and fission physics experiments at the Gatchina neutron spectrometer GNEIS based on the 1 GeV PNPI proton synchrotron are presented. The prefission gamma-ray spectrum of the (n, gamma f) reaction were investigated. The capture gamma-ray spectra for 721.6 eV and 1211.4 eV resonances in U-238 were measured and the nature of the 721.6 eV resonance in U-238 were examined. The forward-backward asymmetry in slow neutron fission of U-235 and energy dependence of the forward-backward and instrumental asymmetry coefficients were obtained. Fission cross section ratios for Th-232 to U-235 and for U-238 to U-235 in the energy range up to 200 MeV were measured. The results of the cross section ratios agreed well with those of Behrens et al. and Difilippo et al. (T.H.)

  15. A neutron irradiator applied to cancer treatment

    International Nuclear Information System (INIS)

    Campos, Tarcisio P.R.; Andrade, Ana P. de

    2000-01-01

    Cancer and the way of treating it with neutron capture therapy are addressed. This paper discusses also the type of neutron facilities used to treat cancer around the world, as follow: discrete neutron sources, accelerators, and nuclear reactors. The major features of an epithermal neutron irradiation facility applied to BNCT treatment are addressed. The main goal is to give another choice of neutron irradiators to be set in a hospital. The irradiation facility embeds a set of 252 Cf neutron source coupled with a homogeneous mixture of uranium-zirconium hydride alloy containing 8.4 wt % uranium enriched to 20% U 235 . The facility delivers an epithermal neutron beam with low background of fast neutron and gamma rays. The N particle transport code (MCNP-4A) has been used during the simulation in order to achieve the desired configurations and to estimate the multiplication factor, k eff . The present facility loaded with 30 mg of 252 Cf neutron source generates an external beam with an intensity of 10 7 n/cm 2 .s on the spectrum of 4 eV to 40 KeV. The 252 Cf - facility coupled with fissile material was able to amplify the epithermal flux to 10 8 n/cm 2 .s, maintaining the figure-of-merits represented by the ratios of the fast dose and gamma dose in air per epithermal neutron flux closed to those values presented by BMRR, MITR-II and Petten Reactor. The medical irradiation facility loaded with 252 Cf- 235 U can be a choice for BNCT. (author)

  16. A neutron detector for measurement of total neutron production cross sections

    International Nuclear Information System (INIS)

    Sekharan, K.K.; Laumer, H.; Kern, B.D.; Gabbard, F.

    1976-01-01

    A neutron detector has been constructed and calibrated for the accurate measurement of total neutron production cross sections. The detector consists of a polyethylene sphere of 60 cm diameter in which eight 10 BF 3 counters have been installed radially. The relative efficiency of this detector has been determined for average neutron energies from 30 keV to 1.5 MeV by counting neutrons from 7 Li(p, n) 7 Be. By adjusting the radial positions of the BF 3 counters in the polyethylene sphere the efficiency for neutron detection was made nearly constant for this energy range. Measurement of absolute efficiency for the same neutron energy range has been done by counting the neutrons from 51 V(p, n) 51 Cr and 57 Fe(p, n) 57 Co reactions and determining the absolute number of residual nuclei produced during the measurement of neutron yield. Details of absolute efficiency measurements and the use of the detector for determination of neutron production cross sections are given. (Auth.)

  17. Analysis of photofission reactions of 235U, 238U, 232Th, 209Bi, natPb, 197Au, natPt, natW, 181Ta, and 27Al by photons of 69 MeV

    International Nuclear Information System (INIS)

    Paiva, Eduardo de

    1997-04-01

    Fission reactions induced in 235 U, 238 U, 232 Th, 209 Bi nat Pb, 197 Au, nat Pt, nat W, 181 Ta. and 27 Al nuclei by monochromatic photons of 69 MeV produced at the LADON facility of the Frascati National Laboratories (INFN-LNF, Frascati, Italy) have been analyzed on the basis of a simplified two-step model. In the first step of the reaction the incoming photon is considered to be absorbed by a neutron-proton pair ('quasi-deuteron') leading to excitation of the nucleus, followed, in the second step, by a mechanism of particle evaporation-fission competition for the excited residual nucleus. Estimates of nuclear fissility at 69 MeV show to be critically dependent on the parameter r (ratio of the level-density parameter at the fission saddle point to the level-density parameter of the residual nucleus after neutron evaporation), which can be determined in a semiempirical way from induced fission reaction data for various nuclei obtained at 60 - 80 MeV of excitation energy. Fissilities calculated by means of the simplified photofission reactions model are then compared with experimental data available in the literature. (author)

  18. Neutron-induced fission cross sections

    International Nuclear Information System (INIS)

    Weigmann, H.

    1991-01-01

    In the history of fission research, neutron-induced fission has always played the most important role. The practical importance of neutron-induced fission rests upon the fact that additional neutrons are produced in the fission process, and thus a chain reaction becomes possible. The practical applications of neutron-induced fission will not be discussed in this chapter, but only the physical properties of one of its characteristics, namely (n,f) cross sections. The most important early summaries on the subject are the monograph edited by Michaudon which also deals with the practical applications, the earlier review article on fission by Michaudon, and the review by Bjornholm and Lynn, in which neutron-induced fission receives major attention. This chapter will attempt to go an intermediate way between the very detailed theoretical treatment in the latter review and the cited monograph which emphasizes the applied aspects and the techniques of fission cross-section measurements. The more recent investigations in the field will be included. Section II will survey the properties of cross sections for neutron-induced fission and also address some special aspects of the experimental methods applied in their measurement. Section Ill will deal with the formal theory of neutron-induced nuclear reactions for the resolved resonance region and the region of statistical nuclear reactions. In Section IV, the fission width, or fission transmission coefficient, will be discussed in detail. Section V will deal with the broader structures due to incompletely damped vibrational resonances, and in particular will address the special case of thorium and neighboring isotopes. Finally, Section VI will briefly discuss parity violation effects in neutron-induced fission. 74 refs., 14 figs., 3 tabs

  19. Comparison of Neutron Cross-Sections Using IAEA Nuclear Codes ''ABAREX'' and ''SCAT2''

    International Nuclear Information System (INIS)

    Myint Myint Moe; Win Sin; Sein Htoon

    2004-05-01

    Moel calculations can be used to provide nuclear data for applications in science and technology. The energy averaged neutron induced nuclear reaction cross-sections particular for Al-27, Mg-24, Cr-52, Mn-55, Zn-64 and U-238 with neutrons of energy (0.005 to 10 MeV) are calculated using IAEA nuclear codes ''ABAREX'' and ''SCAT2''. The results are compared with those given in ENDF- 3 nuclear data

  20. Propagation of neutron-reaction uncertainties through multi-physics models of novel LWR's

    Directory of Open Access Journals (Sweden)

    Hernandez-Solis Augusto

    2017-01-01

    Full Text Available The novel design of the renewable boiling water reactor (RBWR allows a breeding ratio greater than unity and thus, it aims at providing for a self-sustained fuel cycle. The neutron reactions that compose the different microscopic cross-sections and angular distributions are uncertain, so when they are employed in the determination of the spatial distribution of the neutron flux in a nuclear reactor, a methodology should be employed to account for these associated uncertainties. In this work, the Total Monte Carlo (TMC method is used to propagate the different neutron-reactions (as well as angular distributions covariances that are part of the TENDL-2014 nuclear data (ND library. The main objective is to propagate them through coupled neutronic and thermal-hydraulic models in order to assess the uncertainty of important safety parameters related to multi-physics, such as peak cladding temperature along the axial direction of an RBWR fuel assembly. The objective of this study is to quantify the impact that ND covariances of important nuclides such as U-235, U-238, Pu-239 and the thermal scattering of hydrogen in H2O have in the deterministic safety analysis of novel nuclear reactors designs.

  1. Fast-neutron gamma-ray production from elemental iron: E/sub n/ approx. < 2 MeV

    International Nuclear Information System (INIS)

    Smith, D.L.

    1976-05-01

    A Ge(Li) detector and a fission detector were used to measure elemental differential cross section excitation functions for fast neutron gamma-ray production from iron relative to fast neutron fission of 235 U. Data were acquired at approximately 50 keV intervals with approximately 50 keV neutron-energy resolution from near threshold to approximately 2 MeV. Angular distributions for the 0.847 MeV gamma ray were measured at 0.93, 0.98, 1.08, 1.18, 1.28, 1.38, 1.59, 1.68, 1.79, 1.85 and 2.03 MeV. Significant fourth-order terms were required for the Legendre polynomial expansions used in fitting several of these angular distributions. This casts doubt on the accuracy of the commonly used approximation that the integrated gamma-ray production cross section is essentially equal to 4π times the 55 0 (or 125 0 ) differential cross section. The method employed in processing these data is described. Comparison is made between results from the present work and some previously reported data sets. The uncertainties associated with energy scales, neutron-energy resolution and other experimental factors for these various measurements make it difficult to draw conclusions concerning the observed differences in the values reported for these fluctuating cross sections. 6 tables, 7 figures

  2. Photonuclear reactions of U-233 and Pu-239 near threshold induced by thermal neutron capture gamma rays

    International Nuclear Information System (INIS)

    Moraes, M.A.P. de.

    1990-01-01

    The photonuclear cross sections of U-293 and Pu-239 have been studied by using monochromatic and discrete photons, in the energy interval from 5.49 to 9.72 MeV, produced by thermal neutron capture. The gamma fluxes incident on the samples were measured using a ( 3 x 3 )'' NaI (TI) crystal. The photofission fragments were detected in Makrofol-Kg (SSNTD). A possible structure was observed in the U-233 cross sections, near 7.23 MeV. The relative fissionability of the nuclides was determined at each excitation energy and shown to be energy independent: ( 2.12 ± 0.25) for U-233 and ( 3.32 ± 0.41 ) for Pu-239. The angular distribution of photofission fragments of Pu-239 were measured at two mean excitation energies of 5.43 and 7.35 MeV. An anisotropic distribution of ( 12.2 ± 3.6 ) % was observed at 5.43 MeV. The total neutron cross sections were measured by using a long counter detector. The photoneutron cross sections were calculated by using energy dependent neutron multiplicities values, γ(E), obtained in the literature. The competition Γn/γf was also determined at each excitation energy, and shown to be energy independent: ( 0.54 ± 0.05 ) for U-233 and ( 0.44 ± 0.05 ) for Pu-239, and were correlated to the parameters Z sup(2)/A, ( Ef'-Bn'), A. According to the FUJIMOTO-YAMAGUCHI and CONSTANT NUCLEAR TEMPERATURE models, the nuclear temperatures were calculated. The total photoabsorption cross sections were also calculated as a sum of the photofission and photoneutron cross sections at each energy excitation. From these results the competition Γf/ΓA, called fission probability Pf, were obtained: ( 0.66 ± 0.02) for U-233 and ( 0.70 ± 0.02 ) for Pu-239. (author)

  3. Coulomb effects in isobaric cold fission from reactions 233U(nth,f), 235U(nth,f),239Pu(nth,f) and 252Cf(sf)

    International Nuclear Information System (INIS)

    Montoya, Modesto

    2013-01-01

    The Coulomb effect hypothesis, formerly used to interpret fluctuations in the curve of maximal total kinetic energy as a function of light fragment mass in reactions 233 U(n th ,f), 235 U(n th ,f) and 239 Pu(n th ,f), is confirmed in high kinetic energy as well as in low excitation energy windows, respectively. Data from reactions 233 U(n th ,f), 235 U(n th ,f), 239 Pu(n th ,f) and 252 Cf(sf) show that, between two isobaric fragmentations with similar Q-values, the more asymmetric charge split reaches the higher value of total kinetic energy. Moreover, in isobaric charge splits with different Q-values, similar preference for asymmetrical fragmentations is observed in low excitation energy windows. (author).

  4. Neutronic and thermal-hydraulic analysis of devices for irradiation of LEU targets type of UALx-Al and U-Ni to production of 99Mo in reactor IEA-R1 and RMB

    International Nuclear Information System (INIS)

    Domingos, Douglas Borges

    2014-01-01

    In this work neutronic and thermal-hydraulic analyses were made to compare three types of targets (UAl 2 -Al, U-Ni cylindrical and U-Ni plate) used for the production of 99 Mo by fission of 235 U. Some experiments were conducted to validate the neutronic and thermal-hydraulics methodologies used in this work. For the neutronic calculations the computational programs NJOY99.0, AMPX-II and HAMMERTECHNION were used to generate the cross sections. SCALE 6.0 and CITATION computational programs were used for three-dimensional calculations of the reactor cores, fuel burning and the production of 99 Mo. The computational programs MTRCR-IEAR1 and ANSYS CFX were used to calculate the thermal and hydraulic parameters of the irradiation devices and for comparing them to limits and design criteria. First were performed neutronic and thermal-hydraulic analyzes for the reactor IEA-R1 with the targets of UAl 2 -Al (10 mini plates). Analyses have shown that the total activity obtained for 99 Mo on the mini plates does not meet the demand of Brazilian hospitals (450 Ci/week) and that no limit of thermo-hydraulic design is overtaken. Next, the same calculations were performed for the three target types in Multipurpose Brazilian Reactor (MBR). The neutronic analyzes demonstrated that the three targets meet the demand of Brazilian hospitals. The thermal hydraulic analysis shows that a minimum speed of 7 m/s for the target UAl 2 -Al, 8 m/s for the cylindrical target U-Ni and 9 m/s for the target U-Ni plate will be necessary in the irradiation device to not exceed the design limits. Were performed experiments using a test bench for validate the methodologies for the thermal-hydraulic calculation. The experiments performed to validate the neutronic calculations were made in the reactor IPEN/MB-01. All experiments were simulated with the methodologies described above and the results compared. The simulations results showed good agreement with experimental results. (author)

  5. Reactive transport of uranium in a groundwater bioreduction study: Insights from high-temporal resolution 238U/235U data

    Science.gov (United States)

    Shiel, A. E.; Johnson, T. M.; Lundstrom, C. C.; Laubach, P. G.; Long, P. E.; Williams, K. H.

    2016-08-01

    We conducted a detailed investigation of U isotopes in conjunction with a broad geochemical investigation during field-scale biostimulation and desorption experiments. This investigation was carried out in the uranium-contaminated alluvial aquifer of the Rifle field research site. In this well-characterized setting, a more comprehensive understanding of U isotope geochemistry is possible. Our results indicate that U isotope fractionation is consistently observed across multiple experiments at the Rifle site. Microbially-mediated reduction is suggested to account for most or all of the observed fractionation as abiotic reduction has been demonstrated to impart much smaller, often near-zero, isotopic fractionation or isotopic fractionation in the opposite direction. Data from some time intervals are consistent with a simple model for transport and U(VI) reduction, where the fractionation factor (ε = +0.65‰ to +0.85‰) is consistent with experimental studies. However, during other time intervals the observed patterns in our data indicate the importance of other processes in governing U concentrations and 238U/235U ratios. For instance, we demonstrate that departures from Rayleigh behavior in groundwater systems arise from the presence of adsorbed species. We also show that isotope data are sensitive to the onset of oxidation after biostimulation ends, even in the case where reduction continues to remove contaminant uranium downstream. Our study and the described conceptual model support the use of 238U/235U ratios as a tool for evaluating the efficacy of biostimulation and potentially other remedial strategies employed at Rifle and other uranium-contaminated sites.

  6. Angular distribution of fragments from neutron-induced fission of 238U in the intermediate energy region

    International Nuclear Information System (INIS)

    Carlsson, Magnus

    2004-06-01

    Areas ranging from nuclear structure models to accelerator-driven systems benefit from improved neutron-induced fission data in the intermediate energy region. In this Master's degree thesis, the fragment angular distribution from fission of 238 U, induced by 21-MeV neutrons, has been analysed from an experiment performed with the Medley/DIFFICILE setup at the The Svedberg Laboratory in Uppsala. The data have been corrected for low energy neutrons in the beam. The results agree with other experiments, as well as with model calculations. The data should be a starting point for further analysis with a goal to deduce the fission cross-section of 238 U

  7. Prompt neutron energy spectrum for the spontaneous fission of Cf-252

    International Nuclear Information System (INIS)

    Blinov, M.V.; Boykov, G.S.; Vitenko, V.A.

    1985-06-01

    The prompt neutron spectrum for the spontaneous fission of Cf-252 has been measured in 0.01-10 MeV region by the time-of-flight technique using a fast ionization chamber with U-235 layers as the neutron detector. Numerical data for the spectrum are presented, with an error file. (author)

  8. A neutron detector for measurement of total neutron production cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Sekharan, K K; Laumer, H; Kern, B D; Gabbard, F [Kentucky Univ., Lexington (USA). Dept. of Physics and Astronomy

    1976-03-01

    A neutron detector has been constructed and calibrated for the accurate measurement of total neutron production cross sections. The detector consists of a polyethylene sphere of 60 cm diameter in which eight /sup 10/BF/sub 3/ counters have been installed radially. The relative efficiency of this detector has been determined for average neutron energies from 30 keV to 1.5 MeV by counting neutrons from /sup 7/Li(p, n)/sup 7/Be. By adjusting the radial positions of the BF/sub 3/ counters in the polyethylene sphere the efficiency for neutron detection was made nearly constant for this energy range. Measurement of absolute efficiency for the same neutron energy range has been done by counting the neutrons from /sup 51/V(p, n)/sup 51/Cr and /sup 57/Fe(p, n)/sup 57/Co reactions and determining the absolute number of residual nuclei produced during the measurement of neutron yield. Details of absolute efficiency measurements and the use of the detector for determination of neutron production cross sections are given.

  9. Computational uncertainties in silicon dioxide/plutonium intermediate neutron spectrum systems

    International Nuclear Information System (INIS)

    Jaegers, P.J.

    1997-01-01

    In the past several years, several proposals have been made for the long-term stabilization and storage of surplus fissile materials. Many of these proposed scenarios involve systems that have an intermediate neutron energy spectrum. Such intermediate-energy systems are dominated by scattering and fission events induced by neutrons ranging in energy from 1 eV to 100keV. To ensure adequate safety margins and cost effectiveness, it is necessary to have benchmark data for these intermediate-energy spectrum systems; however, a review of the nuclear criticality benchmarks indicates that no formal benchmarks are available. Nuclear data uncertainties have been reported for some types of intermediate-energy spectrum systems. Using a variety of Monte Carlo computer codes and cross-section sets, reported significant variations in the calculated k ∞ of intermediate-energy spectrum metal/ 235 U systems. We discuss the characteristics of intermediate neutron spectrum systems and some of the computational differences that can occur in calculating the k eff of these systems

  10. Fast-neutron gamma-ray production from elemental iron: E/sub n/ < or approx. = 2 MeV

    International Nuclear Information System (INIS)

    Smith, D.L.

    1976-05-01

    A Ge(Li) detector and a fission detector were used to measure elemental differential cross section excitation functions for fast-neutron gamma-ray production from iron relative to fast-neutron fission of 235 U. Data were acquired at approximately 50 keV intervals with approximately 50 keV neutron-energy resolution from near threshold to approximately 2 MeV. Angular distributions for the 0.847-MeV gamma ray were measured at 0.93, 0.98, 1.08, 1.18, 1.28, 1.38, 1.59, 1.68, 1.79, 1.85 and 2.03 MeV. Significant fourth-order terms were required for the Legendre polynomial expansions used in fitting several of these angular distributions. This casts doubt on the accuracy of the commonly used approximation that the integrated gamma-ray production cross section is essentially equal to 4π times the 55-degree (or 125-degree) differential cross section. The method employed in processing these data is described. Comparison is made between results from the present work and some previously reported data sets. The uncertainties associated with energy scales, neutron-energy resolution and other experimental factors for these various measurements make it difficult to draw conclusions concerning the observed differences in the values reported for these fluctuating cross sections

  11. Isotopic analysis of uranium hexafluoride highly enriched in U-235; Analyse isotopique de l'hexafluorure d'uranium fortement enrichi en U 235

    Energy Technology Data Exchange (ETDEWEB)

    Chaussy, L; Boyer, R [Commissariat a l' Energie Atomique, Pierrelatte (France). Centre d' Etudes Nucleaires

    1968-07-01

    Isotopic analysis of uranium in the form of the hexafluoride by mass-spectrometry gives gross results which are not very accurate. Using a linear interpolation method applied to two standards it is possible to correct for this inaccuracy as long as the isotopic concentrations are less than about 10 per cent in U-235. Above this level, the interpolations formula overestimates the results, especially if the enrichment of the analyzed samples is higher than 1.3 with respect to the standards. A formula is proposed for correcting the interpolation equation and for the extending its field of application to high values of the enrichment ({approx_equal}2) and of the concentration. It is shown that by using this correction the results obtained have an accuracy which depends practically only on that of the standards, taking into account the dispersion in the measurements. (authors) [French] L'analyse isotopique de l'uranium sous forme d'hexafluorure, par spectrometrie de masse, fournit des resultats bruts entaches d'inexactitude. Une methode d'interpolation lineaire entre deux etalons permet de corriger cette inexactitude, tant que les concentrations isotopiques sont inferieures a 10 pour cent en U-235 environ. Au-dessus de cette valeur, la formule d'interpolation surestime les resultats, notamment si l'enrichissement des echantillons analyses par rapport aux etalons est superieur a 1,3. On propose une formule de correction de l'equation d'interpolation qui etend son domaine d'application jusqu'a des valeurs elevees d'enrichissement ({approx_equal}2) et de concentration. On montre experimentalement que par cette correction, les resultats atteignent, a la precision des mesures, une exactitude qui ne depend pratiquement plus que de celles des etalons. (auteurs)

  12. Measurement of the fission cross section of uranium-235 between 4 eV and 20 keV; Mesure de la section efficace de fission de l'uranium-235 entre 4 eV et 20 keV

    Energy Technology Data Exchange (ETDEWEB)

    Michaudon, A; Genin, R; Joly, R; Vendryes, G

    1959-01-01

    The neutron fission cross section of uranium-235 has been measured between 4 ev and 20 kev by the time of flight method with the Saclay electron linear accelerator as a pulsed neutron source. After a brief description of the experimental apparatus and the conditions of work during the experiment, the curve {sigma}{sub F} {radical}E in the energy range studied is shown. This curve is then analyzed by the ''area'' method and a set of {sigma}{sub 0} {gamma}{sub F} values is obtained. With {sigma}{sub 0} {gamma} values measured in other laboratories, it is possible to compute fission widths for several resonances and to study their distribution. This distribution is then compared to Porter-Thomas distributions with different values of the number of exit channels. (authors) [French] La section efficace de fission de l'uranium--235 a ete mesuree entre 4 eV et 20 KeV par la methode du temps de vol en utilisant l'accelerateur lineaire a electrons de Saclay comme source pulses de neutrons. Apres une rapide description de l'appareillage experimental et des conditions de fonctionnement au cours de l'experience, on presente la courbe {sigma}{sub F} {radical}E obtenue dans la game d'energie etudiee. Cette courbe est ensuite analysee par la methode de surface des resonances et un lot de valeurs de {sigma}{sub 0} {gamma}{sub F} est obtenue. Conjuguee avec les valeurs de {sigma}{sub 0} {gamma} obtenues dans d'autres laboratoires, cette analyse permet de calculer les largeurs de fission pour plusieurs resonances et d'etudier leur distribution. Cette distribution est ensuite comparee aux distributions de Porter et Thomas correspondant a differentes valeurs du nombre de voies de sortie. (auteurs)

  13. Trace element distribution and 235U/238U ratios in Euphrates waters and in soils and tree barks of Dhi Qar province (southern Iraq)

    International Nuclear Information System (INIS)

    Riccobono, Francesco; Perra, Guido; Pisani, Anastasia; Protano, Giuseppe

    2011-01-01

    To assess the quality of the environment in southern Iraq after the Gulf War II, a geochemical survey was carried out. The survey provided data on the chemistry of Euphrates waters, as well as the trace element contents, U and Pb isotopic composition, and PAH levels in soil and tree bark samples. The trace element concentrations and the 235 U/ 238 U ratio values in the Euphrates waters were within the usual natural range, except for the high contents of Sr due to a widespread presence of gypsum in soils of this area. The trace element contents in soils agreed with the common geochemistry of soils from floodplain sediments. Some exceptions were the high contents of Co, Cr and Ni, which had a natural origin related to ophiolitic outcrops in the upper sector of the Euphrates basin. The high concentrations of S and Sr were linked to the abundance of gypsum in soils. A marked geochemical homogeneity of soil samples was suggested by the similar distribution pattern of rare earth elements, while the 235 U/ 238 U ratio was also fairly homogeneous and within the natural range. The chemistry of the tree bark samples closely reflected that of the soils, with some notable exceptions. Unlike the soils, some tree bark samples had anomalous values of the 235 U/ 238 U ratio due to mixing of depleted uranium (DU) with the natural uranium pool. Moreover, the distribution of some trace elements (such as REEs, Th and Zr) and the isotopic composition of Pb in barks clearly differed from those of the nearby soils. The overall results suggested that significant external inputs occurred implying that once formed the DU-enriched particles could travel over long distances. The polycyclic aromatic hydrocarbon concentrations in tree bark samples showed that phenanthrene, fluoranthene and pyrene were the most abundant components, indicating an important role of automotive traffic. - Highlights: → This is a contribution to the knowledge of the Iraqi environment after Gulf War II. → In

  14. Effects of silicon cross section and neutron spectrum on the radial uniformity in neutron transmutation doping

    International Nuclear Information System (INIS)

    Kim, Haksung; Ho Pyeon, Cheol; Lim, Jae-Yong; Misawa, Tsuyoshi

    2012-01-01

    The effects of silicon cross section and neutron spectrum on the radial uniformity of a Si-ingot are examined experimentally with various neutron spectrum conditions. For the cross section effect, the numerical results using silicon single crystal cross section reveal good agreements with experiments within relative difference of 6%, whereas the discrepancy is approximately 20% in free-gas cross section. For the neutron spectrum effect, the radial uniformity in hard neutron spectrum is found to be more flattening than that in soft spectrum. - Highlights: ► The effects of silicon cross section and neutron spectrum on the radial uniformity in NTD were experimentally investigated. ► The numerical results using silicon single crystal cross section reveal good agreements. ► The radial uniformity in hard neutron spectrum was more flat than that in soft spectrum. ► The silicon single crystal cross section and hard neutron spectrum are recommended for numerical analyses and radial uniformity flattening in NTD, respectively.

  15. Total neutron cross section for 181Ta

    Directory of Open Access Journals (Sweden)

    Schilling K.-D.

    2010-10-01

    Full Text Available The neutron time of flight facility nELBE, produces fast neutrons in the energy range from 0.1 MeV to 10 MeV by impinging a pulsed relativistic electron beam on a liquid lead circuit [1]. The short beam pulses (∼10 ps and a small radiator volume give an energy resolution better than 1% at 1 MeV using a short flight path of about 6 m, for neutron TOF measurements. The present neutron source provides 2 ⋅ 104  n/cm2s at the target position using an electron charge of 77 pC and 100 kHz pulse repetition rate. This neutron intensity enables to measure neutron total cross section with a 2%–5% statistical uncertainty within a few days. In February 2008, neutron radiator, plastic detector [2] and data acquisition system were tested by measurements of the neutron total cross section for 181Ta and 27Al. Measurement of 181Ta was chosen because lack of high quality data in an anergy region below 700 keV. The total neutron cross – section for 27Al was measured as a control target, since there exists data for 27Al with high resolution and low statistical error [3].

  16. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: the EXILL campaign

    Directory of Open Access Journals (Sweden)

    de France G.

    2014-03-01

    Full Text Available A combination of germanium detectors has been installed at the PF1B neutron guide of the ILL to perform the prompt spectroscopy of neutron-rich nuclei produced in the neutron-capture induced-fission of 235U and 241Pu. In addition LaBr3 detectors from the FATIMA collaboration have been installed in complement with the EXOGAM clovers to measure lifetimes of low-lying excited states. The measured characteristics and online spectra indicate very good performances of the overall setup.

  17. Neutronic calculation and cross section sensitivity analysis of the Livermore mirror fusion/fission hybrid reactor blanket

    International Nuclear Information System (INIS)

    Ku, L.P.; Price, W.G. Jr.

    1977-08-01

    The neutronic calculation for the Livermore mirror fusion/fission hybrid reactor blanket was performed using the PPPL cross section library. Significant differences were found in the tritium breeding and plutonium production in comparison to the results of the LLL calculation. The cross section sensitivity study for tritium breeding indicates that the response is sensitive to the cross section of 238 U in the neighborhood of 14 MeV and 1 MeV. The response is also sensitive to the cross sections of iron in the vicinity of 14 MeV near the first wall. Neutron transport in the resonance region is not important in this reactor model

  18. Confirmatory measurements of UF6 using the neutron self-interrogation method

    International Nuclear Information System (INIS)

    Stewart, J.E.; Ensslin, N.; Menlove, H.O.; Cowder, L.R.; Polk, P.J.

    1985-01-01

    A passive neutron counting method has been developed for measurement of the 235 U mass in Model 5A cylinders of UF 6 . The unique neutronic properties of UF 6 containing highly enriched uranium (HEU) permit 235 U assay using only passive neutron counting. The sample effectively assays itself by self-interrogation. Shipped from enrichment plants and received at fuel fabrication and conversion facilities, 5A UF 6 cylinders hold up to approx.17 kg of 235 U each. Field measurements at the Portsmouth Gaseous Diffusion Plant (GDP) showed an average assay accuracy of 6.8% (1sigma) for 44 cylinders with enrichments from 6 to 98% and with a range of fill heights. Further measurements on 38 cylinders containing 97%-enriched material yielded an accuracy of 2.8% (1sigma). Typical counting times for these measurements were less than 5 min. An in-plant instrument for receipts confirmation measurements of 5A UF 6 cylinders has been developed for the Savannah River Plant. The Receipts Assay Monitor (RAM) is currently being tested and calibrated. It is designed to confirm declared fissile mass in all incoming 5A cylinders containing HEU in the form of UF 6 . One of the computer-controlled features is a removable cadmium liner for the sample cavity. The liner allows a sample fill-height correction, which significantly improves assay accuracy

  19. Neutronic analysis of the conversion of HEU to LEU fuel for a 5-MW MTR core

    International Nuclear Information System (INIS)

    Pazirandeh, A.; Bartsch, G.

    1987-01-01

    In recent years, due to cessation of highly enriched uranium (HEU) fuel supply, practical steps have been taken to substitute HEU fuel in almost all research reactors by medium-enriched uranium or low-enriched uranium (LEU) fuels. In this study, a neutronic calculation of a 5-MW research reactor core fueled with HEU (93% 235 U) is presented. In order to assess the performance of the core with the LEU ( 235 U loadings were examined. The core consists of 22 standard fuel elements (SFEs) and 6 control fuel elements (CFEs). Each fuel elements has 18 curved plates of which two end plates are dummies. Initial 235 U content is 195 g 235 U/SFE and 9.7 g 235 U/CFE or /PFE. In all calculations the permitted changes to the fuel elements are (a) 18 active plates per SFE, (b) fuel plates assumed to be flat, and (c) 8 or 9 active plates per CFE

  20. Neutronics and thermalhydraulics characteristics of the CANDU core fueled with slightly enriched uranium 0.9% U235

    International Nuclear Information System (INIS)

    Raica, V.; Sindile, A.

    1999-01-01

    The interest concerning the slightly enriched uranium (SEU) fuel cycle is due to the possibility to adapt (to convert) the current reactor design using natural uranium fuel to this cycle. Preliminary evaluations based on discharged fuel burnup estimates versus enrichment and on Canadian experience in fuel irradiation suggest that for a 0.93% U-235 enrichment no design modifications are required, not even for the fuel bundle. The purpose of this paper is to resume the results of the studies carried on in order to clarify this problem. The calculation methodology used in reactor physics and thermal-hydraulics analyses that were performed adapted and developed the AECL suggested methodology. In order to prove the possibility to use the SEU 0.93% without any design modification, all the main elements from the CANDU Reactor Physics Design Manual were studied. Also, some thermal-hydraulics analyses were performed to ensure that the operating and safety parameters were respected. The estimations sustain the assumption that the current reactor and fuel bundle design is compatible to the using of the SEU 0.93% fuel. (author)

  1. Neutron capture cross sections of Kr

    Directory of Open Access Journals (Sweden)

    Fiebiger Stefan

    2017-01-01

    Full Text Available Neutron capture and β− -decay are competing branches of the s-process nucleosynthesis path at 85Kr [1], which makes it an important branching point. The knowledge of its neutron capture cross section is therefore essential to constrain stellar models of nucleosynthesis. Despite its importance for different fields, no direct measurement of the cross section of 85Kr in the keV-regime has been performed. The currently reported uncertainties are still in the order of 50% [2, 3]. Neutron capture cross section measurements on a 4% enriched 85Kr gas enclosed in a stainless steel cylinder were performed at Los Alamos National Laboratory (LANL using the Detector for Advanced Neutron Capture Experiments (DANCE. 85Kr is radioactive isotope with a half life of 10.8 years. As this was a low-enrichment sample, the main contaminants, the stable krypton isotopes 83Kr and 86Kr, were also investigated. The material was highly enriched and contained in pressurized stainless steel spheres.

  2. Advanced Neutron Source enrichment study. Volume 2: Appendices -- Final report, Revision 12/94

    International Nuclear Information System (INIS)

    Bari, R.A.; Ludewig, H.; Weeks, J.

    1994-01-01

    A study has been performed of the impact on performance of using low enriched uranium (20% 235 U) or medium enriched uranium (35% 235 U) as an alternative fuel for the Advanced Neutron Source, which is currently designed to use uranium enriched to 93% 235 U. Higher fuel densities and larger volume cores were evaluated at the lower enrichments in terms of impact on neutron flux, safety, safeguards, technical feasibility, and cost. The feasibility of fabricating uranium silicide fuel at increasing material density was specifically addressed by a panel of international experts on research reactor fuels. The most viable alternative designs for the reactor at lower enrichments were identified and discussed. Several sensitivity analyses were performed to gain an understanding of the performance of the reactor at parametric values of power, fuel density, core volume, and enrichment that were interpolations between the boundary values imposed on the study or extrapolations from known technology. Volume 2 of this report contains 26 appendices containing results, meeting minutes, and fuel panel presentations. There are 26 appendices in this volume

  3. Ground water contamination with (238)U, (234)U, (235)U, (226)Ra and (210)Pb from past uranium mining: cove wash, Arizona.

    Science.gov (United States)

    Dias da Cunha, Kenya Moore; Henderson, Helenes; Thomson, Bruce M; Hecht, Adam A

    2014-06-01

    The objectives of the study are to present a critical review of the (238)U, (234)U, (235)U, (226)Ra and (210)Pb levels in water samples from the EPA studies (U.S. EPA in Abandoned uranium mines and the Navajo Nation: Red Valley chapter screening assessment report. Region 9 Superfund Program, San Francisco, 2004, Abandoned uranium mines and the Navajo Nation: Northern aum region screening assessment report. Region 9 Superfund Program, San Francisco, 2006, Health and environmental impacts of uranium contamination, 5-year plan. Region 9 Superfund Program, San Franciso, 2008) and the dose assessment for the population due to ingestion of water containing (238)U and (234)U. The water quality data were taken from Sect. "Data analysis" of the published report, titled Abandoned Uranium Mines Project Arizona, New Mexico, Utah-Navajo Lands 1994-2000, Project Atlas. Total uranium concentration was above the maximum concentration level for drinking water (7.410-1 Bq/L) in 19 % of the water samples, while (238)U and (234)U concentrations were above in 14 and 17 % of the water samples, respectively. (226)Ra and (210)Pb concentrations in water samples were in the range of 3.7 × 10(-1) to 5.55 × 102 Bq/L and 1.11 to 4.33 × 102 Bq/L, respectively. For only two samples, the (226)Ra concentrations exceeded the MCL for total Ra for drinking water (0.185 Bq/L). However, the (210)Pb/(226)Ra ratios varied from 0.11 to 47.00, and ratios above 1.00 were observed in 71 % of the samples. Secular equilibrium of the natural uranium series was not observed in the data record for most of the water samples. Moreover, the (235)U/(total)U mass ratios ranged from 0.06 to 5.9 %, and the natural mass ratio of (235)U to (total)U (0.72 %) was observed in only 16 % of the water samples, ratios above or below the natural ratio could not be explained based on data reported by U.S. EPA. In addition, statistical evaluations showed no correlations among the distribution of the radionuclide concentrations

  4. Photoneutron and Photonuclear Cross Sections According to Packed cluster Model

    International Nuclear Information System (INIS)

    El-Mekkawi, L.S.; El-Bakty, O.M.

    1998-01-01

    Photonuclear gross sections have been estimated for 232 Th, 237 Np, 239 Pu, 233 U, 234 U, 235 U, 238 U in the energy range from threshold up to 20 MeV, by perturbation balance in Packed Cluster. The Packed Cluster (gamma, f) and (gamma, n) cross sections require complete absence of any (gamma,2n) or (gamma,nf) cross sections for 233 U and 234 U as in experiment. It also explains the early (gamma,n) and gamma,nf) reactions in 235 U

  5. Quantum Zeno paradox and decay of the 235m U isomer in matter

    International Nuclear Information System (INIS)

    Panov, A.D.

    1995-01-01

    The known quantum Zeno paradox is considered from microscopic viewpoint as applied to observation of nuclear decay. It is shown that some phenomena, related with this paradox can produce sufficient effect on the constant of 235m U isomer decay during its implantation in metallic matrices. 43 refs., 3 figs

  6. Comparison of fission probabilities with emission of long range particles under the action of slow and fast neutrons on various materials; Probabilites comparees de fission avec emission de particules de long parcours pour divers materiaux sous l'action des neutrons lents et rapides

    Energy Technology Data Exchange (ETDEWEB)

    Netter, F; Faraggi, H; Garin-Bonnet, A; Julien, J; Corge, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Turkiewicz, J [Institut de Recherches Nucleaire de Varsovie (Poland)

    1958-07-01

    The authors describe relative cross-section measurements of fission of the isotopes of uranium and plutonium (more particularly {sup 235}U, {sup 238}U, {sup 239}Pu), with emission of long range particles, under the action of neutrons of various energies: thermal neutrons, pile neutrons, neutrons produced with the Van de Graaff accelerator by reaction of protons on tritium. The measurements are carried out: 1) with the aid of photographic plates, by submitting to the action of the neutrons a layer of fissile material coupled with an Ilford nuclear emulsion of 200 microns; a tin sheet laying between the plate and the layer stops the {alpha} particles and the fission fragments. By an appropriate development the tracks of the long range particles can be distinguished in the emulsion, from the tracks of the recoil protons resulting of fission neutrons, or of the last primary neutrons. For neutrons of energy under 1 MeV, the compared frequency of the tracks of long range particles and of the recoils caused by the fission neutrons gives a measurement of the fission cross-section with emission of long range particles relative to the product of the fission cross-section by the mean number of neutrons emitted by fission. For neutrons of higher energy, one measures only the frequency of the tracks of long range particles, comparatively with the flux of primary neutrons. Some precautions are taken to eliminate the action of thermal neutrons in the measurements with fast neutrons. 2) with the aid of a system of ionization chamber and proportional counter, the rate of coincidence between the impulsions caused by the long range particles and the impulsions provided by one of the fission fragments is measured comparatively with the counting rate of fission fragme (author) [French] Les auteurs decrivent des mesures relatives a la section efficace de fission des isotopes de l'uranium et du plutonium (notamment {sup 235}U, {sup 238}U, {sup 239}Pu) avec emission de particules de long

  7. Evaluation of cross sections of Th-232 and U-233

    International Nuclear Information System (INIS)

    Dias, A.M.

    1978-01-01

    The cross sections in multigroups of Th-232 and U-233 are evaluated by comparison of theoretical results and experimental data obtained through experiments on the fast reactors IBR-I, EBR-II, BR-I and AETR. The deviation between calculated values and experimental results is about 10%. They are therefore satisfatory for neutronic calculations [pt

  8. Measurement of time-dependent fast neutron energy spectra in a depleted uranium assembly

    International Nuclear Information System (INIS)

    Whittlestone, S.

    1980-10-01

    Time-dependent neutron energy spectra in the range 0.6 to 6.4 MeV have been measured in a depleted uranium assembly. By selecting windows in the time range 0.9 to 82 ns after the beam pulse, it was possible to observe the change of the neutron energy distributions from spectra of predominantly 4 to 6 MeV neutrons to spectra composed almost entirely of fission neutrons. The measured spectra were compared to a Monte Carlo calculation of the experiment using the ENDF/B-IV data file. At times and energies at which the calculation predicted a fission spectrum, the experiment agreed with the calculation, confirming the accuracy of the neutron spectroscopy system. However, the presence of discrepancies at other times and energies suggested that there are significant inconsistencies in the inelastic cross sections in the 1 to 6 MeV range. The time response generated concurrently with the energy spectra was compared to the Monte Carlo calculation. From this comparison, and from examination of time spectra measured by other workers using 235 U and 237 Np fission detectors, it would appear that there are discrepancies in the ENDF/B-IV cross sections below 1 MeV. The predicted decay rates were too low below and too high above 0.8 MeV

  9. An Investigation of an Irradiated Fuel Pin by Measurement of the Production of Fast Neutrons in a Thermal Column and by Pile Oscillation Technique

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Veine

    1968-05-15

    A fuel pin irradiated to about 3400 MWd/tU from the Halden reactor has been investigated by a measurement of the production of fast neutrons in a thermal column and by pile oscillator technique in the central channel of the reactor R1. Calibration was made by using samples with different U 235 enrichments. The thermal column experiment gives the quantity ave({nu}{sigma}{sub f}) (average in the thermal column spectrum) for the Halden sample. {sigma}{sub f} is the macroscopic fission cross section and {nu} is the number of fast neutrons produced per fission. The result of the oscillator measurements is a value of ave({sigma}{sub a}) - w ave({sigma}{sub f}) (average in the central channel spectrum) for the irradiated sample, w is the importance of a fast neutron relative to a thermal one and ave({sigma}{sub a}) is the macroscopic absorption cross section. The results from both the experiments have been compared with values calculated by the REBUS code and the agreement was good.

  10. Investigation of the 232Th neutron cross-sections in resonance energy range

    International Nuclear Information System (INIS)

    Grigoriev, Yu.V.; Kitaev, V.Ya.; Sinitsa, V.V.; Zhuravlev, B.V.; Borzakov, S.B.; Faikov-Stanchik, H.; Ilchev, G.L.; Panteleev, Ts.Ts.; Kim, G.N.

    2001-01-01

    The alternative path in the development of atomic energy is the uranium-thorium cycle. In connection with this, the measurements of the 232 Th neutron capture and total cross-sections and its resonance self-shielding coefficients in resonance energy range are necessary because of their low accuracy. In this work, the results of the investigations of the thorium-232 neutron cross-sections are presented. The measurements have been carried out on the gamma-ray multisection liquid detector and neutron detector as a battery of boron counters on the 120 m flight path of the pulsed fast reactor IBR-30. As the filter samples were used the metallic disks of various thickness and diameter of 45 mm. Two plates from metallic thorium with thickness of 0.2 mm and with the square of 4.5x4.5 cm 2 were used as the radiator samples. The group neutron total and capture cross-sections within the accuracy of 2-7% in the energy range of (10 eV-10 keV) were obtained from the transmissions and the sum spectra of g-rays from the fourth multiplicity to the seventh one. The neutron capture group cross-sections of 238 U were used as the standard for obtaining of thorium ones. Analogous values were calculated on the GRUCON code with the ENDF/B-6, JENDL-3 evaluated data libraries. Within the limits of experimental errors an agreement between the experiment and calculation is observed, but in some groups the experimental values are larger than the calculated ones. (author)

  11. Prototype Stilbene Neutron Collar

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shumaker, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Verbeke, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wong, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-26

    A neutron collar using stilbene organic scintillator cells for fast neutron counting is described for the assay of fresh low enriched uranium (LEU) fuel assemblies. The prototype stilbene collar has a form factor similar to standard He-3 based collars and uses an AmLi interrogation neutron source. This report describes the simulation of list mode neutron correlation data on various fuel assemblies including some with neutron absorbers (burnable Gd poisons). Calibration curves (doubles vs 235U linear mass density) are presented for both thermal and fast (with Cd lining) modes of operation. It is shown that the stilbene collar meets or exceeds the current capabilities of He-3 based neutron collars. A self-consistent assay methodology, uniquely suited to the stilbene collar, using triples is described which complements traditional assay based on doubles calibration curves.

  12. A sensitivity study on neutronic properties of DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Roh, Gyu Hong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    A sensitivity study has been done to determine the composition of DUPIC fuel from the viewpoint of neutronics fuel design. The spent PWR fuel compositions were generated and fissile contents adjusted by blending fresh uranium after mixing two spent PWR fuel assemblies. The {sup 239}Pu and {sup 235}U enrichments of DUPIC fuel were adjusted by controlling the amount of fresh uranium feed and the ratio of slightly enriched and depleted uranium in the feed uranium. Based on the material balance calculation, it is recommended that DUPIC fuel composition be such that spent PWR fuel utilization is more than 90%. A sensitivity study on the temperature reactivity coefficient of DUPIC fuel and shown that it is desirable to increase the {sup 239}Pu and {sup 235}U contents to reduce both the fuel and coolant temperature coefficients. On the other hand, refueling simulations of the DUPIC core have shown that the channel power peaking factor, which is a measure of the reactor trip margin, increases with the total fissile content. Considering these neutronic characteristics of the DUPIC fuel, it is recommended to have enrichments of 0.45 and 1.00 wt% for {sup 239}Pu and {sup 235}U, respectively. 3 refs., 2 tabs. (Author)

  13. A sensitivity study on neutronic properties of DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Roh, Gyu Hong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A sensitivity study has been done to determine the composition of DUPIC fuel from the viewpoint of neutronics fuel design. The spent PWR fuel compositions were generated and fissile contents adjusted by blending fresh uranium after mixing two spent PWR fuel assemblies. The {sup 239}Pu and {sup 235}U enrichments of DUPIC fuel were adjusted by controlling the amount of fresh uranium feed and the ratio of slightly enriched and depleted uranium in the feed uranium. Based on the material balance calculation, it is recommended that DUPIC fuel composition be such that spent PWR fuel utilization is more than 90%. A sensitivity study on the temperature reactivity coefficient of DUPIC fuel and shown that it is desirable to increase the {sup 239}Pu and {sup 235}U contents to reduce both the fuel and coolant temperature coefficients. On the other hand, refueling simulations of the DUPIC core have shown that the channel power peaking factor, which is a measure of the reactor trip margin, increases with the total fissile content. Considering these neutronic characteristics of the DUPIC fuel, it is recommended to have enrichments of 0.45 and 1.00 wt% for {sup 239}Pu and {sup 235}U, respectively. 3 refs., 2 tabs. (Author)

  14. Candidate processes for diluting the 235U isotope in weapons-capable highly enriched uranium

    International Nuclear Information System (INIS)

    Snider, J.D.

    1996-02-01

    The United States Department of Energy (DOE) is evaluating options for rendering its surplus inventories of highly enriched uranium (HEU) incapable of being used to produce nuclear weapons. Weapons-capable HEU was earlier produced by enriching uranium in the fissile 235 U isotope from its natural occurring 0.71 percent isotopic concentration to at least 20 percent isotopic concentration. Now, by diluting its concentration of the fissile 235 U isotope in a uranium blending process, the weapons capability of HEU can be eliminated in a manner that is reversible only through isotope enrichment, and therefore, highly resistant to proliferation. To the extent that can be economically and technically justified, the down-blended uranium product will be made suitable for use as commercial reactor fuel. Such down-blended uranium product can also be disposed of as waste if chemical or isotopic impurities preclude its use as reactor fuel

  15. Evaluation of Cross-Section Data from Threshold to 40 MeV for some Neutron Reactions Important for Fusion Dosimetry Applications. Part 2 Evaluation of the Excitation Functions for the 59Co(n,3n)57Co, 89Y(n,2n)88Y, 93Nb(n,2n)92mNb, 169Tm(n,2n)168Tm and 209Bi(n,3n)207Bi Reactions

    International Nuclear Information System (INIS)

    Zolotarev, K.I.

    2010-11-01

    Evaluations of cross sections and their associated covariance matrices have been carried out for five dosimetry reactions: excitation functions were re-evaluated for the 89 Y(n,2n) 88 Y, 93 Nb(n,2n) 92 mNb and 169 Tm(n,2n) 168 Tm reactions over the neutron energy range from threshold up to 40 MeV; excitation functions were re-evaluated for the 59 Co(n,3n) 57 Co and 209 Bi(n,3n) 207 Bi reactions over the neutron energy range from threshold to 85 and 45 MeV, respectively. Uncertainties in the cross sections for all of those reactions were also derived in the form of relative covariance matrices. Benchmark calculations performed for 235 U thermal fission and 252 Cf spontaneous fission neutron spectra show that the integral cross sections calculated from the newly evaluated excitation functions exhibit improved agreement with related experimental data when compared with the equivalent data from the IRDF-2002 library. (author)

  16. Updating of the LEOPARD data library

    International Nuclear Information System (INIS)

    Henrique Claro, L.; Cunha Menezes Filho, A. da

    1984-01-01

    The LEOPARD library is being updated and tested for typical PWR unit cells with enrichments ranging from 1.0 to 4.1%(W/o) and H 2 O:U ratios varying from 1.0 to 10.0. A reasonably good agreement with experimental values for some spectral indices is obtained if the fission cross-section of 235 U is reduced by 0.6% in the thermal range and by 20% in the epithermal range, the epithermal capture cross-section for 235 U is increased by about 20% and the number of neutrons per fission in the thermal range of 235 U is increased by 0.8%. (author)

  17. Angular distribution of fragments from neutron-induced fission of {sup 238}U in the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Magnus

    2004-06-01

    Areas ranging from nuclear structure models to accelerator-driven systems benefit from improved neutron-induced fission data in the intermediate energy region. In this Master's degree thesis, the fragment angular distribution from fission of {sup 238}U, induced by 21-MeV neutrons, has been analysed from an experiment performed with the Medley/DIFFICILE setup at the The Svedberg Laboratory in Uppsala. The data have been corrected for low energy neutrons in the beam. The results agree with other experiments, as well as with model calculations. The data should be a starting point for further analysis with a goal to deduce the fission cross-section of {sup 238}U.

  18. Evaluation of cross sections for neutron interactions with {sup 238}U in the energy region between 5 keV and 150 keV

    Energy Technology Data Exchange (ETDEWEB)

    Sirakov, I. [Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria); Capote, R.; Trkov, A. [International Atomic Energy Agency, NAPC-Nuclear Data Section, Vienna (Austria); Gritzay, O. [Institute for Nuclear Research, Kyiv (Ukraine); Kim, H.I. [Korea Atomic Energy Research Institute, Nuclear Data Center, Daejeon (Korea, Republic of); Kopecky, S.; Paradela, C.; Schillebeeckx, P. [European Commission, Joint Research Centre, Geel (Belgium); Kos, B. [Jozef Stefan Institute, Ljubljana (Slovenia); Pronyaev, V.G. [Rosatom State Corporation, Atomsrandart, Moscow (Russian Federation)

    2017-10-15

    Cross sections for neutron interactions with {sup 238}U in the energy region from 5 keV to 150 keV have been evaluated. Average total and capture cross sections have been derived from a least squares analysis using experimental data reported in the literature. The resulting cross sections have been parameterised in terms of average resonance parameters maintaining full consistency with results of optical model calculations by using a dispersive coupled channel optical model potential. The average compound partial cross sections have been expressed in terms of transmission coefficients by applying the Hauser-Feshbach statistical reaction theory including width-fluctuations. A generalized single-level representation compatible with the energy-dependent options of the ENDF-6 format has been applied using standard boundary conditions. The results have been transferred into a full ENDF-6 compatible data file. (orig.)

  19. CIELO Collaboration Summary Results: International Evaluations of Neutron Reactions on Uranium, Plutonium, Iron, Oxygen and Hydrogen

    Science.gov (United States)

    Chadwick, M. B.; Capote, R.; Trkov, A.; Herman, M. W.; Brown, D. A.; Hale, G. M.; Kahler, A. C.; Talou, P.; Plompen, A. J.; Schillebeeckx, P.; Pigni, M. T.; Leal, L.; Danon, Y.; Carlson, A. D.; Romain, P.; Morillon, B.; Bauge, E.; Hambsch, F.-J.; Kopecky, S.; Giorginis, G.; Kawano, T.; Lestone, J.; Neudecker, D.; Rising, M.; Paris, M.; Nobre, G. P. A.; Arcilla, R.; Cabellos, O.; Hill, I.; Dupont, E.; Koning, A. J.; Cano-Ott, D.; Mendoza, E.; Balibrea, J.; Paradela, C.; Durán, I.; Qian, J.; Ge, Z.; Liu, T.; Hanlin, L.; Ruan, X.; Haicheng, W.; Sin, M.; Noguere, G.; Bernard, D.; Jacqmin, R.; Bouland, O.; De Saint Jean, C.; Pronyaev, V. G.; Ignatyuk, A. V.; Yokoyama, K.; Ishikawa, M.; Fukahori, T.; Iwamoto, N.; Iwamoto, O.; Kunieda, S.; Lubitz, C. R.; Salvatores, M.; Palmiotti, G.; Kodeli, I.; Kiedrowski, B.; Roubtsov, D.; Thompson, I.; Quaglioni, S.; Kim, H. I.; Lee, Y. O.; Fischer, U.; Simakov, S.; Dunn, M.; Guber, K.; Márquez Damián, J. I.; Cantargi, F.; Sirakov, I.; Otuka, N.; Daskalakis, A.; McDermott, B. J.; van der Marck, S. C.

    2018-02-01

    The CIELO collaboration has studied neutron cross sections on nuclides that significantly impact criticality in nuclear technologies - 235,238U, 239Pu, 56Fe, 16O and 1H - with the aim of improving the accuracy of the data and resolving previous discrepancies in our understanding. This multi-laboratory pilot project, coordinated via the OECD/NEA Working Party on Evaluation Cooperation (WPEC) Subgroup 40 with support also from the IAEA, has motivated experimental and theoretical work and led to suites of new evaluated libraries that accurately reflect measured data and also perform

  20. The CIELO Collaboration: Progress in International Evaluations of Neutron Reactions on Oxygen, Iron, Uranium and Plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, M. B.; Capote, R.; Trkov, A.; Kahler, A. C.; Herman, M. W.; Brown, D. A.; Hale, G. M.; Pigni, M.; Dunn, M.; Leal, L.; Plompen, A.; Schillebeecks, P.; Hambsch, F. -J.; Kawano, T.; Talou, P.; Jandel, M.; Mosby, S.; Lestone, J.; Neudecker, D.; Rising, M.; Paris, M.; Nobre, G. P. A.; Arcilla, R.; Kopecky, S.; Giorginis, G.; Cabellos, O.; Hill, I.; Dupont, E.; Danon, Y.; Jing, Q.; Zhigang, G.; Tingjin, L.; Hanlin, L.; Xichao, R.; Haicheng, W.; Sin, M.; Bauge, E.; Romain, P.; Morillon, B.; Salvatores, M.; Jacqmin, R.; Bouland, O.; De Saint Jean, C.; Pronyaev, V. G.; Ignatyuk, A.; Yokoyama, K.; Ishikawa, M.; Fukahori, T.; Iwamoto, N.; Iwamoto, O.; Kuneada, S.; Lubitz, C. R.; Palmiotti, G.; Kodeli, I.; Kiedrowski, B.; Roubtsov, D.; Thompson, I.; Quaglioni, S.; Kim, H. I.; KLee, Y. O.; Koning, A. J.; Carlson, A.; Fischer, U.

    2016-11-01

    The CIELO collaboration has studied neutron cross sections on nuclides that significantly impact criticality in nuclear technologies - 16O, 56Fe, 235,8U and 239Pu - with the aim of reducing uncertainties and resolving previous discrepancies in our understanding. This multi-laboratory pilot project, coordinated via the OECD/NEA Working Party on Evaluation Cooperation (WPEC) Subgroup 40 with support also from the IAEA, has motivated experimental and theoretical work and led to suites of new evaluated libraries that accurately reflect measured data and also perform well in integral simulations of criticality.